
IBM MQSeries Workflow for z/OS

Customization and Administration
Version 3.3

SC33-7030-05

���

IBM MQSeries Workflow for z/OS

Customization and Administration
Version 3.3

SC33-7030-05

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Appendix O.
Notices” on page 237.

Fifth Edition (March 2001)

This edition applies to version 3, release 3, modification 0 of IBM MQSeries Workflow for z/OS (product number
5655-BPM) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who should read this book xi
How this book is organized xi
How to get additional information xiii
How to send your comments xiii
How to read the syntax diagrams. xiii

Summary of changes xvii
Changes for this edition. xvii
Changes for the fourth edition xvii
Changes for the third edition xvii

Part 1. Customization 1

Chapter 1. Understanding MQSeries
Workflow for z/OS 3
Understanding the MQSeries Workflow for z/OS
architecture 3
Understanding the customization process. 4

Customization scenario pre-requirements 6

Chapter 2. Planning your configuration 7
Deciding your MQSeries Workflow for z/OS
identifiers 7

Overview of the customization parameters . . . 8
Installation scope identifiers 9
System group scope identifiers 10
System scope identifiers 11
Flags and high level qualifiers 13
Subsystem identifiers 14
Customization identifiers 14

Evaluate database requirements 15
More detailed database planning (optional) . . . 16

Chapter 3. Before starting
customization. 19
After installing MQSeries Workflow for z/OS . . . 19

Create the MMS message catalogs 19
LPA library concatenation 21

Chapter 4. Creating a system group
and a primary system 23
Before starting customization 23

Data set allocation 23
Create input files for customization 24

System Group Customization 24
General DB2 customization 25
Workflow DB2 customization 25
Populate the Workflow database 26

Program execution server directory DB2
customization 27
Populate the PES directory database 28
Program execution server mapping DB2
customization 28

System customization 29
MQSeries customization 29
Trace customization 30
CICS API support customization 31
IMS API support customization. 32
Workflow server customization 33
LAN client customization. 33
Customize Java-API support. 36
Customize the XML message API and distributed
process sample using XML 37
Customize the Web Client 38
System customization verification 40

Verify Workflow client sample application 40
Program execution customization 42

Customize CICS EXCI invocation 42
Customize MQSeries CICS bridge invocation . . 44
Customize IMS CPIC invocation 46
Customize MQSeries IMS bridge invocation . . 48
Customize program execution server directory . 49
Configure program execution samples 52
Verify program execution samples 52

Chapter 5. Creating additional systems
in an existing system group 57
Decide the new system’s identifiers 57
Data set allocation 59
Create input files for customizing an additional
system in a system group. 60
General DB2 customization (DB2 data sharing) . . 60
Update topology setting in the Workflow database 61
MQSeries customization 62
Trace customization 62
CICS API support customization 63
IMS API support customization. 65
Workflow server customization 65
LAN client customization. 66

Customize the MQSeries client connection . . . 66
Customize the MQSeries Workflow client . . . 67

Chapter 6. Adding extra Workflow
clients to an existing system 69
Basic client customization 69

Decide the new client’s identifiers 69
Data set allocation for client 70
Create input files for customizing a new Client 71
MQSeries customization for a new client . . . 71
Generate MQSeries channel tab file for LAN
client 72

CICS API support customization for new client . . 72
IMS API support customization for new client. . . 74

© Copyright IBM Corp. 1998, 2001 iii

LAN Client Customization 74
Client request concentrator customization 75

Part 2. Administration 77

Chapter 7. Introduction to system
administration 79
Objects you will need to administer or use 79
Administration in an MQSeries Workflow system . 82
System administration client/server components . . 82

The administration server 83
Overview of administration tasks 84

System and server administration tasks 84
Program and user administration tasks 85

Chapter 8. Administration server tasks 87
Administration server commands 87

Starting the administration server 87
Stopping the administration server 88

System commands 88
Starting the system 88
Stopping the system 89
Restarting the system 89
Displaying all server instances in the system . . 90

Server commands 90
Starting servers 91
Stopping servers. 92
Restarting servers 92
Displaying the number of instances of a server 93

Hold queue commands 94
Displaying number of messages in the hold
queue 94
Displaying messages in the hold queue 94
Replaying messages from the hold queue . . . 95
Deleting messages from the hold queue 95

Chapter 9. Buildtime administration
tasks 97
Defining process models 97

Defining server properties 97
Defining program properties 100
Defining the connection between a program
activity and the PES 103

Uploading process models to the host 104
Importing and exporting process models 104

Using the FDL import/export tool 104

Chapter 10. Program execution. . . . 105
Administering the Program Execution Server
directory 107

Adding a new service definition and the related
user resolution information. 108
Adding a user-defined invocation type 109
Adding a user-defined mapping type 109
Importing the PES directory 109
Caching the PES directory at runtime 110

Administering programs. 110
Enabling an OS/390 program to be run as a
program activity 110

Enabling an OS/390 program to run as a safe
application 111
Disabling a program 111
Authorizing a user to access an OS/390
program 111
Revoking a user’s access to OS/390 programs 112

Administering program mapping. 112
Importing a program mapping definition . . . 112
Enabling a program’s mapping 114
Disabling a program’s mapping 115
Deleting a program mapping definition . . . 115
Enabling a mapping type 115
Disabling a mapping type 116

Administering invocation types 116
Enabling an invocation type 116
Disabling an invocation type 116

Program execution security 116
Information in the PES directory that is relevant
to security 118
Program security 118

Chapter 11. Administering Servlets on
the WebSphere Application Server . . 119
Placing servlet class files on the Application Server 119

If necessary, create a new servlet sub-directory 119
Monitoring your servlet, or setting servlet
initialization parameters 120

Placing the HTML files on the Application Server 120
Running a sample servlet, to log on MQSeries
Workflow. 120

Chapter 12. Performance tuning . . . 123
Changing the number of running server instances 123
Changing the number of server instances per
address space 123
Caching the PES directory 124
Using the OS/390 Link Pack Area for MQSeries
Workflow load libraries 124
Tuning DB2 124

Chapter 13. Problem determination 125
Where to find information 125

Error log 126
Data sets of the job output 126

Server problems 126
Message catalog not available 126
Problem starting servers 127
The administration server cannot be started . . 128
The administration server does not respond to
console commands 128
The program execution server cannot be started 128
Server instances terminate 129
Program activity stays in the state ’running’ . . 129
Cannot stop servers 129
Changes made to the configuration profile are
not activated 130
Changes made to the PES directory are not
activated 130
Changes made to the program mapping
definition are not activated 131

iv Customization and Administration

Hold queue problems (undelivered messages) 131
Resource and performance problems 131

Response times are unacceptably long 131
Invalid password 132
Running out of spool space. 132

The MQSeries Workflow for z/OS system trace
facility. 133

Simple trace 133
Extended trace 133
Using IPCS to analyze extended trace or dump
output. 137
Problems with extended tracing 138
MQSeries Workflow trace variables 139

Simple tracing in IBM WebSphere Application
Server 142

Turning tracing on. 142
Turning tracing off 142

Tracing in CICS 142

Part 3. Using OS/390 Workload
Manager with Workflow 143

Chapter 14. Introduction to WLM . . . 145
What is OS/390 Workload Manager? 145

Overview of WLM 145
WLM queuing model. 145
Service definition 147

MQSeries Workflow and OS/390 Workload
Management 148

Workflow administration server 149
OS/390 Workload Manager application
environments 151
MQSeries for OS/390 workload management 153
Classification 154

Chapter 15. Setting up WLM for
MQSeries Workflow for z/OS 155
Creating a WLM service definition 155

Service definition 155
Service policy 156
Workload. 157
Service class 157
Classification rule 159
Application environment 160

Installing and activating a WLM service policy in a
Parallel Sysplex environment 162
WLM administration 164

Switching servers between WLM and non-WLM
mode by importing an FDL file 164
Starting WLM-managed servers when WLM is
in manual mode 165

Chapter 16. WLM problem
determination 167
WLM setup problems 167
Unexpected runtime behavior of MQSeries
Workflow with WLM. 167

Part 4. Appendixes 169

Appendix A. Program Execution
Server directory 171
PES directory structure 171

Invocation section 172
Mapping section 172
Security section. 172

PES directory template 173
PES directory dependencies on the process model’s
OS/390 program definitions 174

Appendix B. The PES directory import
tool’s syntax and semantics 175
Return codes 175
PES directory import examples 175

Importing a PES directory source file 175
Importing a PES directory and writing a log file 176
Deleting the PES directory 176

Appendix C. Program mapping import
tool syntax 177
Creating a new program mapping definition . . . 177
Replacing an existing program mapping definition 177
Inserting a program mapping definition 178
Deleting a program mapping definition 178
Listing program mapping definitions 178
Control statement execution 178
Example control statements. 179

Appendix D. Naming and code page
restrictions 181
Naming Buildtime objects 181
Restrictions for passwords in CICS 181

Appendix E. FDL code page
conversion tool 183
Using the FDL code page conversion tool 183
Options 183
Return codes 184

Appendix F. FDL import/export tool 185
FDL import/export tool’s syntax 185
Options for the import/export tool 187
Log file and errors. 187

Return codes 188
Examples 188

To import an FDL file 188
To import an FDL file and translate the
contained process models 188
To import an FDL file and write messages in a
separate log file 188
To export all workflow entities 189
To export all people 189
To export individual people 189
To export an individual process (deep) 189
To export Workflow entities using a command
file 189
To translate existing models 189
To translate existing process models using a
command file 189

Contents v

Appendix G. Customization parameter
files 191
Customization parameter file for a primary system 191
Customization parameter file for adding a system
to a system group 195
Customization parameter file for a client on a
queue manager 198

Appendix H. Configuration profiles 201
Server configuration profile. 201
Client configuration profile 203

Appendix I. Environment variable files 207
Server environment variable file 207
Client environment file 207

Appendix J. WLM message
classification 209
Message classification namespace. 209
Program Execution Server invocation information 209
Static Workflow message classification 210

Process Template messages 211
Process Template List messages 211
Process messages 211
Process InstList messages 211
Work Item messages 212
Activity messages 212
User Information messages 213
Process Monitor messages 213
WorkList messages 213
PEA/PES Server messages 213
PEA/PES Reply messages 213
Scheduling messages 214
SubProcess messages 214
Internal Server messages 214

Appendix K. Nesting WLM
classification information 215

Appendix L. Error reporting 217

Error log record entries 217
System log record entries 218
Compact error reports 218

Appendix M. Audit Trail 221
What is the audit trail? 221
How to analyze the audit trail. 226

Appendix N. Migrating from a
previous release 229
Planning your migration 229

Decide your new MQSeries Workflow for z/OS
identifiers 230

Before starting migration 231
Migrate an existing MQSeries Workflow for
OS/390 system group 231

Migration phases 231
Phase 1: Existing system group is functional . . 232
Phase 2: Production outage 233
Phase 3: New system group is functional (except
program execution) 235
Phase 4: New system group is fully-functional 235

Appendix O. Notices 237
Trademarks 238

Glossary 239

Bibliography. 245
MQSeries Workflow for z/OS publications . . . 245
MQSeries Workflow publications 245
MQSeries publications 245
Workflow publications 245
Other useful publications 245
Licensed books 245

Index 247

vi Customization and Administration

Figures

1. MQSeries Workflow for z/OS architecture 3
2. MQSeries Workflow for z/OS customization

tasks 5
3. Customization parameters for a Workflow

system 8
4. Customization parameters for DB2 9
5. Implementation of the administration

component in an MQSeries Workflow system . 83
6. Execution server properties: General page 99
7. Program properties: Data page. 100
8. Program properties: OS/390 page 101
9. Program activity properties: Execution page 103

10. OS/390 Program execution server: component
structure 106

11. Program mapping definition process and
components 113

12. How extended trace works 137
13. Server address spaces 146
14. Interactions between MQSeries and WLM to

manage execution server address spaces . . 146
15. WLM service policy: response time goals 149

16. The WLM queuing model used by MQSeries
Workflow 153

17. WLM panel: Definition menu 156
18. WLM panel: Create a service policy 156
19. WLM panel: Create a workload 157
20. WLM panel: Create a service class 158
21. WLM menu: Choose a goal type 159
22. WLM panel: Subsystem type selection list for

rules 159
23. WLM panel: Modify rules for the subsystem

type. 160
24. WLM panel: Create an application

environment 161
25. WLM menu: Install a service definition 163
26. WLM menu: Activate a service definition 163
27. WLM panel: Policy selection list 163
28. FDL settings to switch to WLM mode 164
29. FDL settings to switch to non-WLM mode 165
30. Example of nesting WLM classification

information 215

© Copyright IBM Corp. 1998, 2001 vii

viii Customization and Administration

Tables

1. Installation scope identifiers 9
2. System group identifiers 10
3. System scope identifiers 11
4. Flags and high level qualifiers 13
5. Subsystem identifiers 14
6. Customization identifiers 14
7. Sample scenario characteristics suitable for the

suggested database allocations 15
8. Files that define the databases 16
9. Suggested buffer pool sizes and allocation 17

10. Create MMS message catalogs 20
11. Copy LPALIB member 21
12. Data set allocation 23
13. Create input files for customization 24
14. General DB2 customization 25
15. Workflow DB2 customization 26
16. Populate the Workflow database 26
17. Program execution server directory DB2

customization 27
18. Populate the PES directory 28
19. Program execution server mapping DB2

customization 28
20. MQSeries customization 29
21. Trace customization 30
22. CICS API support customization 31
23. IMS API support customization 32
24. Workflow server customization 33
25. Customize the MQSeries client connection 34
26. Customize the MQSeries Workflow client 34
27. Customize Java-API support 36
28. Customize the XML message API and

distributed process sample using XML . . . 38
29. Customize the Web Client. 38
30. System customization verification 40
31. Verify Workflow client sample application 41
32. Customizing program execution invocation

types. 42
33. Customize CICS EXCI invocation 43
34. Customize MQSeries CICS bridge invocation 44
35. Customize IMS CPIC invocation 46
36. Customize MQSeries IMS bridge invocation 48
37. Customize program execution server directory 50
38. Configure program execution samples . . . 52
39. Verify program execution samples 53
40. Identifiers required for each new system 57
41. Data set allocation 59
42. Create input files for customization 60
43. General DB2 customization (DB2 data sharing) 61
44. Updating topology setting in the Workflow

database 61
45. MQSeries customization 62
46. Trace customization 62
47. CICS API support customization 63
48. IMS API support customization 65
49. Workflow server customization 65
50. Customize the MQSeries client connection 66

51. Customize the MQSeries Workflow client 67
52. Identifiers required for each new client 69
53. Data set allocation for client 70
54. Create input files for client customization 71
55. MQSeries customization for new client 71
56. Generate MQSeries Channel tab file for use on

LAN Client 72
57. CICS API support customization for new client 72
58. IMS customization 74
59. Enabling a client to use the Workflow API 74
60. Enabling a client to act as a client request

concentrator 75
61. System and server administration tasks 84
62. Program and user administration tasks: tool

dependencies 85
63. Server types 90
64. Server properties that can be changed. . . . 97
65. Server properties that should not be changed 98
66. Server properties that are ignored on OS/390 98
67. Program properties: OS/390 page settings 102
68. Program mapping parser and import tool’s

return codes 114
69. Meaningful security setting combinations in

Buildtime 117
70. Job output data sets 126
71. Extended trace format converter return codes 136
72. Variables for simple and extended tracing 139
73. Problems importing FDL for WLM 167
74. Unexpected runtime behavior of MQSeries

Workflow with WLM 168
75. PES directory import tool’s options 175
76. PES directory import tool’s return codes 175
77. FDL code page conversion tool’s return codes 184
78. FDL import/export tool’s return codes 188
79. Server configuration profile settings 201
80. Client configuration profile settings 203
81. Server environment variable file settings 207
82. Client environment variable file settings 207
83. MQWIH_ServiceStep field definition 209
84. MQWIH_ServiceName field definition 209
85. MQSeries Workflow server message types 210
86. Process Template messages 211
87. Process Template List messages 211
88. Process messages 211
89. Process InstList messages 211
90. Work Item messages 212
91. Activity messages 212
92. User Information messages 213
93. Process Monitor messages 213
94. WorkList messages. 213
95. PEA-Server messages 213
96. PEA Reply messages 213
97. Scheduling messages 214
98. SubProcess messages 214
99. Internal Server messages 214

100. Error log record entries 217

© Copyright IBM Corp. 1998, 2001 ix

101. System log record entries 218
102. Audit trail record layout 222
103. Audit trail record contents 223
104. Audit trail activity type encoding 226
105. Audit trail activity state encoding 226
106. Migration identifiers for each Workflow

system 230
107. Premigration for each system in the system

group 232

108. Stop your existing system group 234
109. Migrate each OS/390 image. 234
110. Migrate the databases for the system group 234
111. Migrate and verify each system in the system

group 235
112. Program execution migration for each system 235

x Customization and Administration

About this book

This book applies to MQSeries Workflow for z/OS and also for OS/390. All
references to the operating system OS/390(R) in this book, therefore, also include
z/OS.

This book provides information about customization and administration functions
and practises within an IBM MQSeries Workflow for z/OS system. It explains the
basic concepts of system administration and describes how to use the MQSeries
Workflow administration server to administer and oversee an MQSeries Workflow
for z/OS system or system group. For information about administration of
MQSeries Workflow on operating systems other than OS/390, see IBM MQSeries
Workflow: Administration Guide.

It is assumed that you have read the IBM MQSeries Workflow: Concepts and
Architecture book and are familiar with the MQSeries Workflow system structure.
You should also understand how MQSeries Workflow uses DB2(R) to store
domain, system group, and system properties.

Who should read this book
This book is intended for a system administrator who is the first person defined in
an MQSeries Workflow system. A system administrator does the following:
v Installs and customizes MQSeries Workflow for z/OS and its prerequisite and

corequisite products.
v Administrates MQSeries Workflow for z/OS databases and the day-to-day

operation of MQSeries Workflow for z/OS.

This book does not describe installation of MQSeries Workflow products. It
assumes that your MQSeries Workflow for z/OS system has already been set up as
described in the MQSeries Workflow for z/OS: Program Directory.

How this book is organized
v “Part 1. Customization” on page 1 describes how to customize MQSeries

Workflow for z/OS. It contains the following chapters:
– “Chapter 1. Understanding MQSeries Workflow for z/OS” on page 3 describes

the MQSeries Workflow for z/OS architecture and the customization tasks.
– “Chapter 2. Planning your configuration” on page 7 provides tables to

photocopy and complete for use during customization.
– “Chapter 3. Before starting customization” on page 19 describes

post-installation tasks that must be performed once per installation.
– “Chapter 4. Creating a system group and a primary system” on page 23

guides you through the process necessary to create a functional MQSeries
Workflow for z/OS system.

– “Chapter 5. Creating additional systems in an existing system group” on
page 57 describes how to add additional Workflow systems to an existing
system group.

– “Chapter 6. Adding extra Workflow clients to an existing system” on page 69
describes how to add various types of client to an existing Workflow system.

© Copyright IBM Corp. 1998, 2001 xi

v “Part 2. Administration” on page 77 introduces the concepts and components of
system administration in an MQSeries Workflow system and explains how to
start and use the MQSeries Workflow for z/OS administration server. Details
regarding problem determination and using the trace facility are also given.
– “Chapter 7. Introduction to system administration” on page 79 gives an

overview of the objects and tasks involved in administrating this product.
– “Chapter 8. Administration server tasks” on page 87 describes the

command-driven administration interface that is used to start and stop the
system and servers.

– “Chapter 9. Buildtime administration tasks” on page 97 describes the
administration tasks connected with the Buildtime tool, and process models.

– “Chapter 10. Program execution” on page 105 covers all tasks relating to the
program execution server, such as administering programs, users, mappings,
and invocation types.

– “Chapter 11. Administering Servlets on the WebSphere Application Server” on
page 119 describes how to add a Java Servelet to the WebSphere(R)
Application Server for OS/390 that will call the Java-API of MQSeries
Workflow. This allows users to invoke MQSeries Workflow actions from their
Internet Web browser.

– “Chapter 12. Performance tuning” on page 123 describes some specific ways
to improve system performance.

– “Chapter 13. Problem determination” on page 125 describes solutions to
specific problems, and describes how to use the tracing facilities.

v “Part 3. Using OS/390 Workload Manager with Workflow” on page 143 describes
how to apply OS/390 Workload Management (WLM) with MQSeries Workflow
for z/OS services.
– “Chapter 14. Introduction to WLM” on page 145 introduces workload

management concepts.
– “Chapter 15. Setting up WLM for MQSeries Workflow for z/OS” on page 155

describes how to create your service definitions, and how to migrate existing
MQSeries Workflow for z/OS system groups to enable WLM support.

– “Chapter 16. WLM problem determination” on page 167 provides help solving
problems getting WLM working with MQSeries Workflow for z/OS.

v ″Part 4″ contains the following appendixes:
– “Appendix A. Program Execution Server directory” on page 171 describes the

structure of the program execution server’s configuration directory and its
dependencies on values in the OS/390 program definitions made in the
process model using MQSeries Workflow Buildtime.

– “Appendix B. The PES directory import tool’s syntax and semantics” on
page 175 provides the syntax, options, and examples of using the tool for
importing the program execution server’s directory.

– “Appendix C. Program mapping import tool syntax” on page 177 describes
the database utility language used to modify the program mapper’s database.

– “Appendix D. Naming and code page restrictions” on page 181 describes the
restrictions for naming OS/390 objects in the MQSeries Workflow Buildtime
process model.

– “Appendix E. FDL code page conversion tool” on page 183 contains details
about a tool to convert process model information between different code
pages. You may need to use this tool if your uploading method corrupts your
FDL files.

xii Customization and Administration

– “Appendix F. FDL import/export tool” on page 185 provides the syntax,
options, and examples of using the tool for importing and exporting process
model information in the FDL file format.

– “Appendix G. Customization parameter files” on page 191 describes the
template files used during customization.

– “Appendix H. Configuration profiles” on page 201 describes contents of the
configuration profile files that determines the behavior of servers, tools, and
clients.

– “Appendix I. Environment variable files” on page 207 describes contents of
the environment variable files for servers and clients.

– “Appendix J. WLM message classification” on page 209 describes the
classification information for all Workflow messages sent to the execution and
program execution servers.

– “Appendix K. Nesting WLM classification information” on page 215 describes
how to specify qualifier names in WLM that are more than 8 characters long.

– “Appendix L. Error reporting” on page 217 describes the structure of the error
log and system log records.

– “Appendix M. Audit Trail” on page 221 describes the audit trail, and provides
example queries.

– At the back of the book there is a glossary that defines terms as they are used
in this book, a bibliography, and an index.

How to get additional information
Visit the MQSeries Workflow home page at
http://www.software.ibm.com/ts/mqseries/workflow

For a list of additional MQSeries Workflow publications, refer to “MQSeries
Workflow publications” on page 245.

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
MQSeries Workflow for z/OS documentation, choose one of the following
methods:
v Send your comments by e-mail to: swsdid@de.ibm.com. Be sure to include the

name of the book, the part number of the book, the version of MQSeries
Workflow for z/OS, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax
(+49-(0)7031-16-4892), or by giving it to an IBM representative.

How to read the syntax diagrams
In this manual diagrams are used to illustrate programming syntax. To use a
diagram, follow a path from left to right, top to bottom, adding elements as you
go. In these diagrams, all spaces and other characters are significant.

Each diagram begins with a double right arrowhead and ends with a right and left
arrowhead pair.

The following rules apply to the syntax diagrams used in this book:

About this book xiii

http://www.ibm.com/software/ts/mqseries/workflow

v The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items normally appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

�� required_item
optional_item

��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

xiv Customization and Administration

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

If the repeat arrow contains a number in brackets, the number represents the
maximum number of times that item can appear.

�� required_item �

(5)

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). Variables appear in all
lowercase letters (for example, column name). They represent user-supplied
names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

v Syntax diagrams may be broken into fragments. A fragment is indicated by
vertical bars with the name of the fragment between the bars. The fragment is
shown following the main diagram, like so:

A Fragment

A Fragment:

Keyword value

About this book xv

xvi Customization and Administration

Summary of changes

Changes made to this book are summarized here.

Changes for this edition
This book contains information previously presented in MQSeries Workflow for
OS/390: Customization and Administration, SC33-7030-04. It includes terminology,
maintenance, corrections, and editorial changes to support MQSeries Workflow for
z/OS Version 3 Release 3.
v This product has ben renamed. References to OS/390 also apply to the new

version of this operating system, named z/OS.
v The DB2 customization process has been simplified, and now requires fewer jobs

to be submitted.
v It is now possible to automate regular cleanups of the session records.
v “Appendix N. Migrating from a previous release” on page 229 describes how to

migrate an existing MQSeries Workflow for z/OS installation.
v How to customize the distributed process sample using XML is described in

“Customize the XML message API and distributed process sample using XML”
on page 37.

v Support has been added for the MQSeries Workflow for z/OS Web Client using
the WebSphere Application Server. How to customize the Web Client is
described in “Customize the Web Client” on page 38.

v “The MQSeries Workflow for z/OS system trace facility” on page 133 describes
how to use the new extended trace facility. Extended trace now uses MQSeries
messages, it allows you to change the trace criteria and externalization
dynamically, and you can use IPCS to analyze the trace or dump data.

v The customization parameter files have changed, they are listed in “Appendix G.
Customization parameter files” on page 191.

Changes for the fourth edition
v “Hold queue commands” on page 94 describes how to display, replay, and delete

undelivered messages intended for the program execution server.
v “Server properties that can be changed” on page 97 reflects that the start option

for the cleanup server and scheduling server are now respected. Before, both
servers were always started when the system was started, now you can
determine the start up behavior by setting the start mode option for both servers
in Buildtime. If you set the start mode to ’deferred’, the server is not started
when the system is started. You then can start the server from the system
console when you want.

v “The MQSeries Workflow for z/OS system trace facility” on page 133 has been
revised, and includes a full description of how extended tracing works.

v “Appendix M. Audit Trail” on page 221 describes the audit trail, and provides
example queries.

Changes for the third edition
The following summarizes the most significant new information and functionality
made to support MQSeries Workflow for z/OS Version 3 Release 2.1:

© Copyright IBM Corp. 1998, 2001 xvii

v “Chapter 1. Understanding MQSeries Workflow for z/OS” on page 3 describes
the architecture and customization tasks.

v “Chapter 2. Planning your configuration” on page 7 describes how MQSeries
clusters are used, and includes new identifiers that are required for
customization.

v “Chapter 5. Creating additional systems in an existing system group” on page 57
describes how to add additional Workflow systems to an existing system group.

v “Chapter 6. Adding extra Workflow clients to an existing system” on page 69
describes how to add various types of client to an existing Workflow system.

v “Starting the administration server” on page 87 includes the option to register
the administration server with the OS/390 Automatic Restart Manager (ARM).

v “Hold queue commands” on page 94 describes how to display, replay, and delete
undelivered messages intended for the execution server.

v “Caching the PES directory at runtime” on page 110 describes how to activate
and refresh the PES directory cache.

v “Chapter 11. Administering Servlets on the WebSphere Application Server” on
page 119 describes how to enable Java servlets that allow users to invoke calls to
the MQSeries Workflow Java API from an Internet Web browser.

v “Part 3. Using OS/390 Workload Manager with Workflow” on page 143 describes
how to set up the execution and program execution servers to be managed by
the OS/390 Workload manager (WLM).

xviii Customization and Administration

Part 1. Customization

Chapter 1. Understanding MQSeries Workflow for
z/OS 3
Understanding the MQSeries Workflow for z/OS
architecture 3
Understanding the customization process. 4

Customization scenario pre-requirements 6
Scenario 1: Minimum configuration (one
system group containing one system) 6
Scenario 2: Multiple queue managers
(additional systems or clients) 6

Chapter 2. Planning your configuration 7
Deciding your MQSeries Workflow for z/OS
identifiers 7

Overview of the customization parameters . . . 8
Installation scope identifiers 9
System group scope identifiers 10
System scope identifiers 11
Flags and high level qualifiers 13
Subsystem identifiers 14
Customization identifiers 14

Evaluate database requirements 15
More detailed database planning (optional) . . . 16

Chapter 3. Before starting customization . . . 19
After installing MQSeries Workflow for z/OS . . . 19

Create the MMS message catalogs 19
LPA library concatenation 21

Chapter 4. Creating a system group and a
primary system 23
Before starting customization 23

Data set allocation 23
Create input files for customization 24

System Group Customization 24
General DB2 customization 25
Workflow DB2 customization 25
Populate the Workflow database 26
Program execution server directory DB2
customization 27
Populate the PES directory database 28
Program execution server mapping DB2
customization 28

System customization 29
MQSeries customization 29
Trace customization 30
CICS API support customization 31
IMS API support customization. 32
Workflow server customization 33
LAN client customization. 33

Customize the MQSeries client connection . . 34
Customize the MQSeries Workflow client . . 34

Customize Java-API support. 36
Customize the XML message API and distributed
process sample using XML 37

Customize the Web Client 38
System customization verification 40

Verify Workflow client sample application 40
Program execution customization 42

Customize CICS EXCI invocation 42
Customize MQSeries CICS bridge invocation . . 44
Customize IMS CPIC invocation 46
Customize MQSeries IMS bridge invocation . . 48
Customize program execution server directory . 49
Configure program execution samples 52
Verify program execution samples 52

Chapter 5. Creating additional systems in an
existing system group 57
Decide the new system’s identifiers 57
Data set allocation 59
Create input files for customizing an additional
system in a system group. 60
General DB2 customization (DB2 data sharing) . . 60
Update topology setting in the Workflow database 61
MQSeries customization 62
Trace customization 62
CICS API support customization 63
IMS API support customization. 65
Workflow server customization 65
LAN client customization. 66

Customize the MQSeries client connection . . . 66
Customize the MQSeries Workflow client . . . 67

Chapter 6. Adding extra Workflow clients to an
existing system 69
Basic client customization 69

Decide the new client’s identifiers 69
Data set allocation for client 70
Create input files for customizing a new Client 71
MQSeries customization for a new client . . . 71
Generate MQSeries channel tab file for LAN
client 72

CICS API support customization for new client . . 72
IMS API support customization for new client. . . 74
LAN Client Customization 74
Client request concentrator customization 75

© Copyright IBM Corp. 1998, 2001 1

2 Customization and Administration

Chapter 1. Understanding MQSeries Workflow for z/OS

This chapter describes the architecture and customization tasks.
v “Understanding the MQSeries Workflow for z/OS architecture”
v “Understanding the customization process” on page 4

Understanding the MQSeries Workflow for z/OS architecture
Figure 1 illustrates the MQSeries Workflow for z/OS architecture.

The architecture consists of the following components:

MQSeries(R) queue manager cluster
At least one MQSeries cluster must be defined. Each cluster can contain
one or more system groups. By using MQSeries clusters, your MQSeries
administration is simplified, and the workflow requests can be distributed
evenly between Workflow systems. For more information about clusters,
see MQSeries Queue Manager Clusters.

Workflow system group
A Workflow system group can contain one or more Workflow systems. All
systems in a system group share the same workflow runtime database. The
workflow servers in a system group are connected to MQSeries queue
managers that belong to the same MQSeries queue manager cluster.

Figure 1. MQSeries Workflow for z/OS architecture

© Copyright IBM Corp. 1998, 2001 3

System
A Workflow system consists of servers for administration, program
execution, execution, scheduling, and cleanup. All workflow servers in a
system are monitored and controlled by the administration server. Systems
within the same system group cannot use the same queue manager, but
systems that are in different system groups can use the same queue
manager. The systems in a system group can reside on different OS/390
images, but they must use the same database using DB2 data sharing.

MQSeries queue manager
At least one MQSeries queue manager must exist. Every system in a
system group must use a different queue manager.

DB2 MQSeries Workflow for z/OS requires at least one DB2 subsystem. The
DB2 database used by the systems in a system group can either be in the
same subsystem, or in a data sharing group.

The first time that you customize MQSeries Workflow for z/OS, you will create
one Workflow system group containing one Workflow system. To create further
system groups, you will have to repeat the customization procedure using unique
customization parameters. Before you will be able to create a system group, you
must ensure that you have the following minimum environment for an MQSeries
Workflow for z/OS system group:
v One MQSeries cluster
v One MQSeries queue manager
v One DB2 subsystem

After creating a system group containing one Workflow system, you can add
additional systems to the system group as described in “Chapter 5. Creating
additional systems in an existing system group” on page 57.

Understanding the customization process
The tasks required to customize MQSeries Workflow for z/OS depend on the way
that you intend to structure your configuration. The possible dimensions of a
system are shown in Figure 2 on page 5.
1. The installation procedure is described in MQSeries Workflow for z/OS: Program

Directory.
2. After each installation, you must perform “After installing MQSeries Workflow

for z/OS” on page 19 once for every OS/390 image that you want to customize.
This defines OS/390 resources that have scope over an OS/390 system. These
resources are:
v The MQSeries Workflow for z/OS message catalog.
v Modules which have to be loaded into the OS/390 Link Pack Area (LPA).

Note: Note that the message catalog of OS/390 MVS(TM) Message Services
(MMS) and the OS/390 LPA are resources that are shared, potentially by
different release levels of MQSeries Workflow. Existing MQSeries
Workflow installations can continue to be used with higher release levels
of these resources.

3. To create each system group and a primary system, you must perform:
a. “Deciding your MQSeries Workflow for z/OS identifiers” on page 7
b. “Chapter 4. Creating a system group and a primary system” on page 23.

This defines all resources that have scope over a Workflow system:

Customization

4 Customization and Administration

v MQSeries Workflow for z/OS system prefix.
v MQSeries Workflow for z/OS databases.
v MQSeries cluster name.
v MQSeries queue manager.

After successfully performing this step, your Workflow system has the same
capabilities as for the MQSeries Workflow for z/OS Version 3.1. Only now can
you proceed to perform steps 4 and 5 in any order, and as often as necessary to
create the required configuration.

4. You can then add systems to a system group as described in “Chapter 5.
Creating additional systems in an existing system group” on page 57. This
allows you to scale an existing system over a parallel sysplex. With this
additional Workflow system, the following resources are defined:
v An additional MQSeries queue manager, which must be different to the one

used by the primary system, but they must exist in the same MQSeries
cluster.

v Additional execution server and program execution server.
5. You can add Workflow clients to primary or additional systems as described in

“Chapter 6. Adding extra Workflow clients to an existing system” on page 69.
This step sets up an additional queue manager in the same MQSeries cluster as
the primary system. There are many different types of client which can be
setup.

Figure 2. MQSeries Workflow for z/OS customization tasks

Customization

Chapter 1. Understanding MQSeries Workflow for z/OS 5

Customization scenario pre-requirements
The following sections describe the pre-requirements for two scenarios:

Scenario 1: Minimum configuration (one system group
containing one system)
The minimum requirements before starting customization for an MQSeries
Workflow for z/OS system group with a primary system are:
1. It is assumed that there is a single queue manager.
2. The queue manager is the repository for the cluster.
3. A cluster receiver channel is defined.
4. You have verified that the cluster works correctly.

Scenario 2: Multiple queue managers (additional systems or
clients)
The minimum requirements before starting customization for an MQSeries
Workflow for z/OS with multiple queue managers in the cluster (either for
additional systems or additional clients on a queue manager), the minimum
requirements are:
1. It is assumed that all relevant queue managers are in a single cluster.
2. For high availability, at least two queue managers are defined as repository

queue managers for the cluster.
3. Each queue manager has a cluster receiver channel.
4. Each queue manager has a cluster sender channel to a repository queue

manager.
5. You have verified that the cluster works correctly.

Customization

6 Customization and Administration

Chapter 2. Planning your configuration

Before starting to customize your MQSeries Workflow for z/OS system, you
should complete the following:
1. “Deciding your MQSeries Workflow for z/OS identifiers”
2. “Evaluate database requirements” on page 15

Note: If you want to migrate an existing MQSeries Workflow for z/OS system,
you should follow the instructions described in “Appendix N. Migrating
from a previous release” on page 229.

Deciding your MQSeries Workflow for z/OS identifiers
You install the product image from the tape to the location that is specified by the
MQSeries Workflow for z/OS installation high level qualifier InstHLQ. Each time
that you want to create a new MQSeries Workflow for z/OS system you must
specify a new customization high level qualifier CustHLQ. It determines where the
new system files are copied and customized.

We recommend that you copy and complete the following tables for each
MQSeries Workflow for z/OS system you want to plan. The identifiers decided
here will be entered into the customization parameter file during “Before starting
customization” on page 23. During “Create input files for customization” on
page 24, these parameters are automatically substituted in the customization jobs.
The customization parameter file is listed in “Customization parameter file for a
primary system” on page 191.

It may be necessary for the information to be agreed and exchanged between the
following people:
v OS/390 system administrator
v CICS(R) administrator
v IMS administrator
v DB2 administrator
v RACF(R) administrator
v MQSeries administrator
v MQSeries Workflow local area network (LAN) administrator
v MQSeries Workflow for z/OS administrator

© Copyright IBM Corp. 1998, 2001 7

Overview of the customization parameters
The main system components and associated customization parameters are
illustrated in Figure 3 and Figure 4 on page 9.

Figure 3. Customization parameters for a Workflow system

Customization

8 Customization and Administration

Installation scope identifiers
The following identifiers have scope over a Workflow installation.

Table 1. Installation scope identifiers

Parameter Your value

Name in
customization
parameter file Description

InstHLQ MQWFIHLQ MQSeries Workflow for z/OS installation high level
qualifier. This qualifier is determined when the product
image is installed from tape, this is described in
MQSeries Workflow for z/OS: Program Directory.

CustHLQ MQWFCHLQ The high level qualifier for the MQSeries Workflow for
z/OS system you want to customize. This HLQ is
required for “Chapter 4. Creating a system group and a
primary system” on page 23 and “Chapter 5. Creating
additional systems in an existing system group” on
page 57.

ClientCustHLQ CLNTCHLQ Client customization high level qualifier for MQSeries
Workflow. This HLQ is only required for “Chapter 6.
Adding extra Workflow clients to an existing system”
on page 69.

Data storage group

Audit trail storage group

DB2 subsystem

DB2InstHLQ
DB2SubSystem
DB2Plan
SystemGroupQualifier

DataStorageGroupVolumeSet

AuditStorageGroupVolumeSet

DataStorageGroupName

AuditStorageGroupName

DataStorageGroupDataSet

AuditStorageGroupDataSet

PESMappingCollection
PESMappingDatabaseName
PES mapping database

PESDirectoryCollection
PESDirectoryDatabaseName
PES directory database

WorkflowCollection
WorkflowDatabaseName
Workflow database

Figure 4. Customization parameters for DB2

Customization

Chapter 2. Planning your configuration 9

System group scope identifiers
The following identifiers have scope over a Workflow system group.

Table 2. System group identifiers

Parameter Your value

Name in
customization
parameter file Description

SystemGroup MQWFSGNM MQSeries Workflow for z/OS system group name. This
name must be unique within your MQSeries Workflow
domain.

MQWFSystemPrefix MQWFSYSP MQSeries Workflow for z/OS MQSeries queue prefix is
used to prefix MQSeries object names, for example
queue names. This identifier may be up to 8 uppercase
characters long.

MQClusterName MQWFCLST The MQSeries name of a cluster where the system
group resides. This name will be used to define all
MQSeries objects which have cluster scope. This cluster
name must be unique in your entire MQSeries network
to avoid collisions and to allow future extensions.

SystemGroupLocale MQWFSGLC MQSeries Workflow for z/OS system group locale
setting. This is used to set the locale for all servers and
tools. It selects the correct code page conversion. Use
'C' for the default on your machine or a specific locale
setting, for example, 'De_DE.IBM-273' for German. The
MQSeries Workflow for z/OS servers and utilities load
the active locale from the C environment variable
LC_ALL to determine to which local code page MQSeries
Workflow messages from remote clients should be
converted. The LC_ALL environment variable is set and
propagated to the MQSeries Workflow programs with
the LE runtime option ENVAR.

DB2SampleLoad
Library

DB2SMPRL The load library where the DB2 sample DSNTEP2 is
located for example, <DB2InstHLQ>.RUNLIB.LOAD

DB2SampleDBRM
Library

DB2SMPDL The library where the DSNTEP2 DBRM is located, for
example, <DB2InstHLQ>.DBRMLIB.DATA

SystemGroupPrefix DB2SGPRE DB2 system group object qualifier. This is used to prefix
all DB2 objects created for this SystemGroup.

DataStorageGroup
Name

DB2STGNW DB2 storage group name where your MQSeries
Workflow for z/OS data will be stored.

DataStorageGroup
DataSetPrefix

DB2STGPW DB2 storage group data set prefix for runtime data.

DataStorageGroup
VolumeSet

DB2STGVW DB2 storage group volume set for runtime data. Specify
the volume name or '*' for SMS managed volumes.

AuditStorageGroup
Name

DB2STGNA DB2 storage group name for the audit trail data.

AuditStorageGroup
DataSetPrefix

DB2STGPA DB2 storage group data set prefix for audit trail data.

AuditStorageGroup
VolumeSet

DB2STGVA DB2 storage group volume set for the audit trail data.
Specify the volume name or '*' for SMS managed
volumes.
Note: For performance reasons this should not be the
same volume used for DataStorageGroupVolumeSet.

WorkflowDatabaseName DB2DBNAM DB2 Workflow database name.

Customization

10 Customization and Administration

Table 2. System group identifiers (continued)

Parameter Your value

Name in
customization
parameter file Description

PESMapping
DatabaseName

DB2MDBNM DB2 program execution server (PES) mapping database
name.

PESDirectory
DatabaseName

DB2PDBNM DB2 PES directory database name.

WorkflowCollection DB2DBCOL DB2 Workflow database collection name.

PESMappingCollection DB2MDCOL DB2 PES mapping database collection name.

PESDirectoryCollection DB2PDCOL DB2 PES directory database collection name.

DB2Plan DB2PLANN DB2 database plan name.

System scope identifiers
The following identifiers have scope over a Workflow system. To create multiple
systems within a system group, you will have to define unique system scope
identifiers for each system, as described in “Chapter 5. Creating additional systems
in an existing system group” on page 57.

Table 3. System scope identifiers

Parameter Your value

Name in
customization
parameter file Description

UniqueSystemKey MQWFUKEY Unique key for an MQSeries Workflow for z/OS
system, may be up to eight uppercase characters long.
This is the name given to the Workflow server start job,
and must be unique within your PROCLIB. This key is
used in the START command to start an administration
server on the System associated with this key.

SystemName MQWFSYSN MQSeries Workflow for z/OS system name. This name
may be up to eight uppercase characters long, and
must be unique within the system group. This is the
system where the administration server is started when
the start administration server command is issued:
START UniqueSystemKey.AdminServerID.

MQWFConfiguration
Key

MQWFCFGK This key must be unique for all MQSeries Workflow for
z/OS systems that you configure. It can be up to 8
uppercase characters long. This key is used inside the
profiles and identifies a configuration for a system.

ServerUserID STTSKUID The server started task user ID used by all MQSeries
Workflow for z/OS servers. This is the default user ID
that OS/390 programs will be run under, by the PES, as
a result of MQSeries Workflow process activity requests
for z/OS program invocations. This user ID requires
EXECUTE rights on DB2Plan

ServerGroupID STTSKGRP The server started task RACF group ID for all
MQSeries Workflow for z/OS servers.

CTComponent CTRCNAME CTRACE component name.

TraceStart TRCWPRC Trace writer start procedure name.

TraceStop TRCSPRC Trace writer stop procedure name.

ARMRestartPolicy ARMPOLNM The name of the ARM restart policy.

Customization

Chapter 2. Planning your configuration 11

Table 3. System scope identifiers (continued)

Parameter Your value

Name in
customization
parameter file Description

ARMRestartElement
NameSuffix

ARMRESFX The 8 character suffix of the 16 character ARM restart
element name. This value must be specified as part of
the start administration server command to register the
administration server with ARM. This suffix is
concatenated to the constant prefix SYSMQWF_. For
example, if you set ARMRESFX=MQWFS1, then the name of
the ARM restart element that is used in the ARM
restart policy will be SYSMQWF_MQWFS1.

EXEApplication
EnvironmentName

WLMAEEXE WLM Application Environment for the MQSeries
Workflow for z/OS execution server. It must be unique
in the parallel sysplex environment.

PESApplication
EnvironmentName

WLMAEPES WLM Application Environment for the MQSeries
Workflow for z/OS program execution server. It must
be unique in the parallel sysplex environment.

ClusterNamelist MQCLNAME This is the name of a MQSeries Namelist object which
holds the MQSeries cluster name that you defined in
Table 2 on page 10. The name must conform to the
MQSeries naming rules for Object names. It is used
later in all MQSeries object definitions which have
cluster scope.

QueueManager MQQMNAME Name of the MQSeries queue manager that is to be
used by MQSeries Workflow for z/OS. The queue
manager name must be unique for the complete
MQSeries network.
Note: If you want to run CICS applications that use the
MQSeries Workflow for z/OS application program
interface (API), this must either be the same queue
manager that is used by CICS, or the queue managers
must be members of the same MQSeries cluster.

OS/390System
TCP/IPAddress

STCPADDR This is the TCP/IP address of the OS/390 system.

QueueManager
TCP/IPPort

STCPPORT This is the TCP/IP port of the listener of the Queue
Manager. The MQSeries default is 1414. All Queue
Managers on the OS/390 image must have different
ports for their listeners.

Customization

12 Customization and Administration

Flags and high level qualifiers
The following flag and high level qualifiers are used during customization.

Table 4. Flags and high level qualifiers

Parameter Your value

Name in
customization
parameter file Description

CICSFlag Use one of the
values provided
in the
customization
parameter file.

CICSFL This parameter determines whether a CICS installation
library is included. The default setting in the
customization parameter file assumes that CICS is
installed. If you do not have CICS installed, later when
you reach step 2 of “Create input files for
customization” on page 24, you will only have to
comment out the default line and remove the comment
symbol from the front of the alternative setting. For
more details see the comment sections of the listing in
“Customization parameter file for a primary system” on
page 191.

CICSInstHLQ * CICSLPFX CICS installation high level qualifier.

DB2InstHLQ DB2INHLQ DB2 installation high level qualifier.

MQInstHLQ MQPREFIX MQSeries installation high level qualifier.

LEInstHLQ LELIBPFX Language Environment installation high level qualifier.

CCPPInstHLQ CLIBRPFX C/C++ installation high level qualifier.

COBOLInstHLQ * CBLIBPFX COBOL installation high level qualifier

IMSInstHLQ * IMSLIBPX IMS(TM) installation high level qualifier.

ICONVInstHLQ ICONVPFX ICONV installation high level qualifier. This should
point to the unicode converter data sets mentioned
below, it is normally the same as the Language
Environment high level qualifier (LEInstHLQ). The
value is substituted in the environment variable file, see
“Appendix I. Environment variable files” on page 207.
In the following example, ICONVInstHLQ should be set
to SYS1:

SYS1.SCEEUCS2
SYS1.SCEEUCS2.UCMAP
SYS1.SCEEUCS2.UCONVTBL

IPCSInstHLQ IPCSPRFX IPCS installation high level qualifier.

* CICS, IMS, and COBOL are optional.

Customization

Chapter 2. Planning your configuration 13

Subsystem identifiers
The following subsystem identifiers are required for customization.

Table 5. Subsystem identifiers

Parameter Your value

Name in
customization
parameter file Description

DB2SubSystem DB2SSYSN Name of the DB2 subsystem that is to be used by
MQSeries Workflow for z/OS.

CICSGroup CICSGRPN CICS group name used for program execution server
invocations.

Customization identifiers
These identifiers are not present in the customization parameter file. Many of these
parameters are optional, depending on which invocation types you intend to use.

Table 6. Customization identifiers

Parameter Your value Description

DB2AdminUserID The user ID of the DB2 administrator. This user ID requires SYSADM
rights to be able to perform the customization process. This can be
granted with the command

GRANT SYSADM TO DB2AdminUserID

MQWFAdminUserID The user ID of the MQSeries Workflow for z/OS administrator. This
user ID requires EXECUTE rights on DB2Plan to be able to execute the
tools that update the runtime databases.

applid This value is required during “Customize CICS EXCI invocation” on
page 42 and “Customize program execution server directory” on
page 49.

netid This value is required during “Customize IMS CPIC invocation” on
page 46 and “Customize program execution server directory” on
page 49.

luname This value is required during “Customize IMS CPIC invocation” on
page 46 and “Customize program execution server directory” on
page 49.

CICSBridge
InputQueue

This value is required during “Customize MQSeries CICS bridge
invocation” on page 44 and “Customize program execution server
directory” on page 49.

IMSBridge
InputQueue

This value is required during “Customize MQSeries IMS bridge
invocation” on page 48 and “Customize program execution server
directory” on page 49.

XCFGroupName This value is required during “Customize MQSeries IMS bridge
invocation” on page 48. The MQSeries instance and the target IMS
system must belong to the same XCF group.

XCFMemberIMS This value is required during “Customize MQSeries IMS bridge
invocation” on page 48. It represents the IMS system as a member in the
XCF group XCFGroupName.

XCFMemberMQ This value is required during “Customize MQSeries IMS bridge
invocation” on page 48. It represents the MQSeries instance as a member
in the XCF group XCFGroupName.

Customization

14 Customization and Administration

Table 6. Customization identifiers (continued)

Parameter Your value Description

PESDirectory
SourceFile

Your PES directory is based on the skeleton provided in
CustHLQ.SFMCDATA(FMCHEDTP). After customizing the source file, any
new changes will have to be made to your source file. This value is
required during “Customize program execution server directory” on
page 49.

IspfLAN The language code for ISPF, for example ENU for US English.

IspfHLQ The HLQ for the ISPF library.

Evaluate database requirements
If you want to use two storage groups, ten buffer pools, approximately 600MB of
primary allocation for Workflow data, and about 160MB of primary allocation for
audit trail data; you can use the suggested database allocations in Table 9 on
page 17, and no further planning is necessary. Otherwise, more detailed database
planning is required.

The suggested database allocations are suitable for the operational Workflow
scenario described in Table 7.

Table 7. Sample scenario characteristics suitable for the suggested database allocations

Parameter Value

Program activities per process 10

Process lifetime 1 day

Finished processes kept 7 days

Created processes 100 per day

Work items per program activity 10

Audit trail condensed

Audit trail cleanup every 7 days

Average small container size 512 bytes

Average large container size 4096 bytes

Customization

Chapter 2. Planning your configuration 15

More detailed database planning (optional)
If the suggested values are not acceptable for your requirements, this step helps
you to determine the size and organization of your database. Later, you will use
the values that are decided here to customize the jobs that create the DB2 objects
for MQSeries Workflow for z/OS.

This is a planning phase. You should not modify any of the files mentioned here,
copies of these files will be generated during “Before starting customization” on
page 23.

The values you decide on must be consistent with your values that you have
already planned, especially those in Table 2 on page 10.
1. Print a copy of InstHLQ.SFMCDB2(FMCHDDBP) to help you decide how many

buffer pools and which buffer pool sizes you want.
2. Print a copy of InstHLQ.SFMCDB2(FMCHDDST) to help you decide how many

storage groups you want to use, and whether you want to use volume names
or SMS managed volumes in the storage group definitions.

3. To help you decide which buffer pool or storage group you want to use for
each database, table space, or index, and estimate the required sizes for table
spaces and indexes, print a copy of the files listed in Table 8.

Table 8. Files that define the databases

Database name (see
Table 2 on page 10) Database definitions

Table space
definitions

Table and index
definitions

Workflow
DatabaseName

InstHLQ.SFMCDB2
(FMCHDDDB)

InstHLQ.SFMCDB2
(FMCHDDTS)

InstHLQ.SFMCDB2
(FMCHDDTB)

PESDirectory
DatabaseName

InstHLQ.SFMCDB2
(FMCHDDPD)

InstHLQ.SFMCDB2
(FMCHDDPS)

InstHLQ.SFMCDB2
(FMCHDDPT)

PESMapping
DatabaseName

InstHLQ.SFMCDB2
(FMCHDDMD)

InstHLQ.SFMCDB2
(FMCHDDMS)

InstHLQ.SFMCDB2
(FMCHDDMT)

Table 9 on page 17 provides a summary of the suggested table space sizes, buffer
pool sizes, and buffer pool allocations. It is recommended that you use a copy of
this table for your detailed planning.

Customization

16 Customization and Administration

Table 9. Suggested buffer pool sizes and allocation

Suggested
table
space
size in
1000 KB
(PRIQTY)

Storage
group

Buffer pool IDs

BP
32K

BP0 BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8

Suggested buffer pool size (x1000 pages)

Database or 2 4 4 4 4 2 2 2 4 4

Table space

Database - v

PESDIRTS 1 v

MAPPING 1 v
TEMPLT32 12 v
TEMPLT04 12 v
CONTAINR 120 v
PROCESS 12 v
WORKITEM 72 v
NTFYITEM 12 v
ACTWI 40 v
PROCACT 12 v
PROGACT 12 v
BLOCKACT 12 v
BLOCK 12 v
STAFF04 16 v
STAFF32 16 v
MPOOL 1 v
TOPLGY32 20 v
TEST 12 v
ADMIN 12 v
ADMIN01 12 v
MODEL 20 v
LIST 12 v
Indexes - v v
ADTTRAIL * 160 * v

Note: * The audit trail table space ADTTRAIL should be on a separate volume for
performance reasons. By default it is allocated to the volume
AuditStorageGroupVolumeSet and all other tables and databases are allocated
to the volume DataStorageGroupVolumeSet. See your values in Table 2 on
page 10.

Customization

Chapter 2. Planning your configuration 17

Customization

18 Customization and Administration

Chapter 3. Before starting customization

Before starting customization, you should check the following:
1. You have MQSeries for OS/390 Version 2.1 (or higher) installed, and one queue

manager with cluster setup is available for MQSeries Workflow for z/OS.
2. You have DB2 for OS/390 Version 5.1 (or higher) installed, and one subsystem

is available for MQSeries Workflow for z/OS.
3. To perform customization, you must have DB2 SYSADM rights.
4. IBM Resource Access Control Facility (RACF) authority to alter the MQSeries

Workflow for z/OS installation data sets, and the right to create MQSeries
objects.

Note: This manual assumes that you are using RACF for your security. If you
are using a different security system, you must apply the equivalent
security access controls for your system.

5. RACF authority to alter PROCLIB and PARMLIB.

Note: These are installation-defined library concatenations, common names for
these libraries are SYS1.PROCLIB, SYS1.PARMLIB, USER.PROCLIB, and
USER.PARMLIB.

6. The load libraries InstHLQ.SFMCLINK and InstHLQ.SFMCLPA must be Advanced
Program Facility (APF) authorized.

7. You should have configured the Resource Recovery Service (RRS) as described
in OS/390 MVS Programming: Resource Recovery.

8. Then you are ready to perform “After installing MQSeries Workflow for z/OS”
followed by

9. “Before starting customization” on page 23.

After installing MQSeries Workflow for z/OS
After performing the installation as described in MQSeries Workflow for z/OS:
Program Directory, you are ready to update the MVS Message Services (MMS)
message catalog, and add the library InstHLQ.SFMCLPA to the Link Pack Area (LPA)
library concatenation.

Note: Before submitting each JCL, be sure to insert your own job card.

Create the MMS message catalogs
To add the MQSeries Workflow for z/OS messages to MMS, you must do the
following:

© Copyright IBM Corp. 1998, 2001 19

Table 10. Create MMS message catalogs

Step
number

Required or
optional Description Action Verification

1 Required Create the VSAM
clusters, and load the
input files
InstHLQ.SFMCMSG
(FMCHMxxx) into them.

1. Copy the job InstHLQ.SFMCCNTL(FMCHJMM1)
to a private partitioned data set.

2. Edit your copy of FMCHJMM1, and make the
changes described in the comment header
of the job.

3. Submit your copy of FMCHJMM1

rc = 0

2 Required Customize the MMS
PARMLIB member

1. Copy InstHLQ.SFMCPARM(FMCHYMMS) to a private partitioned
data set.

2. Edit your copy of FMCHYMMS, and replace <MQWFIHLQ> with your
MQSeries Workflow for z/OS installation high level qualifier.
Note: If you are creating a new system, use your value from
Table 1 on page 9, if you are migrating from a previous release,
use your value from Table 106 on page 230).

3 Required Copy MMS PARMLIB
member.

Being careful not to overwrite an existing PARMLIB member: Copy
your copy of FMCHYMMS to your system PARMLIB.

4 Required if
you are
creating a
new system

Rename the MMS
PARMLIB member.

Being careful not to overwrite an existing PARMLIB member,
rename the MMS PARMLIB member that you copied in step 3 to
MMSLSTxx.

5 Required if
you are
migrating an
existing
system

Replace the MMS
PARMLIB member.

Replace the existing MMS PARMLIB member MMSLSTxx with the
one that you copied in step 3.

6 Required Provide RACF
authorization.

Give the system address space MMS read access to the VSAM data
sets created in step 1.

7 Required Activate the MMS
PARMLIB member.

Either:

v Specify MMS(xx) on the INIT statement in the active console
parmlib member CONSOLnn, or

v Issue the operator command SET MMS=xx

Customization

20 Customization and Administration

LPA library concatenation
To enable the TRACE system address space to access the MQSeries Workflow for
z/OS component trace start/stop exit routine FMCHXTRC correctly, you must perform
the following action:

Table 11. Copy LPALIB member

Step
number

Optional or
required Description Action

1 Required Add MQSeries
Workflow for z/OS
LPA library to your
LPA library
concatenation list.

Concatenate the MQSeries Workflow for z/OS LPA library
InstHLQ.SFMCLPA to your LPA library concatenation list.

Customization

Chapter 3. Before starting customization 21

22 Customization and Administration

Chapter 4. Creating a system group and a primary system

This chapter will guide you through the customization tasks necessary to make
MQSeries Workflow for z/OS functional within your system. This procedure
consists of the following stages:
v “Before starting customization” is required.
v “System Group Customization” on page 24 is required.
v “System customization” on page 29 is required.
v “Verify Workflow client sample application” on page 40 is optional.
v “Program execution customization” on page 42 is optional.

Before starting customization
Each time that you want to create a new MQSeries Workflow for z/OS system, you
must perform a customization. Before starting customization, you must perform
the following precustomization tasks. This creates the libraries and copies files
from the installation image (InstHLQ) to the location for the new system that is to
be customized (CustHLQ). The information you enter during this task is used to
generate customization files.

