

Migrating to MQSeries for AS/400, V5.1

John Samuel

IBM United Kingdom Limited
Hursley Park
Winchester
Hampshire
SO21 2JN

United Kingdom

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix C, “Notices”
on page 43.

First edition (March 2000)

This edition applies to MQSeries for AS/400 V5.1

 Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this document . v
Who this document is for . v
What you need to know to understand this document v
Other reading . v
The author . v

Chapter 1. Library structure . 1

Chapter 2. Journals and backups . 3

Chapter 3. Configuration scripts (Changed commands) 5

Chapter 4. Handling errors . 7

Chapter 5. Application development (ILE RPG) 9
Components to programming the MQI . 9
Examples of bound and dynamic calls . 10
Sample programs . 11
New MQI calls . 11

Chapter 6. Performance . 17
Performance considerations . 17
Fast-bound and standard-bound calls . 17
Checking a slow-running application . 18
Other performance factors . 18

Chapter 7. Security . 21

Appendix A. Dynamic call MQPUT program 23

Appendix B. Dynamic call MQGET program 33

Appendix C. Notices . 43
Trademarks . 44

 Copyright IBM Corp. 2000 iii

 Contents

iv Migrating to MQSeries for AS/400, V5.1

 About this document

About this document

This document applies to IBM MQSeries for AS/400, V5.1, and is intended for you
to use during a migration planning exercise.

MQSeries for AS/400, V5.1 is far more than just an upgrade from previous
releases. Unlike migration to earlier versions and releases of MQSeries for
AS/400, migrating to this new version will require more emphasis on planning. This
document is designed to point the systems administrator towards the major
migration aspects of MQSeries for AS/400, V5.1 that will require careful planning.

While preparing this document, MQSeries for AS/400, V4.2.1 and MQSeries for
AS/400, V5.1 systems were used.

Who this document is for
This document is for systems administrators and systems programmers who
manage the configuration and administration tasks for MQSeries. It will also be
useful to application programmers who have to maintain MQSeries interfaces within
applications.

What you need to know to understand this document
To use this document, you should have a good understanding of the OS/400
operating system and an understanding of previous MQSeries releases for the
AS/400.

 Other reading
This document refers to:

� MQSeries for AS/400, V5.1 Quick Beginnings, GC34-5557-00, for a summary
of the new functions introduced in MQSeries for AS/400, V5.1, and for
installation and migration of MQSeries.

� MQSeries Intercommunication, SC33-1872-03, for post-installation configuration
of a distributed queuing network.

� MQSeries for AS/400, V5.1 System Administration, SC34-5558-00.

� MQSeries for AS/400, V5.1 Application Programming Reference (ILE RPG),
SC34-5559-00.

� ILE RPG for AS/400 Reference, SC09-2508-02, for more information about
threading.

 The author
The author of this document is John Samuel, who specializes in Business
Integration Solutions based on MQSeries for AS/400.

If you have any comments on this document, please contact me at this address:

 Copyright IBM Corp. 2000 v

 About this document

IBM United Kingdom Limited
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

The author would like to thank the following people for their help in producing this
document:

 Norman Adlam

 Martin Hyne

 Mark Phillips

 James Taylor

 Bruce Wassell

vi Migrating to MQSeries for AS/400, V5.1

 Library structure

 Chapter 1. Library structure

First of all, let’s think about the library structure of previous releases of MQSeries:

QMQM
MQSeries for AS/400 Programs

QMQMDATA
MQSeries for AS/400 Objects

QMQMPROC
MQSeries for AS/400 Processes

QMQMADM
MQSeries AS/400 Administration Application

QMQMSAMP
MQSeries for the AS/400 Sample Routines

Only one queue manager could be created on the AS/400, and each of its objects
(channels and queues) was stored in QMQMDATA along with the journal receivers.
From a systems administration point of view, the most significant change for
MQSeries for AS/400, V5.1 is that multiple queue managers are allowed. This
means that the structure of MQSeries has radically changed. MQSeries for
AS/400, V5.1 now appears like this:

QMQM
MQSeries for the AS/400 Programs

QMxxxxxxxx
Queue Manager. (xxxxxxxx is replaced by the first 8 digits of the queue
manger’s name.) If the first 8 characters of two queue managers are
the same, the last 2 characters of the second queue manager are
replaced with 00. This is incremented each time a queue manager is
created with the same first 8 characters. Each queue manager created
has its own library.

QMQMSAMP
MQSeries for AS/400 Sample Routines

MQSeries V5.1 now utilizes the Integrated File Structure (IFS) to a greater extent.
These directories are created in the IFS:

/QIBM/ProdData/mqm/inc
/QIBM/ProdData/mqm/lib
/QIBM/ProdData/mqm/samp

/QIBM/UserProd/mqm/errors
/QIBM/UserProd/mqm/qmgrs
/QIBM/UserProd/mqm/trace

The directory qmgrs have directories for each of the queue managers created on
the AS/400. All the MQSeries objects for that queue manager are stored in these
subsequent directories. The name of the directory reflects the name of the queue
manager. Within the queue manager directory several other directories are created,
in particular the errors and queue directories.

 Copyright IBM Corp. 2000 1

 Library structure

Previous releases of MQSeries for AS/400 submitted jobs to QSYSWRK. Now with
V5.1, all MQSeries jobs are submitted to its own subsystem called QMQM.

For each queue manager started, five jobs are submitted:

QMQM

AMQALMPX Checkpoint processor

AMQRRMFA Repository manager for clusters

AMQZLAA0 Queue manager agents

AMQZXMA0 The execution controller is the first job started by the queue manager

RUNMQCHI Channel Initiator

Consider the following situation. If you have multiple queue managers for your
production environments and a test queue manager it might be unwise to have all
the jobs running under one subsystem.

With MQSeries for AS/400, V5.1 it is now possible to separate different queue
managers into different subsystems. Taking the above situation, it would probably
be advisable to separate the test queue manager from the production queue
managers. Once you’ve done that, you can specify different priorities for each
queue manager. For instance, the test queue manager could be given less priority
for its channel control jobs. For more information on job control see chapter 4 of the
MQSeries for AS/400, V5.1 System Administration.

2 Migrating to MQSeries for AS/400, V5.1

 Journals and backups

Chapter 2. Journals and backups

Because the structure of MQSeries has changed, many of your automated routines
must be altered. In this section, we’ll look at journal management and backing up
MQSeries.

 Managing journals
With previous releases of MQSeries, the local and remote journal receivers were
held in the QMQMDATA library. This library is no longer required with V5.1. But
each queue manager has its own library with its own journal and journal receiver.

AMQAJRN
MQM Local Journal

AMQAnnnnnn
MQM Local Journal Receiver

The remote journal is no longer required because channel synchronization no
longer uses a database file. This can prevent confusion. To some degree, it also
simplifies management because journal receiver changing is set by the system
value. The biggest task in migrating to V5.1 in respect to existing automated
routines will be handling the multiple queue managers. The creation of new queue
managers now affects journal management in respect to the journal’s physical
location.

To help journal management, previous releases of MQSeries issued two messages
to the QSYSOPR message queue:

AMQ746� MQSeries start-up journal information
AMQ7462 MQSeries media recover journal information

These two messages are still issued to denote which journal receivers are required
for successful MQSeries startup and media recovery, but they are now issued to
QMQMMSG in the queue manager’s library.

Backing up MQSeries for AS/400
Because MQSeries for AS/400, V5.1 makes use of IFS, you’ll have to revise
previous backup routines. Very little apart from the journal and journal receiver is
held in the queue manager libraries, but this does not mean that they no longer
have to be backed up. Virtually all the MQSeries objects are now held within the
IFS directory structure and you must add this directory structure to your existing
backup routines.

