
IBM WebSphere Business Connection

Web Services Overview and Samples
Version 1.1.0

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 27.

First Edition (September 2002)

This edition applies to Version 1, Release 1, Modification 0, of IBM® WebSphere® Business Connection (5724-D26) and
to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send them to the following address:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

WebSphere Business Connection and
Web Services 1

CrossWorlds Sample 3
Before you begin 3
CrossWorlds-to-CrossWorlds sample theme 4

Outbound sample description 4
Inbound sample description 5
Generating CrossWorlds artifacts 6
Collaboration flows 6
Outbound flow 6
Inbound flow 7

CrossWorlds sample installation files 8
Editing start_server.bat 9
Importing the CrossWorlds project. 10

Starting CrossWorlds 10
Importing projects 10

Configuring WebSphere 12
Creating the CrossWorlds application server . . 12
Deploying the enterprise application 13

Testing WebSphere 13
Preparing to use the inbound service 13
Understanding the outbound collaboration 14

Inspecting the outbound collaboration 14
From port 14
To port 14

Reply port 15
Running the end-to-end scenario 15

Testing the outbound collaboration object . . . 16
Starting the BCTSampleSOAPConnector agent. . 16
Starting the Test Connector 16
Loading the business object 16
Sending the business object 17
Receiving the business object 17
Changing fields 17
Sending the business object back to the requestor 17
Checking the reply 17

Adding the Web Services Gateway. . . 19
Connectivity using the Web Services Gateway . . . 19
Web Services Gateway basic concepts. 20

Understanding Web Services Gateway channels 20
Understanding WSIF and WSDL usage by the
Gateway 20
Inbound service deployment. 22
Obtaining wsdl’ 25
Private service deployment 25

Testing the end-to-end flow 26

Notices 27
Programming interface information 28
Trademarks and service marks 29

© Copyright IBM Corp. 2002 iii

iv Web Services Overview and Samples

WebSphere Business Connection and Web Services

The Web services documents describe how to use Web services with the IBM(R)

WebSphere(R) Business Connection offering. The documents are organized as
follows:
v Samples (the remaining sections of this document) provide you with

step-by-step instructions for installing and deploying sample services that are
included with the Business Connection offering. The samples contain an
inbound and outbound collaboration, and the document describes the
collaborations and their associated artifacts. It tells you how to install the
collaborations in CrossWorlds(R), how to install an Enterprise Application
Resource (EAR) file that hosts Web services, and how to use the Test Connectors
to operate the collaborations. You’ll see how the Simple Object Access Protocol
(SOAP) connector is used to send requests.
– The basic “CrossWorlds Sample” on page 3 shows you how a

CrossWorlds-to-CrossWorlds service flows through the various components of
Business Connection and CrossWorlds. The sample provides the basic
knowledge you’ll need to learn more about Web services.

– “Adding the Web Services Gateway” on page 19 builds on the basic sample. It
discusses fundamental concepts of Web services and the Web Services
Gateway, such as how the Web Services Invocation Framework (WSIF) and
Web Services Descriptor Language (WSDL) files are used to transport and
transform information related to service requests. Target services and gateway
services are described. You will learn about channels and how to deploy them
as well as how to deploy a WSDL file into the Web Services Gateway.

v Development Tutorial shows you how to build the collaborations and associated
artifacts and deploy them. The tutorial is divided into three parts:
– In Part 1, you will create a Web service by developing business objects and

collaboration templates and objects as well as inbound and outbound maps.
You will develop a Java(TM) proxy and create a WSDL file using the
CrossWorlds WSGenUtility.

– In Part 2, you will deploy the Java proxy into a SOAP-enabled application
server.

– In Part 3, you will deploy the WSDL file into the Web Services Gateway.
v Advanced Topics covers the following:

– CrossWorlds topics shows you how to install and use a sample in which the
SOAP connector is used to invoke a Java-based, non-CrossWorlds Web
service. The Web service that is called is based on the remote procedure call
(RPC) model of Web services (as opposed to the document-style Web service
used in the previous samples). The document discusses the differences in
SOAP messaging between the two styles.

– Web Services Gateway advanced topics describes how you can expand on
the samples by adding advanced features, such as routing filters. It also
provides a description of audit logging.

v Technical Reference provides in-depth information about the relationship of the
CrossWorlds artifacts to each other and provides detailed information on naming
conventions. It also provides step-by-step instructions for using the
WSGenUtility and for creating a SOAP service.

© Copyright IBM Corp. 2002 1

v Troubleshooting gives you some hints on how to monitor your system and how
to catch error messages. Included are discussions of using TcpMon as well as
CrossWorlds log4j tracing and WebSphere tracing.

Although the documents provide step-by-step instructions, they assume you have
some familiarity with CrossWorlds. To get an overview of CrossWorlds, refer to the
CrossWorlds Technical Introduction.

2 Web Services Overview and Samples

CrossWorlds Sample

This section describes the basic CrossWorlds sample that is a part of the Business
Connection offering. By following the procedures in this section, you will see how
CrossWorlds-to-CrossWorlds services are implemented and deployed.

The basic sample enables CrossWorlds-to-CrossWorlds connectivity using SOAP
messages. The sample provides CrossWorlds collaborations and associated artifacts
that demonstrate how an outbound call from a collaboration via the CrossWorlds
SOAP connector can call a Web service deployed on another machine. The target
machine must include WebSphere Application Server to host the Web service. The
inbound target collaboration can run on any CrossWorlds machine accessible from
the WebSphere machine.

The figure below shows the topology of this case. Details of the way that the
inbound collaboration is exposed as a Web service based on a Java proxy class that
connects to the target using the CrossWorlds Server Access Interface (SAI) are
covered later in this document.

Figure: Business object going through SOAP connector on one system and arriving
at the other system

After you install and work with this sample, you can add to it by following the
instructions in “Adding the Web Services Gateway” on page 19.

The Business Connection offering includes a second sample that shows how
CrossWorlds collaborations can call an RPC-style Web service that does not use
CrossWorlds for processing the request. This sample is described in a later
document, Web Services Advanced Topics.

Before you begin
This section tells you how to:
v Install the collaborations in CrossWorlds
v Install an EAR file in WebSphere that hosts the Web services
v Use CrossWorlds Test Connectors to operate the collaborations

In addition, this section will help you understand how the collaborations are
designed from a high-level view.

Here are some things you should know, before you begin:
v The sample uses CrossWorlds projects, which contain the required business

objects, meta-objects, connector definitions, collaboration templates, maps, and
collaboration objects, packaged together.

v The Web service for this sample is supplied in an EAR file, bctwssamples.ear.
You deploy the file in WebSphere 4.02 Advanced Edition in the normal manner.

v The bctwssamples.ear file includes one service, which is implemented as a Java
proxy class that was produced using the CrossWorlds WSGenUtility. The
CrossWorlds JAR files needed by the proxy to connect to the Interchange Server
are packaged in the EAR file.