Data set allocation
This step creates the data sets that are required for customization.

Table 12. Data set allocation

Step
number

Required or
optional Description Action Verification

1 Required Copy allocation job. Copy the JCL InstHLQ.SFMCCNTL(FMCHJACD) to a private partitioned
data set.

2 Required Customize allocation
job.

Edit your copy of FMCHJACD, and make the changes described in the
comment header of the file (replace <MQWFCHLQ> with your
MQSeries Workflow for z/OS customization high level qualifier,
see CustHLQ in Table 1 on page 9).

3 Required Allocate
customization data
sets.

Submit your copy of FMCHJACD. rc=0 indicates that the following
libraries have been created:

1. CustHLQ.SFMCCNTL

2. CustHLQ.SFMCDATA

3. CustHLQ.SFMCDB2

4. CustHLQ.SFMCMQS

5. CustHLQ.SFMCPARM

6. CustHLQ.SFMCPROC

7. CustHLQ.GENPROC

8. CustHLQ.GENPARM

Note: The last two libraries are
for the generated PROCLIB and
PARMLIB members.

© Copyright IBM Corp. 1998, 2001 23

Create input files for customization
In this task you specify all the identifiers that the customization process requires,
and generate customization files from the values you have entered. If you later
realize that the identifiers were not correct, you must repeat this task before
repeating the customization process.

Table 13. Create input files for customization

Step
number

Required or
optional Description Action Verification

1 Required Copy customization
templates.

1. Copy the JCL
InstHLQ.SFMCCNTL(FMCHJCCT)
to a private partitioned data
set.

2. Edit your copy of FMCHJCCT
as described in the comment
header.

3. Submit your copy of
FMCHJCCT

rc=0.

2 Required Edit the
customization
parameter file.

1. Copy the customization parameter template member
CustHLQ.SFMCDATA(FMCHECIF) to a private partitioned data set.

2. Edit your copy of FMCHECIF, and enter your values from the
tables in “Chapter 2. Planning your configuration” on page 7, as
described in the comment sections of the file.

Note: This file is described in “Customization parameter file for a
primary system” on page 191. From now on, this member will
contain your customization parameters. This member is used as an
input file for the generation process in step 3.

3 Required Generate all the JCLs
necessary to
customize this
product.

1. Copy the JCL CustHLQ.SFMCCNTL(FMCHJCUS) to a private
partitioned data set.

2. Edit your copy of FMCHJCUS as described in the comment header.

3. Submit your copy of FMCHJCUS.

4. Check the job output (step IKJEFT01 / DD statement SYSTSPRT)
for error messages.

The program performs some syntax checking on the length and
value of the variables you specified in your copy of the file
FMCHECIF. The program then substitutes your values for variables in
the customization template files. Some PROCLIB and PARMLIB
members are also copied with new names to the library
CustHLQ.GENPROC and CustHLQ.GENPARM.

When you have completed this stage, the JCL files that are required in the
following chapters will contain all the customization parameters that you
determined in “Chapter 2. Planning your configuration” on page 7.

System Group Customization
To prepare the database resources for the new system group, you must perform the
following tasks in the given sequence:
1. “General DB2 customization” on page 25
2. “Workflow DB2 customization” on page 25
3. “Populate the Workflow database” on page 26
4. “Program execution server directory DB2 customization” on page 27

Customization

24 Customization and Administration

5. “Populate the PES directory database” on page 28
6. “Program execution server mapping DB2 customization” on page 28

General DB2 customization
Before performing this customization you should ensure that you have DB2 SYSADM
authority. This can be granted by a person having system administration authority
with the command:
GRANT SYSADM TO DB2AdminUserID

Before submitting each JCL, be sure to insert your own job card.

Table 14. General DB2 customization

Step
number

Required or
optional Description Action Verification

1 Required
only if you
are using
DB2 for
OS/390
Version 5

Build DSNTEP2 If you are using DB2 for OS/390 Version 5, you must build the
sample application DSNTEP2 using the PL/I compiler.

2 Required Bind the plan for the
DB2 sample
application DSNTEP2.

Submit JCL CustHLQ.SFMCCNTL(FMCHJBTE) rc=0

3 Optional If you want to change
the buffer pool names
and sizes:

Edit CustHLQ.SFMCDB2(FMCHDDBP), and change the buffer pool
definitions.

Required Define buffer pools. Submit JCL CustHLQ.SFMCCNTL(FMCHJDBP) rc=0

4 Optional If you want the
storage groups to use
more than one
volume name, or SMS
managed volumes:

Edit CustHLQ.SFMCDB2(FMCHDDST), and change the VOLUMES
parameter as necessary.

Required Create storage groups. Submit JCL CustHLQ.SFMCCNTL(FMCHJDST) rc=0

5 Required Be sure that RRS is
active.

If RRS is not active, you can activate it by issuing the command:

START RRS

Workflow DB2 customization
If you do not want to change any of the options described in the table below, you
can use the fastpath job which combines all the required steps.

To use the fastpath customization job, submit CustHLQ.SFMCCNTL(FMCHJ0CW), and
verify the return code as described in the job prolog.

If you do not use the fastpath customization to create the Workflow database, you
must perform the following steps:

Customization

Chapter 4. Creating a system group and a primary system 25

Table 15. Workflow DB2 customization

Step
number

Required or
optional Description Action Verification

1 Optional If you want to change
the default buffer
pool name or the
storage group for the
database:

Edit CustHLQ.SFMCDB2(FMCHDDDB), and change the buffer pool
name and storage group.

Required Create Workflow
database.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDDB)

rc=0

2 Optional If you want to change
the buffer pool names
to be used for the
table spaces, or the
value for the primary
space allocation:

Edit CustHLQ.SFMCDB2(FMCHDDTS), and change the buffer pool
names. You can also change the value for the primary space
allocation PRIQTY to the required size (in KB).

Required Create Workflow table
spaces.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDTS)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
Workflow database using the job
FMCHJEDB. After this step you have
to start again with Step number 1:
Create Workflow database.

3 Optional If you want to change
the buffer pools, or
the value for the
primary space
allocation for the
indexes:

Edit CustHLQ.SFMCDB2(FMCHDDTB), and change the buffer pool
names. You can also change the value for the primary space
allocation PRIQTY to the required size (in KB).

Required Create Workflow
tables.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDTB)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
Workflow table spaces using the
job FMCHJETS. After this step you
have to start again with Step
number 2: Create Workflow table
spaces.

4 Required Bind the Workflow
packages and add the
Workflow Collection
to the Workflow plan.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBDB)

rc=4 can be accepted.

Populate the Workflow database
To populate and verify the Workflow database, you must perform the steps in
Table 16.

Table 16. Populate the Workflow database

Step
number

Required or
optional

Description Action Verification

1 Required Populate the
Workflow database
with initial settings.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJRBS)

rc=0.

Customization

26 Customization and Administration

Program execution server directory DB2 customization
The program execution server (PES) directory contains the information about
services and invocations that enables the PES to invoke CICS and IMS programs,
or programs that are invoked by an installation-provided PES invocation exit.

If you do not want to perform any of the optional changes listed in Table 17, you
can use the fastpath job which combines all the steps. To use the fastpath job,
submit CustHLQ.SFMCCNTL(FMCHJ0CD), and verify the return code as described in the
job prolog.

If you do not use the fastpath job, you must perform the steps in Table 17.

Table 17. Program execution server directory DB2 customization

Step
number

Required or
optional Description Action Verification

1 Optional If you want to change
the buffer pool names
or storage group for
the database:

Edit CustHLQ.SFMCDB2(FMCHDDPD), and change the buffer pool
names. You can also change the storage group.

Required Create the PES
directory database.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDPD)

rc=0

2 Optional If you want to change
the buffer pool names
for the table space, or
if you want to change
the primary space
allocation:

Edit CustHLQ.SFMCDB2(FMCHDDPS), and change the buffer pool
names to be used for the table space. You can also set the value for
the primary space allocation (PRIQTY) to the required size (in KB).

Required Create the PES
directory table space.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDPS)

rc=0. If you get a non-zero
return code, you can roll back
the complete action by
dropping the PES directory
database using the job FMCHJEPD.
After this step you have to start
again with Step number 1: Create
the PES directory database.

3 Optional If you want to change
the buffer pools, or if
you want to change
the primary space
allocation for the
indexes:

Edit CustHLQ.SFMCDB2(FMCHDDPT), and change the buffer pool
name for the index definition. You can also set the value for the
primary space allocation (PRIQTY) to the required size (in KB).

Required Create the PES
directory table.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDPT)

rc=0. If you get a non-zero
return code, you can roll back
the complete action by
dropping the PES directory
table space using the job
FMCHJEPS. After this step you
have to start again with Step
number 2: Create the PES
directory table space.

4 Required Bind the PES
directory packages
and add the PES
directory collection to
the Workflow plan.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBPD)

rc=0

Customization

Chapter 4. Creating a system group and a primary system 27

Populate the PES directory database
You must populate the program execution server (PES) directory with the initial
definitions by performing the step in Table 18.

Table 18. Populate the PES directory

Step
number

Required or
optional Description Action Verification

1 Required Import the PES
directory template.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJPIB)
Note: For subsequent executions of
this step, use FMCHJPIC

rc=0

Program execution server mapping DB2 customization
This customization creates the PES mapping database that is used by the default
program mapper. If you do not want to invoke any legacy applications that would
require program mapping, you can skip this, and continue customization at
“MQSeries customization” on page 29.

If you do not want to make any of the optional changes in Table 19, you can use
the fastpath job, which combines all the required steps. To use the fastpath job,
submit CustHLQ.SFMCCNTL(FMCHJ0CM), and verify the return code as described in the
job prolog.

If you do not use the fastpath job, you must perform the steps in Table 19.

Table 19. Program execution server mapping DB2 customization

Step
number

Required or
optional Description Action Verification

1 Optional If you want to change
the default buffer pool
name, or storage
group for the database:

Edit CustHLQ.SFMCDB2(FMCHDDMD), and change the buffer pool
names.

Required Create the PES
mapping database.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDMD)

rc=0

2 Optional If you want to change
the buffer pool names
to be used for the table
space, or if you want
to change the value for
the primary space
allocation:

Edit CustHLQ.SFMCDB2(FMCHDDMS), and change the buffer pool
names to be used for the table space. You can also set the value
for the primary space allocation (PRIQTY) to the required size (in
KB).

Required Create the PES
mapping table space.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDMS)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
PES mapping database using the
job FMCHJEMD. After this step you
have to start again with Step
number 1: Create the PES mapping
database.

Customization

28 Customization and Administration

Table 19. Program execution server mapping DB2 customization (continued)

Step
number

Required or
optional Description Action Verification

3 Optional If you want to change
the buffer pools, or the
primary space
allocation for the
index:

Edit CustHLQ.SFMCDB2(FMCHDDMT), and change the buffer pool
name for the index definition. You can also set the value for the
primary space allocation (PRIQTY) to the required size (in KB).

Required Create the PES
mapping tables.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJDMT)

rc=0. If you get a non-zero return
code, you can roll back the
complete action by dropping the
PES mapping table spaces using
the job FMCHJEMS. After this step
you have to start again with Step
number 2: Create the PES mapping
space.

4 Required Bind the PES mapping
packages and add the
PES mapping
collection to the
Workflow plan.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBMA)

rc=0

System customization
To customize the primary system in the system group, you must perform the
following tasks in the given sequence:
1. “MQSeries customization”
2. “Trace customization” on page 30
3. “CICS API support customization” on page 31
4. “IMS API support customization” on page 32
5. “Workflow server customization” on page 33
6. “LAN client customization” on page 33
7. “Customize Java-API support” on page 36
8. “System customization verification” on page 40

After completing the above tasks, you will be able to connect a MQSeries
Workflow client to MQSeries Workflow for z/OS.

MQSeries customization
This defines all the MQSeries resources required by MQSeries Workflow for z/OS.
Before you perform this customization, make sure that your queue manager is
started.

Table 20. MQSeries customization

Step
number

Required or
optional Description Action Verification

1 Required Define the MQSeries
resources (except for
program execution).

Submit JCL CustHLQ.SFMCCNTL(FMCHJDMQ) rc=0

Customization

Chapter 4. Creating a system group and a primary system 29

Table 20. MQSeries customization (continued)

Step
number

Required or
optional Description Action Verification

2 Required Define the MQSeries
resources required by
MQSeries Workflow
for z/OS program
execution.

Submit JCL CustHLQ.SFMCCNTL(FMCHJPMQ) rc=0

3 Required Isolate the trace
queue for better
performance

It is recommended to separate the MQSeries Page Set to improve
the performance of the tracing. The trace queue name isTRC.LQ

Trace customization
One Workflow Server Trace exists for each Workflow system. You must provide
and specify in the JCL procedure, the trace output data sets for the external writer.

For more information about tracing, see “The MQSeries Workflow for z/OS system
trace facility” on page 133.

Table 21. Trace customization

Step
number

Required or
optional Description Action

1 Required Copy PROCLIB
members

Making sure that no existing proclib members are accidentally
overwritten:

1. Copy the trace writer start procedure
CustHLQ.GENPROC(TraceStart) to your PROCLIB

2. Copy the trace writer stop procedure
CustHLQ.GENPROC(TraceStop) to your PROCLIB

where TraceStart and TraceStop are the values that you planned in
Table 3 on page 11, and assigned to the variables TRCWPRC, and
TRCSPRCin the file CustHLQ.SFMCDATA(FMCHECIF)

2 Required Create the extended
trace output data sets.

1. Edit data set CustHLQ.SFMCCNTL(FMCHJCTR):

a. Set the value of TRCVOL to the volume for the trace data
sets.

b. Set the size of the trace data sets. The default value is
approximately 350MB.

2. Submit JCL CustHLQ.SFMCCNTL(FMCHJCTR)

3 Required Provide RACF
profiles.

Grant the following access to the user ID that is assigned to the
trace writer.

1. Update access to the trace data sets created in step 2.

2. Read access to the trace queueTRC.LQ

Note: If no explicit user ID assignment is made, the trace writer
runs under the user ID STCUSER and group ID STCGROUP.

4 Required Enable IPCS to call
Workflow trace
programs

Make sure that the MQSeries Workflow for z/OS load library
CustHLQ.SFMCLOAD is either in the LINKLIST concatenation, or in the
STEPLIB of TSO sessions.

Customization

30 Customization and Administration

CICS API support customization
If you want to use the MQSeries Workflow for z/OS API and trace in CICS, then
you must perform this customization. If you only want to use CICS legacy
applications, or if you do not want to use CICS at all you can skip this
customization.

Table 22. CICS API support customization

Step
number

Required or
optional Description Action Verification

1 Required if
you are
creating a
new system
(skip this step
if you are
migrating an
existing
system)

Enable LE and
C/C++ features in
CICS.

If they are not already enabled:

1. Enable LE in CICS.
Note: The CSD definitions necessary to accomplish this task
are located in LEInstHLQ.SCEESAMP(CEECCSD)

2. Enable the C/C++ feature in CICS.
Note: A sample that may help you with this task is located in
CCPPInstHLQ.SCLBSAM(CLB3YCSD)

where LEInstHLQ and CCPPInstHLQ are your values from Table 4
on page 13.

2 Required Specify the location
of the Workflow
executables, and
start-up parameters.

1. Edit your CICS start-up job.

2. Find the DFHRPL entry.

3. Add the MQSeries Workflow for z/OS library called
InstHLQ.SFMCLOAD to the DFHRPL entry.

4. Specify an EDSALIM value of at least 200M and a CICS region
size that will accommodate your EDSALIM setting. For example,
specify the CICS parameter EDSALIM=200M and REGION=220M in
your CICS start-up job.

3 Required Create user profile,
machine profile, and
environment data in
VSAM format.

1. Edit CustHLQ.SFMCCNTL(FMCHJCPR)

2. Change the CICSVOL value to the name
of the volume where you want the
profiles to be located.

3. Submit JCL
CustHLQ.SFMCCNTL(FMCHJCPR)

rc=0

4 Optional If you do not want to
use the value for
CICSGroup that you
specified in Table 5
on page 14:

Change the group in the CSD file:

1. Edit the CSD fileCustHLQ.SFMCDATA(FMCHEPRO)

2. Change the GROUP values to the one(s) you intended for the
Workflow executable, profiles, etc..

5 Required Update CICS CSD
with file definitions
for C++ and
MQSeries Workflow
for z/OS.

1. Edit CustHLQ.SFMCCNTL(FMCHJCUP)

2. Change the CICSNAME value to the name
of the CICS system that you are
customizing.

3. Submit JCL
CustHLQ.SFMCCNTL(FMCHJCUP)

rc=0

6 Required Restart CICS. Restart CICS.

Customization

Chapter 4. Creating a system group and a primary system 31

Table 22. CICS API support customization (continued)

Step
number

Required or
optional Description Action Verification

7 Required if
you are
creating a
new system
(skip this step
if you are
migrating an
existing
system)

Make MQSeries CICS
stubs available in
CICS.

Make the MQSeries CICS Stubs IMQB23IC and IMQS23IC from
MQInstHLQ.SCSQLOAD available to CICS.

8 Required Make the C/C++
group CLB and the
MQSeries Workflow
for z/OS group
available in CICS.

1. Make the C/C++ group CLB available in CICS, with the
command:

CEDA ADD G(CLB) LIST(xxx)

2. Make the MQSeries Workflow for z/OS group (CICSGroup,
unless you changed it in step 4) available in CICS, with the
command:

CEDA ADD G(yyy) LIST(xxx)

where xxx is a LIST used at CICS start-up, and yyy is the
MQSeries Workflow for z/OS group.

9 Required Stop and restart
CICS.

Stop and restart CICS.

10 Required Verify profile access. 1. Log on to CICS.

2. Perform: CEMT I FI(FMCHEUPR)

3. One file should be displayed. Try to open the file by typing
″OPE″ over ″CLO″ (and pressing enter). If this works without
resulting in an error message, the profile access has been
established. If you get an error message, retry the previous
steps for enabling CICS API support. If this does not help,
contact your IBM representative.

4. You can now close the file again by typing ″CLO″ over ″OPE″
Since CICS will then disable the file, type ″ENA″ over ″UNE″
(UNEnabled).

IMS API support customization
This makes MQSeries Workflow for z/OS DLLs available to IMS so that programs
using the MQSeries Workflow for z/OS container API can be executed in IMS. If
you only want to use IMS legacy applications, or if you do not want to use IMS at
all you can skip this customization, and continue at “Workflow server
customization” on page 33.

Table 23. IMS API support customization

Step
number

Required or
optional Description Action

1 Required Provide load modules
for IMS.

Add all members with the prefix ″FMCH3″ from the library
InstHLQ.SFMCLOAD library to your IMS PGMLIB library.

Customization

32 Customization and Administration

Workflow server customization
To enable a Workflow server, a JCL procedure has to be provided in your PROCLIB.
For each Workflow system, you must copy a template into your PROCLIB, and then
customize it. This is necessary to start the MQSeries Workflow for z/OS servers as
a started task.

Table 24. Workflow server customization

Step
number

Required or
optional Description Action Verification

1 Required Copy definitions for
Workflow servers into
a procedure library.

Copy the JCL procedure CustHLQ.GENPROC(UniqueSystemKey) to
your PROCLIB, where UniqueSystemKey is your value in Table 3 on
page 11.

2 Required Assign user ID and
group to the
Workflow server
started task.
Note: This is the
ServerUserID, see
Table 3 on page 11.

Submit JCL CustHLQ.SFMCCNTL(FMCHJDSC) rc=0

3 Required Provide RACF profile. Give the ServerUserID assigned in Step 2 read access to the data set
CustHLQ.SFMCDATA.

4 Required if
you want
more than
eight server
instances per
address
space, or if
you want
console
messages to
be in
uppercase,
otherwise
optional

Modify the Workflow
server start job
definitions.

1. Edit your PROCLIB(UniqueSystemKey).

2. If you want, you can extend the definitions to allow more than
eight server instances per address space.

3. If you want console messages from the server address space to
be in uppercase, change the value for LANGC to ENP (the default
value is ENU).

4. If you want, you can modify the DD statements for the stdout
and stderr output, simple trace, and language environment
dump (CEEDUMP) output.

5. If you want, you can modify the sysout class for stdout, stderr,
simple trace, and language environment dump (CEEDUMP)
output.

5 Required
only if you
want servers
and tools to
give MMS
messages in
uppercase

Modify the language
setting in the
configuration profile.

Edit the configuration profile CustHLQ.SFMCDATA(FMCHEMPR), and
change the Language setting to ENP for uppercase U.S. English. The
default value is ENU (mixed-case U.S. English).
Note: These messages are generally routed to SYSOUT data sets,
however, some of them also appear on the OS/390 system console.

6 Required Grant the server user
ID execute access to
the database plan.

Issue the command:

GRANT EXECUTE ON PLAN DB2Plan TO ServerUserID

using your values for DB2Plan in Table 2 on page 10, and
ServerUserID in Table 3 on page 11.

LAN client customization
This task describes how to configure a MQSeries Workflow LAN client to connect
to a MQSeries Workflow for z/OS server. This task consists of two parts:
1. “Customize the MQSeries client connection” on page 34
2. “Customize the MQSeries Workflow client” on page 34

Customization

Chapter 4. Creating a system group and a primary system 33

Note: It is very important that you check the files called Readme.1st and
Readme.xxx (where xxx is your language code) on the MQSeries Workflow
Program Code CD-ROM.

Customize the MQSeries client connection
To set up an MQSeries client connection you must do the following:

Table 25. Customize the MQSeries client connection

Step
number

Required or
optional Description Action

1 Required Install MQSeries
client.

Install an MQSeries client from the MQSeries CD as described in
the MQSeries Workflow product documentation.

2 Required Generate a channel
table file.

1. Edit CustHLQ.SFMCCNTL(FMCHJCCC) and replace the <volume>
parameter with the DASD name where you want to have your
generated channel table stored.

2. Decide which client connection channel definitions you want to
have to be created within the channel tab: (a) Only for the
current Workflow system or (b) Also for further systems you
want to connect to using the channel tab which will be created
within this step.

a. For the current Workflow system: Submit the JCL
CustHLQ.SFMCCNTL(FMCHJCCC), and expect rc=0.

b. For multiple Workflow systems:

1) Edit the JCL CustHLQ.SFMCCNTL(FMCHJCCC) and
concatenate all client connection definitions to the
CSQUCMD DD statement in step FMCHJCC1.

One way to do this is by inserting all required
definitions into the already included file
CustHLQ.SFMCMQS(FMCHNCCC), by the concatenation of
FMCHNCCC files of multiple systems (if you have them all
on shared DASD).

Another way to do this is toconcatenate a file of your
own to the collected client channel definitions.

2) Submit the JCL CustHLQ.SFMCCNTL(FMCHJCCC), and
expect rc=0.

For more information about MQSeries client connection, see the MQSeries
documentation MQSeries Clients. Now your MQSeries client connection is defined;
you are ready to customize the MQSeries Workflow client.

Customize the MQSeries Workflow client
To set up an MQSeries Workflow client you must do the following:

Table 26. Customize the MQSeries Workflow client

Step
number

Required or
optional Description Action

1 Required Install an MQSeries
Workflow client.

Install an MQSeries Workflow client from the MQSeries Workflow -
Program Code CD-ROM as described in IBM MQSeries Workflow:
Installation Guide.

2 Required Download channel
tab file.

Download the file CustHLQ.mqwfchl.tab file binary from OS/390
to a directory on the workstation where you want to run your
client.

3 Required Configure MQSeries
Workflow client.

Configure the client using the MQSeries Workflow customization
tool, as described in the documentation.

Customization

34 Customization and Administration

Now you have customized the MQSeries Workflow client.

Customization

Chapter 4. Creating a system group and a primary system 35

Customize Java-API support
This customization step is optional, if you do not do it now, but realize later that
you need Java support, you can perform this customization later. If you do not
want MQSeries Workflow tasks to be able to invoke the Java virtual machine
(JavaVM) residing on OS/390 Unix System Services (USS), you can skip this step.

To customize Java-API support you must do the following:

Table 27. Customize Java-API support

Step
number

Required or
optional

Description Action

1 Required
once per
OS/390
system

Create an HFS
directory and copy
the unpack script to
HFS

1. Edit the job CustHLQ.SFMCCNTL(FMCHJUS0), and replace the
parameters as specified in the comment header, where:

a. MQWFIHLQ is the MQSeries Workflow installation high level
qualifier.

b. MQWFDIR is the HFS directory for MQSeries Workflow. For
example, /usr/lpp/fmc.

c. DIRU is an existing HFS directory where the STDOUT and
STDERR output are to be stored.

2. Submit the job CustHLQ.SFMCCNTL(FMCHJUS0).

2 Required Unpack the Java API
package into HFS

1. Edit the job CustHLQ.SFMCCNTL(FMCHJUS1), and replace the
parameters as specified in the comment header, where:

a. MQWFIHLQ is the MQSeries Workflow installation high level
qualifier.

b. MQWFDIR is the HFS directory for MQSeries Workflow. For
example, /usr/lpp/fmc.

c. DIRU is an existing HFS directory where the STDOUT and
STDERR output are to be stored.

d. USSPACK = JAVAAPI is the name of the package to be
installed.

2. Submit the job CustHLQ.SFMCCNTL(FMCHJUS1).

3 Required Create two external
links in your HFS
Java directory.

To create two links that point to the OS/390 partitioned data set
which includes the two DLLs for the JNI-layer, issue the following
commands:

ln -e FMCH1LOC libfmcojloc.so
ln -e FMCH1PRF libfmcojprf.so

4 Required Set the environment
variables.

1. In your HFS .profile file:

a. Set the environment variable CLASSPATH to your HFS
directory where you copied the Java agent jar file (see
<HFSJAR> in step 1a).

b. Set the environment variable LIBPATH to the directory where
you put in the external links in step 3.

c. Add the statements from the MQSeries Workflow for z/OS
environment variables file CustHLQ.SFMCDATA(FMCHEENV).

2. Run your profile with the command:

. .profile

5 Required Decide whether to
call JavaVM via
LNKLST or STEPLIB
definitions.

If you want to call JavaVM via a LNKLST then perform step 6a,
otherwise perform step 6b.

Customization

36 Customization and Administration

Table 27. Customize Java-API support (continued)

Step
number

Required or
optional

Description Action

6a One of 6a
and 6b is
required

Add JNI-Layer and
MQSeries data sets to
LNKLST.

Add data sets to the linklist LNKLST:

1. for the JNI-Layer data sets:

a. InstHLQ.SFMCLOAD(FMCOJLOC)

b. InstHLQ.SFMCLOAD(FMCOJPRF)

2. and for the data sets where MQSeries is located:

a. MQInstHLQ.SCSQLOAD

b. MQInstHLQ.SCSQAUTH

where InstHLQ and MQInstHLQ are your values from “Installation
scope identifiers” on page 9 and “Flags and high level qualifiers”
on page 13 respectively.

Note: If you want to change the link list dynamically using the set
command, you can create a member PROGxy in parmlib, which
includes the following statements:

LNKLST DEFINE NAME(FMCJNI1) COPYFROM(CURRENT)
LNKLST ADD NAME(FMCJNI1) DSNAME(InstHLQ.SFMCLOAD)
LNKLST ADD NAME(FMCJNI1) DSNAME(MQInstHLQ.SCSQLOAD)
LNKLST ADD NAME(FMCJNI1) DSNAME(MQInstHLQ.SCSQAUTH)
LNKLST ACTIVATE NAME(FMCJNI1)

then activate this member with the system console command:

/set prog=<xy>

6b Add JNI-Layer and
MQSeries data sets to
STEPLIB.

Set the environment variable STEPLIB to the JNI-Layer and
MQSeries data sets using the command:

EXPORT STEPLIB=InstHLQ.SFMCLOAD:MQInstHLQ.SCSQLOAD:
MQInstHLQ.SCSQAUTH

where InstHLQ and MQInstHLQ are your values from “Installation
scope identifiers” on page 9 and “Flags and high level qualifiers”
on page 13 respectively.

7 Required Copy the user and
configuration profiles
to enable Workflow
log on.

1. Copy and rename the profile from
CustHLQ.SFMCDATA(FMCHECPR) to the HFS directory from where
you call the Java program. This profile must be renamed to
FMCHEMPR:

2. Copy the profile CustHLQ.SFMCDATA(FMCHEUPR) to the HFS
directory from where you call the Java program. This profile
must not be renamed.

Now you have customized the Java-API support.

Customize the XML message API and distributed process
sample using XML

This customization step is optional, if you do not do it now, but realize later that
you want to use the XML API or distributed process sample using XML, you can
perform this customization later:

Customization

Chapter 4. Creating a system group and a primary system 37

Table 28. Customize the XML message API and distributed process sample using XML

Step
number

Required or
optional

Description Action

1 Required Enable XML message
API

In order to use the XML message API of MQSeries Workflow for
z/OS, you must install the following:

1. XML Toolkit for OS/390, V1.1

2. XML Parser for OS/390, C++ Edition

You can download them from http://www.s390.ibm.com/xml/ or
order it from IBM.

2 Required
once per
OS/390
system

Create an HFS
directory and copy
the unpack script to
HFS.

If you have not already customized the Java-API support:

1. Edit the job CustHLQ.SFMCCNTL(FMCHJUS0), and replace the
parameters as specified in the comment header, where:

a. MQWFIHLQ is the MQSeries Workflow installation high level
qualifier.

b. MQWFDIR is the HFS directory for MQSeries Workflow. For
example, /usr/lpp/fmc.

c. DIRU is an existing HFS directory where the STDOUT and
STDERR output are to be stored.

2. Submit the job CustHLQ.SFMCCNTL(FMCHJUS0).

3 Required Unpack the package
into HFS.

1. Edit the job CustHLQ.SFMCCNTL(FMCHJUS1), and replace the
parameters as specified in the comment header.
Note: If you have already customized this job for Java-API
support, only the following change will be required:

a. USSPACK = DPXML identifies the package to be installed.

2. Submit the job CustHLQ.SFMCCNTL(FMCHJUS1).

4 Required Use the sample. For more information about the distributed process sample using
XML, see the file /usr/lpp/fmc/smp/DPXML/readme.txt, and follow
the instructions detailed there.

Now you have customized the distributed process sample.

Customize the Web Client
This customization step is optional, if you do not do it now, but realize later that
you want to use the Web Client, you can perform this customization later. To
customize the Web Client sample you must do the following:

Table 29. Customize the Web Client

Step
number

Required or
optional

Description Action

1 Required
once per
OS/390
system

Create an HFS
directory and copy
the unpack script to
HFS.

If you have not already customized the Java-API support or
distributed process sample using XML:

1. Edit the job CustHLQ.SFMCCNTL(FMCHJUS0), and replace the
parameters as specified in the comment header, where:

a. MQWFIHLQ is the MQSeries Workflow installation high level
qualifier.

b. MQWFDIR is the HFS directory for MQSeries Workflow. For
example, /usr/lpp/fmc.

c. DIRU is an existing HFS directory where the STDOUT and
STDERR output are to be stored.

2. Submit the job CustHLQ.SFMCCNTL(FMCHJUS0).

Customization

38 Customization and Administration

http://www.s390.ibm.com/xml/

Table 29. Customize the Web Client (continued)

Step
number

Required or
optional

Description Action

2 Required Unpack the Web
Client package into
HFS.

1. Edit the job CustHLQ.SFMCCNTL(FMCHJUS1), and replace the
parameters as specified in the comment header.
Note: If you have already customized this job for Java-API
support or the distributed process sample using XML, only the
following change will be required:

a. USSPACK = WEBCL identifies the package to be installed.

2. Submit the job CustHLQ.SFMCCNTL(FMCHJUS1).

3 Required Use the Web Client. Use a Web browser to open the file
MQWFDIR/doc/WebClient/index.html, and follow the instructions
given there.

Now you have customized the Web Client.

Customization

Chapter 4. Creating a system group and a primary system 39

System customization verification
This verification tests if the client system can connect to MQSeries Workflow for
z/OS by logging on as ADMIN, a predefined, and always available user ID.

Verify Workflow client sample application
This customization verification stage is optional, if you wish, you can skip to
“Program execution customization” on page 42.

This uses a sample application to verify that the workstation client can work with
MQSeries Workflow for z/OS on the host system. Using the client, you should be
able to query templates, instances, and work lists. In addition, you should be able
to instantiate templates, start instances and start work items.

Table 30. System customization verification

Step
number

Required or
optional Description Action Verification

1 Required Start the OS/390
administration and
execution servers.

On the OS/390 system console, issue the
commands:

START UniqueSystemKey.AdminServerID
MODIFY AdminServerID,START EXE

where UniqueSystemKey is your value
specified in Table 3 on page 11, and
AdminServerID is a made-up name used to
identify the administration server for the
system identified by UniqueSystemKey.

You should get the
system console
messages

FMC19027I
Administration
server successfully
started.

and

FMC10200I
Execution server
for system
SystemName
started.

2 Required Start the runtime
client.

Double-click on the runtime client icon. You are prompted for
a user ID and
password.

3 Required Log on. Log on using the user ID ADMIN, and the
password ″password″.

If no error message is
displayed, the
verification is
complete.

4 Required Log off. Log off the runtime client.

5 Required
only if you
are not
migrating an
existing
system

Stop the OS/390
execution and
administration
servers.

On the OS/390 system console, issue the command:

MODIFY AdminServerID,STOP EXE
MODIFY AdminServerID,STOP ADM

where AdminServerID is the name you used when starting the
server.

Customization

40 Customization and Administration

Table 31. Verify Workflow client sample application

Step
number

Required or
optional Description Action Verification

1 Required Start the OS/390
administration server.

On the OS/390 system console, issue
the command

START UniqueSystemKey.AdminServerID

where UniqueSystemKey is your value
specified in Table 3 on page 11, and
AdminServerID is a made-up name
used to identify the administration
server.

You should get the system
console messages

FMC19027I
Administration
server successfully
started.

2 Required Import the Workflow
sample process
model.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJFDL)

rc=0

3 Required Start the OS/390
execution server.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,START EXE

where AdminServerID is the name you
used in step 1, when starting the
server.

You should get the system
console message:

FMC10200I
Execution server
for system
SystemName
started.

4 Required Start the runtime
client.

Double-click on the runtime client
icon.

You are prompted for the
client’s user ID and
password.

5 Required Log on. Log on using the user ID ADMIN, and the password ″password″.

6 Required Start a new process
instance.

1. Look up your process templates.

2. Create an instance of the process template named Edit.

3. Refresh the instance window.

Note: For more information about using the runtime client, refer
to IBM MQSeries Workflow: Getting Started with Runtime.

7 Required Start a new work
item.

1. Start the process instance.

2. Refresh the work item window.

An editor should be
displayed. A new work
item named
Edit_Activity should
appear in the work item
window.

8 Required Terminate the work
item.

1. Close the editor.

2. Refresh the instance and work item
windows.

The work item named
Edit_Activity is finished,
and the instance has
terminated.

9 Required Log off. Log off the runtime client.

10 Required Stop the execution
server.

On the OS/390 system console, issue the command:

MODIFY AdminServerID,STOP EXE

11 Required Stop the OS/390
administration server.

On the OS/390 system console, issue the command:

MODIFY AdminServerID,STOP ADM

Customization

Chapter 4. Creating a system group and a primary system 41

Program execution customization
This customization is optional, depending on your program execution
requirements:

Table 32. Customizing program execution invocation types

Program type Invocation type Customization required

CICS EXCI “Customize CICS EXCI invocation”

MQSeries CICS Bridge “Customize MQSeries CICS bridge invocation” on page 44

IMS CPIC “Customize IMS CPIC invocation” on page 46

MQSeries IMS Bridge “Customize MQSeries IMS bridge invocation” on page 48

User-defined User-defined Depends on your implementation.

If you want to be able to invoke CICS and/or IMS programs, then it is
recommended that you also perform:
1. “Customize program execution server directory” on page 49
2. “Configure program execution samples” on page 52
3. “Verify program execution samples” on page 52

The following manuals may help you customize program execution:
v OS/390 MVS Programming: Resource Recovery

v CICS for OS/390: CICS Resource Definition guide

v CICS for OS/390: CICS RACF Security Guide

v CICS for OS/390: CICS Internet and External Interfaces Guide

v CICS for MVS/ESA External CICS Interfaces

v MQSeries for OS/390 Version 2.1 System Management Guide

Customize CICS EXCI invocation
The program execution server supports EXCI invocations of OS/390 programs as
part of a process activity. You only need to perform this customization if you want
the program execution server to be able to invoke CICS programs using the EXCI
invocation:

Customization

42 Customization and Administration

Table 33. Customize CICS EXCI invocation

Step
number

Required or
optional Description Action Verification

1 Required Define group
resources
CONNECTION
and SESSIONS.

Decide or identify the name of the group (GroupName) that will contain
the resource definition ConnectionName for the connection and sessions. In
that group:

1. Create a generic EXCI CONNECTION resource definition with the
following values:

a. ACCESSMETHOD=IRC

b. PROTOCOL=EXCI

c. CONNTYPE=GENERIC

d. If user security checking is required (user IDs are checked, but no
passwords are required), then specify ATTACHSEC=IDENTIFY.
Note: This option makes step 3 and step 4 required.

e. If no user security checking is required specify ATTACHSEC=LOCAL so
that the invoked applications will be run under the default user ID
of the target CICS.
Note: This option makes step 3 and step 4 unnecessary.

2. Define a SESSIONS resource definition with the following values

a. CONNECTION=ConnectionName

b. PROTOCOL=EXCI

c. RECEIVEPFX=RC

d. RECEIVECOUNT=4

2 Required Make sure IRC
is started.

If IRC is not already started, issue the
CICS command:

CEMT SET IRC OPEN

Verify that the IRC status is OPEN
with the CICS command:

CEMT I IRC

Optional Add IRC start
to CICS start
job.

You can add the CICS parameter IRCSTRT=YES in the CICS start job so that
IRC is opened when CICS is started. If you do not add this parameter,
you will have to open IRC on the CICS system manually each time CICS
is restarted. This is done using the CICS command: CEMT SET IRC OPEN.

3 Required
only if
security
checks are
required

Define the
RACF profiles
required to
give the
program
execution
server
authority to
run CICS
applications
using EXCI
calls.

1. Identify the user ID of the PES (see ServerUserID in Table 3 on
page 11), the ID of the of the CICS server region (see applid in Table 6
on page 14), and the names of the RACF profiles for resources used

by CICS application server programs that are to be executed by the
PES using EXCI.

2. Define RACF FACILITY class profile DFHAPPL.applid with universal
access NONE

3. Give the ServerUserID and all users READ access to the RACF FACILITY
class profile DFHAPPL.applid.

4. Give ServerUserID and all users READ access to the RACF profiles for
the transaction CSMI on the target CICS.
Note: EXCI uses the CICS transaction CSMI to run requested CICS
programs.

4 Required
only if
security
checks are
required

Enable user
IDs.

If you set ATTACHSEC =IDENTIFY in step number 1.1.d above then the
invoked applications will be run using the user ID userid of the MQSeries
Workflow user making the request. It is therefore necessary to give these
userids the appropriate authority to RACF profiles of all resources
accessed by CICS application server programs that the users can cause to
be invoked by the program execution server. If no userid is passed, the
invoked application will run under the PES user ID. In this case you must
give the corresponding authorization for the CICS resources to the
ServerUserID in Table 3 on page 11.

Customization

Chapter 4. Creating a system group and a primary system 43

Customize MQSeries CICS bridge invocation
The program execution server supports MQSeries CICS bridge invocations of
OS/390 programs as part of a process activity. For more information, see MQSeries
for MVS/ESA System Management Guide - Customize the CICS bridge. You only need
to perform the following customization if you want the program execution server
to be able to invoke CICS programs using MQSeries CICS bridge invocation:

Table 34. Customize MQSeries CICS bridge invocation

Step
number

Required or
optional Description Action

1 Required Prepare CICS
to run the
CICS bridge.

1. Make sure that the MQSeries CICS adapter is set up and customized
on CICS. For more information see MQSeries for OS/390 Version 2.1
System Management Guide — MQSeries CICS adapter.

2. Define CICS bridge transactions and programs by running the
resource definition utility DFHCSDUP on the CICS system using the
sample MQInstHLQ.SCSQPROC(CSQ4CKBC).

3. Add group CSQCKB to startup group list on the CICS.

2 Required Define the
MQSeries
queue for the
request
messages to
the CICS
bridge.

1. Define a local MQSeries queue CICSBridgeInputQueue (see your value
in Table 6 on page 14) with attributes:

a. SHARE

b. MSGDLVSQ(FIFO)

c. DEFPSIST(YES)

d. HARDENBO

3 Required
only if
security
checks are
required.

Define user ID
under which
the CICS
bridge
(monitor) is
started as a
surrogate user
ID of all user
IDs for which
program
execution
requests to the
CICS bridge
should be
issued.

1. For each MQSeries Workflow user ID mqwf_uid define a profile named
mqwf_uid.DFHSTART in the RACF SURROGATE class without any general
access rights using the RACF command:

RDEFINE SURROGAT mqwf_uid.DFHSTART UACC(NONE) OWNER(mqwf_uid)

2. Give READ access to surrogate_id to all of the above define profiles by
issuing for each mqwf_uid using the RACF command:

PERMIT mqwf_uid.DFHSTART CLASS(SURROGAT) ID(surrogate_id)
ACCESS(READ)

where

surrogate_id
Name of the user ID to be defined as surrogate user ID of all
user IDs to be allowed to run CICS bridge invocations. This must
be the user ID under which the CICS bridge (monitor task) is
started.

mqwf_uid
User IDs of all MQSeries Workflow users to be allowed to run
CICS bridge invocations.

Note: Set the CICS startup parameter XUSER=YES to enable surrogate user
checking.

Customization

44 Customization and Administration

Table 34. Customize MQSeries CICS bridge invocation (continued)

Step
number

Required or
optional Description Action

4 Required
only if
security
checks are
required.

Give access
rights to
request queue
and reply
queues used
by the CICS
bridge and the
dead-letter
queue.

1. Give READ access to the CICS bridge request queue to the user ID of
the CICS bridge monitor (the user ID under which the CICS bridge is
started) and to all user IDs for which CICS bridge request should be
issued (user IDs corresponding to MQSeries Workflow user IDs).

2. Give WRITE access to the CICS bridge request queue to the
ServerUserID (see your value in Table 3 on page 11).

3. Give READ access to the CICS bridge reply to queue(s) to the
ServerUserID.

4. Give WRITE access to each reply queue to those user IDs for which the
bridge should put reply messages on that queue.

5. Give WRITE access to all reply to queues to the user ID of the CICS
bridge monitor.

6. Give WRITE access to the dead-letter queue to all user IDs for which
requests should be issued and to the user ID of the CICS bridge
monitor.

5 Required
only if the
target CICS
requires
security
checks for
user IDs of
MQSeries
Workflow
users.

Define RACF
authority
access to CICS
programs to
user IDs of
MQSeries
Workflow
users.

1. Identify the user IDs mqwf_userid of MQSeries Workflow users who
should be allowed to run applications on the target CICS using
MQSeries bridge invocation.

2. Identify the names of RACF profiles for resources that are used by
CICS application server programs using the MQSeries CICS bridge
invocation.

3. For each mqwf_userid define appropriate authority to RACF profiles for
all resources accessed by the CICS application server programs that
the program execution request should process invocation requests.

6 Required
only if the
CICS bridge
should run
with an
authentication
level of
LOCAL.

Define RACF
authority
access to CICS
programs to
CICS default
user id.

1. For the CICS default user ID (CICS DFLTUSER) define appropriate
authority to RACF profiles of all resources accessed by the CICS
application server programs for which program execution request
should be processed.

7 Required Start the CICS
bridge
transaction
CKBR on the
CICS with
authority LOCAL
(the default) to
run with
authority
associated to
the CICS
default user id
(CICS
DFLTUSER) or
with authority
IDENTIFY if the
user IDs but
no passwords
should be
checked.

1. Start the CICS bridge with the CICS command:

CKBR Q=InputQueue AUTH=LOCAL

or

CKBR Q=InputQueue AUTH=IDENTIFY

where InputQueue is your value for CICSBridgeInputQueue in Table 6 on
page 14.

2. See MQSeries for OS/390 System Management Guide - Starting the CICS
bridge for further information and other ways how to start the CICS
bridge. The user ID under which the CICS bridge is started is the user
ID of the CICS bridge monitor.

Note: Since MQSeries Workflow for z/OS does not support passwords
the authority levels, VERIFY_UOW and VERYFY_ALL are not supported by
CICS bridge invocations.

Customization

Chapter 4. Creating a system group and a primary system 45

The CICS bridge is now ready to process request messages. If the authorization
level is LOCAL the CICS bridge is running with the authority of the CICS default
user ID. If the authorization level is IDENTIFY a corresponding CICS program
started by the bridge will be run with the user ID as specified in the MQMD
header of the request message. There is no password checking.

Customize IMS CPIC invocation
The program execution server supports IMS invocations of OS/390 programs as
part of a process activity. You only need to perform this customization if you want
the program execution server to be able to invoke IMS programs using the CPIC
invocation. For more information about APPC, refer to OS/390 MVS Planning:
APPC/MVS Management.

Table 35. Customize IMS CPIC invocation

Step
number

Required or
optional Description Action

1 Required Define a system
base LU for
CPIC requests to
use for APPC
conversations.

Since the CPIC call cannot specify a dedicated LU from which a
conversation should be allocated, it is necessary to use a system LU as
the default local LU. This step is performed as follows:

1. If the APPCPMxx PARMLIB member contains LUADD statements with
BASE and NOSCHED, the last one of these defines the system base LU. If
a new LU has to be defined as base LU another LUADD statement has
to be added to the end of the APPCPMxx member.

2. If there are no LUADD statements with parameter NOSCHED, but some
with parameter BASE, the last one of these LUADDs defines the system
base LU as long as it is associated with the APPC/MVS transaction
scheduler explicitly with SCHED(ASCH) or implicitly, without a SCHED
parameter. Add a new LUADD statement defining the new base LU to
the end of the APPCPMxx member, if you do not want to use the
current one.

3. If there is no base LU defined at all, define one by adding a LUADD
statement with parameters BASE and optionally, with NOSCHED or
SCHED(ASCH).

2 Required If the system
base LU defined
in step 1 is
associated with
the APPC/MVS
transaction
scheduler (ASCH):

Make sure that there is a PARMLIB member ASCHPMxx available defining
the scheduling characteristics of the ASCH, as described below:

1. If there is already an ASCHPMxx member in your PARMLIB this can be
used to run the ASCH address space.

2. If there is no ASCHPMxx PARMLIB member you must create one. For
details on how to create one, see OS/390 MVS Planning: APPC/MVS
Management, ″Defining Scheduling Characteristics with ASCHPMxx.″

There are no CPIC invocation specific definitions needed in ASCHPMxx.

3 Required Define an APPC
LU associated
with the target
IMS system
(service).

This is the partner LU for a CPIC invocation issuing a request to be
performed on that target IMS. The IMS ID is passed as scheduler name
for this LU.

1. Put LUADD statement to APPCPMxx PARMLIB member with following
parameters:

a. ACBNAME(<ims_lu>) — where ims_lu is the name of the APPC LU
to be associated with the target IMS.

b. BASE

c. SCHED(<ims_id>) — where ims_id is the (1-4 character) ID of the
target IMS as defined in the IMSCTRL installation macro.

Now the target IMS system is defined as APPC component LU and
CPIC invocations can issue requests to the IMS using the LU defined
here as the partner LU.

Customization

46 Customization and Administration

Table 35. Customize IMS CPIC invocation (continued)

Step
number

Required or
optional Description Action

4 Required Define a system
base APPC LU
for VTAM(R)
that is enabled
for protected
conversation
support.

1. In a member of SYS1.VTAMLST define an APPL statement for the above
defined system base LU with:

a. ACBNAME=<base_lu> — where base_lu is the name of the system
base LU.

b. APPC=YES

c. ATNLOSS=ALL

d. SYNCLVL=SYNCPT

e. VERIFY=NONE or VERIFY=OPTIONAL

Note: For more information about VTAM definitions, see VTAM
Resource Definition Guide.

Now the system base LU is defined in VTAM and supports distributed
syncpoint conversations.

5 Required Define APPC
LU of target
IMS to VTAM
enabled for
protected
conversation
support.

1. In a member of SYS1.VTAMLST define an APPL statement for the target
IMS LU defined in step 3 with:

a. ACBNAME=<ims_lu> — where ims_lu is the name of the APPC LU to
be associated with the target IMS.

b. APPC=YES

c. ATNLOSS=ALL

d. SYNCLVL=SYNCPT

e. If no security checks are required SECACPT=NONE
Note: If no security checks are required this LU will not accept
conversations with any security information, that means the
security information from a CPIC allocate request is not passed to
this LU.

f. If security checks are required — SECACPT=ALREADYV or
SECACPT=AVPV
Note: If security checks are required this LU will accept
conversations with a user ID that is indicated as having already
been verified, since no password is passed on the CPIC invocation.

g. VERYFY=NONE or VERIFY=OPTIONAL

The target IMS LU has now been defined in VTAM and supports
distributed syncpoint conversations.

6 Required If security
checks are
required, you
may decide to
prohibit general
access to the LU
of the target
IMS, and grant
access to the
user IDs
representing
MQSeries
Workflow users
who are to be
allowed to run
transactions on
the target IMS:

1. Prohibit general access to LU of target IMS by defining a RACF
profile using the command RDEFINE APPL <ims_lu> UACC(NONE) —
where ims_lu is the name of the APPC LU to be associated with the
target IMS.

2. Give READ access to MQSeries Workflow for z/OS user IDs by
issuing the RACF command PERMIT <ims_lu> CLASS(APPL)
ID(<user_id>) ACCESS(READ) repeatedly for each user ID or a RACF
group ID.

3. Activate the above made definitions by issuing the RACF command
SETROPTS CLASSACT(APPL) RACLIST(APPL)

4. To activate the definitions, issue the RACF command SETROPTS
RACLIST(APPL) REFRESH

Note: For more information about using RACF, see OS/390 Security Server
(RACF) Command Language Reference. The target IMS LU (the target IMS
via APPC) is now only accessible for MQSeries Workflow users who
should be allowed to run transactions on that system.

Customization

Chapter 4. Creating a system group and a primary system 47

Table 35. Customize IMS CPIC invocation (continued)

Step
number

Required or
optional Description Action

7 Required Make
APPC/MVS
ready to work
with the
previously
defined APPC
LUs.

1. If APPC/MVS is not running, start the APPC/MVS address space by
issuing the command START APPC,SUB=MSTR,APPC=xx — where xx is
the suffix in the name of the PARMLIB member APPCPMxx containing
the definitions of the APPC LUs made in step number 3.

2. If the system base LU is associated to the APPC/MVS transaction
scheduler (ASCH) start the ASCH address space by issuing the
command START ASCH,SUB=MSTR,ASCH=xx where xx is the suffix in the
name of the PARMLIB member ASCHPMxx containing the configuration
of the ASCH.

3. If APPC/MVS is already running and the changes in APPCPMxx must
be activated, issue the command SET APPC=xx. For more information,
see OS/390 MVS Planning: APPC/MVS Management, ″Starting the
APPC and ASCH Address Spaces.″.

The APPC/MVS is now ready to send out-bound requests from a CPIC
invocation to the target IMS system as specified by the connection
parameters for CPIC invocations.

8 Required Make
APPC/IMS LU
ready to receive
inbound
requests from
CPIC
invocations.

1. Start APPC/IMS on the target IMS by issuing the command /START
APPC

2. If security checking is required, change the APPC/IMS security level
to allow user ID checking by issuing the command /SECURE APPC
CHECK — then the user ID from an inbound request will be checked
using the RACF resource class TIMS.

3. If no security checking is required on IMS for inbound requests,
switch off APPC/IMS security checking by issuing the command
/SECURE APPC NONE

The target IMS is now ready to call transactions requested by inbound
requests from CPIC invocations via its APPC LU.

Customize MQSeries IMS bridge invocation
The program execution server supports IMS invocations of OS/390 programs as
part of a process activity. You only need to perform this customization if you want
the program execution server to be able to invoke IMS programs using the
MQSeries IMS bridge.

Table 36. Customize MQSeries IMS bridge invocation

Step
number

Required
or optional Description Action

1 Required Define
parameters for
MQSeries.

1. Define XCFGroupName and XCFMemberMQ (see your values in Table 6
on page 14) where the member name represents the MQSeries

instance by OTMACON keyword of the CSQ6SYSP macro.
Note: The MQSeries instance and the target IMS system must belong
to the same XCF group.

For more information, see the MQSeries for OS/390 System Management
Guide.

Customization

48 Customization and Administration

Table 36. Customize MQSeries IMS bridge invocation (continued)

Step
number

Required
or optional Description Action

2 Required Define
parameters for
IMS.

In the IMS parameter list

1. Define the XCFGroupName using the GRNAME parameter.
Note: The MQSeries instance and the target IMS system must belong
to the same XCF group.

2. Define the XCFMemberIMS of the IMS system using the USERVAR
parameter.

3. Define OTMA = Y in the IMS parameter list so that OTMA (and the IMS
bridge) are started automatically when IMS is started.

For more information, see the MQSeries for OS/390 System Management
Guide.

3 Required Tell MQSeries
the XCF group
and member
name of the IMS
system.

1. Define an MQSeries storage class with the XCF group that MQSeries
and the target IMS belong to (see XCFGroupName in Table 6 on
page 14), and with the XCF member name of the IMS (see
XCFMemberIMS in Table 6 on page 14).

4 Required Define the
MQSeries queue
for the request
messages to the
IMS bridge.

1. Define a local MQSeries queue IMSBridgeInputQueue (see your value
in Table 6 on page 14) with the storage class defined in step 3, and the
attributes:

a. MSGDLVSQ(FIFO)

b. DEFPERSIST(YES)

c. HARDENBO

5 Required
only if
security
checking is
required.

Set up security
levels for the
MQ IMS bridge.

So that user IDs will be checked, but no passwords are required:

1. Identify the MQSeries subsystem user ID, unless the access levels for
both RACF profiles are defined by the universal access fields.

2. Define RACF profile IMSXCF.XCFGroupName.XCFMemberMQ in the
RACF FACILITY class, giving an access level of READ to the MQSeries
subsystem user ID.

6 Required
only if
security
checking is
required.

Set up security
levels for
OTMA.

So that user IDs will be checked, but no passwords are required:

1. Define an OTMA security level of CHECK by issuing the IMS command:

/SECURE OTMA CHECK

2. Define RACF profile IMSXCF.XCFGroupName.XCFMemberIMS in the
RACF FACILITY class, giving an access level of UPDATE to the MQSeries
subsystem user ID.

7 Required
only if no
security
should be
active.

Switch off
OTMA security.

1. Issue the command:

/SECURE OTMA NONE

Customize program execution server directory
This prepares the connection information in the PES directory, and imports it into
the PES directory database.

Customization

Chapter 4. Creating a system group and a primary system 49

Table 37. Customize program execution server directory

Step
number

Required or
optional Description Action Verification

1 Required Copy the PES
directory
template.

Make a copy of the PES directory templateCustHLQ.SFMCDATA(FMCHEDTP),
and give it your PES directory source file name that you decided in
Table 6 on page 14.

2 Required Add EXCI,
CPIC, and
MQSeries bridge
connection
parameters to
the PES
directory source
file.

Edit your PES directory source file, and substitute your values for the
following connection parameters for CICS and/or IMS.

1. If you intend to use CICS EXCI invocation, customize the EXCI
invocation section in the following way:

a. Change <applid> to the application identifier of the CICS system
you want to use.

2. If you intend to use MQSeries CICS bridge invocation, customize the
MQSeries CICS bridge invocation section in the following way:

a. Change <queuename> to the name of the MQSeries CICS bridge
input queue, see your value for CICSBridgeInputQueue in Table 6
on page 14.

b. If the queue manager of the CICS system belongs to the same
MQSeries cluster as your Workflow system, then remove the text
QUEUEMANAGER=<queuemanager>;

3. If you intend to use IMS CPIC invocation, customize the CPIC
invocation section in the following way:

a. Change <netid> to the APPC network identifier of the IMS system
you want to use

b. Change <luname> to the LU Name of the IMS system you want to
use.

c. If the mode name of your IMS LU is not #INTER, then change
#INTER to your value.

4. If you intend to use MQSeries IMS bridge invocation, customize the
MQSeries IMS bridge invocation section in the following way:

a. Change <queuename> to the name of the MQSeries IMS bridge
input queue, see your value for IMSBridgeInputQueue in Table 6 on
page 14.

b. If the queue manager of the IMS system belongs to the same
MQSeries cluster as your Workflow system, then remove the text
QUEUEMANAGER=<queuemanager>;

3 Required if
you want to
use the
CICS EXCI
invocation
type

Customize the
connection
parameters in
the EXCI
invocation
section.

Edit your PES directory source file:

1. Find the EXCI invocation section.

2. Change <applid> to the application identifier of the CICS system you
want to use.

4 Required if
you want to
use the
MQSeries
CICS bridge
invocation
type

Customize the
connection
parameters in
the MQSeries
CICS bridge
invocation
section.

Edit your PES directory source file:

1. Find the MQSeries CICS bridge invocation section.

2. Change <queuename> to the name of the MQSeries CICS bridge input
queue, see your value for CICSBridgeInputQueue in Table 6 on page 14.

3. If the queue manager of the CICS system belongs to the same
MQSeries cluster as your Workflow system, then remove the text
QUEUEMANAGER=<queuemanager>;

Customization

50 Customization and Administration

Table 37. Customize program execution server directory (continued)

Step
number

Required or
optional Description Action Verification

5 Required if
you want to
use the IMS
CPIC
invocation
type

Customize the
connection
parameters in
the IMS CPIC
invocation
section.

Edit your PES directory source file:

1. Find the CPIC invocation section.

2. Change <netid> to the APPC network identifier of the IMS system you
want to use

3. Change <luname> to the LU Name of the IMS system you want to
use.

4. If the mode name of your IMS LU is not #INTER, then change #INTER
to your value.

6 Required if
you want to
use the
MQSeries
IMS bridge
invocation
type

Customize the
connection
parameters in
the MQSeries
IMS bridge
invocation
section.

Edit your PES directory source file:

1. Find the MQSeries IMS bridge invocation section.

2. Change <queuename> to the name of the MQSeries IMS bridge input
queue, see your value for IMSBridgeInputQueue in Table 6 on page 14.

