IBM WebSphere Business Connection

Web Services Technical Reference

Version 1.10

<|ll

Note!
Before using this information and the product it supports, be sure to read the general information under

First Edition (September 2002)

This edition applies to Version 1, Release 1, Modification 0, of IBM® WebSphere® Business Connection (5724-D26) and
to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send them to the following address:

IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Web Services Technical Reference .
A review of communication flow
Flow overview.

Object relationships
SOAP-object-to-generic-business-object relatlonshlp
(Document style) .

SOAP-object-to- generlc-busmess ob]ect relatlonshlps

(RPC style) . .
SOAP connector meta- ob]ect relatlonshlps
SOAP Connector - meta-object to business object
relationships . .
SOAP object relatlonshlps .
SOAP Data relationships
SAI meta-object relationships . . .
SALI - meta-object-to-business-object relatlonshlps .
SALI object relationships.
SAI data relationships .
Samples .

Naming conventions and values

Document-style conventions.
Generic business object naming convention .
SOAP application-specific business object naming
convention . .
Top-level busmess ob]ect .
Response and Request business ob]ects .
Fault business object
AppSpecificInfo attribute .
Review of business-object naming .
SOAP header naming convention .
SOAP meta-object naming convention
Further meta-object naming convention .
Map naming convention . o
Collaboration template naming convention .
Collaboration object naming convention .
Project naming convention

RPC-style conventions.

Parameter application-specific business ob]ect
naming convention .

RPC SOAP appl1cat1on—spec1f1c busmess ob]ect
naming convention . .o o
SOAP meta-object naming conventlon

© Copyright IBM Corp. 2002

—_

i~

N U1 U1 U1 U1 U1 = W~

\‘

. 10
. 10
. 10
. 10
.11
.11
.11
.12
.13
. 14
. 14

. 15

. 15

.15
. 16

Further meta-object naming convention .
Map naming convention . .
Collaboration template naming conventlon
Collaboration object naming convention .
Project naming convention

Creating CrossWorlds-to-CrossWorlds
flow .
Solution pattern .
Outbound SOAP connector ﬂow
Inbound SAI flow . .
Using CWGenUtility for CrossWorlds to-
CrossWorlds . . e
Creating the SOAP service
Step 1:Change the name of the EAR and WAR
files .
Step 2: Import the f11e mto WebSphere
Application Developer.
Step 3:Add the WSGenUftility generated classes
Step 4:Update configuration information
Step 5:Export and deploy the Ear file.
Context root-to-URL relationship .
WSDL-to-deployment descriptor relatlonshlp .
Deployment descriptor fragment
WSDL fragment .
xxx_Readme.txt fragment.
Relationship .

Enabling an RPC Web service.
Creating an RPC Web service
Modifying RPC Web service DDS f11e

Product data mappings

Using the CWGenUtility
Running the utility .
Names file.
Director file
Fileoutput task .
Template task.

Notices .
Programming mterface 1nformat10n
Trademarks and service marks .

. 16
. 16
.17
.17
.17

.19
.19
.19
.20

. 20
.22

.22

.23

23

.23
.24
.24
. 24
.24
. 25
. 25
. 25

.27
.27
.28

. 29

.31
.31
.32
. 33
. 33
. 35

. 37
. 38
. 39

iii

1V Web Services Technical Reference

Web Services Technical Reference

This document provides you with technical information to help you develop Web
services. The document describes the relationship between CrossWorlds® artifacts,
provides details of the naming conventions for document-style and RPC-style
messaging, and describes the CWGenUtility. It provides a review of topics and
expands on topics covered in earlier Web Services documentation.

A review of communication flow

The following figure represents two enterprises, each with a CrossWorlds instance.
Communication is flowing between the CrossWorlds instances.

Figure: Flow between two enterprises using CrossWorlds

In an actual production environment, message flows will start in Enterprise A and
flow to Enterprise B. However, for the source connector in Enterprise A to send out
a message, a collaboration has to be defined in Enterprise A. Similarly, for the
SOAP connector in Enterprise A to send a message, the Web Services Gateway A
has to be set up, and for Web Services Gateway A to be set up, Web Services
Gateway B has to be set up, and so forth all the way to Target Connector B.

For a message to flow from A towards B, therefore, the upstream parts (starting
with Source Connector A) have a dependency on the downstream parts, all the
way to Target Connector B. Development, then, has to start on B and propagate to
A, as follows:

1. On Enterprise B:

Define business objects.
Define maps for the request and response (success/fault).
Define a collaboration template.

Define a collaboration object and bind it to ports.

® 2 0 T o

Define meta-objects (which are used by the data handler).
2. On Enterprise B:

a. Run WSGenUtility to create a Web-service Java™ proxy and WSDL.
b. Create a deployment descriptor for the Web-service Java proxy.

c. Deploy the Web-service Java proxy and deployment descriptor into a
SOAP-enabled application server (for example, WebSphere™ Application
Server).

3. On Enterprise B, deploy the WSDL into the Web Services Gateway, which
creates WSDL'.

4. On Enterprise A, deploy the WSDL’ into Enterprise A.

5. On Enterprise A:
a. Deploy the business objects from Enterprise B into CrossWorlds.

© Copyright IBM Corp. 2002 1

b. Deploy the client meta-objects from Enterprise B into CrossWorlds.
(Create the meta-objects if they have not already been created.)

c. Configure the SOAP connector top-level meta-objects.

Flow overview

The information in the samples is based on the Outbound and Inbound sequence
diagrams. These are generic diagrams that are common to all flows.

The outbound flow is represented as follows:
Figure: Outbound sequence flow
The inbound flow can be represented as follows:

Figure: Inbound flow from Web service to connector

2 Web Services Technical Reference

Object relationships

The previous section showed the outbound flow from a SOAP connector and the
inbound flow through an SAIL This section describes in detail the relationships
between the objects that are part of that flow, including the relationship between:

* A SOAP application-specific business object and a Document-style general
business object

* A SOAP application-specific business object and an RPC-style
application-specific business object

* A SOAP connection meta-object and the object and data of a business object
* An SAI meta-object and the object and data of a business object

SOAP-object-to-generic-business-object relationship (Document style)

A top-level SOAP application-specific business object is required when a business
object is communicating with the SOAP connector. This SOAP top-level object has
a particular structure that mimics the parts of a SOAP message.

Figure: The top-level business object structure

SOAP messages consist of a:
* Request - The message being sent
* Response - The reply to the request

* Fault - A special type of response containing errors that occurred while the
request was processed

Normally, for communication between CrossWorlds to CrossWorlds, the generic
business object that is sent can be assigned to the Response and Request attributes
of the SOAP top-level application-specific business object. If Web Services Gateway
is being used, though, this will not work because the Web Services Gateway uses
RPC style, which can return only a single object. Because a generic business object
may contain multiple attributes, these attributes have to be encapsulated into a
single object.

To create a single object, you create a wrapper SOAP application-specific business
object. This object contains a single attribute called child, which contains the
generic business object.

