MQSeries Integrator for AS/400 and DB2/400, Version 1.1:
Installation and configuration information

This document provides information about the software prerequisites, installation process, and configura-
tion actions needed for the MQSeries Integrator for AS/400 and DB2/400 Version 1.1 product. Refer to
the chapter on the Installation Verification Procedure in the MQSeries Integrator Installation and Config-
uration Guide that is supplied with this product for further information about:

e Editing Rules daemon configuration files
¢ Run putdata
¢ Run getdata

Before you start

Before you start the installation process, make sure you have the following software installed on your
AS/400 system:

e (0S/400 V4R3 or later.

¢ MQSeries for AS/400 V4R2.1 (program number 5769MQ2), which is supplied with the MQSeries
Integrator product. See the MQSeries for AS/400 V4R2.1 Administration Guide for information on
how to install this product.

e The ILE C++ compiler (program number 5799GDW), so that you can create programs that use the
MQSeries Integrator user exits.

You must install Client Access/400 on the client Windows NT workstation before you install the MQSeries
Integrator client. Make sure you select the AS/400 Operations Navigator component (and its Database
subcomponent).

In addition, we recommend that you set the AS/400 system security level to 40 or 50. To work with this
setting, run the following command:

WRKSYSVAL SYSVAL(QSECURITY)
The documentation for the MQSeries Integrator and MQSeries for AS/400 products is provided as Port-

able Document Format (PDF) files on the MQSeries Integrator Administration GUI CD-ROM. Use the
Adobe Acrobat Reader to view or print these files.

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 1

Installation process

In order to use the MQSeries Integrator product, you will need to have the MQSeries for AS/400 V4R2.1
product installed. At this time there are no checks in the MQSeries Integrator installation procedure to
check if MQSeries for AS/400 is installed.

To install MQSeries Integrator, insert the MQSeries Integrator CD-ROM and run the following command:
RSTLICPGM LICPGM(5697F49) DEV(QPTO1)

changing OPTO1 to the actual name of your CD-ROM drive.

Verifying the installation

To verify that the product was installed correctly:

1. Issue the Display Software Resources (DSPSFWRSC) command to display a list of the software
products on your system.

2. Page down until you see 5697F49. There should be two entries for 5697F49 (one for the Base and
one for the 2924 English language feature). You will see ERROR if the product is not installed
correctly.

3. If there is an error, check the job log (using the DSPJOBLOG command) for errors that occurred
during installation and take the necessary actions before repeating the installation procedure. The
Install History Log, viewed by selecting option 50 from the Licensed Program Menu (GO LICPGM),
may also provide useful information.

Where objects reside

Programs, service programs, and other OS/400 objects reside in the QMQSI system library, the size of
which is 80 megabytes. The default SQL database that is supplied with the product resides in a library
called QUSRMQSI (13 megabytes). MQSeries Integrator for AS/400 also has an IFS directory structure,
as follows:

/QIBM/ProdData/Mgsi Product Directory
/QIBM/ProdData/Mgsi/bin Configuration/Connection Files
/QIBM/ProdData/Mgsi/examples Sample formats, Configuration and
Connection Files, etc
/QIBM/ProdData/Mgsi/includes C++ files

Formatter and Rules client setup
The following steps are required for completing the installation of an MQSeries Integrator client in a
Windows NT to AS/400 client-server configuration:

¢ Run the MQSeries Integrator client install program

e After the MQSeries Integrator software is installed on the client, verify that a Client Access con-
nection is configured to the selected AS/400 server that the database collection will reside on. If one

does not exist, configure a connection for a collection. For assistance see your Client Access doc-
umentation or online help.

¢ Configure an ODBC connection to the database collection. The following steps explain how to do
this:

1. Go to control panel, open up the ODBC Data Source Administrator.
2. Under the User DSN tab, select Add.

3. Select Client Access ODBC Driver (32-bit).

4

. Enter a Data source name on the General tab. This name can be any name you choose (try to
make it descriptive).

o

Select the System and a valid user ID for that system.
6. Select the Server tab.

