MQSeries® Everyplace for Multiplatforms

Introduction

Version 1.2

GC34-5843-02






MQSeries® Everyplace for Multiplatforms

Introduction

Version 1.2

GC34-5843-02



Take Note!

Before using this information and the product it supports, be sure to read the general information under

7

Licence warning

MQSeries Everyplace Version 1.2 is a toolkit that enables users to write MQSeries Everyplace applications
and to create an environment in which to run them.

Before deploying this product, or applications that use it, in a production environment, please make sure
that you have the necessary licences.

To use MQSeries Everyplace on specified server platforms (other than for purposes of code development
and test), capacity-unit use authorizations (which are recorded on Proof of Entitlement documents and valid to
support use of MQSeries Everyplace according to published capacity unit and pricing group tables) must be
obtained in order to be licensed to use the program on each machine and machine upgrade.

Device platform use authorizations (which are recorded on Proof of Entitlement documents and valid to
support use of MQSeries Everyplace) are required to use the product (other than for purposes of code
development and test) on specified client platforms. These licenses do not entitle the user to use the
MQSeries Everyplace Bridge, or to run on the server platforms specified in the MQSeries Everyplace pricing

group lists published by IBM and also available on the Web via the URL mentioned below:

Please refer to http://www.ibm.com/software/mqseries for details of these restrictions.

Third Edition (May 2001)

This edition applies to MQSeries Everyplace Version 1.2 and to all subsequent releases and modifications until
otherwise indicated in new editions.

This document is continually being updated with new and improved information. For the latest edition, please see

the MQSeries family library Web page at http://www.ibm.com/software/mgseries/library/.
© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.



Contents

About this book. .o
Who should read this book
Prerequisite knowledge
Terms used in this book .

Summary of Changes . .
Changes for this edition (GC34- 5843 02)
Changes for previous edition (GC34-5843-01)

Chapter 1. Overview .

Chapter 2. Software environments .
Supported platforms
Java environment
Personal Java .
Storage requirements

Chapter 3. The MQSeries family .
MQSeries host and distributed products .
MQSeries Everyplace

Chapter 4. Product Requirements .
Capabilities .

Applications . .

Customer requlrements .

Chapter 5. Product concepts.

Introduction .

Message objects .

Dump data format .

Queues

Queue managers .
Queue manager conf1gurat10n .
Queue manager operations .

Connections .

Administration . .o
Administration messages.
Selective administration .
Monitoring and related actions.

Dynamic channels .

Adapters . o

Dialup connection management

Trace

Event log .

© Copyright IBM Corp. 2000, 2001

. vi

. vii
. vii

vii

U= = 0w

®© ~N

.13
.13
.13
. 14

.17
.17
.18
.23
.23
. 29
. 33
. 36
. 37
. 39
. 39
.41
.42
.42
. 43
. 44
. 44
. 44

Message delivery .
Asynchronous message dehvery
Synchronous message delivery .

Security .
MQSeries Everyplace local secur1ty
MQSeries Everyplace queue-based security
Message-level Security
The registry . .
MQSeries Everyplace Authentlcatable
entities. .
Private Registry and Credentlals
Auto-registration .
Public registry and certlflcate rephcatlon
Application use of registry services
Default mini-certificate issuance service .
The security interface .

Customization
Rules .

Connection styles . .
Peer-to-peer connection .
Client-server connection .
Multiple connection styles

Classes.
Application loadmg

Chapter 6. MQSeries Everyplace and
MQSeries networks . .
Interface to MQSeries .

Message conversion

Function .

Compatibility

Assured delivery

Chapter 7. Programming interfaces

Chapter 8. Getting started with MQSeries
Everyplace . e e e
Using MQSeries Everyplace
Gaining experience.

First use of the ES02: MQe Explorer

Appendix. Notices
Trademarks .

. 44

. 45
. 46
. 47

. 49
. 50

. 50
. 51
. 51

52

. 52
.52
. 53
. 53
. 53
. 55
. 55
. 56
. 56
. 56
. 57

. 59
. 59
. 66
. 68
. 68
. 69

.7

. 73
.74
.75
.75

. 81
. 83

iii



Glossary .

Bibliography

iV MQSeries Everyplace Introduction

. 85

. 89

Index .

Sending your comments to IBM

. 91

. 93



About this book

This book is a general introduction to MQSeries Everyplace for
Multiplatforms product (generally referred to in this book as MQSeries
Everyplace). It covers the product concepts and its relationship to other
MQSeries products.

For detailed information on the MQSeries Everyplace API and how to use it
to create MQSeries Everyplace applications, see the MQSeries Everyplace for
Multiplatforms Programming Reference and the MQSeries Everyplace for
Multiplatforms Programming Guide.

For information relating to using other programming languages with
MQSeries Everyplace for Multiplatforms see MQSeries Everyplace for
Multiplatforms Native Client Information

For MQSeries Everyplace for Multiplatforms installation procedures see
MQSeries Everyplace for Multiplatforms Read Me First

This document is continually being updated with new and improved
information. For the latest edition, please see the MQSeries family library Web
page at http://www.ibm.com/software/ts/mgseries/library/.

Who should read this book

This book is intended for those interested in using secure messaging on
lightweight devices such as sensors, phones, Personal Digital Assistants
(PDAs) and laptop computers, and those with a need to extend the scope of
an MQSeries Everyplace messaging network.

Prerequisite knowledge

No previous knowledge is required to read this information, but an initial
understanding of the concepts of secure messaging is an advantage.

If you do not have this understanding, you may find it useful to read the
following MQSeries book:

* MQSeries An Introduction to Messaging and Queuing

This book is available in softcopy form from Book section of the online
MQSeries library. This can be reached from the MQSeries Web site, URL
address http://www.ibm.com/software/ts/MQSeries/library/

© Copyright IBM Corp. 2000, 2001 v



Terms used in this book

The following terms are used throughout this book:

MQSeries family

refers to the following MQSeries products:

* MQSeries Workflow simplifies integration across the whole
enterprise by automating business processes involving people and
applications

* MQSeries Integrator is powerful message-brokering software that
provides real-time, intelligent rules-based message routing, and
content transformation and formatting

* MQSeries Messaging provides any-to-any connectivity from
desktop to mainframe, through business quality messaging, with
over 35 platforms supported

MQSeries Messaging
refers to the following messaging product groups:

+ Distributed messaging: MQSeries for Windows NT, AIX®,
AS/400®, HP-UX, Sun Solaris, and other platforms

* Host messaging: MQSeries for OS/390®
* Pervasive messaging: MQSeries Everyplace
MQSeries
refers to the following three MQSeries Messaging product groups:
* Distributed messaging
* Host messaging
* Workstation messaging
MQSeries Everyplace

Refers to the third MQSeries Messaging product group, pervasive
messaging.

Device platform
A small computer that is capable of running MQSeries Everyplace
only as a client.

Server platform
A computer of any size that is capable of running MQSeries
Everyplace as a server or client.

Gateway
A computer of any size running MQSeries Everyplace programs that
include MQSeries-bridge function.

vi  MQSeries Everyplace Introduction



Summary of Changes

This section describes changes to this edition of MQSeries Everyplace for
Multiplatforms Introduction. Changes since the previous edition of the book are
marked by vertical lines to the left of the changes.

Changes for this edition (GC34-5843-02)

Much of the text has been restructured and rewritten, and the following
information has been added:

+ Additional platforms supported
* Getting started information

Changes for previous edition (GC34-5843-01)
The following information has been added:
¢ Information for using MQSeries Everyplace on AIX and Solaris.
* Storage requirements.
* Readers comment form.

© Copyright IBM Corp. 2000, 2001 vii



viii  MQSeries Everyplace Introduction



Chapter 1. Overview

MQSeries Everyplace is a member of the MQSeries family of business
messaging products. It is designed to satisfy the messaging needs of
lightweight devices, such as sensors, phones, Personal Digital assistants
(PDAs) and laptop computers, as well as supporting mobility and the
requirements that arise from the use of fragile communication networks. It
maintains the standard MQSeries quality of service, providing once-only
assured delivery, and exchanges messages with other family members. Since
many MQSeries Everyplace applications run outside the protection of an
Internet firewall, it also provides sophisticated security capabilities.

Lightweight devices require the messaging subsystem to be frugal in its use of
system resources and consequently MQSeries Everyplace offers tailored
function and interfaces appropriate to its customer set and does not aim to
provide exactly the same capabilities as other members of the family. On the
other hand, it does include unique function in order to support its particular
classes of user, such as comprehensive security provision, message objects,
synchronous and asynchronous messaging, remote queue access, and message
push and pull.

MQSeries Everyplace is also designed to integrate well with other members of
the IBM pervasive computing family and other components of the Websphere
Everyplace Server.

© Copyright IBM Corp. 2000, 2001 1



2 MQSeries Everyplace Introduction



Chapter 2. Software environments

Supported platforms

MQSeries Everyplace is only directly installable on certain server platforms.
To transfer programs and Java classes to other platforms, an appropriate
download or file transfer program (not supplied) must be used.

Directly supported platforms with installation support

The following platforms are those on which the product can be
installed using the built-in tools.

Windows NT® v4

Windows® 2000

Windows 95/98/ME

AIX Version 4.3

Sun Solaris Version 7 or 8

Linux Intel Kernel 2.2 (installed using a zip file).
HP-UX 11.0 (installed using a zip file)

Directly supported platforms without installation support

The following platforms are supported for the testing and deployment
of MQSeries Everyplace, but only support installation by file transfer
from another platform.

WIinCE 2.1 running on HP Jornada devices (Models 680 or 820)

EPOC 32 bit Release 5running on Psion devices (6MX Pro or
NetBook)

PalmQOS, V3.0 or higher running on Palm V and IBM Workpad C3
IBM 4690 OS with Java

Indirectly supported platforms
The following platforms may be used, but are only supported if their
Java environment is fully compatible with that on the directly
supported platforms. Problems can only be investigated on one of the
tested platforms listed above.

© Copyright IBM Corp. 2000, 2001

Linux on zSeries running Kernel 2.2

iSeries

0S/2

EPOC (on devices other than those listed above)
WInCE (on devices other than those listed above)



* QNX Neutrino
* Pocket PC
PalmOS (on devices other than those listed above)

* Any other platform running one of the Java environments listed in

Java environment’]

Java environment
One of the following Java runtime environments is required:
* IBM Java runtime (JVM 1.3 or later), including Java Micro Edition
* Any Java which is Sun Java (V1.1 or later) certified !

Note: The Java needs to be fully compatible with that tested on one of the
following platforms in order for service to be available

* HP Jornada devices (Models 680 or 820) running Windows CE
operating system

¢ Psion devices (SMX Pro or NetBook) running EPOC operating system

* One of the server platforms in the directly supported lists above

MQSeries Classes for Java is required for MQSeries-bridge operation. You
should check the level of Java that is required to run the version of MQSeries
Classes for Java.

Personal Java
Personal Java may be used instead of other JVMs on device platforms.

To use MQSeries Everyplace the following optional classes of Personal Java
are required:

* For MQSeries Everyplace base classes:

java.io.FileInputStream

java.io.FileOutputStream

java.io.File
- java.io.FilenameFilter
* To use the MQeGZIPCompressor:
- java.util.zip.GZIPOutputStream
* To use any encryption

— java.math.BigInteger

1. You may experience problems if you run the installer under Sun’s JVM with the JIT (Just In Time) compiler
enabled. If you use a Sun JVM we recommend that you disable the JIT compiler using the command: java
-Djava.compiler=NONE install

4  MQSeries Everyplace Introduction



The MQSeries Everyplace examples require some of the optional classes in

packages java.io and java.awt.

Storage requirements

The following table shows the storage you need to perform the installation of

MQSeries Everyplace.

Table 1. Storage required to perform installation

Operating system

Storage required

Windows NT (file system = NTES) 26Mb
AIX 29Mb
Solaris 27Mb

The following table shows the storage you need for the MQSeries Everyplace

files after installation.

Table 2. Storage required for MQSeries Everyplace

Operating system

Storage required

Windows NT (file system = NTFS) 9.5Mb
AIX 11Mb
Solaris 10Mb

Chapter 2. Software environments

5



6 MQSeries Everyplace Introduction



Chapter 3. The MQSeries family

The MQSeries family includes many products, offering a range of capabilities,
as illustrated in @

MQSeries Family

o Workflow Process flow
o Application services
o Tools

o Transforms, rules, routing
o API framework
o Templates, utilities

@QSeries Workflow

@QSeries Integrator

@QSeries

Figure 1. The MQSeries family

o Message services
o All commercial platforms
o Language adapters

* MQSeries Workflow simplifies integration across the whole enterprise by
automating business processes involving people and applications

* MQSeries Integrator is powerful message-brokering software that provides
real-time, intelligent rules-based message routing, and content
transformation and formatting

* MQSeries Messaging provides any-to-any connectivity from desktop to
mainframe, through business quality messaging, with over 35 platforms
supported

Both MQSeries Workflow and MQSeries Integrator products take advantage of
the connectivity provided by the MQSeries messaging layer.

MQSeries family messaging is supplied by both MQSeries and MQSeries
Everyplace products; each being designed to support one or more hardware
server platforms and/or associated operating systems. Given the wide variety
in platform capabilities, these individual products are organized into product
groups, reflecting common function and design. Three such product groups
exist:

© Copyright IBM Corp. 2000, 2001 7



MQSeries family

* Distributed messaging: MQSeries for Windows NT, AIX, AS/400, HP-UX,
Sun Solaris, and other platforms

* Host messaging: MQSeries for OS/390

* Pervasive messaging: MQSeries Everyplace

Messaging itself, irrespective of the particular product or product group, is
based on queue managers. Queue managers manage queues that can each
store messages. Applications communicate with a local queue manager, and
get or put messages to queues. If a message is put to a remote queue, that is
one owned by a remote queue manager, the message is transmitted over
channels to the remote queue manager. In this way messages can hop through
one or more intermediate queue managers before reaching their destination.
The essence of messaging is to uncouple the sending application from the
receiving application, queuing messages at intermediate points if necessary.
All MQSeries messaging products are concerned with the same basic elements
of queue managers, queues, messages and channels, though there are many
differences in detail.

MQSeries host and distributed products

MQSeries host and distributed messaging products are used to support many
different network configurations, all of which involve clients and servers,?
some examples of which are illustrated in

(a) Standalone server (b) Client-server (c) Distributed client-server

Server

Figure 2. Simple host and distributed configurations

In the simplest case a standalone server is configured, running a queue
manager. One or more applications run on that server, exchanging messages
via queues. An alternative configuration is client-server. Here the queue
manager only exists on the server, but the clients each have access to it
through a client channel. The client channel is a bidirectional communications
link that flows a unique MQSeries protocol implementing something similar
to a remote procedure call (RPC). Applications can run on the clients,
accessing server queues. One advantage of the client-server configuration is

2. Note that these terms have very specific meanings within MQSeries host, distributed, and workstation messaging
products, that do not always correspond to their more common usage.

8 MQSeries Everyplace Introduction



MQSeries family

that the client-messaging infrastructure is lightweight, being dependent on the
server queue manager. A disadvantage is that clients and their associated
server operate synchronously and therefore require the client channel to be
always available.

The distributed client-server configuration shows a more complex case, with
multiple servers involved. In these configurations servers exchange messages
through message channels. Message channels are unidirectional, with a protocol
designed for the safe, asynchronous exchange of message data. These message
channels need not be available for the clients to continue processing, though
no messages can flow between servers when communications are not
available.

MQSeries Everyplace

MQSeries Everyplace supports a wide variety of network configurations
through the provision of queue managers, with each queue manager enabled
with appropriate capabilities. There is no concept of a client or a server as in
the MQSeries host or distributed products. MQSeries Everyplace queue
managers can act as traditional clients or servers but each is in fact simply a
queue manager enabled to perform application-defined tasks. As an
illustration of this an MQSeries Everyplace queue manager can be configured
with or without local queues. With local queues it can store messages locally
and hence offer applications asynchronous messaging, but without local
queues it is restricted to synchronous messaging. Another example of tailored
configuration is that a queue manager may be configured with or without
bridge capabilities. With the bridge it has the ability to exchange messages
with MQSeries host or workstation queue managers; without the bridge it can
only communicate directly with other MQSeries Everyplace queue managers
(although it can communicate indirectly through other queue managers in the
network that have bridge capabilities).

Note: A new node for MQSeries Integrator (MQSI) allows connection of
MQSeries Everyplace directly, without the use of the MQSeries-bridge.

MQSeries Everyplace queue managers use dynamic channels to exchange
information. These dynamic channels have different properties from the client
channels and message channels used by other members of the family. Some of
the key features of dynamic channels are:

* Support for both synchronous and asynchronous messaging: Synchronous
messaging provides a transmission service directly from the source
application to the target queue, without queuing at the source queue
manager. Asynchronous messaging is a transmission service from the
source queue manager to the target queue, with possible queuing at the
source queue manager.

Chapter 3. The MQSeries family 9



MQSeries family

* End-to-end service provision: Channels go from the source queue manager to
a destination queue manager, possibly running through intermediate queue
managers. The underlying transport protocol used can change as the
channel passes through these intermediates.

* Support for compression, encryption, and authentication: Channels have these
security characteristics to protect the data in transit.