Note: the attribute does not have to be called child.

If SOAP headers are required, such as for routing or authentication in Web Services
Gateway, additional attributes in the SOAP Request application-specific business
object are required to represent the header information. The attribute, which can be
any name, contains a generic business object with the structure that mimics the
XML structure of the header. Pre-defined header generic business objects are
provided with the samples for use with the Web Services Gateway Routing and
Authentication filters.

© Copyright IBM Corp. 2002 3

SOAP-object-to-generic-business-object relationships (RPC style)

As you learned in [Web Services Advanced Topics} for RPC calls, each method
input parameter and return type needs to be represented by an application-specific
business object. Those business objects are:

* The parameter application-specific business objects are encapsulated by the
SOAP application-specific business object Request.

* The return application-specific business object is encapsulated by the SOAP
application-specific business object Response.

* The SOAP Fault application-specific business object contains the same attributes
as a normal SOAP Fault message. The SOAP Fault detail attribute is optional.

Normally the Request parameter application-specific business objects would be
associated with the Detail attribute. If so and if there is more than one parameter,
the application-specific business object needs to be a superset of all the parameters.
The limitation is that none of the attribute names within the parameters can be the
same.

SOAP connector meta-object relationships

Meta-objects are used by the SOAP connector data handler to marshal and
un-marshal the SOAP XML messages. The Request, Response, and Fault
meta-objects need to be created for each SOAP application-specific business object
being sent to the SOAP connector.

Figure: How the data handler marshals and unmarshals SOAP messages
Meta-objects are based on the business object and verb combination. The business

objects are the ones associated with the SOAP top-level application-specific
business object Request, Response and Fault attributes.

SOAP Connector - meta-object to business object relationships

This section describes the object relationships and data relationships in SOAP
connector operations.

SOAP object relationships

Each SOAP application-specific business object representing the Request, Response
and Fault attributes of the SOAP top-level application-specific business object
requires a corresponding SOAP meta-object. These meta-objects have a fixed
structure and are used by the CrossWorlds data handlers for marshalling and
un-marshalling the SOAP application-specific business objects to and from SOAP
XML.

Meta-objects are specific to the name of the business object plus the verb. Each
combination of SOAP application-specific business object and verb requires a
meta-object. Meta-objects are grouped by requests and responses. Requests go out
from CrossWorlds through the SOAP connector; the replies to the requests are the
responses. Responses are returned from the SOAP connector into CrossWorlds.

Figure: Relationship between business objects and meta-objects

Request meta-objects are used for converting business objects to SOAP XML
messages. Response and Fault meta-objects are used for converting SOAP XML

4 Web Services Technical Reference

messages to business objects. The SOAP Request application-specific business
object is associated with a meta-object for request messages (business
object-to-SOAP XML). SOAP Response and Fault application-specific business
objects are associated with meta-objects for reply messages (SOAP XML-to-business
object).

SOAP Data relationships

The following illustration shows the data relationships that correspond to the
object relationships discussed in the previous section.

Figure: Relationship of objects and corresponding XML

SAl meta-object relationships

Meta-objects are used by the Service Access Interface (SAI) data handler to marshal
and un-marshal the SOAP XML messages. The Request, Response, and Fault
meta-objects need to be created for each SOAP application-specific business object
being sent to the SAI. Meta-objects are based on the business object and verb
combination.

Figure: The SAI data handler marshals and unmarshals SOAP messages

The business objects are the ones associated with the SOAP top-level
application-specific business object Request, Response and Fault attributes.

SAl - meta-object-to-business-object relationships

This section describes the object relationships and data relationships in SAI
operations.

SAIl object relationships

The relationship between SOAP application-specific business objects and
meta-objects is similar to that of the SOAP connector. Meta-objects are grouped by
requests and responses.

In the SAI case, requests go from SAI into CrossWorlds and responses (the replies
to the requests) go from CrossWorlds to SAI. Request meta-objects are used for
converting SOAP XML messages to business objects. Response and Fault
meta-objects are used for converting business objects to SOAP XML messages. The
SOAP Request application-specific business object is associated with a meta-object
for request messages (SOAP XML-to-business object). SOAP Response and Fault
application-specific business objects are associated with meta-objects for reply
messages (business object-to-SOAP XML).

SAl data relationships

The following illustration shows the data relationships that correspond to the
object relationships discussed in the previous section.

Figure: Relationship of objects and corresponding XML

Object relationships 5

Samples

Collaboration templates are provided for inbound and outbound flows to provide
a common behavior for SOAP-style interactions. Copy them to the new name and
change as required.

Sample scenarios are provided for the following:
* Basic outbound and inbound.

* Basic outbound and inbound with Web Services Gateway Routing capability.
This selects a spoke destination when multiple spokes are available for the same
Web service.

* Outbound RPC-style call through the SOAP connector.

6 Web Services Technical Reference

Naming conventions and values

SOAP business objects are specific to the Web service they represent. You can think
of a SOAP business object as an application-specific business object. In addition,
the Web-service-specific SOAP application-specific business object requires
meta-object definitions (business objects themselves) that are specific to the SOAP
application-specific business object.

The type of information required in the meta-object is the name of the Web-service
Java class, name space, method to invoke, and business object verb (for example,
Create, Retrieve, Update, Delete). Because of these dependencies between a SOAP
application-specific business object and meta-object, a naming convention is
required. There are two conventions required depending on whether the SOAP
request is an RPC style or document style. For CrossWorlds-to-CrossWorlds
communication, a document style is used.

© Copyright IBM Corp. 2002 7

8 Web Services Technical Reference

Document-style conventions

CrossWorlds to CrossWorlds via Web services uses a SOAP document-style
messaging interaction, and Web Services Gateway uses a SOAP RPC-style message
interaction. Even with the two message styles, Web Services Gateway can still be
used between two CrossWorlds instances, but there are some limitations placed on
the data.

Generic business objects are the inputs and outputs of collaborations. Mapping
objects convert generic business objects to application- specific business objects. For
CrossWorlds to CrossWorlds, a generic business object can be part of the SOAP
object. This simplifies the naming convention, which is based on the generic
business object.

The Web Services Gateway uses RPC-style message exchange. This means that it
cannot return data with multiple parts. Since a generic business object may have
multiple attributes, the generic business object must be wrapped with a business
object that contains only one attribute—the generic business object.

Refer to[“SOAP-object-to-generic-business-object relationship (Document style)” on|
lpage 3 for a figure depicting the structure.

Generic business object naming convention

The generic business object name is usually composed of an object type and a
name that describes the purpose of the collaboration.

|0bject type_descriptive name

For example, the components that make up the Business Connection offering begin
with BCT_ (the object type) followed by a descriptive name.

Recall that in the samples programs, the generic business object is
BCT_TestAllTypes.