3. If the queue manager of the IMS system belongs to the same
MQSeries cluster as your Workflow system, then remove the text
QUEUEMANAGER=<queuemanager>;

7 Required if
you want to
use a
user-
defined
invocation
type

Create a new
invocation
section.

Edit your PES directory source file:

1. Create a new invocation section for your invocation type:

2. For your exit, define the following:

type
exitName
exitParameters

3. For each service, define the following:

type
name
connectionParameters

8 Required Edit the PES
directory import
job.

If you are using your own version of the PES directory source file rather
than the default one, edit CustHLQ.SFMCCNTL(FMCHJPIC), and change
CustHLQ.SFMCDATA(FMCHEDTP) to the PES directory source file that you
want to import (see your value in Table 6 on page 14).

9 Required Import the PES
directory.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJPIC)

rc=0. A problem at this stage may
be caused by errors in FMCHEDTP, or
may require that you repeat
“Program execution server
directory DB2 customization” on
page 27.

If you are creating a new system, you are ready to perform “Configure program
execution samples” on page 52.

Customization

Chapter 4. Creating a system group and a primary system 51

Configure program execution samples
This prepares the sample programs that are provided with MQSeries Workflow for
z/OS. They will be used to verify program execution.

Table 38. Configure program execution samples

Step
number

Required or
optional Description Action

1 Required Import mapping
sample definitions for
the legacy sample
programs into the
program execution
mapping database.

Submit JCL CustHLQ.SFMCCNTL(FMCHJMPR)

2 Required Copy sample
programs.

Verify that the following files are in your IMS PGMLIB:

1. InstHLQ.SFMCLOAD(FMCH3ICS)

2. InstHLQ.SFMCLOAD(FMCH3IMS)

3 Required Make sample
programs known to
CICS/IMS.

1. Define the programs FMCH2CMT and FMCH2CCT to your CICS
system using LANG(LE370) and DATALOCATION(ANY).

2. Define the programs FMCH3IMS and FMCH3ICS to your IMS
system.

3. Define the transactions FMCH3IMT and FMCH3ICT to your IMS
system with type TP.

4 Required Import sample process
model.

Submit JCL CustHLQ.SFMCCNTL(FMCHJPDL)

5 Required Enable PES to execute
sample programs.

If security is active for either CICS or IMS, then you must enable
the ServerUserID defined in Table 3 on page 11 to execute the
sample programs, and all resources required by them.

Now you are ready to perform “Verify program execution samples”.

Verify program execution samples
This is the final verification that you have configured your MQSeries Workflow for
z/OS system correctly for program execution. This task allows you to runs the
sample CICS an IMS legacy programs using different invocation types. The four
sample processes are:
1. CICSMapping starts the CICS legacy sample program FMCH2CMT using the

MQSeries CICS bridge invocation type. This CICS program uses the default
mapper.

2. CICSContainer starts the CICS sample program FMCH2CCT using the EXCI
invocation type. This program uses the MQSeries Workflow container API.

3. IMSMapping starts the IMS legacy sample program FMCH3IMS using the CPIC
invocation type. This program uses the default mapper.

4. IMSContainer starts the IMS sample program FMCH3ICS using the MQSeries
IMS bridge invocation type. This program uses the MQSeries Workflow
container API.

Customization

52 Customization and Administration

Table 39. Verify program execution samples

Step
number

Required or
optional Description Action Verification

1 Required Ensure that the
necessary
subsystems are
running.

If necessary, start RRS, DB2, MQSeries QueueManager, CICS, or IMS.

2 Required Check external
trace writer

Ensure that the external trace writer is in a link pack area with the
command:

DISPLAY PROG,LPA

3 Required Start the
OS/390
administration
server.

On the OS/390 system console, issue
the command

START UniqueSystemKey.AdminServerID

where UniqueSystemKey is your value
specified in Table 3 on page 11, and
AdminServerID is a made-up name
used to identify the administration
server.

You should get the system
console message:

FMC19027I
Administration
server successfully
started.

4 Required Start the
MQSeries
Workflow for
z/OS system.

On the OS/390 system console, issue the command:

MODIFY AdminServerID,START

5 Required Start the
runtime client.

Double-click on the runtime client
icon.

You are prompted for the client’s
user ID and password.

6 Required Log on. Log on using the user ID ADMIN, and
the password ″password″.
Note: For more information on using
the runtime client, refer to IBM
MQSeries Workflow: Getting Started with
Runtime.

You will see the basic tree view
with the icons labeled:

v Process template lists

v Process instance lists

v Worklists

If this is the first time that the
client has been run, you will not
see any elements.

7 Required Create new
process template
list.

Create process template lists for the
sample processes.

You will see the sample items:

1. CICSMapping

2. CICSContainer

3. IMSMapping

4. IMSContainer

8 Required Create process
instances.

1. Create process instances for the
processes you want to test.

2. Create process instance list items
for the sample processes.

You will see the sample items:

1. CICSMapping

2. CICSContainer

3. IMSMapping

4. IMSContainer

9 Required Create work
items.

1. Select all process instance items
and start them.

2. Click OK for every window that
appears.

3. Create new worklist.

You will see work items for:

1. CICSMapping_Activity

2. CICSContainer_Activity

3. IMSMapping_Activity

4. IMSContainer_Activity

Customization

Chapter 4. Creating a system group and a primary system 53

Table 39. Verify program execution samples (continued)

Step
number

Required or
optional Description Action Verification

10 Required Start new work
items.

1. Start new work items

a. CICSMapping_Activity

b. CICSContainer_Activity

c. IMSMapping_Activity

d. IMSContainer_Activity

2. Refresh the work item list.

After successful completion, each
work item returns ″Finished″.

11 Optional Check results of
CICSMapping
_Activity.

The CEEOUT section of your CICS job should contain:

FMCH2CMT: MQWF Program Execution Customization
LastName: Smith
FirstName: John
Zip: 12345
Salary: 1000.42
Tax: 15.5
Customer LastName : EINSTEIN
Customer FirstName : ALBERT
Customer PhoneNumber : 3048
Customer LastName : NEWTON
Customer FirstName : ISAAK
Customer PhoneNumber : 4041
Customer LastName : KOHL
Customer FirstName : HELMUT
Customer PhoneNumber : 5154
New Salary: 1080.45

12 Optional Check results of
CICSContainer
_Activity.

The CEEOUT section of your CICS job should contain:

FMCH2CCT: MQWF Program Execution Customization
OutContainer Name = SimpleDS
InContainer Name = SimpleDS
Set OutputContainer long value ml rc = 0
Main: Set OutputContainer rc = 0

13 Optional Check results of
IMSMapping
_Activity.

The latest SYSxxxx section of your IMS region job should contain:

FMCH3IMS: MQWF Program Execution Customization
LastName: Smith
FirstName: John
Zip: 12345
Salary: 1000.42
Tax: 15.5
Customer LastName : EINSTEIN
Customer FirstName : ALBERT
Customer PhoneNumber : 3048
Customer LastName : NEWTON
Customer FirstName : ISAAK
Customer PhoneNumber : 4041
Customer LastName : KOHL
Customer FirstName : HELMUT
Customer PhoneNumber : 5154
New Salary: 1080.45
ISRT: CEETDLI successful

14 Optional Check results of
IMSContainer
_Activity.

The latest SYSxxxx section of your IMS region job should contain:

FMCH3ICS: MQWF Program Execution Customization
OutContainer Name = SimpleDS
InContainer Name = SimpleDS
Set OutputContainer long value ml rc = 0
Main: Set OutputContainer rc = 0

15 Required Log off. Log off the runtime client.

Customization

54 Customization and Administration

Table 39. Verify program execution samples (continued)

Step
number

Required or
optional Description Action Verification

16 Required Stop the
MQSeries
Workflow for
z/OS system.

On the OS/390 system console, issue the command:

MODIFY AdminServerID,STOP

17 Required Stop the OS/390
administration
server.

On the OS/390 system console, issue
the command:

MODIFY AdminServerID,STOP ADM

Congratulations, you have now
configured and verified your
MQSeries Workflow for z/OS
system group containing one
Workflow system.

Now that you have created a system group containing one Workflow system, you
can proceed with the following as required:
v Add additional systems to the system group as described in “Chapter 5.

Creating additional systems in an existing system group” on page 57.
v Add extra clients as described in “Chapter 6. Adding extra Workflow clients to

an existing system” on page 69.

Customization

Chapter 4. Creating a system group and a primary system 55

Customization

56 Customization and Administration

Chapter 5. Creating additional systems in an existing system
group

After you have created one or more system groups containing a primary system,
you can add additional systems to the system group. These additional systems
inherit some attributes from the system group’s primary system. Each MQSeries
Workflow system which is in the same system group must have a separate queue
manager, and the queue manager must be a member of the primary system’s
MQSeries cluster.

For each additional system that you want to add to a system group, you must
perform the following steps:
1. “Decide the new system’s identifiers”
2. “Data set allocation” on page 59
3. “Create input files for customizing an additional system in a system group”

on page 60
4. “General DB2 customization (DB2 data sharing)” on page 60
5. “Update topology setting in the Workflow database” on page 61
6. “MQSeries customization” on page 62
7. “Trace customization” on page 62
8. “CICS API support customization” on page 63
9. “IMS API support customization” on page 65

10. “Workflow server customization” on page 65
11. “LAN client customization” on page 66

Decide the new system’s identifiers
The following identifiers have scope over a Workflow system.

Table 40. Identifiers required for each new system

Parameter Your value

Name in
customization
parameter file Description

CustHLQ MQWFCHLQ The high level qualifier for the new MQSeries
Workflow for z/OS system you want to create.

UniqueSystemKey MQWFUKEY Unique key for an MQSeries Workflow for z/OS
system, may be up to eight uppercase characters long.
This is the name given to the Workflow server start job,
and must be unique within your PROCLIB. This key is
used in the START command to start an administration
server on the System associated with this key.

SystemName MQWFSYSN MQSeries Workflow for z/OS system name. This name
must be unique within the system group. This is the
system where the administration server is started when
the start administration server command is issued:
START UniqueSystemKey.AdminServerID.

© Copyright IBM Corp. 1998, 2001 57

Table 40. Identifiers required for each new system (continued)

Parameter Your value

Name in
customization
parameter file Description

SystemIdentifier MQWFSYID This is the MQSeries Workflow system identifier. This
value corresponds to the FDL keyword
SYSTEM_IDENTIFIER. Each system in a system group
must have a unique identifier. The primary system in a
system group already has an identifier value of one.
The value should be numeric and greater than one.

MQWFConfiguration
Key

MQWFCFGK This key must be unique for all MQSeries Workflow for
z/OS systems that you configure. It can be up to 8
uppercase characters long. This key is used inside the
profiles and identifies a configuration for a system.

ServerUserID STTSKUID The server started task user ID used by all MQSeries
Workflow for z/OS servers. This is the default user ID
that OS/390 programs will be run under, by the PES, as
a result of MQSeries Workflow process activity requests
for OS/390 program invocations. This user ID requires
EXECUTE rights on DB2Plan

ServerGroupID STTSKGRP The server started task RACF group ID for all
MQSeries Workflow for z/OS servers.

CTComponent CTRCNAME CTRACE component name.

TraceStart TRCWPRC Trace writer start procedure name.

TraceStop TRCSPRC Trace writer stop procedure name.

ARMRestartPolicy ARMPOLNM The name of the ARM restart policy.

ARMRestartElement
NameSuffix

ARMRESFX The 8 character suffix of the 16 character ARM restart
element name. This value must be specified as part of
the start administration server command to register the
administration server with ARM. This suffix is
concatenated to the constant prefix SYSMQWF_. For
example, if you set ARMRESFX=MQWFS1, then the name of
the ARM restart element that is used in the ARM
restart policy will be SYSMQWF_MQWFS1.

EXEApplication
EnvironmentName

WLMAEEXE WLM Application Environment for the MQSeries
Workflow for z/OS execution server. It must be unique
in the parallel sysplex environment.

PESApplication
EnvironmentName

WLMAEPES WLM Application Environment for the MQSeries
Workflow for z/OS program execution server. It must
be unique in the parallel sysplex environment.

ClusterNamelist MQCLNAME This is the name of a MQSeries Namelist object which
holds the MQSeries cluster name that you defined in
Table 2 on page 10. The name must conform to the
MQSeries naming rules for Object names. It is used
later in all MQSeries object definitions which have
cluster scope.

Customization

58 Customization and Administration

Table 40. Identifiers required for each new system (continued)

Parameter Your value

Name in
customization
parameter file Description

QueueManager MQQMNAME Name of the MQSeries queue manager that is to be
used by MQSeries Workflow for z/OS. The queue
manager name must be unique for the complete
MQSeries network.
Note: If you want to run CICS applications that use the
MQSeries Workflow for z/OS application program
interface (API), this must either be the same queue
manager that is used by CICS, or the queue managers
must be members of the same MQSeries cluster.

OS/390System
TCP/IPAddress

STCPADDR This is the TCP/IP address of the OS/390 system.

QueueManagerTCP/IP
Port

STCPPORT This is the TCP/IP port of the listener of the Queue
Manager. The MQSeries default is 1414. All Queue
Managers on the OS/390 image must have different
ports for their listeners.

DB2SubsystemName DB2SSYSN Name of the DB2 subsystem that is to be used by
MQSeries Workflow for z/OS.

Data set allocation
This step creates the data sets that are required for the new system.

Table 41. Data set allocation

Step
number

Required or
optional Description Action Verification

1 Required Copy allocation job. Copy the JCL InstHLQ.SFMCCNTL(FMCHJACD) to a private partitioned
data set.

2 Required Customize allocation
job.

Edit your copy of FMCHJACD, and make the changes described in the
comment header of the file (replace <MQWFCHLQ> with your
MQSeries Workflow for z/OS customization high level qualifier,
see CustHLQ in Table 40 on page 57).

3 Required Allocate
customization data
sets.

Submit your copy of FMCHJACD. rc=0 indicates that the following
libraries have been created:

1. CustHLQ.SFMCCNTL

2. CustHLQ.SFMCDATA

3. CustHLQ.SFMCDB2

4. CustHLQ.SFMCMQS

5. CustHLQ.SFMCPARM

6. CustHLQ.SFMCPROC

7. CustHLQ.SFMCREXX

Note: The last two libraries are
for the generated PROCLIB and
PARMLIB members.

Customization

Chapter 5. Creating additional systems in an existing system group 59

Create input files for customizing an additional system in a system
group

In this task you specify all the identifiers that the customization process requires,
and generate customization files from the values you have entered. If you later
realize that the identifiers were not correct, you must repeat this task before
repeating the customization process.

Table 42. Create input files for customization

Step
number

Required or
optional Description Action Verification

1 Required Copy customization
templates.

1. Copy the JCL
InstHLQ.SFMCCNTL(FMCHJCCT)
to a private partitioned data
set.

2. Edit your copy of FMCHJCCT
as described in the comment
header.

3. Submit your copy of
FMCHJCCT.

rc=0.

2 Required Copy customization
parameter file for
additional systems.

Copy the file from CustHLQ.SFMCDATA(FMCHECSY) for your primary
system to new CustHLQ.SFMCDATA(FMCHECIF). Note that it is going
from your primary system customization high level qualifier (see
Table 3 on page 11) to your customization high level qualifier of
your new system (see Table 40 on page 57).

3 Required Edit the
customization
parameter file.

Edit the customization parameter template member
CustHLQ.SFMCDATA(FMCHECIF), and enter your values from Table 40
on page 57, as described in the comment sections of the file.

Note: This file is described in “Customization parameter file for
adding a system to a system group” on page 195. From now on,
this member will contain your customization parameters for this
new system, and from here on in this chapter, CustHLQ refers to
the value in Table 40 on page 57. This member is used as an input
file for the generation process in step 4.

4 Required Generate all the JCLs
necessary to
customize this
product.

1. Copy the JCL CustHLQ.SFMCCNTL(FMCHJCUS) to a private
partitioned data set.

2. Edit your copy of FMCHJCUS as described in the comment header.

3. Submit your copy of FMCHJCUS.

4. Check the job output (step IKJEFT01 / DD statement SYSTSPRT)
for error messages.

The program performs some syntax checking on the length and
value of the variables you specified in the file
CustHLQ.SFMCDATA(FMCHECIF). The program then substitutes your
values for variables in the customization template files. Some
PROCLIB and PARMLIB members are also copied with new names to
the library CustHLQ.GENPROC and CustHLQ.GENPARM.

General DB2 customization (DB2 data sharing)
If one of the following statements is true, you can skip this section and continue
with “Update topology setting in the Workflow database” on page 61, because you
have already done, or you do not need to set up the DB2 Data Sharing/Coupling
Facility:

Customization

60 Customization and Administration

v You are not using a DB2 Data Sharing Group because you want to create the
additional Workflow system on the same OS/390 image where your primary
system resides.

v You are using a DB2 Data Sharing Group, but you are not creating the first
system in this system group on the current OS/390 image.

Before performing this customization you should ensure that you have DB2 SYSADM
grants. This can be granted with the command: GRANT SYSADM TO DB2AdminUserID.
Before submitting each JCL, be sure to insert your own job card.

Table 43. General DB2 customization (DB2 data sharing)

Step
number

Required or
optional Description Action Verification

1 Required if
you want to
change the
buffer pool
names and
sizes:

Edit buffer pool
definitions.

1. Edit CustHLQ.SFMCDB2(FMCHDDBP)

2. Change the buffer pool definitions. Verify that you have the
same table space/index space to buffer pool correlation as in
your previous systems in the system group.

2 Required Define the buffer
pools.

Submit JCL
CustHLQ.SFMCNTL(FMCHJDBP)

rc=0

3 Required Check structures in
Coupling Facility:

Make sure that you have group buffer pool structures available for
all local buffer pools included in CustHLQ.SFMCDB2(FMCHDDBP). In
the following you will find some recommendations for your
structure sizing but they have to be monitored and adapted later (if
required) for your environment – for more information refer to DB2
for OS/390 Data Sharing: Planning and Administration (SC26-8961-00).

Group Buffer Pool Sizes: For each buffer pool you are using (see
CustHLQ.SFMCDB2(FMCHDDBP)) sum the local buffer pool storage for
the buffer pool number across all DB2s of the group. Then, use
approximately one third of that total as your group buffer pool
size.

Check your data page/directory entry ratio. Make sure that you
can have at least as many directory entries for each buffer pool
number as the sum of pages in your local buffer pools.

4 Optional Change group buffer
pool settings.

1. Edit CustHLQ.SFMCDB2(FMCHDDGB)

2. Change the default values to
values suitable for your
environment.

3. Submit JCL
CustHLQ.SFMCNTL(FMCHJDGB)

rc=0

Update topology setting in the Workflow database
To populate, and verify the Workflow database, you must perform the following
steps:

Table 44. Updating topology setting in the Workflow database

Step
number

Required or
optional Description Action Verification

1 Optional Check the defaults for
the new system.

Edit the reference FDL file CustHLQ.SFMCDATA(FMCHESDL),
modifying the default definitions for the additional system where
necessary.

Customization

Chapter 5. Creating additional systems in an existing system group 61

Table 44. Updating topology setting in the Workflow database (continued)

Step
number

Required or
optional Description Action Verification

2 Required Submit job to add a
system to a system
group.

Submit your copy of
CustHLQ.SFMCCNTL(FMCHJRIS)

rc=0

MQSeries customization
This defines all the MQSeries resources required by MQSeries Workflow for z/OS.
Before you perform this customization, make sure that your queue manager is
started.

Table 45. MQSeries customization

Step
number

Required or
optional Description Action Verification

1 Required Define the MQSeries
resources (except for
program execution.)

Submit JCL CustHLQ.SFMCCNTL(FMCHJDMQ) rc=0

2 Required Define the MQSeries
resources required by
MQSeries Workflow
for z/OS program
execution.

Submit JCL CustHLQ.SFMCCNTL(FMCHJPMQ) rc=0

3 Required Isolate the trace
queue for better
performance

It is recommended to separate the MQSeries Page Set to improve
the performance of the tracing. The trace queue name isTRC.LQ

Trace customization
One Workflow Server Trace exists for each Workflow system. You must provide
and specify in the JCL procedure, the trace output data sets for the external writer.

For more information about tracing, see “The MQSeries Workflow for z/OS system
trace facility” on page 133.

Table 46. Trace customization

Step
number

Required or
optional Description Action

1 Required Copy PROCLIB
members

Making sure that no existing proclib members are accidentally
overwritten:

1. Copy the trace writer start procedure
CustHLQ.GENPROC(TraceStart) to your PROCLIB

2. Copy the trace writer stop procedure
CustHLQ.GENPROC(TraceStop) to your PROCLIB

where TraceStart and TraceStop are the values that you planned in
Table 3 on page 11, and assigned to the variables TRCWPRC, and
TRCSPRCin the file CustHLQ.SFMCDATA(FMCHECIF)
Note: These procedures must be defined as ’started tasks’ in
RACF.

Customization

62 Customization and Administration

Table 46. Trace customization (continued)

Step
number

Required or
optional Description Action

2 Required Create the extended
trace output data sets.

1. Edit data set CustHLQ.SFMCCNTL(FMCHJCTR):

a. Set the value of TRCVOL to the volume for the trace data
sets.

b. Set the size of the trace data sets. The default value is
approximately 350MB.

2. Submit JCL CustHLQ.SFMCCNTL(FMCHJCTR)

3 Required Provide RACF
profiles.

Grant the following access to the user ID that is assigned to the
trace writer.

1. Update access to the trace data sets created in step 2.

2. Read access to the trace queueTRC.LQ

Note: If no explicit user ID assignment is made, the trace writer
runs under the user ID STCUSER and group ID STCGROUP.

4 Required Enable IPCS to call
Workflow trace
programs

Make sure that the MQSeries Workflow for z/OS load library
CustHLQ.SFMCLOAD is either in the LINKLIST concatenation, or in the
STEPLIB of your TSO session.

CICS API support customization
If you want to use the MQSeries Workflow for z/OS API and trace in CICS, then
you must perform this customization. If you only want to use CICS legacy
applications, or if you do not want to use CICS at all you can skip this
customization, and continue at “IMS API support customization” on page 32.

Before starting this customization, you should ensure that the queue managers
used by CICS and MQSeries Workflow for z/OS are members of the same cluster,
you should also perform a CICS shut down.

Table 47. CICS API support customization

Step
number

Required or
optional Description Action Verification

1 Required Enable LE and
C/C++ features in
CICS.

If they are not already enabled:

1. Enable LE in CICS.
Note: The CSD definitions necessary to accomplish this task
are located in LEInstHLQ.SCEESAMP(CEECCSD)

2. Enable the C/C++ feature in CICS.
Note: A sample that may help you with this task is located in
CCPPInstHLQ.SCLBSAM(CLB3YCSD)

where LEInstHLQ and CCPPInstHLQ are your values from Table 4
on page 13.

2 Required Specify the location
of the Workflow
executables, and
start-up parameters.

1. Edit your CICS start-up job.

2. Find the DFHRPL entry.

3. Add the MQSeries Workflow for z/OS library called
InstHLQ.SFMCLOAD to the DFHRPL entry.

4. Specify an EDSALIM value of at least 200M and a CICS region
size that will accommodate your EDSALIM setting. For example,
specify the CICS parameter EDSALIM=200M and REGION=220M in
your CICS start-up job.

Customization

Chapter 5. Creating additional systems in an existing system group 63

Table 47. CICS API support customization (continued)

Step
number

Required or
optional Description Action Verification

3 Required Create user profile,
configuration profile,
and environment
data in VSAM
format.

1. Edit CustHLQ.SFMCCNTL(FMCHJCPR)

2. Change the CICSVOL value to the name
of the volume where you want the
profiles to be located.

3. Submit JCL
CustHLQ.SFMCCNTL(FMCHJCPR)

rc=0

4 Optional If you do not want to
use the value for
CICSGroup that you
specified in Table 5
on page 14:

Change the group in the CSD file:

1. Edit the CSD fileCustHLQ.SFMCDATA(FMCHEPRO)

2. Change the GROUP values to the one(s) you intended for the
Workflow executable, profiles, etc..

5 Required Update CICS CSD
with file definitions
for C++ and
MQSeries Workflow
for z/OS.

1. Edit CustHLQ.SFMCCNTL(FMCHJCUP)

2. Change the CICSNAME value to the name
of the CICS system that you are
customizing.

3. Submit JCL
CustHLQ.SFMCCNTL(FMCHJCUP)

rc=0

6 Required Restart CICS. Restart CICS.

7 Required Make MQSeries CICS
stubs available in
CICS.

Make the MQSeries CICS Stubs IMQB23IC and IMQS23IC from
MQInstHLQ.SCSQLOAD available to CICS.

8 Required Make the C/C++
group CLB and the
MQSeries Workflow
for z/OS group
available in CICS.

1. Make the C/C++ group CLB available in CICS, with the
command:

CEDA ADD G(CLB) LIST(xxx)

2. Make the MQSeries Workflow for z/OS group (CICSGroup,
unless you changed it in step 4) available in CICS, with the
command:

CEDA ADD G(yyy) LIST(xxx)

where xxx is a LIST used at CICS start-up, and yyy is the
MQSeries Workflow for z/OS group.

9 Required Stop and restart
CICS.

Stop and restart CICS.

10 Required Verify profile access. 1. Log on to CICS.

2. Perform: CEMT I FI(FMCHEUPR)

3. One file should be displayed. Try to open the file by typing
″OPE″ over ″CLO″ (and pressing enter). If this works without
resulting in an error message, the profile access has been
established. If you get an error message, retry the previous
steps for enabling CICS API support. If this does not help,
contact your IBM representative.

4. You can now close the file again by typing ″CLO″ over ″OPE″
Since CICS will then disable the file, type ″ENA″ over ″UNE″
(UNEnabled).

Customization

64 Customization and Administration

IMS API support customization
This makes MQSeries Workflow for z/OS DLLs available to IMS so that programs
using the MQSeries Workflow for z/OS container API can be executed in IMS. If
you only want to use IMS legacy applications, or if you do not want to use IMS at
all you can skip this customization, and continue at “Workflow server
customization”.

Table 48. IMS API support customization

Step
number

Required or
optional Description Action

1 Required Provide load modules
for IMS

Add all members with the prefix ″FMCH3″ from the library
InstHLQ.SFMCLOAD library to your IMS PGMLIB library.

Workflow server customization
To enable a Workflow server, a JCL procedure has to be provided in your PROCLIB.

Table 49. Workflow server customization

Step
number

Required or
optional Description Action Verification

1 Required Copy definitions for
Workflow servers into
a procedure library.

Copy the JCL procedure CustHLQ.GENPROC(UniqueSystemKey) to
your PROCLIB, where UniqueSystemKey is your value in Table 40 on
page 57.

2 Required Assign user ID and
group to the
Workflow server
started task.
Note: This is the
ServerUserID, see
Table 40 on page 57

Submit JCL CustHLQ.SFMCCNTL(FMCHJDSC) rc=0

3 Required Provide RACF profile. Give the ServerUserID assigned in Step 2 read access to the data set
CustHLQ.SFMCDATA.

4 Required if
you want
more than
eight server
instances per
address
space, or if
you want
console
messages to
be in
uppercase,
otherwise
optional

Modify the Workflow
server start job
definitions.

1. Edit your PROCLIB(UniqueSystemKey).

2. If you want, you can extend the definitions to allow more than
eight server instances per address space.

3. If you want console messages from the server address space to
be in uppercase, change the value for LANGC to ENP (the default
value is ENU).

4. If you want, you can modify the DD statements for the stdout
and stderr output, simple trace, and language environment
dump (CEEDUMP) output.

5. If you want, you can modify the sysout class for stdout, stderr,
simple trace, and language environment dump (CEEDUMP)
output.

5 Required
only if you
want servers
and tools to
give MMS
messages in
uppercase

Modify the language
setting in the
configuration profile.

Edit the server configuration profile CustHLQ.SFMCDATA(FMCHEMPR),
and change the Language setting to ENP for uppercase U.S. English.
The default value is ENU (mixed-case U.S. English).
Note: These messages are generally routed to SYSOUT data sets,
however, some of them also appear on the OS/390 system console.

Customization

Chapter 5. Creating additional systems in an existing system group 65

Table 49. Workflow server customization (continued)

Step
number

Required or
optional Description Action Verification

6 Required Grant the server user
ID execute access to
the database plan.

Issue the command:

GRANT EXECUTE ON PLAN DB2Plan TO ServerUserID

using your values for DB2Plan in Table 2 on page 10, and
ServerUserID in Table 40 on page 57.

LAN client customization
This task describes how to configure a MQSeries Workflow LAN client to connect
to a MQSeries Workflow for z/OS server. This task consists of two parts:
1. “Customize the MQSeries client connection”
2. “Customize the MQSeries Workflow client” on page 67

Note: It is very important that you check the files called Readme.1st and
Readme.xxx (where xxx is your language code) on the MQSeries Workflow
Program Code CD-ROM.

Customize the MQSeries client connection
To set up an MQSeries client connection you must do the following:

Table 50. Customize the MQSeries client connection

Step
number

Required or
optional Description Action

1 Required Install MQSeries
client.

Install an MQSeriesclient from the MQSeries CD as described in the
MQSeries Workflow product documentation.

2 Required Generate a channel
tab file.

1. Edit CustHLQ.SFMCCNTL(FMCHJCCC) and replace the <volume>
parameter with the DASD name where you want to have your
generated channel tab stored.

2. Decide which client connection channel definitions you want to
have to be created within the channel tab: (a) Only for the
current Workflow system or (b) Also for further systems you
want to connect to using the channel tab which will be created
within this step.

a. For the current Workflow system: Submit the JCL
CustHLQ.SFMCCNTL(FMCHJCCC), and expect rc=0.

b. For multiple Workflow systems:

1) Edit the JCL CustHLQ.SFMCCNTL(FMCHJCCC) and
concatenate all client connection definitions to the
CSQUCMD DD statement in step FMCHJCC1.

One way to do this is by inserting all required
definitions into the already included file
CustHLQ.SFMCMQS(FMCHNCCC), by the concatenation of
FMCHNCCC files of multiple systems (if you have them all
on shared DASD).

Another way to do this is toconcatenate a file of your
own to the collected client channel definitions.

2) Submit the JCL CustHLQ.SFMCCNTL(FMCHJCCC), and
expect rc=0.

Customization

66 Customization and Administration

For more information about MQSeries client connection, see the MQSeries
documentation MQSeries Clients. Now your MQSeries client connection is defined;
you are ready to customize the MQSeries Workflow client.

Customize the MQSeries Workflow client
To set up an MQSeries Workflow client you must do the following:

Table 51. Customize the MQSeries Workflow client

Step
number

Required or
optional Description Action

1 Required Install an MQSeries
Workflow client.

Install an MQSeries Workflow client from the MQSeries Workflow -
Program Code CD-ROM as described in IBM MQSeries Workflow:
Installation Guide.

2 Required Download channel
tab file.

Download the file ClientCustHLQ.mqwfchl.tab binary file from
OS/390 to a directory on the workstation where you want to run
your client.

3 Required Configure MQSeries
Workflow client.

Configure the client using the MQSeries Workflow customization
tool, as described in the documentation.

4 Optional Verify Workflow
client sample
application.

Perform the verification described in “Verify Workflow client
sample application” on page 40.

Now you have customized the MQSeries Workflow client.

Now you have created a new Workflow system in a system group. To add another
system to a system group, you must repeat this chapter from “Decide the new
system’s identifiers” on page 57.

Customization

Chapter 5. Creating additional systems in an existing system group 67

68 Customization and Administration

Chapter 6. Adding extra Workflow clients to an existing
system

This chapter describes how you can add extra clients on a queue manager to an
existing system. Each MQSeries Workflow client on a queue manager must have a
separate queue manager, the queue manager must be a member of the same
MQSeries cluster as the MQSeries Workflow system to which you want to add the
new client.

This chapter describes how you can customize the following:
v “Basic client customization”.
v “CICS API support customization for new client” on page 72
v “IMS API support customization for new client” on page 74
v “LAN Client Customization” on page 74
v “Client request concentrator customization” on page 75

Basic client customization
In this task you specify all the identifiers that the customization process requires,
and generate customization files from the values you have entered. If you later
realize that the identifiers were not correct, you must repeat this task before
repeating the customization process.

Each time that you want to create a new MQSeries Workflow for z/OS client on a
queue manager, you must perform a customization. Before starting customization,
you must complete the following precustomization tasks. This creates the libraries
and copies files from the customization high level qualifier CustHLQ of an existing
MQSeries Workflow for z/OS system to the location of the new client that is to be
customized (ClientCustHLQ). The information you enter here is used to generate
customization files.

The basic client customization includes the following steps:
1. “Decide the new client’s identifiers”
2. “Data set allocation for client” on page 70
3. “Create input files for customizing a new Client” on page 71
4. “MQSeries customization for a new client” on page 71
5. “Generate MQSeries channel tab file for LAN client” on page 72

Decide the new client’s identifiers
First you must decide the new Client’s identifiers. The following identifiers have
the scope of a Workflow client.

Table 52. Identifiers required for each new client

Parameter Your value

Name in
customization
parameter file Description

ClientCustHLQ CLNTCHLQ This is the customization high level qualifier for the
client you want to customize.

© Copyright IBM Corp. 1998, 2001 69

Table 52. Identifiers required for each new client (continued)

Parameter Your value

Name in
customization
parameter file Description

ClientConfigKey CLNTCFGK The key could be up to 8 uppercase characters long.
This key is used inside the profiles and identifies a
configuration for a client.

ClientQueueManager CLQMNAME This is the MQSeries queue manager name of the client
inside the cluster of the server systems. The queue
manager name must be unique in the MQSeries
network.
Note: If you want to run CICS applications that use the
MQSeries Workflow for z/OS application program
interface (API), this must either be the same queue
manager that is used by CICS, or the queue managers
must be members of the same MQSeries cluster.

OS/390 System TCP/IP
address

CTCPADDR This is the TCP/IP address of the OS/390 system
where the MQSeries Queue Manager resides.

TCP/IP port of
MQSeries Queue
Manager

CTCPPORT This is the TCP/IP port of the listener of the queue
manager. The MQSeries default is 1414. All queue
managers on the OS/390 image must have different
ports for their listeners.

ClientCICSGroup CICSGRPC CICS group name used for program execution server
invocations.

CICSInstHLQ CICSLPFX CICS installation high level qualifier.

Data set allocation for client
This step creates the data sets that are required for customization.

Table 53. Data set allocation for client

Step
number

Required or
optional Description Action Verification

1 Required Copy allocation job. Copy the JCL CustHLQ.SFMCCNTL(FMCHJACL) to a private
partitioned data set.

2 Required Customize allocation
job.

Edit your copy of FMCHJACL, and make the changes described in the
comment header of the file (replace <CLNTCHLQ> with your
MQSeries Workflow for z/OS client customization high level
qualifier, see ClientCustHLQ in Table 52 on page 69).

3 Required Allocate
customization data
sets.

Submit your copy of FMCHJACL. rc=0 indicates that the following
libraries have been created:

1. ClientCustHLQ.SFMCCNTL

2. ClientCustHLQ.SFMCDATA

3. ClientCustHLQ.SFMCMQS

4. ClientCustHLQ.SFMCPROC

5. ClientCustHLQ.GENPROC

Customization

70 Customization and Administration

Create input files for customizing a new Client
In this task you specify all the identifiers that the customization process requires,
and generate customization files from the values you have entered. If you later
realize that the identifiers were not correct, you must repeat this task before
repeating the customization process.

Table 54. Create input files for client customization

Step
number

Required or
optional Description Action Verification

1 Required Copy customization
templates.

1. Copy the JCL
CustHLQ.SFMCCNTL(FMCHJCLT)
to a private partitioned data
set.

2. Edit your copy of FMCHJCLT
as described in the comment
header.

3. Submit your copy of
FMCHJCLT.

rc=0.

2 Required Edit the
customization
parameter file.

Edit the customization parameter template member
CustHLQ.SFMCDATA(FMCHECCL), and enter your values from Table 52
on page 69, as described in the comment sections of the file. This

member is used as an input file for the generation process in step
3.

3 Required Generate all the JCLs
necessary to
customize this
product.

1. Copy the JCL
ClientCustHLQ.SFMCCNTL
(FMCHJCCS) to a private
partitioned data set.

2. Edit your copy of FMCHJCCS
as described in the comment
header.

3. Submit your copy of
FMCHJCCS.

This requires rc=0. The program
performs some syntax checking
on the length and value of the
variables you specified in the file
ClientCustHLQ.SFMCDATA
(FMCHECCL). The program
substitutes your values for
variables (see Table 52 on
page 69) into the client
customization template files.

MQSeries customization for a new client
This defines all the MQSeries resources required by an MQSeries Workflow for
z/OS client on a queue manager. Before you perform this customization, make
sure that your queue manager is started.

Table 55. MQSeries customization for new client

Step
number

Required or
optional Description Action Verification

1 Required Define the MQSeries
resources.

Submit JCL
ClientCustHLQ.SFMCCNTL(FMCHJCMC)

rc=0

Customization

Chapter 6. Adding extra Workflow clients to an existing system 71

Generate MQSeries channel tab file for LAN client
To generate the channel tab file for the new workstation client, you must perform
the following:

Table 56. Generate MQSeries Channel tab file for use on LAN Client

Step
number

Required or
optional Description Action Verification

1 Required Generate MQSeries
Channel tab file for
use on LAN Client.

1. Edit the job ClientCustHLQ.SFMCCNTL(FMCHJCCL) and replace the
<volume> parameter with the DASD name where you want to
have your generated channel tab stored.

2. Decide which client connection channel definitions you want to
have to be created within the channel tab: (a) Only for the
Workflow system to which you want to add the current client
or (b) Also for further systems to which you want to connect to
using the channel tab which will be created within this step.

a. For the Workflow system to which you want to add the
current client: Submit the JCL
ClientCustHLQ.SFMCCNTL(FMCHJCCL), and expect rc=0.

b. For multiple Workflow systems:

1) Edit the JCL ClientCustHLQ.SFMCCNTL(FMCHJCCL) and
concatenate all client connection definitions to the
CSQUCMD DD statement in step FMCHJCC1. One way to do
this is by inserting all required definitions into the
already included file ClientCustHLQ.SFMCMQS(FMCHNCCL),
by the concatenation of FMCHNCCL files of multiple clients
(if you have them all on shared DASD). Another way to
do this is to concatenate a file of your own to the
collected client channel definitions.

2) Submit the JCL ClientCustHLQ.SFMCCNTL(FMCHJCCL), and
expect rc=0.

2 Required Download the
generated tab file to
your workstation.

Transfer the binary file ClientCustHLQ.MQWFCHL.TAB to your
workstation where you want to configure the MQSeries client
connection.

CICS API support customization for new client
If you want to use the MQSeries Workflow for z/OS API and trace in CICS, then
you must perform this customization.

Before starting this customization, you should:
1. A new CICS system, that has not yet been customized.
2. Ensure that the queue managers used by CICS and MQSeries Workflow for

z/OS system to which you want to add a new client are members of the same
cluster.

3. Complete “MQSeries customization for a new client” on page 71.
4. Perform a CICS shut down.

Table 57. CICS API support customization for new client

Step
number

Required or
optional Description Action Verification

1 Required Customize the client
queue manager.

Perform “MQSeries customization for a new client” on page 71.

Customization

72 Customization and Administration

Table 57. CICS API support customization for new client (continued)

Step
number

Required or
optional Description Action Verification

1 Required Enable LE and
C/C++ features in
CICS.

If they are not already enabled:

1. Enable LE in CICS.
Note: The CSD definitions necessary to accomplish this task
are located in LEInstHLQ.SCEESAMP(CEECCSD)

2. Enable the C/C++ feature in CICS.
Note: A sample that may help you with this task is located in
CCPPInstHLQ.SCLBSAM(CLB3YCSD)

where LEInstHLQ and CCPPInstHLQ are your values from Table 4
on page 13.

2 Required Specify the location
of the Workflow
executables, and
start-up parameters.

1. Edit your CICS start-up job.

2. Find the DFHRPL entry.

3. Add the MQSeries Workflow for z/OS library called
InstHLQ.SFMCLOAD to the DFHRPL entry.

4. Specify an EDSALIM value of at least 200M and a CICS region
size that will accommodate your EDSALIM setting. For example,
specify the CICS parameter EDSALIM=200M and REGION=220M in
your CICS start-up job.

3 Required Create user profile,
machine profile, and
environment data in
VSAM format.

1. Edit ClientCustHLQ.SFMCCNTL(FMCHJCPT)

2. Change the CICSVOL value to the name
of the volume where you want the
profiles to be located.

3. Submit JCL
ClientCustHLQ.SFMCCNTL(FMCHJCPT)

rc=0

4 Optional If you do not want to
use the value for
ClientCICSGroup that
you specified in
Table 52 on page 69:

Change the group in the CSD file:

1. Edit the CSD fileCustHLQ.SFMCDATA(FMCHEPRT)

2. Change the GROUP values to the one for the Workflow client.

5 Required Update CICS CSD
with file definitions
for C++ and
MQSeries Workflow
for z/OS.

1. Edit ClientCustHLQ.SFMCCNTL(FMCHJCUT)

2. Change the CICSNAME value to the name
of the CICS system that you are
customizing.

3. Submit JCL
ClientCustHLQ.SFMCCNTL(FMCHJCUT)

rc=0

6 Required Restart CICS. Restart CICS.

7 Required Make MQSeries CICS
stubs available in
CICS.

Make the MQSeries CICS Stubs IMQB23IC and IMQS23IC from
MQInstHLQ.SCSQLOAD available to CICS.

8 Required Make the C/C++
group CLB and the
MQSeries Workflow
for z/OS group
available in CICS.

1. Make the C/C++ group CLB available in CICS, with the
command:

CEDA ADD G(CLB) LIST(xxx)

2. Make the MQSeries Workflow for z/OS group (CICSGroup,
unless you changed it in step 4) available in CICS, with the
command:

CEDA ADD G(yyy) LIST(xxx)

where xxx is a LIST used at CICS start-up, and yyy is the
MQSeries Workflow for z/OS group.

Customization

Chapter 6. Adding extra Workflow clients to an existing system 73

Table 57. CICS API support customization for new client (continued)

Step
number

Required or
optional Description Action Verification

9 Required Stop and restart
CICS.

Stop and restart CICS.

10 Required Verify profile access. 1. Log on to CICS.

2. Perform: CEMT I FI(FMCHEUPR)

3. One file should be displayed. Try to open the file by typing
″OPE″ over ″CLO″ (and pressing enter). If this works without
resulting in an error message, the profile access has been
established. If you get an error message, retry the previous
steps for enabling CICS API support. If this does not help,
contact your IBM representative.

4. You can now close the file again by typing ″CLO″ over ″OPE″
Since CICS will then disable the file, type ″ENA″ over ″UNE″
(UNEnabled).

IMS API support customization for new client
This makes MQSeries Workflow for z/OS DLLs available to IMS so that programs
using the MQSeries Workflow for z/OS container API can be executed in IMS.

Table 58. IMS customization

Step
number

Required or
optional Description Action

1 Required Provide load modules
for IMS

Add all members with the prefix ″FMCH3″ from the library
InstHLQ.SFMCLOAD library to your IMS PGMLIB library.

LAN Client Customization
To customize a LAN client, you must perform the following:

Table 59. Enabling a client to use the Workflow API

Step
number

Required or
optional Description Action

1 Required Customize MQSeries
on OS/390.

Perform “MQSeries customization for a new client” on page 71.

2 Required Check or decide the
identifier names
required for step 3.

1. Collect the following information:

v SystemGroup from Table 2 on page 10.

v MQWFSystemPrefix from Table 2 on page 10.

v System from Table 3 on page 11.

v ClientQueueManager from Table 52 on page 69.

2. Decide how do you want to name the new configuration

3 Required Customize MQSeries
on your workstation
client.

Perform the MQSeries customization for your workstation client,
as described in the appropriate MQSeries documentation.

Customization

74 Customization and Administration

Client request concentrator customization
You can configure a ’client concentrator’ that accepts requests from several clients,
and forwards the requests to a cluster of servers. The client request concentrator
acts as point where many MQSeries clients are connected. A concentrator isolates
the other queue managers from the client connection workload. It also allows you
to use the MQSeries clustering features without writing a cluster workload exit.

The main advantages of doing this are:
v They connect to the same queue manager.
v They have the same channel tab.
v The work requests from the clients are distributed evenly across all the servers

in the MQSeries cluster.
v Reduces the workload for client connections on the other queue managers in the

cluster.

Note: Only MQSeries Workflow Version 3.2.1 and higher clients can be attached to
a client request concentrator.

Table 60. Enabling a client to act as a client request concentrator

Step
number

Required or
optional Description Action

1 Required Basic customization. Perform “Basic client customization” on page 69.

2 Required MQSeries
customization.

Perform “MQSeries customization for a new client” on page 71.

Customization

Chapter 6. Adding extra Workflow clients to an existing system 75

Customization

76 Customization and Administration

Part 2. Administration

Chapter 7. Introduction to system administration 79
Objects you will need to administer or use 79
Administration in an MQSeries Workflow system . 82
System administration client/server components . . 82

The administration server 83
Overview of administration tasks 84

System and server administration tasks 84
Program and user administration tasks 85

Chapter 8. Administration server tasks 87
Administration server commands 87

Starting the administration server 87
Stopping the administration server 88

System commands 88
Starting the system 88

When using WLM 89
Stopping the system 89
Restarting the system 89
Displaying all server instances in the system . . 90

Server commands 90
Starting servers 91

Starting WLM managed servers 91
Starting execution servers 91
Starting program execution server instances 92

Stopping servers. 92
Stopping the system by stopping the servers 92

Restarting servers 92
Restarting the program execution server . . . 92
Restarting the administration server 93
Restarting WLM managed servers 93

Displaying the number of instances of a server 93
Hold queue commands 94

Displaying number of messages in the hold
queue 94
Displaying messages in the hold queue 94
Replaying messages from the hold queue . . . 95
Deleting messages from the hold queue 95

Chapter 9. Buildtime administration tasks . . . 97
Defining process models 97

Defining server properties 97
Server properties that can be changed . . . 97
Server properties that should not be changed 98
Server properties that are ignored on OS/390 98
Switching servers between WLM and
non-WLM mode using Buildtime 98

Defining program properties 100
Defining the connection between a program
activity and the PES 103

Uploading process models to the host 104
Importing and exporting process models 104

Using the FDL import/export tool 104

Chapter 10. Program execution 105

Administering the Program Execution Server
directory 107

Adding a new service definition and the related
user resolution information. 108
Adding a user-defined invocation type 109
Adding a user-defined mapping type 109
Importing the PES directory 109
Caching the PES directory at runtime 110

Refreshing the PES directory cache 110
Administering programs. 110

Enabling an OS/390 program to be run as a
program activity 110

Creating a program mapping 110
Defining a new program in the process
model 110
Defining a security profile 111

Enabling an OS/390 program to run as a safe
application 111
Disabling a program 111
Authorizing a user to access an OS/390
program 111
Revoking a user’s access to OS/390 programs 112

Administering program mapping. 112
Importing a program mapping definition . . . 112

Return codes 114
Enabling a program’s mapping 114
Disabling a program’s mapping 115
Deleting a program mapping definition . . . 115
Enabling a mapping type 115
Disabling a mapping type 116

Administering invocation types 116
Enabling an invocation type 116
Disabling an invocation type 116

Program execution security 116
Information in the PES directory that is relevant
to security 118
Program security 118

Chapter 11. Administering Servlets on the
WebSphere Application Server 119
Placing servlet class files on the Application Server 119

If necessary, create a new servlet sub-directory 119
Monitoring your servlet, or setting servlet
initialization parameters 120

Placing the HTML files on the Application Server 120
Running a sample servlet, to log on MQSeries
Workflow. 120

Chapter 12. Performance tuning 123
Changing the number of running server instances 123
Changing the number of server instances per
address space 123
Caching the PES directory 124
Using the OS/390 Link Pack Area for MQSeries
Workflow load libraries 124
Tuning DB2 124

© Copyright IBM Corp. 1998, 2001 77

Chapter 13. Problem determination 125
Where to find information 125

Error log 126
Data sets of the job output 126

Server problems 126
Message catalog not available 126
Problem starting servers 127

Server terminates immediately 127
All but one server instances terminates
immediately after starting 127
An arbitrary number of server instances
terminates immediately after starting . . . 127
An unexpected number of server instances
start 127
A dump is written before all server instances
are started 127

The administration server cannot be started . . 128
Is the queue manager started? 128
Is the database subsystem started? 128
Is an administration server already running? 128
Are its queues inhibited? 128

The administration server does not respond to
console commands 128
The program execution server cannot be started 128

Is the administration server running? . . . 128
Are its queues inhibited? 128

Server instances terminate 129
All server instances in an address space
terminate 129
One or more program execution server
instances terminate, the activity goes in state
error 129
Are the server instances managed by WLM? 129

Program activity stays in the state ’running’ . . 129
Cannot stop servers 129

Did you wait long enough? 130
Do your transactions take longer than 30
seconds? 130
PES cannot be stopped 130

Changes made to the configuration profile are
not activated 130

Have you restarted your servers?. 130
Changes made to the PES directory are not
activated 130

Is PES directory caching enabled? 130
Changes made to the program mapping
definition are not activated 131

Have you restarted the program execution
server? 131

Hold queue problems (undelivered messages) 131
DELETE or REPLAY affected fewer messages
than expected 131
DELETE or REPLAY affected the wrong
messages 131
The hold queue contains fewer messages
than expected 131

Resource and performance problems 131
Response times are unacceptably long 131

Is tracing turned on? 131
Are enough server instances running? . . . 131
Are too many server instances running? . . 131

Is the DB2 response time too long? 131
Does the workload exceed your system’s
capacity? 132

Invalid password 132
Are you using an old version of the runtime
client? 132

Running out of spool space. 132
Is tracing turned on? 132

The MQSeries Workflow for z/OS system trace
facility. 133

Simple trace 133
Extended trace 133

Performing an extended trace 134
Using IPCS to analyze extended trace or dump
output. 137

Creating a problem summary from an SVC
dump 138

Problems with extended tracing 138
MQSeries Workflow trace variables 139

Simple tracing in IBM WebSphere Application
Server 142

Turning tracing on. 142
Turning tracing off 142

Tracing in CICS 142

78 Customization and Administration

Chapter 7. Introduction to system administration

This chapter introduces you to system administration in an MQSeries Workflow for
z/OS system and describes the administration server tasks.

Objects you will need to administer or use
The administration of MQSeries Workflow for z/OS requires that you use the
following MQSeries Workflow and OS/390 objects and products.

Workflow system
A set of Workflow servers that includes:
v One administration server.
v One or more execution server instances.
v One scheduling server.
v One cleanup server
v Zero or more program execution server instances.

How many of each type are started automatically when the system is
started can be specified in Buildtime.

System console
Before you can administer a system, you must start the administration
server for that system. You do this by issuing the start command on the
system console.

Administration server
The component that performs administration functions within an MQSeries
Workflow system. For OS/390, the administration server must be started
manually from the system console, as described in “Starting the
administration server” on page 87. The administration server accepts
administration commands for starting and stopping systems and servers.
You can also use it to display how many of server instances are running,
and also to administer hold queues. For more information, see “Chapter 8.
Administration server tasks” on page 87.

Execution server
The component that performs the processing of process instances at
runtime. MQSeries Workflow allows multiple execution server instances to
be started.

Program execution server
The program execution server (PES) manages all requests for programs to
be executed on CICS or IMS service systems. These programs may be
either MQSeries Workflow applications running in CICS or IMS using
input and output containers or existing legacy programs that require a
mapping routine to transform these containers to the programs call and
reply parameter. Invoking legacy programs requires the definition of
forward and backward mappings. The PES supports different invocation
types and mapping types. Connection information is stored in the PES
directory. The PES provides a security mechanism to restrict program
access to dedicated users.

Program execution server directory
The program execution server directory defines invocation types, mapping

© Copyright IBM Corp. 1998, 2001 79

types, and the services where MQSeries Workflow program activities can
be executed. It also contains information to map an MQSeries Workflow
user ID to an OS/390 execution user ID. The PES directory must be
updated when you add services, users, invocation types, and mapping
types.

Invocation type
An invocation type specifies the type of invocation that is used by the
program execution server to execute a request. This type is part of the
program definition in the process model and must also be defined in the
program execution server directory. An invocation type is uniquely
associated with an invocation exit.

Mapping type
A mapping type specifies the type of mapping that is used by the program
execution server to execute a legacy program. This type is part of the
program definition in the process model and must also be defined in the
program execution server directory. A mapping type is uniquely associated
with a mapping exit.

Invocation exit
An invocation exit is the executable that is called by the program execution
server to perform an invocation according to the invocation type specified
in the program definition.

Mapping exit
A mapping exit is the executable that is called by the program execution
server to perform mapping according to the mapping type specified in the
program definition.

Notification exit
A notification exit is the executable that is called by the program execution
server when it is about to invoke a program, when it has successfully
invoked a program, or when an error has occurred during program
invocation.

Program mapping
The program execution server provides a default program mapper. You can
define mapping rules for legacy programs so that they can be invoked.
How to write program mapping rules is described in MQSeries Workflow for
z/OS: Programming. How to administrate program mapping is described in
“Administering program mapping” on page 112.

Server hold queues
When a message cannot be delivered, it is placed on a hold queue. How
you can display, replay, or delete these messages is described in “Hold
queue commands” on page 94.

Buildtime
The MQSeries Workflow Buildtime is used to define process models and
system configurations. Buildtime runs on a Windows workstation, you will
use it to define the services to be made available to the MQSeries
Workflow activities. Buildtime exports the process models in a format that
is known as MQSeries Workflow Definition Language (FDL). You can use
Buildtime to define the number of instances of execution and program
execution servers that are started when the system is started up.You will
have to transfer the FDL file to your OS/390 system, and import it into the
MQSeries Workflow for z/OS database using the import tool. See

Administration

80 Customization and Administration

“Chapter 9. Buildtime administration tasks” on page 97. For more
information about Buildtime see IBM MQSeries Workflow: Getting Started
with Buildtime.

ARM You can register the MQSeries Workflow for z/OS administration server
with the OS/390 Automatic Restart Manager to ensure that the MQSeries
Workflow for z/OS system is automatically restarted in the event of an
abnormal termination of the administration server.

CICS If you want to make CICS programs available to MQSeries Workflow
activities, you may have to install and configure an MQSeries CICS bridge
or the EXCI invocation type. For information about setting up CICS
invocation types see “Customize CICS EXCI invocation” on page 42 and
“Customize MQSeries CICS bridge invocation” on page 44.

DB2 DB2 databases are used as a repository for Workflow process models and
to store the in-flight state of created and running process instances. Each
MQSeries Workflow for z/OS system group needs its own database, and
contains one or more systems. The systems in a system group can reside
on different OS/390 images, then they have to use the same database using
DB2 Data Sharing. Multiple MQSeries Workflow for z/OS system groups
can share one DB2 subsystem.

IMS If you want to make IMS programs available to MQSeries Workflow
activities, you may have to install and configure an MQSeries IMS bridge
or the CPIC invocation type. For information about setting up IMS
invocation types see “Customize IMS CPIC invocation” on page 46 and
“Customize MQSeries IMS bridge invocation” on page 48.

MQSeries
MQSeries Workflow for z/OS uses MQSeries message transportation, and
requires a MQSeries for OS/390 queue manager that is a member of an
MQSeries cluster.

RACF RACF is used to define the security for resources such as queues and
programs. Various administration tasks require RACF settings to be
defined or changed.

Note: This manual assumes that you are using RACF for your security. If
you are using a different security system, you must apply the
equivalent security access controls for your system.

WLM You can configure MQSeries Workflow for z/OS to use the OS/390
Workload Manager to administer multiple instance server address space.

System trace
You can use the system trace facility for problem determination. For
information about tracing see “The MQSeries Workflow for z/OS system
trace facility” on page 133.

Audit trail
When a process instance is executed, MQSeries Workflow writes
information about each significant event into an audit trail. For more
details and example queries, see “Appendix M. Audit Trail” on page 221.

Address spaces
During normal operation, you should only administer servers and systems
using the administration server commands. On OS/390, servers run in
address spaces. Several servers may run in the same address space, but for
each server type a different address space is used. For a single-instance
server like the administration server this means that it runs alone in an

Administration

Chapter 7. Introduction to system administration 81

address space. Some of the servers are multiple-instance servers: If the
workload requires it, additional server instances of this server type can be
started. The number of server instances that can run in a single address
space depends on the size of the instances. The maximum number of
server instances that shall be started in one address space is a tuning
parameter, which can be changed when tuning the performance (see
“Changing the number of server instances per address space” on page 123).
If more than this maximum number of server instances is started,
additional address spaces will be used.

Administration in an MQSeries Workflow system
System administration is performed by issuing commands to the administration
server. Each administration server controls and manages one MQSeries Workflow
system within a system group. It provides vital management, control, security, and
operational functions that govern the running of a particular selected system
within a system group.

The MQSeries Workflow server topology has a hierarchical structure. The domain
is the highest level in the hierarchy and may contain no more than one system
group. Each system group is made up of one or moresystems which contain an
administration server, one or more execution server instances, one scheduling
server, one cleanup server, and zero or more program execution server instances.
All Workflow systems running in the same OS/390 system have their own
administration server.

An MQSeries Workflow system has a tiered structure:
v Tier 1 — Client tier

Tier 1 contains the MQSeries Workflow system clients, application programming
interfaces, and Buildtime. They use the MQSeries client and MQSeries Workflow
APIs to connect with the second tier.

v Tier 2 — Server tier

Tier 2 contains all the various MQSeries Workflow servers. This is the working
center where all the scheduling, distribution, cleanup, administration, server
communication, and execution is done. The workflow servers are connected to a
DB2 database subsystem which may be a member of a DB2 data sharing group.
System Groups that are distributed over multiple OS/390 images in a sysplex
require a DB2 data sharing group

For further details about the system structure, see IBM MQSeries Workflow: Concepts
and Architecture.

System administration client/server components
Every MQSeries Workflow system has an administration server.

Figure 5 on page 83 illustrates the implementation of the administration component
within an MQSeries Workflow system. All administration components within a
system group are implemented in a similar way.

