Demonstrating a Scalable
STP Solution

PERSPECTIVES
helps business and information
systems executives address
critical management and

technology issues.

C5C

Go ahead, we're listening.™ CSC.COM CONSULTING ¢ SYSTEMS INTEGRATION « OUTSOURCING

Table of Contents

Executive Summary
Background
Meeting the STP Challenge
Building a GSTP Prototype System
CSC's Systems Performance Center
Evaluation Objectives
GSTP Workload and Testing Approach
GSTP Workload Tested
Test System Configuration
Test Execution
The Results
Connectivity
System Integration
Batch Processing
Transactional Integrity
Scalability
Performance
Process Management
Operations Management
Conclusions

oO~NOoO R WWWNDNPE

About the Author

Philip Czachorowski is a partner in
CSC's Consulting Group with
responsibility for its

Systems Performance Center.

He brings deep expertise in core
technologies to industry-focused
solutions such as STP.

Executive Summary

The industry initiative to implement straight through processing (STP) is being
driven by the need to reduce cost as much as by the move to T+1. Financial
services institutions (FSIs) are facing four technology inhibitors as they consider
STP: connectivity, multiple technology integration, high-latency batch
processing, and the need for data aggregation and distribution. Global straight
through processing (GSTP) provides an opportunity to fundamentally change
the operating models for each industry participant. Asset managers can
eliminate today's dependencies and achieve significant cost savings. Broker/
dealers can drive down infrastructure costs and ensure their survival.
Custodians can protect their franchise by achieving competitive advantage
through advanced technology and global service offerings.

CSC built a prototype of a GSTP concentrator to demonstrate how STP
solutions can be built with message queuing and message broker technology
using IBM's MQSeries® and MQSeries® Integrator (MQSI). A realistic
simulation of a GSTP workload was implemented and tested under high
message rates to gain an in-depth understanding of the STP design and
performance issues.

Our key findings are:

* Message queuing and brokering products, like MQSeries and MQSI, make it
technically feasible to integrate a wide variety of STP applications, both
internal and external. These products provide the core messaging and
integration services that are key to implementing STP solutions.

* Qur results show that, with the appropriate design, MQSeries and MQSI can
support the largest FSls and their trading volumes. An impressive
throughput rate of over 300 GSTP messages per second with persistence was
attained on an IBM RS/6000 S80 using a single MQSI broker. This volume
corresponds to about ten trades per second. Based on the test findings, cost
effective design strategies were developed for horizontally scaling solutions to
virtually any message volume.

* Simplifying the implementation of STP solutions is critical toward meeting
the business goals of reducing costs, improving business flexibility, and
increasing responsiveness to change. The prototype demonstrated how to
architect and design a STP solution that meets these goals, while still building
a robust system. For example, a dynamic message routing technique was
implemented, using XML, which makes connecting systems flexible and easy.

* STP solutions, with their demanding processing loads and complex
interactions between applications and technologies, pose significant design
risks -- especially around performance and scalability. FSls should use
rigorous techniques, like benchmarking and predictive modeling, to help
them architect systems and choose the appropriate design options. This
evaluation confirmed CSC's belief in using a performance-based approach
for designing and implementing high-volume systems.

Our GSTP testing demonstrates how a scalable STP solution can be built in a
timely and cost-effective manner. Using proven message queuing products
along with the appropriate design approaches, like dynamic routing, can
facilitate the integration of disparate internal and external applications while
minimizing risk. Designing and implementing a flexible architecture can
reduce the deployment, testing, and maintenance costs. Innovative ways to
maintain state data and the feasibility of using transactional integrity with
high-volume workloads were also demonstrated.

GSTP, sponsored by the Global
Straight Through Processing
Association, is an industry-wide
initiative to enhance and speed up the
post-trade, pre-settlement processing of
cross border transactions.
Brokers/dealers, asset managers, and
custodians send trade information to a
central matching engine, the
Transaction Flow Manager (TFM).
The GSTP architecture allows
participants to connect to regional
service providers called concentrators,
who aggregate connections so that each
participant does not have to connect
directly to the TFM. Concentrators
may provide added services to the
participants, such as the ability to
translate messages and calculate fees.

Background
Meeting the STP Challenge

The global financial services industry finds itself operating in one of the most
complex marketplace environments in its history. In addition to new and
unexpected challenges, financial services executives are still wrestling with the
numerous formidable tasks they faced prior to September 11th.

Across the industry, firms are reporting significantly reduced earnings and
preparing for staff reductions, even as they struggle to enact tactical solutions to
rebuild facilities and infrastructure. The environment is such that the SIA has
delayed the implementation date for T+1 to 2005. However, other industry
initiatives to reduce risk and trade failure rates, like GSTP, continue to move
forward. Realizing the potential cost reduction benefits of STP, FSls are
beginning to aggressively leverage automation to address a core business
problem pervasive in the industry today: the unprofitable nature of low-margin,
mature product lines operating on inefficient and costly infrastructures.

The Global Straight Through Processing Association (GSTPA) is leading the
charge to streamline cross-border trade processing. The challenge is to reduce
trade failure rates that, in turn, reduce daily operating risk and associated costs.
One of the chief aims of the GSTP solution is to accelerate the flow of
information between institutional trade partners involved in cross-border
transactions. The unique feature of the GSTPA approach is the notion of
multilateral interconnectivity among participants involved in post-trade,
pre-settlement securities processing using an industry utility that acts as a
real-time matching and enrichment engine.

As FSls evaluate the requirements necessary to participate in this new model,

they must consider the effort required to make the third-party interaction

happen, as well as the changes needed internally to meet the new just-in-time

information flow demands. CSC research has identified four prevailing

technology-related issues that act as inhibitors:

* Connectivity - connecting disparate applications that frequently use
specialized formats

* Multiple Technologies - resolving redundant applications across multiple
platforms, products and message protocols

* High-Latency Batch Processing - converting batch processes to process
messages in near-real time

* Data Distribution/Aggregation - providing a single, consistent, logical view
of data that is physically distributed across multiple platforms

Firms should solve these issues in the context of a best practice future-state

operating model for the front-, middle- and back-office that embodies

these characteristics:

* Core business processes must not be "hard wired" to the application
infrastructure - enabling them to adapt quickly without being constrained
by technology.

* STP operations should only require manual intervention to deal with
exceptions that adaptive rules-based systems cannot resolve.

* Technical architecture principles should provide open-ended integration
and scalability.

Clearly, messaging and workflow technologies are central to the solution. This
white paper focuses on CSC's recent GSTP solution prototyping effort and the
successful results achieved using message queuing and brokering technology
(MQSeries and MQSI).

MQSeries is a software product that
provides reliable messaging services
between multi-vendor platforms using
asynchronous queues. It handles the
underlying communications protocols,
complex network interfaces, and error
handling. Applications use a simple
API set to put and get messages,
which is common to all platforms.

MQSI is a powerful integration broker
that reacts to business events, using
MQSeries to deliver messages. It
enhances the capability of a MQSeries
network by orchestrating the flow

of information based on policies or
business rules. It can enrich and
transform data, dynamically

routing it in the format required

by the recipients.

Messages are processed by a message
broker in message flows. A message
flow is comprised of logical constructs
called processing nodes. IBM provides
a set of nodes, called primitives that
developers may use to implement
application logic. Node types include
Compute, Filter, MQInput and
MQOutput. Additional nodes can be
added by building ‘plug-ins," many of
which are available from IBM

and other vendors.

Business logic is coded in processing
nodes using Extended SQL, ESQL.
Based on SQL, ESQL includes
extensions for procedure logic and
iteration. It is used to access relational
tables as well as to manipulate
message fields.

