IBM WebSphere Business Connection

Web Services Troubleshooting

Version 1.10

<|ll

Note!
Before using this information and the product it supports, be sure to read the general information under

First Edition (September 2002)

This edition applies to Version 1, Release 1, Modification 0, of IBM® WebSphere® Business Connection (5724-D26) and
to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send them to the following address:

IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Troubleshooting1 Log and trace options L4
Using TecpMon . . . | Using CrossWorlds log4j tracmg .o .4
Example: Catching an error message L o1 Enabling WebSphere trace for Business Connectlon
Monitoring Web Services Gateway—to—SOAP components.5

service messages2
Monitoring Web Services Gateway—to-Web Serv1ces Notices T |
Gateway messages3 Programming interface mformatlon B (0
Monitoring SOAP connector—to—Web Serv1ces Trademarks and service marks11
Gateway messages3
Parsing Errors.3

© Copyright IBM Corp. 2002 iii

iV Web Services Troubleshooting

Troubleshooting

This document describes various troubleshooting techniques you can use when
you are developing and deploying Web services.

Using TcpMon

Complex messaging systems can be difficult to troubleshoot because of the many
machines and software applications involved. Determining where the problem
occurred can be a challenge, especially if the error information provided by a
component is not passed reliably from the point of failure to the originator of the
message.

A message monitor, therefore, can be a useful tool for troubleshooting message
systems. The monitor allows you to intercept messages as they pass through a
transport from one component or machine to another. While in transit, messages
are said to be in their wire format. The wire format in the case of Business
Connection is typically XML.

When an error occurs at the service end, it may or may not be reliably returned to
the caller as a SOAP fault message. Generally when a service collaboration has a
failure, a SOAP fault message is provided as the response. The various subsystems
between the caller and the service (the CrossWorlds™ ICS, Web Services Gateway,
or WSIF, for example) are usually able to reliably return a SOAP fault to the

caller.

Other errors are not handled as well by all of the subsystems. Sometimes an error
message in transit back to the caller is not handled correctly by one of the
subsystems, and it throws an exception. The caller might see the exception from
the subsystem instead of the real error. The message monitor, however, can
intercept the real error message so that you can see it in the monitor.

One such message monitor that is useful for SOAP messages is called TecpMon,
which is part of the Apache AXIS project. TcpMon allows you to hook into the
Http transport at the port level. For example, when you start TcpMon, you tell it
which port number to listen on and where to forward all messages that arrive on
that port. Generally for debugging, it is configured to listen on port 4040 and to
forward to port 80. To make this useful, the caller is configured to send to port
4040 instead of the usual default Http port 80. In this way, the wire between the
caller and the server can be monitored.

Example: Catching an error message

Suppose you want to send CrossWorlds-to-CrossWorlds using the
BCT_SampleData scenario developed in the tutorial. In the URL configuration file,
you normally enter the following line that sends to default port 80:

BCT_WS_BCT_SampleData_Create_URL=http://Tocalhost/bctwssamplesweb
/servlet/messagerouter

Now suppose that the application server for this URL was not started. Sending a

message would fail in this case. The error that you see in the SOAP Connector
agent window tells you this:

© Copyright IBM Corp. 2002 1

[Time: 2002/06/15 10:45:46.806] [System: Server] [Thread: VBJ ThreadPool Worker
(#6651535)] [Mesg: [Time: 2002/06/15 10:45:46.806] [System: ConnectorAgent] [SS:
BCTSampleSOAPConnector] [Thread: VBJ ThreadPool Worker (#6651535)] [Type: Trace
] [Mesg: :[9543] DoVerbFor cookie=CxCommon.DeliveryItem@330bfSat Jun 15 10:16:08
EDT 2002 rc=-1 rtnObj.status=4 rtnObj.message=An error occurred while reading
data from URL [http://Tocalhost:4040/bctwssamplesweb/servlet/messagerouter]
Exception thrown is [java.io.IOException: Cannot parse Web Service response: org
.xml.sax.SAXParseException: White space is required between the public identifier
and the system identifier.]]]

