
MQSeries® Everyplace for Multiplatforms

Programming Guide
Version 1.2

SC34-5845-02

���

MQSeries® Everyplace for Multiplatforms

Programming Guide
Version 1.2

SC34-5845-02

���

Take Note!

Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 247

Licence warning
MQSeries Everyplace for Multiplatforms Version 1.2 is a toolkit that enables users to write MQSeries Everyplace
applications and to create an environment in which to run them.

Before deploying this product, or applications that use it, in a production environment, please make sure that you
have the necessary licences.

To use MQSeries Everyplace on specified server platforms (other than for purposes of code development and
test), capacity-unit Use Authorizations (which are recorded on Proof of Entitlement documents and valid to
support use of MQSeries Everyplace according to published capacity unit and pricing group tables) must be
obtained in order to be licensed to use the program on each machine and machine upgrade.

Device platform use authorizations (which are recorded on Proof of Entitlement documents and valid to support
use of MQSeries Everyplace) are required to use the product (other than for purposes of code development and
test) on specified client platforms. These licenses do not entitle the user to use the MQSeries Everyplace Bridge, or
to run on the server platforms specified in the MQSeries Everyplace pricing group lists published by IBM and
also available on the Web via the URL mentioned below:

Please refer to http://www.ibm.com/software/mqseries for details of these restrictions.

Third Edition (May 2001)

This edition applies to MQSeries Everyplace for Multiplatforms Version 1.2 and to all subsequent releases and
modifications until otherwise indicated in new editions.

This document is continually being updated with new and improved information. For the latest edition, please see
the MQSeries family library Web page at http://www.ibm.com/software/ts/mqseries/library/.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

Contents

About this book v
Who should read this book v
Prerequisite knowledge v
Terms used in this book vi

Summary of changes vii
Changes for this edition (SC34-5845-02) vii
Changes for previous edition (SC34-5845-01) . . . vii

Chapter 1. Overview 1
MQSeries Everyplace queue manager 2
MQSeries Everyplace queues 3

Local queue 3
Remote queue 3
Store-and-forward queue 3
Home-server queue 4
MQSeries-bridge queue 4
Dead-letter queue. 4
Administration queue 4

MQSeries Everyplace channels 5
MQSeries Everyplace bridge to MQSeries. 7
Security 8

Chapter 2. Getting Started 9
Development Environment 9
Windows 2000 and NT security configuration . . . 10
Deploying applications 11
Post install test 12
Examples 13
examples.adapters 13
examples.administration.commandline package . . 14
examples.administration.console package 14
examples.administration.simple package. 14
examples.application package 15
examples.attributes package 16
examples.awt package 17
examples.certificates package 17
examples.eventlog package 18
examples.install package 18
examples.messagestore package 19
examples.mqbridge.awt package 19
examples.mqbridge.administration.commandline
package 20
examples.nativecode package 20
examples.queuemanager package 20
examples.rules package 21
examples.security package 21
examples.trace package 21

Chapter 3. MQeFields 23
Creating an MQeFields-based ini file editor. . . . 25

Chapter 4. Queue managers,
messages, and queues. 35

Creating and deleting queue managers 35
Creating a queue manager 35
Deleting a queue manager 39
Using aliases 40

Starting queue managers 44
Client queue managers 45
Server queue managers 50
Servlet 55

Configuring queue managers using base classes . . 59
Queue manager activation 59

Using queue managers 61
MQSeries Everyplace applications and the Java
Virtual Machine 61
Launching applications with RunList 63

Messages 65
Storing messages 67
Filters 70
Message Expiry 71

Queues 71
Queue types 72
Queue ordering 72
Reading all the messages on a queue 72
Browse and Lock 72
Message listeners 73
Message polling 74
Messaging operations 75

Synchronous and asynchronous messaging 75
Synchronous messaging 75
Asynchronous messaging. 75

Assured message delivery 77
Synchronous assured message delivery 77

Security 82

Chapter 5. Rules 83
Queue manager rules 83

Loading and activating queue manager rules . . 83
Using queue manager rules 83
Transmission Rules 85
Activating asynchronous remote queue
definitions 89

Queue rules 89
Index entry rule 90
Message Expired rule 90

Chapter 6. Administering messaging
resources 93
The basic administration request message 94

Base administration fields 95
Fields specific to the managed resource 96
Other useful fields 97

The basic administration reply message 99
Outcome of request fields 100

Administration of managed resources 103
Queue managers 103
Connections 103

© Copyright IBM Corp. 2001 iii

||

||

||

||
||

||

||
||
|
||

||

||

Queues 109
Security and administration 122
Example administration console 122

The main console window 123
Queue browser 124
Action windows 126
Reply windows. 127

Administration from the command line 128
Example of use of command-line tools 129

Chapter 7. MQSeries-bridge 135
Installation 135

MQSeries Classes for Java 135
Configuring the MQSeries-bridge. 135

Configuring a basic installation 136
Sample configuration tool 139
Configuration example 139
Additional bridge configuration 145

Administration of the MQSeries-bridge 145
The example administration GUI application 145
MQSeries-bridge administration actions . . . 146
MQSeries-bridge considerations when shutting
down an MQSeries queue manager 147
Administered objects and their characteristics 148

How to send a message from MQSeries to
MQSeries Everyplace 159

Handling undeliverable messages 160
Putting messages to the MQSeries-bridge queue 160
Getting and browsing messages from the
MQSeries-bridge queue 161

Usage restrictions 162
Transformers 162

The
examples.mqbridge.transformers.MQeListTransformer
example transformer class 164
MQSeries-style messages 165
Transformers and expiry time considerations 166

MQSeries-bridge rules 166
MQeLoadBridgeRule 167
MQeUndeliveredMessageRule 167
MQeSyncQueuePurgerRule. 168
MQeStartupRule 168

National language support implications 169
Conclusion 171

Example files 171

Chapter 8. Security 173
Security features 173
Local security 174

Usage scenario 174
Usage guide 175

Queue-based security. 177
Usage scenario 177
Usage guide 180
Queue-based security - channel reuse 193

Message-level security 195
Usage scenario 195

Usage guide 197
Private registry service 201

Private registry and the concept of
authenticatable entity. 201
Usage scenario 202
Usage guide 203

Public registry service 204
Usage scenario 204
Usage guide 204

mini-certificate issuance service 205
Configuring, starting and ending an instance of
mini-certificate issuance service server 206
Using administration tools 208
Operation 212

Chapter 9. Tracing in MQSeries
Everyplace 219
Using trace 219

Trace message formats 219
Activating trace 220

Customizing trace 221
MQeTrace example 221
Graphical user interface for trace 222

Chapter 10. MQSeries Everyplace
adapters 227
Adapter examples 227

An example of a simple communications
adapter 228
An example of a simple message store adapter 234

The Websphere Everyplace Suite (WES)
communications adapter 237

The Websphere Everyplace adapter files . . . 238
Using the Websphere Everyplace adapter . . . 239

Appendix A. MQSeries Everyplace
diagnostic tool 243
Invoking the MQeDiagnostics Tool 243

On Windows NT/2000 243
On UNIX systems 244
Other systems 244

Appendix B. Applying maintenance to
MQSeries Everyplace 245

Appendix C. Notices 247
Trademarks 248

Glossary 249

Bibliography. 251

Index 253

Sending your comments to IBM . . . 257

iv MQSeries Everyplace Programming Guide

||
||

|
||
||

||

|
||
||
||

|
||
||
||
||
||

About this book

This book is a programming guide for the MQSeries Everyplace for Multiplatforms
product (generally referred to in this book as MQSeries Everyplace). It contains
information on how to use the MQSeries Everyplace class libraries that are
described in MQSeries Everyplace for Multiplatforms Programming Reference. It
provides guidance to help you to decide which classes to use for common
messaging tasks, and in many cases example code is supplied.

The “Chapter 1. Overview” on page 1 provides a brief introduction for those who
are unfamiliar with the concepts and components of MQSeries Everyplace.
“Chapter 2. Getting Started” on page 9 provides help for setting up your
environment, and shows you how to use examples to create applications. The rest
of the book contains more detailed information about various aspects of
programming with MQSeries Everyplace.

You should use this book in conjunction with the MQSeries Everyplace for
Multiplatforms Programming Reference and existing books or manuals on Java®

programming.

This document is continually being updated with new and improved information.
For the latest edition, please see the MQSeries family library Web page at
http://www.ibm.com/software/mqseries/library/.

Who should read this book
This book is intended for anyone who wants to write Java based MQSeries
Everyplace programs to exchange secure messages within MQSeries Everyplace
systems, and between MQSeries Everyplace systems and other members of the
MQSeries family of messaging and queueing products.

For information on the availability of development kits for environments other
than Java, see the MQSeries Web site at
http://www.ibm.com/software/ts/mqseries/

Prerequisite knowledge
This book assumes that the reader has a working knowledge of Java and object
oriented programming techniques.

An initial understanding of the concepts of secure messaging is an advantage. If
you do not have this understanding, you may find it useful to read the following
MQSeries books:
v MQSeries An Introduction to Messaging and Queuing

v MQSeries for Windows NT® V5R1 Quick Beginnings, or the MQSeries Quick
Beginnings book that is relevant to the operating system that you are using.

These books are available in softcopy form from the Book section of the online
MQSeries library. The library can be reached from the MQSeries Web site, URL
address http://www.ibm.com/software/ts/MQSeries/library/

© Copyright IBM Corp. 2001 v

|
|

Terms used in this book
The following terms are used throughout this book:

MQSeries family
refers to the following MQSeries products:
v MQSeries Workflow simplifies integration across the whole enterprise

by automating business processes involving people and applications
v MQSeries Integrator is powerful message-brokering software that

provides real-time, intelligent rules-based message routing, and content
transformation and formatting

v MQSeries Messaging provides any-to-any connectivity from desktop to
mainframe, through business quality messaging, with over 35 platforms
supported

MQSeries Messaging
refers to the following messaging product groups:
v Distributed messaging: MQSeries for Windows NT, AIX®, AS/400®,

HP-UX, Sun Solaris, and other platforms
v Host messaging: MQSeries for OS/390®

v Workstation messaging: MQSeries for Windows
v Pervasive messaging: MQSeries Everyplace

MQSeries
refers to the following three MQSeries Messaging product groups:
v Distributed messaging
v Host messaging
v Workstation messaging

MQSeries Everyplace
Refers to the fourth MQSeries Messaging product group, pervasive
messaging.

Device platform
A small computer that is capable of running MQSeries Everyplace only as
a client.

Server platform
A computer of any size that is capable of running MQSeries Everyplace as
a server or client.

Gateway
A computer of any size running MQSeries Everyplace programs that
include MQSeries-bridge function.

vi MQSeries Everyplace Programming Guide

|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|

|

|

|
|

|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

Summary of changes

This section describes changes to this edition of MQSeries Everyplace for
Multiplatforms Programming Guide. Within the book, changes since the previous
edition are marked by vertical lines to the left of the changes.

Changes for this edition (SC34-5845-02)
Minor errors and omissions have been corrected.

References to High Security Edition have been removed.

The following information has been added:
v Browsing and getting messages from bridge queues
v Diagnostic tool
v Using the Websphere Everyplace Suite (WES) authentication and proxy services.
v New adapter examples
v New message store function

Changes for previous edition (SC34-5845-01)
Some of the information in this book has been restructured to reduce duplication
and repetition. Minor errors and omissions have also been corrected.

The following information has been added:
v Details for using MQSeries Everyplace on AIX and Solaris.
v Readers comment form.

© Copyright IBM Corp. 2001 vii

|

|

|

|

|

|

|

|

|

|

|

changes

viii MQSeries Everyplace Programming Guide

Chapter 1. Overview

MQSeries Everyplace code can run on a large range of platforms including
pervasive and mobile devices. There is no concept of a client or a server as in the
MQSeries host or distributed products. MQSeries Everyplace queue managers can
act as traditional clients or servers but each is in fact simply a queue manager
enabled to perform application-defined tasks.

The fundamental elements of the MQSeries Everyplace programming model are
messages, queues and queue managers. MQSeries Everyplace messages are objects that
contain application-defined content. When stored, they are held in a queue and
such messages may be moved across an MQSeries Everyplace network. Queues
can either be local or remote and are managed by queue managers.

MQSeries Everyplace queue managers communicate through MQSeries Everyplace
channels. These channels are created on demand and are referred to as dynamic,
differentiating them from MQSeries channels which have to be explicitly created.
They can also be configured in two different ways, in peer-to-peer mode, and in
client-server mode (see “MQSeries Everyplace channels” on page 5).

The MQSeries-bridge component also supports MQSeries client channels to enable
MQSeries Everyplace networks to communicate with MQSeries networks.

Figure 1 shows an example of an MQSeries Everyplace network linked to an
MQSeries server and the following sections of this chapter give brief descriptions
of MQSeries Everyplace objects and their uses.

MQSeries
Everyplace

gateway
queue manager

MQSeries
server

MQSeries
Everyplace

queue manager

MQSeries
Everyplace

queue manager

MQSeries
Everyplace

queue manager

Client-server
channel

Client-server
channel

Client-server
channel

Client-server
channel

Peer
channel

Peer
channel

MQSeries-bridge

Network

Figure 1. MQSeries Everyplace client

© Copyright IBM Corp. 2001 1

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

MQSeries Everyplace queue manager
The MQSeries Everyplace queue manager is the focal point of the MQSeries
Everyplace system. It provides:
v A central point of access to a messaging and queueing network for MQSeries

Everyplace applications
v Optional client-side queuing
v Optional administration functions
v Once-only guaranteed delivery of messages
v Full recovery from failure conditions
v Extendable rules-based behavior

The design of the MQSeries Everyplace queue manager is object-oriented. Objects
can inherit, and, by the use of rules, you can customize the behavior of the queue
manager. The MQSeries Everyplace queue manager is code imbedded within user
written programs and these programs can run on any MQSeries Everyplace
supported device or platform.

Queue managers can be configured in a number of different ’styles’, the main ones
being client (also known as peer, or device), server, and gateway. See “Starting
queue managers” on page 44 for descriptions of these styles.

An MQSeries Everyplace queue manager can control the various types of queue
that are described in “MQSeries Everyplace queues” on page 3. Communication
with other queue managers on the MQSeries messaging network can be
synchronous or asynchronous.If you want to use synchronous communications, the
originator, and the target MQSeries Everyplace queue managers must both be
available on the network. Asynchronous communication allows an MQSeries
Everyplace application to send messages even when the remote queue manager is
offline.

For more detailed information about MQSeries Everyplace queue managers see
“Chapter 4. Queue managers, messages, and queues” on page 35

overview - queue manager

2 MQSeries Everyplace Programming Guide

|
|
|

|
|
|

MQSeries Everyplace queues
There are several different types of queue class that you can use in an MQSeries
Everyplace environment. The types that are available in the MQSeries Everyplace
development package are:
v Local
v Remote
v Store-and-forward
v Home-server
v MQSeries-bridge

Queues may have characteristics , such as authentication, compression and
encryption. These characteristics are set using attributes, and are used when a
message object is stored on a queue.

Local queue
The simplest type of queue is a local queue. These are real queues that are the final
destination for all messages. This type of queue is local to, and owned by, a
specific queue manager. Applications on the owning queue manager can interact
directly with the queue to store messages in safe and secure way (excluding
hardware failures or loss of the device). These queues can be used online or offline,
that is connected to a network or not connected to a network.

The queue owns access and security and may allow a remote queue manager to
use these characteristics (when connected to a network). This allows others to send
or receive messages to the queue.

For more detailed information about local queues, see “Local queue” on page 109.

Remote queue
This type of queue does not reside in the local environment. There is a local queue
definition that identifies the real queue and the queue manager that owns it.

You can access remote queues either synchronously or asynchronously. If there is a
local definition of the remote queue, the mode of access is based on the definition.
In this case, the mode of access may be either synchronous or asynchronous.
However, if there is no local definition, queue discovery occurs. MQSeries
Everyplace retrieves the characteristics (authentication, cryptography, and
compression) from the real queue, and forces the mode of access to synchronous.

For more information on remote queues, see “Remote queue” on page 112.

Store-and-forward queue
A store-and-forward queue stores messages until the next queue manager is ready
to receive them. (This may not be the owning queue manager.) This type of queue
is normally defined on a server, and a client collects its messages when it connects
to the network.

Store-and-forward queues can hold messages for many clients, or there may be one
store-and-forward queue per client.

Fore more detailed information about store-and-forward queues, see
“Store-and-forward queue” on page 116.

overview - queues

Chapter 1. Overview 3

Home-server queue
This type of queue usually resides on a client and points to a store-and-forward
queue on a server known as the home-server. The home-server queue pulls
messages from the home-server store-and-forward queue when the client connects
on the network.

Home-server queues normally have a polling interval that causes them to check for
any pending messages on the server while the network is connected.

When this queue pulls a message from the server, it uses assured message delivery
to put the message to the local queue manager. The message is then stored on the
target queue.

For more detailed information about home-server queues, see “Home-server
queue” on page 119.

MQSeries-bridge queue
This type of queue is always defined on an MQSeries Everyplace gateway queue
manager and provides a path from the MQSeries Everyplace environment to the
MQSeries environment. The MQSeries-bridge queue is a remote queue definition
that refers to a queue residing on an MQSeries queue manager.

Applications can use put, get, and browse operations on this type of queue, as if it
were a local MQSeries Everyplace queue

For more detailed information about the MQSeries-bridge queue, see
“MQSeries-bridge queue” on page 120

Dead-letter queue
MQSeries Everyplace has a similar dead-letter queue concept to MQSeries. Such
queues store message that cannot be delivered. However, there are important
differences in the manner they are used.
v In MQSeries, if a message is being moved from queue manager A to queue

manager B, then if the channel connecting A to B cannot deliver the message, the
message can be placed on the receiving queue manager’s (B’s) dead-letter queue.

v In MQSeries Everyplace, if a message is being sent from queue manager A to
queue manager B, but it cannot be delivered, the message can be placed on the
sending queue manager’s (A’s) dead letter queue.
The use of dead-letter queues with an MQSeries-bridge needs special
consideration, see “Handling undeliverable messages” on page 160 for more
details.

Administration queue
The administration queue is a specialized queue that understands how to process
administration messages.

Messages put to the administration queue are processed internally. Because of this
applications cannot get messages directly from the administration queue. Only one
message is processed at a time, other messages that arrive while a message is
being processed are queued up and processed in the sequence in which they
arrive.

overview - queues

4 MQSeries Everyplace Programming Guide

|
|

|
|

|
|
|

MQSeries Everyplace channels
MQSeries Everyplace supports a method of establishing connections between
queue managers, that is termed an MQSeries Everyplace channel. A channel is a
logical connection between the two parties, and is established for the purposes of
sending or receiving data.

MQSeries Everyplace clients and servers can communicate over two types of
connections, peer channels and client-server channels. MQSeries Everyplace channels
are created on demand and are referred to as dynamic. This differentiates them
from MQSeries channels which have to be explicitly created.

Client-server channels have the following attributes:
v They are created on demand.
v The channel connection can only be established from the client-side of the

connection.
v A client can connect to many servers with each connection using a separate

channel
v The server-side queue manager can accept many connections simultaneously,

from a multitude of different clients, using a channel manager and listener.
v They work through a firewall, if the server-side of the connection is behind the

firewall. (This depends on the configuration of the firewall.)
v They are unidirectional and support the full range of functions provided by

MQSeries Everyplace, including both synchronous and asynchronous messaging.

Note: Unidirectional means that the client can send data to, or request data from
the server, but the server-side cannot initiate requests of the client.

Peer channels have the following attributes:
v They are created on demand
v The channel can be established from either end of the connection.
v A queue manager can connect to peer channel listeners on many other queue

managers with each connection using a separate channel.
v A queue manager can only have one peer channel listener at once (current

restriction). This means that only one other external client or server can establish
a peer channel to the queue manager at any one time. This restriction means
that this channel type is normally used only between clients as server queue
managers usually want to handle multiple incoming requests concurrently.

v They are not generally for use over a firewall, as it is difficult, and sometimes
impossible, to configure.

v They are bidirectional and support the full range of functions provided by
MQSeries Everyplace, including both synchronous and asynchronous messaging.

Note: Bidirectional means that the queue managers on each end of the channel
can request, and pass data over the channel.

Channels can have various attributes or characteristics, such as authentication,
cryptography, compression, or the transmission protocol to use. Different channels
can use different characteristics. Each channel can have its own value set for each
of the following attributes:

overview - channels

Chapter 1. Overview 5

|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|
|
|
|
|

|
|

|
|

|
|

|

Authenticator
This attribute causes authentication to be performed. This is a security function
that challenges the putting application environment or user to prove their
identity.

Cryptor
This attribute causes encryption and decryption to be performed on messages
passing through the channel. This is a security function that encodes the
messages during transit so that they cannot be read without the decoding
information.

Compressor
This attribute causes compression and decompression to be performed on
messages passing through the channel. This attempts to reduce the size of
messages while they are being transmitted and stored.

Destination
The server and port number that this channel connects to.

Typically the authenticator is only used when setting up the channel, compressors
and cryptors are normally used on all flows.

For more detailed information about channels see “Connections” on page 103, and
for more information about authenticators, compressors and cryptors, see
“Chapter 8. Security” on page 173.

MQSeries Everyplace channels can be established using a variety of protocols
allowing them to connect in a number of different ways, using for example:
v Permanent connection, for example LAN, or leased line
v Dial out connection, for example using a standard modem to connect to an

Internet service provider (ISP)
v Dial out and answer connection, using a CellPhone, or ScreenPhone for example

MQSeries Everyplace implements the communications protocols as a set of
adapters, one for each of the supported protocols, this enables you to add new
protocols very simply.

Authenticator

Compressor

Cryptor

Authenticator

Compressor

Cryptor

Communications
protocol

Figure 2. MQSeries Everyplace channel

overview - channels

6 MQSeries Everyplace Programming Guide

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

MQSeries Everyplace bridge to MQSeries
An MQSeries Everyplace queue manager can be an interface to an MQSeries
server. This type of queue manager is referred to as a gateway queue manager. The
MQSeries-bridge handles the transfer of messages between the two systems,
including the translation between the different message formats. “Configuring the
MQSeries-bridge” on page 135 provides a detailed description of this interface.

MQSeries Everyplace server

MQSeries-bridge
queue

MQSeries-bridge
transmission queue

listener

MQSeries server

MQSeries
Xmit queue

Figure 3. MQSeries Everyplace interface to MQSeries

overview - bridge to MQSeries

Chapter 1. Overview 7

|

Security
MQSeries Everyplace includes an integrated set of security features that provide
protection for message data, when it is held locally, and when it is being
transferred. There are three different categories of security:

Local security
Local security provides protection for MQSeries Everyplace messages while
they are held by a local queue manager.

Queue-based security
Queue-based security automatically protects MQSeries Everyplace message
data between an initiating queue manager and a target queue, so long as
the target queue is defined with an attribute. This protection is
independent of whether the target queue is owned by a local or a remote
queue manager.

Message-level security
Message-level security provides protection for message data between an
initiating and receiving MQSeries Everyplace application.

MQSeries Everyplace security uses the authenticator, cryptor, and compressor
attributes referred to in “MQSeries Everyplace channels” on page 5. Queue based
security is handled internally by MQSeries Everyplace and does not require any
specific action by the initiator or recipient of the message. Local and Message-level
security must be initiated by an application.

MQSeries Everyplace also provides a mini-certificate server for enhanced security.

See “Chapter 8. Security” on page 173 for detailed information about MQSeries
Everyplace security features.

Note: Throughout the world there are varying government regulations concerning
levels and types of cryptography. You must always use a level and type of
cryptography that complies with the appropriate local legislation. This is
particularly relevant when using a mobile device that is moved from
country to country. MQSeries Everyplace provides facilities for this, but it is
the responsibility of the application programmer to implement it.

overview - security

8 MQSeries Everyplace Programming Guide

|
|
|
|
|

|

|
|
|
|
|
|

Chapter 2. Getting Started

This section introduces Version 1.2 of the MQSeries Everyplace Development Kit.
The Development Kit is a development environment for writing messaging and
queuing applications based on Java 1.1.

Note: For information on the availability of development kits for environments
other than Java, see the MQSeries Web site at
http://www.ibm.com/software/ts/mqseries/

The code portion of the development kit comes in two sections:

Base MQSeries Everyplace classes
A set of Java classes that provide all the necessary function to build
messaging and queuing applications.

Examples
A set of Java source code and classes that demonstrate how to use many
features of MQSeries Everyplace.

Development Environment
To develop programs in Java using the MQSeries Everyplace development kit, you
must set up the Java environment as follows:
v Set the CLASSPATH so that the Java Development Kit (JDK) can locate the

MQSeries Everyplace classes.

Windows

In a Windows® environment, using a standard JDK, you can use the
following:
Set CLASSPATH=<MQeInstallDir>\Java;%CLASSPATH%

UNIX In a UNIX environment you can use the following:
CLASSPATH=<MQeInstallDir>/Java:$CLASSPATH
export CLASSPATH

v If you are developing code that uses or extends the MQSeries–bridge, the
MQSeries Classes for Java must be installed and made available to the JDK. For
details on setting up the environment for the MQSeries Classes for Java , see
MQSeries Using Java.

You can use many different Java development environments and Java runtime
environments with MQSeries Everyplace. The system configuration for both
development and runtime is dependent on the environment used. MQSeries
Everyplace includes a file that shows how to set up a development environment
for different Java development kits. On Windows systems this is a batch file called
JavaEnv.bat, for UNIX systems it is a shell script called JavaEnv. To use this file,
copy the file and modify the copy to match the environment of the machine that
you want to use it on.

A set of batch files and shell scripts that run some of the MQSeries Everyplace
examples use the environment file described above, and, if you wish to use the
example batch files, you must modify the environment file as follows:
v Set the JDK environment variable to the base directory of the JDK.

© Copyright IBM Corp. 2001 9

v Set the JavaCmd environment variable to the command used to run Java
applications.

v If MQSeries Classes for Java is installed, set the MQDIR environment variable to
the base directory of the MQSeries Classes for Java.

Note: Customized versions of JavaEnv.bat or JavaEnv may be overwritten if you
reinstall MQSeries Everyplace.

When you invoke JavaEnv.bat on Windows you must pass a parameter that
determines the type of Java development kit to use.

Possible values are:

Note: These parameters are case sensitive and must be entered exactly as shown.

Sun - Sun

JB -Borland JBuilder

MS - Microsoft

IBM - IBM

If you do not pass a parameter, the default is IBM.

The JavaEnv shell script on UNIX does not use a corresponding parameter.

On Windows, by default, you must run JavaEnv.bat from the
<MQeInstallDir>\java\demo\Windows directory. On UNIX, by default, you must
run JavaEnv from the <MQeInstallDir/Java/demo/UNIX directory. Both files can
be modified to allow then to be run from other directories or to use other Java
development kits.

Windows 2000 and NT security configuration
A sample Windows NT authenticator is supplied with MQSeries Everyplace, but
the default MQSeries Everyplace installation does not make all the changes
necessary for this authenticator to execute. If you wish to use the authenticator you
should complete the following configuration.

Note: The Windows NT authenticator is used by the MQe_Explorer that is shipped
in Supportpac ES02.

1. The file JavaNT.dll, which interfaces between MQSeries Everyplace and
Windows security, must be placed in the search path or in the current directory.
In a standard installation, this file is located in C:\MQe\Java. Put a copy of
this file in the directory that contains your Windows .dll files (normally
C:\WINNT\system32).

Note: This makes the sample authenticator available to all MQSeries
Everyplace applications. If you only wish to make the authenticator
available to the MQe_Explorer, put the copy of JavaNT.dll in the same
directory as MQe_Explorer.exe.

2. Security permissions must be set correctly for the JavaNT.dll to be granted
permission to access the Windows user/password database.

On Windows 2000:

getting started

10 MQSeries Everyplace Programming Guide

|

|

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

a. From the Start button click on Programs, then Administrative
Tools, then Local Security Policy

b. In the Local Security Settings panel click on Local Policies in the
left hand pane, then User Rights Assignment. In the right hand
pane check that your current user ID is assigned all of the
following privileges:
v Act as part of the operating system
v Log on as a service
v Log on locally

If all these privileges are not assigned to your ID, double click the
relevant privilege and add your user ID.

On Windows NT:

a. From the Start button click on Programs, then Administrative
Tools, then User Manager.

b. In the Policies menu click on User Rights

c. In the User Rights Policy dialogue, check the box Show Advanced
User Rights. Check the following rights in turn:
v Act as part of the operating system
v Log on as a service
v Log on locally

Each right should be granted to the logged on user ID. If your ID,
or a group to which your ID belongs, is not listed for any of these
rights, click the Add button to add your ID to the Grant to list.

When all the privileges have been set you must then logoff Windows
and logon again to get these privilege enabled for the current session (it
is not necessary to reboot the machine).

Deploying applications
When deploying MQSeries Everyplace applications, you are recommended to pack
the minimum set of classes required by the application into compressed jar files.
This ensures that the application requires the minimum system resource. MQSeries
Everyplace provides the following examples of how the MQSeries Everyplace
classes can be packaged into jar files. These examples are in the
<MQeInstallDir>\Java\Jars directory of a standard MQSeries Everyplace
installation.

MQeDevice.jar
A full set of the base classes that can be used on a device

MQeGateway.jar
A full set of the base classes that can be used on a server platform

MQeMQBridge.jar
The classes that can be used to extend the MQeGateway.jar to build a
server that interoperates with MQSeries

MQeHighSecurity.jar
A set of classes that can be used to extend both the MQeGateway.jar and
MQeDevice.jar to provide enhanced security

MQeMiniCertificateServer.jar
A self contained jar file providing all the classes required to run the
mini-certificate server

getting started

Chapter 2. Getting Started 11

|
|

|
|
|
|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|
|
|

|
|
|

|

MQeExamples.jar
A packaging of all the MQSeries Everyplace examples into one jar file

To run MQSeries Everyplace applications, you must set up the Java runtime
environment to include the required MQSeries Everyplace and application classes.
Using a standard Java runtime environment (JRE), you must set the CLASSPATH
to include any required jar files.

Example statements are:

Windows
Set CLASSPATH=<MQeInstallDir>\Jars\MQeDevice.jar;%CLASSPATH%

UNIX
CLASSPATH=<MQeInstallDir>/Java/Jars/MQeDevice.jar:$CLASSPATH
export CLASSPATH

Post install test
Once you have installed MQSeries Everyplace you can use the following
procedures to run a set of examples that determine whether the installation of the
development kit was successful.
v Ensure that the Java environment is set up as described in “Development

Environment” on page 9. When running any of the Windows batch files
described in this section, the first parameter of each is the name of the Java
development kit to use, if you do not specify a name, the default is IBM.

Note: The UNIX shell scripts do not have a corresponding parameter.
v Move to the correct directory:

Windows
Change to the <MQeInstallDir>\Java directory.

UNIX Change to the <MQeInstallDir>/Java/demo/UNIX directory.
v Create a queue manager as follows:

Windows
Run the batch file
CreateExampleQM.bat <JDK>

UNIX Run the shell script
CreateExampleQM

to create an example queue manager called ExampleQM.

Part of the creation process sets up directories to hold queue manager
configuration information and queues. The example uses a directory called
ExampleQM that is relative to the current directory. Within this directory are two
other directories:
– Registry - holds files that contain queue manager configuration data.
– Queues - for each queue there is a subdirectory to hold the queue’s messages.

(The directory is not created until the queue is activated.)
v Run a simple application as follows:

Once you have created a queue manager you can start it and use it in
applications. You can use the batch file ExamplesMQeClientTest.bat or the shell
script ExamplesMQeClientTest to run some of the simple application examples.

deploying application

12 MQSeries Everyplace Programming Guide

The batch file runs examples.application.Example1 by default. This example puts
a test message to queue manager ExampleQM and then gets the message from the
same queue manager. If the two messages match, the application ran
successfully.
There are a set of applications in the examples.application package that
demonstrate different features of MQSeries Everyplace. You can run these
examples as follows:

Windows
Pass parameters to the batch files:
ExamplesMQeClientTest <JDK> <ExampleNo>

UNIX Pass parameters to the shell scripts:
ExamplesMQeClientTest <ExampleNo>

where ExampleNo is the suffix of the example. This can range from 1 to 6.
v Delete a Queue manager.

When a queue manager is no longer required you can delete it. To delete the
example queue manager ExampleQM:

Windows
Run the batch file
DeleteExampleQM.bat <JDK>

UNIX Run the shell script
DeleteExampleQM

.

Once you have deleted a queue manager you cannot start it.

Notes:

1. Deleting a queue manager does not delete any messages that are still on the
queue, or configuration data that was not part of the base queue manager
creation. Hence, if the queue manager is recreated with the same creation
parameters, the remaining messages are available to the recreated queue
manager.

2. The examples use relative directories for ease of set up. You are strongly
recommended to use absolute directories for anything other than base
development and demonstration. If the current directory is changed, and you
are using relative directories, the queue manager can no longer locate its
configuration information and queues.

Examples
The examples previously described form a small part of the set of examples
provided with MQSeries Everyplace. Each example demonstrates how to use or
extend a feature of MQSeries Everyplace. Most are described in the relevant
sections of this Guide. They are all listed and briefly described in the following
sections

examples.adapters
This package provides two example classes that conform to the MQSeries
Everyplace adapters specification.

deploying application

Chapter 2. Getting Started 13

|

|
|

MQeDiskFieldsAdapter
This example class is identical in functionality to the disk fields adapter
found in com.ibm.mqe.adapters. It supports the reading and writing of
data on the local file store.

WESAuthenticationGUIAdapter
Wrappers the WESAuthenticationAdapter found inside
com.ibm.mqe.adapters. This example enhances the
WESAuthenticationAdapter by displaying a dialog box that prompts the
user for login information when connecting to a Websphere Everyplace
proxy. See “The Websphere Everyplace Suite (WES) communications
adapter” on page 237 for more information.

See “Chapter 10. MQSeries Everyplace adapters” on page 227 for more
information on adapters in MQSeries Everyplace.

examples.administration.commandline package
This package contains a suite of example tools for creating base MQSeries
Everyplace objects from the command line. Each program is a simple example of
how to send administration messages and how to interpret the replies.

Using these tools and a script you can reliably set up exactly the same
configuration on a number of machines.

See “Administration from the command line” on page 128 for details of the tools
and examples of how to use them.

examples.administration.console package
This package contains a set of classes that implement a simple graphical user
interface (GUI) for managing MQSeries Everyplace resources.

Admin
Front end to the example administration GUI.

Additionally there is a suite of classes that provides the graphical user interface for
each MQSeries Everyplace managed resource.

The GUI can be invoked in any of the following ways:
v Using the batch file ExamplesAdminConsole.bat
v From the command line:

java examples.administration.console.Admin

v From a button on the example server examples.awt.AwtMQeServer

See “Chapter 6. Administering messaging resources” on page 93 for more details
information about using the MQSeries Everyplace administration functions.

examples.administration.simple package
This package contains a set of examples that show how to use some of the
administrative features of MQSeries Everyplace in your programs. As with the
application examples, these examples can work with either a local or a remote
queue manager.

Example1
Create and delete a queue

examples

14 MQSeries Everyplace Programming Guide

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

Example2
Add a connection definition for a remote queue manager

Example3
Inquire on the characteristics of a queue manager and the queues it owns

ExampleAdminBase
The base class that all administration examples inherit from.

For details of MQSeries Everyplace administration functions, see “Chapter 6.
Administering messaging resources” on page 93.

examples.application package
This package contains a set of examples that demonstrate various ways to interact
with a queue manager. These include putting a message to and getting a message
from a queue. All the examples can be used with either a local queue manager or a
remote queue manager. Before you can use any of these applications, the queue
managers that are to be used must be created. You can use the
CreateExampleQM.bat batch file on Windows, or the CreateExampleQM shell
script on UNIX, to create queue managers ExampleQM (see “Post install test” on
page 12).

Example1
Simple put and get of a message.

Example2
Put several messages and then get the second one using a match field.

Example3
Use a message listener to detect when new messages arrive.

Example4
Use the WaitForMessage method to get a message if it arrives within a
specified interval.

Example5
Lock messages then get, unlock, and delete them.

Example6
Simple put and get of a message using assured message delivery.

Example7
Simple put and get of a message through a Websphere Everyplace proxy

ExampleBase
The base class that all application examples inherit from.

These examples can be run as follows:

Windows
Using batch file ExamplesMQeClientTest.bat
ExamplesMQeClientTest <JDK> <example no> <remoteQMgrName> <localQMgr ini file>

UNIX Using shell script ExamplesMQeClientTest
ExamplesMQeClientTest <example no> <remoteQMgrName> <localQMgr ini file>

where

<JDK> is the name of the Java environment (see “Development Environment” on
page 9 for details). The default is IBM

examples

Chapter 2. Getting Started 15

|
|

|
|

Note: This parameter is not used on UNIX.

<example no>
is the number of the example to run (suffix of the name of the example).
The default is 1 (Example1).

<remoteQMgrName>
is the name of the queue manager that the application should work with.
This can be the name of the local or a remote queue manager. If it is a
remote queue manager, a connection must be configured that defines how
the local queue manager can communicate with the remote queue
manager.

By default the local queue manager is used (as defined in
ExamplesMQeClient.ini)

<localQMgrIniFile>
is an ini file containing startup parameters for a local queue manager. By
default ExamplesMQeClient.ini is used.

For more details on how to write applications that interact with a queue manager
see “Chapter 4. Queue managers, messages, and queues” on page 35.

examples.attributes package
This package contains a set of classes that show how to write additional
components to extend MQSeries Everyplace security.

NTAuthenticator
An authenticator that authenticates a user to the Windows NT security
database. To authenticate correctly the user must have the following User
Rights set on the target NT system:
v Act as part of the operating system
v Logon locally
v Logon as a service

The NT authenticator uses the Java native interface (JNI) to interact with
Windows NT security. The code for this can be found in the
examples.nativecode directory. The dll built from this code must be placed
in the PATH of the NT machine that owns the target resource.

UnixAuthenticator
An authenticator that authenticates a user using the UNIX password or
shadow password system. The UNIX authenticator uses the JNI to interact
with the host system. The code for this can be found in the
examples.nativecode directory. If your system supports the shadow
password file, you must recompile this native code with the USE_SHADOW
preprocessor flag defined. You must also ensure the code has sufficient
privileges to read the shadow password file when it executes. This
example does not work if your system uses a distributed logon service
(such as Lightweight Directory Access Protocol (LDAP)).

LogonAuthenticator
Base logon authentication support.

UseridAuthenticator

Support for base userid authentication.

This example requires a UserIDS.txt file as input. This file must have the
format:

examples

16 MQSeries Everyplace Programming Guide

|
|

|

|

|

|
|

|
|

|

|

|
|

[UserIDs]

User1Name=User1Password

...

UserNName=UserNPassword

TableCryptor
A very simple cryptor

See “Chapter 8. Security” on page 173 for more detailed information about the
MQSeries Everyplace security features.

examples.awt package
This package provides a toolkit for building applications that require a small
graphical interface. It also contains example applications that provide a graphical
front end to MQSeries Everyplace functions.

AwtMQeServer
A graphical front end to the examples.queuemanager.MQeServer example.
The MQeTraceResourceGUI class provides a resource bundle that contains
internationalized strings for use by the GUI. MQeTraceResourceGUI is in
package examples.trace.

You can use the batch file ExamplesAwtMQeServer.bat to run this
application.

See “Server queue managers” on page 50 for more details about running a
queue manager in a server environment.

AwtMQeTrace
A graphical front end to examples.trace.MQeTrace.

See “Chapter 9. Tracing in MQSeries Everyplace” on page 219 for more
information about the MQSeries Everyplace trace facility.

Classes AwtDialog, AwtEvent, AwtFormat, AwtFrame, and AwtOutputStream
provide a toolkit for building small footprint awt-based graphical applications.
These classes are used by many of the graphical MQSeries Everyplace examples.

examples.certificates package
This package contains examples for managing mini-certificates (see
“mini-certificate issuance service” on page 205) for more information on these
examples, and using mini-certificates.

ListWTLSCertificates
This example uses methods in the class
com.ibm.mqe.attributes.MQeListCertificates to implement a command line
program which lists mini-certificates in a registry, to varying levels of
detail.

RenewWTLSCertificates
This example uses methods in the class
com.ibm.mqe.registry.MQePrivateRegistryConfigure to implement a
command line program which renews mini-certificates in a registry. This
should only be used on a private registry.

examples

Chapter 2. Getting Started 17

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

examples.eventlog package
This package contains some examples that demonstrate how to log events to
different facilities.

LogToDiskFile
Write events to a disk file

LogToNTEventLog
Write events to the Windows NT event log. This class uses the JNI to
interact with the Windows NT event log. The code for this is in the
examples.nativecode directory

LogToUnixEventLog
Write events to the UNIX event log (which is normally
/var/adm/messages). This class uses the JNI to interact with the UNIX
event logging system. The code for this can be found in the
examples.nativecode directory. The syslog daemon on your system should
be configured to report the appropriate events.

examples.install package
This package contains a set of classes for creating and deleting queue managers.

DefineQueueManager
A GUI that allows the user to select options when creating to queue
manager. When the options have been selected, this example creates an ini
file containing the queue manager startup parameters, and then creates the
queue manager.

CreateQueueManager
A GUI program that requests the name and directory of an ini file that
contains queue manager startup parameters. When the name and directory
are provided, a queue manager is created.

SimpleCreateQM
A command line program that takes a parameter that is the name of an ini
file that contains queue manager startup parameters. It also optionally
takes a parameter that is the root directory where queues are stored.
Provided a valid ini file is found, a queue manager is created.

DeleteQueueManager
A GUI program that takes the name of an ini file that contains queue
manager startup parameters. Provided a valid ini file is found, the queue
manager is deleted.

SimpledDeleteQM
A command line program that takes a parameter that is the name of an ini
file that contains queue manager startup parameters. Provided a valid ini
file is found, the queue manager is deleted.

GetCredentials
A GUI program that takes the name of an ini file that contains queue
manager startup parameters. Provided a valid ini file is found, new
credentials (private/public key pair and public certificate) are obtained for
the queue manager. The mini-certificate server must be running and the
request for a new certificate must have been authorized for this to succeed
(see “mini-certificate issuance service” on page 205).

examples

18 MQSeries Everyplace Programming Guide

|

|
|
|
|
|
|
|

All the configuration files use the resources and utilities provided in
ConfigResource, and ConfigUtils.

For more details about creating and deleting queue managers, see “Chapter 4.
Queue managers, messages, and queues” on page 35.

examples.messagestore package
The example in this package demonstrates how to implement a message store
using the MQeAbstractMessageStore class.

MessageStore
An example message store as used in, for example, local queue.

IndexEntry
This example perform the functions of message index entry. The
responsibilities of this class are:
v To implement the state model for messages in the message store
v To provide a storage mechanism for the messages.

The class could be subclassed, for instance to change the mechanism used
to store messages.

This class uses the constants provided in the IndexEntryConstants
interface.

examples.mqbridge.awt package
This package contains a set of classes that show how to use and extend the
MQSeries-bridge. Some of the examples extend other MQSeries Everyplace
examples.

AwtMQBridgeServer class
This is an example of a graphical interface for the underlying
examples.mqbridge.queuemanager.MQBridgeServer class.

The MQBridgeServer class source code demonstrates how to add bridge
functionality to your MQSeries Everyplace server program, following these
guidelines.

To start the bridge enabled server:
1. Instantiate the base MQSeries Everyplace queue manager, and start it

running.
2. Instantiate a com.ibm.mqe.mqbridge.MQeMQBridges object, and use its

activate() method, passing the same .ini file information as you passed
to the base MQSeries Everyplace queue manager.

The bridge function is then usable.

To stop the bridge-enabled server:
1. Disable the bridge function by calling the MQeMQBridges.close()

method. This stops all the current MQSeries-bridge operations cleanly,
and shuts down all the MQSeries-bridge function.

2. Remove your reference to the MQeMQBridges object, allowing it to be
garbage-collected.

3. Stop and close the base MQSeries Everyplace queue manager.

examples

Chapter 2. Getting Started 19

|
|

|

|
|

|
|

|
|
|

|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|
|

|

|

|
|
|

|
|

|

ExamplesAwtMQBridgeServer.bat
This file provides an example of how to invoke the MQBridgeServer using
the Awt server. It also shows how to control the initial settings of the
AwtMQBridgeTrace module.

ExamplesAwtMQBridgeServer.ini
This file provides an example configuration file for a queue manager that
supports MQSeries-bridge functionality.

See “Chapter 7. MQSeries-bridge” on page 135 for more details about the
MQSeries-bridge.

examples.mqbridge.administration.commandline package
This package contains a suite of example tools, similar to those in the
examples.administration.commandline package, designed to administer the objects
required for an MQSeries-bridge.

See “Administration from the command line” on page 128 for details of the tools
and examples of how to use them.

examples.nativecode package
Several of the examples require access to operating system facilities on Windows
NT, or UNIX (AIX and Solaris). MQSeries Everyplace accesses these functions
using the JNI. For Windows, the code in the examples\native directory provides
the JNI implementation required by examples.attributes.NTAuthenticator and
examples.eventlog.LogToNTEventLog. For UNIX, the code in the file
examples/native/JavaUnix.c provides the JNI implementation required by the
examples.attributes.UnixAuthenticator and
examples.eventlog.LogToUnixEventLog.

examples.queuemanager package
A queue manager can run in many different types of environment. This package
contains a set of examples that allow a queue manager to run as a client, server, or
servlet:

MQeClient
A simple client typically used on a device

MQePrivateClient
A client that can be used with secure queues and secure messaging

MQeServer
A server that can connect concurrently to multiple queue managers (clients
or servers). This is typically used on a server platform. Batch file
ExamplesAwtMQeServer.bat can be used to run the
examples.awt.AwtMQeServer example which provides a graphical front end
to this server.

MQePrivateServer
Similar to MQeServer but allows the use of secure queues and secure
messaging

MQeServlet
An example that shows how to run a queue manager in a servlet

examples

20 MQSeries Everyplace Programming Guide

|
|
|
|

|
|
|

|
|

|

|
|
|

|
|

MQeChannelTimer
An example that polls the channel manager so that it can timeout idle
channels

MQeQueueManagerUtils
A set of helper methods that configure start various MQSeries Everyplace
components

For more details about running queue managers in different environments see
“Starting queue managers” on page 44. For details on queue managers that provide
an environment for secure queues and messaging (MQePrivateClient and
MQePrivateServer), see “Chapter 8. Security” on page 173.

examples.rules package
You can control and extend the base MQSeries Everyplace functionality using
rules. Some components of MQSeries Everyplace allow rules classes to be applied
to them. These rules provide a means of changing the functionality of the
component. This package contains the following example rules classes:

ExamplesQueueManagerRules
Example queue manager rules class makes regular attempts to transmit
any held messages.

See “Chapter 5. Rules” on page 83 for more details.

AttributeRule
Example attribute rule that controls the use of attributes.

examples.security package
This package contains an example that modifies MQSeries Everyplace security.

MQeSecurity
An example extension to the Java security manager that controls whether
permission is granted to use certain features of MQSeries Everyplace.

examples.trace package
This package contains an example trace handler that can be used for debugging an
application during development, and for tracing a completed application.

MQeTrace
The base MQSeries Everyplace trace class.

AwtMQeTrace, which is in the examples.awt package, provides a graphical
front end to the MQeTrace class.

MQeTraceResource
A resource bundle that contains trace messages that can be output by
MQSeries Everyplace

MQeTraceResourceGUI
This class contains all the translatable text for the trace window controls

examples

Chapter 2. Getting Started 21

|
|
|

|
|
|

|
|

examples

22 MQSeries Everyplace Programming Guide

Chapter 3. MQeFields

MQeFields is the fundamental class used to hold data items for sending, receiving,
or manipulating MQSeries Everyplace messages. An MQeFields object is
constructed as follows:

/* create an MQeFields object */
MQeFields fields = new MQeFields();

There are various put and get methods within the MQeFields object for storing
and retrieving items. Items are held in a name, type and value form.

The name must conform to the following rules:
v It must be at least 1 character long.
v It must conform to the ASCII character set (characters with values 20 < value <

128).
v It must not include any of the characters { } [] # () : ; , ’ ″ =
v It must be unique within the MQeFields object

The MQeFields object name is used to retrieve and update values. It is good
practice to keep names short, because the names are included with the data when
the MQeFields object is dumped.

The following examples shows how to store values in an MQeFields object:
/* Store integer values into a fields object */

fields.putInt("Int1", 1234);
fields.putInt("Int2", 5678);
fields.putInt("Int3", 0);

The following examples shows how to retrieve values from an MQeFields object:
/* Retrieve an integer value from a fields object */

int Int2 = fields.getInt("Int2");

Methods are provided for storing and retrieving the value types shown in Table 1

Table 1. Store and retrieve methods

Value type Store method Retrieve method

byte putByte getByte

int putInt getInt

short putShort getShort

long putLong getLong

floating point putFloat getFloat

putDouble getDouble

boolean putBoolean getBoolean

string putAscii getAscii

putUnicode getUnicode

Arrays of values may be held within a fields object. There are two forms for
holding arrays:

© Copyright IBM Corp. 2001 23

v Fixed length arrays are handled using the putArrayOftype and getArrayOftype
methods. type can be Byte, Short, Int, Long, Float, or Double.

v Variable length arrays are handled using the puttypeArrayandgettypeArray. type
can be Byte, Short, Int, Long, Float, or Double.
Using this form, each element is stored as a series of single items. :nn is
appended to the name of the item, where nn is the element number of the item
within the array, starting at 0. A separate item contains the array length. This
array length is an integer value and is handled using putArrayLength and
getArrayLength.

An MQeFields object may be imbedded within another MQeFields object by using
the putFields and getFields methods.

MQeMsgObject, or a descendant of this class, is used for normal MQSeries
Everyplace messages. MQeMsgObject is a descendant of the MQeFields class, and
hence has access to all the MQeFields methods. See “Messages” on page 65 for
more information on MQeMsgObject.

The contents of an MQeFields object can be dumped in the following forms:

binary This is the form normally used to send an MQeFields or MQeMsgObject
object through the network. The method used to convert the data to binary
is dump. This method returns a binary byte array containing an encoded
form of the contents of the object (Note: this is not Java serialization). The
dump method has an optional boolean parameter that specifies if the
dumped data is to be XOR’d with a previous copy of the object data. This
is an attempt to increase the number of bytes in the output array that are
"0x00" to help the compressor make the data stream smaller when it is sent
over the network. This parameter is only useful when the application
intends to write the byte array out to some other physical media.

When a fixed length array is dumped and the array does not contain any
elements (its length is zero), its value is restored as null.

encoded string
There are various restrictions placed on the string form and it may not
always be possible to restore the MQeFields object using the string. The
string form uses the dumpToString method of the MQeFields object. It
requires two parameters, a template and a title. The template is a pattern
string showing how the MQeFields item data should be translated, as
shown in the following example:
"(#0)#1=#2\r\n"

where

#0 is the data type (ascii, or short for example)

#1 is the field name

#2 is the string representation of the value

Any other characters are copied unchanged to the output string. The
method successfully dumps imbedded MQeFields objects to a string, but
there is no guarantee that the imbedded MQeFields data can be restored
using the restoreFromString method.

A powerful feature of MQeFields is the ability to read an ini file as in the
following example:

MQeFields

24 MQSeries Everyplace Programming Guide

[Section1]
Keyword1=value1
Keyword2=value2
[Section2]
Keyword1=value
...

This data can be read and parsed into an MQeFields object as shown in the
following example:
File diskFile = new File(fileName); /*access the file*/

byte data[] = new byte[(int) diskFile.length()]; /*file size*/
FileInputStream inputFile = new FileInputStream(diskFile);
inputFile.read(data); /*read the file*/
inputFile.close(); /*finish with file*/

MQeFields fields = new MQeFields(); /*new Fields Object*/
fields.restoreFromString("\r\n", /*end of line string*/

"[#0]", /*section pattern*/
"#1=#2", /*keyword pattern*/
byteToAscii(data));

The following example shows a variation of the code that allows different data
types to be restored:

[Section1]
(ascii)Keyword1=value1
(int)Keyword2=1234
[Section2]
(boolean)Keyword1=true
...
File diskFile = new File(fileName); /*access the file*/

byte data[] = new byte[(int) diskFile.length()]; /*size of file*/
FileInputStream inputFile = new FileInputStream(diskFile);
inputFile.read(data); /*read the file*/
inputFile.close(); /*finish with file*/

MQeFields fields = new MQeFields(); /*new Fields Object*/
fields.restoreFromString("\r\n", /*end of line string*/

"[#0]", /*section pattern*/
"(#0)#1=#2", /*keyword pattern*/
byteToAscii(data));

Note: The dumpToString method does not dump imbedded MQeFields objects in
a format that can be restored using the preceding technique.

The use of an ini files is optional, although it is recommended. Utilities for
handling ini files are found in the examples supplied with MQSeries Everyplace,
but you may prefer to write your own, or to use MQeFields objects directly. If you
use ini files, they must be restored into the MQeFields objects in order to create
and manage queue managers. Examples are provided to help with this process.

Creating an MQeFields-based ini file editor
This example creates an ini file editor using the example components in the
MQSeries Everyplace examples.awt directory. It is not meant to include all forms of
MQeFields but is intended as an example, or a starting point, for a more powerful
editor.

MQeFields

Chapter 3. MQeFields 25

The example treats each section as a separate imbedded MQeFields object. The
base class creates a window with a choice box listing all the sections found within
the ini file.

The example makes use of the classes in the examples.awt directory. These classes
provide a simple way of creating and manipulating basic frames and dialogs.

The application extends examples.awt.AwtFrame to create a frame with a menu .
public class Editor extends examples.awt.AwtFrame

/*---*/
public editor(String args[]) throws Exception

{
/* Assign the title to the frame and initializes the ancestor.*/

super("Editor - ");
/*Assign a menu bar to the frame and define the items that appear on the bar*/

format(Menu, new String[][][] {
{ { "File" },

{ " ", "Open" }, /* Index 0 */
{ " ", "Save" }, /* Index 1 */
{ "-" },
{ " ", "Exit" } }, /* Index 2 */
{ { "Help" },
{ " ", "Trace" } } }); /* Index 3 */

visible(true);
}

The format method call has two parameters. The first in this example is Menu and
the second is a String array object.

The String array must be an array of array of array as follows:
v The first dimension defines the number of rows.
v The second dimension defines the number of columns
v The third dimension defines the components of the menu. These are defined as

follows:
new String[][][] { type, Data {, Data, { ... } } }

where:

type is the component type. This can be any of the following:

″ ″ normal menu item

″C″ CheckItem - unchecked. The modifier ″!″ denotes checked.

″-″ separator

Anything else is treated as a label.

Data the text to be used by the component.

Each item on the menu that can cause an action event has an index number
based on its position in the array in the preceding code fragment the comments
show the index number

The first parameter of the format method can have the values of "North", "South",
"East", "West", and "Center". These correspond to the position of a panel within the
frame. In these cases, the string array object has the following syntax:
new String[][][] { type, Data {, Data, { ... } } }

where:

MQefields-based ini editor

26 MQSeries Everyplace Programming Guide

type is the component type. This can have the following values:

″A″ Text area, with the following possible modifiers:

″P″ Protected - can not be edited

″K″ Give Key released action events

″B″ Button

″C″ Checkbox - unchecked. The modifier ″!″ denotes checked.

″D″ Choice (drop down list)

″L″ Label

″S″ Selection list (list box)

″T″ TextField, with the following possible modifiers:

″K″ give Key released action events

″P″ protected - can not be edited

″*″ masked input

Any thing else is treated as a label

Data the text to be used by the component

For more information on how these methods work, see the AwtDialog, AwtFormat,
and AwtFrame examples in the examples.awt directory.

Using the examples.awt components to create the editor, the following code defines
three work variables and the constructor that creates a window with a menu and a
single Choice box .
public class Editor extends examples.awt.AwtFrame

{
protected Choice choiceBox = null;
protected MQeFields fields = null;
protected String currentFile = "";

/*---*/
public editor(String args[]) throws Exception

{
super("Editor - ");
format(Menu, new String[][][] {

{ { "File" },
{ " ", "Open" }, /* Index 0 */
{ " ", "Save" }, /* Index 1 */
{ "-" },
{ " ", "Exit" } }, /* Index 2 */
{ { "Help" },
{ " ", "Trace" } } }); /* Index 3 */

format(North, new String[][][] {
{ { "D", "< -- No File Loaded -- >" } } });

choiceBox = (Choice) getObject(North, 0);
visible(true);
}

/*---*/
public static void main(String[] args)

{
try

{
new Editor(args);
}

MQefields-based ini editor

Chapter 3. MQeFields 27

catch (Exception e)
{
e.printStackTrace();
}

}

The next piece of code handles the events caused by the user interacting with the
menu or the choice box.

