
IBM WebSphere Business Connection

Web Services Development Tutorial
Version 1.1.0

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 27.

First Edition (September 2002)

This edition applies to Version 1, Release 1, Modification 0, of IBM® WebSphere® Business Connection (5724-D26) and
to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send them to the following address:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Web services tutorial 1

Part I: Producing the CrossWorlds
business objects and Java proxy
artifacts 3
Defining the business-object definitions 3
Defining the generic business object 4
Importing the business-object definitions file. . . . 5
Updating the system meta-objects 5

Updating MO_Service_SOAPToBO_ConfigMO . . 5
Updating MO_Service_BOToSOAP_ConfigMO . . 6
Updating MO_Client_SOAPToBO_ConfigMO . . 6
Updating MO_Client_BOToSOAP_ConfigMO . . 7

Developing the maps 7
Creating the outbound request map 7
Creating the outbound response map 8
Creating the inbound response map 8
Creating the inbound request sub-map 9
Creating the polymorphic map 9

Developing collaboration templates 10
Defining collaboration objects 11

Creating the outbound collaboration object . . . 11
Creating the inbound collaboration object . . . 11

Developing Java proxy and WSDL using
WSGenUtility. 12
Part I review 13

Part II: Deploying the CrossWorlds
Web service 15

Creating a Web service 15
Importing the EAR file into WebSphere Studio
Application Developer. 16
Importing the proxy 16
Editing the SOAP deployment descriptor file . . . 17
Editing the log4j.properties file 18
Exporting the EAR file 18
Deploying the EAR file 18
Testing basic CrossWorlds connectivity 19

Editing the configuration file 19
Creating an instance of the business object . . . 20
Sending a test message 20
Modifying the test message 21
Receiving the test message 21

Part II review. 22

Part III: Deploying the service in Web
Services Gateway 23
Deploying the WSDL file 23
Changing the destination URL 24
Testing the change 24

Notices 27
Programming interface information 28
Trademarks and service marks 29

© Copyright IBM Corp. 2002 iii

iv Web Services Development Tutorial

Web services tutorial

In the Basic samples document, a list of steps for developing CrossWorlds(R) Web
services connectivity was presented. This list of steps is used as the basis of a
tutorial example.

The tutorial guides you through developing an outbound CrossWorlds
collaboration that uses a Web service provided by another CrossWorlds
collaboration. However, before you begin, make sure you have followed the steps
for installing WebSphere(R) and the Web Services Gateway, as described in the
Installation and Configuration guide. In particular, note that CrossWorlds 4.1.1
with the Web Services 1.0.1 (or later) upgrade applied, and WebSphere 4.02
Advanced Edition, must be installed before the sample or this tutorial can be used.
You should also load the Web Services sample (imported from file
BCT_WS_Samples.in) into your CrossWorlds repository, because some of its parts
are reused by the tutorial.

The steps from the Web Services Overview and Samples document are listed below
for review. The steps are:
1. Define the generic business objects on the source and destination side.
2. Define the SOAP application-specific business objects for the SOAP connector

and SAI.
3. Define the meta-objects for the SOAP application-specific business objects.
4. Define the mappings to convert from a generic business object to a SOAP

application-specific business objects and from a SOAP application-specific
business object to a generic business object.

5. Define the collaboration templates.
6. Define the collaboration objects.
7. Run the WSGenUtility to create the Java(TM) proxy class for invoking the SAI.
8. Create the SOAP Service.
9. Deploy the CrossWorlds artifacts and configure:

a. The URL for the SOAP message to be sent to.
b. The supported business objects used by the SOAP connector and other

connectors involved.
c. The meta-objects used by the SOAP connector and SAI so that they have

references to your specific meta-objects.
10. Deploy the SOAP Service and configure:

a. Log4j for tracing.
b. Information for the Java proxy to use.

11. If the Web Services Gateway is being used, deploy the WSDL generated by the
WSGenUtility into Web Services Gateway.

The tutorial is divided into three parts:
v Part I of the tutorial covers steps 1 through 7 of the list above.

You use CWGenUtility to produce CrossWorlds business-object definitions. Then
you use IBM CrossWorlds tooling to develop maps, collaboration templates, and

© Copyright IBM Corp. 2002 1

collaboration objects. Once these are finished, you use the IBM CrossWorlds
WSGenUtility to produce the Java proxy, WSDL for the Web service, and related
files.

v Part II of the tutorial covers steps 8 through 10 of the list above.
In Part II, you deploy the proxy in a SOAP-enabled application server. Then you
can test this by calling from the outbound collaboration using the SOAP
connector to the inbound collaboration.

v Part III of the tutorial covers step 11 of the list above.
In Part III, you deploy the WSDL in the Web Services Gateway so the service is
provided as a gateway service. Then you can test calling from the outbound
collaboration using the SOAP connector to the inbound collaboration through
the Web Services Gateway. Note, however, that this testing is done using just
one machine, rather than with two machines as described in the Samples User
Guide.

2 Web Services Development Tutorial

Part I: Producing the CrossWorlds business objects and Java
proxy artifacts

In this part of the tutorial, you will define the CrossWorlds and Java proxy
artifacts.

First, you use the CWGenUtility program that comes with the Business Connection
offering to produce a file containing the business-object definitions. You must
supply the utility with a generic business-object name and a verb. Based on these
names, the naming convention, and the design pattern for Web-services messaging,
the utility produces an import file containing definitions for the generic business
object, the application-specific business objects, and the meta-objects.

Defining the business-object definitions
You invoke CWGenUtility by running a batch file named runcwgenutility. Do the
following:
1. Open a command prompt and make the current directory

\bctws\cw\cwgenutil.

In this directory are support files for the utility plus a batch file named
runcwgenutility.bat. This batch file assumes that a Java runtime is available in
the path and that the environment variable WAS_HOME is set by a WebSphere
installation. If these assumptions are untrue, you can edit the file to correct the
problems.
The batch file requires these command line arguments:

v The root directory of your CrossWorlds installation (for example,
d:\Crossworlds)

v The generic business-object name (in this case, BCT_SampleData)

v The verb (in this case, Create)

v The name of your Interchange Server (for example, SSHCrossWorlds)

v The URL that you plan to use for the SOAP-enabled application server that
hosts the Web service (for example,
http://localhost/crossworlds/servlet/messagerouter)

2. Invoke this batch file (type as all one line), passing the required parameters.
(Assume that all entries are case-sensitive.)
runcwgenutility d:/crossworlds -BCT_SampleData_Create SSHCrossWorlds
http://localhost/crossworlds/servlet/messagerouter

After the utility runs successfully, the output files are in directories under the
CWGenUtil directory.