Your first response to this information is probably to debug a SAXParseException.
You will not get far with this approach, because the problem is that the
DataHandler had this exception trying to parse the real error message, which is
related to the fact that the application server is not started.

To see the real error in this case, you can change the URL to send to port 4040 and
use TecpMon to monitor traffic between ports 4040 and 80.

1. First change the URL:
BCT_WS_BCT_SampleData_Create_URL=http://localhost:4040

/bctwssamplesweb/serviet/messagerouter

2. Start TcpMon. (You need access to axis.jar. This is available from
[http:/ /www.apache.org).

3. Write a batch script similar to the following and run it to start TcpMon:

@start d:\websphere\appserver\java\bin\java -classpath c:\utility\axis.jar
org.apache.axis.utils.tcpmon 4040 localhost 80

You can see that the Web Server returned an HTTP 500 error, along with HTML
intended for a web browser. This is the error to debug. The fix is to start the
application server.

The reason the SOAP agent window displayed a SAXParseException is because the
CrossWorlds data handler could not parse the response message, which has an
improper MIME type (text/html) for the data handler as configured in this case.

This example shows why it can be useful to view the actual messages on the wire.
You can use this technique to watch messages flowing between two Web Services
Gateways, between the server Web Services Gateway and the SOAP-enabled
application server where the proxy resides, or between the client Web Services
Gateway and the sending SOAP connector.

Monitoring Web Services Gateway-to-SOAP service messages
Refer to the figure below:

Figure: Picture of the WDSL entering SOAP server

The closest point to a real service error that a message can be caught is at the line
labeled wsdl that points to the CrossWorlds Soap Server. To catch this, TecpMon
must be running on the same machine as the CrossWorlds Soap Server. The
service section of the wsdl that is deployed in Web Services Gateway B must be
modified before deployment to send to port 4040 rather than the default port 80, as
shown below:

<service name="BCT_SampleData Create">

<port name="BCT_SampleData_CreatePort"
binding="tns:BCT_SampleData CreateBinding">

2 Web Services Troubleshooting

http://www.apache.org/

<soap:address

Tocation="http://cwhostname:4040/crossworlds/serviet/messagerouter"/>
</port>

</service>

Deployment of this wsdl causes messages to be sent from the Web Services
Gateway B to port 4040 on the machine hosting the CrossWorlds Soap Server. With
TepMon configured to listen on port 4040, you can see the message traffic to and
from the CrossWorlds Soap Server.

Monitoring Web Services Gateway-to-Web Services Gateway
messages

This time, the line in the figure above between Web Services Gateway A and Web
Services Gateway B is to be monitored.

Recall that wsdl’ is the external gateway service form of the target wsdl deployed
in Web Services Gateway B. To monitor messages between Web Services Gateways,
you need to edit the service section of wsdl’. This requires you to have a physical
file representation of wsdl” so you can edit it before deploying in Web Services
Gateway A.

See [Web Services Overview and Samples| for information on how to obtain the two
files that represent wsdl’. After obtaining these files and changing the import
statement as required, change the service section in the service implementation file
to use port 4040.

To catch these messages, TcpMon must be running on the same machine as Web
Services Gateway B.

Monitoring SOAP connector-to-Web Services Gateway
messages

This time, the line in the figure above between the SOAP Connector and the
outbound channel of Web Services Gateway A is to be monitored.

The SOAP connector must be given the URL of the outbound channel of Web
Services Gateway A in order to send messages to this channel. In the sample and
the tutorial, this URL is contained in file bct_ws_configuration.txt. A map looks up
the URL using a key hashed from the generic business-object type and the verb.
Your code probably uses a different way to obtain the URL. However it is done,
this URL must be modified to use port 4040 if you want to monitor these messages
on the wire.

To catch these messages, TcpMon must be running on the same machine as Web
Services Gateway A.