Message flows execute in execution
groups, which run as operating system
processes. Additional instances of a
message flow execute as threads.
MQSI supports transaction integrity
and advanced features like publish
and subscription services.

Building a GSTP Prototype System

CSC built a prototype of the GSTP concentrator to demonstrate how message
queuing and brokering technology can be used to enable STP. The GSTP
concentrator solution is particularly applicable to the STP workload as it
processes trade and settlement messages and has the same requirements for
messaging, data translation, data validation, transaction integrity, state
management, and processing volumes.

MQSeries was used for messaging and MQSI Version 2 was used for data
integration and workflow management. MQSeries makes it easy to connect to
just about any system, as it is the most widely used queuing software in the
industry. It supports most platforms and offers an extensive set of adapters.
MQSI is a powerful message broker that acts as a message hub. It simplifies
connections between applications, integrates information from databases and
other sources, applies enterprise-defined business rules intelligently, directs the
flow of information dynamically, and transforms data.

CSC's Systems Performance Center

CSC's Systems Performance Center evaluates and tests key products using a
rigorous approach with an emphasis on performance. Architects must
understand a product's performance characteristics and architectural
constraints in order to make sound design decisions. This understanding can
only be gained through real in-depth testing. As a result of its extensive
evaluations, CSC produces best practices, design guidelines, and performance
metrics. Architects use the results to build predictive models when evaluating
design alternatives, and to craft optimal solutions for FSls.

Product testing starts by implementing a real business solution, such as the
GSTP concentrator. A proven, structured methodology has been developed
with a set of supporting tools that are continually refined. High-volume
workloads are executed to test a product's performance under realistic
conditions. All performance tests are executed using standard benchmarking
practices, like having a stand-alone environment, defining the system-under
test, and demonstrating the repeatability of results. The entire testing process is
automated, especially the collection of performance measurements -- which are
stored in a database. CSC's approach ensures meaningful and accurate results.

Evaluation Objectives

The goal of the MQSI evaluation was to:
* Explore how message queuing and brokering products could be used to
implement a STP solution

* Demonstrate how MQSI could be used to implement the GSTP
concentrator functionality

* |earn about the MQSI performance characteristics, especially under
high-volume message processing

* Evaluate and test the MQSI features

The features evaluated and tested were determined, for the most part, by what
CSC needed to implement the GSTP concentrator. Most features were tested,
with a few major exceptions. For example, the publish/subscribe feature was
not tested, nor did we use any third-party adapters. The main focus in building
the GSTP prototype was solving the major STP technical issues.

Performance Stress Testing. Probably the greatest technical challenge
associated with STP is processing complex messages at high message rates in
near-real time. A performance objective of processing 10 trades per second
using the GSTP basic trade scenario was established. Each trade resulted in 33
messages flowing through the concentrator for the workload implemented in
the test, equating to a total of 330 messages per second.

ISO 15022 is the new emerging
International Standards Organization
(1SO) message standard for the
securities industry to allow real-time
electronic exchange of securities
transactions. This standard is notable
for two reasons. First, it converges the
existing standards from the two major
industry standard groups, the Society
for Worldwide Interbank Financial
Telecommunications (SWIFT) and the
Financial Information eXchange
Protocol, Limited (FPL). For the first
time it will link the front- and
back-office operations of the securities
industry. SWIFT is the industry
owned co-operative that provides
secure messaging services mainly for
the back-office transactions and FPL
owns the Financial Information
eXchange (FIX) protocol, used mainly
for front-office transactions.

Secondly, the standard will support
eXtensible Markup Language (XML),
which describes content independent of
physical format or presentation. Data
elements are identified by 'tags' and
are contained in nested structures that
conform to a set of parsing rules for
open access. XML is being widely
adopted as the standard protocol for
exchanging information electronically.
1SO 15022 XML is defining the
standard tags and business rules for the
securities industry that will encompass
the current standards.

Asset

Manager

Broker/
Dealer

These objectives were selected because 10 trades per second is considered the
high end for trading systems and 330 messages per second is considered a high
message rate for persistent messages with MQSeries and MQSI. Our goal was
to attain this processing volume using a single MQSI broker.

This prototype is an approximation of a GSTP workload selected to demon-
strate high-volume message processing and the feasibility of using MQSI for
STP solutions. The distribution of message types may not reflect actual pro-
duction systems, as messages per trade, message sizes, and processing may vary.
The basic trade process implemented is only one of many trading scenarios.

Innovative Technical Capabilities. Several innovative technical capabilities,
using MQSeries and MQSI for STP processing, were demonstrated in this
implementation. Areas of particular interest were formatting messages,
maintaining transaction integrity, preserving state data, and routing messages.
For messaging, XML was used extensively, as the industry is clearly converging
on ISO 15022 XML as the standard.

Transactional integrity is extremely important for the securities industry and is
mandatory in most financial systems. The ability to demonstrate the feasibility
of using persistent message queues and distributed units of work for
high-volume workloads was highly desirable. These features are the basic
building blocks for implementing transactional integrity in a messaging system.

Keeping state is important for process control and to be able to offer enhanced
services. Database processing was incorporated into the message flows by
updating a state table and validating fields against reference tables.

The primary role of the concentrator is to route messages between a large
number of participants and the TFM. CSC wanted to demonstrate its ability
to build a routing scheme that was robust and flexible but inexpensive

to maintain.

GSTP Workload and Testing Approach
GSTP Workload Tested

CSC implemented a prototype of the GSTP concentrator using the basic trade
message. As shown in Chart #1, the concentrator manages the message flows
between the participants and the TFM. It provides communication, data
translation, data enrichment, and enhanced services. The three participants --
asset managers, broker/dealers, and custodians -- send messages through the
concentrator to the TFM via the Swift Alliance Gateway. Only the concentrator
logic was implemented. Test drivers were used to send and receive the messages
flowing from and to the participants and the TFM.

Chart #1: GSTP Logical Processing Flow

Concentrator

Message

Flows

_> r

B S .
< LT Swift
— |y Alliance SWIFTNet TFM
- Gateway
—_— LI (SAG)
-

A

_>

-

B

—|_|—Queue

Hardware Products Used

IBM RS/6000 S80
12 CPUs (450MHz RS64 111)
6 GB memory

IBM ESS Model E20
1.7 Terabytes of total disk
96 18.2 GB disks

Software Products Used

MQSeries
\ersion 5.2

MQSI
\ersion 2.0.1
\ersion 2.0.2

DB2 for NT
\ersion 7.1

The basic trade process was chosen because it is most representative of the trade
processing workload. The workload equivalent to 33 message types in the
GSTP basic trade process was tested for the evaluation, as shown in Chart #2.
Message flows are for the major trading functions of notice of execution,
allocation, net proceeds, and settlement. Seven messages flow from the
participants to the concentrator and 26 messages flow back to the participants.

Chart #2: GSTP Basic Trade Message

Message flow implemented for the evaluation, based on GSTP processing.

Message Flow Classification
== Notice of Execution ™= Net Proceeds TEM
mm Allocation mm Settlement
Global Asset Broker/
Custodian Manager Concentrator Dealer

==

MQSI message flows were coded to process and route the GSTP basic trade
messages through the concentrator. Block order notification (BON),
notification of execution (NOE), and notification messages were implemented
to represent the range of workloads. The message flows for the other 30 message
types were cloned from the first three, based on comparable workloads.