The menu actions are:

Open has an Action index of "0". This is used in a switch statement and calls a
Load method to read a disk file

Save has an Action index of "1". This is used in a switch statement and calls a
Save method to write a disk file

Exit has an Action index of "2". This is used in a switch statement and exits the
program

Trace has an Action index of "3". This is used in a switch statement and calls the
Examples.Awt.AwtMQeTrace class

The choice box is the only component placed in the North, and therefore it has an
index of "0". Selecting an item in this list box activates the class used to display the
contents of an MQeFields object.
public void action(Object e, int where, int index,

String choice, boolean state)
{
try

{
switch (where)

{
/* process Menu actions */
case Menu:

switch (index)
{
case 0: load(); break;
case 1: save(); break;
case 2: System.exit(0); break;
case 3: new examples.awt.AwtMQeTrace("Edit Trace", null);

break;
}

break;
/* process North events */
case North:

switch (index)
{
case 0:

String item = choiceBox.getSelectedItem();
new EditorFieldsDisplay("Editor - [" + Item + "]",

fields.getFields(Item));
break;

}
break;

}
}

/* exception occured - show error in a modal dialog window */
catch (Exception ex)

{
ex.printStackTrace();
new examples.awt.AwtDialog(this,

"Exception",
examples.awt.AwtDialog.Show_OK,

MQefields-based ini editor

28 MQSeries Everyplace Programming Guide

new String[][][] {
{ { "TP", ex.toString() } } });

}
}

The next piece of code processes the Save Menu request

This code creates a common file dialog and displays it to allow the output file
name to be specified. Once the file path and file name are set, each imbedded
MQeFields object is dumped to a String variable, creating a single String of the
whole MQeFields object. This String is written to disk and the output file is closed.
protected void save() throws Exception

{
if (fields == null) throw new Exception("No Fields object");
FileDialog fd = new FileDialog(this, "", FileDialog.SAVE);
fd.setFile(CurrentFile);
fd.show();
if ((fd.getDirectory() != null) && (fd.getFile() != null))

{
currentFile = fd.getDirectory() + fd.getFile();
File diskFile = new File(currentFile);
/* look for imbedded fields objects */
String buffer = ""; /*for imbedded_fields objects*/
String base = ""; /*non-imbedded_fields items*/
Enumeration keys = fields.fields(); /*get the names*/
while (keys.hasMoreElements())

{
String key = (String) keys.nextElement();
if (fields.dataType(key) == MQeField.TypeFields)

buffer = buffer + "[" + key + "]\r\n" +
fields.getFields(key).dumpToString(

"(#0)#1=#2\r\n") + "\r\n";
else /*... no, normal item*/

base = base + fields.dumpToString("(#0)#1=#2\r\n", key);
}

buffer = base + buffer;
FileOutputStream outputFile = new FileOutputStream(diskFile);
outputFile.write(MQe.asciiToByte(buffer));
outputFile.close();
}

}

So far we have:
v Defined the controlling application window
v Defined the process for loading and saving a disk file
v Defined a mechanism for activating EditorFieldsDisplay class once a specific

section has been selected

The EditorFieldsDisplay class is where the actual editing is done. This class creates
the editor screen. The constructor of the class sets up:
v The menu (in this case is just Exit, in the North)
v A choice box containing any names of imbedded MQeFields objects
v A list box to hold the dumped items, in the center

The next piece of code positions the sub-window on the screen.
public class EditorFieldsDisplay extends AwtFrame

{
protected MQeFields fields = null; /* fields object */
protected Choice choiceBox = null; /* Fields Choice */
protected List listBox = null; /* listbox object */
protected String newItem =

MQefields-based ini editor

Chapter 3. MQeFields 29

" <<<< Double click here to add new item >>>>";

/* constructor */
public EditorFieldsDisplay(String thisTitle,

MQeFields theseFields) throws Exception
{
super(thisTitle);
fields = theseFields;
format(Menu, new String[][][] {

{ { "Exit" },
{ " ", "Exit" } } });/* Index 0 */

format(North, new String[][][] {
{ { "D", "<none>" } } });/* Index 0 */

format(Center, new String[][][] {
{ { "S", "" } } }); /* Index 0 */

choiceBox = (Choice) getObject(North, 0);
listBox = (List) getObject(Center, 0);
listBox.setFont(new Font("Courier", 1, 12));
visible(true);
/* re-size/re-position the edit window */
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
setSize (screenSize.width / 3, screenSize.height / 3);
setLocation(screenSize.width / 3, screenSize.height / 3);
/* initialise the various component contents */
showFields(); /* show fields contents */
}

The showFields method call is a call to a common routine that refreshes the data
in the list box. This is a list of the items that are held within the MQeFields object.
protected void showFields() throws Exception

{
listBox.removeAll(); /* clear all entries */
if (fields != null) /* fields object ? */

{ /* ... yes */
Enumeration keys = fields.Fields(); /* get the key names */
choiceBox.removeAll();
while (keys.hasMoreElements())

{
String key = (String) keys.nextElement();
if (fields.dataType(key) == MQeField.TypeFields)

choiceBox.add(key); /* ... yes, add name */
else

listBox.add(format(fields.dumpToString("#1\t(#0)\t = #2",
Key), 10));
}

listBox.add(newItem); /* add information line */
}

}

The ListBox.add(format(fields.dumpToString("#1\t(#0)\t = #2", record in
the preceding code, dumps the MQeFields data with tab ("\t"), carriage returns
("\r") and line feed ("\n") characters. These need to be formatted before they are
displayed in the list box.

The following piece of code shows a formatter.
public static String format(String data, int tabSize)

{
int l = 0; /*start line number*/
char c[] = new char[data.length()]; /*work array*/
data.getChars(0, data.length(), c, 0); /*convert to chars*/
StringBuffer result = new StringBuffer(512);
for (int i = 0; i < c.length; i = i + 1)
switch (c[i])

{

MQefields-based ini editor

30 MQSeries Everyplace Programming Guide

case '\r': /* ignore */
case '\n': /* new line */

l = 0; /* set space count */
result.append(c[i]); /*append to string*/
break;

case '\t': /*tab character*/
int m = l; /*current position*/
for (l = m; l < tabSize + 1; l = l + 1) /*fill tab*/

result.append(' '); /*pad*/
l = 0; /*reset*/
break;

default: /*all others*/
result.append(c[i]); /*append to string*/
l = (l + 1) % tabSize; /*increase the length*/
break;

}
return(result.toString());
}

The following code handles the events caused by the user interacting with the
menu, the choice box or the list box.

Exit is the only menu item, and this is handled by disposing of the edit window.
The choice box handles any imbedded MQeFields items. To edit an Individual
item, the user must select the item within the list box.

public void action(Object e, int where, int index,
String choice, boolean state)
{
try

{
switch (where)

{
/* process Menu events */
case Menu:

switch (index)
{
case 0: dispose(); break;
}

break;
/* process North events */
case North:

switch (index)
{
case 0: break;
}

break;
/* process Center events */
case Center:

switch (index)
{
case 0:

int i = listBox.getSelectedIndex();
if (i > -1) /* anything selected ? */

{
String editName = listBox.getItem(i);
if (editName.equals(newItem)) /* add new item ? */

editItem("", "ascii", ""); /* ... yes, */
else

{
editName = editName.substring(0,

editName.indexOf(' '));
editItem(editName,

fields.dumpToString("#0", editName),
fields.dumpToString("#2", editName));

}

MQefields-based ini editor

Chapter 3. MQeFields 31

}
break;

}
break;

} /* end switch(Where) */
}

/* exception occured - show error in a modal dialog window */
catch (Exception ex)

{
ex.printStackTrace();
new AwtDialog(this,

"Exception",
AwtDialog.Show_OK,
new String[][][] { { { "TP", ex.toString() } } });

}
}

When the user selects an item in the list box an Edit dialog is displayed. This
dialog allows the name, type, and value to be edited. The user can also delete the
item from the MQeFields object.

The same dialog is used to add a new item to the MQeFields object. In this case
the item name and the value is blank, with a default type of ascii.
protected void editItem(String name, String type, String value)

throws Exception
{
if (fields == null) throw new Exception("No Fields object");
/* Dialog to set Field Item name type and value */
AwtDialog md = new AwtDialog(this,

getTitle() + " - edit item",
AwtDialog.Show_OK_Cancel,
new String[][][] {

{ { "L", "Field Item Name:" }, { "T", name } }, /* Index 1 */
{ { "L", " Data type:" }, { "D", type, /* Index 3 */

"ascii",
"boolean",
"byte",
"double",
"float",
"int",
"long",
"short",
"unicode" } },

{ { "L", " Value:" }, { "T", value } }, /* Index 5 */
{ { "L", " Remove item ?" }, { "C", "Delete" } } /* Index 7 */

});
/* process dialog response */
if (md.getActionIndex(South) == md.Button_OK)

{
name = md.GetText(Center, 1);
if (name.equals(""))

throw new Exception("Invalid Item name");
fields.delete(name);
if (! md.getCheckState(center, 7)) /* delete this item ? */

{ /* ... no */
String data = "(" + md.GetText(Center, 3) +

")" + name +
"=" + md.getText(Center, 5);

fields.restoreFromString("(#0)#1=#2", data);
}

showFields();
}

}

MQefields-based ini editor

32 MQSeries Everyplace Programming Guide

This completes a functional but primitive ini file editor. It can be used to display or
modify MQeMsgObjects as long as the data is not encoded.

MQefields-based ini editor

Chapter 3. MQeFields 33

34 MQSeries Everyplace Programming Guide

Chapter 4. Queue managers, messages, and queues

“MQSeries Everyplace queue manager” on page 2 provides an overview of the
services provided by MQSeries Everyplace queue manager, and queues. This
section provides detailed descriptions of the functions and use of queue managers
and their associated resources, messages and queues.

Creating and deleting queue managers
A queue manager requires at least the following:
v A registry (see “MQeRegistry parameters for the queue manager” on page 46)
v A queue manager definition
v Local default queue definitions (see “Queues” on page 71)

Once these definitions are in place you can run the queue manager and use the
administration interface to perform further configuration, such as adding more
queues.

Methods to create these initial objects are supplied in the
MQeQueueManagerConfigure class.

The example install programs examples.install.SimpleCreateQM and
examples.install.SimpleDeleteQM use this class.

This section provides more information to help you to use the
MQeQueueManagerConfigure class.

Creating a queue manager
The basic steps required to create a queue manager are:
1. Create and activate an instance of MQeQueueManagerConfigure
2. Set queue manager properties and create the queue manager definition
3. Create definitions for the default queues
4. Close the MQeQueueManagerConfigure instance

1. Create and activate an instance of
MQeQueueManagerConfigure
You can activate the MQeQueueManagerConfigure class in either of the following
ways:
1. Call the empty constructor followed by activate():

try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
qmConfig = new MQeQueueManagerConfigure();
qmConfig.activate(parms, "MsgLog:qmName\\Queues\\");
}
catch (Exception e)
{ ... }

2. Call the constructor with parameters:

© Copyright IBM Corp. 2001 35

try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");
}
catch (Exception e)
{ ... }

The first parameter is an MQeFields object that contains initialization parameters
for the queue manager. These must contain at least the following:
v An imbedded MQeFields object (Name) that contains the name of the queue

manager
v An imbedded MQeFields object, that contains the location of the local queue

store as the registry type (LocalRegType) and the registry directory name
(DirName). If a base file registry is used these are the only parameters that are
required. If a private registry is used, a PIN and KeyRingPassword are also
required.

The directory name is stored as part of the queue manager definition and is used
as a default value for the queue store in any future queue definitions. The
directory does not have to exist and will be created when needed.

If you use an alias for any of the initialization parameters (see “Using aliases” on
page 40), or if you wish to use an alias to set the channel attribute rule name (see
“2. Set queue manager properties and create the queue manager definition” on
page 37), the aliases should be defined before activating
MQeQueueManagerConfigure .
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
MQeFields qmgrFields = new MQeFields();
MQeFields regFields = new MQeFields();

// Queue manager name is needed
qmgrFields.putAscii(MQeQueueManager.Name, "qmName");
// Registry information
regFields.putAscii(MQeRegistry.LocalRegType, "FileRegistry");
regFields.putAscii(MQeRegistry.DirName, "qmname\\Registry");

// add the imbedded MQeFields objects
parms.putFields(MQeQueueManager.QueueManager, qmgrFields);
parms.putFields(MQeQueueManager.Registry, regFields);
// set aliases
MQe.alias("FileRegistry", "com.ibm.mqe.registry.MQeFileSession");
MQe.alias("ChannelAttrRules", "examples.rules.AttributeRule");
// activate the configure object
qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");
}
catch (Exception e)
{ ... }

creating a queue manager

36 MQSeries Everyplace Programming Guide

2. Set queue manager properties and create the queue manager
definition
When you have activated MQeQueueManagerConfigure, but before you create the
queue manager definition, you can set some or all of the following queue manager
properties:
v You can add a description to the queue manager with setDescription()

v You can set a channel time-out value with setChannelTimeout()

v You can set the name of the channel attribute rule with
setChnlAttributeRuleName()

Call defineQueueManager() to create the queue manager definition. This creates a
registry definition for the queue manager that includes any of the properties that
you set previously.
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
// set aliases
MQe.alias("FileRegistry", "com.ibm.mqe.registry.MQeFileSession");
MQe.alias("ChannelAttrRules", "examples.rules.AttributeRule");
// activate the configure object
qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");
qmConfig.setDescription("a test queue manager");
qmConfig.setChnlAttributeRuleName("ChannelAttrRules");
qmConfig.defineQueueManager();
}
catch (Exception e)
{ ... }

At this point you can close MQeQueueManagerConfigure and run the queue
manager, however, it cannot do much because it has no queues. You cannot add
queues using the administration interface, because the queue manager does not
have an administration queue to service the administration messages.

The following sections show how to create queues and make the queue manager
useful.

3. Create definitions for the default queues
MQeQueueManagerConfigure allows you to define the following four standard
queues for the queue manager:
v An administration queue: defineDefaultAdminQueue()

v An administration reply queue: defineDefaultAdminReplyQueue()

v A dead letter queue: defineDefaultDeadLetterQueue()

v A default local queue: defineDefaultSystemQueue()

All these methods throw an exception if the queue already exists.

The administration queue and administration reply queue are needed to allow the
queue manager to respond to administration messages, for example to create new
connection definitions and queues.

creating a queue manager

Chapter 4. Queue managers, messages, and queues 37

The dead letter queue can be used (depending on the rules in force) to store
messages that cannot be delivered to their correct destination.

The default local queue, SYSTEM.DEFAULT.LOCAL.QUEUE, has no special
significance within MQSeries Everyplace itself, but it is useful when MQSeries
Everyplace is used with MQSeries messaging because it exists on every MQSeries
messaging queue manager.
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");
qmConfig.setDescription("a test queue manager");
qmConfig.setChnlAttributeRuleName("ChannelAttrRules");
qmconfig.defineDefaultAdminQueue();
qmconfig.defineDefaultAdminReplyQueue();
qmconfig.defineDefaultDeadLetterQueue();
qmconfig.defineDefaultSystemQueue();
}
catch (Exception e)
{ ... }

4. Close the MQeQueueManagerConfigure instance
When you have defined the queue manager and the required queues, you can
close MQeQueueManagerConfigure and run the queue manager.

The complete example looks like this:
import com.ibm.mqe.*;
import com.ibm.mqe.registry.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
MQeFields qmgrFields = new MQeFields();
MQeFields regFields = new MQeFields();
// Queue manager name is needed
qmgrFields.putAscii(MQeQueueManager.Name, "qmName");

// Registry information
regFields.putAscii(MQeRegistry.LocalRegType, "FileRegistry");
regFields.putAscii(MQeRegistry.DirName, "qmname\\Registry");

// add the imbedded MQeFields objects
parms.putFields(MQeQueueManager.QueueManager, qmgrFields);
parms.putFields(MQeQueueManager.Registry, regFields);

// set aliases
MQe.alias("FileRegistry", "com.ibm.mqe.registry.MQeFileSession");
MQe.alias("ChannelAttrRules", "examples.rules.AttributeRule");

// activate the configure object
qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");
qmConfig.setDescription("a test queue manager");
qmConfig.setChnlAttributeRuleName("ChannelAttrRules");
qmConfig.defineQueueManager();
qmconfig.defineDefaultAdminQueue();
qmconfig.defineDefaultAdminReplyQueue();

creating a queue manager

38 MQSeries Everyplace Programming Guide

qmconfig.defineDefaultDeadLetterQueue();
qmconfig.defineDefaultSystemQueue();
qmconfig.close();
}
catch (Exception e)
{ ... }

The registry definitions for the queue manager and the required queues are created
immediately. The queues are not created until they are activated.

Deleting a queue manager
The basic steps required to delete a queue manager are:
1. Use the administration interface to delete any definitions
2. Create and activate an instance of MQeQueueManagerConfigure
3. Delete the standard queue and queue manager definitions
4. Close the MQeQueueManagerConfigure instance

When these steps are complete, the queue manager is deleted and can no longer be
run. The queue definitions are deleted, but the queues themselves are not deleted.
Any messages remaining on the queues are inaccessible.

Note: If there are messages on the queues they are not automatically deleted. Your
application programs should include code to check for, and handle,
remaining messages before deleting the queue manager.

1. Delete any definitions
You can use MQeQueueManagerConfigure to delete the standard queues that you
created with it. You should use the administration interface to delete any other
queues before you call MQeQueueManagerConfigure.

2. Create and activate an instance of
MQeQueueManagerConfigure
This process is the same as when creating a queue manager. See “1. Create and
activate an instance of MQeQueueManagerConfigure” on page 35.

3. Delete the standard queue and queue manager definitions
Delete the default queues by calling:
v deleteAdminQueueDefinition() to delete the administration queue
v deleteAdminReplyQueueDefinition() to delete the administration reply queue
v deleteDeadLetterQueueDefinition() to delete the dead letter queue
v deleteSystemQueueDefinition() to delete the default local queue

These methods work successfully even if the queues do not exist.

Delete the queue manager definition by calling deleteQueueManagerDefinition()

import com.ibm.mqe.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
// Establish any aliases defined by the .ini file
MQeQueueManagerUtils.processAlias(parms);
qmConfig = new MQeQueueManagerConfigure(parms);

creating a queue manager

Chapter 4. Queue managers, messages, and queues 39

qmConfig.deleteAdminQueueDefinition();
qmConfig.deleteAdminReplyQueueDefinition();
qmConfig.deleteDeadLetterQueueDefinition();
qmConfig.deleteSystemQueueDefinition();
qmConfig.deleteQueueManagerDefinition();
qmconfig.close();
}
catch (Exception e)
{ ... }

You can delete the default queue and queue manager definitions together by
calling deleteStandardQMDefinitions(). This method is provided for convenience
and is equivalent to:
deleteDeadLetterQueueDefinition();
deleteSystemQueueDefinition();
deleteAdminQueueDefinition();
deleteAdminReplyQueueDefinition();
deleteQueueManagerDefinition();

4. Close the MQeQueueManagerConfigure instance
When you have deleted the queue and queue manager definitions, you can close
the MQeQueueManagerConfigure instance.

The complete example looks like this:
import com.ibm.mqe.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
// Establish any aliases defined by the .ini file
MQeQueueManagerUtils.processAlias(parms);
qmConfig = new MQeQueueManagerConfigure(parms);
qmConfig.deleteStandardQMDefinitions();
qmconfig.close();
}
catch (Exception e)
{ ... }

Using aliases
Aliases can be assigned for class names and other MQSeries Everyplace objects.
Aliases are used by MQSeries Everyplace, and can be used by application
programs, to provide a level of indirection between the application and the real
object. Hence the object instance that an alias relates to can be changed without the
application needing to change. This allows a configuration to be easily modified.
For instance, a queue can be given a number of aliases and messages sent to any of
these names will be accepted by the queue.

The following examples illustrate some of the ways that aliasing can be used with
queues and queue managers.

Examples of queue aliasing
Merging applications

Suppose you have the following configuration:
v A client application that puts data to queue Q1

v A server application that takes data from Q1 for processing

deleting a queue manager

40 MQSeries Everyplace Programming Guide

|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

v A client application that puts data to queue Q2

v A server application which takes data from Q2 for processing

Some time later the two server applications are merged into one
applications supporting requests from both the client applications. It may
now be appropriate for the two queues to be changed to one queue. For
example, you may delete Q2, and add an alias of the Q1 queue, calling it Q2.
Messages from the client application that previously used Q2 are
automatically sent to Q1.

Upgrading applications
Suppose you have the following configuration:
v A queue Q1

v An application that gets messages from Q1

v An application that puts messages to Q1

You then develop a new version of the application that gets the messages.
You can make the new application work with a queue called Q2. You can
define a queue called Q2 and use it to exercise the new application. When
you want it to go live, you let the old version clear all traffic off the Q1
queue, and then create an alias of Q2 called Q1. The application that puts to
Q1 will still work, but the messages will end up on Q2.

Using different transfer modes to a single queue

Suppose you have a queue MY_Q_ASYNC on queue manager MQE1. Messages
are passed to MY_Q_ASYNC by a different queue manager MQE2, using a
remote queue definition that is defined as an asynchronous queue. Now
suppose your application periodically wants to get messages in a
synchronous manner from the MY_Q_ASYNC queue.

The recommended way to achieve this is to add an alias to the MY_Q_ASYNC
queue, perhaps called MY_Q_SYNC. Then define a remote queue definition on
your MQE2 queue manager, that references the MY_Q_SYNC queue. This
provides you with two remote queue definitions. If you use the MY_Q_ASYNC
definition, the messages are transported asynchronously. If you use the
MY_Q_SYNC definition, synchronous message transfer is used.

Examples of queue manager aliasing
Addressing a queue manager with several different names

Suppose you have a queue manager SERVER23QM on the server SAMPLEHOST,
listening on port 8082. You have an application SERVICEX that accesses this

MQE2 queue manager
MQE1 queue managerRemote queue MY_Q_ASYNC

(mode=asynchronous) Queue MY_Q_ASYNC
(alias:MY_Q_SYNC)

Remote queue MY_Q_SYNC
(mode=synchronous)

Both remote queues reference the same queue,
using different attributes and different names

Figure 4. Two modes of transfer to a single queue

deleting a queue manager

Chapter 4. Queue managers, messages, and queues 41

|

|
|
|

|

|

|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|

queue manager, and wants to refer to the queue manager as SERVICEXQM.
This can be achieved using an alias for the queue manager as follows:
v Configure a connection on the SERVER23QM :

Connection Name/Target queue manager:
SERVICEXQM

Description: Alias definition to enable SERVER23QM to
receive messages sent to SERVICEXQM

Channel: null

Network Adapter: null

Network adapter options: null

v Create a local queue on the SERVER23QM queue manager:

Queue Name: SERVICEXQ

Queue Manager: SERVER23QM

The server-side application takes messages from this queue, and process
them, sending messages back to the client.

An MQSeries Everyplace application running within the server’s JVM can
now put messages to the SERVICEXQ on either the SERVER23QM queue
manager, or the SERVICEXQM queue manager. In either case, the message
will arrive on the SERVICEXQ.

If the SERVICEXQ queue is moved to another queue manager, the connection
alias can be set up on the new queue manager, and the applications do not
need to be changed.

Different routings from one queue manager to another
Using the scenario just described, an MQSeries Everyplace queue manager
on a mobile device (MOBILE0058QM) can now access the SERVICEXQ queue in
a number of different ways. Two examples are described here:
v Aliasing on the sending side

Using this method of routing, the receiving queue manager does not
know that the sending queue manager has given him an alias name. The
aliasing is confined to the sending queue manager only.
On the mobile device:
– Create a connection from MOBILE0058QM to the SERVER23QM queue

manager:

SERVER23QM queue manager

Connection
name=SERVICEQM

channel=null
adapter=null

adapter parameters=null

SERVICEX queue

PutMessage (”SERVICEQM”...)

PutMessage (”SERVICEX”...)

Both messages arrive at SERVICEX queue

Figure 5. Addressing a queue manager with two different names

deleting a queue manager

42 MQSeries Everyplace Programming Guide

|

|
|
|

|
|

|

|
|

||
|

||

||

||

|

||

||

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|

|
|

Connection name
SERVER23QM

Network Adapter parameter
Network:SAMPLEHOST:8082

– Create an alias called SERVICEXQM for queue manager SERVER23QM

When a message is sent from the mobile device application to the
SERVICEXQM queue manager, MQSeries Everyplace maps the SERVICEXQM
name to SERVER23QM in the connection , and sends the message to the
SERVER23QM queue manager.

If the Mobile58QM then wished to send its messages to a different server
queue manager, Server24QM, it would remove the alias SERVICEXQM from
the Server23QM connection, and add it to a Server24QM connection. This
has no impact on the receiving queue managers, or the sending
applications.

v Virtual queue manager on the receiving side

Using this method, the sending queue managers think that its messages
are routed through an intermediate queue manager before reaching the
target queue manager. The target queue manager doesn’t actually exist.
The ’intermediate’ queue manager captures all the message traffic for
this virtual target queue manager.
On the mobile device:
– Create a connection from MOBILE0058QM to the SERVER23QM queue

manager:

Connection name SERVER23QM

Network Adapter parameter Network:SAMPLEHOST:8082

– Create a second connection to the SERVICEXQM that routes messages
through the first connection:

Mobile58QM queue manager

Connection
name=”Server24QM”

channel=DefaultChannel
adapter=Network:server24:8081

Alias=”SERVICEXQM”

Server23QM queue manager

Queue

Server24QM queue manager

Queue

PutMessage(”SERVICEXQM)

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Alias=”SERVICEXQM”

The message goes to either Server23QM or Server24QM
depending on which connection the alias is attached to

Figure 6. Addressing a queue manager with two different names

deleting a queue manager

Chapter 4. Queue managers, messages, and queues 43

|

|
|
|

|
|

|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

||

||

|
|

Connection name
SERVICEXQM

Network Adapter parameter
SERVER23QM

Note: This is not an alias. It is a via routing, indicating that messages
headed for SERVICEXQM are to be routed via the SERVER23QM
queue manager on the receiving side.

The via routing on the mobile device causes any messages that are put
to SERVICEXQM to be directed to Server23QM. Server23QM gets the
messages and notes that they are destined for the SERVICEXQM queue
manager. It resolves the SERVICEXQM name and finds that it is an alias
which represents the Server23QM queue manager (itself). The Server23QM
queue manager then accepts the messages and puts them onto the
queue.

As an alternative to the above, you can keep the SERVICEXQM in existence,
but move it from its original machine to the same machine (but a
different JVM) as the Server23QM queue manager. SERVICEXQM needs to
listen on a different port, so the connection from Server23QM to
SERVICEXQM needs to be changed as well.

Starting queue managers
A queue manager can run:
v as a client
v in a server
v in a servlet

The following sections describe the example client, servers and servlet that are
provided in the examples.queuemanager package. The three types of queue
manager are all constructed from the same base MQSeries Everyplace components,

Mobile58QM queue manager

Connection
name=”SERVICEXQM”

channel=DefaultChannel
adapter=Server23QM

Server23QM queue manager

Target
queue

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Connection
name=”Server23QM”

channel=null
adapter=null

Alias=”SERVICEXQM”

PutMessage(SERVICEXQM)
Queue manager SERVICEXQM
does not really exist

Figure 7. Addressing a queue manager with two different names

deleting a queue manager

44 MQSeries Everyplace Programming Guide

|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

with some additions that give each its unique properties. MQSeries Everyplace
provides a class MQeQueueManagerUtils that encapsulates many of the common
functions.

All the examples require parameters at startup. These parameters are stored in
standard ini files. The ini files are read and the data is converted into an
MQeFields object. This is described in “Chapter 3. MQeFields” on page 23. The
loadConfigFile() method in the MQeQueueManagerUtils class performs this
function.

Client queue managers
A client typically runs on a device platform, and provides a queue manager that
can be used by applications on the device. It can open many connections to other
queue managers and, if configured with a peer channel can accept incoming
requests from other queue managers.

A server usually runs for long periods of time, but clients are started and stopped
on demand by the application that use them. If multiple applications want to share
a client , the applications must coordinate the starting and stopping of the client.

The following example shows a startup ini file for a typical client.
*
* ExamplesMQeClient.ini
* An example ini file for a simple MQe client
*
[Alias]
*
* Event log class
*
(ascii)EventLog=examples.log.LogToDiskFile
*
* Network adapter class
*
(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter
*
* Queue Manager class
*
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager
*
* Trace handler (if any)
*
(ascii)Trace=examples.trace.MQeTrace
*
* Message Log file interface
*
(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter
*
* Class name for File registry
*
(ascii)FileRegistry=com.ibm.mqe.registry.MQeFileSession
*
* Class name for Private registry
*
(ascii)PrivateRegistry=com.ibm.mqe.registry.MQePrivateSession
*
* Default Channel class
*
(ascii)DefaultChannel=com.ibm.mqe.MQeChannel
*
* Default Transporter class
*
(ascii)DefaultTransporter=com.ibm.mqe.MQeTransporter

starting queue managers

Chapter 4. Queue managers, messages, and queues 45

*
* Channel Attribute Rules
*
(ascii)ChannelAttrRules=examples.rules.AttributeRule
*
* Name of Base Key
*
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey
*
* Name of Shared Key
*
(ascii)AttributeKey_2=com.ibm.mqe.attributes.MQeSharedKey
--
*
* Registry (configuration data store)
*
[Registry]
*
* Type of registry for config data
*
(ascii)LocalRegType=FileRegistry
*
* Location of the registry
* (Only use relative directory for development/demo)
*
(ascii)DirName=.\ExampleQM\Registry\
--
*
* Queue manager details
*
[QueueManager]
*
* Name for this Queue Manager
*
(ascii)Name=ExampleQM

Aliases
The [Alias] section provides a place where aliases can be set. (See “Using aliases”
on page 40 for more information about aliases.)

The alias names are on the left of the equals sign, and the full class name is on the
right. For example, the name "Trace" can now be used instead of
examples.awt.AwtMQeTrace. The "(ascii)" before the alias names signifies the type
of the entry, in this case as ascii string.

The alias list can include a solution’s own classes.

The alias list is not processed by the queue manager itself. The queue manager
requires this list to have been processed prior to its activation as several of these
aliases are required to allow the queue manager to activate properly. For example,
queues must have a queue store adapter defined so that they have a storage area
in which to hold their messages. MsgLog is the default queue store adapter, if this
is not present then a MsgLog not found exception is thrown.

MQeRegistry parameters for the queue manager
The [Registry] section of the ini file contain type and location information for the
queue manager registry.

The registry is the primary store for queue manager-related information; one exists
for each queue manager. Every queue manager uses the registry to hold its:
v Queue manager configuration data
v Queue definitions

client queue managers

46 MQSeries Everyplace Programming Guide

|
|

v Remote queue definitions
v Remote queue manager definitions
v User data (including configuration-dependent security information)

Registry type:

MQeRegistry.LocalRegType (ascii)
The type of registry being opened. file registry and private registry are
currently supported. A private registry is required for some of the security
features. See “Chapter 8. Security” on page 173.

For a file registry this parameter should be set to:
com.ibm.mqe.registry.MQeFileSession

For a private registry it should be set to:
com.ibm.mqe.registry.MQePrivateSession

Aliases can be used to represent these values.

File registry parameters: The following parameter is needed for a file registry:

MQeRegistry.DirName (ascii)
The name of the directory holding the registry files.

Private registry parameters: The following parameters can be used for a private
registry.

MQeRegistry.DirName (ascii)
The name of the directory holding the registry files

MQeRegistry.PIN (ascii)
The PIN for the private registry

MQeRegistry.KeyRingPassword (ascii)
The password or phrase used to protect the registry’s private key

MQeRegistry.CAIPAddrPort (ascii)
The address and port number of a mini-certificate server

MQeRegistry.CertReqPIN (ascii)
The certificate request number preallocated by the mini-certificate
administrator to allow the registry to obtain its credentials

The first three parameters are always needed. The last two parameters are needed
for auto-registration of the registry if it wishes to obtain its credentials from the
mini-certificate server.

Note: For security reasons, the PIN and KeyRingPassword, if supplied, are deleted
from the startup parameters as soon as the queue manager has been
activated.

For either type of registry MQeRegistry.Separator (ascii) is also needed if you
want to use a non-default separator. The separator is the character that is used
between the components of an entry name, for example:
<QueueManager><Separator><Queue>

This parameter is specified as a string but it should contain a single character. If it
contains more than one only the first character is used.

registry parameters

Chapter 4. Queue managers, messages, and queues 47

|
|
|

You should use the same separator character every time a registry is opened. It
should not be changed once a registry is in use.

If this parameter is not specified the separator defaults to "+".

Starting a client queue manager
Starting a client queue manager involves:
1. Ensuring that there is no client already running. (Only one client is allowed per

Java Virtual Machine.)
2. Adding any aliases to the system
3. Enabling trace if required
4. Starting the queue manager

The following code fragment starts a client queue manager:
/*--*/
/* Init - first stage setup */
/*--*/
public void init(MQeFields parms) throws Exception
{

if (queueManager != null) /* One queue manager at a time */
{

throw new Exception("Client already running");
}
sections = parms; /* Remember startup parms */
MQeQueueManagerUtils.processAlias(sections); /* set any alias names */

// Uncomment the following line to start trace before the queue manager is started
// MQeQueueManagerUtils.traceOn("MQeClient Trace", null); /* Turn trace on */

/* Display the startup parameters */
System.out.println(sections.dumpToString("#1\t=\t#2\r\n"));

/* Start the queue manager */
queueManager = MQeQueueManagerUtils.processQueueManager(sections, null);

}

Once you have started the client, you can obtain a reference to the queue manager
object either from the static class variable MQeClient.queueManager or by using the
static method MQeQueueManager.getReference(queueManagerName).

The following code fragment loads aliases into the system:
public static void processAlias(MQeFields sections) throws Exception
{

if (sections.contains(Section_Alias)) /* section present ? */
{ /* ... yes */

MQeFields section = sections.getFields(Section_Alias);
Enumeration keys = section.fields(); /* get all the keywords */
while (keys.hasMoreElements()) /* as long as there are keywords*/
{

String key = (String) keys.nextElement(); /* get the Keyword */
MQe.alias(key, section.getAscii(key).trim()); /* add */

}
}

}

Use the processAlias method to add each alias to the system. MQSeries Everyplace
and applications can use the aliases once they have been loaded. Many of the
aliases shown in the ini file on page 45 are required for MQSeries Everyplace to
function correctly and should not be removed.

registry parameters

48 MQSeries Everyplace Programming Guide

Starting a queue manager involves:
1. Instantiating a queue manager. The name of the queue manager class to load is

specified in the alias QueueManager. Use the MQSeries Everyplace class loader
to load the class and call the null constructor.

2. Use the activate method to activate the queue manager passing the MQeFields
object representation of the ini file. The queue manager only makes use of the
[QueueManager] and [Registry] sections from the startup parameters.

The following code fragment starts a queue manager:
public static MQeQueueManager processQueueManager(MQeFields sections,
Hashtable ght) throws Exception
{ /* */

MQeQueueManager queueManager = null; /* work variable */
if (sections.contains(Section_QueueManager)) /* section present ? */
{ /* ... yes */

queueManager = (MQeQueueManager) MQe.loader.loadObject(Section_QueueManager);
if (queueManager != null) /* is there a Q manager ? */
{

queueManager.setGlobalHashTable(ght);
queueManager.activate(sections); /* ... yes, activate */

}
}
return(queueManager); /* return the alloated mgr */

}

Example MQePrivateClient
MQePrivateClient is an extension of MQeClient with the addition that it configures
the queue manager and registry to allow for secure queues. For a secure client, the
[Registry] section of the startup parameters is extended as follows:
* Extract from MQePrivateClient.ini
*
[Registry]
*
* Type of registry for config data
*
(ascii)LocalRegType=PrivateRegistry
*
* Location of the registry
*
(ascii)DirName=.\ExampleQM\PrivateRegistry
*
* PIN
*
(ascii)PIN=not set
*
* Certificate request pin
*
(ascii)CertReqPIN=not set
*
* Key ring password
*
(ascii)KeyRingPassword=not set
*
* Network address of certificate authority
*
(ascii)CAIPAddrPort=9.20.7.219:8082er

These fields are described in “MQeRegistry parameters for the queue manager” on
page 46. See “Chapter 8. Security” on page 173 for more details on secure queues
and MQePrivateClient.

registry parameters

Chapter 4. Queue managers, messages, and queues 49

|
|
|

For MQePrivateClient (and MQePrivateServer) to work, the startup parameters
must not contain CertReqPIN, KeyRingPassword and CAIPAddrPort. Hence the
registry section for an MQePrivateClient, using the Standard Edition of MQSeries
Everyplace looks like the following:
[Registry]
*
* Type of registry for config data
*
(ascii)LocalRegType=PrivateRegistry
*
* Location of the registry
*
(ascii)DirName=.\ExampleQM\PrivateRegistry
*
* PIN
*
(ascii)PIN=not set

Server queue managers
A server usually runs on a server platform. A server can run server-side
applications but can also run client-side applications. As with clients, a server can
open connections to many other queue managers on both servers and clients. One
of the main characteristics that differentiate a server from a client is that it can
handle many concurrent incoming requests. A server often acts as an entry point
for many clients into an MQSeries Everyplace network . MQSeries Everyplace
provides the following server examples:

MQeServer
A console based server

MQePrivateServer
A console based server with enhanced security

AwtMQeServer
A graphical front end to MQeServer

MQBridgeServer
In addition to the normal MQSeries Everyplace server functions, this server
can send and receive messages to and from other members of the
MQSeries family. This server is in package
examples.mqbridge.queuemanager and is described in “Chapter 7.
MQSeries-bridge” on page 135.

Example MQeServer
MQeServer is the simplest server implementation.

This server can be started with the following command:
<javaCommand> examples.queuemanger.awt.MQeServer <startupIniFile>

where:

javaCommand
is the command used to start Java applications (java for example)

startupIniFile
is an ini file that contains startup parameters for the queue manager and
server (.\ExamplesMQeServer.ini for example)

The batch file ExamplesMQeServer.bat provides a shortcut for starting the server
with the ini file .\ExamplesMQeServer.ini. As with the client queue manager, ini

registry parameters

50 MQSeries Everyplace Programming Guide

files are used to hold the server startup parameters. For a server queue manager
you must extend the standard client queue manager ini file to include a
[ChannelManager] and a [Listener] section. A typical extension to the server
startup parameters follows:
* Extract from ExamplesMQeServer.ini
*
[ChannelManager]
*
* Maximum number of channels allowed
*
(int)MaxChannels=0
--
[Listener]
*
* FileDescriptor for listening adapter
*
(ascii)Listen=Network::8082
*
* FileDescriptor for Network read/write
*
(ascii)Network=Network:
*
* Channel time-out interval in seconds
*
(int)TimeInterval=300

When two queue managers communicate with each other, MQSeries Everyplace
opens a channel between the two queue managers. The channel is a logical entity
that is used as a queue manager to queue manager pipe. Multiple channels may be
open at any time.

The new sections in the ini file control channel usage. In the ChannelManager
section, the MaxChannels parameter controls the maximum number of channels that
can be open at any time. A special value of 0 means that the queue manager can
handle an unlimited number of channels. The Listener section contains parameters
pertaining to how incoming network requests are handled:

Listen The network adapter that handles incoming network requests. For example
this could be an http adapter or a pure tcp/ip adapter. As well as the
adapter name, you can pass parameters that dictate how the adapter
should listen. For instance Listen=Network::8082 means use the Network
adapter where Network is an alias to listen on port 8082. (This assumes that
the Network alias is set to either an http or a tcp/ip adapter.)

Network
This parameter is used to specify the adapter to use for network read and
write requests, once the initial network request has been accepted. Usually
this is the same as the adapter used on the Listen parameter.

TimeInterval
The time in seconds before idle channels are timed out. As channels are
persistent logical entities that last longer than a single queue manager
request, and can survive network breakages, it may be necessary to time
out channels that have been inactive for a period of time.

The creation of MQeServer follows that of MQeClient:.
1. Pass the server startup parameters to the init method
2. Check to ensure that only one server will run per JVM
3. Load any aliases, and, if necessary, enable trace

server queue managers

Chapter 4. Queue managers, messages, and queues 51

|
|

The following code shows the init method that is used to start the server:
public void init(MQeFields parms) throws Exception
{

if (initialized) /* Only one server at a time */
throw new Exception("Server already running");

sections = parms; /* Remeber startup parms */
MQeQueueManagerUtils.processAlias(sections); /* set any alias names */

// Uncomment the following line to start trace before the queue manager is started
// MQeQueueManagerUtils.traceOn("MQeServer Trace", null); /* Turn trace on */

/* Display the startup parameters */
System.out.println(sections.dumpToString("#1\t=\t#2\r\n"));

}

Once the server has been initialized, activate it using the activate method with a
parameter of true. Once activated you can deactivate the server by calling the
activate method with a parameter of false.

When you activate a server the following occurs:
1. The channel manager is started
2. Any additional user specified classes are loaded and the null constructor is

called
3. The queue manager is started
4. The channel listener is started.

This is shown in the following code:
public void activate(boolean Start) throws Exception
{

if (Start) /* activate ? */
{ /* ... yes */

if (! initialized) /* been here before */
{ /* ... no */

/* allocate Chan Mgr */
channelManager = MQeQueueManagerUtils.processChannelManager(sections);

/* assign any class aliases */
MQeQueueManagerUtils.processAlias(sections);

/* check for any pre-loaded classes */
loadTable = MQeQueueManagerUtils.processPreLoad(sections);
initialized = true; /* only once */

} /* */
/* setup and activate the queue manager */
queueManager = MQeQueueManagerUtils.processQueueManager(sections,
channelManager.getGlobalHashtable());

/* setup and activate the listener for incomming connections */
channelListener = MQeQueueManagerUtils.processListener(
sections, channelManager);
}
else /* ... no */
{ /* */

if (channelListener != null) channelListener.stop();
if (queueManager != null) queueManager.close();
channelListener = null; /* release object */
queueManager = null; /* release object */

}
}

When the listener is started, the server is ready to accept network requests.

server queue managers

52 MQSeries Everyplace Programming Guide

When the server is deactivated:
1. The channel listener is stopped, preventing any new incoming requests
2. The queue manager is closed.

The following sections of code from the MQeQueueManagerUtils class process
each of the components.

The following section starts a channel manager:
public static MQeChannelManager processChannelManager(MQeFields sections)
throws Exception
{

MQeChannelManager channelManager = null; /* work variable */
if (sections.contains(Section_ChannelManager)) /* section present ? */
{ /* ... yes */

MQeFields section = sections.getFields(Section_ChannelManager);
channelManager = new MQeChannelManager(); /* load the manager */
channelManager.numberOfChannels(section.getInt("MaxChannels"));

} /* */
return(channelManager); /* return the allocated mgr */

}

This method instantiates a channel manager and then uses the MaxChannels
parameter from the [ChannelManager] section of the startup parameters to set the
maximum number of channels that are permitted.

It is also possible to specify a set of classes to load when the queue manager is
loaded. These are added to a [PreLoad] section of the ini file. The entries must
have the form (ascii)uniqueName=class, as shown in the following example:
[PreLoad]
*
* Classes to load at server startup
*
(ascii)StartClass1=test.ServerTest1
(ascii)StartClass2=test.ServerTest2

The following section of code loads the preload classes:
public static Hashtable processPreLoad(MQeFields sections) throws Exception
{

Hashtable loadTable = new Hashtable(); /* allocate load table */
if (sections.contains(Section_PreLoad)) /* section present ? */
{ /* ... yes */

MQeFields section = sections.getFields(Section_PreLoad);
Enumeration keys = section.fields(); /* get all the keywords */
while (keys.hasMoreElements()) /* as long as there are keywords*/
try /* incase of error */
{ /* */

String key = section.getAscii((String) keys.nextElement()).trim();
loadTable.put(key, MQe.loader.loadObject(key));

}
catch (Exception e) /* error occured */
{

e.printStackTrace(); /* show the error */
}

}
return(loadTable); /* return the table */

}

For each class specified in the [PreLoad] section of the ini file:
1. The class is loaded using the MQeLoader. This calls the null constructor of the

class, so any initialization or/startup code must be placed in this constructor

server queue managers

Chapter 4. Queue managers, messages, and queues 53

2. Once loaded, a reference to the class is placed in a hashtable. This table can
then be used by other methods in the server. For instance, the close method of
the server could be extended to execute the close method of every preloaded
class, when the server closes.

Example MQePrivateServer
MQePrivateServer is an extension of MQeServer with the addition that it
configures the queue manager and registry to allow for secure queues. See
“Chapter 8. Security” on page 173.

Example AwtMQeServer
AwtMQeServer is in package examples.awt and provides a graphical front end to
the console based servers.

Start the server with the following command:
<javaCommand> examples.awt.AwtMQeServer <startupIniFile>

Where:

javaCommand
is the command used to start Java applications (java for example)

startupIniFile
is an ini file that contains startup parameters for the queue manager and
server (for example .\ExamplesAwtMQeServer.ini)

Batch file ExamplesAwtMQeServer.bat provides a shortcut to start the server with
the file .\ExamplesAwtMQeServer.ini.

The AwtMQeServer uses the following additional aliases:

Server the server class for which this class provides a graphical front end

Admin the name of a class that provides an administration console

The example file .\ExamplesAwtMQeServer.ini sets the aliases as follow:
*
* Admin console (if any)
*
(ascii)Admin=examples.administration.console.Admin
*
* Base Server class
*
(ascii)Server=examples.queuemanager.MQeServer

When the private server is started the following window is displayed:

The buttons function as follows:

Exit Close the server and perform a System.exit()

Figure 8. AWT MQSeries Everyplace server window

server queue managers

54 MQSeries Everyplace Programming Guide

Stop| Run
If the server is running then Stop stops it. If the server is stopped then the
button displays Run to start the server.

Start is performed with the following code:
if (running) /* running ? */
{

setText(North, index, "Run"); /* ... yes, */
server.activate(false); /* stop server */

}
else
{

setText(North, index, "Stop"); /* ... no, i.e start */
if (server == null) /* initialized before ? */
{ /* yes, */

/* Load the startup parms and setup class aliases */
MQeFields sections

= MQeQueueManagerUtils.loadConfigFile(iniName);
MQeQueueManagerUtils.processAlias(sections);
/* Load the server and initialize if first pass */
server = (MQeServer)MQe.loader.loadObject("Server");
server.init(sections);

}
server.activate(true); /* Activate the server */

}
running = ! running; /* change state */

Trace Activates or deactivates trace. This is achieved with the following code:
/* Get current trace handler if any .. */
MQeTraceInterface trace = MQe.getTraceHandler();
if (trace == null) /* If trace is not on,start it */

MQeQueueManagerUtils.traceOn(this.getTitle() + " - Trace", null);
else /* otherwise stop it */

MQeQueueManagerUtils.traceOff();

Admin
Starts or stops the administration console. The follow code implements this
function:
if (adminGUI != null && adminGUI.active)
{ /* GUI active so */

adminGUI.close(); /* close it */
adminGUI = null;

}
else if (adminGUI == null ||

(adminGUI != null && !adminGUI.active))
{ /* GUI not running or not active*/

adminGUI = (Admin)MQe.loader.loadObject("Admin");
adminGUI.activate(); /* so load and actiate it */

}

Help Displays an about dialog

You can additionally turn event logging on and off and select the logger to use
from the drop down list box. The following selections are possible:
v No logging,
v examples.eventlog.LogToDiskFile
v examples.eventlog.LogToNTEventLog

Servlet
As well as running as a standalone server, a queue manager can be encapsulated
in a servlet to run inside a Web server . A servlet queue manager has nearly the
same capabilities as a server queue manager. MQeServlet provides an example

server queue managers

Chapter 4. Queue managers, messages, and queues 55

implementation of a servlet. As with the server, servlets use ini files to hold start
up parameters. A servlet uses many of the same MQSeries Everyplace components
as the server, and a servlet can use a server ini file.

The main component not required in a servlet is the channel listener, this function
is handled by the Web server itself. Web servers only handle http data streams so
any MQSeries Everyplace client that wishes to communicate with an MQSeries
Everyplace servlet must use the http adapter
(com.ibm.mqe.adapters.MQeTcpipHttpAdaper). When you configure connections to
queue managers running in servlets, you must specify the name of the servlet in
the parameters field of the connection. The following definitions configure a
connection on servlet /servlet/MQSeries Everyplace with queue manager
PayrollQM:

Connection name
PayrollQM

Channel
com.ibm.mqe.MQe

Channel Adapter
com.ibm.mqe.adapters.MQe

TcpipHttpAdaper
192.168.0.10:80

Parameters
/servelet/MQe

Options

Alternatively, if the relevant aliases have been set up, you can configure the
connection as follows:

Connection name
PayrollQM

Channel
DefaultChannel

Adapter
Network:192.168.0.10:80

Parameters
/servelet/MQe

Options

Web servers can run multiple servlets. It is possible to run multiple different
MQSeries Everyplace servlets within a Web server, with the following restrictions:
v Each servlet must have a unique name
v Only one queue manager is allowed per servlet
v Each MQSeries Everyplace servlet must run in a different Java Virtual Machine

(JVM)

The MQSeries Everyplace sevlet extends javax.servlet..http.HttpServlet and
overrides methods for starting, stopping and handling new requests. The following
code fragment starts a servlet:
/**
* Servlet Initialisation......
*/

servlet queue managers

56 MQSeries Everyplace Programming Guide

public void init(ServletConfig sc) throws ServletException
{

// Ensure supers constructor is called.
super.init(sc);

try
{

// Get the the server startup ini file
String startupIni;
if ((startupIni = getInitParameter("Startup")) == null)

startupIni = defaultStartupInifile;

// Load it
MQeFields sections = MQeQueueManagerUtils.loadConfigFile(startupIni);

// assign any class aliases
MQeQueueManagerUtils.processAlias(sections);

// Uncomment the following line to start trace before the queue
// manager is started
// MQeQueueManagerUtils.traceOn("MQeServlet Trace", null);

// Start channel manager
channelManager = MQeQueueManagerUtils.processChannelManager(sections);

// check for any pre-loaded classes
loadTable = MQeQueueManagerUtils.processPreLoad(sections);

// setup and activate the queue manager
queueManager = MQeQueueManagerUtils.processQueueManager(sections,
channelManager.getGlobalHashtable());

// Start ChannelTimer (convert time-out from secs to millsecs)
int tI =

sections.getFields(MQeQueueManagerUtils.Section_Listener).getInt("TimeInterval");
long timeInterval = 1000 * tI;
channelTimer = new MQeChannelTimer(channelManager, timeInterval);

// Servlet initialisation complete
mqe.trace(1300, null);

}
catch (Exception e)
{

mqe.trace(1301, e.toString());
throw new ServletException(e.toString());

}
}

The main differences compared to a server startup are:
v The servlet overrides the init method of the superclass. This method is called by

the Web server to start the servlet. Typically this occurs when the first request
for the servlet arrives.

v The name of the startup ini file cannot be passed in from the command line. The
example expects to obtain the name using the servlet method getInitParameter()
which takes the name of a parameter and returns a value. The MQSeries
Everyplace servlet uses a Startup parameter that it expects to contain an ini file
name. The mechanism for configuring parameters in a Web server is Web server
dependant.

v A channel listener is not started as the Web server handles all network requests
on behalf of the servlet.

v As there is no channel listener a mechanism is required to time-out channels that
have been inactive for longer than the time-out period. A simple timer class

servlet queue managers

Chapter 4. Queue managers, messages, and queues 57

MQeChannelTimer is instantiated to perform this function. The TimeInterval
value is the only parameter used from the [Listener] section of the ini file.

A servlet relies on the Web server for accepting and handling incoming requests.
Once the Web server has decided that the request is for an MQSeries Everyplace
servlet, it passes the request to MQSeries Everyplace using the doPost() method.
The following code handles this request:
/**
* Handle POST......
*/
public void doPost(HttpServletRequest request,

HttpServletResponse response) throws IOException
{

// any request to process ?
if (request == null)

throw new IOException("Invalid request");
try
{

int max_length_of_data = request.getContentLength(); // data length
byte[] httpInData = new byte[max_length_of_data]; // allocate data area
ServletOutputStream httpOut = response.getOutputStream();// output stream
ServletInputStream httpIn = request.getInputStream(); // input stream

// get the request
read(httpIn, httpInData, max_length_of_data);

// process the request
byte[] httpOutData = channelManager.process(null, httpInData);

// appears to be an error in that content-length is not being set
// so we will set it here
response.setContentLength(httpOutData.length);
response.setIntHeader("content-length", httpOutData.length);

// Pass back the response
httpOut.write(httpOutData);

}
catch (Exception e)
{

// pass it on ...
throw new IOException("Request failed" + e);

}
}

This method:
1. Reads the http input data stream into a byte array. The input data stream may

be buffered so the read() method is used to ensure that the entire data stream is
read before continuing.

Note: MQSeries Everyplace only handles requests with the doPost() method, it
does not accept requests using the doGet() method

2. The request is passed to MQSeries Everyplace through a channel manager.
From this point, all processing of the request is handled by core MQSeries
Everyplace classes such as the queue manager.

3. Once MQSeries Everyplace has completed processing the request, it returns the
result wrapped in http headers as a byte array. The byte array is passed to the
Web server and is transmitted back to the client that originated the request.

servlet queue managers

58 MQSeries Everyplace Programming Guide

Configuring queue managers using base classes
Although the use of MQeQueueManagerConfigure is the recommended way to
create and delete queue managers, this section describes how to create the same
function from base classes.

Queue manager activation
To activate a queue manager you require:
v A pre-configured registry
v A set of activation parameters that inform the queue manager how to activate

the registry

When the queue manager is activated the activation parameters are passed to it.
These parameters consist of MQeFields objects imbedded inside another
MQeFields object.

The names of the imbedded MQeFields objects to be used are defined in the
MQeQueueManager class:

MQeQueueManager.QueueManager

The name of the queue manager being activated

MQeQueueManager.Registry

The location of the queue manager’s predefined registry

MQeQueueManagerUtils.Section_Aliases
MQSeries Everyplace aliases

The registry contains the definitions of the queues that the queue manager owns,
the definitions of any other queue managers known , and some configurable queue
manager setup data. This setup data is:

Queue manager description
A String containing a description for the queue manager

Queue manager rules
A String containing the name of the class to use as the queue manager’s
Rules (see “Queue manager rules” on page 83).

Default queue store
A path name that is the location of the default queue store (where queue
stores its messages). This is only used if a queue without a queue store
field is added to the queue manager . The name of the queue is appended
to the default string to give the queue its own unique queue store path
name.

Channel attribute rules
A String containing the name of the class to use as the channel attribute
rules. These rules define how to behave when dealing with remote queues
that have non-null attributes .

Channel Timeout
A long value that is the channel time-out (measured in milliseconds). If a
channel between two queue managers is idle for longer than this period,
the channel is closed.

configuring using base classes

Chapter 4. Queue managers, messages, and queues 59

You can update all these values using MQSeries Everyplace administration (see
“Chapter 6. Administering messaging resources” on page 93) and they can also be
configured when the queue manager is created.

The MQSeries Everyplace Aliases are described in detail in “Using aliases” on
page 40.

MQSeries Everyplace provides two classes that start the queue manager in
predefined configurations. (These classes are in the examples directory.)

MQeClient
Starts the queue manager as a client

MQeServer
Starts the queue manager as part of an MQSeries Everyplace server

All required processing is handled by these classes before the queue manager is
started.

It is possible to process the alias list and activate the queue manager without using
either of these classes. The alias list is processed using the MQe.alias method. In
the example below, the alias name "Trace" is set to examples.awt.AwtMQeTrace.
alias("Trace", "examples.awt.AwtMQeTrace");

Both MQeClient and MQeServer accept an ini file containing the queue manager
parameters. The entries in the ini file are converted to the required imbedded
MQeFields object. This is done with the
examples.queuemanager.MQeQueueManagerUtils class which makes use of the
MQe.alias method to process the alias list.

The following code fragment shows these procedures:
public static void processAlias(MQeFields sections) throws Exception
{

if (sections.contains(Section_Alias)) /* section present ? */
{ /* ... yes */

MQeFields section = sections.getFields(Section_Alias);
Enumeration keys = section.fields(); /* get all the keywords */
while (keys.hasMoreElements()) /* as long as there are */

/* keywords */
{ /* */

/* get the Keyword */
String key = (String) keys.nextElement();
/* add alias */
MQe.alias(key, section.getAscii(key).trim());

} /* */
} /* */

}

The input to this method, the MQeFields object sections, is the ini file in
MQeFields form. The ini file is converted to MQeFields object form in the
loadConfigFile() method of MQeQueueManagerUtils (this makes use of the
MQeFields.restoreFromString() method).

A test is made to see if sections contains an alias list. The alias list ini file section
name is defined in the constant, Section_Alias. If an alias list is available, then a
getFields() is performed on sections, to return the alias list (an MQeFields object).
The contents of the alias list is then enumerated, and the code loops through the
enumeration, calling the alias command for each alias.

configuring using base classes

60 MQSeries Everyplace Programming Guide

Using queue managers

MQSeries Everyplace applications and the Java Virtual
Machine

The Java version of the MQSeries Everyplace queue manager runs inside an
instance of a Java Virtual Machine (JVM). Currently MQSeries Everyplace only
allows one queue manager to be invoked per JVM. However, it is possible to
invoke multiple instances of the JVM (every time the Java command is invoked a
new Java Virtual Machine is created). Hence multiple MQSeries Everyplace queue
managers can be created on the same device. Each of these queue managers must
have a unique name, otherwise unexpected behavior may result.

Java MQSeries Everyplace applications must run inside the same JVM as the queue
manager they are using. An elegant way to do this is to use an application
launcher. This is a class that starts the queue manager and a number of MQSeries
Everyplace applications on separate threads. An example of such a class is shown
in the following code fragment:
/* extends from MQe base class */
public class appLauncher extends MQe implements Runnable
{

Thread[] threads = null; /* thread references */
String[] appList = null; /* list of MQSeries Everyplace apps */
int appCount = 0;
String lock = new String();
MQeQueueManager qmgr = null; /* reference to QMgr */

public static void main(String args[])
{

try
{

(new appLauncher()).startApplications();
}
catch (Exception e)
{

System.err.println("Exception on starting applications");
e.printStackTrace(System.err);

}
}

public void startApplications(String args[]) throws Exception
{

boolean active = false; /* any active threads? */
/* create an array of the thread references of the applications */
/* being launched */
threads = new Thread[args.length];
appList = args; /* keep the list of the applications to be launched */
/* loop through the list of apps being launched & start a new */
/* thread for each one */
for (int i = 0; i < appList.length; i++)
{

Thread th = new Thread(this); /* create a new thread */
threads[i] = th; /* keep reference */
th.start(); /* start new thread */
/* loop until queue manager is active then start rest of apps */
if (i == 0)

while(qmgr == null);
}
/* keep appLauncher thread alive until all other apps have finished */
while(active)
{

active = false;

using queue managers

Chapter 4. Queue managers, messages, and queues 61

/* loop through thread references, starting at element 1 */
/* remember first element in appList is QMgr ini file path name */
for(int j=1; j < appList.length; j++)

if (threads[j] != null)
active = true; /* thread still active */

}
if (qmgr != null)

qmgr.close(); /* close queue manager */
}

/* this method called for each application being launched, plus the */
/* queue manager */
public void run()
{

int currentApp; /* which element in threads table */
synchronized(lock)
{

currentApp = appCount;
appCount++; /* update count */

}
try
{

/* first element is QMgr ini file path name */
if (currentApp == 0) /* start queue manager */
{

MQeClient client = new MQeClient(appList[0]);
qmgr = client.queueManager; /* QMgr now active */

}
else /* load application */

/* (this invokes default constructor) */
loader.loadObject(appList[currentApp]);

}
catch (Exception e)
{

e.printStackTrace(System.err);
}
finally
{ /* get thread reference for this app */

Thread th = threads[currentApp];
threads[currentApp] = null; /* nullify reference */
th.stop(); /* stop thread */

}
}

}

The arguments supplied to this class are the path name of the queue manager’s ini
file, followed by a list of the MQSeries Everyplace applications launch. All the
applications are invoked using their default constructor.

The application launcher is started with the command
java appLauncher
<ini file path name><application class name><application class name>...