Administration

82 Customization and Administration

The administration server
The administration server is the working center of the administration component.
It is responsible for the management of all components in an MQSeries Workflow
system. It performs administrative functions in response to system administration
requests, as well as, automatic internal functions that are transparent to the system
administrator. The administration server communicates with all other components
in an MQSeries Workflow system and is responsible for session management in the
MQSeries Workflow system. It handles all log on requests and checks user
identification, password, and authorization for a requested session.

The administration server is always the first component in an MQSeries Workflow
system that is started. After you have started the administration server, you can
start the other servers in the system. The system must be shut down using the
administration server. The administration server can be restarted while the system
is running. Shutting down the administration server does not shut down the
complete system.

The administration server sends messages via queues that are managed by
MQSeries, and has access to various system tables held in the system database.

Queues
All components in the system receive messages from input queues that are
managed by MQSeries. MQSeries is used to manage communications
within an MQSeries Workflow system. The administration server uses
MQSeries to send messages to all system server and client input queues. It
maintains its own input queue from which all messages are received. The
administration server uses boot queues for the start-up of the program
execution server.

Database tables

The administration server accesses domain, system group, and system
tables in the MQSeries Workflow database. The following lists the tables
that can be accessed by the administration server:
v The administration server state table, which lists the administration

server state properties, and the operational status of system servers.
v Property tables for all servers.

Figure 5. Implementation of the administration component in an MQSeries Workflow system

Administration

Chapter 7. Introduction to system administration 83

v The system properties table in which properties that determine the
behavior of the system are contained

v The system group properties table in which properties that determine
the behavior of the system group and some system properties are
contained.

v The domain properties table contains properties that determine the
behavior of the domain and some system group and system properties.

v A session table in which a session record is created for each authorized
user after log on.

The administration server provides a command line interface. This allows the
OS/390 administrator to start and stop MQSeries Workflow systems and servers,
and to query how many server instances are running. These tasks are described in
“Chapter 8. Administration server tasks” on page 87.

Overview of administration tasks
To administrate MQSeries Workflow for z/OS systems, servers, programs, and
users you will have to use several different administration tools.

System and server administration tasks
The following table gives you an overview of the main system and server tasks
that can be performed using Buildtime and console commands.

Table 61. System and server administration tasks

Task
Buildtime System console

commands
Admin server

commands

“Starting the administration server” on page 87 *

“Stopping the administration server” on page 88 * *

“Starting the system” on page 88 *

“Stopping the system” on page 89 *

“Restarting the system” on page 89 *

“Starting servers” on page 91 *

“Stopping servers” on page 92 *

“Restarting servers” on page 92 *

“Displaying the number of instances of a server” on page 93 *

“Hold queue commands” on page 94 *

“Switching servers between WLM and non-WLM mode by
importing an FDL file” on page 164

* *

“Switching servers between WLM and non-WLM mode
using Buildtime” on page 98

* * *

“Chapter 11. Administering Servlets on the WebSphere
Application Server” on page 119

*

System console
Before you can administer a system, you must start the administration
server for that system. You do this by issuing the start server command on
the system console. Then you can issue commands to the administration
server.

Administration

84 Customization and Administration

Administration server
You start and stop systems and servers by isuing administration server
commands on the system console.

Program and user administration tasks
The following table gives you an overview of which administration tools and
components are required for each administration task. The recommended sequence
that the tools should be used are described in each task description.

Table 62. Program and user administration tasks: tool dependencies

Task Buildtime PES
directory

RACF Program
mapping

“Defining process models” on page 97 *

“Uploading process models to the host” on page 104

“Importing and exporting process models” on page 104

“Enabling an OS/390 program to be run as a program
activity” on page 110

* * * *

“Disabling a program” on page 111 *

“Enabling an OS/390 program to run as a safe application”
on page 111

*

“Authorizing a user to access an OS/390 program” on
page 111

* *

“Revoking a user’s access to OS/390 programs” on
page 112

* *

“Importing a program mapping definition” on page 112 *

“Enabling a program’s mapping” on page 114 * *

“Disabling a program’s mapping” on page 115 *

Buildtime
You will use the MQSeries Workflow Buildtime tool to modify server and
program properties in the process model definition. Exporting the process
model creates a FDL file that must be uploaded to the mainframe, and
then imported into the Workflow database. You can also define the number
of instances of each server type that are to started when the system is
started.

PES directory
You must modify the PES directory to define new services, invocation
types, mapping types, or new users. After changing the PES directory, you
must import it into the PES directory database.

RACF When you add programs or users, you have to use RACF (or an equivalent
security program) to enable access to the necessary resources.

Program mapping
If you define or change a program mapping for a legacy application, you
must run the import tool to update the program mapping database.

Administration

Chapter 7. Introduction to system administration 85

Administration

86 Customization and Administration

Chapter 8. Administration server tasks

Most MQSeries Workflow system administration is done by issuing commands to
an administration server. Before you can do this, an administration server must be
started as described in “Starting the administration server”.

The following sections describe the main groups of on-line administration tasks:
v “Administration server commands”
v “System commands” on page 88
v “Server commands” on page 90
v “Hold queue commands” on page 94

Note: Servers are started and stopped asynchronously. This means, for example, if
you have issued the command to START the system, and then, before the
system has fully started, you issue the command to STOP the system, the
result can be that servers are still running. You can verify the actual system
status using the DISPLAY command described in “Displaying all server
instances in the system” on page 90.

Some administration server commands have a slightly different behavior when
acting on server types that are managed by WLM. Where there are differences,
they are noted in a separate subsection. The differences only apply to those
multiple instance server types that are being managed by WLM (currently only the
execution server and the program execution server can be managed by WLM). For
more information about using WLM, see “Part 3. Using OS/390 Workload Manager
with Workflow” on page 143. You should administer the WLM managed servers
using the normal administration commands as described in “Server commands” on
page 90.

Administration server commands

Starting the administration server
If necessary, start DB2, MQSeries QueueManager, CICS, or IMS.

Before you can issue any administration server commands, the administration
server must be started. You start the administration server by issuing the following
command on the system console:
START UniqueSystemKey.AdminServerID [,ARMRE=ARMRestartElementNameSuffix]

This establishes the connection between the administration server ID and the
system specified in UniqueSystemKey.

UniqueSystemKey
Your value specified during planning in Table 3 on page 11. It must be
unique within the OS/390 image, and not more than 8 characters long. If
your PROCLIB is shared in a sysplex, then the value must be unique in the
sysplex.

AdminServerID
A name you will use to identify the administration server when you issue
administration server commands. It must be unique within the OS/390

© Copyright IBM Corp. 1998, 2001 87

image, and not more than 8 characters long. As there is only one
administration server per Workflow system, it is recommended that you
construct the name from the letters FMCA and some unique characters from
the system name, for example FMCASYS1.

ARMRE=ARMRestartElementNameSuffix
This parameter is optional. If you specify the ARMRestartElementNameSuffix
(see your value in Table 3 on page 11), the administration server is
registered with the OS/390 Automatic Restart Manager service. In the
event of an abnormal termination, ARM will automatically restart the
administration server’s address space on the same system. When the
administration server terminates normally, it is de-registered from the ARM
service.

For example, START MQWFS1.FMCASYS1,ARMRE=MQWFS1

Only one administration server can be started for each system. After executing this
command you can start the system as described in “Starting the system”.

Stopping the administration server
You can stop the administration server (without affecting any other running
servers) by issuing the following command:
STOP AdminServerID

This has the same effect as the stop server command:
MODIFY AdminServerID,STOP ADM

AdminServerID
The ID that was specified when the administration server was started.

For example, STOP FMCASYS1.

System commands
You can start, stop, and display any MQSeries Workflow for z/OS system from the
system console, but only if an administration server is running on that system. The
system related tasks are described in:
v “Starting the system”
v “Stopping the system” on page 89
v “Restarting the system” on page 89
v “Displaying all server instances in the system” on page 90

Starting the system
Which and how many server instances will be started is specified in the server
settings in Buildtime, see “Defining server properties” on page 97 for more
information.

To start the MQSeries Workflow for z/OS system, issue the command:
MODIFY AdminServerID,START

or the short form
F AdminServerID,S

Administration

88 Customization and Administration

AdminServerID
The ID that was specified when the administration server was started. The
UniqueSystemKey associated with this by the start command identifies the
system that will be started.

For example: MODIFY FMCASYS1,START will start the system where the
administration server FMCASYS1 is running

Note: The server start and stop time settings in Buildtime are ignored by
MQSeries Workflow for z/OS.

When using WLM
When you start the system, the initial number of instances specified in the system’s
topology definition is ignored for any servers that are being managed by WLM.
The server application environments are ’resumed’, just as if it the servers were
started as described in “Starting servers” on page 91.

Stopping the system
To stop the MQSeries Workflow for z/OS system, issue the command:
MODIFY AdminServerID,STOP

or the short form
F AdminServerID,P

AdminServerID
The ID that was specified when the administration server was started. The
UniqueSystemKey associated with this by the start command identifies the
system that will be stopped.

For example: MODIFY FMCASYS1,STOP will stop the system where the administration
server FMCASYS1 is running.

This stops all servers (except for the administration server) that are running on the
Workflow system. How to stop the administration server is described in “Stopping
the administration server” on page 88.

When the system is shut down, all session records are deleted from the MQSeries
Workflow database which effectively logs off all clients (including MQSeries
Workflow API programs), and all the program execution agents (PEAs) are shut
down.

Note: If you do not want the sessions to be deleted when the system is shut down,
you can set the profile variable RTSystemShutdownMode to KeepSessions, and
enable a regular cleanup of sessions by setting a session expiration time
and a session expiration check interval in the system settings (using the
Buildtime tool).

Restarting the system
If you want such changes to the start parameters in the configuration profile or the
environment variable file (for example, turning tracing on) to consistently affect all
running server instances then you must restart the whole system, including the
administration server in the following sequence:
1. “Stopping the system”
2. “Stopping the administration server” on page 88
3. “Starting the administration server” on page 87

Administration

Chapter 8. Administration server tasks 89

4. “Starting the system” on page 88
5. Then start extra server instances if required, see “Starting servers” on page 91.

which requires the command sequence:
MODIFY AdminServerID,STOP
STOP AdminServerID
START UniqueSystemKey.AdminServerID
MODIFY AdminServerID,START
MODIFY AdminServerID,START ServerType [INST(NumberOfInstances)]

Note: Remember that these commands are executed asynchronously, and you must
wait until each command has completed before issuing the next command.

Some parameters in the configuration file can be changed without needing to
restart the system, for more details see “Server configuration profile” on page 201.

Displaying all server instances in the system
To display the number of running instances of each server type in the MQSeries
Workflow for z/OS system, issue the command:
MODIFY AdminServerID,DISPLAY

or the short form
F AdminServerID,D

AdminServerID
The ID that was specified when the administration server was started. The
UniqueSystemKey associated with this by the start command identifies the
system that will be displayed.

For example: MODIFY FMCASYS1,D will display the number of each server type
running on the system where the administration server FMCASYS1 is running.

To display the number of instances of a particular server type, see “Displaying the
number of instances of a server” on page 93.

Server commands
You can start and stop any MQSeries Workflow for z/OS servers from the system
console. You can also query how many server instances are running. These tasks
are described in:
v “Starting servers” on page 91
v “Stopping servers” on page 92
v “Restarting servers” on page 92
v “Displaying the number of instances of a server” on page 93

All server commands require AdminServerID that was specified when the
administration server was started; this uniquely identifies the Workflow system
that the command will be executed on. Server commands also require one of the
following ServerType names to identify which server type the command applies to:

Table 63. Server types
ServerType Server Instantiation type

ADM Administration server. Single instance
SCH Scheduling server Single instance
CLE Cleanup server. Single instance

Administration

90 Customization and Administration

Table 63. Server types (continued)
ServerType Server Instantiation type

EXE Execution server. Multiple instance
PES Program execution server. Multiple instance

Note: The address spaces also use the ServerType as an identifier.

Starting servers
To start a given number of instances of an MQSeries Workflow server, issue the
following command:
MODIFY AdminServerID,START ServerType [INST(NumberOfInstances)]

or the short form
F AdminServerID,S ServerType [INST(NumberOfInstances)]

AdminServerID
The administration server that is to start the server.

ServerType
The type of server to be started. You cannot start the administration server
using this command, see “Starting the administration server” on page 87.

NumberOfInstances
This optional parameter specifies how many new instances of the server
should be started. For single instance server types, the default is one. For
multiple-instance server types, the default value is specified in the server
settings in Buildtime.

Note: To verify the success of this command you can issue the display command:
MODIFY AdminServerID,DISPLAY ServerType RUNINSTANCE

For example, MODIFY FMCASYS1,S PES would start the program execution server
with the number of instances specified in the process model.

Starting WLM managed servers
The command MODIFY AdminServerID,START ServerType delegates the starting of
server instances to WLM. WLM determines how many instances are started, and
when, depending on the workload demands. Specifying the INST parameter will
generate an error.

If your servers are running in manual mode, then you must start the server
instances manually as described in “Starting WLM-managed servers when WLM is
in manual mode” on page 165.

Starting execution servers
To activate the MQSeries Workflow for z/OS system at least one execution server
must be running. It is possible to start multiple instances of the execution server to
share the work load. For example, if you want to start two new execution servers
running on the system where AdminServerID is running, issue the command:
MODIFY AdminServerID,START EXE INST(2)

or the short form:
F AdminServerID,S EXE INST(2)

Note: If the execution server is managed by WLM, see “Starting WLM managed
servers”.

Administration

Chapter 8. Administration server tasks 91

Starting program execution server instances
Starting the PES is no different to starting any other MQSeries Workflow server.
For example, if you want to start 3 new instances of the PES, issue the command:
MODIFY AdminServerID,START PES INST(3)

Stopping servers
To stop all MQSeries Workflow for z/OS server instances of a particular type, issue
the command:
MODIFY AdminServerID,STOP ServerType

or the short form
F AdminServerID,P ServerType

AdminServerID
The administration server that is to stop the server instances, effectively
identifying the system.

ServerType
The type of server to be stopped.

For example, MODIFY FMCASYS1,P EXE would stop all execution server instances on
the system where the administration server named FMCASYS1 is running.

The server instances must complete the current transaction within a defined time
window. If some server instances ignore the stop command, repeat the command.
If this does not help, see “Cannot stop servers” on page 129.

Note: To verify the success of this command you can issue the display command:
MODIFY AdminServerID,DISPLAY ServerType RUNINSTANCE

Stopping the system by stopping the servers
The recommended way to stop the system is described in “Stopping the system”
on page 89.

If you stop the system by stopping all servers (using the command MODIFY
AdminServerID,STOP ServerType), and then shut down the administration server,
the clients are not logged off, and any running program execution agents are not
stopped.

If you stop the system in this way, the session records will not be removed from
the database, and you should make sure that the administration server regularly
cleans up the session records by setting values for session expiration time and
session expiration check interval in the system settings (using Buildtime).

Restarting servers
Occasionally, you may want to restart the instances of a particular server type. You
can do this by simply issuing the stop server command, using the display
command to verify that the server type has stopped, and then issuing the start
server command.

Restarting the program execution server
There are special circumstances when you may need to restart the PES, for
example:
v If you have modified an existing and currently activated program mapping

definition in the process model, you must restart the PES. Doing this forces the

Administration

92 Customization and Administration

mapping engine to use the new mapping settings. This situation is described in
“Enabling a program’s mapping” on page 114.

v If PES directory caching is enabled as described in “Caching the PES directory at
runtime” on page 110, a restart is required to force the cache to be refreshed.

To restart the PES, you simply issue the stop command and then the start
command. For example, if your administration server ID is FMCASYS1, and you
want 4 PES instances:
MODIFY FMCASYS1,STOP PES
MODIFY FMCASYS1,START PES INST(4)

Restarting the administration server
There are special circumstances when you may need to restart the administration
server, for example:
v If you have modified the configuration profile. For example:

– To change the maximum number of server instances that will be started in a
single address space.

– To change the server queue disable time period.
v If you want to activate changes made to the server properties in the process

model.

To restart the administration server, you simply issue the stop command and then
the start command. There is no need to stop the system, the system can continue
while the administration server is restarted.

For example, if your administration server ID is FMCASYS1, and your
UniqueSystemKey is MQWFS1 (see your value in Table 3 on page 11), then
MODIFY FMCASYS1,STOP ADM
START MQWFS1.FMCASYS1

will restart the administration server.

Restarting WLM managed servers
For WLM managed servers, the easiest way to restart server instances is to issue
the WLM REFRESH command:
V WLM,APPLENV=ApplicationEnvironmentName,REFRESH

where ApplicationEnvironmentName is the appropriate value from Table 3 on
page 11.

Displaying the number of instances of a server
You can find out how many server instances are currently running on a given
system by issuing the command:
MODIFY AdminServerID,DISPLAY ServerType [RUNINSTANCE]

or the short form
F AdminServerID,D ServerType RUNINST

AdminServerID
The name of the administration server (effectively a system) where you
want to count the server instances.

ServerType
The type of server instances to be counted.

Administration

Chapter 8. Administration server tasks 93

For example, MODIFY FMCASYS1,DISPLAY EXE RUNINSTANCE will display the number
of execution server instances that are running on the system where administration
server FMCASYS1 is running.

Note: To display the number of instances of all server types, issue the command
MODIFY FMCASYS1,DISPLAY as described in “Displaying all server instances in
the system” on page 90.

Hold queue commands
Hold queue commands are used to administer undelivered messages. If an input
message for a server cannot be processed, it is rolled back. If this happens enough
times for the execution and program execution servers, that the retry limit is
exceeded, the message is put into the server’s hold queue. Message retries are a
normal part of the MQSeries Workflow transaction processing, however, if several
consecutive messages are put into the hold queue of a server, the server is
considered to be unreliable, and it is shut down.

Note: The default retry limit is set to five, which means that MQSeries Workflow
for z/OS will try five times to process a message before it puts it into the
hold queue for later processing. If you want to change it, you can setting the
profile variable RTMessageRetryLimit to a different value, for example,
RTMessageRetryLimit=10.

The messages in the hold queue can be displayed, deleted and replayed. Only
messages which have been displayed before can be deleted or replayed, this
prevents messages being removed from the hold queue by mistake. Before
replaying a message, the problem that caused the message execution to fail should
be fixed. When a message is replayed, it is reinserted into the server’s input queue.

Note: Currently, only the execution and program execution servers offers hold
queue handling, so the ServerType parameter in the following commands
can only have the values EXE, or PES.

Displaying number of messages in the hold queue
You can find out how many messages are currently in the hold queue of the
specified server type by issuing the command:
MODIFY AdminServerID,DISPLAY ServerType HOLDQDEPTH

or the short form:
F AdminServerID,D ServerType HQD

where

ServerType
the type of server to be displayed. For example, EXE.

Displaying messages in the hold queue
You must display the messages that are in the hold queue before you can replay or
delete them. To display which messages are in the hold queue for a particular
server type, issue the following command:
MODIFY AdminServerID,DISPLAY ServerType HOLDQ(NumberOfMessages|*)

or the short form:
F AdminServerID,D ServerType HQ(NumberOfMessages|*)

Administration

94 Customization and Administration

where

ServerType
The server type whose hold queue messages are to be displayed.

NumberOfMessages
Determines how many messages are displayed from the front of the hold
queue, and in which format they are displayed.

NumberOfMessages=1 provides full details about the first message in the
hold queue in the following format:
System: System
Message: ProgramFinished
Component: Program execution agent
Number of failed replays: 1
Message content: ActImplCorrelID=actImplCorrelID
SessionID=OID(00000040000000000000000000000001)

NumberOfMessages=n for any number, n, greater than one, overview
information about the first n messages is displayed in the following
overview format:
System Message Component #
SYSTEM ProgramFinished PEA 1
SYSTEM ProgramFinished PEA 0
...

where # indicates the number of failed replays.

NumberOfMessages=* causes all messages in the hold queue to be
displayed in the overview format.

Replaying messages from the hold queue
After a message has been displayed, it can be replayed. This means that the
message is moved to the server’s input queue. To replay any number of previously
displayed messages issue the following command:
MODIFY AdminServerID,REPLAY ServerType HOLDQ(NumberOfMessages|*)

or the short form:
F AdminServerID,REPLAY ServerType HQ(NumberOfMessages|*)

where

ServerType
The server type whose hold queue messages are to be replayed.

NumberOfMessages
The number of messages to be replayed. If * is specified, all messages for
this server type that have been displayed before will be replayed. If an
integer value is specified, then this number of messages will be replayed (if
they have previously been displayed).

Note: After issuing a REPLAY, you must wait for confirmation that it has
completed, before issuing a REPLAY or DELETE command.

Deleting messages from the hold queue
After a message has been displayed, if it is not to be replayed, you can delete it
from the hold queue by issuing the following command:
MODIFY AdminServerID,DELETE ServerType HOLDQ(NumberOfMessages|*)

Administration

Chapter 8. Administration server tasks 95

or the short form:
F AdminServerID,DELETE ServerType HQ(NumberOfMessages|*)

where

ServerType
The server type whose hold queue messages are to be delete.

NumberOfMessages
The number of messages to be deleted. If * is specified, all messages for
this server type that have been displayed before will be deleted. If an
integer value is specified, then this number of messages will be deleted (if
they have previously been displayed).

Note: Never use the DELETE command while replaying messages.

Administration

96 Customization and Administration

Chapter 9. Buildtime administration tasks

Some administration tasks, for example, adding new programs or defining server
properties, need changes in the process model. For more information about the
Buildtime tool see IBM MQSeries Workflow: Getting Started with Buildtime.

This chapter only describes the settings and actions that are specific to using
Buildtime to perform administration tasks for MQSeries Workflow for z/OS.

Defining process models
You must use the Buildtime tool to define the programs and servers that are
running as a part of MQSeries Workflow for z/OS. Each server and program in the
system has a set of properties that can be changed in Buildtime.

Note: To avoid code page conversion problems when uploading FDL to the host,
your Buildtime object names should conform to the guidelines that are
described in “Appendix D. Naming and code page restrictions” on page 181.

The main administration tasks relating to Buildtime are:
v “Defining server properties” which includes:

– Specifying the number of server instances to be started when the system is
started.

– Specifying the user support mode for the program execution server.
v “Defining program properties” on page 100
v “Defining the connection between a program activity and the PES” on page 103

After you have changed properties, and exported the process model, you will have
an FDLfile that must be imported into the Workflow database, as described in
“Importing and exporting process models” on page 104.

Defining server properties
This section describes which server properties may be changed, which may not be
changed, and which are ignored.

Server properties that can be changed
The following OS/390 server properties can be modified in the process model.

Table 64. Server properties that can be changed

Property Description Initial default
value

Number of
instances

The number of servers that will be started when
the system is started.

5

External Control Determines whether WLM is used to manage
resources. Before activating this option for the
execution server or the program execution
server, their application environments must be
defined as described in “Chapter 15. Setting up
WLM for MQSeries Workflow for z/OS” on
page 155.

Inherited (None)

© Copyright IBM Corp. 1998, 2001 97

Table 64. Server properties that can be changed (continued)

Property Description Initial default
value

Context Information
for External Control

Specifies the application environment name for
the server type.

User support (on
the PES
properties/Support
modes page)

Indicates whether the PES is able to execute
programs using the ServerUserID or the ID of
the user requesting the invocation. Agent selects
the ServerUserID, Program selects UserID option.

Agent

Start mode When set to IMMEDIATE, the server is started
automatically when the system is started. When
set to DEFERRED, the server is not started when
the system is started, and must be started
manually, or by WLM.

IMMEDIATE when
not using WLM.
DEFERRED when
using WLM mode.

Server properties that should not be changed
The following OS/390 server properties should not be modified.

Table 65. Server properties that should not be changed

Property Description Value

Name Fixed name for the OS/390 program
execution server.

PESERVER

Implementation
support

External

Platform OS/390

Attach mode Local

Support mode Safe

Server properties that are ignored on OS/390
The following OS/390 server property settings are ignored.

Table 66. Server properties that are ignored on OS/390

Property Description Default

Start time This setting is ignored on OS/390.

Stop time This setting is ignored on OS/390. Duration = Forever

Check_Interval Specifies how often the administration
server checks whether the servers are still
running. This setting is ignored on OS/390.

300 seconds

Switching servers between WLM and non-WLM mode using
Buildtime
If you have enabled OS/390 Workload Manager support as described in
“Chapter 15. Setting up WLM for MQSeries Workflow for z/OS” on page 155, you
can let WLM manage the server address spaces for one or both of the multiple
instance server types:
v Execution server
v Program execution server

Administration

98 Customization and Administration

The easiest way to switch between manual and WLM modes is described in
“Switching servers between WLM and non-WLM mode by importing an FDL file”
on page 164. The following steps describe how to do it using Buildtime:
1. Using Buildtime, locate the General page on the Program execution server

properties and/or Execution server properties, as shown in Figure 6.

Note: You can find these windows:
a. Starting from the Network page.
b. Open the Domain and System Group to find the System, and click on

it with the right mouse button.
c. Display the System Properties window.
d. Select the Server page.
e. Clear the inherited box, and click on the Complete ... server settings

button for the server type that you want to switch.

Then:

2. Set External control to the option Use WLM or None (clear the Inherited option
first)

Figure 6. Execution server properties: General page

Administration

Chapter 9. Buildtime administration tasks 99

3. If you are activating WLM, you must also enter the name of the application
environment for the server type in the External Control: Context Information
field. This is the name that you defined when you created the WLM service
definition as described in “Application environment” on page 160.

4. Import the new settings into the runtime database.
5. Restart the administration server to activate the changes.

Defining program properties
Every OS/390 program that is to be executed as part of a MQSeries Workflow
process activity must be defined in the process model. The following screenshots
show and describe the pages and parameters that are required for defining an
OS/390 program in Buildtime.

A program is defined by its name. You must also specify any optional input and
output data structures, specific settings for the program itself, and the platform
that the program runs on.

Figure 7. Program properties: Data page

Administration

100 Customization and Administration

Figure 7 on page 100 shows the program properties data page for an example
program named IMSProgramWithMapping. The option Execution user = Starter
means that the PES has to execute the program using the execution user ID of the
starter of the activity. This option requires the PES setting User support = Starter.
In this case, the PES has to map the Workflow user ID of the starter of the request
to an execution user ID known to OS/390. See “Adding a new service definition
and the related user resolution information” on page 108.

For more information about these settings, see “Program execution security” on
page 116.

You must complete this screen to define an OS/390 program. The following
program property settings are important for correct execution.

Figure 8. Program properties: OS/390 page

Administration

Chapter 9. Buildtime administration tasks 101

Table 67. Program properties: OS/390 page settings

OS/390 program
property Description

Service The service name is the logical name of the service system where the program is executed. This
setting is mandatory. This name may be up to 8 characters long, uppercase only, first character
(A..Z,$,#,@), other characters (A..Z,0..9,-,$,#,@). The value entered must match a service name in
the PES directory. The service must be defined for the invocation type that is used.

Invocation type This defines the logical name of the invocation type that is used to invoke the program. This
setting is mandatory. This name may be up to 8 characters long, uppercase only, first character
(A..Z,$,#,@), other characters (A..Z,0..9,-,$,#,@). The value entered here must match an invocation
type that is defined in the PES directory.

Executable The name of the program to be executed, as defined to the service system. This setting is
mandatory. This name may be up to 8 characters long, uppercase only, first character
(A..Z,$,#,@), other characters (A..Z,0..9,-,$,#,@).

Service type This defines the type of service system on which the program runs. The value specified here
must match the service type that is specified in the invocation section in the PES directory, for
the invocation type that is specified in this page. This setting is mandatory.

Executable type This defines the type of executable. For CICS programs it should be set to DPL. For IMS
programs it should be set to MPP or IFP. This setting is mandatory.

Mapping routine
call

If set to no, the PES will not call the mapping routine for invocations of this program. If set to
yes, the PES will call the mapping routine for invocations of this program. It uses the mapping
formats and parameters that are specified below.

Mapping type This defines the logical name of the mapping type. If mapping is used for the program, the
name entered here must match a type specified in the mapping section in the PES directory. The
mapping type supplied by IBM is called ’DEFAULT’. If Mapping routine call = yes, then this
setting is required.

Forward mapping
format

This defines the logical name of the forward mapping that is to be used to map the contents of
the program’s input container. The name entered here must match the name of the forward
mapping definition that is imported into the mapping database. For more information about
creating program mappings, see MQSeries Workflow for z/OS: Programming.

Backward
mapping format

This defines the logical name of the backward mapping that is to be used to map the legacy
application data. The name entered here must match the name of the backward mapping
definition that is imported into the mapping database.

Forward mapping
parameters

These parameters are only required if the mapping uses user-types that require mapping
parameters. For more information about user-types and creating program mappings, see
MQSeries Workflow for z/OS: Programming.

Backward
mapping
parameters

These parameters are only required if the mapping uses user-types that require mapping
parameters. For more information about user-types and creating program mappings, see
MQSeries Workflow for z/OS: Programming.

Local user If set to yes, the OS/390 program will be executed under the OS/390 user ID associated with
the calling MQSeries Workflow user ID. This mapping is defined in the service section of the
PES directory. If set to no, the OS/390 program will be executed under the ServerUserID. In this
case, no user resolution information is required in the PES directory for this service.

Security checking If set to yes, the PES security routine will be called for each invocation. In this case a security
profile must defined as described in “Program security” on page 118.

Administration

102 Customization and Administration

Defining the connection between a program activity and the
PES

After an OS/390 program has been defined, it must be associated with a program
activity, and the program execution server. This is done on the screen that is shown
in Figure 9. You can reach this Buildtime screen in the following way:
1. Select the process containing the activity that should execute the OS/390

program.
2. Open the process diagram.
3. Select activity and open its properties notebook.
4. Select the notebook’s execution page.

The information you enter on this screen defines the connection between the
program and the program execution server. You must perform the following:
1. Clear the User program execution agent check box.
2. Click on the flashlight button to find the program execution server and select

PESERVER.
3. Select the Synchronous mode.
4. Press OK then close the process diagram and save the process.

Figure 9. Program activity properties: Execution page

Administration

Chapter 9. Buildtime administration tasks 103

Uploading process models to the host
After exporting the process model information from the Buildtime database into an
FDL file, you must upload it to the host before you can import the FDL file into
the Workflow database. Ideally, inter-platform character conversion should be
performed automatically during the upload process. You can use FTP or any other
text transfer method to upload the FDL file to the host providing the code page
conversion does not corrupt the data. Only if your transfer method corrupts the
data during the upload process, should you upload your FDL file as a binary
image, and then use the tool described in “Appendix E. FDL code page conversion
tool” on page 183.

Note: To avoid problems with code page conversion during the upload process,
your Buildtime object names should conform to the guidelines that are
described in “Appendix D. Naming and code page restrictions” on page 181.

Importing and exporting process models
To activate the modified properties, you will need to import the uploaded FDL
process model into the MQSeries Workflow for z/OS database. This is done using
the import/export tool, see “Using the FDL import/export tool”.

You can also use the import/export tool to do the following:
v Translate workflow definitions from Buildtime.
v Translate an existing process model in the Workflow database.
v Import an FDL file that you created outside of MQSeries Workflow.
v Export Workflow definitions from the Workflow database into an FDL file.

For more information about the export and translation options, see “FDL
import/export tool’s syntax” on page 185 and “Examples” on page 188.

Using the FDL import/export tool
If you define or change your process model definition in Buildtime, you will need
to import it into your Workflow database. If you want to export a single object, or
all workflow objects from your Workflow database you can use the export option
of the FDL import/export tool.

The following describes how to use the import/export tool named FMCH0IBA:
1. Customize the JCL CustHLQ.SFMCCNTL(FMCHJRIF)

a. Specify the options that the import tool should use (see “Options for the
import/export tool” on page 187)

b. Specify the input and output files using the predefined DD-names FMCIIMP,
FMCIEXP, FMCICMD, and FMCILOG, as illustrated in “Examples” on page 188.

c. If you want to use a specific log file instead of SYSOUT you will need to
specify a data set for the DD-name FMCILOG.

2. Submit the JCL CustHLQ.SFMCCNTL(FMCHJRIF)

Administration

104 Customization and Administration

Chapter 10. Program execution

The program execution server (PES) manages program execution requests for
programs running on external services like CICS or IMS. These programs may be
legacy programs or may use MQSeries Workflow APIs. Legacy programs require
mapping to transform Workflow data containers to (and from) the format and
representation of parameters expected by the existing application. Programs
invoked by the PES must conform to a request-reply model. The PES has a
component based structure as shown in Figure 10 on page 106.

Invocation and mapping
Programs are executed on external services that the PES connects to via an
invocation exit. Such an exit is based on an invocation protocol like
External CICS Interface (EXCI), APPC to IMS or the MQSeries CICS DPL
and MQSeries IMS Bridges. Each invocation exit is uniquely identified by
the PES by an invocation type. Similarly, program mapping is performed
by program mapping exits. Each mapping exit is uniquely identified by the
PES by a mapping type. You can define user exits for mapping and
invocation. The external interfaces these exits have to conform to are
described in MQSeries Workflow for z/OS: Programming.

PES directory
Which invocation and mapping exits can be used by the PES at runtime is
defined in the PES directory. This directory is the link between the
Workflow program definitions specified in the process model and the
components and resources necessary to run the program successfully. For
instance, if a program specifies an invocation type EXCI, the directory
must contain a definition for this invocation type. For more information
about the PES directory, see “Administering the Program Execution Server
directory” on page 107 and “Appendix A. Program Execution Server
directory” on page 171.

Security
The PES can invoke programs on behalf of different MQSeries Workflow
users. A Workflow user ID must be resolved to an execution user ID
known to OS/390, as described in “Adding a new service definition and
the related user resolution information” on page 108. The PES can perform
security checks to ensure that only authorized users can run a program, as
described in “Program security” on page 118.

Runtime properties
The PES is a multi-instance server, with each server instance running as a
single task. Server instances can process both synchronous and
asynchronous invocation types. A server instance is blocked while it
processes a synchronous request. For this reason it is important to ensure
that there are enough PES instances to handle the request workload.
Asynchronous requests are split into a request part and a reply part that
are correlated to fulfill the request. All program execution server instances
share the same external resources.

Error handling
The program execution server returns error indications whenever possible.
Otherwise error notifications are sent to the administration server.

© Copyright IBM Corp. 1998, 2001 105

The PES processes a synchronous request in the following way:
1. Analyze the request.
2. Locate the invocation type and service in the directory.
3. For a legacy program locate the mapping type in the directory.
4. If the program has to be run on behalf of a specific user, get the connection

information from the directory and the execution user ID.
5. Check the security requirements for service, invocation type, the program to

be executed and the execution user ID.
6. Notify a ’before invocation’ event.
7. For a legacy program call the mapping routine to map input container to

program parameter data.
8. Call the invocation routine to handle the request.
9. For a legacy program call the mapping routine to map output parameters to

the output container.
10. If none of the above step has failed, notify a ’successful invocation’ event.

Otherwise notify an ’invocation failure’ event.
11. If none of the above step has failed, the PES returns a completion message.
12. If any of the above steps fails, and the error is considered recoverable, the PES

returns an error indication. For a non-recoverable errors the PES instance will
terminate.

Figure 10. OS/390 Program execution server: component structure

Administration

106 Customization and Administration

Invocation types supported
Invocation types may be defined as asynchronous or synchronous
invocation exits. The IBM supplied invocation types are EXCI and MQCICS
for CICS, CPIC and MQIMS for IMS. The definitions for these types are
contained in the directory template source file provided by IBM. The types
of CICS and IMS programs that can be executed depends on the invocation
protocol used by the invocation type.

CICS program types supported
The PES supports the invocation of CICS DPL programs. CICS 3270
applications and CICS transactions are not supported.

IMS program types supported
The PES supports the invocation of IMS MPP and FastPath programs. Each
program has to have a single input message and a single, predefined
output message. The execution of IMS conversations is not supported. A
sequence of non-conversational transactions can be modeled as a sequence
of separate program execution requests.

Mapping types supported
MQSeries Workflow for z/OS supplies a program mapping type named
DEFAULT which should be able to handle most mapping requirements. A
user type can be defined to handle special cases that are not covered by
the DEFAULT mapping types’ interface types. For more information about
how to define mappings and user types, see MQSeries Workflow for z/OS:
Programming. The mapping type to be used for each program is defined in
the process model as shown in Figure 8 on page 101.

User-defined invocation and mapping types
You can extend the program execution server by defining your own
mapping and invocation types, and their corresponding exits. These
user-defined types may be used instead of an IBM supplied type, or in
parallel. These exits are defined in MQSeries Workflow for z/OS:
Programming.

If you define your own invocation and mapping types, they must be
defined consistently in the process model and in the PES directory, as
explained in more detail in “PES directory dependencies on the process
model’s OS/390 program definitions” on page 174.

Administering the Program Execution Server directory
The PES directory provides persistent runtime information for the OS/390 program
execution server. It is a DB2 database, and it must be located in the same DB2
subsystem as the MQSeries Workflow for z/OS database. The directory is used by
the PES as a read-only database. The directory may be updated while the server is
running. By default, any data retrieved from the directory is not cached, for more
information about caching, see “Caching the PES directory at runtime” on
page 110.

The directory is the connecting element between the program properties specified
in the process model and the existing OS/390 services. It contains information
about invocation types, and the services that can be called using each invocation
type. It also defines the users that can use a service, and the mapping types. The
PES directory’s structure, template, and dependencies are described
in“Appendix A. Program Execution Server directory” on page 171.

Administration

Chapter 10. Program execution 107

In order to define new invocation types, mapping types, or services, you must add
new definitions to your current PES directory source file as described in the
following sections. After you have changed your PES directory source file, you will
have to activate it by importing it into the PES directory database. This is done
using the PES directory import tool, see “Importing the PES directory” on
page 109.

You can also use the import tool to perform the following:
v Update existing service definitions.
v Delete existing service definitions.
v Delete the entire contents of the PES directory database.

For more information about the possible options, see:
v “Appendix B. The PES directory import tool’s syntax and semantics” on

page 175.
v “PES directory import examples” on page 175.

Adding a new service definition and the related user
resolution information

To add a new service definition, you have to update the PES directory source as
provided in CustHLQ.SFMCDATA(FMCHEDTP), then import it as described in
“Importing the PES directory” on page 109. For more information about the PES
directory structure see “Appendix A. Program Execution Server directory” on
page 171.

The following example shows how to add a second service definition to an existing
EXCI invocation type in your PES directory source file. In the example below, a
service system named CICSEXC2 that is reached through EXCI is defined.
(INVOCATION1SERVICE<m>)

type =CICS
name =CICSEXC2
connectionParameters =APPLID=<applid>;TRANSID=CSMI
user =INVOCATION1SERVICE1USER

; user section of PES Directory

(INVOCATION1SERVICE<m>USER1)
userID =<user1>
executionUserID =<xxxxxxxx>

(INVOCATION1SERVICE<m>USER2)
userID =<user2>
executionUserID =<xxxxxxxx>

1. In your version of the PES directory source, copy an existing CICS service
definition INVOCATION1SERVICE<m>.

Note: The “PES directory template” on page 173 shows the template that is
provided in CustHLQ.SFMCDATA(FMCHEDTP).

2. Replace <m> with the number of the service inside the invocation section. For
example, if you have already defined two service definitions for the first
invocation type during customization, you should use the number three.

3. Set the value for name to the name of the service. For example, CICSEXC2.
4. For the CICSEXC2 service, set the connectionParameters value for APPLID to the

application ID.
5. To add user resolution information, substitute <user1> with the MQSeries

Workflow user identification used to start the program and <xxxxxxxx> with
the execution user identification for this user as defined in RACF.

Administration

108 Customization and Administration

Each additional user may be added by appending a corresponding
INVOCATION1SERVICE<m>USER<n+1> section containing userID and
executionUserID.

Additional CICS service systems may be added by appending an
INVOCATION1SERVICE<m+1> section and completing it in the same way as described
above.

Adding an IMS system that is reached by CPIC is similar, except that you have to
add CPIC connectionParameters: netid, luname, and mode. Additional IMS service
systems may be added by appending an INVOCATION2SERVICE<m+1> section and
completing it in the same way as described above.

Adding a user-defined invocation type
To add a new invocation type to the PES directory you need to:
1. Copy an existing invocation section including the service and user sections.
2. Increase the running suffix numbers of the invocation for all sub-sections. For

example, if you copied the section (KEYTOINVOCATION5), change it and all
subsequent keys that refer to this new invocation type to (KEYTOINVOCATION6).

3. Then update
(KEYTOINVOCATION6)
type = <your invocation type>
exitName = <your invocation exit dll name>
exitParameters = <parameters needed by your invocation exit>.

4. Add or change the service definitions according to the new invocation section:
(INVOCATION6SERVICE1)
type = <service type>
name = <service name>
connectionParameters = <connection parameters as needed by the new invocation>
user = < ... user section ...>

5. Add or change the user related information as required.

Adding a user-defined mapping type
To add a new mapping type to the PES directory you need to:
1. Copy the last existing mapping section KEYTOMAPPING<m>.
2. Increase the running number of the mapping section, for instance if you copied

(KEYTOMAPPING1), use KEYTOMAPPING2 for all subsequent keys referring to this
new mapping type.

3. Then update
(KEYTOMAPPING2)
type = <your mapping type>
exitName = <your mapping exit dll name>
exitParameters = <parameters needed by your mapping exit>

Importing the PES directory
After changing the PES directory source file you need to import it into the PES
directory runtime database. You do this using the FMCH1PIT tool in the following
way:
1. Customize the JCL CustHLQ.SFMCCNTL(FMCHJPIF)

a. Specify the options the import tool should use. These options are described
in “Appendix B. The PES directory import tool’s syntax and semantics” on
page 175.

b. Specify the input file using the predefined DD-name FMCDIMP.

Administration

Chapter 10. Program execution 109

c. If you want to use a specific log file instead of SYSOUT you must specify a
data set using the predefined DD-name FMCDLOG.

2. Submit the JCL CustHLQ.SFMCCNTL(FMCHJPIF)

Caching the PES directory at runtime
To improve performance, the content of the PES directory may be cached in the
program execution server at runtime. Directory caching is enabled through a
system setting, PESDirectoryInCache, in the configuration profile. If set to 1
caching is enabled. The default is no caching (zero). Both, connection parameters
and user information are cached. The cache is built up dynamically.

For more information about making changes to the configuration profile, see
“Appendix H. Configuration profiles” on page 201.

Refreshing the PES directory cache
The contents of the cache are only updated when program execution server
instances are started. This means that changes made to the PES directory only
become activated after all running program execution server instances are stopped
and restarted. If WLM is managing the PES address spaces, then the PES
application environment must be refreshed.

Administering programs
Program administration consists of the following tasks:
v “Enabling an OS/390 program to be run as a program activity”
v “Enabling an OS/390 program to run as a safe application” on page 111
v “Disabling a program” on page 111
v “Authorizing a user to access an OS/390 program” on page 111
v “Revoking a user’s access to OS/390 programs” on page 112

Enabling an OS/390 program to be run as a program activity
To enable an OS/390 program to run as an MQSeries Workflow program activity
you need to perform the following tasks:
1. “Defining program properties” on page 100
2. “Creating a program mapping”
3. “Defining a security profile” on page 111

Creating a program mapping
If you want to invoke an OS/390 legacy program as an activity, you may have to
create a program mapping. The program mapping transforms between the
different format and data representations that are used by MQSeries Workflow and
the invoked program. For more information about creating a program mapping,
see MQSeries Workflow for z/OS: Programming.

If you have created a program mapping, you will have to activate the mapping in
the process model. This task is described in “Enabling a program’s mapping” on
page 114.

Defining a new program in the process model
You must define the new program in the process model using the MQSeries
Workflow Buildtime program. Then you must import the process model FDL file
into the Workflow database. These tasks are described in the following:
1. “Defining program properties” on page 100

Administration

110 Customization and Administration

2. “Uploading process models to the host” on page 104
3. “Importing and exporting process models” on page 104

Defining a security profile
If you defined the program in Buildtime with the option Security checking=Yes,
then you must define a security profile for service, invocation type, executable and
execution user identification as described in“Program security” on page 118.

Enabling an OS/390 program to run as a safe application
When an IMS or CICS program runs as a safe application, each invocation request
will cause it to be executed once and only once, or not at all. Safe applications are
executed in the same transactional context as the program execution server request
transaction. This uses the OS/390 Resource Recovery Service (RRS).

For a program to run as a safe application, the following conditions must be
satisfied:
1. The program must not issue its own RRS commit and RRS rollback calls.
2. The program must be invoked using a transactional invocation such as EXCI or

CPIC.
3. The PES must be defined as supporting safe mode in the process model – this

is the default setting.
4. The program must be defined as using Execution mode=Safe in the process

model.

This makes the PES call the program in a transactional context using the invocation
type specified in the programs’ external settings definition in the process model.

Disabling a program
You can disable a program by removing its definition from the process model,
exporting the process model as an FDL file, and then importing it into the
Workflow database.

Authorizing a user to access an OS/390 program
If a program has been defined in the process model with Security routine call set
to yes, and Local user set to yes (as shown in Figure 8 on page 101), then every
MQSeries Workflow user ID that is to be able to start the corresponding activity
must be specified in the PES directory, and associated with a valid execution user
ID. You must provide this user resolution information for the service where the
program is executed.

To authorize a user to access an OS/390 program you must do the following:
1. If the program has no security profile, you must create one, as described in

“Program security” on page 118.
2. Authorize the user by giving read access to the security program profile.
3. Update the PES directory entries for the service and the invocation type,

adding the MQSeries Workflow user ID and the corresponding execution
userID, as described in “Adding a new service definition and the related user
resolution information” on page 108.

4. Reload the PES directory as described in “Importing the PES directory” on
page 109.

Administration

Chapter 10. Program execution 111

Revoking a user’s access to OS/390 programs
There are two possible ways to revoke a user’s access to an OS/390 program:
1. By removing their execution user ID’s access to the security profile for the

program.
2. By deleting the user’s ID mapping associated with the service in the PES

directory, then reloading the PES directory.

If you want to revoke a user’s access to all OS/390 services, mappings may exist
for that user’s MQSeries Workflow user ID in several service sections in the PES
directory. You should ensure that all of them are commented out or deleted.

Administering program mapping
The program execution server uses a program mapping exit to transform the
format and representation of parameters in data containers so that it can be
accepted by existing IMS and CICS applications. This allows you to define
MQSeries Workflow processes that invoke legacy applications on the mainframe,
without having to modify the legacy application.

MQSeries Workflow for z/OS offers a mapping type named DEFAULT which can be
used to convert and translate data between legacy applications and MQSeries
Workflow. You can write your own exit to perform this conversion, providing it
conforms to the MQSeries Workflow for z/OS mapping exit interface. Mapping
exits can be used in parallel to the default mapping exit or replace the default
mapping exit. The invocation and reply data can be mapped separately by defining
the interfaces and structure and connect them to each other. You can find more
information about creating a program mapping in MQSeries Workflow for z/OS:
Programming.

After you have created a program’s mapping definitions:
v You must import the mapping definitions into the mapping database as

described in “Importing a program mapping definition”.
v A program mapping in the mapping database only becomes active after the

mapping has been enabled as described in “Enabling a program’s mapping” on
page 114.

Importing a program mapping definition
After you have created a program mapping definition you must import it into the
mapping database. If the corresponding program mapping definition already
exists, and is already active, importing new definitions will immediately affect this
mapping. If you have modified mapping definitions in the mapping database, you
must restart the PES, as described in “Restarting the program execution server” on
page 92.

Administration

112 Customization and Administration

To import a new program mapping definition, or to update an existing mapping
definition you must do the following:
1. Create the program mapping definitions as described in MQSeries Workflow for

z/OS: Programming.
2. Customize a copy of CustHLQ.SFMCCNTL(FMCHJMPR), so that the first DD FMCIN

uses the new mapping definitions. FMCHJMPR contains statements similar to this:
/**
//*
//* Description:
//* Invoke the default program mapper parser and import tool
//*
//**
//*
//PROCLIB JCLLIB ORDER=(CustHLQ.SFMCPROC)
//*
//* Invoke Program Mapping Parser
//*
//FMCRMPRS EXEC PROC=FMCHPBAT,PROGRAM=FMCH1XMP,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/'
//**** Mapping Definitions
//FMCIN DD DSN=CustHLQ.SFMCDATA(FMCHEMDL),DISP=SHR
//**** Work File
//FMCOUT DD DSN=&&BIN,DISP=(NEW,PASS),
// DCB=(RECFM=U,BLKSIZE=6144,LRECL=0),
// SPACE=(CYL,(2,2))
//**** Listing
//FMCLST DD SYSOUT=*
//*

Figure 11. Program mapping definition process and components

Administration

Chapter 10. Program execution 113

//* Invoke Program Mapping Import Tool
//*
//FMCRMUTL EXEC PROC=FMCHPBAT,PROGRAM=FMCH1XMU,COND=(8,LE),
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/'
//**** Work File
//FMCIN DD DSN=*.FMCRMPRS.FMCHPBAT.FMCOUT,DISP=(SHR,DELETE)
//**** Program Mapping Import Tool Control Statements
//FMCCTL DD DSN=CustHLQ.SFMCDATA(FMCHEMCT),DISP=SHR
//**** Listing
//FMCLST DD SYSOUT=*
//*

3. Customize a copy of CustHLQ.SFMCDATA(SFMCEMCT) which contains the control
statements for the utility so that the parsed mapping definitions are created.
Update DD FMCCTL to use the new control statements.

4. Run your copy of FMCHJMPR.

Note: You may find it helpful to view the sample mapping definition
CustHLQ.SFMCDATA(FMCHEMDL) and the sample control statements
CustHLQ.SFMCDATA(FMCHEMCT).

Return codes
The program mapping parser and import tool can return the following return
codes:

Table 68. Program mapping parser and import tool’s return codes

Value Description
Effect of modifications to the database

(import tool only)

0 Successful execution Any database modifications have been
completed.4 Warning

12 Error The import tool has made a rollback of the
transaction. The database remains
unchanged.16 Severe error

Enabling a program’s mapping
To make a program mapping active, you must modify the process model
definition, turning the mapping on and specifying the necessary mapping names
and parameters:
1. Enable the mapping in the process model using Buildtime:

a. Locate (or create) the program properties definition for the program that
requires the program mapping, then set the following properties as
described in “Defining program properties” on page 100:
1) Mapping routine call = yes

2) Mapping type = DEFAULT

3) Forward mapping format = name of the forward mapping definition
4) Backward mapping format = name of the backward mapping definition
5) If the mapping uses user-types that require mapping parameters, they

should be specified in the fields Forward mapping parameters and
Backward mapping parameters.

2. Upload the new process model to the host, as described in “Uploading process
models to the host” on page 104.

3. Import the process model on the host, as described in “Using the FDL
import/export tool” on page 104.

Administration

114 Customization and Administration

4. If mapping definitions were modified, then restart the PES as described in
“Restarting the program execution server” on page 92.

Disabling a program’s mapping
A program mapping can be disabled by doing the following:
v Disable the program mapping in the process model using Buildtime by doing

the following:
1. Set Mapping routine call = no in Figure 8 on page 101.
2. Upload the new process model to the host, as described in “Uploading

process models to the host” on page 104.
3. Import the process model on the host, as described in “Using the FDL

import/export tool” on page 104.

Deleting a program mapping definition
When program mappings have been disabled, the corresponding definitions should
also be deleted from the program mapping database. To delete program mapping
definitions, you must do the following:
1. Create a member for the program mapping import tool which contains delete

statements for the program mapping definitions which should be deleted. For
more information, see “Appendix C. Program mapping import tool syntax” on
page 177.

2. Customize a copy of CustHLQ.SFMCCNTL(FMCHJMPR) so that the member created
in step 1 is used in the FMCCTL DD-statement.

3. Submit your copy of FMCJMPR.

Note: The program mapping import tool checks whether the program mappings
which should be deleted are no longer referenced anywhere in other
program mapping definitions. If they are still used the deletion will fail.

Enabling a mapping type
To activate a new program mapping type, you must perform the following steps:
1. Create a mapping exit DLL as described in MQSeries Workflow for z/OS:

Programming.
2. Provide the mapping exit DLL to MQSeries Workflow for z/OS. Either copy the

DLL into the data set CustHLQ.SFMCLOAD, or concatenate the data set name,
where the mapping exit DLL is stored, to SFMCLOAD.

3. Define the new mapping exit in the PES directory. Replicate the entry called
(KEYTOMAPPING1) in the PES directory template, choose the next free number
(for example KEYTOMAPPING2) and choose a new type name other than DEFAULT,
insert the correct exit name (DLL name) and optionally provide exit
initialization parameters (exit parameters). Definitions needed for sample
mapping exit (See CustHLQ.SFMCSRC(FMCHSMEX)):
(KEYTOMAPPING2)
type =SAMPLE
exitName =SAMPEXT
exitParameters =LONG=L FLOAT=F

4. Import the new PES directory definitions as described in “Importing the PES
directory” on page 109.

5. Enter the new mapping type name in the process model definition of the
OS/390 program. Replacing the default mapping type DEFAULT as shown in
Figure 8 on page 101.

Administration

Chapter 10. Program execution 115

6. Import the new process model into the Workflow database as described in
“Importing and exporting process models” on page 104.

Disabling a mapping type
To deactivate a program mapping type:
1. Delete all references to the mapping type from all OS/390 program properties,

as shown in Figure 8 on page 101.
2. Import the changes, as described in “Importing and exporting process models”

on page 104.
3. Delete the mapping type from the PES directory.
4. Import the new PES directory definitions as described in “Importing the PES

directory” on page 109.

Administering invocation types
If you have defined an invocation type in the PES directory, and in the process
model, you can then enable the invocation type.

Enabling an invocation type
In order to make a new invocation type and its corresponding exit known to
MQSeries Workflow for z/OS the following steps are necessary:
1. The invocation type must be defined in the PES directory as described in

“Adding a user-defined invocation type” on page 109.
2. The invocation exit DLL for MQSeries Workflow for z/OS must be copied into

InstHLQ.SMFCLOAD, or the data set containing that DLL must be concatenated to
the DD statement FMCSVLIB in the JCL procedure CustHLQ.SFMCPROC
(FMCHPSRV).

3. The service and its connection parameters must be defined in the PES directory
as described in “Adding a new service definition and the related user
resolution information” on page 108.

Note: If there is more then one asynchronous invocation exit recognizing the same
kind of reply messages, it is unpredictable which of the exits will handle a
reply message.

Disabling an invocation type
To disable an invocation type you should do the following:
1. Delete all references to the invocation type from all OS/390 program properties,

as shown in Figure 8 on page 101.
2. Import the changes, as described in “Importing and exporting process models”

on page 104.
3. Delete the invocation type from the PES directory.
4. Import the new PES directory definitions as described in “Importing the PES

directory” on page 109.

Program execution security
The program execution server accepts requests for program invocations from
MQSeries Workflow users on different operating system platforms. The programs
may be defined with additional security checking.

Administration

116 Customization and Administration

The program to be invoked can either be run using the ServerUserID or the user ID
of the request starter. This is determined by the program property Execution user
that is shown in Figure 7 on page 100.
1. Execution user=Agent causes the program to be run using the ServerUserID.
2. Execution user=Starter causes the program to be run using the user ID request

starter. In this case Local user=Yes is required; this is set on the Figure 8 on
page 101. The MQSeries WorkflowID of the request starter must be resolved to
a local execution user ID under which the program will be run.

Note: If Local user is set to no, runtime error FMC32203 (Local user ID is
required to execute program) will be generated.

The program property Security checking=Yes/No determines whether a security
check is to be performed for requests before they are executed. You must set this
property in Figure 8 on page 101.

The following combinations of settings are meaningful:

Table 69. Meaningful security setting combinations in Buildtime

Buildtime settings

How the PES handles an invocation requestPES property:
User support

program property:
Execution user

Program Starter

In this case Local user=Yes is mandatory, which means that the PES uses
the starter’s MQSeries Workflow user ID in the PES directory to obtain the
execution user ID that the program should be run using.

If Security checking=Yes then a security check will be performed on the
execution user ID.

If the security check is passed successfully (or if Security checking=No)
then the program will be invoked using the request starter’s execution user
ID.

Program Agent

If Security checking=Yes then a security check will be performed on the
ServerUserID.

If the security check is passed successfully (or if Security checking=No)
then the program will be invoked using the ServerUserID.

The setting of Local user has no effect.

Administration

Chapter 10. Program execution 117

Information in the PES directory that is relevant to security
The program execution server directory is where user ID mappings are defined.

If you have set the program properties Execution user=Starter and Local user=Yes
as described in point 2 on page 117 above, then the MQSeries Workflow ID of the
user who caused the invocation request must be mapped to an execution user ID
under which the program will be run. This mapping is defined in the service
subsection of the PES directory, as described in “Adding a new service definition
and the related user resolution information” on page 108.

Program security
If a program is defined with Security checking=Yes, then it must have a security
profile defined for the executable. The Workflow resource profile name is
constructed from four qualifiers:MQWFSystemPrefix.service.invocationtype.executable,
for example, FMC.IMSCPIC.CPIC.FMCH3IMT. Where service, invocationtype, and
executable are the values that are defined in the program properties screen that is
shown in Figure 8 on page 101.

The security profiles belong to the resource class FACILITY. They must be defined
using a command like:
RDEFINE FACILITY workflow_resource_profile UACC(NONE)

where the resource profile name workflow_resource_profile is constructed from four
qualifiers MQWFSystemPrefix.service.invocationtype.executable.

The installation can then use the PERMIT command to authorize users or groups to
execute programs described by the resource profile. Generic resource profiles can
be used in order to authorize the execution of a group of programs instead of
individual programs.

All user IDs that are to be able to invoke the service must be given read access to
the program’s profile. A program defined with Local user=No will be executed
under the ServerUserID. In this case the ServerUserID must be given read access to
the program’s profile. If Local user=Yes then the program will be executed under
the execution user ID defined in the PES directory.

Administration

118 Customization and Administration

Chapter 11. Administering Servlets on the WebSphere
Application Server

You can add a Java Servelet to the WebSphere Application Server for OS/390 that
will call the Java-API of MQSeries Workflow. This allows users to invoke MQSeries
Workflow actions from their Internet Web browser. It is required that you have
performed “Customize Java-API support” on page 36.

WebSphere Application Server includes the Application Server Manager, a
graphical interface that makes it easy to perform servlet management tasks, for
example, setting options for loading local and remote servlets, setting initialization
parameters, specifying servlet aliases, creating servlet chains and filters, monitoring
resources used by the Application Server, and monitoring loaded servlets and
active servlet sessions.