© Copyright IBM Corp. 2002 3

v Additional files, which configure the Java proxies for your computer’s particular
environment and which provide a lookup source used by the outbound
collaboration to determine the service URLs, are also supplied.

v The sample is configured for a single-machine environment. You can experiment
with multiple machine configurations by changing the URLs in the file used by
the outbound collaboration to look up Web-service URLs. This will cause the
SOAP connector on one machine to call the service on WebSphere running on
another machine.

v Before using this sample, the tutorial, or the follow-on sample where you use
the Web Services Gateway, you must complete the steps from the WBC
Installation and Configuration Guide for installing WebSphere and the Web
Services Gateway. In particular, note that CrossWorlds 4.1.1 with the Web
Services 1.0.1 (or later) upgrade applied and WebSphere 4.02 Advanced Edition
must be installed before the sample can be used.

CrossWorlds-to-CrossWorlds sample theme
The theme of the CrossWorlds-to-CrossWorlds sample is a test scenario in which
all the native types (for example, string and float) supported by CrossWorlds are
used in the business object that is sent using the SOAP connector. You will use
CrossWorlds Test Connectors to initiate requests from the outbound collaboration
and to respond from the inbound collaboration.

Outbound sample description
This section describes the outbound sample generic business object and
collaboration object.

Generic business object
The BCT_TestAllTypes outbound sample sends a message composed of attributes
that include all the native CrossWorlds types plus arrays of business objects that
are themselves made up of attributes that include all the native CrossWorlds types.
The BCT_TestAllTypes business object, which is used to compose the request, has
the following business object definition:

Figure: BCT_TestAllTypes business object attributes such as name and type

Outbound collaboration object
The outbound collaboration object From port is bound to BCTSampleConnector1,
which is associated with the Test Connector. The Test Connector allows you to
create an instance of BCT_TestAllTypes.Retrieve, edit its fields, and send it to the
From port.

The sample outbound collaboration object subscribes to BCT_TestAllTypes.Retrieve,
so it is triggered when you send this event to the From port.

The outbound collaboration object flow passes the business object to its To port,
which is bound to BCTSampleSOAPConnector. An outbound map from the
collaboration port to the BCTSampleSOAPConnector maps the BCT_TestAllTypes
(the generic business object) into BCT_SOAP_BCT_TestAllTypes, the correct
application-specific business object expected by the BCTSampleSOAPConnector.
This map uses a Java class that was written for this sample. The Java class reads
an external file to determine the URL of the server to handle the SOAP message it
reads. The application-specific business object used by BCTSampleSOAPConnector
includes an attribute for this URL.

4 Web Services Overview and Samples

Meta-objects used by the BCTSampleSOAPConnector define how the business
object is to be converted into a SOAP message by the SOAP data handler. One of
the meta-objects specifies the ID of the Web service and the method name to be
called on the server. This information is included in the SOAP message formed by
the SOAP data handler, along with the business object data.

The SOAP data handler sends the SOAP message to the URL.

Figure: SOAP data handler converts the business object to a SOAP message

Because SOAP/HTTP is a synchronous protocol, the BCTSampleSOAPConnector
waits for the response. The inbound processing will be discussed in more detail in
a later section.

When a response is sent, the flow is reversed. When the
BCTSampleSOAPConnector receives the response message, the SOAP data handler
uses meta-objects to determine how to convert the response message to
business-object form. There is a map from the application-specific business object
to the generic business object.

After receiving the BCT_TestAllTypes business object, the collaboration flow passes
it to a port bound to BCT_SampleConnector1. You use a Test Connector instance
associated with this connector to accept requests sent to it. In this way, you can see
the response.

To complete the flow, you use the Test Connector to reply success.

Inbound sample description
The target URL used by the BCTSampleSOAPConnector is the Apache SOAP
messagerouter servlet that is deployed in the application server. The deployment of
the Apache SOAP servlets in the application server provides the ability to receive
and process the SOAP messages. The messagerouter servlet extracts the ID of the
service to invoke by looking in the SOAP message. This ID is used to find the
service descriptor in the application server’s Web-services deployment descriptor
file. The service descriptor tells the application server the name of the Java class to
load to perform the service. The method name to invoke is also extracted from the
SOAP message. With this information, the application server can invoke a Java
method, passing it the SOAP message Body and its business object information, for
processing.

Figure: How the ID of the service in the SOAP message is used to find the Java
method to invoke

In this sample, the Java class is generated by the CrossWorlds utility WSGenUtility.
The utility produces a proxy class for a particular collaboration object, port,
business object, and verb. In the case of this sample, the proxy class was generated
for the inbound collaboration triggered by a BCT_TestAllTypes.Retrieve event.

The SOAP message that was sent is a representation of a
BCT_TestAllTypes.Retrieve event. The message is passed to the proxy class, which
passes it via the CrossWorlds Server Access Interface (SAI) to the InterChange
Server, where the inbound collaboration object is running. The inbound
collaboration template is defined with its From port set to subscribe to the
BCT_TestAllTypes.Retrieve event. The From port is bound to the External
Connector, so it will receive events arriving through the Server Access Interface.

CrossWorlds Sample 5

The SOAP data handler uses meta-objects to determine how this SOAP message is
to be converted to a business object. After the data handler produces the business
object, the inbound collaboration object From port that is bound to the External
Connector is triggered with this event.

The inbound collaboration flow passes the triggering object to a port that is bound
to BCTSampleConnector2. When you run the sample, you will use a Test
Connector associated with this connector to accept requests. The Test Connector
permits you to alter the request and send it as a response.

Figure: How the object passes to the Test Connector

After responding, the flow is reversed. The response BCT_TestAllTypes.Retrieve is
sent back to the data handler, which prepares it as a SOAP message. This message
is passed back to the proxy class, which provides it as a response to the caller (the
BCTSampleSOAPConnector of the outbound collaboration).

Generating CrossWorlds artifacts
You will notice that building a set of collaborations that communicate with the
SOAP connector requires a large number of related business objects, meta-objects,
and maps. A naming utility called CwGenUtility is included with the samples to
help you deal with this complexity. This utility:
v Takes the generic business object name, the verb for the triggering event, and a

base-name that characterizes the inbound and outbound processes
v Produces a naming text file that uses a naming convention to provide the

necessary names for the outbound and inbound collaborations and their
associated objects

v Produces an import file used to import the business-object definitions needed to
build the Web-services scenario in CrossWorlds

v Produces Java-code templates for the code needed in the maps used by the
inbound and outbound collaboration objects

v Produces a file with names needed when the CrossWorlds WSGenUtility is used
to produce the proxy and WSDL files for the inbound collaboration

The names in the samples were produced by CwGenUtility. Its usage is discussed
in detail in the Web Services Technical Reference.

Collaboration flows
Outbound and inbound sequence diagrams in this section show you how the
samples work. Although the names of the sample artifacts are used, you can
consider these to be generic diagrams that are common to all SOAP messaging
flows.

The names in the sequence diagrams are tied to the actual sample by the list of
artifacts that follow each diagram. For example, for the outbound flow, the From
Connector is BCTSampleConnector1. Use the artifact lists and the sequence
diagrams together to understand how the samples work.

Outbound flow
The following diagram depicts the outbound flow.