For example:
java appLauncher

e:\\MQe\\TestQMgr\\TestQMgr.ini examples.queuemanager.TestMQeApp

All the applications should use MQeQueueManager.getReference() to obtain the
object reference to the queue manager that is already running inside the JVM.

applications and the JVM

62 MQSeries Everyplace Programming Guide

Launching applications with RunList
An alternative way of launching MQSeries Everyplace applications is to use the
RunList mechanism. You can supply two lists of MQSeries Everyplace applications
(known as run lists) as part of the queue manager activation parameters. The first
list contains applications that are launched after the queue manager has been
activated. The second list contains applications that are launched once a queue
manager has received a close request.

The applications contained in the run lists should implement MQeRunListInterface.
The queue manager calls the activate() method defined in the interface to activate
the applications and pass any available setup information to it.

If an applications does not implement MQeRunListInterface, the application is just
invoked and no setup information is passed to it.

The [AppRunList] section in the ini file contains the names of the applications to
launch at queue manager activation time. The symbolic name of the application is
on the left-hand side of the equals sign, with the full class name of the application
on the right , as shown in the queue manager ini file example.

Any setup data for the application can be provided in a section headed with
[symbolic name of the application].

Example queue manager ini file
* Sample queue manager ini file

* queue manager setup info
[QueueManager]
* Name for this queue manager
(ascii)Name=ServerQMgr8082

* Registry setup info
[Registry]
* QueueManager Registry type (ascii)LocalRegType=com.ibm.mqe.registry.MQePrivateSession
* Location of the registry
(ascii)DirName=d:\development\Rename\Classes\ServerQMgr8082\Registry
* Registry access PIN
(ascii)PIN=12345678

* List of applications to launched at queue manager activation-time
[AppRunList]
(ascii)App1=examples.queuemanager.TestMQeApp
(ascii)App2=examples.administration.AdminApp

* Setup info for App1 - the data in this section is passed to the application
[App1]
(ascii)DefaultMsgPriority = 7
(long)Timeout = 30000

* Setup info for App2 - the data in this section is passed to the application
[App1]
(ascii)DefaultQueueName=AdminReplyQueue

The applications that are invoked when the queue manager is activated should
return control to the queue manager as quickly as possible to allow the queue
manager to continue its activation. If the application is a long running task it
should initialize itself on a different thread from the one on which it was called.
The application is responsible for the management of threads that it creates.

runlist

Chapter 4. Queue managers, messages, and queues 63

Applications that are invoked on queue manager close can block the queue
manager from shutting down if they do not return.

Example of an application being launched at queue manager activation time
public class ExampleApp extends MQe implements MQeRunListInterface,

Runnable,
MQeMessageListenerInterface

{
Thread th = null;
MQeQueueManager qmgr = null;
...
/*Called by the queue manager to activate the application */
public Object activate(Object owner, Hashtable loadTable,

MQeFields setupData)
{

qmgr = (MQeQueueManager)owner; /*QMgr is owner of the application*/
processSetupData(setupData); /*Process the setup information*/
th = new Thread(this); /*Create a new thread to listen*/
th.start(); /*for incoming messages*/
return (null); /*return control to the QMgr*/

}

public void run()
{

try
{

/*Create a message listener for incoming messages*/
qmgr.addMessageListener(this, "MyQueue", null);
/* Loop indefintely keeping application alive */
while(true);

}
catch (Exception e)
{

e.printStackTrace(System.err);
}

}
...

}

In this example, the application is invoked using the activate() method. This
method processes its setup data, and creates a message listener on a separate
thread. The application returns control to the queue manager as soon as possible,
to allow the queue manager to continue its activation process. The thread that the
application created remains active.

Example of an application being launched when the queue manager receives a
close request
public class ExampleCloseApp extends MQe implements MQeRunListInterface
{

MQeQueueManager qmgr = null;
...
/* Called by the queue manager to activate the application */
public Object activate(Object owner, Hashtable loadTable,

MQeFields setupData)
{

qmgr = (MQeQueueManager)owner; /* QMgr is owner of the application */
performAction(); /* Perform some action */
/* don't return control to the QMgr until application has finished */
return (null);

}
}

runlist

64 MQSeries Everyplace Programming Guide

In this example, the application is activated using its activate() method when the
queue manager receives a close request. The application should not return control
to the queue manager until the application has finished its processing because once
the queue manager has control it continues its close-down process.

Messages
MQSeries Everyplace messages are descendant objects of MQeFields, as described
in “Chapter 3. MQeFields” on page 23. Applications can put data into the message
as a <name, data> pairing. MQSeries Everyplace defines some constant field names
that are useful to messaging applications. These are:

Unique ID
MQe.Msg_OriginQMgr + MQe.Msg_Time

Message ID
MQe.Msg_ID

Correlation ID
MQe.Msg_CorrelID

Priority
MQe.Msg_Priority

The Unique ID is a combination of a unique (per JVM) timestamp generated by the
message object when it is created, and the name of the queue manager to which
the message was first given. The Unique ID is used by applications to retrieve
messages. It cannot be changed by an application.

The Unique ID uniquely identifies a message within an MQSeries Everyplace
network so long as all queue managers within the MQSeries Everyplace network
are named uniquely.

Note: MQSeries Everyplace does not check or enforce the uniqueness of queue
manager names. It is the responsibility of an individual solution to ensure
that its queue manager names are unique.

The getMsgUIDFields() method accesses the Unique ID of a message:
MQeFields msgUID = msgObj.getMsgUIDFields();

The getMsgUIDFields() method returns an MQeFields object that contains two
fields,
v MQe.Msg_OriginQMgr

v MQe.Msg_Time

These fields can be individually retrieved as follows:
long timeStamp = msgUID.getLong(MQe.Msg_Time);
String originQMgr = msgUID.getAscii(MQe.Msg_OriginQMgr);

The MQSeries Message ID and Correlation ID fields allow the application to
provide an identity for a message. These two fields are also used in interactions
with the rest of the MQSeries family.
MQeMsgObject msgObj = new MQeMsgObject;
msgObj.putArrayOfByte(MQe.Msg_ID, MQe.asciiToByte("1234"));

runlist

Chapter 4. Queue managers, messages, and queues 65

The Priority field contains message priority values. Message priority is defined in
the same way as in other members of the MQSeries family. It ranges from 9
(highest) to 0 (lowest). Applications use this field to deal with a message according
to its priority.
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putByte(MQe.Msg_Priority, (byte)8);

Applications can create fields for their own data within messages .
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("PartNo", "Z301");
msgObj.putAscii("Colour", "Blue");
msgObj.putInt("Size", 350);

An alternative approach is to extend MQeMsgObject to include some methods to
assist with creating messages, as shown in the following example:
package messages.order;
import com.ibm.mqe.*;

/*** This class defines the Order Request format */
public class OrderRequestMsg extends MQeMsgObject
{

public OrderRequestMsg() throws Exception
{
}

/*** This method sets the client number */
public void setClientNo(long aClientNo) throws Exception
{

putLong("ClientNo", aClientNo);
}

/*** This method returns the client number */
public long getClientNo() throws Exception
{

return getLong("ClientNo");
}

/*** This method sets the name of the item to be ordered */
public void setItem(String anItem) throws Exception
{

putUnicode("Item", anItem);
}

/*** This method returns the name of the item to be ordered */
public String getItem() throws Exception
{

return getUnicode("Item");
}

/*** This method sets the quantity required */
public void setQuantity(int aQuantity) throws Exception
{

putInt("Quantity", aQuantity);
}

/*** This method returns the quantity required */
public int getQuantity() throws Exception
{

return getInt("Quantity");
}

/*** This method sets the name of the queue to which to send an order reply */
public void setReplyToQ(String aMyReplyToQ) throws Exception

messages

66 MQSeries Everyplace Programming Guide

|

{
putAscii("Msg_ReplyToQ", aMyReplyToQ);

}

/*** This method returns the name of the queue to which an order reply will be sent */
public String getReplyToQ() throws Exception
{

return getAscii("Msg_ReplyToQ");
}

/*** This method sets the name of the queue manager to which an order reply will be sent */
public void setReplyToQMgr(String aMyReplyToQMgr) throws Exception
{

putAscii("Msg_ReplyToQMgr", aMyReplyToQMgr);
}

/*** This method returns the name of the queue manager to which an order reply will be sent */
public String getReplyToQMgr() throws Exception
{

return getAscii("Msg_ReplyToQMgr");
}

}

The additional methods handle the puts and gets of the data in and out of the
message object. Application programmers do not need to be involved with either
the type of the data being sent, or the field names being used inside the message,
as shown in the following example:
OrderRequestMsg orderRequest = new OrderRequestMsg();
orderRequest.setClientNo(1234); /* client ref. number */
orderRequest.setItem(" MQSeries Everyplace Programmers Guide"); /* item being ordered */
orderRequest.setQuantity(12); /* quantity */

/*** send the order reply to QMgr1.OrderReplyQueue */
orderRequest.setReplyToQMgr("QMgr1");
orderRequest.setReplyToQ("OrderReplyQueue");

Storing messages
Most queue types hold messages in a persistent store. While in the store, the state
of the message varies as it is transferred into and out of the store. As shown in
Figure 9 on page 68:

messages

Chapter 4. Queue managers, messages, and queues 67

|

|
|
|
|

Message states
The possible message states are:

Start The initial state of a message before it is added to the message store.

Put Unconfirmed
A message has been placed in the message store under a confirmID but its
addition has not been confirmed. The message is effectively hidden from
all actions except confirmPutMessage, confirm, or undo.

Unlocked
A message has been added to the message store. There is no lock on it, and
it is visible to all queries.

Locked for Browse
A browse with lock has retrieved the message. The message is now hidden
from all queries except getMessage, unlockMessage, and undo.

Get Unconfirmed
A get message has been made with a confirmID but the get has not been
confirmed. The message is invisible to all queries except
confirmGetMessage, confirm, or undo. Each of these actions requires the
matching confirmID to be included to confirm the get.

Browse Get Unconfirmed
A message has been got while it is locked for browse. This can only be
done by passing the correct lockID to the getMessage function.

Deleted
The final state, after a message has been removed from the database.

start

putUnconfirmed

Deleted

browseGetUnconfirmed

lockedForBrowse

unlocked

putMessage
(with confirmId>0)

confirmPutMessage

getUnconfirmed

PutMessage
(with confirmId=0)

undo

unlockMessage

undo

browseWithLock

undo

getMessage
(with lockId>0)

getMessage

deleteMessage

deleteMessage

getMessage
(with confirmId=0)

getMessage
(with confirmId>0)

confirmGetMessage

confirmGetMessage

undo

Figure 9. Stored message state flow

Storing messages

68 MQSeries Everyplace Programming Guide

|
|

||

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

Message events
Messages pass from one state to another as a result of an event. The possible
message events (as shown in Figure 9 on page 68) are:

putMessage
Message placed on message store, no confirm required.

getMessage
Message retrieved from message store, no confirm required.

putMessage with confirmId>0
Message placed on message store, confirm required.

confirmPutMessage
A confirm for an earlier putMessage with confirmId>0

getMessage with confirmId>0
Message retrieved from message store, confirm required.

confirmGetMessage
A confirm for an earlier getMessage with confirmId>0

browseWithLock
Browse messages and lock those that match. Prevents messages changing
while browse is in operation.

unlockMessage
Unlock a message locked with a browse.

undo Unlock a message locked with a browse, or undo a getMessage with
confirmId>0 or putMessage with confirmId>0

deleteMessage
Remove a message from the message store.

More detailed descriptions of message events and states are included in “Assured
message delivery” on page 77, and “Browse and Lock” on page 72 and

Message index fields
Due to memory size constraints, complete messages are not held in memory, but,
to enable faster message searching, MQSeries Everyplace holds specific fields from
each message in a message index. The fields that are held in the index are:

Unique ID
MQe.Msg_OriginQMgr + MQe.Msg_Time

Message ID
MQe.Msg_ID

Correlation ID
MQe.Msg_CorrelID

Priority
MQe.Msg_Priority

Status One of the states described in “Message states” on page 68.

Providing these fields in a filter makes searching more efficient, since MQSeries
Everyplace may not have to load all the available messages into memory.

Customizing the message store
MQSeries Everyplace allows users to define their own characteristics for a queue
message store. The class MQeAbstractMessageStore can be subclassed to control
the following aspects of queue storage:

Storing messages

Chapter 4. Queue managers, messages, and queues 69

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

||
|

|
|

|
|

||

|
|
|
|

v Storing messages
v Retrieving messages against a filter
v Expiring messages silently
v Deleting messages
v Managing confirms of put and get
v Managing message locking
v Allowing message browsing
v Wrapping messages efficiently/securely if they have compression/security

attributes

The default implementation uses the following message fields in its index
v MQe.Msg_OriginQMgr
v MQe.Msg_Time
v MQe.Msg_MsgID
v MQe.Msg_CorrelID
v MQe.Msg_Priority
v MQe.Msg_ExpireTime
v MQe.Msg_LockID
v MSG_DESTINATION_QUEUEMANAGER
v MSG_DESTINATION_QUEUE

Subclass implementors are free to select the fields that they use in their indexes.

The example class MQeMessageStore shows a typical use of this class to customize
message storage.

Filters
The concept of filters allows MQSeries Everyplace to perform powerful message
searches. Most of the major queue manager operations support the use of filters.
You can create filters by placing fields into MQeFields objects. For example, if a
simple get message operation takes a "null" filter, the result of the operation is the
return of the first available message on the queue.
qmgr.getMessage("myQMgr", "myQueue", null, null, 0);

The use of a filter causes an application to return the first available message that
contains the same fields and values as the filter. For example, the following code
creates a filter that obtains the first message with a message id of "1234":
MQeFields filter = new MQeFields();
filter.putArrayOfByte(MQe.Msg_MsgID, MQe.AsciiToByte("1234"));

The filter is passed into the get message operation:
qmgr.getMessage("myQMgr", "myQueue", filter, null, 0);

When a filter is applied to a search, the fields in the filter are compared with each
index entry in turn. If a field is common to both the index entry and the filter, and
the values in the field are different, then the message cannot possibly match the
filter and it is excluded from consideration. If a field is not common to both filter
and index entry, or if the field is common and the values are the same, then the
message is included in the search.

Storing messages

70 MQSeries Everyplace Programming Guide

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|

Message Expiry
Queues can be defined with an expiry interval. If a message has remained on a
queue for a period of time longer than this interval then the message is marked as
expired. The queue rules then decide what happens to the message once it has
been marked as expired.

Messages can also have an expiry interval themselves. You can define this by
adding an MQe.Msg_ExpireTime field to the message. The expiry time is either
relative (expire 2 days after the message was created), or absolute (expire on
November 25th 2000, at 08:00 hours).

In the example below, the message expires 60 seconds after it is created. (60000
milliseconds = 60 seconds).
/* create a new message */
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData", getMsgData());
/* expiry time of sixty seconds after message was created */
msgObj.putInt(MQe.Msg_ExpireTime, 60000);
/* put message onto queue */
qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

In the example below, the message expires on 15th May 2001, at 15:25 hours.
/* create a new message */
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData", getMsgData());
/* create a Date object for 15th May 2001, 15:25 hours */
Calendar calendar = Calendar.getInstance();
calendar.set(2001, 04, 15, 15, 25);
Date expiryTime = calendar.getTime();
/* add expiry time to message */
msgObj.putLong(MQe.Msg_ExpireTime, expiryTime.getTime());
/* put message onto queue */
qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

Queues
Queue managers manage queues that hold messages. The queue entities are not
directly visible to an application and all interactions with the queues take place
through queue managers. Each queue manager has the ability to have queues that
it manages and owns. These queues are known as local queues. MQSeries
Everyplace also allows applications to access messages on queues that belong to
another queue manager. These queues are known as remote queues. The same sets
of operations are available on both local and remote queues, with the exception of
defining message listeners (see “Message listeners” on page 73).

The messages on the queues are held in the queue’s persistent store (see “Storing
messages” on page 67). A queue accesses its persistent store through a queue store
adapter. (See “Chapter 10. MQSeries Everyplace adapters” on page 227). These
adapters are interfaces between MQSeries Everyplace and hardware devices, such
as disks or networks, or software stores such as a database. Adapters are designed
to be pluggable components, allowing the protocols available to talk to the device
to be easily changed. The backing store used by a queue can be changed using an
MQSeries Everyplace administration message. Changing the backing store is not
allowed while the queue is active or contains messages. If the backing store used
by the queue allows the messages to be recovered in the event of a system failure,
then this allows MQSeries Everyplace to assure the delivery of messages.

Storing messages

Chapter 4. Queue managers, messages, and queues 71

Queue types
The MQSeries Everyplace queue types are described briefly in “MQSeries
Everyplace queues” on page 3, and information on setting up and administering
the various types is provided in “Queues” on page 109.

Queue ordering
The order of messages on a queue is primarily determined by their priority.
Message priority ranges from 9 (highest) to 0 (lowest). Messages with the same
priority value are ordered by the time at which they arrive on the queue, with
messages that have been on the queue for the longest, being at the head of the
priority group.

Reading all the messages on a queue
When a queue is empty, the queue throws an Except_Q_NoMatchingMsg exception if
a get message command is issued. This allows you to create an application that
reads all the available messages on a queue.

By encasing the getMessage() call inside a try..catch block, you can test the code
of the resulting exception. This is done using the code() method of the
MQeException class. You can compare the result from the code() method a list of
exception constants published by the MQe class. If the exception is not of type
Except_Q_NoMatchingMsg throw the exception again.

The following code shows this technique:
try
{

while(true)
{ /* keep getting messages until an exception is thrown */

MQeMsgObject msg = qmgr.getMessage("myQMgr", "myQueue", null, null, 0);
processMessage(msg);

}
}
catch (Exception e)
{

if (e.code() != MQe.Except_Q_NoMatchingMsg)
throw e;

}

Browse and Lock
Browsing a group of messages and locking them allows an application to assure
that no other application is able to process the messages while they are locked. The
messages remain locked until they are unlocked by the application. No other
application can unlock the messages.
MQeEnumeration msgEnum = qmgr.browseMessagesAndLock(null, "MyQueue", null,

null, 0, false);

This command locks all the messages on the queue MyQueue that exists on the local
queue manager (null is an alias for the local queue manager). These messages can
now only be accessed by the application that locked them. (Any messages arriving
on the queue after the Browse and Lock operation will not be locked).

The MQeEnumeration object contains all the messages that match the filter
supplied to the browse. MQeEnumeration can be used in the same manner as the
standard Java Enumeration. You can enumerate all the browsed messages as
follows:

queues

72 MQSeries Everyplace Programming Guide

while(msgEnum.hasMoreElements())
{

MQeMsgObject msg = (MQeMsgObject)msgEnum.nextElement();
System.out.println("Message from queue manager: " +

msg.getAscii(MQe.Msg_OriginQMgr));
}

An application can perform either a get or a delete operation on the messages to
remove them from the queue. To do this, the application must supply the lock ID
that is returned with the enumeration of messages. Specifying the lock ID allows
applications to work with locked messages without having to unlock them first.
The following code performs a delete on all the messages returned in the
enumeration. The message’s Unique ID and lock ID are used as the filter on the
delete operation.
while(msgEnum.hasMoreElements())
{

MQeMsgObject msg = (MQeMsgObject)msgEnum.getNextMessage(null,0);

processMessage(msg);

MQeFields filter = msg.getMsgUIDFields();
filter.putLong(MQe.Msg_LockID, msgEnum.getLockId());

qmgr.deleteMessage(null, "MyQueue", filter);
}

As an alternative to using the standard java.util.Enumeration nextElement()
method, MQeEnumeration supplies a getNextMessage() method. This method
works differently depending upon the justUID parameter of the browseMessages()
method. This parameter determines whether the browse operation returns all the
fields contained within the messages that it matches, or just the Unique ID field.

If the justUID parameter is set to false, the MQeEnumeration returned by the
browse contains all the fields from the matching messages. In this case, the
getNextMessage() method works like nextElement().

If the justUID parameter is set to true, the MQeEnumeration returned by the
browse contains only the Unique ID (MQe.Msg_OriginQMgr and MQe.Msg_TimeStamp)
fields of the matching messages. In this case a proper get message is performed
and the message is removed from the queue.

Assured message delivery can be used when getting the message. Specifying a
nonzero confirm ID means that a confirmation of the get is required (for details of
assured message delivery, see “Assured message delivery” on page 77).

Instead of removing the messages from the queue, it is also possible just to unlock
them, this makes them visible once again to all MQSeries Everyplace applications.
You can achieve this by using the unlockMessage() method.

Note: See “Getting and browsing messages from the MQSeries-bridge queue” on
page 161 for special considerations with MQSeries-bridge queues.

Message listeners
MQSeries Everyplace allows an application to listen for events occurring on
queues. The notification takes the form of a standard Java event, and the listening
application implements an interface that provides methods that are called when an
event occurs. The application is able to specify message filters to identify the
messages in which it is interested.

queues

Chapter 4. Queue managers, messages, and queues 73

|
|

/* Create a filter for "Order" messages of priority 7 */
MQeFields filter = new MQeFields();
filter.putAscii("MsgType", "Order");
filter.putByte(MQe.Msg_Priority, (byte)7);
/* activate a listener on "MyQueue" */
qmgr.addMessageListener(this, "MyQueue", filter);

The following parameters are passed to the addMessageListener() method:
v The name of the queue on which to listen for message events
v A callback object that implements MQeMessageListenerInterface
v An MQeFields object containing a message filter

When a message arrives on a queue with a listener attached, the queue manager
calls the callback object that it was given when the message listener was created.

An example of the way in which an application would normally handle message
events is given below.
public void messageArrived(MQeMessageEvent msgEvent)
{
String queueName =msgEvent.getQueueName();
if (queueName.equals("MyQueue"))
{

try
{

/*get message from queue */
MQeMsgObject msg =qmgr.getMessage(null,queueName,
msgEvent.getMsgFields(),null,0);

processMessage(msg);
}
catch (MQeException e)
{
...
}

}
}

messageArrived() is a method implemented in MQeMessageListenerInterface. The
msgEvent parameter contains information about the message, including:
v The name of the queue on which the message arrived
v The UID of the message
v The message ID

v The correlation ID

v Message priority

Message filters only work on local queues. A separate technique known as polling
allows messages to be obtained as soon as they arrive on remote queues.

Message polling
Message polling uses the waitForMessage() method. This command issues a
getMessage() command to the remote queue at regular intervals. As soon as a
message that matches the supplied filter becomes available, it is returned to the
calling application.

A wait for message call typically looks like this:
qmgr.waitForMessage("RemoteQMgr", "RemoteQueue", filter, null, 0, 60000);

queues

74 MQSeries Everyplace Programming Guide

The waitForMessage() method polls the remote queue for the length of time
specified in its final parameter. The time is specified in milliseconds, so in the
example above, the polling lasts for 60 seconds. The thread on which the command
is executing is blocked for this length of time, unless a message is returned earlier.

Message polling works on both local and remote queues.

Note: Use of this technique results in multiple requests being sent over the
network.

Messaging operations
Table 2 shows the operations that can be performed on messages on the various
queue types.

Table 2. Messaging operations

Operation Local queues Remote queues

Synchronous Asynchronous

browse(&lock) yes yes

delete yes yes

get yes yes

listen yes

put yes yes yes

wait yes yes

Synchronous and asynchronous messaging
MQSeries Everyplace allows flexibility in the way that applications process their
messages. Messages can be transmitted synchronously or asynchronously.

Synchronous messaging
An application does not need to know how or when its messages are transmitted,
however it can take control of this process if it wishes, using synchronous
messaging. Synchronous messaging means that the message is transmitted as soon
as the put message command is issued. This type of messaging can only take place
when both local and target queue managers are online simultaneously, and does
not work if the queue manager is not connected to the network. Synchronous
messaging offers the performance advantages of instant connection and the
knowledge that a message has reached its destination.

Asynchronous messaging
Asynchronous messaging allows an application to continue processing messages,
whether or not the device is connected to a network. The application puts a
message to a remote queue definition, and the message is stored by the queue
manager. The message is transmitted later when a connection is established to the
remote queue manager. The application does not need to be aware of when the
transmission takes place.

The typical example of asynchronous messaging is an application for a field
engineer or salesman. The field personnel can send orders or inventories when it is
convenient. The messages are stored locally until the device is physically connected
to a network. When a connection is made, the messages can be transmitted.

queues

Chapter 4. Queue managers, messages, and queues 75

For asynchronous transmission to occur, the queue manager must be triggered. The
triggering is done either by an application calling the queue manager’s
triggerTransmission() method, or by using the queue manager’s transmission rules
(see “Transmission Rules” on page 85). The method of message transmission
depends on how the remote queue is defined. A queue manager that is sending a
message to a remote queue holds a definition of that queue. This definition is
known as a remote queue definition. When a message is put to a remote queue, the
local queue manager determines how to transmit the message using the remote
queue definition.

Messages are transmitted from the local queue manager to the remote queue
manager using the authenticator, cryptor, and compressor that are defined on the
remote queue. Before it can create a message channel between the two queue
managers, the local queue manager needs to know the remote queue attributes.
The local queue manager keeps this information as part of its remote queue
definition.

The two transmission styles handle this differently.

If an application puts a message to a remote queue and a definition of the remote
queue is held locally then the remote queue definition is used to determine
characteristics of the queue. If a definition is not held locally, queue discovery occurs.
This local queue manager synchronously contacts the remote queue manager in an
attempt to ascertain characteristics of the queue. The following characteristics are
discovered:
v Queue_Description
v Queue_Expiry
v Queue_MaxQSize
v Queue_MaxMsgSize
v Queue_Priority
v Queue_Cryptor
v Queue_Authenticator
v Queue_Compressor
v Queue_TargetRegistry
v Queue_AttrRule

After successful discovery of a queue, the definition of the queue is stored as a
remote queue definition on the queue manager that initiated the discovery. This

Network

(definitions of
remote queues)

(‘real’ queues)

Target
queue manager

Queue a

Queue b

Local
queue manager

Queue a

Queue b

Figure 10. MQSeries Everyplace message flow

sync and async messaging

76 MQSeries Everyplace Programming Guide

discovered queue definition is treated like a normal remote queue definition. The
Queue_Mode is not discovered as all discovered queues are set for synchronous
operation.

Asynchronous transmission is not able to request information from the target
queue manager. Therefore, a remote queue definition must exist before
asynchronous transmission can occur. Remote queue definitions can be created
using MQSeries Everyplace administration messages (see “Chapter 6.
Administering messaging resources” on page 93).

The combination of synchronous and asynchronous messaging allows MQSeries
Everyplace to cope with unreliable communications links. If a message cannot be
delivered immediately because a link is down, then the message can be queued for
delivery at a subsequent time. An example of this is shown below. By defining two
queues the application can handle a situation where synchronous transmission is
not possible.
try
{

qmgr.putMessage("RemoteQMgr", "TransactionQueue", msgObj, null, 0);
}
catch (Exception e)
/* reset message UID */
msgObj.resetMsgUIDFields();
{ /* if connection cannot be made, put message on asynchronous queue */

if (e.getMessage().equals("Connection Refused")
qmgr.putMessage("RemoteQMgr", "AsynchTransactionQueue",

msgObj, null, 0);
}

Assured message delivery
Asynchronous transmission introduces the concept of assured message delivery.
When delivering messages asynchronously, MQSeries Everyplace guarantees to
deliver that message once, and once-only, to its destination queue. However, this
assurance is only valid if the definition of the remote queue and remote queue
manager match the current characteristics of the remote queue and remote queue
manager. If a remote queue definition and the remote queue do not match, then it
is possible that a message may become undeliverable. In this case the message is
not lost, but remains stored on the local queue manager.

Synchronous assured message delivery

Put message
You can perform assured message delivery using synchronous message
transmission, but the application must take responsibility for error handling.

Non-assured delivery of a message takes place in a single network flow. The queue
manager sending the message creates a channel to the destination queue manager,
and attaches a transporter to that channel. The transporter points to the destination
queue. (A suitable channel and transporter may exist from a previous operation, if
so they are used instead).

The message to be sent is dumped to create a byte-stream, and this bye stream is
given to the channel for transmission. Once program control has returned from the
channel the sender queue manager knows that the message has been successfully
given to the target queue manager, that the target has logged the message on a
queue, and that the message has been made visible to MQSeries Everyplace
applications.

sync and async messaging

Chapter 4. Queue managers, messages, and queues 77

However, a problem can occur if the sender receives an exception over the channel
from the target. The sender has no way of knowing if the exception occurred
before or after the message was logged and made visible. If the exception occurred
before the message was made visible it is safe for the sender to send the message
again. However, if the exception occurred after the message was made visible,
there is a danger of introducing duplicate messages into the system since an
MQSeries Everyplace application could have processed the message before it was
sent the second time.

The solution to this problem involves transmitting an additional confirmation flow.
If the sender application receives a successful response to this flow, then it knows
that the message has been delivered once and once-only.

The confirmId parameter of the putMessage method dictates whether the confirm
flow is sent or not. A value of zero means that message transmission occurs in one
flow, while a nonzero value means that a confirm flow is expected. The target
queue manager logs the message to the destination queue as usual, but the
message is locked and invisible to MQSeries Everyplace applications, until the
confirm flow is received.

An MQSeries Everyplace application can issue a put message confirmation using
the confirmPutMessage method. Once the target queue manager receives the flow
generated by this command, it unlocks the message, and makes it visible to
MQSeries Everyplace applications. You can confirm only one message at a time, it
is not possible to confirm a batch of messages.

The confirmPutMessage() method requires you to specify the UID of the message,
not the Confirm ID used in the prior put message command. (The Confirm ID is
used to restore messages that remain locked after a transmission failure. This is
explained in detail on page 81.)

A skeleton version of the code required for an assured put is shown below:
long confirmId = MQe.uniqueValue();

try
{

qmgr.putMessage("RemoteQMgr", "RemoteQueue", msg, null, confirmId);
}
catch(Exception e)

01. Application issues a Put Message (specifying a confirm Id)

T2.Message state on persistent store
changed to ‘Unlocked’.
Message is now visible to other
MQSeries Everyplace applications.

T1.Logs msg to persistent store
Message in state ‘Put_Unconfirmed’

01. Application now knows that the message has been successfully delivered

02. Application issues a Confirm Put Message (specifying message UID)

Originator Target

Figure 11. Assured put of synchronous messages

assured message delivery

78 MQSeries Everyplace Programming Guide

{
/* handle any exceptions */

}

try
{

qmgr.confirmPutMessage("RemoteQMgr", "RemoteQueue",
msg.getMsgUIDFields());

}
catch (Exception e)
{

/* handle any exceptions */
}

If a failure occurs during step 1 in Figure 11 on page 78 the application should
retransmit the message. There is no danger of introducing duplicate messages into
the MQSeries Everyplace network since the message at the target queue manager
is not made visible to applications until the confirm flow has been successfully
processed.

If the MQSeries Everyplace application retransmits the message, it should also
inform the target queue manager that this is happening. The target queue manager
deletes any duplicate copy of the message that it already has. The application sets
the MQe.Msg_Resend field to do this.

If a failure occurs during step 2 in Figure 11 on page 78 the application should send
the confirm flow again. There is no danger in doing this since the target queue
manager ignores any confirm flows it receives for messages that it has already
confirmed.

The code below is taken from examples.application.example6
boolean msgPut = false; /* put successful? */
boolean msgConfirm = false; /* confirm successful? */
int maxRetry = 5; /* maximum number of retries */

long confirmId = MQe.uniqueValue();

int retry = 0;
while(!msgPut && retry < maxRetry)
{

try
{

qmgr.putMessage("RemoteQMgr", "RemoteQueue", msg, null, confirmId);
msgPut = true; /* message put successful */
}
catch(Exception e)
{

/* handle any exceptions */
/* set resend flag for retransmission of message */
msg.putBoolean(MQe.Msg_Resend, true);
retry ++;

}
}

if (!msgPut) /* was put message successful? */
/* Number of retries has exceeded the maximum allowed, so abort the put*/
/* message attempt */

return;

retry = 0;
while(!msgConfirm && retry < maxRetry)
{

try

assured message delivery

Chapter 4. Queue managers, messages, and queues 79

{
qmgr.confirmPutMessage("RenoteQMgr", "RemoteQueue",

msg.getMsgUIDFields());
msgConfirm = true; /* message confirm successful */

}
catch (Exception e)
{

/* handle any exceptions */
/* An Except_NotFound exception means that the message has already */
/* been confirmed */
if (e instanceof MQeException &&

((MQeException)e).code() == Except_NotFound)
putConfirmed = true; /* confirm successful */

/* another type of exception - need to reconfirm message */
retry ++;

}
}

Get message
Assured message get works in a similar way to put If a get message command is
issued with a confirmId parameter greater than zero, the message is left locked on
the queue on which it resides until a confirm flow is processed by the target queue
manager. When a confirm flow is received, the message is deleted from the queue.

The following code is taken from examples.application.example6

boolean msgGet = false; /* get successful? */
boolean msgConfirm = false; /* confirm successful? */
MQeMsgObject msg = null;
int maxRetry = 5; /* maximum number of retries */

long confirmId = MQe.uniqueValue();
int retry = 0;
while(!msgGet && retry < maxRetry)
{

try
{

msg = qmgr.getMessage("RemoteQMgr", "RemoteQueue", filter, null,
confirmId);

msgGet = true; /* get succeeded */
}
catch (Exception e)
{

Originator Target

O1. Application issues a Get Message (specifying a confirm Id)

T1.Message state in persistent store
changed to ‘Get_Uncomfirmed’.
Message returned to originator.

O2. Application issues a Confirm Get Message.

T2.Message removed from queue.

O3. Application now holds sole copy of message.

Figure 12. Assured get of synchronous messages

assured message delivery

80 MQSeries Everyplace Programming Guide

/* handle any exceptions */
/* if the exception is of type Except_Q_NoMatchingMsg, meaning that */
/* the message is unavailable then throw the exception */
if (e instanceof MQeException)

if (((MQeException)e).code() == Except_Q_NoMatchingMsg)
throw e;

retry ++; /* increment retry count */
}

}

if (!msgGet) /* was the get successful? */
/* Number of retry attempts has exceeded the maximum allowed, so abort */
/* get message operation */

return;

while(!msgConfirm && retry < maxRetry)
{

try
{

qmgr.confirmGetMessage("RemoteQMgr", "RemoteQueue",
msg.getMsgUIDFields());

msgConfirm = true; /* confirm succeeded */
}
catch (Exception e)
{

/* handle any exceptions */
retry ++; /* increment retry count */

}
}

The value passed as the confirmId parameter also has another use. The value is
used to identify the message while it is locked and awaiting confirmation. If an
error occurs during the get operation, it can potentially leave the message locked
on the queue. This happens if the message is locked in response to the get
command, but an error occurs before the application receives the message. If the
application reissues the get in response to the exception, then it will be unable to
obtain the same message because it is locked and invisible to MQSeries Everyplace
applications.

However, the application that issued the get command can restore the messages
using the undo method. The application must supply the confirmId value that it
supplied to the get message command. The undo command restores messages to
the state they were in before the get command.
boolean msgGet = false; /* get successful? */
boolean msgConfirm = false; /* confirm successful? */
MQeMsgObject msg = null;
int maxRetry = 5; /* maximum number of retries */

long confirmId = MQe.uniqueValue();
int retry = 0;
while(!msgGet && retry < maxRetry)
{

try
{

msg = qmgr.getMessage("RemoteQMgr", "RemoteQueue", filter, null,
confirmId);

msgGet = true; /* get succeeded */
}
catch (Exception e)
{

/* handle any exceptions */
/* if the exception is of type Except_Q_NoMatchingMsg, meaning that */
/* the message is unavailable then throw the exception */

assured message delivery

Chapter 4. Queue managers, messages, and queues 81

if (e instanceof MQeException)
if (((MQeException)e).code() == Except_Q_NoMatchingMsg)

throw e;
retry ++; /* increment retry count */
/* As a precaution, undo the message on the queue. This will remove */
/* any lock that may have been put on the message prior to the */
/* exception occurring */
myQM.undo(qMgrName, queueName, confirmId);

}
}

if (!msgGet) /* was the get successful? */
/* Number of retry attempts has exceeded the maximum allowed, so abort */
/* get message operation */

return;

while(!msgConfirm && retry < maxRetry)
{

try
{

qmgr.confirmGetMessage("RemoteQMgr", "RemoteQueue",
msg.getMsgUIDFields());

msgConfirm = true; /* confirm succeeded */
}
catch (Exception e)
{

/* handle any exceptions */
retry ++; /* increment retry count */

}
}

The undo command also has relevance for the putMessage and
browseMessagesAndLock commands. As with get message, the undo command
restores any messages locked by the browseMessagesandLock command to their
previous state.

If an application issues an undo command after a failed putMessage command,
then any message locked on the target queue awaiting confirmation is deleted.

The undo command works for operations on both local and remote queues.

Security
The queue manager fully supports the security functions supplied with MQSeries
Everyplace. Any messages stored in a queue defined with security characteristics
are encoded using those characteristics. Any communication channels set up
between a queue manager and a secure queue use the security characteristics of
the queue, or an existing channel with equal or higher security.

Messages can be individually protected by attaching security characteristics to
them directly. The correct characteristics must be presented whenever dealing with
a message protected in this manner.

See “Chapter 8. Security” on page 173 for a detailed discussion of MQSeries
Everyplace security.

assured message delivery

82 MQSeries Everyplace Programming Guide

Chapter 5. Rules

MQSeries Everyplace uses the concept of rules to govern the behavior of its major
components. Rules allow a solution to have some control over the internal
workings of MQSeries Everyplace. Rules take the form of Java classes that are
loaded by MQSeries Everyplace components when they are initialized.

A component’s rules are called at certain points during the component’s execution
cycle. The component expects a method with a particular signature to be available,
so when producing an extension of the base rules, care must be taken to use the
correct method signatures.

Default or example rules are provided for all MQSeries Everyplace components,
however it is expected that a solution would provide its own rules to customize
MQSeries Everyplace behavior to fit the solution requirements.

Queue manager rules
Queue manager Rules are used when:
v The queue manager is activated
v The queue manager is closed
v A queue is added to the queue manager
v A queue is removed from the queue manager
v A put message operation occurs
v A get message operation occurs
v A delete message operation occurs
v An undo message operation occurs
v The queue manager is triggered to transmit any pending messages (Transmission

Rules)
v An incoming peer connection is established

Loading and activating queue manager rules
Queue manager rules are loaded, or changed, and activated whenever a queue
manager administration message, containing a request to update the queue
manager rule class, is received

If a queue manager rule has already been applied to the queue manager, it is asked
whether the current rule may be replaced with a different rule. If the answer is
yes, the new rule is loaded and activated. (A restart of the queue manager is not
required.)

The QueueManagerUpdater command-line tool in the package
examples.administration.commandline shows how to create such an administration
message.

Using queue manager rules
This section describes some examples of the use of the queue manager rules.

© Copyright IBM Corp. 2001 83

|

|
|
|

|
|
|
|

|
|
|

The first example shows a put message rule that insists that any message being
put to a queue using this queue manager must contain an MQSeries Everyplace
message ID field.
/* Only allow msgs containing an ID field to be placed on the Queue */
public void putMessage(String destQMgr, String destQ, MQeMsgObject msg,

MQeAttribute attribute, long confirmId)
{

if (!(msg.Contains(MQe.Msg_MsgId)))
throw new MQeException(Except_Rule, "Msg must contain an ID");

}

The next example rule is a get message rule that insists that a password must be
supplied before allowing a get message request to be processed on the queue
called OutboundQueue. The password is included as a field in the message filter
passed into the getMessage() method.
/* This rule only allows GETs from 'OutboundQueue', if a password is */
/* supplied as part of the filter */
public void getMessage(String destQMgr, String destQ, MQeFields filter,

MQeAttribute attr, long confirmId)
{

super.getMessage(destQMgr, destQ, filter, attr, confirmId);
if (destQMgr.equals(Owner.GetName() && destQ.equals("OutboundQueue"))
{

if (!(filter.Contains("Password"))
throw new MQeException(Except_Rule, "Password not supplied");

else
{

String pwd = filter.getAscii("Password");
if (!(pwd.equals("1234")))

throw new MQeException(Except_Rule, "Incorrect password");
}

}
}

This previous rule is a simple example of protecting a queue. However, for more
comprehensive security, you are recommended to use an authenticator. An
authenticator allows an application to create access control lists, and to manage
who is able to get messages from queues.

The next example rule is called when a queue manager administration request tries
to remove a queue. The rule is passed an object reference to the queue in question.
In the following example, the rule checks the name of the queue that is passed,
and if the queue is named PayrollQueue, the request to remove the queue is
refused.
/* This rule prevents the removal of the Payroll Queue */
public void removeQueue(MQeQueue queue) throws Exception
{

if (queue.getQueueName().equals("PayrollQueue"))
throw new MQeException(Except_Rule, "Can't delete this queue");

}

A queue manager can define its own peer channel listener. The listener detects
incoming connection attempt from other queue managers made through a peer
channel. The following rule is called whenever a connection request is detected.
The rule is passed the name of the queue manager that is trying to connect.
public void peerConnection(String qmgrName)
{

/* block any connection attempt from 'RogueQMgr' */
if (qmgrName.equals("RogueQMgr"))

throw new MQeException(Except_Rule, "Connection not allowed");
}

queue manager rules

84 MQSeries Everyplace Programming Guide

Transmission Rules
A message that is put to a remote queue and is defined as synchronous is
transmitted immediately. Messages put to remote queues defined as asynchronous
are stored within the local queue manager, until the queue manager is triggered
into transmitting them. The queue manager can be triggered directly by an
application, but the process can also be controlled by the queue manager’s
transmission rules.

The transmission rules are a subset of the queue manager rules.

There are two methods within the rules class that allow control over message
transmission:

triggerTransmission()
Determines whether to allow message transmission at the time when the
rule is called

transmit()
Makes a decision to allow transmission for each individual queue. For
example, this makes it possible only to transmit the messages from queues
deemed to be high priority. The transmit() rule is only called if the
triggerTransmission() rule returns successfully

Trigger Transmission Rule
MQSeries Everyplace calls the triggerTransmission rule when a message is put
onto a remote asynchronous queue. The queue manager triggerTransmission
method overrides this rule and causes an attempt to transmit any pending
messages
/* default transmission rule - always allow transmission */
public boolean triggerTransmission(int noOfMsgs, MQeFields msgFields)
{

return true;
}

The return code from this rule tells the queue manager whether or not to transmit
any pending messages. A return code of true means "transmit", while a return
code of false means "do not transmit at this time". So, the above rule attempts to
transmit all messages immediately. This is the default triggerTransmission() rule
contained in the base queue manager rules class
com.ibm.mqe.MQeQueueManagerRule. The rule attempts to transmit a message as
soon as it is put onto a queue. This near-synchronous mode of operation is
inefficient, since it sends all messages individually. It is usually advantageous to
send groups of messages to utilize the network more efficiently.

A more complex rule could decide whether or not to transmit immediately based
on the priority of the message. The following example shows a rule that triggers
the queue manager if a message arrives that has a priority greater than 5.
/* Decide to transmit based on priority of message */
public boolean triggerTransmission(int noOfMsgs, MQeFields msgFields)
{

if (msgFields == null) /* msg fields may be null */
return false;

if (!(msgFields.contains(MQe.Msg_Priority)))
return false; /* no priority field in message */

byte priority = msg.GetByte(MQe.Msg_Priority);
if (priority > 5) /* if message priority greater than 5 */

queue manager rules

Chapter 5. Rules 85

return true; /* then transmit */
else

return false; /* else do not transmit */
}

The msgFields parameter contains selected fields from the message. These fields
are:
v Unique ID

v Message ID

v Correlation ID

v Priority

If the rule decides to allow transmission, then all pending messages are
transmitted, not just the message that was put to the asynchronous remote queue.

The noOfMsgs parameter contains the number of messages that are awaiting
transmission. A solution may decide to implement a rule that blocks transmission
until a certain number of messages are pending. Such a rule helps to make more
efficient use of the network connection.

The rule below blocks until at least 10 messages are awaiting transmission.
public void triggerTransmission(int noOfMsgs, MQeFields msgFields)
{

if (noOfMsgs >= 10) /* if more than 10 msgs are waiting */
return true; /* then transmit */

else
return false;

}

Transmit rule
The transmit() rule is only called if the triggerTransmission() rule allows
transmission, (returns a value of true). The transmit() rule is called for every
remote queue definition that holds messages awaiting transmission. This means
that the rule can decide which messages to transmit from each queue.

The rule below only allows message transmission from a queue if the queue has a
default priority greater than 5. (If a message has not been assigned a priority
before being placed on a queue, it is given the queue’s default priority).
public boolean transmit(MQeQueue queue)
{

if (queue.getDefaultPriority() > 5)
return (true);

else
return (false);

}

A sensible extension to this rule would be to allow all messages to be transmitted
at ’off-peak’ time. This would cause only messages from high-priority queues to be
transmitted during peak periods. The following examples, show rules that
implement similar ideas.

The following example only allows messages to be transmitted if the queue
contains more than 10 messages.
public boolean transmit(MQeQueue queue)
{

if (queue.getNumberOfMessages() >= 10)

queue manager rules

86 MQSeries Everyplace Programming Guide

return (true);
else

return (false);
}

The following more complex example assumes that the transmission of the
messages takes place over a communications network that charges for the time
taken for transmission. It also assumes that there is a cheap-rate period when the
unit-time cost is lower. The rules block any transmission of messages until the
cheap-rate period. During the cheap-rate period, the queue manager is triggered at
regular intervals.
import com.ibm.mqe.*;
import java.util.*;

/**
* Example set of queue manager Rules which trigger the transmission
* of any messages waiting to be sent.
*
* These rules only trigger the transmission of messages if the current
* time is between the values defined in the variables cheapRatePeriodStart
* and cheapRatePeriodEnd

* (This example assumes that transmission will take place over a
* communication network which charges for the time taken to transmit)
*/

public class ExampleQueueManagerRules extends MQeQueueManagerRule
implements Runnable

{
/* default interval between triggers is 10 minutes */
public final int triggerInterval = 600000;
/* cheap rate transmission period start and end times */
public final int cheapRatePeriodStart = 18; /* 18:00 hrs */
public final int cheapRatePeriodEnd = 9; /* 09:00 hrs */

/* background thread reference */
protected Thread th = null;

}

The constants cheapRatePeriodStart and cheapRatePeriodEnd define the extent of
this cheap rate period. In this example, the cheap-rate period is defined as being
between 18:00 hours in the evening until 09:00 hours the following morning.
/* cheap rate transmission period start and end times */
public final int cheapRatePeriodStart = 18; /* 18:00 hrs */
public final int cheapRatePeriodEnd = 9; /* 09:00 hrs */

The constant triggerInterval defines the period of time (in milliseconds) between
each triggering of the queue manager.
public final int triggerInterval = 600000;

In this example, the trigger interval is defined to be 600,000 milliseconds, which is
equivalent to 600 seconds, or 10 minutes.

The triggering of the queue manager is handled by a background thread that wakes
up at the end of the triggerInterval period. If the current time is inside the cheap
rate period, it calls the MQeQueueManager.triggerTransmission() rule to initiate
an attempt to transmit all messages awaiting transmission.

The background thread is created in the queueManagerActivate() rule and stopped
in the queueManagerClose() rule. The queue manager calls these rules when it is
activated and closed respectively.

queue manager rules

Chapter 5. Rules 87

/**
* Overrides MQeQueueManagerRule.queueManagerActivate()
* Starts a timer thread
*/
public void queueManagerActivate()
{

/* background thread which triggers XmitQ */
th = new Thread(this);
th.start(); /* start timer thread */

}
/**
* Overrides MQeQueueManagerRule.queueManagerClose()
* Stops the timer thread
*/
public void queueManagerClose()
{

th.stop(); /* stop timer thread */
}

The code to handle the background thread looks like this:
/**
* Timer thread
* Triggers queue manager every interval until thread is stopped
*/
public void run()
{

try
{

while (true)
{ /* sleep for specified interval */

Thread.sleep(triggerInterval);
/* if cheap rate period call queue manager to trigger transmission */
if (timeToTransmit())

((MQeQueueManager)owner).triggerTransmission();
}

}
catch (Exception e)
{

e.printStackTrace(System.err);
}

}

The variable owner is defined by the class MQeRule, which is the ancestor of
MQeQueueManagerRule. As part of its startup process, the queue manager
activates the queue manager rules and passes a reference to itself to the rules
object. This reference is stored in the variable owner.

The thread loops indefinitely (remember it is stopped by the queueManagerClose()
rule), and it sleeps until the end of the trigger interval period. At the end of the
trigger interval, it calls the timeToTransmit() method to check if the current time is
in the cheap-rate transmission period. If this method succeeds, the queue
manager’s triggerTransmission() rule is called.

The timeToTransmit method is shown in the following code:
protected boolean timeToTransmit()
{

/* get current time */
long currentTimeLong = System.currentTimeMillis();

Date date = new Date(currentTimeLong);
Calendar calendar = Calendar.getInstance();
calendar.setTime(date);

/* get hour */

queue manager rules

88 MQSeries Everyplace Programming Guide

int hour = calendar.get(Calendar.HOUR_OF_DAY);

if (hour >= cheapRatePeriodStart || hour < cheapRatePeriodEnd)
return true; /* cheap rate */

else
return false; /* not cheap rate */

}

Activating asynchronous remote queue definitions
The queue manager can activate its asynchronous remote queue definitions at
startup time. Activating the queues means that an attempt is made to transmit any
messages they contain. This behavior is configurable with the activateQueues()
rule.

The basic rule just returns true or false.
public boolean activateQueues()
{

return true; /* always transmit on activate */
}

Like other rules, a check can be made to see if the current time is inside the
cheap-rate transmission period.
public boolean activateQueues()
{

if (timeToTransmit())
return true;

else
return false;

}

This rule also determines whether home-server and store-and-forward queues are
activated at startup time.

If activateQueues() returns false, the remote queue definitions are only activated
when a message is put onto them. home-server queues can be activated by calling
the queue manager’s triggerTransmission() rule.

Queue rules
Each queue has its own set of rules. A solution can extend the behavior of these
rules. All queue rules should descend from class com.ibm.mqe.MQeQueueRule.

Queue rules are called when:
v The queue is activated
v The queue is closed
v A message is placed on the queue (put)
v A message is removed from the queue (get)
v A message is deleted from the queue (delete)
v The queue is browsed
v An undo operation is performed on a message on the queue
v A message listener is added to the queue
v A message listener is removed from the queue
v A message expires
v When the queue’s use count changes

queue manager rules

Chapter 5. Rules 89

v When an attempt is made to change a queue’s attributes (authenticator, cryptor,
compressor)

v An index entry is created for a message

Index entry rule
The queue does not hold all its messages in memory. They are saved into the
queue store, and restored to memory when required. The queue maintains an
index entry for each message held in its queue store. The index entry contains state
information for the message, such as whether it is locked or unlocked. Also, certain
fields from the message, known as index fields are stored in the index entry. The
default index fields are message Unique ID, Message ID, Correlation ID, and
message priority. These fields are stored because they are present in most
messages, and storing them in memory allows for faster message searching.

The indexEntry() rule is called whenever an index entry is created. This occurs
whenever a new message is put onto the queue, or at queue activation time, when
the queue reads any messages left in its queue store from a previous session. The
rule allows a solution to alter the index entry when it is created. A use for this
would be to add commonly-used fields into the index, to improve message search
times.
/* if the message contains a customer number field - then add this field */
/* to the message's index entry. */
/* This will enable faster message searching */
public void indexEntry(MQeFields entry,

MQeMsgObject msg) throws Exception
{

if (msg.contains("Cust_No"))
entry.copy(msg, true, "Cust_No");

}

The parameter, entry contains a blank index entry for the message.The default
index fields are added by the queue, after the indexEntry rule returns. In the
previous example, if the message contains a field named Cust_No this is added to
the message’s index entry.

In subsequent messaging operations, such as get or browse, the application can use
the Cust_No field as part of the filter supplied to the operation. Imagine that the
application wants to find a message containing a Cust_No field with a value of "75",
and an Order_No field with a value of "115". The queue can check the index entries
and load only messages containing a Cust_No field with a value of "75" into
memory, to see if they contain an Order_No field with the correct value. If the
Cust_no field is not part of the index, every message is loaded into memory to
check if it contains fields that match the filter.

Of course, the use of index fields is a compromise. They can be used to speed
message search times, but they are held in memory, which may be at a premium
on a pervasive device.

Message Expired rule
Both queues and message can have an expiry interval set. If this interval is
exceeded the message is flagged as being expired. At this point the
messageExpired() rule is called. This rule determines what happens to the
message. Typically the message is either deleted, or placed on a dead-letter queue.
However, the rule can decide to do something different. For example it can leave
the message intact on the queue so that it remains visible to MQSeries Everyplace
applications.

queue rules

90 MQSeries Everyplace Programming Guide

/* This rule puts a copy of any expired messages to a Dead Letter Queue */
public boolean messageExpired(MQeFields entry,

MQeMsgObject msg) throws Exception
{

/* Get the reference to the Queue Manager */
MQeQueueManager qmgr = MQeQueueManager.getReference(

((MQeQueue)owner).getQueueManagerName());
/* need to set re-send flag so that put of message to new queue isn't */
/* rejected */
msg.putBoolean(MQe.Msg_Resend, true);
/* if the message contains an expiry interval field - remove it */
if (msg.contains(MQe.Msg_ExpireTime)

msg.delete(MQe.Msg_ExpireTime);
/* put message onto dead letter queue */
qmgr.putMessage(null, MQe.DeadLetter_Queue_Name, msg, null, 0);
/* return true & the message will be deleted from the queue */
return (true);

}

The previous example sends any expired messages to the queue manager’s
dead-letter queue, the name of which is defined by the constant,
MQe.DeadLetter_Queue_Name. It is worth noting that the queue manager rejects a
put of a message that has previously been put onto another queue. This protects
against a duplicate message being introduced into the MQSeries Everyplace
network. So, before moving the message to the dead-letter queue, he rule must set
the resend flag. This is done by adding the MQe.Msg_Resend field to the message.
The message expiry time field must be deleted before moving the message to the
dead-letter queue.

Returning a value of true informs the queue that the rule has determined that the
message has expired.

Logging an add message listener event
The following example shows how to log an event that occurs on the queue. In the
example the event that occurs is the creation of a message listener, but the
principal can be used for any other queue event such as a put message, or browse
message request.

In the example, the queue has its own log file, but it is equally as valid to have a
central log file that is used by all queues. The queue needs to open the log file
when it is activated, and close the log file when the queue is closed. The queue
rules, queueActivate and queueClose can be used to do this. The variable logFile
needs to be a class variable so that both rules can access the log file
/* This rule logs the activation of the queue */
public void queueActivate()
{

try
{

logFile = new LogToDiskFile(\\log.txt);
log(MQe_Log_Information, Event_Activate, "Queue " +

((MQeQueue)owner).getQueueManagerName() + " + " +
((MQeQueue)owner).getQueueName() + " active");

}
catch(Exception e)
{

e.printStackTrace(System.err);
}

}
/* This rule logs the closure of the queue */
public void queueClose()
{

try

queue rules

Chapter 5. Rules 91

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
log(MQe_Log_Information, Event_Closed, "Queue " +

((MQeQueue)owner).getQueueManagerName() + " + " +
((MQeQueue)owner).getQueueName() + " closed");

/* close log file */
logFile.close();

}
catch (Exception e)
{

e.printStackTrace(System.err);
}

}

The addListener rule is shown in the following code. It uses the MQe.log method
to add an Event_Queue_AddMsgListener event.
/* This rule logs the addition of a message listener */
public void addListener(MQeMessageListenerInterface listener,

MQeFields filter) throws Exception
{

log(MQe_Log_Information, Event_Queue_AddMsgListener,
"Added listener on queue " +
((MQeQueue)owner).getQueueManagerName() + "+" +
((MQeQueue)owner).getQueueName());

}

queue rules

92 MQSeries Everyplace Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|

|

Chapter 6. Administering messaging resources

The administration of MQSeries Everyplace resources such as queue managers and
queues is performed using specialized MQSeries Everyplace messages. Using
messages allows administration to be performed locally or remotely.

Before you can administer a queue manager or its resources, you must start the
queue manager and configure an administration queue on it. The administration
queue’s role is to process administration messages in the sequence that they arrive
on the queue. Only one request is processed at a time. The queue can be created
using the defineDefaultAdminQueue() method of the
MQeQueueManagerConfigure class. The name of the queue is AdminQ and
applications can refer to it using the constant MQe.Admin_Queue_Name.

A typical administration application instantiates a subclass of MQeAdminMsg,
configures it with the required administration request, and passes it to the AdminQ
on the target queue manager. If the application wishes to know the outcome of the
action, a reply can be requested. When the request has been processed the result of
the request is returned in a message to the reply-to queue and queue manager
specified in the request message.

The reply can be sent to any queue manager or queue but you can configure a
default reply-to that is used solely for administration reply messages. This default
queue is created using the defineDefaultAdminReplyQueue() method of the
MQeQueueManagerConfigure class. The name of the queue is AdminReplyQ and
applications can refer to it using the constant MQe.Admin_Reply_Queue_Name

The administration queue does not understand how to perform administration of
individual resources. This knowledge is encapsulated in each resource and its
corresponding administration message. The following messages are provided for
administration of MQSeries Everyplace resources:

Managed
resource

admin
methods

Admin
application

AdminMsg
(Request)

AdminMsg
(Reply)

Queue
manager

Queue
manager

AdminMsg
(Request)

AdminMsg
(Reply)

AdminQ

ReplyQ

Figure 13. MQSeries Everyplace administration

© Copyright IBM Corp. 2001 93

Table 3. Administration messages

Message name purpose

MQeAdminMsg an abstract class that acts as the base class
for all administration messages

MQeAdminQueueAdminMsg provides support for administering the
administration queue

MQeConnectionAdminMsg provides support for administering
connections between queue managers

MQeHomeServerQueueAdminMsg provides support for administering
home-server queues

MQeQueueAdminMsg provides support for administering local
queues

MQeQueueMangerAdminMsg provides support for administering queue
managers

MQeRemoteQueueAdminMsg provides support for administering remote
queues

MQeStoreAndForwardQueueAdminMsg provides support for administering
store-and-forward queues

MQeMQBridgeQueueAdminMsg provides support for administering a queue
that connects to an MQSeries system

These base administration messages are provided in the
com.ibm.mqe.administration package. Other types or resource can be managed by
subclassing either MQeAdminMsg or one of the existing administration messages.
For instance, an additional administration messages for managing the
MQSeries-bridge, are provided in the com.ibm.mqe.mqbridge package.