SOAP application-specific business object naming convention

The general structure of a SOAP application-specific business object is:

Top business object
Response business object
Request business object
Fault business object

Top-level business object

SOAP application-specific business objects need to be defined for the top-level
SOAP object and for the Request, Response, and Fault attributes. The business
objects are named by adding prefix information to the generic business name, as
follows:

object type_SOAP_generic business object

© Copyright IBM Corp. 2002 9

10

For example, if the generic business name is BCT_TestAllTypes (with the object
type being BCT_), the SOAP top-level business object is named
BCT_SOAP_BCT_TestAllTypes.

Response and Request business objects

The Response and Request business objects are named by adding the same prefix
information (as in the top-level business object) to the generic business object plus
also adding Wrapper as a suffix, as follows:

object type_SOAP_generic business object_Wrapper

In the example, the Response and Request business objects are named
BCT_SOAP_BCT_TestAllTypes_Wrapper.

Fault business object

The Fault business object is similarly named, except that Fault rather than Wrapper
is used as the suffix:

|0bject type_SOAP_generic business object_Fault

In the example, the Fault business object is named
BCT_SOAP_BCT_TestAllTypes_Fault.

In addition, the Fault business object requires the following specific attributes:
e faultcode

* faultstring

e faultfactor

* detail - set to the same type as the Request generic business object

AppSpecificlnfo attribute

The CrossWorlds WSGenUstility, which is used to create a Web-service Java proxy,
requires that the application-specific business objects have an entry in the
AppSpecificInfo attribute section giving the business-object name. This build-time
requirement is needed only for inbound calls through the SAIL. The SOAP
connector does not require this information. Most business objects are used for
inbound and outbound, however, so the information is provided for all business
objects. Meta-objects, which are not application-specific business objects, do not
require this information.

Review of business-object naming

To review, SOAP business objects follow the convention shown in this table, where
name is the generic business name:

Table 1. SOAP business-object haming convention

SOAP business object Application-specific business object name/type
Top Level BCT_SOAP_name

Response BCT_SOAP_name_Wrapper

Request BCT_SOAP_name_Wrapper

Fault BCT_SOAP_name_Fault

Web Services Technical Reference

SOAP header naming convention

SOAP headers require some special information. To add information to a SOAP
header, you need an attribute in the SOAP Request application-specific business
object that contains a generic business object with a structure mimicking the SOAP
header message XML.

The attribute name used is requestHeader, and the generic business object
representing the header has been pre-defined to work with the Router and
Authentication filters. The requestHeader attribute requires the application-specific
information entry of soap_location=SOAPHeader, which must go before the type
value entry.

For example, using the BCT_TestAllTypes sample, the requestHeader attribute
would be:

soap_location=SOAPHeader;type=BCT_SOAP_BCT_TestAllTypes_ HDR

The header element also requires a namespace. The namespace entry being used
for Business Connection is:

| elem_ns=http://www.ibm.com/wbc

SOAP meta-object naming convention

SOAP meta-objects need to be defined for the Request, Response and Fault
attributes. In addition, they are specific to the verb. There is a naming convention
to indicate whether the data flow direction is outbound (business object-to-SOAP
message) or inbound (SOAP-to-business object), and to indicate whether the
meta-object is associated with the SOAP connector (client) or SAI (service).

Table 2. SOAP meta-object naming convention

meta-object business object meta-object name

SOAP Application-Specific Top Level Not required

Request MO_ddd_BOtoSOAP _sss_verb

Response MO_ddd_SOAPtoBO_sss_Response_verb
Fault MO_ddd_SOAPtoBO_sss_Fault_verb
where:

* ddd indicates whether the name is associated with the SOAP connector or SAI
service. SOAP connector uses the value client and the SAI service uses the value
service.

* sss represents the corresponding SOAP application-specific business object (for
example, BCT_SOAP_BCT_TestAllTypes or BCT_SOAP_BCT_TestAllTypes_Fault

Further meta-object naming convention
This section describes the BodyName and BodyNamespace attributes for SOAP
meta-objects.

BodyName Attribute
The BodyName is the name of the SOAP Body. In SOAP v2.2, this corresponds to

the method name to be invoked in the service.

Document-style conventions 11

For Request meta-objects, the BodyName is the name of the generic business object
prefixed with m_.

m_generic business object

For example, if the generic business object name is BCT_TestAllTypes, the resulting
BodyName is m_ BCT_TestAllTypes.

For Response meta-objects, the BodyName is the name of the Request method with
the word Response added as a suffix.

request method nameResponse

For example, if the Request method name is m_BCT_TestAllTypes, the resulting
BodyName is m_ BCT_TestAllTypesResponse.

BodyNS Attribute

The BodyNS is the namespace of the SOAP Body. This namespace can be anything
as long as it is consistently used in the various meta-objects associated with the
SOAP application-specific business objects. In SOAP v2.2, the Body Namespace is
used by the SOAP Server (servlet) to determine the ID of the service to use for
processing a received message.

The Java proxy created by the CrossWorlds WSGenUltility is specific for a generic
business object and verb. Therefore, the naming convention is the generic business
object plus an underscore (_) plus the verb.

| generic business object_verb

For example, if the generic business object is named BCT_TestAllTypes and the
verb is Retrieve, the resulting namespace is BCT_TestAllTypes_Retrieve.

This works fine for CrossWorlds directly to CrossWorlds. If Web Services Gateway
is used, however, a modification to this Namespace is required. When Web
Services Gateway is installed, one of the configuration parameters is the
Namespace URI for Services, which defaults to urn:ibmwsgw.

Web Services Gateway uses a namespace of its URI plus # plus the service name.
For example, if the generic business object is BCT_TestAllTypes and the verb is
Retrieve, the resulting namespace (using the default urn) is
urn:ibmwsgw#BCT_TestAllTypes_Retrieve.

Map naming convention
Maps are used to convert generic business objects to application-specific business
objects and vice-versa. Map names are based on the:
* Source object, followed by the word “to”
* Target object

SourceBusinessObject_to_TargetBusinessObject.

For example, if the source is BCT_TestAllTypes and the target is
BCT_SOAP_BCT_TestAllTypes, the resulting map name is:

12 Web Services Technical Reference

BCT_TestAllTypes_to_BCT_SOAP_ BCT_TestAllTypes.

Several maps are required:

Table 3. Maps required for request/response flows

Flow

Map required

Outbound request

Generic business object to SOAP
application-specific-business-object top level

Outbound response

SOAP application-specific business object
top level to generic business object

Inbound request

SOAP application-specific business object
wrapper to generic business object

Inbound response

Generic business object to SOAP
application-specific business object fault

Polymorphic generic business object to
SOAP application- specific business object
wrapper

A special map is required for the response application-specific business object
coming from the SAI. This map has to produce either a normal SOAP response
application-specific business object or a SOAP fault application-specific business

object.