Figure: Outbound flow to and from the SOAP connector

6 Web Services Overview and Samples

The following table lists the names of the projects, templates, collaborations,
business objects, meta-objects, and maps:

Table 1. Outbound artifact list

Artifact type Artifact name

Project BCT_TestAllTypes

Template BCT_TestAllTypesOutbound

Out Collaboration BCTSampleConnector1_to_BCTSample
SOAPConnector_BCT_TestAllTypes_Outbound

OutCollaboration Input See GBO OutBusObj

FromConnector BCTSampleConnector1

ReplyConnector BCTSampleConnector1

ToConnector BCTSampleSOAPConnector

OutRequest Map BCT_TestAllTypes_to_BCT_SOAP_BCT
_TestAllTypes

OutRequest Map Input
BusObj

See GBO OutBusObj

OutRequest Map Output
BusObj

See ASBO TopSOAPBusObj

OutResponse Map BCT_SOAP_BCT_TestAllTypes_to_BCT
_Test AllTypes

OutResponse Map Input
BusObj

See ASBO TopSOAPBusObj

OutResponse Map Output
BusObj

See GBO OutBusObj

GBO OutBusObj BCT_TestAllTypes

ASBO TopSOAPBusObj BCT_SOAP_BCT_TestAllTypes

Out SOAP MO Request MO_Client_BOtoSOAP_BCT_TestAllTypes
_Request_Retrieve

Out SOAP MO Response MO_Client_SOAPtoBO_BCT_TestAllTypes
_Response_Retrieve

Out SOAP MO Fault MO_Client_SOAPtoBO_BCT_SOAP_BCT
_TestAllTypes_Fault_Fault_Retrieve

Inbound flow
The following diagram depicts the inbound flow.

Figure: Inbound flow through the SAI

The following table lists the names of the projects, templates, collaborations,
business objects, meta-objects, and maps:

CrossWorlds Sample 7

Table 2. Inbound artifact list

Artifact type Artifact name

Project BCT_TestAllTypes

Template BCT_TestAllTypesInbound

In collaboration SAI_to_BCTSampleConnector2_BCT
_TestAllTypesInbound

InCollaboration Input See GBO InBusObj

From connector SAI

To connector BCTSampleConnector2

InRequest Map None

InRequest Map Input
BusObj

N/A

InRequest Map Output
BusObj

N/A

InResponse Map Poly_BCT_TestAllTypes_to_BCT_SOAP_BCT
_TestAllTypes_Wrapper

InResponse Map Input
BusObj

See GBO_OutBusObj

InResponse Map Output
BusObj

1) See ASBO SOAPResponseBusObj

2) See ASBO SOAPFaultBusObj

InResponse Sub Maps BCT_TestAllTypes_to_BCT_SOAP_BCT
_TestAllTypes_Fault

GBO InBusObj BCT_TestAllTypes

ASBO SOAPResponse
BusObj

BCT_TestAllTypes

ASBO SOAPFaultBusObj BCT_SOAP_BCT_TestAllTypes_Fault

In SOAP MO Request MO_Service_SOAPtoBO_BCT_TestAllTypes
_Request_Retrieve

In SOAP MO Response MO_Service_BOtoSOAP_BCT_TestAllTypes
_Response_Retrieve

In SOAP MO Fault MO_Service_BOtoSOAP_BCT_SOAP_BCT
_TestAllTypes_Fault_Fault_Retrieve

CrossWorlds sample installation files
The CrossWorlds samples are installed (as a zip file) as part of a Business
Connection installation.
1. Open a command prompt.
2. Change to the following directory:

8 Web Services Overview and Samples

<BCT_HOME>\samples\CW

3. Locate the file bctws.zip and unzip it.

The remainder of this document assumes that the samples are installed in the root
directory of your C: drive. The following files and directory structure should be
present on your machine:

\bctws
+---cw
| | BCT_SOAP_StockquoteService_getCompanyQuotes_1.BO
| | BCT_TestAllTypes_1.BO
| | BCT_SampleData.BO
| | bct_ws_configuration.txt
| | start_BCTSampleSOAP.bat
| |
| +---CWGenUtil
| | | runCWGenUtility.bat (and many supporting files)
| | |
| | \---Generated
| |
| \---imports
| BCT_WS_Samples.in
| BCT_WS_SampleDH.in
| BCT_Basic_Tutorial.in
| cw_wsgenutility_inputfile.txt
|
\---was

|
+---cw

| | BCT_TestAllTypes_Retrieve.cfg
| | BCT_SampleData_Create.cfg
| |
| +---logs
| |
| \---wsdl
| BCT_TestAllTypes_Retrieve.wsdl
| BCT_SampleData_Create.wsdl
|
\---wsgw

\---logs

Editing start_server.bat
Update the CrossWorlds file named start_server.bat, which is in
<CrossWorlds>\bin. This is necessary because the Interchange Server needs to
have access to the classes that are used in custom maps used in the sample. You
will also add the JAR files used for basic SOAP messaging support to the ICS
classpath. Refer to the CrossWorlds Web Services connector documentation for
more information.

Be very careful making these changes as you follow the instructions. Back up the
original start_server.bat before beginning.
1. Edit <crossworlds>\bin\start_server.bat by adding the following lines just

before the line where environment variable JCLASSES is set. (Note that each set
command must be on a single line in the batch file.):
rem Set a variable with the directory where the samples were unzipped
rem This example uses c:\wbc\bctws\cw
set BCT_DIR=c:\bctws\cw
rem Set a variable to point to the URL look up file used by the map

CrossWorlds Sample 9

set BCT_CONFIG=“%BCT_DIR%”\bct_ws_configuration.txt
rem Set a variable to point to jar files used by the sample maps
set BCT_JAR=“%BCT_HOME%”\lib\bctwssamples.jar;“%BCT_HOME%”\lib\bctcocommon.jar

rem Set a variable to point to jar files needed for all SOAP activities
set WEBSERVICES=“%CROSSWORLDS%”\connectors\SOAP\Dependencies\
soap.jar;“%CROSSWORLDS%”\connectors\SOAP\Dependencies\
activation.jar;“%CROSSWORLDS%”\connectors\SOAP\Dependencies\mail.jar

2. Add the following to the very end of the existing line which begins with set
JCLASSES=. (Note that there is a semicolon at the beginning of the text you are
adding!)
;%BCT_JAR%;%WEBSERVICES%

3. Finally, modify the line that starts the ICS by adding a definition for
BCT_WS_CONFIGURATION. You can copy this:
-DBCT_WS_CONFIGURATION=%BCT_CONFIG%

to the location shown.
“%CROSSWORLDS%\bin\java” -server -DBCT_WS_CONFIGURATION=%BCT_CONFIG%

Importing the CrossWorlds project
This section describes how to import the CrossWorlds project.

Starting CrossWorlds
Start the CrossWorlds components, in the order shown:
1. Start the CrossWorlds MQ Listener from Windows by clicking Start > Programs

> CrossWorlds > MQSeries > Start Listener.

2. Start the CrossWorlds InterChange Server (ICS) from Windows by clicking Start
> Programs > CrossWorlds > Server and Tools > InterChange Server.

3. Start the CrossWorlds System Manager (CSM) from Windows by clicking Start
> Programs > CrossWorlds > Server and Tools > CrossWorlds System
Manager.

4. Connect from CSM to ICS.

Importing projects
There are two CrossWorlds import files in \bctws\cw\imports that provide the
sample environment.

The first file is named BCT_WS_Samples.in. This file contains all the CrossWorlds
sample artifacts except for two system meta-objects. The second file is named
BCT_WS_SampleDH.in. The two system meta-objects are contained in this file.