Figure: The output files of CWGenUtility

For each generic business object, a new directory is made under the Generated
directory. If you are following the tutorial, you now have a BCT_SampleData
directory. In this directory you will find the output of CWGenUtility, including:
v BCT_SampleDate.Create.bo.in: The import file containing business-object,

application-specific business object, and meta-object definitions.

© Copyright IBM Corp. 2002 3

v Several txt files containing code for the maps used in the outbound-to-inbound
scenario.

v BCT_SampleData.Create.names.txt: A file listing all the names for the artifacts
used in the outbound-to-inbound scenario. You might want to print this file to
use as a reference as you go through the tutorial.
The file includes names you need to know to complete the inbound-to-outbound
message flow. The first few lines of this file are copied below for your reference.
You will use the actual file as you follow the rest of the tutorial.
Open this file in an editor now as you will need to copy and paste the names as
you are creating the rest of the program artifacts used by the scenario.
The names are rather long, so copy and paste is a good way to be sure you do
not make mistakes entering them.
Filename: BCT_SampleData.Create.names.txt
*
*
*
****************** BUSINESS OBJECT ARTIFACTS *****************
GBO: BCT_SampleData
SOAP Fault ASBO: BCT_SOAP_BCT_SampleData_Fault
SOAP Wrapper ASBO: BCT_SOAP_BCT_SampleData_Wrapper
SOAP Top ASBO: BCT_SOAP_BCT_SampleData
Add the SOAP Wrapper ASBO to the Response and Request attributes of the SOAP
Top ASBO
Add the SOAP Fault ASBO to the Fault attribute of the SOAP Top ASBO
Add the GBO to the detail attribute of the SOAP Fault ASBO
Add the GBO as single child to the SOAP Wrapper ASBO
*
*
**

Figure: The CWGenUtility produces a names file and an import file

Note: The imported business objects refer to your generic business-object type, but
the import does not include your generic business object. The import will fail
unless you define your generic business object in the CrossWorlds repository first.

Defining the generic business object
Before you import the business objection definitions, define your generic business
object.
1. Open the IBM CrossWorlds Business Object Designer.
2. Click File > New.
3. Enter the business object name (BCT_SampleData) and leave the

application-specific information field blank.
4. Use the following illustration to complete the definition of the business object.

Figure: Screen showing the BCT_SampleData attributes
The generic business object for the tutorial contains two attributes.

v The attribute named aMessage provides a place for you to send a String
message. Normally your generic business object would contain attributes
relating to the business process with which you are working.

v The attribute named error is required by the Business Connection design
pattern. It has a default value of BCTNOFAULT. (To use the recommended
design pattern, the generic business object of any outbound-to-inbound Web

4 Web Services Development Tutorial

service interaction must include the error attribute with a default value of
BCTNOFAULT.) If the service encounters a processing error, it should fill the
error field with information about the error. The Business Connection
mappings will produce a SOAP fault message for return from the service to
the caller in this case.

5. Save the business object definition to the server.
6. Leave the Business Object Designer open, because you will use it in the next

section.

Importing the business-object definitions file
After you have created the generic business object, you import the business-object
definitions file as follows:
1. From the CrossWorlds System Manager, click File > Open from file.
2. Navigate to the \bctws\cw\CWGenUtil\Generate\BCT_SampleData directory

and click BCT_SampleData.Create.BO.in.
3. Click Open.

After importing the file, filter the Business Objects display using
SampleData to see your generic business object (which you defined before
importing) plus all of the necessary application-specific business objects and
meta objects for the inbound-to-outbound scenario.
Figure: Screen showing all the objects associated with BCT_SampleData
The CWGenUtility handles much of the complexity of the Web-services
scenario for you by producing these business objects.

The next step is to update the system meta-objects. This must be done manually; it
is not handled by the import file.

Updating the system meta-objects
You will next add the generated meta-object definitions to the meta-objects that are
used by the Interchange Server (ICS). The meta-objects are used to determine how
business objects are converted to and from SOAP messages.

There are four system meta-objects that you need to update. When the instructions
direct you to add information to the fields, cut and paste the names from the
names files described in the previous section.

Note that if you have imported the Web Services samples, there are already
meta-objects in your repository. These are named with the word “Sample” prefixed
to the base meta-object names. Use these meta-object definitions if you are set up
to use the samples (per the Web Services Overview and Samples document).

Updating MO_Service_SOAPToBO_ConfigMO
1. From the Business Object Designer, click MO_Service_SOAPToBO_ConfigMO

to open it.
2. Click the Attributes tab.
3. Add the following in the Name field:

MO_Service_SOAPtoBO_BCT_SOAP_BCT_SampleData_Wrapper_Request_Create

Part I: Producing the CrossWorlds business objects and Java proxy artifacts 5

Note: Copy and paste this name if possible to prevent typing errors. Remember
that a names file was provided by the CwGenUtility that you can use for this
purpose.

4. Into the Type field, add:
MO_Service_SOAPtoBO_BCT_SOAP_BCT_SampleData_Wrapper_Request_Create

5. In the Cardinality field, type: 1
6. If this is the first attribute, check the Key box, because the meta-object must

have a key defined.
7. Save the changes.

Figure: Screen with the attributes filled in

Updating MO_Service_BOToSOAP_ConfigMO
You add two lines to this meta-object. Do the following:
1. From the Business Object Designer, click

MO_Service_BOToSOAP_ConfigMO to open it.
2. Click the Attributes tab.
3. Add the following in the Name field:

MO_Service_BOtoSOAP_BCT_SOAP_BCT_SampleData_Wrapper_Response_Create

4. In the Type field, add:
MO_Service_BOtoSOAP_BCT_SOAP_BCT_SampleData_Wrapper_Response_Create

5. In the Cardinality field, type: 1
6. If this is the first attribute, check the Key box, because the meta-object must

have a key defined.
7. Add the following in the Name field:

MO_Service_BOtoSOAP_BCT_SOAP_BCT_SampleData_Fault_Fault_Create

8. In the Type field, add:
MO_Service_BOtoSOAP_BCT_SOAP_BCT_SampleData_Fault_Fault_Create

9. In the Cardinality field, type: 1
10. Save the changes.

Updating MO_Client_SOAPToBO_ConfigMO
You add two lines to this meta-object. Do the following:
1. From the Business Object Designer, click MO_Client_SOAPToBO_ConfigMO

to open it.
2. Click the Attributes tab.
3. Add the following in the Name field:

MO_Client_SOAPtoBO_BCT_SOAP_BCT_SampleData_Wrapper_Response_Create

4. In the Type field, add:
MO_Client_SOAPtoBO_BCT_SOAP_BCT_SampleData_Wrapper_Response_Create

5. In the Cardinality field, type: 1
6. If this is the first attribute, check the Key box, because the meta-object must

have a key defined.
7. Add the following in the Name field:

MO_Client_SOAPtoBO_BCT_SOAP_BCT_SampleData_Fault_Fault_Create

8. In the Type field, add:
MO_Client_SOAPtoBO_BCT_SOAP_BCT_SampleData_Fault_Fault_Create

9. In the Cardinality field, type: 1

6 Web Services Development Tutorial

10. Save the changes.

Updating MO_Client_BOToSOAP_ConfigMO
To update this file:
1. From the Business Object Designer, click MO_Client_BOToSOAP_ConfigMO

to open it.
2. Click the Attributes tab.
3. Add the following in the Name field:

MO_Client_BOtoSOAP_BCT_SOAP_BCT_SampleData_Wrapper_Request_Create

4. In the Type field, add:
MO_Client_BOtoSOAP_BCT_SOAP_BCT_SampleData_Wrapper_Request_Create

5. In the Cardinality field, type: 1
6. If this is the first attribute, check the Key box, because the meta-object must

have a key defined.
7. Save the changes.

Developing the maps
To create the maps, you use the CrossWorlds Map Designer tool. Notice that the
naming convention for the maps uses the source and target business-object type
names. For example, the Map for the outbound request has a source object of type
BCT_SampleData and a target of BCT_SOAP_BCT_SampleData. Here are the five
types of maps and the names generated by CWGenUtility. Refer to the generated
names file for these name references if you want to copy and paste them.
v MAP Outbound Request:

BCT_SampleData_to_BCT_SOAP_BCT_SampleData

v MAP Outbound Response:
BCT_SOAP_BCT_SampleData_to_BCT_SampleData

v MAP Inbound Request:
BCT_SOAP_BCT_SampleData_Wrapper_to_BCT_SampleData

v MAP Sub Fault Inbound Response:
BCT_SampleData_to_BCT_SOAP_BCT_SampleData_Fault

v MAP Poly Inbound Response:
Poly_BCT_SampleData_to_BCT_SOAP_BCT_SampleData_Wrapper

Use the information conveyed in the name as you create each map with the Map
Designer.

Creating the outbound request map
1. To create the Outbound Request map, open the Map Designer.
2. Click File > New.

3. Choose the source and then the target types as suggested by the name of the
map. Note that the source is the first business object named in the map name
and the target is the second business object named in the map name.
When you get to the dialog where you enter the map name, you should copy
and paste the name. After naming the map, the Map Designer screen is
displayed.

4. Click the Diagram tab of this screen.

Part I: Producing the CrossWorlds business objects and Java proxy artifacts 7

There are four fields to set in the Top SOAP application-specific business
object, which is the target object of this map.

5. Set the Rule for the URL field to Custom.
6. Copy and paste the entire contents of the generated file named

map_outbound_gbo_to_soap_top_url_request.txt as the custom code.
7. Set a value of xml/soap in the MimeType field. When entering the value, do

not use quotation marks.
8. Set a value of CxIgnore in the BOprefix field; again, do not use quotation

marks when entering the value.
9. Set the Rule for the Request field to Custom.

10. Copy and paste the entire contents of the generated file named
map_outbound_gbo_to_soap_top_request_request.txt as the custom code.
Finally, every time you make a new map, you must set the verb of the target
object; otherwise the target object will not have any verb, and you will have a
failure that is logged at runtime.

11. Set the verb by clicking the Verbs tab.
12. From the Verb list double-click the Get From choice that names the

ObjBCT_SampleData source.
13. Save the map, compiling it when requested to do so.

The figure below shows you the map you created and how it will be used in the
processing of the outbound request.

Figure: Diagram of the outbound request highlighting where the map is used

Creating the outbound response map
Next you will create the outbound response map. The names file shows that it is
named BCT_SOAP_BCT_SampleData_to_BCT_SampleData, so you can see the
source and target business object types.
1. Create the map as before, choosing the types and naming it.
2. Again select the Diagram tab on the Map Designer page. There is only one

mapping field needed.
3. Select the field on the target object named aMessage and set a Custom rule.

Generally, just pick the first field in the target for the placement of the Custom
code.

4. Copy and paste the entire contents of the generated file named
map_outbound_soap_top_to_gbo_response.txt as the custom code.

5. Click the Verbs tab.
6. Set the verb for the target object to use the verb of the source object.
7. Save the map, compiling it when requested to do so.

Creating the inbound response map
Next you will create the inbound request map named
BCT_SOAP_BCT_SampleData_Wrapper_to_BCT_SampleData.

1. Create the map as before using the same technique. There is only one mapping
field needed.

2. Select the field on the target object named aMessage and set a Custom rule.
3. Copy and paste the entire contents of the generated file named

map_inbound_soap_wrapper_to_gbo_request.txt.

8 Web Services Development Tutorial

4. Click the Verbs tab.
5. Set the verb for the target object to use the verb of the source object.
6. Save the map, compiling it when requested to do so.

Creating the inbound request sub-map
Next you will create the inbound request sub-map named
BCT_SampleData_to_BCT_SOAP_BCT_SampleData_Fault.

1. Create the map as before using the same technique. There are three mapping
fields needed.

2. Move the value of the source error attribute to the target faultstring attribute.
You move it by pressing Ctrl while dragging the error attribute and then
dropping it onto the faultstring attribute.

3. Set a value of env:Client in the faultcode field. When entering the value, do not
use quotation marks.

4. Set the Rule for the detail field to Custom.
5. Copy and paste the entire contents of the generated file named

map_inbound_sub_gbo_to_soap_fault_response.txt as the custom code.
6. Click the Verbs tab.
7. Set the verb for the target object to use the verb of the source object.
8. Save the map, compiling it when requested to do so.