This map name consists of:

¢ The word “Poly”

* The generic business object, followed by the word “to”

¢ The “normal” response object

Poly_generic business object_to_response object

For example, if the source is BCT_TestAllTypes and the target can be either
BCT_SOAP_ BCT_TestAllTypes_Wrapper or BCT_SOAP_ BCT_TestAllTypes_Fault,

the resulting map name is:

Poly_ BCT_TestAllTypes _to_ BCT_SOAP_ BCT_TestAllTypes_Wrapper

Collaboration template naming convention

Collaborations are named based on two factors:

* The generic business object on which it operates

* The direction (from a Web-services viewpoint), which can be either:
— Outbound - Calling out to the Web service through the SOAP connector
— Inbound - Calling from a Web service into the SAI

The result is a combination of the generic business object and direction.

For example, if the generic business object is named BCT_TestAllTypes and the
direction is outbound through the SOAP connector, the resulting name is:

BCT_TestAllTypesOutbound

Document-style conventions 13

Collaboration object naming convention

This name represents an instance of a collaboration template. Instances of
collaboration templates are bound to specific physical ports (for example,
SOAPConnector, BCTSampleConnector). The name is based on the names of the:

* From port connector, followed by the word “to”
* To port connector
* Collaboration template

The result looks like this:

FromConnector_to_ToConnector_CollaborationTemplateName

For example, if the From connector is BCTSampleConnectorl, the To connector is
BCTSampleSOAPConnector, and the collaboration template name is
BCT_TestAllTypesOutbound, the resulting name is:

BCTSampleConnectorl_to_BCTSampleSOAPConnector_BCT_TestAllTypesOutbound

Project naming convention

Project names follow the same convention used for collaboration template names.

14 Web Services Technical Reference

RPC-style conventions

RPC style is very similar to document style. The differences are:
* Multiple methods may be encompassed within a single service.
* The generic business objects must match the input parameters for the RPC call.

* There can be multiple input parameters that will require multiple generic
business objects.

* The name of the generic business object must be the same as the Java type,
including the package name.

* Since the RPC method call return type will probably be different from the input
parameter, the SOAP wrapper for the response is different.

Parameter application-specific business object naming convention

Each parameter in an RPC call or return requires an application-specific business
object to represent the Java class. For example,
com.ibm.bct.ws.samples.rpc.RequestList represents a business object.

Java parameter objects in Web services must follow the Java bean pattern for
introspection purposes. The application-specific business objects needs to mimic
the Java data types. Attribute names follow the name of the method parameter.

* Attribute names will be the same as the Java attribute name.

* Data types name will be the same as the Java data type. If the Java data type is
a class, an application-specific business object needs to be created that matches
the class.

RPC SOAP application-specific business object naming convention
The general structure of a SOAP application-specific business object is:
Top BO
Response BO

Request BO
Fault BO

SOAP application-specific business objects need to be defined for the top, request,
response and fault attributes.

Table 4. SOAP application-specific business object naming convention

SOAP business object Application-specific business object name
Top level BCT_SOAP_www_mmm

Request BCT_SOAP_www_mmm_Request

Response BCT_SOAP_www_mmm_Response

Fault BCT_SOAP_www_mmm_Fault

where:

s www is the Web-service name (for example, Stockquote)
* mmm is the method name (for example, getQuote)

© Copyright IBM Corp. 2002 15

Java parameter objects in Web services are required to follow the Java bean pattern
for introspection purposes. SOAP application-specific business object naming
conventions follow the bean pattern.

* Attribute names are the same name as the method parameter. The attribute
name for the RPC method return has to be return.

* Data types name are the same as the Java data type. If the Java data type is a
class, an application-specific business object needs to be created that matches
the class.

SOAP meta-object naming convention

SOAP meta-objects follow the document-style naming convention. See
Imeta-object naming convention” on page 11}

Further meta-object naming convention

This section describes the BodyName and BodyNamespace attributes for SOAP
meta-objects.

BodyName Attribute

For Request meta-objects, the BodyName is the name of the RPC method call.

|RPC method call

For example, if the RPC method name is getQuotes, the resulting name is
getQuotes.

For Response meta-objects, the BodyName is the name of the Request method name
with a suffix of Response.

|Request method nameResponse

For example, if the Request method name is getQuotes, the resulting name is
getQuotesResponse

BodyNS Attribute

The BodyNS is the Namespace that will be used for the namespace of the SOAP
Body. This namespace can be anything as long as it is consistently used in the
various meta-objects associated with the SOAP application-specific business
objects.

In SOAP v2.2, the Body Namespace is used by the SOAP Server (servlet) to
determine which service to call for a received message. This value can be obtained
from the id attribute of the service element, which can be found in the Web-service
deployment descriptor (dds.xml). For example,
http:lltempuri.orglcom.ibm.bct.ws.samples.rpc.Stockquote

Map naming convention
Maps follow the document-style naming convention. See

fconvention” on page 12}

16 Web Services Technical Reference

Note: Maps cannot be created using business objects with periods (.) in the
business-object name. Any mapping against the parameter application-specific
business objects will need to be done with custom maps.

Collaboration template naming convention

Collaboration templates follow the document-style naming convention. See
[“Collaboration template naming convention” on page 13|

Collaboration object naming convention

Collaboration objects follow the document-style naming convention. See
[“Collaboration object naming convention” on page 14}

Project naming convention

Project names follow the same convention used for collaboration template names.

RPC-style conventions 17

18 Web Services Technical Reference

Creating CrossWorlds-to-CrossWorlds flow

For CrossWorlds to CrossWorlds using a SOAP service, the following steps are
required.

1. Define the generic business objects on the source and destination side.

2. Define the SOAP application-specific business objects for the SOAP connector
and SAL

3. Define the meta-objects for the SOAP application-specific business objects.

4. Define the mappings to convert from generic business objects to SOAP
application-specific business objects and from SOAP application-specific
business objects to generic business objects.

Define the collaboration templates.

Define the collaboration objects.

Run the WSGenUtility to create the Java proxy class for invoking the SAL
Create the SOAP service.

Deploy the CrossWorlds artifacts and configure:

a. The URL for the SOAP message to be sent to

b. The supported business objects by the SOAP connector and other
connectors involved

c. The meta-objects used by the SOAP connector and SAI so that they have
references to your specific meta-objects

© © N o u

10. Deploy the SOAP service and configure the Java proxy class by setting:
a. log4j for tracing
b. Configuration information for the Java proxy to use

11. If Web Services Gateway is being used, deploy the WSDL generated by the
WSGenUtility into Web Services Gateway.

If you are using the suggested naming conventions as described in
fconventions and values” on page 7} the WSGenUstility along with the predefined
templates can very easily be used for creating the initial meta-objects, SOAP
application-specific business objects, and custom maps. The predefined templates
are based on a solution pattern developed for the samples. Refer to section
[“Solution pattern”| for the solution pattern. If different naming conventions and
business objects are being used, you can create your own templates.

Solution pattern

The solution pattern is based on sending a generic business object from one
CrossWorlds instance via the SOAP connector to another CrossWorlds instance that
has a collaboration exposed as a SOAP service using the SAIL. The same generic
business object is used in both collaborations for the request and the response. This
means that the generic business object can be encapsulated with a SOAP
application-specific business object for the request and response.