In the procedure that follows, you will import the BCT_WS_Samples.in file, and
then you will back up the two system meta-objects using the CrossWorlds System
Manager. Finally you will import the BCT_WS_SampleDH.in file. By following
these steps carefully, you will be able to run the samples and later restore your
system using the backed-up versions of the system meta-objects.

To prepare CrossWorlds to use the samples:
1. Click your InterChange Server name in the CrossWorlds System Manager to

select it.
2. Click File > Open from File.

10 Web Services Overview and Samples

3. From the \bctws\cw\imports directory, select BCT_WS_Samples.in and
import it.

4. Back up the business objects named MO_DataHandler_Default and
MO_Server_DataHandler. To do this:
a. Locate the objects under the Integration Components/Business Objects

heading in the CSM.
b. Select each and then select File > Save as > To Server.
c. Save each with a name you will remember, such as

SavedMO_DataHandler_Default and SavedMO_Server_DataHandler,
because you will need to restore them later when you are finished using the
samples.

5. Click File > Open from File.

6. From the \bctws\cw\imports directory, select BCT_WS_SampleDH.in and
import it. This provides the new copies of MO_DataHandler_Default and
MO_Server_DataHandler that are used by the sample.

7. Later, when you want to restore the original MOs, consider the following
approach:
a. Back up the sample meta-objects by using Save as to other names, such as

SampleMO_DataHandler_Default and SampleMO_Service_DataHandler.
b. Then delete MO_DataHandler_Default and MO_Server_DataHandler.

Note that you will not be able to delete MO_DataHandler_Default unless
you remove all references that connectors have to it in their Supported
Business Objects pages.

c. Finally, restore the original files by using Save as.

You might see errors in the map imports when you import for the first time. These
occur because all of the maps have not been compiled yet. The errors will be
corrected when you compile the maps.

After the files have been imported, you will see a new project in the CrossWorlds
System Manager window.

Figure: The CrossWorlds System Manager screen showing the new project listed
1. Expand the project, and then expand its Collaborations Template folder and

Maps folder.
2. Compile the collaboration templates and maps in order, as they are listed (to

ensure that the sub maps used are ready when they are needed), by
right-clicking on their names and clicking Compile.

If you have trouble compiling classes, be sure that you modified start_server.bat
correctly. Confirm that the bctcocommon.jar and bctwssamples.jar files are
located in <BCT_HOME>\lib, because the modifications to start_server.bat
require them to be in this directory.

3. When you are finished, shut down the InterChange Server and restart it.
4. Reattach the CrossWorlds System Manager to the InterChange Server.
5. Click Server > System view and confirm that all the connector and

collaboration objects are started, as shown below:

CrossWorlds Sample 11

Figure: Collaborations and connectors and their status on a CrossWorlds screen

Note that you will have more collaborations and connectors than what is shown in
the screen above. The items in the screen are the ones used by the sample.

Configuring WebSphere
To configure WebSphere, you create an application server and then deploy the
application.

To display the WebSphere Admin Console:
1. Start the IBM Http Server Service from the Windows Services Window.
2. Start the WebSphere Admin Service from the Windows Services Window.
3. Start the WebSphere Administrative Console from Windows by clicking Start >

Programs > IBM WebSphere > Application Server V4.0 AE > Administrator’s
Console.

Creating the CrossWorlds application server
To create the CrossWorlds Application Server:
1. Create a new application server called CrossWorlds App Server.
2. Change the working directory to where you have unzipped the samples

bctws.zip. For the CrossWorlds app server, use your_drive:/bctws/was/cw.
Note that the working directory must be set correctly for the sample to work
because there are configuration files in the directory that are used by the
application server.

Figure: The WebSphere console showing the correct working directory
3. Under the File tab, change the location of the standard output and error

logs/stdout.txt and logs/stderr.txt. This causes the log files to be located in the
logs directory under the working directory of the application server.

4. Next, open the BCT_TestAllTypes_Retrieve.cfg file (which is located in
\bctws\was\cw) for edit.

5. Type the correct information for ICSName, UserName, PassWord, and
IORFileName. Make sure you match the format of the original IORFileName
field with regard to backslashes.

#Configuration properties for BCT_TestAllTypes_Retrieve.java
#Tues April 16 18:23:41 EDT 2002
CollabName=SAI_to_BCTSampleConnector2_BCT_TestAllTypes
PassWord=null
ICSName=bctws_your_CrossWorlds
CWLDVersion=4.x
UserName=admin
MimeType=xml/soap
CollabPort=From

IORFileName=D\:\\CrossWorlds\\bctws_your_CrossWorldsInterchangeServer.ior

6. If CrossWorlds is not running on the same machine as WebSphere, copy the
IOR file from the CrossWorlds machine to a local drive on the WebSphere
machine and refer to it on the local drive.
Note: WebSphere will not be able to load the IOR file from a mapped network
drive. That is why you must copy it to a local drive.

12 Web Services Overview and Samples

The proxy class, which is included in the EAR file, reads this configuration
when it is called to perform the Web service. It uses the information to attach
to your InterChange Server.

Deploying the enterprise application
The next step is to deploy bctwssamples.ear from the BCT_HOME\lib directory.
Take the defaults for each installation step, selecting the CrossWorlds application
server if given a choice.
1. Stop the CrossWorlds application server if it is running.
2. Regenerate the Web-server plugin.
3. Start the application server.

Testing WebSphere
To test the WebSphere setup:
1. Open a Web browser.
2. Type the following address:

http://localhost/bctwssamplesweb/servlet/messagerouter

You should receive the following message:
Sorry, I don’t speak via HTTP GET - you have to use HTTP POST to talk to
me.

3. Type the following address:
http://localhost/bctwssamplesweb/admin

This time, you see a screen titled XML-SOAP Admin.
4. Click List all services.

You see at least one service (urn:ibmwsgw#BCT_TestAllTypes_Retrieve) listed.
Note that because of the # symbol in this name, you cannot view the
deployment information by clicking on it. The # symbol is required by the Web
Services Gateway.
You have now verified the WebSphere deployment and configuration.

Preparing to use the inbound service
The next step is to start the inbound collaboration (if it is not already started) and
prepare to receive messages using a Test Connector.

From the CrossWorlds System Manager window:
1. Expand the BCT_TestAllTypes project.
2. Expand the Collaboration Objects folder.
3. If it is not already started, right-click

SAI_to_BCTSampleConnector2_BCT_TestAllTypesInbound and click Start.
Notice that the ports are bound to the External Connector and
BCTSampleConnector2.

4. If it is not already started, right-click BCTSampleConnector2 and click Start.

Next, you’ll display the Test Connector and configure it so that it can access the
BCTSampleConnector2:
1. From Windows, click Start > CrossWorlds > Connectors > Test Connector.

2. Click File > New Profile.

CrossWorlds Sample 13

3. From the Profiles window, click Add.
4. Verify that the Server Name, Password, and Configuration file fields are

correct. Then type the following in the Connector field:
BCTSampleConnector2

5. Click OK.
6. Click File > Open Profile.

7. Click the BCTSampleConnector2 to select it, and click OK.
8. Connect to the InterChange Server by clicking File > Connect Agent.

The agent should connect and list subscribed business objects in the left-hand
pane of the window.