* Support for peer-to-peer operation and client-server operation: Channels
defined as peer-to-peer are functionally symmetrical, such that the either
the source or the target can initiate an operation over the channel.
Client-server channels are request/response, the client makes a request of
the server and the server responds to that request. (Note that this does not
restrict the message flow. Messages can flow from client to server and from
server to client).

The bridge configuration option allows an MQSeries Everyplace queue
manager to communicate with MQSeries host and distributed queue
managers through client channels. The bridge component manages a pool of
client channels that can be attached to one or more host or distributed queue
managers. Multiple bridge-enabled MQSeries Everyplace queue managers can
be configured in a single network to provide the required capacity,
performance and reliability.

Some typical, but arbitrary, MQSeries Everyplace configurations are shown in
the following diagrams. For clarity the diagrams show only the direct
connections that have been defined. Indirect connections that exploit the direct
connections can also be defined. A line with a double arrow head is used to
represent a peer-to-peer channel and a client-server channel is represented by
a line with the arrow pointing to the server. Clients can use the client-server
channel both to send messages to the server and to pull messages destined to
themselves from that server. Lines with no arrows indicate MQSeries client
channels that enable communications between MQSeries Everyplace and
MQSeries.

Queue
manager

(a) Stand-alone queue manager

(a) Shows a standalone queue manager being used to support one or more
applications that use queues to exchange data.

Queue Queue
manager manager

(b) Peer-to-peer configuration

10  MQSeries Everyplace Introduction



MQSeries family

(b) Shows two queue managers interconnected over a peer-to-peer channel.

(c) Peer-to-peer configuration

(c) Shows a second direct peer-to-peer channel to a third queue manager. All
three can exploit the underlying direct connections to exchange data with each
other.

Queue
manager

Queue
manager

A

A

Queue
manager

(d) A small network

(d) Shows a small network configuration, where the central server queue
managers use a pair of direct client-server channels to exchange information.
The client queue managers each use a direct client-server channel to connect
with one of the server queue managers.

Queue

MQSeries

manager
with bridge] server

Client

(e) An integrated MQSeries family network

(e) Shows an MQSeries Everyplace configuration where one of the queue
managers has been configured with the bridge option and the pool of client
channels have all been directed at a single target MQSeries host/distributed
server.

Chapter 3. The MQSeries family 11



12 MQSeries Everyplace Introduction



Chapter 4. Product Requirements

This chapter describes the requirements that have shaped the MQSeries
Everyplace design and implementation.

Capabilities

MQSeries Everyplace extends the messaging scope of the MQSeries family:

By supporting low-end devices, such as PDAs, telephones, and sensors,
allowing them to participate in an MQSeries messaging network. MQSeries
Everyplace also supports intermediate devices such as laptops,
workstations, distributed and host platforms. MQSeries Everyplace offers
the same quality of service, once only assured delivery of messages, and
permits message exchange with other family members.

By offering lightweight messaging facilities.
By providing extensive security features to protect messages, queues and
related data, whether in storage or in transmission.

By operating efficiently in hostile communications environments where
networks are unstable, or where bandwidth is tightly constrained. MQSeries
Everyplace has an efficient wire protocol and automated recovery from
communication link failures.

By supporting the mobile user, allowing network connectivity points to
change as devices roam. MQSeries Everyplace also allows control of
behavior in conditions where battery resources and networks are failing or
constrained.

By operating through suitably configured firewalls

By minimizing administration tasks for the user, so that the presence of
MQSeries Everyplace on a device can be substantially hidden. This makes
MQSeries Everyplace a suitable base on which to build utility-style
applications.

By being easily customized and extended, through the use of
application-supplied rules and other classes that modify behavior, or
through the sub-classing of the base object classes, for example, to represent
different message types.

Applications

Possible MQSeries Everyplace applications are many and varied, but many are
expected to be custom applications developed for particular user groups. The
following list gives some examples:

© Copyright IBM Corp. 2000, 2001 13



product requirements

Retail applications: trickle feeding of till transactions to host systems, such
as message brokers

Consumer applications: supermarket shopping from home using a PDA,
gathering of travellers preferences on airlines, financial transactions from a
mobile phone

Control applications: collection and integration of data from oil pipeline
sensors transmitted via satellite, remote operation of equipment (such as
valves) with security to guarantee the validity of the operator

Mobile workforce: visiting professional (insurance agent), rapid publication
of proof of customer receipt for parcel delivery companies, fast-food waiter
exchanging information with the kitchen, golf tournament scoring, mobile
secure systems messaging systems for the police, job information to utility
workers in situations where communication is frequently lost, domestic
meter reading.

Personal productivity: mail/calendar replication, database replication,
laptop downsizing

Customer requirements

Requirements that have influenced the design of MQSeries Everyplace
include:

Administration: minimal setup and maintenance; support of both local and
remote administration; an ability to extend and customize the
administration functions to meet the needs of particular applications; an
emphasis on automatic discovery and recovery; the provision of
independent administration elements that can be selectively used.

Communications: a very efficient wire protocol; minimal headers; no
compulsory fields in messages (excepting a unique identifier); the ability to
change the data encoding; compression, encryption and authentication
support; end-to-end negotiation of compression and security characteristics;
an ability to easily pass through firewalls; pluggable communications
adapters.

Compatibility: MQSeries quality of service and seamless messaging
interchange; the ability to communicate to existing MQSeries systems
without application change; flexible control of message interchange between
MQSeries and MQSeries Everyplace .

Footprint: for the Palm device, 64K bytes. For Java devices a minimum
classfiles size of 100K bytes.

Function: synchronous and asynchronous messaging capabilities, access to
messages held in either local or remote queues; the ability to use any field
in the message for selective retrieval; selective control of the backing
medium for a queue.

14  MQSeries Everyplace Introduction



product requirements

* Rule support: control of many aspects of behavior through rules, for
example, when to send messages, how often to retry a communication link,
what to do with a message that is too big, or how to behave when a target
queue is full.

* Security: full support for security, authentication and non-repudiation;
message-level and queue level security; protection of the messaging system
from security attacks; pluggable security using industry standard
algorithms; ability to integrate with operating system user credentials; the
capability to comply with the national security requirements, allowing
security support to change as messages cross country boundaries.

Chapter 4. Product Requirements 15



product requirements

16  MQSeries Everyplace Introduction



Chapter 5. Product concepts

Introduction

The fundamental elements of the MQSeries Everyplace programming model
are messages, queues and queue managers. MQSeries Everyplace messages
are objects that contain application-defined content. When stored, they are
held in a queue and such messages may be moved across an MQSeries
Everyplace network. Messages are addressed to a target queue by specifying
the target queue manager and queue name pair. Applications place messages
on queues through a put operation and typically retrieve them through a get
operation. Queues can either be local or remote and are managed by queue
managers.Configuration data is stored in a registry.

The MQSeries Everyplace object structure can be seen in the following display
from the MQe_Explorer management tool:

. First(M: MQe root'FirstQM' Local queues' AdminReply( =gl =l
File Edit Yiew Tools Window Help
0w o % B2 22 &[4 =E2EE
E---‘}_t“ M e oot Message | Orig. ghar. | Creation date | Creation .. | Clazs )
{1 FirstQM = 1 FirstQM Z2Mar01 131219 98526673 comibm.mge.ad...
ED onnections = 2 Firstlbd 22Mar01 132748 98526766,  com.ibm.mge.ad...
SecondM S FirstiM 22Mar01 132824 98526770, comibmmae.ad..
= 4 Secondi 22Mar01 133814 98526829, com.ibm.mge.ad...
E 5 Secondi 22Mar01 134306 98526894, com.ibm.mge.ad..
= & Secondi 22Mar01 134306 98526894, com.ibm.mge.ad..
= 7 Secondi 22Mar01 134308 98526894, com.ibm.mge.ad...
= s Secondi 22Mar01 134308 98526894, com.ibm.mge.ad...
= 3 Secondi 22Mar01 134323 98526896,  com.ibm.mge.ad...
= 10 Firstlbd 22Mar-01 21:50:51 98529785, com.ibm.mge.ad...
H E 1 Firstlbd 22Mar01 21:50:51 98529785, com.ibmmge.ad.. =
[ Local services E 12 FirstGM 22Mar-01 21:50:51 98523785 comibmomge.ad..
----- % SeconddM IEil 13 FirstGM 22-Mar-01 21:50:52 98523785, com.ibm.mqe.ad;lll
4 3
|15 message(s] r’ﬁ Firstlt 2

Figure 3. MQSeries Everyplace objects displayed by MQe_Explorer

In the left hand pane the objects are shown in a tree structure. Below the root
MQe root are two queue managers, FirstQM and SecondQM. The structure of the
SecondQM is expanded to reveal folders for Connections, Local queues and Local
services. The expansion of Connections reveals a connection definition from the
SecondQM queue manager to the FirstQM queue manager. The remote queue
manager, SecondQM has definitions for five of FirstQM’s queues. The expansion
of Local queues for SecondQM reveals three local queues, one of which is
selected and has its contents revealed in the right hand pane.

© Copyright IBM Corp. 2000, 2001 17



product concepts

Understanding MQSeries Everyplace requires an appreciation of the nature of
messages, queues, queue managers and connections. These concepts are
outlined in the following sections.

| Message objects

MQSeries Everyplace message objects differ fundamentally from the messages
supported by MQSeries messaging. In MQSeries messages are byte arrays,
divided into a message header and a message body. The message header is
understood and contains vital information, such as the identity of the reply to
queue, the reply to queue manager, the message ID, and the correlation ID.
The message body is not understood.

In contrast, messages in MQSeries Everyplace are message objects, inherited
from an MQSeries Everyplace object known as the fields object. These messages
have no concept of a header or a message body but they do have properties
and methods. Understanding the message object first requires an appreciation
of the ancestor fields object.

[ Fields objects, used extensively in MQSeries Everyplace, are an accumulation
I of fields, where a field comprises a name, a data type and the data itself. Field
I names are Ascii character strings strings (barring a number of reserved

I characters) of unlimited length.

[ Fields objects have a type, where the type is an abbreviated string
I corresponding to the programming object class name. Field types may be:

| Table 3. Fields object types

I Type Description

I Ascii String or a dynamic array of Ascii strings
| Boolean Value

| Byte Fixed array, or a dynamic array of byte

| values

| Double floating point Value, fixed array, or a dynamic array of
I double floating point values

| Fields Object or a dynamic array of fields objects
| (thus nesting of fields objects is

I supported)

| Floating point Value, fixed array, or a dynamic array of

| floating point values

I Integer (4 byte) value, fixed array, or a dynamic
| array of integers

I Long integer (8 byte) value, fixed array, or a dynamic
| array of long integers

18 MQSeries Everyplace Introduction



message objects

Table 3. Fields object types (continued)

Type Description

Object Value

Short integer (2 byte) value, fixed array, or a dynamic
array of short integers

UNICODE String or a dynamic array of UNICODE
strings

Fields objects support various method calls, for example:

* Enumeration of fields

* Copy a constituent field or fields (with replace option)

* Compare fields objects

* Put and get to and from constituent fields

¢ Inspect fields objects (for instance, is a constituent field contained within
the object?’)

* Dump and restore to and from a byte array

The dump and restore methods are of particular importance. For example, the
dump method is called to provide the data for transmission of a message
object over a link, and the restore method allows recreation of that object at
the receiver. In this way each object is responsible for its own transmission
format, and the default methods provided can be overridden to implement
custom behavior. Similarly, these two methods are used when message objects
are saved or restored from queues. Overriding these methods can implement
very different behavior. For example, a message object may query a database
at dump time to extract its value prior to transmission.

Some of the properties of fields objects and their constituent fields are shown
in the following table:

Table 4. Fields objects and their constituent field properties

Property Presence
Fields objects Fields

Associated attribute object Optional

Constituent field(s) yes

Hidden yes
Name yes
Type yes yes
Value yes

Chapter 5. Product concepts 19



message objects

Two properties of note are the hidden property, which allows a field to be
ignored for comparison purposes, and the ability to associate an attributes object
with a fields object.

Attribute objects are fundamental to the MQSeries Everyplace security model
and allow selective access to content and the protection of content. They have
the following important properties:

Table 5. Attribute object properties

Property Description
Authentication: Controls access
Encryption: Protects the contents when the object is

dumped (and allows restoration)

Compression: Reduces storage requirements (for
transmission and/or storage)

Rule: Controls permitted operations

Message objects inherit from fields objects and thus include all the above
capabilities, including the ability to have attributes objects associated at the
message and constituent fields object level. Additionally, message objects
include a UID (unique identifier) which is generated by MQSeries Everyplace.
This UID uniquely identifies each individual message object in the entire
MQSeries Everyplace network and is constructed from the:

* Name of the originating queue manager (added by the queue manager on
receipt of the object). This name must be globally unique.

* Time that the message object was created (added at creation)

A message object consequently has the following properties, in addition to
those inherited from the ancestor fields object:

Table 6. Message object properties

Property Description

Originating queue manager Name of the queue manager that first received the
new message from the application

Creation time Time the message object was created by the
application

UID MQSeries Everyplace unique identifier

No other information is required in a message destined for another MQSeries
Everyplace queue manager, though other fields will almost certainly be
present. These additional fields arise in various ways:

* Fields added by MQSeries Everyplace to reflect current status

20 MQSeries Everyplace Introduction



message objects

¢ Fields associated with a particular message subclass
* Custom fields associated with a message object instance

MQSeries Everyplace adds fields to a message object (and subsequently
removes them) in order to implement messaging and queuing operations. For
example, when a message is on a queue, it is possible to query the message to
find out when it was put on that queue. (This is possible using a queue rule
which is discussed later). When a message is being sent between queue
managers, a resend field may be added to indicate that a retransmission of the
data is taking place. There are many other examples.

Typical application-based messages are instances of some descendant of the
base message object class and consequently have additional fields as befits
their purpose (for example, invoice number). Of these additional fields, some
will be generic and common to many applications, such as the name of the
reply-to queue manager. In recognition of this MQSeries Everyplace provides
support for fields that might be expected to be present in messages. These
fields include:

Table 7. Message object fields for which provision is made

Field name Usage

Action Used by administration to indicate actions such as
enquire, create, delete

Correlation ID Byte string typically used to correlate a reply with
the original message

Errors Used by administration to return error information

ExpireTime Time after which message may be deleted (even if it
is not delivered)

Lock ID The key necessary to unlock a message

Message ID A unique identifier for a message

Originating queue manager The name of the queue manager that sent the
message

Parameters Used by administration to pass administration
details

Priority Relative priority to be order message transmission

Reason Used by administration to return error information

Reply-to queue Name of the queue to which a message reply
should be addressed

Reply-to queue manager Name of the queue manager to which a message
reply should be addressed

Resend Indicates that the message is a resend of a previous
message

Chapter 5. Product concepts 21



message objects

Table 7. Message object fields for which provision is made (continued)

Field name Usage

Return code Used by administration to return the status of an
administration operation

Style Distinguishes commands from request/reply etc.

Wrap message Wrapped message to ensure data protection

In all cases a defined constant is available that allows the field name to be
carried in a single byte. For some fields more extensive provision is made. For
example, priority (if present) affects the order in which messages are
transmitted, correlation ID triggers indexing of a queue on those field values
for fast retrieval, expire time triggers the expiry of the message, and so on.

The administrative panel shown in [Eigure 4 illustrates the structure of a
message. Note that the use of nested fields means that complicated data
hierarchies can exists within messages and that the administrative tools (and
applications) can drill down into the self-describing structure (provided that
this has not been inhibited via security settings).

Message objects use the underlying dump and restore methods when they are
serialized to or from a byte array for the purpose of transmission or queue
storage. By default, in order to save on footprint, this does not flow the
associated class definition. Overwriting dump and restore with standard
serialization methods would flow the class definition if this were required.

. " FirstQ)M: Me root'FirstM' Local queues' AdminReplyd’, 3 _|EI 5[
File Edit Yiew Tools Window Help
Dw el s B30
= AdminFepyl ﬂ Hame | Data type | Walue | Langthl Array tppe | Modifier | Hidden |
= 1 () admact Int [ 0 0
2 = admerns Figlds 0 0
w 4 [ adrmmaxty Int 1 1] 1]
: g ade”S [=8] admparms Fields 1] 1]
admpary = admgrar Ascil SeconddM g 1] 1]
=B 4
=] admre Eyte 1l1] a a
- admerrs
288 admpan & admreason Unicode Giood 4 1] 1]
(& cad [ admtry It 1} 1] 1]
=-E & 3% 'MOe_Erplorer’ Boolean true 10000 0
admerr: (=] "Msg_ComellD’ Byte aray {00, 00, 00,E5, .. 8 Static 0 0
@ admpan =) Msg_OriginGMar Al FirstQM 7 1} a
E & =) Msg_ReplTod' A AdminReplyd 11 1] 1]
~E 7 =) Mag_RephToOMar  Asci FirstQM 7 1} a
-E 8 [ Mag_Style' Int 1 i] i]
a =BG I _>|—| @8 ‘sg_Time' Long 985267704330 il il
[15 field(2); 0 sub-fields) [ |213 [Frstiom

Figure 4. Message structure displayed with MQe_Explorer

Typically however the class is independently made available at each queue
manager where the message object is to be instantiated. If it is necessary to

22 MQSeries Everyplace Introduction




message objects

instantiate an object (for example for intermediate storage during
transmission) and the class file is known to be unavailable, the message can
be wrapped in another class. This is typically the default message object class.
This technique is also useful where an attributes object has been used to
protect the message. The presence of such an attributes object means that the
message contents cannot be accessed without the necessary security keys.
However, wrapping such a message allows the kernel message to remain fully
protected yet the wrapped message can be freely dumped and restored.