Outbound SOAP connector flow

For the outbound flow through the SOAP connector, mappings are required for
mapping the generic business object to the SOAP top-level application-specific

© Copyright IBM Corp. 2002 19

business object and for mapping the response SOAP top-level application-specific
business object to the generic business object.

For mapping to the SOAP top-level application-specific business object, two
custom maps are used to:

e Dynamically obtain the URL. A samples utility is provided for obtaining the
URL from a properties file based on the generic business object name and verb.

* Create the SOAP Request application-specific business object that populates the
child attribute with the generic business object and creates the SOAP header
objects.

SOAP header objects are used by the Web Services Gateway Routing and
Authentication filters.

For mapping the SOAP top-level application-specific business object reply to the
generic business object, one custom map is used. This custom map checks the Fault
attribute of the SOAP top-level application-specific business object and, if it is
populated, throws an exception. Otherwise, the SOAP top-level application-specific
business object Response object will have its child attribute object copied into the
generic business object.

Inbound SAI flow

For the inbound flow through the SAI, one map is used to convert the SOAP
Request application-specific business object to the generic business object. Two
maps are used to convert the generic business object to the SOAP Response
application-specific business object.

For mapping from the SOAP Request application-specific business object, the map
uses custom code to copy the SOAP Request application-specific business object
child attribute object to the generic business object.

Note: the generic business object from the outbound collaboration is expected to be
the same as the generic business object for the inbound collaboration.

For mapping the generic business object to the SOAP Response application-specific
business object, two maps are used:

* A polymorphic map
* A generic-business-object-to-SOAP-Fault-application-specific-business-object map

Custom code in the polymorphic map checks the error attribute of the generic
business object. If the attribute value is null or BCTNOFAULT, the SOAP
Response application-specific business object is created with the generic business
object set as the child attribute; otherwise, an error is assumed and the
generic-business-object-to-SOAP-Fault-application-specific-business-object map is
called. Custom map code in the generic-business-object-to-SOAP-Fault-
application-specific-business-object will create the SOAP Fault application-specific
business object, setting the generic business object into the SOAP Fault
application-specific business object detail attribute.

Using CWGenUtility for CrossWorlds-to-CrossWorlds

This section describes the pre-defined templates provided to use with the
CWGenUtility. The templates follow the solution pattern described in the previous
section. A more detailed description of the CWGenUltility is provided in
ICWGenUtility” on page 31

20 Web Services Technical Reference

Predefined names, director, and template files are provided for creating
meta-objects, SOAP application-specific business objects, and custom maps that
follow the naming convention and solution pattern. In addition, a text file is
created with all of the generated names that can be used for inputs when you

configure or run the WSGenUtility.

The generated business objects can be imported into CrossWorlds. The code for the
maps can be pasted into the custom-map input screens.

The following table describes the input files used:

Table 5. Input file descripton

File name

Description

bctwsnames.txt

Variables defined for use in the director file
and templates

RequestResponseWithHeader.xml

Director file for directing the operations
performed

* tpt

Template files

The output files are in the directory Generated\gbo. The file names are based on
the generic business object name and verb. The following table describes the

output files:

Table 6. Output file description

File name

Description

gbo.verb.bo.in

CrossWorlds import file containing all the
generated business objects

gbo.verb.names.txt

Text file containing the generated names

cw_wsgenutility_inputfile.txt

Contains the inputs for the WSGenUtility

map_outbound_gbo_to_soap_top_url
_request.txt

Custom map used on the SOAP connector
side for obtaining the URL for the outbound
SOAP top-level application-specific business
object

map_outbound_gbo_to_soap_top_request
_request.txt

Custom map used on the SOAP connector
side for creating the outbound SOAP request
application-specific business object

map_outbound_soap_top_to_gbo
_response.txt

Custom map used on the SOAP connector
side for converting the returned SOAP
Response application-specific business object
to the generic business object

map_inbound_soap_wrapper_to_gbo
_request.txt

Custom map used on the inbound SAI side
for converting the SOAP Request
application-specific business object to the
generic business object

map_inbound_sub_gbo_to_soap_fault
_response.txt

Custom map used on the inbound SAI side
for converting an error in the Response
generic business object into a SOAP Fault
application-specific business object

Creating CrossWorlds-to-CrossWorlds flow 21

Table 6. Output file description (continued)

File name Description
map_inbound_poly_gbo_to_soap_ Custom map used on the inbound SAI side
wrapper_response.txt for converting the Response generic business

object into the SOAP Response
application-specific business object. If there

is an error, the generic business object to
SOAP Fault map will be called.

To invoke CWGenUtility, enter (as one string):

java com.ibm.bct.ws.cw.BCTWSDirector -director .\RequestResponseWithHeader.xml
-names .\bctwsnames.txt BASE _DIR NAME=.\REPOS_VERSION FILE=c:\crossworlds\
repository\reposversion.txt gbo=gbo_name verb=verb_name
cwcollabtemplate=collab_template_name CWICS=cw_instance_name

where:

* gbo_name is the name of the generic business object (for example,
BCT_TestAllTypes)

* verb_name is the name of the verb (for example, Retrieve)

* collab_template_name is the base collaboration template name (for example,
BCT_TestAllTypes)

e cw_instance_name is the CrossWorlds ICS name

Creating the SOAP service

The samples provide a starter SOAP service that you can use to create your own
Web service from the class created by WSGenUftility. Once the basic Web service is
created, you can easily add in other generated classes. The basic steps are:

1. Change the name of the provided sample Web service to your Web service
name. Use the WebSphere Application Assembly tool to change the name.

2. Import your renamed Web service EAR file into WebSphere Application
Developer so that your classes can be added.

3. Add in your classes.
4. Update the configuration information.
5. Export and deploy the ear file.

After you complete this procedure, only steps 3 through 5 need to be done for any
additional classes.

In this example, the name of your SOAP service is Your_Name and the sample
BCT _TestAllTypes will be used to embed into the service.

Step 1:Change the name of the EAR and WAR files

In order to import the BCT_WS_WebService_Template_EAR file into WebSphere
Application Developer, you must change the names of the EAR and WAR files.
Use the WebSphere Application Assembly Tool as follows:

1. Open the WebSphere Application Assembly Tool and select the
BCT_WS_WebService_Template_EAR.

2. In the General tab, change the Display name to Your_Name_EAR.

3. Select the BCT_WS_WebService_Template_EAR>Web
Modules>BCT_WS_WebService_Template

22 Web Services Technical Reference

4. In the General tab

a.

b.

Change the File name, Context root, and Display name to your new name
(Your_Name_Web). Note: Context root is part of the SOAP Service URL that
will be used. See the section [“Context root-to-URL relationship” on page 24|
for a fuller explanation.

Click Apply.

5. Save the new EAR file (using File>Save as) to your new name
(Your_Name_EAR.ear).

Step 2:Import the file into WebSphere Application Developer
1. Import the new EAR file into WebSphere Application Developer

2. After you import the file, there will be compilation errors. To resolve these
errors, add the soap.jar file to the Web module (Your_New_Web) Java build path.
You can use the predefined WebSphere Application Developer variable
SOAPJAR, or you can obtain the file from the WebSphere\ AppServer\lib
directory.