For administering Servlets for MQSeries Workflow the following three steps need
to be done:
1. “Placing servlet class files on the Application Server”.
2. “Placing the HTML files on the Application Server” on page 120.
3. “Running a sample servlet, to log on MQSeries Workflow” on page 120.

Placing servlet class files on the Application Server
To make a compiled servlet or servlet-package available via the WebSphere
Application Server, you only need to copy your compiled servlet class files to a
servlet directory under the Application Server’s root directory that is declared in
the classpath.

By default, the Application Server looks for servlet class files in the directory
applicationserver_root/servlets where applicationserver_root is the
Application Server’s root directory. It is also possible to specify a different servlet
directory where your compiled servlet class files will be stored.

If necessary, create a new servlet sub-directory
You can create a new servlet directory and add it to WebSphere’s classpath be
performing the following:
1. Create the sub-directory under applicationserver_root/servlets

2. Add the directory to the WebSphere classpath variable:
a. Open the WebSphere Application Server Manager at

http://your.server.name:9090/.
b. Log in.
c. In the list of Services, double-click the instance of the Application Server

you want to manage.
d. On the next page, select the Setup button.
e. Click on Basic.
f. Add the new directory to the classpath.
g. Save it.

© Copyright IBM Corp. 1998, 2001 119

Monitoring your servlet, or setting servlet initialization
parameters

If you want to monitor your servlet, or set servlet initialization parameters, use the
Application Server Manager as follows:
1. Open the WebSphere Application Server Manager at

http://your.server.name:9090/.
2. Log in.
3. In the list of Services, double-click the instance of the Application Server you

want to manage.
4. On the next page, select the Servlets button.
5. If the servlet is not already listed in the Servlets tree-view, select the Add

option.

Placing the HTML files on the Application Server
To place the HTML files on the Application Server:
1. Copy the HTML files for the servlet to a sub-directory of the Web server’s

HTML document root directory, for example, in
server_root/HTML_directory/morefiles.

2. Check the pass rules in the file /etc/httpd.conf.

Then, for example, if you copied the file myhtml.html to
server_root/HTML_directory/morefiles, the following URL will access the file:
http://your.server.name/morefiles/myhtml.html

Running a sample servlet, to log on MQSeries Workflow
You can verify that the servlets work by performing the following test:
1. Start the MQSeries Workflow System.
2. Add the following DD statements for the user and configuration profiles to

your WebServer’s started task:
//FMCHEUPR DD DISP=SHR,DSN=CustHLQ.SystemGroup.System.SFMCDATA(FMCHEUPR)
//FMCHEMPR DD DISP=SHR,DSN=CustHLQ.SystemGroup.System.SFMCDATA(FMCHEMPR)

using your values for CustHLQ, SystemGroup, and System from “Installation
scope identifiers” on page 9, “System group scope identifiers” on page 10, and
“System scope identifiers” on page 11 respectively.

If a RACF profile exist for these data sets, add the user ID of your WebServer,
for example, WEBSRV, to this profile. This user ID needs read access to both
profiles.

3. Add the following environment setting to /etc/httpd.envvars

_ICONV_UCS2_PREFIX=SYS1
LC_ALL=En_US.IBM-1047
FMC_SIMPLE_TRACE_ONLY=YES
FMC_CURRENT_CONFIG=<MQWFConfigurationKey>
FMC_DEFAULT_CONFIGURATION=<MQWFConfigurationKey>
FMC_ELAPSED_TIME=YES
FMC_IENV=1

4. If you have not already performed the servlet option in step 1.2 of “Customize
Java-API support” on page 36, then you should perform steps 1 and 2 again.

Administration

120 Customization and Administration

This copies the HelloServlet.html, HelloServlet.java, and
HelloServlet.class files to the required Java directories.

5. Edit HelloServlet.html in the <HFSHTML> directory to match your installation –
especially the URL.

6. Add the MQSeries Workflow Java agent fmcojagt.jar to the WebServer’s
classpath, add the directory where the external links to fmcojprf and fmcojloc
are defined to WebServers libpath:
a. Open the WebSphere Application Server Manager at

http://your.server.name:9090/.
b. Log in.
c. In the list of Services, double-click the instance of the Application Server

you want to manage.
d. On the next page, select the Setup button.
e. Click on Basic.
f. Add fmcojagt.jar to the classpath

g. Save it.

Remember that after changing the WebServer’s libpath and classpath it is
necessary to restart the WebServer.

7. Start the WebServer.
8. Call the HelloServlet.html. If HelloServlet is placed to sub-directory workflow

and you use port 8000, call it in the following way:
http://your.server.name:8000/workflow/HelloServlet.html

9. To log on, enter values for system group, system, userid, and password on the
panel.

Administration

Chapter 11. Administering Servlets on the WebSphere Application Server 121

Administration

122 Customization and Administration

Chapter 12. Performance tuning

You can tune the performance of your MQSeries Workflow for z/OS system in the
following ways:
v “Changing the number of running server instances”
v “Changing the number of server instances per address space”
v “Using the OS/390 Link Pack Area for MQSeries Workflow load libraries” on

page 124
v “Caching the PES directory” on page 124
v “Tuning DB2” on page 124

Note: Some other performance issues are covered in “Response times are
unacceptably long” on page 131.

Changing the number of running server instances
The number of instances of each server type that are started when you start the
system is specified in the process model. By default, the execution server is started
with two instances, and the PES is started with five instances.

You can start additional servers using the administration server commands, as
described in “Starting servers” on page 91. You should avoid having too many as
this may cause the servers to terminate abnormally.

Changing the number of server instances per address space
The maximum number of instances for each server type that can be started in one
address space is defined in the configuration profile, see “Appendix H.
Configuration profiles” on page 201.

This only applies to the multiple instance servers when they are not managed by
WLM. To change the number of instances of WLM managed servers, you must
change the value of the start parameter SRVNO, shown in Figure 24 on page 161.

For the non-WLM managed, multiple server types:
v The number of Execution server instances started per address space is set with

the variable ExeSvrsPerAS. The initial value is two.
v The number of Program execution server instances started per address space is

set with the variable PESvrsPerAS. The initial value is five.

This means that starting six program execution servers will start two address
spaces. The optimum number of server instances that can run in one address space
depends on your hardware and configuration.

By default, the maximum number of servers that can be started in one address
space is limited by the server start job to eight. If you set the number of server
instances per address space (see ExeSvrsPerAS and PESvrsPerAS in “Server
configuration profile” on page 201), to a number greater than eight, a dump will be
written if you attempt to start more than eight instances. If you want to allow
more than eight execution or program execution server instances per address

© Copyright IBM Corp. 1998, 2001 123

space, you must add more DD statements to the Workflow server start job as
described in step 4 of “Workflow server customization” on page 33.

Caching the PES directory
By default, program execution server instances do not cache the contents of the
PES directory, but you may wish to enable PES caching to improve performance.
When caching is enabled, changes made to the PES directory may require a PES
restart to force a refresh of the cache. For more information about this option, see
“Caching the PES directory at runtime” on page 110.

Using the OS/390 Link Pack Area for MQSeries Workflow load libraries
When your installation is running with a large number of workflow servers, you
should consider adding the MQSeries Workflow load libraries to the Link Pack
Area (LPA) library concatenation., in order to reduce the overall storage
consumption of the servers. In this case, you must add all libraries listed in the
server JCL procedure’s STEPLIB and FMCSVLIB DD names, and remove the libraries
from the server JCL procedure. In this case, however, it is not possible to run two
or more different service levels of MQSeries Workflow concurrently because the
LPA library concatenation is a shared resource.

Tuning DB2
During configuration rebindings using initial data, it is possible that DB2 has
chosen not to use all indices provided. After the database has reached a typical
population level, it is recommended that you optimize the access paths:
1. Execute DB2 RUNSTATS by running the JCL CustHLQ.SFMCCNTL(FMCHJRST)

2. Rebind the Workflow packages by running the
JCL CustHLQ.SFMCCNTL(FMCHJBDB)

Note: rc=4 can be ignored for both steps.

Administration

124 Customization and Administration

Chapter 13. Problem determination

This chapter describes how you can solve various problem situations involving
MQSeries Workflow for z/OS:
1. If you have problems with servers or undelivered messages (on hold queues),

see “Server problems” on page 126.
2. If you have problems with resources or performance, see:

a. “Resource and performance problems” on page 131
b. “Chapter 12. Performance tuning” on page 123

3. If you got an SVC dump, see “Using IPCS to analyze extended trace or dump
output” on page 137.

4. If you have problems with WLM, see “Chapter 16. WLM problem
determination” on page 167.

5. If none of the previous solutions apply, you may decide to use one of the
following:
a. “Simple trace” on page 133
b. “Extended trace” on page 133
c. “Simple tracing in IBM WebSphere Application Server” on page 142
d. “Tracing in CICS” on page 142

Where to find information
The administration server is the focal point for error management within an
MQSeries Workflow system. All errors and failures reported to the administration
server are recorded in an error log, which can be found in the error dataset
FMCERR01 of the administration server job output. Another important concept of
error reporting are exceptions. Exceptions are internal error events created by one
of the components in an MQSeries Workflow system. Exceptions are mainly raised
by the servers, the database layer, the message layer or by the kernel. These
exceptions are also reported to the administration server and are recorded in the
error log. Error logging begins when the administration server is started and ends
when the administration server is shut down. It cannot be switched off.

In addition, each server instance documents errors which can not be reported to
the administration server in its own error dataset. Therefore the error log contains
error reports from other servers, error messages from the administration server and
error information from the administration server concerning its role as server
instance.

For each server instance the following error information is written to the error
dataset:
v Exceptions during server initialization (they lead to an immediate shut down of

the server.)
v Compact error reports, these are error reports which could not be delivered to

the administration server, for an example, see “Compact error reports” on
page 218.

v Other error notifications.

© Copyright IBM Corp. 1998, 2001 125

In addition, the error log of the administration server contains the following error
information:
v Error reports from other servers.
v Error messages from the administration server.

Error log
The error log provides further information that can be used for problem
determination. Error reports are written to the error log whenever a component
within an MQSeries Workflow system encounters a problem that severely affects
its operation or causes it to fail. An error report consist of a system log record and
an error log record. The layout is explained in “Appendix L. Error reporting” on
page 217.

If an error can not be reported to the administration server, a compact error report
is written to the error data set FMCERRxx of the server instance concerned.

Data sets of the job output
Several data sets of the job output contain information that may help you solve
some problems.

Table 70. Job output data sets

Data set Contents/Action

FMCOUT00 Server address space startup information.

FMCOUTxx The in-flight information for server instance number xx.
Note: For single instance servers xx=01

FMCERRxx Server error information, compact error reports, and error notifications
such as protection exceptions. For the administration server, this may
also contain error reports and error messages.

FMCTRCxx Trace information.

CEEDUMP Dump information created by Language Environment. Look at upper
part showing the call stack.

FMCDMPxx Dump information for each server instance xx. It has the same
contents as CEEDUMP, but the dump was initiated by the MQSeries
Workflow server itself.

Server problems

Message catalog not available
The following message is displayed on the console:
'+Message string not found'

This can be caused if the message catalog is old, not available, deleted, or
corrupted. It is possible that the message with the specified ID is empty or that the
message doesn’t exist at all. This situation can occur, for example, if you are using
an old message file that does not include new messages.

This problem may also occur when the OS/390 MVS Message Services (MMS)
message file is not properly installed.

Administration

126 Customization and Administration

Problem starting servers
Problems starting the administration server and program execution server are
described in “The administration server cannot be started” on page 128, and “The
program execution server cannot be started” on page 128.

Server terminates immediately
If a server, other than the administration server, terminates immediately after being
started, this can be caused if MQSeries cannot connect any more servers to a
queue. MQSeries limits the maximum number of servers that can be running
concurrently, and be connected to the same queue manager. This number depends
on the maximum number of concurrent DB2 connections defined in ZPARM, and the
maximum number of channels XPARM. Increase these values if necessary.

All but one server instances terminates immediately after
starting
This happens if you try to start more than one instance of a single-instance server
type.

An arbitrary number of server instances terminates immediately
after starting
This happens if you try to start more than one instance of a multiple instance
server type, and there is insufficient virtual storage for all server instances in one
server address space.

An unexpected number of server instances start

Did you wait long enough?: Starting each server instance takes some time. Issue
the display command from time-to-time to check on the progress as the server
instances are started:
MODIFY AdminServerID,DISPLAY

Is it managed by WLM?: If the server is managed by WLM, this is not a problem,
WLM will start instances as soon as some work arrives. You can find out whether
it is being managed by WLM by issuing the following command:
D WLM, APPLENV=ApplicationEnvironmentName

where ApplicationEnvironmentName is the name of the server’s application
environment.

A dump is written before all server instances are started

No server instances started: This can be caused if the message catalog is not
available. Verify that the language code xxx specified in the configuration profile is
correct (see “Appendix H. Configuration profiles” on page 201), and that FMCHMxxx
and MMSLSTxx were created correctly during “Create the MMS message catalogs” on
page 19.

Have you exceeded the limit set in the server start job?: By default, the
maximum number of servers that can be started in one address space is limited by
the server start job to eight. If you set the number of server instances per address
space to a number greater than eight (see ExeSvrsPerAS and PESvrsPerAS in “Server
configuration profile” on page 201), a dump will be written if you attempt to start
more than eight instances. If you want to allow more than eight execution or
program execution server instances per address space, you must add more DD
statements to the Workflow server start job as described in step 4 of “Workflow
server customization” on page 33.

Administration

Chapter 13. Problem determination 127

Is the maximum number of server instances per address space too high?: If you
get a dump before the specified number of server instances have started the server
instances required more memory than the address space offers. You should reduce
the value for the number of server instances started per address space (see
ExeSvrsPerAS and PESvrsPerAS in “Server configuration profile” on page 201). This
is described in “Changing the number of server instances per address space” on
page 123.

The administration server cannot be started

Is the queue manager started?
The administration server requires that the queue manager is running. If the queue
manager terminates, the administration server will terminate as well.

Is the database subsystem started?
The administration server requires that the DB2 subsystem is running.

Is an administration server already running?
It is not possible to start an administration server on a Workflow system where
there is already one running. Issue the display command to check if an
administration server is already running.
MODIFY AdminServerID,DISPLAY ADM RUNINSTANCE

Are its queues inhibited?
The administration server requires three MQSeries alias queues to be operational
otherwise it cannot be started. These queues are:
v Boot request queueBOOT.REQUEST

v Administration client queueADC

v Administration input queueADM

The administration server will terminate if these queues are in the state
PUT_INHIBITED or GET_INHIBITED. Check the status of these queues, and enable
them if necessary. If the simple trace is activated, these improper queue states will
be recorded in the trace. These will show up as MQSeries reason codes
MQRC_PUT_INHIBITED or MQRC_GET_INHIBITED.

The administration server does not respond to console
commands

This may happen if you issue commands before the server indicates that it is
ready. Wait for this indication, and then try again.

The program execution server cannot be started

Is the administration server running?
If the administration server terminates, normally or abnormally, while PES
instances are booting, the PES address spaces will normally terminate. If the
administration server is started within a short time, the PES instances will continue
to boot.

Are its queues inhibited?
The PES requires five MQSeries alias queues to be operational, otherwise it cannot
be started. These queues are:
v Boot request queueBOOT.REQUEST

v Boot reply queueBOOT.REPLY

v PES input queuePES.PESERVER

Administration

128 Customization and Administration

v Working queuesPES.PESERVER.COR andPES.PESERVER.RPL

The PES will terminate if these queues are in the state PUT_INHIBITED or
GET_INHIBITED. Check the status of these queues, and enable them if necessary. If
the simple trace is activated, these improper queue states will be recorded in the
trace. These will show up as MQSeries reason codes MQRC_PUT_INHIBITED or
MQRC_GET_INHIBITED.

Server instances terminate

All server instances in an address space terminate
Unexpected server termination can be caused by an MQSeries or DB2 problem.
Turn tracing on, as described in “The MQSeries Workflow for z/OS system trace
facility” on page 133, and reproduce the problem. Search the trace for the last line
that contains the keyword THROW. The reason code there will identify the cause of
the termination.

One or more program execution server instances terminate, the
activity goes in state error
If the error code is FMC_ERROR_RETRY_LIMIT_REACHED, then during asynchronous
request processing, the PES correlation queue, ...PES.PESERVER.COR, or the PES
reply queue, ... PES.PESERVER.RPL, could not be accessed. Try checking the state
of both queues and then restart the request.

Are the server instances managed by WLM?
If the server instances are managed by WLM, then this is not a problem. It is
normal for WLM to start and stop server instances according to the actual
workload in the system.

Program activity stays in the state ’running’
The request could not be processed for one of the following reasons:
v While processing an asynchronous reply the PES did not find correlation data

belonging to this reply. This could be caused by one of the following:
– An inconsistent state of the correlation queue, for example, if the queue has

eventually been emptied.
– An invocation type that returns more than one reply for the same request.
– A message that is unknown to the program execution server.

An internal error notification has been sent to the administration server and
written to its error log. The notification contains the MQSeries message
descriptor to identify the source of the message.

v While processing an asynchronous reply the specified invocation exit was not
able to uniquely identify the reply. This could be caused by a programming
error in the exits’ Recogn() interface. An internal error notification has been sent
to the administration server and written to its error log. Try to correct the
Recogn() interface and then restart the request.

Cannot stop servers
For servers that are not managed by WLM, the stop server command works by
disabling the server input queue for a given length of time, and then re-enabling
the queue as soon as all the server instances have stopped, or after the queue
disable period. When a server completes its current transaction, it will check its
input queue. If the input queue is disabled, the server will shut itself down.

Administration

Chapter 13. Problem determination 129

For servers that are managed by WLM, see “Chapter 16. WLM problem
determination” on page 167.

Did you wait long enough?
1. Issue the stop server command.
2. Wait at least 30 seconds, this is the initial queue disable period.
3. Issue the display command to check how many server instances are running.
4. If there are still some instances running, you can try repeating from step 1

again.
5. If this does not work, use CANCEL. Any transactions being performed by server

instances in the cancelled address space will be rolled back.

Do your transactions take longer than 30 seconds?
If a server’s current transaction takes longer than the queue disable time (initially
30 seconds), it is possible that the server never finds the queue disabled, and so
does not shut down. Simply repeating the stop server command may work.

If this problem persists, you can try increasing the value for the
WaitBetweenQInhibitAndAllowed setting in the configuration profile
CustHLQ.SFMCDATA(FMCHEMPR), see “Appendix H. Configuration profiles” on
page 201 for more information. After changing the configuration profile you must
perform“Restarting the administration server” on page 93.

PES cannot be stopped
The following program execution server characteristics may affect attempts to stop
it:
v The PES cannot be stopped within five minutes of it being started.
v While handling a synchronous invocation, the PES is blocked for the duration of

the transaction. Check your service system.

Changes made to the configuration profile are not activated

Have you restarted your servers?
Changes to the configuration profile will only become active servers have been
restarted. All existing server instances will continue to use the old configuration
profile settings. All new server instances will use the new configuration profile
settings.

If you do not want any servers to continue using the old configuration profile, you
must also restart the whole MQSeries Workflow for z/OS system.

Changes made to the PES directory are not activated

Is PES directory caching enabled?
If PES directory caching is enabled in the configuration profile, changes to the PES
directory will only take effect after the cache is refreshed. This is done by stopping
and restarting all program execution server instances, as described in “Restarting
the program execution server” on page 92.

Administration

130 Customization and Administration

Changes made to the program mapping definition are not
activated

Have you restarted the program execution server?
Changes to a program mapping in the program mapping database may require a
PES restart, as described in “Restarting the program execution server” on page 92.

Hold queue problems (undelivered messages)
While administering undelivered messages (as described in “Hold queue
commands” on page 94), the following problems may occur:

DELETE or REPLAY affected fewer messages than expected
A message cannot be removed from the hold queue if it has not been displayed
first.

DELETE or REPLAY affected the wrong messages
If you issued the DELETE command while a REPLAY command was being processed,
messages other than those you wanted to delete may have been removed. This is
because the execution of the DELETE command can interfere with the execution of
the REPLAY command. Avoid this situation by making sure that the REPLAY
command has finished before issuing a DELETE command.

The hold queue contains fewer messages than expected
This situation can arise if someone has manipulated the hold queue using
commands other than those that are supported by the administration server, for
example, using MQSeries queue handling commands.

Resource and performance problems

Response times are unacceptably long
Performance problems may be caused by one or more of the following:

Is tracing turned on?
Operation is significantly slower when tracing is active. Turning tracing off is
described in 4 on page 135.

Are enough server instances running?
It is possible that there are not enough server instances to cope with the workload.

For the PES, this can happen because a PES instance is blocked while it processes a
request that is synchronous. So having a high request rate, or having requests that
cannot be completed quickly may require that you start more server instances. You
can start additional execution server instances, see “Starting servers” on page 91.

Are too many server instances running?
In this case restart fewer servers instances, as described in “Restarting servers” on
page 92.

Is the DB2 response time too long?
During configuration rebindings using initial data, it is possible that DB2 has
chosen not to use all indices provided. After the database has reached a typical
population level, it is recommended that you optimize the access paths:
1. Execute DB2 RUNSTATS by running the JCL CustHLQ.SFMCCNTL(FMCHJRST)

2. Rebind the Workflow packages by running the
JCL CustHLQ.SFMCCNTL(FMCHJBDB)

Administration

Chapter 13. Problem determination 131

Note: rc=4 can be ignored for both steps.

Does the workload exceed your system’s capacity?
If you have eliminated the above possibilities, it may be that the workload exceeds
your system’s capacity.

Invalid password

Are you using an old version of the runtime client?
This can happen when an old runtime client tries to connect to a newer
administration server. You should install the latest MQSeries Workflow runtime
client.

Running out of spool space

Is tracing turned on?
This problem can be caused by the trace facility. You should consider the
following:
1. Check which servers have been started with trace turned on. Trace entries are

written even when the servers are idle.
2. Reduce the trace level and restart the server type that was being traced.
3. If you need to write trace entries and do not want to write them synchronously

to spool data sets, use the extended trace described in “The MQSeries
Workflow for z/OS system trace facility” on page 133.

Administration

132 Customization and Administration

The MQSeries Workflow for z/OS system trace facility
Trace is used to diagnose reproducible problems by recording which statements
and instructions are executed by the MQSeries Workflow for z/OS system in the
sequence in which they occur. The trace facility records system events in in-storage
buffers and data sets.

The system trace facility of MQSeries Workflow provides different trace modes for
recording system events. Depending on the trace mode of the MQ Workflow
component, the trace records are written to different places. This section describes
which trace modes are available, how the different trace modes work, and how
you can enable them.

The trace facility provides two types of tracing:
v “Simple trace”
v “Extended trace”

Simple trace
Simple trace writes all trace entries directly to the data set, allocated as SYSOUT in
the server JCL procedure PROCLIB(UniqueSystemKey). Because simple trace creates
synchronous input/output overheads, it is normally recommended to use the
extended trace.

To use the simple trace, you must perform the following steps:
1. Edit the server configuration file CustHLQ.SFMCDATA(FMCHEMPR):

a. To select simple tracing, set the value:
FMC_SIMPLE_TRACE_ONLY=YES

b. To get the maximum information, set the trace level to 3:
Configuration.MQWFSystemPrefix.FMC_TRACE_CRITERIA:3,FFFF,FFFFFFFF

Note: Trace level 3 significantly reduces the performance of the system, and
requires a large quantity of disk space. Trace level 0, gives just the
most important information, and levels 2 and 1 provide intermediate
details.

Now any servers or tools that you start will produce the trace information you
specified.

2. Restart the server (or tool) that is causing the problem.
3. Reproduce the problem.
4. Turn the tracing level to zero, by editing the server configuration file

CustHLQ.SFMCDATA(FMCHEMPR), and setting
Configuration.MQWFSystemPrefix.FMC_TRACE_CRITERIA:0,0000,00000000

5. Stop or restart the server that was being traced.
6. The results of the simple trace is in the SYSOUT data sets of the started job.

a. The DD statement for tools is FMCTRC00.
b. The DD statements for servers are FMCTRC01, FMCTRC02,

Extended trace
Extended trace is recommended because it does not create any synchronous
input/output overhead. Extended trace is only available for servers. If you want to
trace any tools, you must use the simple trace. How the extended trace works is
illustrated in Figure 12 on page 137.

Administration

Chapter 13. Problem determination 133

The MQSeries Workflow system provides multiple memory buffers. Each MQ
Workflow server that has the trace facility enabled writes its trace records to these
memory buffers. You can optionally externalize the memory buffers so that the
buffer information is written to the input queue of the external trace writer. The
external trace writer then writes the content of the queue to trace data sets.

The external trace writer always writes complete buffer information to a trace file
in wrap-around mode. Wrap-around mode means that the external trace writer
writes the buffer information to the specified trace file (also called output file) until
it is full, then it switches to the next trace file. When the last trace file is full, the
external trace writer starts writing to the first trace file again.

If you do not want to lose the content of a buffer during tracing, you can request
to write the content of a memory buffer to an MQSeries queue before the system
trace switches to the next buffer. This function is called externalization. To enable
the externalization, you must perform the following steps:
v Start the external trace writer
v Setting the variable FMC_EXTERNALIZE_TRACE_BUFFERS=YES

The MQ Workflow Server writes trace entries to its internal trace buffers. If the
externalization of memory buffers is enabled, the MQ Workflow Server writes the
trace buffer information to the input queue of the external trace writer. The MQ
Workflow server does this every time its internal trace buffer is full.

Then, the external trace writer takes the trace buffer information from the input
queue and writes it to the trace data sets. For details about the trace variables,
refer to “MQSeries Workflow trace variables” on page 139.

The name of the external writer’s input queue is defined during the system
configuration. The file names, the number, and the size of the external writer’s
output files can be specified by setting the appropriate environment variables.

In case of a server failure, the buffer information is written to the dump data sets,
even if externalization is not switched on.

Performing an extended trace
Performing an extended trace is illustrated in Figure 12 on page 137, it requires the
following actions:
1. Edit the trace variables in the server configuration file

CustHLQ.SFMCDATA(FMCHEMPR). For more information about the trace variables,
see “MQSeries Workflow trace variables” on page 139.
a. If you want to change the size of the trace buffers in each server, change the

following variable, for example:
FMC_TRACE_BUFFER_SIZE=256

where the buffer size is in KB. Changes to this variables only take effect
when a server is restarted.

b. If you want to change the trace file size used by the trace writer, change the
following variable, for example:
FMC_TRACE_FILE_SIZE=5

where the file size is in MB. The value specified here must not be larger
than the size of the files specified in the external writer procedure (see the
DD statements DD:TRCOUT01, ...02, ...03). Changes to this variable only
take effect when the trace writer is restarted.

Administration

134 Customization and Administration

c. To select extended tracing, set the value:
FMC_SIMPLE_TRACE_ONLY=NO

d. To get the maximum information, set the trace level to 3:
Configuration.MQWFSystemPrefix.FMC_TRACE_CRITERIA:3,FFFF,FFFFFFFF

Note: Trace level 3 significantly reduces the performance of the system, and
requires a large quantity of disk space. Trace level 0, gives just the
most important information, and levels 2 and 1 provide intermediate
details.

e. If you want the trace information to be written to the trace data sets as each
buffer becomes full, set the variable:
FMC_EXTERNALIZE_TRACE_BUFFERS=YES

Note: Even when FMC_EXTERNALIZE_TRACE_BUFFERS is set to NO, the trace
buffers will be written to the dump data sets if an ABEND occurs, or
if a DUMP command is issued.

f. If you want to be able to dynamically change the trace options during
tracing, set a non-zero value that controls the trace criteria refresh rate, for
example:
FMC_REFRESH_COUNT_FOR_TRACE_CRITERIA=50

If the variable FMC_REFRESH_COUNT_FOR_TRACE_CRITERIA is set to zero, the
server only reads the trace options when it is started. If it is set to a value, n,
that is greater than zero, the server rereads the trace options after every n
transactions.

g. Save your changes to the server configuration file.
h. If you modified the trace buffer size in step 1a on page 134 you must restart

the servers that are to be traced.

Note: The component name, CTComponent, specified in the server start
procedure PROCLIB(UniqueSystemKey) will be used later for the
analysis with IPCS. Where UniqueSystemKey is the name that you
planned in Table 3 on page 11.

2. Start the trace writer by running the trace start procedure, using the command:
START TraceStart, where TraceStart is the the value you planned in Table 3 on
page 11.

3. Now the extended trace is taking place and you should try to reproduce the
problem. You can dynamically change the trace options that you set in step 1,
by editing the server configuration file. Changes only take effect after a given
number of transactions, determined by the variable
FMC_REFRESH_COUNT_FOR_TRACE_CRITERIA.

4. Turn the tracing level to zero, by editing the configuration profile
CustHLQ.SFMCDATA(FMCHEMPR), and setting
Configuration.MQWFSystemPrefix.FMC_TRACE_CRITERIA:0,0000,00000000

5. To stop writing trace data, you can stop the external writer by running the
trace stop procedure, using the command:
START TraceStop

where TraceStop is the the value you planned in Table 3 on page 11.
6. You can use IPCS to analyze the trace, as described in “Using IPCS to analyze

extended trace or dump output” on page 137.

Administration

Chapter 13. Problem determination 135

7. To convert the format of the extended trace data sets into one file with the
same format as the simple trace, you must run the JCL
CustHLQ.SFMCCNTL(FMCHJTRC).
The formatted results of the extended trace will be available in the job output
of FMCHJTRC. The fields in each line are: Date, time, filename, line number,
current trace settings (level, category, component), process name, address space
ID, server ID, function name, and description. The following is an example line
from a log file:
1998-06-09, 10:27:47.94, FMC.DUMMY.CPP#(DUMMY1)(421), (33,SC,Kr),
Process Name(131-01), TestClass::Find(const TestString&), ifstream.close()

FMCHJTRC can return the following return codes:

Table 71. Extended trace format converter return codes

Value Description Explanation

0 Successful
completion

The formatted results of the extended trace are available in
the job output of FMCHJTRC.

4 Warning No trace data was found. The input data set may be empty.

8 Error Invalid trace buffer records were detected. It is possible that
the oldest records in the data set have been partially
overwritten, and are unusable.

12 Severe error Invalid trace buffer header records were detected. Either the
trace data set has been corrupted, or the input data set was
not created by the MQSeries Workflow trace writer.

If necessary, send the trace file to the appropriate IBM support personnel.

Administration

136 Customization and Administration

Using IPCS to analyze extended trace or dump output
The extended trace data sets and the dump data sets can both be analyzed using
IPCS.

In the TSO ISPF session:
1. Start the IPCS dialog.
2. Select option 0.

Figure 12. How extended trace works

Administration

Chapter 13. Problem determination 137

3. Specify one of:
a. The extended trace data set name, or a DD-name allocated to one or more

of the trace data sets.
b. The dump data set name.

4. Use the IPCS CTRACE subcommand. For example:
CTRACE COMP(CTComponent) FULL

where CTComponent is the CTRACE component name value you planned in
Table 3 on page 11. It is specified in your server start procedure in
PROCLIB(UniqueSystemKey).

Creating a problem summary from an SVC dump
When a dump occurs various information is available for analysis. You can run the
job FMCHJDMP, which calls an exec FMCHKDMP under IPCS. This analyses the SVC
dump from a Workflow server. The output of this job presents various information
about the system, the server instance that caused the problem, and also an analysis
of the language environment. This information is presented in the same format as
a CEEDUMP.

This allows you to create and submit a problem summary which is considerably
reduced in size compared to the dump data set. You should submit the problem
summary and job output, this will be sufficient for the analysis of most problems.

Problems with extended tracing
The most common problems with extended tracing are caused by the large
quantity of trace data that is generated. For example, tracing the execution server
with the maximum trace criteria level, can typically generate about 100 KB per
second per instance. All other servers produce much less trace data.
1. If you get errors or warnings saying that you ran out of disk space, that trace

data was lost, or that a trace buffer write failed, you can retry tracing, but
changing one or more of the following:
a. Specify a larger file size, larger buffer size, or lower trace criteria level.
b. Allocate more disk space:

1) Edit CustHLQ.SFMCCNTL(FMCHJCTR) and change the data set size. The
original value is approximately 350 MB.

2) Submit the JCL CustHLQ.SFMCCNTL(FMCHJCTR).

Note: It will delete any existing data sets before creating the new ones.
2. A system ABEND B37 or D37 indicates that the trace data set is full. You can

avoid this by setting the value of the trace variable FMC_TRACE_FILE_SIZE to a
value that is smaller than the size of the trace data set.

3. You can increase the number of trace data sets from the default of three up to a
maximum of 16. Their names must be consistently specified in all of the
following files:
a. Data set allocation job: FMCHJCTR.
b. Customized trace writer procedure template: TraceStart.
c. Trace data conversion utility: FMCHJTRC.

You must set the variable FMC_NUMBER_OF_TRACE_FILES to reflect how many data
sets are to be used for extended tracing. The trace writer will only use the
number of files specified by FMC_NUMBER_OF_TRACE_FILES. After the writer has

Administration

138 Customization and Administration

written FMC_TRACE_FILE_SIZE KB of trace data to each of the
FMC_NUMBER_OF_TRACE_FILES trace data sets, it starts to overwrite the trace
information in the first trace data set.

MQSeries Workflow trace variables
You can can MQSeries Workflow control tracing by setting variables in the
environment variables file. The following section provides detailed information
about each variable that is listed in Table 72.

You can enable tracing by setting the appropriate variables on the machine that is
to be traced. It is recommended to put the variables in the server configuation
profile.You can also set these variables in the environment variable file, however it
is only read when a server is started. When a process is started, it checks whether
there are trace variables set in the system environment. If the process does not find
any variables in the system environment, it checks the MQ Workflow
configuration.

The following table lists the variables showing the default value for each variable
and the mode in which you can use the respective variable.

Table 72. Variables for simple and extended tracing

Variable Default value Comments

FMC_TRACE_CRITERIA Not set Used in simple or in extended trace mode.

FMC_EXTERNALIZE_
TRACE_BUFFERS

NO Used in extended trace mode. This variable must be set to
″YES″ to enable the external trace writer.

FMC_TRACE_ BUFFER_SIZE 256 KB Used in extended trace mode to specify the size of the trace
buffers.

FMC_TRACE_FILE_SIZE 5 MB Used in extended trace mode.

FMC_REFRESH_COUNT
_FOR_TRACE_CRITERIA

50 transactions Used in extended trace mode, that is, for the servers only.
This variable is used to control the refresh rate of the
following variables:

v FMC_TRACE_CRITERIA

v FMC_EXTERNALIZE_ TRACE_BUFFERS

v FMC_REFRESH_COUNT_ FOR _TRACE_CRITERIA

FMC_NUMBER_OF_TRACE_
FILES

3 Used in extended trace mode.

FMC_EXTERNALIZE_TRACE_BUFFERS
If the extended trace mode is active (the trace records are written to
memory buffers) and you want to write the content of a full buffer to an
MQSeries queue for the trace writer, you must set the variable:
FMC_EXTERNALIZE_TRACE_BUFFERS=YES

By default, this variable is set to ″NO″.

FMC_TRACE_BUFFER_SIZE
This variable specifies the size of the trace buffer in kilobytes (KB) when
using the extended trace mode. If you want to change the default buffer
size to 378 KB, for example, set the variable:
FMC_TRACE_BUFFER_SIZE=378.

Default size: 256 KB

Minimum size: 64 KB

Administration

Chapter 13. Problem determination 139

Maximum size: 4 MB

FMC_TRACE_FILE_SIZE
This variable specifies the size of the trace file in megabytes (MB). It is
used in by the external trace writer in the extended trace mode. If the
specified file size is exceeded, the external trace writer switches to the next
trace file, according to the values you have set for the trace file. The
default value for the maximum trace file size is 5 MB.

FMC_REFRESH_COUNT_FOR_TRACE_CRITERIA
This variable specifies the number of transactions that the server performs
before any changes of the trace criteria settings become active. The default
value for this variable is 50. If you use the default value, the MQ Workflow
servers read the profile settings and update any changes after every 50
transactions. If you want to disable the refresh function, set the variable to
0.

FMC_NUMBER_OF_TRACE_FILES
This variable specifies the number of trace files that the external trace
writer will attempt to write data to. The standard customization process
allocates three data sets, and generates DD statements for them in the
external trace writer procedure, TraceStart, and in the trace data
conversion utility, FMCHJTRC. If you want to increase the number of trace
files used, you must manually add the appropriate DD statements and
allocate the necessary extra data sets.

FMC_TRACE_CRITERIA
The FMC_TRACE_CRITERIA variable is necessary to enable traces. It
contains three parameters that define what is to be traced, and takes the
form:
FMC_TRACE_CRITERIA:level,category,component

Level The parameter level defines the importance of the generated trace
points. There are four levels of importance you can set:
v Level 0 traces only the most important events.
v Level 1 traces more important events.
v Level 2 is an intermediate trace level.
v Level 3 traces all important events.

Category
The parameter category is a bit field where each bit specifies
whether a specific category should be traced or not. The bits are
numbered from 0 to 15, where bit 0 is the rightmost least
significant bit and bit 15 is the leftmost most significant bit. The
following table describes the bits 0 to 6. These are the only bits that
are currently used.

Bit Category Description

0 Control flow Function entries and exits, and major conditional branches are
traced.

1 Error conditions Error conditions are traced when detected, for example, when a
file is not found or the queue manager is not available.

2 System call Traces before and after a system call is issued.

3 Messages Traces when messages are created, sent, or received.

4 Context Traces various context settings used to identify the flow of
requests and responses through the system.

Administration

140 Customization and Administration

5 Performance Performance-specific events are traced, for example, before and
after DB2 is started.

6 General All trace points that are not covered by one of the other
categories are traced.

You can set any combination of these bits. For example, if you
want to set the categories control flow, context, and general, you
must switch on the bits 0, 4, and 6. Specifying FFFF as category
ensures that all bits are switched on, inluding those that are
currently not used.

Component
The parameter component is also a bit field. Each bit specifies
whether a specific MQ Workflow internal component should issue
trace entries. The bits are numbered from 0 to 31, where bit 0 is the
rightmost least significant bit, and bit 31 is the leftmost most
significant bit. Currently only the bits 0 to 26 are used. The
following table lists the component names of each used bit.

Bit Internal component name

0 Kernel

1 Communications

2 Messages

3 Database access

4 Tiny object manager

5 Containers

6 Staff resolution

7 Server framework

8 Administration Server

9 Execution Server

10 Modeling Server

11 Scheduling Server

12 Cleanup Server

13 Distribution Server

14 API functions

15 Administration client

16 Modeling client

17 Runtime client

18 Other clients

19 Program Execution Agent

20 Installation

21 ActiveX controls

22 Test

23 Gateway server

24 Migration

25 Cleanup audit trail

26 Configuration

Administration

Chapter 13. Problem determination 141

As for the category, you can set any combination of these bits.
Specifying FFFFFFFF as component ensures that all components
issue trace entries.

Simple tracing in IBM WebSphere Application Server
If you experience problems when using the Java API in IBM WebSphere
Application Server, for example, with a servlet or a Java Server Page, you may use
the simple trace facility for further diagnosis. For more information about using
simple trace, see “Simple trace” on page 133.

Turning tracing on
To turn tracing on, you must perform the following actions:
1. Add the following DD statement for the trace output to your WebServer’s

started task:
//FMCTRC00 DD SYSOUT=H

2. Add the following enviroment settings to your WebServer’s httpd.envvars file:
FMC_SIMPLE_TRACE_ONLY=YES
FMC_TRACE_CRITERIA=TraceLevel,FFFF,FFFFFFFF

where TraceLevel has the value 1, 2, or 3. Trace level 3 gives the most
information.

3. Restart your WebServer.

Turning tracing off
To turn tracing off, you must perform the following actions:
1. Edit your WebServer’s environment file httpd.envvars and change the setting

of FMC_TRACE_CRITERIA as follows:
FMC_TRACE_CRITERIA=0,0000,00000000

Note: You may also completely remove the statement to deactivate tracing.
2. Restart your WebServer.

Tracing in CICS
All MQSeries Workflow for z/OS components running in CICS use the CICS trace
facilities to generate trace entries. Trace parameters are read from the configuration
and user profiles, and from the environment VSAM files that where generated
during customization. The settings in the environment file overrule the
configuration profile settings. The settings affect all MQSeries Workflow for z/OS
programs running in the corresponding CICS region.

To print the contents of the CICS auxiliary trace data set, submit the JCL
CustHLQ.SFMCCNTL(FMCHJCTC).

The type of information that is provided, and the parameters for the MQSeries
Workflow for z/OS trace are described in “The MQSeries Workflow for z/OS
system trace facility” on page 133. For more information about the CICS trace
facilities see CICS/ESA: Problem Determination Guide and CICS Transaction Server for
OS/390: CICS Problem Determination.

Administration

142 Customization and Administration

Part 3. Using OS/390 Workload Manager with Workflow

Chapter 14. Introduction to WLM 145
What is OS/390 Workload Manager? 145

Overview of WLM 145
WLM queuing model. 145
Service definition 147

MQSeries Workflow and OS/390 Workload
Management 148

Workflow administration server 149
Starting the system in WLM mode 150
Starting a WLM managed server 150
Stopping the system 150

OS/390 Workload Manager application
environments 151
MQSeries for OS/390 workload management 153
Classification 154

Chapter 15. Setting up WLM for MQSeries
Workflow for z/OS 155
Creating a WLM service definition 155

Service definition 155
Service policy 156
Workload. 157
Service class 157
Classification rule 159
Application environment 160

Installing and activating a WLM service policy in a
Parallel Sysplex environment 162
WLM administration 164

Switching servers between WLM and non-WLM
mode by importing an FDL file 164

Switching servers to WLM mode 164
Switching servers to non-WLM mode . . . 165

Starting WLM-managed servers when WLM is
in manual mode 165

Chapter 16. WLM problem determination . . . 167
WLM setup problems 167
Unexpected runtime behavior of MQSeries
Workflow with WLM. 167

© Copyright IBM Corp. 1998, 2001 143

144 Customization and Administration

Chapter 14. Introduction to WLM

Using OS/390 Workload Manager (WLM) for the server instance management of
MQSeries Workflow for z/OS is optional. You can use WLM to manage the system
according to the performance goals specified in the WLM service policy. It does
this by automatically adjusting address space resources and, optionally, the number
of running server instances for the execution server and/or the program execution
server. If you do not use WLM for workflow server instance management, you
must start and stop server instances manually, using the administration commands
described in “Chapter 8. Administration server tasks” on page 87.

This chapter introduces workload management concepts with emphasis on it’s use
with MQSeries Workflow. Additional information about workload management can
be found in the following documentation:
v OS/390 MVS Planning: Workload Management

v OS/390 MVS Programming: Workload Management Services

What is OS/390 Workload Manager?
This chapter gives a high level description of OS/390 Workload Manager (WLM)
and its influence on the mechanics and behavior of MQSeries Workflow for z/OS.
The chapters following discuss these issues in more detail.

Overview of WLM
The OS/390 Workload Manager (WLM) manages the allocation of MVS resources
to best meet your performance goals. Your service level administrator defines goals
for each distinct work request in a single sysplex wide service definition. The
service definition covers all types of MVS work. It is defined by a service level
administrator using the ISPF panels described in OS/390 MVS Planning: Workload
Management. It allows you to define a performance goal and the business
importance of achieving that goal for each MQSeries message. See “Service
definition” on page 147 for more details. During workload execution, WLM
periodically samples the work to see how well the goals in the service definition
are being met. It then adjusts the MVS resources allocated to each address space or
each TCB/SRB to best achieve all performance goals. It basically takes resources
from overachievers and gives them to underachievers. WLM may also start or stop
an address space if that helps achieve the performance goals.

All aspects of the OS/390 Workload Management facility, can be maintained using
the standard ISPF WLM application. How you setup and customize WLM is
described in “Chapter 15. Setting up WLM for MQSeries Workflow for z/OS” on
page 155.

WLM queuing model
The queuing manager services of the OS/390 Workload manager are intended for
queuing managers to manage execution server address spaces and the work
requests they process to meet service class performance goals. In general, a
queuing manager is a subsystem that queues work requests to workload
management for execution in server address spaces. In the context of MQSeries
Workflow, a queuing manager is the MQSeries Queue Manager.

© Copyright IBM Corp. 1998, 2001 145

Workload management dynamically starts and maintains MQSeries Workflow
server address spaces as required to meet the performance goals based on response
time evaluation and the workload in the queues used for the communication
between MQSeries Workflow components. Consequently, there is no longer the
need for manual intervention by the workflow administrator – starting or stopping
of server instances – in case of changes in the system workload. Workload
management spreads the work across multiple address spaces, providing workload
isolation and greater scalability based on workload demands.

OS/390 workload management and servers based on the workload management
facility via a queuing manager interact as follows: when a queuing manager starts,
it connects and queues work to workload management. The server address spaces
are created on demand by workload management as defined in the service
definition (see “Service definition” on page 147). In turn, when a server initializes,
it connects to workload management, which allows it to select work from the
queues. The server address space will normally terminate only on request from

Figure 13. Server address spaces

Figure 14. Interactions between MQSeries and WLM to manage execution server address
spaces

Using WLM

146 Customization and Administration

workload management and after the current transaction is finished. The workflow
server itself can also be the source of work requests that are intended for the same
or another server type, these requests also go via the MQSeries queue manager.

Service definition
The service definition can be maintained using the standard ISPF WLM application
as described in “Creating a WLM service definition” on page 155.

WLM collects data on how well the goals are being met in the same terms as those
in the service definition. This information is available to reporting programs to
help you refine your service definition. The elements of a service definition are:

Service policy
A named modification of your base service definition. It typically contains
values for some of the goals associated with some of your service classes.
You can have different service policies for different times of the day, week,
or month. You can also activate a service policy using an operator
command that deactivates any previously active service policy.

Service class

Each piece of WLM managed work is associated with a named service
class through the classification process. You associate a performance goal
and a business importance of achieving that goal with each service class.

Performance goals are normally defined as a response time goal for the
transactional type work managed by MQSeries Workflow for z/OS. A
response time goal specifies the desired time in milliseconds between
acceptance of the work by a system, and its delivery of the result to the
client. In an MQSeries environment this response time goal includes time
spent waiting on MQSeries queues.

The business importance specifies five levels of importance, and is used
when there is insufficient system capacity to enable everyone to achieve
their performance goals.

Velocity goals are available for batch type work, which specify how fast
the batch work should run when not held up by input/output. MQSeries
will recognize this situation in the work qualifiers it passes to WLM for
each message at classify time.

Discretionary goals are available for work to be run when the system has
some unused resource.

You can further control the processing of longer running transactions by
specifying up to 100 periods each with a different performance goal and a
different importance. Each period defines an amount of consumed
resources. Note that WLM queuing services only look at the actual initial
performance statistics when deciding whether to start or stop a server
address space. You can also associate a service class with a named resource
group to limit the resource available to that service class, or to guarantee a
minimum level of resource for that service class. This is particularly useful
to ensure that discretionary work gets some service.

Classification rules
Classification is the way WLM associates an incoming work request with a
named service class, and therefore with a performance goal and business
importance. It also optionally associates an incoming work request with a
WLM reporting class for monitoring purposes. For more details see
“Appendix J. WLM message classification” on page 209.

Using WLM

Chapter 14. Introduction to WLM 147

Application environment

You can define a number of named application environments to WLM, and
associate each with the JCL procedure and start parameters to start an
instance of a server address space for that environment. A later section will
give details on the usage of application environments within MQSeries
Workflow.

When you have classified a work request you can ask WLM to queue a
reference to it in an internal WLM work list for a specified application
environment. This WLM work list is split into one sub list per distinct
service class, with the sub list entries in FIFO order. WLM will then start
the optimum number of server address spaces for each service class to best
meet performance goals. There will, of course, be at least one server
address space for each distinct service class. Each server address space will
thus be processing work with the same performance and business
importance goals. WLM can then remove MVS resources from over
achieving server address spaces and give them to under achieving server
address spaces.

For each application environment you can optionally tell WLM to limit the
number of server address spaces it will automatically start to one per MVS
image or one per sysplex. It is strongly recommend that MQSeries
Workflow users specify no limit. If you specify a maximum of one server
per MVS image then the internal WLM work list will be FIFO ignoring
service class.

MQSeries Workflow and OS/390 Workload Management
The following sections describe how the WLM queuing model is utilized in
MQSeries Workflow. There are three relevant participants in the workflow system:
MQSeries, MQSeries Workflow, and the OS/390 Workload Manager. When
planning for performance goals, it is important to understand that the response
time used by WLM is calculated as the sum of the time that the request spent on
the MQSeries message queue, waiting to be forwarded to its intended receiver, and
the time that the workflow server actually spent processing the request. This is
illustrated in Figure 15 on page 149.

Response Time = Queue Time + Service Time.

Using WLM

148 Customization and Administration

In contrast to the traditional way that applications use WLM, MQSeries Workflow
uses asynchronous communication via MQSeries queues during the processing of
process instances. WLM measures the queue time and service time for each
request. Whenever a response time goal is not met, WLM may decide to adjust its
management of system resources available to either the queue manager or the
workflow servers. In addition, WLM may decide to adjust the number of workflow
server instances. The reverse decisions may be made when a service class is
over-achiever its goals, for example, when the workload is low.

The most important issue when setting up workload management is the
determining of the performance goals. These goals do not depend just on the
response time expectations of the workflow users, since the type of workload
produced by the clients, and the available resources also have to be taken into
account. There are two modes in which WLM can operate:
1. Goal mode
2. Compatibility mode

Compatibility mode is not supported by MQSeries Workflow.

Workflow administration server
The main difference between MQSeries Workflow with and without usage of the
OS/390 Workload Management facility for a workflow administrator is the way
that the number of server instances responsible for handling work requests is
controlled. This parameter is crucial for the throughput and the overall
performance of the workflow system.

It is important to note that the MQSeries Workflow administration server cannot
effectively control this parameter on its own to maximize the system throughput.
For example, by monitoring the queue depths: a deep queue in a system under
high load indicates a need for more servers to handle the large amount of
messages, which in turn would consume even more system resources and hence
lower the throughput. On the other hand, MQSeries and MQSeries Workflow all
cooperate with the OS/390 Workload Manager to provide the required services for
system-wide or even sysplex-wide performance optimization.

Figure 15. WLM service policy: response time goals

Using WLM

Chapter 14. Introduction to WLM 149

Without OS/390 Workload Manager, the MQSeries Workflow administration server,
supports commands for starting and stopping servers directly. With WLM, this
responsibility can be transferred to the OS/390 Workload Manager. Then the
MQSeries Workflow administration server delegates the administration of server
instances to the OS/390 Workload Manager. MQSeries Workflow is then said to
run in WLM mode, meaning that servers are started and stopped as indicated by
the current overall workflow system performance. For the program execution
server and execution server hotpools, the workflow administrator can still use the
same administration server commands which are then mapped internally to the
appropriate WLM calls - only the behavior of these commands is different from the
non-WLM mode.

Starting the system in WLM mode
The normal way to start an MQSeries Workflow system in WLM mode is to simply
start the Workflow system with the standard administration server command, as
described in “Starting the administration server” on page 87.

WLM can only manage the multiple instance server:
v Execution server
v Program execution server

Starting a WLM managed server
When starting a WLM-managed server, the administration server issues a RESUME
for the respective application environment. The OS/390 system log will display a
message for each resumed application environment. Any further attempts to start
more server instances for WLM controlled server types will be rejected. Only the
application environments are made available, and WLM decides when and how
many server instances are started.

The application environments and their connections to the workflow system are
specified in the WLM service definition (see “Service definition” on page 147 and
“Creating a WLM service definition” on page 155). The OS/390 Workload
Management facility will then start the necessary servers on demand based on this
service definition.

Each server type under control of OS/390 Workload Management is associated
with a WLM managed queue which is responsible to queue the work requests to
the server instances of this type. WLM managed queues, in turn, are each
associated with initiation queues which basically represent the state of the WLM
managed queue: is the application environment of the WLM managed queue
accepting work requests. Work requests are handled by WLM if and only if the
initiation queue is open (MQOPEN for input count is greater than zero). The WLM
managed queue is then said to be ″trigger enabled″. If the queue is not trigger
enabled, the work request is queued until its initiation queue is opened and the
WLM managed queue transitions to the state ″trigger enabled″. This means that
during the startup of the server address space for an application environment, an
MQOPEN for input is issued to the initiation queue, after this, WLM is able to process
incoming work requests.

Stopping the system
To shut down the workflow system you issue the standard administration server
commands. The stop commands are mapped to WLM calls for the server types
(application environments) under WLM control. Hence, the request to terminate a
server type under WLM control will actually result in a quiesce of the
corresponding application environment and the server address spaces will
terminate.

Using WLM

150 Customization and Administration

Since the administration server issues the WLM calls to control the various address
spaces for WLM controlled server types and is also responsible for starting and
stopping non-WLM controlled server types, the administration server is still the
first server to be started and last to be stopped in a Workflow system. The
administration server commands are described in “Chapter 8. Administration
server tasks” on page 87.

OS/390 Workload Manager application environments
An application environment is defined as a group of application functions
requested by client applications and executing in server address spaces. In the
context of MQSeries Workflow, a server type is defined to the OS/390 Workload
Manager as an application environment. Hence, the server types in MQSeries
Workflow which may be under the control of WLM - the Execution Server and the
PES - all define different application environments. The aforementioned clients are
actually all MQSeries Workflow components putting work requests onto WLM
managed queues.

Since in MQSeries Workflow each server type mentioned above listens to its own
MQSeries queue, each application environment actually corresponds to a queue
defined in the Workflow system. Note that this is no one-to-one correspondence,
since there may be more queues than there are application environments.

All application environments have to be specified - and consequently also
maintained - in three different places in a MQSeries Workflow system. The section
troubleshooting discusses how to determine if application environment mismatches
are the cause of unexpected system behavior.
1. The OS/390 WLM needs the information about all application environments in

order to be able to start, control or terminate the server types associated with
each application environment.

2. The proper MQSeries definitions must be in place in order to enable MQSeries
to issue the appropriate WLM calls whenever requests are arriving on a queue.

3. MQSeries Workflow itself needs information about the application
environments to be able to issue the correct OS/390 Workload Manager
commands to start or terminate the server types under control of WLM. How
to switch MQSeries Workflow to WLM mode is described in “Switching servers
to WLM mode” on page 164. On the workflow side, the application
environments have to be present in the MQSeries Workflow runtime database.
Thus, information about the application environments have to specified in the
workflow system information given in the FDL (process model) containing the
system definition either on the domain, system group, or system level.

You define your application environments, and make them available WLM using
the ISPF WLM application, see “Chapter 15. Setting up WLM for MQSeries
Workflow for z/OS” on page 155 for more details.

You manage the application environments using the administration server
commands. The administration server, then issues the WLM commands quiesce
and resume, which cause the application environment to transition between states.
The possible application environment states are:

available
after initial startup or a resume command has completed.

quiescing
a QUIESCE command has been issued. When the command is completed the
quiesced state is entered.

Using WLM

Chapter 14. Introduction to WLM 151

quiesced
a QUIESCE command has completed.

resuming
a RESUME command has been issued. When the command is completed the
available state is entered.

refreshing
a REFRESH command has been issued. When the command is completed the
available state is entered.

stopped
five or more unexpected server terminations have been encountered within
ten minutes.

stopping
the state during the transition to stopped.

The REFRESH command is in essence similar to a QUIESCE command issued to an
application environment followed by a RESUME command. Refreshing an application
environment is useful to restart the server instances, so that changes in the
configuration profile or environment variable file can take effect. For program
execution server (PES) instances, this also applies to a refresh of the cached PES
directory.

The states and their associated commands are listed here for completeness only,
since they are almost always issued internally by the administration server.
REFRESH is the only exception from this rule and should only be applied to activate
profile changes. All other administration tasks are accomplished using MQSeries
Workflow administration server commands as described in “Chapter 8.
Administration server tasks” on page 87.

Operators are strongly discouraged to issue any WLM commands related to the
workflow system for normal administration purposes. Using WLM commands
directly can result in inconsistent system behavior. The MQSeries Workflow
administration server commands offers all necessary tools for the runtime
management of the workflow system. However, the state of an application
environment may be displayed with the corresponding DISPLAY WLM system
command as long as no attempts of any modifications are made.

Work requests are accepted if and only if the application environment referenced in
the work request is in the state available. Each application environment defined in
the Workflow system is available after the initialization has completed. Work
requests (messages in a MQSeries queue) issued to an unavailable application
environment remain in the queue until the application environment is available
again. Note that these messages may time-out while waiting for the application
environment to become available. The state of the various application
environments can be checked using standard OS/390 Workload Management
commands.

OS/390 Workload Management may start or stop server address spaces as
required. This decision depends on previously gathered performance data (based
on the response time behavior of earlier work requests), and the current state of
the system. For example, the number of currently available server address spaces
belonging to the same application environment as the work request.

It is important to note that WLM collects performance data across a sysplex. To do
this, the WLM instances in each MVS image exchange performance data. WLM

Using WLM

152 Customization and Administration

optimizes the overall performance of MQSeries workflow within the scope of a
sysplex. However, this may mean that a work request might not get enough
resources in a particularly busy MVS image, if its associated service class meets its
performance goals at the sysplex level.

MQSeries for OS/390 workload management
One technique for performance optimization is the prioritization of work requests.
Moreover, WLM has a sysplex-wide view with regard of the fulfillment of the
performance goals and uses these priorities to improve the overall performance.
For this effect MQSeries Workflow, MQSeries and WLM in the queuing model
interact closely in the handling of incoming messages.

The utilization of OS/390 Workload Management with the queuing model
fundamentally changes the way messages put into a MQSeries queue are handled,
this is illustrated in Figure 16. Based on the classification information passed to
WLM, and the active classification rules, WLM assigns the messages to the servers
active in the application environments. Conceptually, the messages are sorted into
″virtual queues″ according to the message priority given in the service class. The
MQSeries Queue Manager delegates message priority management to the OS/390
Workload Manager.

WLM decides which service class needs to be serviced in order to achieve the
performance goals for this class and assigns a message from this service class to

Figure 16. The WLM queuing model used by MQSeries Workflow

Using WLM

Chapter 14. Introduction to WLM 153

the next server ready to handle a new work request. The decision, which service
class needs resources (which message is given to the requested server type), is not
just based on the state of the service class with respect to its performance goals.
WLM also takes the states of the other service classes into account. Therefore, there
is no guarantee that the workflow server processes messages in the order they are
put into the queue.