The default message object dump method has been optimized to minimize the
size of the generated byte string in order to achieve efficient message storage
and transmission.

Dump data format
The default dump data format encodes fields as follows:
{Length Identifier Fence {Data}} {Length Identifier Fence ({Data}} { ...

where:

* Data: the data value. Integers are compressed with leading 0s and Fs
removed. Booleans have no associated data bytes

* Fence: a special byte delimiting the boundary between the identifier and the
optional Data item. This byte also indicates the Data item type

* Identifier: holds the field name in a variable length Ascii string of bytes,
terminated with an end byte

* Length: indicates the length of the data field. A variable number of bytes
between 1 and 4 are used. The first byte has the first two bits reserved to
indicate the length of the length field. Lengths in the range 0 - 1,073,741,823
are supported

This results in a highly compact data stream. Further savings can be achieved
by compressing the data. XOR compression with a previous byte stream
might be expected to produce good results but, because of the variable nature
of these fields and the fact that the order of the fields can change, a simple
XOR does not always produce the desired effect. MQSeries Everyplace
includes an intelligent XOR, working on a field-by-field basis, that is much
more likely to improve compression.

Queues

Queues are typically used to hold message objects pending their removal by
application programs. Like messages, queues also derive from the fields
objects. Direct access by applications to the queue object is not normally
permitted. Instead, the queue manager acts as an intermediary between
application programs and queues. Queues are identified by name and the

Chapter 5. Product concepts 23



queues

name can be an ASCII character string of unlimited length3 but must be
unique within a particular queue manager. MQSeries Everyplace supports a
number of different queue types:

Local queues

Local queues are used by applications to store messages in a safe and
secure manner. The message stored is mapped into permanent storage
through an adapter, on a queue-by-queue basis. A range of adapters is
supplied with MQSeries Everyplace and others can be written or are
available from other sources. The standard adapter is known as the
MQeDiskFieldsAdapter that maps queues into the local file system
and implements assured delivery. Another adapter, the
MQeReducedDiskFieldsAdapter, also maps queues into the file
system, but trades faster performance for a dependence on the
operating system surviving long enough to empty its buffers into the
physical disk subsystem. Yet another adapter, the
MQeMemoryFieldsAdapter, maps queues into memory. Whilst giving
the fastest queue performance this adapter has the characteristic that
messages do not survive a restart of the operating system or queue
manager. By creating the appropriate adapter, messages can be stored
anywhere, on a queue-by-queue basis. Some examples of storage
mediums are a relational database or a writable CD. Adapters exist
that take advantage of the mirrored file system on the IBM 4690 retail
store controller, or that exploit DB2 for queue storage.

Local queues can be used either on or off-line, (either connected or
not to a network). Queues can also have security attributes set, in a
very similar manner to the protection of messages and fields objects
with the attributes object. Queue security is discussed in

. Access to messages on local queues is always synchronous,
which means that the application waits until MQSeries Everyplace
returns after completing the put or get operation.

Remote queues

Remote queues are local references to queues that reside on a remote
queue manager. The local reference has the same name as the target
queue but the remote queue definition identifies the owning queue
manager of the real queue. Remote queues also have properties
concerned with access, such as the mode of access (synchronous or
asynchronous), any security characteristics and transmission options.

MQSeries Everyplace can establish the remote queues automatically. If
an attempt is made to access (for example to send a message to) a
queue on another queue manager MQSeries Everyplace looks for a

3. For interoperability it is recommended that the MQSeries naming restrictions are observed, including a maximum
name length of 48 characters. The length may also be restricted by the file system you are using.

24  MQSeries Everyplace Introduction



queues

remote queue definition. If one exists then it is used, but if not queue
discovery occurs. The characteristics (authentication, cryptography and
compression) are discovered and a remote queue definition is created.
Such queue discovery depends upon the target being accessible. If the
target is not accessible, a remote definition must be supplied in some
other way. When queue discovery occurs MQSeries Everyplace sets
the access mode to synchronous since the queue is known to be
synchronously available.

Synchronous remote queues are queues that can only be accessed when
connected to a network that has a communications path to the owning
queue manager. If the network is not established then the operations
such as put, get, and browse (see 'Queue manager operations” onl

), cause an exception to be raised. The owning queue controls
the access permissions and security requirements needed to access the
queue. It is the application’s responsibility to handle any errors or
retries when sending or receiving messages as, in this case, MQSeries
Everyplace is no longer responsible for once-only assured delivery.

Asynchronous remote queues are queues that send messages to remote
queues but cannot remotely retrieve messages. If the network
connection is established then the messages are sent to the owning
queue manager and queue. If however the network is not connected,
the messages are stored locally until there is a network connection
and then the messages are transmitted. This allows applications to
operate on the queue when the device is off-line. Consequently these
queues have an adapter that maps to a message store in order that
messages can be temporarily stored at the sending queue manager
whilst awaiting transmission.

Store-and-forward queues

This type of queue stores messages associated with one or more target
queue manager destinations. It has two main uses. The first is to
enable the intermediate storage of messages in a network, such that
they can proceed stepwise to their destination (a forwarding role). The
second use is to hold messages awaiting collection (see also
home-server queues).

Store-and-forward queues are associated with a set of queue manager
names for which they will hold messages. These are referred to as
target queue managers. Messages addressed to one of these target
queue managers will be placed instead on the relevant
store-and-forward queue. The store-and-forward queue may
optionally also have a forwarding queue manager name set. If this
name is set, the queue attempts to send all its messages to that named
queue manager. If the name is not set the queue just holds the
messages.

Chapter 5. Product concepts 25



queues

This type of queue is normally (but not necessarily) defined on a
server or gateway. Multiple store-and-forward queues can exist on a
single queue manager, but the target names must not be duplicated.
The contents of a store-and-forward queue are not available to
application programs. Likewise a message sending application is quite
unaware of the presence or role of store-and-forward queues in
message transmission.

Messages on store-and-forward queues are not available to
applications.

Home-server queues

Remote queues and store-and-forward queues push messages across
the network, the sending queues initiating the transmission.
Home-server queues however allow messages to be pulled from a
remote queue. A home-server queue definition identifies a
store-and-forward queue on a remote queue manager. The
home-server queue then pulls any messages that are destined for the
home-server queue’s local queue manager, off the store-and-forward
queue. Multiple home-server queue definitions may be defined on a
single queue manager, where each one is associated with a different
remote store-and-forward queue.

Home-server queues normally reside on a device and are set up to
pull messages from a server whenever the device connects to the
network. When the home-server queue pulls a message from the
server, the message is then placed in the correct target local queue.
Thus the home-server queue does not itself have any application
accessible messages. The pull method of getting messages from the
server can be more efficient in terms of flows over the network than
the server pushing the messages. This is because the home-server
queue uses the acknowledgement of the first message as the request
for the next message (if any), whereas the server push would require
a request/response to send the message and a second
request/response for the confirmation flow. A home-server queue
normally has a polling interval set that causes it to check for any
pending messages on the server whilst the network is connected. This
poll interval is an administration configuration option. Home-server
queues have an important role in enabling clients to receive messages
over client-server channels. The nature of the client-server connection
is that servers cannot initiate data transfer.

Messages on home-server queues are not available to applications.

4. The alternative is to use peer-to-peer channels, or to configure both queue managers with both client and server
capabilities.

26  MQSeries Everyplace Introduction



queues

Administration queues
Administration queues are the mechanism through which queue
managers (and their associated objects) are configured, either locally
or remotely. A message sent to the administration queue is processed
by the relevant administration message class and then, optionally, a
reply is sent back to the originating application. This topic is
discussed in more detail int i ion”

MQSeries bridge queues
This is a specialized form of remote queue with the definition on a
gateway and the target queue on an MQSeries queue manager. This
form of queue provides a pathway between the MQSeries Everyplace
and the MQSeries environments. Transformers are used to perform
any necessary data or message reformatting. A basic transformer is
supplied with MQSeries Everyplace; programmers are expected to
customize this transformer to suit their own requirements.

MQSeries Everyplace stores data securely on queues, ensuring, subject to the
adapter, that messages are physically written to the media and not simply
buffered by the operating system. However MQSeries Everyplace does not
independently log changes to messages and queues. If recovery from media
failure is required then hardware solutions must be deployed, such as the use
of RAID disk systems. Alternatively the queue must be mapped into
recoverable storage such as certain database subsystems.

MQSeries Everyplace does not require that a queue manager has defined
queues. However provision is made for four system queues, if required:

¢ AdminQ: required for the receipt of administration messages

* AdminReplyQ: optionally used for receiving replies to administration
messages

* DeadLetterQ: used to store messages that cannot otherwise be delivered

* SYSTEM.DEFAULT.LOCAL.QUEUE: a queue that shares a common name
with the mandatory system queue on MQSeries servers

Queue properties are shown in the following table. Note however that not all
the properties shown apply to all the queue types:

Table 8. Queue properties

Property Explanation

Admin_Class Queue class

Admin_Name Ascii queue name

Queue_Active Indicates that the queue is active
Queue_AttRule Rule class controlling security operations

Chapter 5. Product concepts 27



queues

Table 8. Queue properties (continued)

Property

Explanation

Queue_Authenticator

Authenticator class

Queue_BridgeName

Owning MQSeries-bridge name

Queue_ClientConnection

Client connection name

Queue_Closeldle

Close transporter once all messages have been
transmitted

Queue_CreationDate

The date that the queue was created

Queue_Compressor

Compressor class

Queue_Cryptor

Cryptor class

Queue_CurrentSize

Number of messages on the queue

Queue_Description

UNICODE description

Queue_Expiry

Expiry time for messages

Queue_ FileDesc

The location and adapter for the queue

Queue_MaxMsgSize

Maximum length of messages allowed on the
queue

Queue_MaxQSize

Max. no. of messages allowed

Queue_Mode

Synchronous or asynchronous

Queue_MQQMgr

MQSeries queue manager proxy

Queue_Priority

Priority to be used for messages (unless
overridden by a message value)

Queue_QAliasNamelList

Alternative names for the queue

Queue_QMgrName

Queue manager owning the real queue

Queue_QMgrNameList

Queue manager targets

Queue_RemoteQName

Remote MQSeries field name

Queue_Rule

Rule class for queue operations

Queue_QTimerInterval

Delay before processing pending messages

Queue_TargetRegistry

The target registry type

Queue_Transporter

Transporter class

Queue_TransporterXOR

Transporter to use XOR compression

Queue_Transformer

Transformer class

Administrative functions are used to create and delete queues, and to inquire
on or modify their properties.

28  MQSeries Everyplace Introduction



queues

The following MQe_Explorer panels show two of the four property tabs
describing the properties of a local queue. Disabled fields indicate that the
particular property is not relevant to a queue of that class.

B New,FirstQ™ on FirstQM B Newq,FirstQ™ on FirstQM o ] 3]
General | Propertiesl Securit_l,ll Aliasesl General Propeties | Securit_l,ll Aliasesl
M ame: INEWQ Rule:
Cescrption: INBW queue ﬂ Transporter: I[default] j
Local gdgr: IFilstQM Max mzq. len: I il I Mo limit
Type: ILocaI queue Ma depth: I il ¥ Mo limit
EHueue gidgr: IFi,Sth Tirne itteral: I 0 Ims] I~ | Rty orjrestart
Target abdar [Firsiah Pricrity: | 4=
[ ode: ISynchronous Expiry: I 0 Ims)
Adapter: IMsgLog KO compe [T I~ Closeif idle;
Fath: IE: ‘e avaitOe_ExploreryFirstd M4 Qusu Status: Ilnactive
Class: Icom.ibm. mge. el ueue Current depth: ID
Dl |02-Apr-D‘I Us:20:36 Changes take effect when the Apply button iz clicked

[ work offine Refresh i Close | Apply I work off-ine Hefreshl Close Apply

Figure 5. Local queue properties displayed with MQe_Explorer

Queues are not limited to use as a message store. Sub-classed queues can be
used in process control application scenarios, for example the queue object
could directly control a valve. A message of the right class would cause the
valve to be opened, the volume of the flow to be changed etc. An application
would not be pulling messages off the queue and performing the action, the
queue object would itself controls the action. Other queues could, for example,
update spreadsheets or do text to speech conversion. The advantages of this
technique are that the security aspects of the queues are still in place and
effective, as also is assured messaging. So MQSeries Everyplace would still
assure the once-only delivery of the messages, and an associated authenticator
and cryptor would guarantee that only the authorized sender of the message
could send such messages, with the contents highly secure in transit. No
applications would be permitted access to the queue and none would be
required.

Queue managers

The MQSeries Everyplace queue manager provides application access to the
messages and queues and controls any channels. In MQSeries Everyplace
Version 1.2 only one queue manager can be active on a single Java virtual
machine at any one time. If there are multiple JVMs on a machine, there can
be the same number of queue managers as JVMs. Queue managers are

Chapter 5. Product concepts 29



queue managers

identified by name and the name must be globally unique® and an Ascii
character string that can be of unlimited length.

A queue manager that is configured with bridge capabilities, and is therefore
able to exchange messages with MQSeries host and distributed products is
known as a gateway.

Queue managers can be configured with or without local queueing. All queue
managers support synchronous messaging operations; a queue manager with
local queueing also supports asynchronous message delivery.

The choice of whether synchronous or asynchronous message delivery is used
is determined by the nature of the queue definitions on the sending queue
manager. If a synchronous mode remote queue definition exists to the target
queue then synchronous delivery is used. If an asynchronous mode remote
queue definition exists then asynchronous delivery is used, with the definition
providing local storage whilst messages await transmission. If no remote
queue definition exists, but a store-and-forward queue exists that handles
messages for that target queue manager, then asynchronous delivery is used.
In this case, the store-and forward queue provides local storage for messages
awaiting transmission. If no queue definitions exist, queue discovery takes
place, which if successful, results in synchronous messaging.

Irrespective of whether synchronous or asynchronous messaging is used,
MQSeries Everyplace may use either direct or indirect transmission,
depending upon the connection definitions available (see !Connections” anl

). Direct transmission involves just two queue managers, the sending
queue manager and the target queue manager. Indirect connection involves a
succession of queue managers, with possible protocol changes en route. When
indirect transmission is used with synchronous messaging, messaging
behavior is unchanged from the direct transmission case. The intermediate
queue managers are simply establishing connectivity between the source and
the target. However, when indirect transmission is used with asynchronous
messaging, the transmission intermediaries may become staging posts for the
message as it moves from source to target. Whether they are used in this way
depends upon whether suitable intermediate queue storage has been defined
on the intermediate queue managers, in the form of appropriate remote queue
definitions or store-and-forward queues.

5. This restriction is not enforced by MQSeries Everyplace or MQSeries, but duplicate queue manager names may
cause messages to be delivered to the wrong queue manager.

6. For interoperability it is recommended that the MQSeries queue manager name rules are observed, including
limiting the maximum name length to 48 characters. The length may also be restricted by the file system you are
using.

30 MQSeries Everyplace Introduction



queue managers

Asynchronous message delivery and synchronous message delivery have very
different characteristics and consequences. With asynchronous message
delivery the application passes the message to MQSeries Everyplace for
delivery to a remote queue. An immediate return is made back to the
application. If the message can be delivered immediately (or moved to a
suitable staging post) then it is sent, if not it is held locally. Transmission retry
logic is defined by the rules that are associated with the queue manager and
relevant queues (see I'Rules” on page 53). Asynchronous delivery provides
once-only assured delivery quality of service, since the message has been
passed to MQSeries Everyplace and it has become responsible for delivery.

With synchronous message delivery the application puts the message to
MQSeries Everyplace for delivery to the remote queue. MQSeries Everyplace
synchronously contacts the target queue and places the message. After
delivery MQSeries Everyplace returns to the application. An immediate return
is made back to the application. If the message cannot be delivered the
sending application receives immediate notification. MQSeries does not
assume responsibility for message delivery in the synchronous case.

Synchronous and asynchronous remote queue definitions can be freely
established over an MQSeries Everyplace network. When the network also
includes MQSeries messaging queue managers (and their associated queues) a
number of restrictions are important.

1. Synchronous messaging is not possible to an MQSeries queue manager
that is not directly attached to an MQSeries Everyplace gateway (since
synchronous messaging is not supported over MQSeries message
channels). In order to minimize the consequences of this, the definition of
synchronous delivery is changed in this case and it is redefined as being
delivery to the MQSeries queue manager directly attached to the gateway.
Beyond this queue manager, MQSeries asynchronous messaging is used to
enable the message to complete its journey.

2. In MQSeries Everyplace Version 1.2 it is only possible to define a
synchronous remote queue definition to an MQSeries messaging remote
queue. Taking account the impact of (1) above, this means that
asynchronous delivery is not possible (using this definition) to queues on
an MQSeries queue manager directly attached to the gateway. However if
queuing is required in this case, it can be arranged in the MQSeries
Everyplace network by using a second MQSeries Everyplace queue
manager, through the use there of appropriate remote queue definitions
(or store and forward queues).