Creating the polymorphic map
Finally, you will create the inbound request map named
Poly_BCT_SampleData_to_BCT_SOAP_BCT_SampleData_Wrapper. This is a
Polymap, which means that it has more than one type of target business object.
Only one type is mentioned when the target is named. This map names the
wrapper type, which is the type used when no error occurs processing the
message. The other type that can be produced is the SOAP fault type (in this case,
BCT_SOAP_BCT_SampleData_Fault.)
1. When creating the map, choose one source type (BCT_SampleData) and two

target types (BCT_SOAP_BCT_SampleData_Wrapper and
BCT_SOAP_BCT_SampleData_Fault). There is only one mapping field needed.

2. Select any field on either target object and set a Custom rule.
3. Copy and paste the entire contents of the generated file named

map_inbound_poly_gbo_to_soap_wrapper_response.txt as the custom code.
Set the Verb for the target objects. This is a Poly map, which differs from the
maps you have created so far. A polymorphic map can return more than one
type of object. For this poly map, the verbs of all the possible return objects
must be set. There are two possible return objects.

4. Click the Verbs tab
5. Set both targets using the source verb as shown below:
6. Save the map, compiling it when requested to do so.

All the maps are now complete.

Part I: Producing the CrossWorlds business objects and Java proxy artifacts 9

Developing collaboration templates
Refer again to the generated names file. The names of the inbound and outbound
collaboration templates are:
v Collaboration template inbound:

BCT_SampleDataCreateInbound

v Collaboration template outbound:
BCT_SampleDataCreateOutbound

To produce these templates, you can open and rename sample collaboration
templates that are provided with the Business Connection offering samples.
1. From the CrossWorlds Process Designer, open the sample template named

BCT_TestAllTypesOutbound.
2. After it is open, select File > Save as >To server, and save it with the name

BCT_SampleDataCreateOutbound.

A BCT_TestAllTypes object with the Retrieve verb triggers the sample you just
renamed. But a BCT_SampleData object with the Create verb triggers the tutorial
collaboration. You must set this behavior next.

Figure: The Template Definition screen with port data filled in
1. Open the Definitions of the collaboration template.
2. Click the Ports and Triggering Events tab.
3. Change the business object Type for all three ports to BCT_SampleData.
4. For the From port, click Main for the Create verb.
5. Click Apply and then close the window.

This establishes a subscription for the Main scenario to
BCT_SampleData.Create events.

6. Change the name of the action node just below the start node from Retrieve to
Create.

7. Change the To and Reply service calls to use the Createverb. Double-click each
service call and change its properties as shown below. You will need to clear
the word Regular from the Retrieve column and add it to the Create column by
clicking on Regular.

Figure: The ServiceCalls Properties screen with the word Regular highlighted

Now repeat the process for the inbound collaboration template.
1. Open BCT_TestAllTypesInbound.

2. Select File > Save as >To Server, and save it with the name
BCT_SampleDataCreateInbound.

The Template Definitions should look like this when you are finished:
Figure: The Template Definition screen for the inbound collaboration with port
data filled in

3. Change the To service call to reflect the use of the Create verb. See the earlier
steps for the outbound collaboration if you don’t recall how to do this step.

4. Compile and save the template.

10 Web Services Development Tutorial

Defining collaboration objects
A collaboration object is an instance of a collaboration template that is bound to
ports. Before creating the collaboration objects, you will prepare connectors so they
can be bound to the ports of the collaboration objects.
1. Open BCT_SampleConnector1 and select the Supported Business Objects tab.
2. Add BCT_SampleData to the list, checking the Agent Support check box.
3. Save and close the window.
4. Repeat steps 1 through 4 for BCTSampleConnector2.
5. Open the BCTSampleSOAPConnector.
6. Add BCT_SampleData without checking Agent Support.
7. Add BCT_SOAP_BCT_SampleData and do check Agent Support.
8. Save and close the window.

You can find the names of the collaboration objects in the names file:
v Collaboration object outbound:

BCTSampleConnector1_to_BCTSampleSOAPConnector_BCT_SampleDataCreateOutbound

v Collaboration Object Inbound:
SAI_to_BCTSampleConnector2_BCT_SampleDataCreateInbound

Creating the outbound collaboration object
To create the object:
1. Right-click the Collaboration Objects folder that is under the Integration

Components folder.
2. Select New Collaboration Object.

3. Select the template named BCT_SampleDataCreateOutbound and copy and
paste the name for the outbound collaboration object.

4. Click Next (and continue to click it without completing any panels) until the
Finish button is displayed.

5. Click Finish.
6. Bind the From and Reply ports to BCTSampleConnector1.

7. Bind the To port to the BCTSampleSOAPConnector.

Now you are finished with the outbound collaboration object. No explicit save is
necessary.

Creating the inbound collaboration object
To create the object:
1. Right-click the Collaboration Objects folder that is under the Integration

Components folder.
2. Select New Collaboration Object.

3. Select the template named BCT_SampleDataCreateInbound and copy and
paste the name for the inbound collaboration object.

4. Click Next (and continue to click it without completing any panels) until the
Finish button is displayed.

5. Click Finish.
6. Bind the From port to the External Connector.

7. Bind the To port to BCTSampleConnector2.

Part I: Producing the CrossWorlds business objects and Java proxy artifacts 11

8. You must add maps to the From port. You do this by double-clicking the
From port. This opens a window where you can drag-and-drop maps for the
request and response.

9. Drag the map named
BCT_SOAP_BCT_SampleData_Wrapper_to_BCT_SampleData and drop it as
the Incoming Map.

10. Drag the Poly_BCT_SampleData_to_BCT_SOAP_BCT_SampleData_Wrapper
and drop it as the Outgoing Map.

11. Because you have changed map-supported business objects, you must stop the
Interchange Server and restart it to refresh all references to the connector
properties in the system. Do so now.

Developing Java proxy and WSDL using WSGenUtility
The CrossWorlds WSGenUtility generates a Java proxy class that can be deployed
as a Web service. The proxy uses a configuration file to obtain a connection to the
Interchange Server so it can pass SOAP messages for processing by an inbound
collaboration. The WSGenUtility also produces a WSDL that describes the structure
and content of the SOAP messages that can be handled by the inbound
collaboration.

Now that all of the CrossWorlds inbound artifacts are complete, the WSGenUtility
can be used.
1. Display a command prompt and navigate to directory

<crossworlds>\DevelopmentKits\WebServices.
2. Enter the following command to start the utility.

WSGenUtility

The WSGenUtility requires that you provide some information. The names
required by the WSGenUtility are provided by the CWGenUtility in a file
named cw_wsgenutility_inputfile.txt.

