
MQSeries Integrator IBM

Using the Control Center
Version 2 Release 0

 SC34-5602-00

MQSeries Integrator IBM

Using the Control Center
Version 2 Release 0

 SC34-5602-00

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix E, “Notices”
on page 313.

First edition (March 2000)

This edition applies to IBM MQSeries Integrator Version 2 Release 0 and to all subsequent releases and modifications until otherwise
indicated in new editions.

 Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . xi
Who this book is for . xi
What you need to know to understand this book xi
Terms used in this book . xi
Where to find more information . xii

MQSeries Integrator publications . xii
+ MQSeries information available on the Internet xii

Part 1. Introducing the Control Center . 1

Chapter 1. Control Center concepts . 3
Working with configuration data . 3
The workspace . 4
Monitoring the broker domain . 5

Chapter 2. Getting started with the Control Center 7
Before you start . 7
Starting the Control Center . 7
Managing permissions to Control Center tasks . 9
Performing workspace tasks . 12
Naming Control Center resources . 15
Problem determination . 15

Part 2. Using the Control Center . 17

Chapter 3. Defining messages . 21
+ Basic message concepts . 21
+ Working with messages in the XML domain . 25

Working with messages in the MRM domain . 31

Chapter 4. Defining message flows . 67
Authorization to work with message flows . 67
The Message Flows view . 67
Creating a message flow . 69
Creating a message flow category . 73
Adding a message flow to your workspace . 74
Including one message flow in another . 76
Promoting message flow node properties . 77
Checking in message flows . 81
Creating your own message nodes . 82
The IBM Primitives . 83
Check node . 84
Compute node . 86
Database node . 90
DataDelete node . 93
DataInsert node . 96
DataUpdate node . 99
Extract node . 102
Filter node . 104

 Copyright IBM Corp. 2000 iii

 Contents

MQInput node . 107
MQOutput node . 112
MQReply node . 115
NEONFormatter node . 117
NEONRules node . 119
Publication node . 121
ResetContentDescriptor node . 123
Throw node . 126
Trace node . 128
TryCatch node . 130
Warehouse node . 132
Using the IBM-supplied message flows . 137

Chapter 5. Defining the broker topology . 141
Authorization to work with Topology . 141
The Topology view . 141
Checking out the Topology . 143
Creating a broker . 144
Creating a collective . 146
Adding an existing broker to a collective . 148
Creating a broker to add to a collective . 150
Removing a broker from a collective . 151
Connecting brokers . 152
Deleting the connection between brokers . 153
Deleting a broker . 154
Renaming a broker . 155
Checking in the Topology . 156
Making changes operational . 157

Chapter 6. Assigning resources to a broker 159
Authorization to assign resources to a broker . 159
The Assignments view . 159
Creating an execution group . 161
Assigning message flows to execution groups 162
Assigning message sets to brokers . 165
Removing resources from a broker . 167
Checking in the Assignments . 169
Making changes operational . 171

Chapter 7. Deploying configuration data . 173
Three types of deployment . 173
The stages of the deployment process . 174
Which data is deployed? . 175
Finding out whether deployment has worked . 175
Deleting a broker from the system . 176
Authorization to deploy configuration data . 177
Deploying delta assignments . 178
Deploying complete assignments . 179
Deploying delta topics . 180
Deploying complete topics . 181
Deploying delta topology . 182
Deploying complete topology . 183
Deploying delta data of all types . 184
Deploying complete data of all types . 185

iv MQSeries Integrator V2.0 Using the Control Center

 Contents

Forcing deployment of all data . 186

Chapter 8. Setting up publish/subscribe access control 187
Authorization to set up publish/subscribe access control 187
The Topics view . 187
Creating topics . 189
Adding a principal to an ACL . 191
Checking in topics data . 192
Making changes operational . 193

Chapter 9. Running the broker domain . 195
Authorization to run the broker domain . 195
The Operations and Log views . 195
Monitoring the operational state of the broker domain 198
Starting message flows . 199
Stopping message flows . 201
Starting user tracing . 203
Stopping user tracing . 204
The Subscriptions view . 205
Deleting subscriptions . 207

 Contents v

 Contents

Part 3. Appendixes . 209

Appendix A. A example scenario . 211
The receipt message as an XML message . 212
Defining the message in the message repository 213
Assigning the message set to the broker . 220
Message flows . 220
Assigning message flows to the execution group 232
Deploying the configuration . 233

Appendix B. C and COBOL default mappings 235
+ Mapping C datatypes to MRM datatypes . 235
+ Mapping COBOL datatypes to MRM datatypes 237

Appendix C. SQL reference . 243
Basic message structure . 243
A simple filter . 245
Data types . 245
Predicates . 248
Other sorts of expression . 251
Symbolic constants . 256
Optional fields and NULLs . 256
Repeating fields . 257
Field references . 262
Compute node SQL . 263
More complicated SELECTs: ROWs and LISTs 266
Querying external databases . 272
Database node statements . 275
Function reference . 279
Functions . 283

+ Examples for generic XML messages . 293
Exception and destination list structure . 300

Appendix D. NEON Rules and Formatter . 307
NEONFormatter and NEONRules nodes . 307
NEON formatter and rules engine . 307
Combining NEON rules with MQSeries Integrator 307
NEON subscriptions . 309

Appendix E. Notices . 313
Trademarks . 315

Glossary of terms and abbreviations . 317

Index . 321

vi MQSeries Integrator V2.0 Using the Control Center

 Figures

 Figures

1. The role of the Control Center in the broker domain 6
2. The Control Center . 9
3. Setting the user role . 12
4. The New icon and the Key icon . 15

+ 5. A message tree structure . 22
6. The components of a message . 35
7. The Message Sets view . 43
8. The Create a new Message Set dialog . 44
9. The Create a new Element dialog . 48

10. Create a new Compound Type using the SmartGuide 54
11. The Message Flows view . 68
12. Dragging message flow nodes into the Message Flow Definition pane . 70
13. A message flow showing connections between terminals 71
14. Add an existing Message Flow dialog . 74
15. The Promote Attribute dialog . 78
16. The Check dialog . 85
17. The Compute dialog . 87
18. The Database dialog . 91
19. The DataDelete dialog . 94
20. The DataInsert dialog . 97
21. The DataUpdate dialog . 100
22. The Extract dialog . 103
23. The Filter dialog . 105
24. The MQInput dialog . 110
25. The MQOutput dialog . 114
26. The MQReply dialog . 116
27. The NEONFormatter dialog . 118
28. The NEONRules dialog . 120
29. The Publication dialog . 122
30. The ResetContentDescriptor dialog . 124
31. The Throw dialog . 127
32. The Trace dialog . 129
33. The TryCatch dialog . 130
34. The Warehouse dialog . 134
35. The Topology view . 142
36. Create a new Broker dialog . 144
37. Create a new Collective dialog . 146
38. Add an existing Broker dialog . 148
39. The Assignments view . 160
40. The Add an existing Message Flow dialog 162
41. The Add an existing Message Set dialog 165
42. The Topics view . 187
43. The Operations view . 196
44. The Log view . 197
45. The Subscriptions view . 205

46. Scenario message flow . 211
47. XML message . 212
48. The message set properties, showing the identifier. 218
49. The receipt message extended with an MQRFH2 header. 219
50. Input node properties . 220

 Copyright IBM Corp. 2000 vii

 Figures

51. Audit message flow . 221
52. Check node properties . 222
53. Warehouse node properties . 223
54. Finance message flow . 224
55. Extract node properties . 225
56. Trace node properties . 226
57. Stock message flow . 227
58. Partner message flow . 230
+ 59. Filter node properties . 231
60. Data Insert node properties . 232

61. Repeating fields in a message . 257
+ 62. Message and destination list for an exception 303
+ 63. Exception list structure . 305
+ 64. Retrieving the exception error code . 306

65. Message flow that replicates MQSeries Integrator V1 functionality . . . 311

viii MQSeries Integrator V2.0 Using the Control Center

 Tables

 Tables

1. Editing relationships and properties: check-out requirements 61
2. The IBM Primitives . 83
3. Check node terminals . 84
4. Compute node terminals . 86
5. Database node terminals . 90
6. DataDelete node terminals . 93
7. DataInsert node terminals . 96
8. DataUpdate node terminals . 99
9. Extract node terminals . 102

10. Filter node terminals . 104
11. MQInput node terminals . 107
12. MQOutput node terminals . 112
13. MQReply node terminals . 115
14. NEONFormatter node terminals . 117
15. NEONRules node terminals . 119
16. Publication node terminals . 121
17. ResetContentDescriptor node terminals 123
18. Throw node terminals . 126
19. Trace node terminals . 128
20. TryCatch node terminals . 130
21. Warehouse node terminals . 132
22. Deployment summary . 174

+ 23. C datatypes and their default settings in the MRM 236
+ 24. COBOL datatypes and their default settings in the MRM 238

25. Format of interval strings and qualifiers 248
26. Supported CASTs . 279
27. Procedures for implementing message flows with NEON nodes 309

 Copyright IBM Corp. 2000 ix

 Tables

x MQSeries Integrator V2.0 Using the Control Center

 About this book

About this book

This book describes how to use the MQSeries Integrator Version 2 Release 0
Control Center.

Changes for the first refresh of this book, issued after it was included on the
MQSeries Integrator V2.0 product CD-ROM, are marked with the # character.

+ Changes for the second refresh of this book are marked with the + character.

Who this book is for
This book is intended for anyone who needs to use the Control Center to perform
these tasks:

� Defining messages and message sets

� Defining message flows

� Defining and managing the broker topology

� Setting up publish/subscribe access control

What you need to know to understand this book
You need to have read and understood the general introduction to all aspects of
MQSeries Integrator V2.0 in the MQSeries Integrator V2.0 Introduction and
Planning book.

Terms used in this book
Term Meaning

click Point to an object or action specified in the instructions, then
press and release the left mouse button.

right click Point to an object or action specified in the instructions, then
press and release the right mouse button.

double-click Point to an object or action specified in the instructions then
press and release the left mouse button twice in rapid
succession.

drag Point to an object specified in the instructions, then press
and hold the left mouse button and move the mouse pointer
to the desired location. Release the left mouse button.

 Copyright IBM Corp. 2000 xi

 About this book

Where to find more information
Becoming familiar with the MQSeries Integrator library will help you accomplish
MQSeries Integrator tasks quickly. The library covers planning, installation,
administration, and client application tasks.

MQSeries Integrator publications
The following books make up the MQSeries Integrator V2.0 library:

� MQSeries Integrator V2.0 Introduction and Planning, GC34-5599

� MQSeries Integrator for Windows NT V2.0 Installation Guide, GC34-5600

� MQSeries Integrator V2.0 Messages, GC34-5601

� MQSeries Integrator V2.0 Using the Control Center, GC34-5602 (this book)

� MQSeries Integrator V2.0 Programming Guide, SC34-5603

� MQSeries Integrator V2.0 Administration Guide, SC34-5792

+ MQSeries information available on the Internet
+ The MQSeries Business Solution, of which MQSeries Integrator is a part, has a
+ Web site at:

+ http://www.ibm.com/software/ts/mqseries

+ By following links from this web site you can:

+ � Obtain the latest information about all MQSeries family products.

+ � Access all the books for the MQSeries family products.

+ � Down-load MQSeries SupportPacs.

+ You might be interested in the MQSeries Integrator problem determination Q&A
+ SupportPac (MHI1) that you can access from:

+ http://www.ibm.com/software/mqseries/txppacs/

xii MQSeries Integrator V2.0 Using the Control Center

Part 1. Introducing the Control Center

Chapter 1. Control Center concepts . 3
Working with configuration data . 3

Configuration and message repositories . 3
Shared and deployed configurations . 4

The workspace . 4
Managing the contents of the workspace . 4
Saving the workspace . 5

Monitoring the broker domain . 5

Chapter 2. Getting started with the Control Center 7
Before you start . 7
Starting the Control Center . 7

Exiting the Control Center . 9
Managing permissions to Control Center tasks . 9

Adding users and groups to the MQSeries Integrator groups 11
Setting user roles . 11

Performing workspace tasks . 12
Creating a new workspace . 12
Opening an existing workspace . 12
Saving the workspace . 13
Importing resources . 13
Exporting the workspace . 13
Updating the workspace . 14
Checking in resources . 14

Naming Control Center resources . 15
Problem determination . 15

Controlling service traces . 16

 Copyright IBM Corp. 2000 1

2 MQSeries Integrator V2.0 Using the Control Center

 Control Center concepts

Chapter 1. Control Center concepts

This chapter introduces the Control Center by describing its role in an MQSeries
Integrator broker domain, and defining those concepts that you need to understand
as a Control Center user. For a comprehensive description of MQSeries Integrator
concepts, see the MQSeries Integrator V2.0 Introduction and Planning book.

The Control Center has two main functions in a broker domain. These are:

� The creation, manipulation, and deployment of configuration data for a broker
domain

� The monitoring and management of the operational state of the same broker
domain

These functions are described in the remainder of this chapter.

Working with configuration data
When a broker is created using the mqsicreatebroker command, and started for
the first time using the mqsistart command, it has no configuration to run. A
broker can perform useful functions only when it has been given a configuration to
run by the Control Center user.

Configuration data is of three types:

Assignments data
Is the assignment of: execution groups to brokers; message flows to execution
groups; and message sets to brokers.

Topology data
Is the relationship between brokers and collectives in a publish/subscribe network
in the broker domain.

Topics data
Is topics and associated Access Control List (ACL) entries used in a
publish/subscribe network in the broker domain.

Configuration and message repositories
Configuration data of all three types is created by Control Center users, and is
managed by the Configuration Manager in two repositories called the configuration
repository and the message repository.

� The message repository contains definitions of message sets.

� The configuration repository contains all other configuration data.

There is only ever one Configuration Manager in a broker domain, but there can be
any number of instances of the Control Center.

 Copyright IBM Corp. 2000 3

 Control Center concepts

Shared and deployed configurations
The Configuration Manager manages two versions of the configuration data. These
are the shared configuration and the deployed configuration.

Shared configuration
Consists of configuration data as created by one or more Control Center users
and made visible to other Control Center users in the broker domain.

Deployed configuration
Is the configuration data that is operational in (that is, that is having an effect in)
the broker domain.

Configuration data in the shared configuration is sent to brokers by the
Configuration Manager under the direction of Control Center users, by means of an
an operation called deploy. If deployment is successful, the Configuration Manager
updates its deployed configuration accordingly.

 The workspace
The concept of the workspace is key to the operation of the Control Center. It is
the term given to the “snapshot” of that part of the shared configuration data that
you, as a Control Center user, want to work with. The shared configuration can
consist of many brokers, collectives, execution groups, message flows, message
sets, and topics, many of which are of no interest to you. The workspace allows
you to work with a subset of this overall set of configuration data.

All brokers, collectives, execution groups, and topics in the shared configuration
always appear in your workspace. However, you can choose which message flows
and message sets you want to appear, to make your view of the shared
configuration more manageable. For example, if there are 500 message flows
defined in the shared configuration, you can choose to see only the 10 that are
owned by you. You do this using an operation called add. Similarly you can
remove any configuration resource from your workspace.

In summary, the workspace is a collection of references to specific objects in the
configuration.

Managing the contents of the workspace
If you want to create new configuration resources, you use an operation called
create. This creates a new object within the Control Center and adds a reference
to it to your workspace.

At this point, your new object does not exist in the shared configuration. To make
your object visible in the shared configuration, you use an operation called check
in. Once an object has been checked in it becomes visible to all other Control
Center users.

If you want to modify an object in the shared configuration, you use an operation
called check out. This locks the object in the shared configuration, preventing other
Control Center users from modifying it, and makes a copy in your Control Center.

When you have made your modifications, you save them back to the shared
configuration using check in, which also unlocks the object so that others may
modify it.

4 MQSeries Integrator V2.0 Using the Control Center

 Control Center concepts

If you want to destroy an object, you use an operation called delete. The object is
deleted from wherever it exists, which could be the Control Center (if the object is
newly created), or the shared configuration.

Saving the workspace
You can save your workspace, so that it is preserved from one invocation of the
Control Center to another, or to prevent work being lost. The workspace is saved
as an XML file to the local file system. Any objects that you have created or have
checked out are also saved to the local file system, to a directory known as your
local repository. Therefore, the references in your workspace are to objects that
exist either in the shared configuration or in your local configuration.

You can have as many workspaces as you like, but you have only one local
configuration per shared configuration.1 When an object is checked in, it is removed
from the local configuration, if it existed there.

Monitoring the broker domain
When a deploy operation has taken place successfully, the target brokers
automatically start to run the message flows, or to provide the publish/subscribe
capability, associated with the deployment request. Using the Control Center, you
can monitor the status of the brokers and the message flows they are running, and
can perform a limited number of actions to control the operation of the brokers. For
example, you can start and stop message flows.

Figure 1 on page 6 summarizes the concepts that have been introduced in this
section. It shows:

� How the Control Center relates to other components of MQSeries Integrator

� The different containers of configuration data (the workspace, the local
configuration, and the shared and deployed configurations)

� The main Control Center operations on the configuration data (save, check in,
check out, deploy, and various operational actions)

1 It is possible to switch between shared configurations on different Configuration Managers (for example, between a test and
production system) using the File —> Connection dialog, as described in Chapter 2, “Getting started with the Control Center” on
page 7. For each such shared configuration, there is one local configuration.

 Chapter 1. Control Center concepts 5

 Control Center concepts

Broker1

Message
flows

Execution groups

User Name Server

Configuration
Manager

Control Center1

Shared
configuration

Persistent
store

Broker3

Broker2

Checkout,
Checkin

Local
configuration

Control Center2

Local
configuration

Action Workspace

Workspace

Deployed
configuration

Configuration
repository

Checkout,
Checkin

Deploy

Save

Save

Figure 1. The role of the Control Center in the broker domain. In this figure, the configuration repository includes the
message repository for simplicity. Terms in italics are Control Center operations.

Chapter 2, “Getting started with the Control Center” on page 7 provides
instructions for performing many of the tasks introduced in this chapter.

6 MQSeries Integrator V2.0 Using the Control Center

 Getting started with the Control Center � Starting the Control Center

Chapter 2. Getting started with the Control Center

This chapter describes how to get started with the Control Center. It introduces
general considerations, such as tailoring your view of the Control Center, managing
access to Control Center tasks, and working with the workspace.

Before you start
You are assumed to have read the MQSeries Integrator Introduction and Planning
book. Before you can start to use the Control Center, several tasks must also have
been successfully completed:

� MQSeries Integrator V2.0 must have been installed.

� Users and groups must have been added to MQSeries Integrator security
groups.

� All databases required by MQSeries Integrator must have been created, and
users and groups authorized to use them.

� A Configuration Manager must have been created. A broker must also have
been created if you will be deploying data.

� A user name server must have been created and started, if you are using ACLs
on publish/subscribe topics.

� The MQSeries resources required to connect the queue managers hosting
MQSeries Integrator components must have been defined.

� Listeners for the queue managers must have been started.

� The Configuration Manager must have been started.

For more information about these tasks, see the MQSeries Integrator for Windows
NT V2.0 Installation Guide.

Starting the Control Center
To start the Control Center, you can:

� Double click the Control Center icon in the MQSeries Integrator product folder
on your desktop.

or

� From the Start menu, click Programs —> IBM MQSeries Integrator Version
2.0 — Control Center.

When you start the Control Center, the Configuration Manager Connection dialog
is displayed. To complete the dialog:

� In the Host Name field, type the network host name of the system on which the
Configuration Manager has been created.

� In the Port field, type the port number on which the queue manager hosting the
Configuration Manager is listening. The default port number is 1414. (You can
find out the port number to enter here from MQSeries Services. Right click
the listener associated with the queue manager, select Properties and click the

 Copyright IBM Corp. 2000 7

 Starting the Control Center

Parameters tab to display the port number.) No other queue manager must be
listening on this port.

� In the Queue Manager Name field, type the name of the queue manager
hosting the configuration manager.

 � Click OK.

After you have started the Control Center and connected to the Configuration
Manager, you can update these connection details. To do this, click Connection
from the Control Center File menu. The Configuration Manager Connection

dialog is displayed. You can alter the values displayed in this dialog, and click OK
to apply the new values. If you do this from an unsaved workspace, you are given

the opportunity to save the workspace before changing the connection information.

If you change your mind about the values you have typed in the dialog and have
not clicked OK to apply them, click Reset to restore the values with which you
connected to the Configuration Manager.

Note: You must not alternate between alias names for the Host Name value. If
you connect using a different alias for the same host, you get a different local
configuration that is unique to the alias name. You will no longer be able to access
resources you created in your original local configuration, nor will you be able to
check in any resources checked out to the original local configuration.

When you start the Control Center subsequently, the fields in the Configuration
Manager Connection dialog display the values you supplied when you last
connected to the Configuration Manager.

The Control Center interface presented to you initially looks something like this:

8 MQSeries Integrator V2.0 Using the Control Center

 Managing permissions to Control Center tasks

Figure 2. The Control Center

You see all the tabs shown here if your user role is All roles. User roles are
described in “Managing permissions to Control Center tasks.” Note that the Log
tab, which is unaffected by user role, can be displayed by selecting Log from the
File menu in the taskbar.

Exiting the Control Center
To exit the Control Center, click Exit from the File menu in the taskbar. You are
prompted to save any unsaved work before exiting.

Managing permissions to Control Center tasks
The Control Center supports many different tasks that you perform when working
with configuration data or monitoring operational brokers. These tasks are grouped
by user role, as follows:

Message flow and message set developer
Can create message flows and message sets.

Message flow and message set assigner
Can create execution groups within brokers, assign message flows to execution
groups, and assign message sets to brokers. Can also deploy this data.

Operational domain controller
Can create brokers and collectives, and define the relationships between them
(the topology). Can also deploy all types of data, and monitor the operational
broker domain.

 Chapter 2. Getting started with the Control Center 9

 Managing permissions to Control Center tasks

Topic security administrator
Can create topics and associated ACLs. Can also deploy this data.

How to select the role you want to adopt is described in “Setting user roles” on
page 11.

According to the role you select, the Control Center displays only those views or
tabs that are relevant to that role, as follows:

� The Message flow and message set developer sees the Message Sets view
and the Message Flows view.

� The Message flow and message set assigner sees the Assignments view only.

� The Topic security administrator sees the Topics view and the Topology view.

� The Operational domain controller sees the Topology view, the Assignments
view, the Topics view, the Operations view, and the Subscriptions view.

If you want to perform all tasks, you should select All roles, which enables you to
see all available views.

Note that the role you select for yourself only configures what you see on the
Control Center. It does not control the type of objects you can view or modify. For
security purposes, this aspect is controlled by the MQSeries Integrator security
groups of which you are a member.

The MQSeries Integrator security groups, and the Control Center tasks that
membership of those groups allows, are:

mqbrdevt
Members of this group can design message sets and message flows.

mqbrasgn
Members of this group can: manage execution groups within brokers; view
message sets and message flows; assign message flows to execution groups;
and assign message sets to brokers.

mqbrops
Members of this group can: create and delete brokers; deploy, start, and stop
message flows; start and stop trace activity on message flows; manage and
deploy the broker domain topology, including collectives; view the whole
deployed system, including message sets, message flows, and subscriptions;
deploy topics; and view logs that report on the deployment activity.

mqbrtpic
Members of this group can: manage topics, and the access control lists for the
topic tree; deploy topics; view the logs that report on that deployment activity.

The Configuration Manager performs a security check based on the above
whenever a Control Center user attempts to view or modify an object in the
configuration and message repositories.

10 MQSeries Integrator V2.0 Using the Control Center

 Setting user roles

Adding users and groups to the MQSeries Integrator groups
You must use the Windows NT User Manager to add users and groups to the
MQSeries Integrator security groups, as follows:

1. Invoke the Windows NT User Manager by selecting Start —> Programs —>
Administrative Tools —> User Manager.

2. Double click the MQSeries Integrator group you want to update.

3. Select Add. From the list of available user IDs, select the user ID to be added
to the group.

4. Click Add. Click OK to the close the Add Users and Groups dialog.

5. Click OK to close the Local Group Properties dialog.

6. Close the User Manager.

The authorization is effective after a delay of approximately five minutes, as the
Configuration Manager caches this information.

For more detailed information about the MQSeries Integrator groups, and about
security in general, see the MQSeries Integrator Introduction and Planning book.

Setting user roles
At any time during a Control Center session, you can change your user role. To
set your Control Center user role:

1. From the File menu in the Control Center taskbar, click Preferences.

The Control Center Preferences dialog is displayed.

2. In the left-hand pane of the dialog, click User’s role.

In the User’s role pane, as shown in Figure 3 on page 12, select the role you
want to adopt, and click OK.

 Chapter 2. Getting started with the Control Center 11

 Performing workspace tasks

Figure 3. Setting the user role

Note that you can select only one role at a time.

User preferences that govern the general appearance of the Control Center can
also be set by selecting File —> User Preferences. For more information, see the
Control Center online help.

Performing workspace tasks
This section describes the various ways in which you can manipulate the contents
of the entire workspace.

Creating a new workspace
To create a new workspace, click File —> New Workspace.

A new workspace is created. This workspace is untitled, and displays the default
contents. You specify a title for the workspace when you save it.

Unsaved changes made in any previous workspace are lost.

Opening an existing workspace
When you open an existing workspace, your workspace is populated with the
resources from the chosen file, and these replace the contents of any previous
workspace.

Unsaved changes made in any previous workspace are lost. To open an existing
workspace:

1. Click File —> Open Workspace.

12 MQSeries Integrator V2.0 Using the Control Center

 Performing workspace tasks

The Open dialog is displayed.

2. Select the file (a valid XML file) from the list presented, or specify the name of
the file in the File name field. Click Open to open the selected workspace.

Alternatively, if you have recently used the workspace, click the File menu in the
Control Center taskbar, which displays the names of the most recently used
workspaces. There can be up to four names in this list. If the workspace you want
is listed in the File menu, click its name to open it.

Saving the workspace
When you save a workspace, both the workspace and any resources created or
modified in that workspace are saved to the local configuration.

To save a workspace, click File —> Save Workspace. The workspace contents
are saved to an XML file. If the workspace is untitled, you are prompted for a
name.

To save a named workspace under a different name, click File —> Save
Workspace As. The workspace contents are saved to an XML file of the specified
name. This effectively takes a copy of the workspace contents.

 Importing resources
You can import resources from an XML export file into the local repository. To
import resources:

1. Click File —> Import.

The Import dialog is displayed.

2. Select a file from the list in the dialog, or specify a name in the File name field.

The specified file is imported into the local repository. Its contents replace the
current workspace contents. An object in the import file is added to the
workspace only if it does not exist in the shared configuration or it is locked to

the user. Additionally, topology (broker) data is imported only if the Topology
document is locked to the user. Topics data is imported only if the TopicRoot
document, plus any other topic that will be changed by the import, is locked to
the user. If the current workspace contents were unsaved, you are prompted

to save them before the new resources are imported.

Please see the Control Center online help for more information about the
effects of the import operation.

Exporting the workspace
When you export a workspace, all resources currently displayed in the workspace
and all resources that they depend on are exported to an XML file, along with the
workspace itself. The export file can then be imported by other Control Center
users.

To export a workspace:

1. Click File —> Export.

The Export dialog is displayed.

 Chapter 2. Getting started with the Control Center 13

 Performing workspace tasks

2. Select a file from the list in the dialog (if you want to export the workspace to
an existing file) or specify a name in the File name field.

The workspace is exported to the specified file. Its contents are in addition to
any resources already in the file.

Note that information being exported might contain sensitive information pertaining
to the users and groups who are defined on the User Name Server. If you are a
member of MQSeries Integrator group mqbrtpic or mqbrops, the topic hierarchy
and associated ACL are also exported. If you want to avoid this, you should sign
on as a user who is not a member of either group before you run the export.

Updating the workspace
You can:

� Update the workspace from the shared configuration
� Revert to the shared version of the workspace
� Save the workspace to the shared configuration

Updating the workspace from the shared repository
When you update the workspace from the shared repository, all objects in your
workspace that have not been checked out or modified are refreshed with the latest
version of those objects in the shared repository. Any changes you have made
locally and not checked in are unaffected by this action.

To update the workspace from the shared repository, click File —> Update from
Shared.

Reverting your workspace to the shared repository
When you revert your workspace to the shared repository, any changes you made
to it since opening the local version are lost, and any resources you had checked
out are unlocked. The latest versions of the workspace objects in the shared
repository are opened.

To revert to the shared version of the workspace, click File —> Local —> Revert
to Shared.

Saving the workspace to the shared repository
When you save the workspace to the shared repository, any configuration changes
you have made are saved, and any objects that were checked out are checked in.

To save the workspace contents to the shared repository, click File —> Local —>
Save to Shared.

Checking in resources
To discover which configuration resources are checked out to you in your
workspace, click File —> Check In List. The Check In List dialog is displayed.
Resources that are currently checked out have the Key icon against their entries in
the dialog. Resources that have never been checked in have the New icon against
their entries in the dialog. These two icons are shown in Figure 4 on page 15.

14 MQSeries Integrator V2.0 Using the Control Center

 Naming Control Center resources � Problem determination

Figure 4. The New icon and the Key icon. The PubSubTopology is checked out, and the
brokers and collective have never been checked in.

You can check in a resource from the Check In List dialog by highlighting the
resource and clicking Check In.

Naming Control Center resources
There are some rules you must follow when providing names for the resources you
create using the Control Center:

� You can use the characters:

– Uppercase A — Z

– Lowercase A — Z

– Numerics 0 — 9

– The special characters $ % ‘ ’ – _ @ ˜ ! () { } [] ^ # & + , ; =

� You can also use the space character, and any Unicode character with an
ASCII value greater than 127 (X'7F').

 Problem determination
If an error occurs while you are performing a Control Center operation, the Control
Center displays a dialog box containing an MQSeries Integrator V2.0 message.
The message can originate from either the Control Center itself or from the
Configuration Manager. The message should explain any corrective action you can
take.

Any errors that occur:

� During the second phase of a deploy operation
or
� From starting or stopping message flows

or
� From starting or stopping user tracing

or
� From deleting subscriptions

are displayed as MQSeries Integrator V2.0 messages in the Log view. Such
messages originate from the broker.

 Chapter 2. Getting started with the Control Center 15

 Problem determination

You might also find it helpful to refer to additional information provided in the
MQSeries Integrator V2.0 SupportPac MHI1. This SupportPac provides latest
problem determination information in a useful question-and-answer format. You
can find this SupportPac at:

 http://www.ibm.com/software/ts/mqseries/txppacs/

Controlling service traces
The Control Center can be traced by invoking it with a special command, mqsilcc,
which is described in the MQSeries Integrator V2.0 Administration Guide. You are
recommended to use service traces only when you receive an error message that
instructs you to start service trace, or when directed to do so by your IBM Support
Center.

16 MQSeries Integrator V2.0 Using the Control Center

Part 2. Using the Control Center

Chapter 3. Defining messages . 21
+ Basic message concepts . 21
+ A message tree . 21
+ Message domains . 22
+ How a message is interpreted . 24
+ Working with messages in the XML domain . 25
+ XML Declaration . 25
+ Document Type Declaration . 26
+ The XML message body . 29

Working with messages in the MRM domain . 31
An overview of the message definition process 32
The message model . 33
The data model layers . 39
Importing legacy formats . 41

+ Generating MRM message set Document Type Descriptors (DTDs) 42
Authorization to work with Messages . 42
The Message Sets view . 43
Creating message sets . 44
Creating messages . 46
Using the SmartGuide to create messages . 54
Adding message sets and message components to the workspace 56
Importing message definitions . 57
Generating MRM message set definitions in XML DTDs 58
Generating language bindings . 59
Generating documentation . 60
Editing message sets and components . 61
Changing the state of a message set . 65

Checking in and checking out message sets 66

Chapter 4. Defining message flows . 67
Authorization to work with message flows . 67
The Message Flows view . 67

Controlling the appearance of the Message Flow Definition pane 68
Creating a message flow . 69
Creating a message flow category . 73
Adding a message flow to your workspace . 74
Including one message flow in another . 76
Promoting message flow node properties . 77

Promoting properties through a hierarchy of message flows 78
Converging multiple properties . 78
Renaming promoted properties . 79
Deleting a promoted property from a message flow 79
Promoting mandatory properties . 79
Example: promoting message flow node properties 79

Checking in message flows . 81
Creating your own message nodes . 82
The IBM Primitives . 83
Check node . 84

Check node properties . 84
Configuring the check node . 84

 Copyright IBM Corp. 2000 17

Compute node . 86
Compute node properties . 86
Configuring the Compute node . 87

Database node . 90
Database node properties . 90
Configuring the Database node . 91

DataDelete node . 93
DataDelete node properties . 93
Configuring a DataDelete node . 94

DataInsert node . 96
DataInsert node properties . 96
Configuring a DataInsert node . 97

DataUpdate node . 99
DataUpdate node properties . 99
Configuring a DataUpdate node . 100

Extract node . 102
Extract node properties . 102
Configuring an Extract node . 102

Filter node . 104
Filter node properties . 104
Configuring a filter node . 105

MQInput node . 107
MQInput node properties . 107
Configuring an MQInput node . 109

MQOutput node . 112
MQOutput node properties . 112
Configuring an MQOutput node . 113

MQReply node . 115
MQReply node properties . 115
Configuring an MQReply node . 116

NEONFormatter node . 117
NEONFormatter node properties . 117
Configuring a NEONFormatter node . 117

NEONRules node . 119
NEONRules node properties . 119
Configuring a NEONRules node . 119

Publication node . 121
Publication node properties . 121
Configuring the Publication node . 121

ResetContentDescriptor node . 123
ResetContentDescriptor node properties . 123
Configuring the ResetContentDescriptor node 124

Throw node . 126
Throw node properties . 126
Configuring a Throw node . 126

Trace node . 128
Trace node properties . 128
Configuring the Trace node . 128

TryCatch node . 130
TryCatch node properties . 130
Configuring the TryCatch node . 130

Warehouse node . 132
Storing the entire message . 132
Storing parts of the message . 133

18 MQSeries Integrator V2.0 Using the Control Center

Warehouse node properties . 133
Configuring the Warehouse node to store the entire message 133
Configuring the Warehouse node to store parts of a message 135

Using the IBM-supplied message flows . 137
Version 1 Migration Compatibility message flow 137
The default publish/subscribe message flow 139
Importing and saving the supplied message flows 139

Copying the default message flows . 140

Chapter 5. Defining the broker topology . 141
Authorization to work with Topology . 141
The Topology view . 141

Controlling the appearance of the Topology pane 142
Checking out the Topology . 143
Creating a broker . 144
Creating a collective . 146
Adding an existing broker to a collective . 148
Creating a broker to add to a collective . 150
Removing a broker from a collective . 151
Connecting brokers . 152
Deleting the connection between brokers . 153
Deleting a broker . 154
Renaming a broker . 155
Checking in the Topology . 156

Checking in Topology changes . 156
Checking in all changes . 156

Making changes operational . 157

Chapter 6. Assigning resources to a broker 159
Authorization to assign resources to a broker . 159
The Assignments view . 159
Creating an execution group . 161
Assigning message flows to execution groups 162

Setting the properties of an assigned message flow 163
Assigning message sets to brokers . 165
Removing resources from a broker . 167

Removing an execution group from a broker 167
Removing a message set from a broker . 167
Removing a message flow from an execution group 168

Checking in the Assignments . 169
Checking in assignments . 169
Checking in all changes . 169

Making changes operational . 171

Chapter 7. Deploying configuration data . 173
Three types of deployment . 173

Complete deployment . 173
Delta deployment . 173
Forced deployment . 174
A summary of deployment actions . 174

The stages of the deployment process . 174
Stage one of deployment . 174
Stage two of deployment . 174

Which data is deployed? . 175

 Part 2. Using the Control Center 19

If some data has not been checked in . 175
Finding out whether deployment has worked . 175

If deployment times out . 176
If the broker is not running . 176

Deleting a broker from the system . 176
Authorization to deploy configuration data . 177
Deploying delta assignments . 178
Deploying complete assignments . 179
Deploying delta topics . 180
Deploying complete topics . 181
Deploying delta topology . 182
Deploying complete topology . 183
Deploying delta data of all types . 184
Deploying complete data of all types . 185

Forcing deployment of all data . 186

Chapter 8. Setting up publish/subscribe access control 187
Authorization to set up publish/subscribe access control 187
The Topics view . 187
Creating topics . 189

Renaming, duplicating, and deleting topics . 190
Adding a principal to an ACL . 191

Resolving permissions . 191
Checking in topics data . 192

Checking in all changes . 192
Making changes operational . 193

Chapter 9. Running the broker domain . 195
Authorization to run the broker domain . 195
The Operations and Log views . 195
Monitoring the operational state of the broker domain 198
Starting message flows . 199

Starting all message flows for a broker . 199
Starting all message flows within an execution group 199
Starting a single message flow . 200

Stopping message flows . 201
Stopping all message flows for a broker . 201
Stopping all message flows within an execution group 201
Stopping a single message flow . 202

Starting user tracing . 203
Starting user tracing for an execution group 203
Starting user tracing for a single message flow 203

Stopping user tracing . 204
Stopping user tracing for an execution group 204
Stopping user tracing for a single message flow 204

The Subscriptions view . 205
Filtering the information in the Subscriptions view 205
Refreshing the Subscriptions view . 206

Deleting subscriptions . 207

20 MQSeries Integrator V2.0 Using the Control Center

 Defining messages � Basic message concepts

 Chapter 3. Defining messages

+ MQSeries Integrator Version 2 provides a message brokering function that can
+ transform messages from one format to another. The brokers that manage these
+ transformations need to interpret the structure and content of the messages they
+ receive to perform the full range of transformation functions available with
+ MQSeries Integrator.

+ This chapter introduces the messages supported by MQSeries Integrator, and how
+ those messages are handled. It contains the following sections:

+ � “Basic message concepts”
+ � “Working with messages in the XML domain” on page 25
+ � “Working with messages in the MRM domain” on page 31

+ Basic message concepts
+ A message consists of a one dimensional array of bits organized into bytes. The
+ applications that send and receive messages, and the broker that provides
+ additional message processing between sender and receiver, place a particular
+ interpretation on the bytes of each message, and their order.

+ When a broker receives a message, its first task is to pass the message to a
+ message parser. This reads the string of bits and converts them to a tree format.
+ The tree format is easier to understand and manipulate, but contains identical
+ content to the bits from which it is formed. When a broker delivers a message to a
+ recipient, the message is converted back into a bit-stream.

+ A message tree
+ A message tree is made up of a number of elements. At the top of the tree is the
+ root: this has no parent and no siblings. The root is parent to a number of child
+ elements. Each child must have a parent, it can have zero or more siblings (with
+ which it shares its parent), and it can have zero or more children.

+ The tree structure of a message is shown in Figure 5 on page 22. The message
+ root has two children, ElementA1 and ElementB1 (which are therefore siblings
+ sharing a single parent). The child ElementA1 has three children (ElementA2,
+ ElementB2, and ElementC2) and ElementB2 has a further child ElementC1.

 Copyright IBM Corp. 2000 21

 Basic message concepts

+ Figure 5. A message tree structure

+ Message domains
+ The messages supported by MQSeries Integrator are of two broad types:

+ 1. A message can be self-defining: its message domain must be set to XML.

+ 2. A message can be predefined: its message domain must be set to one of:

+ a. MRM
+ b. NEON

+ A predefined message has a logical structure and a physical structure:

+ � The logical structure of a predefined message is a tree structure that
+ demonstrates the hierarchical relationships between the components of a
+ message.

+ � The physical structure of a message, which is also referred to as its wire
+ format, is just a string of bits and bytes. Without the logical structure, the
+ physical structure (the bit-stream) has no intrinsic meaning.

+ Self-defining messages in the XML domain
+ A self-defining message must have a message domain of XML. It carries the
+ information about its content and structure within the message. Its definition is not
+ held anywhere else.

+ When a self-defining message is received by the broker, it is handled by the XML
+ parser, and a tree is created according to the XML definitions contained within that
+ message.

+ A self-defining message is also known as a generic XML message. It does not
+ have a recorded format.

+ A self-defining message can be handled by every IBM-supplied message
+ processing node. The whole message can be stored in a database, and headers
+ can be added to or removed from the message as it passes through the message
+ flow.

22 MQSeries Integrator V2.0 Using the Control Center

 Basic message concepts

+ The message can also be manipulated, constructed, and reformatted by nodes in
+ the message flow, using SQL that works with the message structure. This means
+ that although you do not have to define the message structure to the Control
+ Center, you do have to understand the definition to be able to construct valid SQL
+ for message manipulation.

+ See “Working with messages in the XML domain” on page 25 for further details.

+ Predefined messages in the MRM domain
+ A predefined message in the MRM message domain must have its message
+ domain set to MRM. It must be defined to the Message Repository Manager, a
+ component of the Configuration Manager. You can define messages to the MRM
+ domain using the Control Center. The MRM maintains these messages in the
+ message repository.

+ An MRM message can be handled by every IBM-supplied message processing
+ node. The whole message, or parts of the message, can be stored in a database,
+ and headers can be added to or removed from the message as it passes through
+ the message flow. The message can be manipulated using SQL defined within all
+ message processing nodes that support manipulation (for example, compute and
+ filter).

+ You can also transform any message in the MRM domain into any other format
+ defined to the MRM using SQL (in most cases, just one line of SQL). This is a
+ significant benefit of using the MRM domain for your messages.

+ Messages with a message domain of MRM have three other characteristics for
+ further classification:

+ 1. Message format

+ Three message formats are supported by the MRM:

+ a. A message can have a message format of CWF (Custom Wire Format).

+ These messages are MRM representations of legacy datastructures
+ created in the C or COBOL programming language, and imported into the
+ MRM using the Control Center facilities. See “Importing legacy formats” on
+ page 41 for details of how to complete this task.

+ You can also create new messages using this format.

+ b. A message can have a message format of PDF.

+ This is a specialized format used predominantly in the finance industry. It
+ does not have any connection with the Portable Document Format defined
+ by Adobe (also known as PDF).

+ If you already use messages of this format, you can continue to use them
+ and process them by specifying this format in the definitions.

+ c. A message can have a message format of XML.

+ These messages are represented as XML documents. They conform to an
+ XML DTD (Document Type Definition) that can be generated by the Control
+ Center for documentation purposes.

+ 2. Message set

+ This identifies the message set to which each message belongs. This is
+ specified as the message set identifier, not the message set name. When you

 Chapter 3. Defining messages 23

 Basic message concepts

+ define a message in the MRM message domain, you must define a message
+ set that contains it. A message set can contain one or more related messages.

+ 3. Message type

+ The message type identifies the message definition within the set. It is the
+ unique identifier for each message of this particular content and format.

+ See “Working with messages in the MRM domain” on page 31 for further details.

+ Predefined messages in the NEON domain
+ A predefined message in the NEON message domain must have its message
+ domain set to NEON. It must be defined using the MQSeries Integrator Version 1
+ graphical utilities that are supplied with MQSeries Integrator Version 2. You can
+ create new messages and use existing messages defined to the NEON domain.

+ A NEON message can be handled by every IBM-supplied message processing
+ node. The whole message can be stored in a database, and headers can be added
+ to or removed from the message as it passes through the message flow. The
+ NEONFormatter node can be used to transform a NEON message. No other node
+ can manipulate the message contents.

+ For further information about working with these messages, refer to Appendix D,
+ “NEON Rules and Formatter” on page 307 and the MQSeries Integrator Version
+ 1.1 User’s Guide.

+ How a message is interpreted
+ When the message arrives in a broker, it is removed from the input queue by the
+ MQInput node defined in the message flow that processes messages from this
+ queue. The MQInput node determines what to do with each message:

+ � If the message has an MQRFH or MQRFH2 header following the MQMD
+ header, the domain identified in the MQRFH2 header is used to decide which
+ message parser is invoked.

+ � If the message does not have an MQRFH or MQRFH2 header, but the
+ properties of the MQInput node indicate the domain of the message, the parser
+ specified by the node property is invoked.

+ � If the message has a valid MQMD, but the message body cannot be
+ recognized, the message cannot be interpreted or parsed, and it is handled as
+ a binary object (BLOB). Because its structure and format are not understood, a
+ BLOB message cannot be manipulated in any way within a message flow.
+ However, it can be stored in full in a database, it can be routed according to
+ topic, and headers can be added to or removed from the message.

+ Each message received must have an MQMD header, and can have zero or more
+ additional headers. MQSeries Integrator provides a parser for each of the following
+ MQSeries headers:

+ � MQCIH
+ � MQDLH
+ � MQIIH
+ � MQMD
+ � MQMDE
+ � MQRFH
+ � MQRFH2

24 MQSeries Integrator V2.0 Using the Control Center

 Generic XML messages

+ � MQRMH
+ � MQSAPH
+ � MQWIH

+ MQSeries Integrator also supports the use of additional parsers. You can create a
+ message parser using a defined programming interface. This interface and the
+ techniques you must employ to create your own “plug-in” parsers are described in
+ the MQSeries Integrator Programming Guide. If you use your own parser, you
+ must set up your MQInput node properties to identify your parser.

+ Working with messages in the XML domain
+ Self-defining or generic XML messages are those whose content are documents
+ that adhere to the XML specification. The following sections describe how these
+ messages are represented in a tree of syntax elements.

+ The following topics are discussed:

+ � “XML Declaration”
+ � “Document Type Declaration” on page 26
+ � “The XML message body” on page 29

+ The name elements used in this description (for example, XmlDecl) are provided by
+ MQSeries Integrator for symbolic use within the SQL that defines the processing of
+ message content that is to be performed by the nodes within a message flow (for
+ example, a filter node). They are not a part of the XML specification itself. You can
+ find examples of SQL syntax that handles the definition of generic XML messages
+ in “Examples for generic XML messages” on page 293.

+ XML Declaration
+ The beginning of an XML message must contain what is called an XML declaration.

+ An XML declaration might take the following form in the XML bit-stream:

+ <?xml version="1. " standalone="yes" encoding="UTF-8" ?>

+ The XML declaration must be at the beginning of every XML message.

+ XmlDecl
+ This is a name element that corresponds to the XML declaration itself. The XmlDecl
+ element must be a child of the root element, and is the element that is written to a
+ bit-stream first during serialization. This element can have three children of the
+ following types:

+ 1. Version

+ The version element is a value element and stores the data corresponding to
+ the version string in the actual declaration. It is always a child of the XmlDecl
+ element. For example, for the declaration shown above the version element
+ would contain the string value "1.0".

+ 2. Standalone

+ The standalone element is a value element and stores the data corresponding
+ to the value of the standalone string in the declaration. It is always a child of
+ the XmlDecl element. The values for the standalone element must be the string
+ "yes" or "no".

 Chapter 3. Defining messages 25

 Generic XML messages

+ 3. Encoding

+ The encoding element is also a value element and is always a child of the
+ XmlDecl element. The value of the encoding element is a string which
+ corresponds to the value of the encoding string in the declaration. In the
+ example shown above the encoding element would have a value of "UTF-8".

+ Document Type Declaration
+ The document type declaration (DTD) of an XML message is represented by a
+ syntax element of type DocTypeDecl and its children and descendants. These
+ comprise the DOCTYPE construct.

+ Only internal DTD subsets are represented in the syntax element tree. External
+ DTD subsets (identified by the SystemID or PublicId elements described below) can
+ be referenced in the message but those referenced are not resolved in the
+ MQSeries Integrator run-time environment.

+ DocTypeDecl
+ The DocTypeDecl is a named element and must be a child of the root element. It is
+ written to the bit-stream before the element that represents the body of the
+ document during serialization. It can optionally have three children:

+ 1. IntSubset

+ The IntSubset element is also a named element and is the only valid child of
+ the DocTypeDecl element. It groups all of the those elements which represent
+ the DTD constructs contained in the internal subset of the message. Although
+ the IntSubset element is a named element its name is not relevant.

+ 2. SystemId

+ The SystemId is a value element and is used to represents a general system
+ identifier construct found in an XML message. It can be a child of a
+ DocTypeDecl or a NotationDecl element. The value of the SystemId is a URI,
+ and is typically a URL or the name of a file on the current system. A system
+ identifier of the form SYSTEM “Note.dtd” has a string value of "Note.dtd"

+ 3. PublicId

+ This element represents a general public identifier construct found in an XML
+ message. It can be a child of a DocTypeDecl or a NotationDecl element. The
+ value of the PublicId is typically a URL.

+ NotationDecl
+ The NotationDecl element represents a notation declaration in an XML message. It
+ is a name element whose name corresponds to the name given with the notation
+ declaration. It must have a SystemId as a child, and it can optionally have a child
+ element of type PublicId. This represents the NOTATION construct.

+ Entities
+ Entities in the DTD are represented by one of five named element types described
+ below.

+ 1. ParameterEntityDecl

+ The ParameterEntityDecl represents a parameter entity definition in the internal
+ subset of the DTD. It is a named element and has a single child element that is
+ of type EntityDeclValue. For parameter entities the name of the entity does not

26 MQSeries Integrator V2.0 Using the Control Center

 Generic XML messages

+ include the percent sign %. In XML a parameter entity declaration takes the
+ form:

+ <!ENTITY % inline "#PCDATA | emphasis | link">

+ 2. ExternalParameterEntityDecl

+ The ExternalParameterEntityDecl represents a parameter entity definition where
+ the entity definition is contained externally to the current message. It is a
+ named element and has a child of type SystemId. It can also have a child of
+ type PublicId. The name of the entity does not include the percent sign %. In
+ XML an external parameter entity declaration takes the form:

+ <!ENTITY % bookDef SYSTEM "BOOKDEF.DTD">

+ This is represented by an ExternalParameterEntityDecl element of name
+ bookDef with a single child of type SystemId with a string value of
+ “BOOKDEF.DTD”.