7. For the default library, enter QUSRMQSI if you are going to use the default supplied SQL data-
base collection, or a database collection library of your choice. Leave Commit mode to default.

8. Select the Other tab.
9. Under the Scrollable cursor, select Always Scrollable.
The ODBC connection is completed.
Make sure that the DB2/400 SQL section of the PowerBuilder PBODBG60.INI file contains the following
lines:

PBSupportBindSelect="N0O"
PBSupportBindUpdate="'NO"
PBSupportDBBind="'NQ"'

If it does not, use any text editor (such as WordPad or Notepad) to add the lines.

If you selected the default installation path when installing the client, the PBODBG60.INI file is located in
the mqi/gui directory.

Installing Visual Tester

When Visual Tester is installed, the installation program registers the OCXs for the selected database.
Visual Tester ships with OCXs compiled for different databases. To connect to a database other than the
one selected at installation, you must register the proper OCXs (NNOBJS.OCX and NNMGRS.OCX) for
the desired database type.

You can only configure Visual Tester to run on one database type at a time. For example, to switch from
Oracle to Sybase, you must register the Sybase OCXs. After this is done, Visual Tester can only

connect to Sybase until a new set of OCXs is registered.

This procedure is also in the Visual Tester Online Help.

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 3

To register OCXs:

1.

In Windows Explorer, open the directory in which NNVT is installed, for example, C:\MQI\gui. This
directory contains the following subdirectories:

MQSeries_Client Remote MQSeries queuing
MQSeries_Server Local MQSeries queuing
NEONetMQ NEONet Messaging and Queuing
NoQueuing No queuing type selected

Open the subdirectory for the type of queuing that you use. This subdirectory contains a directory
for each database type, plus the user exit directory. The directories are:

e db2

e oracle
e mssql
e sybase
¢ nnfexit

Open the directory for your database type. The database directory contains the following files:

e NNFEXxit.dll

e NNMgrLib.dll
¢ NNMgrs.ocx
e NNOBbjLib.dll
¢ NNObjs.ocx

Double-click the NNMgrs.ocx file.

5. If the Open With dialog box appears:

e If regsvr32.exe is in the list, select it, check the Always use this program to open this file
checkbox, and click OK.

e If regsvr32.exe is not in the list, click Other. A File Find dialog box appears. Open
\winnt\system32 and select regsvr32.exe. Click Open. The Open With dialog box reappears
with regsvr32.exe selected. Check the "Always use this program" box to open this file checkbox
and click OK.

e The OCX file is registered. A message box appears stating the registration succeeded. Click
OK.

e Double-click NNObjs.ocx. The OCX file is registered. A message box appears stating the regis-
tration succeeded. Click OK.

Deleting MQSeries Integrator

To delete MQSeries Integrator, run the command:
DLTLICPGM LICPGM(5697F49)

Deleting MQSeries Integrator removes the following from your AS/400 system:

4

The QMQSI library
The /QIBM/Proddata/Mgsi directory
The MQSIADMIN and MQSIUSER user profiles

¢ The software resource entry

The default database collection library QUSRMQSI is not deleted (because it might contain user data).

Note: You can reinstall the product after you have deleted it. The installation process recognizes that
the QUSRMQSI library exists and does not try to overwrite it.

MQSIMAIN menu

The AS/400 menu MQSIMAIN is created to make MQSeries Integrator usage easier. Run the following
commands to access this menu:

ADDLIBLE LIB(QMQSI)
GO MENU(MQSIMAIN)

You will see the following screen:

MQSIMAIN MQSeries Integrator Main Menu
System: MYSYSTEM
Select one of the following:
1. Start the MQSeries Integrator Daemon MQSIRULENG
2. Put a message to a queue MQSIPUTDTA
3. Get a message from a queue MQSIGETDTA
4. Encrypt the password in daemon file MQSIENCRYP
11. Test an input control CALL APITEST
12. Test an input control/output control combination CALL MSGTEST
13. Encrypt the password in a sqlsvses.cfg file CALL NNCRYPTCFG
14. Import/Export formats CALL NNFIE
15. Import/Export rules CALL NNRIE
16. Test a message against a specific rule CALL NNRTRACE
17. Test which rules are hit by a message CALL RULETEST
21. Install a new database instance DBINSTALL
Selection
===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel

Reading stream files

Before using MQSeries Integrator applications, it is important to understand how stream files can be
opened and read. An AS/400 stream file has a code page associated with the data in the file. Type the
following to see the code page:

DSPLNK 0BJ('<file_name>')

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 5

Then choose Option 8 - Display Attributes.