When not using the OS/390 Workload Management facility, messages arriving in a
MQSeries queue are retrieved according to a first–in–first–out (FIFO) strategy. In
this case, no work request priorities are taken into account when servers get work
requests from their queues. Note that MQSeries priorities are not used by
MQSeries Workflow.

Classification
Work requests are classified using information provided by the originator of a
message. This is either a client or a server that is communicating with another
server. The information is specified in the Work Information Header (WIH) which
is contained in the message with the message’s other contents. Therefore each
client or server that builds messages that will be put into a queue must also
generate a WIH. Users writing client applications, however, do not have to concern
themselves with this task, since the API handles the whole process of setting up
the WIH.

Once a request message is put to a WLM-managed queue, the queue manager
interprets the WIH and notifies WLM about the arrival of work which then assigns
the work request to a service class. From the service class, WLM obtains the
performance goal, and can now manage the request towards this goal.

To give OS/390 Workload Management the ability to use the MQSeries WIH for
the classification of messages, a new subsystem type MQ has been added to WLM.
This subsystem type has to be used when defining the performance goals for
MQSeries Workflow for z/OS.

For more information about message classification, see “Appendix J. WLM message
classification” on page 209.

Using WLM

154 Customization and Administration

Chapter 15. Setting up WLM for MQSeries Workflow for z/OS

To enable WLM support in MQSeries Workflow for z/OS you need to create
definitions for MQSeries for OS/390, MQSeries Workflow for z/OS and WLM
itself. These definitions must be consistent with each other. In MQSeries Workflow
for z/OS you must edit the profiles and Buildtime settings. In MQSeries for
OS/390 you will use the command language interfaces to enable queues as being
managed by WLM. Finally in Workload Manager itself, you will make some
definitions using the ISPF interface.

Creating a WLM service definition
Before you can set up your WLM definitions, you must identify the workloads, the
service classes, the service class periods, and goals based on your performance
objectives. Then you define classification rules. Together, this information provides
the WLM service definition base.

The following procedure includes the minimum definitions required for Workload
Management support for MQSeries Workflow for z/OS. You should use these
definitions the first time you setup WLM to verify the functionality, without regard
for performance tuning.

Note: These panels were made using OS/390 V2R6.0. If you are using a newer
version of OS/390, the panels may look slightly different. The information
that you enter on these panels is also provided in
CustHLQ.SFMCDATA(FMCHEWLM)

Service definition
The service definition includes workloads, service classes, systems, resource
groups, service policies and classification rules. Each service definition must be
given a unique name.

© Copyright IBM Corp. 1998, 2001 155

Parameter Required or
Optional

Description Examples

Definition Name Required Eight character identifier for the service
definition.

MQWFSEDE

Description Optional A description of the service definition (up
to 32 characters.)

Service Definition for
MQWF

Service policy
A service policy is a named collection of service class and resource group
specification overrides. When a policy is put into effect, the overrides are merged
with the service class and resource group specifications in the service definitions. A
policy override is a way to change a goal or resource group capacity without
having to redefine all of your service classes and resource groups. The initial setup
described here requires only a single set of performance goals. Hence the policy
you have to define contains no overrides. You must activate a service policy to
take your definitions into effect, this is described later.

File Utilities Notes Options Help

Functionality LEVEL001 Definition Menu WLM Appl LEVEL007
Command ===> ___

Definition data set . . : none

Definition name MQWFSEDE (Required)
Description Service Definition for MQWF

Select one of the
following options. ___ 1. Policies

2. Workloads
3. Resource Groups
4. Service Classes
5. Classification Groups
6. Classification Rules
7. Report Classes
8. Service Coefficients/Options
9. Application Environments

10. Scheduling Environments

Figure 17. WLM panel: Definition menu

Service-Policy Notes Options Help
--

Create a Service Policy
Command ===> ___

Enter or change the following information:

Service Policy Name MQWFSEPO (Required)
Description Service Policy for MQWF

Figure 18. WLM panel: Create a service policy

Using WLM

156 Customization and Administration

Parameter Required or
Optional

Description Examples

Service Policy Name Required Eight characters identifying the service
policy. Every service policy name must be
unique in a service definition.

MQWFSEPO

Description Optional A description of the service policy (up to
32 characters.)

Service Policy for MQWF

Workload
A workload is a named collection of work to be reported as a unit. You can
arrange workloads by subsystem (MQ, CICS, IMS) or by major application
(Production, Batch, Office). Logically, a workload is a collection of service classes.
When you choose the Workload option for the first time, the application displays
the Create a Workload panel shown in Figure 19.

Parameter Required or
Optional

Description Examples

Workload Name Required Eight characters identifying the workload.
Every workload name must be unique for
all defined workloads in a service
definition

MQWFWOLO

Description Optional A description of the workload (up to 32
characters.)

Workload for MQWF

Service class
A group of work with the same performance goals, resource requirements, or
business importance. For workload management, you assign a service goal and
optionally a resource group to a service class. You should define different service
classes for each of the server types you want WLM to manage, plus a default
service class. The two Workflow server types that WLM can manage are:
v The execution server — this processes runtime process instances.
v The program execution server — this handles requests for CICS and IMS

program invocations.

Workload Notes Options Help
--

Create a Workload
Command ===> __

Enter or change the following information:

Workload Name MQWFWOLO (Required)
Description Workload for MQWF

Figure 19. WLM panel: Create a workload

Using WLM

Chapter 15. Setting up WLM for MQSeries Workflow for z/OS 157

Parameter Required or
Optional

Description Examples

Service Class Name Required Eight characters describing the service
class. Service class names must be unique
within a service definition

DEF_SC
EXE_SC
PES_SC

Description Optional A description of the service class (up to 32
characters.)

Default Service Class
for MQWF

Service Class
for MQWF EXE Srv

Workload Name Required The name of the workload associated with
the service class.

MQWFWOLO

Base Resource Group Optional The resource group name associated with
this service class.

Base Goal information Required You can add, edit, or delete periods. At
least one period must be defined.

Discretionary

Discretionary goals are available for work to be run when the system has some
unused resources. We will use this type of goal here because we do not have a
specific performance goal for the initial setup. If you enter the goal information,
first the goal selection pop-up is displayed, as shown in Figure 21 on page 159.

Service-Class Notes Options Help
--

Create a Service Class Row 1 to 1 of 1
Command ===> __

Service Class Name DEF_SC (Required)
Description Default Service Class for MQWF
Workload Name MQWFWOLO (name or ?)
Base Resource Group (name or ?)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

---Period--- ---------------------Goal---------------------
Action # Duration Imp. Description

1 Discretionary
******************************* Bottom of data ********************************

Figure 20. WLM panel: Create a service class

Using WLM

158 Customization and Administration

Classification rule
The rules workload management and subsystems use to assign a service class and,
optionally, a report class to a work request. A classification rule consists of one or
more work qualifiers such as subsystem type, subsystem instance, and so on.

Specify action 3 next to type MQ to enter your rules.

* Choose a goal type for period 1 *
* *
* *
* 4_ 1. Average response time *
* 2. Response time with percentile *
* 3. Execution velocity *
* 4. Discretionary *
* *
* F1=Help F2=Split F5=KeysHelp *
* F9=Swap F12=Cancel *

Figure 21. WLM menu: Choose a goal type

Subsystem-Type View Notes Options Help
--

Subsystem Type Selection List for Rules Row 1 to 14 of 14
Command ===> __

Action Codes: 1=Create, 2=Copy, 3=Modify, 4=Browse, 5=Print, 6=Delete,
/=Menu Bar

------Class-------
Action Type Description Service Report

__ ASCH Use Modify to enter YOUR rules
__ CB Use Modify to enter YOUR rules
__ CICS Use Modify to enter YOUR rules
__ DB2 Use Modify to enter YOUR rules
__ DDF Use Modify to enter YOUR rules
__ IMS Use Modify to enter YOUR rules
__ IWEB Use Modify to enter YOUR rules
__ JES Use Modify to enter YOUR rules
__ LSFM Use Modify to enter YOUR rules
3_ MQ Workflow Request Classification
__ OMVS Use Modify to enter YOUR rules
__ SOM Use Modify to enter YOUR rules
__ STC Use Modify to enter YOUR rules
__ TSO Use Modify to enter YOUR rules

Figure 22. WLM panel: Subsystem type selection list for rules

Using WLM

Chapter 15. Setting up WLM for MQSeries Workflow for z/OS 159

Parameter Required or
Optional

Description Examples

Subsystem Type Required You must use the IBM-supplied
subsystem type MQ, which handles all
MQSeries Workflow work.

MQ

Qualifier Type

Required for
each rule that
you define

The work qualifier that identifies a work
request to the system, such as a user ID
or a transaction name.

The following qualifiers are
valid for the subsystem
type MQ:

v PRI (priority)

v PC (process name)

v SI (subsystem instance)

v SPM (subsystem
parameter)

v TC (transaction class)

v TN (transaction name)

v UI (user ID)

Qualifier Name Name (value) of the work qualifier for
the type you have selected. The qualifier
name that you enter in this field must be
from 1 to 8 characters long, if you need to
specify a qualifier name that is longer
than 8 characters, see “Appendix K.
Nesting WLM classification information”
on page 215. For a list of predefined

MQSeries Workflow for z/OS message
types, see “Static Workflow message
classification” on page 210.

Program execution server:
FMCIPGST

Execution server: FMC*

Service Class The service class to be associated with
this type of request.

Defaults : DEF_SC
PES_SC
EXE_SC

Application environment
An application environment is a group of application functions requested by a
client that execute in server address spaces. A server type is defined to the OS/390
workload manager as an application environment.

Subsystem-Type Xref Notes Options Help
--

Modify Rules for the Subsystem Type Row 1 to 2 of 2
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : MQ Fold qualifier names? Y (Y or N)
Description . . . Use Modify to enter YOUR rules

Action codes: A=After C=Copy M=Move I=Insert rule
B=Before D=Delete row R=Repeat IS=Insert Sub-rule

More ===>
-------Qualifier------------- -------Class--------

Action Type Name Start Service Report
DEFAULTS: DEF_SC

____ 1 TN FMCIPGST PES_SC
____ 1 TN FMC* EXE_SC

Figure 23. WLM panel: Modify rules for the subsystem type

Using WLM

160 Customization and Administration

You can define two application environments, one each for PES and execution
servers, however, if you only want one of theses server types to be controlled by
WLM, you only need to define one unique application environment for the
corresponding server type.

Parameter Required or
Optional

Description Examples

Application Environment Required Name identifying the application
environment (up to 32 characters.) This
must be unique in the parallel sysplex.

Execution server:
MQWFEXEAE

Program execution server:
MQWFPESAE

Description Optional A description of the application
environment (up to 32 characters.)

Appl Env for MQWF
EXE Srv

Appl Env for MQWF
PES Srv

Subsystem Type Required Subsystem type is the name of the
subsystem using application environments
— in this case, always MQ.

MQ

Procedure Name Required if
you want
WLM to
operate in
automatic
mode.

Procedure name is the one to eight
character name of the JCL procedure that
workload management uses to start a
server for the application environment
work requests. For MQSeries Workflow,
this is the value for the identifier
UniqueSystemKey in Table 3 on page 11.

MQWFSRVP

Required if
you want
WLM to
operate in
manual mode.

By leaving this field blank, WLM will
operate in manual mode, and you will
have to start WLM managed servers as
described in “Starting WLM-managed
servers when WLM is in manual mode”
on page 165.

Application-Environment Notes Options Help
--

Create an Application Environment
Command ===> __

Application Environment . . . MQWFEXEAE Required
Description Appl Env for MQWF EXE Srv
Subsystem Type MQ Required
Procedure Name MQWFSRVP
Start Parameters WLMAE=MQWFEXAE,WLMSN=&IWMSSNM,SRVEP=FMC

EMAIN,SRVNO=1___________________________

Limit on starting server address spaces for a subsystem instance:
1 1. No limit

2. Single address space per system
3. Single address space per sysplex

Figure 24. WLM panel: Create an application environment

Using WLM

Chapter 15. Setting up WLM for MQSeries Workflow for z/OS 161

Parameter Required or
Optional

Description Examples

Start Parameters Required Start parameters are the parameters
required by the JCL procedure defined in
Procedure Name. These parameters define
how workload management should start
the server address spaces. For MQSeries
Workflow, this parameter includes of the
application environment, the subsystem
instance name, the server task main
program, and the number of server
instances running in parallel in one
address space (SRVNO). This value
overrides the value specified in the
configuration profile – as described in
“Changing the number of server instances
per address space” on page 123.

The WLMAE2 start parameter provides a
way to set boundaries for the maximum
and minimum number of server instances
WLM may activate.

For the execution server,
using the symbol
&IWMSSNM1 for the the
subsystem instance
name:WLMAE=MQWFEXEAE,
WLMSN=&IWMSSNM,
SRVEP=FMCEMAIN,SRVNO=1

For the program execution
server, using WLMAE2 to
have a maximum of 20
server instances and a
minimum of 5 active
instances:
WLMAE=MQWFPESAE/20/5,
WLMSN=&IWMSSNM,
SRVEP=FMCXMAIN,SRVNO=1

Limit on starting server
address space for a
subsystem instance

Required You must use the option:

1. No limit

The other options are not meaningful.

No limit

Notes:

1. If you specify the symbol &IWMSSNM inside the start parameters, WLM substitutes the subsystem instance name
provided to WLM when the subsystem connected to it. For MQSeries Workflow for z/OS, the subsystem
instance name is the name of the MQSeries started task procedure of the MQSeries queue manager that is to be
used by MQSeries Workflow for z/OS.

2. For the WLMAE parameter, you must specify an application environment name. This can optionally be followed by
/max or /max/min, where max and min are the maximum and minimum number of server instances to be active
at any point in time. The number of server instances may go outside the defined range while refreshing the
WLM application environment, or if the max and min values are not exact multiples of the SRVNO parameter.

Installing and activating a WLM service policy in a Parallel Sysplex
environment

To make your service definition have an effect in the sysplex environment you
must install it on the WLM couple data set and activate a service policy. Installing
the service definition overwrites any service definition previously installed on the
WLM couple data set. You can install the service definition using the install
function on the Utilities menu bar option of the Definition menu in the WLM
ISPF application, as shown Figure 25 on page 163.

Using WLM

162 Customization and Administration

To activate a service policy from the ISPF application, choose the Utilities option
from the menu bar on the Definition menu of the WLM ISPF application, as
shown in Figure 26 and Figure 27.

MQSeries Workflow for z/OS will only take full advantage of the services
provided by WLM if WLM is in goal mode. To put WLM into goal mode, you can
use the WLM console commands described in the WLM documentation, or more
specifically enter in the OS/390 system console:
F WLM,MODE=GOAL

To IPL your OS/390 system in goal mode, you must remove the IPS= keyword
from your IEASYS00 parmlib member as described in MVS Planning: Workload
Management. Note that the other WLM mode - the compatibility mode - is not
supported in MQSeries Workflow for z/OS. To find out the current mode of WLM,
enter one of the following commands:

File Utilities Notes Options Help
----- ***

* 1 1. Install definition *
* 2. Extract definition *
* 3. Activate service policy *
* 4. Allocate couple data set *
* 5. Allocate couple data set using CDS values *

Figure 25. WLM menu: Install a service definition

File Utilities Notes Options Help
----- ***

* 3 1. Install definition *
* 2. Extract definition *
* 3. Activate service policy *
* 4. Allocate couple data set *
* 5. Allocate couple data set using CDS values *

Figure 26. WLM menu: Activate a service definition

Policy Selection List Row 1 to 3 of 3
Command ===> __

The following is the current Service Definition installed on the WLM
couple data set.

Name : WLMSEDE

Installed by : UID from system SYSTEM
Installed on : 1999/08/12 at 15:11:33

Select the policy to be activated with "/"

Sel Name Description
/ MQWFSEPO MQWF Service Policy

Figure 27. WLM panel: Policy selection list

Using WLM

Chapter 15. Setting up WLM for MQSeries Workflow for z/OS 163

v D WLM,SYSTEMS This version of the WLM display command returns the WLM
related information (system name, mode, policy and status) for all systems in the
sysplex.

v D WLM,SYSTEM=<SystemName> This version restricts the output to the specified
system.

WLM administration
If you want to use WLM to administer server instances, there a few special
administration tasks that you may require:
v The easiest way to switch between WLM and non-WLM mode is described in

“Switching servers between WLM and non-WLM mode by importing an FDL
file”.

v If you decide to use WLM in manual mode, see “Starting WLM-managed
servers when WLM is in manual mode” on page 165.

Switching servers between WLM and non-WLM mode by
importing an FDL file

An MQSeries Workflow for z/OS system can either run with WLM-controlled
server address spaces (for one or both of the execution server and the program
execution server types), or under manual control by the workflow administrator.
Switching between these modes is achieved by changing the server settings in the
MQSeries Workflow runtime database. While this is rather straightforward to do, it
also means that a mode change does not take effect until the administration server
is restarted.

Switching servers to WLM mode
Figure 28 shows the FDL settings required to activate WLM for the execution
server and the program execution server.

The MQSeries Workflow FDL to switch a system to WLM mode can be found in
CustHLQ.SFMCDATA(FMCHEFWM).

The server settings reside in the SYSTEM section of the FDL. For each server type,
there is a SERVER subsection, into which additional or updated settings may be
entered.

To activate the WLM settings in the MQSeries Workflow FDL, you can simply
submit the ready-to-use JCL FMCHJWIB, which imports the FDL file into the
MQSeries Workflow runtime database.

UPDATE SYSTEM '<MQWFSYSN>'
RELATED_GROUP '<MQWFSGNM>'
...
SERVER TYPE EXECUTION_SERVER
EXTERNAL_CONTROL WLM
EXTERNAL_CONTROL_CONTEXT '<WLMEXEAE>'
SERVER TYPE PROGRAM_EXECUTION_SERVER
EXTERNAL_CONTROL WLM
EXTERNAL_CONTROL_CONTEXT '<WLMPESAE>'

END '<MQWFSYSN>'

Figure 28. FDL settings to switch to WLM mode

Using WLM

164 Customization and Administration

Switching servers to non-WLM mode
In order to deactivate WLM mode, it is sufficient to set the EXTERNAL_CONTROL
parameter to NO for each WLM controlled server type and replace any previous
settings of EXTERNAL_CONTROL and EXTERNAL_CONTROL_CONTEXT.

It is also possible to enable or disable WLM control separately for each server type.
The example shown in Figure 29 is an excerpt from the non-WLM reference, which
can be found in CustHLQ.SFMCDATA(FMCHEFNM).

You can deactivate WLM control of the execution server and the program
execution server by submitting the JCL FMCHJNIB. Then, the MQSeries Workflow
administration server, and all other Workflow servers of the MQSeries Workflow
system - has to be stopped and subsequently restarted.

Starting WLM-managed servers when WLM is in manual mode
In the OS/390 WLM application environment definition (shown in Figure 24 on
page 161), the presence of a server JCL procedure in the field Procedure Name
determines the control mode of the WLM application environment. If the
procedure name (and the START command parameters) are present, then automatic
control is in effect. If no JCL procedure is specified, WLM does not know how to
start the address spaces, therefore, the server instances must be controlled
manually.

If your WLM application environment is in manual control mode, you must create
the server address spaces by issuing the appropriate START command. This START
command is specified with the name of the server JCL procedure and optional
parameters. To start the system, and manually start a given NumberOfInstances of
the execution server, you would issue the following sequence of commands:
START UniqueSystemkey.AdminServerID
MODIFY AdminServerID,START EXE
START UniqueSystemkey.ExeServerID,WLMAE=EXEApplicationEnvironment,

WLMSN=QMGRSTPROC,SRVEP=FMCEMAIN,SRVNO=NumberOfInstances

The parameters of the second START command are exactly the same as the
parameters you would specify for the Start Parameters field of the Application
Environment definition shown in Figure 24 on page 161.

Note: Under manual control, the VARY
WLM,APPLENV=EXEApplicationEnvironment,REFRESH system command will
only terminate server address space, but it will not restart them.

UPDATE SYSTEM '<MQWFSYSN>'
RELATED_GROUP '<MQWFSGNM>'
...
SERVER TYPE EXECUTION_SERVER
EXTERNAL_CONTROL NO
SERVER TYPE PROGRAM_EXECUTION_SERVER
EXTERNAL_CONTROL NO

END '<MQWFSYSN>'

Figure 29. FDL settings to switch to non-WLM mode

Using WLM

Chapter 15. Setting up WLM for MQSeries Workflow for z/OS 165

Using WLM

166 Customization and Administration

Chapter 16. WLM problem determination

This chapter is intended to help you if you experiencing problems during the setup
and execution of an MQSeries Workflow system with WLM controlled servers (PES
and execution server).

Note: Many of the solutions described in the following sections require a shut
down of the workflow system if any changes to setup parameters are to take
effect.

WLM setup problems
All WLM related settings on the MQSeries Workflow side are stored in the runtime
database. Naturally, WLM itself has control over its own setup and therefore
corresponding parameters have to match - this is one main source of possible setup
and runtime problems. Most invalid settings (other than mismatches and typos)
are found by the FDL import tool. They are listed in the table below.

Table 73. Problems importing FDL for WLM

Symptom Possible cause Solution

The FDL file containing
system updates
containing WLM-related
settings fails to import.

Only partial information was
provided with the keyword
UPDATE.

Specify

EXTERNAL_CONTROL WLM

together with a valid external control context.
Specify

EXTERNAL_CONTROL NO

without the context information and use the
keyword REPLACE for the system.

Invalid character in the context
information.

The FDL syntax is more restrictive for application
environment names than WLM is. Only use names
without invalid characters (for example ’_’).

In any case, you should carefully examine the settings in both, the FDL file that
contains the WLM-related parameters, and the ISPF WLM application. Settings
entered in this application have to be installed and activated. The status of the
current WLM settings can be checked with the appropriate WLM console
commands.

Unexpected runtime behavior of MQSeries Workflow with WLM
Setup or resource problems in a dynamic and complex system like MQSeries
Workflow may not always result in immediately recognizable error messages.
Sometimes the system behavior is simply unexpected compared to the behavior
expected from the intended setup. Symptoms hinting at setup problems that do
not lead to error messages are listed below together with tips on how to diagnose
and solve them. Here, we assume that the other components of MQSeries
Workflow and the associated subsystems have been correctly set up and are
running.

© Copyright IBM Corp. 1998, 2001 167

Table 74. Unexpected runtime behavior of MQSeries Workflow with WLM

Symptom Possible cause Solution

WLM does not start any
servers while work
requests are waiting in
the respective queues.

Is WLM in goal mode? Put WLM into goal mode with the WLM
command:

MODIFY WLM,MODE=GOAL

Is there a valid WLM service
definition?

Provide a WLM service definition for MQSeries
Workflow using the ISPF WLM application.

Has the service definition been
installed and activated?

Install and activate the WLM service definition for
MQSeries Workflow using the ISPF WLM
application.

Are the service definition settings
correct?

Check the settings in the service definition for
inconsistencies and mismatches with the other
WLM related settings in MQSeries Workflow.

(Program) execution
servers don’t appear to
run under the control of
WLM (no application
environment related
messages appear in the
OS/390 log).

Context information is missing or
the corresponding server type(s) are
set to EXTERNAL_CONTROL NO.

1. Shut down the Workflow for z/OS system, as
described in “Stopping the system” on page 89.

2. Shut down the administration server, as
described in “Stopping the administration
server” on page 88.

3. Run the JCL CustHLQ.SFMCCNTL (FMCHJWIB)
that imports the FDL which sets
EXTERNAL_CONTROL to WLM and provides the
context information.

In spite of high load,
WLM starts only one
server.

Has WLM been restricted to ″single
server only″ operation?

Remove the ″single server″ restriction in the WLM
service definition for MQSeries Workflow using
the ISPF WLM application.

Server start commands
for one or all WLM
controlled server types
result in error messages
from WLM (undefined
application environment).

There may be a typo in the
application environment name —
either in the WLM definitions, or in
the external control context of the
FDL.

Make sure application environment names and the
corresponding values in the external control
contexts match.

Server start commands
result in the wrong WLM
controlled server type
starting.

The application environment names
for the execution server and the
PES have been swapped.

Make sure the external control contexts and the
application environments in the ISPF WLM
application match.

After unexpected
termination of MQWF
server address spaces,
WLM does not start new
server address spaces.

If five unexpected terminations of
server address spaces occur within
ten minutes, WLM will quiesce the
application environment for these
server address spaces and shut
down all running instances.
Note: This rule does not apply
when server address spaces are
cancelled.

1. Make any necessary changes to fix the
condition that causes WLM to quiesce the
application environment.

2. Stop the server type that was affected by the
terminations using the administration server
command (see “Stopping servers” on page 92)
in order to switch the corresponding
application environment to the quiesced state.

3. Wait until the application environment is in the
state quiesced.

4. Start the server type as described in “Starting
servers” on page 91.

Using WLM

168 Customization and Administration

Part 4. Appendixes

© Copyright IBM Corp. 1998, 2001 169

170 Customization and Administration

Appendix A. Program Execution Server directory

The program execution server directory contains information that is used by the
program execution server. It contains the exit names, types and parameters for
program invocations and program mappings. It also contains service definitions to
connect to the CICS and IMS systems, and the user resolution information to
execute a program under the correct user ID. You need to modify the PES directory
whenever you want to add any of the following:
1. A new mapping type.
2. A new invocation type.
3. A new service.
4. A new user.

Using Buildtime, you can add OS/390 invocation and service definitions to your
process model on a program’s OS/390 settings page. The PES directory provides
the connection parameters for these invocations and services.

Note: Some key values in the PES directory must match the identifiers that are
used in the process model in Buildtime; these dependencies are described in
“PES directory dependencies on the process model’s OS/390 program
definitions” on page 174.

PES directory structure
This section describes the internal structure of the PES directory. You will need to
understand the structure to be able to perform program execution customization
and to add new services and new users.

The PES directory has a Key=KeyValue structure that is similar to an OS/2 .ini file.
The values specified for the primary and secondary keys can either define a final
value, or a user-defined key. A user-defined key refers to another subsection of the
current section.

User-defined keys are case-sensitive, and can be up to 32 characters long. Valid
characters are: uppercase [A – Z], lowercase [a – z], and numerics [0 – 9]. Final
values are case-sensitive, can consist of any characters, up to a maximum length of
254 characters.

The PES directory contains a root entry consisting of the primary key directory. A
secondary key programExecution defines an area for the program execution server
named PESERVER. The contents of the PESERVER section are described in the
following:
v “Invocation section” on page 172
v “Mapping section” on page 172
v “Security section” on page 172

© Copyright IBM Corp. 1998, 2001 171

Invocation section
The invocation section defines each invocation type that is supported by the
program execution server. For each invocation type, it defines the exit name, exit
parameters, and a list of service subsections that can be accessed using that
invocation type.

The “PES directory template” on page 173 already contains definitions for
invocation sections for EXCI, CPIC, and MQSeries CICS and IMS Bridge invocation
types.

Service subsection
The service subsections within the invocation section contains the following:
v Connection parameters necessary to connect to service systems using the given

invocation type.
v User resolution information to translate the MQSeries Workflow user

identification of the caller to a local OS/390 user ID that is known to the
security system.

Connection parameters: The connection parameters provided depend on the
invocation type:
v For EXCI invocation, the connection parameter is applid.
v For CPIC invocation, the connection parameters are netid, luname, and mode.
v For MQ invocation, the connection parameters are queuemanager and

inputqueuename.
v MQ invocations using a queue manager belonging to the same MQSeries cluster

as the Workflow system must not specify a queue manager. In this case, remove
the string ″QUEUEMANAGER=<queuemanager>,″ from the template before importing
the directory source file.

Note: Multiple parameter assignments are separated by a semicolon (’;’).

User resolution: User resolution information is only required if a program is to
run under a local user ID associated with the MQSeries Workflow user starting the
execution request. This only applies to programs that are defined in the process
model with Execution user=Yes and Local user=Yes. In this case, you have to add
userID/executionUserID pairs to provide a mapping from each MQSeries
Workflow userID who may access that service, mapping on to the OS/390
executionUserID that the program is to run under.

The reason for having this mapping is that MQSeries Workflow user IDs may be
up to 32 characters long, whereas OS/390 user IDs are restricted to 8 characters.

Mapping section
The mapping section defines the program mapping types that the program
execution server supports. For each mapping type, it defines the DLL name of the
exit that is used by the mapping type, and the initialization parameters. The
standard program mapping type defines the default mapper that is provided with
MQSeries Workflow for z/OS.

Security section
The security section is reserved for future use and must not be modified.

172 Customization and Administration

PES directory template
A PES directory template file is provided in CustHLQ.SFMCDATA(FMCHEDTP). It
contains definitions for the invocations types (EXCI, CPIC, MQCICS, and MQIMS) and
the DEFAULT mapping type. It contains:
v A service section for each invocation type.
v A user section for each service section.

These have to be completed during program execution customization. The
template contains the following:
;//**
;//*
;//* Description: Program Execution Server Directory Template
;//*
;//**
; Area of PES directory

(directory)

programExecution =keyToAreaOfPES; Area of PES1

(keyToAreaOfPES1)
pesName =PESERVER
invocation =keyToInvocation
security =keyToSecurity
mapping =keyToMapping

; Invocation section of PES1

(keyToInvocation1) type =EXCI
exitName =FMCH0IEC
exitParameters =
service =invocation1Service

; Service section of PES1

(invocation1Service1) type =CICS
name =CICSEXCI
connectionParameters =APPLID=<applid>;TRANSID=CSMI
user =invocation1Service1User

; User section of PES directory

(invocation1Service1User1)
userID =<user1>
executionUserID =<executionUser1>

(invocation1Service1User2)
userID =<user2>
executionUserID =<executionUser2>

(keyToInvocation2)
type =CPIC
exitName =FMCH0ICI
exitParameters =
service =invocation2Service

(invocation2Service1)
type =IMS
name =IMSCPIC
connectionParameters =NETID=<netid>;LUNAME=<luname>;MODE=#INTER
user =invocation2Service1User

(invocation2Service1User1)
userID =<user1>

Appendix A. Program Execution Server directory 173

executionUserID =<executionUser1>

(keyToInvocation3)
type =MQCICS
exitName =FMCH0ICM
exitParameters =
service =invocation3Service

(invocation3Service1)
type =CICS
name =CICSMQBR
connectionParameters =QUEUEMANAGER=<queuemanager>;INPUTQUEUE=<inputqueue>
user =invocation3Service1User

(invocation3Service1User1)
userID =<user1>
executionUserID =<executionUser1>

(keyToInvocation4)
type =MQIMS
exitName =FMCH0IIM
exitParameters =
service =invocation4Service

(invocation4Service1)
type =IMS
name =IMSMQBR
connectionParameters =QUEUEMANAGER=<queuemanager>;INPUTQUEUE=<inputqueue>
user =invocation4Service1User

(invocation4Service1User1)
userID =<user1>
executionUserID =<executionUser1>

(keyToMapping1) type =DEFAULT
exitName =FMCH0XME
exitParameters =

(keyToSecurity1)
type =
exitName =
exitParameters =

PES directory dependencies on the process model’s OS/390 program
definitions

When you define a service in the PES directory, some of the key values you use
must exactly match the following identifiers provided in the program’s OS/390
properties that are shown in Figure 8 on page 101. These identifiers are:
v Service name, for example CICSEXCI, or IMSCPIC.
v Service type, for example CICS, or IMS.
v Invocation type, for example EXCI, or CPIC.
v Mapping type, for example DEFAULT.

Note: The values are case-sensitive.

174 Customization and Administration

Appendix B. The PES directory import tool’s syntax and
semantics

You can start the import tool FMCH1PIT using the following options:

Table 75. PES directory import tool’s options

Option
DD-names

used Description

c FMCDIMP
FMCDLOG

Creates new directory entries. If an entry already exists, an
error is returned.

d FMCDIMP
FMCDLOG

Deletes existing directory entries. If an entry does not exist,
an error is returned.

e FMCDLOG Erases everything in the directory database.

i FMCDIMP
FMCDLOG

Inserts directory entries. If an entry does not exist, it will be
created. If an entry already exists, it will be replaced.

r FMCDIMP
FMCDLOG

Replaces existing directory entries. If an entry does not
exist, an error is returned.

The PES directory source file containing the entries to be imported must be
specified using the predefined DD-name FMCDIMP. The import tool writes
information, warning, and error messages to the log file that is specified by the
DD-name FMCDLOG. If you specify //FMCDLOG DD SYSOUT=*, the messages will be
written to SYSOUT.

Return codes
The PES directory import tool can return the following return codes:

Table 76. PES directory import tool’s return codes

Value Description
Effect of modifications to the

database

0 Successful execution Any database modifications have
been completed.4 Warning

12 Error The tool has made a rollback of the
transaction. The database remains
unchanged.16 Severe error

For non-zero return codes, check the log file for more information.

PES directory import examples
The following JCL examples illustrate the use of the import options and DD
statements.

Importing a PES directory source file
This example job imports the source file that is specified using the DD name
FMCDIMP, creating the new entries in the directory.

© Copyright IBM Corp. 1998, 2001 175

//FMCHJPIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH1PIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/c'
//*
//FMCDIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(PES)
//FMCDLOG DD SYSOUT=*
//*

Importing a PES directory and writing a log file
This example job imports the source file specified by the DD name FMCDIMP by
updating the contained entries in the directory. All information, warning, and error
messages will be written to the log file specified by the DD name FMCDLOG.

//FMCHJPIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH1PIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/r
//*
//FMCDIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(PES)
//FMCDLOG DD DISP=SHR,DSN=CustHLQ.SFMCDATA(LOG)
//*

Deleting the PES directory
This example job deletes the complete contents of the PES directory.

//FMCHJPIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH1PIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/e
//*
//FMCDLOG DD DISP=SHR,DSN=CustHLQ.SFMCDATA(LOG)
//*

176 Customization and Administration

Appendix C. Program mapping import tool syntax

The program mapping exit reads the mapping definitions from the mapping
database. You must use control statements to perform the following updates to the
mapping database:
v “Creating a new program mapping definition”
v “Replacing an existing program mapping definition”
v “Inserting a program mapping definition” on page 178
v “Deleting a program mapping definition” on page 178
v “Listing program mapping definitions” on page 178

All control statements have the same format: keyword type element

1. The first word is a keyword which defines the action.
2. The second word defines which type of program mapping definition should be

processed.

Note: Valid types are: STRUCTURE, INTERFACE, USERTYPE, BACKWARDMAPPING, and
FORWARDMAPPING.

3. The third word defines which element of this type should be processed.

Note: You can use the wildcard character ’*’. You can combine wildcard control
statements with non–wildcard control statements. The wildcard control
statements can be used to select all elements of the mapping definition
or mapping database without explicitly naming them.

C and C++ style comments are allowed. Single line comments may start with the
characters ’//’, and multi-line comments begin with ’/*’, and end with ’*/’.

Creating a new program mapping definition
To create a new entry, specify:
CREATE EntryType EntryName

To create all entries of a given type, specify:
CREATE EntryType *

Note: If an entry already exists, the activity is rolled back, and you will get an
error message.

Replacing an existing program mapping definition
To replace a specific entry for EntryType and EntryName, use the control statement:
REPLACE EntryType EntryName

To replace all entries for EntryType, use the control statement:
REPLACE EntryType *

Note: If the entry does not exist, the database transaction is rolled back, and you
will get an error message.

© Copyright IBM Corp. 1998, 2001 177

Inserting a program mapping definition
To insert a specific entry for EntryType and EntryName, use the control statement:
INSERT EntryType EntryName

For example, INSERT USERTYPE UT1

Note: If the entry already exists, it will be overwritten.

To insert all entries for EntryType, use the control statement:
INSERT EntryType *

Deleting a program mapping definition
To delete a specific entry for EntryType and EntryName, use the control statement:
DELETE EntryType EntryName

To delete all entries for EntryType, use the control statement:
DELETE EntryType *

Note: If the entry does not exist, the database transaction is rolled back, and you
will get an error message.

You can delete the whole database with the control statements:
DELETE USERTYPE *
DELETE FORWARDMAPPING *
DELETE BACKWARDMAPPING *
DELETE INTERFACE *
DELETE STRUCTURE *

Listing program mapping definitions
You can list all entries for a given type, with the control statement:
LIST EntryType *

This statement lists the entries by name and type in alphabetical order.

Control statement execution
The control statements are executed on the program mapper’s database as a
transaction. If any of the statements fail, the whole transaction is rolled back, and
an error is returned. The control statements are not necessarily executed in the
order that they are defined in the control member. The control statements are
executed in the following sequence:
1. Any command for forward mapping definitions, in alphabetical order of the

forward mapping name, followed by forward mapping commands that use the
wildcard.

2. Any command for backward mapping definitions, in alphabetical order of the
backward mapping name, followed by backward mapping commands that use
the wildcard.

3. Any command for structure definitions, in alphabetical order of the structure
name, followed by structure commands that use the wildcard.

4. Any command for interface definitions, in alphabetical order of the interface
name, followed by interface commands that use the wildcard.

178 Customization and Administration

5. Any command for user type definitions, in alphabetical order of the user type
name, followed by user type commands that use the wildcard.

6. List commands in alphabetical order of definitions for forward mapping,
backward mapping, structure, interface, and user type.

Example control statements
The following example creates all user types, mapping definitions, and replaces
usertype UT1:
REPLACE USERTYPE UT1 // Replace existing UT1
CREATE USERTYPE * // Create all other usertypes

Appendix C. Program mapping import tool syntax 179

180 Customization and Administration

Appendix D. Naming and code page restrictions

MQSeries Workflow for z/OS exploits the iconv function set of the C/C++
Compiler on OS/390 by converting incoming messages to Unicode (UCS-2) and
then to the local code page. MQSeries Workflow for z/OS relies on the converters
available on the system and does not provide them as part of the product. See the
OS/390 C/C++ Programming Guide for a list of supported unicode converters. There
may be more converters available as PTF’s.

You should verify that the code pages installed on all cooperating MQSeries
Workflow platforms allow correct character conversion for all code points for a
message round-trip.

MQSeries Workflow for z/OS requires that certain naming restrictions are
followed.

Naming Buildtime objects
The names given to MQSeries Workflow for z/OS objects in the Buildtime should
conform to the rules for naming MQSeries objects. If you follow these rules, no
code page conversion problems should occur when you transfer the FDL file to the
host. Names should only contain the following characters:
v Uppercase A-Z
v Lowercase a-z
v Numerics 0-9
v Period (.)
v Forward slash (/)
v Underscore (_)
v Percent sign (%)
v Parentheses (())

If you use object names which do not conform to the rules for naming MQSeries
objects, your transfer method’s code page conversion may corrupt the FDL data
during the upload process. In this case you should upload your FDL file as a
binary image, and then use the tool described in “Appendix E. FDL code page
conversion tool” on page 183.

Restrictions for passwords in CICS
Passwords specified in the Log on API call from CICS programs must only include
characters contained in code page IBM-1047.

© Copyright IBM Corp. 1998, 2001 181

182 Customization and Administration

Appendix E. FDL code page conversion tool

If you have code page conversion problems when uploading your process model
information, you can upload the FDL file as a binary image and then use the tool
FMCH1CNV to convert the FDL file between particular source and target code pages.

Using the FDL code page conversion tool
In order to use this tool you have to transfer the FDL file as binary image to the
host. The FDL file should be stored in a data set that has a variable record format.
To use the fmch1cnv tool you should do the following:
1. Customize the JCL CustHLQ.SFMCCNTL(FMCHJCNV)

a. Specify the options the conversion tool should use, see “Options”.
b. Specify the input and output files using the predefined DD-names FMCCIMP

and FMCCEXP.
c. If you want to use a specific log file instead of SYSOUT, you should specify a

data set for the DD-name FMCCLOG.
2. Submit the JCL CustHLQ.SFMCCNTL(FMCHJCNV)

Options
You can start the conversion tool FMCH1CNV using the following options:

Option Argument Description

s source code page Name of the code set in which the input data is
encoded. If you omit this option, the code page used
is taken from the input file.

t target code page Name of the code set to which the output data is to
be converted. If you omit this option, the local code
page of your system determined at runtime is used.

Notes:

1. An equal sign (=), a comma (,), a colon (:), or a blank character can be used as
an option delimiter.

2. The predefined DD-names: FMCCIMP, FMCCEXP, and FMCCLOG must be used to
specify the input file, output file, and log file.

3. The record length of the output data set must have at least the same length as
the longest line of the FDL input file transferred to the host.

4. The FDL conversion tool writes information, warning, and error messages to
the log file that is specified by the DD-name FMCCLOG. By specifying //FMCCLOG
DD SYSOUT=* the messages are written to SYSOUT.

5. See the OS/390 C/C++ Programming Guide for a list of supported code set
converters.

6. By default, the conversion tool replaces all square brackets (’[’ and ’]’) with
parenthesis (’(’ and ’)’) during the conversion. If you have code page
conversion problems due to these replacement you can change the default
behaviour of the conversion tool by changing the environment variable
FMC_NO_BRACKET_REPLACE to any value you like. This variable is defined in the
server environment file CustHLQ.SFMCDATA(FMCHEENV).

© Copyright IBM Corp. 1998, 2001 183

Return codes
The FDL code page conversion tool can return the following return codes:

Table 77. FDL code page conversion tool’s return codes

Value Description

0 Successful execution

4 Warning

12 Error

16 Severe error

For non-zero return codes, see the SYSOUT messages or log file for more
information.

184 Customization and Administration

Appendix F. FDL import/export tool

Process model information is created in the Buildtime tool, and exported in FDL
file format. You must use the import/export tool to:
v Import process model information into the Workflow database.
v Translate and verify process model information that is stored in the Workflow

database.
v Export process model information from the Workflow database.

FDL import/export tool’s syntax
The following syntax diagram shows how to use the FMCH0IBA tool:

Import tool FMCH0IBA syntax

�� �FMCH0IBA
Logon
Import
Export

��

Logon:

-p = password
-u = userid

Import:

(1)
-i
-o
-t
-v

Export:

(2)
-e
-c = EntityManagingCommand

(3)
@

© Copyright IBM Corp. 1998, 2001 185

EntityManagingCommand:

�

″ EXPORT ObjectList ″
ObjectLevel (4)
ObjectServer DEEP

TRANSLATE PROCESS Name
VERIFY

ObjectList:

ORGANIZATION
PERSON
ROLE
PROCESS
PROCESS CATEGORY
PROGRAM
STRUCTURE
SYSTEM

(5)
DOMAIN
GROUP

(6)
PROGRAM_EXECUTION_AGENT

� Name
*

ObjectLevel:

LEVEL � integer
*

ObjectServer:

SERVER �

�

�

*

Name TYPE CLEANUP_SERVER
EXECUTION_SERVER
PROGRAM_EXECUTION_SERVER
SCHEDULING_SERVER
USER_DEFINED_PROGRAM_EXECUTION_SERVER

Notes:

1 When option i is selected, the file specified by the DD name FMCIIMP is
imported into the Workflow database.

186 Customization and Administration

2 When option e is selected, entities specified are exported from the Workflow
database to the file specified by the DD name FMCIEXP.

3 When a @ is specified after option c, the commands contained in the file
specified by the DD name FMCICMD are executed.

4 The DEEP option is only valid for EXPORT PROCESS. It means that all referenced
objects, for example, nested subprocesses, are exported to the output file.

5 To export the domain you only have to specify the key word DOMAIN without
specifying the name of the entity.

6 The name of the PROGRAM_EXECUTION_AGENT is the PersonName of the
RELATED_PERSON attribute.

v An equal sign (=), a comma (,), a colon (:), or a blank character can be used as
an option delimiter.

v You may specify any one of these options only once.
v Either option i or option c may be specified, but not both.
v You can use multiple words for option c enclosed in quotes, delimited by a

blank character (space).
v The predefined DD-names: FMCIIMP, FMCIEXP, FMCICMD, and FMCILOG must be used

to specify the import file, export file, command file, and log file.
v If you want to export entities with names that contain spaces, for example, for

an entity named ″Default Data Structure″, you must enclose the name using two
consecutive apostrophes —''Default Data Structure''.

Options for the import/export tool
You can start the import/export tool FMCH0IBA using the following options:

Option Argument Description

c ″Command string″ This accepts an entity command string in quotes (″). If
you specify an at sign (@) the import tool executes the
commands contained in the file specified by the
DD-name FMCICMD.

e Exports all workflow objects from your Workflow
database to the output file specified by the DD-name
FMCIEXP.

i Imports into the Workflow database the entities from
the import FDL file specified by the DD-name FMCIIMP.

o Overwrites an existing database entity, however, only in
import mode.

p password This is the password for the specified user ID.
t Translates and verifies a process model, however, only

in import mode.
u userid This is the log on user ID for Workflow.
v Verifies a process model.

Log file and errors
The import tool writes information, warning, and error messages to the log file
that is specified by the DD-name FMCILOG. By specifying //FMCILOG DD SYSOUT=*
the messages are written to SYSOUT.

If the import tool detects any errors when importing a file, you will receive a
non-zero return code.

Appendix F. FDL import/export tool 187

Return codes
The import/export tool can return the following return codes:

Table 78. FDL import/export tool’s return codes

Value Description
Effect of modifications to the

database

0 Successful execution
Any database modifications have
been completed.

1 Information

2 Warning

4 Validation error

The tool has made a rollback of the
transaction. The database remains
unchanged.

8 Syntax error

12 Error

16 Input error

20 Severe error

24 Internal error

Examples
The following examples show the use of different import, export and translate
options options and DD statements. The examples all start the import tool, log on
using the user ID uid and a password pwd:
//FMCHJRIF EXEC PROC=FMCHPBAT,PROGRAM=FMCH0IBA,
// PARM='ENVAR("_CEE_ENVFILE=DD:FMCHEENV")/options'
//*
//FMCIIMP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(FDL)
//FMCIEXP DD DISP=SHR,DSN=CustHLQ.SFMCDATA(OUT)
//FMCICMD DD DISP=SHR,DSN=CustHLQ.SFMCDATA(CMD)
//FMCILOG DD SYSOUT=*
//*

To import an FDL file
To import the FDL file that is specified by the DD name FMCIIMP, options should
have the value:
-u uid -p pwd -i -o

To import an FDL file and translate the contained process
models

To import the FDL file that is specified by the DD name FMCIIMP and translate the
imported process models, options should have the value:
-u uid -p pwd -i -o -t

To import an FDL file and write messages in a separate log
file

To import the FDL file that is specified by the DD name FMCIIMP and write all
information, warning, and error messages to the log file that is specified by the DD
name FMCILOG, options should have the value:
-u uid -p pwd -i -o

188 Customization and Administration

To export all workflow entities
To export the entities from the Workflow database to the output file specified by
the DD name FMCIEXP, options should have the value:
-u uid -p pwd -e

To export all people
To export the definitions for all persons from the Workflow database to the output
file specified by the DD name FMCIEXP, options should have the value:
-u uid -p pwd -e -c"EXPORT PERSON*"

To export individual people
To export the definitions for the people Eric and Tom from the Workflow database
to the output file specified by the DD name FMCIEXP, options should have the value:
-u uid -p pwd -e -c"EXPORT PERSON ''ERIC'' ''TOM''"

To export an individual process (deep)
To export the definitions for the process process1 and all nested subprocesses of
this process from the Workflow database to the output file specified by the DD
name FMCIEXP, options should have the value:
-u uid -p pwd -e -c"EXPORT PROCESS process1 DEEP"

To export Workflow entities using a command file
To export entities from the Workflow database to the file specified by the DD name
FMCIEXP, using the commands in the file that is specified by the DD name FMCICMD,
options should have the value:
-u uid -p pwd -e -c @

To translate existing models
To translate an existing process model in the MQSeries Workflow for z/OS runtime
database with the process name process1, options should have the value:
-u uid -p pwd -c "TRANSLATE PROCESS process1"

To translate existing process models using a command file
To translate the existing process models using the commands in the file that is
specified by the DD name FMCICMD, options should have the value:
-u uid -p pwd -c @

Appendix F. FDL import/export tool 189

190 Customization and Administration

Appendix G. Customization parameter files

There are three customization parameter files. During customization, you must
insert your own values for identifiers that are then automatically substituted in
customization jobs and templates that you require. The customization parameter
files are:
v “Customization parameter file for a primary system”
v “Customization parameter file for adding a system to a system group” on

page 195
v “Customization parameter file for a client on a queue manager” on page 198

Customization parameter file for a primary system
All the customization parameters for an MQSeries Workflow for z/OS primary
system are entered into the customization parameter file. Each time that you create
a new MQSeries Workflow for z/OS primary system in a new system group, you
must copy and complete this file. This is done during precustomization.

The customization parameter file template is CustHLQ.SFMCDATA(FMCHECIF).
During precustomization (in step 2 of the task “Create input files for
customization” on page 24) you will have to enter your system’s customization
parameters from the tables in “Chapter 2. Planning your configuration” on page 7.
The following steps then generate the jobs necessary to customize the Workflow
system that is defined in this file.

The template file contains the following:

*
* MQSeries Workflow for OS/390
*
* Customization Parameter File - for primary system
*
* The purpose of this file is to define the customization parameters
* for an MQWF primary system.
* It contains a list of key/value pairs which are used to tailor the
* customization jobs.
* These jobs as they are shipped with the product contain variables
* which must be replaced by the customer defined values.
*
* ---
* Handling Instructions:
* - Do not delete a line in this file
* - Lines starting with an asterisk are comment lines
* - All keys and values must be enclosed in quotes
* - The syntax of the key/value pairs is:
* 'key' = 'value' comment
* - Some of the keys below contain volume labels for disks.
* You can specify the volume label in the value field if you
* want to allocate a dataset on a specific disk.
* If you want SMS to allocate the file for you then you must
* specify NOVOLUME (which is the default). This will
* will lead to the deletion of the VOL=SER parameter in the jobs.
*

*--- Installation Scope Identifiers --------------------------------

© Copyright IBM Corp. 1998, 2001 191

* MQWF Customization High Level Qualifier
'MQWFCHLQ' = 'MQWFCHLQ'

*--- System Group Scope Identifiers --------------------------------

* MQWF Installation High Level Qualifier
'MQWFIHLQ' = 'MQWFIHLQ'

* MQWF System Group Name
'MQWFSGNM' = 'MQWFSGNM'

* MQWF System Prefix
'MQWFSYSP' = 'MQWFSYSP'

* MQ-Series Cluster Name
'MQWFCLST' = 'MQWFCLST'

* MQWF System Group Locale
'MQWFSGLC' = 'MQWFSGLC'

* DB2 Sample Load Library
'DB2SMPRL' = 'DB2SMPRL'

* DB2 Sample DBRM Library
'DB2SMPDL' = 'DB2SMPDL'

* DB2 System Group Prefix
'DB2SGPRE' = 'DB2SGPRE'

* DB2 Storage Group Name
'DB2STGNW' = 'DB2STGNW'

* DB2 Data Storage Group Dataset Prefix
'DB2STGPW' = 'DB2STGPW'

* DB2 Data Storage Group Volume Set
'DB2STGVW' = 'DB2STGVW'

* volume name or
* '*' for SMS managed volumes

* DB2 Audit Storage Group Name
'DB2STGNA' = 'DB2STGNA'

* DB2 Audit Storage Group Dataset Prefix
'DB2STGPA' = 'DB2STGPA'

* DB2 Audit Storage Group Volume Set
'DB2STGVA' = 'DB2STGVA'

* volume name or
* '*' for SMS managed volumes

* DB2 Workflow Database Name
'DB2DBNAM' = 'DB2DBNAM'

* DB2 PES Mapping Database Name
'DB2MDBNM' = 'DB2MDBNM'

* DB2 PES Directory Database Name
'DB2PDBNM' = 'DB2PDBNM'

* DB2 Workflow Database Collection Name
'DB2DBCOL' = 'DB2DBCOL'

* DB2 PES Mapping Database Collection Name
'DB2MDCOL' = 'DB2MDCOL'

* DB2 PES Directory Database Collection Name

192 Customization and Administration

'DB2PDCOL' = 'DB2PDCOL'

* DB2 Plan Name
'DB2PLANN' = 'DB2PLANN'

*--- System Scope Identifiers -------------------------------------

* MQWF Unique System Key
'MQWFUKEY' = 'MQWFUKEY'

* MQWF Configuration Key
'MQWFCFGK' = 'MQWFCFGK'

* MQWF System Name
'MQWFSYSN' = 'MQWFSYSN'

* MQWF Server Started Task RACF UserId
'STTSKUID' = 'STTSKUID'

* MQWF Server Started Task RACF GroupId
'STTSKGRP' = 'STTSKGRP'

* CTRACE Component Name
'CTRCNAME' = 'CTRCNAME'

* TRACE Writer Start Procedure Name
'TRCWPRC' = 'TRCWPRC'

* TRACE Writer Stop Procedure Name
'TRCSPRC' = 'TRCSPRC'

* ARM Restart Policy Name
'ARMPOLNM' = 'ARMPOLNM'

* ARM Restart Element Name Suffix
'ARMRESFX' = 'ARMRESFX'

* WLM Application Environment Name for MQWF Execution Server (EXE)
'WLMAEEXE' = 'WLMAEEXE'

* WLM Application Environment Name for MQWF Program Exe Server (PES)
'WLMAEPES' = 'WLMAEPES'

* MQ-Series Cluster Namelist Name
'MQCLNAME' = 'MQCLNAME'

* MQSeries Queue Manager Name
'MQQMNAME' = 'MQQMNAME'

* MQ Host Name - TCP/IP Address of the OS/390 system where
* the MQSeries Queue Manager resides
'STCPADDR' = 'STCPADDR'

* TCP/IP Port of the MQSeries Queue Manager (default is port 1414)
'STCPPORT' = 'STCPPORT'

*--- Flags and High Level Qualifiers ------------------------------

* CICS Flag

* (Used to control whether to include a CICS installation library
* into the steplib concatenation of the jcl procedures. One of the
* following two lines must be commented out with a '*'. If CICS
* is not installed the parameter CICSLPFX must not be customized.)

* if CICS is Installed

Appendix G. Customization parameter files 193

'CICSFL ' = ' '

* if CICS is NOT Installed
'CICSFL ' = ' '

* CICS Installation High Level Qualifier
'CICSLPFX' = 'CICSLPFX'

* DB2 Installation High Level Qualifier
'DB2INHLQ' = 'DB2INHLQ'

* MQSeries Installation High Level Qualifier
'MQPREFIX' = 'MQPREFIX'

* Language Environment High Level Qualifier
'LELIBPFX' = 'LELIBPFX'

* C/C++ Installation High Level Qualifier
'CLIBRPFX' = 'CLIBRPFX'

* Cobol Installation High Level Qualifier
'CBLIBPFX' = 'CBLIBPFX'

* IMS Installation High Level Qualifier
'IMSLIBPX' = 'IMSLIBPX'

* ICONV Installation High Level Qualifier
'ICONVPFX' = 'ICONVPFX'

* IPCS Installation High Level Qualifier
'IPCSPRFX' = 'IPCSPRFX'

* XML Tool Kit Flag

* (Used to control whether to include an XML installation library
* into the steplib concatenation of the jcl procedures. One of the
* following two lines must be commented out with a '*'.
* If the XML Tool Kit is not installed the parameter
* XMLTKPFX must not be customized.)

* if XML Tool Kit is installed
*'XMLTFL' = ' '

* if CICS is NOT Installed
'XMLTFL' = '* '

* XML Tool Kit Installation High Level Qualifier
'XMLTKPFX' = 'XMLTKPFX'

*--- Subsystem Identifiers --

* DB2 Subsystem Name
'DB2SSYSN' = 'DB2SSYSN'

* CICS Group Name
'CICSGRPN' = 'CICSGRPN'

*--- Volume Parameters --
* The following variables are used in various jobs to specify
* the disk volumes for datasets to be allocated.
* If SMS is to be used , leave the following lines unchanged,
* otherwise, change these lines to comments.
* The variables must then be changed manually in the relevant job.