You are recommended to include everything below /QIBM/UserData/mqm in your
backup routines at first, but when you have reached a stable production
environment /QIBM/UserData/mqm/qmgrs would suffice, because there should be
little or nothing in the trace and errors directories.

Of course, the QMQM and QMQMSAMP libraries still exist and must remain in your
backup routines. To be included in this routine you should now add the directory
/QIBM/ProdData/mqm.

For a more detailed guide to backup and recovery of MQSeries V5.1 for AS/400,
refer to chapter 8 of the MQSeries for AS/400, V5.1 Systems Administration.

 Copyright IBM Corp. 2000 3

 Journals and backups

4 Migrating to MQSeries for AS/400, V5.1

 Configuration scripts

Chapter 3. Configuration scripts (Changed commands)

When you create or customize MQSeries objects, it’s useful to keep a record of all
MQSeries definitions created. This record can then be used for:

 � Recovery purposes

 � Maintenance

� Rolling out MQSeries applications

You can obtain this record by:

� Creating CL programs to generate your MQSeries definitions for the AS/400

or

� Creating MQSC text files as SRC members to generate your MQSeries
definitions using the cross-platform MQSeries command language.

Because you are migrating to V5.1, you should have one of the above. Most
AS/400 implementations use CL programs to create definitions. These CL
programs, if allowed to remain unchanged, could create unexpected definitions or
might fail, resulting in only partially-created definition lists. The reason for this is
that the CL commands used have changed. By “changed”, I mean more function
has been added to many of the CL commands, which now have a queue manager
parameter. This queue manager parameter is set to *DFT for the default queue
manager.

If you have followed the migration path described in the MQSeries for AS/400, V5.1
Quick Beginnings manual, your previous queue manager will be the default queue
manager. If you have followed the migration path or have created a new default
queue manager but have not changed your CL programs, the created definitions
will be placed in the default queue manager. However, depending on each
command processed, the default values might have changed because of the
increased function in the new release. If you have not followed the migration path
and have not created a default queue manager (that is, on the CRTMQM command
default queue manager is *NO) and have not changed the CL programs, they will
fail with the error MQSeries queue manager not available.

CHGMQM does not allow you to change the default status of a queue manager.
However, creating another queue manager with DFTQMGR(*YES) transfers the
default status to this new queue manager.

If you have created a queue manager but forgot to set it as the default queue
manager, you have a couple of options to set it as the default:

� You could delete the queue manager and start again; this is not such a big
deal if you have created the appropriate definition scripts in CL or MQSC.

� If you have started using the queue manager, deleting it will not be an option.
To get round this, edit the mqs.ini file in /QIBM/UserData/mqm adding the
following Stanza lines:

DefaultQueueManager:
 Name=QM.MAIN

So mqs.ini would look originally something like this:

 Copyright IBM Corp. 2000 5

 Configuration scripts

QueueManager:
 Name=QM.MAIN
 Prefix=/QIBM/UserData/mqm
 Library=QMQM.MAIN
 Directory=QM!MAIN
QueueManager:
 Name=QM.TEST
 Prefix=/QIBM/UserData/mqm
 Library=QMQM.TEST
 Directory=QM!TEST

and changes to something like this

QueueManager:
 Name=QM.MAIN
 Prefix=/QIBM/UserData/mqm
 Library=QMQM.MAIN
 Directory=QM!MAIN
DefaultQueueManager:
 Name=QM.MAIN
QueueManager:
 Name=QM.TEST
 Prefix=/QIBM/UserData/mqm
 Library=QMQM.TEST
 Directory=QM!TEST

Queue manager QM.MAIN is now the default queue manager.

6 Migrating to MQSeries for AS/400, V5.1

 Handling errors

 Chapter 4. Handling errors

In earlier releases of MQSeries, errors were reported using job logs and spool files.
MQSeries for AS/400, V5.1 follows the other V5.1 releases in its error
management. This new error management makes it far easier for an MQSeries
systems administrator to locate error logs without having to have an understanding
of the OS/400 operating system.

MQSeries uses a number of error logs to capture messages concerning the
operation of MQSeries itself. The location of the error logs depends on whether the
queue manager is known and available. The physical location of the error logs is in
the IFS directory of the queue manager for which it is reporting.

For example, if the queue manager name is known and the queue manager is
available, the error logs are in the error directory for that queue manager:

/QIBM/UserData/mqm/<Queue Manager>/errors

If the queue manager is not available, the error logs are in the @SYSTEM directory.

/QIBM/UserData/mqm/@SYSTEM/errors

When a queue manager is created, three error logs are created:

 � AMQERR01.LOG

 � AMQERR02.LOG

 � AMQERR03.LOG

As error messages are generated, they are placed in AMQERR01. When
AMQERR01 is larger than 256 KB, it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03. The previous contents, if any, of
AMQERR03 are discarded.

So the latest error messages can always be found in AMQERR01 while the others
are used to maintain a history. It might be worthwhile to check AMQERR01 for
errors from time to time as a pre-emptive way of ensuring that your channels are
running effectively and the general health of your queue manger is sound.

The error logs do not diminish the need to check the system operator messages.
Operator messages identify normal errors, typically caused directly by users
performing illegal operations or defining parameters that are not valid for
commands. Some operator messages are written to AMQERR01 in the queue
manager's directory, including starting and stopping the queue manager and the
important journal check point messages.

The FFST (First Failure Support Technology) is recorded in the IFS in the
directory /QIBM/UserData/mqm/errors and within the problem database, which you
can access using WRKPRB. The FFST files are named AMQnnnn.mm.FDC; nnnn is
the ID of he process reporting the error and mm is the sequence number.

When FFST reports are generated, there is little the system administrator can do
apart from raise that problem with IBM using the information contained within the
FFST report.

 Copyright IBM Corp. 2000 7

 Handling errors

Viewing these log and FFST files can be a challenge if you are not used to the IFS.
The best 'native' OS/400 utility I’ve found is the EDTF command. Be careful when
using the EDTF utility because it does not always show what you think it does. For
instance, if you wish to view AMQERR�1.LOG in @SYSTEM you must provide a fully
qualified path, such as:

EDTF '/QIBM/Userdata/mqm/qmgrs/@SYSTEM/errors/AMQERR�1.LOG'

This will then display the contents of AMQERR01.LOG. But if you navigate to the
directory where the log files are held using the command WRKLNK, like this:

WRKLNK OBJ('/qibm/userdata/mqm/qmgrs/@SYSTEM/errors')

and then issue the command EDTF 'AMQERR01.LOG' without the qualifying path,
EDTF displays what appears to be an empty AMQERR01.LOG file. In fact, EDTF
has taken your default path, which is set in your user profile. To an EDTF
beginner, this can be very confusing and might lead you to believe that the log file
is empty and errors are not being reported to the correct place.

There is an alternative to EDTF that might be of more use if you need to email log
or FFST files for analysis. By mapping a network drive to your AS/400, you are
able to view the IFS as if it were a local drive to your PC. But the log and FFST
files are on the AS/400 and are in EBCDIC. If you use a utility like Wordpad to
view these files, it will display garbage because it expects ASCII files. To get round
this problem, you can set client access to automatically display EBCDIC files as
ASCII thus enabling you to read them using Wordpad. To enable client access to
do this, click on “client access properties” and then select the “network drives” tab.
At the bottom you will see the automatic EBCDIC/ASCII conversion section. If you
wish to view the log files using this method, use the file extension .log. You will
now be able to view your log files on the AS/400 as if they were local to your PC.

For more information on problem analysis, see chapter 9 of the MQSeries for
AS/400, V5.1 System Administration.