Parsing Errors

Another situation that can arise is when an error response comes back in a format
that is not handled cleanly. For example, the CrossWorlds SOAP data handler
expects the response to be an XML message. Normal successful responses are XML
SOAP messages. Fault responses from the service that is called are provided as
soap:fault messages in the body of the XML SOAP response. The SOAP data
handler can parse and handle these without a problem.

Troubleshooting 3

The problem for the CrossWorlds SOAP data handler occurs when the response
that it receives is not an XML message. This can occur if some other part of the
message transport infrastructure fails. For example, if the Application Server that
hosts the Web service proxy for a CrossWorlds Web service is not started and a
request is sent to it, its response is an HTML page with a Http 500 error. This
HTML cannot be parsed by the SOAP data handler, so you will see in the
CrossWorlds SOAP agent window a parsing error. The real error is masked by this
parse error.

To find the real error in this case, turn tracing to the highest level (5) for the SOAP
connector agent. When you do this, the request SOAP message and the response to
it are recorded in the agent command window. The response is listed immediately
after the request. The request is displayed as a nicely formatted XML string. You
can identify it by watching the window just as a message is sent. The window will
display the request XML and pause briefly before the response comes back. When
this occurs and you see a parse error, you should scroll up in the window to read
the real response, which presumably was not parsed by the CrossWorlds data
handler. In this way you can get some insight to what actually went wrong.

Log and trace options

Tracing options are available to help trace the flow of messages through the
gateway and the CrossWorlds application server where the java proxy class is
deployed.

Using CrossWorlds log4j tracing

The CrossWorlds Java Proxy provides tracing that you can use to see when the
proxy is called by the SOAP messagerouter servlet, when the proxy calls the SAI,
and when the response has returned from the CrossWorlds collaboration.

The CrossWorlds tracing uses the Apache Log4] package. A properties file
provided with the bctwssamples.ear is configured to trace events that occur for the
BCT_TestAllTypes_Retrieve proxy class. The configuration writes trace messages to
the “console.” For the proxy running in WebSphere™, the console is WebSphere
stdout.

Information about how to use the Log4] facility is contained in the prologue of the
properties file. Read this to understand the options available for tracing the proxy
activity.

The following is an example of the type of tracing that is produced with the
default log4j.properties file. Each message sent and responded to by the
CrossWorlds inbound collaboration produces this tracing to the stdout file:
Bye[6/7/02 9:47:44:375 EDT] 7b7b0d31 SystemOut U [2002-06-07 09:47:44,295] INFO
33719[Serviet.Engine.Transports:25] (ProxyClassParam.java:220) - Loading parameters
from config-file: BCT_TestAl1Types Retrieve.cfg

[6/7/02 9:47:44:455 EDT] 7b7b0d31 SystemOut U [2002-06-07 09:47:44,375] INFO
33799[Serviet.Engine.Transports:25] (WebServicesAccessClient.java:129) - Initializing
Session with ICS using parameters:cwldVersion= 4.x icsName= SSHCrossWorlds userName=
admin passWord= null collabName=SAI_to_BCTSampleConnector2_ BCT_TestAl1TypesInbound
collabPort= From mimeType=xml/soap boVerb=Retrieve iorFileName=
D:\CrossWorlds\SSHCrossWorldsInterchangeServer.ior

[6/7/02 9:47:46:698 EDT] 7b7b0d31 SystemOut U [2002-06-07 09:47:46,608] INFO
36032[Serviet.Engine.Transports:25] (WebServicesAccessClient.java:221) - Entering
executingCollab. CollabName: SAI_to_BCTSampleConnector2_BCT_TestAl1TypesInbound