+ 3. EntityDecl

+ The EntityDecl element represents a general entity, which is not an unparsed
+ entity, and is declared in the internal subset of the DTD. It is a named element
+ and has a single child element which is of type EntityDeclValue.

+ An entity declaration of the form:

+ <!ENTITY bookTitle "User Guide">

+ has an EntityDecl element of name "bookTitle", and a child element of type
+ EntityDeclValue with a string value of “User Guide”.

+ 4. ExternalEntityDecl

+ The ExternalEntityDecl element represents a general entity, which is not an
+ unparsed entity, where the entity definition is contained externally to the current
+ message. It is a named element and has a child of type SystemId. It can also
+ have a child of type PublicId.

+ An external entity declaration of the form:

+ <!ENTITY bookAppendix SYSTEM "appendix.txt">

+ has an EntityDecl element of name "bookAppendix" and a child element of type
+ SystemId with a string value of "appendix.txt".

+ 5. UnparsedEntityDecl

+ An unparsed entity is an external entity whose external reference is not parsed
+ by an XML processor.

+ The UnparsedEntityDecl is named element. It has a child of type SystemId and
+ optionally a child of type PublicId. The presence of NDATA after the SystemId
+ in the entity declaration indicates that this entity is not parsed by the XML
+ processor. After NDATA is the name of a corresponding notation declaration.
+ In XML an unparsed entity declaration takes the form:

+ <!ENTITY pic SYSTEM "scheme.gif" NDATA gif>

+ � NotationReference

+ The NotationReference name element represents a reference to a notation
+ declaration from within an UnparsedEntityDecl element. It is always a child
+ of an UnparsedEntityDecl element.

 Chapter 3. Defining messages 27

 Generic XML messages

+ EntityDeclValue: This value element represents the value of an EntityDecl, or a
+ ParameterEntityDecl defined internally in the DOCTYPE construct. It is always a
+ child of an element of one of those types, and is a value element. For the following
+ entity:

+ <!ENTITY bookTitle "User Guide">

+ the EntityDeclValue element has the string value "User Guide".

+ ElementDef
+ The ElementDef name-value element represents the <!ELEMENT construct in a
+ DTD. The name of the element that is defined corresponds to the name member of
+ the syntax element. The value member corresponds to the element definition.

+ AttributeList
+ The AttributeList name element represents the <!ATTLIST construct in a DTD. The
+ name of the AttributeList element corresponds to the name of the element for which
+ the list of attributes is being defined.

+ AttributeDef
+ The AttributeDef name element describes the definition of an attribute within a
+ <!ATTLIST construct. It is always a child of the AttributeList element. The name of
+ the syntax element is the name of the attribute being defined. It can have three
+ children:

+ 1. AttributeDefValue

+ For attributes of type CDATA (see AttributeDefType below) the
+ AttributeDefValue gives the default value of the attribute.

+ 2. AttributeDefDefaultType

+ The AttributeDefDefaultType syntax element is a value element which
+ represents the attribute default as defined under the attribute definition. The
+ value can be one of the following strings:

+ � #REQUIRED
+ � #IMPLIED
+ � #FIXED

+ 3. AttributeDefType

+ The AttributeDefType syntax element is a name-value element whose name
+ corresponds to the attribute type found in the attribute definition. Possible
+ values for the name are:

+ � CDATA
+ � ID
+ � IDREF
+ � IDREFS
+ � ENTITY
+ � ENTITIES
+ � NMTOKEN
+ � NMTOKENS
+ � NOTATION

+ If there is an enumeration present for the attribute definition the entire enumeration
+ string is held as a string in the value member of the name-value syntax element.
+ The value string starts with an open bracket “{” and ends with a close bracket “}”.

28 MQSeries Integrator V2.0 Using the Control Center

 Generic XML messages

+ Each entry in the enumeration string will be separated by a ‘|’ character. For an
+ enumerated type that is not a NOTATION, the name member of the syntax element
+ is empty.

+ DocTypePI and ProcessingInstruction
+ The DocTypePI element represents a processing instruction found within the DTD.
+ The ProcessingInstruction element represents a processing instruction found in the
+ XML message body.

+ Both of these elements are name-value elements. In both cases, the name of the
+ element is used to store the processing instruction target name, and the value
+ contains the character data of the processing instruction. The value of the element
+ can be empty. The name cannot be the string "XML" or any uppercase or
+ lowercase variation of "XML".

+ DocTypeWhiteSpace and WhiteSpace
+ The DocTypeWhiteSpace element represents whitespace found inside the DTD that
+ is not represented by any other element. The WhiteSpace element represents any
+ white space characters found in the message body that is not represented by any
+ other element. Both are value elements.

+ For example, white space within the body of the message is reported as element
+ content using the pcdata element type, but white space characters found between
+ the XML declaration and the beginning of the message body are represented by
+ the WhiteSpace element.

+ <?xml version="1. "?> <BODY>....</BODY>

+ The characters between 1.0"?>" and <BODY> are represented by the WhiteSpace
+ element. White space characters found within a DocType between two definitions
+ are represented by the DocTypeWhiteSpace element.

+ <!DOCTYPE Note SYSTEM "Note.DTD"[
+ <!ENTITY % bookDef SYSTEM "BOOKDEF.DTD"> <!ENTITY bookTitle "User Guide">]>

+ The characters between DTD"> and <!ENTITY are represented by the
+ DocTypeWhiteSpace element.

+ DocTypeComment and Comment
+ Comments in the XML message are represented by the Comment and
+ DocTypeComment elements. The former is used within the message body, the
+ latter within the DTD. Both element types are value elements where the value string
+ contains the comment text.

+ The XML message body
+ Every XML message must have a body element. The body element is a top level
+ XML element which encapsulates the whole of the body. XML elements are
+ represented in the syntax element tree with a type of “tag”.

+ � tag

+ The tag syntax element is the default name element supported by the XML
+ parser and is the most common element. This element can have many children
+ of many different types. XML attributes that are attached to an XML element
+ are represented by a series of "attr" elements that are children of the tag
+ element. Similarly, sections of PCDATA which are content of the XML element

 Chapter 3. Defining messages 29

 Generic XML messages

+ are represented by syntax elements of type "pcdata". "tag" elements can also
+ have other tag elements as children.

+ – attr

+ The attr element is the principal name-value element supported by the XML
+ parser. It is used to represent attributes that are associated with elements
+ in the XML message. The name and value of the syntax element
+ correspond to the name and value of the attribute being represented. "attr"
+ elements have no children and must always be children of a "tag" element.

+ – pcdata

+ Element content is represented by the pcdata value element. There can be
+ more than one pcdata element child of a single tag element. In these cases
+ they would be separated by any syntax elements that represent XML
+ constructs allowed within element content, including "tags",
+ "ProcessingInstruction", "Cdata", "EntityDecl".

+ The following XML illustrates an extract of message body:

+ <PERSON age="32" height="172cm">
+ <FIRSTNAME>Cormac</FIRSTNAME>
+ <SECONDNAME>Keogh</SECONDNAME>
+ </PERSON>

+ This is represented in the syntax element tree as:

+ � One “tag” element with a name of "PERSON". This tag has seven children.

+ 1. Two attr (name-value) with names "age" and "height" and string values
+ "32" and "172cm" respectively.

+ 2. One pcdata (value) element with string value containing the white space
+ character data found between 172"cm> and <FIRST .

+ 3. One tag (name) with a name "FIRSTNAME". This tag has one child:

+ – One pcdata (value) containing the string value "Cormac".

+ 4. One pcdata (value) element with string value containing the white space
+ character data found between TNAME> and <SECOND.

+ 5. One tag (name) with a name "SECONDNAME". This tag has 1 child:

+ – One pcdata (value) containing the string value "Keogh".

+ 6. One pcdata (value) element with string value containing the white space
+ character data found between DNAME> and </PERSO.

+ ProcessingInstruction
+ This is described in “DocTypePI and ProcessingInstruction” on page 29.

+ WhiteSpace
+ This is described in “DocTypeWhiteSpace and WhiteSpace” on page 29.

30 MQSeries Integrator V2.0 Using the Control Center

 MRM messages

+ Comment
+ This is described in “DocTypeComment and Comment” on page 29.

+ AsisElementContent
+ Normally an XML processor must replace any occurrences of the characters
+ ampersand (‘&’), less than (‘<’), greater than (‘>’), double quote (‘”’), and apostrophe
+ (‘’’) with an escape sequence that is used to represent them (&, <, >,
+ ", and '). The escape sequences are defined as entities.

+ The AsisElementContent is a value element that is similar to the pcdata element
+ but provides a means to suppress this behavior for the content of an element.
+ Occurrences of any of the characters in the value of an AsisElementContent
+ element are substituted by their appropriate entity reference.

+ CDataSection
+ CData sections in the XML message are represented by the CDataSection value
+ element. The content of the CDataSection element is the value of the CDataSection
+ element without the <![CDATA[that marks the beginning, and without the]]> that
+ marks the end of the Cdata section.

+ For example, the following Cdata section:

+ <![CDATA[<greeting>Hello, world!</greeting>]]>

+ is represented by a CDataSection element with a string value of:

+ "<greeting>Hello, world!</greeting>"

+ Unlike pcdata, occurrences of <, >, &, " and ' are not translated to their escape
+ sequences when the Cdata section is written out to a serialized message.

+ EntityReferenceStart and EntityReferenceEnd
+ When an entity is encountered in the XML message it is reported in the syntax
+ element tree in expanded form. In order to determine if a section of the tree has
+ been derived from an expanded entity, a couple of marker elements are placed in
+ the tree to denote the beginning and end of an entity’s expansion.

+ � The EntityReferenceStart element is a value element that marks the beginning
+ of an entity expansion.

+ � The EntityReferenceEnd element is a value element which marks the end of an
+ entity expansion.

+ The value of both elements corresponds to the name of the entity being expanded.
+ Any syntax elements found between these two place holders, and their children
+ have been derived from the expansion of the entity in question.

Working with messages in the MRM domain
This section describes how to work with messages that you define, or definitions
you import, in the message repository using the facilities of the Control Center. It
covers the following introductory topics:

� “An overview of the message definition process” on page 32

� “The message model” on page 33

 Chapter 3. Defining messages 31

 Message definition process

� “The data model layers” on page 39

� “Importing legacy formats” on page 41

� “Generating MRM message set Document Type Descriptors (DTDs)” on
page 42

� “Authorization to work with Messages” on page 42

� “The Message Sets view” on page 43

It also describes the following tasks:

� “Creating messages” on page 46

� “Using the SmartGuide to create messages” on page 54

� “Adding message sets and message components to the workspace” on
page 56

� “Importing message definitions” on page 57

� “Generating MRM message set definitions in XML DTDs” on page 58

� “Generating language bindings” on page 59

� “Generating documentation” on page 60

� “Editing message sets and components” on page 61

� “Changing the state of a message set” on page 65

� “Checking in and checking out message sets” on page 66

An overview of the message definition process
The message definition process is managed by the Message Repository Manager
(MRM) component of the Control Center.

When you create or modify message definitions using the Control Center, the MRM
stores them in the message repository, a set of tables in a database created and
maintained by the Configuration Manager.2

Each message definition is created within, and belongs to, a message set, which is
simply an organizational grouping of related messages. A message set includes
the definitions of one or more related messages, typically those used by a single
application. You construct each message using a set of building blocks, known as
message components, some of which are supplied with MQSeries Integrator (the
simple types) and some of which you define using the Control Center (the
compound types).

So, for example, for a banking application you could define simple elements, such
as Account Number and Account Balance, then include those simple elements in a
compound element, such as Customer Record. The Account Number, Account
Balance, and Customer Record elements would all be reusable by other message
definitions within the same message set. The components of a message are
described in detail in “The components of a message definition” on page 33.

2 The configuration repository and message repository are implemented using an IBM DB2 Universal Database for Windows NT.

32 MQSeries Integrator V2.0 Using the Control Center

 The message model

You must assign message sets to those brokers that need to understand them.
When you deploy message-set assignments in the broker domain, the MRM
constructs a message dictionary from each message set (one dictionary plus one
CWF descriptor file for each set) and sends it to each broker that needs access to
the message definitions.

The message model
The MQSeries Integrator message model provides a platform- and
language-independent way of defining logical messages that represent structured
business information.

In this message model, a message definition comprises separate, reusable
message components. The relationship between components is defined as being
either a member relationship or a reference relationship.

 Reference relationship
A reference relationship is a defining relationship between two components. For
example, an element component of type STRING has a reference relationship to an
element length component that defines the length of the element.

Reference relationships are always mandatory.

 Member relationship
A member relationship is a parent-child relationship between two components. For
example, a (parent) compound type has a member relationship with one or more
(child) elements. Note that the member relationship is always expressed as an
attribute of the parent, not of the child.

Member relationships are always optional.

The components of a message definition
The components of a message definition are described in the remainder of this
section. For each component, the reference and member relationships are
identified.

Message component: The message component defines both the business
meaning and the format of a single unit of information to be exchanged between
applications.

� A message component has a reference relationship to a single type component
(a compound type) that defines the content of the message. It can also have a
reference relationship to an element qualifier.

� A message component has no member relationships.

Once a message component has been created, the reference of the type
component cannot be changed.

Element component: The element component defines both the business meaning
and the format of a single unit of information within a message.

� An element component has a reference relationship to a a single type
component (a simple type or a compound type) that defines the content of the
element.

 Chapter 3. Defining messages 33

 The message model

An element component also has a reference relationship to an element length
component, if the element is of simple type STRING.

� An element component can have a member relationship to one or more (child)
element valid value components, which must have the same type as the
element.

Once an element has been created, the identifiers of the type and element length
components to which it refers cannot be changed.

Type component: The type component defines the format or content of a
message or an element. A type can be a simple type or a compound type.

Simple type
Is a basic data type supported by the run-time message parsers. The simple
types are: STRING, INTEGER, FLOAT, BOOLEAN, and BINARY. The simple
types are created automatically when you create a message set.

Compound type
Is a structure made up of one or more element components.

� A type component has no reference relationships.

� A compound type component has member relationships to one or more (child)
elements.

Element length component: The element length component defines a maximum
length value that completes the definition of any element of the simple type
STRING.

� An element length component has no reference relationships.

� An element length component has no member relationships.

Category component: The category component groups messages within a
message set, typically by business function. The extraction and generation
functions of the MRM can produce their output by category.

� A category component has no reference relationships.

� A category component can have member relationships to one or more (child)
messages.

Element valid value component: The element valid value component defines
either a single value or a range of values that are valid for an element. One or
more element valid value components can be associated with an element. One
element valid value can define the default value of an element.

� An element valid value component has a reference relationship to a type
component that defines the content of any elements to which the values apply.

� An element valid value component has no member relationships.

Element qualifier component: The element qualifier component provides
additional information that qualifies the definition of an element component. For
example, an element qualifier can specify that an element is mandatory.

� An element qualifier component has a reference relationship to the element
component it qualifies.

34 MQSeries Integrator V2.0 Using the Control Center

 The message model

� An element qualifier component can have member relationships to one or more
(child) element valid value components, which must have the same type as the
referenced element and must apply to those element components with which
the element qualifier component is associated (overriding those defined for the
element component).

Figure 6 shows all possible components of a message definition and summarizes
the relationships between them.

Figure 6. The components of a message

Component identifiers and names
Each component of a message definition has an identifier and a name.

Component identifier
Identifies a component uniquely within a message set. No two components in a
message set can have the same identifier, and no two components of the same
class (for example, two elements or two categories) can have identifiers that

 Chapter 3. Defining messages 35

 The message model

differ only by case. For example, you cannot define an element with the identifier
“ADDRESS” and an element with the identifier “address” in the same message
set.

In the case of element components, the element identifier is used in application
programs to access data values assigned to the element.

An identifier must begin within an alphabetic character. The remainder of the
value, up to a maximum of 254 characters, can contain alphanumeric,
underscore (_), and period (.) characters. Other characters, including space
characters, are not valid.

You cannot change the identifier of a component.

Component name
Is a descriptive name for a component. It is typically the full name of a
component (for example, “Street Name” or “Account Number Length”), in contrast
to the component identifier, which is often an abbreviated name and subject to
environmental conventions.

You can change the name of a component (using the Rename action).

An example message definition
To illustrate the concepts introduced in this section, consider this example of a
simple message:

AddressesMessage
 HomeAddress

Line (1 or more) (STRING 5)
 Country (1 only) (STRING 5)

ZipCode (or 1) (STRING 2)
 WorkAddress

Line (1 or more) (STRING 5)
 Country (1 only) (STRING 5)

ZipCode (or 1) (STRING 2)

Some items to note about this message:

� The top-level elements HomeAddress and WorkAddress have the same
substructure, which you can define by creating a compound type component
called Address that contains the common elements Line, Country, and
ZipCode. The compound type Address would be referenced by the top-level
elements HomeAddress and WorkAddress.

� The elements Line, Country, and ZipCode all reference the simple type
STRING, which is created by default when a message set is created. These
elements must also reference an element length component.

If you create a message definition from the bottom up (that is, starting with the
lowest-level components and working up to the top of the hierarchy), you are
guaranteed to create a referenced component before you create the component
that contains the reference.

The components of our example AddressesMessage would be created in the
following order:

1. Simple type STRING (created by default when the message set is created)

2. Element length components, in any order:

a. Maximum Length 50

36 MQSeries Integrator V2.0 Using the Control Center

 The message model

b. Maximum Length 20

3. Element components, in any order:

a. Element Line, referencing simple type STRING and element length
Maximum Length 50.

b. Element Country, referencing simple type STRING and element length
Maximum Length 50.

c. Element Zip Code, referencing simple type STRING and element length
Maximum Length 20.

4. Compound type component Address, with member relationships to the following
child elements:

� Element component Line
� Element component Country
� Element component Zip Code

5. Element components, in any order:

a. Element Home Address, referencing compound type Address
b. Element Work Address, referencing compound type Address

6. Compound type component HomeAndWork, with member relationships to the
following child elements:

� Element Home Address
� Element Work Address

7. Message component AddressesMessage, referencing compound type
HomeAndWork.

Clearly, before you use the Control Center to define your messages, you need to
have done the data analysis that will enable you to create complete and accurate
definitions in an efficient manner.

For information about using the Control Center to define messages, see “Creating
messages” on page 46.

 Message sets
A message set contains the definitions of one or more messages, plus the
definitions of the components that make up those messages. A typical message
set contains the definitions of all messages required by a single application. The
run-time message dictionary provided by the MRM to the run-time message parsers
contains definitions for all messages in a single message set.

In common with the components of a message, message sets must have a name.
They must also have a level number that identifies this version of the message set.
Other properties of a message set, related to the data model layers, are described
below.

Message set properties
The properties of a message set are:

Documentation
Is a short description, or a long description, or both, of the message set.

C Language
Identifies names for header files generated from this message set using the
Message Sets —> Generate command from the Control Center.

 Chapter 3. Defining messages 37

 The message model

Main Header File Name
Is the name of the generated header file, which contains structure definitions of
the messages in this message set.

Orphan Header File Name
Is the name of the generated header file that contains definitions of structures
(types) that are not used by any message in this message set.

COBOL Language
Identifies name of the main copy book generated from this message set by using
the Message Sets —> Generate command from the Control Center.

Run Time
Identifies the parser for this message set.

Custom Wire Format
Identifies:

� Custom Wire Format Identifier
� Byte Alignment Padding Character (the default for this message set)
� Boolean True Value
� Boolean False Value

Boolean True and False Values define the True and False values to be used by
every element of type Boolean in this message set. Boolean True and False
Values must be the same length, and can be between 1 and 4 bytes long. They
must be defined in half-byte values. For example, if you want your Boolean
values to be ASCII characters Y and N, you would enter 54 in the True field and
46 in the False field.

Message set states
The state of a message set can vary, in line with typical development, testing, and
production cycles.

The states of a message set are:

Normal The state of a message set while it is being developed.

Locked The state of a message set while it is checked out (locked) by a
Control Center user. A message set must be in this state before
you can change any of its properties. A message set must also be
locked before you can freeze it.

Frozen The state of a message set should not be changed (typically on
entry to a test phase). Neither the message set itself nor its
contents can be changed while it is in this state, nor can they be
checked out. A message set can be unfrozen.

An attempt to freeze a message set fails if any component of the
message set is checked out or if any of the message definitions it
contains is incomplete.

A message set must move to the frozen state from the locked
state, and both state changes must be requested by the same
user.

Finalized A message set and its components in this state cannot be
changed or checked out.

An attempt to finalize a message set fails if any component of the

38 MQSeries Integrator V2.0 Using the Control Center

 The data model layers

message set is checked out or if any of the message definitions it
contains is incomplete.

A message set can move to the finalized state from any other
state. However, if it moves from the locked state to the finalized
state, both state changes must be requested by the same user.

Once a message set is finalized, no further changes can be made to its contents.
However, you can create a new message set based on the finalized message set,
within which you can define new messages. You can also make limited changes to
the existing messages in the new message set. For more information, see
“Message set versioning.”

Message set versioning
A message set can be based on another message set, provided that the message
set on which it is based has been finalized. You might want to use this facility to
maintain separate versions of a message set, reflecting the evolution of a message
set through maintenance and other fixes.

When a message set is based on another message set, it contains a copy of the
complete contents of the base message set. Within the new message set, new
messages can be defined, and limited modifications can be performed on existing
messages. A separate run-time dictionary is produced for the new message set.

A message set can have the same name as another message set in the same
message repository if:

� The new message set is based on the message set of the same name.

� The message set on which it is based has a higher level number than any
other message set with the same name in the same repository.

� The level number of the new message set is higher than that of the message
set on which it is based.

The data model layers
So far, we have discussed the concepts underlying the MRM’s message model.
However, the message set contains additional “layers” of information that support
related MRM functions. These are:

� The documentation layer
� The C language layer
� The COBOL language layer
� The run-time layer
� The Custom Wire Format layer

These layers of information are visible to you in the Properties pane of the
Message Sets view, as described in “The Message Sets view” on page 43. They
are described in more detail in the following sections.

 Chapter 3. Defining messages 39

 The data model layers

The documentation layer
When you define each message component and each message set, you have the
opportunity to provide a short description or a long description, or both, of that
component or message set. You are recommended to use these description fields
to describe the business meaning of the object, and to record any business rules
that govern their use.

The documentation extractors of the MRM include this information in generated
documentation. For more information about generating documentation from the
MRM, see “Generating documentation” on page 60.

The C language layer
The MRM can generate C header files from the message definitions you create that
can be used in messaging applications developed in C language. You specify
values for properties of some message components to support this function.

For the category component, you specify:

Category Header File Name
Provides the name of the header file into which structure definitions for all
messages in this category are generated.

Include in Main Header
Specifies whether this header file is included from the main header file for the
message set.

For the element component, you specify:

C Language Name
Provides the name used for this element as a field within C structure definitions.
By default, the element identifier is used.

For the type component, you specify:

C Language Name
Provides the name for the C structure definition that is generated for the type.
By default, the type identifier is used.

File Name
Provides a name for a header file to be generated containing a structure
definition for the type. This value is optional, and is not usually specified: the
structure definitions for type components appear only in the category header files.

The COBOL language layer
The MRM can generate COBOL copy books from the message definitions you
create that can be used in messaging applications developed in COBOL language.
You specify values for properties of some message components to support this
function.

For the category component, you specify:

Category Copy Book Name
Provides the name of the copy book file into which structure definitions for all
messages in this category are generated.

For the message component, you specify:

40 MQSeries Integrator V2.0 Using the Control Center

 Importing legacy formats

COBOL Language Name
Provides the name used for the COBOL structure definition that is generated for
the message. By default, the message identifier is used.

Message Copy Book Name
Provides the name of the copy book file into which the structure definition for the
message is generated.

For the element component, you specify:

COBOL Language Name
Provides the name used for this element as a field within COBOL structure
definitions. By default, the element identifier is used.

For the type component, you specify:

COBOL Language Name
Provides the name for the COBOL structure definition that is generated for the
type. By default, the type identifier is used.

Structure Copy Book Name
Provides a copy book file name into which the structure definition for the type is
generated.

The Custom Wire Format layer
The CWF layer defines additional information that is used to define the mapping
between logical messages and legacy message formats defined by applications
that use data structure features of languages such as C and COBOL to populate
the message structure. This information is used to produce a wire format
descriptor that can be used by a run-time message parser.

You specify some of the following properties for each element that is a child in a
type. For example, if the logical type is string, the physical type packed decimal is
not applicable. Similarly, if the logical type is decimal, and the physical type is
extended decimal, and the signed field is set to True, then the sign orientation field
is applicable. The properties that might be applicable are:

 � Physical type
� Length (value or reference)
� Sign (and orientation)

 � Skip count
 � Byte alignment
 � String justification
 � Padding character
� Virtual decimal point
� Repeat count (value or reference)

Importing legacy formats
The MRM provides C and COBOL language importers, which you can use to help
you create a message set containing message definitions that originate from legacy
applications. Such applications are typically those that use C or COBOL data
structures to populate messages. The source code of those applications must be
available to the import function of the MRM.

The import function parses the source code files, isolates the data structure
definitions, and creates logical definitions that correspond to those data structures.

 Chapter 3. Defining messages 41

 Generating MRM DTDs � Authorization to work with Messages

It also sets the appropriate CWF properties to define the mapping between the
logical definitions and the physical message format, as defined by the C or COBOL
data structures.

A compound type is created for each data structure, and elements and element
lengths are created for each field within the data structure. For more detailed
information about the way in which C and COBOL data structures are interpreted
by the MRM language importers, see Appendix B, “C and COBOL default
mappings” on page 235.

A report is generated by the import function that describes all the definitions that
have been created. It includes information about errors or conflicts within the
definitions. You can elect to produce this report without committing any changes to
the message set. You are recommended to do this and check the report before
running the complete import process.

When the import process is complete, you need only to create a message
component for each compound type that defines a complete message; all other
components are created automatically. However, you are recommended to review
your message definition, and edit it if necessary, to ensure that it meets your
needs.

Instructions for running the import process are provided in “Importing message
definitions” on page 57.

+ Generating MRM message set Document Type Descriptors (DTDs)
+ A broker accesses a message set definition in a message dictionary (each
+ message set is deployed in a separate dictionary). Client applications cannot
+ access message dictionaries. They must use one of following two options for
+ accessing the definitions used by the broker.

+ � You can generate an XML Document Type Descriptor (DTD) from the message
+ set within the message repository. For information about this task, see
+ “Generating MRM message set definitions in XML DTDs” on page 58.

+ � If you have created the MRM definitions by importing C or COBOL data
+ structures, your applications can continue to use those data structures. For
+ information about importing, see “Importing message definitions” on page 57.

Authorization to work with Messages
To perform any of the tasks described in this chapter, you must:

� Have the correct Control Center user role, which can be one of:

– Message flow and message set developer

 – All roles

For information about setting your user role, see “Setting user roles” on
page 11.

� Be a member of the MQSeries Integrator group mqbrdevt

42 MQSeries Integrator V2.0 Using the Control Center

 The Message Sets view

The Message Sets view
The Message Sets view is the Control Center interface to the MRM. To display
the Message Sets view, click the Message Sets tab in the Control Center.
Figure 7 shows an example of the Message Sets view.

Figure 7. The Message Sets view. The left-hand pane, the Message Sets pane, shows a tree view of the message
sets in your workspace. The right-hand pane, the Properties pane, displays the properties of the currently selected
entry in the Message Sets pane.

When you click on the plus sign (+) to the left of a message set folder, the contents
of the folder are displayed. Each message set folder contains an entry for each of
the seven message components. As you create new components within the
message set, they appear under the relevant component entry. For example, if you
create an element, it appears under the Elements folder within the message set.
New components have the New icon against them.

 Chapter 3. Defining messages 43

 Creating message sets

Creating message sets
To create a new message set:

1. In the Message Sets pane, right click the Message Sets root and click Create
—> Message Set.3

The Create a new Message Set dialog is displayed, as shown in Figure 8.

Figure 8. The Create a new Message Set dialog

2. Complete the fields on the initial panel:

� In the Name field, type a name for this new message set. This must follow
the naming rules described in “Naming Control Center resources” on
page 15.

� Specify a level number if appropriate. For information about setting the
level of a message set, see “Message set versioning” on page 39.

� This is a new message set, so the Finalized and Freeze Time Stamp fields
can be ignored.

� If the message set is to be based on another, finalized message set, select
that message set from the Base Message Set drop-down list. This list
shows message sets in your workspace, including those for the standard
MQSeries headers, which are provided by MQSeries Integrator.

3. Click the Run Time tab.

3 Alternatively, you can click the Message Sets menu in the taskbar and click Create —> Message Set.

44 MQSeries Integrator V2.0 Using the Control Center

 Creating message sets

Select the message parser for messages belonging to this set from the
drop-down list. For information about message parsers, see “Message set
properties” on page 37.

4. If you want to generate C language header files from this message set, click
the C Language tab and complete the Main Header File Name and Orphan
Header File Name fields. If you leave these fields blank, file names are
generated automatically based on the message set identifier. For information
about these fields, see “Message set properties” on page 37.

5. If you want to generate a COBOL copy book from this message set, click the
COBOL Language tab and specify a name for the copy book in the Main Copy
Book Name field. If you leave this field blank, the file name is generated
automatically based on the message set identifier. For information about this
field, see “Message set properties” on page 37.

6. If this message set is to contain legacy messages (for example, if message
definitions are to be imported into this message set), you need to specify the
CWF values.

Click the Custom Wire Format tab, and check that the Custom Wire Format
Identifier is CWF. For more information about the CWF values, see “Message
set properties” on page 37.

7. If you want to provide a description of this message set, click the Description
tab. Any description text you provide here is included in documentation
generated by the MRM, as described in “The documentation layer” on page 40.

Type a short description, or a long description, or both.

8. Click Finish to complete the definition of this message set.

A locked entry appears under Message Sets root in the Message Sets pane.
When the new message set entry is highlighted in the Message Sets pane, its
properties appear in the Properties pane. Notice that an identifier for the new
message set has been generated automatically by the MRM.

When you are ready to share a new message set with other Control Center users,
you check it into the shared configuration. You can do this before the message set
contains any message definitions, if you wish. For more information about
checking in message sets, see “Checking in and checking out message sets” on
page 66.

Now that you have defined a message set, you are ready to define the messages
that will belong to it, as described in “Creating messages” on page 46.

 Chapter 3. Defining messages 45

 Creating messages

 Creating messages
To illustrate how to construct a new message, the following example message of
grocery-store receipt data is used in this section:

TransactionLog
 Store Details

Store Name (STRING, Length 2 , Fixed Length, Left Justified,
Padding character Space)

Branch No. (INTEGER, Extended Decimal, Length 8,
Unsigned 3 - 39999999)

Cashier No. (INTEGER, Extended Decimal, Length 3,
Unsigned - 5)

Till No. (INTEGER, Extended Decimal, Length 8,
Unsigned 7 - 799)

Purchase (Can have up to 15 purchases on one transaction
 log)

Item Name (STRING, Length 4 , Fixed Length, Left Justified,
Padding character Space)

Item Code (STRING, Length 2 , Fixed Length, Left Justified,
Padding character Space)

Item Price (FLOAT, Packed Decimal, Length=4, Signed, VDP=2)
Item Quantity (INTEGER, Packed Decimal, Length=2, Signed)

 Totals
Total Items (INTEGER, Packed Decimal, Length=5, Signed)
Multibuy (STRING, Length 5, Fixed Length, Left Justified,

Padding character Space)
Total Sales (FLOAT, Packed Decimal, Length=6, Signed, VDP=2)

The message you will create is called Grocery Receipt, and it belongs to the
message category Store Receipts within the message set called Receipts. It is
assumed that the message set has already been created, and is checked out of the
message repository (that is, it has the Key icon against it).

These instructions demonstrate how to create a message definition from the bottom
up (that is, starting with the lowest-level elements and working towards the top of
the message hierarchy). All of these tasks are performed in the context of a single
message set.

To define this message:

1. Define element length components for all STRING elements.

a. In the Message Sets pane, right click the entry of the message set
Receipts and select Create —> Length.

The Create a new Length dialog is displayed.

b. In the Create a new Length dialog, type String Length 5 in the Name field;
type StrLen5 in the Identifier field; and type 5 in the Maximum Length
field.

c. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

d. Click Finish to complete the definition of this element length component.

46 MQSeries Integrator V2.0 Using the Control Center

 Creating messages

An entry for this new element length component appears in the Element
lengths folder in the message set Receipts.

Repeat this procedure for the String Length 20 and String Length 40 element
length components.

2. Define element valid value components for the Branch Number, Cashier
Number, and Till Number elements.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Element Valid Value.

The Create a new Element Valid Value dialog is displayed.

b. In the Create a new Element Valid Value dialog, type Cashier No. Limits
in the Name field; type Cashier_VV in the Identifier field; select type
INTEGER from the Type drop-down list; type 000 in the Minimum Value
field; and type 500 in the Maximum Value field.

c. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

d. Click Finish to complete the definition of this element valid value
component.

An entry for this new element valid value component appears in the
Element valid values folder in the Message Sets pane.

Repeat this procedure for Branch No. Limits, specifying the identifier
Branch_VV, minimum value 30000000, and maximum value 39999999. Repeat
this procedure for Till No. Limits, specifying the identifier Till_VV, minimum
value 700, and maximum value 799.

3. Create all elements of simple type.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Element.

The Create a new Element dialog is displayed, as shown in Figure 9 on
page 48.

 Chapter 3. Defining messages 47

 Creating messages

Figure 9. The Create a new Element dialog

b. In the Create a new Element dialog, type Store Name in the Name field;
type StoreName in the Identifier field; and select type STRING from the
Type drop-down list.

c. If you want to include this element in a C language structure generated
from the message repository, click the C Language tab and enter a C
name for this element in the C Language Name field.

d. If you want to include this element in a COBOL language structure
generated from the message repository, click the COBOL Language tab
and enter a COBOL name for this element in the COBOL Language Name
field.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this element component.

An entry for this new element component appears in the Elements folder of
the Receipts message set.

Repeat this process for the remaining elements of simple type:

48 MQSeries Integrator V2.0 Using the Control Center

 Creating messages

4. Add a length reference to elements of type STRING.

a. In the Message Sets pane, right click the entry for the Store Name element
in the Elements folder of the Receipts message set. Click Add —>
Length.

The Add an existing Length dialog is displayed.

b. From the list of element length components in the Add an existing Length
dialog, select String Length 20. Click Finish.

An entry for the String Length 20 component appears under the Store
Name entry in the Elements folder.

Repeat this procedure for the elements Item Name (String Length 40), Item
Code (String Length 20), and Multibuy (String Length 5).

5. Add a valid value reference to elements Branch Number, Cashier Number, and
Till Number:

a. In the Message Sets pane, right click the entry for Branch Number in the
Elements folder, and click Add —> Element Valid Value.

The Add an existing Element Valid Value dialog is displayed.

b. From the list of element valid value components in the Add an existing
Element Valid Value dialog, select Branch No. Limits. Click Finish.

An entry for Branch_VV appears beneath the Branch Number entry in the
Elements folder.

Repeat this procedure for Cashier Number (Cashier No. Limits) and Till Number
(Till No. Limits).

6. Create the compound types Store Details Type, Purchase Type, and Totals
Type.

a. In the Message Sets pane, right click the entry of the message set and
click Create —> Compound Type.

The Create a new Compound Type dialog is displayed.

b. In the Name field enter Store Details Type, and in the Identifier field enter
StoreDetsType.

c. If you want to include this type in a C language structure generated from
the message repository, click the C Language tab and enter a C name for

Name Identifier Type

Branch Number BranchNo INTEGER

Cashier Number CashierNo INTEGER

Till Number TillNo INTEGER

Item Name ItemName STRING

Item Code ItemCode STRING

Item Price ItemPrice FLOAT

Item Quantity ItemQty INTEGER

Total Items TotalItems INTEGER

Multibuy Multibuy STRING

Total Sales TotalSales FLOAT

 Chapter 3. Defining messages 49

 Creating messages

this type in the C Language Name field. Type the file name in the File
Name field.

d. If you want to include this type in a COBOL language structure generated
from the message repository, click the COBOL Language tab and enter a
COBOL name for this type in the COBOL Language Name field. Type a
copy book name in the Structure Copy Book Name field.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this compound type component.

The new compound type appears in the Types folder of the Receipts
message set.

Repeat this process for the compound types Purchase Type and Totals Type.

7. Create the elements Store Details, Purchase, and Totals.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Element.

The Create a new Element dialog is displayed, as shown in Figure 9 on
page 48.

b. In the Create a new Element dialog, type Store Details in the Name field;
type StoreDets in the Identifier field; and select type Store Details Type
from the Type drop-down list.

c. If you want to include this element in a C language structure generated
from the message repository, click the C Language tab and enter a C
name for this element in the C Language Name field.

d. If you want to include this element in a COBOL language structure
generated from the message repository, click the COBOL Language tab
and enter a COBOL name for this element in the COBOL Language Name
field.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this element component.

An entry for this new element component appears in the Elements folder of
the Receipts message set.

Repeat this procedure for the elements Purchase and Totals.

8. Add child elements to elements Store Details, Purchase, and Totals.

a. Right click the element Store Details in the Messages Pane. Click Add —>
Element.

The Add an existing Element dialog is displayed, showing all elements in
your workspace.

b. Hold down the Ctrl key and select the elements Store Name, Branch
Number, Cashier Number, and Till Number from this list. Click Finish.

The selected elements appear under the entry Store Details in the
Elements folder.

Repeat this procedure to populate the Purchase and Totals elements.

50 MQSeries Integrator V2.0 Using the Control Center

 Creating messages

9. To change the order of the child elements in an element, right click the parent
element entry in the Messages Pane, and click Reorder —> Element. Change
the order of the displayed elements, and click Finish.

The reordered elements appear in their new order under the entry for the
parent element.

10. Add the CWF characteristics to the child elements in each compound type.

a. Type Purchase must be checked out.

b. In the Types folder, expand the Purchase entry and click the child Item
Name to select it.

c. Click the Custom Wire Format tab in the Properties pane.

In the Length field enter 40, and in the Padding Character field type the
word Space.

Click the Apply bar at the bottom of the Properties pane.

d. In the Types folder, expand the Purchase entry and click the child Item
Price to select it.

e. Click the Custom Wire Format tab in the Properties pane.

In the Physical type field, select the type Packed decimal. In the Length
field, type 4. In the Signed field, type Yes. In the VDP field, type 2.

Click the Apply bar at the bottom of the Properties pane.

Follow this procedure for the child elements of the compound types Store
Details and Totals, and for the remaining child elements in compound type
Purchase.

Note: The CWF characteristics do not belong to an element in isolation. They
belong to an element in its context within a type.

Check in any compound types and child elements that are checked out.

11. Create the compound type Transaction Log Type.

a. In the Message Sets pane, right click the entry of the Receipts message
set and click Create —> Compound Type.

The Create a new Compound Type dialog is displayed.

b. In the Name field enter Transaction Log Type, and in the Identifier field,
enter TransLogType.

c. If you want to include this type in a C language structure generated from
the message repository, click the C Language tab and enter a C name for
this type in the C Language Name field. Type the file name in the File
Name field.

d. If you want to include this type in a COBOL language structure generated
from the message repository, click the COBOL Language tab and enter a
COBOL name for this type in the COBOL Language Name field. Type a
copy book name in the Structure Copy Book Name field.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this compound type component.

 Chapter 3. Defining messages 51

 Creating messages

The new compound type appears in the Types folder of the Receipts message
set.

12. Create the element Transaction Log.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Element.

The Create a new Element dialog is displayed.

b. In the Name field type Transaction Log, in the Identifier field type
TransLog, and select the type Transaction Log Type from the Type
drop-down list. Click Finish.

The new element appears in the Elements folder in the Message Sets pane.

13. Add elements to element Transaction Log.

a. Right click the element Transaction Log in the Messages Pane. Click Add
—> Element.

The Add an existing Element dialog is displayed, showing all elements in
your workspace.

b. Hold down the Ctrl key and select the elements Store Details, Purchase,
and Totals from this list. Click Finish.

The selected elements appear under the entry Transaction Log in the Elements
folder of the Receipts message set.

14. To change the order of the child elements in an element, right click the parent
element entry in the Messages Pane, and click Reorder —> Element. Change
the order of the displayed elements, and click Finish.

The reordered elements appear in their new order under the entry for the
parent element.

15. Add repeat information to child element Purchase in the compound type
Transaction Log.

a. Type Transaction Log must be checked out.

b. In the Types folder, expand the entry Transaction Log and click the child
Purchase to select it.

c. Click the Connection tab in the Properties pane.

In the Repeat field, type Yes. Click the Apply bar at the bottom of the
Properties pane.

d. Click the Custom Wire Format tab in the Properties pane.

In the Repeat Count field, type 15. Click the Apply bar at the bottom of
the Properties pane.

e. Check in Transaction Log.

Note: The repeat information does not belong to an element in isolation. It
belongs to an element in its context within a type.

16. Create the message component Grocery Receipt.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Message.

The Create a new Message dialog is displayed.

52 MQSeries Integrator V2.0 Using the Control Center

 Creating messages

b. In the Name field, enter Grocery Receipt. In the Identifier field, enter
GroceryReceipt. From the Type field drop-down list, select the value
Transaction Log Type. Click Finish.

The new message appears in the Messages folder of the Receipts message
sets.

17. Create a message category.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Category to define the message category.

The Create a new Category dialog is displayed.

b. In the Name field, enter Store Receipts. In the Identifier field, enter
StoreReceipts. Click OK.

The new category appears in the Categories folder in the Message Sets pane.

18. Add the message Grocery Receipt to the category Store Receipts.

a. Right click the category element in the Message Pane. Click Add —>
Message.

The Add an existing Message dialog is displayed, showing all messages
in your workspace.

b. Select the message Grocery Receipt. Click Finish.

The selected message appears under the entry for category Store Receipts in
the Receipts message set.

19. The Multibuy element is optional: it is included only when the customer earns a
discount by purchasing a specified multiple of any item. To specify that the
element is optional:

a. Highlight the Multibuy element in the Totals compound element of the
Receipts message set so that its properties are displayed in the Properties
pane.

b. Click the Connection tab in the Properties pane. Set the Mandatory field
to No.

c. Click the Apply bar at the bottom of the Properties pane to apply the
change.

Other types of message could be added to this category within this message set.
For example, messages describing receipts from clothing stores or from book
stores could be added to the category Store Receipts. The messages themselves
could be constructed using many of the message components defined for the
message Grocery Receipt.

When you are ready to share a new message set with other Control Center users,
you check it into the shared configuration. For more information about checking in
message sets, see “Checking in and checking out message sets” on page 66.

 Chapter 3. Defining messages 53

 Using the SmartGuide to create messages

Using the SmartGuide to create messages
The MQSeries Integrator Control Center includes a SmartGuide, which you can use
to create messages or compound type components from the top down. This
method is faster than the process described in “Creating messages” on page 46,
not least because it assumes that all the building blocks of the message or
compound type are available and do not have to be defined.

To create a compound type using the SmartGuide:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set you want to add definitions to and click Create with
SmartGuide —> Compound Type.

The Create a new Compound Type dialog is displayed, as shown in
Figure 10.

Figure 10. Create a new Compound Type using the SmartGuide

2. Complete the dialog:

a. In the Name field, enter the name for this new compound type.

b. From the Element drop-down list, select an element to add to the
compound type. If you want to create a new element, type the name of the
new element in the list box. From the Type drop-down list, select a type for
the element. Click Add Element.

c. Repeat this selection process for additional elements that you want to add
to this compound type. To delete any element you have selected, click
Delete Element.

d. Select the Create as message check box if this entire compound type is to
be a message.

54 MQSeries Integrator V2.0 Using the Control Center

 Using the SmartGuide to create messages

 e. Click Finish.

The new compound type is added to the Types folder of the message set.

Follow the same procedure to create a message using the SmartGuide. That is,
you click Create with SmartGuide —> Message from the message set actions list,
and complete the Create a new Message dialog. (The only difference between the
two dialogs is that the Create as message check box is not included in the Create
a new Message dialog.)

 Chapter 3. Defining messages 55

 Adding message sets to the workspace

Adding message sets and message components to the workspace
To add an existing message set to the workspace:

1. In the Message Sets pane, right click the Message Sets root.

2. Click Add to Workspace—> Message Set.

The Add an existing Message Set dialog is displayed, showing all message
sets that you can add to your workspace (and that aren’t already in the
workspace).

3. Select message sets from this list as follows:

� To select a single message set, click the message set name.

� To select multiple message sets that appear sequentially in the list, click on
the first message set you want, press and hold the Shift key, then click on
the last message set you want. This action selects the two message sets
you highlighted, plus any that appear between these two in the list.

� To select multiple message sets that do not appear in a sequence in the
list, hold down Ctrl and click each message set you want.

4. When you have selected the message sets you want, click Finish.

The selected message sets appear in the Message Sets pane. All of the
components of the message set are now available in your workspace.

You can also add individual message components to your workspace. For
example, to add an element to your workspace:

1. Right click the Element folder of the message set to which you want to make
the element available, and click Add to Workspace —> Element.

The Add an existing Element dialog is displayed, showing all elements that
you can add.

2. Select one or more elements from the list:

� To select a single element, click the element name.

� To select multiple elements that appear sequentially in the list, click on the
first element you want, press and hold the Shift key, then click on the last
element you want. This action selects the two message sets you
highlighted, plus any that appear between these two in the list.

� To select multiple elements that do not appear in a sequence in the list,
hold down Ctrl and click each element set you want.

The selected elements are added to the Elements folder of the appropriate
message set in the Message Sets pane.

You can add categories, element qualifiers, element lengths, messages, types, and
element valid values to your workspace in the same way.

Note: Avoid adding large numbers of elements to the workspace at one time.
This can cause slow response times and out-of-memory problems.

56 MQSeries Integrator V2.0 Using the Control Center

 Importing message definitions

Importing message definitions
Legacy definitions can be imported into the message repository, as described in
“Importing legacy formats” on page 41.

To import a message definition:

1. In the Message Sets pane of the Message Sets view, right click the message
set into which you want to import the definition and click C COBOL Importer.

The MRM Legacy Message Definition Import Tool dialog is displayed.

2. In the MRM Legacy Message Definition Import Tool dialog, type the fully
qualified name of the source file you are importing in the Import Source File
field. In the File Type to Parse field, select C or COBOL from the drop-down
list. If you want only to generate a report at this time, select the Report only
check box. Click OK.

This process imports the specified structures and creates definitions in the
message repository. To complete the process, you must create a message
component for each of the compound types that define a complete message, as
described in step 16 on page 52. You do not need to create any other message
component.

 Chapter 3. Defining messages 57

 Generating MRM message set DTDs

Generating MRM message set definitions in XML DTDs
If you have defined messages with an XML message format in the message
repository, you can request a Document Type Descriptor (DTD) to be generated by
the MRM.

To generate a DTD:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set for which you want to generate the DTD. Click Generate —>
DTD.

The Generate DTD dialog is displayed.

2. In the Generate DTD dialog, enter the name of the DTD file in the DTD
Filename field. Click Start.

The DTD for this message set is generated as requested and written to the
specified location.

58 MQSeries Integrator V2.0 Using the Control Center

 Generating language bindings

Generating language bindings
You can generate C or COBOL language bindings from message definitions you
have created using the Control Center:

To generate C language bindings:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set for which you want to generate language bindings. Click
Generate —> Language Bindings —> C.

The C Language Extractor dialog is displayed.

2. In the C Language Extractor dialog, enter the fully qualified name of the
directory of the generated file in the Generated File Location field. If you want
to freeze the message set at this time, select the Freeze Message Set check
box. The categories defined in this message set are listed in the Categories
field. You can select a subset of these for inclusion in the language bindings.
Alternatively, to include them all, select the Select All check box.

Note that you must select at least one category for successful generation of
language bindings. If no category is listed in this dialog, you must create one.

 3. Click Start.

The requested language bindings are generated and written to the specified
location.

The process for generating COBOL bindings is identical.

 Chapter 3. Defining messages 59

 Generating documentation

 Generating documentation
You can generate the following documentation in HTML format from the message
repository:

� A message book, which contains an entry for each message in a message set
or specified categories, showing its hierarchical structure

� A glossary, which contains descriptions of all elements in a message set or
specified categories, ordered alphabetically by name

To generate a message book:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set or message category for which you want to generate
documentation.

2. Click Generate —> Message Book.

The Message Definition Book dialog is displayed.

3. In the Message Definition Book dialog, type the fully qualified name of the
generated documentation file in the Generated File Location field. If you want
to freeze the message set at this time, select the Freeze Message Set check
box.

You can generate documentation based on categories or messages. The
categories or messages (depending on which you select) defined in this
message set are listed in the Categories or Messages field. You can select a
subset of these for inclusion in the language bindings. Alternatively, to include
them all, select the Select All check box.

Note that you must select at least one category or one message for successful
generation of documentation. If there is no category listed, you must create
one.