'CICSVOL' = '*'
'VOLUME ' = 'NOVOLUME'

194 Customization and Administration

Customization parameter file for adding a system to a system group
All the customization parameters for adding a new system to an existing system
group are entered into the customization parameter file
CustHLQ.SFMCDATA(FMCHECSY). It contains the following:

*
* MQSeries Workflow for OS/390
*
* Customization Parameter File - for an additional system
*
* The purpose of this file is to define the customization parameters
* for an additional MQWF system.
* It contains a list of key/value pairs which are used to tailor the
* customization jobs.
* These jobs as they are shipped with the product contain variables
* which must be replaced by the customer defined values.
*
* ---
* Handling Instructions:
* - Do not delete a line in this file
* - Lines starting with an asterisk are comment lines
* - All keys and values must be enclosed in quotes
* - The syntax of the key/value pairs is:
* 'key' = 'value' comment
* - Some of the keys below contain volume labels for disks.
* You can specify the volume label in the value field if you
* want to allocate a dataset on a specific disk.
* If you want SMS to allocate the file for you then you must
* specify NOVOLUME (which is the default). This will
* will lead to the deletion of the VOL=SER parameter in the jobs.
*

*--- Installation Scope Identifiers --------------------------------

* MQWF Installation High Level Qualifier
*'MQWFIHLQ' = '<MQWFIHLQ>' primary system value
'MQWFIHLQ' = 'MQWFIHLQ'

*--- System Group Scope Identifiers --------------------------------

* MQWF Customization High Level Qualifier
'MQWFCHLQ' = 'MQWFCHLQ'

* MQWF System Group Name
'MQWFSGNM' = '<MQWFSGNM>'

* MQWF Primary System Name of System Group <MQWFSGNM>
'MQWFPSYN' = '<MQWFSYSN>'

* MQWF System Prefix
'MQWFSYSP' = '<MQWFSYSP>'

* MQ-Series Cluster Name
'MQWFCLST' = '<MQWFCLST>'

* MQWF System Group Locale
'MQWFSGLC' = '<MQWFSGLC>'

* DB2 Sample Load Library
*'DB2SMPRL' = '<DB2SMPRL>' primary system value
'DB2SMPRL' = 'DB2SMPRL'

* DB2 Sample DBRM Library
*'DB2SMPDL' = '<DB2SMPDL>' primary system value

Appendix G. Customization parameter files 195

'DB2SMPDL' = 'DB2SMPDL'

* DB2 System Group Prefix
'DB2SGPRE' = '<DB2SGPRE>'

* DB2 Storage Group Name
'DB2STGNW' = '<DB2STGNW>'

* DB2 Data Storage Group Dataset Prefix
'DB2STGPW' = '<DB2STGPW>'

* DB2 Data Storage Group Volume Set
'DB2STGVW' = '<DB2STGVW>'

* volume name or
* '*' for SMS managed volumes

* DB2 Audit Storage Group Name
'DB2STGNA' = '<DB2STGNA>'

* DB2 Audit Storage Group Dataset Prefix
'DB2STGPA' = '<DB2STGPA>'

* DB2 Audit Storage Group Volume Set
'DB2STGVA' = '<DB2STGVA>'

* volume name or
* '*' for SMS managed volumes

* DB2 Workflow Database Name
'DB2DBNAM' = '<DB2DBNAM>'

* DB2 PES Mapping Database Name
'DB2MDBNM' = '<DB2MDBNM>'

* DB2 PES Directory Database Name
'DB2PDBNM' = '<DB2PDBNM>'

* DB2 Workflow Database Collection Name
'DB2DBCOL' = '<DB2DBCOL>'

* DB2 PES Mapping Database Collection Name
'DB2MDCOL' = '<DB2MDCOL>'

* DB2 PES Directory Database Collection Name
'DB2PDCOL' = '<DB2PDCOL>'

* DB2 Plan Name
'DB2PLANN' = '<DB2PLANN>'

*--- System Scope Identifiers -------------------------------------

* MQWF Unique System Key
'MQWFUKEY' = 'MQWFUKEY'

* MQWF Configuration Key
'MQWFCFGK' = 'MQWFCFGK'

* MQWF System Name
'MQWFSYSN' = 'MQWFSYSN'

* MQWF System Identifier
'MQWFSYID' = 'MQWFSYID'

* MQWF Server Started Task RACF UserId
'STTSKUID' = 'STTSKUID'

* MQWF Server Started Task RACF GroupId
'STTSKGRP' = 'STTSKGRP'

196 Customization and Administration

* CTRACE Component Name
'CTRCNAME' = 'CTRCNAME'

* TRACE Writer Start Procedure Name
'TRCWPRC' = 'TRCWPRC'

* TRACE Writer Stop Procedure Name
'TRCSPRC' = 'TRCSPRC'

* ARM Restart Policy Name
'ARMPOLNM' = 'ARMPOLNM'

* ARM Restart Element Name Suffix
'ARMRESFX' = 'ARMRESFX'

* WLM Application Environment Name for MQWF Execution Server (EXE)
'WLMAEEXE' = 'WLMAEEXE'

* WLM Application Environment Name for MQWF Program Exe Server (PES)
'WLMAEPES' = 'WLMAEPES'

* MQ-Series Cluster Namelist Name
'MQCLNAME' = 'MQCLNAME'

* MQSeries Queue Manager Name
'MQQMNAME' = 'MQQMNAME'

* MQ Host Name - TCP/IP Address of the OS/390 system where
* the MQSeries Queue Manager resides
'STCPADDR' = 'STCPADDR'

* TCP/IP Port of the MQSeries Queue Manager (default is port 1414)
'STCPPORT' = 'STCPPORT'

*--- Flags and High Level Qualifiers ------------------------------

* CICS Flag

* (Used to control whether to include a CICS installation library
* into the steplib concatenation of the jcl procedures. One of the
* following two lines must be commented out with a '*'. If CICS
* is not installed the parameter CICSLPFX must not be customized.)

* if CICS is Installed
'CICSFL ' = ' '

* if CICS is NOT Installed
'CICSFL ' = ' '

* CICS Installation High Level Qualifier
*'CICSLPFX' = '<CICSLPFX>' primary system value
'CICSLPFX' = 'CICSLPFX'

* DB2 Installation High Level Qualifier
*'DB2INHLQ' = '<DB2INHLQ>' primary system value
'DB2INHLQ' = 'DB2INHLQ'

* MQSeries Installation High Level Qualifier
*'MQPREFIX' = '<MQPREFIX>' primary system value
'MQPREFIX' = 'MQPREFIX'

* Language Environment High Level Qualifier
*'LELIBPFX' = '<LELIBPFX>' primary system value
'LELIBPFX' = 'LELIBPFX'

Appendix G. Customization parameter files 197

* C/C++ Installation High Level Qualifier
*'CLIBRPFX' = '<CLIBRPFX>' primary system value
'CLIBRPFX' = 'CLIBRPFX'

* Cobol Installation High Level Qualifier
*'CBLIBPFX' = '<CBLIBPFX>' primary system value
'CBLIBPFX' = 'CBLIBPFX'

* IMS Installation High Level Qualifier
*'IMSLIBPX' = '<IMSLIBPX>' primary system value
'IMSLIBPX' = 'IMSLIBPX'

* ICONV Installation High Level Qualifier
*'ICONVPFX' = '<ICONVPFX>' primary system value
'ICONVPFX' = 'ICONVPFX'

* IPCS Installation High Level Qualifier
*'IPCSPRFX' = '<IPCSPRFX>' primary system value
'IPCSPRFX' = 'IPCSPRFX'

*--- Subsystem Identifiers --

* DB2 Subsystem Name
'DB2SSYSN' = 'DB2SSYSN'

* CICS Group Name
*'CICSGRPN' = '<CICSGRPN>' primary system value
'CICSGRPN' = 'CICSGRPN'

*--- Volume Parameters --
* The following variables are used in various jobs to specify
* the disk volumes for datasets to be allocated.
* If SMS is to be used , leave the following lines unchanged,
* otherwise, change these lines to comments.
* The variables must then be changed manually in the relevant job.

'CICSVOL' = '*'
'VOLUME ' = 'NOVOLUME'

Customization parameter file for a client on a queue manager
All the customization parameters for adding a new client on a queue manager are
entered into the customization parameter file CustHLQ.SFMCDATA(FMCHECCL), it
contains the following:

*
* MQSeries Workflow for z/OS
*
* Customization Parameter File - for client
*
* The purpose of this file is to define the customization parameters
* for a new MQWF client.
* It contains a list of key/value pairs which are used to tailor the
* customization jobs.
* These jobs as they are shipped with the product contain variables
* which must be replaced by the customer defined values.
*
* ---
* Handling Instructions:
* - Do not delete a line in this file
* - Lines starting with an asterisk are comment lines
* - All keys and values must be enclosed in quotes
* - The syntax of the key/value pairs is:
* 'key' = 'value' comment
*

198 Customization and Administration

*--- Installation Scope Identifiers --------------------------------
* These parameters are changed during the System Customization
* (two phase cutomization: system , client)

* MQWF Installation High Level Qualifier
'MQWFIHLQ' = '<MQWFIHLQ>'

* MQWF System Customization High Level Qualifier
'MQWFCHLQ' = '<MQWFCHLQ>'

*--- Client Scope Identifiers --------------------------------------

* MQWF Client Customization High Level Qualifier
'CLNTCHLQ' = 'CLNTCHLQ'

* MQWF Client Configuration Key
'CLNTCFGK' = 'CLNTCFGK'

* MQSeries Client Queue Manager Name
'CLQMNAME' = 'CLQMNAME'

* MQ Host Name - TCP/IP Address of the OS/390 system where
* the MQSeries Queue Manager resides
'CTCPADDR' = 'CTCPADDR'

* TCP/IP Port of the MQSeries Queue Manager (default is port 1414)
'CTCPPORT' = 'CTCPPORT'

* CICS Group Name
'CICSGRPC' = 'CICSGRPC'

* CICS Installation High Level Qualifier
* CICSLPFX = '<CICSLPFX>' used for system customization
'CICSLPFX' = 'CICSLPFX'

Appendix G. Customization parameter files 199

200 Customization and Administration

Appendix H. Configuration profiles

There are two configuration profiles, these are:
v “Server configuration profile”
v “Client configuration profile” on page 203

Server configuration profile
Each MQSeries Workflow for z/OS system has a configuration profile in
CustHLQ.SFMCDATA(FMCHEMPR). This profile contains system settings that affect the
operation of MQSeries Workflow for z/OS servers and tools. Some of the values
are substituted automatically during customization, these must not be changed.
Changes made to the configuration profile will affect new server instances and
tools that are started. If you want the changes to affect all running server instances
then you must restart the system as described in “Restarting the system” on
page 89.

Table 79. Server configuration profile settings

Variable
Value may

be changed? Description

System No This value should be your value for System in Table 3 on page 11. This value is
substituted from the customization parameter file, see “Customization parameter
file for a primary system” on page 191.

SystemGroup No This value should be your value for SystemGroup in Table 2 on page 10. This value
is substituted from the customization parameter file, see “Customization parameter
file for a primary system” on page 191.

DatabaseName No This value should be your value for WorkflowDatabaseName in Table 2 on page 10.
This value is substituted from the customization parameter file, see
“Customization parameter file for a primary system” on page 191.

DbPlan No This value should be your value for DB2Plan in Table 2 on page 10. This value is
substituted from the customization parameter file, see “Customization parameter
file for a primary system” on page 191.

DbSubSystem No This value should be your value for DB2SubSystem in Table 5 on page 14. This
value is substituted from the customization parameter file, see “Customization
parameter file for a primary system” on page 191.

ExecutionServer
OperationMode

No For future use.

APITimeOut Tune
carefully

API time-out in milliseconds.

FMLConnectName No QueueManager and Workflow context.

FMLConnect
DelayTime

Tune
carefully

Interval in milliseconds to wait between consecutive retries to reconnect to the
QueueManager.

FMC_TRACE_
CRITERIA

Yes Determines the level of trace detail provided by newly started servers or tools.
Valid values are between 0,0000,00000000 (no trace) and 3,FFFF,FFFFFFFF (full
trace). For more information about the trace variables, see “MQSeries Workflow
trace variables” on page 139.

FMC_SIMPLE_
TRACE_ONLY

Yes Activates simple tracing in newly started servers, clients and tools. For servers,
valid values are YES or NO. For clients and tools, only the value YES is meaningful.
For more information about the trace variables, see “MQSeries Workflow trace
variables” on page 139.

© Copyright IBM Corp. 1998, 2001 201

Table 79. Server configuration profile settings (continued)

Variable
Value may

be changed? Description

FMC_TRACE_
BUFFER_SIZE

Yes This determines the size of the trace buffers in each server. The default value is
256 KB. Changes to this variable only take effect after the server is restarted. For
more information about the trace variables, see “MQSeries Workflow trace
variables” on page 139.

FMC_TRACE_
FILE_SIZE

Yes This determines how much trace information will be written to each data set
before starting writing to the next one. The default value is 5 MB. The value of this
variable must not be larger than the size of the trace data sets. For more
information about the trace variables, see “MQSeries Workflow trace variables” on
page 139.

FMC_REFRESH_
COUNT_FOR_
TRACE_ CRITERIA

Yes Determines how often the trace options are refreshed. The default value is every
50 transactions. Setting this to zero disables the refreshing. For more information
about the trace variables, see “MQSeries Workflow trace variables” on page 139.

FMC_NUMBER
_OF_TRACE
_FILES

Yes Determines how many data sets the external trace writer will attempt to write to
before starting to overwrite the first data set. The default value is 3. For more
information about the trace variables, see “MQSeries Workflow trace variables” on
page 139.

Language Yes The three letter language code selects which language version of the MMS
messages the servers will send to the OS/390 system console. Valid values are:

ENU For mixed-case U.S. English. This is the default value.

ENP For uppercase U.S. English. This option may be required if you are using
a double-byte character set.

If other languages become available in the future, they will be found as
InstHLQ.SFMCMSG(FMCHMxxx), where xxx is the language code.

AdminSvrsPerAS No The maximum number of administration servers that will be started per address
space is one.

ClnupSvrsPerAS No The maximum number of cleanup servers that will be started per address space is
one.

DistSvrsPerAS No For future use.

ExeSvrsPerAS Tune
carefully

The maximum number of execution servers that will be started per address space.
Initially, the server start job does not allow more than eight, for more information
on changing this value, see “Changing the number of server instances per address
space” on page 123.

GwySvrsPerAS No For future use.

ModelSvrsPerAS No For future use.

PESvrsPerAS Tune
carefully

The maximum number of program execution servers that will be started per
address space. Initially, the server start job does not allow more than eight, for
more information on changing this value, see“Changing the number of server
instances per address space” on page 123.

SchedSvrsPerAS No The maximum number of scheduling servers that will be started per address space
is one.

ServerStartProc No This identifies the server start procedure.

WaitBetweenQ
InhibitAnd
Allowed

Tune
carefully

Determines how many seconds a server queue is disabled for by the server stop
command. “Do your transactions take longer than 30 seconds?” on page 130
describes a situation when you may wish to change this value.

PESDirectory
InCache

Yes Determines whether the PES directory contents are cached at runtime. Valid values
are 0 (zero) for no caching, or 1 (one) to enable caching. The default is no caching.
For more details about this option, see “Caching the PES directory at runtime” on
page 110.

202 Customization and Administration

After customization, your configuration profile will look like the following, with
your values from “Chapter 2. Planning your configuration” on page 7 automatically
substituted for the identifiers shown in angled brackets (’<...>’):
**
*
* Description: MQ WorkFlow server configuration profile.
*
**
*
Configuration.<MQWFCFGK>.System:<MQWFSYSN>
Configuration.<MQWFCFGK>.SystemGroup:<MQWFSGNM>
Configuration.<MQWFCFGK>.RTDatabase:<DB2DBNAM>
Configuration.<MQWFCFGK>.DbPlan:<DB2PLANN>
Configuration.<MQWFCFGK>.DbSubSystem:<DB2SSYSN>
Configuration.<MQWFCFGK>.RTExecutionServerOperationMode:Standalone
Configuration.<MQWFCFGK>.FMLConnectName:<MQWFSYSP>.<MQWFSGNM>.<MQWFSYSN>,<MQQMNAME>
Configuration.<MQWFCFGK>.FMC_TRACE_CRITERIA:0,0000,00000000
Configuration.<MQWFCFGK>.Language:ENU
Configuration.<MQWFCFGK>.AdminSvrsPerAS:1
Configuration.<MQWFCFGK>.ClnupSvrsPerAS:1
Configuration.<MQWFCFGK>.DistSvrsPerAS:1
Configuration.<MQWFCFGK>.ExeSvrsPerAS:5
Configuration.<MQWFCFGK>.GwySvrsPerAS:1
Configuration.<MQWFCFGK>.ModelSvrsPerAS:1
Configuration.<MQWFCFGK>.PESvrsPerAS:5
Configuration.<MQWFCFGK>.SchedSvrsPerAS:1
Configuration.<MQWFCFGK>.ServerStartProc:<MQWFUKEY>
Configuration.<MQWFCFGK>.WaitBetweenQInhibitAndAllowed:30

Client configuration profile
Each MQSeries Workflow for z/OS system has a client configuration profile in
CustHLQ.SFMCDATA(FMCHECPR). Some of the values are substituted automatically
during customization, these must not be changed.

Table 80. Client configuration profile settings

Variable
Value may

be changed? Description

System No This value should be your value for System in Table 3 on page 11. This value is
substituted from the customization parameter file, see “Customization parameter
file for a primary system” on page 191.

SystemGroup No This value should be your value for SystemGroup in Table 2 on page 10. This value
is substituted from the customization parameter file, see “Customization parameter
file for a primary system” on page 191.

DatabaseName No This value should be your value for WorkflowDatabaseName in Table 2 on page 10.
This value is substituted from the customization parameter file, see
“Customization parameter file for a primary system” on page 191.

DbPlan No This value should be your value for DB2Plan in Table 2 on page 10. This value is
substituted from the customization parameter file, see “Customization parameter
file for a primary system” on page 191.

DbSubSystem No This value should be your value for DB2SubSystem in Table 5 on page 14. This
value is substituted from the customization parameter file, see “Customization
parameter file for a primary system” on page 191.

ExecutionServer
OperationMode

No For future use.

APITimeOut Tune
carefully

API time-out in milliseconds.

FMLConnectName No QueueManager and Workflow context.

Appendix H. Configuration profiles 203

Table 80. Client configuration profile settings (continued)

Variable
Value may

be changed? Description

FMLConnect
DelayTime

Tune
carefully

Interval in milliseconds to wait between consecutive retries to reconnect to the
QueueManager.

FMC_TRACE_
CRITERIA

Yes Determines the level of trace detail provided by newly started servers or tools.
Valid values are between 0,0000,00000000 (no trace) and 3,FFFF,FFFFFFFF (full
trace). For more information, see “MQSeries Workflow trace variables” on
page 139.

FMC_SIMPLE_TRACE_ONLYYes Activates simple tracing in newly started servers, clients and tools. For servers,
valid values are YES or NO. For clients and tools, only the value YES is meaningful.
For more information, see “MQSeries Workflow trace variables” on page 139.

Language Yes The three letter language code selects which language version of the MMS
messages the servers will send to the OS/390 system console. Valid values are:

ENU For mixed-case U.S. English. This is the default value.

ENP For uppercase U.S. English. This option may be required if you are using
a double-byte character set.

If other languages become available in the future, they will be found as
InstHLQ.SFMCMSG(FMCHMxxx), where xxx is the language code.

AdminSvrsPerAS No The maximum number of administration servers that will be started per address
space is one.

ClnupSvrsPerAS No The maximum number of cleanup servers that will be started per address space is
one.

DistSvrsPerAS No For future use.

ExeSvrsPerAS Tune
carefully

The maximum number of execution servers that will be started per address space.
For more information, see“Changing the number of server instances per address
space” on page 123.

GwySvrsPerAS No For future use.

ModelSvrsPerAS No For future use.

PESvrsPerAS Tune
carefully

The maximum number of program execution servers that will be started per
address space. For more information, see“Changing the number of server instances
per address space” on page 123.

SchedSvrsPerAS No The maximum number of scheduling servers that will be started per address space
is one.

ServerStartProc No This identifies the server start procedure.

WaitBetweenQ
InhibitAnd
Allowed

Tune
carefully

Determines how many seconds a server queue is disabled for by the server stop
command. “Do your transactions take longer than 30 seconds?” on page 130
describes a situation when you may wish to change this value.

PESDirectory
InCache

Yes Determines whether the PES directory contents are cached at runtime. Valid values
are 0 (zero) for no caching, or 1 (one) to enable caching. The default is no caching.
For more details about this option, see “Caching the PES directory at runtime” on
page 110.

The client configuration profile contains the following before your customization
values are automatically substituted:
**
*
* Description: MQ WorkFlow client configuration profile.
*
**
*
Configuration.<MQWFCFGK>.System:<MQWFSYSN>

204 Customization and Administration

Configuration.<MQWFCFGK>.SystemGroup:<MQWFSGNM>
Configuration.<MQWFCFGK>.APITimeOut:180000
Configuration.<MQWFCFGK>.FMLConnectName:<MQWFSYSP>.<MQWFSGNM>.<MQWFSYSN>,<MQQMNAME>
Configuration.<MQWFCFGK>.FMLConnectDelayTime:30
Configuration.<MQWFCFGK>.FMLSegmentation:0
Configuration.<MQWFCFGK>.FMC_TRACE_CRITERIA:00,0000,00000000
Configuration.<MQWFCFGK>.Language:ENU

Appendix H. Configuration profiles 205

206 Customization and Administration

Appendix I. Environment variable files

There are two environment profiles, these are:
v “Server environment variable file”
v “Client environment file”

Server environment variable file
Each MQSeries Workflow for z/OS system has a server environment variable file
in CustHLQ.SFMCDATA(FMCHEENV). This file contains system settings that affect the
operation of MQSeries Workflow for z/OS servers and tools. Some of the values
are substituted automatically during customization, these must not be changed.
Changes made to the environment variable file will affect new server instances and
tools that are started. If you want the changes to affect all running server instances
then you must restart the system as described in “Restarting the system” on
page 89.

Table 81. Server environment variable file settings

Variable
Value may be

changed? Description

_ICONV_UCS2_PREFIX No Your value for ICONVInstHLQ in Table 4 on page 13.

LC_ALL No Selects the code page to be used by the Workflow servers and tools.
This is set to your value for SystemGroupLocale, see Table 2 on
page 10 for more details.

FMC_CURRENT_CONFIG No

FMC_DEFAULT_
CONFIGURATION

No

FMC_ELAPSED_TIME No This must be set to YES.

FMC_IENV No This must be set to 1.

Before customization, your server customization file contains the following:
_ICONV_UCS2_PREFIX=<ICONVPFX>
LC_ALL=<MQWFSGLC>
FMC_CURRENT_CONFIG=<MQWFCFGK>
FMC_DEFAULT_CONFIGURATION=<MQWFCFGK>
FMC_ELAPSED_TIME=YES
FMC_IENV=1

Client environment file
Each MQSeries Workflow for z/OS system has a client environment variable file in
CustHLQ.SFMCDATA(FMCHECEV). This file contains system settings that affect the
operation of MQSeries Workflow for z/OS clients. Some of the values are
substituted automatically during customization, these must not be changed.

Table 82. Client environment variable file settings

Variable
Value may be

changed? Description

_ICONV_UCS2_PREFIX No Your value for ICONVInstHLQ in Table 4 on page 13.

© Copyright IBM Corp. 1998, 2001 207

Table 82. Client environment variable file settings (continued)

Variable
Value may be

changed? Description

LC_ALL No Selects the code page to be used by the Workflow servers and tools.
This is set to your value for SystemGroupLocale, see Table 2 on
page 10 for more details.

FMC_SIMPLE_TRACE_ONLY Yes Activates simple tracing in newly started servers and tools. Valid
values are YES or NO. For more information, see “MQSeries Workflow
trace variables” on page 139.

FMC_CURRENT_CONFIG No

FMC_DEFAULT_
CONFIGURATION

No

FMC_ELAPSED_TIME No This must be set to YES.

FMC_IENV No This must be set to 1.

Before customization, your client customization file contains the following:
_ICONV_UCS2_PREFIX=<ICONVPFX>
LC_ALL=<MQWFSGLC>
FMC_SIMPLE_TRACE_ONLY=NO
FMC_CURRENT_CONFIG=<CLNTCFGK>
FMC_DEFAULT_CONFIGURATION=<CLNTCFGK>
FMC_ELAPSED_TIME=YES
FMC_IENV=1

208 Customization and Administration

Appendix J. WLM message classification

Each Workflow message contains a header, known as the Work Information
Header (WIH). This header contains the classification information for WLM. When
work arrives on the Workflow server input queue, some information about this
request is communicated to WLM. WLM assigns the request to a service class. At
that point in time, it has a specific response time goal, and can be managed
towards this goal. The WIH header is only created by workflow clients or servers
that send messages to other workflow servers and it is only read by the MQSeries
queue manager in order to classify the work for WLM. WIH-fields will be empty
in messages that are sent to clients. The fields of the WIH that contain the relevant
classification information are MQWIH_ServiceStep (described in Table 83) and
MQWIH_ServiceName (described in Table 84).

Message classification namespace
The MQWIH_ServiceStep field contains the static message classification information
this identifies the message type. The message type is structured in three hierarchy
layers. This hierarchy allows you to specify both generic groupings (using a prefix
plus ’*’) and single message types.

Table 83. MQWIH_ServiceStep field definition

Name (Position,
Length)

Description Example

Prefix (1 , 3) Each message type starts with a fixed prefix (FMC). FMCEPICS

Class Type (4 , 1) The class type specifies the kind of request, e.g. Process
Execution (E), or a Query (Q).

FMCEPICS

Object Type (5 , 2) The object type classifies the Workflow object type, e.g. Process
Model (PM), Process Template (PT) or Process Instance (PI).

FMCEPICS

Action Type (7 , 2) The action type specifies the specific action executed to satisfy
the Workflow request, e.g. CreateAndStart (CS) or TErminate
(TE).

FMCEPICS

The information in the MQWIH_ServiceStep field is passed to WLM in the 8-byte
work qualifier TRANSACTION NAME (TN). For a complete list of all MQSeries
Workflow Server Messages and their classifications see “Static Workflow message
classification” on page 210.

Program Execution Server invocation information
The 32 byte MQWIH_ServiceName field only contains information for an
InvokeProgram message sent to the Program Execution Server. Its value is passed to
WLM in a new 32-byte work qualifier PROCESS NAME (PC).

Table 84. MQWIH_ServiceName field definition

Name (Position,
Length)

Description Example

PES Name (1 , 8) The PES name is the name of the PES server instance. In the
current release this is the fixed value PESERVER.

″PESERVER″

Reserved (9, 4) These four bytes are reserved.

© Copyright IBM Corp. 1998, 2001 209

Table 84. MQWIH_ServiceName field definition (continued)

Name (Position,
Length)

Description Example

Priority (13, 4) The priority value contains to the activity extensions (except
block activities). Valid entries are the numbers 0000 thru 9999.
The value can be specified explicitly or obtained from a
member of the input container of the activity. The value is
always represented by four characters. In the FDL file, this
value is represented by the keyword PRIORITY.

″0001″

PES Invocation
Type

(17, 8) This defines the logical name of the invocation type that is used
to invoke the program. In the FDL file, this value is represented
by the keyword INVOCATION_TYPE in the OS/390 EXTERNAL
section.

″EXCI ″

PES Service (25, 8) The service name is the logical name of the service system
where the program is executed. This value is defined by the
FDL keyword SERVICE in the OS/390 EXTERNAL section.

″CICSEXCI″

Static Workflow message classification
The tables below contains all MQSeries Workflow Server Messages sent to the
MQSeries Workflow for z/OS Execution Server and Program Execution Server, and
the related message classification information in the MQWIH_ServiceStep field. This
information is used by WLM to identify the service class for each request:

Table 85. MQSeries Workflow server message types

Message Type Described in

Process Template Table 86 on page 211

Process Template List Table 87 on page 211

Process Table 88 on page 211

Process InstList Table 89 on page 211

Work Item Table 90 on page 212

Activity Table 91 on page 212

User Information Table 92 on page 213

Process Monitor Table 93 on page 213

WorkList Table 94 on page 213

PEA/PES-Server Table 95 on page 213

PEA/PES Reply Table 96 on page 213

Scheduling Table 97 on page 214

SubProcess Table 98 on page 214

Internal Server Table 99 on page 214

For each message type there is a unique MQWIH_ServiceStep field value constructed
from the product prefix FMC plus the characters marked in bold typeface which
indicate the class type, object type, and action type.

210 Customization and Administration

Process Template messages
Table 86. Process Template messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

DelProcTempl FMCXPTDL X (other action) Process Template DeLete

QryProcTempl FMCGPTPR Get (property access) Process Template PRoperties

QryProcessTemplates FMCQPTMU Query Process Template MUltiple

QryProcTemplInpCtnr FMCQPTCT Query Process Template ConTainer

Process Template List messages
Table 87. Process Template List messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

QryProcTemplLists FMCQLTMU Query List Template MUltiple

QryProcTemplListData FMCGLTPR Get (property access) List Template PRoperties

CreateProcTemplList FMCXLTCR X (other action) List Template CReate

ChgProcTemplList FMCXLTCH X (other action) List Template CHange

DelProcTemplList FMCXLTDL X (other action) List Template DeLete

Process messages
Table 88. Process messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

ChgProcInstDesc FMCXPICD X (other action) Process Instance Change Description

ChgProcInstName FMCXPICN X (other action) Process Instance Change Name

CreateProcInst FMCEPICR Execute process Process Instance CReate

CreateStartProcInst FMCEPICS Execute process Process Instance Create and Start

DelProcInst FMCXPIDL X (other action) Process Instance DeLete

QryProcInst FMCGPIPR Get (property access) Process Instance PRoperties

QryProcInstCtnr FMCGPICT Get (property access) Process Instance ConTainer

QryProcessInstances FMCQPIMU Query Process Instance MUltiple

ResumeProcInst FMCXPIRE X (other action) Process Instance REsume

StartProcInst FMCEPIST Execute process Process Instance STart

SuspendProcInst FMCXPISU X (other action) Process Instance SUspend

TermProcInst FMCXPITE X (other action) Process Instance TErminate

Process InstList messages
Table 89. Process InstList messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

QryProcInstLists FMCQLPMU Query List Process MUltiple

QryProcInstListData FMCGLPPR Get (property access) List Process PRoperties

CreateProcInstList FMCXLPCR X (other action) List Process CReate

ChgProcInstList FMCXLPCH X (other action) List Process CHange

Appendix J. WLM message classification 211

Table 89. Process InstList messages (continued)

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

DelProcInstList FMCXLPDL X (other action) List Process DeLete

Work Item messages
Table 90. Work Item messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

CancelCheckout
WorkItem

FMCXWICC X (other action) Work Item Cancel Checkout

CheckinWorkItem FMCEWICI Execute process Work Item CheckIn

CheckoutWorkItem FMCEWICO Execute process Work Item CheckOut

ChgWorkItemDesc FMCXWICD X (other action) Work Item Change Description

ChgWorkItemName FMCXWICN X (other action) Work Item Change Name

DelWorkItem FMCXWIDL X (other action) Work Item DeLete

FinishWorkItem FMCXWIMF X (other action) Work Item Manual Finish

ForceFinishWorkItem FMCXWIFF X (other action) Work Item Force Finish

ForceRestartWorkItem FMCXWIFR X (other action) Work Item Force Restart

PutWorkItemOffHold FMCXWIPF X (other action) Work Item Put oFf hold

PutWorkItemOnHold FMCXWIPN X (other action) Work Item Put oN hold

QryWorkItem FMCGWIPR Query Work Item PRoperties

QryWorkItemCtnr FMCGWICT Query Work Item ConTainer

QryWorkItems FMCQWIMU Query Work Item MUltiple

RestartWorkItem FMCXWIMR X (other action) Work Item Manual Restart

StartSupportTool FMCXWISS X (other action) Work Item Start Support tool

StartWorkItem FMCEWIST Execute process Work Item STart

TerminateWorkItem FMCXWITE X (other action) Work Item TErminate

TransferWorkItem FMCXWITR X (other action) Work Item TRansfer

Activity messages
Table 91. Activity messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

CancelCheckOutAct FMCXAICC X (other action) Activity Instance Cancel Checkout

ForceFinishAct FMCXAIFF X (other action) Activity Instance Force Finish

ForceRestartAct FMCXAIFR X (other action) Activity Instance Force Restart

RescheduleAct FMCXAIRS X (other action) Activity Instance ReSchedule

TransferAct FMCXAITR X (other action) Activity Instance TRansfer

212 Customization and Administration

User Information messages
Table 92. User Information messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

ChgSubstitute FMCXUSCU X (other action) USer Change sUbstitute

QryUserDetails FMCGUSPR Query USer PRoperties

ChgAbsence FMCXUSCA X (other action) USer Change Absence

Process Monitor messages
Table 93. Process Monitor messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

QryProcInstStatus FMCQPISA Query Process Instance StAtus

QryActCtnr FMCQAICT Query Activity Instance ConTainer

WorkList messages
Table 94. WorkList messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

QryWorkLists FMCQLWMU Query List Work MUltiple

QryWorkListData FMCGLWPR Get (property access) List Work PRoperties

CreateWorkList FMCXLWCR X (other action) List Work CReate

ChgWorkList FMCXLWCH X (other action) List Work CHange

DelWorkList FMCXLWDL X (other action) List Work DeLete

CheckoutNext
WorkItem

FMCELWCO Execute process List Work CheckOut

CheckinNext
WorkItem

FMCELWCI Execute process List Work CheckIn

StartNextWorkItem FMCELWST Execute process List Work STart

PEA/PES Server messages
Table 95. PEA-Server messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

InvokeProgram FMCIPGST Invoke program ProGram STart

ActivityExpired FMCXAIAE X (other action) Activity Instance Activity Expiration

PEA/PES Reply messages
Table 96. PEA Reply messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

ProgramError FMCEPGER Execute Process ProGram ERorr

ProgramFinished FMCEPGFI Execute Process ProGram FInished

Appendix J. WLM message classification 213

Scheduling messages
Table 97. Scheduling messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

CleanupProcInst FMCSPICL Intra-Server Process Instance CLeanup

CleanupWIs FMCSWICL Intra-Server Work Item CLeanup

AutoResumeProcess FMCSPIAR Intra-Server Process Instance Auto Resume

CheckNotifItems FMCSXXCE Intra-Server XX (other) ChEck notifItems

Create Notifications FMCSXXCF Intra-Server XX (other) Create notiFications

Expiration
Notifications

FMCSXXCF Intra-Server XX (other) Expiration
Notificatons

SubProcess messages
Table 98. SubProcess messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

CreateStartSub
ProcInst

FMCSPSCS Intra-Server ProcessSub Create and Start

SuspendSubProcInst FMCSPSSU Intra-Server ProcessSub SUspend

ResumeSubProcInst FMCSPSRE Intra-Server ProcessSub REsume

TermSubProcInst FMCSPSTE Intra-Server ProcessSub TErminate

DelSubProcInst FMCSPSDL Intra-Server ProcessSub DeLete

SubProcInstError FMCSPSER Intra-Server ProcessSub ERorr

SubProcInstFinished FMCSPSFI Intra-Server ProcessSub FInished

Internal Server messages
Table 99. Internal Server messages

Message Type MQWIH_ServiceStep Class Type Object Type Action Type

ChndTxnUpdate
WorkItems

FMCSWIUD Intra-Server Work Item UpDate

PhysDelProcInst FMCSPIPD Intra-Server Process Instance Physical Delete

ChndTxnDel
WorkItems

FMCSWIDL Intra-Server Work Item DeLete

214 Customization and Administration

Appendix K. Nesting WLM classification information

All work qualifiers must be from one to 8 characters long. They are treated as 8
character names in the classification rules. For 32-byte MQWIH_ServiceName value
passed in the 32-byte work qualifier PROCESS NAME (PC) you can use a start position
to indicate how far to index into the character string. Because WLM allows only
eight characters per rule, you can nest the PC work qualifier within themselves.

The example below shows the classification rules for the MQ subsystem using the PC
work qualifier. You can classify with more than the allowed 8 characters by nesting
service name information. In the example, all MQSeries Workflow work with
service name information ’0009EXCI’ starting in position 13 for 8 characters and
’CICSEXCI’ starting in position 25 for 8 characters is associated with service class
PES_SC.

Using the masking notation percent character (’%’) allows you to replace a single
character within the qualifier. This allows any character to match the position in
the rule. Using the wild card notation asterisk character (’*’) allows you to replace
multiple characters in a character string. The asterisk used in the example indicates
a match for all characters starting in position 21 for 4 characters.

Subsystem-Type Xref Notes Options Help
--

Modify Rules for the Subsystem Type Row 1 to 2 of 2
Command ===> __ SCROLL ===> PAGE

Subsystem Type . : MQ Fold qualifier names? Y (Y or N)
Description . . . Use Modify to enter YOUR rules

Action codes: A=After C=Copy M=Move I=Insert rule
B=Before D=Delete row R=Repeat IS=Insert Sub-rule

More ===>
-------Qualifier------------- -------Class--------

Action Type Name Start Service Report
DEFAULTS: DEF_SC

____ 1 PC %%%%0009 9
____ 2 PC EXCI* 17
____ 3 PC CICSEXCI 25 PES_SC

Figure 30. Example of nesting WLM classification information

© Copyright IBM Corp. 1998, 2001 215

216 Customization and Administration

Appendix L. Error reporting

This appendix describe the following error reporting formats:
v “Error log record entries”
v “System log record entries” on page 218
v “Compact error reports” on page 218

Error log record entries
The error log contains records that are created for every occurrence of an error. The
layout of error log records held in the error log is described below:

Table 100. Error log record entries

Name Description

Object ID Uniquely identifies an error report created by the administration server.

Creation time The time and date the error log entry was created in the database.

System name The system name. Taken from system settings by the administration server.

System group name The system group name of which the system is a member. Taken from system
settings by the administration server.

Version number The MQSeries Workflow version number.

Release number The MQSeries Workflow release number.

Modification level number The MQSeries Workflow modification level number.

Service pack (optional) The MQSeries Workflow service pack level.

Component ID The MQSeries Workflow component that has reported the error.

Component name The MQSeries Workflow component that caused, or is related to this error.

Platform Integer indicating the operating system platform on which the reporting
MQSeries Workflow component is executing:

1. OS/2

2. AIX(R)

3. Windows 3.1

4. Windows NT

5. Windows 95

6. HP

7. Sun

8. OS/390

9. AS/400

Note: Not all these platforms are currently supported.

Exception type (optional) Value of the thrown MQSeries Workflow exception.

System log ID Identifier of the corresponding system log message entry. For a description of
these entries, see “System log record entries” on page 218.

Message type (optional) Identifier of the MQSeries Workflow message related to this event.

Detection time The date and time that the error was detected.

Error file (optional) Identifies the file within an MQSeries Workflow component where the error
was detected.

© Copyright IBM Corp. 1998, 2001 217

Table 100. Error log record entries (continued)

Name Description

Error line (optional) Identifies the line in the file within an MQSeries Workflow component where
the error was detected.

Error description Summary of the error in the form of an exception notice.

System log record entries
System log records are created for all system events sent or received by the
administration server. The layout of system log records is described below.

Table 101. System log record entries

Name Description

Object ID Uniquely identifies each system log entry.

Creation time Specifies the time when the system log entry was created in the database.

System name The system name.

System group Contains the system group name of which the system is a member.

Message number Identifier of the MQSeries Workflow system log message. It is coded
description of the event that occurred.

Severity Identifies the severity associated with the message:
0 (I): Information
4 (W): Warning
8 (E): Error

Message class Identifies the class to which this message belongs:
SERVER — Server events
USER — User events
SYSTEM — System events
PEA — Program execution agent events
MQ — Message queuing events
DB — Database events

Event identifier (optional) A string used to group the entries into related events. This could be a server
name, a session ID, or a user defined string.

Message type (optional) Identifier of the MQSeries Workflow message related to this event.

Error flag If this flag is set to true, it indicates that error information has been written to
the error log.

Server kind (optional) If the message belongs to the class SERVER, this entry Identifies the server type
for which the system log entry was created. Otherwise it contains NULL.

Server state (optional) Identifies the server’s state when the system log entry was created if the
message belongs to the class SERVER. Otherwise it contains NULL.

UserID (optional) If set, the name of the user whose request caused the syslog entry.

Exception (optional) Contains the enumeration value for the exception thrown by an MQSeries
Workflow component.

Message parameters (optional) Contains additional parameters which are used to replace real message text.

Compact error reports
If an error can not be reported to the administration server, a compact error report
is written to the error data set FMCERRxx of the server instance concerned. The
following shows how a typical compact error reports may appear:

218 Customization and Administration

+---+
| MQSeries Workflow 3.3 Error Report
|
|
|Report creation = 12/15/00 02:50:42 PM
|FmcExtException, MsgID=12120, MsgParam=ADMINSVR, S1, SG34, , , , , ,
|Origin=File=FMC.A321COG1.CXX#(FMCAARR), Line=641,
|Function=FmcAdminReqRouter::InitExtensions()
|RRSAF return code: 12; SQL reason code: f30093
|
+---+

Appendix L. Error reporting 219

220 Customization and Administration

Appendix M. Audit Trail

This chapter describes the audit trail and the command-line application used to
clean up records from the audit trail held in the MQSeries Workflow database.

What is the audit trail?
When a process instance is executed, MQSeries Workflow writes information about
each significant event into an audit trail. The audit trail is managed in the
MQSeries Workflow relational database.

Whether an audit trail is written at all, and if so, how much is written into the
audit trail, is controlled by the AUDIT_TO_DB or the AUDIT_TO_MQ option of
the process instance. The AUDIT_TO_DB option replaces the previously used
AUDIT option. With the AUDIT_TO_MQ option, you can write audit events as
XML messages to an MQSeries queue.

The audit options are set during Buildtime and can take any one of the following
values:

Audit trail OFF
Specifies that an audit trail is not created when an instance of the process
runs.

Audit trail Condensed
Specifies that only important event information, for example, who issued
terminate and resume requests for an activity instance, is written to the
audit trail.

Audit trail Full
Specifies that all audit information for an event is written to the audit trail.

Audit trail Filter
Specifies which audit event information is written. You can specify these
events by entering a string of audit event numbers, as listed in Table 103
on page 223.

For further information regarding the AUDIT option and how to set it, refer to the
IBM MQSeries Workflow: Getting Started with Buildtime book.

Audit trail specifications are inherited from the domain level of MQSeries
Workflow through the system group to the system and down to the process
template. Each specification can be overwritten on a lower level.

The events are written into the audit trail of the MQSeries Workflow system on
which the process instance was started.

Process instances are identified by the process instance name or the process
instance identifier. Both are written into the audit trail. Object identifiers are stored
in their external character format.

Applications that use standard SQL can be written to access the audit trail. Care
must be taken to avoid any unintentional changes to the audit trail.

© Copyright IBM Corp. 1998, 2001 221

Each audit trail record is associated with a timestamp. This timestamp reflects the
date and time the audit trail record was written. As such, it is filled by the
underlying relational database management system. Since it is not guaranteed that
all timestamps are unique, the sequence in which audit trail records with the same
timestamp are retrieved is random.

Table 102 shows the structure of the audit trail in the relational database:

Table 102. Audit trail record layout

Field Name Column name of table
fmc.audit_trail

Type Explanation

Timestamp CREATED TIMESTAMP
Mandatory

Date and time the audit trail record is
written.

Event EVENT INTEGER Mandatory Type of event as indicated in
Table 103 on page 223.

Process Name PROCESS_NAME VARCHAR (63)
Mandatory

Name of the process instance.

Process Identifier PROCESS_ID IDENTIFIER
Mandatory

Object identifier of the process
instance.

Top-level Name TOP_LVL_PROC_NAME VARCHAR (63)
Mandatory

Name of the top-level process instance
if the process instance is executing as
subprocess, or the same as in process
name if the process instance is a
top-level process instance.

Top-level Identifier TOP_LVL_PROC_ID IDENTIFIER
Mandatory

Object identifier of the top-level
process instance if the process is
executing as subprocess, or the same
as in process identifier if the process
instance is a top-level process
instance.

Parent Process Name PARENT_PROC_NAME VARCHAR (63)
Optional

Name of the parent process instance if
the process instance is executing as a
subprocess.

Parent Process
Identifier

PARENT_PROC_ID IDENTIFIER Optional Object identifier of the parent process
instance if the process instance is
executing as a subprocess.

Process Model Name PROC_TEMPL_NAME VARCHAR(32)
Mandatory

Name of the process model.

Process Model Valid
from Date

TEMPL_VALID_FROM TIMESTAMP Optional The date the associated process model
becomes valid.

Block Names BLOCK_NAMES VARCHAR(254)
Optional

The concatenated names of all blocks
in which the activity is contained in.
The various names are separated by a
dot.

User ID USER_NAME VARCHAR(32)
Optional

ID of the user associated with the
event that caused the audit trail to be
written. If the audit trail record is
written by the MQSeries Workflow
system, this field is not filled.

Second user ID SECOND_USER_NAME VARCHAR(32)
Optional

ID of the second user associated with
the event that caused the audit trail to
be written.

222 Customization and Administration

Table 102. Audit trail record layout (continued)

Field Name Column name of table
fmc.audit_trail

Type Explanation

Activity Name ACTIVITY_NAME VARCHAR(32)
Optional

If the audit trail entry is associated
with an activity, the field contains the
name of the activity. If the audit trail
entry is associated with a control
connector, the field contains the name
of the activity that is the source of the
control connector.

Activity Type ACTIVITY_TYPE INTEGER Optional If the audit trail record is written for
an activity, the field contains the type
of the activity as defined in Table 104
on page 226.

Activity Status ACTIVITY_STATE INTEGER Optional If the audit trail record is written for
an event associated with an activity,
the field contains the status of the
activity encoded as shown in
Table 105 on page 226.

Second Activity Name SECOND_ACT_NAME VARCHAR(32)
Optional

If the audit trail is written for an
event associated with a control
connector, the field contains the name
of the target activity.

Command Parameters COMMAND_
PARAMETERS

VARCHAR(1024)
Optional

If the event is the start of a program
activity, the field contains the actual
parameters passed when invoking the
program.

Associated Object ASSOCIATED_OBJECT IDENTIFIER Optional Contains the identifier of the object
associated with the event. Can be
used to locate the object in the
MQSeries Workflow database.

Object Description OBJECT_DESCRIPTION VARCHAR(254)
Optional

Contains the description of the object
associated with the event.

Program Name PROGRAM_NAME VARCHAR(32)
Optional

If the event is the start of a program
activity, the field contains the name of
the program.

Activity Return Code ACTIVITY_RC LONG Optional Return code of the activity.

The contents of each audit trail record depends on the event. Table 103 shows the
contents of each field.

The audit trail level field indicates which events are written to the audit trail when
either full or condensed audit trailing is active. If full audit trailing is active, all
audit trail records are written. If condensed audit trailing is active, only the events
listed with C are written.

Table 103. Audit trail record contents

Code Audit
Trail
Level

User ID Second User ID Associated object Event

21000 C Process starter Process instance Process started

21001 Issuer of suspend
command

Process instance Process suspended

Appendix M. Audit Trail 223

Table 103. Audit trail record contents (continued)

Code Audit
Trail
Level

User ID Second User ID Associated object Event

21002 Issuer of resume
command

Process instance Process resumed

21003 Process instance Process notification sent

21004 C Process instance Process ended normally

21005 C Process instance Process terminated

21006 C Activity instance Activity ready

21007 C User on whose behalf
the activity is started

Activity instance Activity started

21008 Activity instance First activity notification
sent

21009 Target of transfer Source of transfer Work item Work item transferred

21010 User for whom work
item is created

Work item Work item created

21011 C User on whose behalf
the activity was
executed

Activity instance Activity ended normally

21012 C Issuer of force-finish
command

Activity instance Activity force-finished

21013 Issuer of restart
command

Activity instance Activity restarted

21014 C Issuer of finish
command

Activity instance Activity exited manually

21015 Block started

21016 Block ended

21017 Issuer of create
command

Process instance Process created

21018 C Issuer of create and
start command

Process instance Process created and started

21019 Issuer of restart
command

Process instance Process restarted

21020 Issuer of delete
command

Process instance Process deleted

21021 C Issuer of cancel
checkout command

. Activity instance Checkout of activity
canceled

21022 C Issuer of checkout
command

Activity instance Checkout activity

21023 Issuer of checkin
command

Activity instance Checkin activity

21024 Activity instance Second notification for
activity sent

21025 C Process instance Process ended normally and
deleted

21026 C Issuer of terminate
command

Process instance Process terminated and
deleted

224 Customization and Administration

Table 103. Audit trail record contents (continued)

Code Audit
Trail
Level

User ID Second User ID Associated object Event

21027 C Issuer of terminate
command

Activity Instance Activity terminated

21028 C Issuer of create with
start time command

Process instance Process created with future
start time

21030 Issuer of delete work
item command

Owner of work item Work item Work item deleted

21031 C Issuer of force restart
work item command

Activity instance Activity force restarted

21032 User on whose behalf
the activity was
executed

Activity instance Activity implementation
completed

21034 Control connector evaluated
to true

21037 C Issuer of suspend
command

Process instance The specified user has
issued a suspend process
command.

21038 C Issuer of terminate
process command

Process instance The specified user has
issued a terminate process
command.

21039 C Issuer of execute
command

Process instance The specified user has
issued an execute command.

21040 C Issuer of resume
command

Process instance The specified user has
issued a resume process
command.

21041 User who has
processed the activity

Activity instance Activity automatically
restarted as exit condition
evaluated to false.

21044 C Issuer of terminate
activity request

Activity instance The specified user has
issued a terminate process
activity command.

21052 C Issuer of import
request

Process instance Process instance imported

21053 C Issuer of import
request

Activity instance Activity instance imported

21056 Process instance Block ended and loop back
to the beginning because the
exit condition failed.

21080 C Activity instance Activity state is set to
inError as the activity
imlementation failed.

21081 C Activity instance Activity expired

Appendix M. Audit Trail 225

The following table shows the encoding for activity types.

Table 104. Audit trail activity type encoding

Code Activity Type

21100 Program activity

21101 Process activity

21102 Block activity

21103 Information activity

21104 Bundle activity

The following table shows the encoding for activity states. If an event is associated
with a state change, the target state is recorded in the audit trail record.

Table 105. Audit trail activity state encoding

Code Activity State

21200 Ready

21201 Running

21202 Finished

21203 CheckedOut

21204 Force-Finished

21205 Terminated

21206 Suspended

21207 InError

21208 Executed

21209 Skipped

21210 Deleted

21211 Suspending

21212 Terminating

21213 Expired

How to analyze the audit trail
All information about the audit trail is stored in the DB2 relational database table
fmc.audit_trail. For a detailed desription of the audit trail structure, refer to
Table 102 on page 222.

There are several SQL queries you can perform to analyze the audit trail. To
perform these queries, you need a DB2 client that can access the MQ Workflow
database as, for example, the administration server.

To analyze the audit trail you can use SPUFI on S/390 or a DB2 client (DRDA) on
the distributed side that is connected to the DB2 subsystem on the host.

To establish a connection with the MQ Workflow database, enter the following
command:

db2 connect to name where name is the name of your database.

226 Customization and Administration

When you have established the database connection, you can run any query for
the specified database to get the information you need. Following you find several
examples for queries that can be helpful for analyzing the audit trail.

The following query provides information about which process models have been
executed and how often they have been executed:
SELECT PROC_TEMPL_NAME, COUNT(*) AS COUNT

FROM SystemGroupPrefix.AUDIT_TRAIL
WHERE EVENT IN (21000, 21018)
GROUP BY PROC_TEMPL_NAME
WITH UR;

The following query provides information about which programs have been
executed and how often they have been executed.
SELECT PROGRAM_NAME, COUNT(*) AS COUNT

FROM SystemGroupPrefix.AUDIT_TRAIL
WHERE EVENT = 21007

AND PROGRAM_NAME IS NOT NULL
GROUP BY PROGRAM_NAME
WITH UR;

The following query provides information about the number of work items created
within a specific time frame. In the example, the query returns all work items that
were created in January 2000.
SELECT COUNT(*) AS COUNT

FROM SystemGroupPrefix.AUDIT_TRAIL
WHERE EVENT = 21010

AND CREATED BETWEEN '2000-01-01-00.00.00.000000'
AND '2000-01-31-23.59.59.999999'
WITH UR;

The following query requires FULL audit trail. It provides information about which
blocks have been restarted and how often they have been restarted.
SELECT PROC_TEMPL_NAME, BLOCK_NAMES, COUNT(*) AS COUNT

FROM SystemGroupPrefix.AUDIT_TRAIL
WHERE EVENT = 21056
GROUP BY PROC_TEMPL_NAME, BLOCK_NAMES
WITH UR;

To end the connection with the database, enter the following command:

db2 disconnect name where name is the name of your database.

Appendix M. Audit Trail 227

228 Customization and Administration

Appendix N. Migrating from a previous release

If you want to migrate from Version 3.1, contact the Workflow service team.

In order to migrate your existing MQSeries Workflow for OS/390 Version 3.2
systems, you must create new MQSeries Workflow for z/OS systems and migrate
the Runtime database. Therefore some of the steps executed during the creation of
a new system will also be performed in order to migrate your existing systems.
Before starting to migrate your existing MQSeries Workflow for z/OS systems, you
shold plan your MQSeries Workflow for z/OS identifiers.

Note: In this chapter, the term existing system (or installation) refers to the
Version 3.2 installation that you want to migrate from. The term new system
(or installation) refers to the Version 3.3 installation you want to create.

Planning your migration
If you have more than one system group, you should migrate one system group
completely before you start to migrate the next system group. To migrate a system
group, you will keep your existing database, and will install and configure new
systems to replace the existing systems in your system group. The following
instructions often refer you to the standard customization descriptions in “Part 1.
Customization” on page 1.

Since the Runtime database belongs to a system group, you must migrate all the
systems in a system group during the production outage time for the system
group.

Migrating an existing MQSeries Workflow for OS/390 system group requires the
following steps:
1. “Decide your new MQSeries Workflow for z/OS identifiers” on page 230
2. “Before starting migration” on page 231, which includes:

a. Checking that you have the prerequisites and authorities to be able to
perform migration.

b. Install the new release of MQSeries Workflow for z/OS as described in the
MQSeries Workflow for z/OS: Program Directory using a new InstHLQ.

3. “Phase 1: Existing system group is functional” on page 232, consists of:
a. “Premigration for each system in the system group” on page 232

4. “Phase 2: Production outage” on page 233, consists of:
a. “Stop your existing system group” on page 233
b. “Migrate each OS/390 image” on page 234
c. “Migrate the databases for the system group” on page 234
d. “Migrate and verify each system in the system group” on page 235

5. “Phase 3: New system group is functional (except program execution)” on
page 235, consists of:
a. “Program execution migration for each system in the system group” on

page 235
6. “Phase 4: New system group is fully-functional” on page 235, consists of:

a. “LAN client migration (optional)” on page 235

© Copyright IBM Corp. 1998, 2001 229

Decide your new MQSeries Workflow for z/OS identifiers
You will use SMP/E to install the product into the libraries image from the tape to
the location that is specified by the MQSeries Workflow for z/OS installation high
level qualifier InstHLQ. Each time that you want to migrate an existing MQSeries
Workflow for OS/390 system you must specify a new customization high level
qualifier CustHLQ. It determines where the new MQSeries Workflow for z/OS
system-specific files are copied and customized.

Many identifiers are taken from your existing MQSeries Workflow for OS/390
setup. You only have to plan the identifiers listed in Table 106.

Migration identifiers for each Workflow system
The following identifiers are required for migrating from an existing MQSeries
Workflow for OS/390 system. You shold copy and complete this table for each
MQSeries Workflow for OS/390 system you want to migrate. Some of the
identifiers decided here will be entered into the customization parameter file, and
will be automatically substituted in the customization jobs.

Table 106. Migration identifiers for each Workflow system

Parameter Your value

Name in the
migration

parameter files Description

InstHLQ MQWFIHLQ MQSeries Workflow for z/OS installation high level
qualifier. This qualifier is determined when the
product image is installed from tape, this is described
in MQSeries Workflow for z/OS: Program Directory.
Note: This should be different to the installation
HLQ for your existing installation.

OldCustHLQ MQWFMHLQ The data set containing the MQSeries Workflow for
OS/390 customization parameter file FMCHECIF for
your existing system that is to be migrated.
Note: This is normally the CustHLQ for your existing
system.

CustHLQ MQWFCHLQ The high level qualifier for the new MQSeries
Workflow for z/OS system you want to customize.
This should be different to the customization HLQ
for your existing installation.

CICSGroup CICSGRPN CICS group name used for program execution server
invocation.
Note: If you want to use the same CICS system for
your new MQSeries Workflow for z/OS system, you
must choose a group name that is different from the
one you used for your existing MQSeries Workflow
for OS/390 system.

ISPFHLQ — ISPF installation high level qualifier.

ISPFLAN — ISPF language, for example, ENU for U.S. English.

DB2BPIDX — DB2 buffer pool name for the new indexes that will
be created during the migration of an existing
MQSeries Workflow for OS/390 system group.

230 Customization and Administration

Before starting migration
On each system in the system group that you want to migrate, ensure the
following:
1. You have OS/390 Version 2.7 or higher installed.
2. You have MQSeries for OS/390 Version 2.1 or higher installed, and you will

be using the same queue manager in the same MQSeries cluster.
3. You have DB2 for OS/390 Version 5.1 or higher installed, and you will be

using the same subsystem and databases as for your existing system.
4. To perform migration, you must have DB2 SYSADM rights.
5. You should have configured the DB2 for OS/390 CLI support (FMID JOB5517)

as described in DB2 for OS/390 V5 Call Level Interface Guide and Reference.
6. IBM Resource Access Control Facility (RACF) authority to alter the MQSeries

Workflow for z/OS installation data sets, and the right to create MQSeries
objects.

Note: This manual assumes that you are using RACF for your security. If you
are using a different security system, you must apply the equivalent
security access controls for your system.

7. RACF authority to alter PROCLIB and PARMLIB.
8. Install the new release of MQSeries Workflow for z/OS as described in the

MQSeries Workflow for z/OS: Program Directory using the new InstHLQ.
9. Perform “After installing MQSeries Workflow for z/OS” on page 19, for each

OS/390 image.
10. The load library InstHLQ.SFMCLINK must be Advanced Program Facility (APF)

authorized.
11. You should have configured the Resource Recovery Service (RRS) as described

in OS/390 MVS Programming: Resource Recovery.

Migrate an existing MQSeries Workflow for OS/390 system group
This section describes the migration tasks necessary to migrate an existing
MQSeries Workflow for OS/390 Version 3.2 system group to Version 3.3. To
migrate a system group, you must migrate the Runtime database, and create new
systems to replace the existing systems.

Migration phases
The complete migration of a system group can be divided into four time frames:

Phase 1: Existing system group is functional
Some migration actions can be performed while your existing system
group remains functional.

Phase 2: Production outage
When neither your existing systems nor your new systems are functional.
During this phase, you migrate the system group’s databases, and migrate
and verify all the systems in the system group. During this phase you can
switch back to the old system group by restoring the old database.

Note: You must not run non-migrated servers with the migrated database.

Phase 3: New system group is functional (except program execution)
When the new system is functional, but you are not able to invoke CICS

Appendix N. Migrating from a previous release 231

and/or IMS programs. During this phase, you enable the CICS and IMS
APIs, and verify the program execution migration.

Phase 4: New system group is fully-functional
When the new system group is fully-functional, you can start to migrate
your LAN clients.

Phase 1: Existing system group is functional
You can perform “Premigration for each system in the system group” while your
existing system group is still running.

Premigration for each system in the system group
Before starting the migration, you must perform the premigration tasks, described
in Table 107, for each system in the system group.

These tasks create the necessary libraries, and resources, and copy files from the
installation image (InstHLQ) to the location for the new system that is to be
customized (CustHLQ). Some configuration parameter values are also copied from
the configuration parameter file for your existing system (OldCustHLQ) to
automatically generate the migration jobs.

Table 107. Premigration for each system in the system group

Step
number Description Action Verification

1 Allocate data sets. Perform the actions described in “Data set allocation” on page 23.

2 Copy customization
templates.

1. Copy the JCL
InstHLQ.SFMCCNTL(FMCHJCCT) to a
private partitioned data set.

2. Edit your copy of FMCHJCCT as
described in the comment header.

3. Submit your copy of FMCHJCCT.

rc=0.