8 Migrating to MQSeries for AS/400, V5.1

 Application development (ILE RPG)

Chapter 5. Application development (ILE RPG)

There are two approaches that can be taken when using the MQI (message queue
interface) from within an RPG program:

1. Dynamic calls to the QMQM program interface

2. Static Bound Calls to the MQI procedures

MQSeries for AS/400, V5.1 increases the level of function available to the
programmer, but only if the bound calls are used. This is the recommended
approach, particularly when the program is making repeated calls to the MQI,
because it requires less resource. RPG-OPM is still supported, so your compiled
programs can still be maintained, but these programs will not have all the function
of MQSeries for AS/400, V5.1 available to them. Also, they are slower.

Components to programming the MQI
To help your application developers migrate their existing programs, I'll briefly
explain the RPG-OPM and RPG-ILE components to programming the MQI.

Various COPY files are provided as part of the definition of the message queue
interface (MQI), to assist with the writing of applications that require message
queuing. There are two sets of COPY files:

1. COPY files with names ending with the letter G are for use with programs that
use static bound calls. The preferred method.

2. COPY files with names ending with the letter R are for use with programs that
use dynamic calls.

These COPY files can be found in QRPGLESRC in library QMQM.

When using the ILE bound calls, you must bind to the MQI procedures when you
create your program. These procedures are exported from the following service
programs.

QMQM/AMQZSTUB
This service program provides compatibility bindings for applications written
prior to V5.1 that do not require access to any of the new capabilities provided
in V5.1. The signature of this service program is the same as the one
contained in V4.2.1.

QMQM/LIBMQM
This service program contains the single-threaded bindings for V5.1

QMQ/LIBMQM_R
This service program contains the multi-threaded bindings for V5.1

Use the CRTPGM command to create your programs. For example, the following
command would create a single-threaded program that uses the ILE bound calls:

CRTPGM PGM(MYPROGRAM) BNDSRVPGM(QMQM/LIBMQM)

I used the term “threading” above. This term might be new to many of you and
therefore needs some consideration. In general, RPG programs should not use the

 Copyright IBM Corp. 2000 9

 Application development (ILE RPG)

multi-threaded service program (LIBMQM_R). The exception arises when RPG
programs are created containing the THREAD(CSERIALIZE) keyword in the control
specification. However, even though these programs are thread-safe, careful
consideration must be given to overall application design, because
THREAD(CSERIALIZE) forces serialization of RPG procedures at the module level,
and this could have an adverse affect on overall performance.

Where RPG programs are used as data conversion exits, they must be made
thread-safe and should be recompiled with THREAD(CSERIALIZE) specified in the
control specification.

For more information about threading see the AD/400 ILE RPG/400 Reference and
the ILE RPG for AS/400 Reference.

Examples of bound and dynamic calls
Much of what we've talked about above will be new to many of you. Therefore, the
following section contains a few examples of the differences between bound and
dynamic calls.

With bound calls, to use these procedures you need to:

1. Define the external procedures in your D specifications. These are all available
within the COPY file member CMQG containing the named constants.

2. Use the CALLP operation code to call the procedure along with its parameters.

In this example, the MQOPEN call requires the inclusion of the following code:

DCC
DCC MQOPEN Call -- Open Object CC
DCC
DC
DC..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQOPEN PR EXTPROC('MQOPEN')
DC Connection handle
D HCONN 1�I � VALUE
DC Object descriptor
D OBJDSC 224A
DC Options that control the action of MQOPEN
D OPTS 1�I � VALUE
DC Object handle
D HOBJ 1�I �
DC Completion code
D CMPCOD 1�I �
DC Reason code qualifying CMPCOD
D REASON 1�I �
DC
DC

To call the procedure, after initializing the various parameters, you need the
following code:

C CALLP MQOPEN(HCONN : MQOD : OPTS : HOBJ :
C OCODE : REASON)

Here, the structure MQOD is defined using the copy member CMQODG, which
breaks it down into its components.

10 Migrating to MQSeries for AS/400, V5.1

 Application development (ILE RPG)

Now compare this with the dynamic call.

To use the MQI through dynamic calls to QMQM, you require the following code
(for MQOPEN again):.

 C Z-ADD MQOPEN CID
 C CALL 'QMQM'
 C PARM CID 9 �
 C PARM HCONN 9 �
 C PARM MQOD
 C PARM OPTS 9 �
 C PARM HOBJ 9 �
 C PARM OCODE 9 �
 C PARM REASON 9 �

Here, the structure MQOD is defined using the copy member CMQODR, which
splits it into its components.

 Sample programs
A good starting point for migrating your applications from RPG-OPM to RPG-ILE to
take full advantage of its increased capability would be to take a look at the
provided RPG samples. The samples are held in QRPGLESRC in library QMQMSAMP.
Examples of coding using dynamic calls start AMQ2, whereas examples of coding
using the bound calls start AMQ3. If you compare, say, AMQ2GET4 to AMQ3GET4
you will see that the coding differences are slight compared to the gain in function.
I’ll emphasize that the samples are samples; they are not intended to be used in
production code. They are intended to give you an idea of how to use the MQI, but
do not, for example, contain any error handling.

New MQI calls
I've talked above about some of the basic migration issues your application
programmers will face. Now I would like to talk a little more about the new MQI
calls available in MQSeries for AS/400, V5.1.

For more information on the above topics, refer the MQSeries for AS/400
Application Programming Reference (ILE RPG) manual.

MQCONN - Connect queue manager
Although MQCONN is not a new MQI call, its usage has changed somewhat and
so it requires a brief explanation.

The MQCONN call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent MQI calls.

Programs using the dynamic MQI calls do not have to issue this call. These
applications are connected automatically to the queue manager when they issue
the first MQOPEN call. However, the MQCONN can still be used in these
applications if it isn’t just implied.

Programs using the bound MQI calls must use the MQCONN or MQCONNX call to
connect to the queue manager, and the MQDISC call to disconnect from the queue
manager. This is the recommended style of programming.

 Chapter 5. Application development (ILE RPG) 11

 Application development (ILE RPG)

DCC
DCC MQCONN Call -- Connect Queue Manager CC
DCC
DC
DC..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQCONN PR EXTPROC('MQCONN')
DC Name of queue manager
D QMNAME 48A
DC Connection handle
D HCONN 1�I �
DC Completion code
D CMPCOD 1�I �
DC Reason code qualifying CMPCOD
D REASON 1�I �
DC

C CALLP MQCONN(QMNAME : HCONN : CMPCOD : REASON)

I think it’s useful at this stage to talk through a situation that could arise. If you have
not followed the migration path described in the MQSeries for AS/400, V5.1 Quick
Beginnings and have not created a default queue manager, your dynamic MQI call
programs will try to connect to the default queue manager; but, because you don’t
have one, they will fail to connect. All subsequent QMQM calls will also fail within
that program because they don’t have a queue manager connection handle. You
cannot code for this error in applications using previous releases of MQSeries, so it
will be worth checking for.

Another useful application check is to make sure that applications required to
access a non-default queue manager have been coded to do so. Otherwise, when
you migrate to MQSeries for AS/400, V5.1 and you have various application
queues split across queue managers, wrong application queues might start
receiving messages meant for the other queue manager, if those queues share the
same names.

MQCONNX - Connect queue manager (extended)
The MQCONNX call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent MQI calls. The MQCONNX call is similar to the MQCONN call, except
that MQCONNX allows options to be specified to control the way that the call
works. RPG-OPM applications cannot use this call.