 4. Click Start.

The Message Book is generated and written to the specified location.

To generate a glossary, click Generate —> Glossary from the action list of the
message set. The Glossary dialog is displayed. This dialog is identical to the
Message Definition Book dialog, except that only categories are available.
Complete the dialog and click Start.

60 MQSeries Integrator V2.0 Using the Control Center

 Editing message sets and components

Editing message sets and components
You can edit the properties of message sets and components. You can also edit
the relationships between components (for example, you can remove an element
from a compound element), and you can delete components or remove them from
the workspace.

All properties you can edit are displayed in the Properties pane of the Message
Sets view. For example, if you highlight an element in the Message Sets pane, its
properties, including those you can edit, are displayed in the Properties pane.
When you change the value of a property, you click the Apply bar at the bottom of
the Properties pane to make the change take effect.

An individual message component can be removed from the workspace or deleted
from the shared configuration. For example, to remove an element from the
workspace, right click the element in the Messages Pane and click Remove. Note,
however, that whether a component is checked out dictates whether you can edit
its properties, remove it from the workspace, or delete it, as does the check-out
status of any related component. Table 1 summarizes the available edit actions
and shows for each action:

� Which component needs to be checked out
� What happens when you make the change

Table 1 (Page 1 of 4). Editing relationships and properties: check-out requirements

If you want to: You must check
out:

Then:

Edit the basic
properties of a
component

The component
you want to edit

You can edit the component and check it back in

+ Edit the connection
+ tab of a child
+ element

+ The compound
+ type that is the
+ parent of the
+ element

+ You can edit the connection tab then check the parent back in.

+ Edit the CWF of a
+ child element
+ The compound
+ type that is the
+ parent of the
+ element

+ You can edit the CWF tab then check the parent back in.

Edit the C
language tab,
COBOL language
tab, or Description
tab of a component

The component
you want to edit

You can edit all three tabs. The name is C-validated or COBOL
validated by the Control Center; you cannot click Apply if they are
invalid. If they are valid, you can check the component back in.

Edit an element
qualifier
assignment

The associated
message

You can edit the message then check it back in.

Delete an element
length from the
Element Lengths
folder

Nothing# If nobody has the element length checked out, and if no string
element depends on the element length, the element length is
deleted from the shared repository. Otherwise, you get an error
message and are not allowed to delete the element length.

Remove an
element length
from the Element
Lengths folder.

Check-out status is
not significant

The element length is removed from the workspace and there is
no change in the shared repository. The element length can be
added to the workspace again.

 Chapter 3. Defining messages 61

 Editing message sets and components

Table 1 (Page 2 of 4). Editing relationships and properties: check-out requirements

If you want to: You must check
out:

Then:

Delete a compound
type from the
Types folder

Nothing If any user has an element or a message of this type checked out,
or if any user has this type checked out. you get an error
message and are not allowed to delete. Otherwise, the type is
deleted and all elements of this type are also deleted throughout
the message set.

Remove a
compound type
from the Types
folder

Check-out status is
not significant

The type and its children are removed from the workspace under
the Types folder. Nothing else is affected. The compound type
can be added to the workspace again.

Remove a simple
type from the
Types folder

Nothing The type is removed from the workspace under the Types folder.
Nothing else is affected. The simple type can be added to the
workspace again.

Remove a child
simple element
from a type in the
Types folder

The type from
which you will
remove the
element

The child is deleted from the type. When you check the type in, it
is updated in the shared repository, but the child element
continues to exist. Other types that contain the element as a child
are not affected.

Delete a child
simple element
from a type in the
Types folder

Nothing If nobody has the child simple element checked out and if nobody
has any type or element qualifier that is a parent of the simple
element checked out, the element is deleted from the shared
repository and all the types that previously used it as a child are
updated. Otherwise, an error message is issued and you are not
allowed to perform the delete.

Delete a child
compound element
from a type in the
Types folder

Nothing If nobody has the child compound element checked out and if
nobody has any type or element qualifier that is a parent of the
compound element checked out, the element is deleted from the
shared repository and all the types that previously used it as a
child are updated. Otherwise, an error message is issued and you
are not allowed to perform the delete.

Remove a child
compound element
from a type in the
Types folder

The type from
which you will
remove the
element

The child is deleted from the type and, on check in, the type is
updated in the shared repository but the child element continues to
exist. Other types that contain the element as a child are
unaffected.

Delete a simple
element from the
Elements folder

Nothing# If nobody has the element checked out, and if nobody has any
type or element qualifier that is a parent of the element checked
out, the element is deleted from the shared repository and all the
types that previously used it as a child are updated. Otherwise,
an error message is issued and you are not allowed to perform the
delete.

Remove a simple
element from the
Elements folder

Check-out status is
not significant

The element is removed from the workspace under the Elements
folder. Nothing else is affected. The element can be added to the
workspace again.

Delete a top-level
compound element
in the Elements
folder

Nothing# If nobody has the element checked out, and if nobody has any
type or element qualifier that is a parent of the element checked
out, the element is deleted from the shared repository, and all the
types that used the element as a child are updated. Otherwise, an
error message is issued and you are not allowed to perform the
delete.

62 MQSeries Integrator V2.0 Using the Control Center

 Editing message sets and components

Table 1 (Page 3 of 4). Editing relationships and properties: check-out requirements

If you want to: You must check
out:

Then:

Remove a top-level
compound element
in the Elements
folder

Check-out status is
not significant.

The element and its children are removed from the workspace
under the Elements folder. Nothing else is affected. The
compound element can be added to the workspace again.

In the Elements
folder, alter a
compound element
by deleting a child
simple element

Nothing# If nobody has the child element checked out; and if nobody has
any type or element qualifier that is a parent of the element
checked out; and if nobody has the type of the compound element
checked out; the element is deleted from the shared repository,
and all the types that previously used the element as a child are
updated. Otherwise, an error message is issued and you are not
allowed to perform the delete.

In the Elements
folder, alter a
compound element
by removing a child
simple element

The type
associated with the
compound element

The child is deleted from the type, and when you check the type
back in, it is updated in the shared repository but the child element
continues to exist. Other types that contain the element as a child
are not affected.

In the Elements
folder, alter a
compound element
by deleting a child
compound element

Nothing# If nobody has the child element checked out; and if nobody has
any type or element qualifier, of which the compound element is a
child, checked out; and if nobody has the type of the parent
compound element checked out; then the element is deleted from
the shared repository and all the types that used the element as a
child are updated. Otherwise, an error message is issued and you
are not allowed to perform the delete.

In the Elements
folder, alter a
compound element
by removing a child
compound element

The type
associated with the
parent compound
element

The child compound element is removed from the workspace.
Nothing else is affected. The compound element can be added to
the workspace again.

Delete a message
in the Messages
folder

Nothing If nobody has the message checked out, and if nobody has any
category of which the message is a child checked out, the
message is deleted from the shared repository, Otherwise, an
error message is issued and you are not allowed to perform the
delete.

Remove a
message from the
Messages folder

Check-out status is
not significant

The message and its children are removed from the workspace
under the Messages folder. Nothing else is affected. The
message can be added to the workspace again.

Alter a message by
deleting a simple
child element in the
Messages folder

Nothing If nobody has the child element checked out, and if nobody has
the type of the message checked out, and if nobody has any type,
of which the element is a child, checked out, then the element is
deleted from the shared repository and all the types that used the
element as a child are updated. Otherwise, an error message is
issued and you are not allowed to perform the delete.

Alter a message by
removing a child
simple element in
the Messages
folder

The type
associated with the
message that
contains the
element

The child is deleted from the type, and on check in the type is
updated in the shared repository, but the child element continues
to exist and other types that contain the element as a child are not
affected.

 Chapter 3. Defining messages 63

 Editing message sets and components

Table 1 (Page 4 of 4). Editing relationships and properties: check-out requirements

If you want to: You must check
out:

Then:

Alter a message by
deleting a child
compound element
in the Messages
folder.

Nothing# If nobody has the child element checked out; and if nobody has
any type or element qualifier that is a parent of the child
compound element checked out; and if nobody has the type of the
message checked out; then the element is deleted from the
shared repository and all the types that used the element as a
child are updated. Otherwise, an error message is issued and you
are not allowed to perform the delete.

Alter a message by
removing a child
compound element
in the Messages
folder

The type
associated with the
message that
contains the
element

The child compound element is removed from the workspace.
Nothing else is affected. The child compound element can be
added to the workspace again.

64 MQSeries Integrator V2.0 Using the Control Center

 Changing the state of a message set

Changing the state of a message set
When a message state is created, its state is normal. During their development,
message sets can be locked, frozen, unfrozen, and finalized, as described in
“Message set states” on page 38.

To change the state of a message set:

1. In the Message Sets pane, right click the message set whose state you want to
change.

2. Click the state you want. For example, to freeze a message set, click Freeze.

Note the following:

� When you freeze a message set, the freeze timestamp is added to the
properties of the message set.

� If you unfreeze a message set, the freeze timestamp in the properties of the
message set is reset to blank.

� When you finalize a message set, the Finalized field in the properties of the
message set is set to True and the freeze timestamp is set. Finalize cannot be
reversed. For more information, see “Message set states” on page 38.

� You cannot freeze or finalize a message set if any of the elements it contains is
checked out.

 Chapter 3. Defining messages 65

 Checking in and checking out message sets

Checking in and checking out message sets
When you have created and populated a message set, you can assign it to a
broker (as described in “Assigning message sets to brokers” on page 165). You
do not need to have checked the message set into the shared configuration before
assigning it. However, you must check it in before the assignment of message set
to broker can be deployed in the broker domain.

To check in a message set, in the Message Sets pane right click the folder of the
message set you want to check in, and click Check In.

The message set is checked into the shared configuration. It still appears in your
workspace, but the Key icon against its folder has disappeared. Note that checking
in a message set does not check in any checked out objects in the message set.

Once you have checked in a message set, it is available to other users from the
shared configuration. If you want to make further changes to the message set, you
must first check it out of the shared configuration:

1. In the Message Sets pane, right click the folder of the message set you want to
edit.

2. Click Check Out.

The message set is checked out of the shared configuration. Its entry in the
Messages Pane has a Key icon against it to remind you that the definition is
checked out.

66 MQSeries Integrator V2.0 Using the Control Center

 Defining message flows � The Message Flows view

Chapter 4. Defining message flows

This chapter describes the tasks you need to perform to create message flows.
These are:

� “Creating a message flow” on page 69

� “Creating a message flow category” on page 73

� “Adding a message flow to your workspace” on page 74

� “Including one message flow in another” on page 76

� “Promoting message flow node properties” on page 77

� “Checking in message flows” on page 81

Appendix A, “A example scenario” on page 211 provides an example that shows
how to construct a message flow.

Authorization to work with message flows
To perform any of the tasks described in this chapter, you must:

� Have the correct Control Center user role, which can be one of:

– Message flow and message set developer
 – All roles

For information about setting your user role, see “Setting user roles” on
page 11.

� Be a member of the MQSeries Integrator group mqbrdevt

The Message Flows view
To display the Message Flows view, click the Message Flows tab in the Control
Center. Figure 11 on page 68 shows an example of the Message Flows view.

 Copyright IBM Corp. 2000 67

 The Message Flows view

Figure 11. The Message Flows view. The left-hand pane, the Message Flow Types pane, shows a tree view of the
message flows in your workspace. The right-hand pane, the Message Flow Definition pane, contains an arrangement
of graphical symbols that represent the message flow nodes in a selected message flow.

Controlling the appearance of the Message Flow Definition pane
As you add message flow types to a message flow, graphical symbols representing
nodes are added to the Message Flow Definition pane. You can control the
appearance and arrangement of these symbols by right-clicking in the Message
Flow Definition pane and selecting from the following actions:

Layout graph Arranges the nodes in the Message Flow Definition
pane from left to right, right to left, top to bottom, or
bottom to top.

Zoom Alters the size of all node symbols in the Message Flow
Definition pane.

Manhattan style Shows connections between nodes as lines at right
angles (as shown in Figure 11).

Snap to grid Aligns the symbols in the Message Flow Definition pane
on an invisible grid.

68 MQSeries Integrator V2.0 Using the Control Center

 Creating a message flow

Creating a message flow
1. In the Message Flow Types pane of the Message Flows view, right click the

Message Flows root, and click Create —> Message Flow.

The Create a new Message Flow dialog is displayed.

2. In the Name field, type the name of your new message flow. This must follow
the naming rules described in “Naming Control Center resources” on page 15.
Click Finish.

Confirmation that the message flow has been created appears in two places in
the Message Flows view:

� The name of the new message flow appears in the title bar of the Message
Flow Definition pane.

� An entry for the new message flow appears in the Message Flow Types
pane with a New icon against it.

You are now ready to assemble the message flow from the available message
flow nodes.

3. In the Message Flow Types pane, drag each of the message flow nodes you
want to use into the Message Flow Definition pane. (Note that this step fails if
you have not defined a message flow into which you can drag the message
flow nodes.)

A graphical symbol representing each of the nodes you select is shown in the
Message Flow Definition pane. Each has the number “1” appended to its
name. For example, if you construct a simple message flow using the
MQInput, DataUpdate, and MQOutput message nodes, each appears in the
Message Flow Definition pane as shown in Figure 12 on page 70.

 Chapter 4. Defining message flows 69

 Creating a message flow

Figure 12. Dragging message flow nodes into the Message Flow Definition pane. These message flow nodes are
instances of the IBM Primitives MQInput, DataUpdate, and MQOutput. The “1” appended to their names ensures
unique naming. If you use more than one instance of any of these nodes within a single message flow, the number
appended is incremented accordingly (the second instance has “2”, the third has “3”, and so on).

4. If you want these nodes to have different names from those assigned
automatically, you can rename them by following this procedure:

a. In the Message Flow Definition pane, right click on one of the message
flow node symbols, and click Rename.

The Rename MessageProcessingNode dialog is displayed.

b. In the New Name field, type the new name of this instance of the message
node. Click Finish.

The new name of the message flow node appears beneath its symbol in the
Message Flow Definition pane. Repeat this process for other message nodes
you want to rename.

Now you are ready to connect the message nodes in your message flow in a
way that will provide the processing logic you require. For the remainder of this
section, let’s assume that you are connecting the MQInput message flow node
to the DataUpdate message flow node.

5. To connect the out terminal of MQInput to the in terminal of DataUpdate, right
click the MQInput symbol in the Message Flow Definition pane, and click
Connect —> Out. (All terminals available to this node appear in this list.) The
cursor becomes a cross-hair attached by a red line to the out terminal.

70 MQSeries Integrator V2.0 Using the Control Center

 Creating a message flow

6. Move the cross-hair to the in terminal shown on the symbol of the DataUpdate
node, and click. A line now connects the out terminal of MQInput to the in
terminal of DataUpdate.4

Follow this process for all terminals within the message flow between which you
want to establish connections.

Figure 13 shows a simple message flow with connections between message
flow nodes.

Figure 13. A message flow showing connections between terminals. In this example, the out terminal of MQInput
has been connected to the in terminal of DataUpdate, and the out terminal of DataUpdate has been connected to the
in terminal of MQOutput.

7. You must configure the nodes in your message flow to match your processing
requirements. Configuration instructions for each IBM Primitive node are
provided in order of message-node name, beginning with “Check node” on
page 84. Note that, once you have assembled the message nodes you want
to use in the Message Flow Definition pane, the order in which you rename,
connect, and configure them is unimportant.

8. If you are ready to make this message flow generally available within the broker
domain, check it into the shared configuration as described in “Checking in
message flows” on page 81.

4 An alternative way of connecting terminals is to move the cursor slowly over the terminal icons of the node until the label of the
terminal you want to connect is displayed, then click. This action also converts the cursor to a cross-hair attached by a red line to
the node, which you can move to the appropriate terminal of the next node. This method requires a certain dexterity.

 Chapter 4. Defining message flows 71

 Creating a message flow

Please note the following information regarding those message flows that access
external databases:

1. When a database is accessed from a message flow, data is converted from the
local code page of the broker process to unicode (as used internally by the
broker), and vice versa. SQL statements are converted from unicode to the
local code page of the process prior to execution. The data in a result set
produced by an SQL SELECT is converted into unicode from the code page of
the process. If the database being accessed is configured with a different code
page from that of the broker process, a data conversion is performed by the
ODBC driver or the database, based on the conversions supported by that
database.

2. Fully globally coordinated message flows that involve a DB2 resource manager
are supported on DB2 Universal Database V6.1 only.

+ 3. The message flow thread connects to the specified data source, unless it is
+ already connected. Once a thread has acquired a connection to an ODBC
+ data source, the connection is not relinquished.

+ You are recommended to determine the number of database connections
+ required by a broker for capacity and resource planning purposes. The default
+ action taken by DB2 is to limit the number of concurrent connections to a
+ database to the value of the maxappls configuration parameter. The default for
+ maxappls is 40. Check the appropriate documentation for connections to
+ databases from other suppliers.

+ The connection requirements for a single message flow are:

+ � One required per message flow thread that contains a publication node.

+ � One required per database access node to separate ODBC data source
+ names per message flow thread (that is, if the same DSN is used by a
+ different node, the same connection is used).

+ Note: These database connections are in addition to the run-time connections
+ required by the broker (to the DB2 or SQL Server database that is defined to hold
+ its internal information). For details of these connections, refer to the MQSeries
+ SupportPac MHI1 (see “MQSeries information available on the Internet” on page xii
+ for access to this and other MQSeries SupportPacs).

72 MQSeries Integrator V2.0 Using the Control Center

 Creating a message flow category

Creating a message flow category
When you have a large number of message flows in your workspace, the Message
Flows tree in the Message Flow Types pane can become difficult to navigate. To
introduce some structure into the list, you can define message flow categories,
under which you can organize related message flows. (The IBM Primitives, for
example, belong to the IBMPrimitives message flow category.)

To create a message flow category:

1. In the Message Flow Types pane, right click the root of the Message Flows
tree, and click Create —> Message Flow Category.

The Create a new Message Flow Category dialog is displayed.

2. In the Name field, type the name of your message flow category. Click Finish.

An entry for the new message flow category appears in the Message Flow Types
pane.

You can create new message flows within this new message flow category, as
follows:

1. Right click on the message flow category folder in the Message Flow Types
pane, and click Create —> Message Flow.

2. Follow the instructions for creating a message flow from step 2 on page 69.

You can also add existing message flows to a message flow category, as described
in “Adding a message flow to your workspace” on page 74.

 Chapter 4. Defining message flows 73

 Adding a message flow to your workspace

Adding a message flow to your workspace
If you want to incorporate message flows created by other Control Center users in
your own message flows, you need to begin by adding them to your workspace.
When you add definitions to your workspace, a reference to the definitions is
created in your workspace.

To add a message flow to your workspace:

1. Right click the Message Flows root in the Message Flow Types pane, and click
Add to Workspace —> Message Flow.

The Add an existing Message Flow dialog is displayed, as shown in
Figure 14.

Figure 14. Add an existing Message Flow dialog. The dialog displays all message flows
that have been checked into the shared configuration in this broker domain.

� To select a single entry from this list, click the message flow name.

� To select multiple entries that appear sequentially in the list, click on the
first message flow you want, press and hold the Shift key, then click on the
last one you want. This action selects the two message flows you
highlighted, plus any that appear between the two in the list.

� To select multiple message flows that do not appear in a sequence in the
list, hold down Ctrl and click each entry you want.

2. When you have selected the message flows you want, click Finish.

The items you selected are added to the Message Flow Types pane, from
where you can include them in new message flows.

74 MQSeries Integrator V2.0 Using the Control Center

 Adding a message flow to your workspace

If you perform this task by right clicking on a message flow category in the
Message Flow Types pane and clicking Add —> Message Flow, the items you
select are added to the folder of the message flow category in the Message Flow
Types pane.

 Chapter 4. Defining message flows 75

 Including one message flow in another

Including one message flow in another
You can create a message flow that includes a mixture of message flow nodes and
existing message flows. You might want to do this, for example, if you have
created a standard message flow to process errors or to perform a particular
calculation: rather than define this processing in every message flow that needs it,
you can define the message flow once and include it in other message flows as
necessary.

Note: Any message flow that you intend to reuse in this way would not normally
use the standard MQInput and MQOutput nodes to start and end the flow. Instead,
it uses the Input Terminal and Output Terminal nodes that are included in the
IBMPrimitives message category.

1. To include an existing, reusable message flow in a new message flow, you
must begin by adding that message flow to your workspace, if it isn’t already
there, as described in “Adding a message flow to your workspace” on page 74.

2. Create the new message flow, following steps 1 and 2 on page 69.

3. In the Message Flow Types pane, drag the message flows that will make up
your new flow into the Message Flow Definition pane.

Nested message flows have terminal icons that represent the Input Terminal
and Output Terminal nodes they contain. For example, if the nested message
flow has one Input Terminal node and two Output Terminal nodes, the
message flow icon will have one input terminal and two output terminals, which
you connect to other nodes in the higher-level flow in the usual way.

76 MQSeries Integrator V2.0 Using the Control Center

 Promoting message flow node properties

Promoting message flow node properties
A message flow contains one or more message flow nodes, each of which is an
instance of a message flow type (either an IBM Primitive or one you have defined).
You can promote the properties of these message flow nodes to apply to the
message flow to which they belong. If you do this, any user of the message flow
can set values for the properties of the nodes in the message flow, without being
aware of the message flow’s internal structure.

To promote message flow node properties to a new message flow:

1. If the message flow is not checked out of the shared configuration, right click
the entry for the message flow in the Message Flow Types pane, and click
Check Out.

The message flow contents are now displayed in the Message Flow Definition
pane.

2. Right click the symbol of the message flow node whose properties you want to
promote, and click Promote Attribute.

The Promote Attribute dialog is displayed.

3. In the Promote Attribute dialog, the names of the properties of the message
flow node are displayed in the left-hand pane. The names of the properties of
the message flow itself, of which the message flow node is a part, are
displayed in the right-hand pane. These are properties that have already been
promoted up to the message flow. The original name of the property, and the
name of the message flow node from which it came, are shown beneath the
property entry.

4. To promote a property from the message flow node to the message flow, drag
its entry from the left-hand pane of the Promote Attribute dialog to the
right-hand pane and drop it in an empty part of the pane. It then appears at
the top of the pane.

Figure 15 on page 78 shows an example of the Promote Attribute dialog.

 Chapter 4. Defining message flows 77

 Promoting message flow node properties

Figure 15. The Promote Attribute dialog. Some of the properties of the message flow node
have been dragged across to the message flow and thus promoted.

5. When you have selected the properties you want to promote to the message
flow, click OK.

The message flow node properties have been promoted to the message flow. To
confirm this, in the Message Flow Types pane, right click the entry for this message
flow and click Properties.

The Properties dialog of the message flow is displayed, showing the message flow
node properties you promoted. If you now set a value for one of these properties,
that value appears as the default value for the property whenever the message flow
is itself included in other message flows.

Promoting properties through a hierarchy of message flows
The process of promoting message flow node properties can be repeated as you
construct a hierarchy of message flows. You can promote properties from any level
in the hierarchy to the next level above, and so on through the hierarchy. The
value of a property is propagated from the highest point in the hierarchy at which it
is set down to the original message flow node when the message flow is deployed
to a broker. The value of that property on the original message flow node is
overridden.

Converging multiple properties
It is possible for a promoted property to provide a value for several message flow
node properties at once. For example, if a message flow contains two Database
nodes that each refer to the same physical database, you have to define the
physical database only once on the message flow. To do this, you promote several
message flow properties to a single promoted property. Drag the property entry
from the left-hand pane to the right-hand pane, and drop it onto an existing

78 MQSeries Integrator V2.0 Using the Control Center

 Promoting message flow node properties

promoted property (instead of into the empty pane). You can now see the new
property added under the existing promoted property.

Note: If the type of the property you are promoting does not match the type of the
existing promoted property, when you drop the property onto the existing property,
a new promoted property is created at the top of the pane.

Renaming promoted properties
To rename a promoted property:

1. In the Promote Attribute dialog, right click the promoted property, and click
Rename.

2. In the Rename dialog, type the new name for the property. Click OK.

The new name of the property appears in the right-hand pane of the Promote
Attribute dialog.

Deleting a promoted property from a message flow
To delete a promoted property from a message flow, in the Promote Attribute
dialog, right click the promoted attribute, and click Delete.

Note: Any higher level message flow that has used this message flow, and that
has set a value for the deleted property, is not automatically updated to reflect the
deletion. However, when you deploy that message flow in the broker domain, the
deleted property is ignored.

Promoting mandatory properties
If you promote a property that is mandatory (that is, the name appears in bold type
in the properties dialog of the message flow node), the mandatory attribute of the
property is not preserved. You are recommended always to provide a default value
for the property via the properties dialog of the message flow node from which the
property originated.

Example: promoting message flow node properties
This example demonstrates how to promote message flow node properties.

1. Create a new message flow called Base.

2. Drag an MQInput node and an MQOutput node from the Message Flow Types
pane into the Message Flow Definition pane.

3. In the Message Flow Definition pane, right click the symbol of the MQInput
node, and click Promote Attribute.

The Promote Attribute dialog is displayed.

4. Drag the properties you want to promote from the left-hand pane into the
right-hand pane. Click OK.

5. Repeat steps 3 through 4 for the MQOutput node.

6. Create a new message flow called Middle.

7. Click on the entry for the message flow Middle in the Message Flow Types
pane, then drag the message flow Base into the Message Flow Definition pane.

A graphical symbol of the message flow labelled Base1 appears in the
Message Flow Definition pane.

 Chapter 4. Defining message flows 79

 Promoting message flow node properties

8. In the Message Flow Definition pane, right click the symbol of the Base1
message flow, and click Properties.

The attributes you promoted from the MQInput and MQOutput nodes appear as
properties of the message flow Base1.

 9. Click Cancel.

10. In the Message Flow Definition pane, right click the symbol of the Base1
message flow again, and click Promote Attribute.

The properties that appear in the left-hand pane of the Promote Attribute
dialog are those you promoted from the message flow nodes in the Base1
message flow. You can promote these properties to the message flow Middle,
displayed in the right-hand pane. If you do this, note that Base1 is listed as the
originating message flow.

11. Repeat this procedure to add further levels to the hierarchy of message flows
and to promote properties throughout the hierarchy.

80 MQSeries Integrator V2.0 Using the Control Center

 Checking in message flows

Checking in message flows
When you have created a message flow, you can assign it to an execution group
(as described in “Assigning message flows to execution groups” on page 162).
You do not need to have checked the message flow into the shared configuration
before assigning it. However, you must check it in before you can deploy it to one
or more brokers in the message domain.

To check in a message flow, in the Message Flow Types pane, right click the folder
of the message flow you want to check in, and click Check In.

The message flow is checked into the shared configuration. It still appears in your
workspace (as evidenced by the inclusion of its folder in the Message Flow Types
pane), but the New icon or the Key icon against its folder has disappeared.

Once you have checked in a message flow, it is available to other users from the
shared configuration. If you want to make further changes to the message flow,
you must first check it out of the shared configuration:

1. In the Message Flow Types pane, right click the folder of the message flow you
want to edit.

2. Click Check Out.

The message flow is checked out of the shared configuration. Its entry in the
Message Flow Types pane has a Key icon against it to remind you that the
definition is checked out.

 Chapter 4. Defining message flows 81

 Creating your own message nodes

Creating your own message nodes
For a full description of this task, including instructions for installing a node in the
Control Center, see the MQSeries Integrator V2.0 Programming Guide.

82 MQSeries Integrator V2.0 Using the Control Center

 The IBM Primitives

The IBM Primitives
Table 2 identifies the message flow nodes supplied with MQSeries Integrator V2.0,
which are known as the IBM Primitives, and directs you to a detailed description of
each.

Table 2. The IBM Primitives

IBM Primitive Function See:

Check node Compares the format of an incoming message with a
predefined message specification.

Page 84.

Compute node Derives an output message from an input message
and, optionally, from data taken from a external
database. A computation can be applied to each
element of the input message before the output
message is constructed.

Page 86.

Database node Combines database operations with message
processing.

Page 90.

DataDelete node Deletes one or more rows from a database table. Page 93.

DataInsert node Inserts one or more rows in a database table. Page 96.

DataUpdate node Updates the contents of one or more rows in a
database table.

Page 99.

Extract node Derives an output message from the fields in an input
message.

Page 102.

Filter node Evaluates an input message against an SQL
expression.

Page 104.

MQInput node Reads MQSeries messages from a specified message
queue.

Page 107.

MQOutput node Writes MQSeries messages to a specified message
queue.

Page 112.

MQReply node Sends a response message to the originator of the
message that caused this message flow to be invoked.

Page 115.

NEONFormatter node Transforms an input message using the NEON
Formatter engine.

Page 117.

NEONRules node Passes an input message to the NEON Rules engine
for evaluation.

Page 119.

Publication node Publishes a message to subscribers. Page 121.

ResetContentDescriptor node Reparses the bit stream of an input message. Page 123.

Throw node Throws an exception within a message flow. Page 126.

Trace node Generates a trace record. Page 128.

TryCatch node Catches any exceptions that are thrown by nodes
further on in the message flow.

Page 130.

Warehouse node Stores message data in a data repository. Page 132.

 Chapter 4. Defining message flows 83

 Check node

 Check node

Table 3 describes the terminals of the check node.

A Check node compares the format of a message arriving on its input
terminal with a message-type specification that you supply when you
configure the Check node. The message-type specification comprises any
combination of the message domain, message set, and message type.
The Check node checks only the message-type specification; it does not
check the message body.

Table 3. Check node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

match The output terminal to which the message is routed if its properties
match the message-type specification.

failure The output terminal to which the message is routed if its properties do
not match the message-type specification. If the failure terminal is not
connected to another message flow node, an exception is thrown.

Check node properties
These properties are displayed when you right click a Check node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Domain
Identifies the parser for the message. Values supported by MQSeries Integrator
are MRM, XML, NEON, and BLOB.

Check Domain
If this field contains a check mark (√), the Domain value is to be considered part
of the message-type specification.

Set
Identifies the message set containing the definition of the message.

Check Set
If this field contains a check mark (√), the Set value is to be considered part of
the message-type specification.

Type
Identifies the message definition within the message set.

Check Type
If this field contains a check mark (√), the Type value is to be considered part of
the message-type specification.

Configuring the check node
For a description of the properties of the Check node and their possible values, see
“Check node properties.”

To configure a Check node:

1. In the Message Flow Definition pane, right click the symbol of the Check node
you want to configure and click Properties.

84 MQSeries Integrator V2.0 Using the Control Center

 Check node

The Check dialog is displayed, as shown in Figure 16 on page 85.

Figure 16. The Check dialog

2. In the Check dialog, type values for those properties that you want to be
considered part of the message-type specification. For each value you enter,
select the relevant check box. For example, if you supply a Domain value,
select the Check Domain check box.

3. If you want to provide a description of this instance of the Check node (which is
recommended if you want other Control Center users to be able to make use of
it), click the Description tab of the Check dialog. Type a short description, or
a long description, or both.

4. Click OK to finish configuring this Check node.

 Chapter 4. Defining message flows 85

 Compute node

 Compute node

Table 4 describes the terminals of the compute node.

The Compute node constructs an output message. The elements of the
output message can be defined using an SQL expression, and can be
based on elements of both the input message and data from an external
database. You can specify an SQL expression for deriving the value of
each element of the output message from the input data. The expression
can make use of arithmetic operators, text operators (for example,
concatenation), logical operators, and other built-in functions.

The output message can inherit all headers associated with the input
message, or a subset of them. Alternatively, one or more new headers
can replace the input headers.

Table 4. Compute node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal that outputs the transformed message.

failure The output terminal to which the original message is routed if a failure is
+ detected during the computation. For example, if an integer is divided by
+ another integer that has a value of zero.

Compute node properties
These properties are displayed when you right click a Compute node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Data Source
If data from an external database is to be used in constructing the transformed
message, Data Source identifies the database.

Transaction
The Transaction value, which is always automatic for a Compute node, specifies
that the decision to commit or roll back the Compute node action depends on the
success or failure of the message flow to which it belongs.

Compute Expression
The SQL expression generated when you configure a Compute node.

Compute Mode
Identifies the components of the message with which you want to work in this
Compute node. Any combination of Message (the default value), Exception List,
and Destination List can be specified. The destination list structure represents
the destinations to which the message will be sent. The exception list structure
represents any exception conditions that have occurred during message
processing.

For more information about the message, exception list, and destination list
structures, see Appendix C, “SQL reference” on page 243.

86 MQSeries Integrator V2.0 Using the Control Center

 Compute node

Configuring the Compute node
For a description of the properties of the Compute node and their possible values,
see “Compute node properties” on page 86.

To configure a compute node:

1. In the Message Flow Definition pane, right click the symbol of the Compute
node you want to configure and click Properties.

The Compute dialog is displayed, as shown in Figure 17.

Figure 17. The Compute dialog

2. In the Compute dialog, click the left-hand Add button (or right-click on the
left-hand pane and select Add) to define the Inputs.

The Add dialog is displayed.

3. In the Add dialog, either:

� Click Message and select the names of a message set and message from
the drop-down lists.

or

� Click Database table and type values in the Data Source and Table Name
fields. These two values identify the database and database table from
which data will be taken.

Click OK.

Depending on which you choose, the message or database tree structure
appears in the Inputs pane of the Compute dialog. A tab is added to the
Inputs pane for each input data source you specify. To delete any of these,
click Delete when the relevant tab is to the fore.

 Chapter 4. Defining message flows 87

 Compute node

4. For any database you have added to the Inputs pane, you must identify the
columns you want to work with within the database table you identified. To do
this:

a. Right click anywhere in the white space around the database tree structure
in the Inputs pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Inputs pane.

Repeat this process for each column you want to work with.

5. Repeat steps 3 and 4 for all input sources (messages or database tables) you
require.

6. In the Compute dialog, click the right-hand Add button (or right-click on the
right-hand pane and select Add) to define the Output Messages.

The Add dialog is displayed, with Message preselected.

Select the names of a message set and message from the drop-down lists.
Click OK.

7. To copy the entire message from the input message to the output message
before you apply the computation, click Copy entire message.

If you want to manipulate header information only, click Copy message
headers only.

8. Drag elements from the Inputs pane to the Output Messages pane to compose
the output message.

As you do this, SQL statements are generated automatically in the Mappings
section of the dialog.

Click on the ESQL tab if you want to edit the generated SQL directly. For
information about valid SQL statements, see Appendix C, “SQL reference” on
page 243.

9. Click on the Advanced tab to select a Compute Mode value from the
drop-down list.

If you want the Compute node to act on the exception list structure or the
destination list structure, you must remember to select the appropriate Compute
Mode. If you fail to do this, only the Message structure (the default value) is
used.

The following values are supported:

 � Message
 � Destination
� Destination and Message

 � Exception
� Exception and Message
� Exception and Destination

 � All

10. If you want to provide a description of this instance of the Compute node
(which is recommended if you want other Control Center users to be able to

88 MQSeries Integrator V2.0 Using the Control Center

 Compute node

make use of it), click the Description tab of the Compute dialog. Type a short
description, or a long description, or both.

11. Click OK to finish configuring the Compute node.

 Chapter 4. Defining message flows 89

 Database node

 Database node

Table 5 describes the terminals of the database node.

The Database node applies an SQL expression to an external database
table. Data from the message input to this node can be used in the SQL
expression.

Table 5. Database node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the database statement.

failure The output terminal to which the original message is routed if a failure is
+ detected during execution of the database statement. For example, if the
+ connection to the database fails, or if the table specified is invalid.

Database node properties
These properties are displayed when you right click a Database node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Data Source
Identifies the external database to which the SQL expression is to be applied.

Statement
Is the SQL statement or expression, generated automatically from the values you
specify when configuring the Database node, that performs the database
operation.

Transaction
The Transaction value specifies whether the action performed by this node is to
be viewed as part of a larger transaction, or managed independently of the work
performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the Database node action depends on
the success or failure of the message flow to which it belongs. This is the
default value.

Commit
The action of the Database node is to be committed, irrespective of the
success or failure of the message flow as a whole.

Treat warnings as errors
Specifies whether warning messages generated during this node’s processing
are to be treated as errors, causing the message to be routed to the failure
terminal.

90 MQSeries Integrator V2.0 Using the Control Center

 Database node

Configuring the Database node
For a description of the properties of the Database node and their possible values,
see “Database node properties” on page 90.

To configure a Database node:

1. In the Message Flow Definition pane, right click the symbol of the Database
node you want to configure and click Properties.

The Database dialog is displayed, as shown in Figure 18.

Figure 18. The Database dialog

2. In the Database dialog, click Add to define the Input Message.

The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message
set and message from the drop-down lists to define the Input Messages value.
Click OK.

The message tree structure appears in the Input Messages pane of the
Database dialog, and a tab is added to the Input Messages pane showing the
name of the message.

Repeat this step if you want to identify additional messages. To delete any of
the messages you have added to the Input Messages pane, click Delete when
the relevant tab is to the fore.

4. Click Add to define the Output Database Table.

The Add dialog is displayed.

5. In the Add dialog, Database table is preselected. Enter Data Source and
Table Name values. Click OK.

The database tree structure appears in the Output Database Table pane of the
dialog.

 Chapter 4. Defining message flows 91

 Database node

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

a. Right click anywhere in the white space around the database tree structure
in the Output Database Table pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

7. Drag elements from the Input Messages pane to the database columns in
Output Database Table pane to compose the output data. As you do this,
SQL statements are generated automatically.

You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate that
the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want warnings to be treated as errors, click the Advanced tab of the
Database dialog, and select the Treat warnings as errors check box.

10. If you want to provide a description of this instance of the Database node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Database dialog. Type a short
description, or a long description, or both.

11. Click OK to finish configuring this Database node.

92 MQSeries Integrator V2.0 Using the Control Center

 DataDelete node

 DataDelete node

Table 6 describes the terminals of the DataDelete node.

A DataDelete node deletes one or more rows from a table in a specified
database. Data from the input message can be used as part of the
expression that determines which rows are deleted.

Table 6. DataDelete node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the data delete statement. The message is identical to the
input message.

failure The output terminal to which the original message is routed if a failure is
+ detected during execution of the data delete statement. For example, if
+ the connection to the database fails, or if the table specified is invalid.

DataDelete node properties
These properties are displayed when you right click a DataDelete node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Table
Identifies the database table from which rows are to be deleted.

Transaction
The Transaction value specifies whether the action performed by this node is to
be viewed as part of a larger transaction, or managed independently of the work
performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the DataDelete node action depends on
the success or failure of the message flow to which it belongs. This is the
default value.

Commit
The action of the DataDelete node is to be committed, irrespective of the
success or failure of the message flow as a whole.

Statement
The SQL statement or expression, generated automatically from the values you
specify when configuring a DataDelete node, that performs the delete operation.

Data Source
It is the name of the database containing the table from which rows will be
deleted.

Treat warnings as errors
Specifies whether warning messages generated during this node’s processing
are to be treated as errors, causing the message to be routed to the failure
terminal.

 Chapter 4. Defining message flows 93

 DataDelete node

Configuring a DataDelete node
For a description of the properties of the DataDelete node and their possible
values, see “DataDelete node properties” on page 93.

To configure a DataDelete node:

1. In the Message Flow Definition pane, right click the DataDelete node you want
to configure and click Properties.

The DataDelete dialog is displayed, as shown in Figure 19.

Figure 19. The DataDelete dialog

2. In the DataDelete dialog, click Add to define the Input Messages.

The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message
set and message from the drop-down lists to define the Input Messages value.
Click OK.

The message tree structure appears in the Input Messages pane of the
DataDelete dialog.

Repeat this step for additional messages. A tab is added to the Input
Messages pane for each message you add. To delete any message from the
Input Messages pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output Database Table.

The Add dialog is displayed.

5. In the Add dialog, Database table is preselected. Enter Data Source and
Table Name values. Click OK

The database tree structure is shown in the Output Database Table pane.

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

94 MQSeries Integrator V2.0 Using the Control Center

 DataDelete node

a. Right click anywhere in the white space around the database tree structure
in the Output Database Table pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

7. Drag elements from the Input Messages pane to the Output Database Table
columns to compose the output. As you do this, SQL mappings are generated
automatically.

You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate that
the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want warnings to be treated as errors, click the Advanced tab of the
DataDelete dialog, and select the Treat warnings as errors check box.

10. If you want to provide a description of this instance of the DataDelete node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the DataDelete dialog. Type a
short description, or a long description, or both.

11. Click OK to finish configuring this DataDelete node.

 Chapter 4. Defining message flows 95

 DataInsert node

 DataInsert node

Table 7 describes the terminals of the DataInsert node.

A DataInsert node inserts a new row into a database table. Data from the
input message can be included in the database insert expression.

Table 7. DataInsert node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the data insert statement.

failure The output terminal to which the message is routed if a failure is
+ detected during execution of the data insert statement. For example, if
+ the connection to the database fails, or if the table specified is invalid.

DataInsert node properties
These properties are displayed when you right click a DataInsert node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Table
Is the database table into which the new row is to be inserted.

Transaction
The Transaction value specifies whether the action performed by this node is to
be viewed as part of a larger transaction, or managed independently of the work
performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the DataInsert node action depends on
the success or failure of the message flow to which it belongs. This is the
default value.

Commit
The action of the DataInsert node is to be committed, irrespective of the
success or failure of the message flow as a whole.

Statement
Is the SQL statement or expression, generated automatically from the values you
specify when configuring the DataInsert node, that performs the insert operation.

Data Source
It is the name of the database containing the table into which rows are to be
inserted.

Treat warnings as errors
Specifies whether warning messages generated during this node’s processing
are to be treated as errors, causing the message to be routed to the failure
terminal.

96 MQSeries Integrator V2.0 Using the Control Center

 DataInsert node

Configuring a DataInsert node
For a description of the properties of the DataInsert node and their possible values,
see “DataInsert node properties” on page 96.

To configure a DataInsert node:

1. In the Message Flow Definition pane, right click the symbol of the DataInsert
node you want to configure and click Properties.

The DataInsert dialog is displayed, as shown in Figure 20.

Figure 20. The DataInsert dialog

2. In the DataInsert dialog, click Add to define the Input Messages.

The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message
set and message from the drop-down lists to define the Input Messages value.
Click OK.

The message tree structure appears in the Input Messages pane of the
DataInsert dialog. A tab showing the name of the message is added to the
Input Messages pane.

Repeat this step for additional messages. To delete a message from the Input
Messages pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output Database Table.

The Add dialog is displayed.

5. In the Add dialog, Database Table is preselected. Enter Data Source and
Table Name values. Click OK.

The database tree structure is added to the Output Database Table pane.

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

 Chapter 4. Defining message flows 97

 DataInsert node

a. Right click anywhere in the white space around the database tree structure
in the Output Database Table pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

7. Drag elements from the Input Messages pane to the Output Database Table
pane to compose the output. As you do this, SQL mappings are generated
automatically.

You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate that
the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want warnings to be treated as errors, click the Advanced tab of the
DataInsert dialog, and select the Treat warnings as errors check box.

10. If you want to provide a description of this instance of the DataInsert node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the DataInsert dialog. Type a
short description, or a long description, or both.

11. Click OK to finish configuring this DataInsert node.

98 MQSeries Integrator V2.0 Using the Control Center

 DataUpdate node

 DataUpdate node

Table 8 describes the terminals of the DataUpdate node.

A DataUpdate node updates one or more rows of data in a specified
database. Data from the input message can be used as part of the
expression that determines which rows are updated.

Table 8. DataUpdate node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the data update statement.

failure The output terminal to which the original message is routed if a failure is
+ detected during execution of the data update statement. For example, if
+ the connection to the database fails, or if the table specified is invalid.

DataUpdate node properties
These properties are displayed when you right click a DataUpdate node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Table
Is the database table in which rows are to be updated.

Transaction
The Transaction value specifies whether the action performed by this node is to
be viewed as part of a larger transaction, or managed independently of the work
performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the DataUpdate node action depends on
the success or failure of the message flow to which it belongs. This is the
default value.

Commit
The action of the DataUpdate node is to be committed, irrespective of the
success or failure of the message flow as a whole.

Statement
The SQL statement or expression, generated automatically from the values you
specify when configuring the DataUpdate node, that performs the update
operation.

Data Source
The name of the database containing the table in which rows are to be updated.

Treat warnings as errors
Specifies whether warning messages generated during this node’s processing
are to be treated as errors, causing the message to be routed to the failure
terminal.

 Chapter 4. Defining message flows 99

 DataUpdate node

Configuring a DataUpdate node
For a description of the properties of the DataUpdate node and their possible
values, see “DataUpdate node properties” on page 99.

To configure a DataUpdate node:

1. In the Message Flow Definition pane, right click the symbol of the DataUpdate
node you want to configure and click Properties.

The DataUpdate dialog is displayed, as shown in Figure 21.

Figure 21. The DataUpdate dialog

2. In the DataUpdate dialog, click Add to define the Input Messages.

The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message
set and message from the drop-down lists to define the Input Messages value.
Click OK.

The message tree structure appears in the Input Messages pane of the
DataUpdate dialog. A tab is added to the Input Messages pane showing the
name of the message.

Repeat this step for additional messages. To delete a message from the Input
Messages pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output Database Table.

The Add dialog is displayed.

5. In the Add dialog, Database table is preselected. Enter Data Source and
Table Name values. Click OK.

The database tree structure appears in the Output Database Table pane. A
tab is added to the Output Database Table pane showing the name of the
database table.

100 MQSeries Integrator V2.0 Using the Control Center

 DataUpdate node

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

a. Right click anywhere in the white space around the database tree structure
in the Output Database Table pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

7. Drag elements from the Input Messages pane to the columns in the Output
Database Table pane to generate the Key Mappings and the Update Mappings.

The Key Mappings specify the WHERE conditions in the generated SQL
statement. The Update Mappings specify the changes to be made to the
selected columns in the database table.

You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate that
the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want warnings to be treated as errors, click the Advanced tab of the
DataUpdate dialog, and select the Treat warnings as errors check box.

10. If you want to provide a description of this instance of the DataUpdate node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the DataUpdate dialog. Type a
short description, or a long description, or both.

11. Click OK to finish configuring this DataUpdate node.

 Chapter 4. Defining message flows 101

 Extract node

 Extract node

Table 9 describes the terminals of the Extract node.

The extract node derives an output message from an input message. The
output message comprises only those elements of the input message that
you specify for inclusion when configuring the Extract node.

Table 9. Extract node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the transformed message is routed.

failure The output terminal to which the message is routed if an element
specified for inclusion in the output message is not present in the input
message. The message consists of only those elements that could be
extracted from the input message.

Extract node properties
These properties are displayed when you right click an Extract node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Element List
Is the list of elements to be extracted.

Compute Expression
The expression to be evaluated. This is generated automatically when you
configure an Extract node.

Configuring an Extract node
For a description of the properties of the Extract node and their possible values,
see “Extract node properties.”

To configure an Extract node:

1. In the Message Flow Definition pane, right click the symbol of the Extract node
you want to configure and click Properties.

The Extract dialog is displayed, as shown in Figure 22 on page 103.

102 MQSeries Integrator V2.0 Using the Control Center

 Extract node

Figure 22. The Extract dialog

2. In the Extract dialog, click Add to define the input message.

The Add dialog is displayed, with Message preselected.

3. In the Add dialog, select a message set and message from the drop-down lists.
Click OK.

The message tree structure appears in the Message pane. A tab showing the
name of the message is added to the Message pane.

Repeat this step for additional messages. To delete a message from the
Message pane, click Delete when the relevant tab is to the fore.

4. Drag elements from the Message pane down to the ESQL pane (the mapping
table) to compose the output message.

For example, if you have a message consisting of the elements Name, Street,
and Town, and you want to extract only the Town value, drag Town into the
ESQL pane to create the output message.

5. If required, select Copy message headers only.

6. If you want to provide a description of this instance of the Extract node (which
is recommended if you want other Control Center users to be able to make use
of it), click the Description tab of the Extract dialog. Type a short description,
or a long description, or both.

7. Click OK to finish configuring the Extract node.

 Chapter 4. Defining message flows 103

 Filter node

 Filter node

Table 10 describes the terminals of the Filter node.

A Filter node routes a message according to message content using a filter
expression specified in SQL. The filter expression can include elements of
the input message or message properties. It can also use data held in an
external database. The output terminal to which the message is routed
depends on whether the expression is evaluated to true, false, or unknown.

Table 10. Filter node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

true The output terminal to which the message is routed if the specified filter
expression evaluates to true.

false The output terminal to which the message is routed if the specified filter
expression evaluates to false.

unknown The output terminal to which the message is routed if the specified filter
+ expression evaluates to unknown. For example, if the field in the
+ message that is being referenced does not exist.

failure The output terminal to which the message is routed if a failure is
+ detected during the filter operation. For example, if an integer is divided
+ by another integer that has a value of zero.

Filter node properties
These properties are displayed when you right click a Filter node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Data Source
Is the name of the database.

Transaction
Specifies whether the action performed by this node is to be viewed as part of a
larger transaction, or managed independently of the work performed by other
nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the Filter node action depends on the
success or failure of the message flow to which it belongs. This is the
default value.

Commit
The action of the Filter node is to be committed, irrespective of the success
or failure of the message flow as a whole.

Filter Expression
SQL WHERE expression, against which the input data is to be evaluated.