The basic administration request message
Every request to administer an MQSeries Everyplace resource takes the same basic
form. Figure 14 on page 95 shows the basic structure for all administration request
messages:

A request is made up of:
1. Base administration fields, that are common to all administration requests
2. Administration fields, that are specific to the resource being managed
3. Optional fields to assist with the processing of administration messages

administration

94 MQSeries Everyplace Programming Guide

Base administration fields
The base administration fields, that are common to all administration messages,
are:

Admin_Target_QMgr
This field provides the name of the queue manager on which the requested
action is to take place (target queue manager). The target queue manager
can be either a local or a remote queue manager. As only one queue
manager can be active at a time in a Java Virtual Machine, the target queue
manager, and the one to which the message is put, are the same.

Admin_Action
This field contains the administration action that is to be performed. Each
managed resource provides a set of administrative actions that it can
perform. A single administration message can only request that one action
be performed. the following common actions are defined:

Table 4. Administration actions

Administration action Purpose

Action_Create Create a new instance of a managed resource.

Action_Delete Delete an existing managed resource

Action_Inquire Inquire on one or more characteristics of a managed
resource

Action_InquireAll Inquire on all characteristics of a managed resource

Action_Update Update one or more characteristics of a managed resource

All resources do not necessarily implement these actions. For instance, it is
not possible to create a queue manager using an administration message.
Specific administration messages can extend the base set to provide
additional actions that are specific to a resource.

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure 14. Administration request message

administration request message

Chapter 6. Administering messaging resources 95

Each common action provides a method provided that sets the
Admin_Action field:

Table 5. Setting the administration action field

Administration action Setting method

Action_Create create (MQeFields parms)

Action_Delete delete(MQeFields parms)

Action_Inquire inquire(MQeFields parms)

Action_InquireAll inquireAll(MQeFields parms)

Action_Update update(MQeFields parms)

Admin_MaxAttempts

This field determines how many times an action can be retried if the initial
action fails. The retry occurs either the next time that the queue manager
restarts or at the next interval set on the administration queue.

Other fields
For most failures further information is available in the reply message. It is
the responsibility of the requesting application to read and handle failure
information. See “The basic administration reply message” on page 99 for
more details on using the reply data.

A set of methods are available for setting some of the request fields:

Table 6. Setting administration request fields

Administration action field type set and get methods

Admin_Parms MQeFields MQeFields getInputFields()

Admin_Action int setAction (int action)

Admin_TargetQMgr ascii setTargetQMgr(String qmgr)

Admin_MaxAttempts int setMaxAttempts(int attempts)

Fields specific to the managed resource
Admin_Parms

This field contains the resource characteristics that are required for the
action.

Every resource has a set of unique characteristics. Each characteristic has a
name, type and value, and the name of each is defined by a constant in the
administration message. The name of the resource is a characteristic that is
common to all managed resources. The name of the resource is held in the
Admin_Name, and it has a type of ascii.

The full set of characteristics of a resource can be determined by using the
characteristics() method against an instance of an administration message.
This method returns an MQeFields object that contains one field for each
characteristic. MQeFields methods can be used for enumerating over the
set of characteristics to obtain the name, type and default value of each
characteristic.

The action requested determines the set of characteristics that can be
passed to the action. In all cases, at least the name of the resource,
Admin_Name, must be passed. In the case of Action_InquireAll this is the
only parameter that is required.

administration request message

96 MQSeries Everyplace Programming Guide

The following code could be used to set the name of the resource to be
managed in an administration message:
SetResourceName(MQeAdminMsg msg, String name)
{

MQeFields parms;
if (msg.contains(Admin_Parms))

parms = msg.getFields(Admin_Parms);
else

parms = new MQeFields();

parms.putAscii(Admin_Name, name);
msg.putFields(Admin_Parms, name);

}

Alternatively, the code can be simplified by using the getInputFields()
method to return the Admin_Parms field from the message, or setName() to
set the Admin_Name field into the message. This is shown in the following
code:
SetResourceName(MQeAdminMsg msg, String name)
{

msg.SetName(name);
}

Other useful fields
By default, no reply is generated, when an administration request is processed. If a
reply is required, then the request message must be setup to ask for a reply
message. The following fields are defined in the MQe class and are used to request
a reply.

Msg_Style
A field of type int that can take one of three values:

Msg_Style_Datagram
A command not requiring a reply

Msg_Style_Request
A request that would like a reply

Msg_Style_Reply
A reply to a request

If Msg_Style is set to Msg_Style_Request (a reply is required) then the location that
the reply is to be sent to must be set into the request message. The two fields used
to set the location are:

Msg_ReplyToQ
An ascii field used to hold the name of the queue for the reply

Msg_ReplyToQMgr
An ascii field used to hold the name of the queue manager for the reply

If the reply-to queue manager is not the queue manager that processes the request
then the queue manager that processes the request must have a connection defined
to the reply-to queue manager.

For an administration request message to be correlated to its reply message the
request message needs to contain fields that uniquely identify the request, and that
can then be copied into the reply message. MQSeries Everyplace provides two
fields that can be used for this purpose:

administration request message

Chapter 6. Administering messaging resources 97

Msg_MsgID
A byte array containing the message ID

Msg_CorrelID
A byte array containing the Correl ID of the message

Any other fields can be used but these two have the added benefit that they are
used by the queue manager to optimize searching of queues and message retrieval.
The following code fragment provides an example of how to prime a request
message:
public class LocalQueueAdmin extends MQe
{

public String targetQMgr = "ExampleQM"; // target queue manager

public MQeFields primeAdminMsg(MQeAdminMsg msg) throws Exception
{

/*
* Set the target queue manager that will process this message
*/
msg.setTargetQMgr(targetQMgr);

/*
* Ask for a reply message to be sent to the queue
* manager that processes the admin request
*/
msg.putInt (MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);
msg.putAscii(MQe.Msg_ReplyToQMgr, targetQMgr);

/*
* Setup the correl id so we can match the reply to the request.
* - Use a value that is unique to the this queue manager.
*/
byte[] correlID = Long.toHexString((MQe.uniqueValue()).getBytes());
msg.putArrayOfByte(MQe.Msg_CorrelID, correlID);

/*
* Ensure matching response message is retrieved
* - set up a fields object that can be used as a match parameter
* when searching and retrieving messages.
*/
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID, correlID);

/*
* Return the unique filter for this message
*/
return msgTest;

}

When the administration request message has been created, it is sent to the target
queue manager using standard MQSeries Everyplace message processing APIs.
Depending on how the destination administration queue is defined, delivery of the
message can be either synchronous or asynchronous.

Standard MQSeries Everyplace message processing APIs are also used to wait for a
reply, or notification of a reply. There is a time lag between sending the request
and receiving the reply message. The time lag may be small if the request is being
processed locally or may be long if both the request and reply messages are
delivered asynchronously. The following code fragment could be used to send a
request message and wait for a reply:

administration request message

98 MQSeries Everyplace Programming Guide

public class LocalQueueAdmin extends MQe
{

public String targetQMgr = "ExampleQM"; // target queue manager
public int waitFor = 10000; // millsecs to wait for reply

/*
* Send a completed admin message.
* Uses the simple putMessage method which is not assured if the
* the queue is defined for synchronous operation.
*/
public void sendRequest(MQeAdminMsg msg) throws Exception
{

myQM.putMessage(targetQMgr,
MQe.Admin_Queue_Name,
msg,
null,
0);

}

/*
* Wait a while for a reply message. This method will wait for
* a limited time on either a local or a remote reply to queue.
* Parameters:
* msgTest: a filter for the reply message to wait for
* Returns:
* respMsg: a reply message matching the msgTest filter.
*/
public MQeAdminMsg waitForReply(MQeFields msgTest) throws Exception
{

MQeAdminMsg respMsg = null;
respMsg = (MQeAdminMsg)myQM.waitForMessage(targetQMgr,

MQe.Admin_Reply_Queue_Name,
msgTest,
null,
0,
waitFor);

return respMsg;
}

The basic administration reply message
Once an administration request has been processed, a reply, if requested, is sent to
the reply-to queue manager queue. The reply message has the same basic format
as the request message with some additional fields.

administration request message

Chapter 6. Administering messaging resources 99

A reply is made up of:
1. Base administration fields. These are copied from the request message
2. Administration fields that are specific to the resource being managed
3. Optional fields to assist with the processing of administration messages. These

are copied from the request message
4. Administration fields detailing outcome of request
5. Administration fields providing detailed results of the request that are specific

to the resource being managed
6. Administration fields detailing errors that are specific to the resource being

managed

The first three items are describe in “The basic administration request message” on
page 94. The reply specific fields are described in the following sections.

Outcome of request fields
Admin_RC field

This byte field contains the overall outcome of the request. This is a field
of type int that is set to one of:

MQeAdminMsg.RC_Success
The action completed successfully

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2, 5

(Error field items: 1 per
characteristic in error.)

Field in error
…

6

Admin_Errors:

Reply admin field items:

Admin_RC
Admin_Reason

4

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure 15. Administration reply message

administration reply message

100 MQSeries Everyplace Programming Guide

|

MQeAdminMsg.RC_Failed
The request failed completely.

MQeAdminMsg.RC_Mixed
The request was partially successful. A mixed return code could
result if a request is made to update four attributes of a queue and
three succeed and one fails.

Admin_Reason
A unicode field containing the overall reason for the failure in the case of
Mixed and Failed.

Admin_Parms
An MQeFields object containing a field for each characteristics of the
managed resource

Admin_Errors
An MQeFields object containing one field for each update that failed. Each
entry contained in the Admin_Errors field is of type ascii or asciiArray.

The following methods are available for getting some of the reply fields:

Table 7. Getting administration reply fields

Administration field Field type get method

Admin_RC int int getAction()

Admin_Reason unicode String getReason()

Admin_Parms MQeFields MQeFields getOutputFields()

Admin_Errors MQeFields MQeFields getErrorFields()

Depending on the action performed, the only fields of interest may be the return
code and reason. This is the case for delete. For other actions such as inquire,
more details may be required in the reply message. For instance, if an inquire
request is made for fields Queue_Description and Queue_FileDesc, the resultant
MQeFields object would contain the values for the actual queue in these two fields.

The following table shows the Admin_Parms fields of a request message and a reply
message for an inquire on several parameters of a queue:

Table 8. Enquiring on queue parameters

Admin_Parms field
fame

Request message Reply message

Type Value Type Value

Admin_Name ascii ″TestQ″ ascii ″TestQ″

Queue_QMgrName ascii ″ExampleQM″ ascii ″ExampleQM″

Queue_Description Unicode null Unicode ″A test queue″

Queue_FileDesc ascii null ascii ″c:\queues\″

For actions where no additional data is expected on the reply, the Admin_Parms field
in the reply matches that of the request message. This is the case for the create and
update actions.

Some actions, such as create and update, may request that several characteristic of
a managed resource be set or updated. In this case, it is possible for a return code
of RC_Mixed to be received. Additional details indicating why each update failed

administration reply message

Chapter 6. Administering messaging resources 101

are available from the Admin_Errors field. The following table shows an example of
the Admin_Parms field for a request to update a queue and the resultant
Admin_Errors field:

Table 9. Request and reply message to update a queue

Field name Request message Reply message

Type Value Type Value

Admin_Parms field

Admin_Name ascii ″TestQ″ ascii ″TestQ″

Queue_QMgrName ascii ″ExampleQM″ ascii ″ExampleQM″

Queue_Description Unicode null Unicode ″ExampleQM″ ″A
new description″

Queue_FileDesc ascii null Unicode ″D:\queues″

Admin_Errors field

Queue_FileDesc n/a n/a ascii ″Code=4;com.ibm.
mqe.MQeException:
wrong field type″

For fields where the update or set is successful there is no entry in the
Admin_Errors field.

A detailed description of each error is returned in an ascii string. The value of the
error string is the exception that occurred when the set or update was attempted. If
the exception was an MQeException, the actual exception code is returned along
with the toString representation of the exception. So, for an MQeException, the
format of the value is:
"Code=nnnn;toString representation of the exception"

The following code fragment shows how to check the outcome of an
administration request and to send any errors to System.out.
/**
* Check to see if a good reply was received.
* If not detail the error(s) that occurred
* @return boolean true if good
* @param replyMsg reply message to check
* Throws an Exception if the request failed.
*/
public boolean checkReply(MQeAdminMsg replyMsg) throws Exception
{

// Was a reply received ?
if (replyMsg == null)
{

System.out.println("..No response received to the request");
throw new Exception("No response message received");

}
// If the reply was not successful output details for failure
if (replyMsg.getRC() != MQeAdminMsg.RC_Success)
{

System.out.println("..Action Failed: "+replyMsg.getReason());

// If mixed then detail each error that occurred
if (replyMsg.getRC() == MQeAdminMsg.RC_Mixed)
{

MQeFields errors = replyMsg.getErrorFields();
Enumeration en = errors.fields();
// process each error
while(en.hasMoreElements())

administration reply message

102 MQSeries Everyplace Programming Guide

{
String value[];
String name = (String)en.nextElement();
// Field in error may be an array
if (errors.dataType(name) == MQeField.TypeArrayElements)

value = errors.getAsciiArray(name);
else

value = new String[] { errors.getAscii(name) };
for (int j=0; j<value.length; j++)

System.out.println("Field in error: "+name+" "+value[j]);
}

}
// Request failed so throw exception
throw new MQeException(replyMsg.getReason());

}
return true; // All is OK

}

Administration of managed resources
As described in previous sections, MQSeries Everyplace has a set of resources that
can be administered with administration messages. These resources are known as
managed resources. The following sections provide information on how to manage
some of these resources. For detailed description of the application programming
interface for each resource see the MQSeries Everyplace for Multiplatforms
Programming Reference.

Queue managers
The complete management life-cycle for most managed resources can be controlled
with administration messages. This means that the managed resource can be
brought into existence, managed and then deleted with administration messages.
This is not the case for queue managers. Before a queue manager can be managed
it must be created and started. See “Creating and deleting queue managers” on
page 35 for information on creating and starting a queue manager.

The queue manager has very few characteristics itself, but it controls other
MQSeries Everyplace resources. When you inquire on a queue manager, you can
obtain a list of connections to other queue managers and a list of queues that the
queue manager can work with. Each list item is the name of either a connection or
a queue. Once you know the name of a resource, you can use the appropriate
message to manage the resource. For instance you use an
MQeConnectionAdminMessage to manage connections.

Connections
Connections define how to connect one queue manager to another queue manager.
Once a connection has been defined, it is possible for a queue manager to put
messages to queues on the remote queue manager. The following diagram shows
the constituent parts that are required for a remote queue on one queue manager
to communicate with a queue on a different queue manager:

administration reply message

Chapter 6. Administering messaging resources 103

Communication happens at different levels:

Transporter:
Logical connection between two queues

Channel:
Logical connection between two systems

Adapter:
Protocol specific communication

The channel and adapter are specified as part of a connection definition. The
transporter is specified as part of a remote queue definition. The following
example code shows a method that instantiates and primes an
MQeConnectionAdminMsg ready to create a connection:
/**
* Setup an admin msg to create a connection definition
*/
public MQeConnectionAdminMsg addConnection(remoteQMgr

adapter,
parms,
options,
channel,
desc) throws Exception

{
String remoteQMgr = "ServerQM";
/*
* Create an empty queue manager admin message and parameters field
*/
MQeConnectionAdminMsg msg = new MQeConnectionAdminMsg();

/*
* Prime message with who to reply to and a unique identifier
*/
MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of queue manager to add routes to
*/
msg.setName(remoteQMgr);

/*
* Set the admin action to create a new queue
* The connection is setup to use a default channel. This is an alias

Local queue manager Remote queue manager

Channel Channel

Transporter Transporter

Remote
queue Queue

Network
adapter

Network
adapter

Figure 16. Queue manager connections

administration of connections

104 MQSeries Everyplace Programming Guide

* which must have be setup on the queue manager for the connection to
* work.
*/
msg.create(adapter,

parms,
options,
channel,
desc);

return msg;
}

MQSeries Everyplace provides a choice of channel and adapter types. Depending
on the selection, queue managers can be connected in the following ways:
v Client to server
v Peer to peer

Client to server
In a client to server configuration, one queue manager acts as a client and the
other runs in a server environment. A server allows multiple simultaneous
incoming connections (channels). To accomplish this the server must have
components that can handle multiple incoming requests. See “Server queue
managers” on page 50 for a description of how to run a queue manager in a server
environment.

Figure 17 shows the typical connection components in a client to server
configuration.

MQeChannel

Transporter

Network
adapter

MQeChannel

Transporter

Remote
queue

Client
Local queue manager

Server
Remote queue manager

Network
adapter

Queue

Network adapter

MQeChannelListener

MQeChanneManager

Figure 17. Client to server connections

administration of connections

Chapter 6. Administering messaging resources 105

You use MQeConnectionAdminMsg to configure the client portion of a connection.
The channel type is com.ibm.mqe.MQeChannel. Normally an alias of DefaultChannel
is configured for MQeChannel. The following code fragment shows how to
configure a connection on a client to communicate with a server using the http
protocol.
/**
* Create a connection admin message that creates a connection
* definition to a remote queue manager using the HTTP protocol. Then
* send the message to the client queue manager.
*/
public addClientConnection(MQeQueueManager myQM,

String targetQMgr) throws Exception
{

String remoteQMgr = "ServerQM";
String adapter = "Network:127.0.0.1:80";

// This assumes that an alias called Network has been setup for
// network adapter com.ibm.mqe.adapters.MQeTcpipHttpAdapter

String parameters = null;
String options = null;
String channel = "DefaultChannel";
String description = "client connection to ServerQM";

/*
* Setup the admin msg
*/
MQeConnectionAdminMsg msg = addConnection(remoteQMgr,

adapter,
parameters,
options,
channel,
desc);

/*
* Put the admin message to the admin queue (not using assured flows)
*/
myQM.putMessage(targetQMgr,
MQe.Admin_Queue_Name,
msg,
null,
0);

}

Peer to peer
In a peer to peer configuration, a queue manager running as a peer can talk to
many other peers simultaneously but can only have one other peer talk to it at any
time. One peer is configured as a master or initiator, the other as a slave or
receiver.

You configure the master in much the same way as a client connection definition,
the only difference being the type of channel to use. The channel type must be set
to com.ibm.mqe.adapters.MQePeerChannel (or an alias).

administration of connections

106 MQSeries Everyplace Programming Guide

You configure the slave or receiver in a similar way but with the following
differences:
v The connection definition must have the same name as the queue manager it is

defined on
v The channel type must be com.ibm.mqe.adapters.MQePeerChannel

v The adapter must be configured as a listener

The following code fragment configures a queue manager called PeerQM1 as a peer
receiver, listening on port 8082 using the HTTP protocol.
/**
* Create a connection admin message which will create a connection
* definition to a remote queue manager using the HTTP protocol. Then
* send the message to the client queue manager.
*/
public addClientConnection(MQeQueueManager myQM,

String targetQMgr) throws Exception
{

String remoteQMgr = "PeerQM1";
// To be a receiver the connection definition called "PeerQM1" must
// be configured on queue manager "PeerQM1"

String adapter = "Network::8082";
// This assumes that an alias called Network has been setup for
// network adapter com.ibm.mqe.adapters.MQeTcpipHttpAdapter

String parameters = null;
String options = null;
String channel = "com.ibm.mqe.adapters.MQePeerChannel";
String description = "peer receiver on PeerQM";

/*
* Setup the admin msg
*/
MQeConnectionAdminMsg msg = addConnection(remoteQMgr,
adapter,

parameters,
options,
channel,
desc);

/*
* Put the admin message to the admin queue (not using assured flows)
*/
myQM.putMessage(targetQMgr,

Remote Queue

MQePeerChannel
MQePeerChannel

(Receiver)

Peer (master)
Local queue manager

Peer (slave)
Remote queue manager

Transporter Transporter

Network
adapter

Network
adapter

Figure 18. Peer to peer connections

administration of connections

Chapter 6. Administering messaging resources 107

MQe.Admin_Queue_Name,
msg,
null,
0);

}

The following table shows the connection definition parameters for a receiver on
PeerQM1 and for any other peer queue manager that would like to communicate
with it.

Table 10. Peer-to-peer connection definitions

Master (Initiator) Slave (Receiver)

Queue Manager Any ″PeerQM1″

Connection name ″PeerQM1″ ″PeerQM1″

Channel com.ibm.mqe.MQePeerChannel com.ibm.mqe.MQePeerChannel

Adapter Network:192.168.0.10:8082 Network::8082

Adapters
For details of the adapters supplied with MQSeries Everyplace see the “Chapter 10.
MQSeries Everyplace adapters” on page 227 and Chapter 9 in the MQSeries
Everyplace for Multiplatforms Programming Reference.

Routing connections
You can set up a connection so that a queue manager routes messages through an
intermediate queue manager. This requires two connections:
1. A connection to the intermediate queue manager
2. A connection to the target queue manager

The first connection is created by the methods described earlier in this section,
either as a client or as a peer connection. For the second connection, the name of
the intermediate queue manager is specified in place of the network adapter name.
With this configuration an application can put messages to the target queue
manager but route them through one or more intermediate queue managers.

Aliases
You can assign multiple names or aliases to a connection (see “Aliases” on
page 46). When an application calls methods on the MQeQueueManager class that
require a queue manager name be specified, it can also use an alias.

You can alias both local and remote queue managers. To alias a local queue
manager, you must first establish a connection definition with the same name as
the local queue manager. This is a logical connection that can have all parameters
set to null.

To add and remove aliases use the Action_AddAlias and Action_RemoveAlias
actions of the MQeConnectionAdminMsg class. You can add or remove multiple
aliases in one message. Put the aliases that you want to manipulated directly into
the message by setting the ascii array field Con_Aliases. Alternatively you can use
the two methods addAlias() or removeAlias(). Each of these methods takes one
alias name but you can call the method repeatedly to add multiple aliases to a
message. The following snippet of code shows how to add connection aliases to a
message:
/**
* Setup an admin msg to add aliases to a queue manager (connection)
*/
public MQeConnectionAdminMsg addAliases(String queueManagerName

administration of connections

108 MQSeries Everyplace Programming Guide

String aliases[]) throws Exception
{

/*
* Create an empty connection admin message
*/
MQeConnectionAdminMsg msg = new MQeConnectionAdminMsg();

/*
* Prime message with who to reply to and a unique identifier
*/
MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of the connection to add aliases to
*/
msg.setName(queueManagerName);

/*
* Use the addAlias method to add aliases to the message.
*/
for (int i=0; i<aliases.length; i++)
{

msg.addAlias(aliases[i]);
}

return msg;
}

Queues
The queue types provided by MQSeries Everyplace are described briefly in
“MQSeries Everyplace queues” on page 3. The simplest of these is a local queue
that is implemented in class MQeQueue and is managed by class
MQeQueueAdminMsg. All other types of queue inherit from MQeQueue. For each
type of queue there is a corresponding administration message that inherits from
MQeQueueAdminMsg. The following sections describe the administration of the
various types of queues.

Local queue
You can create, update, delete and inquire on local queues and their descendents
using administration actions provided in MQSeries Everyplace. The basic
administration mechanism is inherited from MQeAdminMsg.

The name of a queue is formed from the target queue manager name (for a local
queue this is the name of the queue manager that owns the queue) and a unique
name for the queue on that queue manager. Two fields in the administration
message are used to uniquely identify the queue, these are the ascii fields
Admin_Name and Queue_QMgrName. You can use the setName(queueManagerName,
queueName) method to set these two fields in the administration message.

The diagram below shows an example of a queue manager configured with a local
queue. Queue manager qm1 has a local queue named invQ. The queue manager
name characteristic of the queue is qm1, which matches the queue manager name.

administration of connections

Chapter 6. Administering messaging resources 109

Message Store: Local queues require a message store to store their messages.
Each queue can specify what type of store to use, and where it is located. Use the
queue characteristic Queue_FileDesc to specify the type of message store and to
provide parameters for it. The field type is ascii and the value must be a file
descriptor of the form:

adapter class:adapter parameters
or
adapter alias:adapter parameters

For example:
MsgLog:d:\QueueManager\ServerQM12\Queues

MQSeries Everyplace Version 1.2 provides two adapters, one for writing messages
to disk and one for storing them in memory. By creating an appropriate adapter,
messages can be stored in any suitable place or medium (such as DB2 data base or
writable CDs).

The choice of adapter determines the persistence and resilience of messages. For
instance if a memory adapter is used then the messages are only as resilient as the
memory. Memory may be a much faster medium than disk but is highly volatile
compared to disk. Hence the choice of adapter is an important one.

If you do not provide message store information when creating a queue, it defaults
to the message store that was specified when the queue manager was created. See
“Chapter 4. Queue managers, messages, and queues” on page 35 for more details.

The following should be taken into consideration when setting the Queue_FileDesc
field:
v Ensure that the correct syntax is used for the system that the queue resides on.

For instance, on a windows system use "\" as a file separator on UNIX® systems
use "/" as a file separator. In some cases it may be possible to use either but this
is dependent on the support provided by the JVM (Java Virtual Machine) that
the queue manager runs in. As well as file separator differences, some systems
use drive letters like Windows NT whereas others like UNIX do not.

Queue
invQ

msg = getMessage(null, invQ, ...)

putMessage(null, invQ, msg, …)

qm1

Figure 19. Local queue

administration of queues

110 MQSeries Everyplace Programming Guide

v On some systems it is possible to specify relative directories (".\") on others it is
not. Even on those where relative directories can be specified, they should be
used with great caution as the current directory can be changed during the
lifetime of the JVM. Such a change causes problems when interacting with
queues using relative directories.

Creating a local queue: The following code fragment demonstrates how to create
a local queue:
/**
* Create a new local queue
*/
protected void createQueue(MQeQueueManager localQM,

String qMgrName,
String queueName,
String description,
String queueStore

) throws Exception
{

/*
* Create an empty queue admin message and parameters field
*/
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();

/*
* Prime message with who to reply to and a unique identifier
*/
MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of queue to manage
*/
msg.setName(qMgrName, queueName);

/*
* Add any characteristics of queue here, otherwise
* charateristics will be left to default values.
/
if (description != null) // set the description ?

parms.putUnicode(MQeQueueAdminMsg.Queue_Description,
description);

if (queueStore != null) // Set the queue store ?
// If queue store includes directory and file info then it
// must be set to the correct style for the system that the
// queue will reside on e.g \ or /
parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

queueStore);
/*
* Other queue characteristics like queue depth, message expiry
* can be set here ...
*/

/*
* Set the admin action to create a new queue
*/
msg.create(parms);

/*
* Put the admin message to the admin queue (not assured delivery)
*/
localQM.putMessage(qMgrName,

MQe.Admin_Queue_Name,
msg,

administration of queues

Chapter 6. Administering messaging resources 111

null,
0);

}

Queue security: Access and security are owned by the queue and may be granted
for use by a remote queue manager (when connected to a network), allowing these
other queue managers to send or receive messages to the queue. The following
characteristics are used in setting up queue security:
v Queue_Cryptor

v Queue_Authenticator

v Queue_Compressor

v Queue_TargetRegistry

v Queue_AttrRule

For more detailed information on setting up queue based security see “Chapter 8.
Security” on page 173.

Other queue characteristics: You can configure queues with many other
characteristics such as the maximum number of messages that are permitted on the
queue. For a description of these, see the MQeQueueAdminMsg section of the
MQSeries Everyplace for Multiplatforms Programming Reference.

Aliases: Queue names can have aliases similar to those described for connections
in “Aliases” on page 108. The code fragment in the connections section alias
example shows how to setup aliases on a connection, setting up aliases on a queue
is the same except that an MQeQueueAdminMsg is used instead of an
MQeConnectionAdminMsg.

Action restrictions: Certain administrative actions can only be performed when
the queue is in a predefined state, as follows:

Action_Update

v If the queue is in use, characteristics of the queue cannot be changed
v The security characteristics of the queue cannot be changed if there are

messages on the queue
v The queue message store cannot be changed once it has been set

Action_Delete
The queue cannot be deleted if the queue is in use or if there are messages
on the queue

If the request requires that the queue is not in use, or that it has zero messages, the
administration request can be retried, either when the queue manager restarts or at
regular time intervals. See “The basic administration request message” on page 94
for details on setting up an administration request retry.

Remote queue
Remote queues are implemented by the MQeRemoteQueue class and are managed
with the MQeRemoteQueueAdminMsg class which is a subclass of
MQeAdminMsg.

The name of a queue is formed from the target queue manager name (for a remote
queue this is the name of the queue manager where the queue is local) and the
real name of the queue on that queue manager. Two fields in the administration
message are used to uniquely identify the queue, these are the ascii fields
Admin_Name and Queue_QMgrName. You can use the setName(queueManagerName,

administration of queues

112 MQSeries Everyplace Programming Guide

queueName) method to set these two fields in the administration message. For a
remote queue definition, the queue manager name of the queue never matches the
name of the queue manager where the definition resides.

The remote definition of the queue should, in most cases, match that of the real
queue. If this is not the case different results may be seen when interacting with
the queue. For instance:
v For asynchronous queues if max message size on the remote definition is greater

than that on the real queue, the message is accepted for storage on the remote
queue but may be rejected when moved to the real queue. The message is not
lost, it remains on the remote queue but cannot be delivered.

v If the security characteristics for a synchronous queue do not match, MQSeries
Everyplace negotiates with the real queue to decide what security characteristics
should be used. In some cases the message put is successful, in others an
attribute mismatch exception is returned.

Setting the operation mode: To set a queue for synchronous operation, set the
Queue_Mode field to Queue_Synchronous.

Asynchronous queues require a message store to temporarily store messages.
Definition of this message store is the same as for local queues (see “Message
Store” on page 110).

To set a queue for asynchronous operation, set the Queue_Mode field to
Queue_Asynchronous.

Figure 20 on page 114 shows an example of a remote queue set up for synchronous
operation and a remote queue setup for asynchronous operation.

administration of queues

Chapter 6. Administering messaging resources 113

v In both the synchronous and asynchronous examples queue manager qm2 has a
local queue invQ

v In the synchronous example, queue manager qm1 has a remote queue definition
of queue invQ. invQ resides on queue manager qm2. The mode of operation is set
to synchronous.
An application using queue manager qm1 and putting messages to queue
qm2.invQ establishes a network connection to queue manager qm2 (if it does not
already exist) and the message is immediately put on the real queue. If the
network connection cannot be established then the application receives an
exception that it must handle.

v In the asynchronous example, queue manager qm1 has a remote queue definition
of queue invQ. invQ resides on queue manager qm2. The mode of operation is set
to asynchronous.
An application using queue manager qm1 and putting messages to queue
qm2.invQ stores messages temporarily on the remote queue on qm1. When the
transmission rules allow, the message is moved to the real queue on queue
manager qm2. The message remains on the remote queue until the transmission
is successful.

Creating a remote queue: The following code fragment shows how to setup an
administration message to create a remote queue.

qm1

qm2

RemoteQ
invQ on qm2

mode:asynchronous

qm1

Remote
synchronous

Remote
asynchronous

RemoteQ
invQ on qm2

mode:synchronous

getMessage(qm2, invQ, ..)

qm2

Queue
invQ

on qm2

Queue
invQ

on qm2

getMessage(qm2, invQ, ..)

putMessage(qm2, invQ, msg,...) putMessage(qm2, invQ, msg, ...)

Figure 20. Remote queue

administration of queues

114 MQSeries Everyplace Programming Guide

/**
* Create a remote queue
*/
protected void createQueue(MQeQueueManager localQM,

String targetQMgr,
String qMgrName,
String queueName,

String description,
String queueStore,

byte queueMode
) throws Exception

{
/*
* Create an empty queue admin message and parameters field
*/
MQeRemoteQueueAdminMsg msg = new MQeRemoteQueueAdminMsg();
MQeFields parms = new MQeFields();

/*
* Prime message with who to reply to and a unique identifier
*/
MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of queue to manage
*/
msg.setName(qMgrName, queueName);

/*
* Add any characteristics of queue here, otherwise
* charateristics will be left to default values.
/
if (description != null) // set the description ?

parms.putUnicode(MQeQueueAdminMsg.Queue_Description,
description);

// set the queue access mode if mode is valid
if (queueStore != MQeQueueAdminMsg.Queue_Asynchronous &&

queueStore != MQeQueueAdminMsg.Queue_Synchronous)
throw new Exception ("Invalid queue store");

parms.putByte(MQeQueueAdminMsg.Queue_Mode,
queueMode);

if (queueStore != null) // Set the queue store ?
// If queue store includes directory and file info then it
// must be set to the correct style for the system that the
// queue will reside on e.g \ or /
parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

queueStore);
/*
* Other queue characteristics like queue depth, message expiry
* can be set here ...
*/

/*
* Set the admin action to create a new queue
*/
msg.create(parms);

/*
* Put the admin message to the admin queue (not assured delivery)
* on the target queue manager
*/
localQM.putMessage(targetQMgr,

MQe.Admin_Queue_Name,

administration of queues

Chapter 6. Administering messaging resources 115

msg,
null,
0);

}

For synchronous operation, the queue characteristics for inclusion in the remote
queue definition can be obtained using queue discovery which is explained on page
76.

Store-and-forward queue
This type of queue is normally defined on a server and can be configured in the
following ways:
v Forward messages to the next queue manager. The next queue manager may not

be the target queue manager.
v Hold messages until the target queue manager can collect the messages from the

store-and-forward queue. This can be accomplished using a home-server queue
(see “Home-server queue” on page 119). Using this approach messages are pulled
from the store-and-forward queue.

Store-and-forward queues are implemented by the MQeStoreAndForwardQueue
class. They are managed with the MQeStoreAndForwardQueueAdminMsg class,
which is a subclass of MQeRemoteQueueAdminMsg. The main addition in the
subclass is the ability to add and remove the names of queue managers for which
the store-and-forward queue can hold messages. You can add and delete queue
manager names with the Action_AddQueueManager and
Action_RemoveQueueManager actions. You can add or remove multiple queue
manager names with one administration message. You can put the names directly
into the message by setting the ascii array field Queue_QMgrNameList. Alternatively
you can use the addQueueManager() and removeQueueManager() methods. Each
of these methods takes one queue manager name but you can call the method
repeatedly to add multiple queue managers to a message.

The following code fragment shows how to add target queue manager names to a
message:
/**
* Setup an admin msg to add target queue managers to
* a store and forward queue.
*/
public MQeStoreAndForwardQueueAdminMsg addQueueManager(String queueName

String queueManagerName
String qMgrNames[])
throws Exception

{
/*
* Create an empty admin message
*/
MQeStoreAndForwardQueueAdminMsg msg =
new MQeStoreAndForwardQueueAdminMsg();

/*
* Prime message with who to reply to and a unique identifier
*/
MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of the store and forward queue
*/
msg.setName(queueManagerName, queueName);

/*
* Use the addAlias method to add aliases to the message.

administration of queues

116 MQSeries Everyplace Programming Guide

|
|

*/
for (int i=0; i<qMgrNames.length; i++)
{

msg.addQueueManager(qMgrNames[i]);
}

return msg;
}

Each store-and-forward queue has to be configured to handle messages for a
specific queue manager. Use the Action_AddQueueManager action, described
earlier in this section, to add the queue manager information to each queue.

If you want the store-and-forward queue to push messages to the next queue
manager, the queue manager name attribute of the store-and-forward queue must
be the name of the next queue manager. You must also configure a connection to
the next queue manager.

If you want the store-and-forward queue to wait for messages to be collected
(pulled), the queue manager name attribute of the store-and-forward queue has no
meaning (but it must still be configured). The only restriction on the queue
manager attribute of the queue name is that there must not be a connection with
the same name. If there is such a connection, the queue tries use the connection to
forward messages.

Connection to
qmb via qm2

Connection to
qma via qm2

Connection
to qm3

qma qmb qmc

Gateway Gateway

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm2

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm3

qm1

MQeRemoteQueue
invQ on qma

mode:asynchronous

putMessage(qma, invQ, msg, …)

Figure 21. Store-and-forward queue

administration of queues

Chapter 6. Administering messaging resources 117

|
|
|
|

|

Figure 21 on page 117 shows an example of two store and forward queues on
different queue managers, one setup to push messages to the next queue manager,
the other setup to wait for messages to be collected:
v Queue manager qm2 has a connection configured to queue manager qm3

v Queue manager qm2 has a store-and-forward queue configuration that pushes
messages using connection qm3, to queue manager qm3. Note that the queue
manager name portion of the store-and-forward queue is qm3 which matches the
connection name

v Store-and-forward queue qm3.SFQ on qm2 has been configured to handle
messages that are destined for queue managers qma, qmb and qmc.

v Queue manager qm3 has a store-and-forward queue qm3.SFQ. The queue manager
name portion of the queue name qm3 does not have a corresponding connection
called qm3, so all messages are stored on the queue until they are collected.

v Store-and-forward queue qm3.SFQ on qm3 holds messages on behalf of queue
managers qma, qmb and qmc. Messages are stored until they are collected or they
expire.

If a queue manager wants to send a message to another queue manager using a
store-and-forward queue on an intermediate queue manager, the initiating queue
manager must have:
v A connection configured to the intermediate queue manager
v A connection configured to the target queue manager routed through the

intermediate queue manager
v A remote queue definition for the target queue

When these conditions are fulfilled, an application can put a message to the target
queue on the target queue manager without having any knowledge of the layout
of the queue manager network. This means that changes to the underlying queue
manager network do not affect application programs.

In Figure 21 on page 117 queue manager qm1 has been configured to allow
messages to be put to queue invQ on queue manager qma. The configuration
consists of:
v A connection to the intermediate queue manager qm2

v A connection to the target queue manager qma

v A remote asynchronous queue invQ on qma

If an application program uses queue manager qm1 to put a message to queue invQ
on queue manager qma the message flows as follows:
1. The application puts the message to asynchronous queue qma.invQ. The

message is stored locally on qm1 until transmission rules allow the message to
be moved to the next hop

2. When transmission rules allow, the message is moved. Based on the connection
definition for qma, the message is routed to queue manager qm2

3. The only queue configured to handle messages for queue invQ on queue
manager qma is store-and-forward queue qm3.SFQ on qm2. The message is
temporarily stored in this queue

4. The stored and forward queue has a connection that allows it to push messages
to its next hop which is queue manager qm3

5. Queue manager qm3 has a store-and-forward queue qm3.SFQ that can hold
messages destined for queue manager qma so the message is stored on that
queue

administration of queues

118 MQSeries Everyplace Programming Guide

6. Messages for qma remain on the store-and-forward queue until they are
collected by queue manager qma. See “Home-server queue” for how to set this
up.

Home-server queue
Home-server queues are implemented by the MQeHomeServerQueue class. They
are managed with the MQeHomeServerQueueAdminMsg class which is a subclass
of MQeRemoteQueueAdminMsg. The only addition in the subclass is the
Queue_QTimerInterval characteristic. This field is of type int and is set to a
millisecond timer interval. If you set this field to a value greater than zero, the
home-server queue checks the home server every n milliseconds to see if there are
any messages waiting for collection. Any messages that are waiting are delivered
to the target queue. A value of 0 for this field means that the home-server is only
polled when the MQeQueueManager.triggertransmission method is called

The name of the home-server queue is set as follows:
v The queue name must match the name of the store-and-forward queue

Connection to
qm3 via qm2

Connection to
qm2

push pull

Homeserver queue
manager for qm3

msg = getMessage(qm3, invQ, ...)

qm3

MQeQueue
invQ on qm3

MQeHomeServerQueue
SFQ on qm2

qm1

MQeRemoteQueue
invQ on qm3

mode:asynchronous

putMessage(qm3, invQ, msg, ...)

qm2

MQeStoreAndForwardQueue
SFQ on qm2

hold messages for: qm3

Figure 22. Home-server queue

administration of queues

Chapter 6. Administering messaging resources 119

|
|

v The queue manager attribute of the queue name must be the name of the
home-server queue manager

The queue manager where the home-server queue resides must have a connection
configured to the home-server queue manager.

Figure 22 on page 119 shows an example of a queue manager qm3 that has a
home-server queue SFQ configured to collect messages from its home-server queue
manager qm2.

The configuration consists of:
v A home server queue manager qm2

v A store and forward queue SFQ on queue manager qm2 that holds messages for
queue manager qm3

v A queue manager qm3 that normally runs disconnected and cannot accept
connections from queue manager qm2

v Queue manager qm3 has a connection configured to qm2

v A home server queue SFQ that uses queue manager qm2 as its home server

Any messages that are directed to queue manager qm3 through qm2 are stored on
the store-and-forward queue SFQ on qm2 until the home-server queue on qm3
collects them.

MQSeries-bridge queue
An MQSeries-bridge queue is a remote queue definition that refers to a queue
residing on an MQSeries queue manager. The queue holding the messages resides
on the MQSeries queue manager, not on the local queue manager.

v The MQSaturnQM MQSeries queue manager has a local queue MQSaturnQ defined .
v The MQeEarthQM must have an MQSeries-bridge queue defined called MQSaturnQ

on the MQSaturnQM queue manager.
v Applications attached to the MQeEarthQM queue manager put messages to the

MQSaturnQ MQSeries-bridge queue, and the bridge queue delivers the message to
the MQSaturnQ on the MQSaturnQM queue manager.

The definition of the bridge queue requires that bridge, MQSeries queue manager
proxy, and client connection names are specified to uniquely identify a client
connection object in the bridge object hierarchy (see Figure 33 on page 136). This
information identifies how the MQSeries-bridge accesses the MQSeries queue
manager, to manipulate an MQSeries queue.

MQeEarthQM

MQSeries
Everyplace
application

MQSeries-bridge
queue

MQSeries Everyplace
queue manager
Windows 2000

I/P address 20.8.9.50

MQSaturnQM

MQSeries
queue manager

Windows NT
I/P address 20.8.9.51

MQSeries
local queue

Figure 23. MQSeries-bridge queue

administration of queues

120 MQSeries Everyplace Programming Guide

The MQSeries-bridge queue provides the facility to put to a queue on a queue
manager that is not directly connected to the MQSeries-bridge. This allows a
message to be sent to an MQSeries queue manager (the target) routed through
another MQSeries queue manager. The MQSeries-bridge queue takes the name of
the target queue manager and the intermediate queue manager is named by the
MQSeries queue manager proxy.

For a complete list of the characteristics used by the MQSeries-bridge queue, see
MQeMQBridgeQueueAdminMsg in the com.ibm.mqe.bridge section of MQSeries
Everyplace for Multiplatforms Programming Reference.

Table 11 details the list of operations supported by the MQSeries-bridge queue,
once it has been configured:

Table 11. Message operations supported by MQSeries—bridge queue

Type of operation Supported by MQSeries-bridge queue

getMessage() no

putMessage() yes

browseMessage() no

browseAndLockMessage no

If an application attempts to use one of the unsupported operations, an
MQeException of Except_NotSupported is returned.

When an application puts a message to the bridge queue, the bridge queue takes a
logical connection to the MQSeries queue manager from the pool of connections
maintained by the bridge’s client connection object. The logical connection to
MQSeries is supplied by either the MQSeries Java Bindings classes, or the
MQSeries Classes for Java. The choice of classes depends on the value of the
hostname field in the MQSeries queue manager proxy settings. Once the
MQSeries-bridge queue has a connection to the MQSeries queue manager, it
attempts to put the message to the MQSeries queue.

An MQSeries-bridge queue must always have an access mode of synchronous and
cannot be configured as an asynchronous queue. This means that, if your put
operation is directly manipulating an MQSeries-bridge queue and returns success,
your message has passed to the MQSeries system while your process was waiting
for the put operation to complete.

If you do not wish to use synchronous operations against the MQSeries-bridge
queue, you may set up an asynchronous remote queue definition (see
“Asynchronous messaging” on page 75) that refers to the MQSeries-bridge queue.
Alternatively you can set up a store-and-forward queue, and home-server queue.
These two alternative configurations provide the application with an asynchronous
queue to which it can put messages. With these configurations, when your
putMessage() method returns, the message may not necessarily have passed to the
MQSeries queue manager.

An example of MQSeries-bridge queue usage is described in “Configuration
example” on page 139.

administration of queues

Chapter 6. Administering messaging resources 121

Administration queue
The administration queue is implemented in class MQeAdminQueue and is a
subclass of MQeQueue so it has the same features as a local queue. It is managed
using administration class MQeAdminQueueAdminMsg.

If a message fails because the resource to be administered is in use, it is possible to
request that the message be retried. “The basic administration request message” on
page 94 provides details on setting up the maximum number attempts count. If the
message fails due to the managed resource not being available and the maximum
number of attempts has not been reached, the message is left on the queue for
processing at a later date. If the maximum number of attempts has been reached,
the request fails with an MQeException. By default the message is retried the next
time the queue manager is started. Alternatively a timer can be set on the queue
that processes messages on the queue at specified intervals. The timer interval is
specified by setting the long field Queue_QTimerInterval field in the administration
message. The interval value is specified in milliseconds.

Security and administration
By default, any MQSeries Everyplace application can administer managed
resources. The application can be running as a local application to the queue
manager that is being managed, or it can be running on a different queue manager.
It is important that the administration actions are secure, otherwise there is
potential for the system to be misused. MQSeries Everyplace provides the basic
facilities for securing administration using queue-based security which is described
in “Chapter 8. Security” on page 173.

If you use synchronous security, you can secure the administration queue by
setting security characteristics on the queue. For example you can set an
authenticator so that the user must be authenticated to the operating system
(Windows NT or UNIX) before they can perform administration actions. This can
be extended so that only a specific user can perform administration.

The administration queue does not allow applications direct access to messages on
the queue, the messages are processed internally. This means that messages put to
the queue that have been secured with message level security cannot be
unwrapped using the normal mechanism of providing an attribute on a get or
browse request. However, a queue rule class can be applied to the administration
queue to unwrap any secured messages so that they can be processed by the
administration queue. The queue rule browseMessage() must be coded to perform
this unwrap and allow administration to take place.

Additional information on implementing queue rules can be found in “Queue
rules” on page 89.

Example administration console
One of the examples provided with MQSeries Everyplace is an administration
graphical user interface (GUI). This example uses many of the administration
techniques and features described in previous sections of this manual. All the
classes for this example are contained in package examples.administration.console.

This example demonstrates the following MQSeries Everyplace administration
features:
v Management of both local and remote queue managers

administration of queues

122 MQSeries Everyplace Programming Guide

|

v Administration of all MQSeries Everyplace managed resources
v Access to all actions of each managed resource
v Use of most of the base MQeAdminMsg features
v A queue browser
v A customized version of the queue browser for the administration reply queue.

This is provided solely as a programming example, it is not expected to be used
outside a development and test environment. It should be noted that this example
works with other examples such as trace, and the client queue manager, and it is
also subclassed to provide an administration example for the MQSeries-bridge (see
“The example administration GUI application” on page 145).

The main console window
To start the console use the command:
java examples.administration.console.Admin

This displays the following window:

This is the central window from which all other interactions are initiated. The
window has three sections:

1. Type of resource to manage
The set of buttons on the left side of the window control the selection of
the resource that is to be managed. There is one button for each type of
MQSeries Everyplace managed resource and one special button called
Setup. The Setup button provides access to a set of base administration
functions such as browsing the reply-to queue and turning trace on and
off.

2. Base administration parameters
The central section of the window allows base administration parameters
to be altered.

Mode: Whether the queue manager to be managed is local or remote.

Local queue manager:
The name of the local queue manager that is initiating the

1

Figure 24. Administration console window

example administration console

Chapter 6. Administering messaging resources 123

administration actions. This is set automatically when a queue
manager is started with the Start QM button.

Remote queue manager:
If the mode is set to remote, this is the name of the queue manager
to be managed. If the mode is set to local, this is always the same
as the local queue manager.

Reply-to queue manager:
The name of the queue manager to which administration reply
messages are to be sent.

Reply-to queue:
The name of the queue to which administration reply messages are
to be sent.

3. Managed resource specific action
Each managed resource has a set of actions that can be performed on it.
The buttons on the right of the main window show the actions for the
resource that is selected on the left of the window. Selecting one of an
action button starts the function for that action. Normally this causes the
display of another window related to the action.

The selected local queue manager must be running in the JVM that the console is
executing in. If it is not already running, it needs to be started using the Start QM
button. This displays a dialog that requests the name and path of the ini file that
contains the queue manager startup parameters. If the queue manager is already
running, the Connect QM button can be selected (this is the case if administration
is started from the example server ExampleAwtMQeServer).

Once the queue manager has been started, any of the resources in area 1 can be
selected and managed.

Queue browser
An example queue browser, AdminQueueBrowser is provided with MQSeries
Everyplace. This example shows how to browse a queue and how to display the
contents of messages on the queue. The example can only browse queues that can
be accessed synchronously and that the user has the necessary authority to access.
The example code is not able to show the messages that are secured using message
level security.

AdminQueueBrowser has been subclassed to provide a queue browser with
enhanced function for browsing the administration reply-to queue. This is
implemented in class AdminLogBrowser. This subclass can be accessed by selecting
the Setup button followed by the Browse reply queue button.

The following figure shows the administration reply-to queue window.

example administration console

124 MQSeries Everyplace Programming Guide

This window has several sections:

1. The name of the administration reply to queue manager and queue

2. Message filter
You can provide a filter to limit the set of messages displayed. This
example allows a filter on the MsgID and CorrelID fields of a message. The
example also makes the assumption that the fields contain strings that
have been encoded in a byte array.

When administration messages are sent from the example console, the
MsgID is set to the name of the queue manager to be managed. It is
therefore possible to display administration messages only for a specific
queue manager.

3. Message view type
You can view messages in the message display panel in the following
ways:

List: A one line summary of each message on the queue.

Full: The contents of all messages on the queue.

Both: Two panels, one panel displays a list with a summary line for each
message, the other panel displays the contents of a message that
has been selected in the message panel.

The number of messages currently being viewed is also displayed.

4. Message display panel
As described in 3, this panel displays messages in various forms. To
display a detailed view of a message in a new window, double click the
message in the list view.

5. Actions
Several buttons provide actions that are specific to the queue browser:

Refresh
Clears the display and then displays the current contents of the
queue. If the queue being browsed is a local queue, a monitor is
automatically started. This monitor refreshes the display when new
messages are added to the queue. If the queue being browsed is
remote then it is not possible to automatically refresh the window
when new messages are added. In this case, the Refresh button
can be used to get the latest contents of the queue.

Empty Queue
Deletes all messages from the queue.

1

2

3

4

5

Figure 25. Reply-to queue window

example administration console

Chapter 6. Administering messaging resources 125

Cancel
Closes the queue browser window.

6. Message
Error and status messages are displayed here.

Action windows
Once you have selected a managed resource type, and you have clicked an action
button, a window opens that displays a list of possible parameters for the action.
Some parameters are mandatory, others are optional. The following figure shows
an example of selecting the add action on a connection:

The action window is the same for most actions. It consists of the following parts:

1. Message area
Error and status messages are displayed here.

2. Names of parameter
Action parameter names.

1

2

3

4

1

2

3

4

5

Figure 26. Action window

example administration console

126 MQSeries Everyplace Programming Guide

3. Value of parameter
An input field where you can change the parameter values. The initial
value displayed is the default value for the parameter.

4. Send field
The check box for each field is automatically selected when a value is
changed. When this field is selected, the field is included in the
administration message. By default the administration message only
contains values that have changed, it does not contain default values.
Default values are understood by the administration message and are not
included in the message to ensure that the message size is kept as small as
possible. If you change a value back to its default, then you must select the
send field check box yourself.

5. Action buttons
For each administration action there are three buttons:

Action The name on this button depends on the administration action (in
this example it is Add connection). The action is always to create
the administration message and send it to the destination queue
manager. The action window is closed.

Apply Create the administration message and send it to the destination
queue manager. The action window remains open allowing the
same message to be sent multiple times or it can be modified and
then sent.

Cancel
Close the action window without sending the administration
message.

Reply windows
You can view the outcome of an administration request with the administration log
browser as described in “Queue browser” on page 124. To see the details of the
result of the request, double click on the reply message in the list view.

The window has the same basic structure as an administration request action
window but has the following differences:

1. Message
Displays the return code and result of the action

1

2

Figure 27. Reply window

example administration console

Chapter 6. Administering messaging resources 127

2. Detailed errors
If the return code was RC_Mixed, any errors relating to a particular field are
displayed alongside the field.

3. Action buttons

OK Close the action reply window

Administration from the command line
MQSeries Everyplace includes some tools that enable the administration of
MQSeries Everyplace objects from the command line, using simple scripts. The
following tools are provided:

QueueManagerUpdater
Creates a device queue manager from an ini file, and sends an
administration message to update the characteristics of a queue manager.

IniFileCreator
Creates an ini file with the necessary content for a client queue manager.

LocalQueueCreator
Opens a client queue manager, adds a local queue definition to it, and
closes the queue manager.

HomeServerCreator
Open a server queue manager, adds a home-server queue, and closesg the
queue manager.

ConnectionCreator
Allow a connection to be added to an MQSeries Everyplace queue
manager without programming anything in Java.

RemoteQueueCreator
Opens a device queue manager for use, sends it an administration message
to cause a remote queue definition to be created, then closes the queue
manager.

MQBridgeCreator
Creates an MQSeries-bridge on an MQSeries Everyplace queue manager.

MQQMgrProxyCreator
Creates an MQSeries queue manager proxy for a bridge.

MQConnectionCreator
Creates a connection definition for an MQSeries system on a proxy object.

MQListenerCreator
Creates an MQSeries transmit queue listener to pull messages from
MQSeries

MQBridgeQueueCreator
Creates an MQSeries Everyplace queue that can reference messages on an
MQSeries queue.

StoreAndForwardQueueCreator
Creates a store-and-forward queue.

StoreAndForwardQueueQMgrAdder
Adds a queue manager name to the list of queue managers for which the
store-and-forward queue accepts messages.

The following files are also provided:

example administration console

128 MQSeries Everyplace Programming Guide

|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|

Example script files
Two example .bat files, and a runmqsc script to demonstrate setting up a
fictitious network configuration, involving a branch, a gateway, and an
MQSeries system.

Rolled-up Java example
An example of how a batch file can be rolled-up into a Java file for
batch-language independence.

Example of use of command-line tools
The command-line tools can be used to create an initial queue manager
configuration using a script, and without needing to know how to program in the
Java programming language.

The following example demonstrate how to use these tools to configure the
network topology shown in the following figure.

In this scenario:
v The branch offices need to send sales information to the central site for

processing by applications on the MQSeries server
v Each branch has a single machine with DNS names BRANCH000, BRANCH001, and

BRANCH002 respectively. These machines all run MQSeries Everyplace each having
a single queue manager names BRANCH000QM, BRANCH001QM, and BRANCH002QM
respectively.

v The central office machine GATEWAY00 runs a single gateway queue manager
GATEWAY00QM

v The central office machine CENTRAL00 runs MQSeries with a single queue
manager CENTRAL00QM

v When a sale occurs, a message is sent to the MQSeries queue manager
CENTRAL00QM, into a queue called BRANCH.SALES.QUEUE.

v The messages are encoded in a byte array at the branch, and sent inside an
MQeMQMsgObject.

v The MQSeries system must be able to send messages back to each branch queue
manager.

Local area
network

GATEWAY00
central office

runs MQSeries Everyplace

CENTRAL00
central office

runs MQSeries

Leased
lines

Branch000

Branch001

Branch002

Figure 28. MQSeries Everyplace administration scenario

example administration console

Chapter 6. Administering messaging resources 129

|

|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

v The topology must also be able to cope with the addition of a firewall later
between the branches and the gateway.

v The MQSeries-bound queue traffic should use the 56-bit DES cryptor.

Script files required
The following scripts are needed to configure this network topology.

Central.tst
Used with the runmqsc script to create relevant objects on CENTRAL00QM

CentralQMDetails.bat
Used to describe the CENTRAL00QM to other scripts

GatewayQMDetails.bat
Used to describe the GATEWAY00QM to other scripts

CreateGatewayQM.bat
Used to create the gateway queue manager

CreateBranchQM.bat
Used to create a branch queue manager

These .bat files can all be found in the installed product, in
MQe\Java\Demo\Windows.

Note: Although the example scripts provided are in the Windows .bat file format,
they could be converted to work equally well in any scripting language
available on your system.

MQSeries Everyplace and MQSeries objects defined by the
scripts
The following objects are created by the scripts, to provide the branch-to-central
routing:

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Remote queue:
Name: BRANCH.SALES.QUEUE
Queue manager: CENTRAL00QM

Connection
Name:CENTRAL00QM
Routed vis: GATEWAY00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

Listener
<port>

MQSeries classes
for Java

JVM
GATEWAY00QM (MQe)
BridgeQueue
Name: BRANCH.SALES.QUEUE
Qmgr: GATEWAY))QM
Connection
Name:CENTRAL00QM
Route:null

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (MQSeries)
Local queue: “BRANCH.SALES.QUEUE”

Local queue: “SYNC.Q.GATEWAY00QM”

Server connection channel: “FOR.GATEWAY00QM”

Figure 29. Branch to central routing

example administration console

130 MQSeries Everyplace Programming Guide

|

|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

The following objects are created by the scripts to provide the central-to-branch
routing:

How to use the script files
Follow these procedures to create the required objects and operate the example
scenario, using the supplied script files.

Edit the JavaEnv.bat .
Make sure you have edited the JavaEnv.bat file to set your required
working environment.

Create a command-line session
Create a command-line session, and invoke the JavaEnv.bat to make the
settings available in the current environment.

Gather hardware required
Locate all the hardware on which you will be installing the network
topology.

Gather the machine names of those machines available to you, and note
them down. If you have only one machine available, you can still use the
scripts to deploy the example network topology, as you can specify the
same hostname for each queue manager.

Create an MQSeries queue manager
By default, the scripts assume this is called CENTRAL00QM listening on port
1414 for client channel connections.

Describe the MQSeries queue manager
Edit and review the CentralQMDetails.bat file to make sure that its details
match those of the MQSeries queue manager you have just created. All
values, except the name of the machine on which the MQSeries queue
manager sits, are defaulted in the script file.