Some applications read stream files in binary mode. This means that the code page of the file is ignored
when reading in the file. The bytes contained in the file are read in exactly as they exist in the file.
Some applications read stream files in text mode. This means that the operating system performs trans-
lation the data as it is read in. The data is translated from the code page of the stream file to the code
page of the job (from the CCSID of the job). With MQSeries Integrator, some applications read stream
files in text mode, while others read stream files in binary mode. See “Using commands and programs”
on page 9 for further details.

Database connection configuration files

Some MQSeries Integrator applications use the sqlsvses.cfg file for retrieving information for database
connectivity. Others use a file with a .mpf extension. These files must all reside in IFS. There are
example template versions of these files in the /QIBM/ProdData/MQSI/bin directory. These files are read
in text mode.

The sqlsvses.cfg file

The sqlsvses.cfg file controls access to the SQL database and is used by several applications, including
APITEST, MSGTEST, NNRIE, NNFIE, and RULETEST. The file must reside in the current directory of
the AS/400 job that is running the application (for example, your AS/400 display session).

Although DB2/400 is classified as a DB2 database, MQSeries Integrator for AS/400 references it in a
similar manner to Microsoft SQL/Sybase.

A typical entry in this file could look like this:

New_format_demo:<Server>:<Userid>:<Password>:<Instance>

where:

<Server>
Specifies the SQL database. You can get this value by using the WRKRDBDIRE
command and finding the entry with the Remote Location Name of *LOCAL. Typically,
this is the same name as the AS/400 system. If there is no *LOCAL entry, you must add
one.

<Userid>
Specifies the user profile to connect with.

<Password>
Specifies the password associated with the given user profile.

<Instance>

Specifies the name of the database collection. This is the name of the library that con-
tains the SQL database. The collection that is created on installation is called
QUSRMQSI.

MQSlIruleng.mpf

The MQSIruleng.mpf file is used for the MQSIRULENG program (the main MQSeries Integrator daemon).
This file is specified as a parameter when starting MQSIRULENG.

Note these entries in MQSIruleng.mpf:

QueueManagerName
The queue manager on the AS/400 that you will be using.

InputQueueName
The MQSeries queue from which MQSeries Integrator for AS/400 will read messages.

NoHitQueueName
The MQSeries queue on which MQSeries Integrator for AS/400 will place messages when
they do not match any rules.

FailureQueueName
The MQSeries queue on which MQSeries Integrator for AS/400 will place messages when
rule processing failures occur.

DefaultAppGroup
The Default Application Group containing your rules (named when you define your rules).

DefaultMsgType
The Default Message Type containing your formats (named when you define your formats).

LogLevel
Ideally, set to O (all logging) when testing your rules. You can then change it to 2 or 3 (to
save disk space) when your system goes live.

ServerName = <data_source>
Specifies the data source. You can get this value by using the WRKRDBDIRE command
and finding the entry with the Remote Location of *LOCAL. Typically, this will be the same
name as the AS/400 system. If there is no *LOCAL entry, you must add one.

Userld = <user>
Specifies the user ID to connect with.

Password = <password>
Specifies the password to connect with.

Databaselnstance = <database collection>
Specifies the name of the database collection. The collection that is created on the installa-
tion process is QUSRMQSI.

DatabaseType = 5
Specifies a DB2 database.

Setting environment variables

There are two ways to set an environment variable on the AS/400.

1. Using the 'export’ command from within the QSHELL environment.

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 7

2. Using the WRKENVVAR, ADDENVVAR, CHGENVVAR and RMVENVVAR CL commands.
Restriction: You must have *JOBCTL special authority to use these commands. This is the recom-
mended method.