Step 3:Add the WSGenUtility generated classes
1. In the Navigator view, add the WSGenUltility generated Java classes.

a.

Select the Your_Name_Web > source.

b. Click File>Import>File System.
C.
d

Click the Next button.

. Navigate to the Java source file and select the Java file (not the compiled

class file). Make sure that Create complete folder structure is not checked.
Click Finish.

2. Remove the TestDummyBean.

a.

Right-click on the TestDummyBean.java file in the source folder and delete
it. This should also cause the TestDummyBean.class file in the classes
directory to be removed.

Right-click on the Your_Name_Web_classes.jar in the lib folder and delete it.
This step removes another copy of the TestDummyBean.class.

Step 4:Update configuration information

1. Update the Deployment Descriptor. From a received SOAP message, the SOAP
servers matches the body namespace and method to the deployment descriptor
to determine which Java class to invoke.

a.
b.

Double-click the dds.xml file to open the file in the editor.

Copy and paste the example service element lines to between the root
element; then edit the indicated values. The values can be obtained either
from the wsdl or the xxx Readme.txt files generated by the WSGenUtility.
See the section [“WSDL-to-deployment descriptor relationship” on page 24|
for details.

2. Update the Servlet initialization parameters. This will contain the configuration
file name and location required by the WSGenUtility generated Java proxy.

a.
b.

Double-click the web.xml file to open the file in the editor.
Click the servlets tab.

c. Click messagerouter to highlight it, and then click Intialization.

Creating CrossWorlds-to-CrossWorlds flow 23

d. Add the init parameter from the WSGenUtiltiy generated xxx_Readme.txt
file. Because no directory is specified, the Java proxy will look in the
WebSphere Application Server instance working directory.

e. Click OK.
f. Save the web.xml file.

3. Update the log4j.properties file, which is used for configuring the
WSGenUtility-generated Java proxy trace settings.

a. In the source folder, double-click log4j.properties to open the file in an
editor. Note: Be sure to use the copy in the source folder and not the classes
folder.

b. Copy and paste the two lines containing the servicename and replace the
servicename with the category value in the WSGenUltility-generated
xxx_Readme.txt file.

Step 5:Export and deploy the Ear file
1. Right-click the Ear file (Your_Name_EAR) and select Export EAR File.
2. Enter the EAR file name (your_name.ear), and click Finish.

Deployment is similar to the description for the samples.

Context root-to-URL relationship

The context root helps identify the SOAP service location and is part of the URL
location in the WSDL. In the following example, the WSDL has a soap:address
entry of:
<service name="BCT_TestAl1Types_Retrieve">
<port name="BCT_TestAl1Types_RetrievePort" binding=
"tns:BCT_TestAl1Types_RetrieveBinding">
<soap:address Tocation=
"http://1ocalhost/bctwssamplesweb/servlet/messagerouter"/>
</port>
</service>

e The URL is:
http:/ /localhost/bctwssamplesweb/servlet/ messagerouter
¢ The context root is:

bctwssamplesweb

WSDL-to-deployment descriptor relationship

This section shows the relationship among the SOAP service Deployment
Descriptor (dds.xml), the WSDL, and the information in the WSGenUtility-
generated xxx_Readme.txt file. The contents of the files are shown first.

Deployment descriptor fragment

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:ibmwsgw#BCT_TestAl1Types_Retrieve"
type="message"
checkMustUnderstands="false">

24 Web Services Technical Reference

<isd:provider type="java" scope="Request" methods="m BCT_TestAl1Types">
<isd:java class="BCT_TestAl1Types_Retrieve" static="false"/>
</isd:provider>
</isd:service>

WSDL fragment

<wsdl:binding name="BCT_TestAl1Types_RetrieveBinding"
type="tns:BCT_TestAl1Types_RetrievePortType">
<soap:binding style="rpc" transport=
"http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="m_BCT_TestAl1Types">
<soap:operation soapAction=""/>
<wsd1:input>
<soap:body use="encoded"
namespace="urn:ibmwsgw#BCT
_TestAl1Types_Retrieve"
encodingStyle="http:
//schemas.xmlsoap.org/soap
/encoding/">
</soap:body>
</wsd1:input>

xxX_Readme.txt fragment
SERVICE ID CTassName Methods

urn:ibmwsgw#BCT_TestAl1Types Retrieve BCT_TestAl1Types Retrieve m_BCT_TestAl1Types

Relationship

The following table shows where each of the values in the first column is found in
the three files.

Table 7. How values appear in dds.xml, WSDL, and Readme.txt files

Value Deployment WSDL Readme.txt
Descriptor

urn:ibmwsgw#BCT_TestAll |id soap:body namespace | SERVICE ID

Types_Retrieve

m_BCT_TestAlltypes methods wsdl:operation name | Methods

BCT_TestAllTypes_Retrieve |isd:java class ClassName

Creating CrossWorlds-to-CrossWorlds flow 25

26 Web Services Technical Reference

Enabling an RPC Web service

This section describes what needs to be done to enable an RPC service to work
with the CrossWorlds SOAP connector, focusing on using WebSphere Application
Developer.

There are limitations to the SOAP connector’s ability to create SOAP XML
messages. Some limitations are internal to the SOAP connector design and others
are limited by CrossWorlds business objects. This means that not any RPC Web
service can be invoked from CrossWorlds, but only those that fit within
CrossWorlds’s capabilities.

Limitations to RPC calls are:

Only one name space is supported for SOAP Body Namespace and the data
types. This means that the namespace for data types has to be the same as the
Body namespace.

Only data types that are supported in a generic business object can be used. This
means no:

— Arrays of primitives, but only arrays of complex types
— Vectors, hashtables, and so on

Creating an RPC Web service

To create the RPC service:

1.

© Copyright IBM Corp. 2002

Create the Web service as normal within WebSphere Application Developer.

The WSDL files are not used and can be ignored.

Modify the Web-service Deployment Descriptor file (dds.xml). See
[RPC Web service DDS file” on page 28for details.

Export the EAR file and deploy the Web service.

Create the CrossWorlds parameter application-specific business objects, SOAP
application-specific business objects, and meta-objects. See ['RPC-style

[conventions” on page 15| for details.

Business-object names cannot be created with periods by the CrossWorlds
Business Object Designer. However, a business object that contains names with
periods can be imported. See[“Using the CWGenUtility” on page 31| for help in
creating these business objects.

Create any required maps, collaborations, and so on.

Note: Maps cannot be made using business objects with periods (.) in the
business-object name. Any mapping against the parameter application-specific
business objects will need to be done with custom maps.

27

Modifying RPC Web service DDS file

WebSphere Application Developer creates a Service deployment descriptor
(dds.xml) file with multiple namespaces. This violates the single namespace
requirement and so needs to be modified. There will be a namespace for the
identifier attribute (id) and namespaces for each mapping. Mappings are provided
for each Java type to tell the SOAP Server how to serialize the datatype.