104 MQSeries Integrator V2.0 Using the Control Center

 Filter node

Configuring a filter node
For a description of the properties of the Filter node and their possible values, see
“Filter node properties” on page 104.

To configure a Filter node:

1. In the Message Flow Definition pane, right click the symbol of the Filter node
you want to configure and click Properties.

The Filter dialog is displayed, as shown in Figure 23.

Figure 23. The Filter dialog

In the Filter dialog, click Add to define the input message.

The Add dialog is displayed.

2. In the Add dialog, either:

� Click Message and select the names of a message set and message from
the drop-down lists.

or

� Click Database and type the names of the database and database table
from which data will be used.

Click OK.

Depending on which you choose, the message or database tree structure
appears in the Filter dialog. A tab is added to the Inputs pane showing the
name of the message or database table.

To delete a message or database table from the Inputs pane, click Delete
when the relevant tab is to the fore.

3. For any database you have added to the Inputs pane, you must identify the
columns you want to work with within the database table you identified. To do
this:

 Chapter 4. Defining message flows 105

 Filter node

a. Right click anywhere in the white space around the database tree structure
in the Inputs pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Inputs pane.

Repeat this process for each column you want to work with.

4. Drag elements from the Inputs pane to the filter field at the bottom of the dialog
to generate the SQL mappings. You can also edit the SQL field directly. (For
information about valid SQL, see Appendix C, “SQL reference” on page 243.)

5. If you want to provide a description of this instance of the Filter node (which is
recommended if you want other Control Center users to be able to make use of
it), click the Description tab of the Filter dialog. Type a short description, or a
long description, or both.

6. Click OK to finish configuring this Filter node.

106 MQSeries Integrator V2.0 Using the Control Center

 MQInput node

 MQInput node

MQInput routes messages to the out terminal. If this fails, the message is retried.
If the retry out expires (as defined by the BackoutThreshold attribute of the input
queue), the message is routed to the failure terminal. If this is not connected, the
message is written to the backout queue.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the catch terminal.

You have to ensure that you define a backout requeue queue or a dead letter
queue (DLQ) to prevent the message looping continuously through the node.

Table 11 describes the terminals of the MQInput node.

An MQInput node reads messages from an MQSeries message queue
using the MQGET MQI call, and establishes the processing environment
for the message. You must use the supplied MQInput node; it cannot be
replaced with a user-written equivalent.

Table 11. MQInput node terminals

Terminal Description

out The output terminal to which the message is routed.

failure The output terminal to which the message is routed if the backout count
of the message is greater than or equal to the backout count threshold
on the queue. Only failures internal to the MQInput node are routed to
its failure terminal.

catch The output terminal to which the message is propagated if an exception
is thrown downstream and then caught by this node.

MQInput node properties
These properties are displayed when you right click an MQInput node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Queue Name
Is the name of the MQSeries queue from which the MQInput node reads
messages. The queue manager associated with this queue is the broker’s queue
manager.

Message Domain
Is the name of the message domain of the input message. If the message has
an MQRFH2 header, this property is derived from the header.

Message Set
Is the name of the message set of the input message. If the message has an
MQRFH2 header, this property is derived from the header.

Message Type
Is the name of the message type of the input message. If the message has an
MQRFH2 header, this property is derived from the header.

 Chapter 4. Defining message flows 107

 MQInput node

Message Format
Is the name of the message format of the input message. If the message has an
MQRFH2 header, this property is derived from the header.

Topic
Is the topic identifier.

Transaction Mode
Defines whether this instance of a message flow is under transaction control.
Valid values are:

automatic
The message flow is under transaction control only if the incoming message
is marked persistent. This remains true for messages derived from this input
message and output by an MQOutput node, unless the MQOutput node
explicitly overrides the transaction status.

yes
The message flow is under transaction control. This remains true for
messages derived from this input message and output by an MQOutput
node, unless the MQOutput node explicitly overrides the transaction status.

no
The message flow is not under transaction control. This remains true for
messages derived from this input message and output by an MQOutput
node, unless the MQOutput node explicitly overrides the transaction status.

Order Mode
Determines the order in which segmented messages are processed. Valid
values are Yes, No, and byUserId.

Logical Order
Determines whether messages are received in logical order, as defined by
MQSeries. Valid values are:

yes
Messages that are part of a message group are received in the correct order
as assigned by the sending application. This is the default value.

no
Messages sent as part of a group are not received in a predetermined order.
If a broker expects to receive messages in groups when Logical Order is set
to no, either the order of the input messages must not be significant or the
message flow must be designed to process them appropriately.

All Messages Available
Specifies whether all messages in a group need to be available before retrieval
of a message is possible. By default, this value is not selected.

Match Message Id
Specifies whether the MQInput node receives only those messages with a
matching message identifier value, as set in the MsgId field of the MQMD. If the
supplied hexadecimal string is shorter than the MsgId field, it is assumed to be
padded to the right with X'00' characters.

By default, this value is not selected.

Match CorrelId
Specifies whether the MQInput node receives only those messages with a
matching correlation identifier value, as set in the CorrelId field of the MQMD. If

108 MQSeries Integrator V2.0 Using the Control Center

 MQInput node

the supplied hexadecimal string is shorter than the CorrelId field, it is assumed to
be padded to the right with X'00' characters.

By default, this value is not selected.

Convert
Determines whether MQSeries performs data conversion on the message, in
conformance with the CodedCharSetId and Encoding values. If this value is
selected, the values of the properties Convert Encoding and Convert Coded
Character Set ID are used to update the MQMD to cause the required conversion
to take place.

By default this value is not selected.

Convert Encoding
Specifies the representation used for numeric values in the message data,
expressed as an integer value. This property is relevant only when the Convert
value has been selected.

Convert Coded Character Set ID
Specifies the coded character set identifier of character data in the message
data, expressed as an integer value. This property is relevant only when the
Convert value has been selected.

By default, this value is not selected.

Commit By Message Group
Specifies at what point a transaction is committed when processing messages
that are part of a message group. If this value is selected, a commit is
performed only after the final message in the group has been received. Note
that the Logical Order value must also be selected in this case. If this value is
not selected, a commit is performed after each message has been routed
completely through the message flow.

By default, this value is not selected.

Validate
Specifies whether the message parsers should use any validation capabilities
they have.

By default, this value is not selected.

Configuring an MQInput node
For a description of the properties of the MQInput node and their possible values,
see “MQInput node properties” on page 107.

To configure an MQInput node:

1. In the Message Flow Definition pane, right click the MQInput node you want to
configure and click Properties.

The MQInput dialog is displayed, as shown in Figure 24 on page 110.

 Chapter 4. Defining message flows 109

 MQInput node

Figure 24. The MQInput dialog

2. In the MQInput dialog, click the Basic tab. Type a value in the Queue Name
field.

3. In the MQInput dialog, click the Default tab.

If you wish, type values in the fields:

 � Message Domain
 � Message Set
 � Message Type
 � Message Format
 � Topic

If the incoming message does not contain an MQRFH or MQRFH2 header,
these values constitute a default message template and enable MQSeries
Integrator to parse the message.

4. In the MQInput dialog, click the Advanced tab.

Supply values for the following fields to suit your processing requirements:

 � Transaction Mode
 � Order Mode
 � Logical Order
� All Messages Available
� Match Message Id

 � Match CorrelId
 � Convert
 � Convert Encoding
� Convert Coded Character Set ID
� Commit by Message Group

 � Validate

5. If you want to provide a description of this instance of the MQInput node (which
is recommended if you want other Control Center users to be able to make use

110 MQSeries Integrator V2.0 Using the Control Center

 MQInput node

of it), click the Description tab of the MQInput dialog. Type a short
description, or a long description, or both.

6. Click OK to finish configuring this MQInput node.

 Chapter 4. Defining message flows 111

 MQOutput node

 MQOutput node

Table 12 describes the terminals of the MQOutput node.

MQOutput writes messages to an MQSeries message queue, or to the
destinations identified in the destination list associated with the message,
using the MQPUT MQI call. You identify the message destination when
configuring an MQOutput node.

Table 12. MQOutput node terminals

Terminal Description

in The terminal that accepts a message for processing by the node.

failure The output terminal to which the message is routed if an error occurs
during MQPUT processing.

MQOutput node properties
These properties are displayed when you right click an MQOutput node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Queue Manager Name
Is the name of the MQSeries queue manager to which the output queue is
defined.

Queue Name
Is the name of the MQSeries queue to which the message is written if
Destination Mode is fixed.

Destination Mode
Identifies the queue to which the message will be sent. Valid values are:

fixed
The message is sent to the queue named in the Queue Name property.
This is the default value.

reply
The message is sent to the queue named in the replyToQueue field in the
MQMD.

list
The message is sent to the queues named in the destination list.

Transaction Mode
Specifies whether the message will be put as part of a transaction.

Valid values are:

automatic
The message transactionality is as it was specified at the MQInput node.

yes
The message is put transactionally.

no
The message is not put transactionally.

112 MQSeries Integrator V2.0 Using the Control Center

 MQOutput node

Persistence Mode
Specifies whether the message will be put persistently.

Valid values are:

automatic
The persistence is as specified in the incoming message. This is the default
value.

yes
The message is put persistently.

no
The message is not put persistently.

asQdef
The message persistence is as defined for the MQSeries queue to which the
message is written.

New MessageID
Specifies whether MQSeries generates a new message identifier to replace the
contents of the MsgId field in the MQMD.

By default, this value is not selected.

New Correl ID
Specifies whether MQSeries generates a new correlation identifier to replace the
contents of the CorrelId field in the MQMD.

By default, this value is not selected.

Segmentation Allowed
Specifies whether MQSeries can, if appropriate, break the message into
segments.

By default, this value is not selected.

Message Context
Valid values are:

 � passAll
 � passIdentity
 � setAll
 � setIdentity
 � default
 � none

Its default value is passAll.

Alternate User Authority

By default, this value is not selected.

Configuring an MQOutput node
For a description of the properties of the MQOutput node and their possible values,
see “MQOutput node properties” on page 112.

To configure an MQOutput node:

1. In the Message Flow Definition pane, right click the MQOutput node you want
to configure and click Properties.

The MQOutput dialog is displayed, as shown in Figure 25 on page 114.

 Chapter 4. Defining message flows 113

 MQOutput node

Figure 25. The MQOutput dialog

2. In the MQOutput dialog, click the Basic tab. Type a value in the Queue
Manager Name field and in the Queue Name field. These values are required
if Destination Mode is fixed.

3. In the MQOutput dialog, click the Advanced tab.

Supply values for the following fields to suit your processing requirements:

 � Destination Mode
 � Transaction Mode
 � Persistence Mode
 � New MessageID
� New Correl ID

 � Segmentation Allowed
 � Message Context
� Alternate User Authority

4. If you want to provide a description of this instance of the MQOutput node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the MQOutput dialog. Type a
short description, or a long description, or both.

5. Click OK to finish configuring this MQOutput node.

114 MQSeries Integrator V2.0 Using the Control Center

 MQReply node

 MQReply node

Table 13 describes the terminals of the MQReply node.

MQReply is a special version of the MQOutput node. It sends a response
message to the originator of the message that invoked the current
message flow. Messages received at the input terminal of this node are
written to the MQSeries queue identified in the ReplyToQ field of the
message header.

Table 13. MQReply node terminals

Terminal Description

in The terminal that accepts a message for processing by the node.

failure The output terminal to which the message is routed if a failure is
+ detected. For example, if the MQPUT operation to the reply-to queue
+ fails.

MQReply node properties
These properties are displayed when you right click an MQReply node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Segmentation Allowed
Specifies whether MQSeries can, if appropriate, break the message into
segments.

By default, this value is not selected.

Persistence Mode
Specifies whether the message will be put persistently.

Valid values are:

automatic
Persistence is as specified in the incoming message. This is the default
value.

yes
The message is put persistently.

no
The message is not put persistently.

asQdef
The message persistence is as defined for the MQSeries queue to which the
message is put.

Transaction Mode
Specifies whether the message will be put as part of a transaction.

Valid values are:

automatic
The message transactionality is as it was specified at the MQInput node.
This is the default value.

 Chapter 4. Defining message flows 115

 MQReply node

yes
The message is put transactionally.

no
The message is not put transactionally.

Configuring an MQReply node
For a description of the properties of the MQReply node and their possible values,
see “MQReply node properties” on page 115.

To configure an MQReply node:

1. In the Message Flow Definition pane, right click the MQReply node you want to
configure and click Properties.

The MQReply dialog is displayed, as shown in Figure 26.

Figure 26. The MQReply dialog

2. In the MQReply dialog, supply values for the following fields to suit your
processing requirements:

 � Segmentation Allowed
 � Persistence Mode
 � Transaction Mode

3. If you want to provide a description of this instance of the MQReply node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the MQReply dialog. Type a short
description, or a long description, or both.

4. Click OK to finish configuring this MQReply node.

116 MQSeries Integrator V2.0 Using the Control Center

 NEONFormatter node

 NEONFormatter node

Table 14 describes the terminals of the NEONFormatter node.

A NEONFormatter node is used transform a message from a known
input format to a specified output format. The message definition
and transformations are defined using the NEON Formatter graphical
utility, not the MQSeries Integrator Control Center. Only messages
successfully parsed by a preceding NEONRules node can be
processed by the NEONFormatter node.

Table 14. NEONFormatter node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the transformed message is routed.

failure The output terminal to which the untransformed message is routed if a
failure is detected during the reformatting.

NEONFormatter node properties
These properties are displayed when you right click a NEONFormatter node entry
in the Message Flow Types pane, and click Properties. The values displayed are
the default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Target Format
Is the format to which the information being passed through the node will be
transformed.

The remaining properties of the NEONFormatter node define the message
properties used to parse the message after it has been transformed. They have no
effect on the reformatting performed by this node.

Output Domain
Is the message domain.

Output Set
Is the message set.

Output Type
Is the message type.

Output Wire Format
Is the output wire format.

Configuring a NEONFormatter node
For a description of the properties of the NEONFormatter node and their possible
values, see “NEONFormatter node properties.”

To configure a NEONFormatter node:

1. In the Message Flow Definition pane, right click the NEONFormatter node you
want to configure and click Properties.

The NEONFormatter dialog is displayed, as shown in Figure 27 on page 118.

 Chapter 4. Defining message flows 117

 NEONFormatter node

Figure 27. The NEONFormatter dialog

2. In the NEONFormatter dialog, supply values for the following fields to suit your
processing requirements:

� Target Format (a required value)
 � Output Domain
 � Output Set
 � Output Type
� Output Wire Format

3. If you want to provide a description of this instance of the NEONFormatter
node (which is recommended if you want other Control Center users to be able
to make use of it), click the Description tab of the NEONFormatter dialog.
Type a short description, or a long description, or both.

4. Click OK to finish configuring this NEONFormatter node.

118 MQSeries Integrator V2.0 Using the Control Center

 NEONRules node

 NEONRules node

Table 15 describes the terminals of the NEONRules node.

A NEON Rules node provides an encapsulation of the NEON Rules engine
for the MQSeries Integrator V2.0 environment. Any message received at
the in terminal is passed to the NEON Rules engine for evaluation. The
firing of the Propagate action causes an output message to be routed to
the propagate terminal of the NEON Rules node. The firing of the
PutQueue action causes a message to have the queue name attached to
its destination list and then be routed to the PutQueue terminal.

Table 15. NEONRules node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

propagate The output terminal to which the message is routed when the propagate
action is executed in the rules engine.

failure The output terminal to which the message is routed if a failure is
detected during the extraction.

putqueue The output terminal to which the message is routed if the queue name
given under the putqueue action is added to the message’s distribution
list.

noHit The output terminal to which the input message is routed if no rule is
triggered.

NEONRules node properties
The NEONRules node has no properties.

Configuring a NEONRules node
The NEONRules node has no configurable properties. However, you can provide a
description of this instance of the node, as follows:

1. In the Message Flow Definition pane, right click the NEONRules node for which
you want to provide a description and click Properties.

The NEONRules dialog is displayed, as shown in Figure 28 on page 120.

 Chapter 4. Defining message flows 119

 NEONRules node

Figure 28. The NEONRules dialog

2. In the NEONRules dialog, click the Description tab. Type a short description,
or a long description, or both.

3. Click OK to finish configuring this NEONRules node.

The database connection details for this node are obtained from the file named on
the environment variable MQSI_PARAMETERS_FILE. For more information, see
Appendix D, “NEON Rules and Formatter” on page 307.

120 MQSeries Integrator V2.0 Using the Control Center

 Publication node

 Publication node

Table 16 describes the terminals of the Publication node.

The Publication node filters and transmits the output from a message flow
to subscribers who have registered an interest in a particular set of topics.

The Publication node must always be an output node of a message flow
and has no output terminals of its own.

Table 16. Publication node terminals

Terminal Description

in The terminal that accepts a message for processing by the node.

Publication node properties
These properties are displayed when you right click a Publication node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Implicit Stream Naming
If this value is selected, the name of the MQSeries queue on which the message
is received is also the stream name. This feature is provided for compatibility
with MQSeries base publish/subscribe function, and applies to messages with an
MQRFH header when MQPSStream is not specified.

By default, this value is not selected.

Subscription Point
The subscription point value for the node. If the property is not specified, the
default subscription point is assumed.

Configuring the Publication node
For a description of the properties of the Publication node and their possible values,
see “Publication node properties.”

To configure a Publication node:

1. In the Message Flow Definition pane, right click the Publication node you want
to configure and click Properties.

The Publication dialog is displayed, as shown in Figure 29 on page 122.

 Chapter 4. Defining message flows 121

 Publication node

Figure 29. The Publication dialog

2. In the Publication dialog, supply values for the following fields to suit your
processing requirements:

� Implicit Stream Naming
 � Subscription Point

3. If you want to provide a description of this instance of the Publication node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Publication dialog. Type a
short description, or a long description, or both.

4. Click OK to finish configuring this Publication node.

See the MQSeries Integrator Programming Guide for information about
publish/subscribe implementation.

122 MQSeries Integrator V2.0 Using the Control Center

 ResetContentDescriptor node

 ResetContentDescriptor node

Table 17 describes the terminals of the ResetContentDescriptor node.

The ResetContentDescriptor node takes the bit stream of
the input message and reparses it, using a different
message format, potentially from a different message
dictionary. The node can reset any combination of
message domain, set, type, and format.

Table 17. ResetContentDescriptor node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the message is routed when it is
successfully reparsed by the specified parser.

failure The output terminal to which the message is routed if it is not
successfully reparsed.

ResetContentDescriptor node properties
These properties are displayed when you right click a ResetContentDescriptor node
entry in the Message Flow Types pane, and click Properties. The values
displayed are the default properties for this instance of the node. They cannot be
edited when displayed from the Message Flow Types pane.

Message Domain
Is the new message domain.

Reset Message Domain
If this value is selected, the message domain is reset.

By default, this value is not selected.

Message Set
Is the new message set.

Reset Message Set
If this value is selected, the message set is reset.

By default, this value is not selected.

Message Type
Is the new message type.

Reset Message Type
If this value is selected, the message type is reset.

By default, this value is not selected.

Message Format
Is the new message format.

Reset Message Format
If this value is selected, the message format is reset.

By default, this value is not selected.

These properties set the domain, set, type, and format in the message header of
the message passing through the ResetContentDescriptor node. However, this will

 Chapter 4. Defining message flows 123

 ResetContentDescriptor node

only happen if suitable headers already exist. If the message does not have an
MQRFH or MQRFH2 header, the node does not create one.

When you exit the ResetContentDescriptor node properties, the Standard
Properties are set to reflect the new values specified by this node. The parse tree
available to all the nodes placed further along the message flow is also made
consistent with these values.

Configuring the ResetContentDescriptor node
For a description of the properties of the ResetContentDescriptor node and their
possible values, see “ResetContentDescriptor node properties” on page 123.

To configure a ResetContentDescriptor node:

1. In the Message Flow Definition pane, right click the ResetContentDescriptor
node you want to configure and click Properties.

The ResetContentDescriptor dialog is displayed, as shown in Figure 30.

Figure 30. The ResetContentDescriptor dialog

2. In the ResetContentDescriptor dialog, supply values for the following fields to
suit your processing requirements:

 � Message Domain
� Reset Message Domain

 � Message Set
� Reset Message Set

 � Message Type
� Reset Message Type

 � Message Format
� Reset Message Format

3. If you want to provide a description of this instance of the
ResetContentDescriptor node (which is recommended if you want other Control

124 MQSeries Integrator V2.0 Using the Control Center

 ResetContentDescriptor node

Center users to be able to make use of it), click the Description tab of the
ResetContentDescriptor dialog. Type a short description, or a long
description, or both.

4. Click OK to finish configuring this ResetContentDescriptor node.

 Chapter 4. Defining message flows 125

 Throw node

 Throw node

Table 18 describes the terminals of the Throw node.

A Throw node provides a mechanism for throwing an exception within a
message flow. This can be used, for example, to force an error path
through the message flow if the content of a message contains unexpected
data. The exception may be caught by a predecessor TryCatch node
within the message flow or may cause the processing to be ended and the
transaction (if the message is being processed transactionally) to be rolled
back.

Table 18. Throw node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

Throw node properties
These properties are displayed when you right click a Throw node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Message Catalog
The name of the message catalog in which the error text that explains the error
number of the exception is to be found.

Message Number
The error number of the exception being thrown. The numbers 3000-3019 are
reserved in the MQSeries Integrator catalog for this use but in principle any
number can be used.

Message Text
Text giving the cause of the error. This can be different from that associated with
the message number in the message catalog.

Configuring a Throw node
For a description of the properties of the Throw node and their possible values, see
“Throw node properties.”

To configure a Throw node:

1. In the Message Flow Definition pane, right click the Throw node you want to
configure and click Properties.

The Throw dialog is displayed, as shown in Figure 31 on page 127.

126 MQSeries Integrator V2.0 Using the Control Center

 Throw node

Figure 31. The Throw dialog

2. In the Throw dialog, supply values for the following fields to suit your
processing requirements. The values you specify define the contents of the
exception thrown by the Throw node.

 � Message Catalog
 � Message Number
 � Message Text

3. If you want to provide a description of this instance of the Throw node (which is
recommended if you want other Control Center users to be able to make use of
it), click the Description tab of the Throw dialog. Type a short description, or
a long description, or both.

4. Click OK to finish configuring this Throw node.

 Chapter 4. Defining message flows 127

 Trace node

 Trace node

Table 19 describes the terminals of the Trace node.

The Trace node supports debugging of a message flow by generating a
trace record.

The trace record created by the trace node can incorporate text, message
content, and date and time information. The message content is included
in the trace record by using a pattern substitution of the form
${SQL-expression}.

Table 19. Trace node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed, even if a
failure occurs while the message is in the trace node.

Trace node properties
These properties are displayed when you right click a Trace node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Destination
Specifies the destination of the trace record.

Valid values are:

none
No trace record is produced.

userTrace
The trace record is written to the userTrace log. This is the default value.

file
The trace record is written to the file specified in the File Path property.

File Path
Is the fully qualified name of the file to which trace records are to be written.

Pattern
Defines the format of the trace record to be produced. The pattern that you enter
is passed to the trace destination, and any expression of the form ${...} is
resolved by evaluating the SQL expression between the braces. Any SQL
expression that is valid on the right-hand side of a compute statement can be
used.

Configuring the Trace node
For a description of the properties of the Trace node and their possible values, see
“Trace node properties.”

To configure a Trace node:

1. In the Message Flow Definition pane, right click the Trace node you want to
configure and click Properties.

128 MQSeries Integrator V2.0 Using the Control Center

 Trace node

The Trace dialog is displayed, as shown in Figure 32 on page 129.

Figure 32. The Trace dialog

2. In the Trace dialog, supply values for the following fields to suit your
processing requirements:

 � Destination
 � File Path
 � Pattern

3. If you want to provide a description of this instance of the Trace node (which is
recommended if you want other Control Center users to be able to make use of
it), click the Description tab of the Trace dialog. Type a short description, or a
long description, or both.

4. Click OK to finish configuring this Trace node.

 Chapter 4. Defining message flows 129

 TryCatch node

 TryCatch node

Table 20 describes the terminals of the TryCatch node.

A TryCatch node provides a special handler for exception processing. The
input message is initially routed on the try terminal of this node. If an
exception is subsequently thrown by a downstream node, it is caught by
this node, which then routes the original message to its catch terminal. If
the catch terminal is unconnected, the message is lost.

Table 20. TryCatch node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

try The output terminal to which the original message is routed.

catch The output terminal to which the message is routed if an exception is
thrown downstream and then caught by the node (that is, it was not
caught by another TryCatch node further downstream).

TryCatch node properties
The TryCatch node has no properties.

Configuring the TryCatch node
The TryCatch node has no configurable properties. However, you can provide a
description of this instance of the node, as follows:

1. In the Message Flow Definition pane, right click the TryCatch node for which
you want to provide a description and click Properties.

The TryCatch dialog is displayed, as shown in Figure 33.

Figure 33. The TryCatch dialog

130 MQSeries Integrator V2.0 Using the Control Center

 TryCatch node

2. In the TryCatch dialog, click the Description tab. Type a short description, or
a long description, or both.

3. Click OK to finish configuring this TryCatch node.

 Chapter 4. Defining message flows 131

 Warehouse node

 Warehouse node

Table 21 describes the terminals of the Warehouse node.

You can use a message warehouse:

� To maintain an audit trail of messages

� For offline or batch processing of messages (a process sometimes referred to
as data mining)

� To enable subsequent reprocessing of selected messages

Once stored in the message warehouse, messages can be retrieved using standard
database query and data mining techniques. No explicit support for these functions
is supplied by MQSeries Integrator.

You can choose to store in the message warehouse:

� The entire message
� Selected parts of the message

A Warehouse node stores messages in a message repository or
warehouse. The message is added to the warehouse using an SQL
INSERT statement.

Table 21. Warehouse node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed when
processing completes successfully.

failure The output terminal to which the message is routed if a failure is
+ detected during processing. For example, if the connection to the
+ database fails, or the table specified is invalid.

Storing the entire message
When you store the entire message in a message warehouse, it is stored as a
binary object. You can choose to store a timestamp for the message, though this
is optional. Any timestamp is stored in a separate column from the message itself.

The advantages of storing the entire message are:

� You do not have to have decided how you will use the data before you store it.

� You do not have to have defined a database schema for every type of
message that could pass through the broker.

However, you could consider preceding each Warehouse node with a Compute
node that would convert each message to a common schema before the
Warehouse node stores it.

132 MQSeries Integrator V2.0 Using the Control Center

 Warehouse node

Storing parts of the message
If you store selected parts of a message, with a timestamp if required, you must
define a database schema for that message type. The message is mapped to true
type: for example, a character string in a message is stored as a character string.

Warehouse node properties
These properties are displayed when you right click a Warehouse node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Transaction
The Transaction value specifies whether the action performed by this node is to
be viewed as part of a larger transaction, or managed independently of the work
performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the Warehouse node action depends on
the success or failure of the message flow to which it belongs. This is the
default value.

Commit
The action of the Warehouse node is to be committed, irrespective of the
success or failure of the message flow as a whole.

Field Mapping
Is a list of assignment statements mapping message content into database fields.

Data Source
Is the name of the database to be used as the warehouse.

Treat warnings as errors
Specifies whether warning messages generated during this node’s processing
are to be treated as errors, causing the message to be routed the failure
terminal.

Configuring the Warehouse node to store the entire message
1. In the Message Flow Definition pane, right click the symbol of the Warehouse

node you want to configure and click Properties.

The Warehouse dialog is displayed, as shown in Figure 34 on page 134.

 Chapter 4. Defining message flows 133

 Warehouse node

Figure 34. The Warehouse dialog

2. In the Warehouse dialog, click Add to define the input message.

The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message
set and message from the drop-down lists. Click OK.

The message tree structure appears in the Input pane. A tab is added to the
Input pane showing the name of the message.

Repeat this step for additional messages. To remove a message from the
Input pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output.

The Add dialog is displayed. Database table is preselected.

5. In the Add dialog, enter Data Source and Table Name values. Click OK.

The database tree structure is shown in the Output pane. You can name only
one database in this pane. To delete table and database names, click Delete.

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

a. Right click anywhere in the white space around the database tree structure
in the Output pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Output pane.

Repeat this process for each column you want to work with. (You need entries
for only those columns you will be using, even if additional columns exist in the
database.)

134 MQSeries Integrator V2.0 Using the Control Center

 Warehouse node

7. Select the Store Message check box, and select the column in which you want
to store the index record and attached binary object.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want to store a timestamp, select the Store Timestamp check box and
select the column in which you want to store it.

10. If you want warnings to be treated as errors, click the Advanced tab of the
Warehouse dialog, and select the Treat warnings as errors check box.

11. If you want to provide a description of this instance of the Warehouse node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Warehouse dialog. Type a
short description, or a long description, or both.

12. Click OK to finish configuring this Warehouse node.

Configuring the Warehouse node to store parts of a message
1. In the Message Flow Definition pane, right click the symbol of the Warehouse

node you want to configure and click Properties.

The Warehouse dialog is displayed, as shown in Figure 34 on page 134.

2. In the Warehouse dialog, click Add to define the input message.

The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message
set and message template from the drop-down lists. Click OK.

The message tree structure appears in the Input pane. A tab is added to the
Input pane showing the name of the message.

Repeat this step for additional messages. To remove a message from the
Input pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output.

The Add dialog is displayed. Database table is preselected.

5. In the Add dialog, enter Data Source and Table Name values. Click OK.

The database tree structure is shown in the Output pane. You can name only
one database in this pane. To delete table and database names, click Delete.

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

a. Right click anywhere in the white space around the database tree structure
in the Output pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

 c. Click OK.

The column is added to the database tree structure in the Output pane.

Repeat this process for each column you want to work with. (You need entries
for only those columns you will be using, even if additional columns exist in the
database.)

7. Drag components of the input data from the Input pane to the target database
column in the Output pane. This process is known as mapping, and represents

 Chapter 4. Defining message flows 135

 Warehouse node

the SQL mappings that will be used in the processing of data through the node.
The mappings are shown in the Input Message ESQL and Output Message
ESQL pane. To delete mappings, right click on the expression to delete and
click Delete. To delete all the expressions in the pane, click Delete All.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want to store a timestamp, select the Store Timestamp check box and
select the column in which you want to store it.

10. If you want warnings to be treated as errors, click the Advanced tab of the
Warehouse dialog, and select the Treat warnings as errors check box.

11. If you want to provide a description of this instance of the Warehouse node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Warehouse dialog. Type a
short description, or a long description, or both.

12. Click OK to finish configuring this Warehouse node.

136 MQSeries Integrator V2.0 Using the Control Center

 Using the IBM-supplied message flows

Using the IBM-supplied message flows
Some message flows are supplied with MQSeries Integrator V2.0. These are of
two types:

1. The default message flows, which are:

� A Neon message flow.

This message flow provides function equivalent to an MQSeries Integrator
Version 1.1 daemon. It is described in detail in “Version 1 Migration
Compatibility message flow.”

� A publish/subscribe message flow.

This message flow provides a simple publish/subscribe service. It is
described in detail in “The default publish/subscribe message flow” on
page 139

2. The verification message flows, which are:

� The ScribbleInversion message flow.

This message flow is required by the Scribble application, described in the
MQSeries Integrator Installation Guide.

� The Soccer message flow.

This message flow is required by the Soccer Results Service, described in
the MQSeries Integrator Installation Guide.

� The Postcard message flow.

This message flow is required by the Postcard application, described in the
MQSeries Integrator Installation Guide.

The definitions of these message flows, and of the message set required by the
Postcard Installation Verification Program (IVP), are provided in the import file
SampleWorkspaceForImport. The MQSeries Integrator Installation Guide describes
the IVP message flows and message set in detail, and explains how to import the
supplied file and save the definitions for future use.

The following sections provide more information about the default message flows,
and guidelines for using them.

Version 1 Migration Compatibility message flow
This message flow can be deployed to any broker in your broker domain to provide
equivalence to an MQSeries Integrator Version 1.1 daemon. It incorporates the
NEONRules and NEONFormatter nodes to process messages according to the
Neon rules engine. An input node, to read messages from an input queue, and a
set of output nodes, that provide failure, no-hit, and process action functions, are
connected to the NEONRules node.

This message flow consists of five nodes:

1. The Get Next Message node (type MQInput) gets messages from a specified
input queue and passes them to the NEONRules node.

Before deploying this node you must configure it as follows:

 Chapter 4. Defining message flows 137

 Using the IBM-supplied message flows

� Identify the input queue you want this message flow to use as the source of
its messages. You specify the queue name in the Queue Name field of
the MQInput dialog.

� The default MQSeries Integrator Version 1 Application Group and Message
Format attributes must be specified as the Message Set and Message
Type properties respectively. If all messages to be processed by the
message flow contain an MQRFH header specifying the Application Group
and Message Format, however, the appropriate fields in the MQInput
dialog must be set to null. (For information about configuring an MQInput
node, see “MQInput node” on page 107.)

2. The Evaluate Rules node (NEONRules node) evaluates the message against
the rules specified in the NEONRules engine.

� If the outcome of the evaluation is the NoHit condition, the message is
routed to the Write to NoHit queue node.

� If a failure is detected, the original message is routed to the Write to failure
queue node.

� When a Reformat action is triggered, this node invokes the NEONFormatter
node to reformat the message.

� If a putQueue action is triggered by the rules evaluation node, the message
is routed to the Process putQueue action node.

You do not have to configure this node before you deploy this message flow,
but you must not make any changes to the Destination Mode property, which
must always be set to list.

3. The Write to NoHit queue node (type MQOutput) puts the message to the
output (NoHit) queue.

Before you deploy this message flow, you must set the desired target queue
and queue manager in the Queue Name and Queue Manager Name
properties in the basic properties folder. (For information about configuring an
MQOutput node, see “MQOutput node” on page 112.)

4. The Write to failure queue node (type MQOutput) puts the message to the
output (failure) queue.

Before you deploy this message flow, you must set the desired target queue
and queue manager in the Queue Name and Queue Manager Name
properties in the basic properties folder. (For information about configuring an
MQOutput node, see “MQOutput node” on page 112.)

5. The Process putQueue action node (type MQOutput) puts the message to the
output queue for further processing. The output queue is specified by the
Destination List attached to the message by the EvaluateRules node.

Before you deploy this message flow, you must set the desired target queue
and queue manager in the Queue Name and Queue Manager Name
properties in the basic properties folder. (For information about configuring an
MQOutput node, see “MQOutput node” on page 112.)

138 MQSeries Integrator V2.0 Using the Control Center

 Using the IBM-supplied message flows

The default publish/subscribe message flow
This message flow provides a simple a publish/subscribe service. It emulates
exactly the basic publish/subscribe function supported by the Publish/Subscribe
SDK, and is appropriate for all publish/subscribe services in which no additional
processing of the message content is required.

This message flow consists of two nodes:

1. The Get Next Message node (type MQInput) gets the next available message
from the input queue and passes it to the Publication node for matching against
the table of subscription requests. The input queue is initially defined to be
SYSTEM.BROKER.DEFAULT.STREAM, but you can change this according to
your requirements.

Failures in this node are not handled explicitly: the failing message is put to a
backout queue or dead letter queue. You can change this behavior by
connecting other nodes to the failure terminal of this node, if you want to.

2. The RouteToMatchingSubscribers node (type Publication) matches the inbound
publication against its internal subscription table (created and maintained in
response to client subscription requests).

For each matching subscription, the message is delivered to the subscriber by
putting it to the queue on the queue manager specified in the subscription.

Importing and saving the supplied message flows
You can access the supplied message flows (the default flows and those for the
IVPs) by importing the import file provided with MQSeries Integrator. The file is
called SampleWorkspaceforImport, and is installed in the \examples subdirectory of
the MQSeries Integrator home directory.

1. Start the Control Center and click the Message Flows tab. The title bar
currently shows that you have an empty workspace, by displaying Untitled.

2. Click File —> Import.

3. Find the MQSeries Integrator \examples subdirectory (in the MQSeries
Integrator home directory). Select the sample workspace import file
SampleWorkspaceForImport and click Open.

This file contains XML definitions of the supplied message flows and message
set. It can take a few minutes to import. When it has finished, it presents a
message dialog indicating that the resources have been imported successfully.
Click OK to dismiss the dialog.

4. The import function has created two new folders of message flows,
Verification message flows and IBM Default message flows. If you expand the
tree for the verification message flows, you can see three new message flows,
one for each of the verification programs. They are ScribbleInversion, Soccer,
and Postcard.

5. Click the Message Sets tab. Check that the import has created a new
message set called Postcard_MessageSet.

6. You must now save the changes that you have made. Click File —> Local
—> Save to Shared. This causes two things to happen:

 Chapter 4. Defining message flows 139

 Using the IBM-supplied message flows

a. The contents of the configuration repository are updated with the new
definitions and assignments, and all resources are checked in to the
repository.

b. The new workspace is saved locally. Because this is a new workspace,
you are asked for a name for this workspace. Enter a name, for example
SampleWorkspace, and click Save. This name now appears in the title
bar.

Copying the default message flows
If you want to deploy either of the default message flows, you are recommended to
make a copy of it. This preserves the default message flow in your configuration
repository for future reuse.

To make a copy of a default message flow:

1. Click the Message Flows tab.

2. Select the message flow you want to use from the folder IBM Default Message
Flows, and check it out of the repository (right-click and click Check out).

3. Make a copy of the default message flow, and give it a unique name.

4. Check the supplied flow back in to the repository.

5. Make the changes you need to tailor your new copy of the supplied message
flow. These are described in “Version 1 Migration Compatibility message flow”
on page 137 and “The default publish/subscribe message flow” on page 139.

6. Save your new message flow in the configuration repository using either Check
in or the File —> Local —> Save to Shared action.

140 MQSeries Integrator V2.0 Using the Control Center

 Defining the broker topology � The Topology view

Chapter 5. Defining the broker topology

This chapter describes the following tasks:

� “Creating a broker” on page 144
� “Creating a collective” on page 146
� “Adding an existing broker to a collective” on page 148
� “Creating a broker to add to a collective” on page 150
� “Removing a broker from a collective” on page 151
� “Connecting brokers” on page 152
� “Deleting the connection between brokers” on page 153
� “Deleting a broker” on page 154
� “Renaming a broker” on page 155
� “Checking in the Topology” on page 156

Authorization to work with Topology
To perform any of the tasks described in this chapter, you must:

� Have the correct Control Center user role, which can be one of:

– Operational domain controller

 – All roles

For information about setting your user role, see “Setting user roles” on
page 11.

� Be a member of the MQSeries Integrator group mqbrops

The Topology view
To display the Topology view, click the Topology tab in the Control Center.
Figure 35 on page 142 shows an example of the Topology view.

 Copyright IBM Corp. 2000 141

 The Topology view

Figure 35. The Topology view. The left-hand pane, the Domain Hierarchy pane, shows a tree view of the topology of
this broker domain. The right-hand pane, the Topology pane, contains an arrangement of graphical symbols that
represent the current topology.

Controlling the appearance of the Topology pane
As you populate the broker domain, graphical symbols representing collectives and
brokers are added to the Topology pane. You can control the appearance and
arrangement of these symbols by right-clicking in the Topology pane to display the
Topology list, and selecting from the following actions:

Layout graph Arranges the brokers and collectives in the Topology
pane from left to right, right to left, top to bottom, or
bottom to top.

Zoom Alters the size of all broker and collective symbols in
the Topology pane.

Manhattan style Shows connections between brokers as lines at right
angles.

Snap to grid Aligns the symbols in the Topology pane on an invisible
grid.

142 MQSeries Integrator V2.0 Using the Control Center

 Checking out the Topology

Checking out the Topology
The remainder of this chapter describes tasks that alter the topology of the broker
domain. You cannot perform any of these tasks unless you have exclusive access
to the Topology document, which you obtain by checking the Topology out of the
configuration repository.

To check out the Topology:

1. In the Domain Hierarchy pane of the Topology view, right click the root of the
PubSubTopology tree.5

2. Click Check Out.

The Key icon appears to the right of the root of the PubSubTopology tree to
confirm that the Topology document is checked out. You can now update the
Topology. Other users with access to this broker domain via another instance of
the Control Center cannot make changes to the Topology while it remains checked
out to you.

5 Alternatively, you can right click anywhere on the background of the Topology pane, or you can highlight the root of the
PubSubTopology tree and click on the Topology menu in the taskbar.

 Chapter 5. Defining the broker topology 143

 Creating a broker

Creating a broker
To create a broker in the configuration repository:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
PubSubTopology tree. (Alternatively, you can right click anywhere on the
background of the Topology pane, or you can highlight the root of the
PubSubTopology tree and click the Topology menu in the Control Center
taskbar.)

3. Click Create —> Broker.

The Create a new Broker dialog, shown in Figure 36, is displayed.

Figure 36. Create a new Broker dialog

4. In the Name field, type the name of your broker.

This must be exactly the name specified when the broker was created (that is,
the broker name specified on the mqsicreatebroker command). This value is
required.

5. In the Queue Manager field, type the name of the broker’s queue manager.

This must be exactly the name specified for the broker’s queue manager when
the broker was created (that is, the queue-manager name specified on the
mqsicreatebroker command). This value is required.

6. For documentation purposes, you can provide either a short description, or a
long description, or both, of your broker, though a description is not required.

144 MQSeries Integrator V2.0 Using the Control Center

 Creating a broker

If you want to provide a description, click the Description tab in the Create a
new Broker dialog, and type some text.

7. Click Finish in the Create a new Broker dialog to complete creation of this
broker.

Confirmation that your new broker has been created appears in two places in the
Topology view:

� An entry representing the broker appears under the root of the
PubSubTopology tree in the Domain Hierarchy pane. The New icon next to the
broker entry indicates that this new definition has not yet been checked into the
shared configuration.

� A graphical symbol of the broker appears in the Topology pane.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

 Chapter 5. Defining the broker topology 145

 Creating a collective

Creating a collective
To create a collective in the configuration repository:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
PubSubTopology tree. (Alternatively, you can right click anywhere on the
background of the Topology pane, or you can highlight the root of the
PubSubTopology tree and click the Topology menu in the Control Center
taskbar.)

3. Click Create —> Collective.

The Create a new Collective dialog, shown in Figure 37, is displayed.

Figure 37. Create a new Collective dialog

4. In the Name field, type the name of your collective. This must follow the
naming rules described in “Naming Control Center resources” on page 15.

5. Click Finish in the Create a new Collective dialog to complete creation of this
collective.

Confirmation that your new collective has been created appears in two places in
the Topology view:

� A folder representing the collective appears under the root of the
PubSubTopology tree in the Domain Hierarchy pane. The New icon next to the
collective entry indicates that this new definition has not yet been checked into
the shared configuration.

146 MQSeries Integrator V2.0 Using the Control Center

 Creating a collective

� A graphical symbol representing the empty collective appears in the Topology
pane.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

Note that collectives are checked in as part of the Topology check in, not as
separate resources, as they exist only in the Topology document.

 Chapter 5. Defining the broker topology 147

 Adding an existing broker to a collective

Adding an existing broker to a collective
There are several ways of adding an existing broker to a collective using the
Control Center. This section describes one of these methods in detail, then
mentions others briefly.

As you add brokers to the collective, the collective symbol in the Topology pane
can appear crowded. To increase the size of the collective symbol, drag the
double-headed arrow at the bottom-right corner of the symbol downward.

To add an existing broker to a collective:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. Right click the collective folder in the Topology tree.

3. Click Add —> Broker.

The Add an existing Broker dialog, shown in Figure 38, is displayed.

Figure 38. Add an existing Broker dialog. This dialog lists all brokers that you have created
or added to your workspace from the shared configuration.

� To select a single broker from this list, click the broker name.

� To select multiple brokers that appear sequentially in the list, click on the
first broker you want, press and hold the Shift key, then click on the last
broker you want. This action selects the two brokers you highlighted, plus
any that appear between these two in the list.

� To select multiple brokers that do not appear in a sequence in the list, hold
down Ctrl and click each broker you want.

148 MQSeries Integrator V2.0 Using the Control Center

 Adding an existing broker to a collective

4. When you have selected the brokers you want to add to the collective from this
list, click Finish.

Confirmation that the selected brokers have been added to the collective appears in
two places in the Topology view:

� In the Domain Hierarchy pane, the brokers are now shown under the collective
folder.

� In the Topology pane, the broker symbols now appear inside the collective
symbol.

Alternatively, you can invoke the Add an existing Broker dialog from the
Topology menu in the Control Center taskbar.6

You can also add an existing broker to a collective simply by:

� Dragging the broker symbol in the Topology pane into the symbol of the
collective

or
� Dragging the broker entry in the Domain Hierarchy pane into the symbol of the

collective in the Topology pane.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

6 When the Topology pane has the focus, the Topology menu appears in the Control Center taskbar. When the Domain Hierarchy
pane has the focus, the Domain Hierarchy menu appears in the Control Center taskbar. The menu items of the Topology and
Domain Hierarchy menus are identical.

 Chapter 5. Defining the broker topology 149

 Creating a broker to add to a collective

Creating a broker to add to a collective
To create a broker to add to a collective:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. In the Domain Hierarchy pane, right click on the collective folder in the
Topology tree.

3. Click Create —> Broker.

The Create a new Broker dialog, shown in Figure 36 on page 144, is
displayed.7

4. In the Name field, type the name of your broker.

This must be exactly the name specified when the broker was created (that is,
the broker name specified on the mqsicreatebroker command). This value is
required.

5. In the Queue Manager field, type the name of the broker’s queue manager.

This must be exactly the name specified for the broker’s queue manager when
the broker was created (that is, the queue-manager name specified on the
mqsicreatebroker command). This value is required.

6. For documentation purposes, you can provide either a short description, or a
long description, or both, of your broker, though a description is not required.

If you want to provide a description, click the Description tab in the Create a
new Broker dialog, and type some text.

7. Click Finish in the Create a new Broker dialog to complete creation of this
broker.

Confirmation that your new broker has been created appears in two places in the
Topology view:

� An entry representing the broker appears under the appropriate collective folder
in the Domain Hierarchy pane. The New icon next to the broker entry indicates
that this new definition has not yet been checked into the shared configuration.

� A graphical symbol of the broker appears inside the symbol of the appropriate
collective in the Topology pane.

The broker has been both created and added to the collective.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

7 You can also select the Create —> Broker action by highlighting the collective symbol in the Topology pane, then clicking the
Topology menu in the Control Center taskbar.

150 MQSeries Integrator V2.0 Using the Control Center

 Removing a broker from a collective

Removing a broker from a collective
To remove a broker from a collective:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. In the Topology pane, right click the symbol of the broker inside the collective
symbol.

 3. Click Remove.

Confirmation that the broker has been removed from the collective appears in two
places in the Topology view:

� In the Domain Hierarchy pane, the broker is no longer shown under the
collective folder.

� In the Topology pane, the broker symbol now appears outside the collective
symbol.

Alternatively, you can simply drag the broker symbol out of the symbol of the
collective in the Topology pane. You can also right click the broker entry under the
relevant collective in the Domain Hierarchy pane, and click Remove.

If the removed broker was connected to a broker outside the collective, you need
also to remove the connection. For more information, see “Deleting the connection
between brokers” on page 153.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

 Chapter 5. Defining the broker topology 151

 Connecting brokers

 Connecting brokers
To connect one broker to another:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. In the Topology pane, right click the symbol of one of the two brokers you want
to connect.

3. Click Connect —> port.

The cursor becomes a cross-hair attached by a red line to the broker you
selected initially.

4. Move the cross-hair to the symbol of the broker you want to connect to, and
click.

The brokers are now connected. In the Topology pane, a line connects the
symbols of the two brokers.

Note that:

� You cannot connect a single broker outside a collective to more than one of the
brokers in a single collective.

� You can connect a single broker outside a collective to multiple collectives (that
is, to one broker per collective).

� You can connect a broker in one collective to a broker in another collective.

� You can connect two brokers outside a collective.

� A connection is created only if a cycle of connections would not result. If the
addition of a connection would cause a cycle, an error message is issued.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

152 MQSeries Integrator V2.0 Using the Control Center

 Deleting the connection between brokers

Deleting the connection between brokers
To delete the connection between two brokers:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. In the Topology pane, right click on the line between the two brokers you want
to disconnect.

 3. Click Delete.

The line between the two brokers disappears. The brokers are now disconnected.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

 Chapter 5. Defining the broker topology 153

 Deleting a broker

Deleting a broker
This procedure describes how to delete a broker reference from the configuration
database. This procedure does not delete the broker from your system; it simply
marks the broker as logically deleted from the configuration repository. For a full
description of the process required to delete a broker from your system, see
“Deleting a broker from the system” on page 176.

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. Ensure that the broker you want to delete is checked in. If it is not (that is, if
the Key icon is displayed next to its entry in the Domain Hierarchy pane), right
click the broker entry and click Check in. All execution groups assigned to the
broker must also be checked in before you can delete the broker.

3. In the Topology pane, right click the broker you want to delete.

 4. Click Delete.

5. A confirmation message is displayed. If you want to proceed with the deletion,
click Yes.

Confirmation that the broker has been deleted appears in two places in the
Topology view:

� The broker entry no longer appears in the Domain Hierarchy pane.
� The broker symbol no longer appears in the Topology pane.

If the broker was connected to another, the connection is also deleted.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 156.

154 MQSeries Integrator V2.0 Using the Control Center

 Renaming a broker

Renaming a broker
You might need to rename a broker if your original attempt at creating a broker
reference contained an error: renaming the broker is simpler than deleting and
recreating it.