4 Web Services Troubleshooting

[6/7/02 9:47:46:798 EDT] 7b7b0d31 SystemOut U [2002-06-07 09:47:46,708] INFO
36132[Serviet.Engine.Transports:25] (WebServicesAccessClient.java:230) - Executing
collaboration with parameters: cwlidVersion= 4.x icsName= SSHCrossWorlds userName=
admin passWord= null collabName =SAI_to_BCTSampleConnector2_BCT_TestAl1TypesInbound
collabPort= From mimeType= xml/soap boVerb=Retrieve iorFileName=
D:\CrossWorlds\SSHCrossWorldsInterchangeServer.ior

[6/7/02 9:47:59:717 EDT] 7b7b0d31 SystemOut U [2002-06-07 09:47:59,627] INFO
49051[Serviet.Engine.Transports:25] (WebServicesAccessClient.java:199) - Closing
Access Session. CollabName: SAI to BCTSampleConnector2 BCT TestAl1TypesInbound

You can see that each line provides information about an event that has occurred
in the proxy class. The specific information used by the proxy to connect to the ICS
and to call a collaboration is provided. This can be helpful when debugging
connectivity problems between the WebSphere machine and the CrossWorlds
machine.

Refer to CrossWorlds Web Services Documentation and the Apache Log4]
documentation (http:/ /jakarta.apache.org/log4j) for more information about the
use of the Log4] tracing with the CrossWorlds java proxy.

Enabling WebSphere trace for Business Connection
components

This section describes how you can enable WebSphere trace for the following
components:

* Routing Filter

* Authentication Filter
* Message Warehouse
* Exception Handler

To debug problems with the Web Services Gateway handling of messages, there
are tracing hooks written in the code for these components. These components use
the built-in tracing facility of WebSphere. There are entry, exit, and information
trace messages provided in each component.

To configure WebSphere tracing for these components, follow these steps:

1. Make sure the EAR file for each is installed in the Web Services Gateway App
Server. Note that the Web Services Gateway Core ear file (wsgw.ear) must
always be installed before any other Web Services Gateway-related EAR files.

2. With the filter and support EAR files installed, start the Web Services Gateway
App Server.

3. Click the Web Services Gateway App Server in the left-hand pane of the
WebSphere Application Server Admin Console, and then click the Services tab
on the right-side pane.

4. Select Trace Service in the list box, and click Edit Properties.

5. When the Trace Service dialog box is displayed, click Standard Outputand
then click the small button to the right of the Trace Specification field.

6. When the Trace dialog is displayed, expand Groups and you will see a group
named WebSphere Business Connection Trace Loggers.

7. Expand this group to see four classes whose names indicate their function.
8. Right-click the group name and select All
9. Click OK.

10. Click OK again. Then be sure to click the Apply button on the main Admin
Console window; otherwise the changes are lost.

Troubleshooting 5

This will cause all trace messages that are in the code for these four support
services to be written to the application server stdout file. Normally there are
trace messages for method entry, method exit, and when something interesting
is done by a method. Inspection of the stdout file will allow you to trace
execution for each function.

Before tracing is activated, you must stop and restart the application server.

The following is the example of the output obtained when tracing is enabled for
these four classes. You can see method entry and exit as well as information about
message processing.