Thus asynchronous message delivery means that the local application gives
the message to MQSeries Everyplace and its delivery onwards from that local
queue manager is the responsibility of MQSeries Everyplace. It means that the
network and/or the receiving application need not be available. The time of

Chapter 5. Product concepts 31



queue managers

the actual delivery is unknown to the sending application. Synchronous
message delivery requires the network to be running but the sending
application knows that it has been delivered to the receiving application’s
queue. The receiving application does not need to be available in either the
asynchronous or the synchronous case.

MQSeries Everyplace does not offer variations on the once-only assured

delivery quality of service for asynchronous messaging as does MQSeries

messaging with its persistent and non-persistent options. In MQSeries

Everyplace trade-offs between reliability and performance can be made at the

queue level through the choice of queue store adapter, for example:

* The MQeDiskFieldsAdapter ensures that data is safely written to disk
before processing continues

* The MQeReducedDiskFieldsAdapter ensures that data is passed to the
operating system (and can be retrieved) before processing continues

* The MQeMemoryFieldsAdapter saves data in memory

In all cases once-only assured delivery is implemented, however recovery is
dependent upon the chosen message store. The performance trade-offs are
described in the SupportPac EP01.

Queue managers properties are shown in [abled.

Table 9. Local queue manager properties

Property Description

Admin_Class Queue manager class

Admin_Name Queue manager name
QMgr_ChnlAttrRules Channel attribute rules

QMgr_ChnlTimeout Channel time-out

QMgr_Description UNICODE description

QMgr_QueueStore The default location and adapter for queues
QMgr_Rules Rule class for queue manager operations

The following panel shows one of the two property tabs describing the
properties of a queue manager:

32 MQSeries Everyplace Introduction



Queue

queue managers

£ FirstQM 1 =10 =]

General | Bliases |

Mame: [Firsth
Description: |Created by M3e_Explorer on 22-#ar-01 1ﬂ
Queue adpt: IM sglog ﬂ

Queue path: |E: R [T ava\MGe_Eprorer\FirslGM\Guj
Grar. e Icom. ibm.mge. k0 el usushtanagerRule j

Ch. attr. rule: I[nu”] j
Ch. timeout; 300000 [ms]
Clazz: Icom. ibm.mge. MA el usuet anager

Mo, queues: 4 (local] 5 [remoate)
Mo, conng: 1

Changes take effect when the Apply button iz clicked

I~ work off-line Refrezh Apply

Figure 6. Queue Manager properties displayed by MQe_Explorer

manager configuration
The queue manager runs in an environment that is established by MQSeries

Everyplace prior to the queue manager being loaded. The queue manager
itself stores its configuration information in its registry (described in more

detail in I'The registry” on page 50). The queues themselves (containing

messages) are stored in queue stores.

The MQSeries Everyplace environment can be established in many ways,
either by calls through the API, by utilities shipped with MQSeries Everyplace
or through management tools such as the MQe_Explorer. Many of these tools
capture the environment parameters in an initialization file, but this is entirely
optional. The key environmental parameters are shown in the following table,
the section names used follow the conventions used for representing this
information in initialization files:

Table 10.

Section name Property Explanation

[Alias] (class alias definitions) Alias names may be used
wherever class names are
required

[ChannelManager] MaxChannels The maximum number of
simultaneous client-server
channels to be permitted

Chapter 5. Product concepts 33



queue managers

Table 10. (continued)

for the bridge)

Section name Property Explanation
[Listener] Network The adapter and port
number to be listened on
for incoming client/server
channel connection
requests
Listen The adapter to be used to
handle resulting
connections
Timelnterval The client/server channel
time-out
[MQBridge] (initialization parameters

[MQe_Explorer]

(saved addressing
information)

MQe_Explorer saves
information which
described how incoming
connections can be made to
this queue manager

[Permission] (permitted commands) Permitted channel
commands, adapter class
and file descriptor maps

[PreLoad] classes to be loaded when | This provides one

the queue manager is mechanism for loading
initialized application classes

[QueueManager] Name Name of the queue
manager

[Registry] DirName The registry location

LocalRegType The type of registry (file or
private)

PIN Registry PIN (or prompt
request)

CertReqPIN Certificate PIN (or prompt
request)

KeyRingPassword Key ring password (or
prompt request)

CAIPAddrPort Certificate authority IP

address

The following four illustrations show the key tabs in creating a new queue
manager using the MQe_Explorer. No prior environment is assumed, and no
existing initialization file is required. The result is a running queue manager,

34 MQSeries Everyplace Introduction




queue managers

with the configuration data saved in an initialization file so that the queue
manager can be restarted simply by opening that file.

=101

General | IP detailsl Configurationl Securit_l,ll Class aIieLI_’

E Create a new queue manager .

OMar. name: |Secondﬂ |

Path: IE:\MQB'\Java\MQe_EHpIorel\

=
Search... |

Server or Client/Server, [

Peer o Client: o

r— Creating a new queus manager

General tab:
Enter the queue manager name; confirm the path
where it iz to be stored and the type to be created
IP tab:
Carnifirm the queus manager's [P address/port
Other tabs:
Update the default parameters (if required]

=10] =]

General [P detailz |C0nfiguration| Securit_l,ll Clazs ali: 4 | 4

8 Create a new queue manager co

IP address: |12?_D_D_1

IF port rumber: Igngz

Refrezh | Cancel | Create |

Refrezh | Cancel | Create |

=10] x|

B8 Create a new queue Manager c

=10l

8 Create a new queue Manager co

Generall |P details  Configuration | Securit_l,ll Clazz aliz 4 | 4 Generall IP detailsl Configuration  Security | Clazs alic 4 | L4
o — Reaisty type
File registy € Private registry @
Channel class: Icom.ibm.mqe.MGeChannel j
. — Private registry
Options: [<PERSIST><HISTORY> |
Fregiztny FIR: I
Socket ti L I
PEKELHMESLE |300 feecs] Prompt for passwords [ Cetificate-based ¥
tax channels: 100 ¥ Mo limit Certificate:
Cert, request PIR: |
Koy ring pdias I
CAautharity addr: |12?_D_g_gngg
C/authority part: Igggq
Refrezh Cancel Create Refresh | Cancel | Create

Figure 7. Creating a queue manager with MQe_Explorer

Creating a queue manager does not actually require that the IP address of the
queue manager be known. However, MQe_Explorer captures the information
for use in configuring other queue managers that to talk to this one. The port
number is required in order to listen for incoming client/server connection

requests.

Chapter 5. Product concepts 35



queue managers

Queue

The adapter configuration data is needed for the channel listener; the time
interval and maximum channels for the channel manager. MQe_Explorer
captures the other information as before, to enable other queue managers to
be configured.

In this example a secure reg1strv has been configured with certificate-based
authentication (see L - ). PINs and passwords are disabled
because MQe_Explorer prompts for them later, when they are required.

manager operations

Queue managers support messaging operations and optionally manage
queues. Applications access messages through the services of the queue
manager using methods such as get, put, browse, wait, listen and delete. Many of
these operations take a filter as one of their parameters. A filter is a fields
object that is matched for equality and any fields in the message can be used
for selective retrieval. Most method calls also include an attribute object to be
used in the encoding or decoding of a message.

The get operation destructively removes messages from a queue. Subject to
the conditions imposed by the filter, messages are retrieved in priority order
and, within that, in the order of their time of arrival on the queue. So, all
other things being equal, the first message to arrive will be the first to be
retrieved. Get is available as a single step or two step operation. The two-step
case is provided for use in those situations where it is essential that there is
no possibility of message loss as the messages passes from MQSeries
Everyplace to the application. First a get is issued with a confirm ID (its value
being chosen by the application). That operation gets the message for the
application but instead of deleting it from the queue immediately it hides it
on the queue. A subsequent confirm operation, specifying the original
message UID, indicates that the get was successful for the application, and it
is then that the message is deleted. Failure of the get allows the message to be
recovered. Put operations behave in a similar way.

By specifying the UID, messages can be deleted from a queue without being
retrieved.

If nondestructive read is required, queues may be browsed for messages
(optionally under the control of a filter). Browsing retrieves all the message
objects that match the filter, but leaves them on the queue. Browsing under lock
is also supported. This has the additional feature of locking the matching
messages on the queue. Messages may be locked individually, or in groups
identified through a filter, and the locking operation returns a lock ID. Locked
messages can be got or deleted only if the lock ID is supplied. An option on
browse allows either the full messages, or only the UIDs, to be returned.

36 MQSeries Everyplace Introduction



queue managers

Applications can wait for a specified time for messages to arrive on a queue.
Optionally a filter can be used to identify those of interest and a confirm ID
can also be specified. Alternatively applications can listen for MQSeries
Everyplace message events, again optionally with a filter. Listeners are
notified when messages arrive on a queue.

Queues are enabled for messaging operations as shown in [Cable 11

Table 11. Messaging operations on MQSeries Everyplace queues

Local queue Remote queue?
Synchronous Asynchronous

Browse (+lock, Yes Yes
+filter)
Delete Yes Yes
Get (filter) Yes Yes
Listen (<filter) Yes
Put Yes Yes Yes
Wait (filter) Yes Yes
Notes:

1. The synchronous remote wait operation is implemented through a poll of the
remote queue, so the actual wait time is a multiple of the poll time

2. 1The MQSeries Everyplace MQSeries Bridge supplied with MQSeries Everyplace
Version 1.2 only supports assured/unassured put, unassured get, and unassured
browse(without lock).

Connections

Topology and access through the MQSeries Everyplace network is defined by
connection objects. These definitions are stored locally at each queue manager.
They are created, modified and destroyed through the standard administrative
provision.

A connection object typically defines the access to a remote queue manager
(and consequently they are sometimes referred to as remote queue manager
definitions). The properties are given in the following table:

Table 12. Connection (remote queue manager) properties

Property Explanation

Admin_Name Queue manager name

Con_Adapter The adapter file descriptor
Con_AdapterOptions Adapter options (such as use history)

Chapter 5. Product concepts 37



connections

Table 12. Connection (remote queue manager) properties (continued)

Property

Explanation

Con_AdapterParm

ASCII data to be use by an adapter (such as

servlet name)

Con_Aliases

Alternative names for the queue

manager/connections

Con_Channel

The type of channel that this connection should

use

Con_Description

UNICODE description

Queue_QMgrName

Owner of the definition

The following administration panels show two of the tabs associated with a

connection definition:

ELE SecondQM on FirstQM =10 x|

General |Primary| Secondaryl Aliasesl

Connection: Is econdd

Lacal ghgr: |FirstuM

Description: ISecond qQuUELIE Manager

Channel class: Icom.ibm.mqe.MQeEhannel

Contar. class: I[nu"]

Fule class: I[default]

Changes take effect when the Apply button is clicked

IP address:
IP part:
j Adapter:
j Optians:
j Pararneters:
j Enc. parms:
Fiule data:

E:E secondQM on FirstQM

General  Primary |Secondaly| .&Iiasesl

[127.001

ISDSS hd l

.mige. ada

|<F'EF|SIST><HISTDF|Y>

fdlefault

| dsfauit

[EEET

Use direct connection:

v

Changes take effect when the Apply button iz clicked

I whork off-line Riefresh Appl

1 [ work aff-ine

Refresh

Clase

Apply

Figure 8. Connection definition displayed with MQe_Explorer

Data can be passed to the chosen communications adapter in the form of

options, parameters and encoded

parameters.

Indirect connections can be specified. In this case MQSeries Everyplace routes
the connection through other queue managers (which can be chained), and the
protocol may change en route. Indirect connections are particularly useful in
enabling devices to have a single point of entry to an MQSeries Everyplace

network.

38 MQSeries Everyplace Introduction



connections

Connection objects are also used to define listeners for incoming peer-to-peer
channels.

As for most MQSeries objects, aliases can be defined for connections. A local
connection (defined as a connection with a name matching that of the local
queue manager) is used to define alias names for the local queue manager
itself.

Administration

Administration provides facilities to configure and manage MQSeries
Everyplace resources such as queues and connections. Message-related
functions are regarded as the responsibility of applications. Administration is
enabled through an interface that handles the generation and receipt of
administrative messages and is designed so that local and remote
administration is handled in an identical manner. Requests are sent to the
administration queue of the target queue manager and replies may be
received if required. Any local or remote MQSeries Everyplace application
program can create and process administration messages directly or indirectly
through helper methods. Administration messages can also be generated
indirectly through the MQe_Explorer”, a management tool that provides a
graphical user interface for system administration.

The administration queue does not understand how to perform the
administration of individual resources; this knowledge is encapsulated in each
resource and its corresponding administration message.

Administration messages

Administration messages extend the base MQSeries Everyplace message
object.m lists the message classes provided for administration of
MQSeries Everyplace resources. These base administration messages can be
sub-classed to provide for the administration for other objects; for example a
different type of queue could be managed using a subclass of
MQeQueueAdminMsg. The MQSeries Everyplace bridge to MQSeries uses
subclasses of the MQeAdminMsg in this way.

Table 13. Administration message classes

Administration message class Use

MQeAdminMsg Abstract class used as the basis of all
administration messages

MQeQueueManagerAdminMsg Administration of queue managers

MQeQueueAdminMsg Administration of local queues

7. MQe_Explorer is not included with MQe_Explorer but is available for free download from the MQSeries
Everyplace site on the World Wide Web (http://wwuw.ibm.com/software/ts/mqseries/everyplace).

Chapter 5. Product concepts 39



administration

Table 13. Administration message classes (continued)

Administration message class Use

MQeRemoteQueueAdminMsg Administration of remote queues
MQeAdminQueueAdminMsg Administration of the administration queue
MQeHomeServerQueueAdminMsg Administration of home server queues

MQeStoreAndForwardQueueAdminMsg| Administration of store and forward queues

MQeConnectionAdminMsg Administration of connections between
queue managers

MQeClientConnectionAdminMsg Administration of a bridge client connection
object, used to connect to MQSeries

MQeListenerAdminMSg Administration of a bridge transmission
queue listener object, used to collect
messages from MQSeries

MQeBridgeAdminMsg Administration of a bridge to MQSeries

MQeMQBridgesAdminMsg Administration of a list of MQSeries-bridges

MQeMQQMgrProxyAdminMsg Administration of a bridge representation of
an MQSeries queue manager

MQeMQBridgeQueueAdminMsg Administration of an MQSeries-bridge
queue

The structure of an administration message depends upon its particular class,
that is the nature of the resource that it is managing, and the details of the
operation to be performed on that resource. Generically however, the
administration messages are structured as shown in @

Table 14. Generic structure of an administration message

Level 1 fields Level 2 and below fields |Use

Admin_Action Create, delete, inquire, etc.

Admin_Errors Fields object parent
Multiple fields Detailed information on a

per-error basis

Admin_MaxAttempts Maximum number of times
the administration action
should be attempted

40 MQSeries Everyplace Introduction



administration

Table 14. Generic structure of an administration message (continued)

Level 1 fields Level 2 and below fields |Use
Admin_Parameters Fields object parent
Resource Name of resource to be
managed
Multiple fields Detailed parameter data

specific to the message
class and action

Admin_Reason Text message indicating
reason for failure

Msg_ReplyToQ Name of the queue to
which the response should
be sent

Msg_ReplyToQMgr Name of the queue

manager to which the
response should be sent

Admin_RC Numeric return code
indicating the outcome

Msg_Style Command or request/reply

Admin_TargetQMgr Name of the queue
manager owning the target
resource

Three styles of administration message are supported, namely commands
(datagrams) that indicate an administration action that does not require a
reply, requests that require a reply, and the replies themselves. The reply is
constructed from a copy of the original message; thus additional fields can be
added by the sender for use by the receiver.

Selective administration

Access to administration can be controlled through the authenticator on the
administration queue. For local applications the supplied authenticator
considers them all to represent the same local user and therefore either allows
or disallows administration for them all. Remote administration applications
are controlled by the invocation of the authenticator on the channel before any
administration messages flow. Different remote users can thus be
distinguished and separately enabled or disabled. In all cases for any user,
administration is enabled or disabled in its entirety. If a finer level of
administration control is required, for example certain administration users
are to be given access to some queues and not others, then additional
programming is required. A more sophisticated authenticator can keep track
of permissions associated with user identities, and administration messages
can be subsequently be processed on the basis of these permissions (see

Chapter 5. Product concepts 41



administration

['Security” on page 46). Rules associated with queues can also be exploited to

allow or disallow actions in a similar manner (see 'Rules” on page 53).

Monitoring and related actions

Administration often embraces more than object creation and modification. It
can include monitoring a system and informing an operator when a queue is
full, or dealing with an error situation such as by taking appropriate action
when a message arrives that is too large for its target queue. These aspects are
handled in MQSeries Everyplace through the use of rules, that is classes that
are invoked whenever objects significantly change their status or when certain
types of error situations arise. A default set of rules classes is provided with
MQSeries Everyplace but typically these are replaced with custom classes (see

FRules” 53).