To rename a broker:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 143.

2. Ensure that the broker you want to rename is checked out. If it is not (that is, if
neither the Key icon nor the New icon is displayed next to its entry in the
Domain Hierarchy pane), right click the broker entry in the Topology tree and
click Check Out.

3. In the Topology pane, right click the broker you want to rename.

 4. Click Rename.

The Rename Broker dialog is displayed.

5. In the New name field, type the new name of the broker. This must be exactly
the name specified on the mqsicreatebroker command. Click Finish.

Confirmation that the broker has been renamed appears in two places in the
Topology view:

� The broker entry in the Domain Hierarchy pane shows the new name.
� The broker symbol in the Topology pane shows the new name.

If you need also to specify a different queue manager name for the renamed
broker:

1. In the Topology pane, right click the broker you want to rename.

 2. Click Properties.

3. In the broker’s properties panel, type the new queue manager name, and
correct the description if necessary. The name you specify must be exactly the
name specified for this broker’s queue manager on the mqsicreatebroker
command. Click Finish.

If you have no further topology changes to make:

1. Check in the broker:

a. In the Topology pane, right click the broker you want to check in.

b. Click Check In.

The Key icon against the broker entry in the Topology tree disappears.

2. Check in the Topology as described in “Checking in the Topology” on
page 156.

 Chapter 5. Defining the broker topology 155

 Checking in the Topology

Checking in the Topology
When you have finished making changes to the Topology, you must check it in.
Until you check in the Topology, no one else is able to make changes to the
topology of this broker domain, nor can you deploy the changes you have made.

You can check in Topology changes only, or all changes.

Checking in Topology changes
To check in the Topology:

1. Right click the root of the PubSubTopology tree.

2. Click Check in to store the Topology document in the Configuration Manager
database.

To confirm that the Topology has been checked in:

� The Key icon disappears from the root of the PubSubTopology tree in the
Domain Hierarchy pane.

� The New icon against any new brokers and collectives in the Topology tree
disappears, indicating that they have also been checked into the shared
configuration. Newly created resources are checked in automatically to ensure
that the configuration remains consistent.

Note that any brokers with the Key icon against them must be checked in
separately; they are not checked in as part of the general Topology check in.

Checking in all changes
As an alternative to checking in only the Topology, you can check in all changes, of
all types, as follows:

1. In the Control Center taskbar, click the File menu.

2. In the File menu, click Local —> Save to Shared.

This approach is particularly efficient when you have many different types of
resource checked out, because it ensures that nothing remains checked out by
mistake.

If you want to check which resources are currently checked out before you use this
option:

1. In the Control Center taskbar, click the File menu.

2. In the File menu, click Check In List.

The Check In List dialog is displayed. Resources that are currently checked
out have the Key icon against their entries in the dialog. Resources that have
never been checked in have the New icon against their entries in the dialog.

3. To check in a resource, click on its entry in the Check In List dialog, then click
Check In.

156 MQSeries Integrator V2.0 Using the Control Center

 Making changes operational

Making changes operational
In checking in resources that are new or that you have altered, you make them
visible in the shared configuration. However, the changes you have made have no
operational effect until you deploy them in the broker domain. For information
about deploying resources, see Chapter 7, “Deploying configuration data” on
page 173.

 Chapter 5. Defining the broker topology 157

 Making changes operational

158 MQSeries Integrator V2.0 Using the Control Center

 Assigning resources to a broker � The Assignments view

Chapter 6. Assigning resources to a broker

This chapter describes the following tasks:

� “Creating an execution group” on page 161
� “Assigning message flows to execution groups” on page 162
� “Assigning message sets to brokers” on page 165
� “Removing resources from a broker” on page 167
� “Checking in the Assignments” on page 169

Authorization to assign resources to a broker
To perform any of the tasks described in this chapter, you must:

� Have the correct Control Center user role, which can be one of:

– Message flow and message set assigner

 – All roles

For information about setting your use role, see “Setting user roles” on
page 11.

� Be a member of the MQSeries Integrator group mqbrasgn

The Assignments view
To display the Assignments view, click the Assignments tab in the Control
Center. Figure 39 on page 160 shows an example of the Assignments view.

 Copyright IBM Corp. 2000 159

 The Assignments view

Figure 39. The Assignments view. The left-hand pane, the Domain Hierarchy pane, shows the current hierarchy of
brokers, execution groups, message flows, and message sets in your workspace. The center pane, the Deployable
Message Types pane, shows the message sets and message flows in your workspace. The right-hand pane, the
Domain Topology pane, shows in a graphical form the current assignment of execution groups to brokers; of message
flows to execution groups; and of message sets to brokers in your workspace.

160 MQSeries Integrator V2.0 Using the Control Center

 Creating an execution group

Creating an execution group
When you create a broker, it has a default execution group. If you want additional
execution groups, you must create them explicitly.

To create an execution group:

1. Ensure that the broker to which you want to assign the new execution group is
checked out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. In the Domain Hierarchy pane, right click the entry for the broker.

3. Click Create —> Execution Group.

The Create a new Execution Group dialog is displayed.

4. In the Name field, type the name of the execution group. This must follow the
naming rules described in “Naming Control Center resources” on page 15.
Click Finish.

The new execution group appears:

� Inside the broker symbol in the Domain Topology pane, alongside the symbols
for other execution groups assigned to this broker

� Beneath the broker folder in the Domain Hierarchy pane, with a New icon
against it

 Chapter 6. Assigning resources to a broker 161

 Assigning message flows to execution groups

Assigning message flows to execution groups
To assign a message flow to an execution group:

1. Ensure that the execution group to which you want to assign the message flow
is checked out of the shared configuration.

If the execution group entry in the Domain Hierarchy pane of the Assignments
view has neither the Key icon nor the New icon against it, right click the
execution group entry, and click Check out.

2. Drag the message flow symbol from the Deployable Message Types pane into
the symbol of the execution group in the Domain Topology pane. The
Deployable Message Types pane lists all message flows in your workspace.

An alternative approach, and one that is useful when you have a large number of
message flows to assign to a single execution group, is as follows:

1. In the Domain Hierarchy pane, right click the entry for the checked-out
execution group to which you want to assign a message flow.

2. Click Add —> Message Flow.

The Add an existing Message Flow dialog is displayed, showing all message
flows in this workspace. Figure 40 shows an example of the Add an existing
Message Flow dialog.

Figure 40. The Add an existing Message Flow dialog. This dialog lists all message flows in
your workspace.

� To select a single message flow from this list, click the message flow
name.

162 MQSeries Integrator V2.0 Using the Control Center

 Assigning message flows to execution groups

� To select multiple message flows that appear sequentially in the list, click
the first message flow you want, press and hold the Shift key, then click the
last message flow you want. This action selects the two message flows
you highlighted, plus any that appear between these two in the list.

� To select multiple message flows that do not appear in a sequence in the
list, hold down Ctrl and click each message flow you want.

Note that you cannot add a single message flow more than once to any
execution group.

3. When you have selected the message flows you want to assign to the
execution group from this list, click Finish.

The message flows you selected appear:

� Inside the execution group symbol in the Domain Topology pane.
� Beneath the execution group entry in the Domain Hierarchy pane.

Setting the properties of an assigned message flow
You can change some of the properties of a message flow after you have assigned
it to an execution group. To change the properties of a message flow, right click
the entry for the message flow under the appropriate execution group in the
Domain Hierarchy pane, and click Properties. The properties whose values you
can change are:

Additional Instances
Specifies the number of threads that the broker should start in order to read
messages from the input queue named on the MQInput node of the message
flow and process them concurrently. You can have up to 256 threads.

Having additional threads can increase the throughput of a message flow.
However, you should consider the impact on message order and set the Order
Mode property on the MQInput node (Advanced tab) accordingly. You must also
ensure that the input queue has been defined with the SHARE attribute to enable
multiple threads to read the same queue.

Its default value is 0.

Commit Count
Specifies how many input messages are processed by a message flow before a
syncpoint is taken (by issuing an MQCMIT).

This attribute should be used only if the Additional Instances property is set to 0.

The default value of 1 is also the minimum permitted value. Change this attribute
if you want to avoid frequent MQCMIT calls when messages are being processed
quickly and the lack of an immediate commit can be tolerated by the receiving
application.

Use the Commit Interval to ensure that a commit is performed periodically when
not enough messages are received to fulfill the Commit Count.

Commit Interval
Specifies a time interval at which a commit is taken when the Commit Count
property is greater than 1 (that is, where the message flow is batching
messages) but the number of messages processed has not reached the value of
the Commit Count property. It ensures that a commit is performed periodically
when not enough messages are received to fulfill the Commit Count.

 Chapter 6. Assigning resources to a broker 163

 Assigning message flows to execution groups

The time interval is specified in seconds and must be in the range 0 through 60.

This attribute should be used only if the Additional Instances property is set to 0.

Its default value is 0.

Coordinated transaction
Controls whether the message flow is processed as a global transaction,
coordinated by MQSeries. Such a message flow is said to be fully
globally-coordinated.

Use coordinated transactions only where you need the message and any
database updates performed by the message flow to be processed in a single
unit-of-work, using a two-phase commit protocol. This means that the message
is read and the database updates performed together, or not at all.

See the MQSeries System Administration book and the MQSeries Integrator
Administration Guide for information about which databases are supported as
participants in a global transaction and how to configure MQSeries and any
database managers involved.

Its default value is no.

164 MQSeries Integrator V2.0 Using the Control Center

 Assigning message sets to brokers

Assigning message sets to brokers
To assign a message set to a broker:

1. Ensure that the broker to which you want to assign the message set is checked
out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. Drag the message set symbol from the Deployable Message Types pane into
the symbol of the broker (but not into any execution group contained in the
broker) in the Domain Topology pane. The Deployable Message Types pane
lists all message sets in your workspace.

An alternative approach, and one that is useful when you have a large number of
message sets to assign to a single broker, is as follows:

1. In the Domain Hierarchy pane, right click the entry for the checked-out broker
to which you want to assign a message set.

2. Click Add —> Message Set.

The Add an existing Message Set dialog is displayed, showing all message
sets in this workspace. Figure 41 shows an example of the Add an existing
Message Set dialog.

Figure 41. The Add an existing Message Set dialog. This dialog lists all message sets in
your workspace.

� To select a single message set from this list, click the message set name.

 Chapter 6. Assigning resources to a broker 165

 Assigning message sets to brokers

� To select multiple message sets that appear sequentially in the list, click
the first message set you want, press and hold the Shift key, then click the
last message set you want. This action selects the two message sets you
highlighted, plus any that appear between these two in the list.

� To select multiple message sets that do not appear in a sequence in the
list, hold down Ctrl and click each message set you want.

Note that you cannot assign a single message set more than once to any
broker.

3. When you have selected the message sets you want to assign to the broker
from this list, click Finish.

The message sets you selected appear:

� Inside the broker symbol in the Domain Topology pane.
� Beneath the broker symbol in the Domain Hierarchy pane.

166 MQSeries Integrator V2.0 Using the Control Center

 Removing resources from a broker

Removing resources from a broker
You can remove execution groups, message flows, and message sets from the
broker to which they have been assigned.

Removing an execution group from a broker
To remove an execution group from a broker:

1. Ensure that the broker from which you want to remove the execution group is
checked out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. Ensure that the execution group you want to remove is not checked out.

If the execution group entry in the Domain Hierarchy pane of the Assignments
view has the Key icon against it, right click the execution group entry and click
Check in.

3. Right click the execution group entry under the broker in the Domain Hierarchy
pane, or right click the execution group symbol in the Domain Topology pane,
and click Delete.

The execution group and any message flow assignments it contains are deleted:

� From the broker symbol in the Domain Topology pane
� From the relevant broker entry in the Domain Hierarchy pane

Note that the message flows themselves are not deleted or removed from your
workspace, and remain in the Deployable Message Types pane to be assigned to
other execution groups.

Removing a message set from a broker
To remove a message set from a broker:

1. Ensure that the broker from which you want to remove the message set is
checked out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. Right click the message set symbol in the Domain Topology pane, or right click
its entry in the Domain Hierarchy pane, and click Remove.

The message set assignment disappears from:

� The broker symbol in the Domain Topology pane
� The broker entry in the Domain Hierarchy pane

The message set is not deleted or removed from your workspace, and is still
available in the Deployable Message Types pane to be assigned to other brokers.

 Chapter 6. Assigning resources to a broker 167

 Removing resources from a broker

Removing a message flow from an execution group
To remove a message flow from an execution group:

1. Ensure that the execution group from which you want to remove the message
flow is checked out of the shared configuration.

If the execution group entry in the Domain Hierarchy pane of the Assignments
view has neither the Key icon nor the New icon against it, right click the
execution group entry, and click Check out.

2. Right click the message flow symbol inside the execution group symbol in the
Domain Topology pane, or right click the message flow entry in the Domain
Hierarchy pane, and click Remove.

The message flow assignment disappears from:

� The execution group symbol in the Domain Topology pane
� The execution group entry in the Domain Hierarchy pane

The message flow is not deleted or removed from your workspace, and is still
available in the Deployable Message Types pane to be assigned to other execution
groups.

168 MQSeries Integrator V2.0 Using the Control Center

 Checking in the Assignments

Checking in the Assignments
When you have finished assigning resources to a broker, you must check in any
brokers and execution groups that are checked out. Until you check in brokers and
execution groups, no one else is able to make changes to them, nor can you
deploy the assignments you have made.

When a newly created broker or execution group is checked in, all related
resources are also checked in automatically. For example, when you check in a
new broker, its default execution group and the Topology document are also
checked in, to ensure consistency of configuration data. MQSeries Integrator does
this to prevent you from accidentally stranding important information in a way that
cannot easily be corrected. After a new resource has been checked in for the first
time, you can check individual resources out, modify them, and check them in
individually.

You can check in brokers and execution groups only, or all changes.

Checking in assignments
To check in a broker:

1. Right click the broker entry in the Domain Hierarchy pane.

2. Click Check in to store the broker in the shared configuration.

To confirm that the broker assignments have been checked in, the Key icon
disappears from the broker entry in the Domain Hierarchy pane.

To check in an execution group:

1. Right click the execution group entry in the Domain Hierarchy pane.

2. Click Check in to store the execution group in the shared configuration.

To confirm that the execution group has been checked in, the Key icon disappears
from the execution group in the Domain Hierarchy pane.

Checking in all changes
As an alternative to checking in only the Assignments data, you can check in all
changes, of all types, as follows:

1. In the Control Center taskbar, click the File menu.

2. In the File menu, click Local —> Save to Shared.

This approach is particularly efficient when you have many different types of
resource checked out, because it ensures that nothing remains checked out by
mistake.

Note: If you are checking in many related new resources, it is much more efficient
to use the File —> Local —> Save to Shared option than to check in one
resource and rely on MQSeries Integrator to check in related resources.

If you want to check which resources are currently checked out before you use this
option:

1. In the Control Center taskbar, click the File menu.

 Chapter 6. Assigning resources to a broker 169

 Checking in the Assignments

2. In the File menu, click Check In List.

The Check In List dialog is displayed. Resources that are currently checked
out have the Key icon against their entries in the dialog. Resources that have
never been checked in have the New icon against their entries in the dialog.

3. To check in a resource, click its entry in the Check In List dialog, then click
Check In.

170 MQSeries Integrator V2.0 Using the Control Center

 Making changes operational

Making changes operational
In checking in resources that are new or that you have altered, you make them
visible in the shared configuration. However, the changes you have made have no
operational effect until you deploy them in the broker domain. For information
about deploying resources, see Chapter 7, “Deploying configuration data” on
page 173.

 Chapter 6. Assigning resources to a broker 171

 Making changes operational

172 MQSeries Integrator V2.0 Using the Control Center

 Deploying configuration data � Three types of deployment

Chapter 7. Deploying configuration data

The following types of configuration data need to be deployed before they can take
effect in the broker domain:

Assignments data Execution groups to brokers; message flows to execution
groups; and message sets to brokers.

Topics data Topics and associated Access Control Lists (ACLs) for the
broker domain

Topology data Broker and collective data for the broker domain

When you request deployment of any type of configuration data, the Configuration
Manager copies the relevant configuration data from the shared configuration and
transmits it to the relevant brokers. When the deployment is successful, the
brokers are able to act in accordance with the newly deployed data.

This chapter begins with a discussion of the deployment function, then provides
instructions for deploying the various types of configuration data.

Three types of deployment
You can deploy assignments data, topics data, topology data, or all three types of
data at once. For each of these types of configuration data, you can request:

� A complete deployment
� A delta deployment

In addition, you can request a forced deployment. This type of deployment is valid
only when all configuration data of all types is being deployed.

 Complete deployment
A complete deployment:

1. Deletes all configuration data of that type that is currently deployed on the
target brokers

2. Creates new configuration data from the shared configuration

For example, if you request a complete deployment of topics data, the
Configuration Manager deploys instructions to all brokers to delete all currently
deployed topics data and create a new set of topics data from those in the shared
configuration.

 Delta deployment
When you request a delta deployment, the Configuration Manager compares the
configuration data of that type that is currently deployed on the target brokers with
the shared configuration, and deploys only the differences between the two
versions. Therefore, the delta deployment is better for performance, especially
when you have a large amount of configuration data in the shared configuration.

 Copyright IBM Corp. 2000 173

 Stages of deployment

 Forced deployment
The forced deployment, which overrides any outstanding deployment request, is
used typically to correct error situations. Therefore, to maintain consistency of the
configuration data throughout the broker domain, a forced deployment is allowed
only when deploying all types of configuration data. A forced deployment is always
a complete deployment.

A summary of deployment actions
Table 22 summarizes the available deployment actions, showing:

� The type of deployment supported for each type of configuration data
� The Control Center view from which the deployment can be requested
� The brokers to which the deployment can be targeted

Table 22. Deployment summary

Data deployed Complete Delta Forced From Control Center
view

Target brokers

Assignments Yes Yes No Assignments Single broker or all
brokers

Topics Yes Yes No Topics All brokers

Topology Yes Yes No Topology All brokers

All types Yes Yes Yes Topology All brokers

Note: The Topics, Topology, and All types deployments must apply to all brokers to maintain consistent
configuration data throughout the broker domain.

The stages of the deployment process
Deployment of configuration data takes place in two stages.

Stage one of deployment
During stage one of deployment, which is synchronous, the Configuration Manager
sends a configuration data stream to the SYSTEM.BROKER.ADMIN.QUEUE of
each target broker. When the configuration data has been sent to all relevant
brokers, control is returned to you.

If the first stage is successful, message BIP1520I is displayed identifying the
brokers to which the data was deployed.

However, if an error is detected during the first stage of deployment, the
deployment is abandoned: no configuration data is sent to any broker, and an
appropriate error message is displayed in a Control Center dialog box.

Stage two of deployment
During stage two of the deployment process, which is asynchronous, the target
brokers process the received configuration data and return a response on the
Configuration Manager’s SYSTEM.BROKER.ADMIN.REPLY queue. The
Configuration Manager then updates its record of the deployed configuration.

174 MQSeries Integrator V2.0 Using the Control Center

 Which data is deployed? � Finding out whether deployment worked

Deployment of data to a target broker might be only partially successful. This is
because the unit of deployment on a broker is the execution group: the deployment
of one execution group to a broker might succeed, but the deployment of another to
the same broker might fail. A unit of deployment is transactional, however, so
either all changes are made to a given execution group or no change is made.

For deployment purposes, topics and topology data are considered to belong to a
separate unit of deployment, so either all changes are made to both topics and
topology, or no change is made.

Which data is deployed?
When a deployment of any type of configuration data takes place, the data of that
type that has been checked into the shared configuration by all Control Center
users in the broker domain is that which is deployed to the configuration repository.
Data that has not been checked in is not deployed. Note also that descriptive text
that you can supply when defining Control Center resources is not deployed.

If some data has not been checked in
If the fact that some data has not been checked in leaves the shared configuration
in an inconsistent state, the deployment is likely to fail. If the Configuration
Manager detects an inconsistency, you receive a message indicating that some
Control Center resources are not checked in.

To help avoid this situation occurring, you can request a list of all resources in your
workspace that have not been checked in (using the File —> Check In List action)
before you deploy. You can also check in all checked-out configuration data in
your workspace using the File —> Local —> Save to Shared action. Of course, if
multiple users are creating shared configuration data, that activity must cease while
a deployment takes place, and all users must check in any checked-out resources
before the deployment is requested.

Finding out whether deployment has worked
You can find out whether stage two of a deployment has succeeded by clicking the
green refresh button on the Log view of the Control Center. Note that it might take
a while for the response to arrive. The refreshed Log view displays a group of
messages for each broker to which configuration data has been deployed. Typical
messages are:

Message Meaning
BIP2056 Indicates that a deployment was completely successful for the

broker.
BIP2087 Indicates that a deployment was completely unsuccessful for the

broker.
BIP2086 Indicates that a deployment was partially successful for the broker.

If a deployment fails completely or partially succeeds, and message BIP4046 also
appears in the Log view, Topics or Topology data was not processed. In this case,
the broker in question is out of step with the rest of the broker domain, and so you
must correct the problem that caused the failure and deploy again to restore
consistency of data throughout the broker domain.

 Chapter 7. Deploying configuration data 175

 Deleting a broker from the system

Refresh the Operations view of the Control Center to display the status of each
broker after the deployment.

If deployment times out
It is possible for the deployment of an execution group to time out while it is being
processed by the target broker. This effectively leaves the status of the execution
group in doubt. This status is shown in the Operations view by the appearance of
a yellow question mark over the traffic light status icon. A message in the Log
view confirms the problem. The in-doubt status of the execution group can be
resolved only by a subsequent deployment of all assignments data. (Note that a
subsequent delta deployment is automatically converted to a complete deployment
if any execution group is in the in-doubt state).

If the broker is not running
If a broker is not running when a deployment takes place, or an MQSeries queue
manager on the route to the broker is not running, the deployment message is not
processed immediately. Note, however, that the deployment message does not
expire, so will be processed eventually. You cannot perform a complete or delta
deployment to a broker when a deployment of any type is outstanding to that
broker: an attempt to do so returns an error message in a Control Center dialog
box. Stage two of the deploy must complete before a further deploy is allowed,
unless a forced deployment is requested.

Deleting a broker from the system
When you delete a broker using the Control Center, the broker symbol is no longer
visible in the Assignments view or the Topology view. If the broker has never
been deployed to, the broker and any execution groups assigned to it are deleted
immediately from the configuration repository. If the broker has been deployed to,
however, its definition remains in the shared configuration until configuration data
deployed to it has been removed.

The default process for removing configuration data that has been deployed to a
deleted broker is as follows:

� When configuration data of any type is next deployed after the broker is
deleted, the Configuration Manager sends a configuration data stream
requesting deletion of all data of the type relevant to that deployment request to
the deleted broker. For example, if you request a delta deployment of topics
data after having deleted a broker using the Control Center, the Configuration
Manager constructs a configuration data stream to delete all topics data
deployed to the deleted broker.

� Only when all configuration data of all types has been successfully deleted in
this way, which might take several deployment requests, is the deleted broker
finally removed from both the shared and the deployed configurations.

You can, of course, force early completion of this stage by requesting a delta
deployment of all types of data.

When the broker has been removed from both the shared and the deployed
configurations, it ceases to be visible in the Control Center Operations view.

176 MQSeries Integrator V2.0 Using the Control Center

 Authorization to deploy configuration data

You can issue the mqsideletebroker command to remove the broker physically
from the host system either before or after deleting it via the Control Center and
deploying configuration data. However, you are recommended to issue
mqsideletebroker after deleting the broker from the Control Center.

Authorization to deploy configuration data
To perform any of the tasks described in the remainder of this chapter, you must:

� Have the correct Control Center user role, as follows:

– To deploy assignments only, you must have the user role Message flow
and message set assigner, Operational domain controller, or All roles.

– To deploy topics only, you must have the user role Topic security
administrator, Operational domain controller, or All roles.

– To deploy topology only, you must have the user role Operational domain
controller or All roles.

– To deploy all types of data, you must have the user role Operational
domain controller or All roles.

For information about setting your user role, see “Setting user roles” on
page 11.

� Be a member of the appropriate MQSeries Integrator group, as follows:

– To deploy assignments data, you must be a member of group mqbrops.

– To deploy topics data, you must be a member of group mqbrops or group
mqbrtpic.

– To deploy topology data, you must be a member of group mqbrops.

 Chapter 7. Deploying configuration data 177

 Deploying delta assignments

Deploying delta assignments
1. Ensure that the assignments data you want to deploy has been checked into

the shared configuration, as described in “Checking in the Assignments” on
page 169.

2. Select the brokers to which you want to deploy the assignments data.

If you are deploying to all brokers in the broker domain:

� In the Domain Hierarchy pane of the Assignments view, right click the root
of the Broker tree.

If you are deploying to a single broker:

� In the Domain Hierarchy pane of the Assignments view, right click the
entry of the broker to which you want to deploy assignments data.

Alternatively, you can right click the broker symbol in the Domain Topology
pane.

3. Click Deploy —> Delta Assignments Configuration.

Note that you can also invoke the Deploy —> Delta Assignments
Configuration action from the menu on the Control Center taskbar.

The Configuration Manager compares assignments data for the target brokers in
the shared configuration with the currently deployed assignments data for the same
brokers, and deploys only the differences between the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

178 MQSeries Integrator V2.0 Using the Control Center

 Deploying complete assignments

Deploying complete assignments
1. Ensure that the assignments data you want to deploy has been checked into

the shared configuration, as described in “Checking in the Assignments” on
page 169.

2. Select the brokers to which you want to deploy assignments data.

If you are deploying to all brokers in the broker domain:

� In the Domain Hierarchy pane of the Assignments view, right click the root
of the Broker tree.

If you are deploying to a single broker:

� In the Domain Hierarchy pane of the Assignments view, right click the
entry of the broker to which you want to deploy assignments data.

Alternatively, you can right click the broker symbol in the Domain Topology
pane.

3. Click Deploy —> Complete Assignments Configuration.

Note that you can also invoke the Deploy —> Complete Assignments
Configuration action from the menu on the Control Center taskbar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed assignments data, followed by instructions to create a new set of
assignments data, based on the shared configuration, and deploys it to the target
brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

 Chapter 7. Deploying configuration data 179

 Deploying delta topics

Deploying delta topics
1. Ensure that the topics data you want to deploy has been checked into the

shared configuration, as described in “Checking in topics data” on page 192.

2. In the Topics pane of the Topics view, right click TopicRoot.

3. Click Deploy —> Delta Topics Configuration.

Note that you can also invoke the Deploy —> Delta Topics Configuration action
from the Topics menu on the Control Center taskbar.

The Configuration Manager compares topics data for all brokers in the shared
configuration with the currently deployed topics data for all brokers, and deploys
only the differences between the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

180 MQSeries Integrator V2.0 Using the Control Center

 Deploying complete topics

Deploying complete topics
1. Ensure that the topics data you want to deploy has been checked into the

shared configuration, as described in “Checking in topics data” on page 192.

2. In the Topics pane of the Topics view, right click TopicRoot.

3. Click Deploy —> Complete Topics Configuration.

Note that you can also invoke the Deploy —> Complete Topics Configuration
action from the Topics menu on the Control Center taskbar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed topics data, followed by instructions to create a new set of topics data,
based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

 Chapter 7. Deploying configuration data 181

 Deploying delta topology

Deploying delta topology
1. Ensure that the topology data you want to deploy has been checked into the

shared configuration, as described in “Checking in the Topology” on page 156.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
PubSubTopology tree.

3. Click Deploy —> Delta Topology Configuration.

Note that you can also invoke the Deploy —> Delta Topology Configuration
action from the Domain Hierarchy and the Topology menus on the Control Center
taskbar, and from the Topology actions displayed when you right click in the
Topology pane.

The Configuration Manager compares topology data for all brokers in the shared
configuration with the currently deployed topology data for all brokers, and deploys
only the differences between the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

182 MQSeries Integrator V2.0 Using the Control Center

 Deploying complete topology

Deploying complete topology
1. Ensure that the topology data you want to deploy has been checked into the

shared configuration, as described in “Checking in the Topology” on page 156.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree.

3. Click Deploy —> Complete Topology Configuration.

Note that you can also invoke the Deploy —> Complete Topology Configuration
action from the Domain Hierarchy and the Topology menus on the Control Center
taskbar, and from the Topology actions displayed when you right click in the
Topology pane.

The Configuration Manager creates a request consisting of instructions to delete all
deployed topology data, followed by instructions to create a new set of topology
data, based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

 Chapter 7. Deploying configuration data 183

 Deploying delta data of all types

Deploying delta data of all types
1. Ensure that the assignments, topics, and topology data you want to deploy has

been checked into the shared configuration, as described in “Checking in the
Assignments” on page 169, “Checking in topics data” on page 192, and
“Checking in the Topology” on page 156.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree.

3. Click Deploy —> Delta Configuration (all types).

Note that you can also invoke the Deploy —> Delta Configuration (all types)
action from the Domain Hierarchy and the Topology menus on the Control Center
taskbar, and from the Topology actions displayed when you right click in the
Topology pane.

The Configuration Manager compares data of all types for all brokers in the shared
configuration with the currently deployed data for all brokers, and deploys only the
differences between the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

184 MQSeries Integrator V2.0 Using the Control Center

 Deploying complete data of all types

Deploying complete data of all types
1. Ensure that the assignments, topics, and topology data you want to deploy has

been checked into the shared configuration, as described in “Checking in the
Assignments” on page 169, “Checking in topics data” on page 192, and
“Checking in the Topology” on page 156.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree.

3. Click Deploy —> Complete Configuration (all types) —> Normal.

Note that you can also invoke the Deploy —> Complete Configuration (all types)
—> Normal action from the Domain Hierarchy and the Topology menus on the
Control Center taskbar, and from the Topology actions displayed when you right
click in the Topology pane.

The Configuration Manager creates a request consisting of instructions to delete all
deployed data of all types, followed by instructions to create a new set of data,
based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

 Chapter 7. Deploying configuration data 185

 Forcing deployment of all data

Forcing deployment of all data
1. Ensure that the assignments, topics, and topology data you want to deploy has

been checked into the shared configuration, as described in “Checking in the
Assignments” on page 169, “Checking in topics data” on page 192, and
“Checking in the Topology” on page 156.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
PubSubTopology tree.

3. Click Deploy —> Complete Configuration (all types) —> Forced.

Note that you can also invoke the Deploy —> Complete Configuration (all types)
—> Forced action from the Domain Hierarchy and the Topology menus on the
Control Center taskbar, and from the Topology actions displayed when you right
click in the Topology pane.

The Configuration Manager creates a request consisting of instructions to delete all
deployed data of all types, followed by instructions to create a new set of data,
based on the shared configuration, and deploys it to the target brokers. Any
outstanding deployment request, of any type, is overridden by this forced
deployment of configuration data.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 175.

186 MQSeries Integrator V2.0 Using the Control Center

 Setting up publish/subscribe access control � The Topics view

Chapter 8. Setting up publish/subscribe access control

This chapter describes how to create a new publish/subscribe topic, and how to
update access control lists (ACLs). ACLs allow you to restrict user permission to
publish messages, subscribe to topics, and request persistent delivery of
messages.

Authorization to set up publish/subscribe access control
To perform any of the tasks described in this chapter, you must:

� Have the correct Control Center user role, which can be one of:

– Topic security administrator

 – All roles

For information about setting your use role, see “Setting user roles” on
page 11.

� Be a member of the MQSeries Integrator group mqbrtpic

The Topics view
To display the Topics view, click the Topics tab in the Control Center. Figure 42
shows an example of the Topics view.

Figure 42. The Topics view.

 Copyright IBM Corp. 2000 187

 The Topics view

In the Topics view, you can create the topics under which messages can be
published. In addition, you can give users or groups permission to publish
messages, or to subscribe to messages published under these topics. You can
also deny users or groups these access rights. You would do this to ensure that
privileged information was not being viewed by unauthorized users or groups, for
example.

The information in the Topics view can be viewed in two ways:

� The hierarchy of topics is shown in the Topics/Users view, where the Access
Control List (ACL) for the selected topic is shown.

� The list of users and groups is shown in the Users/Topics view, and the
access to each topic is shown for the selected user or group.

In addition to the Topics view, you can use the Subscriptions view to see
currently registered subscriptions if you are a member of MQSeries Integrator group
mqbrops.

188 MQSeries Integrator V2.0 Using the Control Center

 Creating topics

 Creating topics
You create new topics beneath the TopicRoot,8 which is always displayed in the

Topics pane, or beneath any topic already defined. Any topic can have any
number of children, and each of these can have different ACL settings.

To create a new topic:

1. Click the Topics/Users button in the Topics view.

2. Ensure that the topic under which you want to create a new one, which can be
TopicRoot or any topic already defined, is checked out. If it is not checked out,
right click the topic and click Check Out.

3. Right click the parent topic and click Create —> Topic.

The Create a new Topic dialog is displayed.

4. In the Create a new Topic dialog, type the name of the topic in the Name field.

You can select users or groups and define their access to this topic now or
later. To specify some users or groups now, simply expand the Groups and
Users folders and select the users or groups:

� To select a single user or group from the list, click the user or group name.

� To select multiple users or groups that appear sequentially in the list, click
the first user or group you want, press and hold the Shift key, then click the
last user or group you want. This action selects the two users or groups
you highlighted, plus any that appear between these two in the list.

� To select multiple users or groups that do not appear in a sequence in the
list, hold down Ctrl and click each broker you want.

Note that this list contains users and groups (principals) only if you have a User
Name Server installed and running, and the Configuration Manager is
configured to communicate with it.

Click OK.

5. For the Publish field, select one of

Allow Publications are allowed.
Deny Publications are not permitted.
Inherit Permission to publish is inherited.

6. For the Subscribe field, select one of

Allow Subscriptions are allowed.
Deny Subscriptions are not permitted
Inherit Permission to subscribe is inherited.

7. For the Persistent field, select one of

Yes Persistent delivery of messages is allowed.
No Persistent delivery of messages is not allowed.
Inherit Permission to request persistent delivery of messages is inherited.

 8. Click Finish.

8 TopicRoot is a special topic that cannot be deleted or renamed. It always has the PublicGroup in its ACL.

 Chapter 8. Setting up publish/subscribe access control 189

 Creating topics

The new topic appears beneath its parent topic.

After you create a topic, you can add more users or groups to the ACL using the
Properties SmartGuide as described “Adding a principal to an ACL” on page 191.

If you do not select any users or groups when you create the topic, the ACL is
empty, and the Topics Access Control List pane is left blank. In this case, each
user or group inherits the same access to this topic as it has to the parent topic.

If you have selected users or groups, they appear in the Topic Access Control List
pane. Beside the users or groups, you see the permissions they have to publish
messages, subscribe to messages, and request persistent delivery of messages.
You can change these permissions by selecting them. A drop down list is shown,
allowing you to select a different permission.

Renaming, duplicating, and deleting topics
Topics can be renamed, duplicated, or deleted by right clicking the appropriate
topic and selecting the desired action from the drop-down list. When you duplicate
a topic, a sibling topic with a unique name is created. Note that the parent topic
must be checked out before you can perform any of these actions.

190 MQSeries Integrator V2.0 Using the Control Center

 Adding a principal to an ACL

Adding a principal to an ACL
To add a principal9 to an ACL:

1. In the Topics view, click the Topics/Users button.

2. Ensure that the topic for which you would like to edit the ACL is checked out.
If it is not checked out, right click the topic and click Check Out.

3. Right click the topic and click Properties.

4. Expand the Groups or Users folders in the Available Principals.

You can add principals that are not yet listed in the ACL; principals that are
already in the ACL are not shown. You can grant permissions to a principal, or
revoke permissions for a principal. You can specify that the principal inherit the
same level of access to a permission as it has to the parent topic. Setting the
access level of a principal in the ACL of the TopicRoot to Inherit is not allowed,
since the TopicRoot does not have a parent topic. Each principal can be
assigned the following permissions:

Publish
Permits or denies the principal permission to publish messages on this topic.

Subscribe
Permits or denies the principal permission to subscribe to messages on this
topic.

Persistent
Permits or denies the principal permission to request persistent delivery of a
publication when the principal subscribes to the topic.

If a user subscribes to a topic, and the user requests persistent delivery of the
messages, the user must be granted permission both to subscribe to that topic and
to request persistent delivery of messages for that topic. If the user does not
request persistent delivery, only permission to subscribe to that topic is required.

Permission for persistent delivery does not affect the publishing of messages. You
need only to be granted publish permissions to be able to publish messages on a
topic.

To remove a entry from an ACL, right click the entry and click Remove.

 Resolving permissions
Many factors play a part in determining whether the user has permission to publish
messages on a topic, subscribe to messages under a topic, and to request
persistent delivery of messages being subscribed to. The user can be explicitly
listed in the topic’s ACL. Groups to which the user belongs can also be listed, and
their permissions may differ from each other and with the user’s ACL entry. Users
can also inherit permissions from parent topics. Determining whether the user has
a permission might not always be straightforward.

For a complete description of how permissions are resolved, see the MQSeries
Introduction and Planning Guide.

9 A principal is a user or a group.

 Chapter 8. Setting up publish/subscribe access control 191

 Checking in topics data

Checking in topics data
To check in topics data:

1. Right click the topic entry in the Topics view.

2. Click Check in to store the topics data in the shared configuration.

To confirm that the topics data has been checked in, the New icon or the Key icon
disappears from the topic entry.

When you check in a new topic, its parent is also checked in. When you check in
a parent topic, all new child topics are also checked in.

Checking in all changes
As an alternative to checking in only the Topics data, you can check in all changes,
of all types, as follows:

1. In the Control Center taskbar, click the File menu.

2. In the File menu, click Local —> Save to Shared.

This approach is particularly efficient when you have many different types of
resource checked out, because it ensures that nothing remains checked out by
mistake.

Note: If you are checking in many related new resources, it is more efficient to
use the File —> Local —> Save to Shared option than to check in one resource
and rely on MQSeries Integrator to check in related resources.

If you want to check which resources are currently checked out before you use this
option:

1. In the Control Center taskbar, click the File menu.

2. In the File menu, click Check In List.

The Check In List dialog is displayed. Resources that are currently checked
out have the Key icon against their entries in the dialog. Resources that have
never been checked in have the New icon against their entries in the dialog.

3. To check in a resource, click its entry in the Check In List dialog, then click
Check In.

192 MQSeries Integrator V2.0 Using the Control Center

 Making changes operational

Making changes operational
In checking in resources that are new or that you have altered, you make them
visible in the shared configuration. However, the changes you have made have no
operational effect until you deploy them in the broker domain. For information
about deploying resources, see Chapter 7, “Deploying configuration data” on
page 173.

 Chapter 8. Setting up publish/subscribe access control 193

 Making changes operational

194 MQSeries Integrator V2.0 Using the Control Center

 Running the broker domain � The Operations and Log views

Chapter 9. Running the broker domain

This chapter describes the Control Center tasks that are related to running the
operational broker domain. These are:

� “Monitoring the operational state of the broker domain” on page 198

� “Starting message flows” on page 199

� “Stopping message flows” on page 201

� “Starting user tracing” on page 203

� “Stopping user tracing” on page 204

� “Deleting subscriptions” on page 207

Authorization to run the broker domain
To perform any of the tasks described in this chapter, you must:

� Have the correct Control Center user role, which can be one of:

– Operational domain controller
 – All roles

For information about setting your user role, see “Setting user roles” on
page 11.

� Be a member of the MQSeries Integrator group mqbrops

The Operations and Log views
To display the Operations view, click the Operations tab in the Control Center.
Figure 43 on page 196 shows an example of the Operations view.

 Copyright IBM Corp. 2000 195

 The Operations and Log views

Figure 43. The Operations view. The left-hand pane, the Domain Hierarchy pane, shows a tree view of the brokers
in your broker domain. The execution groups and message sets assigned to a broker are displayed when you expand
the broker. The message flows assigned to an execution group are displayed when you expand the execution group.
The right-hand pane, the Domain Topology pane, contains an arrangement of graphical symbols that represent the
current broker domain. Execution groups and message sets appear inside the brokers to which they have been
assigned. Message flows appear inside the execution groups to which they have been assigned. The brokers shown
in the Operations view are those to which configuration data has been deployed.

To display the Log view, click the Log tab in the Control Center. If the Log tab is
not displayed, click File —> Log in the Control Center taskbar. Figure 44 on
page 197 shows an example of the Log view.

196 MQSeries Integrator V2.0 Using the Control Center

 The Operations and Log views

Figure 44. The Log view. The Log view displays messages returned to you by the Configuration Manager in
response to requests that update the broker domain configuration. It also displays messages relating to deployment
requests and to requests to delete subscriptions. To display up-to-date information, click the circular refresh icon in
the top left corner of the view.

Note that a member of MQSeries Integrator group mqbrtpic deploying just topics
also has authority to see the Log view.

Tasks that you can perform from the Log view are:

� Save Log As, which saves the Log view in a file

� Clear Log, which removes messages from the Log view

� Refresh Log, which adds any new messages to the Log view

� Close, which removes the Log view and the Log tab from the Control Center.

The Log tab can be made available again using the File —> Log action in the
Control Center taskbar.

Notes:

1. The Log view shows messages associated with your user ID, and those that
are not associated with any user ID.

2. Once you see a message in the Log view, via the Refresh action, it is removed
from the system. If you want to save the messages you see in the Log view,
you must use the Save Log As action.

 Chapter 9. Running the broker domain 197

 Monitoring the operational state of the broker domain

Monitoring the operational state of the broker domain
To display the current status of the broker domain, click the circular refresh icon in
the top left corner of the Operations view (immediately below the File menu). This
action causes the Configuration Manager to update the information displayed in the
Domain Topology pane from its deployed configuration.

Any resource shown in the Domain Topology pane of the Operations view can be
in one of three states:

Started Indicated by a green traffic light next to the resource.
Stopped Indicated by a red traffic light next to the resource.
Unknown Indicated by a yellow question mark next to the resource.

198 MQSeries Integrator V2.0 Using the Control Center

 Starting message flows

Starting message flows
You can start:

� All message flows in all execution groups assigned to a specified broker
� All message flows in a specified execution group
� A single message flow

Starting all message flows for a broker
To start all message flows in all execution groups assigned to a specified broker:

1. Right click the broker symbol in the Domain Topology pane or the broker entry
in the Domain Hierarchy pane. (Alternatively, you can highlight the broker in
either pane, then click the Domain Hierarchy or Domain Topology menu in the
taskbar.)

2. Click Start Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows be started.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful, all
message flows within the broker have a green status light against them.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

Starting all message flows within an execution group
To start all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click Start Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows within the specified execution group be
started.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful, all
message flows within the execution group have a green status light against
them.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

 Chapter 9. Running the broker domain 199

 Starting message flows

Starting a single message flow
To start a single message flow:

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click Start Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that the specified message flow be started.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful,
the message flow has a green status light against it.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

200 MQSeries Integrator V2.0 Using the Control Center

 Stopping message flows

Stopping message flows
You can stop:

� All message flows in all execution groups assigned to a specified broker
� All message flows in a specified execution group
� A single message flow

Stopping all message flows for a broker
To stop all message flows in all execution groups assigned to a specified broker:

1. Right click the broker symbol in the Domain Topology pane or the broker entry
in the Domain Hierarchy pane. (Alternatively, you can highlight the broker in
either pane, then click the Domain Hierarchy or Domain Topology menu in the
taskbar.)

2. Click Stop Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows be stopped.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful, all
message flows within the broker have a red status light against them.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

Stopping all message flows within an execution group
To stop all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click Stop Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows within the specified execution group be
stopped.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful, all
message flows within the execution group have a red status light against
them.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

 Chapter 9. Running the broker domain 201

 Stopping message flows

Stopping a single message flow
To stop a single message flow:

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click Stop Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that the specified message flow be stopped.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful,
the message flow has a red status light against it.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

202 MQSeries Integrator V2.0 Using the Control Center

 Starting user tracing

Starting user tracing
The user tracing function of MQSeries Integrator is described in the MQSeries
Integrator Version 2.0 Administration Guide. You can start user tracing:

� For all message flows in a specified execution group
� For a single message flow

Starting user tracing for an execution group
To start user tracing of all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click User Trace —> Normal or User Trace —> Debug.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be started for all message flows within the specified
execution group.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful,
the execution group has an icon against it indicating that user tracing is
active.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

Starting user tracing for a single message flow
To start user tracing for a single message flow:

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click User Trace —> Normal or User Trace —> Debug.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be started for the specified message flow.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful,
the message flow has an icon against it indicating that user tracing is
active.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

 Chapter 9. Running the broker domain 203

 Stopping user tracing

Stopping user tracing
The user tracing function of MQSeries Integrator is described in the MQSeries
Integrator Version 2.0 Administration Guide. You can stop user tracing:

� For all message flows in a specified execution group
� For a single message flow

Stopping user tracing for an execution group
To stop user tracing of all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click User Trace —> None.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be stopped for all message flows within the
specified execution group.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful,
any user tracing icon against the execution group has disappeared.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

Stopping user tracing for a single message flow
To stop user tracing for a single message flow:

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click User Trace —> None.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be stopped for the specified message flow.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 198. If the request was successful,
any user tracing icon against the message flow has disappeared.

b. Refresh the Log view. Any messages returned by the broker in response
to this request are displayed here.

204 MQSeries Integrator V2.0 Using the Control Center

 The Subscriptions view

The Subscriptions view
You use the Subscriptions view to monitor subscriptions to topics taken out by the
applications running in your broker domain. Figure 45 shows an example of the
Subscriptions view.

Figure 45. The Subscriptions view. Subscriptions owned by the brokers in this broker domain are shown in this view
in a tabular form. Each subscription occupies one row in the table. For each subscription, the Topic, User, Broker,
Subscription Point, Registration Date, Client, and Content Filter are displayed. Fields at the top of the view support
filtering of information.

Filtering the information in the Subscriptions view
Within any broker domain there can be many hundreds of active subscriptions.
You are unlikely to want to view information relevant to all of these subscriptions at
any one time. Therefore, the Subscriptions view allows you to select the
information you are interested in by specifying a filter. You can filter the information
displayed in the Subscriptions view by specifying any combination of:

 � Brokers
 � Topics
 � Users
 � Registration date
 � Subscription points

For example, you can restrict the information displayed to particular topics within a
single broker.

To filter the information by broker:

 Chapter 9. Running the broker domain 205

 The Subscriptions view

1. Click the Brokers drop-down list and click the broker name.
2. Click Query or the refresh icon in the top left corner to refresh the

Subscriptions view.

The Subscriptions view is refreshed to display information for the selected broker.

To filter information by any other value, simply enter data in the appropriate field in
the view. For example, to filter by Topic, enter the topic name in the Topics field,
and click Query or the refresh icon in the top left corner of the view. The wildcard
character (%) can be used to represent any number of characters in the topic, user,
and subscription point values.

To clear all data from the table, click the clear table icon next to the refresh icon on
the taskbar. This action does not delete subscriptions; it simply clears the data
from the Subscriptions view.

Refreshing the Subscriptions view
The Subscriptions view displays a snapshot of all current subscriptions in the
broker domain, filtered by the current filter. The Configuration Manager updates its
record of the deployed configuration whenever a subscription is created, changed,
deleted, or expires. However, the Subscriptions view is not updated automatically
to reflect these changes. You have to request that the Subscriptions view be
refreshed by clicking Query or the refresh icon in the top left corner of the view.

206 MQSeries Integrator V2.0 Using the Control Center

 Deleting subscriptions

 Deleting subscriptions
To delete a subscription from the deployed configuration:

1. In the Subscriptions view, select the subscriptions you want to delete:

a. To select a single subscription, click the row pertaining to that subscription.

b. To select multiple rows that appear in a sequence in the table, click the first
row you want to delete, press and hold the Shift key, then click the last row
you want. This action selects the two rows you highlighted, plus any that
appear between these two in the table.

c. To select multiple rows that do not appear in a sequence in the table, hold
down Ctrl and click each row you want.

2. From the Subscriptions menu in the taskbar, click Delete.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Subscriptions view by clicking Query or the refresh icon in
the top left corner of the view. If the subscription has been successfully
deleted, its entry is no longer included in the Subscriptions view.

b. Refresh the Log view. Any messages returned by the broker in response
to this deletion request are displayed here.

Note that some subscriptions (specifically those used internally by the broker
and the Configuration Manager) cannot be deleted. Any request to delete such
a subscription fails.

 Chapter 9. Running the broker domain 207

 Deleting subscriptions

208 MQSeries Integrator V2.0 Using the Control Center

 Part 3. Appendixes

 Copyright IBM Corp. 2000 209

210 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

Appendix A. A example scenario

This appendix describes one way in which you can implement the retail scenario
that is described in Chapter 3 of the MQSeries Integrator V2.0 Introduction and
Planning book.

+ You should use the information in this appendix in conjunction with the information
+ in the rest of Using the Control Center.

The whole message flow is shown in Figure 46:

Figure 46. Scenario message flow

The following sections look at the messages and message flows necessary to fulfil
the business requirements of the scenario.

+ You can work through the scenario either with a self-defining XML message or with
+ a message defined in the MQSeries Integrator message repository. The nodes
+ used in the scenario differ slightly depending on which type of message you use.

The following sections describe the different messages (self-defining XML message
and message sets) used and how these messages are used in configuring the
nodes within the message flow.