3. Bring this file up in an editor now so you can copy and paste names from it.

The contents of cw_wsgenutility_inputfile.txt are copied below for your reference.
Note that your file will differ from the sample below in the specific names used on
your system.
INTERCHANGESERVER=SSHCrossWorlds
ICS_VERSION=4.X
ICS_USER=admin
ICS_PASSWORD=null
ICS_SERVER_IOR_FILE=d:/crossworlds/SSHCrossWorldsInterchangeServer.ior

MIME_TYPE=xml/soap
COLLABORATION=SAI_to_BCTSampleConnector2_BCT_SampleDataCreateInbound
COLLABORATION_PORT=From
PROXYCLASSNAME=BCT_SampleData_Create.java

SERVICENAME=BCT_SampleData_Create
TARGETNAMESPACE=urn:ibmwsgw#BCT_SampleData_Create
BINDINGURL=http://localhost/crossworlds/servlet/messagerouter
CHECKTYPESINWSDL=true
INPUTMESSAGEMETAOBJECT1=MO_Service_SOAPtoBO_BCT_SOAP_BCT_SampleData

_Wrapper_Request_Create
OUTPUTMESSAGEMETAOBJECT1=MO_Service_BOtoSOAP_BCT_SOAP_BCT_SampleData

_Wrapper_Response_Create
FAULTMESSAGEMETAOBJECT1=MO_Service_BOtoSOAP_BCT_SOAP_BCT_SampleData

_Fault_Fault_Create

12 Web Services Development Tutorial

1. Fill in the fields in the first dialog according to your configuration. Note that
you cannot type in the location of the server IOR file; instead you must use the
file dialog button to select the IOR file.

Figure: The Web Services Generation screen
2. Press the Connect button.

3. Copy and paste the information into the second dialog.
Figure: The Web Services Generation Proxy Class Details screen
Note that you can have a package qualifier on the Proxy Class Name, although
you do not have one in this example. Also note that you must have the java
file extension on the class name you enter.

4. Press the Next button to display the final window.
5. In this window, you fill in the fields with values from the file

cw_wsgenutility_inputfile.txt. The names are long and it is easy to type them
incorrectly, so copy and paste is especially useful here. Be sure to click Types in
the same WSDL, because it simplifies deployment into the Web Services
Gateway.

6. Click Generate.

The next window shows you the result of using this utility:

Figure: The Generation Complex screen with a list of five generated files

The class and cfg files created by the utility are used to deploy the Web service in
a SOAP-enabled application server. These files are saved in the
<crossworlds>\DevelopmentKits\WebServices\Generatedsubdirectory.

You are now finished with the first part of the tutorial.

Part I review
During Part 1, you did the following:
1. You used CWGenUtility (by running the runcwgenutility batch file and

entering a business-object name and other information) to create the following:
a. Generic business-object definitions.
b. SOAP application-specific business objects.
c. Meta-objects for the SOAP application-specific business objects.

2. You used the Business Object Designer to create the generic business object.
3. You used the Business Object Designer to update the meta-objects.
4. You used Map Designer to define mappings.
5. You used the Process Designer to define collaboration templates.
6. You created collaboration instances.
7. You used WSGenUtility to create the Java proxy class and WSDL file.

You will deploy the Java proxy Web service in Part II of the tutorial.

The WSDL file created by the utility is used to deploy the Web service in the Web
Services Gateway. You will do this in Part III of the tutorial.

Part I: Producing the CrossWorlds business objects and Java proxy artifacts 13

14 Web Services Development Tutorial

Part II: Deploying the CrossWorlds Web service

This section describes how to:
v Create a SOAP Service
v Deploy the CrossWorlds artifacts and configure:

– The URL for the SOAP message to be sent to
– The supported business objects used by the SOAP connector and other

connectors involved
– The meta-objects used by the SOAP connector and SAI so that they have

references to your specific meta-objects
v Deploy the SOAP Service and configure:

– Log4j for tracing
– Information for the Java proxy to use

Creating a Web service
You start by using the WebSphere Application Assembly Tool. This tool is
described in more detail in Web Services Technical Reference.

You will create the service by modifying a template and then saving the new file
under another name.
1. Open the WebSphere Application Assembly Tool.
2. Open <BCT_HOME>\lib\bctwswebservicetemplate.ear.
3. Click BCT_WS_WebService_Template_EAR.

This is a template that you will change to reflect the service you are building.

4. Click the General tab.
5. In the Display name field, change the value to BCT_WS_Tutorial

6. Click Apply.
7. In the left pane, click Web Modules > BCT_WS_WebService_Template.
8. Click the General tab.
9. In the File name field, change the value to BCT_WS_Tutorial_Web.war

10. In the Display Name field, change the value to BCT_WS_Tutorial_Web

11. In the Context root field, change the value to crossworlds

12. Click Apply.
13. Click File > Save as.
14. Type:

\bctws\was\installableapps\BCT_WS_Tutorial.ear

After changing the display names of the EAR and WAR, changing the context root
of the WAR, and saving with the new name, the application looks like this in the
Application Assembly Tool:

Figure: The Application Assembly Tool screen for BCT_WS_Tutorial.ear

© Copyright IBM Corp. 2002 15

Importing the EAR file into WebSphere Studio Application Developer
Next, you import the new EAR file into WebSphere Studio Application Developer.
1. Open WebSphere Application Developer.
2. Click File > Import > EAR file.
3. Using the File dialog, select bct_ws_tutorial.ear.
4. Name the Enterprise Project:

BCT_WS_Tutorial_EAR

Note: You can do all of the deployment just with the Application Assembly Tool,
but this tutorial does not describe this process. The WebSphere Application
Developer process can serve as a guide to the necessary steps if you want to use
the Application Assembly Tool.

After importing the EAR file, you will see some errors that need to be fixed. To
correct the errors, you will add soap.jar to the build path of the Web project, as
follows:
1. Switch to the Navigator view of the J2EE perspective.
2. Right-click the BCT_WS_Tutorial_Web and select Properties in the context

menu.
3. Click Java build path.

4. Click the Libraries tab.

The problem is that there is no reference to soap.jar. This must be added.

5. Click Add Variable.

6. Click the Browse button.
7. Click the New button.
8. Add the name SOAPJAR and the file

<WebSphere_Application_Developer_HOME>
/plugins/com.ibm.etools.webservice/runtime/soap.jar

9. Click OK until you return to the list of libraries, and verify that SOAPJAR is
in the list.

Figure: The Variable Selection screen with SOAPJAR highlighted
10. Click OK on each dialog to finish the process.