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Home-server queue:
Name: ToBranchQueue
Queue manager: GATEWAY00QM

Local queue
Name:FromCentralQ
Queue manager: BRANCH00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

MQSeries classes
for Java

JVM

GATEWAY00QM (MQe)
Store-and-forward queue “ToBranchQ”
with target qmgrs “BRANCH00QM”,
“BRANCH001QM”, and “BRANCH002QM”

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (MQSeries)

Remote queue manager alias: “BRANCH000QM”
(transmit queue: TO.GATEWAY00QM)

Local transmit queue: “TO.GATEWAY00QM”
Server connection channel: “FOR>GATEWAY00QM”

MQSeries application puts to
“FromCentralQ” on “BRANCH00QM”

Transmit queue listener “TO.GATEWAY00QM”

Figure 30. Central to branch routing

example administration console

Chapter 6. Administering messaging resources 131

|

|
|
|

|
|
||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

Describe the gateway queue manager
Edit and review the GatewayQMDetails.bat file to make sure that details of
the gateway queue manager are decided on, and available for the other
.bat files to use.

The default name of the gateway queue manager created by the scripts is
GATEWAY00QM. You will need to set the machine name, and port number it
will listen on. This port must be available for use.

Tip: On Windows machines, use the command netstat -a to get a list of
ports currently in-use.

Review the central.tst file
Read the central.tst file, make sure it won’t create any MQSeries objects
you are unhappy with on your MQSeries queue manager.

Distribute all the scripts to all machines
Copy all of the scripts to all of the machines on which you will be running
MQSeries Everyplace queue managers.

This step spreads knowledge to all the machines in your network, of the
host names, port numbers, and queue manager names that you have
decided to use. If any of these files are changed, delete all MQSeries
Everyplace queue managers and restart from this point in the instructions.

Run the central.tst script on your new MQSeries queue manger
The central.tst script is in a format used by the runmqsc sample program
supplied with MQSeries.

Pipe the central.tst file into runmqsc to configure your MQSeries queue
manger For example:
runmqsc CENTRAL00QM < Central.tst

Use the MQSeries Explorer to view the resultant MQSeries objects that are
created.

Milestone: You have now set up your MQSeries system.

Run the CreateGatewayQM script
The CreateGatewayQM script uses the details in the CentralQMDetails and
GatewayQMDetails scripts to create a gateway queue manager.

The script needs no parameters.

Check for the test message
The script that creates the queue manager sends a test message to the
MQSeries system.

Use the MQSeries Explorer tool to look at the target queue
(BRANCH.SALES.QUEUE by default) to make sure a test message arrived. The
body of the test message contains the string ABCD

Milestone: You have now set up your MQSeries Everyplace gateway queue
manager.

Keep the gateway queue manager running
During the running of the CreateGatewayQM script, an example server
program is invoked to start the gateway queue manager, and keep it
running. The following window is displayed:

example administration console

132 MQSeries Everyplace Programming Guide

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

Do not close this window.

All the time this window is active, the MQSeries Everyplace gateway
queue manager it represents is also active. Closing the window closes the
MQSeries Everyplace gateway queue manager and breaks the path from
the branch queue managers to the MQSeries queue manager.

Create a branch queue manager
If your branch queue manager needs to run on a different machine, you
may need to edit the JavaEnv.bat file to set up your local environment.

Create a command-line session, and call JavaEnv.bat as before to set up
your environment.

Use the CreateBranchQM script to create a branch queue manager. The
syntax of the command is :
CreateBranchQM.bat branchNumber portListeningOn

Where:

branchNumber
Is a 3-digit number, padded with leading zeros, indicating which
branch the queue manager is being created for. For example, 000,
001, 002...

portListeningOn
Is a port on which the device branch queue manager listens on for
administration requests. For example, 8082, 8083...

Note: The port must not already be in use
Hint: On Windows machines, use the netstat -a command to view
the list of ports in-use.

During the script, a test message is sent to your MQSeries system.
Use the MQSeries Explorer to make sure the test message arrived
successfully. The body of the test message contains the string ABCD.

At the end of the script, an example program is used to start the
MQSeries Everyplace queue manager. The following window is
displayed:

As with the gateway queue manager, do not close this window
until you wish to close the queue manager.

Figure 31. Gateway queue manager window

Figure 32. Branch queue manager window

example administration console

Chapter 6. Administering messaging resources 133

|

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

Explore the branch queue manager
The branch queue manager is set up with a channel manager and
listener, on the port you specified when you created it, and the
Primary Network connection is HttpTcpipAdapter. As a result, you
can use the MQe_Explorer to view the queue managers. (see “How
to use the MQe_Explorer to view the configurations”).

Milestone: You now have a branch queue manager set up.

Note: An MQSeries Everyplace queue manager should be named uniquely. Never
create two queue managers with the same name.

Start the MQe_Explorer.exe program. Stop one of the branch queue
managers, say BRANCH002QM Open the BRANCH002QM.ini file, and
navigate from there.

How to use the MQe_Explorer to view the configurations
To use the MQe_Explorer to view your configuration:
1. Start the MQe_Explorer.exe program.
2. Stop one of the branch queue managers, say BRANCH002QM

3. Open the BRANCH002QM.ini file, and navigate from there.

example administration console

134 MQSeries Everyplace Programming Guide

|
|
|
|
|
|

|

|
|

||
|
|

|
|

|

|

|

Chapter 7. MQSeries-bridge

The MQSeries-bridge is a piece of software that allows an MQSeries Everyplace
network to exchange messages intelligently with an MQSeries network . Because
each system aims to satisfy different requirements, there are differences in the way
the two systems pass messages. The bridge resolves these differences and enables
messages to flow between the various systems.

Installation
The bridge code is packaged into the MQeMQBridge.jar file. The class files are also
available in the com\ibm\mqe\mqbridge directory. The classpath must be set to
make the bridge classes accessible when the MQSeries Everyplace server is started.
The MQSeries-bridge code runs only on the MQSeries Everyplace gateway
platform, not on a device platform.

MQSeries Classes for Java
To use the MQSeries-bridge you must have the MQSeries Classes for Java (version
5.1 or greater) installed on your MQSeries Everyplace system. MQSeries Classes for
Java is available for free download from the Web as supportpac MA88. The Web
address for the download is:
http://www.ibm.com/software/mqseries/txppacs/ma88.html. (The MQSeries
Classes for Java for NT is shipped with MQSeries Version 5.1 for NT.)

Configuring the MQSeries-bridge
The configuration of the MQSeries-bridge requires you to perform some actions on
the MQSeries queue manager, and some on the MQSeries Everyplace queue
manager. The bridge is logically broken into two pieces, one for each direction of
the message (MQSeries Everyplace to MQSeries and MQSeries to MQSeries
Everyplace)

The bridge objects are defined in a hierarchy as shown in Figure 33 on page 136

The following rules govern the relationship between the various objects:
v An MQSeries Everyplace bridges object is associated with a single MQSeries

Everyplace queue manager
v A single MQSeries Everyplace bridges object may have more than one bridge

object associated with it. You may wish to configure several MQSeries-bridge
instances with different routings.

v Each bridge can have a number of MQSeries queue manager proxy definitions
v Each MQSeries queue manager proxy definition can have a number of client

connections that allow communication with MQSeries Everyplace
v Each client connection connects to a single MQSeries queue manager. Each

connection may use a different server connection on the MQSeries queue manager
, or a different set of security, send, and receive exits, ports or other parameters

v An MQSeries-bridge client connection may have a number of transmission
queue listeners that use that bridge service to connect to the MQSeries queue
manager.

v A listener uses only one client connection to establish its connection.

© Copyright IBM Corp. 2001 135

|

v Each listener connects to a single transmission queue on the MQSeries system.
v Each listener moves messages from a single MQSeries transmission queue to

anywhere on the MQSeries Everyplace network, (through the MQSeries
Everyplace queue manager its bridge is associated with). So an MQSeries-bridge
can funnel multiple MQSeries message sources through one MQSeries
Everyplace queue manager onto the MQSeries Everyplace network.

v When moving MQSeries Everyplace messages to the MQSeries network, the
MQSeries Everyplace queue manager creates a number of adapter objects. Each
adapter object can connect to any MQSeries queue manager (providing it is
configured) and can send its messages to any queue. So an MQSeries-bridge can
dispatch MQSeries Everyplace messages routed through a single MQSeries
Everyplace queue manager to any MQSeries queue manager.

Configuring a basic installation
To configure a very basic installation of the MQSeries-bridge you need to complete
the following steps:
1. Make sure you have an MQSeries system installed and that you understand

local routing conventions, and how to configure the system.
2. Install MQSeries Everyplace on a system (It can be the same system as your

MQSeries system is located on if you wish)
3. If MQSeries Classes for Java is not already installed, download it from the Web

and install it. (See “MQSeries Classes for Java” on page 135.)
4. Set up your MQSeries Everyplace system and verify that it is working properly

before you try to connect it to MQSeries.

MQSeries
Everyplace

queue manager

MQSeries serverEveryplace

Bridges

Bridge

MQSeries
queue manager

proxy

Client
connection

Transmission
queue listenerAdapter

Only one queue manager
is allowed on each

server in version 1
MQSeries Everyplace

Only one bridges object
is allowed on each
MQSeries Everyplace server

Figure 33. Bridge object hierarchy

bridge configuration

136 MQSeries Everyplace Programming Guide

5. Update the MQe_java\Classes\JavaEnv.bat file so that it points to the Java
classes that are part of the MQSeries Classes for Java, and to the classpath for
your JRE (Java Runtime Environment). You need to make sure the
com.ibm.mqbind.jar and the com.ibm.mq.jar classes are in the classpath, and
that the java\lib and \bin directories are in your path.

6. Plan the routing you intend to implement. You need to decide which MQSeries
queue managers are going to talk to which MQSeries Everyplace queue
managers.

7. Decide on a naming convention for MQSeries Everyplace objects and MQSeries
objects and document it for future use.

8. Modify your MQSeries Everyplace system to define an MQSeries-bridge on
your chosen MQSeries Everyplace server. See “The example administration GUI
application” on page 145 for information on using
examples.mqbridge.awt.AwtMQBridgeServer to define a bridge.

9. Connect the chosen MQSeries queue manager to the bridge on the MQSeries
Everyplace server as follows:
v On the MQSeries queue manager:

Define one or more Java server connection channels so that MQSeries
Everyplace can use the MQSeries Classes for Java to talk to this queue
manager. This involves the following steps:
a. Define the server connection channels
b. Define a sync queue for MQSeries Everyplace to use to provide

assured delivery to the MQSeries system. You need one of these for
each server connection channel that the MQSeries Everyplace system
can use.

v On the MQSeries Everyplace server:
a. Define an MQSeries queue manager proxy object which holds

information about the MQSeries queue manager. This involves the
following steps:
1) Collect the Hostname of the MQSeries queue manager.
2) Put the name in the MQSeries queue manager proxy object.

b. Define a Client Connection object that holds information about how to
use the MQSeries Classes for Java to connect to the server connection
channel on the MQSeries system. This involves the following steps:
1) Collect the Port number, and all other server connection channel

parameters.
2) Use these values to define the client connection object so that they

match the definition on the MQSeries queue manager.
10. Modify your configuration on both MQSeries Everyplace and MQSeries to

allow messages to pass from MQSeries to MQSeries Everyplace.
a. Decide on the number of routes from MQSeries to your MQSeries

Everyplace network. The number of routes you need depends on the
amount of message traffic (load) you will be using across each route. If
your message load is high you may wish to split your traffic into multiple
routes.

b. Define your routes as follows:
1) For each route define a transmission queue on your MQSeries system.

DO NOT define a channel for these transmission queues.
2) For each route create a matching transmission queue listener on your

MQSeries Everyplace system.

bridge configuration

Chapter 7. MQSeries-bridge 137

3) Define a number of remote queue definitions, (such as remote queue
manager aliases and queue aliases) to allow MQSeries messages to be
routed onto the various MQSeries Everyplace-bound transmission
queues that you defined in step 10b1 on page 137.

11. Modify your configuration on MQSeries Everyplace to allow messages to pass
from MQSeries Everyplace to MQSeries:
a. Publish details about all the queue managers on your MQSeries network

you want to send messages to from the MQSeries Everyplace network.
Each MQSeries queue manager requires a Connections definition on your
MQSeries Everyplace server. All fields except the Queue manager name
should be null, to indicate that the normal MQSeries Everyplace
communications channels should not be used to talk to this queue
manager.

b. Publish details about all the queues on your MQSeries network you want
to send messages to from the MQSeries Everyplace network. Each
MQSeries queue requires an MQSeries-bridge queue definition on your
MQSeries Everyplace server. (This is the MQSeries Everyplace equivalent
of a DEFINE QREMOTE in MQSeries).
v The queue name is the name of the MQSeries queue to which the bridge

should send any messages arriving on this MQSeries-bridge queue.
v The queue manager name is the name of the MQSeries queue manager

on which the queue is located.
v The bridge name indicates which bridge should be used to send

messages to the MQSeries network.
v The MQSeries queue manager proxy name is the name of the MQSeries

queue manager proxy object, in the MQSeries Everyplace configuration,
that can connect to an MQSeries queue manager.

v The MQSeries queue manager should have a route defined to allow
messages to be posted to the Queue Name on Queue Manager Name to
deliver the message to its final destination.

12. Start your MQSeries and MQSeries Everyplace systems to allow messages to
flow. The MQSeries system client channel listener must be started. All the
objects you have defined on the MQSeries Everyplace must be started. These
objects can be started in any of the following ways:
v Explicitly using the Administration GUI described in “The example

administration GUI application” on page 145
v By configuring the rules class (described in “MQSeries-bridge rules” on

page 166) to indicate the startup state (running or stopped) and restarting
the MQSeries Everyplace server

v A mixture of the two previous methods

The simplest way to start objects manually, is to send a start command to the
relevant bridge object. This command should indicate that all the children of
the bridge, and children’s children should be started as well.
v To allow messages to pass from MQSeries Everyplace to MQSeries, start the

client connection objects in MQSeries Everyplace.
v To allow messages to pass from MQSeries to MQSeries Everyplace, start

both the client connection objects, and the relevant transmission queue
listeners.

13. Create transformer classes, and modify your MQSeries Everyplace
configuration to use them. A transformer class converts messages from
MQSeries message formats into an MQSeries Everyplace message format, and

bridge configuration

138 MQSeries Everyplace Programming Guide

|
|
|

vice-versa. These format-converters must be written in Java and configured in
several places in the MQSeries-bridge configuration.
a. Create Java transformer classes

v Determine the message formats of the MQSeries messages that need to
pass over the bridge.

v Write a transformer class, or a set of transformer classes to convert each
MQSeries message format into an MQSeries Everyplace message. See
“Transformers” on page 162.

b. You can replace the default transformer class. Use the administration GUI
to update the default transformer class parameter in the bridge object’s
configuration.

c. You can specify a non-default transformer for each MQSeries-bridge queue
definition. Use the administration GUI to update the transformer field of
each MQSeries-bridge queue in the configuration

d. You can specify a non-default transformer for each MQSeries transmission
queue listener. Use the administration GUI to update the transformer field
of each listener in the configuration

e. Restart the bridge, and listeners.

Sample configuration tool
MQSeries Everyplace systems and the MQSeries-bridge are complex environments.
A sample configuration tool that helps to create an initial configuration is included
with the MQSeries-bridge. The source code for the tool is provided and you can
subclass it, modify it, and change its behavior to suite your needs.

This documentation explains what this sample tool does and how to use it.

Limitations
The sample configuration tool cannot be used on a server that has a large number
of MQSeries Everyplace queue manager connections defined. For instance, if you
have a large number of mobile phones, each with a separate queue manager, and
the server had a connection defined for each, then the tool would not work. This is
because the tool sometimes queries the list of connections and, in such situations,
the JVM that the tool runs in fails due to a lack of memory. If you are trying to
administer a server that has many connections to other MQSeries Everyplace
queue managers, we recommend you use the
examples.mqbridge.administration.console.AdminGateway application instead.

Steps required to configure the bridge
To configure a very basic installation of the MQSeries-bridge you need to complete
the steps in “Configuring a basic installation” on page 136. The sample tool aims to
provide a simple way of doing the steps 8-12 in this list.

Configuration example
This section describes an example configuration of 4 systems.

bridge configuration

Chapter 7. MQSeries-bridge 139

The four systems are:

MQeMoonQM
This is an MQSeries Everyplace client queue manager, sited on a handheld
PC. The user periodically attaches the handheld PC to the network, to
communicate with the MQeEarthQM MQSeries Everyplace gateway.

MQeEarthQM
This is on a Windows/2000 machine, with an I/P address of 20.8.9.50 This
is an MQSeries Everyplace gateway (server) queue manager.

MQSaturnQM
This is an MQSeries queue manager, installed on a Windows/NT platform.
The I/P address is 20.8.9.51

MQJupiterQM
This is an MQSeries queue manager, installed on a System/390 platform.

Requirement
The requirement for this example is that all machines are able to post a message to
a queue on any of the other machines.

It is assumed that all machines are permanently connected to the network, except
the MQeMoonQM machine, which is only occasionally connected.

Initial setup
For this example, it is assumed that there are local queues, to which messages can
be put, on all the queue managers. These queues are called:
v MQeMoonQ on the MQeMoonQM

v MQeEarthQ on the MQeEarthQM

v MQSaturnQ on the MQSaturnQM

v MQJupiterQ on the MQJupiterQM

MQJupiterQM

MQeMoonQM

Hand held PC

MQSaturnQM

MQSeries server
I/P address 20.8.9.51

System 390

MQSeries Everyplace server
I/P address 20.8.9.50

MQeEarthQM

MQSeries-bridge
queue

Figure 34. Configuration example

sample configuration tool

140 MQSeries Everyplace Programming Guide

Enabling MQeMoonQM to put and get messages to and from the
MQeEarthQM queue manager
On MQeMoonQM:

1. Define a connection with the following parameters:

Target queue manager name: MQeEarthQM
Adapter: Network:20.8.9.50

Applications can now connect directly to any queue defined on the
MQeEarthQM queue manager directly, when the MQeMoonQM is connected to
the network. The requirement states that applications on MQeMoonQM
must be able to send messages to MQeEarthQ in an asynchronous
manner. This requires a remote queue definition to set up the
asynchronous linkage to the MQeEarthQ queue.

2. Define a remote queue with the following parameters:

Queue name: MQeEarthQ
Queue manager name: MQeEarthQM
Access mode: Asynchronous

Applications on MQeMoonQM now have access to the MQeMoonQ (a local
queue) in a synchronous manner, and the MQeEarthQ in an
asynchronous manner.

Enabling the MQeEarthQM to send messages to the
MQeMoonQM queue manager
Since the MQeMoonQM is not attached to the network for most of the time, use a
store-and-forward queue on the MQeEarthQM to collect messages destined for the
MQeMoonQM queue manager.

On MQeEarthQM:

1. Define a store-and-forward-queue with the following parameters:

Queue name: TO.HANDHELDS
Queue Manager Name: MQeEarthQM

2. Add a queue manager to the store-and-forward queue using the
following parameters:

Queue Name: TO.HANDHELDS
Queue manager: MQeMoonQM

A (similarly named) home-server queue is needed on the MQeMoonQM queue
manager. This queue pulls messages out of the store-and-forward queue and puts
them to a queue on the MQeMoonQM queue manager.

On MQeMoonQM:

1. Define a home-server queue with the following parameters:

Queue Name: TO.HANDHELDS
Queue manager name: MQeEarthQM

Any messages arriving at MQeEarthQM that are destined for MQeMoonQM are stored
temporarily in the store-and-forward queue TO.HANDHELDS. When MQeMoonQM next
connects to the network, it’s home-server queue TO.HANDHELDS gets any messages

sample configuration tool

Chapter 7. MQSeries-bridge 141

currently on the store-and-forward queue, and delivers them to the MQeMoonQM
queue manager, for storage on local queues.

Applications on MQeEarthQM can now send messages to MQeMoonQ in an
asynchronous manner.

Enabling MQeEarthQM to send a message to MQSaturnQ
On MQeEarthQM:

1. Define a bridge with the following parameters:

Bridge name: MQeEarthQMBridge

2. Define an MQSeries queue manager proxy with the following
parameters:

Bridge Name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
Hostname: 20.8.9.51

3. Define a client connection with the following parameters:

Bridge Name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL
SyncQName: MQeEarth.SYNC.QUEUE

4. Define a connection with the following parameters:

ConnectionName: MQeSaturnQM
Channel: null
Adapter: null

5. Define an MQSeries-bridge queue with the following parameters:

Queue Name: MQSaturnQ
MQ Queue manager name: MQSaturnQM
Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a server connection channel with the following parameters:

Name: MQeEarth.CHANNEL

2. Define a local sync queue with the following parameters:

Name: MQeEarth.SYNC.QUEUE

The sync queue is needed for assured delivery.

Applications on MQeEarthQM can now send messages to the MQSaturnQ on
MQSaturnQM.

Enabling MQeEarthQM to send a message to MQJupiterQ
On MQeEarthQM:

1. Define a connection with the following parameters:

sample configuration tool

142 MQSeries Everyplace Programming Guide

ConnectionName: MQeJupiterQM
Channel: null
Adapter: null

2. Define an MQSeries-bridge queue with the following parameters:

Queue Name: MQJupiterQ
MQ Queue manager name: MQJupiterQM
Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a remote queue definition with the following parameters:

Queue Name: MQJupiterQ
Transmission Queue: MQJupiterQM.XMITQ

On both MQSaturnQM and MQJupiterQM:

1. Define a channel to move the message from the MQJupiterQM.XMITQ on
MQSaturnQM to MQJupiterQM.

Now applications on MQeEarthQM can send a message to MQJupiterQ on
MQJupiterQM, through MQSaturnQM.

Enabling MQeMoonQM to send a message to MQJupiterQ and
MQSaturnQ
On MQeMoonQM:

1. Define a connection with the following parameters:

Target Queue manager name: MQSaturnQM
Adapter: MQeEarthQM

The connection indicates that any message bound for the MQSaturnQM queue
manager should go through the MQeEarthQM queue manager.
2. Define a remote queue definition with the following parameters:

Queue name: MQSaturnQ
Queue manager name: MQSaturnQM
Access mode: Asynchronous

3. Define a connection with the following parameters:

Target Queue manager name: MQJupiterQM
Adapter: MQeEarthQM

4. Define a remote queue definition with the following parameters:

Queue name: MQJupiterQ
Queue manager name: MQJupiterQM
Access mode: Asynchronous

Applications connected to MQeMoonQM can now issue messages to MQeMoonQ,
MQeEarthQ, MQSaturnQ, and MQJupiterQ, even when the handheld PC is
disconnected from the network.

sample configuration tool

Chapter 7. MQSeries-bridge 143

Enabling MQSaturnQM to send messages to the MQeEarthQ
On MQSaturnQM:

1. Define a local queue with the following parameters:

Queue name: MQeEarth.XMITQ
Queue type: transmission queue

2. Define a queue manager alias (remote queue definition) with the
following parameters:

Queue name: MQeEarthQM
Remote queue manager name: MQeEarthQM
Transmission queue: MQeEarth.XMITQ

On MQeEarthQM:

1. Define a Transmission queue listener with the following parameters:

Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL
Listener Name: MQeEarth.XMITQ

Applications on MQSaturnQM can now send messages to MQeEarthQ using the
MQeEarthQM queue manager alias . This routes each message onto the
MQeEarth.XMITQ, where the MQSeries Everyplace transmission queue listener
MQeEarth.XMITQ gets them, and moves them onto the MQSeries Everyplace
network.

Enabling MQSaturnQM to send messages to the MQeMoonQ
On MQSaturnQM:

1. Define a queue manager alias (remote queue definition) with the
following parameters:

Queue name: MQeMoonQM
Remote queue manager name: MQeMoonQM
Transmission queue: MQeEarth.XMITQ

Applications on MQSaturnQM can now send messages to MQeMoonQ using the
MQeMoonQM queue manager alias . This routes each message to the MQeEarth.XMITQ,
where the MQSeries Everyplace transmission queue listener MQeEarth.XMITQ gets
them, and posts them onto the MQSeries Everyplace network.

The store-and-forward queue TO.HANDHELDS collects the message, and when the
MQeMoonQM next connects to the network, the home-server queue retrieves the
message from the store-and-forward queue, and delivers the message to the
MQeMoonQ.

Enabling the MQJupiterQM to send messages to the MQeMoonQ
On MQJupiterQM:

Set up remote queue manager aliases for the MQeEarthQM and MQeMoonQM to
route messages to MQSaturnQM using normal MQSeries routing techniques.

Now any application connected to any of the queue managers can post a message
to any of the queues MQeMoonQ, MQeEarthQ, MQSaturnQ or MQJupiterQ.

sample configuration tool

144 MQSeries Everyplace Programming Guide

Additional bridge configuration
A trace of the base MQSeries Classes for Java is not usually needed, and so is
disabled by default. However it is the responsibility of the active trace handler
class to initialize MQSeries trace, and an example of how to do this is shipped
with the MQSeries Everyplace classes. The example bridge trace class is
examples.mqbridge.awt.AwtBridgeTrace. This class is automatically instantiated by
the bridge administration GUI (see “The example administration GUI
application”). MQSeries-bridge trace messages are supplied in several languages in
examples.mqbridge.trace.

In addition, MQExceptions are logged to the OutputStreamWriter defined in
com.ibm.mq.MQException.log. (System.err by default). Consult MQSeries Using
Java for more information on initializing and configuring base MQSeries trace.

Administration of the MQSeries-bridge
This section contains information on the tasks associated with the administration of
the MQSeries-bridge

The example administration GUI application
An example administration GUI is provided with the MQSeries-bridge. It is a
subclass of the examples.administration.console.Admin example described in
“Example administration console” on page 122.

The subclass is called examples.mqbridge.administration.console.AdminGateway.

MQSeries-bridge function cannot execute on a client queue manager, so using this
class in conjunction with a client queue manager does not allow the administration
of bridge objects on that client queue manager, but it does enable administration of
a remote MQSeries-bridge-enabled server queue manager.

To administer an MQSeries-bridge that is attached to a local queue manager, use
the example server program <java> examples.mqbridge.awt.AwtMQBridgeServer
<server_ini_file> to start an MQSeries Everyplace server.

From the server window either of the following options can be used:
v Click the Admin button to use the

examples.mqbridge.administration.console.AdminGateway class to administer
the local server queue manager, and its bridge objects.

v Click the MQBridge Setup button to invoke the
examples.mqbridge.setup.MQBridgeWizard example class, as described in
“Sample configuration tool” on page 139.

Both examples demonstrate how to programmatically manipulate MQSeries-bridge
configuration objects using the bridge-specific administration message subclasses,
MQeMQBridgesAdminMsg, MQeMQBridgeAdminMsg,

Figure 35. MQSeries-bridge administration GUI server window

sample configuration tool

Chapter 7. MQSeries-bridge 145

MQeMQQMgrProxyAdminMsg, MQeClientConnectionAdminMsg,
MQeListenerAdminMsg, and MQeMQBridgeQueueAdminMsg.

MQSeries-bridge administration actions

Run state
Each administered object has a run state. This can be ’running’ or ’stopped’
indicating whether the administered object is active or not.

When an administered object is ’stopped’, it cannot be used, but its configuration
parameters can be queries or updated.

If the MQSeries-bridge queue references a bridge administered object that is
’stopped’, it is unable to convey an MQSeries Everyplace message onto the
MQSeries network until the bridge, MQSeries queue manager proxy, and client
connection objects are all ’started’.

The run state of administered objects can be changed using the start and stop
actions from the MQeMQBridgeAdminMsg, MQeMQQMgrProxyAdminMsg,
MQeClientConnectionAdminMsg or MQeListenerAdminMsg administration
message classes.

The actions supported by the MQSeries-bridge administration objects are described
in the following sections.

Start action
An administrator can send a start action to any of the administered objects.

The affect children boolean flag affects the results of this action. The start action
starts the administered object and all its children (and children’s children) if the
affect children boolean field is in the message and is set to true. If the flag is not
in the message or is set to false, only the administered object receiving the start
action changes its run-state. For example, sending start to a bridge object with
affect children as true causes all proxy, client connection, and listeners that are
ancestors, to start. If affect children is not specified, only the bridge is started.
An object cannot be started unless its parent object has already been started.
Sending a start event to an administered object attempts to start all the objects
higher in the hierarchy that are not already running.

Stop action
An administered object can be stopped by sending it a stop action. The receiving
administered object always makes sure all the objects below it in the hierarchy are
stopped before it is stopped itself.

Inquire action
The inquire action queries values from an administered object.

If the administered object is running, the values returned on the inquire are those
that are currently in use. The values returned from a stopped object reflect any
recent changes to values made by an update action. Thus, a sequence of start,
update, inquire, returns the values configured before the update, while start,
update, stop, inquire, returns the values configured after the update.

You may find it less confusing if you stop any administered object before updating
variable values.

bridge administration

146 MQSeries Everyplace Programming Guide

Update action
The update action changes one or more values for characteristics for an
administered object. The values set by an update action do not become current
until the administered object is next stopped. (See “Inquire action” on page 146.)

Delete action
The delete action permanently removes all current and persistent information
about the administered object. The affect children boolean flag affects the
outcome of this action. If the affect children flag is present and set to true the
administered object receiving this action issues a stop action, and then a delete
action to all the objects below it in the hierarchy, removing a whole piece of the
hierarchy with one action. If the flag is not present, or it is set to false, the
administered object deletes only itself, but this action cannot take place unless all
the objects in the hierarchy below the current one have already been deleted.

Create action
The create action creates an administered object. The run state of the administered
object created is initially set to stopped.

MQSeries-bridge considerations when shutting down an
MQSeries queue manager

We recommend that before you stop an MQSeries queue manager, you issue a stop
administration message to all the MQSeries queue-manager-proxy bridge objects.
This stops the MQSeries Everyplace network from trying to use the MQSeries
queue manager and possibly interfering with the shutdown of the MQSeries queue
manager. (This can also be achieved by issuing a single stop administration
message to the MQebridges object.)

If you choose not to stop the MQSeries queue-manager-proxy bridge object before
you shut the MQSeries queue manager, the behavior of the MQSeries shutdown
and the MQSeries-bridge depends on the type of MQSeries queue manager
shutdown you choose, immediate shutdown or controlled shutdown.

Immediate shutdown
Stopping an MQSeries queue manager using immediate shutdown severs any
connections that the MQSeries-bridge has to the MQSeries queue manager (this
applies to connections formed using the MQSeries Classes for Java in either the
bindings or client mode). The MQSeries system shuts down as normal.

This causes all the MQSeries-bridge transmission queue listeners to stop
immediately, each one warning that it has shut down due to the MQSeries queue
manager stop.

Any MQSeries-bridge queues that are active retain a (broken) connection to the
MQSeries queue manager until:
v The connection times-out, after being idle for an idle time-out period (as

specified on the client-connection bridge object), at which point the broken
connection is closed.

v The MQSeries-bridge queue is told to perform some action, such as put a
message to MQSeries, that attempts to use the broken connection. The
putMessage operation fails and the broken connection is closed.

When an MQSeries-bridge queue has no connection, the next operation on that
queue causes a new connection to be obtained. If the MQSeries queue manager is
not available, the operation on the queue fails synchronously. If the MQSeries

bridge administration

Chapter 7. MQSeries-bridge 147

queue manager has been restarted after the shutdown, and a queue operation, such
as putMessage, acts on the bridge queue, then a new connection to the active
MQSeries queue manager is established, and the operation executes as expected.

Controlled shutdown
Stopping an MQSeries queue manager using the controlled shutdown does not
sever any connections immediately, but waits until all connections are closed (this
applies to connections formed using the MQSeries Classes for Java in either the
bindings or client mode). Any active MQSeries-bridge transmission queue listeners
notice that the MQSeries system is quiescing, and stop with a relevant warning.

Any MQSeries-bridge queues that are active retain a connection to the MQSeries
queue manager until:
v The connection times-out, after being idle for an idle time-out period (as

specified on the client connection bridge object), at which point the broken
connection is closed, and the controlled shutdown of the MQSeries queue
manager completes.

v The MQSeries-bridge queue is told to perform some action, such as put a
message to MQSeries, that attempts to use the (broken) connection. The
putMessage operation fails, the broken connection is closed, and the controlled
shutdown of the MQSeries queue manager completes.

The bridge client-connection object maintains a pool of connections, that are
awaiting use. If there is no bridge activity, the pool retains MQSeries client channel
connections until the connection idle time exceeds the idle time-out period (as
specified on the client connection object configuration), at which point the channels
in the pool are closed.

When the last client channel connection to the MQSeries queue manager is closed,
the MQSeries controlled shutdown completes.

Administered objects and their characteristics
This section describes the characteristics of the different types of administered
objects associated with the MQSeries Everyplace MQSeries-bridge. Characteristics
are object attributes that can be queried using an inquireAll() administration
message. The results can be read and used by the application, or they can be sent
in an update or create administration message to set the values of the
characteristics. Some characteristics can also be set using the create and update
administration messages. Each characteristic has a unique label associated with it
and this label is used to set and get the characteristic value.

The following lists show the attributes that apply to each administered object. The
attributes are described in detail in alphabetical order in “Attribute details” on
page 150. The label constants are defined in the class
com.ibm.mqe.mqbridge.MQeCharacteristicLabels

Characteristics of bridges objects

v Run-state
v Children
v Child

Characteristics of bridge objects

v Run-state
v Children
v Child

MQSeries queue manager shutdown

148 MQSeries Everyplace Programming Guide

v AdministerObjectClass
v StartupRuleClass
v BridgeName
v HeartBeatInterval
v DefaultTransformer

Characteristics of MQSeries queue manager proxy objects

v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v HostName

Characteristics of client connection objects

v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v ClientConnectionName
v Port
v AdapterClass
v MQUserID
v MQPassword
v SendExit
v ReceiveExit
v SecurityExit
v CCSID
v SyncQName
v SyncQPurgerRulesClass
v MaxConnectionIdleTime
v SyncQPurgeInterval

Characteristics of MQSeries transmission queue listener objects

v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v ClientConnectionName

bridge administered objects

Chapter 7. MQSeries-bridge 149

v ListenerName
v DeadLetterQName
v ListenerStateStoreAdapter
v UndeliveredMessageRuleClass
v TransformerClass

Attribute details
Attribute:

AdapterClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
This is either a Java class name, or an alias that can be resolved into a Java
class name. It is used by the gateway slave.

The default is com.ibm.mqe.mqbridge.MQeMQAdapter. This parameter is
not validated.

Attribute:
AdministeredObjectClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the bridge.

Valid characters are: "0–9" "A-Z" "a-z" - . % /

Attribute:
BridgeName

Type: Unicode

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description
If you use a symbolic name, it may take longer to detect that this machine
is not switched on, or that the name server is not working. If this causes a
problem, you can use the actual I/P address in this field instead.

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify which
bridge administered object should be inquired on, updated, deleted,
started, or stopped.

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_ADAPTER_CLASS

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_ADMINISTERED_OBJECT_CLASS

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_BRIDGE_NAME

bridge administered objects

150 MQSeries Everyplace Programming Guide

Attribute:
CCSID

Type: Int

Label:

Valid actions
Inquire, create, update

Description
See the MQSeries Using Java documentation for a description of this
parameter.

Valid values are: 0 to MAXINT. The default is 0.

Attribute:
Child

Type: Unicode

Label:

Valid actions
Inquire

Description
A field containing the name of an MQSeries-bridge administered object.

Attribute:
Children

Type: MQeFields array

Label:

Valid actions
Inquire

Description
An array of Child fields, each element containing a Child attribute.

Attribute:
ClientConnectionName

Type: Unicode

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify which
bridge administered object should be inquired on, updated, deleted,
started, or stopped.

Attribute:
DeadLetterQName

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CCSID

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CHILD

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CHILDREN

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_CLIENT_CONNECTION_NAME

bridge administered objects

Chapter 7. MQSeries-bridge 151

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
If the gateway finds it cannot deliver a message from MQSeries to
MQSeries Everyplace, the message cannot be processed by the gateway,
and it is placed on a dead letter queue on the MQSeries system. This
parameter defines which queue the erroneous message is delivered to.

The default value is SYSTEM.DEAD.LETTER.QUEUE.

Attribute:
DefaultTransformer

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The classname specified here is used as the default transformer class.
When a message is sent from MQSeries to MQSeries Everyplace, the target
queue may have a transformer class defined. If a transformer is not
defined, this class is used to transform the MQSeries message into the
MQSeries Everyplace format.

When a message is sent from MQSeries Everyplace to MQSeries, the
transmission queue listener moving the message onto MQSeries Everyplace
may have a transformer class defined. If a transformer is not defined, this
class is used to transform the MQSeries Everyplace message into the
MQSeries format.

No validation of the value in this field is performed.

The default value is com.ibm.mqebridge.MQeBaseTransformer

Attribute:
HeartBeatInterval

Type: Int

Label:

Valid actions
Inquire, create, update

Description
A time interval, expressed in units of 1 minute, with values between 1 and
60. The bridge uses a heartbeat internally to provide a regular stimulus to
other administered objects. The administered objects perform small tasks
when the heartbeat event arrives, such as ’The client connection will reap
old or stale MQSeries connections’ or ’the sync queue will be purged’. The
heartbeat provides an interval for the timers that is indivisible. The lower
this value is set, the more accurate any timer related actions will be. For
instance, if you say ’reap all MQSeries connections if they have been idle

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_DEAD_LETTER_Q_NAME

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_DEFAULT_TRANSFORMER

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_HEARTBEAT_INTERVAL

bridge administered objects

152 MQSeries Everyplace Programming Guide

for more than 10 minutes’, but set the heartbeat interval tor 3 minutes,
then an idle MQSeries connection is checked after 3,6,9 and 12 minutes,
but is only reaped on the 12th minute. Setting this value lower increases
the accuracy of the timer-related heartbeat events, but does so at the cost
of efficiency. The more heartbeat events created, the more work is done.

The default value is 5 minutes.

Attribute:
Hostname

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used to create connections to this MQSeries queue manager using the
MQSeries Classes for Java. If this characteristic is not specified, the
MQSeries queue manager is assumed to be on the same machine as the
JVM, so the Java bindings mode is used to communicate with the
MQSeries system.

Note: A blank value is not the same as specifying localhost. If a blank
value is used, then the MQSeries-bridge uses the MQSeries Classes
for Java in bindings mode which communicates directly with
MQSeries. If you specify localhost, the MQSeries-bridge uses the
MQSeries Classes for Java in client mode. This means that all
communication with MQSeries is through the network (TCP/IP)
stack.

The value specified here is not validated. If you use a symbolic name, it
may take longer to detect that this machine is not switched on, or if the
name server is not working. You can use the I/P address notation in this
field if a symbolic name causes problems.

Attribute:
ListenerName

Type: Unicode

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description
The name of this listener. The listener name is the name of the
transmission queue on MQSeries that the listener takes messages from. The
combination of MQ_queue_manager_name and MQ_transmission_queue_name
pair must be unique across all the gateways that exist.

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify which
MQSeries-bridge administered object should be inquired on,
updated, deleted, started, or stopped.

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_HOST_NAME

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_LISTENER_NAME

bridge administered objects

Chapter 7. MQSeries-bridge 153

Attribute:
ListenerStateStoreAdapter

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
In order to provide assured message delivery of persistent messages, the
listener class uses an adapter to store state information. This is the class
name (or alias of the classname) of the adapter that is loaded to manage
the storing and recovery of the state information to and from disk. Two
adapters are currently supported-
com.ibm.mqe.adapters.MQeDiskFieldsAdapter (which stores state
information on the local file system) and
com.ibm.mqe.mqbridge.MQeMQAdapter (which stores state information
on the MQSeries server). The disk adapter is generally quicker than using
the MQSeries-based adapter. The classname can be followed by a colon
separated list of arguments, although only the MQeDiskFieldsAdapter uses
them. In this case the MQeDiskFieldsAdapter can be followed by a colon
and a fully qualified path name to a file that contains the state information.
For example, in order to use the disk fields adapter to store the listener’s
state information in the file c:\folder\state.sta, the listener-state-store-
adapter field should contain the value
com.ibm.mqe.Adapters.MQeDiskFieldsAdapter:c:\folder\state.sta. A file
specified by this parameter need not currently exist. If the supplied path
name ends in a folder separator (for example. "\" in DOS) it is assumed
that the supplied parameter is a directory, and a state file called
<ListenerName>-listener.sta is created inside it (where <ListenerName> is
the name of the listener, from the registry entry). If no path name is
supplied, the listener uses a file called <ListenerName>-listener.sta inside
the current Java working directory If the MQeMQAdapter is being used,
no additional arguments are required.

The default value of the ListenerStateStoreAdapter field is
com.ibm.mqe.Adapters.MQeDiskFieldsAdapter.

Attribute:
MaxConnectionIdleTime

Type: Int

Label:

Valid actions
Inquire, create, update

Description
Each client connection object in the bridge maintains a pool of MQSeries
Java client connections to its MQSeries system.

When an MQSeries connection becomes idle through lack of use, a timer is
started. If the timer reaches the current value of this parameter, then the
idle connection is thrown away. This is known as reaping the connection.
This saves resources when the connection is idle. The connection pool is an
efficiency device that is used within the MQSeries-bridge. The creation of

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_LISTENER_STATE_STORE_ADAPTER

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_MAX_CONNECTION_IDLE_TIME

bridge administered objects

154 MQSeries Everyplace Programming Guide

new MQSeries client connections is a resource intensive operation. If there
are idle connections in the pool, one of these is reused, thus avoiding a
creation operation. The higher the MaxConnectionIdleTime value, the more
likely it is that an idle connection will be waiting in the pool, but idle
client connections consume resources in the JVM. Setting this value lower,
decreases the likelihood of an idle connection being available, but also
decreases the number of idle connections , so less resources are consumed.

The time is expressed in units of 1 minute.

The Valid range: Between 0 and 720 (12 hours). The default is 5 (minutes).

Setting this value to 0 is not recommended as it effectively means ’don’t
use a connection pool’, and whenever an MQSeries client connection is
idle, it is reaped or discarded.

This time-out is only checked at the interval set by the heartbeatInterval
parameter.

MaxConnectionIdleTime can have a direct effect on the length of time it
takes to shut down an MQSeries Everyplace system. See “MQSeries-bridge
considerations when shutting down an MQSeries queue manager” on
page 147 for more details.

Attribute:
MQPassword

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used by the MQSeries Classes for Java. If this attribute is not specified, the
password field on the MQSeries calls is set to ″″ . The value you specify
here overrides any defaults. This parameter is not validated.

Attribute:
MQQMgrProxyName

Type: Unicode

Label:

Valid actions
Inquire, create, update, delete, start, stop

Description
The name of the queue manager proxy object. (In other words, the name of
the target MQSeries queue manager.)

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify which
bridge administered object should be inquired on, updated, deleted,
started, or stopped.

Attribute:
MQUserID

Type: Unicode

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_PASSWORD

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_MQ_Q_MGR_PROXY_NAME

bridge administered objects

Chapter 7. MQSeries-bridge 155

||

|
|

Label:

Valid actions
Inquire, create, update

Description
Used by the MQSeries Classes for Java. If this parameter is not specified.
the user-id field on the MQSeries calls is set to ″″ . The value you specify
here overrides any defaults. This parameter is not validated.

Attribute:
Port

Type: Int

Label:

Valid actions
Inquire, create, update

Description
Used to create connections to this MQSeries queue manager using the
MQSeries Java classes. If this parameter is not specified, the MQSeries
queue manager is assumed to be on the same machine as the JVM. In this
case, the bindings mode of the MQSeries Classes for Java is used to
communicate with the MQSeries system.

Valid range 0 to MAXINT.

Attribute:
ReceiveExit

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client channel.

This parameter is not validated.

Attribute:
Run-state

Type: Int

Label:

Valid actions
Inquire

Description
Indicates whether the administered object is running (value=1), or stopped
(value=0). When an object is stopped it can have its properties changed.

Attribute:
SecurityExit

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_USER_ID

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_PORT

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_RECEIVE_EXIT

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_RUN_STATE

bridge administered objects

156 MQSeries Everyplace Programming Guide

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client channel.

This parameter is not validated.

Attribute:
SendExit

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client channel.

This parameter is not validated.

Attribute:
StartupRuleClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
* This is a rule class that is used when the administered object is loaded at
system start-up, or when the object is created. The rule class name is not
validated.

The rule class dictates whether the administered object is started, and
whether or not its children are started. The default rule is
com.ibm.mqe.mqbridge .MQeStartupRule This default causes the
administered object and all its parents to start. If this field is set to ″″
(blank) , the administered object is not started. See “MQeStartupRule” on
page 168

Attribute:
SyncQName

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the sync queue on the MQSeries queue manager that is used

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SECURITY_EXIT

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SEND_EXIT

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_STARTUP_RULE_CLASS

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SYNC_Q_NAME

bridge administered objects

Chapter 7. MQSeries-bridge 157

by the MQSeries-bridge . Valid characters forming the name are: "0-9"
"A-Z" "a-z" _ . % / .The sync queue is an MQSeries queue that is used to
keep track of which messages are in the process of moving from MQSeries
Everyplace to MQSeries. If a message is part way through the logic that
assures the once-only delivery of a message, there is another message on
the sync queue, indicating how far through the logic the message has
progressed. If the MQSeries Everyplace system is shut down cleanly, the
sync queue should be empty. If the connection between the systems is
broken, some persistent state information is left in the sync queue. The
MQSeries Everyplace system uses this information when it restarts and
continues from where the process failed. The name of the sync queue can
be the same for client connections on the same bridge, or on different
bridges, providing the send, receive and security exits used when talking
to that sync queue are the same. The sync queues must exist on the
MQSeries queue manager for MQSeries Everyplace to MQSeries message
transfer to work. If the listener state class is the MQeMQAdapter, this sync
queue is also used for storing persistent state information about the
listeners. The listener does not use this parameter if the state information is
being stored by an MQeDiskFieldsAdapter. We recommended a naming
scheme of: MQE.SYNCQ.<ClientConnectionName> so that you know which
client connection is using which sync queue.

The default is MQE.SYNCQ.DEFAULT.

Attribute:
SyncQPurgeInterval

Type: int

Label:

Valid actions
Inquire, create, update

Description

Attribute:
SyncQPurgerRulesClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the rules class used when a message on the sync queue
indicates a failure of MQSeries Everyplace to confirm a message.

The default is a classname that just reports the condition in the MQSeries
Everyplace trace.

This parameter is not validated.

Attribute:
TransformerClass

Type: Unicode

Label:

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SYNC_Q_PURGE_INTERVAL

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_SYNC_Q_PURGER_RULES_CLASS

bridge administered objects

158 MQSeries Everyplace Programming Guide

Valid actions
Inquire, create, update

Description
This is the name of the Java class that is used to convert the MQSeries
message into an MQSeries Everyplace message. When a message is taken
from MQSeries by the listener, it is transformed into an MQSeries
Everyplace format message using the specified transformer. If the
transformer class is specified as null or a blank string, then the
DefaultTransformer parameter provided on the bridge configuration
parameters is used as the transformer. If the default is also set to null or
blank, messages cannot be transferred.

The default value is ″″

See “Transformers” on page 162 for more details.

Attribute:
UndelivedMessageRuleClass

Type: Unicode

Label:

Valid actions
Inquire, create, update

Description
The name of the MQeUndeliveredMessageRule class. When a message
moving from MQSeries to MQSeries Everyplace cannot be delivered, this
rule class is consulted to decide what action the listener should take. The
rule tells the listener to wait and retry, shut down, or deal with the
message as defined in the MQMessage report options.

The default value is: com.ibm.mqe.mqbridge.MQeUndeliveredMessageRule.
See “MQeUndeliveredMessageRule” on page 167.

How to send a message from MQSeries to MQSeries Everyplace
There are many ways of arranging your routing on the MQSeries system to test the
transmission of a message. One method is to use the bridge setup wizard (as
described in “The example administration GUI application” on page 145) to define
queue manager aliases for each MQSeries Everyplace queue manager that it knows
about. This document describes how to use the resultant configuration to send a
message to the MQSeries Everyplace queue.
1. Select the MQSeries First Steps program from the MQSeries Client v 5.1
2. Select the API exerciser from the ’First Steps’ screen
3. In the ’API Exerciser Queue Managers’ screen:

v Select the MQSeries queue manager to which the bridge is connected. (The
example is called MQA)

v Check the Advanced mode checkbox
v Click the MQCONN button
v Select the Queues tab to display the ’Queues’ screen
v Select MQOPEN to display the ’MQOPEN Selectable Options’ screen

4. In the ’MQOPEN Selectable Options’ screen:

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_TRANSFORMER

com.ibm.mqe.mqbridge.MQeCharacteristicLabels.MQE_FIELD_LABEL_UNDELIVERED_MESSAGE_RULE_CLASS

bridge administered objects

Chapter 7. MQSeries-bridge 159

v Make sure that MQOO_INPUT_AS_Q_DEF is not selected
v Make sure that MQO_OUTPUT is selected
v Fill in the ObjectName field with the name of the queue that you wish the

message to go to on the MQSeries Everyplace queue manager. (The example
is called Q1)

v Fill in the ObjectQMgrName field with the name of the MQSeries
Everyplace queue manager that you wish the message to go to. (The example
is called ExampleQM)

v Click OK to open a route to the queue.
5. In the ’API Exerciser Queues’ screen:

v Click the MQPUT button to display the ’MQPUT -Argument Options’ screen
6. In the ’MQPUT - Argument Options’ screen:

v Type in your message
v Click OK to send the message to Q1 on ExampleQM on the MQSeries

Everyplace system

Handling undeliverable messages
The MQSeries-bridge’s transmission queue listener acts in a similar way to an
MQSeries channel, pulling messages from an MQSeries transmission queue, and
delivering them to the MQSeries Everyplace network. It follows the MQSeries
Everyplace convention in that if a message cannot be delivered, an undelivered
message rule is consulted to determine how the transmission queue listener should
react. If the rule indicates the report options in the message header, and these
indicate that the message should be put onto a dead-letter queue, the message is
placed on the MQSeries queue (on the sending queue manager).

Putting messages to the MQSeries-bridge queue
If an application uses putMessage(), specifying that a confirmputMessage() should
not be used to confirm this message, the MQSeries-bridge does not use assured
delivery logic to pass the message to MQSeries. It does a simple MQPut to the
target MQSeries queue. If there is a failure anywhere along the message route, the
application is unable to determine whether the message has been sent or not. If the
application decides to resend the message, it is possible for two identical messages
to arrive on the MQSeries queue.

To avoid this problem, the application programmer should use a combination of
putMessage() and confirmputMessage() calls. Using putMessage() with the
confirm parameter set to true causes the MQSeries-bridge to use assured delivery
logic to put the message to the MQSeries system.

If any component of the path between the MQSeries system and the sending
application fails, the application is unable to determine whether the message got to
it’s destination or not. In this case, the application should put the original message
again, with a boolean MQeField added. For example:
msg.putBoolean(MQe.Qos_Retry)

This indicates that this message has been sent in the past. The MQSeries-bridge
uses it’s assured delivery logic to assure that only one of the two putMessage()
calls actually put a message to MQSeries.

sending a message across the bridge

160 MQSeries Everyplace Programming Guide

If the putMessage() is used, with or without the confirm flag set, and a successful
return code is received, the application can be sure that the message has been
passed to the MQSeries queue.

If the putMessage() is used, with the confirm flag set, the MQSeries-bridge retains
some information about the message (on it’s sync queue) that enables it to prevent
duplicate messages being sent by the application. The MQSeries-bridge can only
prevent duplicate messages being sent if the Qos_Retry parameter is set. The
confirmputMessage() removes the message history from the MQSeries-bridge sync
queue.

The following procedure causes four messages to arrive on the target MQSeries
queue.

create a new message

(1) putMessage(Confirm=Yes) - Causes the message to be delivered to
MQSeries, but some note made on the
sync queue.

set the retry bit on the message

putMessage(Confirm=Yes) - Suppressed, as the message is already
noted in the sync queue.

putMessage(Confirm=Yes) - Suppressed, as the message is already
noted in the sync queue.

(2) putMessage(Confirm=No) - not suppressed. the message is delivered
to the MQSeries queue.

remove the retry bit from the message

(3) putMessage(Confirm=Yes) - Causes the message to be sent to
MQSeries. The retry bit was not set, so the
MQSeries-bridge did not look at it’s sync
queue.

ConfirmputMessage() - Causes the MQSeries-bridge to clear it’s
memory of the message.

set the retry bit on the message

(4) putMessage() - Causes the message to be sent.

Getting and browsing messages from the MQSeries-bridge queue
As with other MQSeries Everyplace queues, it is possible to get and browse
messages from MQSeries-bridge queues. It is also possible to specify an MQeFields
filter on these operations. If a filter is used, the first message matching the filter is
returned by getMessage) and all messages matching the filter are returned by
browseMessages.

When browsing messages, if the filter field is blank or null, all messages are
collected from the MQSeries queue and are placed in the returning enumeration. If
the filter is non-blank and non-null, all messages collected from the MQSeries
queue are passed through the queue’s message transformer before being matched
against the filter. Matching messages are placed in the returning enumeration.

If the filter field contains one or both of Msg_MsgID and Msg_CorrelId, messages are
collected from the MQSeries queue using one or both of the MQSeries Message Id
and CorrelId as filter elements. The results are then transformed into MQSeries
Everyplace messages which are filtered as follows:

bridge - putMessage considerations

Chapter 7. MQSeries-bridge 161

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

1. The original filter is applied as the default match criteria and any matching
messages are placed in the returning enumeration.

2. If any transformed MQSeries Everyplace messages do not contain the
Msg_MsgID field, the Msg_MsgID field is removed from the filter.

3. If any transformed MQSeries Everyplace message do not contain the
Msg_CorrelId field, the Msg_CorrelId field is removed from the filter.

4. The unmatched MQSeries Everyplace messages are then filtered using the new
filter, and matching messages are placed into the returning enumeration.

Note that using a blank or null filter, or a filter that contains neither the Msg_MsgID
field nor the Msg_CorrelId field causes all messages on the MQSeries queue to be
browsed. To optimize performance, try to include in the filter one or both of the
expected Message Id or CorrelId as it exists in MQSeries format.

Filters on getMessage work in a similar way to filters on browseMessages, except
that only the first match is removed from the MQSeries queue and returned to the
application.

Usage restrictions
There are some restrictions on the use of getMessage and browseMessages with
MQSeries-bridge queues:
v It is not possible to get or browse messages from MQSeries-bridge queues that

point to MQSeries remote queue definitions.
v You cannot use a nonzero Confirm ID on MQSeries-bridge queue gets. This

means that the getMessage operation on MQSeries-bridge queues does not
provide assured delivery. If you need a get operation to be assured, you should
use transmission-queue listeners to transfer messages from MQSeries.

v Because messages originating from MQSeries do not contain unique identifiers,
it is not possible to browse messages using the justUID flag set to true (this
would normally return a list of the unique message identifiers that matched the
browse).

v The browseMessagesAndLock() method is not supported.

Transformers
A transformer is a Java class that is capable of converting between the different
message formats used by MQSeries Everyplace and MQSeries. Transformers are
derived from the MQeBaseTransformer class.

The transformer can be specified in several ways during the MQSeries-bridge
configuration.
v A Default transformer can be specified for each MQSeries-bridge
v A transformer can be specified for each MQSeries-bridge queue
v A transformer can be specified for each MQSeries transmission queue listener

The transformer is responsible for all aspects of message conversion and must
provide a method of converting between the MQSeries and MQSeries Everyplace
message format that you want to use. This means that whenever you create a new
format for messages that flow between MQSeries and MQSeries Everyplace, you
need to create or modify a transformer class for the new message format.

These changes can be handled in a variety of ways:
v Write a single transformer that can convert all your message formats.

bridge - getMessage considerations

162 MQSeries Everyplace Programming Guide

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|

|

|

This could be implemented using the inheritance model of Java, where one
transformer inherits from another, which inherits from another thus forming a
chain of transformers. Alternatively, it could be implemented as a single Java
class.
Positive aspects of this approach are:
– This transformer can be specified as the default for the MQSeries-bridge. This

requires only one point of configuration to determine the transformer to use
for all operations. (Leave the transformer name blank or null on the
MQSeries-transmission-queue-listener and the MQSeries-bridge queue
definitions.)

– This a very simple approach

Negative aspects of this approach are:
– When formats of an application change, or when a new format is invented,

this large transformer has to be changed and redeployed everywhere.
– It may not be possible to create one transformer that understands all the

message formats in your system.
v Write a series of medium-sized transformers, each being capable of

understanding and transforming various groups of message formats.
Each transformer may be responsible for working with a specific application and
the MQSeries Everyplace routing may be set up such that each application has
exclusive use of a set of MQSeries bridge queues, and MQSeries-transmission-
queue-listeners. The transformer name on the MQSeries-bridge queues and
transmission-queue-listeners are then set to be application-specific.
Positive aspects of this approach are:
– The programmer has complete control of where messages are routed, and can

make sure that the correct transformer is used.
– The approach is simple
– If you add or change a message format the transformer only need to be

changed along the path that the changed or new message formats can flow
v Write a separate transformer for every message format in your system.

This requires that a higher-level transformer is created that uses a list of these
very small transformers, invoking each in turn until the a transformer that can
use the message is found.(See “The
examples.mqbridge.transformers.MQeListTransformer example transformer
class” on page 164.)
Each transformer has knowledge of a single message format.
Care must be taken with each message format, and transformer to make sure
each small transformer is able to uniquely identify the format of the messages
that it transforms. Do not allow an instance of a message to be transformable by
more than one transformer. Each transformer must be able to examine each
message to determine whether the message is in the format that the transformer
was designed to work on.
Various list transformers may be used at different points in the MQSeries-bridge
configuration. At the most basic level, create a list transformer with a list of all
the small transformers available, and set this to be the default. At the most
complex level, create a list transformer with a very small list of transformers,
and set the MQSeries-bridge queue and MQSeries-transmission-queue-listener
transformer parameters.
The list transformer may obtain its list from any of the following:
– A hard-coded literal string constants within the Java source code itself

transformers

Chapter 7. MQSeries-bridge 163

– The system environment variables of the JVM
– The underlying operating system environment
– An ASCII data file that is loaded when the list transformer class is loaded
– By looking at which transformer classes are available in the file system when

it is loaded

The choice of methods is left to the application programmer. The example list
transformer uses the method of hard-coding the transformer list in its Java
source code.

Positive aspects of this approach
– This approach is more object oriented, allowing the knowledge about a

particular message format to be completely encapsulated within a single small
transformer, while the list transformer only understands which transformers
are available.

– Adding a new small transformer need not cause a list transformer to change.
For example, if the list transformer looks at the file system to see which
transformers are available, then simply adding the transformer to the correct
location in the file system may be enough to cause the transformer to be
used.

v Use a mixture of all of the above methods.

Note: If the transformer returns an MQSeries Everyplace-format message
containing either the Msg_CorrelID or Msg_MsgID fields, their contents must
be an exact match with the original MQSeries-style message. This rule in
enforced by the MQSeries-bridge queue. Failure to comply with this
guideline results in the returned MQSeries Everyplace messages being
invisible to the browsing application.