At this point, the Test Connector is attached to BCTSampleConnector2, which is
bound to the To port of the inbound collaboration. The From port is bound to the
External Connector, which is where the Java proxy calls when a Web service
request arrives in WebSphere.

Understanding the outbound collaboration
This section describes the outbound collaboration.

Inspecting the outbound collaboration
1. Open the Collaboration Objects folder.
2. Double-click the following object so you can look at its ports and how they are

bound to the connectors:
BCTSampleConnector1_to_BCTSampleSOAPConnector_BCT_TestAllTypesOutbound

As you can see, there are three ports:

From port
The From port is where you trigger the collaboration with a
BCT_TestAllTypes.Retrieve event. The From Port is bound to
BCTSampleConnector1.

You will use BCTSampleConnector1 to create and initialize a
BCT_TestAllTypes.Retrieve event to be sent from the From port.

To port
The To port is where the BCT_TestAllTypes.Retrieve is sent to the Web service.
This port is bound to the BCTSampleSOAPConnector.

To display the maps for BCTSampleSOAPConnector:
1. Right-click the To port.
2. Click Show maps.

Here you see that there are outbound and inbound maps for the
BCTSampleSOAPConnector. This connector requires a special top-level business
object that encapsulates child business objects for the request, the response, and the
fault (in case an error occurs). This top-level business object also contains an
attribute for the URL for the Web-service application server. This business object is
the application-specific business object for the SOAP connector. It is named
BCT_SOAP_BCT_TestAllTypes.

14 Web Services Overview and Samples

The outbound map (BCT_TestAllTypes_to_BCT_SOAP_BCT_TestAllTypes)
performs the following processing:
1. It converts the generic business object (BCT_TestAllTypes) into a

BCT_SOAP_BCT_TestAllTypes application-specific business object (the top-level
business object mentioned above). This application-specific business object has
a child object into which the generic business object is mapped.

2. The map fills in the URL attribute for the Web-service application server:
a. A method in a class in bctwssamples.jar is called from the map to look up

the URL. To see what it does, look at the file bct_ws_configuration.txt in
directory\bctws\cw.

b. The mapping function takes the name of the source business object (in this
case, BCT_TestAllTypes) and adds BCT_WS_ to the front of the name and
_Verb (for example, _Retrieve) and _URL to the end of the name.

c. It then looks in the file for a key value based on this modified name. In this
case, it looks for BCT_WS_BCT_TestAllTypes_Retrieve_URL.

d. When the key is found, the URL is determined from the file. In this case,
the URL is seen to be
http://localhost/bctwssamplesweb/servlet/messagerouter.

e. The map then fills in this value in the URL field of the target object.

There is also a response map for the BCTSampleSOAPConnector. This inbound
map copies from the application-specific business object child field for the response
back into the generic business object used in the collaboration flow. The name of
this map is BCT_SOAP_BCT_TestAllTypes_to_BCT_TestAllTypes.

Reply port
After the SOAP connector finishes a successful call to the Web service, the response
is in a BCT_TestAllTypes object. For testing purposes, the Reply port is bound to
the BCTSampleConnector1.

When the BCTSampleSOAPConnector receives a reply, the reply business object
flows to the Reply port.

Running the end-to-end scenario
Now you will use the outbound collaboration to trigger the inbound collaboration,
using the Web service you deployed in WebSphere.

To review, the two collaborations are:
v An inbound collaboration object

(SAI_to_BCTSampleConnector2_BCT_TestAllTypesInbound). This collaboration is
exposed as a Web service and deployed in WebSphere. You receive requests and
reply to them using the BCTSampleConnector2 and the Test Connector. Be sure
that the inbound collaboration object and Test Connector for
BCTSampleConnector2 are running (look under the BCT_TestAllTypes Project in
the Collaboration Objects folder to confirm that the collaboration object and its
connector are running).

v An outbound collaboration object that calls the inbound collaboration’s
Web-service interface using the SOAP connector. This collaboration object is
named
BCTSampleConnector1_to_BCTSampleSOAPConnector_BCT_TestAllTypesOutbound.
You have not yet tested this collaboration object.

CrossWorlds Sample 15

Testing the outbound collaboration object
To test the outbound collaboration object, you must make sure it has started and
its connectors have been started. Do the following:
1. From the CrossWorlds System Manager menu bar, click Server > System View.

2. Check to see that the following connectors have been started:
v BCTSampleConnector1
v BCTSampleConnector2
v BCTSampleSOAPConnector

You will start the agents for these connectors in the next section.

Starting the BCTSampleSOAPConnector agent
To start the agent:
1. Open a command prompt.
2. Navigate to the directory %crossworlds%\connectors\SOAP
3. Copy the start_BCTSampleSOAP.bat file from \bctws\cw into this directory.
4. Type the following command, substituting your InterChange Server name (as it

appears in the CrossWorlds System Manager left-hand pane) for <servername>:
start_BCTSamplesoap BCTSampleSOAP <servername>

Starting the Test Connector
Next, you need a Test Connector that is associated with BCTSampleConnector1. If
the Test Connector for BCTSampleConnector1 is not already running, bring it up
now.

If this is the first time you are using the sample, you need to create a profile in the
Test Connector for BCTSamplesConnector1 by following these steps:
1. Display the Test Connector window by clicking Start > CrossWorlds >

Connectors > Test Connector.

2. Click File > New Profile to add a profile for the Test Connector to access
BCTSampleConnector1.

3. In the Profiles window, click Add.
4. Verify that the Server Name, Password, and Configuration file fields are

correct. Then type the following in the Connector field:
BCTSampleConnector1

5. Click OK.
6. Click File > Open Profile.

7. Click BCTSampleConnector1.

8. Click OK.

9. Click File > Connect Agent to connect to the InterChange Server.

The BCT_TestAllTypes business object is now listed in the left pane of the
BCTSampleConnector1 Test Connector. The business object BCT_TestAllTypes is
saved in the \bctws\cw directory.

Loading the business object
To load the business object:
1. Click BCT_TestAllTypes in the left pane to select it.
2. Click Edit > Load BO from the Test Connector menu bar.

16 Web Services Overview and Samples

3. Navigate to the \bctws\cw directory.
4. Click BCT_TestAllTypes_1.BO to load.

Figure: The Test Connector screen and Open window with the business object
highlighted

5. After you load the business object, double-click the resulting object instance
and inspect its contents.
This is the business object that will be sent to the Web service.
Figure: The business object screen, showing its attributes

Sending the business object
To send the business object:
1. Click the instance of the business object to select it.
2. Click Request > Send from the Test Connector menu bar. This action sends the

business object via the BCTSampleSOAPConnector and the Web service to the
receiving collaboration.

Receiving the business object
Remember that the BCTSampleConnector2 is monitoring the To port of the
receiving collaboration. To receive the business object:
1. Click the Test Connector for BCTSampleConnector2 to select it.
2. Click Request > Accept Request.

You see the business object that you sent in the right pane of the
BCTSampleConnector2 Test Connector window.

Changing fields
Next, you will change some fields in the business object. In this way, you will be
able to inspect the object when it is returned to make sure the service worked.
1. Double-click the BCT_TestAllTypes object.
2. In the editor window, change the values in the Value and Name fields.
3. Click OK.

Sending the business object back to the requestor
1. Click the BCT_TestAllTypes object to select it.
2. Click Reply > Success from the BCTSampleConnector2 Test Connector window.