[6/14/02 14:48:17:949 EDT] 55a94e57 BCTWSMessageW > class
com.ibm.wsgw.beans.BCTWSMessageWarehouseBean TogRequest Servlet.Engine.
Transports:10
Entry
ApacheSOAPChannel2
127.0.0.1
BCT_TestAl1Types Retrieve
m_BCT_TestAl1Types
2002-06-14 14:48:17.278
[WSIFRequest:
serviceID = 'urn:ibmwsgw:BCT_TestAl1Types_Retrieve'
operationName = 'm BCT_TestAl1Types'
incomingMessage = 'org.apache.wsif.util.WSIFDefaultMessage@2e034e4f"
contextMessage = 'org.apache.wsif.util.WSIFDefaultMessage@59h30e4f']
[Ljava.io.Serializable;@20a9cede
[6/14/02 14:48:17:959 EDT] 55a94e57 BCTWSMessageW > class
com.ibm.wsgw.beans.BCTWSMessagelWarehouseBean sendToAuditlLog
Servlet.Engine.Transports:10 Entry
1000
[WSIFRequest:
servicelD = 'urn:ibmwsgw:BCT_TestAT1Types Retrieve'
operationName = 'm _BCT_TestAl1Types'
incomingMessage = 'org.apache.wsif.util.WSIFDefaultMessage@2e034e4f'
contextMessage = 'org.apache.wsif.util.WSIFDefaultMessage@59h30e4f"']
ApacheSOAPChannel2
127.0.0.1
BCT_TestAl1Types_Retrieve
m_BCT_TestAl1Types
2002-06-14 14:48:17.278
[6/14/02 14:48:18:009 EDT] 55a94e57 SystemOut U Executing
BCMLog:writeAudit::BCMObj.sendMsg(TogMsgID:<5174739229438d86:35dc8e54:
ee6ff44a60:-7ffe>
applicationID:<BCT_WS_WSGW>
MsgType:<WAS>
MsgHeaderVersion:<BCM1>
HostNameIP:<stevesh/9.163.15.232>
BodySize:<248>
BodyData:<[WSIFRequest:
serviceID = 'urn:ibmwsgw:BCT_TestAl1Types_Retrieve'
operationName = 'm BCT_TestAl1Types'
incomingMessage = 'org.apache.wsif.util.WSIFDefaultMessage@2e034e4f"
contextMessage = 'org.apache.wsif.util.WSIFDefaultMessage@59b30e4f']>
LogMessaeType:<SMAuditLog>
ProcessCorrelationID:<5174739229438d86:35dc8eb54:ee6ff44a60:-7fff>
TransportCorrelationID:<null>
TransportMessageID:<null>
UserSecurityArea:<null>
InternallD:<null>
ExternallD:<127.0.0.1>
RelatedSubjectID:<null>
SenderInstancelID:<null>

6 Web Services Troubleshooting

ProcessingCategory:<null>

TransactionRequired:<false>

LogPriority:<High>

BodyCategory:<BCT_TestAl1Types_Retrieve>

BodyType:<m_BCT_TestAl1Types>

EventType:<1000>

ProcessInstancelID:<null>

InternalTradingPartnerID:<0>

UserArea:<null>

PublicationTopic:<null>

SessionID:<null>

Model1ID:<DEFAULT>

TimeStampCreated:<1024080497989:-18000000>

TimeStampExpires:<-1>

Super:<com.ibm.wbi.bcm.sm.message.BCMMessage@le6c30a>

,JMS ,BCTSAMPLESQUEUEMANAGER,BCTAUDITLOG,file:/c:/bctws/jms/context) ;

[6/14/02 14:48:18:690 EDT]

55a94e57 BCTWSMessageW X class

com.ibm.wsgw.beans.BCTWSMessageWarehouseBean sendToAuditlLog
Servlet.Engine.Transports:10 BCT_WS_TRACE00001: Received exception

<com. ibm.wbi.bcm.common.BCMException> Message information: <EpicException: caught
MissingResourceException getting message from ResourceBundle with information
-- class name <java.util.PropertyResourceBundle> key <4245> message <Can't find
resource for bundle java.util.PropertyResourceBundle, key 4245>

Resource name being used <com.ibm.wbi.bcm.common.BCT_SMExceptionMessages>
Original Inputs

MessagelID<4245>0bject[]<<4245><BCMLog: :writeAudit (String,
String)><com.ibm.wbi.bcm.common.BCMException><EpicException: caught
MissingResourceException getting message from ResourceBundle with information
-- class name <java.util.PropertyResourceBundle> key <BCT_SMO116> message <Can't
find resource for bundle java.util.PropertyResourceBundle, key BCT_SMO116>
Resource name being used <com.ibm.wbi.bcm.common.BCT_SMExceptionMessages>
Original Inputs
MessageID<BCT_SM0116>0bject[]<<BCT_SMO116><com.ibm.wbi.bcm.sm.bccm.LMSJIMS: :
getQueueConnection (MQAOAddress)><MQIMS2005: failed to create MQQueueManager
for 'BCTSAMPLESQUEUEMANAGER'>>><BCMLog writeAudit(String, String) Failed>>>
Additional information <>.