 Copyright IBM Corp. 2000 211

 An example scenario

The receipt message as an XML message
A self-defining XML message can be passed through a message flow without
having to be defined as part of a message set defined to the message repository
through the Control Center. However, you cannot use some of the nodes without
having a message repository message set.

Figure 47 shows an example of the type of generic XML message used:

OPTIONS
TESTSTART
MQMD
FORMAT XML
MSGTYPE 8
STARTDATA
<Message>
<receiptmsg>
<transactionlog>
<storedetailselement>
<storename>SRUCorp</storename>
<branchnum>9</branchnum>
<cashiernum> 5</cashiernum>
<tillnum> 9</tillnum>
<date> 1/ 4/99</date>
<time>14:3 </time>
</storedetailselement>
<purchaseselement>
<itemname>Shampoo</itemname>
<itemcode> 56734 97</itemcode>
<itemprice>2.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<purchaseselement>
<itemname>Shampoo</itemname>
<itemcode> 56734 97</itemcode>
<itemprice>2.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<purchaseselement>
<itemname>Toothpaste</itemname>
<itemcode> 5663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<totalselement>
<totalitems>1 </totalitems>
<multibuy>No</multibuy>
<totalsales>34.98</totalsales>
<change>5. 2</change>
</totalselement>
</transactionlog>
</receiptmsg>
</Message>
ENDDATA
TESTEND

Figure 47. XML message

212 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

Defining the message in the message repository
The logical structure and the physical structure (the wire format) of the message
need to be defined to the message repository using the Control Center. This
section provides a systematic example that shows you how to create a message for
the receipt data. It shows you how to create a message using the bottom-up
approach but there is nothing to stop you using a top-down approach.

+ The message set you create will contain two messages called Receipt Message
+ and Stock Message. The purpose of the receipt message is to take information
+ from a shop receipt and, through the message flow, feed the information to the
+ people who need it. For example, a financial controller needs to know the sales
+ figures from each branch. The Stock Message is used to illustrate how information
+ from one message can be modified and mapped into another message. For
+ example, the stock controller needs to know the total quantity of a particular item
+ per receipt. The Compute node in the Stock flow adds the number of items and
+ puts that value into the Stock Message.

The message uses structured compound elements that you populate with simple
elements. Each of these elements defines a unit of information.

Refer to “Creating message sets” on page 44 and “Creating messages” on page
46 for details on how to perform each of the tasks below. This appendix focuses on
how you set up the properties to make this example work.

1. Create a message set.

Give this message set any name. In our example, it is called Receipt
Messages. Check that the parser on the Run Time tab is set to MRM. When
you click Finish, MQSeries Integrator assigns the message set a unique
identifier and writes this into the Identifier field of the message set properties.
This is the identifier you will need to name on either the MQInput node or in the
MQRFH2 header.

2. Create simple elements - the lowest-level units of information. You can give
them any name and identifier you want. The table below summarizes the
simple elements, the type selected for each one, and the name and identifier
used in our example.

The descriptor tag for the element in the message must match the identifier
used in the definition. For example, the element Store Name has an identifier
storename and is represented in the message as <storename>.

Note that, for the elements Date and Time, after you click Finish on the
element property pages but before you move on to the next element, you
should go to the COBOL tab and change the default settings of DATE and
TIME to something else. (Using a COBOL keyword in these fields is not
permitted.)

 Appendix A. A example scenario 213

 An example scenario

3. Create element lengths for elements of type STRING.

You can give them any name and identifier you want. The table below
summarizes the STRING elements, the length defined for each one, and the
name and identifier used in our example.

4. Add the lengths to the corresponding string elements. For example, add Store
Name Length to the element Store Name.

5. Create element valid values for some of the elements. You can give them any
name and identifier you want. Type must be the same type of the element that
the valid value is associated with. The table below summarizes the INTEGER
elements, the minimum and maximum valid value defined for each one, and the
name and identifier used in our example.

Simple element name# Identifier# Type

Store Name# storename# STRING

Branch Number# branchnum# INTEGER

Cashier Number# cashiernum# INTEGER

Till Number# tillnum# INTEGER

Date# date# STRING

Time# time# STRING

Item Name# itemname# STRING

Item code# itemcode# INTEGER

Item Price# itemprice# FLOAT

Item Quantity# itemquantity# INTEGER

Total Items# totalitems# INTEGER

Multibuy# multibuy# STRING

Total Sales# totalsales# FLOAT

Change# change# FLOAT

+ Total Item Quantity+ totalitemquantity+ INTEGER

Element name# Element length
name
Maximum Length# Element length
identifier

Store Name# Store Name
Length
20# storenamelen

Date# Date Length# 10# datelen

Time# Time Length# 20# timelen

Item Name# Item Name Length# 40# itemnamelen

Multibuy# Multibuy Length# 5# multibuylen

214 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

Element name# Element valid
value name
Element valid
value
identifier

Type# Minimum
Valid Value
Maximum
Valid Value

Branch
Number
Branch
Number Value
branchnumval# INTEGER# 00000000# 99999999

Cashier
Number
Cashier
Number Value
cashiernumval# INTEGER# 000# 999

Till Number# Till Number
Value
tillnumval# INTEGER# 000# 999

6. Add the valid values to the corresponding elements. For example, add Branch
Number Value to the element Branch Number.

7. Create compound types. These will be used as the type for compound
elements (higher-level elements) within the message. Transactionlog will be
used as the type for the message itself, thereby bringing all the lower-level
structures together. You can give them any name and identifier you want. The
table below summarizes the simple elements, the type selected for each one,
and the name and identifier used in our example.

8. Add elements to the compound types. (Leave transactionlog and
outputtransactionlog for now.) The order of elements in the message being
passed through the message flow must match the order of elements in the
message definition. This order is defined by the order of elements in the
compound types. When you add elements to a compound type, they are added
in reverse order. For example, selecting Store Name then Branch Number will
produce an order of Branch Number then Store Name. There is a Reorder
option on the Types pulldown to resequence the elements within a type. To
match the message shown in Figure 48 on page 218, add the elements in the
sequence shown in the table below. Use Ctrl+left-click to select multiple
elements.

Compound type name# Identifier

Store Details# storedetails

Purchases# purchases

Totals# totals

Transaction Log# transactionlog

+ Output Transaction Log+ outputtransactionlog

 Appendix A. A example scenario 215

 An example scenario

9. Create elements with compound types. These elements bring together a
number of lower-level elements. Because you added the simple elements to
the compound type, when you create the compound element, those simple
elements are automatically associated with it. You can give them any name
and identifier you want. The table below summarizes the compound elements,
the type selected for each one, and the name and identifier used in our
example.

The XML descriptor tag for the element in the message must match the
identifier used in the message repository definition. For example, the element
Store Details Element has an identifier storedetailselement and is represented
in the message as <storedetailselement>.

10. Add the compound elements Totals Element, Purchases Element, and Store
Details Element (in that order) to the compound type Transactionlog. This pulls
all the elements of the receipt message together in a single type.

+ 11. Add the elements Total Item Quantity, Purchases Element, Time, Date, Branch
+ Number and Store Name (in that order) to the compound type
+ outputtransactionlog. This pulls all the elements of the stock message together
+ in a single type.

12. Create a message of type transactionlog. Give it any name or identifier you
like. In our example, the message name is Receipt Message and the identifier
is receiptmsg. The identifier is the one that you will need to name on either the
MQInput node or in the MQRFH2 header.

+ 13. Create a message of type outputtransactionlog. Give it any name or identifier
+ you like. In our example, the message name is Stock Message and the
+ identifier is stockmsg. The identifier is the one that you will need to name on
+ either the MQInput node or in the MQRFH2 header.

Compound type# Elements to be added

Store Details# � Time
� Date
� Till Number
� Cashier Number
� Branch Number
� Store Name

Purchases# � Item Quantity
� Item Price
� Item Code
� Item Name

Totals# � Change
� Total Sales
� Multibuy
� Total Items

Compound element
name
Identifier# Type

Store Details Element# storedetailselement# storedetails

Purchases Element# purchaseselement# purchases

Totals Element# totalselement# totals

216 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

+ 14. Make the Purchases Element a repeating element. Make sure that the types
+ transactionlog and outputtransactionlog are checked out. In the Receipt
+ Message, check out the Purchases Element and right-click to open its
+ properties pages. On the Connection tab, change Repeat to yes. Click Apply.
+ Repeat this step for the Stock Message.

15. Create a category to contain the messages. This is optional but might be
useful if you want to experiment with the functions to generate documentation
about the message set. You can give the category any name and identifier you
like. In our example, we used a category name of Transaction Log Messages
and an identifier of transactionlogmsgs.

Add the receipt message and the stock message to the category.

16. Save the definitions to the shared repository. (Select File —> Local —> Save
to Shared.)

Associating the receipt message with a message repository definition
When a message coming into the MQInput node has a corresponding definition in
the message repository, you have to associate the incoming message with that
definition. MQSeries Integrator needs to know which parser you are expecting to
use for the message (called the message domain), which message set the
message belongs to (called the message set) and which is the identifier of the
message definition (called the message type).

There are two ways of doing this:

1. Define the message domain, message set, and message type on the Default
tab of the MQInput node. See Figure 50 on page 220.

2. Define the message domain, message set, and message type on the
NAMEVALUEDATA part of an MQRFH2 header.

The message below shows the receipt message defined in the previous section
extended with an MQRFH2 header.

Msd The parser to be used for this message. This is MRM in our example.
Other values are BLOB, XML, and NEON. It must be entered in uppercase.

Set The identifier of the message set to which the message belongs. This is the
identifier assigned by MQSeries Integrator when you create the message set
in the Control Center. In our example, this is DHMG25G06S001 (see
Figure 48 on page 218).

 Appendix A. A example scenario 217

 An example scenario

Figure 48. The message set properties, showing the identifier.

You cannot copy and paste the identifier from the message set properties in
the Control Center, therefore you must enter it exactly as shown there.

Type The identifier of the message definition to which this message maps. It is
the identifier you assign when you define the message in the Control Center.
In our example, this is receiptmsg. You cannot copy and paste the identifier
from the message properties in the Control Center so be sure to enter it
exactly as shown there.

Fmt This is the custom wire format of the message. In our example, it is XML.
Other possible values are CWF and PDF.

Figure 49 on page 219 illustrates the receipt message extended with an MQRFH2
header.

218 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

OPTIONS
OPENOPTIONS 16
MQMD
FORMAT MQHRF2
MSGTYPE 8
MQRFH2
NAMEVALUEDATA
STARTDATA
<mcd><Msd>MRM</Msd><Set>DHMG25G 6S 1></Set><Type>receiptmsg</Type>
<Fmt>XML</Fmt></mcd>
STARTDATA
<?xml version="1. 1?>
<!DOCTYPE MRM PUBLIC "www.mrmnames.net/DHMG25G 6S 1" "DHMG25G 6S 1">
<MRM>
<receiptmsg>
<storedetailselement>
<storename>SRUCorp</storename>
<branchnum>9</branchnum>
<cashiernum> 5</cashiernum>
<tillnum> 9</tillnum>
<date> 1/ 4/ </date>
<time>14:3 </time>
</storedetailselement>
<purchaseselement>
<itemname>Shampoo</itemname>
<itemcode> 5663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<purchaseselement>
<itemname>Shampoo</itemname>
<itemcode> 5663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<purchaseselement>
<itemname>Toothpaste</itemname>
<itemcode> 5663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<totalselement>
<totalitems>1 </totalitems>
<multibuy>Yes</multibuy>
<totalsales>13.49</totalsales>
<change>5. 2</change>
</totalselement>
</receiptmsg>
</MRM>
ENDDATA

Figure 49. The receipt message extended with an MQRFH2 header.

 Appendix A. A example scenario 219

 An example scenario

Assigning the message set to the broker
For the message flow to process a message that has a definition in the message
repository, you have to assign that definition to the broker.

In the Assignments view, check out the broker. Drag and drop the message set
(Receipt Messages) onto the name of the broker in the graphic in the Domain
Topology pane.

Message flows
The message flow for this scenario (see Figure 46 on page 211) is described as
four separate message flows:

� Audit flow
� Finance flow
� Stock flow
� Partner flow

These are described in the following sections. A message comes into the flow,
passes through the Audit flow, then branches out through the other three flows.

Getting the message
The first node in the message flow—Receipt Message— is an MQInput node. This
node gets the message from an MQSeries queue on the queue manager hosting
the broker (MQSI_SAMPLE_QM for MQSI_SAMPLE_BROKER). In our example,
all of the properties, except the queue name, have been left to default.

If you have an MRM-defined message and you don’t specify the message domain,
message set, message type, and message format in the MQRFH2 header, you
must specify these on the Default tab of the MQInput node, as shown in Figure 50.

Figure 50. Input node properties

Two terminals of the Receipt Message MQInput node are connected:

220 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

+ � Out connects to the next node in the flow. For a message repository defined
+ message, this is Check Messages. For an XML message, this is Store
+ Messages.

� Failure connects to an MQOutput node which puts messages to a failure
queue.

Audit flow

Figure 51. Audit message flow

+ The Audit flow for a message repository defined message contains two nodes:
+ Check and Warehouse. The flow is used to check that the incoming message
belongs to the expected message set and is therefore valid to pass through the rest
of the flow, and to store the receipt information in a database for retrieval later.

+ The Audit flow for a self-defining XML message contains a Database node. No
+ checking is necessary against a message set and the Warehouse node is for use
+ only with a message repository defined message.

Checking the message
+ See “Check node” on page 84 for details of the Check node. This node applies
+ only when you have an incoming message that has been predefined using the
+ Control Center. If you are using an XML message, leave this node out. For this
example, the node properties need to be configured as shown below.

Note that the message set number is the identifier given to the message set
created in “Defining the message in the message repository” on page 213. The
message type is the identifier given to the message definition.

 Appendix A. A example scenario 221

 An example scenario

Figure 52. Check node properties

Storing the entire message
You need an message repository definition of the message to be able to use the
Warehouse node.

+ If you are using an XML message, you would replace this node with a Database
+ node, configured in a similar way to the Multibuy Database node, described in
+ “Updating the Multibuy database” on page 231. You create a database schema for
+ every element of the message and itemize every element in the SQL used in the
+ node to insert values into database columns. Part of the SQL is shown below:

+ INSERT INTO Database.RECEIPTINFO2 (Storename, Branchnum, Cashiernum, Till
+ num, Date, Time, Itemname, Itemcode, Itemprice, Itemquantity, TotalItems,
+ Multibuy, Totalsales, Change)
+ VALUES(Body.Message.receiptmsg.transactionlog.storedetailselement.storena
+ me, Body.Message.receiptmsg.transactionlog.storedetailselement.branchnum,
+ Body.Message.receiptmsg.transactionlog.storedetailselement.cashiernum,
+ Body.Message.receiptmsg.transactionlog.storedetailselement.tillnum,

+ (and so on)

+ Configuring the Warehouse node: The Warehouse node stores the message as
+ a binary object with a timestamp.

+ Before you can complete the Warehouse node, you must create the following:

+ � A database called MYDB
+ � An ODBC connection to the MYDB database
+ � A table called receiptinfo in the MYDB database
+ � The columns spmsg and msgtime in the receiptinfo table

+ The following extract of SQL illustrates how you can create the table and two
+ columns in a DB2 database. From a DB2 command window, enter the following:

+ db2 connect to MYDB
+ create table receiptinfo (spmsg BLOB (4M) not null, msgtime TIMESTAMP)

222 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

When you have set up the database in this way, you can set up the Warehouse
node. In the node properties:

� Click Add and select the message set Receipt messages and the message
receiptmsg.
� Add the database MYDB and table RECEIPTINFO, then the columns SPMSG
and TIMESTAMP.
� Check the box to Store Message and select the column SPMSG.
� Check the box to Store Timestamp and select the column MSGTIME.
� Click OK.

Figure 53. Warehouse node properties

You can check whether the message is stored in the Warehouse. For example, in
a DB2 command window type

db2 connect to MYDB
db2 select V from receiptinfo

You won't see the text of the message because of the way it is stored (as a BLOB)
but you will see the timestamp at the bottom.

The out terminal of the Warehouse node (Store Messages) is connected to the in
terminal of three nodes:

� Extract node (Extract financial information) at the start of the Finance flow.
� Compute node (Add product instances) at the start of the Stock flow.
� Filter node (Multibuy filter) at the start of the Partners flow

 Appendix A. A example scenario 223

 An example scenario

Finance flow

Figure 54. Finance message flow

+ The Finance flow contains three nodes: Extract (or Compute) Trace, and Output.
The Finance department want to receive only part of the information from the
receipt message. The Extract Financial information node extracts the branch
number, date, and total sales information. The Trace node writes a trace record to
a file to record the information that has been extracted. The Output node passes
the finance message to the Finance department.

Extracting elements from the message
+ If you have a message repository definition of the message, you can use an Extract
+ node. If you have a self-defining XML message, use a Compute node.

+ In the Extract node properties:

� Click Add and select the message set called Receipt Messages and the
message called receiptmsg.

� Expand the elements storedetailselement and totalselement. Drag branchnum,
date, and totalsales into the mapping window below.

� Click OK.

224 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

Figure 55. Extract node properties

+ In the Compute node properties:

+ 1. Select Copy message headers only.

+ 2. On the ESQL tab, use the following SQL:

+ DECLARE I INTEGER;
+ SET I = 1;
+ WHILE I < CARDINALITY(InputRoot.V[]) DO
+ SET OutputRoot.V[I] = InputRoot.V[I];
+ END WHILE;
+ SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum
+ = InputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum;
+ SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.date
+ = InputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.date;
+ SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalsales
+ = InputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalsales;

+ 3. Click OK.

You can browse the extracted message using MQSeries Explorer. Select the
message on the output queue, click Properties, then the Data tab.

+ The out terminal of the Extract or Compute nodes is connected to the Trace node.

Writing a trace entry
The following SQL pattern is used to write a trace entry containing the three
extracted elements and a simple timestamp to a file:

For the message with the message repository definition:

 Appendix A. A example scenario 225

 An example scenario

Message passed through the Trace node with the following fields:

Branch number is: ${Body.storedetailselement.branchnum}
Date is: ${Body.storedetailselement.date}
Total sales are: ${Body.totalselement.totalsales}

Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}:
${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

+ For the self-defining XML message:

+ Message passed through the Trace node with the following fields:

+ Branch number is: ${Body.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum}
+ Date is: ${Body.XML.Message.receiptmsg.transactionlog.storedetailselement.date}
+ Total sales are: ${Body.XML.Message.receiptmsg.transactionlog.totalselement.totalsales}

+ Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}:
+ ${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

The trace file in our example is called mytrace in location c:\$user\trace.

Figure 56. Trace node properties

+ The out terminal of the Trace node is connected to an MQOutput node, which
+ names an MQSeries queue on which the message from the Finance flow will be
+ put.

Stock flow
The stock flow is used to add up all instances of an item sold and this information
is passed to the Distribution group so that they can maintain stock levels. For
example, if a shopper buys two bottles of shampoo, the receipt will contain two
instances of shampoo, as shown in the messages described in Figure 47 on
page 212 and Figure 49 on page 219.

226 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

The stock flow contains a Compute node that adds up product instances as shown
+ in Figure 57 on page 227 The example below shows how you can use SQL to
+ add the product instances and put the value into a new field (total item quantity) in
+ the message being output from the node. For a message repository defined
+ message, the example in “Using the stock flow with a predefined message” on
+ page 228 illustrates how you can use the drag-and-drop capabilities of the node to
+ map selected elements from an input message (Receipt Message) to a different
+ output message (Stock Message) as well as calculating the total item quantity.

Figure 57. Stock message flow

Using the stock flow with an XML message
You can use the following SQL to add up product instances in a Compute node for
self-defining XML messages:

SET OutputRoot = InputRoot;
DECLARE TotalItemQuantity INTEGER;
SET TotalItemQuantity = (SELECT SUM(CAST(T.itemquantity AS INT))
FROM InputBody.Message.receiptmsg.transactionlog.purchaseselement.[] AS T
WHERE CAST(T.itemname AS CHAR) = 'Shampoo');
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalitemquantity
= TotalItemQuantity;

This declares a new element called TotalItemQuantity as an integer and sets its
value to the sum of ItemQuantity where the ItemName is (in this example)
Shampoo. The TotalItemQuantity element is placed within the Totals compound
element in the output message.

Alternatively, you can use the following SQL using a WHILE loop to output the
same message:

 Appendix A. A example scenario 227

 An example scenario

SET OutputRoot = InputRoot;
DECLARE TotalItemQuantity INTEGER;
SET TotalItemQuantity = ;
DECLARE current INTEGER;
DECLARE stop INTEGER;
SET current = 1;
SET stop = CARDINALITY(InputBody.Message.receiptmsg.transactionlog.V[]);

WHILE current <= stop DO
IF CAST(InputBody.Message.receiptmsg.transactionlog.purchaseselement[current].
itemname AS CHAR) = 'Shampoo' THEN
SET TotalItemQuantity = TotalItemQuantity +
CAST(InputBody.Message.receiptmsg.transactionlog.purchaseselement[current]itemquantity AS INTEGER
END IF;
SET current = current + 1;
END WHILE;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalitemquantity
= TotalItemQuantity;

This loops through the receipt message increasing the value of TotalItemQuantity
by one each time it comes across an instance of Shampoo, therefore adding up all
instances of the Shampoo product in the receipt. Again, the TotalItemQuantity
element is placed within the Totals compound element in the output message.

Using the stock flow with a predefined message
The example below extracts the store name, branch number, date, time, and
purchases details from the incoming message (Receipt message) and puts them,
and a value for total item quantity, into a different output message (Stock
Message).

In the Compute node:

1. Click Add to add an input message. Select the message set Receipt
Messages and the message receiptmsg.

2. Click Add to add an output message. Select the message set Receipt
Messages and the message stockmsg.

3. Select Use as message body.

4. Select Copy message headers only

5. Expand the storedetailselement and totalselement of the input message.

Drag simple elements (for example, storename, branchnum, and so on) from
the input message onto their equivalent in the output message. You will see
the mappings build up on the Mappings tab.

6. On the ESQL tab, edit the SQL as shown below. (Much of the SQL will have
been generated for you already by the selections you made on the node
properties and by the mappings.)

228 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.V[]) DO
SET OutputRoot.V[I] = InputRoot.V[I];
SET I=I+1;
END WHILE;
SET "OutputRoot"."MRM"."storedetailselement"."storename" =
"InputBody"."storedetailselement"."storename";
SET "OutputRoot"."MRM"."storedetailselement"."branchnum" =
"InputBody"."storedetailselement"."branchnum";
SET "OutputRoot"."MRM"."storedetailselement"."date" =
"InputBody"."storedetailselement"."date";
SET "OutputRoot"."MRM"."storedetailselement"."time" =
"InputBody"."storedetailselement"."time";

DECLARE stop INTEGER;
DECLARE countitems INTEGER;
DECLARE current INTEGER;

SET stop = CARDINALITY("InputBody"."purchaseselement"[]);
SET current = 1;
SET countitems = ;

WHILE current <= stop DO
SET "OutputRoot"."MRM"."purchaseselement"[current]" =
"InputBody"."purchaseselement"[current];
IF "InputBody"."purchaseselement"[current]."itemname" = 'Shampoo' THEN
SET countitems = countitems +
"InputBody"."purchaseselement"[current]."itemquantity";
END IF;
SET current = current + 1;
END WHILE;

SET "OutputRoot"."MRM"."outputtotalselement"."totalitemquantity" = countitems;
SET OutputRoot.Properties.MessageSet = 'DHM695G 7 1';
SET OutputRoot.Properties.MessageType = 'stockmsg';

+ The out terminal of the Compute node is connected to an MQOutput node, which
+ names an MQSeries queue on which the message from the Stock flow will be put.

Partner Flow
The partner flow is used to track and keep details of products that are selling well.
If more than one of the same product is bought on the same transaction, this is
called a 'multibuy'. Each multibuy record is placed into a database for easy access
and reference by partners.

The message flow contains a Filter node to filter 'multibuy' records and a Database
node to insert the records into the Multibuy database for partners:

 Appendix A. A example scenario 229

 An example scenario

Figure 58. Partner message flow

Filtering multibuy records
+ The Filter node is set up to filter all messages with the value Yes in the Multibuy
+ field on to the Database or DataInsert node.

+ The following SQL is used for a self-defining XML message:

+ Body.Message.receiptmsg.transactionlg.totalselement.multibuy = 'Yes'

+ To configure the Filter node to use the MRM-defined message set:

+ 1. Click Add and select the message set Receipt messages and the message
+ receiptmsg.
+ 2. Expand totalselement. Drag and drop the multibuy element into the filter field
+ below.
+ 3. Edit the SQL by adding ='Yes' to the expression that was generated by the
+ drag-and-drop.

230 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

+ Figure 59. Filter node properties

+ Two terminals of the Filter node are connected:

+ � The true terminal of the Filter node is connected to the next node in the flow
+ (Database or DataInsert).
+ � The false terminal of the Filter node is connected to an MQOutput node, which
+ names an MQSeries queue on which messages will be put when their
+ “multibuy” value is “no”.

Updating the Multibuy database
The Database node updates the Multibuy database.

Before you can complete the Database node, you must create the following:

� A database called MULTIBUY
� An ODBC connection to the MULTIBUY database
� A table called MULTIBUY in the MULTIBUY database
� The columns, ITEMNAME, QUANTITY, and BRANCHNO in the MULTIBUY
table

+ You can achieve thie using the following commands, entered in a DB2 command
+ window:

+ db2 create database MULTIBUY
+ db2 connect to MULTIBUY
+ create table MULTIBUY (branchnum integer not null, itemname char(4) not null,
+ quantity integer not null)

When you have set up the database in this way, you can define the SQL to access
the information in the Database node.

1. Select Add to add the Output Database Table. Enter the name of the database
and the table.

2. Enter the following SQL:

 Appendix A. A example scenario 231

 An example scenario

INSERT INTO Database.MULTIBUY (ItemName, Quantity, BranchNo)
VALUES(Body.Message.receiptmsg.transactionlog.purchaseselement.itemname,
Body.Message.receiptmsg.transactionlog.purchaseselement.itemquantity,
Body.Message.receiptmsg.transactionlog.storedetails.branchnum)

If you have created an MRM-defined message set, you can use the DataInsert
node for inserting information into a database in place of the Database node.

To configure the DataInsert node:

1. Click Add and select the message set Receipt messages and the message
receiptmsg.
2. Click Add and add the database name, table, and columns.
3. Expand storedetailselement and purchaseselement. Drag and drop
branchnum, itemname, and quantity onto the name of the target column.

Figure 60. Data Insert node properties

+ The out terminal of the Database or DataInsert node is connected to an MQOutput
+ node, which names an MQSeries queue on which the message from the Partners
+ flow will be put.

Assigning message flows to the execution group
For the message flows to process a message you have to assign them to an
execution group.

In the Assignments view, check out the broker. Drag and drop the message flows
onto the name of the execution group in the graphic in the Domain Topology pane.

232 MQSeries Integrator V2.0 Using the Control Center

 An example scenario

Deploying the configuration
Finally, to use the configuration set up, you must deploy it. To do this, go to the
Topology view and right click on the broker. Select Deploy, Complete configuration
(all types) and Normal. Once the configuration is deployed, you can put receipt
messages onto the appropriate queues and the messages will be processed
through the message flow.

 Appendix A. A example scenario 233

 An example scenario

234 MQSeries Integrator V2.0 Using the Control Center

 C and COBOL default mappings

Appendix B. C and COBOL default mappings

This appendix describes the defaults that the C and COBOL importers use when
mapping C datatypes or COBOL datatypes to MRM datatypes. The data designer
defining a message set in the Control Center might want to follow these defaults,
but this decision will depend on the business usage of the data.

+ The MRM:

+ � Does not support pointer datatypes.

+ � Does not suppport the COBOL construct REDEFINES.

+ � Does not support the COBOL datatypes DBCS, external floating point, or binary
+ items that have a PIC declaration greater than 9 digits.

+ � Does not fully support the C datatype long double.

+ Mapping C datatypes to MRM datatypes
+ Table 23 on page 236 defines the datatype mappings for C structures.

 Copyright IBM Corp. 2000 235

 C and COBOL default mappings

+
R

ep
ea

t

+
10

+
30

+
2

+
6

+
S

tr
in

g
+

ju
st

if
ic

at
io

n

+
Le

ft
ju

st
ify

+
Le

ft
ju

st
ify

+
Le

ft
ju

st
ify

+
S

ig
n

+
S

ig
ne

d

+
S

ig
ne

d

+
S

ig
ne

d

+
S

ig
ne

d

+
U

ns
ig

ne
d

+
U

ns
ig

ne
d

+
S

ig
ne

d

+
L

en
g

th

+
4

+
1

+
10

+
3

+
6

+
4

+
4

+
4

+
4

+
2

+
4

+
8

+
2

+
1

+
2

+
P

h
ys

ic
al

 t
yp

e

+
In

te
ge

r

+
F

ix
ed

 L
en

gt
h

+
F

ix
ed

 L
en

gt
h

+
F

ix
ed

 L
en

gt
h

+
F

ix
ed

 L
en

gt
h

+
In

te
ge

r

+
In

te
ge

r

+
In

te
ge

r

+
In

te
ge

r

+
In

te
ge

r

+
F

lo
at

+
F

lo
at

+
In

te
ge

r

+
In

te
ge

r

+
B

in
ar

y

+
B

oo
le

an

+
B

oo
le

an

+
M

R
M

 l
o

g
ic

al
+

ty
p

e

+
In

te
ge

r

+
S

tr
in

g

+
S

tr
in

g

+
S

tr
in

g

+
S

tr
in

g

+
In

te
ge

r

+
In

te
ge

r

+
In

te
ge

r

+
In

te
ge

r

+
In

te
ge

r

+
F

lo
at

+
F

lo
at

+
In

te
ge

r

+
In

te
ge

r

+
B

in
ar

y

+
B

oo
le

an

+
B

oo
le

an

+
T

ab
le

 2
3.

 C
da

ta
ty

pe
s

an
d

th
ei

r
de

fa
ul

t
se

tti
ng

s
in

th
e

M
R

M

+
C

 d
at

at
yp

e

+
Lo

ng

+
C

ha
r

+
C

ha
r[

10
]

+
C

ha
r[

10
][3

]

+
C

ha
r[

10
][3

][6
]

+
In

t

+
In

t[2
]

+
In

t[2
][3

]

+
U

ns
ig

ne
d

In
t

+
U

ns
ig

ne
d

S
ho

rt

+
F

lo
at

+
D

ou
bl

e

+
Lo

ng
 D

ou
bl

e

+
N

o
te

:
 L

on
g

D
ou

bl
e

is
 o

ut
si

de
 t

he
 s

co
pe

 o
f

th
e

C
 im

po
rt

er
.

+
S

ho
rt

+
U

ns
ig

ne
d

ch
ar

+
U

ns
ig

ne
d

ch
ar

[2
]

+
(#

de
fi

ne
)B

OO
L

in
t

+
(#

de
fi

ne
)B

oo
le

an

236 MQSeries Integrator V2.0 Using the Control Center

 C and COBOL default mappings

+ Mapping COBOL datatypes to MRM datatypes
+ Columns 1 to 5 in Table 24 on page 238 describe some examples of COBOL data
+ definitions. Columns 6 to 12 describe the equivalent data mappings used to store
+ these definitions in the MRM.

+ Note: Column 12 (of 12) Jst. indicates the justification of the datatype.

 Appendix B. C and COBOL default mappings 237

 C and COBOL default mappings

+
Js

t.
+

P
ad

.
+

ch
ar

.
+

V
ir

tu
al

+
d

ec
.

+
p

o
in

t

+
0

+
0

+
2

+
0

+
0

+
0

+
S

ig
n

+
Y

+
in

cl
ud

in
g

+
tr

ai
lin

g

+
N

+
N

+
Y

+
in

cl
ud

in
g

+
tr

ai
lin

g

+
Y

+
se

pa
ra

te
+

le
ad

in
g

+
Y

+
se

pa
ra

te
+

tr
ai

lin
g

+
L

en
g

th
+

in
 b

yt
es

+
=

nu
m

 o
f

+
di

gi
ts

.
If

si
gn

+
is

 s
ep

ar
at

e,
+

ad
d

1

+
4

+
4

+
4

+
4

+
5

+
5

+
P

h
ys

ic
al

+
ty

p
e

+
ex

te
nd

ed
+

de
ci

m
al

+
ex

te
nd

ed
+

de
ci

m
al

+
ex

te
nd

ed
+

de
ci

m
al

+
ex

te
nd

ed
+

de
ci

m
al

+
ex

te
nd

ed
+

de
ci

m
al

+
ex

te
nd

ed
+

de
ci

m
al

+
ex

te
nd

ed
+

de
ci

m
al

+
L

o
g

ic
al

+
ty

p
e

+
If

>
 9

+
di

gi
ts

:
+

flo
at

+
If

a
+

fr
ac

tio
n:

+
flo

at
+

E
ls

e:
+

in
te

ge
r

+
In

te
ge

r

+
in

te
ge

r

+
flo

at

+
in

te
ge

r

+
in

te
ge

r

+
in

te
ge

r

+
In

te
rn

al
+

re
p

re
se

n
ta

ti
o

n

+
31

 3
2

33
 3

4

+
31

 3
2

33
 7

4

+
31

 3
2

33
 3

4

+
31

 3
2

33
 3

4

+
31

 3
2

33
 3

4

+
31

 3
2

33
 3

4

+
71

 3
2

33
 3

4

+
2B

 3
1

32
 3

3
+

34

+
2D

 3
1

32
 3

3
+

34

+
31

 3
2

33
 3

4
+

2B

+
31

 3
2

33
 3

4
+

2D

+
V

al
u

e

+
+

12
34

+
-1

23
4

+
12

34

+
12

34

+
12

34

+
+

12
34

+
-1

23
4

+
+

12
34

+
-1

23
4

+
+

12
34

+
-1

23
4

+
P

IC
T

U
R

E
 a

n
d

+
U

S
A

G
E

+
an

d
 o

p
ti

o
n

al
 S

IG
N

+
cl

au
se

+
PI
C
S9
99
9
DI
SP
LA
Y

+
PI
C
99
99
 D
IS
PL
AY

+
PI
C
99
V9
9
DI
SP
LA
Y

+
PI
C
S9
99
9
DI
SP
LA
Y

+
SI
GN
 L
EA
DI
NG

+
PI
C
S9
99
9
DI
SP
LA
Y

+
SI
GN
 L
EA
DI
NG

+
SE
PA
RA
TE

+
PI
C
S9
99
9
DI
SP
LA
Y

+
SI
GN
 T
RA
IL
IN
G

+
SE
PA
RA
TE

+
P

er
m

it
te

d
+

sy
m

b
o

ls

+
9
P
S
V

+
T

ab
le

 2
4

(P
ag

e
1

of
 4

).
 C

O
B

O
L

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

+
C

O
B

O
L

+
d

at
at

yp
e

+
E

xt
er

na
l

+
de

ci
m

al
+

(Z
on

ed
+

D
ec

im
al

)

238 MQSeries Integrator V2.0 Using the Control Center

 C and COBOL default mappings

+
Js

t.
+

P
ad

.
+

ch
ar

.
+

V
ir

tu
al

+
d

ec
.

+
p

o
in

t

+
S

ig
n

+
Y

+
N

+
Y

+
N

+
Y

+
L

en
g

th
+

in
 b

yt
es

+
if

<
5

de
ci

m
al

+
di

gi
ts

,
2

+
by

te
s

+
If

5
th

ru
 9

+
di

gi
ts

,
4

+
by

te
s

+
2

+
2

+
R

ou
nd

ed
+

do
w

n
re

su
lt

+
of

 (
N

um
 o

f
+

di
gi

ts
+

2)
/2

+
3

+
3

+
4

+
P

h
ys

ic
al

+
ty

p
e

+
in

te
ge

r

+
in

te
ge

r

+
in

te
ge

r

+
pa

ck
ed

+
de

ci
m

al

+
pa

ck
ed

+
de

ci
m

al

+
flo

at

+
L

o
g

ic
al

+
ty

p
e

+
in

te
ge

r

+
in

te
ge

r

+
in

te
ge

r

+
If

>
 9

+
di

gi
ts

,
+

flo
at

 I
f

a
+

fr
ac

tio
n,

+
flo

at
 E

ls
e

+
in

te
ge

r

+
in

te
ge

r

+
in

te
ge

r

+
flo

at

+
In

te
rn

al
+

re
p

re
se

n
ta

ti
o

n

+
04

 D
2

+
F

B
 2

E

+
04

 D
2

+
F

B
 2

E

+
04

 D
2

+
04

 D
2

+
01

 2
3

4C

+
01

 2
3

4D

+
01

 2
3

4F

+
44

 9
A

 4
0

00

+
V

al
u

e

+
+

12
34

+
-1

23
4

+
+

12
34

+
-1

23
4

+
12

34

+
12

34

+
+

12
34

+
-1

23
4

+
12

34

+
+

12
34

+
P

IC
T

U
R

E
 a

n
d

+
U

S
A

G
E

+
an

d
 o

p
ti

o
n

al
 S

IG
N

+
cl

au
se

+
PI
C
S9
99
9
BI
NA
RY

+
CO
MP

+
CO
MP
-4

+
CO
MP
-5

+
PI
C
99
99
 B
IN
AR
Y

+
CO
MP

+
CO
MP
-4

+
CO
MP
-5

+
PI
C
S9
99
9

+
PA
CK
ED
-D
EC
IM
AL

+
CO
MP
-3

+
PI
C
99
9

+
PA
CK
ED
-D
EC
IM
AL

+
CO
MP
-3

+
CO
MP
-1

+
P

er
m

it
te

d
+

sy
m

b
o

ls

+
9
P
S
V

+
9
P
S
V

+
no

 P
IC

 c
la

us
e

+
T

ab
le

 2
4

(P
ag

e
2

of
 4

).
 C

O
B

O
L

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

+
C

O
B

O
L

+
d

at
at

yp
e

+
B

in
ar

y

+
N

o
te

:
 B

in
ar

y
(1

0
to

 1
8

di
gi

ts
)

is
 o

ut
si

de
 t

he
 s

co
pe

 o
f

th
e

im
po

rt
er

.

+
In

te
rn

al
+

D
ec

im
al

+
(P

ac
ke

d
+

D
ec

im
al

)

+
In

te
rn

al
+

flo
at

in
g

+
po

in
t

 Appendix B. C and COBOL default mappings 239

 C and COBOL default mappings

+
Js

t.

+
L

+
de

fa
ul

t
+

L

+
R

+
L

+
de

fa
ul

t
+

R

+
R

+
P

ad
.

+
ch

ar
.

+
sp

ac
e

+
sp

ac
e

+
sp

ac
e

+
sp

ac
e

+
sp

ac
e

+
sp

ac
e

+
V

ir
tu

al
+

d
ec

.
+

p
o

in
t

+
S

ig
n

+
N

+
L

en
g

th
+

in
 b

yt
es

+
8

+
3

ch
ar

s

+
4

ch
ar

s

+
4

ch
ar

s

+
4

ch
ar

s

+
le

ng
th

 in
+

ch
ar

s=
su

m
+

of
 c

ha
rs

 in
+

P
IC

 s
tr

in
g

+
ex

cl
ud

in
g

V

+
4

+
P

h
ys

ic
al

+
ty

p
e

+
flo

at

+
fix

ed
+

le
ng

th

+
fix

ed
+

le
ng

th

+
fix

ed
+

le
ng

th

+
fix

ed
+

le
ng

th

+
fix

ed
+

le
ng

th

+
L

o
g

ic
al

+
ty

p
e

+
flo

at

+
st

rin
g

+
st

rin
g

+
st

rin
g

+
st

rin
g

+
st

rin
g

+
In

te
rn

al
+

re
p

re
se

n
ta

ti
o

n

+
C

4
9A

 4
0

00

+
40

 9
3

48
 0

0
+

00
 0

0
00

 0
0

+
C

0
93

 4
8

00
+

00
 0

0
00

 0
0

+
2B

 3
1

32
 2

E
+

33

+
41

 4
2

43

+
44

 4
5

46
 2

0

+
20

 4
4

45
 4

6

+
20

 4
1

2F
 3

3

+
30

 3
1

32
 3

3

+
20

 3
1

32
 3

3

+
24

 3
1

32
 3

3

+
20

 2
4

31
 3

2

+
31

 3
2

33
 3

4

+
31

 3
2

33
 3

4

+
V

al
u

e

+
-1

23
4

+
+

12
34

+
-1

23
4

+
+

12
34

+
A

B
C

+
D

E
F

+
D

E
F

+
A

/3

+
01

23

+
12

3

+
$1

23

+
$1

2

+
12

34

+
12

34

+
P

IC
T

U
R

E
 a

n
d

+
U

S
A

G
E

+
an

d
 o

p
ti

o
n

al
 S

IG
N

+
cl

au
se

+
CO
MP
-2

+
PI
C
+9
(2
).
9(
2)
E+
99

+
DI
SP
LA
Y

+
PI
C
A(
3)
 D
IS
PL
AY

+
PI
C
XX
X
DI
SP
LA
Y

+
PI
C
X(
4)

+
JU
ST
IF
IE
D
RI
GH
T

+
JU
ST
 R
IG
HT

+
PI
C
BX
/9
 D
IS
PL
AY

+
PI
C
99
99

+
PI
C
ZZ
Z9

+
PI
C
$$
Z9

+
PI
C
99
9V
9

+
PI
C
ZZ
ZV
9

+
P

er
m

it
te

d
+

sy
m

b
o

ls

+
no

 P
IC

 c
la

us
e

+
+
-
9
E
V

+
A

+
X

+
X
B

9
/

+
B
P
V
Z
9
 /

+
co
mm
a
sy
mb
ol

+
pe
ri
od
 s
ym
bo
l

+
+
-
CR
 D
B
V
$

+
T

ab
le

 2
4

(P
ag

e
3

of
 4

).
 C

O
B

O
L

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

+
C

O
B

O
L

+
d

at
at

yp
e

+
E

xt
er

na
l

+
flo

at
in

g
+

po
in

t

+
N

o
te

:
 E

xt
er

na
l f

lo
at

in
g

po
in

t
is

 o
ut

si
de

 t
he

 s
co

pe
 o

f
th

e
im

po
rt

er
.

+
A

lp
ha

be
tic

+
A

lp
ha

nu
m

er
ic

+
A

lp
ha

nu
m

er
ic

+
ed

ite
d

+
N

um
er

ic
+

ed
ite

d

240 MQSeries Integrator V2.0 Using the Control Center

 C and COBOL default mappings

+
Js

t.

+
R

+
P

ad
.

+
ch

ar
.

+
sp

ac
e

+
V

ir
tu

al
+

d
ec

.
+

p
o

in
t

+
S

ig
n

+
L

en
g

th
+

in
 b

yt
es

+
11

+
P

h
ys

ic
al

+
ty

p
e

+
fix

ed
+

le
ng

th

+
L

o
g

ic
al

+
ty

p
e

+
st

rin
g

+
In

te
rn

al
+

re
p

re
se

n
ta

ti
o

n

+
24

 3
1

32
 3

3
+

2C
 3

4
35

 3
6

+
2E

 3
7

38

+
V

al
u

e

+
$1

23
,4

56
.7

8

+
P

IC
T

U
R

E
 a

n
d

+
U

S
A

G
E

+
an

d
 o

p
ti

o
n

al
 S

IG
N

+
cl

au
se

+
PI
C
$Z
ZZ
,Z
Z9
V.
99

+
P

er
m

it
te

d
+

sy
m

b
o

ls

+
B

G
N

+
T

ab
le

 2
4

(P
ag

e
4

of
 4

).
 C

O
B

O
L

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

+
C

O
B

O
L

+
d

at
at

yp
e

+
D

B
C

S

+
N

o
te

:
 D

B
C

S
 is

 o
ut

si
de

 t
he

 s
co

pe
 o

f
th

e
im

po
rt

er
.

 Appendix B. C and COBOL default mappings 241

 C and COBOL default mappings

242 MQSeries Integrator V2.0 Using the Control Center

 SQL reference � Basic message structure

 Appendix C. SQL reference

This appendix describes how to use the SQL expressions that are necessary for
configuring Filter, Compute, and Database nodes in MQSeries Integrator. A
common syntax, based on standard SQL, is used in these nodes. Exceptions to
standard SQL constructs are included here: the standard constructs are not
documented in detail.

Basic message structure
The example below is the text of a simple XML message. Many of the examples in
this appendix are based on this message or messages of this form.

<Trade type='buy'
 Company='IBM'
 Price='2 .2 '
 Date='2 - 1- 1'
 Quantity='1 '/>

If this message is received on an MQSeries queue, the message originated in the
message flow from an MQInput node, and had an MQRFH2 header. The tree
representation of this message would look like this (where indentation shows
containment):

Root
 Properties

CreationTime=GMTTIMESTAMP '1999-11-24 13:1 : '
(a GMT timestamp field)

... and other fields ...

 MQMD
 PutDate=DATE '19991124'

(a date field)

 PutTime=GMTTIME '131 '
(a GMTTIME field)

... and other fields ...

 MQRFH
 mcd
 msd='xml'

(a character string field)
.. and other fields ...

 XML
 Trade
 type='buy'

(a character string field)

 Company='IBM'
(a character string field)

 Price='2 '
(a character string field)

 Date='2 - 1- 1'
(a character string field)

 Quantity='1 '
(a character string field)

 Copyright IBM Corp. 2000 243

 Basic message structure

A good way to see the structure of the syntax element tree of a message is to use
a simple message flow that contains a Trace node configured using a trace pattern
such as "${Root}". The Trace node produces a trace entry that contains a tree
similar to the one shown above. For an explanation of the different datatypes that
fields can have, such as character string and GMT timestamp, see “Data types” on
page 245.

Note: It is important to realize when working with generic XML messages, such as
the one shown in the previous example, that all of the values derived from a
generic XML message are character strings. In some situations, the character
string values are implicitly cast to other types, but in other situations it is necessary
explicitly to cast the value into one of the correct type. For a more detailed
explanation of the implications of these actions, see “Data types” on page 245.

When working with message formats that are managed through the Control Center,
either XML or record-oriented messages, you define the datatype associated with
each field. For example, in this case you would have defined the Quantity field to
be an integer type, and the field would be represented in the tree as an integer,
rather than as a string.

For more information on basic message concepts, see Chapter 3, “Defining
messages” on page 21.

Referring to simple fields in a message
You refer to fields in a message using a field reference. A field reference has a
very similar format and meaning to a path in a file system. In its simplest form, a
field reference consists of a period-separated sequence of identifiers. These
identify the path down the tree to get to the field that you want. The simplest form
of identifier is a sequence of alphanumeric characters, the first of which must be an
alphabetic character. Not all paths have to start at the root of the tree, so the first
identifier in the chain indicates the starting point for the navigation.

Common examples for this first identifier, called the correlation name are "Root",
meaning start at the root of the tree, and "Body", meaning start at the root of the
"body" of the message, that is, the last child of the root node in the tree. For
example, to refer to the Quantity field in the above example, you could write:

Body.Trade.Quantity

Using "Body" is recommended in these cases, but you could also have written:

Root.XML.Trade.Quantity

However, this second form means that the sort of message you are dealing with, in
this case XML, is coded into the field reference. To refer to fields that have periods
(".") or spaces in their names you can use an alternative form of identifier that is
any sequence of characters surrounded by double quotation marks ("). Note that
double quotation marks must be used, and not single quotation marks (') so, for
example, you could write the following field reference:

Body."Companies on Wall Street"."Stock brokers and merchant banks"

Two consecutive double quotation marks are used to represent a single double
quote in an identifier. If you wanted to reference a field called "hello", you would
need to use the following identifier:

"""hello"""

244 MQSeries Integrator V2.0 Using the Control Center

 A simple filter � Data types

Some identifiers are reserved as keywords. The keywords are not case sensitive,
but double quotation marks can be used in these situations to stop the identifier
being interpreted as a keyword. For example SET is a keyword, so to refer to a
field called Set in a message, you need to write a field reference such as:

Body."Set"

For a full list of keywords, see “Reserved keywords” on page 290.

A simple filter
A Filter node is configured with a single expression called a predicate. A predicate
is an expression that gives a boolean result. If you have a stream of messages
such as those used as examples in the previous section, and you want to perform
a special function, such as storing information about IBM trades in a particular
database, you will need to write a filter node to select messages whose Company
field has the value IBM. The expression that achieves this filter is as follows:

Body.Trade.Company = 'IBM'

This expression takes the value of the Company field in the message and compares
it for equality with the character string defined by the literal 'IBM'.

You can configure a node that contains this filter expression in the Message Flows
view. See “Filter node” on page 104 for more information.

 Data types
Now that you have been introduced to simple filter expressions, you need to
understand some more about the types of value that you can work with.

 Numbers
The standard SQL datatypes INTEGER, FLOAT and DECIMAL are supported, but you
should take note of the following:

Integers
The integer datatype stores numbers using 64-bit binary precision, so giving a
range of values between -9223372036854775808 and 9223372036854775807.
In addition to the normal integer literal format, integer literals can be written in
hexadecimal notation, for example x1234abc.

The hexadecimal letters A to F can be written in uppercase or lowercase, as can
the 'x' after the initial zero.

Note: If a literal of this form is too large to be represented as an integer, it is
represented as a decimal.