The message flow processing included field validation, data transformation,
error checking, database accesses, and message routing. These message flows
simulated the approximate workload and functions envisioned for the
processing in the concentrator by message type. Using the GSTPA and

I1SO 15022 message specifications, a range of edits was implemented
appropriate for the three message types. The BON and NOE message flows
access five database tables. TFM notification messages access fewer database
tables and validate fewer fields but do more complex message routing. All
message flows insert a row to a state table to demonstrate how process
management could be implemented. Message sizes ranged from 1 KB to

2 KB with approximately 20 fields per message.

Test System Configuration

The concentrator was deployed, implemented as MQSI messages flows, on a
12-way RS/6000 S80 as shown in Chart #3. The message workload was driven
from two 4-way NT systems, one serving as the participants and the other as
the TFM. The S80 was the system under test.

MQSeries. MQSeries was installed on all three systems for transporting
messages between systems, using distributed queues. For messages flowing
from the participant to the concentrator, one local queue was defined for each
message type per participant type that mapped to a single queue by type on the
concentrator. For messages flowing from the TFM through the concentrator to
the participants, a single queue for each message type was defined that mapped
to separate queues by message type and participant on the participant system
enabling the testing of queue configurations for both aggregating and fanning
out messages.

Chart #3: GSTP Test Configuration

DB2

Ref. Ref.
Tables Tables

—l_l_ MQSeries Queue NT 8-Way A

Y

Concentrator

Asset *

Manager LI Message
Flows

—lr Swift
Broker/ * —_— * Alliance
LT

Gateway
(SAG)

Dealer L >

Custodian * e]

IBM RS/6000 S80
NT 4-Way 12-wAY NT 4-Way
with IBM ESS E20

Two queue managers per NT server were installed to service the participant and
TFM message queues. Under actual circumstances, the participants would be

spread over many servers with each server having its individual queue manager.
The required message volumes were still attained with the four queue managers.

The concentrator was deployed in one MQSI broker with one queue manager.
Multiple brokers could be deployed to support higher message volumes.

Test Drivers. To drive the message workload, the IBM sample program
(MQSIPUT?2) was modified and used to insert the messages outbound to the
concentrator. A Java program, MQSIARM, was written to read the messages
inbound from the concentrator. MQSIARM used the Java Message Service
APIs to interface with MQSeries. These drivers included diagnostic code to
collect performance statistics as well as configuration options to change the
message rate. Messages were generated by a Java program using templates
defined in XML. Chart #4 shows the test flow with message generation, test
specification, test execution and performance data collection. All tests were
defined in a database.

Both drivers were deployed on each NT system, one driver executed per
message queue. Each driver was configured to generate message rates
proportional to the mix of the basic trade messages by type. XML was used as
the format for most of the messages with one fixed field implemented to
compare XML and fixed field. Persistent message queues and transaction
integrity were used in keeping with the financial nature of GSTP processing.

DB2. The application database was installed on a separate 8-way NT system
using DB2 Version 7.1. Message flows accessed this database to validate fields in
the message and save the state data. Each message flow execution accessed from
one to five rows and inserted one row for the state data. The high message
volume caused a corresponding high volume of database inserts that stressed
DB2. We found that after 300 inserts per second, the insert time was
approaching 250 milliseconds. Additional tuning, like using table partitioning
with DB2 Extended Enterprise Edition (DB2 EEE), could alleviate

this contention.

Test Execution

Tests were executed in a stand-alone system. The system was carefully
reinitialized between each test run to ensure repeatable and consistent results.
Tests were executed for three to five minutes, with results captured only after
the system reached a steady state. The message flows were not primed, as it was
discovered that they took as much as 30 seconds to start up, thus skewing

the results.

Most of the testing was done with MQSeries Version 5.2 and MQSI
Version 2.0.1. Toward the end of the testing, MQSI Version 2.0.2 became
available and selected tests were rerun to compare the performance
between releases.

The system was extensively instrumented to capture performance data from
MQSI, UNIX, DB2, and the test drivers. This data included CPU utilization,
1/O rates, queue depth, response time, and DB2 statistics. All performance
results were saved in a DB2 database. Each test run was assigned a unique 1D
that linked a specific test to its description and the performance results.

Processing times were measured for the execution of the MQSI message flows
by having each compute node insert the current timestamp into the output
message. MQSIARM extracted these timestamps and inserted them into the
performance results database. These timestamps were used to calculate the
response time for each compute node in the message flows.

Performance metrics were derived for key MQSI operations by building a set of
message flows with varying workloads. Processing times were measured for
individual nodes by using the IBM Execute Time plug-in. All measurements
were also stored in the performance results database. These message flows were
run as a single task.

:
#

- XML
Config Data Template

N

Create

essage

Messages

t
|

Chart #4: Test Drivers and Performance Monitoring

Define Tests
and Config.

Analysis
and
Reporting
of Results

* Initiate A A

Test

N

Put Messages Get Messages

1r —— +ir

Message Flow

The Results

Test results were analyzed in the context of the GSTP system, or in general,
around the issues faced when implementing a STP solution. The goal was to
develop practical, objective performance metrics and best practices to guide
designers who would be using message queuing and brokering tools, and in
particular, MQSeries and MQSI.

The results are documented under the following categories:
Connectivity

Systems Integration

Batch Processing

Transaction Integrity

Scalability

Performance

Process Management

Operations Management

Except where noted, all results were obtained in testing with MQSI
Version 2.0.1.

Connectivity

Historically, FSIs have built separate, independent, back-office and front-office
systems aligned by product area, service offering, or application. Systems were
frequently connected point-to-point, making them dependent on each other
and expensive to connect and maintain. Further, these systems were often
implemented using different technologies, making it particularly challenging to
connect them. The GSTP prototype outlined in this paper used a combination
of MQSeries and MQSI services to connect the participants and the TFM to the
concentrator in a hub-and-spoke topology. This topology allows the systems to
inter-operate freely while retaining system autonomy. Simplifying network
configuration and maintenance was an additional objective. MQSeries provides
the physical transmission services while MQSI supplies the message broker and
application routing services.

Hub and Spoke Topology. The hub-and-spoke topology has the advantage that
every 'spoke' can communicate with every other 'spoke’ via the hub without
having to build individual point-to-point links. Chart #5 shows the difference
between a point-to-point network and a hub-and-spoke network. The
participants and TFM were the 'spokes’, while the concentrator was the 'hub'.
MQSeries channels and queues were used to physically connect the participants
and TFM, and to accomplish the physical message routing. The asynchronous
message queuing model used by MQSeries provides integrity without tightly
coupling systems within a single transaction unit of work.

Chart #5: Network Topology
Hub-and-spoke topology is advantageous in that each node only has to con-
nect to the hub and then it can communicate to all other nodes.

Point-toPoint Hub-and-Spoke

Appl. Appl. Appl. Appl.
1 4 1 4
Appl. Appl. Appl. essage Appl.
2 5 2 Broke 5
Appl. Appl. Appl. Appl.
3 6 3 6

An adapter is a piece of code that
transforms a representation of one
business function to another. Adapters
sit between the message broker and the
application, and are usually
application specific. An adapter may
be used between the input application
and message broker or between
message broker and the output
application, or both.

A message broker acts as a "hub",
sitting between all the participating
applications. It manages the exchange
of information between applications,
by routing messages, transforming
formats, and applying rules. Message
delivery is usually provided by
messaging software through
asynchronous message queues.
Messaging can be bi-directional or
follow a publish/subscribe protocol.

MQSI is the key component in the hub topology. It serves as a message broker
to transform and route messages from one system to another, eliminating any
direct dependency. The actual routing is performed by the application logic
built into MQSI, using the underlying MQSeries queues for the physical
message transmission. Applications systems can connect to other systems
without having any knowledge of the physical network or the other system.
Translation and routing logic was implemented in the MQSI message flows.