Example extract from dds.xml

This example shows an extract from WebSphere Application Developer dds.xml
file, with two namespaces highlighted:

<root>
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="http://tempuri.org/com.ibm.bct.ws.samples.rpc.Stockquote"
checkMustUnderstands="false">
<isd:provider type="java" scope="Application"
methods="getCompanyQuotes getQuote getQuotes getCompanyQuote">
<isd:java class="com.ibm.bct.ws.samples.rpc.Stockquote" static="false"/>
</isd:provider>
<isd:mappings>
<ijsd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:x="http://www.stockquote.com/schemas/StockquoteRemoteInterface"
gname="x:com.ibm.bct.ws.samples.rpc.ResponseList"
javaType="com.ibm.bct.ws.samples.rpc.ResponselList"
xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
java2XMLCTassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>
<isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

For each namespace (xmlns:x), change the value to be the same as the id. The
following is a sample extract to the dds.xml file with modifications highlighted.

<root>
<isd:service xmins:isd="http://xml.apache.org/xml-soap/deployment"
id="http://tempuri.org/com.ibm.bct.ws.samples.rpc.Stockquote"
checkMustUnderstands="false">
<isd:provider type="java" scope="Application"
methods="getCompanyQuotes getQuote getQuotes getCompanyQuote">
<isd:java class="com.ibm.bct.ws.samples.rpc.Stockquote" static="false"/>
</isd:provider>
<isd:mappings>
<!-- Changed the namespace xnlns:x="http://www.stockquote.com/schemas
/StockquoteRemotelInterface"-->
<l-- to be the same as the above "id" value in the following 4 Tines -->
<isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:x="http://tempuri.org/com.ibm.bct.ws.samples.rpc.Stockquote"
gname="x:com.ibm.bct.ws.samples.rpc.ResponseList"
javaType="com.ibm.bct.ws.samples.rpc.ResponselList"
xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
java2XMLCTassName="org.apache.soap.encoding.soapenc.BeanSerializer"/>

28 Web Services Technical Reference

Product data mappings

This section contains mappings between the different products and how the
different data pieces relate to each other.

Table 8. Product/data mappings

Data CrossWorlds CrossWorlds WSGenUtility | Web WSDL |SOAP

Web service Services XML
Gateway

Service WSGU1 GW1 WSDL1

name

Method |CW2 CWWS2 WSGU2 WSDL2 |S2

name

Target |CW3 CWWS3 WSGU3 GW3 WSDL3 |S3

Name

space

Service |CW4 CWWS4 WSGU4 GW4 WSDL4

URL

Java CWWS5 WSGU5

Class

name

Service Name

WSGU1 - The GUI Service Namespace entry; puts the name into WSDL1
WSDL1 - The service element name attribute value

GW1 - Use in the Web Services Gateway Deployment GateWay Service Name
field

Method Name

CW?2 - Used in the meta-object BodyName attribute.
CWWS2 - Used in the DDS provider element methods attribute value.
WSGU?2 - Obtains this value from CW2.

WSDL2 - Used in the operation element name attribute value. WSGU2 also uses
this value as the root for the message element name attribute value.

52 - The name of the first element under the SOAP Body element.

Target Namespace

CW3 - Used in the meta-object BodyNS attribute.

CWWS3 - Used in the DDS service element id attribute value. This is used by the
SOAP v2.2 Server to determine what service to call.

WSGU3 - The GUI Target Namespace entry. Puts the name into WSDL3.

WSDL3 - The definitions element targetNamespace attribute value.

GW3 - If using Web Services Gateway, this value needs to be the same as what
Web Services Gateway creates, which is the GW1 value prefixed with the
Gateway Namespace URI plus #

53 - The SOAP Body Namespace value for S2.

Service URL (service end point)

© Copyright IBM Corp. 2002

29

* CW4 - Used in the SOAP top-level application-specific business object URL
attribute value. SOAP connector uses this value for the HTTP address when
sending the message.

* CWWS$4 - This Web service is deployed in a SOAP Server that this URL is the
address of.

* WSGU4 - The GUI Binding URL entry. Puts the value into WSDLA4.

¢ GW4 - Obtains this value from the WSDL. Web Services Gateway provides a
channel URL to use.

e WSDLA4 - The address element location attribute value. This element is under the
port element that is under the service element.

Java Class Name

* WSGUS - The GUI Proxy Class Name entry. This is the Java proxy class name
for the Java class that the WSGenUltility creates for deploying as a Web service.

¢ CWWSS5 - The java element class attribute value.

30 Web Services Technical Reference

Using the CWGenUtility

Use the CWGenUtility for creating:

Generic business objects

SOAP application-specific business objects
Meta-objects

Custom maps

Names

This utility provides a standard, repeatable way to create these artifacts so that
they can be imported into CrossWorlds.

Running the utility

To run the utility, you enter the following:

java com.ibm.bct.ws.cw.BCTWSDirector <-director value> [-names value] [name=value]=

where:

-director value is the name of the XML file containing the flow sequence

-names value is the name of the optional file containing the names file

name=value, which can occur multiple times, replaces or adds to the entries in the
Names file

The tool works using three types of input files:

Names file

This file, which is in the format of a Java properties file, contains substitutable
parameters for use in the Director file and Template files. The Names file can
contain substitutable entries.

Director file

This file, which is in XML format, controls the sequence of steps that will occur.
The Director file can contain substitutable entries.

Template files

Template files, which are text files, are used for generating the output files.
Template files can contain substitutable entries.

The process is as follows:

1.

© Copyright IBM Corp. 2002

CWGenUtility reads the Names file (if one is specified) and stores the entries in
memory.

* Substitution occurs from the top down.

31

¢ Any command-line-parameter substitutions override the Names-file entries.

2. The utility then reads the Director file and processes a task at a time, working
from the top down.

Any substitutions are done before executing the task. There can be any number
of tasks. The two basic tasks are:

* File operations for opening a file (new or append), closing a file, and creating
a new directory

¢ Template processing, in which the designated template file is read, one line
at a time, and in which substitutions are performed on each line before the
line is output to the referenced file

Names file

The Names file contains any substitutable values. This file is not required.

The format of the file is a series of name=value pairs. Note also that:

* A #sign in the first column is treated as a comment and the line is not
processed.

* Values to be substituted can be any name, as long as they start and end with a
% sign.

* Substitutable values are processed from the top down.

An example of a Names file and an explanation of the processing steps in the file
follow:

This is a comment

GBO=BCT_TestAl1Types

Verb=Retrieve
SOAP_Request_ASBO=BCT_SOAP_%GB0%_Request

MO_CTient Out=MO_Client_BOtoSOAP_%SOAP_Request_ ASB0%

The processing is as follows:

1. The first line is a comment and therefore ignored.

2. In the second line, the value BCT_TestAllTypes is assigned to GBO.
3. In the third line, the value Retrieve is assigned to Verb.
4

. In the fourth line, the value BCT_SOAP_TestAllTypes_Request is assigned to
SOAP_Request_ASBO. The %GBO% from within the name is replaced by the
value that was assigned in the second line (BCT_TestAllTypes).