12 Migrating to MQSeries for AS/400, V5.1

 Application development (ILE RPG)

DCC
DCC MQCONNX Call -- Connect Queue Manager (Extended) CC
DCC
DC
DC..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQCONNX PR EXTPROC('MQCONNX')
DC Name of queue manager
D QMNAME 48A
DC Options that control the action of MQCONNX
D CNO 32A
DC Connection handle
D HCONN 1�I �
DC Completion code
D CMPCOD
 1�I �

DC Reason code qualifying CMPCOD
D REASON 1�I �
DC
DC
C CALLP MQCONNX(QMNAME : CNO : HCONN : CMPCOD :
 REASON)

MQCMIT - Commit changes
With this new release of MQSeries, there are two ways to define transaction
boundaries that incorporate message puts and gets from queues under syncpoint
control:

1. Use COMMIT and ROLLBACK as before. This requires that commitment scope
be set at CJOB level and as a consequence database as well as message
operations are included in the transaction. With this release, MQSeries now
registers itself with OS/400 as a 2-phase commit resource. This ensures that
the message and database operations are ALL committed or ALL rolled back
as one unit.

2. Use the new (to MQSeries for AS/400) API calls MQCMIT and MQBACK. On
AS/400, these affect only the message operations; they do not affect any other
resources, such as the database. Generally speaking, they use less system
resource than COMMIT and ROLLBACK.

The MQCMIT call indicates to the queue manager that the application has reached
a syncpoint, and that all of the message gets and puts that have occurred since the
last syncpoint are to be made permanent. Messages put as part of a unit of work
are made available to other applications, messages retrieved as part of a unit of
work are deleted. RPG-OPM applications cannot use this call. COMMIT through
commitment control is available for database and queue synchronization.

 Chapter 5. Application development (ILE RPG) 13

 Application development (ILE RPG)

DCC
DCC MQCMIT Call -- Commit Changes CC
DCC
DC
DC..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQCMIT PR EXTPROC('MQCMIT')
DC Connection handle
D HCONN 1�I � VALUE
DC Completion code
D CMPCOD 1�I �
DC Reason code qualifying CMPCOD
D REASON 1�I �
DC

C CALLP MQCMIT(HCONN : CMPCOD : REASON)

MQBACK - Back out changes
Use this new MQSeries API call in conjunction with MQCMIT. For the reasons for
using this call instead of ROLBK, refer to “MQCMIT - Commit changes” on
page 13. The MQBACK call indicates to the queue manager that all of the
message gets and puts that have occurred since the last syncpoint are to be
backed out. Messages put as part of a unit of work are deleted and messages
retrieved as part of a unit of work are reinstated on the queue. RPG-OPM
applications cannot use this call; ROLBK through commitment control is available
for database and queue synchronization.

DCC
DCC MQBACK Call -- Back Out Changes CC
DCC
DC
DC..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQBACK PR EXTPROC('MQBACK')
DC Connection handle
D HCONN 1�I � VALUE
DC Completion code
D CMPCOD 1�I �
DC Reason code qualifying CMPCOD
D REASON 1�I �

C CALLP MQBACK(HCONN : CMPCOD : REASON)

MQBEGIN - Begin unit of work
The MQBEGIN API call is for cross-platform compliance for code porting purposes.
In short, it does not provide any function to your RPG applications and if you do put
it in your code it returns a warning message. That is all it does on MQSeries for
AS/400, V5.1, but on other platforms it marks the beginning of a single unit of work
to be used with MQCMIT and MQBACK as database and queue synchronization.
RPG-OPM applications cannot use this call.

14 Migrating to MQSeries for AS/400, V5.1

 Application development (ILE RPG)

DCC
DCC MQBEGIN Call -- Begin Unit of Work CC
DCC
DC
DC..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQBEGIN PR EXTPROC('MQBEGIN')
DC Connection handle
D HCONN 1�I � VALUE
DC Options that control the action of MQBEGIN
D BO 12A
DC Completion code
D CMPCOD 1�I �
DC Reason code qualifying CMPCOD
D REASON 1�I �

C CALLP MQBEGIN(HCONN : BO : CMPCOD : REASON)

MQXCNVC - Convert characters
This is a good point to talk about user exits. If you have user exits running with
previous releases of MQSeries they will need recompiling after you migrate to
MQSeries for AS/400, V5.1. The recompile is to make your user exit thread-safe
and, because user exits are called by MQSeries, they have to be teraspace
enabled. This is why AMQVSTUB must be used instead of AMQZSTUB when
recompiling compatibility-mode user exits. To recompile these programs, you can
use the service program LIBMQM or AMQVSTUB. LIBMQM will, of course, give
your user exit program full V5.1 capability. AMQVSTUB is for user exits written
before V5.1 and do not require the increased capability of V5.1; this service
program has the same signature as the V4.2.1 release.

DCC
DCC MQXCNVC Call -- Convert Characters CC
DCC
DC
DC..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQXCNVC PR EXTPROC('MQXCNVC')
DC Connection handle
D HCONN 1�I � VALUE
DC Options that control the action of MQXCNVC
D OPTS 1�I � VALUE
DC Coded character set identifier of string before conversion
D SRCCSI 1�I � VALUE
DC Length of string before conversion
D SRCLEN 1�I � VALUE
DC String to be converted
D SRCBUF C VALUE
DC Coded character set identifier of string after conversion
D TGTCSI 1�I � VALUE
DC Length of output buffer
D TGTLEN 1�I � VALUE
DC String after conversion
D TGTBUF C VALUE
DC Length of output string
D DATLEN 1�I �
DC Completion code
D CMPCOD 1�I �
DC Reason code qualifying CMPCOD
D REASON 1�I �

 Chapter 5. Application development (ILE RPG) 15

 Application development (ILE RPG)

To call the procedure, after initializing the various parameters, you need the
following code:

C CALLP MQOPEN(HCONN : OPTS : SRCCSI : SRCLEN :
C SRCBUF : TGTCSI : TGTLEN :
C TGTBUF : DATLEN : CMPCOD : REASON)

For more information on the above topics, refer to the MQSeries for AS/400, V5.1
Application Programming Reference (ILE RPG) manual.

For an example of how to convert a Dynamic Call Put program to a Bound Call Put
program see Appendix A, “Dynamic call MQPUT program” on page 23.

For an example of how to convert a Dynamic Call Get program to a Bound Call Get
program see Appendix B, “Dynamic call MQGET program” on page 33.

16 Migrating to MQSeries for AS/400, V5.1

 Performance

 Chapter 6. Performance

For MQSeries for AS/400, V5.1, the fundamental changes to the product
architecture and the addition of significant new function have inevitably changed the
performance profile. When you consider the performance of individual MQSeries
operations, such as connecting and disconnecting from queue managers, opening
and closing queues, and putting and getting messages, differences are apparent.

 Performance considerations
In MQSeries for AS/400, V5.1, some APIs show an improvement over V4.2.1, in
particular MQCONN and MQDISC. This will be of benefit to customers with
applications that make frequent and short transactions - from clients, for example.
APIs that show reduced performance are MQCLOSE for an empty queue,
MQOPEN and MQCLOSE for dynamic queues, and MQPUT and MQGET. For
standard-bound, single-threaded MQPUT and MQGET of non-persistent messages
of 1K in size, a measurement comparing timings of calls showed an overhead of
approximately 100% at V5.1 compared with the (fast-bound) V4.2.1 figures. In the
case of persistent messages, the overhead was much lower: approximately 20%.
This difference can be accounted for, in its entirety, by the cost of the process
switch, which is described below, for the standard-bound operations, because the
corresponding measurements at V5.1 for fast-bound MQPUTs and MQGETs are
almost identical to the V4.2.1 figures.