Dynamic Message Routing. In the prototype, it was desirable to dynamically
route messages between applications to minimize the need to hardcode queue
names in the message flows. CSC envisions that GSTP or STP solutions could
have hundreds or even thousands of queue names. A dynamic message routing
scheme was employed by using a combination of a routing table and the
MQSeries distribution list. The routing table contained a mapping of each
participant agent ID and function to destination queue manager name and
gueue name. A compute node was used to look up the queue name in the
routing table and place it in the destination list. A state table, which was
updated each time a message was processed for a trade, was also implemented.
Although the logic was not employed, this state information could have been
used in the routing of messages.

The routing table keeps the routing data independent of the message flows, for
easy management. Maintenance is performed by updating the routing table,
which can be accomplished on demand. The only disadvantage to using the
routing table is the cost of creating the table look-up. Allocating a large DB2
buffer pool allows the routing table to be kept in memory. The table used in
CSC's GSTP prototype included 3,000 entries. Performance was acceptable
even with the table look-ups.

A network was simulated as if there were 100 physically separate broker/dealers,
100 asset managers, and 10 custodians - even though physically all the
participants were on one NT system. Two major options were explored for
configuring message queues: 1) having one queue per participant for all
messages, and 2) having a separate queue per participant per message.

MQSeries Large-Scale Network Configurations. MQSeries offers a number of
options for configuring large-scale networks that can simplify the definition

and management of the queue objects. Using the cluster feature (a grouping of
gueue managers) can reduce the number of objects to define and administer.
Queue managers can be linked together in a hierarchy of smaller networks with
gateways for passing messages through the system. With careful design, this
approach can minimize the number of actual physical connections and
MQSeries channels. It allows messages to be sent indirectly to queues without
having to define the queue names on the local system. A complex network was
not implemented but there is great potential for using MQSeries in this manner.

External Gateways. For STP environments, MQSeries and MQSI should
provide an effective and flexible solution for connecting internal systems. This
same approach may also be used when connecting to external systems, although
other interfaces, like SWIFTNet, may also be required. Adapters are available to
easily integrate MQSeries and most other protocols making for seamless
communications. For example, SWIFT offers a MQSI host adapter for the
SWIFT Alliance Gateway. In the CSC prototype, messages intended for the
TFM were placed in a queue that --in a production system-- would have been
passed to the SWIFT Alliance Gateway, via the SWIFT adapter. The TFM
processing was outside the system-under-test.

System Integration

FSIs typically integrate systems by building custom code -- which is expensive
to create and maintain. The key to effective system integration is translating
messages between systems so that all systems can interface to all other systems.
Without an integration tool, each application has to be aware of the specific
interface of the connecting application and be able to translate messages
between systems.

With MQSI, system integration occurs at two levels: adapters and message
flows. Adapters interface between an application and MQSI, passing data back
and forth without having to change the application to access MQSI directly.
Adapters are usually specific to an application or technology, and encapsulate
the business function. Message flows are used to transform a message from one
format to another as it flows through MQSI.

Both levels of integration are often required. Adapters move information in
and out of MQSI, eliminating the need for sending and receiving applications
to interface with MQSeries. MQSI message flows transform and route
messages.

Adapters. MQSeries and MQSI work with an extensive set of adapters. These
range from adapters specific to an application, such as SAP, to adapters specific
to a technology (i.e. DB2), see Chart #6.

CSC's prototype did not employ an adapter. However, in actual circumstances,
participants would have acted as the interface between the local participant
systems and MQSeries, to transform messages between the application-specific
format and XML. On the TFM side, CSC envisioned the use of an adapter like
the SWIFT Alliance Gateway MQSeries adapter to interface to the SWIFTNet.
This adapter translates messages between XML and the SWIFT message format
by calling the SWIFT APIs.

10

Chart #6: Use of Adapters to Interface with MQSI

XML XML

Swift Adapter

Swift
Alliance
Gateway
(SAG)

Asset Message Flows Put
Manager Msg.

Get . Save
Msg. > Valid |->»] State —» Trans @

.,

Put
Msg.

N

[L[| Error Queue

Concentrator

XML

Message Flows. Once the message is in MQSI, message flows should be used to
transform messages between input and output formats. As a message broker,
MQSI has a full range of data transformation and enrichment services that can
be implemented through ESQL in message flows. Data being processed by
message flows is kept in a canonical format, which bridges the sending and
receiving formats. This architecture provides an open platform for any new
system to immediately 'plug in', and use the same transformation code --

as long as the field names are the same.

This capability was demonstrated by having the same message flows process
both a fixed-field message and a XML message. Fixed-field messages require
that the appropriate message descriptors be defined.

XML. Generic XML was used for most of the messages implemented for the
GSTP prototype, as XML is the direction set by SWIFT and FLP with the
ISO 15022 XML standard. By doing this, the unnecessary work of having to
define message descriptors was avoided and a set of standard field names
was established.

XML will work only if all the applications agree on the field names and the data
semantics. In the CSC prototype, it would be the task of the adapters to
tranform the messages from the application specific format to XML.

XML can be predefined in MQSI and it is very easy to manipulate - an
advantage that message formats do not enjoy. However, document type
definitions (DTD) are not currently used by MQSI, requiring that the message
formats be validated in the message flow. IBM will support DTDs in a future
release. During this evaluation, CSC edited all fields in the message flows using
compute nodes with ESQL statements.

Data Transformation. A range of transformations in message flows was
tested - from simple translations of message formats to changing the semantic
content of messages. Translating from one message format can usually be
accomplished by just moving fields from the input to output message. In this
prototype, a fixed-field message was converted to XML. More complex
transformations can be made via ESQL. With ESQL, DB2 tables were accessed
to add content to messages. Performance can be impacted depending on the
number of fields being transformed or the amount of messages

being formatted.

Data Validation. Message flows can be used to validate fields. These

validations can be coded as ESQL IF statements or as filter nodes. Using SQL,
database tables can be referenced to validate fields against a database.

11

All three approaches were tested and findings indicated that each has unique
uses. For example, the IF statement is best for simple edits, as they may be
contained within one compute node. The filter node should be considered
when a potential edit would change the message flow. Filter nodes are limited
to a binary decision, making the implementation of multiple decision paths
challenging. Edit errors were stored by adding them to the output message.
This approach allowed continuous editing of fields, even in the event that an
error was found.

Data Enrichment. Message flows can use ESQL to add information or to
‘enrich’ the data. An example of data enrichment is replacing a code, such as a
product code, with the full name. Values may be hard coded within the ESQL
or retrieved from a database. Both options were tested.

Business Logic. Beyond transforming data, almost any business logic can be
implemented in ESQL. Nearly any processing can be implemented with the
IBM supplied primitives. Although ESQL is fairly flexible, large sets of code can
be difficult to follow and should be structured. MQSI has limits on the number
of EQSL lines possible in a message flow based on the repository column

size definition.

Reusable Code. In coding message flows, findings indicated that some func-
tions were common to many flows. For example, many fields were processed by
multiple message flows, necessitating coding the same edits for each flow.

CSC recommends using sub-flows as a means to reuse code. A sub-flow is a
self-contained grouping of message nodes that can be linked into any number
of message flows as an entity. Thus, a function only has to be coded once for
reusability. Using sub-flows increases the number of compute nodes, which can
negatively impact performance.

Sub-flows should be used as much as practical to simplify the coding effort and
minimize maintenance. Maximizing the use of sub-flows requires that message
flows be designed before they are coded. Designers must be aware of the
performance impact of increasing the number of compute nodes and design
sub-flows accordingly. Having too many compute nodes can severely

impact performance.