Dynamic channels

MQSeries Everyplace communicates between queue managers through logical
links known as dynamic channels. These support bidirectional flows and are
established by the queue manager as required. Asynchronous and
synchronous messaging both use the same channels and the protocol used is
unique to MQSeries Everyplace. This protocol can be customized on a per
message basis by overriding the message dump method. By contrast
MQSeries usually uses client channels for its synchronous traffic and a pair of
message channels for bidirectional asynchronous messaging. MQSeries cluster
message channels have some similar characteristics to the MQSeries Everyplace
dynamic channels, but there are many important differences.

A dynamic channel is a logical connection between two queue managers,
established for the purpose of sending or receiving data. Multiple concurrent
channels can exist, even between the same parties. They have characteristics,
for example authentication, cryptography, compression, and the transport
protocol used. These characteristics are pluggable, (different versions may be
used on different channels) and consequently each channel has its own quality
of service attributes of:

* Authenticator: either null or an authenticator object that can perform user or
channel authentication

* Channel: the class providing the transport services.

* Compressor: either null or a compressor object that can perform data
compression and decompression

* Cryptor: either null or a cryptor object that can perform encryption and
decryption

* Destination: the target for this channel, for example SERVER.XYZ.COM

The authenticator is typically only used when setting up the channel.
Compressors and cryptors are typically used on all flows.

42  MQSeries Everyplace Introduction



dynamic channels

The simplest type of cryptor is MQeXorCryptor, which encrypts the data
being sent by performing an exclusive-OR of the data. This encryption is not
secure, but it modifies the data so that it cannot be viewed. In contrast,
MQe3DESCryptor implements triple DES. The simplest type of compressor is
the MQeRleCompressor, which compresses the data by replacing repeated
characters with a count. Other authenticators, compressors, and cryptors are
supplied, see

Channel establishment uses protocol adapter specifications to determine the
links and protocols to be used for a particular channel. At each intermediate
node the channel definitions are searched to resolve the addressing needed for
the next link. Where no onwards definition exists, the channel ends and any
messages flowing through are passed to the queue manager at that point. In
this way, intermediate store-and-forward queues and remote queue definitions
can be exploited.

Channels are not directly visible to applications or administrators and are
established by the queue manager as required. Channels link queue managers
together and their characteristics are negotiated and renegotiated by MQSeries
Everyplace dependent upon the information to be flowed. Transporters are the
MQSeries Everyplace components that exploit channels to provide queue level
communication. Again, these are not visible to the application programmer or
administrator.

When assured messaging is demanded MQSeries Everyplace delivers
messages to the application once, and once-only. It achieves this by ensuring
that a message has successfully passed from one queue manager to another,
and been acknowledged, before deleting the copy at the transmitting end. In
the event of a communications failure, if an acknowledgment has not been
received, a message may be retransmitted (once-only delivery does not imply
once-only transmission) but duplicates are not delivered.

Adapters

Adapters are used to map MQSeries Everyplace to device interfaces. Channels
exploit the protocol adapters to run over HTTP, native TCP/IP, UDP, and
other protocols. Similarly queues exploit fields storage adapters to interface to
a storage subsystem such as memory or the file system Adapters provide a
mechanism for MQSeries Everyplace to both extend its device support and to
allow versioning.

A file descriptor is a string that is used to identify, load and activate an adapter.

Chapter 5. Product concepts 43



dynamic channels

Dialup connection management

Dialup networking support for devices is handled by the device operating
system. When MQSeries Everyplace on a disconnected device attempts to use
the network, for example because a message must be sent, then if the network
stack is not active, the operating system itself initiates remote access services
(RAS). Typically this takes the form of a panel displayed to the user, offering a
dialup connection profile. Until the connection is established, the operating
system is in control. Consequently the device user must ensure that
appropriate dialup connection profiles are available for the operating system
to use. There is no explicit support for dialup networking in MQSeries
Everyplace Version 1.2.

Trace

Trace is enabled by running an independent program that performs tracing
actions. Embedded within MQSeries Everyplace are calls to trace for
information, warning and error situations with system and user variants.
Applications may also call trace directly and may add new messages or
modify existing trace messages. The supplied sample trace program allows
selected messages to be displayed, printed and/or directed to the event log.
Other trace programs can be written with additional capabilities or be
designed to format and deliver their output in other ways.

Most MQSeries Everyplace exceptions are passed to the application for
handling, and the application exception handler may also route these to trace.

Event log

MQSeries Everyplace provides event log mechanisms and interfaces that may
be used to log status, queue manager started for example. Logging can be
initiated and by default written out to a file, however this can be intercepted
and directed elsewhere. The MQSeries Everyplace event log does not log
message data and cannot be used to recover messages or queues.

Message delivery

MQSeries Everyplace networks are connected queue managers and may
include gateways. They can span multiple physical networks and route
messages between them. In general they provide synchronous and
asynchronous access to queues with a programming model that is
independent of queue location.

Asynchronous message delivery

When a message is asynchronously put to a remote queue, the message object
is logically placed on the backing store associated with the local definition of
that queue, along with its destination queue manager and queue names, and

44 MQSeries Everyplace Introduction



message delivery

with the compressor, authenticator and cryptor characteristics that match the
target destination of the message. The object’s dump method is called as the
object is saved to persistent storage in a secure format, as defined by its
destination queue. The queue manager controls message delivery. It identifies
(or establishes) a channel with appropriate characteristics to the queue
manager for the next hop, then creates (or reuses) a transporter to the target
queue. The transporter dumps the object and transmits the resulting byte
string. Note that the target queue manager and queue name are not part of
that message flow.

If appropriate, the message is encrypted and compressed over the channel. If
it has reached its destination queue manager, it is decrypted and
decompressed. A new message object is created, using the restore method of
that object class, with the resultant object being placed on the destination
queue. If the message has not reached its destination queue manager, it is
decrypted and decompressed, then placed on a store and forward queue with
the appropriate characteristics for onwards transmission. In both cases it is
held on its respective queue in a secure format, as defined by its destination
queue.

A characteristic of asynchronous message delivery is that messages are passed
to the queue manager at intermediate hops, being queued for onwards
transmission. Messages are taken off the intermediate queues firstly in priority
order, then in timestamp sequence.

Synchronous message delivery

Synchronous message delivery is similar to the asynchronous case described
above, but the queue manager involvement in intermediate hops takes place
at a much lower level, involving the transporter and channels. A channel is
established end-to-end, using the adapters defined in the protocol
specifications at each intermediate node, to identify the next link. At the end
of the last link, where no further relevant file descriptors exist, the message
gets passed to the higher layers of the queue manager for processing. Thus
the sending node does not queue the message but passes it along the channel,
through intermediate hops, and then gives it to the destination queue
manager to place it on the target queue.

The link into MQSeries uses a bridge queue on the gateway, which transforms
the message to an MQSeries format. This mechanism means that synchronous
MQSeries Everyplace -style messaging from a device is possible to MQSeries,
with the dynamic channel terminating at the gateway. The message is
delivered in real time from the gateway, through a client channel, to an
MQSeries server. From there its destination may require it to be routed
asynchronously along MQSeries message channels

Chapter 5. Product concepts 45



message delivery

In a similar manner a device capable of only synchronous messaging can send
messages to an asynchronous MQSeries Everyplace queue, provided that a
suitable intermediary is available.

Security

MQSeries Everyplace provides an integrated set of security features enabling
the protection of message data both when held locally and when it is being
transferred.

MQSeries Everyplace security features provide protection in three different
categories:

* Local security - local protection of message (and other) data

* Queue-based security - protection of messages between initiating queue
manager and target queue

* Message-level security - message level protection of messages between
initiator and recipient

MQSeries Everyplace local and message-level security are used internally by
MQSeries Everyplace, but are also made available to MQSeries Everyplace
applications. MQSeries Everyplace queue-based security is an internal service.

The MQSeries Everyplace security features of all three categories protect
message data by use of an attribute (MQeAttribute or descendent). Depending
on the category, the attribute is applied either explicitly or implicitly.

Each attribute can contain the following objects:
* Authenticator

e Cryptor

* Compressor

* Key

* Target Entity Name

These objects are used differently, depending on the category of MQSeries
Everyplace security feature, but in all cases, the MQSeries Everyplace security
feature’s protection is applied when the attribute attached to a message object
is invoked. This occurs when an MQSeries Everyplace message’s dump
method is invoked (when the attribute’s encodeData method is used, for
example to encrypt and compress the message data). The MQSeries
Everyplace security feature’s unprotect occurs when the MQSeries Everyplace
message’s restore method is invoked (when the attribute’s decodeData
method is used, for example to decompress and decrypt the message data).

46  MQSeries Everyplace Introduction



security

The algorithms supported by MQSeries Everyplace Version 1.2 for
authentication, encryption and compression are detailed in [able 15.

Table 15. Authentication, encryption and compression support

Function Algorithm

Authentication WTLS mini-certificate

Validation Windows NT /2000, AIX, or Solaris
identity

Compression LZW
RLE

Encryption Triple DES
DES
MARS
RC4

RC6

XOR

MQSeries Everyplace local security

Local security protects MQSeries Everyplace message (or MQeFields or
MQeFields descendent) data locally. This is achieved by creating an attribute
with an appropriate symmetric cryptor and compressor, creating and setting
up an appropriate key (by providing a password or passphrase). The key is
explicitly attached to the attribute, and the attribute is attached to the
MQSeries Everyplace message. MQSeries Everyplace provides the
MQeLocalSecure class to assist with the setup of local security, but in all cases
it is the responsibility of the local security user (MQSeries Everyplace
internally or an MQSeries Everyplace application) to set up an appropriate
attribute and manage the password or passphrase key.

MQSeries Everyplace queue-based security

Queue-based security can be applied to synchronous and asynchronous
messages.

Synchronous queue-based security
Use of synchronous queue-based security allows an application to leave all

message security considerations to MQSeries Everyplace . Queues have
authentication, encryption and compression characteristics and these are used
to determine the level of security needed to protect message flows (as well as
for persistent storage).

When a message is to be sent, the security characteristics of the target queue
are retrieved from the local registry. If these are not present , the queue

manager attempts to discover the target characteristics from the target queue

Chapter 5. Product concepts 47



security

manager and caches them for subsequent reuse. If a channel exists to that
queue manager it is used; if not, a new channel is created. The target queue
attributes are retrieved.

Based on the quality of service required, the channel attributes to the target
queue manager are dynamically changed. This is subject to any rules that
have been established. Typically a rule allows an upgrade in the level of
security, (for example from no protection to weak protection, or from weak to
strong). If the channel cannot be upgraded, or the security level is deemed
excessive (for example no protection is required and the available channel
implements strong protection) then a new channel is created. A pool of
channels exists, reused where possible, with dynamically changing
characteristics according to the demands of the traffic. Channels are
automatically destroyed when not required. Messages are always placed on
queues at the security level defined by the target queue characteristics.

Authentication takes place at the channel level, keeping the overhead per
message to a minimum. Synchronous queue-based security is also typically
used with symmetric cryptors since this results in fast encryption/decryption.
However, in these symmetric cases, MQSeries Everyplace uses RSA
asymmetric encryption initially, to protect the flows necessary to establish a
shared key at the sender and receiver. After that point symmetric encryption
is used to protect the confidentiality of the data flowed. MQSeries Everyplace
makes the cryptographic attack of this data more difficult by changing the key
dynamically on each channel flow. MQSeries Everyplace also ensures the
integrity of the data flowed by generating and appending the digest to the
data before sending, and regenerating and validating it on receipt.

Asynchronous queue-based security
Asynchronous messaging differs from the synchronous case described above

in as far as there is no guarantee that the target queue is accessible at the time
the putMessage is executed. In this case the queue manager cannot send the
message immediately and places it on the transmission queue; however it is
encrypted in accordance with its target queue characteristics. When it can be
transmitted, it is decrypted, and then sent down a channel with suitable
characteristics. Thus messages are always protected, even while awaiting
transmission. Asynchronous messaging requires a remote queue definition to
enable the target queue characteristics to be determined.

In the asynchronous case, authentication is not possible between originator
and target. Where authentication is important, for example for a recipient to
determine the message’s originator (to determine acceptance or establish
non-repudiation) or for an initiator to ensure that message can only be
processed by the intended recipient, message-level security must be used.

48 MQSeries Everyplace Introduction



security

Queue-based security can be used at the same time as message-level security,
but it is not necessary, since message data is already protected.

Message-level Security

Message-level security provides the protection of message data between an
initiating and receiving MQSeries Everyplace application.

Message-level security is an application layer service that requires the
initiating MQSeries Everyplace application to set up a message-level attribute
and provide it when using putMessage to put the message to a target queue.
The receiving application must set up and pass a matching message-level
attribute to the receiving queue manager so that the attribute is available
when the application invokes getMessage to get the message from the target
queue.

Like local security, message-level security exploits the application of an
attribute on a message object. The initiating application’s queue manager
handles the putMessage with the dump method, which uses the attribute’s
encodeData method to protect the message data. The receiving application’s
queue manager handles the application’s getMessage with the restore method
which uses the attribute’s decodeData method to recover the original message
data.

MQSeries Everyplace supplies two alternative attributes for Message-level
security:

MQeMAttribute
This is used for business-to-business communications where mutual
trust is tightly managed in the application layer and requires no
trusted third party. All available MQSeries Everyplace symmetric
cryptor and compressor choices can be used. Like local security, the
attribute’s key must be preset before it is provided with putMessage
or getMesssage. MQeAttribute provides a simple and powerful
method for message-level protection enabling the use of strong
encryption to protect message confidentiality, without the overhead of
any public key infrastructure (PKI).

MQeMTrustAttribute
This attribute provides a more advanced solution using digital
signatures and exploiting the default public key infrastructure. It uses
ISO9796 digital signature/validation to enable the receiving
application to establish proof that the message comes from the
purported sender. The supplied attribute’s cryptor is used to protect
message confidentiality. SHA1 digest guarantees message integrity
and RSA encryption/decryption ensures that the message can only be
restored by the intended recipient. As with MQeMAttribute, all
available MQSeries Everyplace symmetric cryptor and compressor

Chapter 5. Product concepts 49



security

choices can be used. Chosen for size optimization, the certificates used
are WTLS mini-certificates. The mutual availability of the information
necessary to authenticate (validate signatures) and encrypt/decrypt is
provided through the MQSeries Everyplace default infrastructure.

A typical MQeMTrustAttribute protected message has the format:
RSA-enc{SymKey}, SymKey-enc {Data, DataDigest, DataSignature}

where:
RSA-enc: RSA encrypted with the intended recipient’s public key
SymKey generated pseudo-random symmetric key

SymKey-enc symmetrically encrypted with the SymKey
Data message data
DataDigest digest of message data

DigSignature initiator’s digital signature of message data

Message-level security is independent of queue-level security.

The registry

The registry is the primary store for queue manager-related information and
one exists for each queue manager. Every queue manager uses the registry to
hold its:

* Queue manager configuration data

* Queue definitions

* Remote queue definitions

* Remote queue manager definitions

* User data (including configuration-dependent security information)

Access to the registry is normally restricted to the legitimate queue manager
user and is PIN protected, but a configurable option enables this to be
bypassed by users more concerned with footprint size than security.

MQSeries Everyplace Authenticatable entities

Queue-based security, which uses mini-certificate based mutual authentication,
and message-level protection, which uses digital signature, have triggered the
concept of authenticatable entity. In the case of mutual authentication it is
normal to think about the authentication between two users (people), but in
general, messaging has no concept of a user. Usually this concept is managed
at the application level, that is, by the user of messaging services. MQSeries
Everyplace deliberately abstracts the concept of target of authentication from
user to authenticatable entity. This does not exclude the possibility of
authenticatable entities being people, but this would be an application

50 MQSeries Everyplace Introduction



security

selected mapping. Internally, MQSeries Everyplace defines all queue managers
that can either originate or be the target of mini-certificate dependent services
as authenticatable entities. In addition, MQSeries Everyplace also defines
queues that are defined to use mini-certificate based authenticators to be
authenticatable entities. So a queue manager that supports these services may
have one authenticatable entity, the queue manager, or a set of authenticatable
entities, the queue manager and every queue that uses certificate based
authenticator.

Private Registry and credentials

To be useful, every authenticatable entity needs its own credentials. This
provides two challenges. Firstly how to execute registration to get the
credentials, and secondly where to manage the credentials in a secure manner.
Classically, these challenges are more difficult to solve than the underlying
cryptographic techniques. MQSeries Everyplace provides default services that
can be used to enable authenticatable entities to perform auto-registration.
Private registry ( a descendent of base registry) to enable secure management
of an authenticatable entity’s private credentials, and public registry ( also a
descendent of base registry) to manage set of public credentials. The private
registry provides a base registry with many of the qualities of a secure or
cryptographic token, for example, it can be a secure repository for public
objects like mini-certificates, and private objects like private keys. It provides a
mechanism to allow only the authorized user to access the private objects. It
provides support for services (for example digital signature, RSA decryption)
in such a way that the private objects never leave the private registry. By
providing a common interface, it hides the underlying device support, which
is currently is restricted to the local file system, but may well be extended to
map to portable tokens in the future.