The Web project will then rebuild, correcting the errors.

Importing the proxy
Next, import the proxy that you generated using WSGenUtility in Part I.
1. In the Navigator view of the J2EE perspective, expand the Web module until

you locate the source folder.
2. Select the source folder and then click File > Import from the menu bar of

WebSphere Application Developer.
3. Select File System as the source of the import.
4. For the import source, browse to

<crossworlds>\DevelopmentKits\WebServices\GeneratedFiles.

16 Web Services Development Tutorial

5. Click on the word GeneratedFiles in the left pane. Then check the box next to
BCT_SampleData_Create.java on the right pane.

6. Click Finish to import the file.
After importing the source file, WebSphere Application Developer compiles it
and places the class file into the classes directory under the WEB-INF directory.

7. Expand the lib directory and remove the file named
BCT_WS_Tutorial_Web.jar.

This file appears because you imported the EAR file into WebSphere
Application Developer. It is not needed.

After you have done these steps, your Web project should look like the following:

Figure: The files for the web project

Editing the SOAP deployment descriptor file
Next you edit the SOAP deployment descriptor file, dds.xml, which is located in
the WEB-INF directory.
1. Open the file by right-clicking on dds.xml and then clicking Open with >

Default text editor.
2. Read the prologue in dds.xml, which tells you what to do to add the service

descriptor for the Web service.
3. Edit the readme file produced by the WSGenUtility.

The readme file is in the GeneratedFiles directory with the other files
produced by WSGenUtility. The file lists the names of the namespace, class,
and method that you must use in the service descriptor.
For the tutorial example, the service descriptor should be added between the
root element tags as shown below:

<root>
<isd:service xmlns:isd=“http://xml.apache.org/xml-soap/deployment”
id=“urn:ibmwsgw#BCT_SampleData_Create”
type=“message” checkMustUnderstands=“false”>
<isd:provider type=“java” scope=“Application”
methods=“m_BCT_SampleData”>

<isd:java class=“BCT_SampleData_Create” static=“false”/>
</isd:provider>

</isd:service>

</root>

4. Save dds.xml and close it.
Next, update the Servlet initialization parameters for the messagerouter
servlet. This provides the location of the WSGenUtility proxy cfg file to the
SOAP runtime engine.

5. Double-click the web.xml file that is in the WEB-INF directory.
6. Click the Servlets tab.
7. Click the messagerouter servlet to highlight it.
8. Click Initialization.

Part II: Deploying the CrossWorlds Web service 17

http://xml.apache.org/xml-soap/deployment

Refer again to the readme produced by WSGenUtility. It tells you the key
value to use for the initialization.

9. Add this as the initialization parameter, and add the cfg file as shown, with
no path.
Figure: Initialization parameters screen with the file
BCT_SampleData_Create.cfg
This causes WebSphere to load the cfg file from its Working Directory.

10. Click OK.
11. Save and close web.xml.

Editing the log4j.properties file
Next, you will edit the file named log4j.properties in the WEB-INF\source
directory. Again, refer to the readme produced by WSGenUtility for the category
name to add.
1. Copy and paste the two sample lines for a service, and edit them with the

correct name.
2. Save and close the log4j.properties.

Now you are finished adding the service to the EAR file.
3. All editors (dds.xml, log4j.properties, and web.xml) should be closed. If they

are open, close them now.

Exporting the EAR file
Export the EAR with the same name in the same directory from which you
imported it:
1. Click File > Export from the WebSphere Application Developer menu bar.
2. Click EAR file.
3. Click Next.
4. Click the EAR file you just edited, and select the original location and name

from which it was imported.
5. Click Finish.

6. When prompted, choose to over-write the original.

Deploying the EAR file
Now you will deploy the EAR file to WebSphere. The tutorial procedure assumes
that you have followed the sample installation procedure. If you have not already
done this, you must create the app server in WebSphere. This provides the sample
application servers that are needed for the rest of the tutorial. Deploy the
bct_ws_tutorial.ear file into WebSphere, associating it with the CrossWorlds app
server.

Recall that WSGenUtility created a file named BCT_SampleData_Create.cfg. This
file has connection information used by the Java proxy to connect to the ICS where
the inbound collaboration resides. The contents of this file are similar to the
following:
#Configuration Properties for BCT_SampleData_Create.java
#Sun Jun 09 00:23:57 EDT 2002
CollabName=SAI_to_BCTSampleConnector2_BCT_SampleDataCreateInbound
PassWord=null

18 Web Services Development Tutorial

ICSName=SSHCrossWorlds
CWLDVersion=4.x
UserName=admin
MimeType=xml/soap
CollabPort=From
IORFileName=D\:\\CrossWorlds\\SSHCrossWorldsInterchangeServer.ior

Notice that if the ICS for the inbound collaboration was running on a different
machine from WebSphere, you could configure the connection to the ICS machine
using this file. You would copy the IOR file from the other machine to a local drive
on the WebSphere machine, specify the path in the IORFileName line, and specify
any other connection information as necessary.

You must copy the cfg file from
<crossworlds>\DevelopmentKits\WebServices\GeneratedFiles to the working
directory of the CrossWorlds App Server so the proxy class (which runs in the app
server’s JVM) can find it.
1. Copy this file now before starting the application server.

Recall that an initialization parameter of the messagerouter servlet points to
this directory for this file.

Note: If you do not copy the file, the proxy will use default values that were
coded into it when WSGenUtility created it.

2. Install the tutorial EAR file that you created by right-clicking the Enterprise
Applications and clicking Install Enterprise Application.

3. Choose the CrossWorlds App Server when you are installing the EAR file.
4. Start the CrossWorlds App Server.

Testing basic CrossWorlds connectivity
Now you can test the flow from the outbound collaboration, through the
BCTSampleSOAPConnector, to the inbound collaboration.

Recall that in the CrossWorlds start_server.bat file, you added a definition of a
Java system property to specify the location of a configuration file named
bct_ws_configuration.txt. This file is used by the outbound collaboration’s request
map to look up the URL where the SOAP message will be sent.

This file is in directory \bctws\cw. You will edit the file.

Editing the configuration file
To edit the file:
1. Open the file in a text editor.
2. Add the following lines to it:

BCT_WS_BCT_SampleData_Create_URL=http://localhost/crossworlds/servlet/messagerouter
BCT_WS_BCT_SampleData_DestIDIdentifier=APartnerID
BCT_WS_BCT_SampleData_DestIDType=PartnerName

These lines provide the outbound request map with the URL to send to. They
also provide the Destination Trading Partner ID.