Any measurements such as these should be interpreted with the greatest caution.
Clearly, the absolute cost of each operation in seconds and the mix in any
particular customer application is particularly significant. Some customers,
especially those with MQSeries transactions involving relatively few message puts
and gets, might see performance improvements. Environments where the MQI
content of applications is relatively high, for example batch applications involving
substantial numbers of put and get operations, might see a performance
degradation.

Fast-bound and standard-bound calls
Fundamental to the understanding of the performance differences between this
release and the previous release is the comparison between ‘fast-bound’ or trusted
execution of MQSeries functions and ‘standard-bound’ execution. In fast-bound
mode, the MQSeries queue manager functions execute as part of the user process.
This includes delicate operations such as the manipulation of shared memory
segments where queue data may be stored. Clearly, this places a significant
responsibility on the designer of the user application both from the point of view of
integrity of vital MQSeries data and also in the need to maintain adequate security.

With standard-bound execution, the user and queue manager processes are
separate, and a badly-behaved user application cannot directly compromise the
queue manager. The user and queue manager processes use inter-process
communications - similar to remote procedure calls - to exchange data and to
coordinate their behavior. In this mode, each MQSeries operation, for example
putting or getting a message, involves one or more process switches between the
two sides. Compared with fast-bound mode, the process switch adds an overhead.

 Copyright IBM Corp. 2000 17

 Performance

MQSeries for AS/400 prior to V5.1 always runs in fast-bound mode, with no
process switch. Certain aspects of OS/400 architecture are exploited to make this
possible, and safe and additional routines are incorporated to prevent the
interruption of certain critical sections of code. It is not feasible to transfer these
protective constructions to the new, IFS-based architecture of the V5.1 product.
Consequently, MQSeries for AS/400, V5.1 runs, by default, in standard-bound
mode. Any performance comparisons with the previous versions should take this
into account. It is possible, through the use of the MQCONNX MQI function, to run
in fast-bound mode with V5.1, but this is not generally recommended, for two
reasons:

1. As stated above, the user application must be designed very carefully to ensure
the integrity of MQSeries data, such as the content of queues. Fairly advanced
programming techniques would be needed to implement such a design.

2. Fast-bound mode puts a severe security constraint on the application.
Although OS/400 programming interfaces may be exploited to avoid this, their
use is not common practice.

Checking a slow-running application
If you have an application that is running slowly, it might be in a loop, or waiting for
a resource that is not available. But you could have a real performance problem.
Your problem could be caused by a system operating near the limits of its capacity,
or a system that suffers peak load times, such as early morning as users log on.
However, if you find that performance degradation does not depend on system
loading but continues when machine loading is low, you could have a poorly
designed-application program.

Other performance factors
There are other factors that might be causing poor performance of MQSeries. Here
are a few points worth considering.

Effects of message length
Although MQSeries for AS/400 allows messages to hold up to 100 MB of data,
the amount of data in a message affects the performance of the application that
deals with the message. By sending only the required data you will improve
the performance of your applications, also lightening the load on your systems
and network.

Effects of message persistence
Persistent messages are logged to an AS/400 journal. Journaling messages
can reduce the performance of your application because it requires disk I/O.
Your applications should specify persistent messages only if they need to
survive queue manager restarts. If the message is not important, use
nonpersistent messages and you should see a performance improvement.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within a syncpoint, without
committing them, can cause performance problems. Affected queues can fill
up with messages that are currently unusable, while other tasks might be
waiting to get these messages. This has implications in terms of storage
required, and in terms of threads tied up with tasks that are attempting to get
messages.

18 Migrating to MQSeries for AS/400, V5.1

 Performance

Use of the MQPUT1 call
Use MQPUT1 only when a single message has to be put to a queue; if more
than one message has to be put to a queue, MQPUT should be used because
MQPUT1 does a MQCONN. MQOPEN, MQPUT, MQCLOSE and MQDISC in
one operation. If multiple messages are required, the overhead of multiple
MQCONN, MQOPEN, MQCLOSE and MQDISC can really mount up.

Dynamic calls
Using dynamic calls within your RPG or COBOL applications can have a major
effect on performance. By converting your applications to use bound calls, you
might see performance improvements. Chapter 5, “Application development
(ILE RPG)” on page 9 provides information about RPG application migration.

In addition to the existing dynamic call COBOL interface, service programs are
now supplied to provide ILE bound procedure calls to the MQI. These service
programs are AMQ0STUB for single-threaded applications and AMQ0STUB_R
for multi-threaded applications. The programming interface is identical for both
dynamic and bound COBOL calls; a compiler switch (LINKLIT(*PGM) or
LINKLIT(*PRC)) allows you to specify which is to be used. Generally speaking,
the bound procedure interface should provide superior performance, as well as
providing the COBOL programmer with access to the MQI functions new to
MQSeries for AS/400, V5.1: MQCONNX, MQCMIT an MQBACK.

 Chapter 6. Performance 19

 Performance

20 Migrating to MQSeries for AS/400, V5.1

 Security

 Chapter 7. Security

Security for MQSeries for AS/400 changes significantly with V5.1. Security with
V5.1 is implemented using the MQSeries Object Authority Manager (OAM).

The OAM manages users’ authorizations to manipulate MQSeries objects, including
queues and process definitions. It also provides a command interface through
which you can grant or revoke access authority to an object for a specific group of
users. The decision to allow access to a resource is made by the OAM, and the
queue manager follows that decision. If the OAM cannot make a decision, the
queue manager prevents access to that resource.

With the OAM, you are able to control access to MQSeries objects through the
MQI. When an application program attempts to access an object, the OAM checks
that the user profile making the request has the authorization for the operation
requested. This enables different groups of users different kinds of access
authority to the same object. For example, for a specific queue, one group may be
allowed to perform both put and get operations, while another group may be
allowed only to browse the queue.

During installation the following user profiles are created:

QMQM
Primarily used for internal product-only function

QMQMADM
Intended to be used as a group profile for administrators of MQSeries, giving
access to CL commands and MQSeries resources

To grant and revoke authorities to MQSeries for AS/400 objects, use the MQSeries
commands GRTMQMAUT and RVKMQMAUT. These commands have changed
significantly for MQSeries for AS/400, V5.1, and you must consider them carefully
before migration to V5.1. You will have to manually migrate your security setups.
Because MQSeries does not use OS/400 security directly, some previously
supported functions are no longer supported. The most used, probably, of these
previously supported functions are authorization lists and reference objects. But
security groups are supported and could be used to replace authorization lists.
However, this will involve a certain amount of manual work.

For more information on security issues, see chapter 5 of the MQSeries for AS/400,
V5.1 System Administration manual.

 Copyright IBM Corp. 2000 21

 Security

22 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQPUT program

Appendix A. Dynamic call MQPUT program

Here’s an example of a dynamic call MQPUT program, followed by the same
program converted into a bound call MQPUT program.