Auto-registration

MQSeries Everyplace provides default services that support auto-registration.
These services are automatically triggered when an authenticatable entity is
configured, for example when a queue manager is started or when a new
queue is defined. In both cases registration is triggered and new credentials
are created and stored in the authenticatable entity’s private registry.
Auto-registration steps include generating a new RSA key pair, protecting and
saving the private key in the private registry; and packaging the public key in
a new certificate request to the default mini-certificate server. Assuming the
mini-certificate server is configured and available, it returns the
authenticatable entity’s new mini-certificate, along with its own
mini-certificate and these, together with the protected private key, are stored
in the authenticatable entity’s private registry as its new credentials. While
auto-registration provides a simple mechanism to establish an authenticatable
entity’s credentials, for message-level protection (MgeMTrustAttribute, see
above), access to the intended recipient’s public key (mini-certificate) is also
required.

Chapter 5. Product concepts 51



security

Public registry and certificate replication

MQSeries Everyplace provides default services that enable the sharing of
authenticatable entity public credentials (mini-certificates) between MQSeries
Everyplace components. These are a prerequisite for MQeMTrust based
message-level security. MQSeries Everyplace public registry provides a
publicly accessible repository for mini-certificates. This is analogous to the
personal telephone directory service on a mobile phone, the difference being
that, instead of phone numbers, it is a set of mini-certificates of the
authenticatable entities that are the most frequently contacted. The public
registry is not purely passive in its services. If accessed to provide a
mini-certificate that it does not hold, and if configured with a valid
home-server component, the public registry automatically attempts to fetch
the requested mini-certificate from the public registry of the home-server.
These services can be used to provide an intelligent automated mini-certificate
replication service, that facilitates the availability of the right mini-certificate at
the right time.

Application use of registry services

While the MQSeries Everyplace queue manager is designed to exploit the
advantages of using private and public registry services, access to these
services is not restricted. MQSeries Everyplace solutions may wish to define
and manage their own authenticatable entities, for example users.
Private-registry services can then be used to auto-register and manage the
credentials of the new authenticatable entities, and public-registry services are
used to make the public credentials available where needed. All registered
authenticatable entities can be used as the initiator or recipient of
message-level services protected using MQeMTrustAttribute

Default mini-certificate issuance service

MQSeries Everyplace provides a default mini-certificate issuance service that
can be configured to satisfy private-registry auto-registration requests. With
the tools provided with MQSeries Everyplace , a solution can setup and
manage a mini-certificate issuance service to issue mini certificates to a
carefully controlled set of entity names. The characteristics of this issuance
service are:

* Management of the set of registered authenticatable entities
* mini-certificate issuance
* WAP WTLS mini-certificate Repository management

The tools provided with MQSeries Everyplace enable a mini-certificate
issuance service administrator to authorize mini-certificate issuance to a given
entity by registering its entity name and registered address and defining a
one-time-use certificate request PIN. This is normally done after offline
checking has validated the authenticity of the requestor. The certificate request
PIN is posted to the intended user (for example in a similar way to the way

52 MQSeries Everyplace Introduction



security

that bank card PINs are posted to users when a new bank card is issued). The
user of the private registry (for example the MQSeries Everyplace Application
or MQSeries Everyplace queue manager) can then be configured to provide
this certificate-request PIN at startup time. When the private registry triggers
auto-registration, the mini-certificate issuance service validates the resulting
new-certificate request (based on a match of the presented entity name and
certificate-request PIN with their preregistered values), issues the new
mini-certificate and resets the registered certificate-request PIN so that it
cannot be reused. All auto-registration new mini-certificate requests are
processed on a secure channel.

The set of mini-certificates issued by a mini-certificate issuance service is held
in the issuance service’s own registry. When a mini-certificate is reissued (for
example as the result of expiry) then the expired mini-certificate is archived.

The security interface

An optional interface is provided that may be implemented by a custom
security manager. The methods allow the security manager to authorize or
reject requests associated with:

* Addition or removal of class aliases
* Definition of adapters

* Mapping of file descriptors

* Processing of channel commands

Customization

Rules

Rules are Java classes that are used to customize the behavior of MQSeries
Everyplace when various state changes occur. Default rules are provided
where necessary, but these may be replaced with application- or
installation-specific rules to meet customer requirements. The rule types
supported differ in how they are triggered, not what they can do. Rules
contain logic and can therefore perform a wide range of functions.

Attribute rules
This rule class is given control whenever change of state is attempted, for

example, a change of:
* Authenticator

* Compressor

e Cryptor

The rule would normally allow or disallow the change.

Chapter 5. Product concepts 53



customization

MQSeries bridge rules
These rules classes are given control when the MQSeries Everyplace to

MQSeries-bridge code has a change of state. There is a separate bridge rule
class to determine each of the following;:

* What to do with a message when a listener cannot deliver it onto MQSeries
Everyplace, when it is coming from MQSeries. For instance because the
message is too big, or the queue does not exist.

* The state that bridge administered objects should start in once the server is
instantiated

* What to do when the bridge finds something wrong with the Sync queue
on MQSeries (the persistent store used for crash recovery). The default rule
just displays the problem.

* How to convert an MQSeries Everyplace message to an MQSeries message,
and vice-versa. Transformers to do message conversion between MQSeries
Everyplace and MQSeries messages are not derived from any MQeRule
classes, instead they must implement the MQeTransformerInterface
interface. Apart from this, transformers act like rules and are invoked when
a message requires format conversion.

Queue rules
This rule class is given control whenever a change of state of the associated

queue occurs, for example:

* Adding a message to a queue. For example to see if a threshold is exceeded
(number of messages, size of message, invalid priority)

* Queue characteristics assigned or changed
* Queue is opened or closed
* Queue is to be deleted

Queue manager rules
This rule class is given control whenever a change of state of the queue

manager occurs, for example:

* Queue manager is opened. For example, start a background timer thread
running to allow timed actions to occur

* Queue manager is closed. For example terminate the background timer
thread

* A new queue is added

54  MQSeries Everyplace Introduction



connection styles

Connection styles

MQSeries Everyplace can support client-server and peer-to-peer operation. A
client is able to initiate communication with a server. A server is only able to
respond to the requests initiated by a client. In peer-to-peer operation, the two
peers can initiate flows in either direction. These connection styles require
different components of MQSeries Everyplace to be available and active. The
components involved are:

* Channel listener: that listens for incoming connection requests.

¢ Channel manager: that supports logical multiple concurrent communication
pipes between end points.

* Queue manager: that supports applications through the provision of
messaging and queuing capabilities.

[Cable 1d shows the relationship between these components and the connection
style. The client-server connection style describes the situation where
MQSeries Everyplace can operate in either client or server mode. The servlet
option describes the case where MQSeries Everyplace is configured as an
HTTP servlet with the HTTP server itself responsible for listening for
incoming connection requests.

Table 16. Connection styles

Queue manager Channel manager |Channel listener
Client Yes
Client-server Yes Yes Yes
Peer Yes
Server Yes Yes Yes
Servlet Yes Yes

MQSeries Everyplace applications are not directly aware of the connection
style used by the queue managers. However style is significant in that it
affects what resources are available to the parties, which queue managers can
connect with other queue managers, the MQSeries Everyplace footprint, and
which connections can concurrently exist.

Peer-to-peer connection

A peer-to-peer channel includes the capabilities of a channel manager and a
channel listener for a single channel. When a peer-to-peer channel is created
between two queue managers, one queue manager must act as a listener and
the other as the connection initiator. A peer-to-peer connected queue manager
can initiate multiple peer-to-peer connections with other queue managers, but
it can only respond to one incoming connection request and then must wait
for that peer-to-peer channel to be closed before responding to another such
request. Over any one peer-to-peer channel the two participating queue

Chapter 5. Product concepts 55



connection styles

managers can both initiate actions, thus for example, applications on each
queue manager can access queues on the other.

Peer-to-peer channels may not be usable through firewalls since the target of
the incoming connection request may not be acceptable to the firewall.

Client-server connection

Standard channels, used for the client-server connection style, have no
listening capabilities but depend on an independent listener at the server, and
the server requires a channel manager to handle multiple concurrent channels.
The client initiates the connection request and the server responds. A server
can usually handle multiple incoming requests from clients. Over a standard
channel the client has access to resources on the server. If an application on
the server needs synchronous access to resources on the client, a second
channel is required where the roles are reversed. However, since standard
channels are themselves bidirectional, messages destined for a client from its
server’s transmission queue, are delivered to it over the standard
(client-server) channel that it initiated.

A client can be a client to multiple servers simultaneously. (Note that a
channel manager is not required to support this configuration because channel
managers handle multiple inbound channels.)

The client-server connection style is generally suited for use through firewalls
since the target of the incoming connection is normally identified as being
acceptable to the firewall.

Multiple connection styles

A single queue manager can be capable of initiating either peer-to-peer or

client-server connections, and of responding either as a server or a peer. In
this case, the peer channel listener and the standard channel listener must

have different port numbers.

Classes

MQSeries Everyplace provides a choice of classes for certain functions to
allow the behavior of MQSeries Everyplace to be customized to meet specific
application requirements. In some cases the interfaces to classes are
documented so that additional alternatives can be developed.

summarizes the possibilities. Classes can be identified either explicitly
or through the use of alias names.

56 MQSeries Everyplace Introduction



Table 17. Class options

classes

Class Alternates supplied Interfaces documented
administration no yes
Authenticators yes no
Communications adapter | yes yes
Communications style yes no
Compressors yes no
Cryptors yes no
Event log sample provided yes
Messages no yes
Queue storage yes no
Rules default classes provided yes
Trace samples provided yes

Application loading

When an MQSeries Everyplace queue manager is configured to operate as a
client (or peer) the initiating application is responsible for loading any other

applications into the JVM. Standard Java facilities can be used for this, or the
class loader included as part of MQSeries Everyplace is available. Thus,
multiple applications can run against a single queue manager in the same
JVM. Alternatively multiple JVMs can be used but each requires its own
queue manager and each of these must have a unique name.

When an MQSeries Everyplace queue manager is configured as a server
MQSeries Everyplace is itself the initiating application. MQSeries Everyplace

supports a preload class list and these classes are loaded in turn, before the

queue manager is itself loaded.

Chapter 5. Product concepts

57



58 MQSeries Everyplace Introduction



Chapter 6. MQSeries Everyplace and MQSeries networks

Although an MQSeries Everyplace network can exist standalone, without the
need for an MQSeries server or network, in practice MQSeries Everyplace is
often used to complement an existing MQSeries installation, extending its
reach to new platforms and devices, or providing advanced capabilities such
as queue or message based security or synchronous messaging. From an
MQSeries Everyplace application perspective, MQSeries queues and queue
managers can be regarded as simply additional remote queues and queue
managers. However, a number of functional restrictions exist because these
queues are not accessed directly through MQSeries Everyplace dynamic
channels and an MQSeries Everyplace queue manager, but require the
involvement of an MQSeries Everyplace gateway. The gateway can send
messages to multiple MQSeries queue managers either directly or indirectly,
through MQSeries client channels. If the connection is indirect, the messages
pass through MQSeries client channels to an intermediate MQSeries queue
managers and then onwards through MQSeries message channels to the target
queue manager.

Messages from an MQSeries application destined for MQSeries Everyplace are
addressed to the MQSeries Everyplace queue manager and queue as normal,
with the MQSeries routing (remote queue manager definitions) defined such
that the MQSeries Everyplace messages arrive on specific MQSeries
transmission queues. MQSeries channels are not defined for the transmissions
queues, as would be normal practice, instead the MQSeries Everyplace
gateway pulls the messages off these queues and ensures their delivery to the
MQSeries Everyplace destination. The number of transmission queues to be
used (that is the number of routes) is configurable and should be set to reflect
the volume of messages to be delivered.

Interface to MQSeries

The architecture of MQSeries Everyplace supports the concept of one or more
optional bridge types between MQSeries Everyplace and other messaging
systems.

In MQSeries Everyplace Version 1.2 only one such bridge type is supported,
the MQSeries bridge that interfaces between MQSeries Everyplace and
MQSeries networks. This bridge uses the MQSeries Java client to interface to
one or more MQSeries queue managers, thereby allowing messages to flow
from MQSeries Everyplace to MQSeries and vice versa. In the current version
of MQSeries Everyplace one such bridge is recommended per server, and each
is associated with multiple MQSeries queue manager proxies (definitions of

© Copyright IBM Corp. 2000, 2001 59



connecting to MQSeries

MQSeries queue managers). A queue manager proxy definition is required for
each MQSeries queue manager that communicates with MQSeries Everyplace.
Each of these definitions can have one or more associated client connection
services, where each represents a connection to a single MQSeries queue
manager. Each of these may use a different MQSeries server connection to the
queue manager, and optionally a different set of properties such as user exits
or ports.

A gateway may have a number of listeners that use that gateway to connect to
the MQSeries queue manager and retrieve messages from MQSeries to
MQSeries Everyplace. A listener uses only one service to establish its
connection, with each listener connecting to a single transmission queue on
the MQSeries queue manager. Each listener moves messages from a single
MQSeries transmission queue to anywhere on the MQSeries Everyplace
network, via its parent gateway queue manager. Thus a single gateway queue
manager can funnel multiple MQSeries message sources into the MQSeries
Everyplace network.

MQSeries Everyplace server
MQSeries Only one bridges object
Everyplace <P Bridges is allowed on each
queue manager MQSeries Everyplace server
Only one queue manager K‘\.\
is allowed on each < ‘
MQSer_|es Evgryplace Bridge
server in version 1
NN
| \
MQSeries
queue manager
proxy
R
94 1
Client
connection
o XXX
A 1 1
Transmission
HEEDE queue listener

Figure 9. MQSeries Bridge object hierarchy

60  MQSeries Everyplace Introduction



connecting to MQSeries

When moving messages in the other direction, from MQSeries Everyplace to
MQSeries, the gateway queue manager configures one or more bridge queue
objects. Each bridge queue object can connect to any queue manager directly
and send its messages to the target queue. In this way a gateway can dispatch
MQSeries Everyplace messages routed through a single MQSeries Everyplace
queue manager to any MQSeries queue manager, either directly or indirectly.
The bridges object has the properties shown in m

Table 18. Bridges object properties

Property Explanation
Bridgename List of bridge names
Run state Status: running or stopped

The bridges object, and the other gateway objects can be started and stopped
independently of the MQSeries Everyplace queue manager. If such a gateway
object is started (or stopped) the action also applies to all of its children (all
bridges, queue manager proxies, client connections, and transmission queue
listeners). The bridge object has the properties shown in

Table 19. Bridge properties

Property Explanation
Class Bridge class
Default transformer The default class (rule class) to be used to transform a

message from MQSeries Everyplace to MQSeries (or vice
versa) if no other transformer class has been associated
with the destination queue

Heartbeat interval The basic timing unit to be used for performing actions
against bridge objects

Name Name of the bridge object

Run state Status: running or stopped

Startup rule class Rule class used when the bridge object is started

MQSeries Queue List of all Queue Manager Proxies that are owned by this

Manager Proxy bridge

Children

In simple cases a default transformer (rule) can be used to handle all message
conversions. Additionally a transformer can be set on a per listener basis (for
messages from MQSeries to MQSeries Everyplace ) that overrides this default.
For more specific control the transformation rules can be set on a target queue
basis using bridge queue definitions on the gateway. This applies both to
MQSeries Everyplace and MQSeries target queues.

Chapter 6. MQSeries Everyplace and MQSeries networks 61



connecting to MQSeries

The MQSeries queue manager proxy holds the properties specific to a single
MQSeries queue manager. The proxy properties are shown in

Table 20. MQSeries queue manager proxy properties

Property

Explanation

Class

MQSeries queue manager proxy class

MQSeries host name

IP host name used to create connections to the MQSeries
queue manager via the Java client classes. If not specified
then the MQSeries queue manager is assumed to be on the
same machine as the bridge and the Java bindings are used

MQSeries queue
manager proxy name

The name of the MQSeries queue manager

Name of owning bridge

Name of the bridge object that owns this MQSeries queue
manager proxy

Run state

Status: running or stopped

Startup rule class

Rule class used when the MQSeries queue manager object
is started

Client Connection
Children

List of all the Client Connection objects that are owned by
this proxy

The gateway connection service definition holds the detailed information
required to make a connection to an MQSeries queue manager. The
connection properties are shown in

Table 21. Client connection service properties

Property

Explanation

Adapter class

Class to be used as the gateway adapter

CCsID*

The integer MQSeries CCSID value to be used

Class

Bridge client connection service class

Max connection idle
time

The maximum time a connection is allowed to be idle
before being terminated

MQSeries password*

Password for use by the Java client

MQSeries port*

IP port number used to create connections to the MQSeries
queue manager via the Java client classes. If not specified

then the MQSeries queue manager is assumed to be on the
same machine as the bridge and the Java bindings are used

MQSeries receive exit
class*

Used to match the receive exit used at the other end of the
client channel; the exit has an associated string to allow
data to be passed to the exit code

62  MQSeries Everyplace Introduction




connecting to MQSeries

Table 21. Client connection service properties (continued)

Property

Explanation

MQSeries security exit
class*

Used to match the security exit used at the other end of the
client channel; the exit has an associated string to allow
data to be passed to the exit code

MQSeries send exit
class*

Used to match the send exit used at the other end of the
client channel; the exit has an associated string to allow
data to be passed to the exit code

MQSeries user ID*

user ID for use by the Java client

Client connection
service name

Name of the server connection channel on the MQSeries
machine

Name of owning queue
manager proxy

The name of the owning queue manager proxy

Startup rule class

Rule class used when the bridge client connection service
object is started

Sync queue name

The name of the MQSeries queue that is used by the bridge
for synchronization purposes

Sync queue purger rules
class

The rules class to be used when a message is found on the
sync queue

Run state

Status: running or stopped

Name of owning Bridge

The name of the Bridge object that owns this client
connection

MQ XmitQ Listener
Children

List of all the listener objects that use this client connection

*Details of these parameters can be found in the MQSeries Using Java documentation

The adapter class is used to send messages from MQSeries Everyplace to
MQSeries and the sync queue is used to keep track of the status of this process.
Its contents are used in recovery situations to guarantee assured messaging;
after a normal shutdown the queue is empty. It can be shared across multiple
client connections and across multiple bridge definitions provided that the
receive, send and security exits are the same. This queue can also be used to
store state about messages moving from MQSeries to MQSeries Everyplace ,
depending upon the listener properties in use. The sync queue purger rules class
is used when a message is found on the sync queue, indicating a failure of
MQSeries Everyplace to confirm a message.