Part II: Deploying the CrossWorlds Web service 19

Production collaborations could use another means of obtaining this
information, but for the tutorial and the Business Connection offering samples,
this file (in addition to a class that uses it for looking up this information) is
provided. As you can see, the generic business-object type and verb are
combined with a prefix and suffix to provide keys that the outbound request
map can find using the look-up class. Look at the custom code in the outbound
request map to see how this look-up is performed.

Adding these lines to the file and saving it enables the SOAP top-level
application-specific business object to pick up this URL. The header in the
message will pick up the partner information. This is for use later by the Web
Services Gateway authentication and routing filters.

Creating an instance of the business object
1. Display the TestConnectors by clicking Start > Programs > IBM CrossWorlds >

Connectors > Test Connector.

If you have gone through the Business Connection sample scenario that uses
BCT_TestAllTypes, you should already have profiles in the Test Connector for
BCT_SampleConnector1 and BCT_SampleConnector2. If not, read the sample
user guide and set these profiles up now.

2. Open one of the Test Connectors to BCT_SampleConnector1 and the other to
BCT_SampleConnector2. Connect them to their respective agents.

3. Based on its supported business objects, BCT_SampleConnector1 will have your
generic business object (BCT_SampleData) in its left-hand pane after it is
connected to the agent.

4. Click BCT_SampleData and then click Edit > Create BO.

A dialog will open where you can create an instance of BCT_SampleData for
testing.

5. Select Create from the Verb list.
6. Type a name for the object.
7. Double-click the value field for aMessage.
8. Enter a message of your choice.
9. Click OK.

Sending a test message
1. Before continuing, display the BCT_SampleSOAPConnector connector agent.

See the Business Connection samples instructions for setting up and starting
this agent process.

2. Before sending the message, be sure both collaboration objects and all of their
connectors are started. Also, be sure that the CrossWorlds App Server is
started.

3. To send the message, click your generic business object instance in the left-hand
pane of the Test Connector window to highlight it. Then click Request > Send
to send it.
After sending the message, you should see the message trace information in the
BCT_SampleSOAPConnector agent window. This is because tracing was
pre-configured for this connector. The agent window will stop showing the
message xml. When the reply (or an error) occurs, the agent window will trace
the response (or fault).

20 Web Services Development Tutorial

Note: If you send a message and do not respond within approximately three
minutes, an error will occur. This is because a default timeout in the IBM Http
Server will close the socket for the response. This timeout can be changed using
Http Server administration; however, be aware that such a timeout is necessary
to manage the resources of the server.

Modifying the test message
1. Look at the Test Connector for BCT_SampleConnector2.
2. Click on Request/Accept. You should see the request message in the right-hand

pane.
3. Double-click the message and change the value for aMessage before

responding.
4. To respond, click the message in the right-hand pane (to highlight it) and click

Request > Reply Success.
The agent window will respond with tracing of the response.

Receiving the test message
1. To complete the flow, return to the Test Connector for BCT_SampleConnector1.
2. Click Request/Accept to receive the response message.
3. Double-click to see the response value in aMessage.
4. Click Request > Reply Success to complete the flow.

Note: If you do not perform all of these steps in order, the Test Connector can get
out of sync and fail to work correctly. Disconnecting and reconnecting will correct
this condition. Also, unresolved flows will result if you do not follow all steps in
sequence every time.

After completing a flow, you can look at the CrossWorlds App Server’s standard
output file (\bctws\was\cw\logs\cwstdout.log) to see the Log4J tracing done by
the Java proxy. For each interaction, you will see information similar to the lines
that follow:
[6/10/02 11:00:42:746 EDT] 24040003 SystemOut U [2002-06-10 11:00:42,656]
INFO160394[Servlet.Engine.Transports:25](ProxyClassParam.java:220) - Loading
parameters from config-file: BCT_SampleData_Create.cfg

[6/10/02 11:00:42:826 EDT] 24040003 SystemOut U [2002-06-10 11:00:42,746]
INFO160484[Servlet.Engine.Transports:25](WebServicesAccessClient.java:129) -
Initializing Session with ICS using parameters:cwldVersion= 4.x icsName=
SSHCrossWorlds userName= admin passWord= null collabName
=SAI_to_BCTSampleConnector2_BCT_SampleDataCreateInbound collabPort= From
mimeType= xml/soap boVerb=Create iorFileName=

D:\CrossWorlds\SSHCrossWorldsInterchangeServer.ior

[6/10/02 11:00:44:048 EDT] 24040003 SystemOut U [2002-06-10 11:00:43,968]
INFO161706[Servlet.Engine.Transports:25](WebServicesAccessClient.java:221) -
Entering executingCollab. CollabName:
SAI_to_BCTSampleConnector2_BCT_SampleDataCreateInbound

[6/10/02 11:00:44:128 EDT] 24040003 SystemOut U [2002-06-10 11:00:44,048]
INFO161786[Servlet.Engine.Transports:25](WebServicesAccessClient.java:230) -
Executing collaboration with parameters: cwldVersion= 4.x icsName=
SSHCrossWorlds userName= admin passWord= null collabName
=SAI_to_BCTSampleConnector2_BCT_SampleDataCreateInbound collabPort= From
mimeType= xml/soap boVerb=Create iorFileName=

D:\CrossWorlds\SSHCrossWorldsInterchangeServer.ior

Part II: Deploying the CrossWorlds Web service 21

[6/10/02 11:00:46:812 EDT] 24040003 SystemOut U [2002-06-10 11:00:46,732]
INFO164470[Servlet.Engine.Transports:25](WebServicesAccessClient.java:199) -
Closing Access Session. CollabName:
SAI_to_BCTSampleConnector2_BCT_SampleDataCreateInbound

Part II review
During Part II, you did the following:
1. From the WebSphere Application Assembly Tool, using the

BCT_WS_WebService_Template_EAR file as a template, you created the
BCT_WS_Tutorial EAR file. The EAR file defines the Web service.

2. Next, you imported the EAR file into WebSphere Application Developer.
3. You imported the Java proxy (which you created in Part I of the tutorial) into

WebSphere Application Developer.
4. You edited the deployment descriptor file and the log4jproperties file for use

with this sample.
5. You deployed the EAR file in WebSphere.
6. Finally, you tested the Web service by:

a. Creating an instance of the business object, which contains a message.
b. Sending a message from the outbound collaboration.
c. Receiving the message to the inbound collaboration.
d. Modifying the response message.
e. Sending the modified message back to the outbound collaboration.
f. Inspecting the message to see that it was actually changed.