H
 CCC
 C C
 C Function: C
 C C
 C C
 C AMQPUT is a sample RPGLE program to put messages on a C
 C message queue, and is an example of the use of MQPUT. C
 C C
 C -- sample input is taken from file defined in C
 C the source; the program parameter identifies C
 C the target queue C
 C C
 C -- writes each record in the file to the message C
 C queue, taking each record as the content C
 C of a datagram message C
 C C
 C -- Creates a report for each MQI reason other than C
 C RCNONE; stops if there is a MQI completion code C
 C of CCFAIL C
 C C
 C Program logic: C
 C MQOPEN target queue for OUTPUT C
 C for each record in file C
 C . MQPUT datagram message with text line as data C
 C MQCLOSE target queue C
 C C
 C C
 CCC
 CFile Specification
FMsgInFile IF E Disk
FAMQPUTP1 O E PRINTER OflInd(CIn99)
 /EJECT
 C
 CCC
 CC Input Specifications C
 CCC
 C
 CC Declare Required MQI Structures (/COPY members in QMQMSAMP)
 CC NOTE This program uses supplied defaults when it can
 C
 C MQI Named Constants
D/COPY CMQR
 C MQI Object Descriptor
D MQOD DS
DC MQOD Structure
D/COPY CMQODR

 Copyright IBM Corp. 2000 23

 Dynamic call MQPUT program

 C MQI Message Descriptor
D MQMD DS
DC MQMD Structure
D/COPY CMQMDR
 C MQI Put Message Options
D MQPMO DS
DC MQPMO Structure
D/COPY CMQPMOR

 C
 CC Declare variables used in MQI calls
 CC NOTE This program uses supplied defaults when it can
 C
D CID S 9 �
D QMgrHandle S 9 �
D QHandle S 9 �
D Options S 9 �
D OpenCode S 9 �
D CompCode S 9 �
D Reason S 9 �
D MsgLength S 9 � Inz(%Size(MsgData))
D QueueName S 48

 C
 CC Error Messages
 C
D ErrMsg S 8�
D OpenFail S 36 Inz('MQOPEN failed. Unable to -
D open queue.')
D OpenRpt S 33 Inz('MQOPEN did not complete -
D normally.')
D PutErr S 32 Inz('MQPUT did not complete -
D normally.')
D CloseErr S 34 Inz('MQCLOSE did not complete -
D normally.')

 CC Define DS over fields in input file
 C
D MsgData E DS ExtName(MsgInFile)
 /EJECT
 C
 CC
 C Initialization and Setup C
 CC
 C
 C Program Parameter is name of queue to Put data to
C CEntry PList
C Parm QueueName
 C
 CC Use parameter as name of queue
 C
C Eval ODON = QueueName
 C
C Eval QMgrHandle = HCDEFH
 C
 C

24 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQPUT program

 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQOPEN - Open Queue for Output C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 CC Open queue for output (and fail if quiescing)
 CC Resulting queue handle is QHandle
 C
C Eval Options = OOFIQ + OOOUT
C Eval CID = MQOPEN
C Call 'QMQM'
C Parm CID
C Parm QMgrHandle
C Parm MQOD
C Parm Options
C Parm QHandle
C Parm OpenCode
C Parm Reason
 CC If Reason code returned report it
 C

If Reason <> RCNONE

 CC If Open code is fail...
If OpenCode = CCFAIL
Eval ErrMsg = OpenFail

 CC Else report reason...
 Else

Eval ErrMsg = OpenRpt
 EndIf
 Write PutError
 EndIf
 CC
 C Processing to put Messages on Queue C
 CC
 C
 CC Set initial loop condition based on result on MQOPEN
 CC (i.e. if MQOPEN failed then no messages will be put)
 C
C Eval CompCode = OpenCode

 C Start of loop to MQPUT messages
C Read RMsgIn LR
C Dow CompCode <> CCFAIL
C And CInLR = COff
 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQPUT - Put messages on queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C Set Message Format to FMSTR (so can be converted)
C Eval MDFMT = FMSTR

C Eval CID = MQPUT
C Call 'QMQM'
C Parm CID
C Parm QMgrHandle
C Parm QHandle
C Parm MQMD
C Parm MQPMO

 Appendix A. Dynamic call MQPUT program 25

 Dynamic call MQPUT program

C Parm MsgLength
C Parm MsgData
C Parm CompCode
C Parm Reason

 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = PutErr
C Write PutError
C EndIf

C Read RMsgIn LR
C EndDo
 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQCLOSE Close Queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C If Queue was opened close it with no options
C If OpenCode <> CCFAIL
C Eval CID = MQCLOS
C Eval Options = CONONE

C Call 'QMQM'
C Parm CID
C Parm QMgrHandle
C Parm QHandle
C Parm Options
C Parm CompCode
C Parm Reason
 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = CloseErr
C Write PutError
C EndIf

C EndIf
C Eval CInLR = COn

26 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQPUT program

Here’s the bound call MQPUT program:

H
 CCC
 C C
 C Function: C
 C C
 C C
 C AMQPUT2 is a sample RPGLE program to put messages on a C
 C message queue, and is an example of the use of MQPUT. C
 C C
 C -- sample input is taken from file defined in C
 C the source; the program parameter identifies C
 C the target queue C
 C C
 C -- writes each record in the file to the message C
 C queue, taking each record as the content C
 C of a datagram message C
 C C
 C -- Creates a report for each MQI reason other than C
 C RCNONE; stops if there is a MQI completion code C
 C of CCFAIL C
 C C
 C Program logic: C
 C MQCONN connect to Queue Manager C
 C MQOPEN target queue for OUTPUT C
 C for each record in file C
 C . MQPUT datagram message with text line as data C
 C MQCLOSE target queue C
 C MQDISC disconnect from Queue Manager C
 C C
 C C
 CCC
 CFile Specification
FMsgInFile IF E Disk
FAMQPUTP2 O E PRINTER OflInd(CIn99)
 /EJECT
 C
 CCC
 CC Input Specifications C
 CCC
 C
 CC Declare Required MQI Structures (/COPY members in QMQMSAMP)
 CC NOTE This program uses supplied defaults when it can
 C
 C MQI Named Constants
D/COPY CMQG
 C MQI Object Descriptor
D MQOD DS
DC MQOD Structure
D/COPY CMQODG

 Appendix A. Dynamic call MQPUT program 27

 Dynamic call MQPUT program

 C MQI Message Descriptor
D MQMD DS
DC MQMD Structure
D/COPY CMQMDG
 C MQI Put Message Options
D MQPMO DS
D/COPY CMQPMOG

 C
 CC Declare variables used in MQI calls
 CC NOTE This program uses supplied defaults when it can
 C
D QMgrHandle S 1�I �
D QHandle S 1�I �
D Options S 1�I �
D OpenCode S 1�I �
D CompCode S 1�I �
D Reason S 1�I �
D MsgLength S 1�I � Inz(%Size(MsgData))
D MsgPoint S C Inz(%Addr(MsgData))
D QManager S 48
D QueueName S 48

 C
 CC Error Messages
 C
D ErrMsg S 8�
D OpenFail S 36 Inz('MQOPEN failed. Unable to -
D open queue.')
D OpenRpt S 33 Inz('MQOPEN did not complete -
D normally.')
D PutErr S 32 Inz('MQPUT did not complete -
D normally.')
D CloseErr S 34 Inz('MQCLOSE did not complete -
D normally.')

 CC Define DS over fields in input file
 C
D MsgData E DS ExtName(MsgInFile)
 /EJECT
 C
 CC
 C Initialization and Setup C
 CC
 C
 C Program Parameter is name of queue to Put data to
C CEntry PList
C Parm QManager
C Parm QueueName
 C
 CC Use parameter as name of queue
 C
C Eval ODON = QueueName
 C

28 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQPUT program

 C
 CC
 C MQCONN - Connect to the Queue Manager C
 CC
 C
C CallP MQCONN(QManager : QMgrHandle : OpenCode
C : Reason)

 CC If Reason code returned report it
 C
C If Reason <> RCNONE

 CC If Open code is fail...
C If OpenCode = CCFAIL
C Eval ErrMsg = OpenFail
 CC Else report reason...
C Else
C Eval ErrMsg = OpenRpt
C EndIf
C Write PutError
C EndIf
 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQOPEN - Open Queue for Output C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 CC Open queue for output (and fail if quiescing)
 CC Resulting queue handle is QHandle
 C
C Eval Options = OOFIQ + OOOUT

C CallP MQOPEN(QMgrHandle : MQOD : Options : QHandle
C : OpenCode : Reason)