Changing the ESQL in a sub-flow requires that all message flows be re-deployed
to enable the change.

Error Handling. MQSI provides a range of options for trapping and handling
errors, including: using the filter node to redirect the message flow; and using
the node connectors. Before coding message flows, CSC designed a common
approach for handling errors. Integral to this approach was establishing a set of
error queues where all error messages would be routed, depending on the

type of error.

In addition to these options, MQSI offers a way to throw exceptions and

provides a trace facility. The trace facility was used extensively to debug
ESQL errors.

12

Message Flow Architecture. Message flows can get fairly complex with a large
number of processing nodes, as well as lengthy ESQL procedures. Just like any
application system, designers should establish a message flow architecture to
guide the development and ensure a structured, efficient design. Performance
will usually be a major factor in message flow architecture and design.

Elements of the architecture include:
Message flow structure

Editing techniques

Node usage guidelines

Code reusability

ESQL coding guidelines

Message queue names

Database interfaces

Error processing

Batch Processing

One of the greatest challenges in implementing STP is the ability to interface
with legacy batch systems in the back-office. These systems will have to be
changed to process messages in near-real time and to commit work at the
transaction level. Since rewriting all of the systems at one time is usually
unfeasible, IT professionals will have to find practical ways to modify these
systems to benefit from STP.

Although custom solutions will have to be crafted for each specific batch
system, there are some general approaches that will serve as a starting point.
CSC did not test these with our prototype.

The approach for converting a batch program to near-real time processing will
vary depending on whether the batch program is reading or writing messages.
For programs that read messages from a file, the program will have to be vastly
changed to be interactive and immediately process messages as they arrive.
Arrival rates will be random. One approach is to implement a message driver
that waits on the input queue and can immediately read a message when
received. Programs will have to be modularized and callable so that the message
driver can call the appropriate code and process the message as an independent
unit of work. Multiple message drivers may be needed to ensure near-real time
processing depending on the message arrival rate.

For programs that write messages to a file, one approach may be simply to
replace all the write calls with calls to the messaging queuing system. These
calls may have to be achieved as a separate MQSeries unit of work to ensure
that the message is immediately transmitted.

In any of these approaches, MQSI message flows or an adapter could be used to
transform data formats.

Transactional Integrity

Due to the financial nature of the STP applications, the processing of critical
messages requires transactional integrity. All the GSTP messages were
processed as transactions to demonstrate the feasibility of using transaction
integrity for high message volumes.

MQSI uses underlying MQSeries services to provide transactional integrity and,
in a traditional sense, is acting as a transaction manager. The scope of a
transaction is the message flow-- from receiving the input message to

writing the output message. Transactional integrity requires that all message
queues be defined as persistent. The failure of a message flow results in having
all the work rolled back and the input message remaining on the queue.

13

The greatest impact of executing messages as transactions is the overhead
incurred by having persistent queues. Throughput numbers show that, with the
appropriate tuning of MQSeries and the message queues, high message rates are
still practical although will be limited by the 1/O rate of the persistent queue.

XA. Extending the unit of work to include an external DBMS requires the
X/Open XA interface, in addition to transactional integrity and persistent
queues. The XA interface is an industry standard that allows multiple resource
managers, like a DBMS, to coordinate update processing in a single unit of
work using the two-phase commit protocol. This ensures that all changes
either all fail or all complete.

For MQSI, database changes will be under the same unit of work as the message
gueue changes, with MQSI acting as the unit of work coordinator. If either the
message flow or database fails, both the message queue and the database
changes would be backed out together. XA would be used when the message
gueue content has to be coordinated with database changes.

XA was tested using DB2 as the DBMS. XA had a significant impact on
throughput, cutting messaging rates by up to 40% in some tests. From an
operational perspective, XA introduces more complexity, which makes it more
difficult to manage.

Use of Transactional and XA Options. CSC recommends using MQSI
transactional integrity only if needed as it does increase processing time. With
the appropriate tuning, the overhead of using transactional integrity is
manageable, as demonstrated by attaining the target GSTP workload of 330
messages per second. Using transactional integrity requires the use of
persistent queues.

Using XA adds significantly to the overhead of the MQSI transaction processing
and its use should be limited to situations where there are no other design
alternatives and where performance is acceptable. Not only does the use of XA
significantly reduce throughput, it also greatly complicates system
administration and management. The performance impact of using XA is
covered in the next section.

Scalability

Given the volatility in trade volumes, STP systems will have to scale to provide
consistent response times, even as transaction volumes abruptly increase.
Although they execute in near-real time, these systems still require a guaranteed
level of service in regard to response time.

A comprehensive set of tests was executed to understand the scalability of
MQSI in preparation for the 330 message per second GSTP workload. These
tests benchmarked the performance characteristics of MQSeries and MQSI as
options were tuned and application code was changed. Scalability was assessed
by measuring the change in throughput and response time as the message rates
were increased. All tests were conduced using a single MQSI broker. With the
appropriate message design, additional brokers could be deployed to
horizontally scale a workload.

These results must be understood in the context of the workloads tested, as
factors like message size, database accesses, and message flow logic will affect
performance and throughput.

Tuning MQSeries. The first hurdle in driving high message rates through MQSI
is tuning MQSeries so the queue manager can deliver the desired message rate.
CSC focused its efforts on tuning MQSeries using persistent queues. The
tuning effort for non-persistent messages is fairly straightforward.

14

Using persistent message queues complicates the MQSeries tuning effort due to
the fact that the queue, queue manager, logging parameters, and application
queue processing must all be configured appropriately for the expected message
rate. Using MQSeries V5.1 was crucial to increasing the persistent logging rate
as IBM increased the log buffer size and implemented a kind of ‘group commit'.

From an application perspective, the MQSeries connect, open, put, and commit
options should be optimized. In particular, multiple puts should be processed
per open and connect. Message size affects maximum message rates, especially
as messages exceed 4KB. The messages tested in the GSTP prototype tended to
be smaller than 4KB and there was no need to optimize for message size. The
log file can be a huge bottleneck, constrained by the physical I/O rate. Findings
indicated that IBM's Enterprise Storage Server (ESS), with its large cache, can
substantially increase 1/O rates. The message batch size was carefully matched
with the application insertion rate to optimize processing per MQSeries
synchronization point.

Tuning the message queues and the MQSeries is an iterative approach because
of the interaction of parameters and the dynamic nature of a queued messaging
system. MQSeries and MQSI also affect each other, sometimes in unexpected
ways. Message queues must be monitored in order to locate possible
constraints.

MQSI Message Flow Execution. MQSI offers three major configuration
options for executing message flows: execution groups, message flows, and
multiple instances. Chart #7 shows how these execute from an operating system
perspective. Each of these options scales differently, and each has a set of
advantages and disadvantages. CSC spent considerable time testing these
options to understand how to configure MQSI and MQSeries for optimal
response time and throughput depending on workload. The IBM 12-way S80
allowed for extensive scalability testing.

Chart #7: MQSI Execution Architecture
Execution groups are implemented as operating system processes. Message
flows and instances execute as threads.

Message Flow D
O

Execution Group Message Flow |:|

Message Flow |:|

Message Flow
Execution Group Execution Group

Execution Group

Message Flow I:l

Execution Group

MQSI MQSI MQSI

Multiple Multiple Multiple
Execution Groups Message Flows Instances

Execution groups scaled best, with message flows second, and multiple instances
last. The difference in scalability reflects the dispatching efficiencies and
contention within MQSI and the operating system resource usage. Execution
groups are implemented as operating system processes-- require more memory
while instances are implemented as operating system threads and use less
memory but more CPU.