Floats
A value of the float datatype is a 64 bit approximation of a real number. A float
literal is defined using the scientific notation, as in 6.626 755e-34.

The case of the "e" is not significant so "E" can be used instead if necessary. It
is the "e" that identifies this value as a float literal.

 Appendix C. SQL reference 245

 Data types

 Strings
Strings can be character strings, byte strings, or bit strings.

+ � A string of any type must be enclosed in single quotes (as shown in the
+ examples below, and throughout this appendix).

+ � If you want to include a single quote within a character string literal, you must
+ use another single quote.

+ For example, the assignment SET X='he'was'' puts the value he'was' into X.

Character strings
Character strings in MQSeries Integrator are stored using Unicode.

Byte strings
A byte string is a series of 8-bit bytes that is used to represent arbitrary binary
data. A byte string literal is defined using a string of hexadecimal digits, as in the
following example:

X' 123456789ABCDEF'

There must be an even number of digits in the string, because two digits are
required to define each byte. Each digit can be one of the hexadecimal digits.
The hexadecimal letters can be specified in uppercase or lowercase.

Bit strings
A bit string is a series of bits used to represent arbitrary binary data that does not
contain an exact number of bytes. Bit string literals are defined in a similar way
to byte string literals, for example:

B' 1 1 1 1'

Any number of digits, which must be either 0 or 1, can be specified.

 Datetime types
The DATE, TIME, TIMESTAMP, GMTTIME and GMTTIMESTAMP datatypes are collectively
known as datetime datatypes. The normal DATE, TIME and TIMESTAMP datatypes are
supported. The following are examples of literals for these datatypes:

+ DATE '1999-11-18'
+ DATE '2 - 2-29'
+ TIME '12: 2: '
+ TIME ' 6: : '
+ TIME '11:49:23.656'
+ TIMESTAMP '1999-12-31 23:59:59'

The format of the character string following the DATE keyword is 'yyyy-mm-dd'. The
character string includes a 4-digit year field, followed by a 2-digit month field, in
which '01' represents January. (Note that a leading zero is required as the field
must always be two digits.) The month field is followed by a 2-digit day field, which
must also always be 2 digits, so a leading zero might be required. Each of the
hour, minute and second fields in a TIME or TIMESTAMP literal must always be two
digits. The exception is the optional fractional seconds field which, if present, can
be up to 6 digits in length.

GMTTime
The GMTTime datatype is very similar to the Time datatype, except that the time
values are interpreted as values in Greenwich Mean Time. GMTTime values are
defined in much the same way as Time values, that is, as GMTTIME '12: : '.

246 MQSeries Integrator V2.0 Using the Control Center

 Data types

GMTTimestamp
As with the GMTTime datatype, the GMTTimestamp datatype is very similar to
the Timestamp datatype, except that the values are interpreted as values in
Greenwich Mean Time. GMTTimestamp values are defined in much the same
way as Timestamp values, that is as GMTTIMESTAMP '1999-12-31
23:59:59.999999'.

 Interval
An interval value represents an interval of time. There are two kinds of interval
values:

� One that is specified in years and months.

� One that is specified in days, hours, minutes and seconds (including fractions
of a second).

The split between months and days arises because the number of days in each
month varies. An interval of one month and a day is not really meaningful, and
certainly cannot be sensibly converted into an equivalent interval in numbers of
days only.

An interval value has a qualifier associated with it that indicates which fields are
present. If it contains both a year and a month value, the month value must be
within the range [, 11]. However, in the case of an interval containing just a
month value, that value is unconstrained. So, for example, an interval value of 18
months is valid, but an interval value of 2 years and 18 months is not valid.

A day interval contains a sign and a contiguous sequence of fields from the list
DAY, HOUR, MINUTE, and SECOND. The qualifier indicates which fields are
present. As with year-and-month intervals, the value of the first field is
unconstrained, but the values of the subsequent fields are constrained as follows:

Field Valid values
HOUR 0-23
MINUTE 0-59
SECOND 0-59.999...

Some examples of valid interval values are:

 � 72 hours
� 3 days and 23 hours

 � 3600 seconds
� 90 minutes and 5 seconds

Some examples of invalid interval values are:

� 3 days and 36 hours

A day field is specified, so the hours field is constrained to [,23].

� 1 hour and 90 minutes

An hour field is specified, so minutes are constrained to [,59].

An interval literal is defined by the following syntax:

INTERVAL <interval string> <interval qualifier>

 Appendix C. SQL reference 247

 Predicates

The format of interval string and interval qualifier are defined by the following table:

Table 25. Format of interval strings and qualifiers

Interval qualifier Interval string format Example

YEAR '<year>' or '<sign> <year>' '10'

YEAR TO MONTH '<year>-<month>' or '<sign>
<year>-<month>'

'- 2-06'

MONTH '<month>' or '<sign> <month>' '18'

DAY '<day>' or '<sign> <day>' '-30'

DAY TO HOUR '<day> <hour>' or <sign> <day>
<hour>'

'1 02'

DAY TO MINUTE '<day> <hour>:<minute>' or
'<sign> <day> <hour>:<minute>'

'1 02:30'

DAY TO SECOND '<day>
<hour>:<minute>:<second>' or
'<sign> <day>
<hour>:<minute>:<second>'

'1 02:30:15' or '-1 02:30:15.333'

HOUR '<hour>' or '<sign> <hour>' '24'

HOUR TO MINUTE '<hour>:<minute>' or '<sign>
<hour>:<minute>'

'1:30'

HOUR TO SECOND '<hour>:<minute>:<second>' or
'<sign>
<hour>:<minute>:<second>'

'1:29:59' or '1:29:59.333'

MINUTE '<minute>' or '<sign> <minute>' '90'

MINUTE TO SECOND '<minute>:<second>' or '<sign>
<minute>:<second>'

'89:59'

SECOND '<second>' or '<sign> <second>' '15' or '15.7'

Here are some simple examples of interval literals:

INTERVAL '1' HOUR
INTERVAL '9 ' MINUTE
INTERVAL '1- 6' YEAR TO MONTH

 Boolean
A boolean represents a true or false value although there are exceptions. See
“Optional fields and NULLs” on page 256 for more information.

A valid filter expression must always return a boolean value. A literal boolean can
be defined using one of the keywords TRUE, FALSE, or UNKNOWN.

 Predicates
The expression used to configure a Filter node must produce a boolean result.
That means that in general it will consist of one kind of predicate. Many of the
standard predicates are supported, and are listed in this section. Predicates can be
combined using the AND, OR and NOT operators. In the following description, only
the differences from standard SQL are described.

248 MQSeries Integrator V2.0 Using the Control Center

 Predicates

 Comparisons
The standard SQL comparison operators >, <. >=, <=, =, <> are supported.

 Numeric types
The comparison operators operate on all three numeric types.

 Character strings
You cannot define an alternative collation order that, for example, collates upper
and lowercase characters equally.

Note: When comparing character strings, trailing blanks are not significant so the
comparison 'hello' = 'hello ' returns true.

 Datetime values
Datetime values are compared in accordance with the natural rules of the
Gregorian calendar and clock.

You can compare the time zone you are working in with the GMT time zone. The
GMT time zone is converted into a local time zone based on the time zone
difference between your local time zone and the GMT time specified.

When you compare your local time with the GMT time, the comparison is based on
the difference at a given time on a given date.

Conversion is always based on the value of LOCALTIMEZONE. This is because
GMTTimestamps are converted to local Timestamps only if it can be done
unambiguously. Converting a local Timestamp to a GMTTimestamp has difficulties
around the daylight saving cut-over time, and converting between times and GMT
times (without date information) has to be done based on the LOCALTIMEZONE
value, because you cannot specify which time zone difference to use otherwise.

 Booleans
Boolean values can be compared using all or the normal comparison operators.
The TRUE value is defined to be greater than the FALSE value. Comparing either
value to the UNKNOWN boolean value (which is equivalent to NULL) returns an
UNKNOWN result.

 Intervals
Intervals are compared by converting the two interval values into intermediate
representations, so that both intervals have the same interval qualifier. Year-month
intervals can be compared only with other year-month intervals, and day-second
intervals can be compared only with other day-second intervals.

For example, if an interval in minutes, such as INTERVAL '12 ' MINUTE is compared
with an interval in days to seconds, such as INTERVAL ' 2: 1: ', the two
intervals are first converted into values that have consistent interval qualifiers,
which can then be compared. So, in this example, the first value could be
converted into an interval in days to seconds, which will give INTERVAL '
 2: : ' which can then be compared with the second value.

 Appendix C. SQL reference 249

 Predicates

Character strings and other types
If a character string is compared to a value of another type, MQSeries Integrator
attempts to cast the character string into a value of the same datatype as the other
value. For example, you could write an expression such as:

'1234' > 4567

The character string on the left would be converted into an integer before the
comparison takes place. This behavior reduces some of the need for explicit CAST
operators when comparing values derived from a generic XML message with literal

+ values. (For details of explicit casts that are supported, see Table 26 on
+ page 279.) It is this facility that allows you to write an expression such as:

+ Body.Trade.Quantity > 5

In this example, the field reference on the left evaluates to the character string
'1000' and, because this is being compared to an integer, that character string is
converted into an integer before the comparison takes place. Note that you must
still check whether the price field that you want interpreted as a decimal is greater
than a given threshold. You must make sure that the literal you compare it to is a
decimal value and not an integer. For example:

Body.Trade.Price > 1

would not have the desired effect, because the Price field would be converted into
an integer, and that conversion would fail because the character string contains a
decimal point. However, the following expression will succeed:

Body.Trade.Price > 1 .

 BETWEEN predicate
The standard default asymmetric form of the BETWEEN predicate is supported.
This requires you to specify the smallest end-point value first, followed by the
largest. You can use the ASYMMETRIC keyword, but in its absence the
asymmetric form is implied.

If you prefer you can make the BETWEEN predicate symmetric by specifying the
optional keyword SYMMETRIC after BETWEEN. In the symmetric form of the
predicate, the order in which you specify the two end-point values is not significant.
For example, the following two expressions are identical:

2 BETWEEN SYMMETRIC 1 AND 3
2 BETWEEN SYMMETRIC 3 AND 1

Both expressions return the value "TRUE".

 LIKE predicate
+ The LIKE predicate searches for strings that have a certain pattern. The standard
+ LIKE predicate for performing simple string-pattern matching is supported.

+ The pattern is specified by a string in which the percent (%) and underscore (_)
+ characters can be used to have special meaning:

+ � The underscore character _ represents any single character.

+ For example, the following predicate finds matches for ‘IBM’ and for ‘IGI’, but
+ not for ‘International Business Machines’ or ‘IBM Corp’:

250 MQSeries Integrator V2.0 Using the Control Center

 Other sorts of expression

+ Body.Trade.Company LIKE ‘I__’

+ � The percent character % represents a string of zero or more characters.

+ For example, the following predicate finds matches for ‘IBM’, ‘IGI’, ‘International
+ Business Machines’, and ‘IBM Corp’:

+ Body.Trade.Compacy LIKE ‘I%’

+ If you want to use the percent and underscore characters within the expressions
+ that are to be matched, you must precede these with an ESCAPE character, which
+ defaults to the backslash (\) character.

+ For example, the following predicate finds a match for ‘IBM_Corp’.

+ Body.Trade.Company LIKE ‘IBM_Corp’

+ You can specify a different escape character by using the ESCAPE clause on the
+ LIKE predicate. For example, you could also specify the previous example like this:

+ Body.Trade.Company LIKE ‘IBM$_Corp’ ESCAPE ‘$’

 IN predicate
An IN predicate of the following form is supported:

expression IN (expressiona, expressionb, ..., expressionk)

The IN predicate:

+ � Evaluates to TRUE if the comparison between the first expression and one of
+ the expressions inside the parentheses evaluates to TRUE.

+ � Evaluates to FALSE if the comparison between the left-hand expression and all
+ of the expressions inside the parentheses evaluate to FALSE.

+ � Evaluates to UNKNOWN if at least one comparison evaluates to UNKNOWN,
+ and none evaluate to TRUE.

Other sorts of expression
The examples of predicates so far have all used simple literals or field references
as the operands. However, you can use more general expressions.

Character string expressions
Character strings can be combined using the concatenation operator '||',
manipulated using the SUBSTRING, TRIM or OVERLAY functions, or can be
queried using the POSITION or LENGTH functions.

 SUBSTRING function
Instead of using a LIKE predicate to match messages whose Company field starts
with 'TQ_', you could use a SUBSTRING function to strip off the first three
characters of the Company field, and then compare the result to 'TQ_' You do this
using the following:

SUBSTRING(Body.Trade.Company FROM 1 FOR 3) = 'TQ_'

The character positions in the string start at 1, so the FROM 1 clause indicates that
the substring should start at the first character. The FOR 3 clause indicates that
three characters should be included in the substring.

 Appendix C. SQL reference 251

 Other sorts of expression

 POSITION function
An alternative approach is to use the POSITION function, which behaves like the
inverse of the SUBSTRING function. It takes two strings and returns the position of
the first string inside the second string, or 0 if the substring cannot be found. So
the filter above could equally have been written:

POSITION('TQ_' IN Body.Trade.Company) = 1

 TRIM function
The TRIM function can be used to remove leading and trailing characters from a
string. In its simplest form it removes leading and trailing blanks from a string.
However any character can be trimmed, and characters can be trimmed from either
the front or the rear of a string. If you have a field in a message that is padded at
the end with an unknown number of 'x' characters, and you want to compare the
body of the string to a literal value, you could write:

TRIM(TRAILING 'x' FROM Body.Trade.Company) = 'Uncertain'

The TRAILING keyword indicates that you want to strip trailing characters. You
can strip leading characters using the LEADING keyword, and you can strip
characters from both ends using the BOTH keyword, or by leaving it out altogether.
(BOTH is the default.) For example, to strip 'x' characters from the beginning and
end of the string, you could write:

TRIM('x' FROM Body.Trade.Company) = 'Uncertain'

By default, blanks are stripped from a string, so if this is what you want you can
leave out the character altogether, as in:

TRIM(LEADING FROM Body.Market.Sector) = 'Target'

The FROM keyword is not necessary, and is in fact prohibited if neither a trim
specification, for example LEADING or TRAILING, nor a trim character, is specified.
To strip blanks from the beginning and end of a string, you could write:

TRIM(Body.Market.Sector) = 'Target'

Note that it is often unnecessary to strip trailing blanks from character strings
before comparison because the rules of character string comparison mean that
trailing blanks are not significant.

 CAST expressions
A cast expression is used to cast, or change, a value of one datatype into a
corresponding value of another datatype. CAST expressions are used often when
dealing with generic XML messages: all fields in a generic XML message have
string values, therefore to perform arithmetic calculations or datetime comparisons
(for example), the string value of the field must first be cast into a value of the
appropriate type. If you wanted to filter on trade messages where the date of the
trade was today, you could write the following expression:

CAST(Body.Trade.Date AS DATE) = CURRENT_DATE

In this example, the string value of the Date field in the message is converted into a
date value, and then compared with the current date. The conversion is based on
the same character string format as is used for specifying date literals. This is

+ generally the case when casting character strings to other types. A full list of the
+ casts that can be performed is defined in Table 26 on page 279.

252 MQSeries Integrator V2.0 Using the Control Center

 Other sorts of expression

Note: It is not always necessary to cast values between types. Some casts are
done implicitly. For example, numbers are implicitly cast between the three numeric
types for the purposes of comparison and arithmetic. Character strings are also
implicitly cast to other datatypes for the purposes of comparison.

 Numeric expressions
Values from the three numeric datatypes can be combined using the normal
arithmetic operators, which work in the conventional manner of SQL operators. For
example:

CAST(Body.Trade.Quantity AS INTEGER)
 V CAST(Body.Trade.Price AS DECIMAL) > 1

Remember that the fields in this sample generic are character strings because it is
a generic XML message, so you need to cast the fields to values of the correct
type. With all of the arithmetic operators there is the possibility that a run-time error
can occur. For example, a run-time error occurs for the divide-by-zero situation,
and for the arithmetic-overflow situation. Some other common numeric functions
are provided, such as:

ABS Returns the absolute value of a number.

CEIL Returns the smallest number greater than or equal to the argument.

FLOOR Returns the largest number less than or equal to the argument.

MOD Returns a remainder after integer division.

SQRT Returns the square root of its argument.

More details of all of these functions can be found in “Numeric functions” on
page 285.

 Datetime expressions
You can use arithmetic operators to perform various natural calculations on
Datetime values. For example, you can calculate the difference between two dates
as an interval, or you can add an interval to a timestamp.

Adding an interval to a Datetime value
The simplest operation you can perform is to add an interval to, or subtract an
interval from, a Datetime value. For example, you could write the following
expressions:

DATE '2 - 1-29' + INTERVAL '1' MONTH
TIMESTAMP '1999-12-31 23:59:59' + INTERVAL '1' SECOND

Adding or subtracting two intervals
Two interval values can be combined using addition or subtraction. The two
interval values must be of compatible types. For example, it is not valid to add a
year-month interval to a day-second interval. So the following example is not valid:

INTERVAL '1- 6' YEAR TO MONTH + INTERVAL '2 ' DAY

The interval qualifier of the resultant interval is sufficient to encompass all of the
fields present in the two operand intervals. For example:

INTERVAL '2 1' DAY TO HOUR + INTERVAL '123:59' MINUTE TO SECOND

 Appendix C. SQL reference 253

 Other sorts of expression

would result in an interval with qualifier DAY TO SECOND, because both day and
second fields are present in at least one of the operand values.

Subtracting two Datetime values
Two Datetime values can be subtracted to return an Interval. In order to do this an
interval qualifier must be given in the expression to indicate what precision the
result should be returned in. For example:

(CURRENT_DATE - DATE '1776- 7- 4') DAY

would return the number of days since the 4th July 1776, whereas:

(CURRENT_TIME - TIME ' : : ') MINUTE TO SECOND

would return the age of the day in minutes and seconds.

 Scaling Intervals
An interval value can be multiplied by or divided by an integer factor:

INTERVAL '2:3 ' MINUTE TO SECOND / 4

Extracting fields from Datetimes and Intervals
You can extract individual fields from datetime values and intervals using the
EXTRACT function. For example, you could extract the second field of the current
time with the expression:

EXTRACT(SECOND FROM CURRENT_TIME)

You can use any of the keywords YEAR, MONTH, DAY, HOUR, MINUTE, and
SECOND in the EXTRACT function, but you can only extract a field that is present
in the source value. Either a parse-time or a run-time error is generated if the
requested field does not exist but this depends on how early the error can be
detected. Other examples include:

EXTRACT(YEAR FROM CURRENT_DATE)
EXTRACT(HOUR FROM LOCAL_TIMEZONE)

 CASE expressions
+ Both the simple and searched forms of the SQL CASE expression are supported.
+ You can only use CASE as an expression, not as a statement.

+

+ __──CASE──_

+ ┌ ┐+ ─ELSE NULL──────────────
+ _─+ ──┬ ┬+ ─┤ searched-when-clause ├─ ──┼ ┼────────────────────────+ ─END───_g
+ └ ┘+ ─┤ simple-when-clause ├─── └ ┘──ELSE result-expression

+ searched-when-clause:
+ ┌ ┐──
+ ├─ ───j ┴──WHEN search-condition+ ─THEN─ ──┬ ┬+ ─result-expression─ ──────────┤
+ └ ┘+ ─NULL──────────────

+ simple-when-clause:
+ ├─+ ─expression───_

+ ┌ ┐──
+ _─ ───j ┴+ ─WHEN ─+ ─expression─+ ─THEN─ ──┬ ┬+ ─result-expression─ ──────────────┤
+ └ ┘+ ─NULL──────────────

254 MQSeries Integrator V2.0 Using the Control Center

 Other sorts of expression

+ If you use the simple form, the value of the expression prior to the first WHEN
+ keyword is tested for equality with the value of the expression following the WHEN
+ keyword. The datatype of the expression prior to the first WHEN keyword must
+ therefore be comparable to the datatype of each expression following a WHEN
+ keyword.

+ The following examples show CASE expressions used as part of a Filter
+ expression:

+ Body.TestCase.Result = CASE SUBSTRING(Body.TestCase.Val1 FROM 1 FOR 1)
+ WHEN 'A' THEN 'Administration'
+ WHEN 'B' THEN 'Human Resources'
+ WHEN 'C' THEN 'Accounting'
+ WHEN 'D' THEN 'Design'
+ WHEN 'E' THEN 'Operations'
+ ELSE 'Manufacturing'
+ END

+ Body.TestCase.Result = CASE WHEN CAST(Body.TestCase.Val1 AS INT)
+ < 15 THEN 'SECONDARY' WHEN CAST(Body.TestCase.Val1 AS INT)
+ < 19 THEN 'COLLEGE' END

+ The following two examples show CASE expressions as part of a Filter expression
+ where the CASE is being used within a SELECT against an external database.

+ Body.TestCase.Val1 =
+ THE (SELECT ITEM CASE SUBSTRING(B.broker_firstname FROM 1 FOR 1)
+ WHEN 'D' THEN 'Dave' ELSE 'noname' END
+ FROM Database.broker_details AS B
+ WHERE B.broker_id = CAST(Body.TestCase.Val2 AS INT))

+ CAST(Body.TestCase.Val1 AS INT) =
+ THE (SELECT ITEM C.cust_id FROM Database.customer_details AS C WHERE
+ C.cust_id = CAST(Body.TestCase.Val2 AS INT) AND
+ C.cust_status = CASE WHEN
+ CAST(Body.TestCase.Val3 AS INT) = 1 THEN 'A'
+ ELSE 'I' END)

 Comments
Comments can be included in an expression. There are two forms of comment:

� Line comments are initiated by two consecutive minus signs, and the comment
is terminated by an end-of-line character.

� Block comments are initiated by "/*" and are terminated by "*/". Block
comments can be nested.

In arithmetic expressions you must take care not to initiate a line comment
accidentally. For example, consider the expression:

1 - -2

Removing all white space from the expression results in:

1--2

which is interpreted as the number 1, followed by a line comment.

 Appendix C. SQL reference 255

 Symbolic constants � Optional fields and NULLs

 Symbolic constants
Individual parsers can define symbolic constants for values that might appear in a
message. For a list of the constants that can be used, see the documentation of
the individual parsers in the Control Center online help.

Constants can be defined either with or without a qualifier, so two syntaxes exist for
referencing constants.

This example shows a one-part constant name:

SET OutputRoot.MQMD.StrucID=MQMD_STRUC_ID;

This example shows a two-part constant name:

+ SET OutputRoot.XMLfield=XML.pcdata;

Optional fields and NULLs
If you want to process XML messages based on a field that is not always present
in a message, you can use a DTD and define default values for attributes. With
other messages, you can write a field reference in an expression that refers to any
field, regardless of whether such a field exists in the message, or could ever exist
in the message. If, when that field reference is evaluated, no matching field is
found, a NULL value is returned. A NULL value indicates the absence of a value,
and should not be confused with, for example, the empty string. You can always
write a filter expression such as:

Body.Every.Field.Is.Valid > 123

However, it is probable that the field reference will result in a NULL value.

NULLs and expressions
The effect on a predicate or expression if one of the values is NULL is that the
whole expression evaluates to NULL. The expression in the previous example
attempts to compare the NULL value to the integer 123, which results in the NULL
value. This behavior is based on interpreting NULL as "Could be anything". If the
value of one field in an expression could be anything, the result of the expression
could be anything.

Note that the UNKNOWN boolean value is interpreted as a NULL so, for example,
comparing TRUE with UNKNOWN results in UNKNOWN, in the same way that
comparing an integer with NULL results in unknown.

The logical operations AND and OR treat null values differently. The effect of
NULL expressions on the values P and Q in AND|OR|NOT operations (as in normal
SQL usage) are shown below.

256 MQSeries Integrator V2.0 Using the Control Center

 Repeating fields

P Q P AND Q P OR Q

T T T T

F T F T

T F F T

F F F F

U T U T Note the AND and OR results.

U F F U Note the AND and OR results.

T U U T Note the AND and OR results.

F U F U Note the AND and OR results.

U U U U Note the AND and OR results.

The NULL predicate
Given that NULLs can have undesirable effects on expressions, you can guard
against getting unexpected NULL values in your expressions by testing optional
expressions to see whether the field evaluates to NULL using the NULL predicate
before using it. The NULL predicate has the following form:

Body.Invoice.Quantity IS NOT NULL

The above expression returns true if the Invoice.Quantity field appeared in the
message.

The NOT keyword can, of course, be omitted to reverse the result.

 Repeating fields
The examples so far have been based on a relatively simple message. However,
messages are very likely to contain repeating fields, and these are supported by
MQSeries Integrator.

Figure 61 defines a message with some repeating fields that illustrate some of
these facilities. This message contains product order information, such as might
appear in an invoice message, or an online bookshop purchase.

 <Invoice>
 <Customer>
 <Name>Albert Einstein</Name>
 <InvoiceAddress>
 <Address>Patent Office</Address>
 <Address>Bern</Address>
 <Address>Switzerland</Address>
 </InvoiceAddress>
 </Customer>

Figure 61 (Part 1 of 2). Repeating fields in a message

 Appendix C. SQL reference 257

 Repeating fields

 <Item>
 <Book>
 <Title>Principia Mathmatica</Title>
 <Author>Isaac Newton</Author>
 <ISBN> -52 - 8816 6</ISBN>
 </Book>
 <Price>6 </Price>
 <Quantity>1</Quantity>
 </Item>

 <Item>
 <Book>

<Title>A Brief History of Time</Title>
 <Author>Stephen Hawking</Author>
 <ISBN> -553-175211</ISBN>
 </Book>
 <Price>7.99</Price>
 <Quantity>1</Quantity>
 </Item>

 <Item>
 <Stationary>pencil</Stationary>
 <Price> .2 </Price>
 <Quantity>2 </Quantity>
 </Item>
 <Item>
 <Stationary>paper</Stationary>
 <Price>1.99</Price>
 <Quantity>1 </Quantity>
 </Item>
 </Invoice>

Figure 61 (Part 2 of 2). Repeating fields in a message

 Array indices
If you know how many instances there are of a repeating field, and you want to
access a specific instance of such a field, you can use an array index as part of a
field reference. For example, if you wanted to filter on the first line of an address,
to expedite the delivery of an order, you could write an expression such as:

+ Body.Invoice.Customer.InvoiceAddress.Address[1] = '1 Downing Street'

The array index [1] indicates that it is the first instance of the repeating field that
you are interested in (array indices start at 1). An array index such as this can be
used at any point in a field reference, so you could, for example, filter on:

Body.Invoice."Item"[1].Quantity > 2

If you do not know exactly how many instances of a repeating field there are, you
can look at the last instance, or a relative field (for example, the third field from the
end). You can refer to the last instance of a repeat by using the special LAST array
index, as in:

Body.Invoice."Item"[LAST]

258 MQSeries Integrator V2.0 Using the Control Center

 Repeating fields

Alternatively, you can use the CARDINALITY function to determine how many
instances of a repeating field there are, and use the result to refer to the second to
last, for example. The following example shows how to do this:

Body.Invoice."Item"[CARDINALITY(Body.Invoice."Item"[]) - 2]

In this case, the CARDINALITY function is passed a field reference that ends in [].
The meaning of this is "count all instances of the Item field". The [] at the end
appears superfluous, because the context indicates that this is the meaning, but its
presence is required. This makes the syntax consistent with other instances where
it is necessary to refer to "all instances" of something. Remember that array
indices start at 1, so the array index in the above example refers to the
third-from-last instance of the Item field.

Arbitrary repeats: the quantified predicate
It is more likely that you do not know how many instances of a repeating field there
are in a message. This is the situation that arises with the Item field in the
example message. In order to write a filter that takes into account all instances of
the Item field, you need to use a construct that can iterate over all instances of a
repeating field. The quantified predicate allows you to execute a predicate against
all instances of a repeating field, and collate the results.

For example, you might want to verify that none of the items that were being
ordered had a unit price greater than 1000 pounds. To do this you could write:

FOR ALL Body.Invoice."Item"[] AS I (I.Quantity <= 1)

There are several things to note about this example. Firstly, you have to put
double quotation marks around the Item in the field reference Body.Invoice.Item[].
This is because Item is a keyword, and the double quotation marks are necessary
to prevent it from being interpreted as a keyword and so giving a syntax error.
Secondly, note that the expression "I.Quantity <= 1 " compares a character
string value (the value of the Quantity field from the message) with an integer (the
literal 1000). This makes use of the implicit casting of the character string to an
integer that occurs in this instance.

With the quantified predicate itself, the first thing to note is the "[]" on the end of
the field reference after the "FOR ALL". The square brackets tell you that you are
iterating over all instances of the Item field. In some cases, this syntax appears
unnecessary because you can get that information from the context, but it is done
for consistency with other pieces of syntax. The "AS" clause associates the name
I with the current instance of the repeating field. This is similar to the loop variable
in the FOR statement of a procedural language like C++. The expression in
parentheses is a predicate that is evaluated for each instance of the Item field.

A fuller description of this example is:

1. Iterate over all instances of the field Item inside Body.Invoice.

2. For each iteration:

a. Bind the name I to the current instance of Item.

b. Evaluate the predicate I.Quantity <= 1 . If the predicate:

� Evaluates to TRUE for all of the instances of Item, return TRUE.

� FALSE for any instance of Item, return FALSE.

 Appendix C. SQL reference 259

 Repeating fields

� Returns a mixture of TRUE and UNKNOWN, return UNKNOWN.

The above is a description of how the predicate is evaluated if the "ALL" keyword
is used. An alternative is to specify "SOME", or "ANY", which are equivalent. In
this case the quantified predicate returns TRUE if the sub-predicate returns TRUE
for any instance of the repeating field. Only if the sub-predicate returns FALSE for
all instances of the repeating field does the quantified predicate return FALSE. If a
mixture of FALSE and UNKNOWN values is returned from the sub-predicate, an
overall value of UNKNOWN is returned.

Another example of the quantified predicate shows how you can take special action
when someone orders a copy of "Principia Mathematica". You can write the
following filter expression:

+ FOR ANY Body.Invoice."Item"[] AS I (I.Book.Title = 'Principia Mathematica')

Note: The sub-predicate evaluates to UNKNOWN for the last two instances of
+ Item in the message, because they do not contain a Book field. This does
+ not affect the result in the case of an invoice that does contain an order for
+ a copy of "Principia Mathematica", but it does mean that if a copy of that
+ book does not appear on the invoice, the quantified predicate returns the
+ value UNKNOWN.

This is an example of a case where great care must be taken to deal with
the possibility of null values appearing. You are therefore recommended to
write this filter with an explicit check on the existence of the field, as follows:

+ FOR ANY Body.Invoice."Item"[] AS I (I.Book IS NOT NULL AND
+ I.Book.Title = 'Principia Mathematica')

The "IS NOT NULL" predicate ensures that if an Item field does not contain
a Book, a FALSE value is returned from the sub-predicate.

Arbitrary repeats: the SELECT expression
Another way of dealing with arbitrary repeats of fields within a message is to use a
SELECT expression. Suppose that you want to perform a special action on invoices
that have a total order value greater that a certain amount. In order to calculate the
total order value of an Invoice field, you need to multiply the Price fields by the
Quantity fields in all of the Items in the message, and total the result. You can do
this using a SELECT expression as follows:

(
 SELECT SUM(CAST(I.Price AS DECIMAL) V CAST(I.Quantity AS INTEGER))
FROM Body.Invoice."Item"[] AS I

) > 1

It is necessary to use CAST expressions to cast the string values of the fields
Price and Quantity into the correct datatypes. The cast of the Price field into a
decimal produces a decimal value with the "natural" scale and precision, that is,
whatever scale and precision is necessary to represent the number.

The SELECT expression works in a similar way to the quantified predicate, and
works in much the same way in which a SELECT works in normal database SQL.
The FROM clause specifies what we are iterating over, in this case, all Item fields
in Invoice, and establishes that the current instance of Item can be referred to
using "I". This form of SELECT involves a column function, in this case the SUM
function, so the SELECT is evaluated by adding together the results of evaluating

260 MQSeries Integrator V2.0 Using the Control Center

 Repeating fields

the expression inside the SUM function for each Item field in the Invoice. As with
normal SQL, NULL values are ignored by column functions, with the exception of
the count(*) column function explained below, and a NULL value is returned by the
column function only if there are no non-NULL values to combine.

The other column functions that are provided are MAX, MIN, and COUNT. The
COUNT function has two forms which work in different ways with regard to NULLs.
In the first form you use it much like the SUM function above, so, for example:

SELECT COUNT(I.Quantity)
FROM Body.Invoice."Item"[] AS I

This expression returns the number of Item fields for which the Quantity field is
non-NULL. That is, the COUNT function counts non-NULL values, in the same way
that the SUM function adds non-NULL values. The alternative way of using the
COUNT function is as follows:

SELECT COUNT(V)
FROM Body.Invoice."Item"[] AS I

Using COUNT(*) counts the total number of Item fields, regardless of whether any
of the fields is NULL. The above example is in fact equivalent to using the
CARDINALITY function, as in:

CARDINALITY(Body.Invoice."Item"[])

In all of the examples of SELECT given here, just as in standard SQL, a WHERE
clause could have been specified to provide filtering on the fields. Note that the
SELECT, FROM and WHERE clauses are the only clauses supported. You cannot
specify GROUP BY, HAVING, or ORDER BY, nor can you use the ALL or
DISTINCT qualifiers in the SELECT clause.

 Appendix C. SQL reference 261

 Field references

 Field references
The full syntax for field references is defined:

+ Path element+

+ ┌ ┐─.──
+ __─ ───j ┴┬ ┬─V── ──_g
+ ├ ┤──┬ ┬──
+ │ │└ ┘+ ─(──field_type──)──field_name─ ──┬ ┬──────────────────
+ │ │└ ┘+ ─[──expression──]─
+ ├ ┤──┬ ┬────────────────────────────────── ──────────────────
+ │ │└ ┘+ ─(──field_type──)─ ──┬ ┬────────────
+ │ │└ ┘+ ─[──LAST──]─
+ └ ┘──┬ ┬────────────────────── ──────────────────────────────
+ └ ┘+ ─field_name─ ──┬ ┬──────
+ └ ┘+ ─[──]─

Within this syntax, field_name is an identifier and field_type is a symbolic
constant.

So far, this appendix has explained only those path elements consisting of a
field_name. The meaning of the first part of the path element is to define search
parameters to find the correct syntax element. If only a field name is supplied, that
is an instruction to search for elements that have a field name, regardless of the
field type that they might have. Similarly, if a path element specifies only a field
type, that is an instruction to search for elements that have the given element type,
regardless of the name that they might have.

An asterisk in a path element indicates that all syntax elements should be
searched, regardless of the field names or field types. These two options are
discussed more in the following sections.

Anonymous field names
It is possible to refer to the array of all children of a particular entity by using a path
element of "*". So, for example:

InputRoot.V[]

is a path that identifies the array of all children of InputRoot. This is often used in
conjunction with an array subscript to refer to a particular child of an entity by
position, rather than by name. So, for example:

InputRoot.V[LAST] Refers to the last child of the root of the input
message, that is, the "body" of the message.

InputRoot.V[1] Refers to the first child of the root of the input
message.

It is useful to be able to find out the name of an entity that has been identified with
a path of this kind. To do this, you can use the FIELDNAME function. This
function takes a path as its only parameter and returns as a string the field name of
the entity to which the path refers. Here are some examples of its usage:

FIELDNAME(InputRoot.XML) Returns 'XML'

FIELDNAME(InputBody) Returns the name of the last child of InputRoot,
which could be 'XML'.

262 MQSeries Integrator V2.0 Using the Control Center

 Compute node SQL

FIELDNAME(InputRoot.V[LAST]) Returns the name of the last child of InputRoot,
which could be 'XML'.

 Field types
There are some instances when it is not enough to identify a field just by name and
array subscript. Some message parsers have more complicated models to expose;
it is to cope with these cases that an optional type can be associated with element.
The message model exposed by the generic XML parser makes heavy use of this
facility to deal with the more complicated XML features.

When a type is not present in a path element, it specifies that the type of the
syntax element is not important. That is, a path element of "name" matches any
syntax element that has a name of "name", regardless of the element type.

In the same way that a path element can specify a name and not a type, a path
element can specify a type and not a name. Such a path element matches any
syntax element that has the specified type, regardless of name. An example of this
is shown below:

FIELDNAME(InputBody.(XML.tag)[1])

This example returns the name of the first tag in the body of the message
(assuming that it is an XML message). For an example of when it is necessary to
use types in paths, consider the following generic XML:

<tag1 attr1='abc'>
 <attr1>123</attr1>
</tag1>

The path "InputBody.tag1.attr1" refers to the attribute called "attr1", because
attributes appear before nested tags in a syntax tree generated by an XML parser.
In order to refer to the tag called "attr1" it would be necessary to use a path
"InputBody.tag1.(XML.tag)attr1". However, it would be advisable always to include
types in these situations to be explicit about which entity is being referred to.

Compute node SQL
The Compute node and the Filter node share a common expression syntax. In its
simplest form a Compute node provides a way of building up a new message using
a set of assignment statements. The expressions that appear on the right hand
side of the assignment, that is, the source expressions, are expressions of exactly
the same form as can appear in a Filter node. But, they are not restricted to
returning single boolean values in the same way that a filter expression is.

A Compute node works by constructing a tree representation of a new message
based on a list of assignment statements. A new message is always (at least
conceptually) constructed, because the message passed to the node must be
preserved in its original form (it is not permissible in a message flow to modify pass
information back "upstream"). The simplest possible Compute node simply
constructs a new message as an exact copy of the input message. Such a
Compute node would consist of the following statement

SET OutputRoot = InputRoot;

 Appendix C. SQL reference 263

 Compute node SQL

There are a number of things to discuss about this example. First, statements in a
Compute node are all semicolon (";") terminated. The semicolon is a terminator,
and not a separator, so it must appear at the end of every statement, even the last
one.

Because there are two messages involved in a Compute node, it is not sufficient to
refer to "Root" as can be done in a Filter node where there is only one message.
Instead you have to refer to "InputRoot" and "OutputRoot" in a Compute node.
You can also refer to "InputBody" in a Compute node in the same way that you
can refer to "Body" in a Filter node, though you cannot refer to "OutputBody",
because there is no fixed concept of what the "body" of the output message is until
the output message has been fully constructed.

The above example causes a complete copy of the input message to be
propagated to the output terminal of the Compute node because when the right
hand side of an assignment statement consists of a field reference, a complete
recursive tree copy is performed to duplicate the tree representation of the input
message.

 Assignment statement
The general form of an assignment statement is:

SET field_reference = expression ;

The field reference on the left of the assignment identifies the field in the output
message which is to be set, and takes the same form as a field reference in a filter
expression, except that it must start with "OutputRoot" or "OutputProperties". The
field referenced will be created if it doesn't already exist in the output message; if
the value already exists in the output message, its value will be overwritten. Note
that when array indices are used in the field reference, only one instance of a
particular field will ever get created, so for example if you write as assignment
statement starting:

SET OutputRoot.XML.Message.Structure[2].Field = ...

at least one instance of "Structure" must already exist in the message. That is, the
only elements in the tree that are created are ones on a direct path from the root to
the element identified by the field reference. A common example of Compute node
will consist of a node which makes a modification to a message, either changing a
field, or maybe adding a new field to the original message. Such a Compute node
would be programmed by statements like the following:

set OutputRoot = InputRoot;
set OutputRoot.XML.Order.Name = UPPER(OutputRoot.XML.Order.Name);

This example simply puts one field in the message into uppercase. The first
statement constructs an output message which is a complete copy of the input
message (as per the very first simple example). The second statement sets the
value of the "Order.Name" field (which as the message flow writer knows will exist
in the input message) to a new value, as defined by the expression on the right.

It is interesting to note what the effect is if the Order.Name field hadn't existed in
the original input message. Because it didn't exist in the input message, it won't
exist in the output message as generated by the first statement. The expression on
the right of the second statement will return NULL, because the field referenced
inside the UPPER function call does not exist). Assigning the NULL value to a field

264 MQSeries Integrator V2.0 Using the Control Center

 Compute node SQL

has the effect of deleting it if it already exists, and so the effect is that the second
statement has no effect.

 DECLARE statement
The DECLARE statement declares a simple scalar variable that can be used to
store some temporary value. The syntax of the declare statements is:

DECLARE variable_name datatype

where datatype is one of the following:

CHARACTER or CHAR
 FLOAT
 DATE
 DECIMAL

INTEGER or INT
 INTERVAL
 TIME
 TIMESTAMP
 GMTTIME
 GMTTIMESTAMP
 BIT
 BLOB
 BOOLEAN

For an example of the DECLARE statement see the example in the description of
the WHILE statement.

 WHILE statement
A WHILE statement executes a sequence of statements repeatedly while the
controlling predicate evaluates to true. The same caveats apply to using the
WHILE statement as apply in any language, that is, it is up to you to ensure that
the loop will terminate. Note that if the control expression evaluates to unknown
the loop terminates: unknown and false are treated in the same way in this respect.
The WHILE statement takes the following form:

WHILE predicate DO
 controlled statements
END WHILE;

For example:

DECLARE I INTEGER;
SET I = 1;
WHILE I <= 1 DO
SET I = I + 1;

END WHILE;

 IF statement
An IF statement controls execution of one set of statements or another based on
the result of evaluating a predicate.

Note that if the control expression evaluates to unknown, the "else" statements are
executed; "unknown" is treated the same as false.

The IF statement takes one of the following forms:

 Appendix C. SQL reference 265

 More complicated SELECTs

IF condition THEN
 controlled statements
END IF;

or:

IF condition THEN
controlled statements 1

ELSE
controlled statements 2

END IF;

Some common examples of compute nodes
The tree copying that occurred in the processing of SET OutputRoot = InputRoot;
does not just occur when copying whole messages such as this. The tree copy
occurs whenever the right hand side of the assignment statement is a field
reference. An interesting example of this is

SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.InputMessage = InputRoot;

More complicated SELECTs: ROWs and LISTs
The examples of the SELECT expression given above all involved column
functions, because these are a common form in filter expressions However, more
general subselects can also be used. These operate in much the same way that
normal SQL selects do, but the "result sets" that are generated from the different
forms need some discussion. As a way of illustrating the various forms that a
SELECT clause can take, consider the following examples of assigning the results
of database queries to fields in a message using a Compute node.

 Example 1
Using the Control Center, create a message flow consisting of an MQInput node
wired to a Compute node, wired to an MQOutput node. Configure the queue
names on the MQInput node and MQOutput node to point to suitable queues, and
set the Message Domain attribute on the Defaults tab of the MQInput node property
editor to be "XML". Configure the Compute node using the following SQL
statements:

SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result[] =
(SELECT T.Field4, T.Structure1 FROM InputBody.Test.Input[] AS T);

Deploy the message flow to a suitable broker, and then send a simple trigger
message like the following to the input queue:

266 MQSeries Integrator V2.0 Using the Control Center

 More complicated SELECTs

<Test>
 <Input>
 <Field1>value1</Field1>
 <Structure1>
 <Field2>value2</Field2>
 <Field3>value3</Field3>
 </Structure1>
 <Field4>value4</Field4>
 </Input>
 <Input>
 <Field1>value5</Field1>
 <Structure1>
 <Field2>value6</Field2>
 <Field3>value7</Field3>
 </Structure1>
 <Field4>value8</Field4>
 </Input>
</Test>

You should receive the following message on the output queue:

<Test>
 <Result>
 <Field4>value4</Field4>
 <Structure1>
 <Field2>value2</Field2>
 <Field3>value3</Field3>
 </Structure1>
 </Result>
 <Result>
 <Field4>value8</Field4>
 <Structure1>
 <Field2>value6</Field2>
 <Field3>value7</Field3>
 </Structure1>
 </Result>
</Test>

The order in which the tags appear inside the Result tag reflects the order in which
the items appeared in the select clause, not the order in which the fields appeared
in the original message. Also, the Structure1 fields are copied in their entirety from
the input message:that is, a tree copy has been performed. You can of course
rename the fields by using as AS clause after some or all of the items in the
SELECT clause.

 Example 2
The following example shows the use of the ITEM keyword, which selects one item
and creates a single value. (Example 1 shows a structure that creates a single
field.)

SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result[] =
(SELECT ITEM T.Field1 FROM InputBody.Test.Input[] AS T);

 Appendix C. SQL reference 267

 More complicated SELECTs

Sending the same trigger message will result in a message on the output queue
which looks like this:

<Test>
 <Result>value1</Result>
 <Result>value5</Result>
</Test>

Comparing this message to the one which is produced if the ITEM keyword is
omitted:

<Test>
 <Result>
 <Field1>value1</Field1>
 </Result>
 <Result>
 <Field1>value5</Field1>
 </Result>
</Test>

illustrates the effect of the ITEM keyword. The evaluation of the SQL expressions
happens independently of any information about the schema of the target message.
In the case of generating a generic XML message there is no message schema for
the message being generated, so the structure of the message that is generated
must be defined entirely by the SQL.

 Example 3
The two examples above have both specified a list as the source of the SELECT in
the FROM clause (so the field reference had a [] at the end), and so in general the
SELECT will generate a list of results. Because of this it was necessary to specify
a list as the target of the assignment (thus the "Result[]" as the target of the
assignment). However, often you will know that the WHERE clause that you
specify as part of the SELECT will only return true for one item in the list. In this
case the "THE" keyword can be used to indicate this. The following shows the
effect of using the THE keyword

SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result =
THE (SELECT T.Field4, T.Structure1 FROM InputBody.Test.Input[]
 AS T WHERE T.Field1 = 'value1';

The "THE" keyword means that the target of the assignment becomes
"OutputRoot.XML.Test.Result" (the "[]" is no longer necessary, or even allowed).
This results in the following message:

268 MQSeries Integrator V2.0 Using the Control Center

 More complicated SELECTs

<Test>
 <Result>
 <Field4>value4</Field4>
 <Structure1>
 <Field2>value2</Field2>
 <Field3>value3</Field3>
 </Structure1>
 </Result>
</Test>

 Example 4
Using selects for projection:

SET OutputRoot.XML.Projection =
 (SELECT M.field1,
 M.field2,

CAST(M.field3 AS INTEGER) VCAST(M.field4 AS INTEGER) AS field5
 FROM InputBody.Message AS M);

equivalent to:

SET OutputRoot.XML.Projection.field1 = InputBody.Message.field1;
SET OutputRoot.XML.Projection.field2 = InputBody.Message.field2;
SET OutputRoot.XML.Projection.field5 =
CAST(InputBody.Message.field3 AS INTEGER) V CAST(InputGER);

 Example 5
The FROM clause is not restricted to having one item. Specifying multiple items in
the FROM clause has the usual "joining" effect that it does in database SQL. For
example:

SELECT A.a, B.b
FROM InputBody.Test.A[], InputBody.Test.B[]

The following message:

<Test>
 <A>
 <a>1

 <A>
 <a>2

 3

 4

</Test>

produces the following output message:

 Appendix C. SQL reference 269

 More complicated SELECTs

<Test>
 <Result>
 <a>1
 3
 </Result>
 <Result>
 <a>1
 4
 </Result>
 <Result>
 <a>2
 3
 </Result>
 <Result>
 <a>2
 4
 </Result>
</Test>

Note that because repeating fields can be nested in messages, it is possible to
write an expression such as:

SELECT A.a, B.b
FROM InputBody.Test.A[], A.B[]

In this case, the following message:

<Test>
 <A>
 <a>1

 2

 3

 <A>
 <a>4

 5

 6

 </Test>

produces the following output:

270 MQSeries Integrator V2.0 Using the Control Center

 More complicated SELECTs

<Test>
 <Result>
 <a>1
 2
 </Result>
 <Result>
 <a>1
 3
 </Result>
 <Result>
 <a>4
 5
 </Result>
 <Result>
 <a>4
 6
 </Result>
</Test>

 Example 6
You can join between a list and a non-list, two non-lists etc. (note the ... is not real
SQL syntax).

OutputRoot.XML.Test.Result1[] =
(SELECT ... FROM InputBody.Test.A[], InputBody.Test.b);

OutputRoot.XML.Test.Result1 =
(SELECT ... FROM InputBody.Test.A, InputBody.Test.b);

Note carefully the location of the "[]" in each case. Of course, any number of items
can be specified in the FROM list, not just one or two, and in each case if any of
the items specify "[]" to indicate a list of items, the SELECT will generate a list of
results (the list may contain only one item, but the SELECT can potentially return a
list of items), and so the target of the assignment must specify a list (so must end
in "[]" or else the THE keyword must be used if is known that the WHERE clause
will guarantee that only one combination is matched.

 Example 7
A SELECT with a column function is not the only form of SELECT that can be used
in a scalar expression. You can make a SELECT return a scalar value by issuing
both the THE and ITEM keywords as in:

1 + THE(SELECT ITEM T.a FROM Body.Test.A[] AS T WHERE T.b = '123')

 Example 8
Selecting from a list of scalars, consider the sample message:

<Test>
 <A>1
 <A>2
 <A>3
 <A>4
 <A>5
</Test>

and the SQL statements

 Appendix C. SQL reference 271

 Querying external databases

SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.A[] = (SELECT A FROM InputBody.Test.A[]
WHERE CAST(A AS INTEGER) BETWEEN 2 AND 4);

 Other expressions
In all of the examples above, simple field references are used in the SELECT
clause. As usual, more complicated expressions can be used. In these cases, an
AS clause must be used to give a name to the computed field as in:

SELECT T.Price, T.Quantity, T.Price V T.Quantity AS TotalValue
FROM Body.Invoice."Item"[]

 EXISTS predicate
As with a normal database SQL, you can use the EXISTS predicate to test whether
a WHERE clause successfully matches a items of a repeating structure. The form
of the EXISTS predicate is:

EXISTS(SELECT V FROM something WHERE predicate)

Querying external databases
Queries against external databases can be done in much the same way as can be
done in, for example, embedded SQL.