5. In the last line, the value
MO_Client_BOtoSOAP_BCT_SOAP_BCT_TestAllTypes_Request is assigned to
MO_Client_Out. The %SOAP_Request_ ASBO% from within the name is
replaced by the value that was assigned in the fourth line.

Note: Any command line name=value arguments override equivalent values in the
Names file.

32 Web Services Technical Reference

Director file

The Director file is used for controlling the tasks to perform. Each task is read in
and the task performed. Any substitutions are made before the task is called. The
order of operation is from the top down.

The structure is:

<bctwsrootcw>
<task name=task_name>
<param name="param namel">value for param </param>
<param name=" param_name2">value for param</param>
<param name=" param_name3">value for param</param>
</task>

<task name=task_name>
<param name="param namel">value for param</param>
<param name=" param_name2">value for param</param>
</task>
</bctwsrootcw>

Allowed tasks name and their purpose are described in the following table.

Table 9. Task descriptions

Task Name Purpose

fileoutput Used for opening files, closing files, and
creating directories

template Used for reading in a template file and
writing out the results to an output file
opened using the fileoutput task

Each task has one or more param sub-elements that have a name attribute value
and text providing the data associated with that param. The number of param
entries is specific to the task. The value for param can be any valid character string
for that parameter’s purpose. Refer to the subsequent sections for more
information on each task and its associated param elements.

Fileoutput task

The fileoutput task is used for opening files, closing files, and creating directories.
The following table contains a description of the possible entries.

Table 10. Fileoutput parameters

Parameter | Required Values Purpose

name

reference | Required Any string Used in subsequent tasks for
writing, closing, and so on

Using the CWGenUtility 33

34

Table 10. Fileoutput parameters (continued)

Parameter | Required Values Purpose

name

action Required new, append, close, new - open a new file for
mkdir writing; will overwrite an

existing file

append - open a file for
writing; will append if the file
already exists; otherwise, a new
file is created

close - close an open file

mkdir - create a directory

filename |Used with these Any valid file name or | new - File name to open for
action parameters: |directory name writing; if not provided,

defaults to console
New - Optional

. append - File name to open for
Append - Optional writing; if not provided,

defaults to console
Close - Not used

mkdir - name of directory to
create. Creates subdirectories
that do not exist.

mkdir - Required

Creating a directory
Note: %BCTWSOUTPUTDIRECTORY% is set to ../dirl/dir/

<task name="fileoutput">
<param name="f1ilename">%BCTWSOUTPUTDIRECTORY%</param>
<param name="reference">filel</param>
<param name="action">mkdir</param>

</task>

Opening a file for output, replacing any existing files
Note: %BCTWSOUTPUTDIRECTORY% is set to ../dir/dir2/

<task name="fileoutput">

<param name="f1ilename">%BCTWSOUTPUTDIRECTORY%myBOs.in</param>
<param name="reference>filel</param>

<param name="action">new</param>

</task>

In this example, a file name of myBOs.in is specified, along with the directory.

Closing a file

<task name="fileoutput">

<param name="reference>filel</param>
<param name="action">close</param>
</task>

In this example, no file name is entered because the close action works only on the
current file associated with the reference value.

Web Services Technical Reference

Template task

The template task is used for the actual creation of your files. The input template
file is read in a line at a time, any substitutions are made, and the output is written
to the file reference. A # character in the first column designates a comment and is

ignored.

The following table contains a description of the possible entries.

Table 11. Template task parameters

Parameter name

Required

Values

Purpose

templatefilename

Required

Any string

The name of the
template file
including the
directory (if not the
current directory)

fileoutputreference

Required

Any string

The fileoutput task
reference parameter
value used when
opening a file

Note: In this example, the template file being used does not reside in the current
directory, so a reference is used that could have been specified in the names file.

<task name="template">
<param name="templatefilename">%TEMPLATE_LOCATION 1%bct soap_wrapper.asbo.

tpt</param>

<param name="fileoutputreference">filel</param>

</task>

Using the CWGenUtility 35

36 Web Services Technical Reference

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

WebSphere Business Connection Lab Director
IBM RTP Laboratory

3039 Cornwallis Road

P.O. BOX 12195

© Copyright IBM Corp. 2002 37

Raleigh, NC 27709-2195
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information

Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

38 Web Services Technical Reference

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM

alphaWorks

AIX

CrossWorlds

DB2

DB2 OLAP Server
DB2 Universal Database
DeveloperWorks
MQSeries
SecureWay
WebSphere

Lotus is a trademark of International Business Machines Corporation and Lotus
Development Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

Notices 39

	Contents
	Web Services Technical Reference
	A review of communication flow
	Flow overview

	Object relationships
	SOAP-object-to-generic-business-object relationship (Document style)
	SOAP-object-to-generic-business-object relationships (RPC style)
	SOAP connector meta-object relationships
	SOAP Connector - meta-object to business object relationships
	SOAP object relationships
	SOAP Data relationships

	SAI meta-object relationships
	SAI - meta-object-to-business-object relationships
	SAI object relationships
	SAI data relationships

	Samples

	Naming conventions and values
	Document-style conventions
	Generic business object naming convention
	SOAP application-specific business object naming convention
	Top-level business object
	Response and Request business objects
	Fault business object
	AppSpecificInfo attribute
	Review of business-object naming

	SOAP header naming convention
	SOAP meta-object naming convention
	Further meta-object naming convention
	BodyName Attribute
	BodyNS Attribute

	Map naming convention
	Collaboration template naming convention
	Collaboration object naming convention
	Project naming convention

	RPC-style conventions
	Parameter application-specific business object naming convention
	RPC SOAP application-specific business object naming convention
	SOAP meta-object naming convention
	Further meta-object naming convention

	Map naming convention
	Collaboration template naming convention
	Collaboration object naming convention
	Project naming convention

	Creating CrossWorlds-to-CrossWorlds flow
	Solution pattern
	Outbound SOAP connector flow
	Inbound SAI flow

	Using CWGenUtility for CrossWorlds-to-CrossWorlds
	Creating the SOAP service
	Step 1:Change the name of the EAR and WAR files
	Step 2:Import the file into WebSphere Application Developer
	Step 3:Add the WSGenUtility generated classes
	Step 4:Update configuration information
	Step 5:Export and deploy the Ear file

	Context root-to-URL relationship
	WSDL-to-deployment descriptor relationship
	Deployment descriptor fragment
	WSDL fragment
	xxx_Readme.txt fragment
	Relationship

	Enabling an RPC Web service
	Creating an RPC Web service
	Modifying RPC Web service DDS file

	Product data mappings
	Using the CWGenUtility
	Running the utility
	Names file
	Director file
	Fileoutput task
	Creating a directory
	Opening a file for output, replacing any existing files
	Closing a file

	Template task

	Notices
	Programming interface information
	Trademarks and service marks