15

Although multiple instances performed the worst of the three options, it has the
advantage of being the easiest to deploy and manage. Chart #8 summarizes the
results. In general, CSC recommends using multiple instances, with its ease of
deployment, because testing indicated that the throughput rates were
reasonable up to 20 or 30 instances. If performance is an issue, multiple
execution groups are recommended.

Chart #8: Comparison of the Scalability of Execution
Groups, Message Flows, and Instances

Execution groups scale best but are more difficult to manage. Multiple
instances are preferable unless performance is an issue. Scalability depends
on the message flow workload (tests were executed on a single MQSI broker).

250

@ 200
£
("2
S
€ 150
(%]
z
‘S 100 - Multiple Instances
3 == Multiple Exec. Group
a 50 - u
g = Multiple Mess Flow
Z

0 T T T T T T

0 2 4 6 8 10 12 14

Number of Executions Groups, Message Flows or Instances

Throughput can be increased by adding more execution groups or instances, as
long as resources are not constrained. In CPU-intensive message flows, the
processors will be the constraint, limiting the scalability. In message flows with
external calls, like to a database, the constraint may shift to the external system.
Because these message flows are not as CPU-bound, they may be able to scale to
higher workloads as long as the external resource does not become a constraint.

Message flow workload has a major impact on message throughput. ESQL is an
interpretive language and can be CPU-intensive depending on the number of
statements, fields, and nodes. Architects must consider the impact of CPU and
external resource usage on throughput rates and scalability. Message flows that
will have high message rates must be carefully designed to minimize CPU usage.

Impact of Persistent Message Queues. Persistent message queues add
signifcant overhead to MQSeries because each message has to be physically
logged as part of the unit of work. The message rate for inserting messages is
dependent on the physical 1/O rate that messages can be logged. Considerable
tuning of MQSeries was needed to optimize this rate. The IBM ESS disk with
its immediate write feature was paramount to this process.

Chart #9 compares the message throughput with and without persistent queues,

using a modified message NOE message flow and one queue manager. The
state table insert was removed to reduce database contention.

16

With 30 execution groups almost 525 messages a second were achieved
compared to about 425 messages a second with 30 instances. The comparable
message rates with persistent queues were about 400 messages per second with
30 execution groups and about 350 messages per second with

multiple instances.

Chart #9: Comparison of the Scalability using
Persistence

The use of persistent queues decreased throughput rates for both execution
groups and instances. With all four tests, throughput rates increased up to 30
threads. Scalability depends on the message flow workload (tests were execut-
ed on a single MQSI broker).

600
550
/
¢ 400 ————
g 300 T —
£ 250
2 200 A Execution Groups, Persistence
g 150 / == Multiple Instances, Persistence
g 100 =— Execution Groups, Non-Persistence
2 50 - / == Multiple Instances, Non-Persistence
0 T T T T T T T T T T T T T T II

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Execution Groups or Instances

Throughputs can be scaled beyond the logging constraint by adding another
broker and a queue manager. Since each queue manager has its own physical
log, the 1/0 rate is effectively doubled.

These impressive message rates demonstrate that the processing capacity of
MQSI is suitable for the GSTP workload and STP-like applications. Even with
persistent queues, a rate of over 350 messages per second was attained. High
message rates, such as these, depend on the message flow workload and require
careful tuning of both MQSeries and MQSI.

Impact of XA. The use of XA decreased message throughput by 35% to 40%, as
illustrated in Chart #10. The peak message rates with XA were 123 messages
per second at 30 instances compared to 191 without XA. Still, attaining a
processing rate of 123 messages per second is impressive and would support
many applications. These tests were run using the NOE workload. The
message flow inserts a row in the state table, which caused some contention and
a flattening of the scalability. The average CPU utilization on the 12-way

S80 was 35% for 30 instances.

17

Chart #10: Comparison of Scalability using XA
XA significantly reduced throughput by up to 40% with the NOE Message
Flow (tests were executed on a single MQSI broker).

250
@ 200
o
§° /
& 150
g /
/
« 100
o
€ / — NISC with XA
Z
0 T T T T T L] T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Instances

Achieving the Target GSTP Message Volume. CSC achieved the targeted
processing volume of 10 trades per second with the GSTP workload, which was
approximately 310 messages/second. This achievement demonstrates the
suitability of using MQSI for GSTP and STP. The message volume was
constrained by database contention on the insert processing of the state table.
As the S80 was only about 50% utilized, a higher message rate could have been
attained by easing the insert contention. Based on scalability testing, CSC
would expect that rates in excess of 400 messages per second would be possible
before having to deal with constraints in MQSeries and persistent logging.

Table #1 summarizes the results by queue name. The participant-side message
flows are more process intensive, with more complex validations and database
selects. The TFM-side message flows do less processing and database selects but
use the routing table to achieve dynamic message routing. Queues for all
messages are persistent and all message flows update the state table.

Each message type was placed in its own execution group with 20 thread
instances defined per group. A total of 13 execution groups and 260 thread
instances were used. The high number of instances was required due to the
elongated elapsed times caused by the database insert contention. Without the
database insert contention, the GSTP workload could have been processed
easily by 30 message flows as demonstrated by Chart #9. The high number of
inserts was causing a wait time of almost 250 milliseconds per insert.

Based on scalability testing, CSC found that 20 thread instances per execution

group yielded reasonable performance while minimizing the number of
execution groups to deploy and manage.

18

Table #1: Summary of the High-Volume GSTP Test

Over 300 messages a second with persistence were achieved with an average
elapsed time less than .250 seconds. This equates to about 10 GSTP trades per
second (tests were executed on a single MQSI broker).

Number Target Actual
of Message Message Average
Message Message Exec. Message Test Rate per Rate per Process
Queue Types Groups Flows Instances Drivers Second Second Time
BON 1 1 1
NOE 1 1 1 20 1 10 9.92 0.248
ALLOC 1 1 1 20 1 10 8.98 0.222
NP 1 1 1 20 1 20 17.69 0.209
SetDet 1 1 20 1 20 17.76 0.245
Part Total 5 5 5 100 5 70 64.27
Success 5 2 2 40 7 70 75.29 0.225
TMS 1 1 1 20 2 20 19.92 0.233
All_Not 1 1 1 20 2 20 20.05 0.228
Stat_Chg 5 2 2 40 5 100 78.49 0.167
NP MS 1 1 1 20 3 30 30.20 0.224
SDS 1 1 1 20 2 20 20.25 0.224
TFM Total 14 8 8 160 21 260 244.20
Total 19 13 13 260 26 330 308.47

Scaling Beyond One MQSI Broker. MQSI workloads can be scaled over more
than one MQSI broker if designed appropriately, see Chart #11. CSC designed
the GSTP prototype to be scale horizontally by storing state data in a DB2
database. This architecture made the state data independent of MQSlI, enabling
the message flows to be spread over multiple MQSI brokers, each accessing the
common state table. Each broker could be deployed on its own server, if
needed, given that they all connect to the same state table. Additional brokers
could be added providing that the DB2 database was not constrained. If the
database became a constraint, it could be moved to a larger server or
partitioned using DB2 EEE.

A collection of brokers could be deployed as a MQSeries cluster to have
MQSeries manage the workload distribution. Spreading a message workload
over a cluster provides some degree of redundancy and fail-over capability,
which would be recommended for a financial application.

19

Chart #11: Deploying Multiple MQSI Message Brokers
Workloads can be scaled over multiple MQSI brokers, each accessing the
same database for state information. Brokers may be installed on multiple
computers.

Message

Queue Queue

Broker

!

Database

!