The business object is now sent as a reply to the requestor.

Checking the reply
BCTSampleConnector1 is bound to the Reply port of
BCT_SampleConnector1_to_SOAPConnector_BCT_TestAllTypesOutbound, so you
can see the reply:
1. Click BCTSampleConnector1 to select it.
2. Click Request > Accept Request on the Test Connector window for

BCTSampleConnector1.

To finish the end-to-end flow, from the BCTSampleConnector1 Test Connector
window:

CrossWorlds Sample 17

1. Click BCT_TestAllTypes in the right-hand pane to select it.
2. Click Request > Reply > Success.

The values in the Value and Name fields have changed, indicating success.

This sample did not make use of the Web Services Gateway on either the sending
or receiving end. In “Adding the Web Services Gateway” on page 19, you will see
how to expand the sample so that requests flow into and out of the Web Services
Gateway.

18 Web Services Overview and Samples

Adding the Web Services Gateway

In the Basic samples section, you installed two CrossWorlds collaborations:
v An outbound sample to send a message using a SOAP connector to a

SOAP-enabled application server. The server uses the SOAP message to call a
method on a CrossWorlds Java proxy class.

v An inbound sample collaboration that is called by the proxy class. The proxy
class uses the CrossWorlds Server Access Interface (SAI) classes to connect to the
CrossWorlds instance where the inbound collaboration is deployed. The body of
the SOAP message is passed via the SAI to the CrossWorlds instance. This
message is converted into a business object and used to trigger the inbound
collaboration’s From port. The collaboration runs and returns a value to the
caller synchronously via the SAI. The response flows back to the caller (the
outbound collaboration) as a SOAP message. The SOAP connector calls the data
handler for SOAP messages to convert the response to a business object. This
business object is passed to the calling collaboration flow.

The diagram below summarizes the basic connectivity sample that you have built
so far. Note that if you have deployed everything on a single machine, the
diagram’s Enterprise A and Enterprise B are logical rather than physical entities.

Figure: Flow of a business object through the SOAP connector of one enterprise to
another enterprise

Connectivity using the Web Services Gateway
With this basic pattern for synchronous calls established, you will now learn how
to add to the sample by using the Web Services Gateway. The Web Services
Gateway provides the capability to:
v Log outgoing and incoming messages
v Secure access to services
v Route outgoing calls based on trading-partner information passed from the

outgoing collaboration in the SOAP message header

The diagram below shows you how the Web Services Gateway is added to the
basic connectivity scenario. In the basic connectivity sample, Enterprise A uses the
outgoing collaboration to send a SOAP message directly to Enterprise B. To show
how the Web Services Gateway is used by Business Connection, two gateway
instances are introduced to the basic connectivity sample.
v Enterprise A uses a Gateway instance with a Private channel. All calls from

Enterprise A are passed through the Private channel of Enterprise A.
v All messages that are to be processed by Enterprise B must be received by

Enterprise B’s Web Services Gateway on a Public channel.

Figure: Two enterprises, each with a Web Services Gateway

Note: For the basic connectivity sample, only one physical machine was required.
If you are going to implement the Web Services Gateway portion of the sample
scenario, you must use two physical machines. This is because two Web Services
Gateway instances are needed, and only one Web Services Gateway instance can
run on a physical machine. However, you can modify the sample to use just one

© Copyright IBM Corp. 2002 19

Gateway if desired. That requires just one machine, but you will not be able to see
how the WSDL provided by one Gateway is deployed into another Gateway if
only one Gateway is used.

Web Services Gateway basic concepts
As the diagram above indicates, messages received on Web Services Gateway
channels are forwarded by the Web Services Gateway using another component
named Web Service Invocation Framework (WSIF). The diagram also indicates that
WSDL is used in some manner by the Web Services Gateway and WSIF to enable
the forwarding of messages. The basic concepts needed to understand how
Business Connection uses the Web Services Gateway are explained in this part of
the document. The explanations describe the concepts and steps needed to
configure a Gateway to implement the sample scenario shown in the diagram.

For more in-depth discussion of how the Web Services Gateway works, see the
Using the Web Services Gateway document.

Understanding Web Services Gateway channels
A Web Services Gateway channel is capable of receiving a message and passing it
to the Web Services Gateway core component for processing. A channel has a URL
that is used by callers to send it messages. The Web Services Gateway presently
comes with several pre-configured channels.

For basic CrossWorlds-to-CrossWorlds interactions, Business Connection uses the
pre-configured SOAP channels that are shipped with Web Services Gateway. There
are two such pre-configured SOAP channels provided. The only difference between
them is the pre-configured URL that they use to receive SOAP messages.

These SOAP channels use Apache SOAP 2.2 technology to receive messages and
forward them to the Web Services Gateway core code. The reason for two
pre-configured SOAP channels is to provide Public and Private SOAP channels for
a Web Services Gateway instance.

By convention, the ApacheSOAPChannel1 will be called the Private channel and
ApacheSOAPChannel2 will be called the Public channel.

To see if a channel is active, use a browser and enter its endpoint URL (for
example, http://yourhostname/wsgwsoap1). Doing so issues an HTTP/GET
request, which the channel handles by displaying the following message:
Welcome to the Apache SOAP channel for the IBM Web Services Gateway.

Currently the only one way to interact with this channel is to send web
services invocations to it.

Understanding WSIF and WSDL usage by the Gateway
In this section, you will learn about how the Business Connection uses Web
Services Gateway services.

After a SOAP message is received on a channel, the channel passes it to the Web
Services Gateway core component for processing. In the most basic use of the Web
Services Gateway, the Gateway processes a message by using Web Services
Invocation Framework (WSIF) to send the message to a different URL. (As
previously noted, the Web Services Gateway can also provide logging, security,
and routing services, which are discussed in Web Services Advanced Topics.)

20 Web Services Overview and Samples

The question is—how does the Web Services Gateway core determine how and
where to forward the message?

The answer lies in the concept of gateway services and target services.

Target service
A target service represents a forwarding destination for the Web Services Gateway.
For Business Connection, a target service is described by a Web Services
Description Language (WSDL) file, which contains a URL and an interface for the
Web service.

The target WSDL is generated by the WSGenUtility, which is the CrossWorlds
utility you use to create the web service. The WSDL includes a description of the
SOAP message that can be processed by the target service along with the URL that
can be called to obtain the service.

Figure: The WSGenUtility produces a WSDL, which points to the target service

You might think of the target service in this case as the actual Web service, the
service that will perform the request.

Gateway service
A gateway service is produced by the Web Services Gateway when a target WSDL
file is deployed in the Gateway. (You use the Web Services Gateway administrative
console to deploy the file, as will be described in a later section.) For Business
Connection, a target WSDL is deployed in one of the SOAP channels depending on
whether the call is considered to be publicly available or privately available. After
deployment of the target WSDL, the Web Services Gateway produces a gateway
service using the URL of the SOAP channel where deployment was made. The
gateway service is provided by the Gateway on the URL of the channel where you
deployed the target WSDL.

Figure: A WSDL deployed in a channel produces a target service and gateway
service

The relationship of the gateway service to the target service is maintained
internally by the Web Services Gateway core component. The target WSDL
message description includes the message body name (a string) and body
namespace (another string). During deployment, the Web Services Gateway core
hashes together (combines) the body name and the body namespace to form a key.
This key is used to look up a gateway service when a message is received on the
channel.