In OS/400 VAR3MO, any environment variables apply to the job that set them and will be lost when that
job ends (for example, signing off from your workstation). If you want to 'keep' environment variables,
you should set them in your initial program for interactive sessions, or ensure that they are set by any
submitted jobs. In OS/400 VAR4AMO you have the option of specifying LEVEL(*SYS) on the
ADDENVVAR command that sets the environment variable permanently and makes it available to all
jobs.

Alert messages

CL command:
ADDENVVAR ENVVAR(NN_ALERT FILE NAME) VALUE=(NNStatus.Log)

QSHELL command:
export NN_ALERT_FILE_NAME=NNStatus.Log

Sets the name of the file that holds the Alert messages. The default is NEONetStatusLog (which will be
in the existing current directory).

Alert error reporting

CL command:
ADDENVVAR ENVVAR(NN_ALERT) VALUE='[ALL|CRITICAL|0FF]'

QSHELL command:
export NN_ALERT=[ALL|CRITICAL|OFF]

Sets or disables the Alert error reporting mechanism. If you specify CRITICAL, only critical errors are
reported. No errors are reported if you specify OFF. The default is ALL.

Time display

CL command:
ADDENVVAR ENVVAR (NN_LOCAL_TIME) VALUE='[GMT|TRUE]'

QSHELL command: export NN_LOCAL_TIME=[GMT|TRUE]

Sets the time display to local time or GMT for message reporting mechanisms. The default is GMT.

Line Feed or Carriage Return-Line Feed

CL command:
ADDENVVAR ENVVAR (MQSI_STRIP_CRLF) VALUE('N')

QSHELL command: export MQSI_STRIP_CRLF=NO

The programs APITEST, MSGTEST, NNRTRACE, RULETEST, and MQSIPUTDATA take a file that con-
tains a message as input. By default on the AS/400 system, these programs strip off any Line Feed (LF)
or Carriage Return-Line Feed (CRLF) combinations from the end of input messages. If you do not want
to have the LF or CRLF stripped off the end of messages, set the MQSI_STRIP_CRLF environment
variable to a value of 'N'".

Using commands and programs

The following describes the usage of MQSeries Integrator programs on AS/400. The intent is not to
describe each program in full detail, but to provide AS/400-specific information for these programs.

MQSIRULENG - Start the MQSI daemon
MQSIRULENG is a command. It is the equivalent of the MQSIruleng program on other platforms.

The command has a PARMFILE parameter in which an MQSlruleng.mpf file should be specified. The
MQSiIruleng.mpf file is read in text mode. See “Database connection configuration files” on page 6 for
more information on this file.

Command syntax
MQSIRULENG PARMFILE('parm_file_path_name')

where PARMFILE is the name of the parameter file to be used. See the section called "Edit the Rules
Daemon Configuration Files" in the Installation Verification Procedure chapter in the MQSeries Integrator
V1.1 Installation and Configuration Guide for details of the contents of this file.

Example invocation
MQSIRULENG PARMFILE('/QIBM/ProdData/MQSI/bin/MQSIruleng.mpf')

Shut down the Rules daemon

To shut down the Rules daemon:
¢ Add the following to the [Put Options] section of the MQSIputdata.mpf file:
OPT_SHUTDOWN = SHUTDOWN
and use an empty (null) message.

See the section called Shutdown Messages in the MQSeries Integrator V1.1 System Management
Guide for further details of this option.

¢ Alternatively, you can issue the following command:
ENDSBS SBS(QMQSI) OPTION(*IMMED)

e Or, you can specify an input queue with get inhibited, as follows:
CHGMQMQ QNAME (MQSI_INPUT_QUEUE) GETENBL(*NO)

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 9

Change GETENBL to (*YES) if you later want to get enable the input queue.

MQSIPUTDTA - Put a message to a queue
MQSIPUTDTA is a command. It is the equivalent of the MQSIputdata program on other platforms.

The command has a PARMFILE parameter in which an MQSlIputdata.mpf file should be specified. The
MQSIputdata.mpf file is read in text mode.