Message

Queue Queue

Broker

Scaling Improvement with MQSI Version 2.0.2. Both MQSI Version 2.0.1 and
Version 2.0.2 were tested. In Version 2.0.2, IBM made significant performance
enhancements, especially in message parsing and node processing. The
throughput of the modified NOE workload increased by 42% for one instance
thread to 32% for two threads, and only 8% for 30 threads. See Chart #12 for a
graph and Table #2 for percentage improvement in throughput. The improved
throughput decreases with volume because of the inefficiencies of having

S0 many threads.

Chart #12: Comparison of MQSIV2.0.1 and V2.0.2
Throughput Rates

Performance was significantly improved in MQSI VV2.0.2 resulting in a mod-
est increase in the throughput rates, depending on the message flow workload
(tests were executed on a single MQSI broker).

400

350 e
g 300 //
% 250 —
Paop——
s 150 y
E 100 == MQSIV2.0.1 Persistence [
§ 50 1 = MQSIV2.0.2 Persistence [

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Instances

20

Table #2: Percentage Throughput Improvement between
MQSIV2.0.1 andVv2.0.2.

The percent of throughput improvement decreases as the number of
instances increases because of contention between instances. All messages
were executed with persistent queues.

Msgs./second with Msgs./second with Percent
Instances V2.0.1 V2.0.2 Improvement
42.66%
59.00 77.92 32.06%
131.73 152.43 15.71%
10 229.39 258.76 12.80%
20 321.50 360.03 11.98%
30 344.75 372.63 8.09%

Even more significant is the decrease in CPU time as measured in average CPU
utilization over the running of the test. CPU time decreased by an average of
18%. See Table #3 for the percentage of CPU improvement for each test.

Table #3: Comparison of CPU Utilization between MQSI

Vv2.0.1 and V2.0.2.
Average CPU utilization is significantly reduced with V2.0.2 showing that
although throughput increases are modest, VV2.0.2 uses less CPU.

CPU Utilization CPU Utilization Percent
Instances withVv2.0.1 withVvV2.0.2 Improvement
-16.67%
11% 9% -18.18%
22% 18% -18.18%
10 42% 35% -16.67%
20 69% 57% -17.39%
30 76% 58% -23.68%

Performance

The GSTP message flows were designed to perform in near-real time, which is a
key requirement of GSTP. STP message processing can be challenging due to the
complexity of format transformations, data validations, data enrichment,
message routing, and database accesses.

Response time is comprised of CPU and wait time. In MQSI, CPU time is most
impacted by ESQL, message size, and the number of message nodes. Although
a powerful language, ESQL can be CPU-intensive as it is interpreted. Message
size affects CPU because of the cost of parsing and navigating the internal data
structures. This cost is dependent on the number of fields and nested levels.
Messages with 'deeper’ structures are more efficiently accessed than those with
‘wider' structures. Since messages are only parsed once per message flow, it is
most efficient to have more nodes per message flow.

Synchronous calls to external resources, like a DB2 database, 1/0 or the message
queue causes a wait in MQSI processing. MQSI minimizes the database
processing time by enabling connection pooling and reusing DB2 plans. In the
GSTP workload, the database itself represented the most significant challenge
because of the heavy insert contention, which significantly elongated elapsed
times. Under full load, average elapsed time for all the GSTP message flows was
about .250 milliseconds, still acceptable for near-real time processing, but 10
times longer than the average for a single instance.

21

Chart #13 shows an example of the elapsed times by compute node, showing
the impact of the database processing. The average elapsed time for the general
information (GI) node, which does not access the database, is fairly constant
with the processing rates and number of instances. The elapsed time for the
trade node, which does five selects, increases more. The settlement node, which
inserts a row, more than doubles as the message volume increases, because of
the DB2 insert contention. Total processing time is measured from the
beginning of the message flow processing to the last compute node.

Chart #13: Elapsed Time of Compute Nodes
NOE message flow with one execution group and 1 to 30 instances. The peak
message rate was 191 messages per second.

Avg.Total Processing Time
0.06 71— Avg. GI Node Time - No SQL
== Avg.Trade Node Time - Selects
== Avg. Settle Node Time - Insert

0.05

0.04
0.03 /4
0.02

0 T T T T T T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of Messages/sec

Number of Instances

Design for Performance. Architects can control message flow processing time
by careful design and by managing the workload. Some ESQL features are
more CPU-intensive than others. In this testing of the GSTP workload, CSC
identified a set of best practices for designing message flows. Message flow
structure can affect performance, especially the number of nodes, ESQL
statements, and message fields. A series of simple message flows were executed
to measure CPU by ESQL function and derive performance metrics. These
metrics can help designers estimate performance and make design decisions.

Performance Metrics. Performance metrics for key MQSI operations were
derived by structuring series of tests with varying workloads. Designers can use
these metrics to predict performance when making design choices. Examples of
performance metrics are the message flow initiation cost and filter node
execution cost.

MQSI V2.0.2 Performance Improvements. Performance improvements
between MQSI Version 2.0.1 and Version 2.0.2 were compared for a range of
ESQL processing. IBM significantly improved the performance in Version 2.0.2,
especially for the message parsing and node processing.

To measure the processing time difference, 19 message flows were timed under
V2.0.1 and VV2.0.2. These message flows were designed to isolate the processing
costs of specific ESQL functions. CPU time deceased an average of 34%. The
improvement in lapsed time will be less because CPU time is just a small
portion of the total lapsed time.

22

Process Management

As STP messages flow through the various financial systems, state must be
managed in order to direct and administer the process flow. Having so many
autonomous and physically separate systems makes implementing a process
management system technically challenging. A balance must be achieved to
provide a reasonable amount of process management while not overly
complicating the processing.

Some basic process management was implemented in CSC's GSTP prototype to
demonstrate how to track trade status and direct the process flow. Although it
is not as robust as a full workflow manager, MQSI does offer some process
management services that were adequate for testing purposes.

The heart of CSC's process management is the state database and the routing
code in the message flows. Managing workflow over a distributed system can be
very complex and requires that workflow software be installed on all systems.
CSC's solution is simple, as it is based only on the concentrator, through which
all messages must pass. Storing the state data in a DB2 database provided easy
access to the information through SQL.

The advantage of using MQSI for workflow is that although the capability is
modest, it supports high-volume message rates. Using MQSI message flows,
this workflow framework could easily be enhanced to offer more functions. For
example, MQSeries trigger queues could be used to start 'events' and the
publish/subscribe mechanism used to broadcast messages based on interest.
Those applications needing more workflow functions should consider a
workflow manager product.

Operations Management

STP applications must be highly available, reliable and secure. While providing
these requirements at the individual system level is standard in today's financial
services industry, implementing these features across a production, distributed
environment will be more challenging.

Reliability. CSC found MQSI to be extremely reliable and available. The code
was consistent, as we encountered no major product problems during the
evaluation. Reliability was tested by executing a steady state of 5 messages per
second through the concentrator for up to 12 hours at a time.

Operational Requirements. The message queuing model of MQSeries insulates
applications from local system failures. But operating and managing a large
number of distributed applications requires adequate monitoring, operational
procedures, and management tools.

Near-real time processing requirements of STP require that problems be
immediately detected and rapidly resolved. All operational aspects of system
management will have to be extended to support these distributed systems,
from normal operations to disaster recovery. Appropriate tools and procedures
will be required, each of which will have to be tested and proven for production
environments. MQSeries and MQSI will play a major role in this environment.

MQSI provides a central control point with the control center. Through this
component, multiple MQSI brokers can be controlled from a single point. CSC
found it to be robust with indicators for the current status of deployed objects.
The control center is also used to deploy execution groups and message flows to
brokers, although CSC found this process and the management functions to be
cumbersome. IBM is enhancing the control center to make it easier to use.