Figure: The body name plus the body namespace equals the key to the service

When the SOAP channel receives a SOAP message, it is passed to the Web Services
Gateway core component. The SOAP message body name and body namespace are
hashed together, and the gateway service is found using the resulting key. Each
gateway service is associated with one or more target services. Assume for now
that only one target service is available. (The case of n target services is discussed
in the Routing Filter section.) So the target service for the message that came on
the channel is found in this manner. The Web Services Gateway stores a reference
to the original target WSDL for each target service. To re-send the message to the
target service, the target WSDL is used.

Figure: A gateway service pointing to the target WSDL

Adding the Web Services Gateway 21

This is where WSIF come into use. WSIF is able to use the target WSDL to
dynamically produce a Java proxy class that can be used to call the service
described by the WSDL. The gateway uses the target WSDL reference to produce
such a proxy. The incoming message is then re-sent to the target service (on its
original endpoint URL) using the proxy class.

Figure: The WSIF pointing to a Java proxy class, which calls the service

Inbound service deployment
Look again at the following drawing, which shows how the Web Services Gateway
instances are used by Enterprise A and Enterprise B. The actual service is
performed by the CrossWorlds on Enterprise B. To use the Gateways in the sample,
you start with the actual service on Enterprise B.

Figure: Two enterprises, each with a Web Services Gateway

When the Web service for a collaboration based on BCT_TestAllTypesInbound is
developed, the WSGenUtility is used by a developer to produce several files that
are needed by Business Connection to enable Web services. (The Web Services
Technical Reference document describes the use of WSGenUtility in depth.) As
mentioned earlier, one of the files produced by the utility is a WSDL file describing
the SOAP message for the Web service and the URL of the SOAP-enabled
application server where the service is hosted.

Figure: The CwGenUtility produces a names file and an import file

In the CrossWorlds-to-Web Services Gateway drawing, this WSDL file is referred to
as wsdl in Enterprise B. The drawing shows wsdl over the arrow going into the
CrossWorlds Soap Server. This indicates that the server can process messages
described by wsdl.

To provide the service on the Public channel of the Web Services Gateway-B, you
deploy wsdl into the Web Services Gateway-B Public channel. This results in
another WSDL file, which the drawing labels wsdl’ (wsdl prime). The wsdl’ file
describes a message using the endpoint URL of the Public channel. Messages
formed according to the description in wsdl’ and sent to the Public channel URL
are forwarded to the target service described by wsdl. WSIF uses the reference that
it holds to wsdl to produce a dynamic proxy, which is used to forward the
message.

Now you will use the sample files to deploy the service on the Web Services
Gateway at Enterprise B.

The WSDL that was produced for the BCT_TestAllTypesInbound service is named
BCT_TestAllTypes_Retrieve.wsdl . It is saved in directory \bctws\was\cw\wsdl.

To deploy this WSDL file in Web Services Gateway-B:
1. Display the Web Services Gateway administrative console by entering:

http://enterpriseb.hostname/wsgw/admin

at a browser (use the real host name for Enterprise B).
2. Click Deploy under the Services category on the left side of the screen.
3. From the Deploy Services screen, type the following in the Gateway Service

Name field:

22 Web Services Overview and Samples

BCT_TestAllTypes_Retrieve

4. Accept Generic Classes (the default) in the Message part representation field.
5. Click ApacheSOAPChannel2 to select it from the Channels list.
6. In the Target Service Location, type:

c:/bctws/was/cw/wsdl/BCT_TestAllTypes_Retrieve.wsdl

Use your installed drive letter if it is different than C.
7. Accept URL (the default) in the Location field.
8. Leave the other fields blank.
9. Click OK.

The Web Services Gateway will deploy the WSDL file and provide a gateway
service available on the Public SOAP Channel (ApacheSOAPChannel2) that is
described by wsdl’.

After successful deployment, you see BCT_TestAllTypes_Retrieve listed under
Gateway Services.

You can click the Gateway Service link on the list to see information held in the
Web Services Gateway for this service, as shown in the following screens. Note
that these screens are used for illustration and do not necessarily match the
samples you just completed.

Figure: Web Services Gateway screen showing Gateway Service properties

This part of the screen shows the name of the service, how the message is
represented internally by the Web Services Gateway during processing, the
Authorization Policy and Audit Policy for the service (which are discussed in the
Web Services Technical Reference), and the Annotation URL (which is not currently
used by the Web Services Gateway). You can change the configuration of the
gateway service by changing the information and clicking Apply Changes.

The next section of the screen shows information about the target services that are
associated with the gateway service.

Figure: Web Services Gateway screen showing multiple targets

In the sample, there is only one target service at this point. You can see the URL of
the file that was used to create the gateway service. This reference is used by WSIF
to re-send messages that come in to the gateway service. You can remove a target
service by clicking the remove button below it.

By entering a new WSDL location, you can define another target service for the
gateway service. In this way, more than one target can be associated with a single
gateway service. (In the screen shown above, three target services have been
deployed for the gateway service.) If you define more than one target, each must
have a unique Target Service Identity Information value assigned. When routing is
discussed, you will see how one target service can be selected from many
possibilities by the use of a routing filter that uses information held in the SOAP
message header.

Also note that the Target Service Name and Target Service Namespace fields are
not required. In this sample, there is only a single service described in the target
WSDL, so the Web Services Gateway will use this one and only service when

Adding the Web Services Gateway 23

deploying. If there are several services in the target WSDL, you will need to enter
these fields to select one of them when deploying.

Next is the Channels section of the screen. Again, this screen is being used for
purpose of illustration and does not reflect the sample with which you have been
working.

Figure: Web Services Gateway screen showing how channels can be added or
removed

Here you see that the gateway service is available on ApacheAxisChannel1 and
ApacheSOAPChannel1 but not on ApacheAxisChannel2. For the case shown in the
figure, you could also add ApacheAxisChannel2 also, meaning that a caller could
use three channels to call the service (but, for this sample, don’t do it). You also
could remove the gateway service from ApacheAxisChannel1 and
ApacheSOAPChannel1 by clicking the remove button (again, do not do it at this
time.)

Next is the Filters section of the screen.

Figure: Web Services Gateway screen showing how filters can be added or
removed

Note that the figure above shows a deployed filter for a gateway service. The
sample you have worked with in this chapter does not use a filter. A request filter
is a module that is called just before the target service is called. A response filter is
a module called just after a target service has completed and before the response is
sent back to the channel. Later you will see how a request filter is used to provide
routing to select one of many possible target services. Refer to the Using the Web
Services Gateway document for more discussion of filters.

At the bottom of the Gateway Service screen are two sections. The UDDI
References capability of the Web Services Gateway is not used by the WebSphere
Business Connection at this time and is not discussed here.

At the very bottom of the screen are links that can be used to view the gateway
service wsdl’.

Figure: Web Services Gateway screen showing contents of WSDL

Click on the External WSDL implementation definition (WSDL only) link. Here
you see that the gateway service is available on endpoint URL
http://stevesh/wsgwsoap2/soaprpcrouter. Higher up in the file is an import
element. The import shows where the interface can be obtained, which is where
the structure and content of a SOAP message that can use the endpoint are
described.