Most of the parameters in the MQSIputdata.mpf file are self-explanatory but you consider the following:

OPT_APP_GRP
This is the Application Group that contains your rules. It is named when you define your
rules.

OPT_MSG_TYPE
This is the Message Type that contains your formats. It is named when you define your
formats.

The MQSIputdata.mpf file should contain a line specifying a value for inputFileName. This inputFileName
should be a stream file in IFS. This file is read in binary mode.

Command syntax
MQSIPUTDTA PARMFILE('parm file_path_name')

where PARMFILE is the name of the parameter file to be used. See the section called "Run putdata” in
the Installation Verification Procedure chapter in the MQSeries Integrator V1.1 Installation and Configura-
tion Guide for details of the contents of this file.

Example invocation
MQSIPUTDTA PARMFILE('/QIBM/ProdData/MQSI/bin/MQSIputdata.mpf')
MQSIGETDTA - Get a message from a queue
MQSIGETDTA is a command. It is the equivalent of the MQSlIgetdata program on other platforms.

The command has a PARMFILE parameter in which an MQSlgetdata.mpf file should be specified. The
MQSlgetdata.mpf file is read in text mode.

The MQSlgetdata.mpf file should contain a line specifying a value for outputFileName. This
outputFileName should be a stream file in IFS. This file is written in binary mode.

Command syntax
MQSIGETDTA PARMFILE('parm file path_name')

where PARMFILE is the name of the parameter file to be used. See the section called "Run getdata” in
the Installation Verification Procedure chapter in the MQSeries Integrator V1.1 Installation and Configura-
tion Guide for details of the contents of this file.

10

Example invocation
MQSIGETDTA PARMFILE('/QIBM/ProdData/MQSI/bin/MQSIputdata.mpf")

MQSIENCRYP - Encrypt a configuration file
MQSIENCRYP is a command. It is the equivalent of the MQSlencrypt program on other platforms.
The command encrypts the Password field of an MQSIruleng.mpf stream file.
The command has an INFILE parameter and an OUTFILE parameter. INFILE is the input
MQSiIruleng.mpf file. OUTFILE is the new, generated MQSIruleng.mpf file that contains the encrypted
password.
The input file is read in text mode. The output file is written in text mode.
Command syntax

MQSIENCRYP INFILE('input_file_path_name') OUTFILE('output_file_path_name')
where INFILE is the name of the input MQSIruleng.mpf file.

Example invocation

MQSIENCRYP INFILE('/QIBM/ProdData/MQSI/bin/MQSIruleng.mpf"')
OUTFILE('/QIBM/ProdData/MQSI/bin/MQSIruleng.mpf.encrypted')

APITEST
APITEST is a program. It is the equivalent of the apitest program on other platforms.
The sqlsvses.cfg file must reside in the current directory.

APITEST prompts the user for the name of an input file (containing a message) and an input format.
This file is read in binary mode.

Example invocations

CALL PGM(APITEST)
CALL PGM(APITEST) PARM('-h') (Lists possible parameters for this program)

MSGTEST
MSGTEST is a program. It is the equivalent of the msgtest program on other platforms.

The sqlsvses.cfg file must reside in the current directory.

MSGTEST prompts the user for the name of an input file (containing a message). This file is read in
binary mode.

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information

11

MSGTEST prompts the user for the name of an output file (where a new message will be written). This
file is written in binary mode.

Example invocations

CALL PGM(MSGTEST)
CALL PGM(MSGTEST) PARM('-h') (Lists possible parameters for this program)

NNCRYPTCFG - Encrypt the SQL Services configuration file
NNCRYPTCFG is a program. It is the equivalent of the NNcryptCfg program on other platforms.
The command encrypts the Password fields of an sqlsvses.cfg stream file.

The command has an '-inputFile' parameter and a '-outputFile' parameter. '-inputFile' is the input
sqlsvses.cfg file. '-outputFile' is the new, generated sqlsvses.crypt that contains the encrypted pass-
words.

The input file is read in text mode. The output file is written in text mode.