[6/14/02 14:48:18:730 EDT] 55a94e57 BCTWSMessageW > class
com.ibm.wsgw.beans.BCTWSMessagelWarehouseBean sendToAuditlLog
Servlet.Engine.Transports:10 Exit

[6/14/02 14:48:18:730 EDT] 55a94e57 BCTWSMessageW > class
com.ibm.wsgw.beans.BCTWSMessageWarehouseBean TogRequest Servlet.Engine.
Transports:10
Exit
Message passed to Audit Log
[6/14/02 14:48:20:833 EDT] 55a94e57 BCTWSAuthenti >
com.ibm.bct.ws.filter.ejb.BCTWSAuthenticationFilterBean filterRequest
Servlet.Engine.Transports:10 Entry
[WSIFRequest:
servicelID = 'urn:ibmwsgw:BCT_TestAl1Types_Retrieve'
operationName = 'm BCT_TestAl1Types'
incomingMessage = 'org.apache.wsif.util.WSIFDefaultMessage@22540e4a’
contextMessage = 'org.apache.wsif.util.WSIFDefaultMessage@45630e4b']
[WSIFResponse:
servicelID = 'urn:ibmwsgw:BCT_TestAl1Types_Retrieve'
operationName = 'm BCT_TestAl1Types'

isFault = 'false' outgoingMessage = 'null'
faultMessage = 'null’
contextMessage = 'null']

[6/14/02 14:48:20:904 EDT] 55a94e57 BCTWSAuthenti >
com.ibm.bct.ws.filter.ejb.BCTWSAuthenticationFilterBean filterRequest
Servlet.Engine.Transports:10 Found destinationType: <PartnerName> and
destinationID:<stevesh> in SOAP Header

[6/14/02 14:48:20:914 EDT] 55a94e57 SystemOut U Properties file not found,
using CMS values

[6/14/02 14:48:20:914 EDT] 55a94e57 SystemOut U User id= uid:stevesh:

Troubleshooting

7

PartnerName
[6/14/02 14:48:20:914 EDT] 55a94e57 BCTWSAuthenti >
com.ibm.bct.ws.filter.ejb.BCTWSAuthenticationFilterBean filterRequest
Servlet.Engine.Transports:10 Exit
[WSIFRequest:

servicelD = 'urn:ibmwsgw:BCT_TestAT1Types_Retrieve'

operationName = 'm_BCT_TestAll1Types'

incomingMessage = 'org.apache.wsif.util.WSIFDefaultMessage@22540e4a’

contextMessage = 'org.apache.wsif.util.WSIFDefaultMessage@45630e4b']

com.ibm.wsgw.beans.FilterAction@7063ce49

8 Web Services Troubleshooting

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

WebSphere Business Connection Lab Director
IBM RTP Laboratory

3039 Cornwallis Road

P.O. BOX 12195

© Copyright IBM Corp. 2002 9

Raleigh, NC 27709-2195
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

10 Web Services Troubleshooting

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM

alphaWorks

AIX

CrossWorlds

DB2

DB2 OLAP Server
DB2 Universal Database
DeveloperWorks
MQSeries
SecureWay
WebSphere

Lotus is a trademark of International Business Machines Corporation and Lotus
Development Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

Notices 11

	Contents
	Troubleshooting
	Using TcpMon
	Example: Catching an error message
	Monitoring Web Services Gateway-to-SOAP service messages
	Monitoring Web Services Gateway-to-Web Services Gateway messages
	Monitoring SOAP connector-to-Web Services Gateway messages
	Parsing Errors

	Log and trace options
	Using CrossWorlds log4j tracing
	Enabling WebSphere trace for Business Connection components

	Notices
	Programming interface information
	Trademarks and service marks