The examples.mqbridge.transformers.MQeListTransformer
example transformer class

This example transformer demonstrates how a higher-level transformer class can
use a list of transformers to perform message transformation, without itself having
any knowledge of the format of the message.

The source file is examples\mqbridge\transformers\MQeListTransformer.java and
is a simple MQSeries to MQSeries Everyplace transformer class.

This transformer does not understand the format of any messages that are passed
to it. It contains an ordered list of small transformers. When a message needs to be
transformed, this class works through its list of transformers one by one,
presenting the message to each transformer. The results of the first transformer to
successfully return a converted message are returned to the user of this class.

This style of transformer can be used in conjunctions with a collection of small
transformers, each of which understands a limited number of message formats.

This class keeps its list of transformers in a static ordered list (array).

To use the example, write a series of small transformers, and put their class names
into the static list at the top of the example file. Compile, and set the modified
example transformer into the required places in the MQSeries-bridge configuration
(see “Configuring a basic installation” on page 136.

transformers

164 MQSeries Everyplace Programming Guide

|
|
|
|
|
|

If the transformer develops an MQSeries Everyplace format message containing
either the Msg_CorrelID or Msg_MsgID fields, their contents should match with the
Message ID and Correlation ID of the original MQSeries-style message. Failure to
follow this guideline means that when an application browses a bridge queue with
a filter containing either the Msg_CorrelID or Msg_MsgID, the transformed message
is not visible to the browsing application.

MQSeries-style messages
MQeMQMsgObject is a subclass of MQeMsgObject that supports MQSeries-style
messages within MQSeries Everyplace. It is typically used to exchange messages
with MQSeries applications using the default transformer in the MQSeries-bridge.
The default transformer generates an MQeMQMsgObject when it receives a
standard MQSeries message. Similarly, if an MQSeries Everyplace application
generates an MQeMQMsgObject and sends it to MQSeries, the default transformer
in the bridge knows how to transform it into a standard MQSeries message.

If the MQeMQMsgObject class does not meet your requirements, you can write a
transformer for the bridge that uses another type of message object more suited to
your application.

Reading an MQSeries-style message
When an application receives a message, it can check whether the message belongs
to the MQeMQMsgObject class as follows:
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;

...
MQeMsgObject msg = MyQM.getMessage(qmgr, queue, null, null, 0);
if (msg instanceof MQeMQMsgObject)
{

MQeMQMsgObject mqeMsg = (MQeMQMsgObject) msg;
...

}

If the message does belong to this class, by using the appropriate get methods on
the message object, all the information from the MQSeries message header can be
accessed as well as the message data . The header information can be obtained
using methods of the form getxxx() where xxx is the name of the header field. For
consistency, the names and types of the header fields follow those of the MQSeries
Classes for Java. The application data is obtained using the getData() method.
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;

...
if (msg instanceof MQeMQMsgObject)
{

MQeMQMsgObject mqeMsg = (MQeMQMsgObject) msg;
String replyQMgr = mqeMsg.getReplyToQueueManagerName();
String replyQueue = mqeMsg.getReplyToQueueName();
byte [] correlId = mqeMsg.getCorrelationId();
String msgFormat = mqeMsg.getFormat();
...
byte [] data = mqeMsg.getData();
...

}

The data can then be processed by the application. The MQeMQMsgObject returns
the data as a byte array, and the application must understand the structure of the
data within the byte array. If the data is required in a more structured format, you
can write your own transformer that understands the application data and
transforms it into the required format.

transformers

Chapter 7. MQSeries-bridge 165

|
|
|
|
|
|

Creating an MQSeries-style message
To create an MQSeries-style message that is understood by the default transformer,
create a new MQeMQMsgObject and set the required values for the header fields
and data. Send the message in the normal way.

To create a new message object invoke the constructor, which has no parameters.
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;

...
try
{

MQeMQMsgObject mqeMsg = new MQeMQMsgObject()
...

}

Set the MQSeries header information in the message using methods of the form
setxxx() where xxx is the name of the header field. For consistency, the names and
types of the header fields follow those of the MQSeries Classes for Java. Any
header fields that are not set explicitly assume their MQSeries default values.

The application data is set using the setData() method.
import com.ibm.mqe.mqemqmessage.MQeMQMsgObject;

...
try
{

MQeMQMsgObject mqeMsg = new MQeMQMsgObject()
mqeMsg.setPutApplicationName("myApp");
mqeMsg.setFormat(...);
mqeMsg.setData(...);
MyQM.putMessage(qmgr, queue, mqeMsg, null, 0);

}

Before it is passed to setData(), the data must be formatted into a byte array that
the receiving application understands.

Transformers and expiry time considerations
Special care needs to be taken when converting the expiry times between MQSeries
and MQSeries Everyplace.

MQSeries Everyplace expiry times are specified as either an explicit time after
which the message expires, or a delta in units of 1 millisecond of how long after
the message creation time the message will expire.

MQSeries units are in tenths of a second.

Failure to convert these expiry times in your transformer can result in messages
expiring, and apparently being ″lost″.

MQSeries-bridge rules
The MQSeries-bridge uses the following rule classes which can be used to alter the
behavior of the bridge.

MQeLoadBridgeRule
This rule class decides which bridges can be loaded when the server starts
up.

MQeUndeliveredMessageRule
This rule class decides how to handle an MQSeries message that cannot be
put to MQSeries Everyplace

MQSeries-style messages

166 MQSeries Everyplace Programming Guide

MQeSyncQueuePurgerRule
This rule class decides on the action to take against old unconfirmed
MQSeries Everyplace to MQSeries messages

MQeStartupRule
This rule class decides whether an administered object should be started
when it is first loaded

These classes are described in more detail in the following sections. As a
programmer, you can subclass these rules classes to create rules to alter the
behavior of MQSeries Everyplace. You can then change your MQSeries Everyplace
configuration to use your rule classes instead of the default rule classes.

MQeLoadBridgeRule
This class defines which bridge objects can be loaded when the server starts up.
When the server uses the MQeMQBridge.activate() method, the bridge loader
starts up. The bridge loader reads all entries in the registry and for each name of a
bridge in the registry, it asks this rules class whether that bridge name should be
loaded or not. The basic MQeLoadBridgeRule class allows all bridges in the
registry to be loaded. This is acceptable as long as the registry is used by a single
MQSeries Everyplace queue manager.

If the registry is shared by two or more MQSeries Everyplace queue managers they
could each try to load the same bridge object, which is not valid. The first server to
start up is given access to all the bridges and their queue managers and queues,
locking out all subsequent servers. For this reason, it is desirable to select the
bridges that should be loaded by each server, by writing a customized version of
the MQeLoadBridgeRule. Using a naming convention for the bridges that has some
correspondence to the servers that need to load them, simplifies the writing of the
customized rule.

The class examples.mqbridge.rules.ExampleLoadBridgeRule demonstrates how a
naming convention can be applied to bridge objects, and used in conjunction with
a LoadBridgeRule, can be used to dictate which bridges may be loaded by the
server.

MQeUndeliveredMessageRule
MQeUndeliveredMessageRule

A bridge may have a number of MQSeries transmission queue listener objects
defined, and running, each moving a series of messages from an MQSeries
transmission queue onto the MQSeries Everyplace network.

When an MQSeries message cannot be delivered to the MQSeries Everyplace
network, the transmission queue listener thread invokes the permit method to
consult the UndeliveredMessageRule class in the listener’s configuration
parameters. The return value from this method determines what action should be
taken.
v If the result is the MQeUndeliveredMessageRule.STOP_LISTENER value, the listener

should stop if the message is undeliverable. The message remains on the
transmission queue on the MQSeries system.

v If the result is the MQeUndeliveredMessageRule.USE_MQ_REPORT_OPTIONS value, the
report field of the original MQSeries message determines whether the message
should be discarded or moved to the dead letter queue on the MQSeries
Everyplace system. The name of the MQSeries queue managers’

bridge rules

Chapter 7. MQSeries-bridge 167

dead-letter-queue is a configuration parameter on the transmission queue
listener of the MQSeries-bridge. If this value is returned, and the message report
options contain MQRO_DISCARD, the undelivered message is discarded.

v If the result is an integer, with a value greater than "0", the value returned is
number of seconds for which the listener should wait before retrying the
MQSeries to MQSeries Everyplace transfer operation.

If the value returned is none of the above, or if the rule throws an exception, then
the listener acts as if the STOP_LISTENER result was returned.

The examples.mqbridge.rules.MQeUndeliveredMessageRule class shows the
behavior of the default rule used by the MQSeries-bridge configuration: When
called, it returns values on successive failures to create the following behavior:
v Waits 5 second between retries for the first minute
v Waits 10 seconds between retries for the second minute
v Waits 60 seconds between retries for the third to ninth minute inclusive
v STOP_LISTENER is applied after retries have failed for 10 minutes

examples.mqbridge.rules.UndeliveredMQMessageToDLQRule is another example
class used to tailor the transmission queue listener behavior. The value of
MQeUndeliveredMessageRule.USE_MQ_REPORT_OPTIONS is always returned by the
permit() method.

MQeSyncQueuePurgerRule
The sync queue is a locally defined queue on the MQSeries queue manager. This
queue is used exclusively by the MQSeries-bridge and is used to assist assured
message delivery. For MQSeries Everyplace messages bound for MQSeries it
contains one record for each unconfirmed message. Over time, on an unstable
system, unconfirmed message records can build up on the sync queue resulting in
a degradation of MQSeries-bridge performance.

At an interval specified by the client-connection’s sync queue purge interval
parameter, the client connection’s defined sync queue purger rule class is invoked
for each old unconfirmed message record. This rule is asked to return a Boolean
true if the supplied message can be deleted or false if it should remain. The
administrator can also use this rule to perform other actions, such as issue an alert
and take appropriate action if a message has not been confirmed after a certain
length of time.

See the examples.mqbridge.rules.MQeSyncQueuePurgerRules for more information.

Note: If the sync queue is being used to store the MQSeries transmission queue
listener state messages, these messages are not affected by this rule.

MQeStartupRule
When a bridge, proxy, client connection, or listener object is loaded, at server
startup, this rule class is consulted for each administered object to see whether it
should be started, or left in the stopped state. This rule also determines whether
the administered object’s children should be started or not.

The return value from the MQeStartupRule.permit(...) method dictates whether
the administered object is started or not. Possible return values, and their effects
are :

bridge rules

168 MQSeries Everyplace Programming Guide

START_NOTHING
Do not start this administered object. This has the same effect as sending
the administered object a stop administration message.

START_PARENTS_AND_ME
Start this administered object, and all it’s parents. This has the same effect
as sending the administered object a start message, with the
affect-children flag value of false.

START_PARENTS_AND_ME_AND_CHILDREN
Start this administered objects, all its parents, and all its children. This has
the same effect as sending the administered object a start message, with
the affect-children flag value of true.

As the returned value can be controlled by applications, you could, implement an
intelligent rule. Such a rule could, for example, only starts an MQSeries
transmission queue listener if the MQSeries system it wants to connect to is active.

The com.ibm.mqe.mqbridge.MQeStartupRule used in the default configuration for
all administered objects, is similar to the examples.mqbridge.rules.MQeStartupRule
class (for which the source code is provided). These classes always return the
START_PARENTS_AND_ME value.

National language support implications
This section describes how the MQSeries-bridge handles messages flowing between
MQSeries systems that use different national languages. The diagram in Figure 36is
used to describe the flow of a message from an MQSeries Everyplace client
application to an MQSeries application.

1. Client application

a. The client application builds an MQSeries Everyplace message object
containing the following data:

Palm
queue

manager

MQSeries
bridge

Transformer

MQSeries
queue

manager

M
Q

S
er

ie
s

Ja
va

 C
lie

nt
 /

B
in

di
ng

sMQSeries
Everyplace

server
queue

manager

MQSeries
Everyplace server

Palm
application

Palm Pilot MQSeries
server

1

2 3 5

MQSeries
application

64

Figure 36. Message flow from MQSeries Everyplace to MQSeries

bridge rules

Chapter 7. MQSeries-bridge 169

A Unicode field
This string is generated using appropriate libraries available on the
client machine (if he is using C/C++).

A byte field
This field should never be translated

An ascii field
This string has a very limited range of valid characters, conforming
to the ASCII standard. The only valid characters are those that are
invariant over all ASCII codepages.

b. The message is put to the Palm queue manager. No translation is done
during this put.

2. Client queue manager puts to the server queue manager

The message is not translated at all through this step.
3. MQSeries Everyplace server puts the message onto the MQSeries-bridge

queue

The message is not translated at all through this step.
4. MQSeries-bridge passes the MQSeries Everyplace message to the

user-written transformer

The transformer creates an MQSeries message as follows:
v The Unicode field in the MQSeries Everyplace message is retrieved using:

String value = MQemsg.GetUnicode(fieldname)

v The retrieved value is copied to the MQSeries message using
MQmsg.writeChars(value)

v The byte field in the MQSeries Everyplace message is retrieved using:
Byte value = MQemsg.getByte(fieldName)

v The retrieved value is copied to the MQSeries message using
MQmsg.writeByte(value)

v The ascii field in the MQSeries Everyplace message is retrieved using either
MQmsg.writeChars(value) to create a unicode value, or
MQmsg.writeString(value) to create a code-set-dependent value, in the
MQSeries message.

If using writeString(), the character set of the string may also be set. The
transformer returns the resultant MQSeries message to the calling
MQSeries-bridge code.

5. The MQSeries-bridge passes the message to MQSeries using the MQSeries
Classes for Java

Unicode values in the MQSeries message are translated from big-endian to
little-endian, and vice-versa, as required. Byte values in the MQSeries message
are translated from big-endian to little-endian, and vice-versa, as required. The
field that was created using writeString() is translated as the message is put to
MQSeries, using conversion routines inside the MQSeries Classes for Java.
ASCII data should remain ASCII data regardless of the character set
conversions performed. The translations done during this step depend on the
code page of the message, the CCSID of the sending MQSeries Classes for Java
client connection, and the CCSID of the receiving MQSeries server connection
channel.

6. The message is got by an MQSeries application

If the message contains a unicode string, the application must deal with that
string as a unicode string, or else convert it into some other format (UTF8 for
example). If the message contains a byte string, the application may use the

bridge - national language considerations

170 MQSeries Everyplace Programming Guide

bytes as-is. (raw data). If the message contains a string, it is read from the
message, and may be converted to a different data format as required by the
application. This conversion is dependent on the codeset value in the
characterSet header field. Java classes provide this automatically.

Conclusion
If you have an MQSeries Everyplace application, and wish to convey
character-related data from MQSeries Everyplace to MQSeries, your choice of
method is determined largely by the data you wish to convey:
v If your data contains characters in the variant ranges of the ASCII character

codepages, (the character for a codepoint changes as you change between the
various ASCII codepages) then you can use either putUnicode (which is never
subject to translation between codepages), or putArrayOfByte (in which case
you have to handle the translation between the sender’s codepage and the
receiver’s codepage).

Note: DO NOT USE putAscii() as the characters in the variant parts of the
ASCII codepages are subject to translation.

v If your data contains only characters in the invariant ranges of the ASCII
character codepages, then you can use putUnicode (which is never subject to
translation between codepages) or putAscii (which is never subject to translation
between codepages, as all your data lies within the invariant range of the ASCII
codepages).

Example files
See “Chapter 2. Getting Started” on page 9 for information about example files that
show how to write and use MQSeries Everyplace programs that support
MQSeries-bridge functionality.

bridge - national language considerations

Chapter 7. MQSeries-bridge 171

|

|
|
|

172 MQSeries Everyplace Programming Guide

Chapter 8. Security

This section contains information about the security function provided by
MQSeries Everyplace. The different levels of security are described together with
typical usage scenarios and usage guidance.

Security features
MQSeries Everyplace provides an integrated set of security features that enable the
protection of data when held locally and when it is being transferred. There are
three different categories of security:

Local security
Local security provides protection for any MQSeries Everyplace data.

Queue-based security
Queue-based security automatically protects MQSeries Everyplace message
data between the initiating queue manager and queue, on the queue, and
between the queue and the receiving queue manager. This protection is
independent of whether the target queue is owned by a local or a remote
queue manager.

Message-level security
Message-level security provides protection for message data between an
initiating and receiving MQSeries Everyplace application.

Queue based security is handled internally by MQSeries Everyplace and does not
require any specific action by the initiator or recipient of the message. Local and
Message-level security must be initiated by an application.

All three categories protect Message data by the application of an attribute
(MQeAttribute or a descendent). Depending on the category, the attribute is either
explicitly or implicitly applied.

Every attribute can contain any or all of the following objects:
v Authenticator
v Cryptor
v Compressor
v Key
v Target Entity Name

The way these objects are used depends on the category of MQSeries Everyplace
security. Each category of security is described in detail later in this chapter.

MQSeries Everyplace also provides the following services to assist with security:

Private registry services
MQSeries Everyplace private registry provides a repository in which public
and private objects can be stored. It provides (login) PIN protected access
so that access to a private registry is restricted to the authorized user. It
also provides additional services so that functions can use the entity’s
private key, (for digital signature, and RSA decryption) without the private
credentials leaving the PrivateRegistry instance.

These services are used by queue-based security and message-level security
using MQeTrustAttribute.

© Copyright IBM Corp. 2001 173

|
|

|

|
|
|

|
|
|

Public registry services
MQSeries Everyplace public registry provides a publicly accessible
repository for mini-certificates.

These services can be used by queue-based and message-level security.

Mini-certificate issuance service
MQSeries Everyplace includes a default mini-certificate issuance service that
can be configured to issue mini-certificates to a carefully controlled set of
entity names.

These services can be used by queue-based and message-level security.

These services are described in more detail later in the chapter.

Local security
Local security provides protection for MQSeries Everyplace data (MQeFields)
objects, including message (MQeMsgObject) objects. The protected data is returned
in a byte array. To apply local security to a data object you must:
1. Create an attribute with an appropriate authenticator, cryptor, and compressor
2. Set up an appropriate key (by providing a password or passphrase seed)
3. Explicitly attach the key to the attribute, the attribute to the data (MQeFields)

object, and invoke the dump() method on the data object

The authenticator determines how access to the data is controlled. The cryptor
determines the cryptographic strength protecting the data confidentiality. The
compressor determines the storage required by the message.

MQSeries Everyplace provides the MQeLocalSecure class to assist with the use of
local security. However, it is the responsibility of the local security user to setup an
appropriate attribute and provide the password or passphrase key.
MQeLocalSecure provides the function to protect the data and to save and restore
it from backing storage. If an application chooses to attach an attribute to a
message without using MQeLocalSecure, it also needs to save the data after using
dump and must retrieve the data before using restore.

Usage scenario
Consider a scenario where mobile agents working on many different customer sites
want to ensure that the confidential data of one customer is not accidentally shared
with another. Local security features, using different keys, and possibly different
cryptographic strengths, provide a simple method for protecting different customer
data held on a single machine .

A simple extension of this scenario could be that the protected local data is
accessed using a key that is pulled from a secure queue on an MQSeries
Everyplace server node. The agents client has to authenticate itself to access the
server queue and pull the local key data, but never knows the actual key.

One of the advantages of taking this approach is that an audit trail is easily
accumulated for all access to customer specific data.

Secure feature choices
When using MQeLocalSecure, the following attribute choices are available:

Authenticator
Example NTAuthenticator or UserIdAuthenticator

security features

174 MQSeries Everyplace Programming Guide

|

|
|
|

|
|

Cryptor
One of the symmetric cryptors MQeDESCryptor, MQe3DESCryptor,
MQeRC4Cryptor, MQeRC6Cryptor or MQeMARSCryptor

Compressor
MQeLZWCompressor, MQeRleCompressor, or MQeGZIPCompressor

Selection criteria
You should use an authenticator if you need to provide additional controls to
prevent access to the local data by unauthorized users. In some ways using an
authenticator is unnecessary since providing the key password or passphrase
automatically limits access to those who know this secret.

The choice of cryptor is driven by the strength of protection required. The stronger
the encryption, the more difficulty an attacker would face when trying to get
illegal access to the data. Data protected with symmetric ciphers that use 128 bit
keys is acknowledged as more difficult to attack than data protected using ciphers
that use shorter keys. However, in addition to cryptographic strength, the selection
of a cryptor may also be driven by many other factors. An example is that some
financial solutions require the use of triple DES in order to get audit approval.

You should use a compressor if you need to optimize the size of the protected
data. However, the effectiveness of the compressor depends on the content of the
data. The MQeRleCompressor performs run length encoding . This means that the
compressor routines compress or expand repeated bytes. Hence it is effective in
compressing and decompressing data with many repeated bytes.
MQeLZWCompressor uses the LZW scheme. The simplest form of the LZW
algorithm uses a dictionary data structure in which various words (data patterns)
are stored against different codes. This compressor is likely to be most effective
where the data has a significant number of repeating words (data patterns).

Usage guide
1. The following program fragment protects an MQeFields object using

MQeLocalSecure.
try

{
.../*SIMPLE PROTECT FRAGMENT */
.../*instantiate a DES cryptor */
MQeDESCryptor desC =new MQeDESCryptor();
.../*instantiate an Attribute using the DES cryptor */
MQeAttribute attr =new MQeAttribute(null,desC,null);
.../*instantiate a base Key object */
MQeKey localkey =new MQeKey();
.../*set the base Key object local key */
localkey.setLocalKey("my secret key");
.../*attach the key to the attribute */
attr.setKey(localkey);
/*instantiate a MQeFields object */
MQeFields myData =new MQeFields();
/*attach the attribute to the data object */
myData.setAttribute(attr);
/*add some test data */
myData.putAscii("testdata","0123456789abcdef....");
trace ("i:test data in ="+myData.getAscii("testdata"));
/*encode the data */
byte []protectedData =myData.dump();
trace ("i:protected test data ="+MQe.byteToAscii(protectedData));
}

catch (Exception e)
{

local security

Chapter 8. Security 175

e.printStackTrace();/*show exception */
}

try
{
.../* SIMPLE UNPROTECT FRAGMENT */
.../* instantiate a DES cryptor */
MQeDESCryptor des2C = new MQeDESCryptor();
.../* instantiate an attribute using the DES cryptor */
MQeAttribute des2A = new MQeAttribute(null, des2C, null);
.../* instantiate a (a helper) LocalSecure object */
MQeLocalSecure ls2 = new MQeLocalSecure();
.../* open LocalSecure obj identifying target file and directory */
ls2.open(".\\", "TestSecureData.txt");
.../* use LocalSecure read to restore from target and decode data*/
String outData = MQe.byteToAscii(ls2.read(desA2,

"It_is_a_secret"));
.../* show results.... */
trace ("i: test data out = " + outData);
...
}

catch (Exception e)
{
e.printStackTrace(); /* show exception */
}

2. The following program fragment protects an MQeMsgObject locally without
using MQeLocalSecure.
try
{

.../*SIMPLE PROTECT FRAGMENT */

.../*instantiate a DES cryptor */
MQeDESCryptor desC = new MQeDESCryptor();

.../*instantiate an Attribute using the DES cryptor */
MQeAttribute attr = new MQeAttribute(null,desC,null);

.../*instantiate a base Key object */
MQeKey localkey = new MQeKey();
.../*set the base Key object local key */
localkey.setLocalKey("my secret key");
.../*attach the key to the attribute */
attr.setKey(localkey);
/*instantiate an MQeFields object */
MQeFields myData = new MQeFields();
/*attach the attribute to the data object */
myData.setAttribute(attr);
/*add some test data */
myData.putAscii("testdata", "0123456789abcdef....");
trace ("i:test data in = " + myData.getAscii("testdata"));
/*encode the data */
byte [] protectedData = myData.dump();
trace ("i:protected test data = " + MQe.byteToAscii(protectedData));
}
catch (Exception e)
{

e.printStackTrace(); /*show exception */
}

try
{
.../*SIMPLE UNPROTECT FRAGMENT */
.../*instantiate a DES cryptor */
MQeDESCryptor desC2 = new MQeDESCryptor();
.../*instantiate an Attribute using the DES cryptor */
MQeAttribute attr2 = new MQeAttribute(null,desC2,null);
.../*instantiate a base Key object */
MQeKey localkey2 = new MQeKey();
.../*set the base Key object local key */

local security

176 MQSeries Everyplace Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

localkey2.setLocalKey("my secret key");
.../*attach the key to the attribute */
attr2.setKey(localkey2);
/*instantiate a new data object */
MQeFields myData2 = new MQeFields();
/*attach the attribute to the data object */
myData2.setAttribute(attr2);
/*decode the data */
myData2.restore(protectedData);
/*show the unprotected test data */
trace ("i:test data out = " + myData2.getAscii("testdata"));
}
catch (Exception e)
{

e.printStackTrace(); /*show exception */
}

Queue-based security
Queue-based security automatically protects MQSeries Everyplace message data
between the initiating queue manager and the queue, on the queue itself, and
between the queue and the receiving queue manager. This form of protection
requires the target queue to be defined with an attribute. This protection is
independent of whether the queue is owned by a local or a remote queue manager.

A simple example of this is a target queue defined with an attribute that has an
NTAuthenticator, an MQe3DESCryptor and an MQeRleCompressor. When such a
target queue is accessed (either locally or remotely), using putMessage,
getMessage or browseMessages, the queue attribute is automatically applied. In
this example the application initiating the access has to satisfy the requirements of
the NTAuthenticator before the operation is permitted. If the operation is
permitted, the message data is automatically encoded and decoded using the
attribute’s MQe3DESCryptor and MQeRleCompressor. When the example target
queue is remotely accessed, for example using putMessage, queue-based security
automatically ensures that the message data is protected at the level defined by the
queue attribute. This protection applies during transfer between the initiating
queue manager and the queue, while the message is stored on the queue, and
during transfer between the queue and the receiving queue manager.

Usage scenario
MQSeries Everyplace queue-based security can be used whenever you need to
protect the confidentiality of message data being transferred between queue
managers.

A typical scenario could be a service that is delivered over an open network, like
the internet, where an initiating application makes requests, using a queue
manager on a client, to access a service provided by a server queue manager
application.

This can be implemented as follows:
1. The initiating client queue manager application encapsulates the request in an

MQSeries Everyplace message
2. putMessage is used to transfer the message to a queue called

XXX_service_request on a remote server
3. A queue manager application on the server is setup to listen for messages on

the XXX_service_request queue

local security

Chapter 8. Security 177

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

4. When a message event occurs, a getMessage is performed, to get the service
request message

5. The request is processed (for example by invocation of a CICS transaction on a
back-end system)

6. The response (transaction result) is encapsulated in a message
7. putMessage is used to return the response to a queue called XXX_service_reply

on the initiating client queue manager.
8. waitForMessage is used on the initiating queue manager to wait for a reply

message to arrive in the local queue called XXX_service_reply

One way to support this simple example would be to define the following queues:

Owned by the initiating client queue manager (ClientQMgr for example)
v TestClient_HomeServerQ
v XXX_service_reply

While a number of choices exist, setting the TestClient_HomeServerQ
TimerInterval option, to 5000 for example, sets a 5sec poll interval and
triggers the client queue manager to poll the server queue manager. This
poll ’pulls’ any messages on the server queue manager’s store-and-forward
queue that have been directed to the client queue manager. Also, before
running any client queue manager application, the AddQueueManager option
must be used to add a reference to the server queue manager.

Owned by the server queue manager (ServerQMgr for example)

v TestServer_StoreAndForwardQ
v XXX_service_request

Defining the TestServer_StoreAndForwardQ for use in this scenario requires
two steps.
1. Create the queue
2. setAction

MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager,
with name ClientQMgr

queue-based security

178 MQSeries Everyplace Programming Guide

|
|

|
|

|

|
|

|
|

Secure feature choices
When using queue-based security all the choices for attribute are available:

Authenticator
NTAuthenticator or UserIdAuthenticator (or other descendant of
examples.attributes.LogonAuthenticator), or MQeWTLSCertAuthenticator

Cryptor
MQeXORCryptor or one of the symmetric cryptors MQeDESCryptor,
MQe3DESCryptor, MQeRC4Cryptor, MQeRC6Cryptor, or
MQeMARSCryptor

Compressor
MQeLZWCompressor, MQeRleCompressor, or MQeGZIPCompressor

Selection criteria
Queue-based security is appropriate for solutions designed to use synchronous
queues. In this case, the selection criteria is really concerned with the selection of
the (synchronous) queue attribute’s authenticator, cryptor and compressor.

The option to use an Authenticator is driven by the need to provide additional
controls to prevent access to the local data by unauthorized users. This is equally
relevant when the queue data is accessed locally or remotely.

Using a descendant of LogonAuthenticator (NTAuthenticator or
UserIdAuthenticator), when the attribute is activated, for example when an
application is performing a putMessage(), getMessage() or browseMessages() of
data on the queue, the requirements of the authenticator have to be satisfied before
the operation is permitted. In the queue-based “Usage scenario” on page 177, if the
XXX_service_request queue is defined with an attribute including the
NTAuthenticator, then access to the server XXX_service_request queue (for
example when attempting to putMessage() requests to this queue from a client
queue manager), is restricted to the set of users defined as valid NT users in the
target server’s domain. The NTAuthenticator is provided as an example, enabling
descendents that enable a finer granularity of control to smaller sets of users to be
easily created.

Using MQeWTLSCertAuthenticator ensures that all remote accesses to a queue
protected with an attribute using this authenticator have completed mutual
authentication before the operation can be executed. The mutual authentication of
the mini-certificates exchanged consists of each participant validating the
mini-certificate it receives. This validation checks the mini-certificate received is a
valid signed entity, signed by the same mini-certificate server as the requestor’s
own mini-certificate, and that it is valid with respect to date, that is the current
date is not prior to its from-date or after its to-date. An administration option
enables the solution creator to choose whether a target queue manager queue has
its own credentials (that it is an authenticatable entity in its own right, with its
own mini-certificate and associated private key) or shares the credentials of its
owning queue manager. In the queue-based “Usage scenario” on page 177, if the
XXX_service_request queue is defined with an attribute containing the
MQeWTLSCertAuthenticator, then access to the server XXX_service_request queue,
for example when the initiating client queue manager application performs a
remote putMessage(), depends on the credentials of the initiating client queue
manager and the target XXX_service_request queue being successfully mutually
authenticated.

The choice of cryptor is driven by the strength of protection required, that is, the
degree of difficulty that an attacker would face when cryptographically attacking

queue-based security

Chapter 8. Security 179

|

the protected data to get illegal access. Data protected with symmetric ciphers
which use 128 bit keys is acknowledged as being more difficult to attack than data
protected using ciphers that use shorter keys. But in addition to cryptographic
strength. the selection of a cipher may also be driven by many other factors. An
example of this is some financial solutions require the use of triple DES in order to
get audit approval.

The option to use a compressor is driven by the need to optimize the size of the
protected data. However, the effectiveness of the compressor depends on the
content of the data. The MQeRleCompressor performs run length encoding ; that
is, the compressor routines compress and/or expand repeated bytes. Hence it is
effective in compressing/decompressing data with many repeated bytes.
MQeLZWCompressor uses the LZW scheme. The simplest form of the LZW
algorithm uses a dictionary data structure in which various words (data patterns)
are stored against different codes. This compressor is likely to be most effective
where the data has a significant number of repeating words (data patterns).

Usage guide
To use queue base security, the queue manager that owns the queue must have a
private registry. If the MQeWTLSCertAuthenticator is used, the registry must also
have its own credentials, which it obtains by auto-registering with the
mini-certificate server. In the following example the credentials process is enabled
by adding information to the Registry Section of the queue manager’s
configuration (.ini) file. If the MQeWTLSCertAuthenticator is not used, a private
registry is still required but it does not have to register with the mini-certificate
server to obtain credentials

The following code fragments provide an example of how to create queue manager
instances and define the queues identified for the queue-based scenario described
in “Usage scenario” on page 177. Fragments for the client queue manager initiating
application and server queue manager AppRunList started application are also
provided.

Using SimpleCreateQM to create ClientQMgr and ServerQMgr
instances

Note: This example program requires the PIN, Certificate-request PIN and the
Key Ring Password to be stored in the configuration file. This is convenient
for an example but is not recommended for a production system. Care
should be taken to prevent the unauthorized disclosure of PINs and
passwords.

SimpleCreateQM assists users to create queue manager instances that have private
registries. The class uses parameters found in the Registry Section of
MQePrivateClient1.ini and MQePrivateServer1.ini.

The particular instances can be created as follows:
1. Reset the private registry related parameters in the registry section of

MQePrivateClient1.ini and MQePrivateServer1.ini from their defaults to a
desired setting:
(ascii)LocalRegType=PrivateRegistry
(ascii)DirName=.\\MQeNode_PrivateRegistry
(ascii)PIN=12345678

< change PIN from '12345678' to the PIN to be provided subsequently at
queue manager start-up time to enable the queue manager to access its
own private registry >

queue-based security

180 MQSeries Everyplace Programming Guide

|
|
|
|
|

Include the next three keywords (CertReqPIN, KeyRingPassword and
CAIPAddrPort only if MQeWTLSCertAuthenticator is to be used:
(ascii)CertReqPIN=12345678

< change CertReqPIN from '12345678' to a new value that matches the value set by
Mini Certificate Server's Administrator when the queuemanager instance is defined >

(ascii)KeyRingPassword=It_is_a_secret
< change the KeyRingPassword from 'It_is_a_secret' to the password that

to be subsequently provided at queuemanager start-up time to enable
the queuemanager instance to access its protected private credentials
within its Private Registry. >

(ascii)CAIPAddrPort=9.20.X.YYY:8082
< change this to the IP address and port of the solution's

MiniCertificateServer.>

2. If the last three keywords are supplied auto-registration is be triggered, so,
before adding the queue manager instances it is necessary to start the
MiniCerificateServerGUI, and, using ’administration’ mode, to define the queue
manager instances (ClientQMgr and ServerQMgr) as valid authenticatable entities
with their certificate request PIN set to the same value as that defined in the
registry section CertReqPIN= line in the MQePrivateClient1.ini and
MQePrivateServer1.in files in the previous step.

3. Start a MiniCertificateServerGUI instance and select ’server’ mode.
4. Run the TestCreate program (shown in the following code fragment) to create

the queue manager instances.
package test;
import com.ibm.mqe.*;
import examples.install.*;
public class TestCreate extends MQe

{
public void createQMs()

{
/* start trace... */
try{

MQeTraceInterface trace =
(MQeTraceInterface) MQe.loader.loadObject(

"examples.awt.AwtMQeTrace");
trace.activate("TestCreate...", null);
}

catch(Exception e) {e.printStackTrace(); }
try{

String INI_FileName = ".\MQePrivateClient1.ini";
String QueueDir = ".\ClientQMgr\Queues\";
SimpleCreateQM c_QMgr = new SimpleCreateQM();
if (c_QMgr.createQMgr(INI_FileName, QueueDir))

trace (">>>> ClientQMgr created OK...");
else

trace (">>>> error creating ClientQMgr...");
INI_FileName = ".\MQePrivateServer1.ini";
QueueDir = ".\ServerQMgr\Queues\";
SimpleCreateQM s_QMgr = new SimpleCreateQM();
if (s_QMgr.createQMgr(INI_FileName, QueueDir))

trace (">>>> ServerQMgr created OK...");
else

trace (">>>> error creating ServerQMgr...");
}

catch (Exception e)
{
trace (">>>> SimpleCreateQM eception = "+ e.getMessage());
e.printStackTrace();
}

}
public static void main(String args[])

{
TestCreate testc = new TestCreate();

queue-based security

Chapter 8. Security 181

testc.createQMs();
}

}

Defining the queues identified for the queue-based scenario
described above
There are several ways to add queue definitions to a queue manager instance. The
method described here starts the queue manager instance locally, adds the new
queue definitions by creating the relevant administration messages and sending
them to the queue manager’s own administration queue, and then waits for
confirmation of success in an AdminReply queue.

ClientQMgr queues -adding TestClient_HomeServerQ:

Start the ClientQMgr locally using the MQePrivateClient class, (using a different
version, MQePrivateClient2.ini, that deliberately does not hold hard coded values
for PIN, KeyRingPassword, and CertReqPIN) then create and use an administration
messages to add the queue and set the poll interval.

{
try{

/* start ClientQMgr... */
String QMgrName = "ClientQMgr";
String QName = "TestClient_HomeServerQ"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateClient2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add HomeServerQ... */
MQeHomeServerQueueAdminMsg msg =

new MQeHomeServerQueueAdminMsg("ServerQMgr",
"ServerTestQ_StoreAndForward");

MQeFields parms = new MQeFields();
parms.putLong(MQeHomeServerQueueAdmin.Queue_QTmerInterval, 5000);
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, "ServerQMgr");
parms.putAscii(msg.Queue_FileDesc, FileDesc);

if (qattr.getAuthenticator() != null) /*add qattr auth details*/
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())

{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}

queue-based security

182 MQSeries Everyplace Programming Guide

if (qattr.getCryptor() != null)
{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))

parms.putAscii(msg.Queue_AttrRule,
"examples.rules.AttributeRule");

}
if (qattr.getCompressor() != null)

parms.putAscii(msg.Queue_Compressor,
qattr.getCompressor().type());

parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add HomeServerQ... */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response ... */
if (respMsg == null)

trace ("i: create Queue failed, no response message received");
else

{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)

trace("i: create Queue added queue OK...");
else

trace("i: create Queue failed: " + respMsg.getReason());
}

newQM.close();
}

catch (Exception e)
{
trace (">>>> add HomeServerQ exception = "+ e.getMessage());
e.printStackTrace();
}

}

ClientQMgr queues -adding XXX_service_reply queue:

Start the ClientQMgr locally using the MQePrivateClient class, (using a different
version, MQePrivateClient2.ini, that deliberately does not hold hard coded values
for PIN, KeyRingPassword and CertReqPIN) then create and use an administration
messages to add the queue.
{

try{
/* start ClientQMgr... */
String QMgrName = "ClientQMgr";
String QName = "XXX_service_reply"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateClient2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add XXX_service_reply queue */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);

queue-based security

Chapter 8. Security 183

msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, "ServerQMgr");
parms.putAscii(msg.Queue_FileDesc, FileDesc);
if (qattr.getAuthenticator() != null)
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())

{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}
if (qattr.getCryptor() != null)

{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))

parms.putAscii(msg.Queue_AttrRule,
"examples.rules.AttributeRule");

}
if (qattr.getCompressor() != null)

parms.putAscii(msg.Queue_Compressor,
qattr.getCompressor().type());

parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add queue ... */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response ... */
if (respMsg == null)

trace ("i: create Queue failed, no response message received");
else

{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)

trace("i: create Queue added queue OK...");
else

trace("i: create Queue failed: " + respMsg.getReason());
}

newQM.close();
}

catch (Exception e)
{
trace (" >>> add XXX_service_reply Q excep = "+ e.getMessage());
e.printStackTrace();
}

}

ServerQMgr queues -adding TestServer_StoreAndForwardQ: Start the
ServerQMgr locally using the MQePrivateClient class, (using a different version,
MQePrivateServer2.ini, that deliberately does not hold hard coded values for PIN,
KeyRingPassword and CertReqPIN), create and use an administration messages to
add the queue, and then add a remote queue manager reference.

queue-based security

184 MQSeries Everyplace Programming Guide

{
try{

/* start ServerQMgr, locally */
String QMgrName = "ServerQMgr";
String QName = "TestServer_StoreAndForwardQ"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateServer2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add StoreAndForwardQ */
MQeStoreAndForwardQueueAdminMsg() msg =

new MQeStoreAndForwardQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);
if (qattr.getAuthenticator() != null)

{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())

{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}
if (qattr.getCryptor() != null)

{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))

parms.putAscii(msg.Queue_AttrRule,
"examples.rules.AttributeRule");

}
if (qattr.getCompressor() != null)

parms.putAscii(msg.Queue_Compressor,
qattr.getCompressor().type());

parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(" >>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add queue ... */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(" >>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(" >>> Admin Msg processed OK...");
/* process Admin msg response ... */
if (respMsg == null)

trace ("i: create Queue failed, no response message received");
else

{

queue-based security

Chapter 8. Security 185

if (respMsg.getRC () == MQeAdminMsg.RC_Success)
trace("i: create Queue added queue OK...");

else
trace("i: create Queue failed: " + respMsg.getReason());

}
/* use Admin msg to StoreAndForwardQ AddQueueManager reference */
msg = new MQeStoreAndForwardQueueAdminMsg();
msg.addQueueManager("ClientQMgr");
parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);
msg.setAction(

MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager);
trace(" >>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(" >>> Waiting for a response to update Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(" >>> Admin Msg processed OK...");
/* process Admin msg response ... */
if (respMsg == null)

trace ("i: create Queue failed, no response message received");
else

{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)

trace("i: create Queue added queue OK...");
else

trace("i: create Queue failed: " + respMsg.getReason());
}

trace(" >>> StoreAndForwardQ AddQueueManager reference OK...");
newQM.close();
}

catch (Exception e)
{
trace (" >>> add StoreAndForwardQ exception = "+ e.getMessage());
e.printStackTrace();
}

ServerQMgr queues -adding XXX_service_request queue:

Start the ServerQMgr locally using the MQePrivateClient class, (using a different
version, MQePrivateServer2.ini, that deliberately does not hold hard coded values
for PIN, KeyRingPassword and CertReqPIN) then create and use an administration
messages to add the queue.
{

try{
/* start ServerQMgr... */
String QMgrName = "ServerQMgr";
String QName = "XXX_service_request"
MQeAttribute qattr = new MQeAttribute(null,

new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateServer2.ini",

queue-based security

186 MQSeries Everyplace Programming Guide

"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add XXX_service_request queue */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);

if (qattr.getAuthenticator() != null) /*add qattr auth details*/
{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())

{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
}

}
if (qattr.getCryptor() != null)

{
parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))

parms.putAscii(msg.Queue_AttrRule,
"examples.rules.AttributeRule");

}
if (qattr.getCompressor() != null)

parms.putAscii(msg.Queue_Compressor,
qattr.getCompressor().type());

parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add XXX_service_request queue */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response ... */
if (respMsg == null)

trace ("i: create Queue failed, no response message received");
else

{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)

trace("i: create Queue added queue OK...");
else

trace("i: create Queue failed: " + respMsg.getReason());
}

newQM.close();
}

catch (Exception e)
{

queue-based security

Chapter 8. Security 187

trace (" >>> add XXX_service_request excep = "+ e.getMessage());
e.printStackTrace();
}

}

Server queue manager AppRunList started application.:

This section provides an example extension to MQePrivateServer2.ini showing how
to add an AppRunList application that is automatically started when the
ServerQMgr starts. It also provides an example TestService application.

Example MQePrivateServer2.ini
MQePrivateServer2.ini - with AppRunList extension...
[Alias]
(ascii)EventLog=examples.log.LogToDiskFile
(ascii)Network=com.ibm.mqe.adapters.MqeTcpipHttpAdapter
(ascii)QueueManager=com.ibm.mqe.MqeQueueManager
(ascii)Trace=examples.awt.AwtMQeTrace
(ascii)MsgLog=com.ibm.mqe.adapters.MqeDiskFieldsAdapter
(ascii)FileRegistry=com.ibm.mqe.registry.MqeFileSession
(ascii)PrivateRegistry=com.ibm.mqe.registry.MqePrivateSession
(ascii)ChannelAttrRules=examples.rules.AttributeRule
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey
(ascii)AttributeKey_2=com.ibm.mqe.attributes.MqeSharedKey
[ChannelManager]
(int)MaxChannels=0
[Listener]
(ascii)Listen=Network::8082
(ascii)Network=Network:
(int)TimeInterval=300
[QueueManager]
(ascii)Name=ServerQMgr
(ascii)QueueStore=MsgLog:.\MQeNode_PrivateRegistry
[Registry]
(ascii)LocalRegType=PrivateRegistry
(ascii)DirName=.\\MQeNode_PrivateRegistry
(ascii)PIN=not set
(ascii)CertReqPIN=not set
(ascii)KeyRingPassword=not set
(ascii)CAIPAddrPort=9.20.X.YYY:8082
[AppRunList]
(ascii)App1=test.TestService

Example Server TestSevice application
package test;
import com.ibm.mqe.*;
import com.ibm.mqe.attributes.*;
import java.util.*;
public class TestService extends MQe

implements MQeRunListInterface, MQeMessageListenerInterface, Runnable
{
protected Thread applicationThread = null;
protected MQeQueueManager thisQMgr = null;

/* constructor */
public TestService() throws Exception

{
}

/* activate method */
public Object activate(Object owner,

Hashtable loadTable,

queue-based security

188 MQSeries Everyplace Programming Guide

MQeFields setupData) throws Exception
{
System.out.println(" TestService, activate, owner objref = " + owner);
thisQMgr = (MQeQueueManager)owner; /* save QMgr objref */
applicationThread = new Thread(

this, "applicationThread"); /* create svr app thread */
System.out.println(" TestService, activate no of active threads = " +

Thread.activeCount());
Thread t[] = new Thread[Thread.activeCount()];
int i = Thread.enumerate(t);
for (int j = 0; j < i; j++) /* look at svr threads */

System.out.println("TestService activate, active thread name = "
+ t[j].getName());

applicationThread.start(); /* start appl'n Thread. */
return this;
}

/* run method */
public void run()

{
System.out.println("TestService, Run...");
/* add listener for XXX_service_request queue */
try {

thisQMgr.addMessageListener(this, "XXX_service_request",
new MQeFields());

}
catch(Exception e)

{
e.printStackTrace();
}

}

/* MessageArrived event handler */
/* MsgArrived event is generated when a message arrives on a queue */
public void messageArrived(MQeMessageEvent msgEvent)
{
try {

System.out.println(" TestService, msgEvent, messageArrived ");
System.out.println(" TestService, msgEvent getQueueManagerName = " +

msgEvent.getQueueManagerName());
System.out.println(" TestService, msgEvent getQueueName = " +

msgEvent.getQueueName());
/* get XXX service request message */
MQeMsgObject reqmsg = thisQMgr.getMessage(

msgEvent.getQueueManagerName(),
msgEvent.getQueueName(),
msgEvent.getMsgFields(),
null,
0);

/* process service request here */
String reqdata = reqmsg.getAscii("XXX_service_request_data");
String replydata = reqdata + "_reply";
/* build XXX_service reply message here */
MQeMsgObject replymsg = new MQeMsgObject();
replymsg. putArrayOfByte(MQe.Msg_CorrelID,

reqmsg.getArrayOfByte(MQe.Msg_CorrelID));
replymsg.putAscii("XXX_service_reply_data", replydata);
System.out.println(" TestService, msgEvent putting service reply " +

"to ClientQMgr XXX_service_reply queue");
/* put reply to ClientQMgr XXX_service reply queue */
thisQMgr.putMessage("ClientQMgr", "XXX_service_reply",

replymsg, null, 1);
}

catch(Exception e)
{
e.printStackTrace();

queue-based security

Chapter 8. Security 189

}
}
/* finalize method */
protected void finalize()

{
System.out.println("TestService, finalize...");
applicationThread.stop();
applicationThread.destroy();
}

Client queue manager application initiating XXX_service_request.:

The example queue-based security scenario in “Usage scenario” on page 177
describes a client queue manager application that initiates XXX_service_request
messages by encapsulating the request in a MQeMsgObject and using
putMessage() to reliably deliver the request to the server queue manager’s
XXX_sevice_request queue. It then waits for the reply to the service request by
using waitForReply() on its own XXX_service_reply queue.

In the scenario, the TestService application on the server processes the service
request by using getMessage() to get the service request from the
XXX_service_request queue, processes the request (for example by invocation of a
backend transaction), builds the reply MQeMsgObject, and uses the server queue
manager putMessage() to return the reply to the (remote) initiating client queue
manager.

The server queue manager internally puts the message onto its
TestServer_StoreAndForwardQ. The client queue manager pulls the message from
the TestServer_StoreAndForwardQ and receives it in its ClientTest_HomeServerQ
before putting it on the intended target XXX_service_reply queue.

The client application below provides a simple example of invoking a service
request and processing the resulting reply.
package test;
import com.ibm.mqe.*;
import examples.queuemanager.*;
public class UseTestService extends MQe
{
protected MQeQueueManager thisQMgr = null;
/* serviceRequest method */
public void serviceRequest()

{
/* start trace... */
try{

MQeTraceInterface trace =
(MQeTraceInterface) MQe.loader.loadObject(

"examples.awt.AwtMQeTrace");
trace.activate("UseTestService...", null);
}

catch(Exception e) {e.printStackTrace();
/* start and use Client queuemanager to put request & process reply */
try {

/* start Client queue manager */
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateClient2.ini",
"12345678",
"It_is_a_secret",
null);

MQeQueueManager newQM = newC.queueManager;
/* build svc request and use putMessage to put it to server */
MQeMsgObject msgreq = new MQeMsgObject();

queue-based security

190 MQSeries Everyplace Programming Guide

long thisReq_CorrelID = newQM.uniqueValue();
msgreq.putArrayOfByte(MQe.Msg_CorrelID,

longToByte(thisReq_CorrelID));
String reqdata = "0123456789abcdef";
msgreq.putArrayOfByte("XXX_service_request_data",

asciiToByte(reqdata));
newQM.putMessage("ServerQMgr","XXX_service_reqest",msgreq,null,1);
trace(" >>> request put to ClientQMgr,XXX_service_request q OK");
/* field and process reply to service request */
trace(" >>> waiting for reply message...");
MQeFields msgreq_filter = new MQeFields();
msgreq_filter.putArrayOfByte(MQe.Msg_CorrelID,

longToByte(thisReq_CorrelID));
MQeMsgObject msgreply = newQM.waitForMessage(newQM.getName(),

"XXX_service_reply", msgreq_filter, null, 0, 3000);
trace(" >>> service request reply = " +

byteToAscii(msgreply.getArrayOfByte("XXX_service_reply_data")));
}

catch(Exception e2) { e2.printStackTrace();}
}

}
public static void main(String args[])

{
UseTestService testsvc = new UseTestService();
testsvc.serviceRequest();
}

}

Queue-based security and triggering auto-registration
When a queue manager accesses a remote queue or any local queue that is defined
with an attribute including the MQeWTLSCertAuthenticator, then the queue
manager and queues are authenticatable entities and require their own credentials.

A queue manager’s credentials are created by triggering auto-registration. The
simplest way of triggering auto-registration is to include the relevant keywords in
the registry section of the ini file used when the queue manager is created. The
keywords needed in the registry section of the ini file are:
(ascii)CertReqPIN=12345678

< change CertReqPIN '12345678' to a new value that matches the value set by
Mini Certificate Server's Administrator when the Queue Manager instance is defined >

(ascii)KeyRingPassword=It_is_a_secret
< change the default KeyRingPassword from 'It_is_a_secret' to the password that

is to be subsequently provided at Queue Manager start-up time to enable
the Queue Manager instance to access its protected private credentials
within its Private Registry. >

(ascii)CAIPAddrPort=9.20.X.YYY:8082
< change this to the IP address and port of the solution's MiniCertificateServer.>

The credentials of queues (with an attribute including
MQeWTLSCertAuthenticator) are also created by triggering auto-registration. This
happens automatically when an administration message adding the queue is
processed providing that:
v The owning queue manager has already auto-registered, and been started with

parameters necessary to access its own credentials and the solutions’s
mini-certificate server

v The owning queue manager name and queue name have been predefined by the
mini-certificate server administrator, with the mini-certificate request PIN set to
the same value as the CertReqPIN value used to start the owning queue manager

v The mini-certificate server is available, started, and is in ’server’ mode

queue-based security

Chapter 8. Security 191

|
|
|
|
|
|
|
|
|
|

|

When adding a queue (with an attribute including MQeWTLSCertAuthenticator)
the queue can have its own credentials or it can share its owning queue manager’s
credentials. This choice is determined when the ’create queue’ administration
message is constructed. The following code fragment shows the relevant
parameters and their meaning.

ServerQMgr queues -adding ServerTestQWTLS2:

The following code fragment:
v Assumes that the mini-certificate server administrator has added

ServerQMgr+ServerTesTQWTLS2 with Certificate Request PIN equal to 12345678,
and has started the mini-certificate server in ’server’ mode

v Starts the ServerQMgr locally using the MQePrivateClient class, (using the
different version, MQePrivateServer2.ini, that deliberately does not hold hard
coded values for PIN, KeyRingPassword, and CertReqPIN) then create and use an
administration message to add the ServerTestQWTLS2 queue

{
try{

/* start ServerQMgr... */
String QMgrName = "ServerQMgr";
String QName = "ServerTestQWTLS2"
MQeAttribute qattr = new MQeAttribute(

new MQeWTLSCertAuthenticator(), new MQe3DESCryptor, null);
String FileDesc = "MsgLog:.";
MQePrivateClient newC = new MQePrivateClient(

".//MQePrivateServer2.ini",
"12345678", /* or new PIN */
"It_is_a_secret", /* or new KeyRingPwd*/
null);

MQeQueueManager newQM = newC.queueManager;
/* create and use Admin msg to add ServerTestQWTLS2 queue */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();
MQeFields parms = new MQeFields();
msg.setTargetQMgr(QMgrName);
msg.setName(QMgrName, QName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, "AdminReplyQ");
msg.putAscii(MQe.Msg_ReplyToQMgr, QMgrName);
msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(newQM.uniqueValue()).getBytes());
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));
parms.putAscii(msg.Queue_QMgrName, QMgrName);
parms.putAscii(msg.Queue_FileDesc, FileDesc);
if (qattr.getAuthenticator() != null) /*add qattr auth details*/

{
parms.putAscii(msg.Queue_Authenticator,

qattr.getAuthenticator().type());
if (qattr.getAuthenticator().isRegistryRequired())

{
parms.putAscii(msg.Queue_AttrRule,

"examples.rules.AttributeRule");
/* for the Queue to have its own credentials */
parms.putByte(msg.Queue_TargetRegistry,

msg.Queue_RegistryQueue);
/* for the Queue to share its host QMgr's cresdentials */

// parms.putByte(msg.Queue_TargetRegistry,
// msg.Queue_RegistryQMgr);

}
}

if (qattr.getCryptor() != null)
{

queue-based security

192 MQSeries Everyplace Programming Guide

parms.putAscii(msg.Queue_Cryptor, qattr.getCryptor().type());
if (! parms.contains(msg.Queue_AttrRule))

parms.putAscii(msg.Queue_AttrRule,
"examples.rules.AttributeRule");

}
if (qattr.getCompressor() != null)

parms.putAscii(msg.Queue_Compressor,
qattr.getCompressor().type());

parms.putUnicode(msg.Queue_Description, "Q-based scenario Q");
msg.create(parms);
trace(">>> putting Admin Msg to QM/queue: "+QMgrName+"/AdminQ");
/* use Admin msg to add ServerTestQWTLS2 */
newQM.putMessage(QMgrName, "AdminQ", msg, null, 0);
MQeAdminMsg respMsg = null;
trace(">>> Waiting for a response to create Admin Msg...");
respMsg = (MQeAdminMsg)newQM.waitForMessage(QMgrName,

"AdminReplyQ", msgTest, null, 0, 3000);
trace(">>> Admin Msg processed OK...");
/* process Admin msg response ... */
if (respMsg == null)

trace ("i: create Queue failed, no response message received");
else

{
if (respMsg.getRC () == MQeAdminMsg.RC_Success)

trace("i: create Queue added queue OK...");
else

trace("i: create Queue failed: " + respMsg.getReason());
}

newQM.close();
}

catch (Exception e) { e.printStackTrace(); }
}

Queue-based security, starting queue managers with private
registries
Whenever a queue manager and any of its queues are authenticatable entities, that
is, have their own credentials, then, in order to access these credentials, the
appropriate parameters are needed when the queue manager is started.

While hard coding these parameters in the registry section of the appropriate ini
file is a convenient mechanism during solution development, it is inappropriate for
a production system. Whenever possible, these parameters should be collected
interactively and used to start a queue manager instance without storing them in a
file.

An example of starting an MQSeries Everyplace client queue manager using the
MQePrivateClient class, and passing the parameters (instead of hard coding them
in keywords of the MQePrivateClient2.ini file) is found in the example
“ClientQMgr queues -adding XXX_service_reply queue” on page 183.

Queue-based security - channel reuse
When data is sent between a queue manager and a remote queue, the queue
manager opens a channel to the remote queue manager that owns the queue. By
default, if the remote queue is protected, for example with a cryptor, the channel is
given exactly the same level of protection as the queue. To reduce the number of
channels open concurrently, the queue manager can reuse an existing channel if its
level of protection is adequate. If none of the channels has a suitable level of
protection, the queue manager can also change the level of protection on an
existing channel to match that required for the queue. The default behavior can be

queue-based security

Chapter 8. Security 193

|
|
|
|
|
|
|
|

changed by using attribute rules on both the queue and the channel. These rules
apply to the attribute on the queue (and channel), they are not the same as queue
rules.

If attribute rules are defined for the queue, the queue manager uses the rules to
decide whether an existing channel has sufficient protection for the queue. If the
equals() method in the rules returns true, the channel can be used. MQSeries
Everyplace provides an example rule, examples.rules.AttributeRule, that can be
used on the queue. This rule allows a channel to be used for a queue if the
following conditions are met:
v If the queue has an authenticator, the channel must have the same authenticator.

If the queue does not have an authenticator, it does not matter whether the
channel has one or not.

v If the queue has a cryptor, the channel must have a cryptor that is the same as
or better than that on the queue. If the queue does not have a cryptor it does not
matter whether the channel has one or not.

v It does not matter what compressors are defined for the queue or channel

The example rules define ″better″ for a cryptor to mean:
v Any cryptor is the same as or better than XOR
v Any cryptor, except XOR, is the same as or better then DES
v The remaining cryptors (Triple DES, RC4, RC6, and MARS) are considered equal

to each other and all better than XOR and DES.

If none of the existing channels has sufficient protection for the queue, the queue
manager checks if any of the channels can be upgraded to the required level. If
attribute rules are defined for the channel, the permit() method is used to
determine this. The examples.rules.AttributeRule uses the following criteria:
v If the channel has been authenticated it cannot be upgraded, but if it does not

have one, an authenticator can be added to a channel.
v A cryptor can be added to a channel or strengthened (using the criteria for

″better″ described above). A cryptor cannot be removed from the channel or
replaced with a weaker cryptor.

v A compressor can be changed, added to, or removed from the channel.

Before allowing channel reuse, the target queue uses its current AttributeRule
equals() method to determine if the channel attribute can provide an appropriate
level of protection for the target queue. This provides protection against
inconsistency in the queue attribute rules on the local and target queue managers.