In Part III, you will use the WSDL file (created by WSGenUtility in Part I of the
tutorial) to deploy the Web service in the Web Services Gateway.

22 Web Services Development Tutorial

Part III: Deploying the service in Web Services Gateway

Part III of the tutorial describes how you deploy services in the Web Services
Gateway.

The Web Services Gateway is provided as a collection of enterprise applications
and JAR files. Installing Web Services Gateway is covered in the Installation and
Configuration guide. If you have not already installed Web Services Gateway, refer
to that documentation and install it now. When installing for the tutorial, you
should use the Web Services Gateway App Server that was imported into your
WebSphere node earlier.

The Business Connection offering uses the two SOAP 2.2 channels provided with
Web Services Gateway. One channel should be considered a Public channel and the
other a Private channel. See the Web Services Overview and Samples document for
more about these channels and their deployment.

If you have deployed according to the sample setup instructions, you will have
two channels in your Gateway. By convention the channel with URL
http://hostname/wsgwsoap2 is the Public channel. In the tutorial, everything is
done on just one machine, so only the Public channel will be used.

Refer to the Web Services Overview and Samples document for discussion and
examples using two gateways.

You will first deploy the service into the Web Services Gateway. Then you’ll run a
test to confirm that it was actually deployed.

Deploying the WSDL file
To deploy the WSDL:
1. Copy the file to a more permanent location, such as

\bctws\was\cw\wsdl

Important: The GeneratedFiles directory is likely to be over-written or erased.
The reason you need to keep the WSDL file in a permanent place is that the
Web Services Gateway holds a reference to it and does not make a copy of it.
This means if you deploy it and then erase it, your service will be gone.

2. Deploy the WSDL that was generated by the WSGenUtility into the Public
SOAP channel. This file is located in directory
<crossworlds>\DevelopmentKits\GeneratedFiles and is named
BCT_SampleData_Create.wsdl. To deploy the WSDL:
a. Use a browser and navigate to the Gateway Service Deployment Screen.
b. In the Gateway Service Name field, type:

BCT_SampleData_Create

c. In the Message part representation field, type:
Generic classes

d. In the Channels field, click: ApacheSOAPChannel to select it.
e. In the WSDL Location field, type:

c:/bctws/was/cw/wsdl/BCT_SampleData_Create.wsdl

© Copyright IBM Corp. 2002 23

f. In the Location type field, type: URL
g. Click OK.

Changing the destination URL
After deploying the service in the Web Services Gateway SOAP channel, you can
change the configuration file to direct the BCTSampleSOAPConnector to send its
messages to the URL of the Web Services Gateway Channel rather than the URL of
the CrossWorlds App Server.

To change the URL:
1. Open the \bctws\cw\bct_ws_configuration.txt file for edit.
2. Comment the line with the direct-to-CrossWorlds URL.
3. Add this line below it:

BCT_WS_BCT_SampleData_Create_URL=http://localhost/wsgwsoap2

4. Save the changes.

Now messages whose generic business object is of type BCT_SampleData and
whose verb is Create will be sent to the inbound channel of the Web Services
Gateway. The Web Services Gateway will find the gateway service for the
messages based on the message BodyName and BodyNS.

Figure: Body Name plus Body Namespace equals key to gateway service

Once the gateway service is located, the target service will be invoked by WSIF
using the reference to the original WSDL file, which specifies the URL of the
CrossWorlds App Server.

Testing the change
To test the change you made:
1. Make sure both app servers are running and use the two Test Connectors as

before.
The fact that the Web Services Gateway is used is transparent to you because
there is no security, logging, or routing service being performed by the Web
Services Gateway.

2. Stop the Web Services Gateway App Server.

Your test should fail at this point, which confirms that the Web Services
Gateway was used in the service deployment.

If you want to use any of the logging or routing services, see Web Services
Advanced Topics, which discusses the services. You can add these services to the
tutorial yourself.

In Part III, you deployed the Web service you created into the Web Services
Gateway. This completes the tutorial.

24 Web Services Development Tutorial

Now that you have seen how to build and deploy a web service, refer to Web
Services Advanced Topics

Part III: Deploying the service in Web Services Gateway 25

26 Web Services Development Tutorial

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

WebSphere Business Connection Lab Director
IBM RTP Laboratory
3039 Cornwallis Road
P.O. BOX 12195

© Copyright IBM Corp. 2002 27

Raleigh, NC 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

28 Web Services Development Tutorial

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM
alphaWorks
AIX
CrossWorlds
DB2
DB2 OLAP Server
DB2 Universal Database
DeveloperWorks
MQSeries
SecureWay
WebSphere

Lotus is a trademark of International Business Machines Corporation and Lotus
Development Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

Notices 29

	Contents
	Web services tutorial
	Part I: Producing the CrossWorlds business objects and Java proxy artifacts
	Defining the business-object definitions
	Defining the generic business object
	Importing the business-object definitions file
	Updating the system meta-objects
	Updating MO_Service_SOAPToBO_ConfigMO
	Updating MO_Service_BOToSOAP_ConfigMO
	Updating MO_Client_SOAPToBO_ConfigMO
	Updating MO_Client_BOToSOAP_ConfigMO

	Developing the maps
	Creating the outbound request map
	Creating the outbound response map
	Creating the inbound response map
	Creating the inbound request sub-map
	Creating the polymorphic map

	Developing collaboration templates
	Defining collaboration objects
	Creating the outbound collaboration object
	Creating the inbound collaboration object

	Developing Java proxy and WSDL using WSGenUtility
	Part I review

	Part II: Deploying the CrossWorlds Web service
	Creating a Web service
	Importing the EAR file into WebSphere Studio Application Developer
	Importing the proxy
	Editing the SOAP deployment descriptor file
	Editing the log4j.properties file
	Exporting the EAR file
	Deploying the EAR file
	Testing basic CrossWorlds connectivity
	Editing the configuration file
	Creating an instance of the business object
	Sending a test message
	Modifying the test message
	Receiving the test message

	Part II review

	Part III: Deploying the service in Web Services Gateway
	Deploying the WSDL file
	Changing the destination URL
	Testing the change

	Notices
	Programming interface information
	Trademarks and service marks