Refer to the information on encrypting the sqlsvses.cfg file in the MQSeries Integrator V1.1 Installation
and Configuration Guide for further details.

An example invocation

Note: The parameter values are case sensitive so you must enter them as shown or the command will
not work.

CALL PGM(NNCRYPTCFG) PARM('-inputFile' '/QIBM/ProdData/MQSI/bin/sqlsvses.cfg’
'-outputFile' '/QIBM/ProdData/MQSI/bin/sqlsvses.crypt')

NNFIE - Formats import/export utility
NNFIE is a program. It is the equivalent of the NNFie program on other platforms.
The sqlsvses.cfg file must reside in the current directory.

On an import, NNFIE takes an input file name as a parameter (containing formats to be imported). This
file should be a stream file in the IFS. This file is read in text mode.

On an export, NNFIE takes an output file name as a parameter (to place exported formats). This file
should be a stream file in the IFS. This file is written in text mode.
When moving formats from System A to System B, the process is as follows:

1. On System A, run NNFIE with the -e option to export the formats to a stream file.

2. Using FTP, move the stream file (in text or ASCIl mode) from System A to System B.

3. On System B, run NNFIE with the -i option to import the formats into a database collection.

12

Example invocations

Note: The parameter values are case sensitive so you must enter them as shown or the command will
not work.

List possible parameters
CALL PGM(NNFIE) PARM('-h')

Import your formats
CALL PGM(NNFIE) PARM('-i' 'myFormats' '-s' 'SessionName')

Export your formats
CALL PGM(NNFIE) PARM('-e' 'myFormats' '-s' 'SessionName')

where SessionName is the “tag” associated with the entry in the sqlsvses.cfg file that you want to use.
For example, where the SessionName is 'import":

Import:MYAS400:MYUSERID:MYPASSWORD: QUSRMQSI

NNRIE - Rules import/export utility
NNRIE is a program. It is the equivalent of the NNRie program on other platforms.
The sqlsvses.cfg file must reside in the current directory.

On an import, NNRIE takes an input file name as a parameter (containing rules to be imported). This file
should be a stream file in the IFS. This file is read in text mode.

On an export, NNRIE takes an output file name as a parameter (to place exported rules). This file should
be a stream file in the IFS. This file is written in text mode.
When moving rules from System A to System B, the process is as follows:

1. On System A, run NNRIE with the -e option to export the rules to a stream file.

2. Using FTP, move the stream file (in text or ASCII mode) from System A to System B.

3. On System B, run NNRIE with the -i option to import the rules into a database collection.

Example invocations

Note: The parameter values are case sensitive so you must enter them as shown or the command will
not work.

List possible parameters
CALL PGM(NNRIE)

Import your rules
CALL PGM(NNRIE) PARM('-i' 'myRules' '-s' 'SessionName')

Export your rules
CALL PGM(NNFIE) PARM('-e' 'myRules' '-s' 'SessionName')

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 13

where SessionName is the “tag” associated with the entry in the sqlsvses.cfg file that you want to use.
For example, where the SessionName is 'import':

Import:MYAS400:MYUSERID:MYPASSWORD: QUSRMQSI

NNRTRACE - Rules trace utility
NNRTRACE is a program. It is the equivalent of the NNRTrace program on other platforms.

The program has an 'Input-File-Name' parameter. This file should be a stream file residing in IFS. lItis
read in binary mode.

Example invocations

Note: The parameter values are case sensitive so you must enter them as shown or the command will
not work.

CALL PGM(NNRTRACE) PARM('-i' 'myInFile' '-a' 'myAppGroup' '-m' 'myMsgType' '-r' 'myRuleName')
CALL PGM(NNRTRACE) PARM('-h') (Lists possible parameters for this program)

RULETEST

RULETEST is a program. It is the equivalent of the ruletest program on other platforms.
The sqlsvses.cfg file must reside in the current directory.

The program has an 'Input-File-Name' parameter. This file should be a stream file residing in IFS. Itis
read in binary mode.

Example invocations

Note: The parameter values are case sensitive so you must enter them as shown or the command will
not work.