 CC If Reason code returned report it
 C
C If Reason <> RCNONE
 CC If Open code is fail...
C If OpenCode = CCFAIL
C Eval ErrMsg = OpenFail
 CC Else report reason...
C Else
C Eval ErrMsg = OpenRpt
C EndIf
C Write PutError
C EndIf

 C

 Appendix A. Dynamic call MQPUT program 29

 Dynamic call MQPUT program

 CC
 C Processing to put Messages on Queue C
 CC
 C
 CC Set initial loop condition based on result on MQOPEN
 CC (i.e. if MQOPEN failed then no messages will be put)
 C
C Eval CompCode = OpenCode
 C Start of loop to MQPUT messages
C Read RMsgIn LR
C Dow CompCode <> CCFAIL
C And CInLR = COff

 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQPUT - Put messages on queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C Set Message Format to FMSTR (so can be converted)
C Eval MDFMT = FMSTR

C CallP MQPUT(QMgrHandle : QHandle : MQMD : MQPMO
C : MsgLength : MsgPoint : CompCode : Reason)

 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = PutErr
C Write PutError
C EndIf

C Read RMsgIn LR
C EndDo

 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQCLOSE Close Queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C If Queue was opened close it with no options
C If OpenCode <> CCFAIL

C Eval Options = CONONE

C CallP MQCLOSE(QMgrHandle : QHandle : Options :
C CompCode : Reason)

 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = CloseErr
C Write PutError
C EndIf

C EndIf

30 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQPUT program

 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQDISC - Disconnect from Queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C

C CallP MQDISC(QMgrHandle :CompCode : Reason)

 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = CloseErr
C Write PutError
C EndIf

C Eval CInLR = COn

 Appendix A. Dynamic call MQPUT program 31

 Dynamic call MQPUT program

32 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQGET program

Appendix B. Dynamic call MQGET program

Here’s an example of a dynamic call MQGET program, followed by the same
program converted into a bound call MQGET program.

 H
 CCC
 C C
 C Function: C
 C C
 C C
 C AMQGET is a sample RPGLE program to get messages from a C
 C message queue, and is an example of the use of MQGET. C
 C C
 C -- sample gets messages from the queue named in C
 C the parameter C
 C C
 C -- writes the contents of the message queue C
 C to a file. C
 C C
 C messages are removed from the queue C
 C C
 C -- Writes a message for each MQI reason other than C
 C RCNONE; stops if there is a MQI completion code C
 C of CCFAIL C
 C C
 C Program logic: C
 C Use the parameter to name the input queue C
 C MQOPEN queue for INPUT C
 C while no MQI failures, C
 C . MQGET next message, remove from queue C
 C . write message to file C
 C . (no message available is failure, and ends loop) C
 C MQCLOSE the subject queue C
 C C
 C C
 CCC
 C
 CFile Specification
MsgOutFileO E Disk
AmqGetp1 O E PRINTER OflInd(CIn99)
/EJECT
 C

 Copyright IBM Corp. 2000 33

 Dynamic call MQGET program

 CCC
 CC Input Specifications C
 CCC
 C
 CC Declare Required MQI Structures (/COPY members in QMQMSAMP)
 CC NOTE This program uses supplied defaults when it can
 C
 C MQI Named Constants
D/COPY CMQR
 C MQI Object Descriptor
D MQOD DS
DC MQOD Structure
D/COPY CMQODR
 C MQI Message Descriptor
D MQMD DS
DC MQMD Structure
D/COPY CMQMDR
 C MQI Get Message Options
D MQGMO DS
DC MQGMO Structure
D/COPY CMQGMOR

 C
 CC Declare variables used in MQI calls
 C
D CID S 9 �
D QMgrHandle S 9 �
D QHandle S 9 �
D Options S 9 �
D OpenCode S 9 �
D CompCode S 9 �
D Reason S 9 �
D MsgLength S 9 �
D BufferLen S 9 � Inz(%Size(MsgData))
D QueueName S 48
D GetWait S 9

 C
 CC Error Messages
 C
D ErrMsg S 8�
D OpenFail S 36 Inz('MQOPEN failed. Unable to -
D open queue.')
D OpenRpt S 33 Inz('MQOPEN did not complete -
D normally.')
D GetErr S 32 Inz('MQGET did not complete -
D normally.')
D CloseErr S 34 Inz('MQCLOSE did not complete -
D normally.')

 CC Define DS over fields in input file
 C
D MsgData E DS ExtName(MsgOutFile)
 /EJECT
 C

34 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQGET program

 CC
 C Initialization and Setup C
 CC
 C
 C Program Parameters are name of queue to Put data to
 C and GetWait interval (i.e. time to wait for new message on queue)
C CEntry PList
C Parm QueueName
C Parm GetWait
 C
 CC Use parameter as name of queue
 C
C Eval ODON = QueueName
 C
C Eval QMgrHandle = HCDEFH

 C
 CC
 C Main Processing C
 CC
 C

 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQOPEN - Open Queue for Input C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 CC Open queue for input (and fail if quiescing)
 CC Resulting queue handle is QHandle
 CC Exclusive or shared use of the queue is
 CC controlled by the queue definition in this sample
 C
C Eval Options = OOFIQ + OOINPQ
C Eval CID = MQOPEN
C Call 'QMQM'
C Parm CID
C Parm QMgrHandle
C Parm MQOD
C Parm Options
C Parm QHandle
C Parm OpenCode
C Parm Reason

 CC If Reason code returned report it
 C
C If Reason <> RCNONE

 CC If Open code is fail...
C If OpenCode = CCFAIL
C Eval ErrMsg = OpenFail

 Appendix B. Dynamic call MQGET program 35

 Dynamic call MQGET program

 CC Else report reason...
C Else
C Eval ErrMsg = OpenRpt
C EndIf
C Write GetError
C EndIf

 C
 CC
 C Processing to get Messages from Queue C
 CC
 C
 CC Set initial loop condition based on result on MQOPEN
 CC (i.e. if MQOPEN failed then no messages will be got)
 C
C Eval CompCode = OpenCode

 C
 CC Start of loop to MQPUT messages
 C
 CC Read Messages off Queue until MQGET completion code = CCFAIL
 CC Set get message options to convert data (if necessary)
 CC and wait for messages.
 C
C Dow CompCode <> CCFAIL
C Eval GMOPT = GMWT + GMCONV
C Move GetWait GMWI
 C
 CC MsgId and CorrelId are selectors that must be cleared
 CC to get messages in sequence, as they are set each MQGET
 CC set them to none before each get
 C
C Eval MDMID = MINONE
C Eval MDCID = CINONE
C Clear MsgData
 C call ...
C Eval CID = MQGET
C Call 'QMQM'
C Parm CID
C Parm QMgrHandle
C Parm QHandle
C Parm MQMD
C Parm MQGMO
C Parm BufferLen
C Parm MsgData
C Parm MsgLength
C Parm CompCode
C Parm Reason

 CC If Reason code returned report it (RC2�33 = No more msgs - ignore)
 C
C If Reason <> RCNONE
C And Reason <> RC2�33
C Eval ErrMsg = GetErr
C Write GetError
C EndIf

36 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQGET program

 CC Write record to file
 C
C If CompCode <> CCFAIL
C Write RMsgOut
C EndIf

C EndDo

 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQCLOSE Close Queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C If Queue was opened close it with no options
C If OpenCode <> CCFAIL
C Eval CID = MQCLOS
C Eval Options = CONONE

C Call 'QMQM'
C Parm CID
C Parm QMgrHandle
C Parm QHandle
C Parm Options
C Parm CompCode
C Parm Reason

 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = CloseErr
C Write GetError
C EndIf