The maximum connection idle time is used to control the pool of Java client
connections maintained by the bridge client connection service to its MQSeries
system. When an MQSeries connection becomes idle, through lack of use, a
timer is started and the idle connection is discarded if the timer expires before
the connection is reused. Creation of MQSeries connections is an expensive

Chapter 6. MQSeries Everyplace and MQSeries networks 63



connecting to MQSeries

operation and this process ensures that they are efficiently reused without
consuming excessive resources. A value of zero indicates that a connection
pool should not be used.

The listener object, which moves messages from MQSeries to MQSeries
Everyplace , has the properties shown in

Table 22. Listener properties

Property

Explanation

Class

Listener class

Dead letter queue name

Queue used to hold messages from MQSeries to MQSeries
Everyplace that cannot be delivered

Listener state store
adapter

Class name of the adapter used to store state information

Listener name

Name of the MQSeries XMIT queue supplying messages

Owning client
connection service name

Client connection service name

Run state

Status: running or stopped

Startup rule class

Rule class used when the listener object is started

Transformer class

Rule class used to determine the conversion of an MQSeries
message to MQSeries Everyplace

Undelivered message
rule class

Rule class used to determine action when messages from
MQSeries to MQSeries Everyplace cannot be delivered

Seconds wait for
message

An advanced option that can be used to control listener
performance in exceptional circumstances

The undelivered message rule class determines what action is taken when a
message from MQSeries to MQSeries Everyplace cannot be delivered.
Typically it is placed in the dead letter queue of the MQSeries system.

In order to provide assured delivery of messages, the listener class uses the
listener state store adapter to store state information, either on the MQSeries
Everyplace system or in the sync queue of the MQSeries system.

The transmission queue listener allows MQSeries remote queues to refer to
MQSeries Everyplace local queues. You can also create MQSeries Everyplace
remote queues that refer to MQSeries local queues. These MQSeries
Everyplace remote queue definitions are called MQSeries-bridge queues and
they can be used to get, put and browse messages on an MQSeries queue.

64  MQSeries Everyplace Introduction




connecting to MQSeries

An MQSeries-bridge queue definition can contain the following attributes.

Table 23. MQSeries-bridge queue properties

Property Explanation

Alias names Alternative names for the queue

Authenticator Must be null

Class Object class

Client connection Name of the client connection service to be used
Compressor Must be null

Cryptor Must be null

Expiry Passed to transformer

Maximum message size |Passed to the rules class

Mode Must be synchronous

MQ queue manager Name of the MQSeries queue manager to which the
proxy message should first be sent

MQSeries bridge Name of the bridge to convey the message to MQSeries
Name Name by which the remote MQSeries queue is known to

MQSeries Everyplace

Owning queue manager | Queue manager owning the definition

Priority Priority to be used for messages (unless overridden by a
message value)

Remote MQSeries queue | Name of the remote MQSeries queue
name

Rule Rule class used for queue operations

Queue manager target | MQSeries queue manager owning the queue

Transformer Name of the transformer class that converts the message
from MQSeries Everyplace format to MQSeries format

Type MQSeries bridge queue

Note: The cryptor, authenticator, and compressor classes define a set of queue
attributes that dictate the level of security for any message passed to
this queue. From the time on MQSeries Everyplace that the message is
sent initially, to the time when the message is passed to the
MQSeries-bridge queue, the message is protected with at least the
queue level of security. These security levels are not applicable when
the MQSeries-bridge queue passes the message to the MQSeries system,
the security send and receive exits on the client connection are used
during this transfer. No checks are made to make sure that the queue
level of security is maintained.

Chapter 6. MQSeries Everyplace and MQSeries networks 65



connecting to MQSeries

MQSeries-bridge queues are synchronous only. Asynchronous applications
must therefore use either a combination of MQSeries Everyplace
store-and-forward and home-server queues, or asynchronous remote queue
definitions as an intermediate step when sending messages to
MQSeries-bridge queues.

Applications make use of MQSeries-bridge queues like any other MQSeries
Everyplace remote queue, using the putMessage, browseMessages and
getMessage methods of the MQeQueueManager class. The queue name
parameter in these calls is the name of the MQSeries-bridge queue, and the
queue manager name parameter is the name of the MQSeries queue manager.
However, in order for this queue manager name to be accepted by the local
MQSeries Everyplace server, a connection definition with this MQSeries queue
manager name must exist with null for all the parameters, including the
channel name.

Note: there are some restrictions on the use of getMessage and
browseMessages with MQSeries-bridge queues. It is not possible to get
or browse messages from MQSeries-bridge queues that point to
MQSeries remote queue definitions. Nor is it possible to use nonzero
Confirm IDs on MQSeries-bridge queue gets. This means that the
getMessage operation on MQSeries-bridge queues does not provide
assured delivery. If you need a get operation to be assured, you should
use transmission-queue listeners to transfer messages from MQSeries.

Administration of the MQSeries-bridge is handled in the same way as the
administration of a normal MQSeries Everyplace queue manager - through
the use of administration messages. New classes of messages are defined as
appropriate to the managed object. [[Tahle 13 an page 3d shows the gateway

administration message classes.

Message conversion

MQSeries Everyplace messages destined for MQSeries pass through the bridge
and are converted into an MQSeries format, using either a default transformer
or one specific to the target queue. A custom transformer offers much
flexibility, for example it would be good practice to use a subclass of the
MQSeries Everyplace message object class to represent messages of a
particular type over the MQSeries Everyplace network. On the gateway a
transformer could convert the message into an MQSeries format using
whatever mapping between fields and MQSeries values that was appropriate
as well as add specific data to represent the significance of the subclass.

The default transformer from MQSeries Everyplace to MQSeries cannot take
advantage of subclass information but has been designed to be useful in a
wide range of situations. It has the following characteristics:

66 MQSeries Everyplace Introduction



connecting to MQSeries

Message flow from MQSeries Everyplace to MQSeries:

The default transformer from MQSeries Everyplace to MQSeries works in
conjunction with the MQeMQMsgObject class. This class is a representation
of all the fields you could find in an MQSeries message header. Using the
MQeMQMsgObject, your application can set values (priority for example)
using set() methods. Thus, when an MQeMQMsgObject (or an object
derived from the MQeMQMsgObject class) is passed through the default
MQSeries Everyplace transformer, the default transformer
(MQeBaseTransformer) gets the values from inside the MQeMSMsgObject,
and sets the corresponding values in the MQSeries message (for example,
the priority value is copied over to the MQSeries message).

If the message being passed is not an MQeMQMsgObject, and is not
derived from the MQeMQMsgObject class, the whole MQSeries Everyplace
message is copied into the body of the MQSeries message (funneled). The
message format field in the MQSeries message header is set to indicate that
the MQSeries message holds a message in MQSeries Everyplace "funneled”
format.

MQSeries to MQSeries Everyplace message flow:

MQSeries messages for MQSeries Everyplace are handled similarly to those
travelling in the other direction. The default transformer inspects the
message type field of the MQSeries header and acts accordingly.

If the MQSeries header indicates a "funneled” MQSeries Everyplace
message, then the MQSeries message body is reconstituted as the original
MQSeries Everyplace message that is then posted to the MQSeries
Everyplace network.

If the message is not a "funneled” MQSeries Everyplace message, then the
MQSeries message header content is extracted, and placed into an
MQeMQMsgObject object. The MQSeries message body is treated as a
simple byte field, and is also placed into the MQeMQMsgObject object. The
MQeMQMsgObject is then posted to the MQSeries Everyplace network.

This MQeMQMsgObject class and the default transformer behavior mean that

An MQSeries Everyplace message can travel across an MQSeries network to
an MQSeries Everyplace network without change.

An MQSeries message can travel across an MQSeries Everyplace network to
an MQSeries network without change.

An MQSeries Everyplace application can drive any existing MQSeries
application without the MQSeries application being changed.

Chapter 6. MQSeries Everyplace and MQSeries networks 67



connecting to MQSeries

Function

MQSeries remote queues are enabled for synchronous MQSeries Everyplace
put messaging operations, from an MQSeries Everyplace queue manager; all
other messaging operations must be asynchronous.

MQSeries Everyplace administration messages cannot be sent to an MQSeries
queue manager. The AdminQ does not exist there and the administration
message format differs from that used by MQSeries.

Compatibility

An MQSeries Everyplace network can exist independently of MQSeries, but in
many situations the two products together are needed to meet the application
requirements. MQSeries Everyplace can integrate into an existing MQSeries
network with compatibility including the aspects summarized below:

Addressing and naming;:

* identical addressing semantics using a queue manager/queue
address

e Common use of an ASCII name space

Applications:
MQSeries Everyplace is able to support existing MQSeries applications
without application change.

Channels:
MQSeries Everyplace gateways use MQSeries client channels.

Message interchange and content:

* interchange of messages between MQSeries Everyplace and
MQSeries

* message network invisibility (messages from either MQSeries
Everyplace or MQSeries can cross the other network without
change)

* mutual support for identified fields in the MQSeries message
header

* once-only assured message delivery

MQSeries Everyplace Version 1.2 does not support all the functions of
MQSeries. Apart from environmental, operating system and communication
considerations, some of the more significant differences are detailed below.
Note however that within MQSeries Everyplace many application tasks can be
achieved through alternative means using MQSeries Everyplace features, or
through the exploitation of sub-classing, the replacement of the supplied
classes or the exploitation of the rules, interfaces and other customization
features built into the product.

68 MQSeries Everyplace Introduction



connecting to MQSeries

* No clustering support

* No distribution list support

* No grouped/segmented messages

* No load balancing/warm standby capabilities
* No reference message

* No report options

* No shared queue support

* No triggering

* No unit of work support, no XA-coordination

Scalability and performance characteristics are different.

Assured delivery

Although both MQSeries Everyplace and MQSeries offer assured delivery,
they each provide for different levels of assurance. When a message is
travelling from MQSeries Everyplace to MQSeries, the message transfer is
only assured if the combination of putMessage and confirmPutMessage is
used (see L i ion” ). When a message is
travelling from MQSeries to MQSeries Everyplace, the transfer is assured only
if the MQSeries message is defined as persistent.

Chapter 6. MQSeries Everyplace and MQSeries networks 69



70  MQSeries Everyplace Introduction



Chapter 7. Programming interfaces

The MQSeries Everyplace Systems Programming Interface (SPI) is the
programming interface to MQSeries Everyplace . Two languages are
supported, Java and C:

The Java version provides access to all MQSeries Everyplace functions. The
detailed classes, methods and procedures are detailed in the MQSeries
Everyplace for Multiplatforms Programming Reference; examples of MQSeries
Everyplace programming are given in the MQSeries Everyplace for
Multiplatforms Programming Guide.

The C support for Palm provides access for a subset of the MQSeries
Everyplace function for use on Palm devices. Details of these classes and
procedures, together with programming guidance is provided in MQSeries
Everyplace Native Client Information

© Copyright IBM Corp. 2000, 2001



72 MQSeries Everyplace Introduction



Chapter 8. Getting started with MQSeries Everyplace

MQSeries Everyplace is a family of products that collectively provide the tools
needed to develop, deploy and manage MQSeries Everyplace messaging and
queuing solutions. The family compromises:

1. The MQSeries Everyplace licensed product (available on physical media from
IBM or as a Web download from
http://software.boulder.ibm.com/dl/mgsem/mgsem-p ). The licensed product
includes:

* MQSeries Everyplace Java classes
* Helper classes

* Application source code examples
* Utilities

* Reference manuals

¢ License information

The physical Program Product also includes entitlement to use the product
for non-development (productive) use on certain platforms. Further
capacity units need to be purchased for use on larger machines, or with
the MQSeries-bridge.

2. MQSeries Everyplace SupportPacs (available as Web downloads from
http://software.boulder.ibm.com/dl/mgsem/mqsem-p (as above) or from
http:/fwww.ibm.com/software/mgseries/everyplace). These are essential
supplements to the licensed product and include for example:

EAP1: MQSeries Everyplace - Device code for the Palm OS
C programming language support for MQSeries Everyplace
Version 1.0.1 application development on the Palm OS. (This code
is also included on the product CD inside the file eapl.zip)

EP01: MQSeries Everyplace - Performance Report
Analyses MQSeries Everyplace performance on a variety of client
platforms

ES01: MQSeries Everyplace - Administration Tool (MQeExplorer v1.0)
A generic tool for all Java platforms enabling easy graphical
administration of MQSeries Everyplace queue managers

ES02: MQSeries Everyplace - Explorer (MQe_Explorer v1.2)
An MQSeries Everyplace administration tool developed
exclusively to support the Microsoft Windows range of operating
systems

© Copyright IBM Corp. 2000, 2001 73



getting started

The management tools in the MQSeries Everyplace SupportPacs play an
important role in all phases of application development and rollout. They are
more sophisticated than the utilities included with the licensed product and
are an essential aid to getting started, configuring , inspecting pilot networks,
and in managing production systems.

Using MQSeries Everyplace

Given the wide range of uses for MQSeries Everyplace, the product is not
installed, configured and deployed in the same way as other members of the
MQSeries family. The underlying concept here is that typically there are three
phases in the adoption of MQSeries Everyplace by an enterprise:

1. Development and prototyping phase

In the early learning, development, and prototyping phase, the
MQSeries Everyplace product is available for installation and use
without charge - subject to the conditions of the IBM MQSeries
Everyplace development license. MQSeries Everyplace applications are
developed, using the functions of the MQSeries Everyplace Java
classes and C routines. These applications can be packaged in a
variety of ways, for example:

* An MQSeries Everyplace queue manager can be set up as a daemon
with one or more applications launched into the same Java virtual
machine and sharing a common queue manager.

¢ The application embeds the required MQSeries Everyplace classes
such that the application runs on machines where MQSeries
Everyplace has not been installed, launching its own queue
manager into its own JVM.

¢ The application uses the MQSeries Everyplace classes that exist on
the target machine.

Support from IBM is not included with the development license.
However, support during application development and beyond is
provided with the deployment license (see below).

2. Deployment phase

The deployment phase represents the rollout and use of the developed
applications and therefore, under the terms of the IBM MQSeries
Everyplace license, capacity units are required to use the product. The
classes may only be distributed with the application with agreement
from IBM, or where the users already have entitlement to use them.
Otherwise users must provide the necessary classes themselves.

3. Management phase

Subsequently, when MQSeries Everyplace queue managers are active
within a network, tools are needed to inspect and manage them.

74  MQSeries Everyplace Introduction



getting started

Support for MQSeries Everyplace is provided under the terms of the
International Program License Agreement.

This adoption life cycle is the justification for the variation in level of support
with platforms. For the MQSeries Everyplace with capacity units (and
Category 3 SupportPacs) IBM distinguishes between:

¢ Platforms where the installation and application development is supported:

— problem reports on install and/or application development and use will
be accepted

* Platforms where the application deployment is permitted but not directly
supported:

— problem reports may be required to be reproduced on a supported
platform

¢ Platforms where application deployment is supported:
— problem reports resulting from application deployment will be accepted

Gaining experience

There are many ways to get started with MQSeries Everyplace. Experience
suggests that getting a queue manager up and running, followed by a simple
MQSeries Everyplace network, is a productive way to become familiar with
the product and its concepts. Then writing a simple application is sound
preparation for in depth study of the product details. In the early stages it is
generally not helpful to examine other members of the MQSeries family. Later,
when the bridge functionality is of interest, this understanding becomes
essential.

With this strategy in mind, new users are recommended to adopt the
following approach:

Understand the essentials of the concepts presented in MQSeries Everyplace for
Multiplatforms Introduction (this book) and then do the following :

1. If you have access to a machine running a Microsoft Windows operating
system, download the MQe_Explorer, SupportPac ES02 (MQe_Explorer v
1.2). You do not have to install the licensed product beforehand, but if you
do not, you are restricted to development use by the terms of the license.