CALL PGM(RULETEST) PARM('-i' 'myInFile' '-a' 'myAppGroup' '-m' 'myMsgType')
CALL PGM(RULETEST) PARM('-h') (Lists possible parameters for this program)

DBINSTALL - Create an MQSI database collection

DBINSTALL is a command. It creates an AS/400 collection (SQL Library and populates it with default
rules and formats.

Notes:

1. When installing MQSeries Integrator on an AS/400 system, a collection called QUSRMQSI is auto-
matically created. You need use the DBINSTALL command only if you want additional collections.

2. If you have run other MQSeries Integrator programs or commands, we suggest that you sign off and
then sign on again after using the DBINSTALL command, to reset the SQL environment.

14

Command syntax
DBINSTALL COLLNAME(collection_name) REPLACE(*NO|*YES)

where:
COLLNAME Is the name of the collection to be created.
REPLACE Valid values for this parameter are *NO (the default) and *YES. Specifying *YES

deletes a library with name of COLLNAME if it exists, before creating the collection.

Note: *YES deletes any library, not just a collection, with this name.

Example invocation
DBINSTALL COLLNAME(MYDATA) REPLACE (*YES)

FORMATCC - Format consistency checker

FORMATCC is a command. It runs a report against the formats in the database and looks for situations
that could be a potential problem.

Command syntax
FORMATCC COLLECTION(collection_name) DATASOURCE(datasource name)
FILE[*DFT|file_name] LOGFILE[*DISPLAY|file_name]

where:

COLLECTION Specifies the name of the database collection to access.

DATASOURCE Specifies the data source to connect to. To determine the data source, use the
WRKRDBDIRE command and find the Relational Database at location *LOCAL. This
parameter is case sensitive.

FILE Specifies the path of the SQL file (a file in IFS) to use for consistency checking. Spec-
ifying *DFT causes the default file /QIBM/ProdData/Mgsi/bin/formatcc.sql to be used.

LOGFILE Specifies the name of an IFS file that will contain the results of the consistency
checker. If you specify *DISPLAY, the results are sent to standard output.

Example invocation
FORMATTCC COLLECTION(QUSRMQSI) DATASOURCE (MYDATASOURCE) FILE(*DFT) LOGFILE(+DISPLAY)

RULECC - Rules consistency checker

RULECC is a command. It runs a report against the rules in the database and looks for situations that
could be a potential problem.

Command syntax

RULECC COLLECTION(collection_name) DATASOURCE(datasource_name)
FILE[*DFT|file _name] LOGFILE[+DISPLAY|file_ name]

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information ~ 15

where:
COLLECTION Specifies the name of the database collection to access.

DATASOURCE Specifies the data source to connect to. To determine the data source, use the
WRKRDBDIRE command and find the Relational Database at location *LOCAL. This
parameter is case sensitive.

FILE Specifies the path of the SQL file (a file in IFS) to use for consistency checking. Spec-
ifying *DFT causes the default file /QIBM/ProdData/Mgsi/bin/rulecc.sql to be used.

LOGFILE Specifies the name of an IFS file that will contain the results of the consistency
checker. If you specify *DISPLAY, the results are sent to standard output.

Example invocation
RULECC COLLECTION(QUSRMQSI) DATASOURCE (MYDATASOURCE) FILE(*DFT) LOGFILE(*DISPLAY)

Work management objects

A subsystem description is created by the install process. The subsystem is used to run the MQSeries
Integrator product.
The following AS/400 work management objects are created in the installation process.

e A subsystem description named QMQSI1.

e A class object called QMQSI1. This has a run priority of 20.

e A job queue entry that will connects the job queue to the subsystem description. This job queue
entry has 2 for the maximum number of jobs.

e A routing entry for the subsystem description using our QMQSI1 class.
e A job description called QMQSIL1.
The work management objects reside in library QMQSI. The objects can be changed by the MQSeries

Integrator administrator user using the relevant 0S/400 commands. You are strongly advised not to
change these objects unless you are fully aware of OS/400 work management principles.