C EndIf

C Eval CInLR = COn

 Appendix B. Dynamic call MQGET program 37

 Dynamic call MQGET program

Here’s the bound call MQGET program:

 H
 CCC
 C C
 C Function: C
 C C
 C C
 C AMQGET2 is a sample RPGLE program to get messages from a C
 C message queue, and is an example of the use of MQGET. C
 C C
 C -- sample gets messages from the queue named in C
 C the parameter C
 C C
 C -- writes the contents of the message queue C
 C to a file. C
 C C
 C messages are removed from the queue C
 C C
 C -- Writes a message for each MQI reason other than C
 C RCNONE; stops if there is a MQI completion code C
 C of CCFAIL C
 C C
 C Program logic: C
 C MQCONN connect to the Queue Manager C
 C Use the parameter to name the input queue C
 C MQOPEN queue for INPUT C
 C while no MQI failures, C
 C . MQGET next message, remove from queue C
 C . write message to file C
 C . (no message available is failure, and ends loop) C
 C MQCLOSE the subject queue C
 C MQDISC disconnect from the Queue Manager C
 C C
 C C
 CCC
 C
 CFile Specification
FMsgOutFileO E Disk
FAmqGetp2 O E PRINTER OflInd(CIn99)
 /EJECT
 C

38 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQGET program

 CCC
 CC Input Specifications C
 CCC
 C
 CC Declare Required MQI Structures (/COPY members in QMQMSAMP)
 CC NOTE This program uses supplied defaults when it can
 C
 C MQI Named Constants
D/COPY CMQG
 C MQI Object Descriptor
D MQOD DS
DC MQOD Structure
D/COPY CMQODG
 C MQI Message Descriptor
D MQMD DS
DC MQMD Structure
D/COPY CMQMDG
 C MQI Get Message Options
D MQGMO DS
DC MQGMO Structure
D/COPY CMQGMOG

 C
 CC Declare variables used in MQI bound calls
 C
D QMgrHandle 1�I �
D QHandle 1�I �
D Options 1�I �
D OpenCode 1�I �
D CompCode 1�I �
D Reason 1�I �
D MsgLength 1�I �
D BufferLen 1�I � Inz(%Size(MsgData))
D MsgPoint C Inz(%Addr(MsgData))
D QueueName S 48
D QManager S 48
D GetWait S 9

 C
 CC Error Messages
 C
D ErrMsg S 8�
D OpenFail S 36 Inz('MQOPEN failed. Unable to -
D open queue.')
D OpenRpt S 33 Inz('MQOPEN did not complete -
D normally.')
D GetErr S 32 Inz('MQGET did not complete -
D normally.')
D CloseErr S 34 Inz('MQCLOSE did not complete -
D normally.')

 CC Define DS over fields in input file
 C
D MsgData E DS ExtName(MsgOutFile)
 /EJECT
 C

 Appendix B. Dynamic call MQGET program 39

 Dynamic call MQGET program

 CC
 C Initialization and Setup C
 CC
 C
 C Program Parameters are name of queue to Put data to
 C and GetWait interval (i.e. time to wait for new message on queue)
C CEntry PList
C Parm QManager
C Parm QueueName
C Parm GetWait
 C
 CC Use parameter as name of queue
 C
C Eval ODON = QueueName

 C
 CC
 C MQCONN - Connect to the Queue Manager C
 CC
 C

C CallP MQCONN(QManager : QMgrHandle : OpenCode :
C Reason)

 CC If Reason code returned report it
 C
C If Reason <> RCNONE

 CC If Open code is fail...
C If OpenCode = CCFAIL
C Eval ErrMsg = OpenFail
 CC Else report reason...
C Else
C Eval ErrMsg = OpenRpt
C EndIf
C Write GetError
C EndIf
 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQOPEN - Open Queue for Input C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 CC Open queue for input (and fail if quiescing)
 CC Resulting queue handle is QHandle
 CC Exclusive or shared use of the queue is
 CC controlled by the queue definition in this sample
 C
C Eval Options = OOFIQ + OOINPQ

C CallP MQOPEN(QMgrHandle : MQOD : Options : QHandle
C : OpenCode : Reason)

40 Migrating to MQSeries for AS/400, V5.1

 Dynamic call MQGET program

 CC If Reason code returned report it
 C
C If Reason <> RCNONE

 CC If Open code is fail...
C If OpenCode = CCFAIL
C Eval ErrMsg = OpenFail
 CC Else report reason...
C Else
C Eval ErrMsg = OpenRpt
C EndIf
C Write GetError
C EndIf

 C
 CC
 C Processing to get Messages from Queue C
 CC
 C
 CC Set initial loop condition based on result on MQOPEN
 CC (i.e. if MQOPEN failed then no messages will be got)
 C
C Eval CompCode = OpenCode

 C
 CC Start of loop to MQPUT messages
 C
 CC Read Messages off Queue until MQGET completion code = CCFAIL
 CC Set get message options to convert data (if necessary)
 CC and wait for messages.
 C
C Dow CompCode <> CCFAIL
C Eval GMOPT = GMWT + GMCONV
C Move GetWait GMWI
 C
 CC MsgId and CorrelId are selectors that must be cleared
 CC to get messages in sequence, as they are set each MQGET
 CC set them to none before each get
 C
C Eval MDMID = MINONE
C Eval MDCID = CINONE
C Clear MsgData
 C call ...
C CallP MQGET(QMgrHandle : QHandle : MQMD : MQGMO
C : Bufferlen : MsgPoint : Msglength
C : CompCode : Reason)

 Appendix B. Dynamic call MQGET program 41

 Dynamic call MQGET program

 CC If Reason code returned report it (RC2�33 = No more msgs - ignore)
 C
C If Reason <> RCNONE
C And Reason <> RC2�33
C Eval ErrMsg = GetErr
C Write GetError
C EndIf

 CC Write record to file
 C
C If CompCode <> CCFAIL
C Write RMsgOut
C EndIf

C EndDo

 C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C MQCLOSE Close Queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C
 C If Queue was opened close it with no options
C If OpenCode <> CCFAIL

C Eval Options = CONONE

C CallP MQCLOSE(QMgrHandle : QHandle : Options
C : CompCode : Reason)

 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = CloseErr
C Write GetError
C EndIf

C EndIf

 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C MQDISC Disconnect from Queue C
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 C

C CallP MQDISC(QMgrHandle : CompCode : Reason)
 CC If Reason code returned report it
 C
C If Reason <> RCNONE
C Eval ErrMsg = CloseErr
C Write GetError
C EndIf

C Eval CInLR = COn

42 Migrating to MQSeries for AS/400, V5.1

 Notices

 Appendix C. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

 Copyright IBM Corp. 2000 43

 Notices

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM
for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

 Trademarks
The following are trademarks of International Business Machines Corporation in the
United States, or other countries, or both:

Other company, product, and service names may be trademarks or service marks
of others.

AS/400 FFST First Failure Support
Technology

IBM MQSeries OS/400
RPG/400

44 Migrating to MQSeries for AS/400, V5.1

	About this document
	Who this document is for
	What you need to know to understand this document
	Other reading
	The author

	Chapter 1. Library structure
	Chapter 2. Journals and backups
	Chapter 3. Configuration scripts (Changed commands)
	Chapter 4. Handling errors
	Chapter 5. Application development (ILE RPG)
	Components to programming the MQI
	Examples of bound and dynamic calls
	Sample programs
	New MQI calls

	Chapter 6. Performance
	Performance considerations
	Fast-bound and standard-bound calls
	Checking a slow-running application
	Other performance factors

	Chapter 7. Security
	Appendix A. Dynamic call MQPUT program
	Appendix B. Dynamic call MQGET program
	Appendix C. Notices
	Trademarks