Clicking on the Interface link at the bottom of the Gateway Service screen gives the
following (only the top of the screen is shown here):

Figure: Web Services Gateway screen showing contents of the interface

This is the interface that is imported into the Service definition you looked at
previously. You can see that there is information here that describes the structure
and content of SOAP request and response messages that are valid for the service.

24 Web Services Overview and Samples

Note that wsdl’ from the Web Services Gateway is comprised of two parts—the
Service description and the Interface description. This is because it is considered to
be good practice to separate the Service and Interface descriptions, with the Service
importing the Interface. It promotes reuse of an interface by different service
endpoints.

Obtaining wsdl’
As discussed above, clicking the hypertext links at the bottom of the Gateway
Service screen gives a browser view of the two files (service and interface) that
comprise a Gateway WSDL. The links are actually calls to URLs in the Web
Services Gateway that provide the descriptions.
v The Service Definition is provided by calling:

http://enterpriseb.hostname/wsgw/ServiceDefinition?name=
BCT_TestAllTypes_Retrieve

v The Service Interface is provided by calling:
http://enterpriseb.hostname/wsgw/ServiceInterface?name=
BCT_TestAllTypes_Retrieve

(Note: Substitute the actual hostname in the URL.)

The way that the Interface is imported by the Definition is by using the URL. This
means that the URLs as shown above provide one way to obtain wsdl’.

Another way involves producing actual files for the Service Definition and
Interface. To do this, you do the following:
1. In Internet Explorer 5.5, right-click the Service Definition link and select Save

target as.
2. Choose a directory and file name for the ServiceDefinition xml file. A suggested

naming scheme is ServiceName_definition.wsdl (for example,
BCT_TestAllTypes_Retrieve_definition.wsdl.)

3. Repeat for the Service Interface link, using a name like
ServiceName_interface.wsdl.

4. Edit the location attribute of the import element of the definition file to import
the interface from a file URL. For example, change from:
<import namespace=“urn:ibmwsgw#BCT_TestAllTypes_Retrieve”

location=“http://stevesh.charlotte.ibm.com/wsgw
/ServiceInterface?name=BCT_TestAllTypes_Retrieve”/>

to
<import namespace=“urn:ibmwsgw#BCT_TestAllTypes_Retrieve”

location=“BCT_TestAllTypes_Retrieve_interface.wsdl”/>

After this change is made, wsdl’ is available as a file in the file system. This will be
a useful technique for deployment when the servlet URLs are not available because
of firewalls or other reasons.

Private service deployment
At this point, you have deployed the service in the Public channel of Enterprise B.
This service can be called with messages that are formed from wsdl’. The next step
is to provide a way for the SOAP connector of the collaboration inside Enterprise
A to call a Private channel deployed in Web Services Gateway-A.

To do this, you need to deploy wsdl’ from the Public channel of Web Service
Gateway B into the Private channel of Web Services Gateway A.

Adding the Web Services Gateway 25

In the drawing, the wsdl’ file from Enterprise B is shown to the right of Web
Services Gateway. This indicates that Web Services Gateway-B can call a target
service described by wsdl’.

To provide the service on the Private channel of Web Services Gateway A, you
deploy wsdl’ into the Web Services Gateway A Private channel. This results in
another WSDL file, which the drawing labels wsdl’’ (wsdl double prime). The
wsdl’’ file describes a message using the endpoint URL of the Private channel.
Messages formed according to the description in wsdl’’and sent to the Private
channel URL are forwarded to the target service described by wsdl’. WSIF uses the
reference that it holds to wsdl to produce a dynamic proxy, which is used to
forward the message.
1. To deploy the service, at the Enterprise A machine, go to the Web Services

Gateway Deploy Services administration screen and do the following
(substituting the actual host name in the URL):
a. In the Gateway Service Name field, type:

BCT_TestAllTypes_Retrieve

b. In the Message part representation field, accept Generic Classes (the
default).

c. In the Channels field, select ApacheSOAPChannel1 by clicking it.
d. In the Target Service Location field, type:

http://enterpriseb.hostname/wsgw/ServiceDefinition?name=
BCT_TestAllTypes_Retrieve

e. In the Location field, accept URL (the default). As discussed previously, this
uses the ServiceDefinition servlet on Web Services Gateway B to obtain the
target wsdl.

2. Click OK to add the new gateway service to Web Services Gateway A.

The last step is to change the URL look-up file used by the outbound mapping
from the generic business object to the SOAP application-specific business object.
Here the URL of the Private channel must be used as the destination of the
message that is sent from the SOAP Connector.

The URL lookup file is \bctws\cw\bct_ws_configuration.txt.
1. Open this file for edit.
2. Change the entry for the BCT_TestAllTypes_Retrieve as follows (substituting

the actual host name in the URL):
BCT_WS_BCT_TestAllTypes_Retrieve_URL=http://enterprisea.hostname/
wsgwsoap1/soaprpcrouter

Testing the end-to-end flow
At this point, you have completed the basic Gateway-to-Gateway deployment. You
can now start both Gateways, start both CrossWorlds servers, and start the
CrossWorlds application server on Enterprise B that hosts the Web service.

Use the same technique described in the basic CrossWorlds-to-CrossWorlds
scenario to send messages from Enterprise A to Enterprise B through the
Gateways.

26 Web Services Overview and Samples

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

WebSphere Business Connection Lab Director
IBM RTP Laboratory
3039 Cornwallis Road
P.O. BOX 12195

© Copyright IBM Corp. 2002 27

Raleigh, NC 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

28 Web Services Overview and Samples

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM
alphaWorks
AIX
CrossWorlds
DB2
DB2 OLAP Server
DB2 Universal Database
DeveloperWorks
MQSeries
SecureWay
WebSphere

Lotus is a trademark of International Business Machines Corporation and Lotus
Development Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

Notices 29

	Contents
	WebSphere Business Connection and Web Services
	CrossWorlds Sample
	Before you begin
	CrossWorlds-to-CrossWorlds sample theme
	Outbound sample description
	Generic business object
	Outbound collaboration object

	Inbound sample description
	Generating CrossWorlds artifacts
	Collaboration flows
	Outbound flow
	Inbound flow

	CrossWorlds sample installation files
	Editing start_server.bat
	Importing the CrossWorlds project
	Starting CrossWorlds
	Importing projects

	Configuring WebSphere
	Creating the CrossWorlds application server
	Deploying the enterprise application

	Testing WebSphere
	Preparing to use the inbound service
	Understanding the outbound collaboration
	Inspecting the outbound collaboration
	From port
	To port
	Reply port

	Running the end-to-end scenario
	Testing the outbound collaboration object
	Starting the BCTSampleSOAPConnector agent
	Starting the Test Connector
	Loading the business object
	Sending the business object
	Receiving the business object
	Changing fields
	Sending the business object back to the requestor
	Checking the reply

	Adding the Web Services Gateway
	Connectivity using the Web Services Gateway
	Web Services Gateway basic concepts
	Understanding Web Services Gateway channels
	Understanding WSIF and WSDL usage by the Gateway
	Target service
	Gateway service

	Inbound service deployment
	Obtaining wsdl'
	Private service deployment

	Testing the end-to-end flow

	Notices
	Programming interface information
	Trademarks and service marks