Attribute rules are set on a queue when it is created or modified using
administration messages. Attribute rules are set on channels using the
ChannelAttrRules keyword in the configuration file used at queue manager
creation time.

While the examples.rules.AttributeRule provides practical defaults, there may be a
solution specific reason why different behavior is required. You can modify the
way channels are reused by extending or replacing the default
examples.rules.AttributeRule with rules that define the desired behavior.

It is possible to run without setting ChannelAttrRules, but this mode of operation
is not recommended.

queue-based security

194 MQSeries Everyplace Programming Guide

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

|

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

Message-level security
Message-level security facilitates the protection of message data between an
initiating and receiving MQSeries Everyplace application. Message-level security is
an application layer service. It requires the initiating MQSeries Everyplace
application to create a message-level attribute and provide it when using
putMessage() to put a message to a target queue. The receiving application must
setup an appropriate, ’matching’, message-level attribute and pass it to the
receiving queue manager so that the attribute is available when getMessage is used
to get the message from the target queue.

Like local security, message-level security exploits the application of an attribute on
a message (MQeFields object descendent). The initiating application’s queue
manager handles the application’s putMessage() with the message dump method,
which invokes the (attached) attribute’s encodeData() method to protect the
message data. The receiving application’s queue manager handles the application’s
getMessage() with the message’s ’restore’ method which in turn uses the supplied
attribute’s decodeData() method to recover the original message data.

Usage scenario
Message-level security is typically most useful for:
v Solutions that are designed to use predominantly asynchronous queues
v Solutions for which application level security is important, that is solutions

whose normal message paths include flows over multiple nodes perhaps
connected with different protocols. Message-level security classically manages
trust at the application level, which means security in other layers becomes
unnecessary.

A typical scenario is a solution service that is delivered over multiple open
networks. For example over a mobile network and the internet, where, from outset
asynchronous operation is anticipated. In this scenario, it is also likely that
message data is flowed over multiple links that may have different security
features, but whose security features are not necessarily controlled or trusted by
the solution owner. In this case it is very likely the solution owner does not wish
to delegate trust for the confidentiality of message data to any intermediate, but
would prefer to manage and control trust management directly.

MQSeries Everyplace message-level security provides solution designers with the
features that enable the strong protection of message data in a way that is under
the direct control of the initiating and recipient applications, and that ensures the
confidentiality of the message data throughout its transfer, end to end, application
to application.

Secure feature choices
MQSeries Everyplace supplies two alternative attributes for message-level security.

MQeMAttribute
This suits business-to-business communications where mutual trust is
tightly managed in the application layer and requires no trusted third
party. It allows use of all available MQSeries Everyplace symmetric cryptor
and compressor choices. Like local security it requires the attribute’s key to
be preset before it is supplied as a parameter on putMessage() and
getMessage(). This provides a simple and powerful method for
message-level protection that enables use of strong encryption to protect
message confidentiality, without the overhead of any public key
infrastructure (PKI).

message-level security

Chapter 8. Security 195

MQeMTrustAttribute
This provides a more advanced solution using digital signatures and
exploiting the default public key infrastructure to provide a digital
envelope style of protection. It uses ISO9796 digital signature/validation so
the receiving application can establish proof that the message came from
the purported sender. The supplied attribute’s cryptor protects message
confidentiality. SHA1 digest guarantees message integrity and RSA
encryption/decryption ensures that the message can only be restored by
the intended recipient. As with MQeMAttribute, it allows use of all
available MQSeries Everyplace symmetric cryptor and compressor choices.
Chosen for size optimization, the certificates used are mini-certificates
which conform to the WTLS Specification approved by the WAP forum.
MQSeries Everyplace provides a default public key infrastructure to
distribute the certificates as required to encrypt and authenticate the
messages.

A typical MQeMTrustAtribute protected message has the format:
RSA-enc{SymKey}, SymKey-enc {Data, DataDigest, DataSignature}

where:

RSA-enc:
RSA encrypted with the intended recipient’s public key, from his
mini-certificate

SymKey:
Generated pseudo-random symmetric key

SymKey-enc:
Symmetrically encrypted with the SymKey

Data: Message data

DataDigest:
Digest of message data

DigSignature:
Initiator’s digital signature of message data

Selection Criteria
MQeMAttribute relies totally on the solution owner to manage the content of the
key seed that is used to derive the symmetric key used to protect the
confidentiality of the data. This key seed must be provided to both the initiating
and recipient applications. While it provides a simple mechanism for the strong
protection of message data without the need of any PKI, it clearly depends of the
effective operational management of the key seed.

MQeMTrustAttribute exploits the advantages of the MQSeries Everyplace default
PKI to provide a digital envelope style of message-level protection. This not only
protects the confidentiality of the message data flowed, but checks its integrity and
enables the initiator to ensure that only the intended recipient can access the data.
It also enables the recipient to validate the originator of the data, and ensures that
the signer cannot later deny initiating the transaction. This is known as
non-repudiation.

Solutions that wish to simply protect the end-to-end confidentiality of message
data will probably decide that MQeMAttrribute suits their needs, while solutions
for which one to one (authenticatable entity to authenticatable entity) transfer and
non-repudiation of the message originator are important may find
MQeMTrustAttribute is the correct choice.

message-level security

196 MQSeries Everyplace Programming Guide

|
|
|
|
|

|

Usage guide
The following code fragments provide examples of how to protect and unprotect a
message using MQeMAttribute and MQeMTrustAttribute

MQSeries Everyplace message-level security using MAttribute
/*SIMPLE PROTECT FRAGMENT */

{
MQeMsgObject msgObj = null;
MQeMAttribute attr = null;
long confirmId = MQe.uniqueValue();
try{

trace(">>>putMessage to target Q using MQeMAttribute"
+" with 3DES Cryptor and key=my secret key");

/* create the cryptor */
MQe3DESCryptor tdes = new MQe3DESCryptor();
/* create an attribute using the cryptor */
attr = new MQeMAttribute(null,tdes,null);
/* create a local key */
MQeKey localkey = new MQeKey();
/* give it the key seed */
localkey.setLocalKey("my secret key");
/* set the key in the attribute */
attr.setKey(localkey);
/* create the message */
msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData","0123456789abcdef...");
/* put the message using the attribute */
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
trace(">>>MAttribute protected msg put OK...");
}

catch (Exception e)
{
trace(">>>on exception try resend exactly once...");
msgObj.putBoolean(MQe.Msg_Resend, true);
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
}

}

/*SIMPLE UNPROTECT FRAGMENT */
{

MQeMsgObject msgObj2 = null;
MQeMAttribute attr2 = null;
long confirmId2 = MQe.uniqueValue();

try{
trace(">>>getMessage from target Q using MQeMAttribute"+

" with 3DES Cryptor and key=my secret key");
/* create the attribute - we do not have to specify the cryptor, */
/* the attribute can get this from the message itself */
attr2 = new MQeMAttribute(null,null,null);
/* create a local key */
MQeKey localkey = new MQeKey();
/* give it the key seed */
localkey.setLocalKey("my secret key");
/* set the key in the attribute */
attr2.setKey(localkey);
/* get the message using the attribute */
msgObj2 = newQM.getMessage(targetQMgrName, targetQName,

null, attr2, confirmId2);
trace(">>>unprotected MsgData = "

+ msgObj2.getAscii("MsgData"));
}

catch (Exception e)
{
/*exception may have left */

message-level security

Chapter 8. Security 197

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

newQM.undo(targetQMgrName, /*message locked on queue */
targetQName, confirmId2); /*undo just in case */

e.printStackTrace(); /*show exception reason */
}
...

}

MQSeries Everyplace message-level security using
MTustAttribute

/*SIMPLE PROTECT FRAGMENT */
{

MQeMsgObject msgObj = null;
MQeMTrustAttribute attr = null;
long confirmId = MQe.uniqueValue();

try {
trace(">>>putMessage from Bruce1 intended for Bruce8"

+ " to target Q using MQeMTrustAttribute with MARSCryptor ");
/* create the cryptor */
MQeMARSCryptor mars = new MQeMARSCryptor();
/* create an attribute using the cryptor */
attr = new MQeMTrustAttribute(null, mars, null);
/* open the private registry belonging to the sender */
String EntityName = "Bruce1";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry sendreg = new MQePrivateRegistry();
sendreg.activate(EntityName, ".//MQeNode_PrivateRegistry",

PIN, Passwd, null, null);
/* set the private registry in the attribute */
attr.setPrivateRegistry(sendreg);
/* set the target (recipient) name in the attribute */
attr.setTarget("Bruce8");
/* open a public registry to get the target's certificate */
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".//");
/* set the public registry in the attribute */
attr.setPublicRegistry(pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
attr.setHomeServer(MyHomeServer +":8082");
/* create the message */
msgObj =new MQeMsgObject();
msgObj.putAscii("MsgData","0123456789abcdef...");
/* put the message using the attribute */
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
trace(">>>MTrustAttribute protected msg put OK...");
}

catch (Exception e)
{
trace(">>>on exception try resend exactly once...");
msgObj.putBoolean(MQe.Msg_Resend, true);
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
}

}

/*SIMPLE UNPROTECT FRAGMENT */
{

MQeMsgObject msgObj2 = null;
MQeMTrustAttribute attr2 = null;
long confirmId2 = MQe.uniqueValue();

try {
trace(">>>getMessage from Bruce1 intended for Bruce8"

+ " from target Q using MQeMTrustAttribute with MARSCryptor ");

message-level security

198 MQSeries Everyplace Programming Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* create the cryptor */
MQeMARSCryptor mars = new MQeMARSCryptor();
/* create an attribute using the cryptor */
attr2 = new MQeMTrustAttribute(null, mars, null);
/* open the private registry belonging to the target */
String EntityName = "Bruce8";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry getreg = new MQePrivateRegistry();
getreg.activate(EntityName, ".//MQeNode_PrivateRegistry",

PIN, Passwd, null, null);
/* set the private registry in the attribute */
attr2.setPrivateRegistry(getreg);
/* open a public registry to get the sender's certificate */
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".//");
/* set the public registry in the attribute */
attr2.setPublicRegistry(pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
attr2.setHomeServer(MyHomeServer +":8082");
/* get the message using the attribute */
msgObj2 = newQM.getMessage(targetQMgrName,

targetQName, null, attr2, confirmId2);
trace(">>>MTrustAttribute protected msg = "

+ msgObj2.getAscii("MsgData"));
}

catch (Exception e)
{
/*exception may have left */
newQM.undo(targetQMgrName, /*message locked on queue */

targetQName, confirmId2); /*undo just in case */
e.printStackTrace(); /*show exception reason */
}

}

Non-repudiation
The MQeMTrustAttribute digitally signs the message. This enables the recipient to
validate the creator of the message, and ensures that the creator cannot later deny
creating the message. This is known as non-repudiation. This process depends on
the fact that only one public key (certificate) can validate the signature successfully,
and this proves that the signature was created with the corresponding private key.
The only way the alleged creator can deny creating the message is to claim that
someone else had access to the private key.

When a message is created with the MQeMTrustAttribute, it uses the private key
from the sender’s private registry to create the digital signature and it stores the
sender’s name in the message. When the message is read (with the queue
manager’s getMessage() method), it uses the sender’s public certificate to validate
the digital signature. The message is read successfully only if the signature
validates successfully, proving that the message was created by the entity whose
name was stored in the message as the sender.

When the MQeMTrustAttribute is specified as a parameter to the queue manager’s
getMessage() method, the attribute validates the digital signature but by the time
the message is returned to the user’s application all the information relating to the
signature has been discarded. If non-repudiation is important to you, you must
keep a record of this information. The simplest way to do this is to keep a copy of
the encrypted message, because that includes the digital signature. You can do this
by using the getMessage() method without an attribute. This returns the encrypted
message which you can then save, for example in a local queue. You can decrypt
the message by applying the attribute to access the contents of the message.

message-level security

Chapter 8. Security 199

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

The following code fragment provides an example of how to do this.

Saving a copy of an encrypted message
/*SIMPLE FRAGMENT TO SAVE ENCRYPTED MESSAGE*/
{
MQeMsgObject msgObj2 = null;
MQeMTrustAttribute attr2 = null;
long confirmId2 = MQe.uniqueValue();
long confirmId3 = MQe.uniqueValue();
try {

trace(">>>getMessage from Bruce1 intended for Bruce8"
+ " from target Q using MQeMTrustAttribute with MARSCryptor ");

/* read the encrypted message without an attribute */
MQeMsgObject tmpMsg1 = newQM.getMessage(targetQMgrName,
targetQName, null, null, confirmId2);
/* save the encrypted message - we cannot put it directly */
/* to another queue because of the origin queue manager */
/* data. Embed it in another message */
MQeMsgObject tmpMsg2 = new MQeMsgObject();
tmpMsg2.putFields("encryptedMsg", tmpMsg1);
newQM.putMessage(localQMgrName, archiveQName, tmpMsg2, null, confirmId3);
trace(">>>encrypted message saved locally");
/* now decrypt and read the message ... */
/* create the cryptor */
MQeMARSCryptor mars = new MQeMARSCryptor();
/* create an attribute using the cryptor */
attr2 = new MQeMTrustAttribute(null, mars, null);
/* open the private registry belonging to the target */
String EntityName = "Bruce8";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry getreg = new MQePrivateRegistry();
getreg.activate(EntityName, ".//MQeNode_PrivateRegistry",

PIN, Passwd, null, null);
/* set the private registry in the attribute */
attr2.setPrivateRegistry(getreg);
/* open a public registry to get the sender's certificate */
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".//");
/* set the public registry in the attribute */
attr2.setPublicRegistry(pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
attr2.setHomeServer(MyHomeServer +":8082");
/* decrypt the message by unwrapping it */
msgObj2 = tmpMsg1.unwrapMsgObject(attr2);
trace(">>>MTrustAttribute protected msg = "

+ msgObj2.getAscii("MsgData"));

catch (Exception e)
{ /*exception may have left */

newQM.undo(targetQMgrName, /*message locked on queue */
targetQName, confirmId2); /*undo just in case */

e.printStackTrace(); /*show exception reason */
}

}

P187
private registry service
2nd paragraph, 2nd line, remove "an" from the end:
" ... dependent services as"

message-level security

200 MQSeries Everyplace Programming Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Private registry service
This section describes the private registry service provided by MQSeries
Everyplace.

Private registry and the concept of authenticatable entity
Queue-based security, that uses mini-certificate based mutual authentication and
message-level security, that uses digital signature, have triggered the concept of
authenticatable entity. In the case of mutual authentication it is normal to think
about the authentication between two users but, messaging generally has no
concept of users. The normal users of messaging services are applications and they
handle the user concept.

MQSeries Everyplace abstracts the concept of target of authentication from user
(person) to authenticatable entity. This does not exclude the possibility of
authenticatable entities being people, but this would be application selected
mapping.

Internally, MQSeries Everyplace defines all queue managers that can either
originate or be the target of mini-certificate dependent services as authenticatable
entities. MQSeries Everyplace also defines queues defined to use mini-certificate
based authenticators as authenticatable entities. So queue managers that support
these services can have one (the queue manager only), or a set (the queue manager
and every queue that uses certificate based authenticator) of authenticatable
entities.

MQSeries Everyplace provides configurable options to enable queue managers and
queues to auto-register as an autenticatable entity. MQSeries Everyplace private
registry service (MQePrivateRegistry) provides services that enable an MQSeries
Everyplace application to auto-register authenticatable entities and manage the
resulting credentials.

All application registered authenticatable entities can be used as the initiator or
recipient of message-level services protected using MQeMTrustAttribute.

Private registry and authenticatable entity credentials
To be useful every authenticatable entity needs its own credentials. This provides
two challenges, firstly how to execute registration to get the credentials, and
secondly where to manage the credentials in a secure manner. MQSeries
Everyplace private registry services help to solve these two problems. These
services can be used to trigger auto-registration of an authenticatable entity
creating its credentials in a secure manner and they can also be used to provide a
secure repository.

Private registry (a descendent of base registry) adds to base registry many of the
qualities of a secure or cryptographic token. For example, it can be a secure
repository for public objects (mini-certificates) and private objects (private keys). It
provides a mechanism to limit access to the private objects to the authorized user.
It provides support for services (for example digital signature, RSA decryption) in
such a way that the private objects never leave the private registry. Also, by
providing a common interface, it hides the underlying device support.

Auto-registration
MQSeries Everyplace provides default services that support auto-registration.
These services are automatically triggered when an authenticatable entity is
configured; for example when a queue manager is started, or when a new queue is

private registry service

Chapter 8. Security 201

|

defined, or when an MQSeries Everyplace application uses MQePrvateRegistry
directly to create a new authenticatable entity. When registration is triggered, new
credentials are created and stored in the authenticatable entity’s private registry.
Auto-registration steps include generating a new RSA key pair, protecting and
saving the private key in the private registry; and packaging the public key in a
new-certificate request to the default mini-certificate server. Assuming the
mini-certificate server is configured and available, and the authenticatable entity
has been pre-registered by the mini-certificate server (is authorized to have a
certificate), the mini-certificate server returns the authenticatable entity’s new
mini-certificate, along with its own mini-certificate and these, together with the
protected private key, are stored in the authenticatable entity’s private registry as
the entity’s new credentials.

While auto-registration provides a simple mechanism to establish an
authenticatable entity’s credentials, in order to support message-level protection,
the entity requires access to its own credentials (facilitating digital signature) and
to the intended recipient’s public key (mini-certificate).

Usage scenario
The primary purpose of MQSeries Everyplace’s private registry is to provide a
private repository for MQSeries Everyplace authenticatable entity credentials. An
authenticatable entity’s credentials consist of the entity’s mini-certificate
(encapsulating the entity’s public key), and the entity’s (keyring protected) private
key.

Typical usage scenarios need to be considered in relation to other MQSeries
Everyplace security features:

Queue-based security with MQeWTLSCertAuthenticator
Whenever queue-based security is used, where a queue attribute is defined
with MQeWTLSCertAuthenticator, (mini-certificate based mutual
authentication) the authenticatable entities involved are MQSeries
Everyplace owned. Any queue manager that is to be used to access
messages in such a queue, any queue manager that owns such a queue
and the queue itself are all authenticatable entities and need to have their
own credentials. By using the correct configuration options and setting up
and using an instance of MQSeries Everyplace mini-certificate issuance
service, auto-registration can be triggered when the queue managers and
queues are created, creating new credentials and saving them in the
entities’ own private registries.

Message-level security with MQeMTrustAttribute
Whenever message-level security is used with MQeMTrustAttribute, the
initiator and recipient of the MQeMTrustAttribute protected message are
application owned authenticatable entities that must have their own
credentials. In this case, the application must use the services of
MQePrivateRegistry (and an instance of MQSeries Everyplace
mini-certificate issuance service) to trigger auto-registration to create the
entities’ credentials and to save them in the entities’ own private registries.

Secure feature choices
MQSeries Everyplace Version 1 provides no support for any alternative secure
repository for an authenticatable entity’s credentials. If queue-based security with
MQeWTLSCertAuthenticator or message-level security using MQeMTrustAttribute
are used, private registry services must be used.

private registry service

202 MQSeries Everyplace Programming Guide

Selection criteria
The selection criteria for private registry are the same as those for queue-based and
message-level security.

Usage guide
Prior to using queue-based security, MQSeries Everyplace owned authenticatable
entities must have credentials. This is achieved by completing the correct
configuration so that auto-registration of queue managers is triggered. This
requires the following steps:
1. Setup and start an instance of MQSeries Everyplace mini-certificate issuance

service.
2. In administration mode, add the name of the queue manager as a valid

authenticatable entity, and the entity’s one-time-use certificate request PIN.
3. Start the mini-certificate server in server mode.
4. Configure MQePrivateClient1.ini and MQePrivateServer1.ini as described in

″Using SimpleCreateQM to create ClientQMgr and ServerQMgr instances″ so
that when queue managers are created using SimpleCreateQM,
auto-registration is triggered. This section explains which keywords are
required in the registry section of the ini files, and where to use the entity’s
one-time-use certificate request PIN.

Prior to using message-level security to protect messages using
MQeMTrustAttribute, the application must use private registry services to ensure
that the initiating and recipient entities have credentials. This requires the
following steps:
1. Setup and start an instance of MQSeries Everyplace mini-certificate issuance

service.
2. In administration mode, add the name of the application entity, and allocate the

entity a one-time-use certificate request PIN.
3. Start the mini-certificate server in server Mode.
4. Use a program similar to the program fragment below to trigger

auto-registration of the application entity . This creates the entity’s credentials
and saves them in its private registry.
/* SIMPLE MQePrivateRegistry FRAGMENT */
try

{
/* setup PrivateRegistry parameters */
String EntityName = "Bruce";
String EntityPIN = "11111111";
Object KeyRingPassword = "It_is_a_secret";
Object CertReqPIN = "12345678";
Object CAIPAddrPort = "9.20.X.YYY:8082";
/* instantiate and activate a Private Registry. */
MQePrivateRegistry preg = new MQePrivateRegistry();
preg.activate(EntityName, /* entity name */

".//MQeNode_PrivateRegistry", /* directory root */
EntityPIN, /* private reg access PIN */
KeyRingPassword, /* private credential keyseed */
CertReqPIN, /* on-time-use Cert Req PIN */
CAIPAddrPort); /* addr and port MiniCertSvr */

trace(">>> PrivateRegistry activated OK ...");
}

catch (Exception e)
{
e.printStackTrace();
}

private registry service

Chapter 8. Security 203

Public registry service
This section describes the public registry service provided by MQSeries Everyplace.

MQSeries Everyplace provides default services facilitating the sharing of
authenticatable entity public credentials (mini-certificates) between MQSeries
Everyplace nodes. Access to these mini-certificates is a prerequisite for
message-level security. MQSeries Everyplace public registry (also a descendent of
base registry) provides a publicly accessible repository for mini-certificates. This is
analogous to the personal telephone directory service on a mobile phone, the
difference being that it is a set of mini-certificates of the authenticatable entities
instead of phone numbers. MQSeries Everyplace public registry is not a purely
passive service. If accessed to provide a mini-certificate that is does not hold, and
if the public registry is configured with a valid home server, the public registry
automatically attempts to get the requested mini-certificate from the public registry
of the home server. It also provides a mechanism to share a mini-certificate with
the public registry of other MQSeries Everyplace nodes. Together these services
provide the building blocks for an intelligent automated mini-certificate replication
service that can facilitates the availability of the right mini-certificate at the right
time.

Usage scenario
A typical scenario for the use of the public registry would be to use these services
so that the public registry of a particular MQSeries Everyplace node builds up a
store of the most frequently needed mini-certificates as they are used.

A simple example of this is to setup an MQSeries Everyplace client to
automatically get the mini-certificates of other authenticatable entities that it needs,
from its MQSeries Everyplace home server, and then save them in its public
registry.

Secure feature choices
It is the Solution creator’s choice whether to use the public registry active features
for sharing and getting mini-certificates between the public registries of different
MQSeries Everyplace nodes.

The alternative to this intelligent replication may be to have an out-of-band utility
to initialize an MQSeries Everyplace node’s public registry with all required
mini-certificates before enabling any secure services that uses them.

Selection criteria
Out-of-band initialization of the set of mini-certificates available in an MQSeries
Everyplace node’s public registry may have advantages over using the public
registry active features in the case where the solution is predominantly
asynchronous and the synchronous connection to the MQSeries Everyplace node’s
home server may be difficult. But in the case where this connection is more likely
to be available, the public registry’s active mini-certificate replication services are
useful tools to automatically maintain the most useful set of mini-certificates on
any MQSeries Everyplace node public registry.

Usage guide
/*SIMPLE MQePublicRegistry shareCertificate FRAGMENT */
try {
String EntityName = "Bruce";
String EntityPIN = "12345678";
Object KeyRingPassword = "It_is_a_secret";

public registry service

204 MQSeries Everyplace Programming Guide

|
|
|
|
|

Object CertReqPIN = "12345678";
Object CAIPAddrPort = "9.20.X.YYY:8082";
/*instantiate and activate PublicReg */
MQePublicRegistry pubreg = new MQePublicRegistry();
pubreg.activate("MQeNode_PublicRegistry",".\\");
/* auto-register Bruce1,Bruce2...Bruce8 */
/* ... note that the mini-certificate issuance service must */
/* have been configured to allow the auto-registration */
for (int i = 1; i < 9; i++)
{
EntityName = "Bruce"+(new Integer(i)).toString();
MQePrivateRegistry preg = new MQePrivateRegistry();
/* activate() will initiate auto-registration */
preg.activate(EntityName, ".\\MQeNode_PrivateRegistry",
EntityPIN, KeyRingPassword, CertReqPIN, CAIPAddrPort);
/* save MiniCert from PrivReg in PubReg*/
pubreg.putCertificate(EntityName,
preg.getCertificate(EntityName));
/*before share of MiniCert */
pubreg.shareCertificate(EntityName,
preg.getCertificate(EntityName),"9.20.X.YYY:8082");
preg.close();
}
pubreg.close();
}
catch (Exception e)
{
e.printStackTrace();
}

Notes:

1. It is not possible to activate a registry instance more than once, hence the
example above demonstrates the recommended practice of accessing a private
registry by creating a new instance of MQePrivateRegistry, activating the
instance, performing the required operations and closing the instance.

2. If you want to share certificates using a public registry on the home-server, the
public registry must be called MQeNode_PublicRegistry.

mini-certificate issuance service
MQSeries Everyplace includes a default mini-certificate issuance service that can be
configured to satisfy private registry auto-registration requests. With the tools
provided, a solution can setup and manage a mini-certificate issuance service so
that it issues mini-certificates to a carefully controlled set of entity names. The
characteristics of this issuance service are:
v Management of the set of registered authenticatable entities
v Issuance of mini-certificates (the mini-certificate conforms to the WAP WTLS

specification)
v Management of the mini-certificate repository

The tools provided enable a mini-certificate issuance service administrator to
authorize mini-certificate issuance to an entity by registering its entity name and
registered address and defining a one-time-use certificate request PIN. This would
normally be done after off line checking to validate the authenticity of the
requestor. The certificate request PIN can be posted to the intended user (as bank
card PINs are posted when a new card is issued). The user of the private registry
(for example the MQSeries Everyplace application or MQSeries Everyplace queue
manager) can then be configured to provide this certificate request PIN at startup
time. When the private registry triggers auto-registration, the mini-certificate

public registry service

Chapter 8. Security 205

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

issuance service validates the resulting new certificate request , issues the new
mini-certificate and then resets the registered certificate request PIN so it cannot be
reused. All auto-registration of new mini-certificate requests is processed on a
secure channel.

The mini-certificates that have been issued by a mini-certificate issuance service are
held in the issuance service’s own registry. When a mini-certificate is reissued (for
example as the result of expiry), the expired mini-certificate is archived.

Configuring, starting and ending an instance of
mini-certificate issuance service server

Configuration using MQSeries
EveryplaceMiniCertificateServer.ini
MQeMiniCertificateServer.ini is an example configuration file. Instances of
MQeMiniCertificateServer can be created by modifying this example, and using it
at MQeMiniCertificateServer startup time. MQeMiniCertificateServer.ini includes
Alias, ChannelManager, Listener and MiniCertSvrRegistry sections. An instance of
MQeMiniCertificateServer uses the contents of these sections at startup to
auto-configure its behavior.

MQeMiniCertificateServer.ini is an extension of ExamplesMQeServer.ini. The
extensions are described here, for all other options, please refer to the description
of ExamplesMQeServer.ini.

Extension to [Alias] Section
Two mandatory keywords are added:

MiniCertSvrRegistry
This setting identifies the class name of the registry to be used

MiniCertIssuanceManager
This setting identifies the name of the class that implements the
MQeMiniCertIssuanceInterface

Additional [MiniCertServerRegistry] Section
This section contains two optional keywords:

InitialPIN
This identifies the valid MQeMiniCertificateServer Administrator’s
PIN, used by the MQeMiniCertificateServer to activate and gain
access to its private registry

KeyRingPassword
This identifies the password or passphrase used to protect private
objects stored in the MiniCertificateServer’s private registry

Starting MQeMiniCertificateServerGUI
MQeMiniCertificateServerGUI.bat is a simple example startup file. An instance of
MQeMiniCertificateServer can be started by modifying and using this example.
The example uses the command:
java com.ibm.mqe.server.MQeMiniCertificateServer <parameter1> <parameter2>

where:

<parameter1> = com.ibm.MQe.Server.MCSMessageBundle
(or translated versions of MQeMiniCertificateServer
messages ListResourceBundle)

<parameter2> = Examples.Trace.MQeTraceResource

mini-certificate issuance service

206 MQSeries Everyplace Programming Guide

|
|
|
|

(or translated versions of MQSeries Everyplace
base messages ListResourceBundle)

Using the GUI to start the mini-certificate issuance service for
the first time
Invocation of MQeMiniCertificateServerGUI.bat results in the following being
displayed:

In order to start the mini-certificate server for the first time the administrator needs
to:
1. Enter the PIN that is planned for access to this instance of the mini-certificate

server in the input SServerAdministrator's PIN field (shown here as
’12345678’)

2. Enter the password or passphrase that the administrator plans to use to protect
the private objects in the mini-certificate server’s registry in the ServerKey Ring
Password field (shown here as ’It_is_a_secret’)

3. Enter the path and filename of the startup configuration file in the Server
Config File Path field (shown here as ’./MQeMiniCertificateServer.ini’)

4. Click the Start Server button

Figure 37. Mini-certificate server GUI

mini-certificate issuance service

Chapter 8. Security 207

Note: The Mode indicator in the bottom left of the GUI indicates that the server is
started showing ’Server_Monitor’. The Context output to the right of the
mode indicator shows the contextual help for the start server button. The
Monitor output above the Mode and Context is an example of valid monitor
output.

Using administration tools

Starting administration mode
In order to use the administration tools, the MQeMiniCertificateServerGUI must be
invoked and Administration mode started. This can be achieved by invoking
MQeMiniCertificateServerGUI.bat, filling in the Server Administrator's PIN, the
ServerKey Ring Password and Server Config File Path input fields, and then
selecting the Start Admin button. An example of the visual feedback from this task
is:

Figure 38. Mini-certificate server started

mini-certificate issuance service

208 MQSeries Everyplace Programming Guide

Adding a new authenticatable entity
Having started administration mode, adding a new authenticatable entity consists
of supplying the entity’s name and address in the appropriate input fields, and
then setting the one-time-use certificate request PIN and clicking the Add button.
An example of the visual feedback from this task is:

Updating an authenticatable entity
Updating a registered authenticatable entity’s details is similar to adding an entity.
Having entered administration mode, the authenticatable entity’s updated details
are provided This can include a new certificate request PIN, if appropriate. Then to

Figure 39. Mini-certificate server administration mode

Figure 40. Adding a new authenticatable entitiy

mini-certificate issuance service

Chapter 8. Security 209

update click the Update button. An example of the visual feedback from this task
is:

Deleting an authenticatable entity
Deleting a registered authenticatable entity’s details is achieved by entering the
authenticatable entity’s name in the input field and then clicking the Delete
button.

Reading an authenticatable entity’s details
To read a registered authenticatable entity’s details, enter the authenticatable
entity’s name in the input field and then click the Read button. An example of the
visual feedback from this task is:

Figure 41. Updating an authenticatable entity

Figure 42. Deleting an authenticatable entity

mini-certificate issuance service

210 MQSeries Everyplace Programming Guide

This provides a method for displaying the details of any registered authenticatable
entity. The visual feedback displays the registered address and mini-certificate, if
available and the status of the one-time-use certificate request PIN. In normal use,
after an authenticatable entity is registered but before a mini-certificate has been
issued, the registered address is displayed, the status of the certificate request PIN
is set, and the mini-certificate status is not found. After a mini-certificate has been
issued, the registered address and current mini-certificate are displayed and the
request PIN status is not set.

Use of File menu Open option
In addition to Read, the Open option is provided to select an authenticatable entity
that does not require a name to be entered. To use this option, in administration
mode:
1. From the File pull down menu, select the Open option

Figure 43. Reading an authenticatable entity

Figure 44. MQSeries Everyplace authenticatable entity details display

mini-certificate issuance service

Chapter 8. Security 211

2. Select the EntityAddr folder from the displayed list and click on the Open
button

3. Select the name of the entity that you want to query from the displayed list
and click on the Open button

The entity details are displayed as shown in Figure 46.

Operation

Starting and stopping
Starting an instance of MQeMiniCertificateServerGUI, and using the GUI to either
start the server, or to start Administration Mode is described in “Starting
MQeMiniCertificateServerGUI” on page 206 and “Starting administration mode” on
page 208. In both cases, to terminate the MQeMiniCertificateServerGUI instance, on

Figure 45. MQSeries Everyplace authenticatable entity details display

Figure 46. MQSeries Everyplace authenticatable entity details display

mini-certificate issuance service

212 MQSeries Everyplace Programming Guide

the File pull down menu select the Exit option. Select yes in the confirmation
dialog to complete the shutdown of the mini-certificate server.

Monitor and logging
When running the server in Server_Monitor mode or in Admin_Monitor mode, the
significant events are monitored and visual feedback is provided in the Monitor
listbox, with the ’>>> ’ prefix.

An additional option is available in both Server_Monitor mode and
Admin_Monitor mode to log these events to a designated file. Operational
solutions are likely to use this option to provide an audit trail. To start this option,
in either mode, select the Log option from the File pull down menu. This task
results in a file selection dialog box being displayed:

To select a log file name (in which subsequent monitor events are recorded) the
administrator must either accept the MQSeries Everyplace generated log file name
that appears in the File Name input field, (in this example
’949679065895_MCSlog’) or overwrite it with a preferred Log filename, then click
the Save button.

An example of the visual feedback from this task is shown in Figure 47.

An example of the Log file created using administration to add an authenticatable
entity named Bruce is:

>>> Log file set = E:\MQLite\betaBSF0202\Classes\949682538438_MCSlog.txt
>>> Admin Mode started OK
>>> opening MiniCertificateServer Registry
>>> MiniCertificateServer Registry opened OK
>>> Entity added OK = Bruce
>>> Entity Registered Address added OK

Figure 47. Mini-certificate server log file name display

mini-certificate issuance service

Chapter 8. Security 213

Renewing mini-certificates
The certificates issued for an entity by the mini-certificate issuance service are valid
for one year from the date of issue and it is advisable to renew them before they
expire. Renewed certificates are obtained from the same mini-certificate issuance
service. Before requesting a renewal, the request must be authorized with the
issuance service and a one-time-use certificate request PIN obtained, in just the
same way as for the initial certificate issuance. When you use the server to obtain
the PIN for renewal, remember that you are updating the entity, not adding it.

When a certificate is issued for an entity, a copy of the mini-certificate server’s own
certificate is issued with it. This is needed to check the validity of other certificates.
With versions of MQSeries Everyplace earlier than 1.2, the certificate server’s
certificate could expire before the entity’s certificate. If this happens you can renew
the server’s certificate by requesting a renewal of the entity’s certificate; a new
copy of the mini-certificate server’s certificate will be returned along with the
entity’s certificate. From mini-certificate server Version 1.2, the mini-certificate
server’s certificate will expire later than the entity’s certificate.

The class com.ibm.mqe.registry.MQePrivateRegistryConfigure contains a method
renewCertificates() which can be used to request renewed certificates. This is used
in the example program examples.certificates.RenewWTLSCertificates, which
implements a command-line program that requests renewed certificates from the
issuance service

The program has four compulsory parameters:
RenewWTLSCertificates <entity> <ini file> <MCS addr> <MCS Pin>

where:

entity is the name of the entity for which a renewed certificate is required. This
should be either a queue manager, a queue or other authenticatable entity.
The name of a queue should be specified as <queue manager>+<queue>, for
example myQM+myQueue.

ini file
is the name of a configuration file that contains a section for the registry.
This is typically the same configuration file that is used for the queue
manager. For a queue, this typically the configuration file for the queue
manager that owns the queue.

MCS addr
is the host name and port address of the mini-certificate server (for
example: myServer:8085)

MCS Pin
is the one-time use PIN issued by the mini-certificate server administrator
to authorize this renewal request.

Obtaining new credentials (private and public keys)
When you renew a certificate, you get an updated certificate for your existing
public key, (this allows you to continue to use your existing private/public key
pair). If you want to change your private/public key pair, you must request new
credentials. This includes a request to the mini-certificate issuance service for a
new public certificate embodying the new public key. Before requesting a
certificate for the new credentials, the request must be authorized with the
issuance service and a one-time-use certificate request PIN must be obtained, in the

mini-certificate issuance service

214 MQSeries Everyplace Programming Guide

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

||
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

same way as for the initial certificate issuance. (When you use the server to obtain
the PIN for the new certificate, remember that you are updating the entity, not
adding it.)

The class com.ibm.mqe.registry.MQePrivateRegistryConfigure contains a method
getCredentials() which can be used to request new credentials. This is used in the
example program examples.install.GetCredentials, which implements a GUI
program that requests new credentials from the issuance service.

Note: When new credentials are issued, the existing ones are archived in the
registry. You will no longer be able to decrypt messages created using your
earlier credentials. The new certificate will not validate a digital signature
(used with MQeMTrustAttribute) created with your earlier credentials.

Listing mini-certificates
It can be useful to list the certificates in a registry, for example to check on their
expiry dates. You can do this using methods in the class
com.ibm.mqe.attributes.MQeListCertificates. These are used in the example
program examples.certificates.ListWTLSCertificates, which implements a
command-line program that lists certificates.

The program has one compulsory and three optional parameters:
ListWTLSCertificates <reg Name>[<ini file>] [<level>] [<cert names>]

where:

regName
is the name of the registry whose certificates are to be listed. It can be a
private registry belonging to a queue manager, a queue or another entity; it
can be a public registry, or (for the administrator) it can be the
mini-certificate server’s registry. If you want to list the certificates in a
queue’s registry, you must specify its name as <queue manager>+<queue>,
for example myQM+myQueue. If you want to list the certificates in a public
registry, it must have the name MQeNode_PublicRegistry, it will not work
for a public registry with any other name. The name of the mini-certificate
server’s registry is MiniCertificateServer.

ini file
is the name of a configuration file that contains a section for the registry.
This is typically the same configuration file that is used for the queue
manager or mini-certificate server. For a queue, this is typically the
configuration file for the queue manager that owns the queue. This
parameter should be specified for all registries except public registries, for
which it can be omitted.

level is the level of detail for the listing. This can be:

-b or -brief prints the names of the certificate, one name per line

-n or -normal prints the names of the certificates, one per line, followed
by their type (old or new format)

-f or -full prints the names of the certificates, their type, and some of
the contents

This parameter is optional and if omitted the ″normal″ level of detail is
used.

cert names
is a list of names of the certificates to be listed. It starts with the flag -cn

mini-certificate issuance service

Chapter 8. Security 215

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

||

||

||
|

||
|

|
|

|
|

followed by names of the certificates, for example: -cn ExampleQM putQM. If
this parameter is used, only the named certificates are listed. If this
parameter is omitted, all the certificates in the registry are listed.

Updated mini-certificate format for MQSeries Everyplace Version
1.2
The mini-certificates used by MQSeries Everyplace are based on the WTLS
certificates used by WAP. The certificates used by MQSeries Everyplace Versions
1.0 and 1.1 were based on the latest draft of the WTLS specification that was
available at the time of development. A standard for the certificates has since been
approved. In MQSeries Everyplace Version 1.2, updated mini-certificates that
conform to the approved standard have been introduced.

MQSeries Everyplace Version 1.2 supports both the earlier and the updated format
mini-certificates, so if you are successfully using the earlier format mini-certificate
you can continue to use them. However, we recommend that you migrate to the
updated certificates as soon as possible. Support for the earlier format will be
discontinued in MQSeries Everyplace Version 2.

You can upgrade your certificates to the new format by running the mini-certificate
server from MQSeries Everyplace Version 1.2 and renewing the certificates (see
“Renewing mini-certificates” on page 214). The renewed certificates will be in the
new format.

Compatibility Mode

By default, the mini-certificate server in MQSeries Everyplace Version 1.2
issues certificates in the new format. These will not work with earlier
versions of MQSeries Everyplace. If you are already using certificates and
have not upgraded all the relevant queue manager software to Version 1.2,
you may wish to continue using the original format certificates until all the
software has been upgraded. You can configure the mini-certificate server
to run in a compatibility mode and issue certificates in the original format.
To do this, add a new section, [Mode], to the configuration file This section
should contain one entry, Mode=old, as in the following example:

Example configuration file for issuing original format certificates
[Alias]
*
* Event log class
*
(ascii)EventLog=examples.log.LogToDiskFile
*
* Network adapter class
*
(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter
*
* Queue Manager class
*
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager
*
* Trace handler (if any)
*
(ascii)Trace=examples.awt.AwtMQeTrace
*
* Message Log file interface
*
(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter
*
* Mini Certificate Server Registry class
*
(ascii)MiniCertSvrRegistry=com.ibm.mqe.registry.MQeMiniCertSvrRegistry

mini-certificate issuance service

216 MQSeries Everyplace Programming Guide

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*
* Mini Certificate Server Issuance Manager class
*
(ascii)MiniCertIssuanceManager=com.ibm.mqe.server.MQeMiniCertIssuanceManager

--
[ChannelManager]
*
* Maximum number of channels allowed
*
(int)MaxChannels=0

--
[Listener]
*
* FileDescriptor for listening adapter
*
(ascii)Listen=Network::8085
*
* FileDescriptor for Network read/write
*
(ascii)Network=Network:
*
* Channel timeout interval in seconds
*
(int)TimeInterval=300
*
* Mini Certificate Server Registry class
*
--
[MiniCertSvrRegistry]
*
* Mini-Certificate-Server Registry's Root User InitialPIN
*
(ascii)InitialPIN=12345678
*
* Mini Certificate Server Registry's KeyRingPassword
*
(ascii)KeyRingPassword=It_is_a_secret
--
[Mode]
*
* Issue certificates in the old format
*
(ascii)Mode=old
*

When all the relevant queue manager software has been upgraded to
MQSeries Everyplace Version 1.2, you can start issuing certificates in the
updated format by changing Mode=old to Mode=new, or by omitting the
[Mode] section.

Note: If you are setting up a new mini-certificate issuance service,
(running the mini-certificate server for the first time), the server
issues itself with new credentials and a new certificate. The server’s
own certificate is always in the new format, even when running in
compatibility mode. If you are setting up a new service, you should
not use compatibility mode.

mini-certificate issuance service

Chapter 8. Security 217

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

mini-certificate issuance service

218 MQSeries Everyplace Programming Guide

Chapter 9. Tracing in MQSeries Everyplace

This section provides assistance with using and customizing the MQSeries
Everyplace trace program.

MQSeries Everyplace provides a simple, but useful, tracing facility. This facility can
be used to follow the course of execution of a program either when it is running,
or later by inspecting the trail of execution recorded in a file. Trace messages are
sent from the running code to a trace window, where they are displayed.

The trace facility is just a trace, it does not contain some features found in
debuggers, such as the ability to set and release break points.

Example trace classes can be found in the examples.trace subdirectory. For brief
details of these classes see “examples.trace package” on page 21.These classes can
be used to handle and display trace from a running MQSeries Everyplace
environment. “MQeTrace example” on page 221 shows how to use the example
files.

Tracing would not normally be used in a production environment, except for
diagnosis of problems, as any form of tracing affects the performance of MQSeries
Everyplace.

Using trace
To trace the execution of an application program you must put a statement in an
appropriate place in the code using the MQe.trace method as shown in the
following example:

...
/* */
trace("We got here");
...

When executed, this results in the text ″We got here″ being displayed in the
MQSeries Everyplace Trace window.

Trace message formats
There are several types of message (information, warning, error, security and
debug) and the type is denoted by the first characters as shown in Table 12.

Table 12. Trace message types

Initial character Meaning

I or i Information

W or w Warning

E or e Error

S or s Security

D or d Debug

Upper case prefixes are used for application trace messages and lower case
prefixes are used for system trace messages. System trace messages are usually
only generated from within MQSeries Everyplace.

© Copyright IBM Corp. 2001 219

|

|
|
|
|
|

The message is sent to the MQSeries Everyplace trace facility, which checks the
level of the message and, if required, outputs it to the trace window. Trace
messages that have a recognizable prefix are written to System.err, others are
written to System.out

The examples.trace.MQeTrace file in the examples.trace directory contains the
various message templates for the messages issued by MQSeries Everyplace
internal routines. The messages are of the form:
/* common messages */

{ "1", "d;[00001]:Created" },
{ "2", "d;[00002]:Destroyed" },
{ "3", "d:[00003]:Close" },
{ "4", "w:[00004]:Warning:#0" },
{ "5", "e:[00005]:Error:#0" },
{ "6", "i:[00006]:Command:#0" },
{ "7", "i:[00007]:Waiting" },
{ "8", "i:[00008]:#0 input byte count=#1" },
...,

where the first character string is the message number and the second string is the
message template.

examples.trace.MQeTraceResource contains the message strings in English. Various
other language versions are also provided in this directory.

The template has the following format:
v The message type as described in Table 12 on page 219
v A modifier character, this modifier has the following meanings:

Table 13. Trace message modifiers

Modifier Meaning

: no modification applied

; RESERVED for create/destroy object

+ log this message via the Log interface

¬ ignore - Do not display this message

v The message number in the format ’[nnnnn]:’
v The message text. This can include inserts of the form ’#n’ where ’n’ is an

integer from 0 to 9

By modifying this source file you can change the classification of a message. For
example, you can change from a Warning to an Error, or by changing the modifier
character from ’:’ to ’+’, you can cause the message to be copied to the Event log.

New trace messages can be added at runtime using the addMessage or
addMessageBundle calls. For example, to add a single new message :

...
MQeTraceInterface MyTrace = MQe.GetTraceHandler();
myTrace.addMessage(" :[11111]:My Application - #0 = #1");
...
trace(11111, new String[] { "Magic word", "xyzzy" });
...

Activating trace
Trace, which is not active by default, can be activated using the
MQe.setTraceHandler as shown in the following code:

trace message formats

220 MQSeries Everyplace Programming Guide

...
/* give the trace object to MQe */
setTraceHandler(new myTraceHandler());
trace("I:Starting...");
...

The example trace handler that is shipped as part of the MQSeries Everyplace
toolkit, includes the trace activation code.

Customizing trace
The trace classes provided in the examples directory can be used as a basis for
custom trace handlers.

MQeTrace example
The MQeTrace example class provides a simple, tracing facility that by default
outputs the trace messages to System.out and/or to System.err.

To activate the trace window specify the following code:
...
/* Start the example version of MQeTrace */
new examples.trace.MQeTrace("Trace", null));
...
trace("I:Starting...");
trace(123456, "Insert");
...

The second parameter on the constructor is the language to be used for the trace
messages, if null is specified, the default language is used. Alternatively a different
resource file may be specified that changes the classification of the messages, for
example:

...
/* Start the example version of MQeTrace */
new examples.trace.MQeTrace("Trace", "MyMessageResourceFile"));
...
trace("I:Starting...");
trace(123456, "Insert");
...

The currently active trace handler object can be found by issuing an
MQe.getTraceHandler method call. Using this reference the behavior of the trace
can be modified, that is selecting or deselecting the types of trace messages to be
written.
...

/* Start the example version of MQeTrace */
MQeTraceInterface trace = MQe.getTraceHandler();
if (trace instanceof MQeTrace)

{
((MQeTrace) trace).MsgInf = true;
((MQeTrace) trace).MsgDebug = true;
((MQeTrace) trace).MsgTime = true;
}

...
trace("I:Starting...");
...

The variables (and their defaults) in MQeTrace that may be modified are :
public boolean MsgInf = false; /* Informaton msgs */
public boolean MsgWarn = true; /* warning msgs */
public boolean MsgErr = true; /* error msgs */

activating trace

Chapter 9. Tracing in MQSeries Everyplace 221

public boolean MsgSecurity = false; /* Security msgs */
public boolean MsgSys = true; /* System modifier */
public boolean MsgDebug = false; /* Debug modifier */
public boolean MsgLog = false; /* Trace message to log */
public boolean MsgTime = false; /* add Time stamp */
public boolean MsgPrefix = false; /* add object prefix */
public boolean MsgThread = false; /* add Thread ID */

More details can be found by examining the source code for MQeTrace in the
examples.trace directory:

This trace example can be used as the basis for a more sophisticated trace program
or a completely new one could be created.

The application program could even be the trace handler as well as its normal
function just by implementing the MQeTraceInterface and issuing the
MQe.setTraceHandler method call.

Graphical user interface for trace
The basic trace function provided in the examples.trace directory just displays the
trace messages on System.out and System.err in the console window associated
with the application.

There is another trace handler supplied in the examples.awt directory that uses a
subset of the Java AWT to provide a graphical user interface to the trace. This
enables the various tracing options to be modified dynamically.
...
/* Start the example GUI version of MQeTrace */
new examples.awt.AwtMQeTrace("My Trace title", null));
...
trace("I:Starting...");

This code starts the trace window with the title ’My Trace’ and displays the
information message ″I:Starting″. The trace window has pull-down menus that
enable the user to modify the level of tracing, the format of the messages, and
other properties, as shown in Figure 48 on page 223. Note that an MQSeries
Everyplace object is required to perform tracing. The examples above assumed that
the code is part of a class that extends the base MQSeries Everyplace class. It is
possible to output MQSeries Everyplace trace messages from objects that do not
themselves extend MQSeries Everyplace. In this case, you need to create an
MQSeries Everyplace object, and then specify the tracing by using the methods of
this object. For example:
...
/* create a MQe object */
MQe dbg = new MQe();
dbg.Message("D:We got here");
...

MQSeries Everyplace tracing is Java virtual machine wide, so that all messages
from MQSeries Everyplace objects executed on any thread in the current Java
Virtual Machine are handled by the same trace facility, and displayed in the same
trace window. This can be a big advantage as it shows the order in which events
actually occurred. However it can be a disadvantage if you wish to separate out
totally independent events occurring on different threads.

Note: Terminating the MQSeries Everyplace Trace window does not terminate the
Java program.

customizing trace

222 MQSeries Everyplace Programming Guide

Example AWT trace window layout
Note that you need a MyMessageResourceFileGUI file that specifies the text to be
used in any graphical user interface components associated with trace.

The example trace program in examples.awt produces a window with the layout
shown in Figure 48.

The Menu items are:
v File Menu:

Clear clears the trace window

Save As...
Save the contents of the trace window to a disk file

Trace to Log
Copy Trace messages to the event log

Trap I/O
Output to System.out and System.err is displayed in the window. If this
option is unchecked output goes to the Java console

Kill Terminate both trace and the owning application. Clicking on the
window frame exit button only terminates the Trace

v View Menu:

View Options
Show the trace message display options

System.out
Show the System.out window

System.err
Show the System.err window

The various trace message display options control how, and which, trace messages
are to be displayed in the System.err.println window:

Information
Display information messages

Warning
Display warning messages

Error Display error messages

Figure 48. Example trace GUI window

trace GUI

Chapter 9. Tracing in MQSeries Everyplace 223

Security
Display security messages

Debug
Display debugging information messages

System
Controls whether messages with the System characteristics are displayed.
This affects Information, Warning, Error, Security and Debug style
messages

Timestamp
Prefixes the messages with the current time stamp

Object names
Prefixes the messages with the object type and instance that originated the
message

Thread names
Prefixes the messages with the name of the thread that is running at the
time

Exceptions
Causes a stack trace to be displayed whenever an MQeException is thrown

Calls to Debug
Causes a stack trace to be displayed whenever an application or MQSeries
Everyplace issues the MQe.Debug call

The ’System.err.println and Trace message filter’ is a string that is used to match
anything within the output. If the match is successful the output is displayed, if
the match was unsuccessful the output is not displayed.

Using this feature it is possible to selectively display messages from a specific
thread (assuming that the Thread name checkbox is checked).

Setting trace options
The various trace options can be preset on start-up of the AwtMQeTrace program
by creating a new GUI resource file that prechecks any of the checkable
components for example:
public class MQeTraceResourceGUI extends java.util.ListResourceBundle

{
static final Object[][] contents = {
/* Check items can be pre-checked by replacing the blank with an "!" */

{ "File", "File" },
{ "Clear", "Clear" },
{ "Save", "Save As..." },
{ "Log", " Trace to Log" }, /* check item */
{ "Trap", "!Trap I/O" }, /* check item */
{ "Halt", "Kill" },
{ "View", "View" },
{ "Options", "!View Options" }, /* check item */
{ "SystemOut", "!System.out" }, /* check item */
{ "SystemErr", " System.err" }, /* check item */
{ "Help", "Help" },
{ "About", "About..." },

/* checkbox labels */
{ "Information", " Information" }, /* check item */
{ "Warning", "!Warning" }, /* check item */
{ "Error", "!Error" }, /* check item */
{ "Debug", " Debug" }, /* check item */
{ "Security", " Security" }, /* check item */
{ "System", "!System" }, /* check item */

trace GUI

224 MQSeries Everyplace Programming Guide

{ "Timestamp", " Timestamp" }, /* check item */
{ "Objects", " Object names" }, /* check item */
{ "Threads", " Thread names" }, /* check item */
{ "Exceptions", " Exceptions" }, /* check item */
{ "CallStack", " Calls to Debug" }, /* check item */

/* About dialog */
{ "AboutTitle", "About MQe Trace" },
{ "AboutVersion", "MQe version" },
{ "AboutProduct", "Product number 5639-I47" },
{ "AboutCopyright", "(C) Copyright IBM Corp. 1999 All Rights Reserved" },
{ "AboutCopyright2", "Licensed Materials - Property of IBM" },
{ "AboutTrace", "Trace version" },
{ "AboutComments", " " },
{ "OK", "OK" },

};

public Object[][] getContents()
{
return(contents);
}

Note: If trace options are modified programmatically for MQeTrace, as shown in
the following code, the corresponding components on the AwtMQeTrace
window WILL NOT be updated
...
/* Start the example version of MQeTrace */
MQeTraceInterface trace = MQe.getTraceHandler();
if (trace instanceof MQeTrace)

((MQeTrace) trace).MsgDebug = true;
...

trace GUI

Chapter 9. Tracing in MQSeries Everyplace 225

trace GUI

226 MQSeries Everyplace Programming Guide

Chapter 10. MQSeries Everyplace adapters

MQSeries Everyplace adapters are used to map MQSeries Everyplace to device
interfaces. Adapters are usually associated with transmission protocols, but they
can also be used with other interfaces such as storage devices.

The following adapters are provided with MQSeries Everyplace and are described
in detail in MQSeries Everyplace for Multiplatforms Programming Guide.

MQeDiskFieldsAdapter
Provides support for reading and writing MQeFields information to a local
disk.

MQeMemoryFieldsAdapter
Provides a non-persistent store for MQeFields information

MQeReducedDiskFieldsAdapter
Provides support for high speed writing of MQeFields information to a
local disk.

MQeTcpipAdapter
Provides support for reading and writing data over TCP/IP streams.

MQeTcpipHttpAdapter
Extends the MQeTcpipAdapter to provide basic support for the HTTP 1.0
protocol.

MQeTcpipLengthAdapter
Extends the MQeTcpipAdapter to provide a simple, byte efficient protocol.

MQeTcpipHistoryAdapter
Extends the MQeTcpipLengthAdapter to provide a more efficient protocol
that caches recently used data.

MQeUdpipAdapter
Provides support for assured data transfer over UDP/IP datagrams.

MQeWESAuthenticationAdapter
Provides support for tunnelling HTTP requests through Websphere
Everyplace authentication proxies and transparent proxies.

You can also write your own adapters to tailor MQSeries Everyplace for your own
environment. The next section describes some adapter examples that are supplied
to help you with this task.

Adapter examples
This section provides information on the creation of MQSeries Everyplace adapters.
The following adapters are described:

A simple communications adapter
This example uses the standard Java classes to manipulate TCPIP and adds
an extra protocol.

A simple message store adapter
This example creates an adapter for use as an interface to a message store.

© Copyright IBM Corp. 2001 227

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|

|
|

Please refer to Chapter 9 in the MQSeries Everyplace for Multiplatforms
Programming Reference for details of the adapter classes that are supplied with
MQSeries Everyplace.

An example of a simple communications adapter
This example uses the standard Java classes to manipulate TCPIP and adds a
protocol of its own on top. This protocol has a header consisting of a four byte
length of the data in the data packet followed by the actual data. This is so that the
receiving end knows how much data to expect.

This example is not meant as a replacement for the adapters that are supplied with
MQSeries Everyplace but rather as a simple introduction into how to create
communications adapters. In reality, much more care should be taken with error
handling, recovery, and parameter checking. Depending on the MQSeries
Everyplace configuration used, the supplied adapters may be sufficient.

A new class file is constructed, inheriting from MQeAdapter. Some variables are
defined to hold this adapter’s instance information, that is the name of the host,
port number and the output stream objects.