3 Precustomize the
customization parameter
file with some of the
values from the existing
system that you want to
migrate.

1. Copy the job CustHLQ.SFMCCNTL (FMCHJCUM) to a private partioned data
set.

2. Edit your copy of FMCHJCUM as described in the comment header.
Note: This job will read values from your existing configuration
parameter file OldCustHLQ.SFMCDATA(FMCHECIF).

3. Submit your copy of FMCHJCUM.

4. Check the job output (step IKJEFT01 / DD statement SYSTSPRT) for error
messages.

This program replaces a subset of the customization parameter of the
member CustHLQ.SFMCDATA(FMCHECIF) with the values that were defined for
your existing system.
Note: All customization parameters which are replaced in this step are
marked with the uppercase character ’C’. The following is an example for the
system group parameter after replacing with the value SG1:

'MQWFSGNM' ='SG1'C

232 Customization and Administration

Table 107. Premigration for each system in the system group (continued)

Step
number Description Action Verification

4 Edit the customization
parameter file.

Edit the customization parameter template member
CustHLQ.SFMCDATA(FMCHECIF), and enter your values from the tables in
“Planning your migration” on page 229, as described in the comment sections
of the file.
Note: Some of the parameters were already replaced with values from your
existing system during the previous step, these are marked with the
uppercase character ’C’. This file is described in “Customization parameter
file for a primary system” on page 191. From now on, this member will
contain your customization parameters. This member is used as an input file
for the generation process in the next step.

5 Generate all the jobs
necessary to customize
this system.

1. Copy the job CustHLQ.SFMCCNTL(FMCHJCUS) to a private partitioned data
set.

2. Edit your copy of FMCHJCUS as described in the comment header.
Note: This job will read values from your new configuration parameter
file CustHLQ.SFMCDATA(FMCHECIF).

3. Submit your copy of FMCHJCUS.

4. Check the job output (step IKJEFT01 / DD statement SYSTSPRT) for error
messages.

The program performs some syntax checking on the length and value of the
variables you specified in the file CustHLQ.SFMCDATA(FMCHECIF). The program
then substitutes your values for variables in the customization files. Some
PROCLIB and PARMLIB members are also copied with new names to the library
CustHLQ.GENPROC and CustHLQ.GENPARM.

6 Define the new MQSeries
resources.

Submit the job
CustHLQ.SFMCCNTL(FMCHJMMQ)

rc=0

7 Update resources for
trace.

Perform the actions described in “Trace customization” on page 30.

When you have completed this stage, the JCL files that are required in the
following sections will contain all the customization parameters that you decided
in “Planning your migration” on page 229, and any that are taken from your
existing system.

Phase 2: Production outage
During the production outage phase, you must perform the following tasks:
1. “Stop your existing system group”
2. “Migrate each OS/390 image” on page 234
3. “Migrate the databases for the system group” on page 234
4. “Migrate and verify each system in the system group” on page 235

Stop your existing system group
This phase starts by stopping all MQSeries Workflow for OS/390 components, as
described in Table 108 on page 234.

Appendix N. Migrating from a previous release 233

Table 108. Stop your existing system group

Step
number Description Action

1 Stop clients and servers. 1. Stop all clients that are connected to MQSeries Workflow for OS/390
systems in the system group.

2. Verify that the queues used by MQSeries Workflow for OS/390 systems
are empty.
Note: You can tell this from the current queue depth field.

3. Use the administration console to stop all MQSeries Workflow for OS/390
systems in the system group.

Migrate each OS/390 image
Table 109 describes how to migrate the MMS message catalog and component
trace. This must be done for each OS/390 image affected by the migration.

Table 109. Migrate each OS/390 image

Step
number Description Action

1 Deactivate the old MMS
catalog.

Enter the command:

SET MMS=no

2 Update the MVS Message
Services (MMS) message
catalog.

Perform the actions described in “Create the MMS message catalogs” on
page 19.

3 Enable the TRACE system
address space to access
the new MQSeries
Workflow start/stop exit
routine.

Concatenate the MQSeries Workflow for z/OS LPA library InstHLQ.SFMCLPA
to your LPA library concatenation list.

Migrate the databases for the system group
To migrate the existing databases for a system group, you must perform the
actions described in Table 110, using the CustHLQ value for your primary system.

Table 110. Migrate the databases for the system group

Step
number Description Action Verification

1 Back up the Workflow
databases.

Make a back up of your existing Workflow databases by exporting the DDL
and unloading the tables from the MQSeries Workflow for OS/390 databases.

2 Migrate the Workflow
Runtime database.

To migrate your existing Workflow
Runtime database:

1. Edit the JCL CustHLQ.SFMCCNTL
(FMCHJMDC) as described in the
comment header.

2. Submit the JCL CustHLQ.SFMCCNTL
(FMCHJMDC)

rc=0.

This program performs the complete
migration including schemata
changes and necessary changes to the
database content.

3 Bind the new Workflow
Runtime database
packages.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBDB).

rc=4 can be accepted.

4 Bind the new PES
directory database
packages.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBPD).
Note: The contents of the PES
directory will be migrated.

rc=0.

234 Customization and Administration

Table 110. Migrate the databases for the system group (continued)

Step
number Description Action Verification

5 Bind the new PES
mapping database
packages.

Submit JCL
CustHLQ.SFMCCNTL(FMCHJBMA).

rc=0.

Migrate and verify each system in the system group
To migrate and verify each system, perform the actions described in Table 111 for
each system in the system group.

Table 111. Migrate and verify each system in the system group

Step
number Description Action

1 Migrate the system. Perform the actions described in “Workflow server customization” on
page 33.

2 Verify the system. “System customization verification” on page 40.

Phase 3: New system group is functional (except program
execution)

In this phase, you perform the program execution migration.

Program execution migration for each system in the system
group
You must migrate and verify the program execution for each system in the system
group, as described in Table 112.

Table 112. Program execution migration for each system

Step
number Description Action

1 Enable CICS API support. If the system uses the CICS API, perform the actions described in “CICS API
support customization” on page 31.

2 Enable IMS API support
(make Workflow DLLs
available to IMS).

If the system uses the IMS API, make sure that all members
InstHLQ.SFMCLOAD(FMCH3xxx) (with the prefix ″FMCH3″) are in your IMS
PGMLIB library.

3 Enable Java API support. If the system uses the Java API, perform the actions described in “Customize
Java-API support” on page 36.

4 Verify program execution. To verify program execution, perform the following:

1. “Configure program execution samples” on page 52

2. “Verify program execution samples” on page 52

Phase 4: New system group is fully-functional
By the time you reach this phase, your migrated system group (and the systems in
it) should be fully-functional. If required, you can proceed with “LAN client
migration (optional)”.

LAN client migration (optional)
Your existing LAN clients should work with the new servers, so migrating the
clients is only necessary if you require the new or improved functionality that the

Appendix N. Migrating from a previous release 235

new client software provides. To migrate a LAN client, and verify that it works
with your migrated Workflow system, perform the actions described in “LAN
client customization” on page 33.

236 Customization and Administration

Appendix O. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead.However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

© Copyright IBM Corp. 1998, 2001 237

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

IBM accepts no responsibility for the content or use of non-IBM web sites
mentioned in this publication or accessed through an IBM web site that is
mentioned in this publication.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:

AIX IBM OS/390

AS/400 IMS RACF

CICS IMS/ESA VTAM

CICS/ESA MQSeries WebSphere

DB2 MVS z/OS

DB2 Universal Database MVS/ESA

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

238 Customization and Administration

Glossary

This glossary defines terms and abbreviations
used in this and other MQSeries Workflow for
z/OS publications. If you do not find the term
you are looking for, refer to the index or the IBM
Dictionary of Computing, New York: McGraw-Hill,
1994.

A
administration server. The MQSeries Workflow
component that performs administration functions
within an MQSeries Workflow system. Administration
server commands that are issued on the system console
are passed onto a particular administration server. It
accepts commands for starting and stopping systems
and servers, it so allows the number of server instances
to be queried.

administration server ID. This name is used when
issuing administration server commands. It identifies
which administration server will execute a given
command. This identifier must be unique within the
OS/390 image, and not more than 8 characters long.

activity. One of the steps that make up a process
model. This can be a program activity, process activity,
or block activity.

API. See application programming interface.

application environment. A WLM term for a group of
application functions that are requested by clients, and
execute in server address spaces. In the context of
MQSeries Workflow for z/OS, each of the multiple
instance server types (execution server and program
execution server) requires a different application
environment. For more details, see “OS/390 Workload
Manager application environments” on page 151.

application programming interface. An interface
provided by the MQSeries Workflow workflow
manager that enables programs to request services from
the MQSeries Workflow workflow manager. The
services are provided synchronously.

audit trail. When a process instance is executed,
MQSeries Workflow writes information about each
significant event into an audit trail. For more details,
see “Appendix M. Audit Trail” on page 221.

B
backward mapping. Conversion of output data
created by an OS/390 legacy application into an

MQSeries Workflow container. This conversion is
performed by the program execution server’s program
mapper.

backward mapping definition. Part of the MDL
which connects an interface definition and structure
definition.

bridge. See MQSeries bridges.

Buildtime. An MQSeries Workflow component with a
graphical user interface for creating and maintaining
workflow process models, administering resources, and
the system network definitions.

business importance. Deines the importance of
achieving the performance goal associated with a WLM
service class. There are five levels of importance. This is
used to prioritize WLM managed work when there is
insufficient system capacity to satisfy all performance
goals.

C
CICS bridge. See MQSeries bridges.

classification rules. The way that WLM associates a
work request with a service class. For more details see
“Appendix J. WLM message classification” on page 209.

cleanup server. The MQSeries Workflow component
that physically deletes information in the MQSeries
Workflow run-time database, which had only been
deleted logically.

compatibility mode. A WLM mode, in which WLM
does not actively manage the system. This mode is not
supported by MQSeries Workflow. See also: goal mode.

container API. An MQSeries Workflow API that
allows programs executing under the control of
MQSeries Workflow to obtain data from the input and
output container of the activity and to store data in the
output container of the activity. See also data container.

CPIC. An invocation type that allows the program
execution server to run an application synchronously on
an IMS service. CPIC is based on APPC.

D
data container. Storage for the input and output data
of an activity or process. See also container API.

data structure. A named entity that consists of a set of
data structure members. Input and output containers

© Copyright IBM Corp. 1998, 2001 239

are defined by reference to a data structure, and adopt
the layout of the referenced data structure type.

data structure member. One of the variables of which
a data structure is composed.

’DEFAULT’ mapping. The mapping type provided by
IBM.

discretionary goal. Associated with a WLM service
class that is to be run when there are unused resources.

domain. A set of MQSeries Workflow system groups
which have the same meta-model, share the same staff
information, and topology information. Communication
between the components in the domain is via message
queuing.

E
EXCI. An invocation type that allows the program
execution server to run an application synchronously on
a CICS service. EXCI is the External CICS Interface
provided by CICS Version 4.1 and higher to allow
non-CICS applications to call programs running under
CICS.

executable. The name of the program as defined to
the service system.

execution user ID. The OS/390 user ID used by the
program execution server to execute a program request.

execution server. The MQSeries Workflow component
that performs the processing of process instances at
runtime.

export tool. A utility program for retrieving
information from the Workflow database and making it
available in MQSeries Workflow Definition Language
(FDL) format.

F
FDL. The MQSeries Workflow definition language
used to exchange MQSeries Workflow information
between MQSeries Workflow system groups. The
language is used by the import and export function of
MQSeries Workflow and contains the workflow
definitions for staff, programs, data structures, and
topology. This allows non-MQSeries Workflow
components to interact with MQSeries Workflow. See
also export tool and import tool.

forward mapping. Conversion of MQSeries Workflow
containers into a format accepted by an OS/390 legacy
application. This conversion is performed by the
program execution server’s program mapper.

forward mapping definition. Part of the MDL which
connects a structure definition and interface definition.

G
goal mode. The WLM mode in which WLM seeks to
achieve the goals associated with theservice class. See
also: compatibility mode.

H
hold queue. Messages that cannot be delivered are
placed on a hold queue. How to display, replay, or
delete these messages is described in “Hold queue
commands” on page 94.

I
import tool. A utility program that accepts
information in the Workflow definition language (FDL)
format and places it in a Workflow database.

IMS bridge. See MQSeries bridges.

interface. The definition of the data structure accepted
by an OS/390 CICS or IMS legacy application. This
definition is used by the ’DEFAULT’ mapping exit to
convert the data to (and from) an MQSeries Workflow
program’s structure.

interface definition. Part of the MDL which defines
the interface used by a legacy application.

interface element. Part of an interface definition. An
interface element has a name, a type, and a cardinality.
It is mapped on to a structure element by a mapping rule.

invocation exit. The DLL specified by the invocation
type. The exit is based on an invocation protocol like
CICS EXCI or the MQSeries CICS and IMS bridges.

invocation protocol. The way the PES connects to a
service like CICS or IMS in order to invoke a program
on that service system.

invocation type. The name used to identify the
invocation exit to use. An invocation type must be
defined in the program execution server directory,
where it is associated with one or more services. In the
process model, an invocation type must also be
associated with each program that the PES is to be able
to invoke.

L
local user. The user ID under which the program is
executed.

M
mapping definition language. The language used to
define mapping rules for the ’DEFAULT’ mapping exit.

240 Customization and Administration

mapping exit. Used by the PES to convert data
between MQSeries Workflow and legacy applications.
The exit is identified by a mapping type defined in the
PES directory and in Buildtime. The exit is only called if
mapping has been enabled in Buildtime.

mapping rules. Part of a forward mapping or backward
mapping definition that defines the mapping between
individual interface elements and structure elements.
Mapping rules are defined using the mapper definition
language.

mapping type. The name used to identify which
mapping exit to use. The mapping type is defined in
the PES directory and must match the Buildtime
definitions for the legacy application. The mapping
type provided with MQSeries Workflow for z/OS is
named ’DEFAULT’.

MDL. See mapping definition language.

message queuing. A communication technique
provided my MQSeries that uses asynchronous
messages for communication between software
components.

’MQCICS’. An invocation type that allows the
program execution server to run an application
asynchronously on a CICS service. The corresponding
invocation exit uses the MQSeries CICS Bridge
invocation protocol.

’MQIMS’. An invocation type that allows the program
execution server to run an application asynchronously
on an IMS service. The corresponding invocation exit
uses the invocation protocol MQSeries IMS Bridge.

MQSeries. The cross-platform, reliable message
passing system on which the MQSeries Workflow
product family is built.

MQSeries bridges. The program execution server
supports two asynchronous invocation types: the
MQSeries CICS bridge and the MQSeries IMS bridge.

MQSeries Workflow. The IBM product for business
process automation. In this manual this term is used
when refering to the MQSeries Workflow product
family.

MQSeries Workflow for z/OS. This product;
(previously known as MQSeries Workflow for OS/390)
extending IBM’s business process automation to the
OS/390 platform. This term is always used to
distinguish it from MQSeries Workflow for other
platforms.

N
notification exit. A notification exit is the executable
that is called by the program execution server when it

is about to invoke a program, when it has successfully
invoked a program, or when an error has occurred
during program invocation.

P
performance goal. See response time goal.

PES. See program execution server.

PES directory. See program execution server directory.

process activity. An activity that is part of a process
model. When a process activity is executed, an instance
of the process model is created and executed.

process definition. See process model.

process model. A set of processes represented in a
process model. The processes are represented in
graphical form in the process diagram. The process
model contains the definitions for staff, programs, and
data structures associated with the activities of the
process. After having translated the process model into
a process template, the process template can be
executed over and over again.

program execution server. The MQSeries Workflow
for z/OS component that manages the invocation of
programs running on OS/390.

program execution server directory. The PES directory
defines invocation types, mapping types, and the services
where MQSeries Workflow program activities can be
executed. It also contains information to map an
MQSeries Workflow user ID to an OS/390 execution
user ID. The PES directory must be updated when you
add services and users.

program mapping import tool. Component of the
MQSeries Workflow program mapping exit which reads
the result of the program mapping parser and inputs
the compiled program mapping definitions into the
program mapping DB.

program mapping parser. Component of the
MQSeries Workflow for z/OS program mapping exit
which parses the MDL and creates an intermediate file
which is used by the program mapping import tool.

Q
quiesce. The WLM action that deactivates an
application environment. This is equivalent to stopping
the WLM managed servers.

R
response time goal. The desired response time for a
WLM service class. This is defined as the number of

Glossary 241

milliseconds between a work request arriving, and the
response being delivered to the client.

resume. The WLM action that activates an application
environment. This is equivalent to starting the WLM
managed servers.

S
safe application. An application that is guaranteed to
execute once and only once, or not at all. A safe
application is invoked in the same transactional context
as the program execution request. This requires the
specification of a transactional invocation type. MQSeries
Workflow program execution normally guarantees
execution at least once.

scheduling server. The MQSeries Workflow
component that schedules actions based on time events,
such as resuming suspended work items, or detecting
overdue processes.

security routine. The routine to check whether a local
user is allowed to access an executable on a service
system with a given invocation type.

server. The servers that make up an MQSeries
Workflow system are called Program Execution Server,
Execution Server, Administration Server, Scheduling Server,
and Cleanup Server.

service. The name of a CICS or IMS system that the
program execution server accesses to execute programs.

service class. Part of a WLM service definition, each
piece of WLM managed work is associated with a
service class using classification rules. The service class
defines the performance goals and business importance.

service definition. The WLM definition that includes
the service policy, service class, classification rules,
performance goals, and business importance. For more
details see “Service definition” on page 147.

service policy. A named modification of your base
WLM service definition that typically contains values for
service class goals. Different service policies can be
active at different times of the day, week, or month.

structure. The definition of the MQSeries Workflow
structure passed into or out of an activity
implementation. This definition is used by the ’DEFAULT’
mapping exit to convert the data to (and from) a legacy
application’s interface.

structure element. Part of a structure definition. A
structure element has a name, a type, and a cardinality.
It is mapped on to an interface element by a mapping
rule.

system. The smallest MQSeries Workflow unit within
an MQSeries Workflow domain. It consists of a set of
the MQSeries Workflow servers: one administration

server, one or more execution server instances, and zero
or more program execution server instances, and
optionally, one scheduling server and/or one cleanup
server.

system group. Each system group needs its own
database, and contains one system. Multiple system
groups can share the same DB2 subsystem.

T
translate. The action that converts a process model
into a run-time process template.

U
user ID. An alphanumeric string that uniquely
identifies an MQSeries Workflow user. MQSeries
Workflow for z/OS handles two types of user IDs, (1)
MQSeries Workflow user IDs. (2) Execution user IDs.

user type definition. A user defined interface type. If
you need to map a data type that is not supported by
the default mapper type, you can define a user type,
and write a type conversion program which handles
the conversion of that particular data type. This must
use the user type exit.

user type interface . A user defined interface type. If
you need to map a data type that is not supported by
the default mapper type, you can define a user type,
and write a type conversion program which handles
the conversion of the particular data type. This must
use the user type exit.

V
velocity goal. Specifies how fast a WLM managed
piece of batch-type work should run when it is not
held up by input/output. This is part of the service class
definition.

W
WIH. See work information header.

WLM. See Workload Manager.

workflow. The sequence of activities performed in
accordance with the business processes of an enterprise.

Workflow Management Coalition. A non-profit
organization of vendors and users of workflow
management systems. The coalition’s mission is to
promote workflow standards for workflow
management systems to allow interoperability between
different implementations.

workflow model. Synonym for process model.

242 Customization and Administration

Workflow system. See system.

Workload Manager (WLM). The OS/390 Workload
Manager can be used to manage resources and the
number of running server instances to achieve the
performance goals in your service defintion. For more
details see “What is OS/390 Workload Manager?” on
page 145.

work information header (WIH). Information that is
used by WLM to determine which service class a request
belongs to. The WIH is added to messages by the
Workflow APIs. For application programmers, this is
done transparently within the API calls.

Z
z/OS. Since the new version of OS/390 is named
z/OS, the new version of MQSeries Workflow for
OS/390 is named MQSeries Workflow for z/OS.

Glossary 243

244 Customization and Administration

Bibliography

To order any of the following publications,
contact your IBM representative or IBM branch
office.

MQSeries Workflow for z/OS
publications
This section lists the publications included in the
MQSeries Workflow for z/OS library.
v MQSeries Workflow for z/OS: Customization and

Administration, SC33-7030, explains how to
customize and administer an MQSeries
Workflow for z/OS system.

v MQSeries Workflow for z/OS: Programming,
SC33-7031, explains the C, C++, Java, and
Cobol application programming interfaces
(APIs), and the program exits.

v MQSeries Workflow for z/OS: Messages and Codes,
SC33-7032, explains the MQSeries Workflow
for z/OS system messages and codes.

v MQSeries Workflow for z/OS: Program Directory,
GI10-0483, explains how to install MQSeries
Workflow for z/OS.

MQSeries Workflow publications
This section lists the publications included in the
MQSeries Workflow library.
v IBM MQSeries Workflow: Concepts and

Architecture, GH12-6285, explains the basic
concepts of MQSeries Workflow. It also
describes the architecture of MQSeries
Workflow and how the components fit
together.

v IBM MQSeries Workflow: Getting Started with
Buildtime, SH12-6286, describes how to use
Buildtime of MQSeries Workflow.

v IBM MQSeries Workflow: Getting Started with
Runtime, SH12-6287, describes how to get
started with the Client.

v IBM MQSeries Workflow: Programming Guide,
SH12-6291, explains the application
programming interfaces (APIs).

v IBM MQSeries Workflow: Installation Guide,
SH12-6288, contains information and
procedures for installing and customizing
MQSeries Workflow.

v IBM MQSeries Workflow: Administration Guide,
SH12-6289, explains how to administer an
MQSeries Workflow system.

MQSeries publications
v MQSeries for OS/390 V2R1 System Management

Guide, SC34-5374.
v MQSeries Queue Manager Clusters, SC34-5349.
v MQSeries Clients, GC22-1632.

Workflow publications
v Production Workflow — Concepts and Techniques,

Frank Leymann, Dieter Roller, Prentice-Hall,
1999

v Workflow Handbook 1997, published in association
with WfMC, edited by Peter Lawrence

Other useful publications
v DB2 for OS/390 Administration Guide,

SC26-8957.
v DB2 for OS/390 SQL Reference, SC26-8966.
v DB2 for OS/390 Application Programming and

SQL Guide, SC26-8958.
v DB2 for OS/390 Command Reference, SC26-8960.
v DB2 for OS/390 Utility Guide and Reference,

SC26-8967.
v OS/390 MVS Planning: Workload Management,

GC28-1761.
v OS/390 MVS Programming: Workload

Management Services, GC28-1773.

Licensed books
The licensed books that were declassified in
OS/390 Version 2 Release 4 appear on the OS/390
Online Library Collection, SK2T-6700. The
remaining licensed books for OS/390 Version 2
appear on the OS/390 Licensed Product library,
LK2T-2499, in unencrypted form.

© Copyright IBM Corp. 1998, 2001 245

246 Customization and Administration

Index

Special Characters
_ICONV_UCS2_PREFIX 207

A
activity 239

process activity 241
program properties 103

address space
administration 81
changing the number of server

instances per 123
too many server instances per 128

administering program mappings 112
administration server 8, 79, 82, 83, 85,

90, 239
cannot be started 128
commands 87
ID 239
registering with ARM 88
starting the 87
stopping the 88

administration server tasks 87
administration tasks 84, 85
administration tasks using Buildtime 97
AdminServerID 40, 41, 53, 87, 90
AdminSvrsPerAS 202, 204
alias queues, MQSeries 128
API 239
APITimeOut 201, 203
APPC LU for VTAM 47
APPC/MVS transaction scheduler 46
APPCPM 46
application environment 148, 151, 239
application programming interface 239
applid 14, 108
applId, EXCIC connection

parameter 172
ARM 81, 88
ARMRestartElement NameSuffix 12, 58
ARMRestartElementNameSuffix 88
ARMRestartPolicy 11, 58
ASCHPMxx 46
asynchronous invocation types 107
attach mode 98
AUDIT_TO_DB 221
AUDIT_TO_MQ 221
audit trail 221, 239

activity state encoding 226
activity type encoding 226
how to analyze the 226
options 221
record contents 223
record layout 222
what is the 221

audit trail storage group 9
AuditStorageGroupDataSet 9
AuditStorageGroupDataSetPrefix 10
AuditStorageGroupName 9, 10
AuditStorageGroupVolumeSet 9, 10
authorizing a user 111

B
backward mapping 178, 239
backward mapping format 102
backward mapping parameters 102
BACKWARDMAPPING 177
bibliography 245
boot queues 83
bridge 239
bridge invocation, customize MQSeries

IMS 48
buffer pool 15
buffer pools 17
Buildtime 80, 85, 97, 104, 171, 181, 239
business importance 147, 239

C
CANCEL 130
CCPPInstHLQ 8, 13
CEECCSD 31, 63, 73
CICS 8, 81

API support customization 31, 63
customize EXCI invocation 43
customize MQSeries bridge

invocation 44
flag 13
MQSeries bridge 42
program types 107
restrictions for passwords 181
tracing in 142

CICS bridge 239
CICS stubs, MQSeries 32, 64, 73
CICSBridgeInputQueue 14, 44, 45, 50
CICSContainer, sample program 52, 53
CICSFlag 8, 13
CICSGroup 8, 14, 230
CICSInstHLQ 8, 13, 70
CICSMapping, sample program 52, 53
CKBR 45
classification 154
classification rules 147, 239
CLB3YCSD 31, 63, 73
clean-up server 90
cleanup server 8, 239
CLEANUP_SERVER export 186
client

connection, customize the
MQSeries 34, 66

customization, LAN 33, 66
runtime 132
sample application, verify 41
tier 82

client configuration profile 203
client environment variable file 207
client identifiers 69
client request concentrator 75
ClientCICSGroup 70
ClientCustHLQ 9, 69
ClientQueueManager 70
ClnupSvrsPerAS 202, 204
cluster, MQSeries 3

ClusterNamelist 12, 58
COBOLInstHLQ 13
code page conversion tool 183
commands

server 90
system 88

compatibility mode 149, 239
component trace 8
concentrator, client request 75
configuration, planning your 7
configuration profile 123, 130
configuration profile changes not

activated 130
connection parameters 50
connection parameters in PES

directory 172
CONNECTION resource definition 43
ConnectionName 43
connectionParameters 108, 109, 173, 174
container API 239
CPIC 42, 50, 107, 239

connection parameters 172
invocation, customize IMS 46

creating a program mapping 110
CSD file 31, 64, 73
CSQ6SYSP macro 48
CSQCKB group 44
CTComponent 8, 11, 58
CustHLQ 7, 8, 9, 70, 230
customization

identifiers 14
parameter files 191
verification 40

D
data

container 239
storage group 9

data structure 239
database

requirements 15
utility, program mapping 177

DatabaseName 201, 203
DataStorageGroup DataSetPrefix 10
DataStorageGroupDataSet 9
DataStorageGroupName 10
DataStorageGroupVolumeSet 9, 10
DatatStorageGroupName 9
DB2 81

customization 25, 26, 27, 28
customization parameters 9
data sharing 61
prerequisite 4
requirements 15
response time too long 131

DB2AdminUserID 14
DB2BPIDX 230
DB2InstHLQ 9, 13
DB2Plan 9, 11, 33, 66
DB2SampleDBRMLibrary 10

© Copyright IBM Corp. 1998, 2001 247

DB2SampleLoadLibrary 10
DB2SubSystem 9, 14
DB2SubsystemName 59
DbPlan 201, 203
DbSubSystem 201, 203
DEEP export 186, 189
DEFAULT

mapping 240
DEFAULT mapping type 107
defining a security profile 111
defining process models 97
defining program properties 100
defining server properties 97
definition, process 241
deleting a program mapping

definition 115
deleting the PES directory 176
DFHCSDUP resource definition

utility 44
DFHRPL 31, 63, 73
DFLTUSER 45
directory

database 106
database, PES 9
PES 241
program execution server 241
routine 106

disabling
a program 111
a program mapping 112, 115
a program mapping type 116

disabling an invocation type 116
discretionary goal 240
discretionary goals 147
displaying

the system 90
displaying server instances 93
distributed process sample using

XML 37
DistSvrsPerAS 202, 204
domain 82, 240
DOMAIN export 186
DSNTEP2 25
dump analyzer 138

E
EDSALIM 31, 63, 73
enabling a mapping type 115
enabling a program mapping 112, 114
EXCI 42, 50, 107, 240
EXCI connection parameters 172
EXCI invocation, customize CICS 43
EXEApplication EnvironmentName 12,

58
executable 102, 240
executable type 102
execution

invocation types, customizing 42
mode 111
samples, verify program 53
server 8, 79, 91, 240
starting and execution server 91
user ID 240

EXECUTION_SERVER export 186
execution user 117
ExecutionServerOperationMode 201, 203
executionUserID 108, 173

ExeSvrsPerAS 123, 202, 204
exitName 109, 173
exitParameters 109, 173
EXPORT database 186
export tool 187, 240
export tool return codes 188
exporting FDL 189
exporting process models 104
extended trace 133, 134, 136

F
FDL 80, 97, 104, 187, 188, 240
FDL code page conversion tool 183
FMC_CURRENT_CONFIG 207, 208
FMC_DEFAULT_CONFIGURATION 207,

208
FMC_ELAPSED_TIME 207, 208
FMC_EXTERNALIZE_TRACE_

BUFFERS 135, 139
FMC_IENV 207, 208
FMC_NUMBER_OF_TRACE_FILES 139,

140, 202
FMC_REFRESH_COUNT_FOR_

TRACE_CRITERIA 135, 140, 202
FMC_REFRESH_COUNT_FOR_TRACE_CRITERIA 135,

139
FMC_SIMPLE_TRACE_ONLY 133, 135,

201, 204, 208
FMC_TRACE_BUFFER_SIZE 134, 139,

202
FMC_TRACE_CRITERIA 133, 135, 139,

140, 201, 204
FMC_TRACE_FILE_SIZE 134, 139, 140,

202
FMCCTL 114
FMCDIMP 109, 175
FMCDLOG 110
FMCH0IBA 104, 187, 188
FMCH0IBA import/export tool

syntax 185
FMCH0XME default mapper 174
FMCH1PIT PES directory import

tool 109
FMCH2CCT sample CICS program 52
FMCH2CMT sample CICS program 52
FMCH3ICS sample IMS program 52
FMCH3ICT sample IMS transaction 52
FMCH3IMS sample IMS program 52
FMCH3IMT sample IMS transaction 52
FMCH3xxx 32, 65, 74, 235
FMCHDDBP 25
FMCHDDDB 16, 26
FMCHDDMD 16, 28
FMCHDDMS 16, 28
FMCHDDMT 16, 29
FMCHDDPD 16, 27
FMCHDDPS 16, 27
FMCHDDPT 16, 27
FMCHDDST 16, 25
FMCHDDTB 16, 26
FMCHDDTS 16, 26
FMCHECCL customization parameter file

for a client 198
FMCHECEV client environment variable

file 207
FMCHECIF customization parameter file

for primary system 191

FMCHECPR client configuration
profile 203

FMCHECSY customization parameter file
for a adding a system 195

FMCHEDTP 50, 51, 108
FMCHEDTP PES directory template 173
FMCHEENV 188
FMCHEENV server environment variable

file 207
FMCHEFNM, non-WLM mode FDL 165
FMCHEFWM, WLM mode FDL 164
FMCHEMCT sample control

statements 114
FMCHEMDL 114
FMCHEMDL sample mapping

definition 114
FMCHEMPR 130, 133, 134
FMCHEMPR server configuration

profile 201
FMCHEPRO 31, 64
FMCHEPRT 73
FMCHEUPR 32, 64, 74
FMCHJ0CD fastpath to customize PES

directory database 27
FMCHJ0CM fastpath to customize PES

mapping database 28
FMCHJ0CW fastpath to customize

Workflow database 25
FMCHJBDB 26, 124, 131
FMCHJBMA 29
FMCHJBPD 27
FMCHJBTE 25
FMCHJCMC 71
FMCHJCPR 31, 64
FMCHJCPT, CICS client customization

job 73
FMCHJCTC 142
FMCHJCTR 30, 63
FMCHJCUT 73
FMCHJDBP 16, 25
FMCHJDDB 26
FMCHJDMD 28
FMCHJDMP SVC dump analyzer 138
FMCHJDMQ 29, 62
FMCHJDMS 28
FMCHJDMT 29
FMCHJDPD 27
FMCHJDPS 27
FMCHJDPT 27
FMCHJDSC 33, 65
FMCHJDST 25
FMCHJDTB 26
FMCHJDTS 26
FMCHJEDB 26
FMCHJEMD 28
FMCHJEMS 29
FMCHJEPD 27
FMCHJEPS 27
FMCHJETS 26
FMCHJFDL 41
FMCHJMMQ 233
FMCHJMPR 52, 113
FMCHJNIB, imports non-WLM FDL 165
FMCHJPDL 52
FMCHJPIB 28
FMCHJPIC 28, 51

248 Customization and Administration

FMCHJPIF PES directory import
tool 109

FMCHJPMQ 30, 62
FMCHJRBS 26
FMCHJRIF 104
FMCHJRST 124, 131
FMCHJTRC 136
FMCHJWIB, imports WLM mode

FDL 164
FMCHSMEX sample mapping exit

definitions 115
FMCICMD 104, 186, 187, 188
FMCIEXP 104, 187, 188
FMCIIMP 104, 186, 187, 188
FMCILOG 104, 187, 188
FMCIN 113
FMCTRC00, tool trace DD

statement 133
FMCTRCxx, server trace DD

statement 133
FMLConnectDelayTime 201, 204
FMLConnectName 201, 203
forward

mapping 178
forward mapping 240

definition 240
format 102
parameters 102

FORWARDMAPPING 177
FTP 104

G
GET_INHIBITED 128, 129
goal mode 149, 240
GwySvrsPerAS 202, 204

H
high level qualifiers 13
hold queue 80, 94, 240

I
ICONVInstHLQ 13
import 186
import/export tool 104
import/export tool syntax 185
import tool 187, 188

PES directory 109
return codes 188

importing process models 104
IMQB23IC 32, 64, 73
IMQS23IC 32, 64, 73
IMS 8, 81

API support customization 32, 65
bridge 240
bridge invocation, customize

MQSeries 48
CPIC invocation, customize 46
MQSeries bridge 42
program types 107

IMS conversations 107
IMSBridgeInputQueue 14, 49, 51
IMSContainer, sample program 52, 53
IMSInstHLQ 8, 13
IMSMapping, sample program 52, 53

input queues 83
inputQueue, MQ invocation connection

parameters 172
installation scope identifiers 9
instances

changing the number of running
server 123

per address space, changing the
number of server 123

per address space, too many
server 128

too few server 131
too many server 131

InstHLQ 7, 9, 230
interface 240

element 240
INTERFACE 177
interface, mapping 178
invalid password 132
invocation

customize CICS EXCI 43
customize IMS CPIC 46
customize MQSeries CICS bridge 44
customize MQSeries IMS bridge 48
exit 80, 240
protocol 240
routine 106
section in PES directory 172
type 80, 240

invocation type 102, 108, 174
adding a new 109
disabling an 116
new 171
user-defined 106

invocation types 107
customizing 42

IPCS 8
IPCSInstHLQ 8, 13
IRC 43
IspfHLQ 15
ISPFHLQ 230
IspfLAN 15
ISPFLAN 230

J
Java-API support 36

L
LAN client customization 33, 66
Language 202, 204
language environment 8
LC_ALL 207, 208
legacy program mapping 80
LEInstHLQ 13
local user 102, 117, 240
logon 186
LPA library concatenation 21
luname 14, 50, 51
LUName, CPIC connection

parameter 172

M
mapper

program mapper 85

mapper (continued)
user-defined mapper 106

mapping
database 9, 106
database utility 177
exit 80, 241
import tool return codes 114
interface 178
PES directory section 172
program mapping 80
properties 114
routine 106
routine call 102
rules 241
type 80
user IDs 172

mapping, backward 178
mapping, forward 178
mapping definition

creating a new program mapping
definition 177

deleting a 115
deleting a program mapping

definition 178
inserting a program mapping

definition 178
language 240
replacing a program mapping

definition 177
sample 114

mapping definitions
listing program mapping

definitions 178
mapping structure 178
mapping type 102, 174, 241

adding a new 109
defining a new 171
disabling a 116
enabling a 115

mapping types 107
mapping user type 179
MDL 241
message queuing 241
migrating an existing system 7
mode, CPIC connection parameter 172
model, process 241
ModelSvrsPerAS 202, 204
MQ invocation connection

parameters 172
MQCICS 107
MQClusterName 10
MQIMS 107
MQInstHLQ 8, 13
MQRC_GET_INHIBITED 128, 129
MQRC_PUT_INHIBITED 128, 129
MQSeries 8, 66, 81, 83, 241

alias queues 128
bridges 50, 107, 241
CICS bridge 42

customization 44
invocation customization 44

CICS stubs 32, 64, 73
client connection customization 34,

66
customization 29, 62
IMS bridge 42

Index 249

MQSeries 8, 66, 81, 83, 241 (continued)
IMS bridge invocation

customization 48
Workflow 241
Workflow client customization 34, 67
Workflow Definition Language,

(FDL) 240
Workflow for z/OS 241

MQSeries cluster 3
MQSeries queue manager 4
mqwf_uid 44
mqwf_userid 45
MQWFAdminUserID 14
MQWFConfiguration Key 11, 58
MQWFSystemPrefix 8, 10, 133, 135
MQWIH_ServiceName 209
MQWIH_ServiceStep 209

N
naming Buildtime objects 181
netid 14, 50, 51
netId, CPIC connection parameter 172
new invocation type 171
new mapping type 109, 171
new service 171
new user 171
Notices 237
notification

exit 80
NumberOfInstances 91

O
OldCustHLQ 230
ORGANIZATION export 186
OS/390SystemTCP/IPAddress 12, 59
OTMACON 48

P
parameter files, customization 191
PARMLIB 19
password, invalid 132
passwords in CICS, restrictions for 181
performance goal 147
performance goals 241
performance problems 131
performance tuning 123
PERSON export 186
PES 79, 91, 241
PES, cannot stop the 130
PES directory 79, 85, 171, 241

administration 107
caching 110, 124
changes not activated 130
connection parameters 172
customization 27
database 9
deleting the 176
dependencies 174
import tool 109
import tool examples 175
import tool return codes 175
invocation section 172
mapping section 172
populating 28

PES directory 79, 85, 171, 241
(continued)

refreshing the cache 110
routine 106
security 118
security section 172
service section 172
structure of 171
template 173

PES mapping
database 9
DB2 customization 28

PESApplication EnvironmentName 12,
58

PESDirectoryCollection 9, 11
PESDirectoryDatabaseName 9, 11
PESDirectoryInCache 110, 202, 204
PESDirectorySourceFile 15
PESERVER 98, 171, 173
PESMappingCollection 9, 11
PESMappingDatabaseName 9, 11
pesName 173
PESvrsPerAS 123, 202, 204
PGMLIB 52
planning your configuration 7
PRIQTY 26, 27, 28, 29
problem determination 125

WLM 167
problems

resource and performance
problems 131

server problems 126
PROCESS 186
process activity 241
PROCESS CATEGORY export 186
process definition 241
PROCESS export 186
process models 187, 188, 241

defining 97
importing and exporting 104
uploading 104

PROCLIB 19
program

activity 110
activity properties 103
administration tasks 85
disabling a 111
mapper 85
security 118

program execution
invocation types, customizing 42
samples 52
security 116
verifying samples 53

PROGRAM_EXECUTION_AGENT 186
program execution server 8, 79, 91, 241

component structure 106
directory 79, 171
directory administration 107
directory customization 50
properties 98
starting the 92
WLM information 209

program execution server directory 241
connection parameters 172
invocation section 172
mapping section 172

program execution server directory 241
(continued)
service section 172
template 173

PROGRAM_EXECUTION_SERVER
export 186

PROGRAM export 186
program mapping 80

changes not activated 130, 131
creating a 110
creating a definition 177
database 106
database utility 177
deleting a definition 115, 178
disabling 115
disabling a mapping type 116
enabling a 114
import tool return codes 114
inserting a definition 178
listing definitions 178
properties 114
replacing a definition 177

program mappings, administering 112
program properties 101

defining 100
in Buildtime 101

programExecution 173
programExecution PES directory

key 171
properties

program 101
server 98

properties, program activity 103
PUT_INHIBITED 128, 129

Q
queue manager 4, 19
QueueManager 12, 59
QUEUEMANAGER 51, 174
queueManager, MQ invocation

connection parameters 172
QueueManager TCP/IPPort 12
QueueManagerTCP/IP Port 59
queuename 50, 51
queues 83
queues, MQSeries alias 128
queuing model in WLM 145
quiesce 241

R
RACF 19, 81, 85, 106, 111
RACF profile 118
refresh 242
REGION 31, 63, 73
request concentrator, client 75
resource problems 131
resource recovery service 111
response time goal 241
restarting servers 92
return codes

extended trace format converter 136
import/export tool 188
PES directory import tool 175
program mapping import tool 114

revoking a user 112

250 Customization and Administration

ROLE export 186
rollback 187, 188
RRS 25, 111
rules, mapping 241
runtime client 132

S
safe applications 111, 242
sample using XML, distributed

process 37
samples, verify program execution 53
SchedSvrsPerAS 202, 204
scheduling server 8, 90, 242
SCHEDULING_SERVER export 186
security

checking 102
defining a profile 111
PES directory 118
program 118
program execution 116
routine 106
routine call 111
section in PES directory 172

security routine 242
server 242

administration commands 87
administration server cannot be

started 128
administration tasks 84
changing the number of instances per

address space 123
changing the number of running

instances 123
commands 90
customization 33, 65
defining server properties 97
displaying server instances 93
problems 126
program execution 241
properties 98
restarting servers 92
scheduling 242
setting restrictions 100
starting servers 91
stopping servers 92
tier 82
too few instances 131
too many instances 131
too many instances per address

space 128
trace 133

server configuration profile 201
server environment variable file 207
server hold queues 80
ServerGroupID 8, 11, 58
servers

cannot stop 129
ServerStartProc 202, 204
ServerType 90
ServerUserID 8, 11, 43, 45, 52, 58, 117
service 102, 242

adding a new definition 108
name 109, 174
new 171
PES directory section 172
properties in Buildtime 101
type 102, 109, 174

service class 147, 242
service definition 147, 242
service policy 147, 242
ServiceName field in WIH 209
ServiceStep field in WIH 209
SESSIONS resource definition 43
SFMCEMCT 114
simple trace 133
spool space, running out 132
starting

execution servers 91
servers 91
the administration server 87
the program execution server 92
the system 88

stopping
cannot stop servers 129
cannot stop the PES 130
servers 92
the administration server 88
the system 89

structure
definition 242
element 242
mapping 178

STRUCTURE 177
STRUCTURE export 186
subsystem identifiers 14
support mode 98
surrogate_id 44
SVC dump analyzer 138
synchronous invocation types 107
syntax, import/export tool 185
SYSOUT 104, 187
system 4, 8, 82, 201, 203, 242

administration tasks 84
commands 88
console 79, 84
customization verification 40
displaying the 90
group 3, 82, 242
group scope identifiers 10
scope identifiers 11, 12
starting the system 88
stopping the system 89
trace 81, 133

SYSTEM export 186
SystemGroup 10, 201, 203
SystemGroupLocale 10
SystemGroupPrefix 10
SystemGroupQualifier 9
SystemIdentifier 58
SystemName 11, 57

T
table space 15, 17
tasks

administration 84, 85
server administration 84
system administration 84

tool trace 133
trace

criteria 133, 135
customization 30, 62
system trace 81

trace variables 139
TraceStart 8, 11, 30, 58, 62, 135

TraceStop 8, 11, 30, 58, 62, 135
tracing 133
tracing in CICS 142
trademarks 238
transaction scheduler, APPC/MVS 46
transactions 130
transferring files to the host 104
TRANSID 108
transId, EXCIC connection

parameter 172
translate 186
TRANSLATE 186
translating FDL process models 187,

188, 189
translating process models 104
tuning, performance 123

U
undelivered messages 94
UniqueSystemKey 8, 11, 40, 41, 53, 57,

87
updating a program mapping 112
uploading files to the host 104
user

administration tasks 85
authorizing a user 111
ID 111, 117, 242
new 171
resolution 172
resolution information 108
revoking a user 112

user-defined
invocation type 106
mapper 106

USER_DEFINED_PROGRAM
_EXECUTION_SERVER 186

user type
definition 242
mapping 179

userID 108, 173
USERTYPE 177

V
velocity goal 242
velocity goals 147
VERIFY 186
volumes 17
VOLUMES 25
VTAM, APPC LU for 47

W
WaitBetweenQInhibitAndAllowed 130,

202, 204
Web Client 38
WIH (work information header) 154
Windows NT 35, 67
WLM 242

application environment 148, 151
business importance 147
classification 154
classification rules 147
compatibility mode 149
discretionary goals 147
goal mode 149

Index 251

WLM 242 (continued)
manual mode 161, 165
message classification 209
overview 145
parallel sysplex, in a 162
performance goal 147
problem determination 167
queuing model 145
service class 147
service definition 147
service definition, creating 155
service policy 147
ServiceName field in WIH 209
ServiceStep field in WIH 209
setting up 155
setup problems 167
switching servers between WLM and

non-WLM mode by importing an
FDL file 164

switching servers between WLM and
non-WLM mode using
Buildtime 98

unexpected runtime behavior 167
velocity goals 147
work information header 209

work information header (WIH) 154,
209, 243

Workflow

customizing the Workflow client 34,
67

database 9
server customization 33, 65
system 79

customization parameters 8
system group 8
verifying the Workflow client sample

application 41

Workflow Definition Language
(FDL) 240

Workflow system 243

WorkflowCollection 9, 11

WorkflowDatabaseName 9, 10

Workload Manager 243

workload manager (WLM) 145

X
XCFGroupName 14, 49

XCFMemberIMS 49

XCFMemberMQ 48

XCFMemberName 14

XML, distributed process sample
using 37

XML mesage API 37

Z
z/OS 243

252 Customization and Administration

Readers’ Comments — We’d Like to Hear from You

IBM MQSeries Workflow for z/OS
Customization and Administration
Version 3.3

Publication No. SC33-7030-05

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC33-7030-05

SC33-7030-05

���
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Program Number: 5655-BPM

Printed in Denmark by IBM Danmark A/S

SC33-7030-05

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
M

Q
Se

rie
s

W
or

kf
lo

w
fo

r
z/

O
S

Cu
st

om
iz

at
io

n
an

d
Ad

m
in

is
tr

at
io

n
Ve

rs
io

n
3.

3

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How this book is organized
	How to get additional information
	How to send your comments
	How to read the syntax diagrams

	Summary of changes
	Changes for this edition
	Changes for the fourth edition
	Changes for the third edition

	Part 1. Customization
	Chapter 1. Understanding MQSeries Workflow for z/OS
	Understanding the MQSeries Workflow for z/OS architecture
	Understanding the customization process
	Customization scenario pre-requirements
	Scenario 1: Minimum configuration (one system groupcontaining one system)
	Scenario 2: Multiple queue managers (additional systems orclients)

	Chapter 2. Planning your configuration
	Deciding your MQSeries Workflow for z/OS identifiers
	Overview of the customization parameters
	Installation scope identifiers
	System group scope identifiers
	System scope identifiers
	Flags and high level qualifiers
	Subsystem identifiers
	Customization identifiers

	Evaluate database requirements
	More detailed database planning (optional)

	Chapter 3. Before starting customization
	After installing MQSeries Workflow for z/OS
	Create the MMS message catalogs
	LPA library concatenation

	Chapter 4. Creating a system group and a primary system
	Before starting customization
	Data set allocation
	Create input files for customization

	System Group Customization
	General DB2 customization
	Workflow DB2 customization
	Populate the Workflow database
	Program execution server directory DB2 customization
	Populate the PES directory database
	Program execution server mapping DB2 customization

	System customization
	MQSeries customization
	Trace customization
	CICS API support customization
	IMS API support customization
	Workflow server customization
	LAN client customization
	Customize the MQSeries client connection
	Customize the MQSeries Workflow client

	Customize Java-API support
	Customize the XML message API and distributed processsample using XML
	Customize the Web Client
	System customization verification

	Verify Workflow client sample application
	Program execution customization
	Customize CICS EXCI invocation
	Customize MQSeries CICS bridge invocation
	Customize IMS CPIC invocation
	Customize MQSeries IMS bridge invocation
	Customize program execution server directory
	Configure program execution samples
	Verify program execution samples

	Chapter 5. Creating additional systems in an existing systemgroup
	Decide the new system's identifiers
	Data set allocation
	Create input files for customizing an additional system in a systemgroup
	General DB2 customization (DB2 data sharing)
	Update topology setting in the Workflow database
	MQSeries customization
	Trace customization
	CICS API support customization
	IMS API support customization
	Workflow server customization
	LAN client customization
	Customize the MQSeries client connection
	Customize the MQSeries Workflow client

	Chapter 6. Adding extra Workflow clients to an existingsystem
	Basic client customization
	Decide the new client's identifiers
	Data set allocation for client
	Create input files for customizing a new Client
	MQSeries customization for a new client
	Generate MQSeries channel tab file for LAN client

	CICS API support customization for new client
	IMS API support customization for new client
	LAN Client Customization
	Client request concentrator customization

	Part 2. Administration
	Chapter 7. Introduction to system administration
	Objects you will need to administer or use
	Administration in an MQSeries Workflow system
	System administration client/server components
	The administration server

	Overview of administration tasks
	System and server administration tasks
	Program and user administration tasks

	Chapter 8. Administration server tasks
	Administration server commands
	Starting the administration server
	Stopping the administration server

	System commands
	Starting the system
	When using WLM

	Stopping the system
	Restarting the system
	Displaying all server instances in the system

	Server commands
	Starting servers
	Starting WLM managed servers
	Starting execution servers
	Starting program execution server instances

	Stopping servers
	Stopping the system by stopping the servers

	Restarting servers
	Restarting the program execution server
	Restarting the administration server
	Restarting WLM managed servers

	Displaying the number of instances of a server

	Hold queue commands
	Displaying number of messages in the hold queue
	Displaying messages in the hold queue
	Replaying messages from the hold queue
	Deleting messages from the hold queue

	Chapter 9. Buildtime administration tasks
	Defining process models
	Defining server properties
	Server properties that can be changed
	Server properties that should not be changed
	Server properties that are ignored on OS/390
	Switching servers between WLM and non-WLM mode usingBuildtime

	Defining program properties
	Defining the connection between a program activity and thePES

	Uploading process models to the host
	Importing and exporting process models
	Using the FDL import/export tool

	Chapter 10. Program execution
	Administering the Program Execution Server directory
	Adding a new service definition and the related userresolution information
	Adding a user-defined invocation type
	Adding a user-defined mapping type
	Importing the PES directory
	Caching the PES directory at runtime
	Refreshing the PES directory cache

	Administering programs
	Enabling an OS/390 program to be run as a program activity
	Creating a program mapping
	Defining a new program in the process model
	Defining a security profile

	Enabling an OS/390 program to run as a safe application
	Disabling a program
	Authorizing a user to access an OS/390 program
	Revoking a user's access to OS/390 programs

	Administering program mapping
	Importing a program mapping definition
	Return codes

	Enabling a program's mapping
	Disabling a program's mapping
	Deleting a program mapping definition
	Enabling a mapping type
	Disabling a mapping type

	Administering invocation types
	Enabling an invocation type
	Disabling an invocation type

	Program execution security
	Information in the PES directory that is relevant to security
	Program security

	Chapter 11. Administering Servlets on the WebSphereApplication Server
	Placing servlet class files on the Application Server
	If necessary, create a new servlet sub-directory
	Monitoring your servlet, or setting servlet initializationparameters

	Placing the HTML files on the Application Server
	Running a sample servlet, to log on MQSeries Workflow

	Chapter 12. Performance tuning
	Changing the number of running server instances
	Changing the number of server instances per address space
	Caching the PES directory
	Using the OS/390 Link Pack Area for MQSeries Workflow load libraries
	Tuning DB2

	Chapter 13. Problem determination
	Where to find information
	Error log
	Data sets of the job output

	Server problems
	Message catalog not available
	Problem starting servers
	Server terminates immediately
	All but one server instances terminates immediately afterstarting
	An arbitrary number of server instances terminates immediatelyafter starting
	An unexpected number of server instances start
	A dump is written before all server instances are started

	The administration server cannot be started
	Is the queue manager started?
	Is the database subsystem started?
	Is an administration server already running?
	Are its queues inhibited?

	The administration server does not respond to consolecommands
	The program execution server cannot be started
	Is the administration server running?
	Are its queues inhibited?

	Server instances terminate
	All server instances in an address space terminate
	One or more program execution server instances terminate, theactivity goes in state error
	Are the server instances managed by WLM?

	Program activity stays in the state 'running'
	Cannot stop servers
	Did you wait long enough?
	Do your transactions take longer than 30 seconds?
	PES cannot be stopped

	Changes made to the configuration profile are not activated
	Have you restarted your servers?

	Changes made to the PES directory are not activated
	Is PES directory caching enabled?

	Changes made to the program mapping definition are notactivated
	Have you restarted the program execution server?

	Hold queue problems (undelivered messages)
	DELETE or REPLAY affected fewer messages than expected
	DELETE or REPLAY affected the wrong messages
	The hold queue contains fewer messages than expected

	Resource and performance problems
	Response times are unacceptably long
	Is tracing turned on?
	Are enough server instances running?
	Are too many server instances running?
	Is the DB2 response time too long?
	Does the workload exceed your system's capacity?

	Invalid password
	Are you using an old version of the runtime client?

	Running out of spool space
	Is tracing turned on?

	The MQSeries Workflow for z/OS system trace facility
	Simple trace
	Extended trace
	Performing an extended trace

	Using IPCS to analyze extended trace or dump output
	Creating a problem summary from an SVC dump

	Problems with extended tracing
	MQSeries Workflow trace variables

	Simple tracing in IBM WebSphere Application Server
	Turning tracing on
	Turning tracing off

	Tracing in CICS

	Part 3. Using OS/390 Workload Manager with Workflow
	Chapter 14. Introduction to WLM
	What is OS/390 Workload Manager?
	Overview of WLM
	WLM queuing model
	Service definition

	MQSeries Workflow and OS/390 Workload Management
	Workflow administration server
	Starting the system in WLM mode
	Starting a WLM managed server
	Stopping the system

	OS/390 Workload Manager application environments
	MQSeries for OS/390 workload management
	Classification

	Chapter 15. Setting up WLM for MQSeries Workflow for z/OS
	Creating a WLM service definition
	Service definition
	Service policy
	Workload
	Service class
	Classification rule
	Application environment

	Installing and activating a WLM service policy in a Parallel Sysplexenvironment
	WLM administration
	Switching servers between WLM and non-WLM mode byimporting an FDL file
	Switching servers to WLM mode
	Switching servers to non-WLM mode

	Starting WLM-managed servers when WLM is in manual mode

	Chapter 16. WLM problem determination
	WLM setup problems
	Unexpected runtime behavior of MQSeries Workflow with WLM

	Part 4. Appendixes
	Appendix A. Program Execution Server directory
	PES directory structure
	Invocation section
	Service subsection

	Mapping section
	Security section

	PES directory template
	PES directory dependencies on the process model's OS/390 programdefinitions

	Appendix B. The PES directory import tool's syntax andsemantics
	Return codes
	PES directory import examples
	Importing a PES directory source file
	Importing a PES directory and writing a log file
	Deleting the PES directory

	Appendix C. Program mapping import tool syntax
	Creating a new program mapping definition
	Replacing an existing program mapping definition
	Inserting a program mapping definition
	Deleting a program mapping definition
	Listing program mapping definitions
	Control statement execution
	Example control statements

	Appendix D. Naming and code page restrictions
	Naming Buildtime objects
	Restrictions for passwords in CICS

	Appendix E. FDL code page conversion tool
	Using the FDL code page conversion tool
	Options
	Return codes

	Appendix F. FDL import/export tool
	FDL import/export tool's syntax
	Options for the import/export tool
	Log file and errors
	Return codes

	Examples
	To import an FDL file
	To import an FDL file and translate the contained processmodels
	To import an FDL file and write messages in a separate logfile
	To export all workflow entities
	To export all people
	To export individual people
	To export an individual process (deep)
	To export Workflow entities using a command file
	To translate existing models
	To translate existing process models using a command file

	Appendix G. Customization parameter files
	Customization parameter file for a primary system
	Customization parameter file for adding a system to a system group
	Customization parameter file for a client on a queue manager

	Appendix H. Configuration profiles
	Server configuration profile
	Client configuration profile

	Appendix I. Environment variable files
	Server environment variable file
	Client environment file

	Appendix J. WLM message classification
	Message classification namespace
	Program Execution Server invocation information
	Static Workflow message classification
	Process Template messages
	Process Template List messages
	Process messages
	Process InstList messages
	Work Item messages
	Activity messages
	User Information messages
	Process Monitor messages
	WorkList messages
	PEA/PES Server messages
	PEA/PES Reply messages
	Scheduling messages
	SubProcess messages
	Internal Server messages

	Appendix K. Nesting WLM classification information
	Appendix L. Error reporting
	Error log record entries
	System log record entries
	Compact error reports

	Appendix M. Audit Trail
	What is the audit trail?
	How to analyze the audit trail

	Appendix N. Migrating from a previous release
	Planning your migration
	Decide your new MQSeries Workflow for z/OS identifiers
	Migration identifiers for each Workflow system

	Before starting migration
	Migrate an existing MQSeries Workflow for OS/390 system group
	Migration phases
	Phase 1: Existing system group is functional
	Premigration for each system in the system group

	Phase 2: Production outage
	Stop your existing system group
	Migrate each OS/390 image
	Migrate the databases for the system group
	Migrate and verify each system in the system group

	Phase 3: New system group is functional (except programexecution)
	Program execution migration for each system in the systemgroup

	Phase 4: New system group is fully-functional
	LAN client migration (optional)

	Appendix O. Notices
	Trademarks

	Glossary
	Bibliography
	MQSeries Workflow for z/OSpublications
	MQSeries Workflow publications
	MQSeries publications
	Workflow publications
	Other useful publications
	Licensed books

	Index
	Readers’ Comments — We'd Like to Hear from You