2. Follow the sEeCiﬁc instructions given below in [First use of the FS02]

First use of the ES02: MQe_Explorer

The MQe_Explorer comes with a comprehensive User Guide that describes
fast ways of getting a first queue manager configured. The manual is
generally recommended to a wider audience than just MQe_Explorer
administrators because it includes a number of sample scripts that illustrate

Chapter 8. Getting started with MQSeries Everyplace 75



getting started

important examples of MQSeries Everyplace operations. The SupportPac
includes two executable versions of MQe_Explorer:

MQe_ExplorerX.exe
This version embeds within the .exe file all the MQSeries Everyplace
classes that are needed for its operation. MQe_ExplorerX.exe runs
without MQSeries Everyplace having been installed on the machine. It
is ideal for first time users.

MQe_Explorer.exe
This version depends upon MQSeries Everyplace having been
previously installed. The advantages are that it picks up the latest
level of the MQSeries Everyplace libraries and is much smaller. It is
intended for developers and administrators.

As an example of the ease with which queue managers can be created, the
following abridged instructions show the power of MQSeries Everyplace.

1. Double click the MQe_ExplorerX.exe icon &

A message indicates that no saved options have been found, click OK (this
message will not occur again). The following administrative window is
displayed:

1 “MQe_Explorer ] 4

Eile Edit Wiew Tools Window Help

O o % &= E o =EE

[ [T~

2. Click the new icon [ on the toolbar.
This creates a new queue manager. The following window is displayed:

76  MQSeries Everyplace Introduction



getting started

§& Create a new queue manager conf == =]

General | IP detailsl Eonfiguratinnl Seu:urit_l,ll Clazz aliz 4 | ’l

Akgr. name: I

Path: IE:'\MGe\.Java\MGe_E:-cpIorer\ j
Server of Client/Server: v Search... |
Peer o Client; -

— Creating a new gueus manager

General tab:
Enter the queue manager name; confim the path
where it is to be stored and the ype to be created
IP tab:
Confirm the queus manager's IP address/port
Other tabs:
|Update the default parameters [if required)

Refrash | [Lreate |

a. Type in a queue manager name (e.g. Samp1eQM).
b. Select the IP details tab

§8 Create a new queue manager conf =0 x|

General P details | Configurationl Securit_l,ll Class alic 4 I 'I

IP addreszs: |'| 27001

|P port number: Igngg

Refresh Cancel [Lreate

Chapter 8. Getting started with MQSeries Everyplace 77



getting started

4.

a. Type in an IP address - the address is the IP address of the machine
being used, but a good value to type in at this stage is 127.0.0.1 (local
host).

b. Click the Create button. A message is issued identifying an
initialization file that has been created (the name is needed for future
access to this queue manager);

c. Click OK and the following window is displayed:

! “sampleQ™M: MQe root -0l x|

File Edit Wiew Teools Window Help

DEHI&G\EII | 4 =€ 2E

Y o Name | Description |
SamplelM Created by MOe_Ex=plorer on 02-4pr-07 083:34:40
0 | D]

|‘| queus manager(s] r’ﬁ SamplelM 2

5. A server queue manager is created, executing in its own JVM. It is
listening on port 8081 for incoming client/server channel connection
requests. If the + symbols are all expanded in the tree in the left hand
pane and the window and panes are resized, it can be seen that four
queues are created.

Z.-{' SampleQM: MQ(e root'SampleQ™Local queues - |E||5|
Eile Edit Yiew Tools Window Help

B AR A ERA e =

’:’t« Qe'mt Harme | Description | Tope | Mode | Dvwring qhdar.
B Samplelt [l Adming Admin Queue far Sampl...  Admin..  Sync Sampletit
""" {1 Connections Z| AdminFepld  Admin Feply Queuefor .. Local .. Sync SampleldM
El a Local queues [E DeadLetterd Default Dead Letter Qu...  Local .. Unknown  SampleQi

Admink
AdminFeplyd
DeadLetterQ

N i
|3 queue(s) |_ Iﬁ |SampIeQM v

6. To experiment more, follow the instructions in the MQe_Explorer User
Guide. You can create queues, connections, messages and even complete

78  MQSeries Everyplace Introduction



getting started

MQSeries Everyplace networks. Applications can be loaded into this same
queue manager and can be run concurrently with MQe_Explorer.

Chapter 8. Getting started with MQSeries Everyplace 79



80  MQSeries Everyplace Introduction



Appendix. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2001 81



notices

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

82  MQSeries Everyplace Introduction



notices

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

Hursley Park,

Winchester,

Hampshire

England

SO21 2JN

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Trademarks

The following terms are trademarks of International Business machines
Corporation in the United States, or other countries, or both.

AIX AS/400 IBM MQSeries 0S/390

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other

countries.

Other company, product, and service names may be trademarks or service
marks of others.

Appendix. Notices 83



84  MQSeries Everyplace Introduction



Glossary

This glossary describes terms used in this
book and words used with other than their
everyday meaning. In some cases, a
definition may not be the only one
applicable to a term, but it gives the
particular sense in which the word is used
in this book.

If you do not find the term you are looking
for, see the index or the IBM Dictionary of
Computing, New York:. McGraw-Hill, 1994.

Application Programming Interface (API). An
Application Programming Interface consists of
the functions and variables that programmers are
allowed to use in their applications.

asynchronous messaging. A method of
communicating between programs in which
programs place messages on message queues.
With asynchronous messaging, the sending
program proceeds with its own processing
without waiting for a reply to its message.
Contrast with synchronous messaging.

authenticator. A program that checks that
verifies the senders and receivers of messages.

bridge. An MQSeries Everyplace object that
allows messages to flow between MQSeries
Everyplace and other messaging systems,
including MQSeries.

channel. See dynamic channel and MQI channell.

channel manager. An MQSeries Everyplace
object that supports logical multiple concurrent
communication pipes between end points.

class. A class is an encapsulated collection of
data and methods to operate on the data. A class
may be instantiated to produce an object that is
an instance of the class.

© Copyright IBM Corp. 2000, 2001

client. In MQSeries, a client is a run-time
component that provides access to queuing
services on a server for local user applications.

compressor. A program that compacts a
message to reduce the volume of data to be
transmitted.

cryptor. A program that encrypts a message to
provide security during transmission.

dynamic channel. A dynamic channel connects
MQSeries Everyplace devices and transfers
synchronous and asynchronous messages and
responses in a bidirectional manner.

encapsulation. Encapsulation is an
object-oriented programming technique that
makes an object’s data private or protected and
allows programmers to access and manipulate
the data only through method calls.

gateway. An MQSeries Everyplace gateway (or
server) is a computer running the MQSeries
Everyplace code including a channel manager.

Hypertext Markup Language (HTML). A
language used to define information that is to be
displayed on the World Wide Web.

instance. An instance is an object. When a class
is instantiated to produce an object, we say that
the object is an instance of the class.

interface. An interface is a class that contains
only abstract methods and no instance variables.
An interface provides a common set of methods
that can be implemented by subclasses of a
number of different classes.

Internet. The Internet is a cooperative public
network of shared information. Physically, the
Internet uses a subset of the total resources of all
the currently existing public telecommunication
networks. Technically, what distinguishes the
Internet as a cooperative public network is its

85



use of a set of protocols called TCP/IP
(Transport Control Protocol/Internet Protocol).

Java Developers Kit (JDK). A package of
software distributed by Sun Microsystems for
Java developers. It includes the Java interpreter,
Java classes and Java development tools:
compiler, debugger, disassembler, appletviewer,
stub file generator, and documentation generator.

Java Naming and Directory Service (JNDI). An
API specified in the Java programming language.
It provides naming and directory functions to
applications written in the Java programming
language.

Lightweight Directory Access Protocol (LDAP).
LDAP is a client-server protocol for accessing a
directory service.

message. In message queuing applications, a
message is a communication sent between
programs.

message queue. See queue

message queuing. A programming technique in
which each program within an application
communicates with the other programs by
putting messages on queues.

method. Method is the object-oriented
programming term for a function or procedure.

MQI channel. An MQI channel connects an
MQSeries client to a queue manager on a server
system and transfers MQI calls and responses in
a bidirectional manner.

MQSeries. MQSeries is a family of IBM
licensed programs that provide message queuing
services.

object. (1) In Java, an object is an instance of a
class. A class models a group of things; an object
models a particular member of that group. (2) In
MQSeries, an object is a queue manager, a queue,
or a channel.

package. A package in Java is a way of giving a

piece of Java code access to a specific set of
classes. Java code that is part of a particular

86  MQSeries Everyplace Introduction

package has access to all the classes in the
package and to all non-private methods and
fields in the classes.

personal digital addistant (PDA). A pocket
sized personal computer.

private. A private field is not visible outside its
own class.

protected. A protected field is visible only
within its own class, within a subclass, or within
packages of which the class is a part

public. A public class or interface is visible
everywhere. A public method or variable is
visible everywhere that its class is visible

queue. A queue is an MQSeries object. Message
queueing applications can put messages on, and
get messages from, a queue

queue manager. A queue manager is a system
program the provides message queuing services
to applications.

server. (1) An MQSeries Everyplace server is a
device that has an MQSeries Everyplace channel
manager configured. (2) An MQSeries server is a
queue manager that provides message queuing
services to client applications running on a
remote workstation. (3) More generally, a server
is a program that responds to requests for
information in the particular two-program
information flow model of client/server. (3) The
computer on which a server program runs.

servlet. A Java program which is designed to
run only on a web server.

subclass. A subclass is a class that extends
another. The subclass inherits the public and
protected methods and variables of its
superclass.

superclass. A superclass is a class that is
extended by some other class. The superclass’s
public and protected methods and variables are
available to the subclass.

synchronous messaging. A method of
communicating between programs in which



programs place messages on message queues.
With synchronous messaging, the sending
program waits for a reply to its message before
resuming its own processing . Contrast with
asynchronous messaging.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for
both local and wide area networks.

Web. See World Wide Web.

Web browser. A program that formats and
displays information that is distributed on the
World Wide Web.

World Wide Web (Web). The World Wide Web
is an Internet service, based on a common set of
protocols, which allows a particularly configured
server computer to distribute documents across
the Internet in a standard way.

Glossary

87



88  MQSeries Everyplace Introduction



Bibliography

Related publications:

MQSeries Everyplace for Multiplatforms
Read Me First, GC34-5862

MQSeries Everyplace for Multiplatforms
Programming Reference, SC34-5846
MQSeries Everyplace for Multiplatforms
Programming Guide, SC34-5845

MQSeries Everyplace for Multiplatforms
Native Client Information, GC34-5883
MQSeries An Introduction to Messaging and
Queuing, GC33-0805-01

MQSeries for Windows NT V5R1 Quick
Beginnings, GC34-5389-00

© Copyright IBM Corp. 2000, 2001

89



90 MQSeries Everyplace Introduction



Index

A

about this book v

adapters, MQSeries Everyplace 43

administration messages 39

administration with MQSeries
Everyplace 39

applications, loading 57

applications, MQSeries
Everyplace 13

assured message delivery 69

asynchronous messaging 44

attribute rules 53

audience v

authenticatable entities 50

auto-registration 51

B

bridge, MQSeries 59
bridge object 61
bridges object 61

C

capabilities 13

certificate replication 52
channel listener 55

channel manager 55
channels 9

channels, client 17
channels, dynamic 17, 42
classes, MQSeries Everyplace 56
client, MQSeries 8

client channels 17
client-server channels 9
client-server connection 56
communications 55
compatibility with MQSeries 68
compression 46

concepts, product 17
configuration 53
configurations, example 10
connection, client-server 56
connection, peer-to-peer 55
connection styles 55
connection styles, multiple 56
customer requirements 14
customization 53

D

description 1
Devices, MQSeries Everyplace 17

© Copyright IBM Corp. 2000, 2001

dialup connection management 44
distributed messaging vi, 8

dump data format 23

dynamic channels 9, 17, 42

E

encryption 46

entities, authenticatable 50
environments, software 3
event logs 44

example configurations 10

F

format of dump data 23

G

gateways, MQSeries Everyplace 17

H

home server queues 26

hone server, MQSeries
Everyplace 26

host messaging vi, 8

interface, security 53

interface to MQSeries 59

interfaces, programming 71

issuance service for mini
certificates 52

L

legal notices 81

listener object 64, 65
loading applications 57
local queues 24

local security 47

message conversion 66
message delivery, assured 69
message-level security 49
message objects 18
messages, administration 39
messaging, asynchronous 44
messaging, MQSeries 7
messaging, synchronous 45
mini certificate issuance service 52
mini certificates 50
monitoring 42
MQeAttribute 49

MQeMTrustAttribute 49
MQSeries, compatibility with 68
MQSeries, interface to 59
MQSeries-bridge 9, 59
MQSeries bridge queues
MQSeries bridge rules 54
MQSeries client 8
MQSeries Everyplace adapters 43
MQSeries Everyplace
administration 39
MQSeries Everyplace
applications 13
MQSeries Everyplace classes 56
MQSeries Everyplace devices 17
MQSeries Everyplace gateways 17
MQSeries Everyplace networks 44,
59
MQSeries Everyplace objects 18
MQSeries Everyplace queue
managers 29
MQSeries Everyplace queues 23
MQSeries Everyplace registry 17,
50
MQSeries Everyplace rules 53
MQSeries Everyplace security 46
MQSeries family 7
MQSeries Integrator vi, 7
MQSeries messaging 7
MQSeries networks 59
MQSeries server 8
MQSeries Workflow vi, 7
multiple connection styles 56

N

networks, MQSeries 59

networks, MQSeries Everyplace 44,
59

notices, legal 81

0,

objects, message 18

objects, MQSeries Everyplace 18
operating systems, supported 3
operations, queue manager 36
overview 1

P

peer-to-peer channels 9
peer-to-peer connection 55
pervasive messaging Vi, 8
prerequisite knowledge v

26, 27

91



prerequisites 3

private registry 51
product concepts 17
programming interfaces 71
public registry 52

Q

queue-based security 47

queue manager 55

queue manager operations 36

queue manager proxy object 62

queue manager rules 54

queue managers 8, 9

queue managers, MQSeries
Everyplace 29

queue rules 54

queues, local 24

queues, MQSeries bridge 26, 27

queues, MQSeries Everyplace 23

queues, remote 24

queues, store and forward 25

R

readership v

registry 50

registry, MQSeries Everyplace 17
registry, private 51

registry, public 52

remote queues 24

replication of certificates 52
required operating systems 3
requirements, customer 14
rules, MQSeries Everyplace 53

S

security, local 47

security, message level 49
security, MQSeries Everyplace 46
security, queue-based 47
security interface 53

server, MQSeries 8

software environments 3

SPI 71

store and forward queues 25
supported operating systems 3
synchronous messaging 45

-

terms vi

tracing MQSeries Everyplace 44
trademarks 83

transformers 66

w

who should read this book v

92  MQSeries Everyplace Introduction



Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of
the methods listed below to send your comments to IBM®.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in
which the information is presented.

To make comments about the functions of IBM products or systems, talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:
* By mail, to this address:

User Technologies Department (MP(095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2]N
United Kingdom

* By fax:
— From outside the U.K,, after your international access code use
44-1962-842327
— From within the U.K., use 01962-842327
* Electronically, use the appropriate network ID:
— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

— IBMLink : HURSLEY(IDRCF)
— Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

* The publication title and order number

* The topic to which your comment applies

* Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2001 93



94  MQSeries Everyplace Introduction






on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

GC34-5843-02



	Contents
	About this book
	Who should read this book
	Prerequisite knowledge
	Terms used in this book

	Summary of Changes
	Changes for this edition (GC34-5843-02)
	Changes for previous edition (GC34-5843-01)

	Chapter 1. Overview
	Chapter 2. Software environments
	Supported platforms
	Java environment
	Personal Java

	Storage requirements

	Chapter 3. The MQSeries family
	MQSeries host and distributed products
	MQSeries Everyplace

	Chapter 4. Product Requirements
	Capabilities
	Applications
	Customer requirements

	Chapter 5. Product concepts
	Introduction
	Message objects
	Dump data format

	Queues
	Queue managers
	Queue manager configuration
	Queue manager operations

	Connections
	Administration
	Administration messages
	Selective administration
	Monitoring and related actions

	Dynamic channels
	Adapters
	Dialup connection management
	Trace
	Event log
	Message delivery
	Asynchronous message delivery
	Synchronous message delivery

	Security
	MQSeries Everyplace local security
	MQSeries Everyplace queue-based security
	Synchronous queue-based security
	Asynchronous queue-based security

	Message-level Security
	The registry
	MQSeries Everyplace Authenticatable entities
	Private Registry and credentials
	Auto-registration
	Public registry and certificate replication
	Application use of registry services
	Default mini-certificate issuance service
	The security interface

	Customization
	Rules
	Attribute rules
	MQSeries bridge rules
	Queue rules
	Queue manager rules


	Connection styles
	Peer-to-peer connection
	Client-server connection
	Multiple connection styles

	Classes
	Application loading


	Chapter 6. MQSeries Everyplace and MQSeries networks
	Interface to MQSeries
	Message conversion
	Function
	Compatibility
	Assured delivery

	Chapter 7. Programming interfaces
	Chapter 8. Getting started with MQSeries Everyplace
	Using MQSeries Everyplace
	Gaining experience
	First use of the ES02: MQe_Explorer


	Appendix. Notices
	Trademarks

	Glossary
	Bibliography
	Index
	Sending your comments to IBM