The MQeAdapter constructor is used for the object, so no additional code needs to
be added for the constructor.
public class MyTcpipAdapter extends MQeAdapter

{
protected String host = "";
protected int port = 80;
protected Object readLock = new Object();
protected ServerSocket serversocket = null;
protected Socket socket = null;
protected BufferedInputStream stream_in = null;
protected BufferedOutputStream stream_out = null;
protected Object writeLock = new Object();

Next the activate method is coded. This is the method that extracts from the file
descriptor the name of the target network address if a connector, or the listening
port if a listener. The fileDesc parameter contains the adapter class name or alias
name, and any network address data for the adapter for example
MyTcpipAdapter:127.0.0.1:80. The thisParam parameter contains any parameter
data that was set when the connection was defined by administration, the normal
value would be ″?Channel″. The thisOpt parameter contains the adapter setup
options that were set by administration, for example MQe_Adapter_LISTEN if this
adapter is to listen for incoming connections.

public void activate(String fileDesc,
Object thisParam,
Object thisOpt,
int thisValue1,
int thisValue2) throws Exception

{
super.activate(fileDesc,

thisParam,
thisOpt,
thisValue1,
thisValue2);

/* isolate the TCP/IP address - "MyTcpipAdapter:127.0.0.1:80" */
host = fileId.substring(fileId.indexOf(':') + 1);
i = host.indexOf(':'); /* find delimiter */
if (i > -1) /* find it ? */

{

adapters

228 MQSeries Everyplace Programming Guide

port = (new Integer(host.substring(i + 1))).intValue();
host = host.substring(0, i);
}

}

The close method needs to be defined to close the output streams and flush any
remaining data from the stream buffers. Close is called many time during a session
between a client and a server, however, when the channel has completely finished
with the adapter it calls MQSeries Everyplace with the option MQe_Adapter_FINAL.
If the adapter is to have one socket connection for the life of the channel then the
call with MQe_Adapter_FINAL set, is the one to use to actually close the socket, other
calls should just flush the buffers. If however a new socket is to be used on each
request, then each call to MQSeries Everyplace should close the socket, subsequent
open calls should allocate a new socket:

public void close(Object opt) throws Exception
{
if (stream_out != null) /* output stream ? */

{
stream_out.flush(); /* empty the buffers */
stream_out.close(); /* close it */
stream_out = null; /* clear */
}

if (stream_in != null) /* input stream ? */
{
stream_in.close(); /* close it */
stream_in = null; /* clear */
}

if (socket != null) /* socket ? */
{
socket.close(); /* close it */
socket = null; /* clear */
}

if (serversocket != null) /* serversocket ? */
{
serversocket.close(); /* close it */
serversocket = null; /* clear */
}

host = "";
port = 80;
}

The control method needs to be coded to handle an MQe_Adapter_ACCEPT request,
to accept an incoming connect request. This is only allowed if the socket is a
listener (a server socket). Any options that were specified for the listen socket
(excluding MQe_Adapter_LISTEN) are copied to the socket created as a result of the
accept. This is accomplished by the use of another control option
MQe_Adapter_SETSOCKET this allows a socket object to be passed to the adapter that
was just instantiated.
public Object control(Object opt, Object ctrlObj) throws Exception

{
if (checkOption(opt, MQe.MQe_Adapter_LISTEN) &&

checkOption(opt, MQe.MQe_Adapter_ACCEPT))
{
/* CtrlObj - is a string representing the file descriptor of the */
/* MQeAdapter object to be returned e.g. "MyTcpip:" */
Socket ClientSocket = serversocket.accept(); /* wait connect */
String Destination = (String) ctrlObj; /* re-type object*/
int i = Destination.indexOf(':');
if (i < 0)

throw new MQeException(MQe.Except_Syntax,
"Syntax:" + Destination);

/* remove the Listen option */
String NewOpt = (String) options; /* re-type to string */

adapters

Chapter 10. MQSeries Everyplace adapters 229

int j = NewOpt.indexOf(MQe.MQe_Adapter_LISTEN);
NewOpt = NewOpt.substring(0, j) +

NewOpt.substring(j + MQe.MQe_Adapter_LISTEN.length());
MQeAdapter Adapter = MQe.newAdapter(Destination.substring(0,i+1),

parameter,
NewOpt + MQe_Adapter_ACCEPT,
-1,
-1);

/* assign the new socket to this new adapater */
Adapter.control(MQe.MQe_Adapter_SETSOCKET, ClientSocket);
return(Adapter);
}

else
if (checkOption(opt, MQe.MQe_Adapter_SETSOCKET))

{
if (stream_out != null) stream_out.close();
if (stream_in != null) stream_in .close();
if (ctrlObj != null) /* socket supplied ? */

{
socket = (Socket) ctrlObj; /* save the socket */
stream_in = new BufferedInputStream (socket.getInputStream ());
stream_out = new BufferedOutputStream(socket.getOutputStream());
}

else
return(super.control(opt, ctrlObj));

}

The open method needs to check for a listening socket or a connector socket and
create the appropriate socket object. Reinitialization of the input and output
streams is achieved by using the control method, passing it a new socket object.
The opt parameter may be set to MQe_Adapter_RESET, this means that any previous
operations are now complete any new reads or writes constitute a new request.
public void open(Object opt) throws Exception

{
if (checkOption(MQe.MQe_Adapter_LISTEN))

serversocket = new ServerSocket(port, 32);
else

control(MQe.MQe_Adapter_SETSOCKET, new Socket(host, port));
}

The read method can take a parameter specifying the maximum record size to be
read.

This examples calls internal routines to read the data bytes and do error recovery
(if appropriate) then return the correct length byte array for the number of bytes
read. Care needs to be taken to ensure that only one read at a time occurs on this
socket. The opt parameter may be set to:

MQe_Adapter_CONTENT
read any message content

MQe_Adapter_HEADER
read any header information

{ public byte[] read(Object opt, int recordSize) throws Exception

int Count = 0; /* number bytes read */
synchronized (readLock) /* only one at a time */

{
if (checkOption(opt, MQe.MQe_Adapter_HEADER))

{
byte lreclBytes[] = new byte[4]; /* for the data length */
readBytes(lreclBytes, 0, 4); /* read the length */
int recordSize = byteToInt(lreclBytes, 0, 4);
}

adapters

230 MQSeries Everyplace Programming Guide

if (checkOption(opt, MQe.MQe_Adapter_CONTENT))
{
byte Temp[] = new byte[recordSize]; /* allocate work array */
Count = readBytes(Temp, 0, recordSize);/* read data */
}

}
if (Count < Temp.length) /* read all length ? */

Temp = MQe.sliceByteArray(Temp, 0, Count);
return (Temp); /* Return the data */
}

The readByte method is an internal routine designed to read a single byte of data
from the socket and to attempt to retry any errors a specific number of times, or
throw an end of file exception if there is no more data to be read.

protected int readByte() throws Exception
{
int intChar = -1; /* input characater */
int RetryValue = 3; /* error retry count */
int Retry = RetryValue + 1; /* reset retry count */
do{ /* possible retry */

try /* catch io errors */
{
intChar = stream_in.read(); /* read a character */
Retry = 0; /* dont retry */
}

catch (IOException e) /* IO error occured */
{
Retry = Retry - 1; /* decrement */
if (Retry == 0) throw e; /* more attempts ? */
}

} while (Retry != 0); /* more attempts ? */
if (intChar == -1) /* end of file ? */

throw new EOFException(); /* ... yes, EOF */
return(intChar); /* return the byte */
}

The readBytes method is an internal routine designed to read a number of bytes of
data from the socket and to attempt to retry any errors a specific number of times,
or throw an end of file exception if there is no more data to be read.
protected int readBytes(byte buffer[], int offset, int recordSize)

throws Exception
{
int RetryValue = 3;
int i = 0; /* start index */
while (i < recordSize) /* got it all in yet ? */

{ /* ... no */
int NumBytes = 0; /* read count */
/* retry any errors based on the QoS Retry value */
int Retry = RetryValue + 1; /* error retry count */
do{ /* possible retry */

try /* catch io errors */
{
NumBytes = stream_in.read(buffer, offset + i, recordSize - i);
Retry = 0; /* no retry */
}

catch (IOException e) /* IO error occured */
{
Retry = Retry - 1; /* decrement */
if (Retry == 0) throw e; /* more attempts ? */
}

} while (Retry != 0); /* more attempts ? */
/* check for possible end of file */
if (NumBytes < 0) /* errors ? */

adapters

Chapter 10. MQSeries Everyplace adapters 231

throw new EOFException(); /* ... yes */
i = i + NumBytes; /* accumulate */
} return (i); /* Return the count */

}

The readln method reads a string of bytes terminated by a 0x0A character it will
ignore 0x0D characters.

{
synchronized (readLock) /* only one at a time */

{
/* ignore the 4 byte length */
byte lreclBytes[] = new byte[4]; /* for the data length */
readBytes(lreclBytes, 0, 4); /* read the length */

int intChar = -1; /* input characater */
StringBuffer Result = new StringBuffer(256);
/* read Header from input stream */
while (true) /* until "newline" */

{
intChar = readByte(); /* read a single byte */
switch (intChar) /* what character */

{ /* */
case -1: /* ... no character */

throw new EOFException(); /* ... yes, EOF */
case 10: /* eod of line */

return(Result.toString()); /* all done */
case 13: /* ignore */

break;
default: /* real data */

Result.append((char) intChar); /* append to string */
} /* end of line ? */

}
}

}

The status method returns status information about the adapter. In this example it
returns for the option MQe_Adapter_NETWORK the network type (TCPIP), for the
option MQe_Adapter_LOCALHOST it returns the tcpip local host address.
public String status(Object opt) throws Exception

{
if (checkOption(opt, MQe.MQe_Adapter_NETWORK))

return("TCPIP");
else
if (checkOption(opt, MQe.MQe_Adapter_LOCALHOST))

return(InetAddress.getLocalHost().toString());
else
return(super.status(opt));
}

The write method writes a block of data to the socket. It needs to ensure that only
one write at a time can be issued to the socket. In this example it calls an internal
routine writeBytes to write the actual data and perform any appropriate error
recovery.

The opt parameter may be set to:

MQe_Adapter_FLUSH
flush any data in the buffers

MQe_Adapter_HEADER
write any header records

MQe_Adapter_HEADERRSP
write any header response records

adapters

232 MQSeries Everyplace Programming Guide

public void write(Object opt, int recordSize, byte data[])
throws Exception
{
synchronized (writeLock) /* only one at a time */

{
if (checkOption(opt, MQe.MQe_Adapter_HEADER) ||

checkOption(opt, MQe.MQe_Adapter_HEADERRSP))
writeBytes(intToByte(recordSize), 0, 4); /* write length*/

writeBytes(data, 0, recordSize); /* write the data */
if (checkOption(opt, MQe.MQe_Adapter_FLUSH))

stream_out.flush(); /* make sure it is sent */
} /* */

}

The writeBytes is an internal method that writes an array (or partial array) of
bytes to a socket, and attempt a simple error recovery if errors occur.
protected void writeBytes(byte buffer[], int offset, int recordSize)

throws Exception
{
if (buffer != null) /* any data ? */

{
/* break the data up into manageable chuncks */
int i = 0; /* Data index */
int j = recordSize; /* Data length */
int MaxSize = 4096; /* small buffer */
int RetryValue = 3; /* error retry count */
do{ /* as long as data */

if (j < MaxSize) /* smallbuffer ? */
MaxSize = j;

int Retry = RetryValue + 1; /* error retry count */
do{ /* possible retry */

try /* catch io errors */
{
stream_out.write(buffer, offset + i, MaxSize);
Retry = 0; /* don't retry */
}

catch (IOException e) /* IO error occured */
{
Retry = Retry - 1; /* decrement */
if (Retry == 0) throw e; /* more attempts ? */
}

} while (Retry != 0); /* more attempts ? */

i = i + MaxSize; /* update index */
j = j - MaxSize; /* data left */
} while (j > 0); /* till all data sent */

}
}

The writeLn method writes a string of characters to the socket, terminating with
0x0A and 0x0D characters.

The opt parameter may be set to:

MQe_Adapter_FLUSH
flush any data in the buffers

MQe_Adapter_HEADER
write any header records

MQe_Adapter_HEADERRSP
write any header response records

adapters

Chapter 10. MQSeries Everyplace adapters 233

public void writeln(Object opt, String data) throws Exception
{
if (data == null) /* any data ? */

data = "";
write(opt, -1, MQe.asciiToByte(data + "\r\n")); /* write data */
}

This is now a complete (though very simple) tcpip adapter that will communicate
to another copy of itself one of which was started as a listener and the other
started as a connector.

An example of a simple message store adapter
This example creates an adapter for use as an interface to a message store. It uses
the standard Java i/o classes to manipulate files in the store.

This example is not meant as a replacement for the adapters that are supplied with
MQSeries Everyplace but rather as a simple introduction into how to create a
message store adapter.

A new class file is constructed, inheriting from MQeAdapter. Some variables are
defined to hold this adapter’s instance information, such as the name of the
file/message and the location of the message store.

The MQeAdapter constructor is used for the object, so no additional code needs to
be added for the constructor.
public class MyMsgStoreAdapter extends MQeAdapter

implements FilenameFilter
{
protected String filter = ""; /* file type filter */
protected String fileName = ""; /* disk file name */
protected String filePath = ""; /* drive and directory */
protected boolean reading = false; /* open'd for reading */
protected boolean writing = false;

Because this adapter implements FilenameFilter the following method must be
coded. This is the flittering mechanism that is used to select files of a certain type
within the message store.

public boolean accept(File dir, String name)
{
return(name.endsWith(filter));
}

Next the activate method is coded. This is the method that extracts, from the file
descriptor, the name of the directory to be used to hold all the messages.

The Object parameter on the method call may be an attribute object. If it is, this is
the attribute that is used to encode and/or decode the messages in the message
store.

The Object options for this adapter are:
v MQe_Adapter_READ
v MQe_Adapter_WRITE
v MQe_Adapter_UPDATE

Any other options should be ignored.
public void activate(String fileDesc,

Object param,
Object options,

adapters

234 MQSeries Everyplace Programming Guide

int value1,
int value2) throws Exception

{
super.activate(fileDesc, param, options, lrecl, noRec);
filePath = fileId.substring(fileId.indexOf(':') + 1);
String Temp = filePath; /* copy the path data */
if (filePath.endsWith(File.separator)) /* ending separator ? */

Temp = Temp.substring(0, Temp.length() -
File.separator.length());

else
filePath = filePath + File.separator; /* add separator */

File diskFile = new File(Temp);
if (! diskFile.isDirectory()) /* directory ? */

if (! diskFile.mkdirs()) /* does mkDirs work ? */
throw new MQeException(MQe.Except_NotAllowed,

"mkdirs '" + filePath + "' failed");
filePath = diskFile.getAbsolutePath() + File.separator;
this.open(null);
}

The close method disallows reading or writing.
public void close(Object opt) throws Exception

{
reading = false; /* not open for reading*/
writing = false; /* not open for writing*/
}

The control method needs to be coded to handle an MQe_Adapter_LIST that is, a
request to list all the files in the directory that satisfy the filter. Also to handle an
MQe_Adapter_FILTER that is a request to set a filter to control how the files are
listed.
public Object control(Object opt, Object ctrlObj) throws Exception

{
if (checkOption(opt, MQe.MQe_Adapter_LIST))

return(new File(filePath).list(this));
else
if (checkOption(opt, MQe.MQe_Adapter_FILTER))

{
filter = (String) ctrlObj; /* set the filter */
return(null); /* nothing to return */
}

else
return(super.control(opt, ctrlObj)); /* try ancestor */
}

The erase method is used to remove a message from the message store.
public void erase(Object opt) throws Exception

{
if (opt instanceof String) /* select file ? */

{
String FN = (String) opt; /* re-type the option */
if (FN.indexOf(File.separator) > -1) /* directory ? */

throw new MQeException(MQe.Except_Syntax, "Not allowed");
if (! new File(filePath + FN).delete())

throw new MQeException(MQe.Except_NotAllowed, "Erase failed");
}

else
throw new MQeException(MQe.Except_NotSupported, "Not supported");

}

The open method sets the Boolean values that permit either reading of messages or
writing of messages.

adapters

Chapter 10. MQSeries Everyplace adapters 235

public void open(Object opt) throws Exception
{
this.close(null); /* close any open file */
fileName = null; /* clear the filename */
if (opt instanceof String) /* select new file ? */

fileName = (String) opt; /* retype the name */
reading = checkOption(opt, MQe.MQe_Adapter_READ) ||

checkOption(opt, MQe.MQe_Adapter_UPDATE);
writing = checkOption(opt, MQe.MQe_Adapter_WRITE) ||

checkOption(opt, MQe.MQe_Adapter_UPDATE);
}

The readObject method reads a message from the message store and recreates an
object of the correct type. It also decrypts and decompresses the data if an attribute
is supplied on the activate call. This is a special function in that a request to read
a file that satisfies the matching criteria specified in the parameter of the read,
returns the first message it encounters that satisfies the match.
public Object readObject(Object opt) throws Exception

{
if (reading)

{
if (opt instanceof MQeFields)

{
/* 1. list all files in the directory */
/* 2. read each file in turn and restore as a Fields object */
/* 3. try an equality check - if equal then return that object */
String List[] = new File(filePath).list(this);
MQeFields Fields = null;
for (int i = 0; i < List.length; i = i + 1)

try
{
fileName = List[i]; /* remember the name */
open(fileName); /* try this file */
Fields = (MQeFields) readObject(null);
if (Fields.equals((MQeFields) opt)) /* match ? */

return(Fields);
}

catch (Exception e) /* error occured */
{
} /* ignore error */

throw new MQeException(Except_NotFound, "No match");
}

/* read the bytes from disk */
File diskFile = new File(filePath + fileName);
byte data[] = new byte[(int) diskFile.length()];
FileInputStream InputFile = new FileInputStream(diskFile);
InputFile.read(data); /* read the file data */
InputFile.close(); /* finish with file */
/* possible Attribute decode of the data */
if (parameter instanceof MQeAttribute) /* Attribute encoding ?*/

data = ((MQeAttribute) parameter).decodeData(null,
data,
0,
data.length);

MQeFields FieldsObject = MQeFields.reMake(data, null);
return(FieldsObject);
}

else
throw new MQeException(MQe.Except_NotSupported, "Not supported");

}

The status method returns status information about the adapter. In this examples
it can return the filter type or the file name.

adapters

236 MQSeries Everyplace Programming Guide

public String status(Object opt) throws Exception
{
if (checkOption(opt, MQe.MQe_Adapter_FILTER))

return(filter);
if (checkOption(opt, MQe.MQe_Adapter_FILENAME))

return(fileName);
return(super.status(opt));
}

The writeObject method writes a message to the message store. It compresses and
encrypts the message object if an attribute is supplied on the activate method call.
public void writeObject(Object opt,

Object data) throws Exception
{
if (writing && (data instanceof MQeFields))

{
byte dump[] = ((MQeFields) data).dump(); /* dump object */
/* possible Attribute encode of the data */
if (parameter instanceof MQeAttribute)

dump = ((MQeAttribute) parameter).encodeData(null,
dump,
0,
dump.length);

/* write out the object bytes */
File diskFile = new File(filePath + fileName);
FileOutputStream OutputFile = new FileOutputStream(diskFile);
OutputFile.write(dump); /* write the data */
OutputFile.getFD().sync(); /* synchronize disk */
OutputFile.close(); /* finish with file */
}

else
throw new MQeException(MQe.Except_NotSupported, "Not supported");

}

This is now a complete (though very simple) message store adapter that reads and
writes message objects to a message store.

Variations of this adapter could be coded for example to store messages in a
database or in nonvolatile memory.

The Websphere Everyplace Suite (WES) communications adapter
MQSeries Everyplace provides sophisticated security that allows applications to
run over HTTP, through the protection of an Internet firewall. The purpose of the
Websphere Everyplace communications adapter is to allow MQSeries Everyplace
applications to authenticate themselves with the Websphere Everyplace
authentication proxy and thus allow messages to flow through it. Figure 49 shows
a basic scenario with two applications communicating over the Internet through
the Websphere Everyplace authentication proxy.

The Websphere Everyplace adapter acts as the Auth HTTP adapter on the sending
application. The receiving application could use either the same adapter or the
standard HTTP adapter provided with MQSeries Everyplace.

MQSeries
Everyplace
application
(sending)

MQSeries
Everyplace
application
(receiving)

Auth
HTTP

HTTPWebsphere
Authentication

Proxy

Internet

Figure 49. Applications communicating through the Websphere authentication proxy

adapters

Chapter 10. MQSeries Everyplace adapters 237

|

|
|
|
|
|
|
|
|

|
|
|

However, the real value of MQSeries Everyplace is that it allows asynchronous
messaging to occur in a typically synchronous environment. It is possible to gather
enqueued requests from the receiving application and deal with them
time-independently. Figure 50 shows how incoming requests could be made to
reach MQSeries servers asynchronously.

In each of these environments the Websphere authentication proxy is adding the
ability to control access to the receiving applications. The adapter code supports
this by adding (application-supplied) user ID and password information to each
outgoing HTTP request. The Websphere authentication proxy accepts these
requests and verifies that the supplied credentials are valid for the current
environment. If the credentials are valid the proxy forwards the request to the
receiving application.

The Websphere Everyplace adapter files
In a standard MQSeries Everyplace installation the Websphere Everyplace adapter
consists of, and is supported by the following files:

...\Java\com\ibm\mqe\adapters\MQeWESAuthenticationAdapter.class
- The Websphere Everyplace adapter class.

...\Java\examples\application\Example7.class
- Compiled example application that uses the adapter

...\Java\examples\application\Example7.java
- Source for the example application

...\Java\examples\adapters\WESAuthenticationGUIAdapter.class
- Compiled example adapter that adds a user interface to the Websphere
Everyplace adapter. As with other example classes, this class is not meant
as a replacement for the base WES adapter class, but rather as a
demonstration of how to tailor the WES adapter to suit your requirements.

...\Java\examples\adapters\WESAuthenticationGUIAdapter.java
- Source for the example adapter

If your environment CLASSPATH variable is set to find all classes within the
MQSeries Everyplace Java folder, the Websphere Everyplace adapter class files
should be accessible from within the Java environment. If the files are not
accessible, issue a command such as:
set CLASSPATH=%CLASSPATH%;c:\mqe\java

MQSeries
Everyplace
application
(sending)

MQSeries
Everyplace
application

(enqueuing)

MQSeries
Everyplace
application

(dequeuing)

Auth
HTTP

HTTPWebsphere
Authentication

Proxy

Internet

MQSeries

MQSeries
bridge

Figure 50. Applications communicating asynchronously through the Websphere
Authentication Proxy

Websphere adapter

238 MQSeries Everyplace Programming Guide

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|

This will make the new classes visible to Java. (The exact format of this command
may vary from system to system.) Once this is complete you should be able to use
the Websphere Everyplace adapter classes in the same way as any other MQSeries
Everyplace classes.

Using the Websphere Everyplace adapter
This section provides information on how to use the Websphere Everyplace
adapter. The information is divided into three parts:

General operation
This describes in detail, how to use the adapter in your applications

Using the Authentication Dialog Example
This describes how to use an example class,
examples.adapters.WESAuthenticationGUIAdapter. This class is derived
from the base WES adapter class and provides a small user interface to
collect the ID and password of the user.

Using the Application Example
This describes how to use the supplied example file
examples.application.Example7 which is configured to use the base WES
adapter.

The information in this section assumes that both the Websphere Everyplace
authentication proxy and MQSeries Everyplace have been installed and configured
correctly. It is also assumed that an MQSeries Everyplace server queue manager
and an MQSeries Everyplace client queue manager have been configured.

General Operation
1. Configure the client queue manager to send messages using the new adapter

by modifying the client queue manager’s configuration .ini file so that the
Network alias points to com.ibm.mqe.adapters.MQeWESAuthenticationAdapter.
Use the following command:
(ascii)Network=com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

2. Configure the server queue manager to decode the stream of data that the
Client Adapter supplies using either the new adapter or the standard HTTP
adapter. Do this by changing the line in the server queue manager’s
configuration .ini file so that the Network alias points to either
com.ibm.mqe.adapters.MQeWESAuthenticationAdapter or
com.ibm.mqe.adapters.MQeTcpipHttpAdapter. Use one of the following
commands:
(ascii)Network=com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter

3. Modify the client queue manager code so that the required user ID and
password are set before the first network operation is started. For example,
insert the following line near the top of your code:
com.ibm.mqe.adapters.MQeWESAuthenticationAdapter.setBasicAuthorization("myUserId@myRealm",

"myPassword");

Replace the parameters with a valid WES Server user ID and password.

You also need to add code to catch the new MQeException
Except_Authenticate after each network operation, in case the supplied
credentials were invalid.

4. Check that the client queue manager can still send messages to the server
queue manager without going through the proxy.

Websphere adapter

Chapter 10. MQSeries Everyplace adapters 239

|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|
|
|

|
|

|

|
|
|

|
|

5. Configure the client machine to send HTTP requests through the proxy.
Depending on how WES has been configured, the adapter will need to work
with either a transparent proxy or an authentication proxy.

As a transparent proxy
In this mode, the WES server acts as a simple HTTP proxy. In this case,
the Java application needs to set system properties that relate to proxy
information;

http.proxyHost
Must be set to the host name of the WES proxy

http.proxyPort
Must be set to the name of the port that the proxy is listening on

http.proxySet
Must be set to true, which tells the adapter to use transparent
proxy mode

These parameters can be set by adding the following to your Java
application:

System.getProperties().put("http.proxySet", "true");
System.getProperties().put("http.proxyHost", "wes.hursley.ibm.com");
System.getProperties().put("http.proxyPort", "8082");

The client queue manager’s connection to the target MQSeries
Everyplace server is similar to a connection that doesn’t use the WES
proxy.

You need to restart the server and client queue managers for the new
settings to take effect. The client should then be able to send messages
to the server through the proxy.

As an Authentication Proxy
In this mode, the WES server forwards requests to services, based on
the URL that you supply. For example, you may want requests for
http://wes.hursley.ibm.com/mqe to be forwarded to an MQSeries
Everyplace queue manager running on mqe.hursley.ibm.com:8082.

To set this up from MQSeries Everyplace you need to update the
client’s connection reference to the server.

Figure 51. Administration interface panel

Websphere adapter

240 MQSeries Everyplace Programming Guide

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

Target network adapter
Should point to the Authentication Proxy machine and port

Network adapter parameters
Should contain the pathname to the required service

If you are using the MQSeries Everyplace Example Administration tool,
select Connection and then Update to configure this.

Note: The reference to the WES Server is entered in the Network
adapter field, and the pathname is entered in the Network
adapter parms field.

You need to restart the server and client queue managers for the new
settings to take effect. The client should then be able to send messages
to the server through the proxy.

Using the Authentication Dialog Example
The following information describes the use of the example class file,
examples.adapters.WESAuthenticationGUIAdapter. This class adds a small user
interface to the base WES adapter function.
1. Follow steps (1) and (2) of the ’General operation’ procedures, but substitute

’WESAuthenticationGUIAdapter’ for ’WESAuthenticationAdapter’ in step (1).
2. Configure the client’s TCP/IP settings as in step (5) of ’General operation’.

The client should now able to send messages to the server using the
WESAuthenticationGUIAdapter. This adapter intercepts write calls to the WES
adapter, and on the first request it pops up a dialog box that prompts for user ID
and password information.

Figure 52. Administration interface panel

Figure 53. Websphere Everyplace Suite adapter user dialog

Websphere adapter

Chapter 10. MQSeries Everyplace adapters 241

|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|

When the user clicks on OK or presses the Enter key, the setBasicAuthorization()
method is called with the values from the userid and password fields. The write()
is then forwarded on to the underlying WES adapter. The dialog box also has a
Cancel button which, when selected, cancels the current write operation by not
forwarding the request to the WES adapter. This causes an MQeException
(Except_Stopped) to be thrown.

If authentication fails, the dialog box is redisplayed on the next write() along with
any information provided by the server. In order to learn of an authentication
failure, the example adapter intercepts read() calls and catches any
Except_Authenticate MQeExceptions coming from the adapter.

Note: Web browsers do not generally send authentication information on the first
flow. This typically results in a 401 or 407 response that contains the realm
information. Only then does the browser send the authenticated request.
User clients may wish to follow this convention.

Using the Application Example
The following information describes the use of the example application file,
examples.application.Example7. This example behaves in a similar way to the
MQSeries Everyplace programming example examples.application.Example1 and
uses the basic WES adapter for communications.
1. Follow steps (1) and (2) of the ’General operation’ procedures.
2. Configure the client’s TCP/IP settings as in step (5) of ’General operation’.
3. Edit the example file ...\Java\examples\application\Example7.java inserting a

valid user ID and password, and then recompile the application.
4. Restart the server.
5. Run the Example7 program using the following command:

java examples.application.Example7 Server client.ini

where

Server
is the name of the remote queue manager (that the client already knows
how to reach)

client.ini
points to the client’s .ini configuration file.

The application starts the client queue manager, authenticates with the proxy,
puts a message to server and then get a message from the server.

Websphere adapter

242 MQSeries Everyplace Programming Guide

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|
|

|

|

|

|

|
|
|

|
|

|
|

Appendix A. MQSeries Everyplace diagnostic tool

MQSeries Everyplace includes a small diagnostic tool that can be used to gather
the information required by technical support personnel to assist with problem
determination. The tool collects information about the local MQSeries Everyplace
environment. In particular:
v CLASSPATH and PATH information
v Java system variables
v Version information of the MQSeries Everyplace classes

No personal information or MQSeries Everyplace message data is collected by this
program, and it should normally only be used at the request of IBM technical
support personnel.

This tool should not be confused with the trace facility, which is used to gather
debugging information on a running MQSeries Everyplace system.

Invoking the MQeDiagnostics Tool
If you need to use this tool it can be invoked as follows.

On Windows NT/2000
1. From a command prompt change to the ...\mqe\Java\demo\Windows\ folder.
2. Edit the MQeDiagnostics.bat file to suit your environment. The file makes use

of the JavaEnv.bat script, so either ensure that JavaEnv.bat correctly sets up
your CLASSPATH and PATH environment variables, or configure them directly
from within the MQeDiagnostics.bat script.

3. Run the MQeDiagnostics.bat file and follow the on screen prompts.
4. Once the tool has completed, look through the MQeDiagnostics.out file for any

errors. Common errors include:

″.\MQeDiagnostics.properties could not be found″
The tool requires the MQeDiagnostics.properties file to be supplied as
input. Edit MQeDiagnostics.bat so that it points to the correct location
for this file and re-run the tool.

″com.ibm.mqe.support.MQeDiagnostics is not recognized as an internal or
external command...″

JavaEnv.bat is not configured correctly. Edit MQeDiagnostics.bat and
JavaEnv.bat if necessary and re-run the tool.

″java.lang.NoClassDefFoundError: com/ibm/mqe/support/MQeDiagnostics″
Edit JavaEnv.bat and MQeDiagnostics.bat if necessary so that the
...\MQe\Java\Jars\MQeDiagnostics.jar can be found in the CLASSPATH
environment variable.

Note: Not all MQSeries Everyplace classes can supply version information, so
the MQeDiagnostics.out file may include some ″Unknown version!″
messages.

5) Send MQeDiagnostics.out to the MQSeries Everyplace support personnel.

© Copyright IBM Corp. 2001 243

|

|

|
|
|
|

|

|

|

|
|
|

|
|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

On UNIX systems
1. From a command prompt change to the ...\mqe\Java\demo\UNIX\ folder.
2. Edit the MQeDiagnostics script to suit your environment. The file makes use of

the JavaEnv script, so either ensure that JavaEnv correctly sets up your
CLASSPATH and PATH environment variables, or configure them directly from
within the MQeDiagnostics script.

3. Run the MQeDiagnostics script and follow the on screen prompts.
4. Once the tool has completed, look through the MQeDiagnostics.out file for any

errors. Common errors include:

″.\MQeDiagnostics.properties could not be found″
The tool requires the MQeDiagnostics.properties file to be supplied as
input. Edit MQeDiagnostics.bat so that it points to the correct location
of this file and re-run the tool.

″com.ibm.mqe.support.MQeDiagnostics : command not found″
JavaEnv is not configured correctly. Edit MQeDiagnostics and JavaEnv
if necessary and re-run the tool.

″java.lang.NoClassDefFoundError: com/ibm/mqe/support/MQeDiagnostics″
Edit JavaEnv and MQeDiagnostics if necessary so that the
...\MQe\Java\Jars\MQeDiagnostics.jar file can be found in the
CLASSPATH environment variable.

Note: Not all MQSeries Everyplace classes can supply version information, so
the MQeDiagnostics.out file may include some ″Unknown version!″
messages.

5. Send MQeDiagnostics.out to the MQSeries Everyplace support personnel.

Other systems
On other systems, the MQeDiagnostics tool should be invoked directly.
1. Add the MQeDiagnostics.jar file to your classpath.
2. Invoke the com.ibm.mqe.support.MQeDiagnostics class from the Java runtime

environment. For example:
java com.ibm.mqe.support.MQeDiagnostics MQeDiagnostics.properties > MQeDiagnostics.out

The program takes the MQeDiagnostics.properties file as an argument.
3. Send the output from the tool to the MQSeries Everyplace support personnel.

diagnostic tool

244 MQSeries Everyplace Programming Guide

|

|

|
|
|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

|
|

|

|

|

Appendix B. Applying maintenance to MQSeries Everyplace

To apply a maintenance update follow the instructions provided with the update.

For more general information on maintenance updates and their availability see
the MQSeries family Web page at http://www.software.ibm.com/ts/mqseries/.

© Copyright IBM Corp. 2001 245

|

246 MQSeries Everyplace Programming Guide

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,

© Copyright IBM Corp. 2001 247

Winchester,
Hampshire
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of International Business machines
Corporation in the United States, or other countries, or both.

AIX
IBM
MQSeries

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark of X/Open in the United States and other
countries.

Windows and Windows NT are registered trademark of Microsoft Corporation in
the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

notices

248 MQSeries Everyplace Programming Guide

Glossary

This glossary describes terms used in this book
and words used with other than their everyday
meaning. In some cases, a definition may not be
the only one applicable to a term, but it gives the
particular sense in which the word is used in this
book.

If you do not find the term you are looking for,
see the index or the IBM Dictionary of Computing,
New York:. McGraw-Hill, 1994.

Application Programming Interface (API). An
Application Programming Interface consists of the
functions and variables that programmers are allowed
to use in their applications.

asynchronous messaging. A method of
communicating between programs in which the
programs place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

authenticator. A program that checks that verifies the
senders and receivers of messages.

bridge. An MQSeries Everyplace object that allows
messages to flow between MQSeries Everyplace and
other messaging systems, including MQSeries.

channel. See dynamic channel, client/server channel,
peer channel, and MQI channel.

channel manager. An MQSeries Everyplace object that
supports logical multiple concurrent communication
pipes between end points.

class. A class is an encapsulated collection of data and
methods to operate on the data. A class may be
instantiated to produce an object that is an instance of
the class.

client. (1)In MQSeries Everyplace, a client is MQSeries
Everyplace code running without a channel manager or
channel listener. Contrast with server (1). (2)In
MQSeries, a client is a run-time component that
provides access to queuing services on a server for
local user applications.

client/server channel. An MQSeries Everyplace a
unidirectional channel between a client and a server
that can only be established from the client side.
Contrast with peer channel.

compressor. A program that compacts a message to
reduce the volume of data to be transmitted.

cryptor. A program that encrypts a message to
provide security during transmission.

device. A small portable machine running MQSeries
Everyplace as a client. Contrast wiith server(1).

dynamic channel. This is a name given to MQSeries
Everyplace channels that connect clients and servers to
enable the transfer of messages. They are called dynamic
because they are created on demand. See client/server
and peer channels. Contrast withMQI channel.

encapsulation. Encapsulation is an object-oriented
programming technique that makes an object’s data
private or protected and allows programmers to access
and manipulate the data only through method calls.

gateway. An MQSeries Everyplace gateway is a
computer running the MQSeries Everyplace
MQSeries-bridge code.

Hypertext Markup Language (HTML). A language
used to define information that is to be displayed on
the World Wide Web.

instance. An instance is an object. When a class is
instantiated to produce an object, we say that the object
is an instance of the class.

interface. An interface is a class that contains only
abstract methods and no instance variables. An
interface provides a common set of methods that can
be implemented by subclasses of a number of different
classes.

Internet. The Internet is a cooperative public network
of shared information. Physically, the Internet uses a
subset of the total resources of all the currently existing
public telecommunication networks. Technically, what
distinguishes the Internet as a cooperative public
network is its use of a set of protocols called TCP/IP
(Transport Control Protocol/Internet Protocol).

Java Developers Kit (JDK). A package of software
distributed by Sun Microsystems for Java developers. It
includes the Java interpreter, Java classes and Java
development tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation
generator.

Java Naming and Directory Service (JNDI). An API
specified in the Java programming language. It
provides naming and directory functions to
applications written in the Java programming language.

Lightweight Directory Access Protocol (LDAP).
LDAP is a client-server protocol for accessing a
directory service.

© Copyright IBM Corp. 2001 249

Local area network (LAN). A computer network
located on a user’s premises within a limited
geographical area.

message. In message queuing applications, a message
is a communication sent between programs.

message queue. See queue

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

method. Method is the object-oriented programming
term for a function or procedure.

MQI channel. An MQI channel connects an MQSeries
client to a queue manager on a server system and
transfers MQI calls and responses in a bidirectional
manner. MQI channels must be explicitly created.
Contrast with dynamic channels.

MQSeries. MQSeries is a family of IBM licensed
programs that provide message queuing services.

object. (1) In Java, an object is an instance of a class. A
class models a group of things; an object models a
particular member of that group. (2) In MQSeries, an
object is a queue manager, a queue, or a channel.

package. A package in Java is a way of giving a piece
of Java code access to a specific set of classes. Java code
that is part of a particular package has access to all the
classes in the package and to all non-private methods
and fields in the classes.

peer channel. A bidirectional MQSeries Everyplace
channel, normally used between clients. The connection
can be established from either end.

personal digital addistant (PDA). A pocket sized
personal computer.

private. A private field is not visible outside its own
class.

protected. A protected field is visible only within its
own class, within a subclass, or within packages of
which the class is a part

public. A public class or interface is visible
everywhere. A public method or variable is visible
everywhere that its class is visible

queue. A queue is an MQSeries object. Message
queueing applications can put messages on, and get
messages from, a queue

queue manager. A queue manager is a system
program the provides message queuing services to
applications.

server. (1) An MQSeries Everyplace server is MQSeries
Everyplace code with an MQSeries Everyplace channel

manager, and MQSeries Everyplace channel listener,
configured. This provides the ability to receive from
multiple devices and servers concurrently. Contrast
with client (1). (2)A computer running MQSeries
Everyplace server code. Contrast with device. (3) An
MQSeries server is a queue manager that provides
message queuing services to client applications running
on a remote workstation. (4) More generally, a server is
a program that responds to requests for information in
the particular two-program information flow model of
client/server, or the computer on which a server
program runs.

servlet. A Java program which is designed to run only
on a web server.

subclass. A subclass is a class that extends another.
The subclass inherits the public and protected methods
and variables of its superclass.

superclass. A superclass is a class that is extended by
some other class. The superclass’s public and protected
methods and variables are available to the subclass.

synchronous messaging. A method of communicating
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing . Contrast with
asynchronous messaging.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

Web. See World Wide Web.

Web browser. A program that formats and displays
information that is distributed on the World Wide Web.

World Wide Web (Web). The World Wide Web is an
Internet service, based on a common set of protocols,
which allows a particularly configured server computer
to distribute documents across the Internet in a
standard way.

250 MQSeries Everyplace Programming Guide

Bibliography

Related publications:
v MQSeries Everyplace for Multiplatforms Read Me

First, GC34-5862
v MQSeries Everyplace for Multiplatforms

Introduction, GC34-5843
v MQSeries Everyplace for Multiplatforms

Programming Reference, SC34-5846
v MQSeries An Introduction to Messaging and

Queuing, GC33-0805-01

© Copyright IBM Corp. 2001 251

252 MQSeries Everyplace Programming Guide

Index

A
action restrictions on queues 112
activating

asynchronous remote queue
definitions 89

queue managers 59
trace 220

adapters 227
communications example 228
message store example 234
MQSeries Everyplace 108
Websphere example 237

administered objects characteristics,
MQSeries-bridge 148

administering
actions for the MQSeries-bridge 146
connections 103
fields 95
home-server queues 119
local queues 109
managed resources 103
MQSeries bridge 145
MQSeries Everyplace resources 93
MQSeries—bridge queue 120
queue managers 103
queues 109
remote queues 112
store-and-forward queues 116
the bridge, example GUI 145

administration
console, example 122
queue 4, 122
reply message 99
reply message fields 100
request message 94

aliases
class 60
connection 108
queue 112
queue manager 46

applications,
deploying 11
launching 61
launching with RunList 63

ascii characters 171
invariant 171
variant 171

assured delivery of synchronous
messages 77

asynchronous
messaging 76
queues 113
remote queue definitions,

activating 89
authenticatable entities and

auto-registration 201
authenticatable entity 201
authenticatable entity credentials 201
auto-registration of authenticatable

entities 201
AwtMQeServer, example 54

B
behavior of components, controlling with

rules 83
bibliography 251
bridge

administration 145
administration actions 146
and browseMessages 161
and getMessage 161
and putMessage 160
codepage considerations 169
configuration, sample tool 139
configuration example 139
configuring 135
example administration GUI 145
example files 19, 171
installation 135
national language considerations 169
object hierarchy 136
objects characteristics 148
queue, administering 120
rules 166
run state 146
test message 159
to MQSeries 7

bridge queue
administering 120

Browse and Lock 72
browseMessages and

MQSeries-bridge 161

C
channels

MQSeries Everyplace 5
reuse with queue-based security 193

characteristics
of MQSeries-bridge objects 148
of resources 96

class, aliases 60
Classes for Java, MQSeries 135
client

MQSeries Everyplace 45
client connection object 136
client to server connections 105
closing MQeQueueManagerConfigure

instance 38
codepages and MQSeries-bridge 169
common registry parameters 47
communications adapter example 228
communications adapters 227
component behavior, controlling with

rules 83
components, administering 93
configuring

queue managers 59
security for Windows 2000 and

NT 10
the MQSeries-bridge 135

connection aliases 108

connections
administration of 103
client to server 105
peer-to-peer 106
routing 108

converting MQSeries Everyplace
messages to MQSeries 162

creating
an ini file editor 25
default queue definitions 37
local queues 111
MQSeries-style message 166
queue manager definition 37
queue managers 35

creating remote queues 114
credentials of authenticatable entity 201
customizing trace 221

D
dead-letter queues MQSeries

Everyplace 4
default queues, creating definitions 37
definition

asynchronous remote queue,
activating 89

default queues, creating 37
queue, deleting 39
queue manager, creating 37
queue manager, deleting 39

deleting
queue definitions 39
queue manager definitions 39
queue managers 39
standard queue definitions 39

deploying applications 11
detecting queue events 73
development environment 9
diagnostic tool 243
discovery of remote queues 76
distributed messaging vi

E
environment, development 9
environment variables

collecting information 243
example

administration console 122
AwtMQeServer 54
bridge administration GUI 145
communications adapter 228
files 13
files, bridge 19, 171
message store adapter 234
mini-certificate server GUI 206
MQePrivateClient 49
MQePrivateServer 54
MQeServer 50
MQeTrace 221

© Copyright IBM Corp. 2001 253

example (continued)
MQSeries bridge configuration 139
queue browser 124
trace GUI 222
transformer class 164
Websphere adapter 237

examples.adapters 13
examples.administration.console 14
examples.administration.simple 14
examples.application 15
examples.attributes 16
examples.awt 17
examples.certificates 17
examples.eventlog 18
examples.install 18
examples.messagestore 19
examples.mqbridge.transformers.MQeListTransformer 164
examples.MQSeries-bridge 20
examples.nativecode 20
examples.queuemanager 20
examples.rules 21
examples.security 21
examples.trace 21
expiry of messages 71
expiry times, transforming 166

F
fields, administration of 95
file registry parameters 47
files

bridge, example 19, 171
example 13

filters, message 70
flow of messages 76
for bridge administration 145

for mini-certificate server 206
trace 222

format, trace message 219

G
get message 72
getMessage and MQSeries-bridge 161
getting started 9
glossary 249

H
hierarchy of bridge objects 136
home-server

queues 4
queues, administering 119

host messaging vi

I
index entry rule 90
index fields, message 69
installation of MQSeries-bridge 135
installation test 12
interface to MQSeries 7
intermediate queue managers, routing

through 108
invariant characters, ascii 171

J
jar files 11
Java development kit (JDK) 9
Java Virtual Machine (JVM) 61
JDK 9
justUID 73
JVM 61

K
knowledge, prerequisite v

L
launching

applications 61
applications with RunList 63

listeners, message 73
listing mini-certificates 215
local queue 3

administering 109
creating 111
message store 110

local security
secure feature choices 174
selection criteria 175
usage guide 175
usage scenario 174

lock ID 73
locking messages 72

M
message

expiry 71
filters 70
flow 76
format of trace 219
index fields 69
listeners 73
polling 74
store adapter example 234
store on local queue 110

message, MQSeries to MQSeries
Everyplace 159

message events 69
message expired rule 90
message-level security 195

secure feature choices 195
selection criteria 196
usage guide 197
usage scenario 195

message operations supported by
MQSeries—bridge queue 121

message states 67, 68
messages

browse and lock 72
locking 72
MQSeries Everyplace 65
MQSeries-style 165
MQSeries-style, creating 166
MQSeries-style, reading 165
operations on 75
reading all on queue 72

messaging
synchronous and asynchronous 75
synchronous assured delivery 77

mini-certificate issuance service 205
mini-certificate server

example GUI 206
using 206

mini-certificates 204
listing 215
obtaining new credentials 214
renewing 214
updating format 216

MQeDevice.jar 11
MQeExamples.jar 11
MQeFields 23
MQeFields, using 25
MQeGateway.jar 11
MQeLoadBridgeRule 167
MQeMAttribute 195
MQeMiniCertificate.jar 11
MQeMQBridge.jar 11
MQeMQMsgObject 165
MQeMsgObject 23
MQeMTrustAttribute 195
MQePrivateClient example 49
MQePrivateServer, example 54
MQeQueueManagerConfigure 35
MQeQueueManagerConfigure instance,

closing 38
MQeRegistry.CAIPAddrPort 47
MQeRegistry.CertReqPIN 47
MQeRegistry.DirName 47
MQeRegistry.KeyRingPassword 47
MQeRegistry.LocalRegType 47
MQeRegistry parameters for queue

manager 46
MQeRegistry.PIN 47
MQeRegistry.Separator 47
MQeServer, example 50
MQeStartupRule 168
MQeSyncQueuePurgerRule 168
MQeTrace 221
MQSeries

Classes for Java 135
messages, converting to MQSeries

Everyplace 162
queue manager, shutting down 147
queue manager proxy object 136

MQSeries, interface to 7
MQSeries-bridge 7
MQSeries-bridge queues 4
MQSeries-bridges object 136
MQSeries Everyplace

client 45
messages, converting to

MQSeries 162
server 50
trace, using 219

MQSeries Everyplace bridge
administration 145
and browseMessages 161
and getMessage 161
and putMessage 160
codepage considerations 169
configuration, sample tool 139
configuration example 139
configuring 135

254 MQSeries Everyplace Programming Guide

MQSeries Everyplace bridge (continued)
example administration GUI 145
installation 135
national language considerations 169
object 136
objects characteristics 148
rules 166
run state 146
testing 159
to MQSeries 135

MQSeries Integrator vi
MQSeries-style message 165

creating 166
reading 165

MQSeries to MQSeries Everyplace
message 159

MQSeries Workflow vi
Msg_ReplyToQ 97
Msg_Style 97
MsgReplyToQMgr 97

N
national language considerations for

MQSeries-bridge 169
notices 247

O
objects

administering 93
MQSeries-bridge, characteristics 148
storing and retrieving 23

obtaining new credentials for
mini-certificates 214

operations on messages 75
ordering queues 72

P
packages example

packages 13
parameters

file registry 47
private registry 47
queue manager startup 45

peer-to-peer connections 106
pervasive messaging vi
polling messages 74
post install test 12
prerequisite knowledge v
private registry

parameters for queue manager 47
secure feature choices 202
selection criteria 203
service 201
usage guide 203
usage scenario 202

properties, queue manager, setting 37
public registry

secure feature choices 204
selection criteria 204
service 204
usage guide 204
usage scenario 204

putMessage and MQSeries-bridge 160

Q
queue

action restrictions 112
administration 4, 122
aliases 112
behavior, controlling with rules 89
browser, example 124
definitions, asynchronous remote,

activating 89
definitions deleting 39
events, detecting 73
index entry rule 90
local creating 111
message store 110
MQSeries-bridge, administering 120
ordering 72
rules 89
security 112

queue-based security 177
channel reuse 193
secure feature choices 179
selection criteria 179
starting queue managers with private

registry 193
usage guide 180
usage scenario 177

queue manager 2
activating 59
administration of 103
aliases 46
behavior, controlling with rules 83
configuring 59
creating and deleting 35
definition, creating 37
definitions, deleting 39
deleting 39
intermediate, routing through 108
properties, setting 37
registry parameters 46
rules 83
running in a Web server 55
servlet 55
starting 44
startup parameters 45
using 61

queues 3, 71
administering 109
asynchronous 113
dead-letter, MQSeries Everyplace 4
default, creating definitions 37
home-server 4
home-server, administering 119
local 3
local, administering 109
MQSeries-bridge 4
remote 3, 76
remote, administering 112
remote, creating 114
remote, discovery 76
store-and-forward 3
store-and-forward, administering 116

queues, synchronous 113

R
reading

all messages on a queue 72
MQSeries-style message 165

registry
private 201
public 204
queue manager parameters 46
types 47

related publications 251
remote queues 3, 76

administering 112
asynchronous, activating

definitions 89
creating 114
discovery 76

renewing mini-certificates 214
resource characteristics 96
resources, administering 93, 103
restrictions on queue actions 112
retrieving objects 23
routing connections 108
rule

index entry 90
message expired 90
transmit 86
trigger transmission 85

rules
MQSeries bridge 166
MQSeries Everyplace 83
queues 89
rules, queue manager 83
transmission 85

run state of MQSeries-bridge 146
RunList, launching applications 63

S
sample MQSeries-bridge configuration

tool 139
secure feature choices

local security 174
message-level security 195
private registry 202
public registry 204
queue-based 179

security 8, 122, 173
configuring on Windows 2000 and

NT 10
features 173
local 174
message level 195
mini-certificate issuance service 205
MQSeries Everyplace 82
of administration 122
of queues 112
private registry service 201
public registry service 204
queue-based 177

selection criteria
local security 175
message-level security 196
private registry 203
public registry 204
queue-based security 179

Index 255

server
mini-certificate, using 206
MQSeriesEveryplace 50

server to client connections 105
servlet queue manager 55
setting queue manager properties 37
shutting down and MQSeries queue

manager 147
standard queue definitions, deleting 39
starting queue managers 44
startup parameters, queue manager 45
storage adapters 227
store-and-forward queues 3

administering 116
storing objects 23
synchronous

assured message delivery 77
queues 113
synchronous messaging 75

SYSTEM.DEFAULT.LOCAL.QUEUE 38

T
terms vi
test, post install 12
testing MQSeries-bridge 159
tool

diagnostic 243
MQSeries-bridge, sample

configuration 139
trace 220

activating 220
customizing 221
example GUI 222

trace message format 219
tracing in MQSeries Everyplace 219
trademarks 248
transformer 162

example class 164
transformers and expiry times 166
transmission queue listener object 136
transmission rules 85
transmit rule 86
trigger transmission rule 85

U
updating format of mini-certificates 216
usage guide

local security 175
message-level security 197
private registry 203
public registry 204
queue-based security 180

usage scenario
local security 174
message-level security 195
private registry 202
public registry 204
queue-based 177

using
mini-certificate server 206
MQeFields 25
MQSeries Everyplace trace 219
queue managers 61

V
variant characters, ascii 171

W
Web server, running a queue

manager 55
Websphere adapter example 237
Windows 2000 and NT security

configuration 10
workstation messaging vi

256 MQSeries Everyplace Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–842327
– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2001 257

258 MQSeries Everyplace Programming Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5845-02

	Contents
	About this book
	Who should read this book
	Prerequisite knowledge
	Terms used in this book

	Summary of changes
	Changes for this edition (SC34-5845-02)
	Changes for previous edition (SC34-5845-01)

	Chapter 1. Overview
	MQSeries Everyplace queue manager
	MQSeries Everyplace queues
	Local queue
	Remote queue
	Store-and-forward queue
	Home-server queue
	MQSeries-bridge queue
	Dead-letter queue
	Administration queue

	MQSeries Everyplace channels
	MQSeries Everyplace bridge to MQSeries
	Security

	Chapter 2. Getting Started
	Development Environment
	Windows 2000 and NT security configuration
	Deploying applications
	Post install test
	Examples
	examples.adapters
	examples.administration.commandline package
	examples.administration.console package
	examples.administration.simple package
	examples.application package
	examples.attributes package
	examples.awt package
	examples.certificates package
	examples.eventlog package
	examples.install package
	examples.messagestore package
	examples.mqbridge.awt package
	examples.mqbridge.administration.commandline package
	examples.nativecode package
	examples.queuemanager package
	examples.rules package
	examples.security package
	examples.trace package

	Chapter 3. MQeFields
	Creating an MQeFields-based ini file editor

	Chapter 4. Queue managers, messages, and queues
	Creating and deleting queue managers
	Creating a queue manager
	1. Create and activate an instance ofMQeQueueManagerConfigure
	2. Set queue manager properties and create the queue managerdefinition
	3. Create definitions for the default queues
	4. Close the MQeQueueManagerConfigure instance

	Deleting a queue manager
	1. Delete any definitions
	2. Create and activate an instance ofMQeQueueManagerConfigure
	3. Delete the standard queue and queue manager definitions
	4. Close the MQeQueueManagerConfigure instance

	Using aliases
	Examples of queue aliasing
	Examples of queue manager aliasing

	Starting queue managers
	Client queue managers
	Aliases
	MQeRegistry parameters for the queue manager
	Starting a client queue manager
	Example MQePrivateClient

	Server queue managers
	Example MQeServer
	Example MQePrivateServer
	Example AwtMQeServer

	Servlet

	Configuring queue managers using base classes
	Queue manager activation

	Using queue managers
	MQSeries Everyplace applications and the Java VirtualMachine
	Launching applications with RunList

	Messages
	Storing messages
	Message states
	Message events
	Message index fields
	Customizing the message store

	Filters
	Message Expiry

	Queues
	Queue types
	Queue ordering
	Reading all the messages on a queue
	Browse and Lock
	Message listeners
	Message polling
	Messaging operations

	Synchronous and asynchronous messaging
	Synchronous messaging
	Asynchronous messaging

	Assured message delivery
	Synchronous assured message delivery
	Put message
	Get message

	Security

	Chapter 5. Rules
	Queue manager rules
	Loading and activating queue manager rules
	Using queue manager rules
	Transmission Rules
	Trigger Transmission Rule
	Transmit rule

	Activating asynchronous remote queue definitions

	Queue rules
	Index entry rule
	Message Expired rule
	Logging an add message listener event

	Chapter 6. Administering messaging resources
	The basic administration request message
	Base administration fields
	Fields specific to the managed resource
	Other useful fields

	The basic administration reply message
	Outcome of request fields

	Administration of managed resources
	Queue managers
	Connections
	Client to server
	Peer to peer
	Adapters
	Routing connections
	Aliases

	Queues
	Local queue
	Remote queue
	Store-and-forward queue
	Home-server queue
	MQSeries-bridge queue
	Administration queue

	Security and administration
	Example administration console
	The main console window
	Queue browser
	Action windows
	Reply windows

	Administration from the command line
	Example of use of command-line tools
	Script files required
	MQSeries Everyplace and MQSeries objects defined by thescripts
	How to use the script files
	How to use the MQe_Explorer to view the configurations

	Chapter 7. MQSeries-bridge
	Installation
	MQSeries Classes for Java

	Configuring the MQSeries-bridge
	Configuring a basic installation
	Sample configuration tool
	Limitations
	Steps required to configure the bridge

	Configuration example
	Requirement
	Initial setup
	Enabling MQeMoonQM to put and get messages to and from theMQeEarthQM queue manager
	Enabling the MQeEarthQM to send messages to theMQeMoonQM queue manager
	Enabling MQeEarthQM to send a message to MQSaturnQ
	Enabling MQeEarthQM to send a message to MQJupiterQ
	Enabling MQeMoonQM to send a message to MQJupiterQ andMQSaturnQ
	Enabling MQSaturnQM to send messages to the MQeEarthQ
	Enabling MQSaturnQM to send messages to the MQeMoonQ
	Enabling the MQJupiterQM to send messages to the MQeMoonQ

	Additional bridge configuration

	Administration of the MQSeries-bridge
	The example administration GUI application
	MQSeries-bridge administration actions
	Run state
	Start action
	Stop action
	Inquire action
	Update action
	Delete action
	Create action

	MQSeries-bridge considerations when shutting down anMQSeries queue manager
	Immediate shutdown
	Controlled shutdown

	Administered objects and their characteristics
	Attribute details

	How to send a message from MQSeries to MQSeries Everyplace
	Handling undeliverable messages

	Putting messages to the MQSeries-bridge queue
	Getting and browsing messages from the MQSeries-bridge queue
	Usage restrictions

	Transformers
	The examples.mqbridge.transformers.MQeListTransformerexample transformer class
	MQSeries-style messages
	Reading an MQSeries-style message
	Creating an MQSeries-style message

	Transformers and expiry time considerations

	MQSeries-bridge rules
	MQeLoadBridgeRule
	MQeUndeliveredMessageRule
	MQeSyncQueuePurgerRule
	MQeStartupRule

	National language support implications
	Conclusion

	Example files

	Chapter 8. Security
	Security features
	Local security
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Queue-based security
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide
	Using SimpleCreateQM to create ClientQMgr and ServerQMgrinstances
	Defining the queues identified for the queue-based scenariodescribed above
	Queue-based security and triggering auto-registration
	Queue-based security, starting queue managers with privateregistries

	Queue-based security - channel reuse

	Message-level security
	Usage scenario
	Secure feature choices
	Selection Criteria

	Usage guide
	MQSeries Everyplace message-level security using MAttribute
	MQSeries Everyplace message-level security usingMTustAttribute
	Non-repudiation

	Private registry service
	Private registry and the concept of authenticatable entity
	Private registry and authenticatable entity credentials
	Auto-registration

	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Public registry service
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	mini-certificate issuance service
	Configuring, starting and ending an instance ofmini-certificate issuance service server
	Configuration using MQSeriesEveryplaceMiniCertificateServer.ini
	Starting MQeMiniCertificateServerGUI
	Using the GUI to start the mini-certificate issuance service forthe first time

	Using administration tools
	Starting administration mode
	Adding a new authenticatable entity
	Updating an authenticatable entity
	Deleting an authenticatable entity
	Reading an authenticatable entity's details
	Use of File menu Open option

	Operation
	Starting and stopping
	Monitor and logging
	Renewing mini-certificates
	Obtaining new credentials (private and public keys)
	Listing mini-certificates
	Updated mini-certificate format for MQSeries Everyplace Version1.2

	Chapter 9. Tracing in MQSeries Everyplace
	Using trace
	Trace message formats
	Activating trace

	Customizing trace
	MQeTrace example
	Graphical user interface for trace
	Example AWT trace window layout
	Setting trace options

	Chapter 10. MQSeries Everyplace adapters
	Adapter examples
	An example of a simple communications adapter
	An example of a simple message store adapter

	The Websphere Everyplace Suite (WES) communications adapter
	The Websphere Everyplace adapter files
	Using the Websphere Everyplace adapter
	General Operation
	Using the Authentication Dialog Example
	Using the Application Example

	Appendix A. MQSeries Everyplace diagnostic tool
	Invoking the MQeDiagnostics Tool
	On Windows NT/2000
	On UNIX systems
	Other systems

	Appendix B. Applying maintenance to MQSeries Everyplace
	Appendix C. Notices
	Trademarks

	Glossary
	Bibliography
	Index
	Sending your comments to IBM