Formatter user exit

User exits for formatter need to be handled slightly differently for AS/400. As on other platforms, the user
application should have an exit function called NNGetUserExitFuncPtrs(). In addition, the application
needs to set the global function pointer NNGetUserExitFuncPtrs_Function to point to the

NNGetUserExitFuncPtrs() function. This needs to be done before calling formatter code. The user appli-
cation can pick up this extern function pointer definition from the nnexit.h file (which should be included).

Example user exit implementation:

Here is an example source file (called mypgm.cpp) that contains the needed variable assignment.

16

#include "nnexit.h"

extern "C" void

NNGetUserExitFuncPtrs(char *acFuncName,
NN_EXIT_FUNC_t &rUEptr,
NN_EXIT_CLEANUP_FUNC_t &rUECTUpPtr)

}.
void main()

{

/* Set the NNGetUserExitFuncPtrs_Function function */
/* pointer to point to my version of */
/* NNGetUserExitFuncPtrs. */
NNGetUserExitFuncPtrs_Function = NNGetUserExitFuncPtrs;

}

Use the following command to compile this file to create a module using the ILE native C++ compiler:
CRTCPPMOD MODULE(MYPGM) SRCSTMF('mypgm.cpp') DEFINE(0S400)
INCDIR('/QIBM/ProdData/MQSI/include")
Use the following command to link this module to become a program:
CRTPGM PGM(MYPGM) MODULE (MYPGM) BNDSRVPGM(QMQSI/RULESFMT)

Metadata data changes

Metadata for MQSeries Integrator on AS/400 is not like on OS/390. ASCII String is really a string con-
taining ASCII data. ASCII Numeric contains ASCII characters 0-9. EBCDIC is really EBCDIC data.

Datatype descriptions

Data descriptions should be the same as on UNIX or Windows NT platforms.

Tracing

Here are some steps you should take to trace the SQL statements that are executed in any MQSeries
Integrator program.

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 17

¢ You will need to have the AS/400 system in a dedicated state. All SQL statements executed on the
system are traced.

* Run the command:

STRDBMON OUTFILE(QGPL/OUTPUT) JOB(*ALL) TYPE(*DETAIL)
e Run the program that you want to trace.
¢ Run the command:

ENDDBMON JOB(*ALL)
e To inspect the output, look at the QGPL/OUTPUT file with the command:

DSPPFM FILE(QGPL/OUTPUT)

Scroll several pages to the right (using PF20) to see the SQL statements that were executed.

Note: Running STRDBMON for only the job that is executing the MQSeries Integrator program does not
trace the required SQL statements. Database access is traced in a different job; you therefore
need to monitor all jobs by using the STRDBMON command with the JOB(*ALL) parameter.

System authorities on MQSeries Integrator objects

Two user profiles are created automatically by the installation process if they do not already exist.

MQSIADMIN This profile is created with user class SECOFR. It is not assigned a password. This
profile is given *ALL authority to all objects in the object library and all collections created
with DBINSTALL.

MQSIUSER This profile is created with user class USER. It is not assigned a password. This profile is
given *USE authority to all objects in the object library. This profile is given *CHANGE
authority to all collections created with DBINSTALL.

These two user profiles can be used as group profiles to control access to MQSeries Integrator.

For example, to add user JOE to the MQSIUSER group, enter the command:
CHGUSRPRF USRPRF(JOE) GRPPRF(MQSIUSER)

For example, to add user MIKE to the MQSIADMIN group so that he can administer the MQSeries
Integrator product, enter the command:

CHGUSRPRF USRPRF(MIKE) GRPPRF(MQSIADMIN)

AS/400, DB2, IBM, MQSeries, and OS/400 are trademarks of the IBM Corporation in the United States or
other countries, or both. Windows NT is a registered trademark of Microsoft Corporation.

18

Copyright (c) IBM Corporation, 1999. All Rights Reserved.
Copyright (c) New Era of Networks, Inc., 1998, 1999. All Rights Reserved.

MQSeries Integrator for AS/400 and DB2/400, Version 1.1: Installation and configuration information 19