23

Security. Security in MQSI is dependent mostly on the underlying operating
system and MQSeries services. These features are limited and applications may
have to develop their own security services if they have more stringent security
requirements. For example, message encryption requires a MQSeries channel
exit program.

Backup and Recovery. Backup and recovery procedures must encompass all
resources used by the application, in particular MQSeries message queues and
any databases updated. Appropriate procedures should be built using the native
backup and recovery facilities for each product. The procedures must be
coordinated across all resources to ensure a point of consistency within the
semantics of the application. Disaster recovery requirements must also

be addressed.

24

Conclusions

CSC successfully built and tested a prototype of the GSTP concentrator to
demonstrate how message queuing and brokering tools can be used to
implement STP solutions. These tools are the key enabling technology for STP
solutions, providing message queuing, data transformation, data enrichment,
and data routing services. STP will be critical to help FSls reduce operating
costs and improve back-office processing.

Message rates equaling those CSC would expect to reach in the single largest
production systems were attained in testing. This volume was achieved with
transaction integrity.

Key findings include:

* CSC's GSTP prototype demonstrates that message queuing and brokering
products, like MQSeries and MQSI, can be used together to implement STP
like solutions and support high message volumes between internal and
external systems.

* A message broker with a "hub and spoke" topology provides an efficient
network, with application independence and high flexibility when integrating
a large number of applications.

* High message rates using persistent messaging and transactional integrity, in
excess of 300 messages per second, are practical on a single message broker
using MQSeries and MQSI with the appropriate design, tuning, and
hardware resources.

* Using persistent queues can be the gating factor on message throughput
using a single MQSI message broker.

* MQSI performance and scalability depends on the message flow workload.
The number of message flow nodes, ESQL statements, and message fields will
impact performance and must be appropriately designed. Accessing external
resources, like a database, can also have a major impact especially if there are
resource constraints or contention.

* Building messaging systems with high-volume message flows requires careful
design and tuning of the underlying messaging software and the message
flows, like MQSeries and MQSI.

* Tuning messaging queuing systems can be particularly difficult given the
nature of queuing systems and the unpredictable performance
behavior - especially when multiple, autonomous systems interact.

* Scalability in message queuing and brokering can be extended by building
systems with 'horizontal' architectures and using multiple MQSI brokers.
For maximum processing power, each broker can be deployed on a
separate computer.

* Achieving STP in a legacy environment poses the challenge of converting
batch systems to process messages in near-real time.

* XML, as the emerging communications standard, will facilitate the
integration of internal and external systems for STP.

* The X-Open XA interface, while slow, is practical to use sparingly when
messaging queuing must be in the same unit of work as the
database processing.

* An effective workflow management scheme can be implemented using a
message broker that, while not being as robust as a workflow product, may
be adequate and more straightforward.

* Administering and operating a distributed set of loosely coupled applications
will require the appropriate tools and procedures, especially to maintain
high-availability and near-real time processing.

* MQSeries Version 5.2 and MQSI Version 2.0.2 should be used, as IBM has
made major performance enhancements.

25

References

Axion4gstp Ltd, www.axion4.com

Global Straight Through Processing Association, www.gstpa.org

International Standards Organization 150222, www.is015022.0rg

GSTP Executive Summary and Overview, Axion4GSTP, Version 1, July 31, 2000

GSTP TFM Message Manual: General Volume, Axion4GSTP, Version 1.3,
December 8, 2000

GSTP TFM Message Manual: Broker/Dealer Messages, Axion4GSTP,
Version 1.2, December 8, 2000

GSTP TFM Message Manual: Investment Manager Messages, AXion4GSTP,
Version 1.1, December 8, 2000

IAOA: MQSeries Integrator Execute Time Plug-In, Neil Kolban, IBM Dallas
Systems Center, March 9, 2001

MQSeries Integrator Version 2.0 Technical White Paper, IBM
MQSeries Integrator Administration Guide Version, 2.0.1, IBM, November 2000

MQSeries Integrator Introduction and Planning, Version 2.0.1, IBM,
August 2000

MQSeries Integrator Administration Guide, Version 2.0.1, IBM, November 2000
MQSeries Integrator Programming Guide, Version 2.0.1, IBM, August 2000

MQSeries Integrator Using the Control Center, Version 2.0.1, IBM,
November, 2000

MQSeries Integrator for AlX V2 Performance Report Version 1, Tim Dunn
and Dan Jones, IBM UK Laboratories, September 8, 2000

MQSeries Integrator for AlIX V2 Performance Report Version 1.1, Tim Dunn
and Dan Jones, IBM UK Laboratories, June 15, 2001

MQSeries Integrator for AIX V2 Designing Message Flows for Performance,
Dan Jones, IBM UK Laboratories, May 8, 2001

MQSeries for AV V5.2 - Performance Highlights Version 1.1, Tim Pickrell,
IBM UK Laboratories, February 13, 2001

MQSeries for Windows NT and Windows V5.2 - Performance Highlights
Version 1.1, Richard Crockford, IBM UK Laboratories, February 13, 2001

26

Acknowledgements. This paper represents the collective efforts of the CSC
project team members who worked tirelessly to implement and test the GSTP
prototype. Special acknowledges are due to Colin Eby, Randy Hill, Phu O, Tara
Pervier Richards, and Khalid Rizvi. Analysis and input critical to the business
focus of this white paper were provided by CSC's financial services industry
experts on STP and GSTP, particularly Mike Brennan, Kevin Schlumpf, and Ted
Stanley. Additionally, we acknowledge the support and contribution of our
CSC colleagues Glenn Davidson, Darrow Lebovici, Robert Mansmann, Carol
Murphy, Jane Peugh and Robert Switzer. Finally, we would like to acknowledge
the exceptional support we received from our partners at IBM - especially
David Judge, Craig Heath, David Cho, Rick Bowman, Martha Mora, and

Tim Dunn.

27

Computer Sciences Corporation

Financial Services

275 Second Avenue

Waltham, Massachusetts 02451
United States

+1.781.290.1525

Worldwide CSC Headquarters

The Americas

2100 East Grand Avenue

El Segundo, California 90245
United States
+1.310.615.0311

Europe, Middle East, Africa
279 Farnborough Road
Farnborough

Hampshire GU 14 7LS
United Kingdom
+44(0)1252.363000

Australia/New Zealand
460 Pacific Highway

St. Leonards NSW 2065
Australia
+61(0)2.9901.1111

Asia

139 Cecil Street

#08-00 Cecil House

Singapore 069539

Republic of Singapore

+65.221.9095

About CSC

Computer Sciences Corporation helps clients achieve strategic goals and profit from the use of information technology.

With the broadest range of capabilities, CSC offers clients the solutions they need to manage complexity, focus on core
businesses, collaborate with partners and clients, and improve operations.

CSC makes a special point of understanding its clients and provides experts with real-world experience to work with
them. CSC is vendor-independent, delivering solutions that best meet each client’s unique requirements.

For more than 40 years, clients in industries and governments worldwide have trusted CSC with their business process
and information systems outsourcing, systems integration and consulting needs.

The company trades on the New York Stock Exchange under the symbol “CSC.”

The third party marks appearing herewithin are the marks of their respective owners.

Copyright © 2002 Computer Science Corporation. All rights reserved.
Printed in USA. 1010_wp_mgsi_feb02

C5C

CSC.COM CONSULTING ¢ SYSTEMS INTEGRATION « OUTSOURCING Go ahead, we're listening.5™