In order to include a query against an external database in a Filter or Compute
node, the node must be configured with the connection information for the
database. This consists of an ODBC datasource name. It is up to the MQSeries
Integrator or database administrator to ensure that a suitable ODBC datasource
has been created on the systmes on which the brokers, to which the message
flows are deployed, are running.

The connection to the database is performed using the database user ID and
password supplied on the mqsicreatebroker command which created the individual
broker. The MQSeries Integrator or database administrator must therefore ensure
that the user has sufficient database privileges to query the required database
tables. If not, a run-time error is generated by the broker when it attempts to
process a message and attempts to connect to the database for the first time.

Whilst the normal SQL SELECT syntax is supported for queries to external
database, there are a number of points to be borne in mind. It is necessary to
prefix the name of the table with the keyword "Database" in order to indicate that
the SELECT is to be targeted at the external database, rather than at a repeating
structure in the message. So the basic form of database SELECT is:

SELECT ...
FROM Database.TABLE1
WHERE ...

If necessary a schema name can be given as in:

SELECT ...
FROM Database.SCHEMA.TABLE1
WHERE ...

where SCHEMA is the name of the schema in which the table TABLE1 is defined.

272 MQSeries Integrator V2.0 Using the Control Center

 Querying external databases

References to column names must be qualified with either the table name or the
correlation name defined for the table by the FROM clause. So, where you could
normally execute a query such as:

SELECT column1, column2 FROM table1

it is necessary to write

SELECT T.column1, T.column2 FROM Database.table1 AS T

This is necessary in order to distinguish references to database columns from any
references to fields in a message which may also appear in the SELECT:

SELECT T.column1, T.column2 FROM Database.table1
AS T WHERE T.column3 = Body.Field2

+ You must explicitly specify all column names that you want to retrieve within the
+ select clause. The ‘select all’ SQL option is NOT supported and you therefore
+ cannot specify a statement of the following form:

+ SELECT V FROM ... WHERE ...

+ The following examples illustrate how the results sets of external database queries
+ are represented in MQSeries Integrator. The results of database queries are
+ assigned to fields in a message using a Compute node.

+ Example 1
+ Using the Control Center, create a message flow consisting of an MQInput node
+ wired to a Compute node, wired to an MQOutput node. Configure the queue
+ names on the MQInput node and MQOutput node to point to suitable queues, and
+ set the Message Domain attribute on the Defaults tab of the MQInput node property
+ editor to be "XML".

You can vary the names of the fields produced by explicitly listing the columns that
you want to extract. How you do this depends partly on your database system.
Most database systems are case not sensitive with regard to database names. In
other words, even though a column might be called "COLUMN1", you can refer to
it in a SELECT as "column1".

Configure the Compute node using the following SQL statements:

SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =
(SELECT T.Column1, T.Column2 FROM Database.USERTABLE AS T);

Sending the same trigger message will result in a message on the output queue
which looks like:

 Appendix C. SQL reference 273

 Querying external databases

<Test>
 <Result>
 <Column1>value1</Column1>
 <Column2>value2</Column2>
 </Result>
 <Result>
 <Column1>value3</Column1>
 <Column2>value4</Column2>
 </Result>
</Test>

The names of the tags produced exactly match how you referred to the columns in
the select clause.

 Example 2
If the database system is case sensitive, you must use an alternative approach.
This approach is also necessary if you want to change the name of the generated
field to something different:

SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =
(SELECT T.COLUMN1 AS Column1, T.COLUMN2 AS Column2
FROM Database.USERTABLE AS T);

This example produces the same message as Example 1 above.

 Example 3
Suppose that the Compute node were configured using the following SQL
statements:

SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =
 (SELECT ITEM T.Column1 FROM Database.USERTABLE AS T);

The same trigger message will produce the following message:

<Test>
 <Result>value1</Result>
 <Result>value3</Result>
</Test>

The following message is produced if the ITEM keyword is omitted:

<Test>
 <Result>
 <Column1>value1</Column1>
 </Result>
 <Result>
 <Column1>value3</Column1>
 </Result>
</Test>

Comparing this to the previous generated message illustrates the effect of the ITEM
keyword. The evaluation of the SQL expressions happens independently of any

274 MQSeries Integrator V2.0 Using the Control Center

 Database node statements

information about the schema of the target message. In the case of generating a
generic XML message, there is no message schema for the message being
generated, so the structure of the message that is generated must be defined
entirely by the SQL.

 Example 4
This example illustrates the use of the WHERE clause: the message generated by
this statement is identical to that generated by the previous example.

SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result =
 THE (SELECT ITEM T.Column1 FROM Database.USERTABLE AS T
 WHERE T.Column2 = "value2");
<Test>
 <Result>value1 </Result>
</Test>

Database node statements
The syntax of the statements that are accepted by the Database node is a superset
of the statements that are accepted by a Compute node.

Like the Compute node, the Database node is configured using a series of
statements. All of the normal compute statements such as SET, WHILE,
DECLARE, and IF can be used to control the flow of the series of statements.

Unlike the Compute node, however, the Database node propagates the message
that it receives at its input terminal to its output terminal unchanged. This means
that, like the Filter node, there is only one message to be referred to in a Database
node.

Because you can't modify any part of any message, the assignment statement (the
SET statement, not the SET clause of the INSERT statement) can only assign
values to temporary variables. Therefore the scope of actions you can take with an
assignment statement is limited.

The following sections discuss the extra statements that can be used in a Database
node.

 INSERT statement
An INSERT statement can be used to add new rows to an external database.

+ INSERT statement+

+ __──INSERT INTO──database.─ ──┬ ┬────────────── ─table_name────────────_
+ └ ┘─schema_name.─

+ _─ ──┬ ┬─────────────────────── ───────────────────────────────────────_
+ │ │┌ ┐─,───────────
+ └ ┘+ ─(─ ───j ┴─column_name─ ─)─

+ ┌ ┐─,─────────────────
+ _─+ ─VALUES──(─ ───j ┴─scalar_expression─ ─)─────────────────────────────_g

 Appendix C. SQL reference 275

 Database node statements

The optional column name list identifies a list of columns in the target table into
which values are to be inserted. Any columns not mentioned in the column name
list will have their default values inserted.

A run-time error can be generated if problems occur during the insert operation.
For example the database table may have constraints defined which the insert
operation may violate. In these cases, an attempt will be made to propagate the
original message that was received by the node to the failure terminal on the node.

 Example
The following example assumes that the dataSource attribute on the Database
node has been configured and that the database identified by that datasource has
a table called "TABLE1". Given a message that has the following generic XML
body:

<A>
 1
 <C>2</C>
 <D>3</D>

the following INSERT statement will insert a new row into the table with the values
(1, 2, 3).

INSERT INTO Database.TABLE1(A, B, C) VALUES (Body.A.B, Body.A.C, Body.A.D)

 DELETE statement
A DELETE statement will delete rows from a table in an external database based
on a search condition.

+ DELETE statement+

+ __──DELETE FROM──database.─ ──┬ ┬────────────── ─table_name────────────_
+ └ ┘─schema_name.─

+ _─ ──┬ ┬────────────────────── ──┬ ┬───────────────────────── ──────────_g
+ └ ┘+ ─AS──correlation_name─ └ ┘+ ─WHERE──search_condition─

A correlation name is created that can be used inside the search condition to refer
to the values of columns in the table. This correlation name is either the name of
the table (without the data source qualifier) or the explicit qualifier specified.

 Examples
Suppose that we had a Database node which had been configured to connect to
the ARGOTEST datasource. The following statement could be written to configure
the Database node:

DELETE FROM Database.SHAREHOLDINGS AS H
 WHERE H.ACCOUNTNO = Body.AccountNumber

276 MQSeries Integrator V2.0 Using the Control Center

 Database node statements

 UPDATE statement
An UPDATE statement will update the values of specified columns in a table in an
external database.

+ UPDATE statement+

+ __──UPDATE──database.─ ──┬ ┬────────────── ─table_name─────────────────_
+ └ ┘─schema_name.─

+ ┌ ┐─,──────────────────────────
+ _─ ──┬ ┬──────────────────────+ ─SET─ ───j ┴─column_name──=──expression─ ───_
+ └ ┘+ ─AS──correlation_name─

+ _─ ──┬ ┬───────────────────────── ────────────────────────────────────_g
+ └ ┘+ ─WHERE──search_condition─

 Example 1
This example updates the PRICE column of the row in the STOCKPRICES table
whose COMPANY column matched the value given in the Company field in the
message that the Database node is processing.

UPDATE Database.StockPrices AS SP
 SET PRICE = Body.StockPrice
 WHERE SP.COMPANY =Body.Company

 Example 2
In this example, the "INV.QUANTITY" in the right hand side of the assignment
refers to the previous value of the column before any updates have taken place.

UPDATE Database.INVENTORY AS INV
 SET QUANTITY = INV.QUANTITY - Body.QuantitySold
 WHERE INV.ITEMNUMBER = Body.ItemNumber

 Example 3
This example shows multiple column updates.

UPDATE Database.table AST
 SET column1 = T.column1+1,

column2 = T.column2+1;

Compare the syntax to the way you assign to multiple fields in a compute:

SET field = expression;
SET field = expression;

Note also the form of the assignment clause: the column on the left of the
assignment must be a single identifier. It must not be qualified with a table name
or correlation name. In contrast, any column references to the right of the
assignment must be qualified with a table name or correlation name.

 PASSTHRU
The PASSTHRU function allows a database statement to be sent directly to the
database without intermediate parsing in MQSeries Integrator. Any valid database
statement is allowed, including INSERT, UPDATE, SELECT, and CALL. MQSeries
Integrator does not check the validity of the statement before it is presented to the
database for execution.

You can use PASSTHRU in:

 Appendix C. SQL reference 277

 Database node statements

� A database node as a database statement.
� A compute node as a compute statement.
� An SQL expression as a function that returns one or more values.

The first parameter of the PASSTHRU function must be an SQL expression that
either is, or evaluates to, a string. Use question marks in the string to denote
where any parameter substitution is required. You can only have one parameter to
the function call, in which case no question mark attribute is needed. If there are
exactly two parameters, the second one can be either a single valued expression
that can substitute one question mark, or it can be a list expression that can
substitute a number of parameters. If there are more than two parameters, the
second and all other subsequent parameters are assumed to have a one to one
correspondence to the question marks.

Note that often a string literal will be used as the first parameter to the PASSTHRU
statement or function. There are a number of items that must be kept in mind
when doing this. If the SQL statement that you want to execute against the
database has a single quote anywhere, you must be sure to escape the single
quote when defining the string literal. So, for example, suppose you wanted to
execute the following SQL statement:

INSERT INTO TABLE1 VALUES('abc', 'def')

To do this using a passthru statement you would have to write

PASSTHRU('INSERT INTO TABLE1 VALUES(''abc'', ''def'')');

Note the use of double single quotation marks which is necessary to define a string
literal with a single quote in it. Be careful if the statement that you want to execute
is particularly long. You cannot split a string literal across multiple lines.

For example, if you want to execute the following SQL statement:

SELECT a, b, c
FROM table1
WHERE d = 123

you cannot use the following form because the string literal contains new lines,
which is prohibited.

PASSTHRU('SELECT a, b, c
 FROM table1

WHERE d = 123')

Instead you must use:

PASSTHRU('SELECT a, b, c ' ||
'FROM table1 ' ||
'WHERE d = 123')

You must include trailing spaces in the individual string literals to avoid defining a
string containing the text:

'SELECT a, b, cFROM table1WHERE d = 123'

278 MQSeries Integrator V2.0 Using the Control Center

 Function reference

 Function reference
This section provides a reference summary of functions discussed in this appendix.

 CAST specifications
 CAST statement

__──CAST─ ──┬ ┬─CHAR─────────────────────── ──────────────────────────_g
 ├ ┤─CHARACTER──────────────────
 ├ ┤─FLOAT──────────────────────
 ├ ┤─DATE───────────────────────

├ ┤──DECIMAL(precision, scale) ─
 ├ ┤─INT────────────────────────
 ├ ┤─INTEGER────────────────────

├ ┤──INTERVALinterval qualifier
 ├ ┤─TIME───────────────────────
 ├ ┤─TIMESTAMP──────────────────
 ├ ┤─GMTTIME────────────────────
 ├ ┤─GMTTIMESTAMP───────────────
 ├ ┤─BIT────────────────────────
 ├ ┤─BLOB───────────────────────
 └ ┘─BOOLEAN────────────────────

Note: For interval qualifier formats, see Table 25 on page 248.

A CAST specification returns its first operand cast to the type specified by the
data_type. The conversion that is done is the default conversion, More complicated
conversions can be performed using user defined functions. In all cases if the
source expression is NULL, the result will be NULL. If the source value is not
compatible with the target datatype, or if the source value is of the wrong format, a
run-time error is generated.

 Supported CASTs
A CAST is not supported between every combination of datatypes. Those that are
supported are listed below, along with the effect of the CAST.

Table 26 (Page 1 of 4). Supported CASTs

Source datatype Target datatype Effect

CHARACTER BOOLEAN The character string is interpreted in the same way that a
boolean literal is interpreted. That is, the character string
must be one of the strings TRUE, FALSE, UNKNOWN (in
any case combination).

CHARACTER FLOAT The character string is interpreted in the same way as a
floating point literal is interpreted.

CHARACTER DATE The character string must conform to the rules for a date
literal or for the date string. That is, the character string
can be either DATE '1998-11-09' or 1998-11-09.

CHARACTER DECIMAL The character string is interpreted in the same way as an
exact numeric literal is interpreted to form a temporary
decimal result with a scale and precision defined by the
format of the string. This is then converted into a decimal
of the specified precision and scale, with a run-time error
being generated if the conversion would result in loss of
significant digits.

 Appendix C. SQL reference 279

 Function reference

Table 26 (Page 2 of 4). Supported CASTs

Source datatype Target datatype Effect

CHARACTER INTEGER The character string is interpreted in the same way as an
integer literal is interpreted.

CHARACTER INTERVAL The character string must conform to the rules for an
interval literal with the same interval qualifier as specified in
the CAST specification, or it must conform to the rules for
an interval string that apply for the specified interval
qualifier.

CHARACTER TIME The character string must conform to the rules for a time
literal or for the time string. That is, the character string
can be either TIME '09:24:15' or 09:24:15.

CHARACTER TIMESTAMP The character string must conform to the rules for a
timestamp literal or for the timestamp string. That is, the
character string can be either TIMESTAMP '1998-11-09
09:24:15' or 1998-11-09 09:24:15.

CHARACTER GMTTIME The character string must conform to the rules for a GMT
time literal or for the time string. That is, the character
string can be either GMTTIME '09:24:15' or 09:24:15.

CHARACTER GMTTIMESTAMP The character string must conform to the rules for a GMT
timestamp literal or for the timestamp string. That is, the
character string can be either GMTTIMESTAMP
'1998-11-09 09:24:15' or 1998-11-09 09:24:15.

CHARACTER BIT The character string must conform to the rules for a bit
string literal or to the rules for the contents of the bit string
literal. That is, the character string can be of the form
B'bbbbbbb' or bbbbbb (where 'b' can be either '0' or
'1').

CHARACTER BINARY The character string must conform to the rules for a binary
string literal or to the rules for the contents of the binary
string literal. That is, the character string can be of the
form X'hhhhhh' or hhhhhh (where 'h' can be any
hexadecimal digit characters).

BOOLEAN CHARACTER If the source value is TRUE, the result is the character
string 'TRUE'. If the source value is FALSE, the result is
the character string 'FALSE'. Because the UNKNOWN
boolean value is the same as the NULL value for booleans,
the result will be the NULL character string value if the
source value is UNKNOWN.

FLOAT CHARACTER The result is the shortest character string that conforms to
the definition of an approximate numeric literal and whose
mantissa consists of a single digit that is not '0', followed
by a period and an unsigned integer, and whose
interpreted value is the value of the double.

DATE CHARACTER The result is a string conforming to the definition of a date
literal, whose interpreted value is the same as the source
date value.

Example:

CAST(DATE '1998-11- 9' AS CHAR)

would return

DATE '1998-11- 9'

280 MQSeries Integrator V2.0 Using the Control Center

 Function reference

Table 26 (Page 3 of 4). Supported CASTs

Source datatype Target datatype Effect

DECIMAL CHARACTER The result is the shortest character string that conforms to
the definition of an exact numeric literal and whose
interpreted value is the value of the decimal.

INTEGER CHARACTER The result is the shortest character string that conforms to
the definition of an exact numeric literal and whose
interpreted value is the value of the integer.

INTERVAL CHARACTER The result is a string conforming to the definition of an
interval literal, whose interpreted value is the same as the
source interval value.

Example:

CAST(INTERVAL '4' YEARS AS CHAR)

would return

INTERVAL '4' YEARS

TIME CHARACTER The result is a string conforming to the definition of a time
literal, whose interpreted value is the same as the source
time value.

Example:

CAST(TIME ' 9:24:15' AS CHAR)

would return

TIME ' 9:24:15'

TIMESTAMP CHARACTER The result is a string conforming to the definition of a
timestamp literal, whose interpreted value is the same as
the source timestamp value.

Example:

CAST(TIMESTAMP '1998-11- 9 9:24:15' AS CHAR)

would return

TIMESTAMP '1998-11- 9 9:24:15'

GMTTIME CHARACTER The result is a string conforming to the definition of a
gmttime literal whose interpreted value is the same as the
source value. The result string will have the form
GMTTIME 'hh:mm:ss'.

GMTTIMESTAMP CHARACTER The result is a string conforming to the definition of a
gmttimestamp literal whose interpreted value is the same
as the source value. The result string will have the form
GMTTIMESTAMP 'yyyy-mm-dd hh:mm:ss'.

BIT CHARACTER The result is a string conforming to the definition of a bit
string literal whose interpreted value is the same as the
source value. The result string will have the form
B'bbbbbb' (where b is either '0' or '1').

BLOB CHARACTER The result is a string conforming to the definition of a
binary string literal whose interpreted value is the same as
the source value. The result string will have the form
X'hhhh' (where h is any hexadecimal digit character).

TIME GMTTIME The result value is the source value minus the local time
zone displacement (as returned by LOCAL_TIMEZONE).
The hours field is calculated modulo 24.

 Appendix C. SQL reference 281

 Function reference

Table 26 (Page 4 of 4). Supported CASTs

Source datatype Target datatype Effect

GMTTIME TIME The result value is source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE). The
hours field is calculated modulo 24.

GMTTIMESTAMP TIMESTAMP The result value is source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE).

TIMESTAMP GMTTIMESTAMP The result value is the source value minus the local time
zone displacement (as returned by LOCAL_TIMEZONE).

INTEGER or DECIMAL FLOAT The number is converted, with rounding if necessary.

FLOAT INTEGER or DECIMAL If the conversion would not lead to loss of leading
significant digits, the conversion will happen with the
number being rounded as necessary. If the conversion
would lead to loss of leading significant digits, a run-time
error is generated. Loss of significant digits can occur
when converting an approximate numeric value to an
integer, or to a decimal whose precision is not sufficient.

INTEGER or DECIMAL INTEGER or DECIMAL If the conversion would not lead to loss of leading
significant digits, the conversion will happen with the
number being rounded as necessary. If the conversion
would lead to loss of leading significant digits, a run-time
error is generated. Loss of significant digits can occur
when converting (say) a decimal to another decimal with
insufficient precision, or an integer to a decimal with
insufficient precision.

INTERVAL INTERVAL Year-month intervals are only convertible to year-month
intervals, and day-second intervals are only convertible to
day-second intervals. The conversion is done by
converting the source interval into a scalar in units of the
least significant field of the target interval qualifier. This
value is then normalized into an interval with the target
interval qualifier. So for example to convert an interval
which has the qualifier MINUTE TO SECOND into an
interval with the qualifier DAY TO HOUR, the source value
is converted into a scalar in units of hours, and this value is
then normalized into an interval with qualifier DAY TO
HOUR.

INTERVAL INTEGER or DECIMAL If the interval value has a qualifier that has only one field,
the result is an exact numeric with that value. If the
interval has a qualifier with more than one field, such as
YEAR TO MONTH, a run-time error is generated.

INTEGER or DECIMAL INTERVAL If the interval qualifier specified has only one field, the
result will be an interval with that qualifier with the field
equal to the value of the exact numeric. Otherwise a
run-time error is generated.

TIME TIMESTAMP The result is a value whose date fields are taken from the
current date, and whose time fields are taken from the
source time value.

TIMESTAMP TIME The result is a value whose fields consist of the time fields
of the source timestamp value.

TIMESTAMP DATE The result is a value whose fields consist of the date fields
of the source timestamp value.

282 MQSeries Integrator V2.0 Using the Control Center

 Functions

 Functions
Most of the function descriptions here place restrictions on the datatypes of the
arguments that can be passed to the function. If the values passed to the functions
do not match the required datatypes, errors will be generated at node configuration
time if is possible to detect the errors at that point, otherwise run-time errors will be
generated when the function is evaluated.

String manipulation functions
The following functions perform manipulations on character strings.

 POSITION
POSITION(search_string IN source_string)

The values of search_string and source_string must both be character strings. The
POSITION function returns an integer which gives the position in the source_string
of the first occurrence of search_string. If the value of either the search_string or
the source_string are NULL, the result of the POSITION function is NULL. If the
value of search_string has a length of zero, the result is one.

Example:

POSITION('World' IN 'Hello World!') would return 7

 LENGTH
LENGTH(source_string)

The value of search_string must be a character string. The LENGTH function
return integer values which give the number of characters in source_string. If the
value of source_string is a NULL value, the result of the LENGTH function is the
NULL value.

Examples:

LENGTH('Hello World!') would return 11
LENGTH('') would return

 TRIM
TRIM(trim_specification trim_character FROM source_string)
TRIM(trim_specification FROM source_string)
TRIM(trim_character FROM source_string)
TRIM(source_string)

where trim_specification is one of LEADING, TRAILING, or BOTH. If
trim_specification is not specified, BOTH is assumed. If trim_character is not
specified, the space character is assumed.

The TRIM function returns a character string value which is equal to source_string
with any leading or trailing characters which are equal to trim_character removed.
Whether leading or trailing characters are removed depends on the value of the
trim_specification parameter. If any of the parameters are the NULL value, the
TRIM function returns a NULL value.

Examples:

 Appendix C. SQL reference 283

 Functions

TRIM(TRAILING 'b' FROM 'aaabBb') returns 'aaabB'
TRIM(' a ') returns 'a'
TRIM(LEADING FROM ' a ') returns 'a '
TRIM('b' FROM 'bbbaaabbb') returns 'aaa'

 LTRIM
LTRIM(source_string)

This function is equivalent to TRIM(LEADING ' ' FROM source_string)

 RTRIM
RTRIM(source_string)

This function is equivalent to TRIM(TRAILING ' ' FROM source_string)

 SUBSTRING
SUBSTRING(source_string FROM start_position)
SUBSTRING(source_string FROM start_position FOR string_length)

If any of the parameters to the SUBSTRING function are NULL, the result is the
NULL string (which is different from the empty string). The SUBSTRING function is
implemented using the following algorithm (The purpose of the algorithm is to
define how the parameters are normalized to ensure that the start position and the
end position both lie inside of the source string. The behavior is otherwise as
expected.)

� Let C be the value of source_string. Let LC be the length of C and let S be the
value of start_position.

� If string_length is specified, let L be the value of string_length and let E be S+L.
Otherwise let E be the larger of LC+1 and S.

� If E is less than S, the function returns a NULL value.

� If S is greater than LC, or if E is less than 1, the result of the SUBSTRING
function is a zero length string.

� Otherwise Let S1 be the larger of S and 1. Let E1 be the smaller of E and
LC+1. Let L1 be E1-S1.

� The result of the SUBSTRING function is a character string containing the L1
characters of C starting at character number S1 in the same order that the
characters appear in C.

Examples:

SUBSTRING('Hello World!' FROM 7) would return 'World!'

 UPPER
UPPER(source_string)
UCASE(source_string)

The UPPER and UCASE functions both return a new string which is the same
length as the source string and which is identical to the input string, except is has
all lowercase letters replaced with the corresponding uppercase letters. If the
source string is NULL, the return value is NULL.

284 MQSeries Integrator V2.0 Using the Control Center

 Functions

 LOWER
LOWER(source_string)
LCASE(source_string)

The LOWER and LCASE functions both return a new string which is the same
length as the source string and which is identical to the input string, except is has
all uppercase letters replaced with the corresponding lowercase letters. If the
source string is NULL, the return value is NULL.

 OVERLAY
OVERLAY(source_string PLACING source_string2 FROM start_position)
OVERLAY(source_string PLACING source_string2 FROM start_position
 FOR string_length)

If any of the parameters is NULL, the result is the NULL value. If string_length is
not specified, string_length is equal to CHAR_LENGTH(source_string2). The result
of the OVERLAY function is equivalent to:

SUBSTRING(source_string FROM 1 FOR start_position -1) || source_string2 ||
SUBSTRING(source_string FROM start_position + string_leng

(where || is the concatenation operator)

 COALESCE
COALESCE returns the first argument that is not null. The arguments are
evaluated in the order in which they are specified, and the result of the function is
the first argument that is not null. The result is null only if all the arguments are
null. The arguments must be compatible. The COALESCE function can be used
to provide a default value for the value of a field which may not exist in a message.
For example, the expression:

COALESCE(Body.Salary,)

would return the value of the Salary field in the message if it existed, or 0 (zero) if
that field did not exist.

 NULLIF
The NULLIF function returns a null value if the arguments are equal; otherwise, it
returns the value of the first argument. The arguments must be comparable. The
result of using NULLIF(e1,e2) is the same as using the expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is
NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first argument.

 Numeric functions
The following functions manipulate numeric strings.

 Appendix C. SQL reference 285

 Functions

 ABS
ABS(expression)
ABSVAL(expression)

The argument must be a numeric value. The function returns the absolute value of
the argument. If the type of the value that the function returns is the same as the
type of the argument that the function is called with. The argument can be NULL.
If the argument is NULL, the function returns a NULL value.

 BITAND
BITAND(expression, expression, ...)

The BITAND function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise and of the binary
representation of the numbers.

 BITNOT
BITNOT(expression)

The BITNOT function takes one parameter which must result in an integer value
and results the result of performing the bitwise complement of the binary
representation of the number.

 BITOR
BITOR(expression, expression, ...)

The BITOR function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise or of the binary
representation of the numbers.

 BITXOR
BITXOR(expression, expression, ...)

The BITXOR function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise XOR of the binary
representation of the numbers.

 CEIL
CEIL(expression)
CEILING(expression)

Returns the smallest integer value greater than or equal to the argument. The
argument can be any numeric type. If the argument is an integer, the function
returns the argument value. The value returned by the function is of the same
type as the argument value. If the argument is null, the result is the null value.

 FLOOR
FLOOR(expression)
FLOOR(expression)

Returns the largest integer value less than or equal to the argument. The
argument can be any numeric type. If the argument is an integer, the function
returns the argument value. The value returned by the function is of the same type
as the argument value. If the argument is null, the result is the null value.

286 MQSeries Integrator V2.0 Using the Control Center

 Functions

 MOD
MOD(expression, expression)

Returns the remainder of the first argument divided by the second argument. The
result is negative only if first argument is negative. The arguments must have
integer datatypes. The function returns an integer. If any argument is null, the
result is the null value.

 ROUND
ROUND(expression1, expression2)

Returns the expression1 rounded to expression2 placed right of the decimal point.
If expression2 is negative, expression1 is rounded to the absolute value of
expression2 placed to the left of the decimal point. The first argument can be of
any built-in numeric data type. The second argument can be integer, decimal or
floating point. A decimal argument is converted to double-precision floating-point
number for processing by the function. The result of the function is integer if the
first argument is integer and double if the first argument is double or decimal. If
any argument is null, the result is the null value.

 SQRT
SQRT(expression)

Returns the square root of the argument. The argument can be any built-in
numeric data type. It has to be converted to double-precision floating-point number
for processing by the function. The result of the function is double-precision
floating-point number. If the argument is null, the result is the null value.

 TRUNCATE
TRUNCATE(expression1, expression2)

Returns argument1 truncated to argument2 placed right of decimal point. If
argument2 is negative, argument1 is truncated to the absolute value of argument2
placed to the left of the decimal point. The first argument can be any built-in
numeric data type. The second argument has to be an integer. Decimal values
are converted to double-precision floating-point numbers for processing by the
function.

The result of the function is an integer is the first argument is an integer, and a
double if the first argument is a double or a decimal. If any argument is null, the
result is the null value.

 Datetime functions
The following functions allow you to manipulate fields according to date and time
values.

 EXTRACT
EXTRACT(extract_field FROM source_field)

where extract_field is one of YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
and source_field must be a, expression which results in a date time or interval
value. If extract_field is YEAR, MONTH, DAY, HOUR or MINUTE, the result is an
integer value. If extract_field is SECOND, the result is a floating point value. If
source_field is NULL, the result is NULL.

 Appendix C. SQL reference 287

 Functions

 CURRENT_DATE
The CURRENT_DATE function returns a date value representing the current date
in local time. That is, it is equivalent to CAST(CURRENT_TIMESTAMP AS DATE).

CURRENT_DATE

The CURRENT_DATE function is not a true function in that no parentheses are
necessary. All calls to CURRENT_DATE within the processing of one node are
guaranteed to return the same value.

 CURRENT_TIME
The CURRENT_TIME function returns a non-GMT time value representing the
current local time. That is, it is equivalent to CAST(CURRENT_TIMESTAMP AS
TIME).

CURRENT_TIME

The CURRENT_TIME function is not a true function in that no parentheses are
necessary. All calls to CURRENT_TIME within the processing of one node are
guaranteed to return the same value.

 CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP function returns a non-GMT timestamp value
representing the current local time.

CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP function is not a true function in that no parentheses
are necessary. All calls to CURRENT_TIMESTAMP within the processing of one
node are guaranteed to return the same value.

 CURRENT_GMTDATE
The CURRENT_GMTDATE function returns a date value representing the current
date in the GMT time zone. It is equivalent to CAST(CURRENT_GMTTIMESTAMP
AS DATE).

CURRENT_GMTDATE

The CURRENT_GMTDATE function is not a true function in that no parentheses
are necessary. All calls to CURRENT_GMTDATE within the processing of one
node are guaranteed to return the same value.

 CURRENT_GMTTIME
The CURRENT_GMTTIME function returns a GMT time value representing the
current time in the GMT time zone. It is equivalent to
CAST(CURRENT_GMTTIMESTAMP AS TIME).

CURRENT_GMTTIME

The CURRENT_GMTTIME function is not a true function in that no parentheses are
necessary. All calls to CURRENT_GMTTIME within the processing of one node
are guaranteed to return the same value.

288 MQSeries Integrator V2.0 Using the Control Center

 Functions

 CURRENT_GMTTIMESTAMP
The CURRENT_GMTTIMESTAMP function returns a GMT timestamp value
representing the current time in the GMT time zone.

CURRENT_GMTTIMESTAMP

The CURRENT_GMTTIMESTAMP function is not a true function in that no
parentheses are necessary. All calls to CURRENT_GMTTIMESTAMP within the
processing of one node are guaranteed to return the same value.

 LOCAL_TIMEZONE
The LOCAL_TIMEZONE function returns an interval value which represents the
local time zone displacement from GMT.

LOCAL_TIMEZONE

The LOCAL_TIMEZONE function is not a true function in that no parentheses are
necessary. The value returned is an interval in hours and minutes representing the
displacement of the current time zone from Greenwich Mean Time. The sign of the
interval is such that a local time could be converted to a time in GMT by subtracting
the result of the LOCAL_TIMEZONE function.

 Miscellaneous functions
You can also use the CARDINALITY, FIELDNAME, FIELDTYPE, and BITSREAM
functions, as described below.

 CARDINALITY
CARDINALITY(array)

Returns the number of elements in the argument array. The argument will typically
be a path. The function returns an integer value. If the argument is NULL, the
function returns 0.

 FIELDNAME
FIELDNAME(path)

Returns the name of the field that the argument path identifies as a string. If the
path identifies a nonexistent entity, NULL is returned.

 FIELDTYPE
FIELDTYPE(path)

Returns the type of the field that the argument path identifies as an integer. If the
path identifies a nonexistent entity, NULL is returned. The result of this function will
typically be compared with a symbolic constant defined by a parser which
represents a type value. Note that this is not the datatype of the field that the path
identifies.

 BITSTREAM
The BITSTREAM function returns a byte array value representing the actual bit
stream of the portion of the message specified.

BITSTREAM(path)

 Appendix C. SQL reference 289

 Functions

This function is typically used in message warehouse scenarios, where the bit
stream of a message needs to be stored in a database. The function returns the
bit stream of the physical portion of the message which the syntax element
identified by the path lies in. It does not return the bit stream representing the
actual syntax element identified. So for example the following two calls would
return the same value:

BITSTREAM(Root.MQMD)
BITSTREAM(Root.MQMD.UserIdentifier);

 Reserved keywords
ALL
AND
ANY
AS
ASSYMETRIC
BETWEEN
BIT
BLOB
BOOLEAN
BOTH
BY
CASE
CHAR
CHARACTER
COUNT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_GMTDATE
CURRENT_GMTTIME
CURRENT_GMTTIMESTAMP
DATE
DAY
DECLARE
DELETE
DO
DISTINCT
ELSE
ELSEIF
END

ESCAPE
EXISTS
FALSE
FOR
FLOAT
FROM
GMTTIME
GMTTIMESTAMP
GROUP
HAVING
HOUR
IF
IN
INSERT
INT
INTEGER
INTERVAL
INTO
IS
ITEM
ITERATE
LAST
LEADING
LEAVE
LIKE
LIST
LOCAL_TIMEZONE
LOOP
MAX
MIN

MINUTE
MONTH
NULL
NOT
OR
ORDER
PLACING
REPEAT
ROW
SECOND
SELECT
SET
SOME
SUM
SYMMETRIC
THEN
TIME
TIMESTAMP
TO
THE
TRAILING
TRUE
UNKNOWN
UNTIL
UPDATE
VALUES
WHEN
WHERE
WHILE
YEAR

Initial correlation names
For an expression in a Filter node, or for a statement in a Database node, the
following correlation names are defined by default:

Root
Identifies the root of the message passing though the Filter node.

Body
Identifies the last child of the root of the message, that is the "body" of the
message. This is just an alias for "Root.*[LAST]" (the interpretation of this path
is explained below).

290 MQSeries Integrator V2.0 Using the Control Center

 Functions

Properties
Identifies the standard properties of the input message.

DestinationList
Identifies the structure which contains the destination list for the message
passing through the node.

ExceptionList
Identifies the structure which contains the current exception list that the node has
access to.

For a Compute node, the initial correlation names are different because there are
two messages involved, the input message and the output message. The initial
correlation names for a compute name are as follows:

InputRoot
Identifies the root of the input message

InputBody
Identifies the "body" of the input message. Like "Body" in a Filter node this is
just an alias for "InputRoot.*[LAST]"

InputProperties
Identifies the standard properties of the input message.

InputDestinationList
Identifies the structure which contains the destination list for the input message.

InputExceptionList
Identifies the structure which contains the destination list for the message
passing through the node.

OutputRoot
Identifies the root of the output message.

OutputDestinationList
Identifies the structure which contains the destination list for the output message.
For a description of the format of a destination list, see “Compute node” on
page 86.

Note that whilst this correlation name is always valid, it only has meaning when
the "computeMode" attribute of the Compute node indicates that the Compute
node is calculating the destination list.

OutputExceptionList
Identifies the structure which contains the destination list which the Compute
node is generating. For a description, see “Compute node” on page 86.

Note that whilst this correlation name is always valid, it only has meaning when
the "computeMode" attribute of the Compute node indicates that the Compute
node is calculating the exception list. (For a description see the definition of the
Compute node attributes.)

Note that in a Compute node there is no correlation name "OutputBody". New
correlation names may be introduced by SELECT expressions (see “Arbitrary
repeats: the SELECT expression” on page 260), quantified predicates, and FOR
statements.

 Appendix C. SQL reference 291

 Functions

Case sensitivity of SQL syntax
Please note the following instances in which the case in which SQL statements are
specified is significant.

� The keyword Database is case sensitive.

� References to the following correlation names are case sensitive:

InputRoot
InputBody
InputProperties
InputDestinationList
InputExceptionList
OutputRoot
OutputDestinationList
OutputExceptionList
Properties

� References to elements in a path are case sensitive:

InputRoot.Properties.MessageSet
InputRoot.Properties.MessageType
InputRoot.Properties.MessageFormat
InputRoot.Properties.Encoding
InputRoot.Properties.CodedCharSetId
InputRoot.Properties.Transactional
InputRoot.Properties.Persistence
InputRoot.Properties.CreationTime
InputRoot.Properties.ExpirationTime
InputRoot.Properties.Priority
InputRoot.Properties.Topic

Expression parsing and evaluation
The expression or statements used to program a Filter, Compute, or Database
node are parsed when it is set into the node by a configuration message.
Therefore some syntax error messages may be produced at this time. The parsing
and understanding of an expression is done without reference to any kind of
message format information. This means that the meaning of the expression is the
same for each message that passes through the Filter node, regardless of the
message format of the message. This is quite different from the way that database
SQL expressions are understood. In database systems, an SQL expression is
interpreted with reference to the schemas of any relevant tables, so ambiguities can
be detected and possibly resolved. No such rules are possible in the language
described here however.

Note that the reason that it must be possible to understand a filter expression
without looking at a message format is that it must be possible to process
messages which do not have message formats, such as generic XML. This affects
how fields in messages are referred to. This also means that some types of errors
such as type mismatch errors cannot always be caught when the expression is
parsed at configuration time, but can only be caught when the expression is
evaluated against a message, because whether the errors are produced or not can
depend on the data in the message.

292 MQSeries Integrator V2.0 Using the Control Center

 Examples for generic XML messages

Expression type checking
It is not always possible to tell the exact datatype that an expression will result in.
This is because expressions are "compiled" without reference to any kind of
message schema, and so it is not possible to tell what the result of evaluating a
field reference will be. Therefore not all type errors can be caught at "compile"
time. As many as possible will be caught at compile time, but some may only be
caught at run time when the expression is actually evaluated against a message.
In these cases, a run-time error is generated.

+ Examples for generic XML messages
+ The following examples use a default message. Each example illustrates the entire
+ message being copied, with additional SQL to address, add to, or modify specific
+ parts of the message. You can also create a message from scratch using these
+ examples as a basis: although this is not illustrated, the principle is the same.

+ XML declaration
+ The XML declaration takes the following form:

+ <?xml version="1. "?>

+ XmlDecl
+ You can modify the XML declaration using the following:

+ SET OutputRoot.XML.(XML.XmlDecl)=''

+ Version: The default behavior of the parser causes the version to be automatically
+ included on a call to construct a declaration, and version is set to '1.0'. However,
+ the version constant has been retained to allow for later development of the XML
+ specification.

+ SET OutputRoot.XML.(XML.XmlDecl).(XML.Version)='1. '

+ Standalone: The standalone option indicates whether or not an external DTD is
+ associated with the XML file.

+ SET OutputRoot.XML.(XML.XmlDecl).(XML.Standalone)='no'

+ Encoding: By default XML supports UTF-8 or UTF-16. It is therefore necessary to
+ inform the parser of any other encoding that the document has been written in.

+ <?xml version="1. " encoding="ISO-8859-1" standalone="no"?>
+ <A><B C="TODAY IS FRIDAY"><D E="42"/>

+ To create the above from a message that does not include a declaration, you must
+ code the following ESQL expressions:

+ SET OutputRoot=InputRoot ;
+ SET OutputRoot.XML.(XML.XmlDecl)='';
+ SET OutputRoot.XML.(XML.XmlDecl).(XML.Version)='1. ';
+ SET OutputRoot.XML.(XML.XmlDecl).(XML.Encoding)='ISO-8859-1' ;
+ SET OutputRoot.XML.(XML.XmlDecl).(XML.Standalone)='no';

 Appendix C. SQL reference 293

 Examples for generic XML messages

+ Document Type Declaration
+ Document type declarations are optionally found following the XML declaration. The
+ following sample illustrates the basic building blocks of the DTD (element, entity
+ attribute and notation types).

+ <?xml version="1. " standalone="yes"?>
+ <!DOCTYPE doc SYSTEM "doc.dtd" [
+ <!ELEMENT doc (header,body)>
+ <!ELEMENT header (doctitle,byline,pubdate,cpyrt,notes)>
+ <!ELEMENT doctitle (#PCDATA)>
+ <!ELEMENT byline (#PCDATA)>
+ <!ELEMENT pubdate (#PCDATA)>
+ <!ELEMENT cpyrt (#PCDATA)>
+ <!ELEMENT notes (#PCDATA)>
+ <!ELEMENT body (chapter)>
+ <!ELEMENT chapter (ctitle,formula)>
+ <!ELEMENT ctitle (#PCDATA)>
+ <!ELEMENT formula (#PCDATA)>
+ <!NOTATION TeX PUBLIC "+//ISBN -2 1-13448-9::Knuth//NOTATION The TeXbook//EN">
+ <!ENTITY XML "eXtensible Markup Language">
+ <!ATTLIST formula format NOTATION (tex|troff) #REQUIRED>
+]>
+ <doc>
+ <header>
+ <doctitle>Sample DTD document</doctitle>
+ <byline>S P Jones</byline>
+ <pubdate>Feb 15 2 </pubdate>
+ <cpyrt>today's sample of &XML;</cpyrt>
+ <notes>including a notation of an entity</notes>
+ </header>
+ <body>
+ <chapter>
+ <ctitle>formula 1</ctitle>
+ <formula format="tex">$\frac{\sqrt{x+y}} {\pi}$</formula>
+ </chapter>
+ </body>
+ </doc>

+ The following examples illustrate how you can manipulate these message contents.

+ DocTypeDecl
+ The document type declaration is a construct that contains all the other declarations
+ that make up the components of an XML message. It can optionally have an
+ external subset, an internal subset, or both.

+ SET OutputRoot.XML.(XML.DocTypeDecl)Note=''

+ IntSubset: The internal subset is a constant that has been added to allow the
+ addressing of that part of the XML-DTD document that has been stored internally.
+ In the sample above, the internal subset includes everything between the [and the
+]>.

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)=''

+ The SystemId and PublicId are used to identify the location of the external subset
+ (in a separate DTD file, if specified) that the parser must use in conjunction with the
+ internal subset defined here (if specified). Both internal and external subsets are
+ optional.

+ SystemId: The SystemId is system specific and normally includes a filename and
+ location. For example:

294 MQSeries Integrator V2.0 Using the Control Center

 Examples for generic XML messages

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.SystemId)='note.dtd'

+ PublicId: The PublicId is a non system-specific external entity identifier. For
+ example:

+ SET OutputRoot.XML.(XML.DocTypeDecl).
+ (XML.IntSubset).(XML.NotationDecl).(XML.PublicId)
+ ='+//ISBN -2 1-13448-9::Knuth//NOTATION The TeXbook//EN';"

+ NotationDecl
+ A notation declaration allows XML documents to access external information. It
+ usually identifies non-XML information.

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).(XML.NotationDecl)TeX=''

+ To construct the following Notation declaration within a message that contains no
+ current example of an XML DTD, use:

+ SET OutputRoot=InputRoot ;
+ SET OutputRoot.XML.(XML.DocTypeDecl)Note='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.SystemId)='note.dtd';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.NotationDecl)TeX='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.NotationDecl).(XML.PublicId)
+ ='+//ISBN -2 1-13448-9::Knuth//NOTATION The TeXbook//EN';"

+ This produces the following output:

+ <?xml version="1. "?>
+ <!DOCTYPE Note SYSTEM "note.dtd"[<!NOTATION TeX PUBLIC "
+ +//ISBN -2 1-13448-9::Knuth//NOTATION The TeXbook//EN">]>
+ <A><B C="TODAY IS FRIDAY"><D E="42">test</D>

+ Entities
+ Samples are provided for each of the five supported entity element types.

+ ParameterEntityDecl: The following SQL illustrates a reference to the
+ ParameterEntityDecl:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.ParameterEntityDecl)test='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.ParameterEntityDecl)test.(XML.EntityDeclValue)
+ ='#PCDATA|emphasis|link';

+ The SQL shown generates the following output in the test sample:

+ <?xml version="1. "?>
+ <!DOCTYPE Note SYSTEM "note.dtd"[
+ <!ENTITY % test "#PCDATA|emphasis|link">
+]>
+ <A><B C="TODAY IS FRIDAY"><D E="42">test</D>

+ ExternalParameterEntityDecl: The following SQL illustrates a reference to the
+ ExternalParameterEntityDecl:

 Appendix C. SQL reference 295

 Examples for generic XML messages

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.ExternalParameterEntityDecl)bookdef='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.ExternalParameterEntityDecl)bookdef.(XML.SystemId)
+ ='bookdef.dtd';

+ The SQL shown generates the following output in the test sample:

+ <?xml version="1. "?>
+ <!DOCTYPE Note SYSTEM "note.dtd"[
+ <!ENTITY % bookdef SYSTEM "bookdef.dtd">
+]>
+ <A><B C="TODAY IS FRIDAY"><D E="42">test</D>;

+ EntityDecl: The following SQL illustrates a reference to the EntityDecl:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.EntityDecl)XML='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.EntityDecl)XML.(XML.EntityDeclValue)='eXtensible Markup Language';

+ This creates a general entity within the internal subset of the DTD. Using the
+ standard sample, this gives:

+ <?xml version="1. "?>
+ <!DOCTYPE Note SYSTEM "note.dtd"[
+ <!ENTITY XML "eXtensible Markup Language">
+]>
+ <A><B C="TODAY IS FRIDAY"><D E="42">test</D>;

+ ExternalEntityDecl: The following SQL illustrates a reference to the
+ ExternalEntityDecl:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.ExternalEntityDecl)test='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.ExternalEntityDecl)test.(XML.SystemId)='test.txt';

+ The SQL shown generates the following output in the test sample:

+ <?xml version="1. "?><!DOCTYPE Note SYSTEM "note.dtd"[
+ <!ENTITY test SYSTEM "test.txt">
+]>
+ <A><B C="TODAY IS FRIDAY"><D E="42">test</D>

+ UnparsedEntityDecl: The following SQL illustrates a reference to the
+ UnparsedEntityDecl:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.UnparsedEntityDecl)pic='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.UnparsedEntityDecl)pic.(XML.SystemId)='scheme.gif';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.UnparsedEntityDecl)pic.(XML.NotationReference)='gif';

+ The SQL shown generates the following output in the test sample:

296 MQSeries Integrator V2.0 Using the Control Center

 Examples for generic XML messages

+ <?xml version="1. "?>
+ <!DOCTYPE Note SYSTEM "note.dtd"[
+ <!ENTITY pic SYSTEM "scheme.gif" NDATA gif>
+]>
+ <A><B C="TODAY IS FRIDAY"><D E="42">test</D>

+ Subcomponents used in Entities
+ These are constants that exist to help define the various entities completely.

+ NotationReference: The notation reference is used to add the NDATA section to
+ an UnparsedEntityDecl.

+ The following example illustrates the addition of the NDATA gif.

+ <!ENTITY pic SYSTEM "scheme.gif" NDATA gif>

+ This form is created using the following SQL:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.UnparsedEntityDecl)pic.(XML.NotationReference)='gif';

+ EntityDeclValue: You can use EntityDeclValue to set a value element that is a
+ child of any of the five EntityDecl types.

+ For example:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.EntityDecl)XML.(XML.EntityDeclValue)='eXtensible Markup Language'

+ SystemID and PublicID: SystemID and PublicID can be used as children of
+ ExternalEntityDecl, ExternalParameterEntityDecl, or UnparsedEntityDecl.

+ ElementDef
+ ElementDef represents the <!ELEMENT construct. The following SQL example
+ illustrates the use of ElementDef.

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.ElementDef)warning='(para+)';

+ The SQL shown generates the following statement within the internal DTD subset.

+ <!ELEMENT warning (para+)>

+ Attribute definitions
+ The following examples illustrate the SQL required to set up the <!ATTLIST
+ construct and its contents.

+ AttributeList: AttributeList represents the <!ATTLIST construct. The contents of
+ the construct are defined by the following elements:

+ � AttributeDef

+ This name element defines an attribute in the attribute list.

+ � AttributeDefValue

+ This value element gives the default value of the attribute.

+ � AttributeDefDefaultType

 Appendix C. SQL reference 297

 Examples for generic XML messages

+ This value element indicates the default type for the attribute.

+ � AttributeDefType

+ This is a name-value element where the name corresponds to the attribute
+ type, and is one of:

+ – CDATA
+ – ID
+ – IDREF
+ – IDREFS
+ – ENTITY
+ – ENTITIES
+ – NMTOKEN
+ – NMTOKENS
+ – NOTATION

+ If the attribute has an enumeration, the value of the name-value element
+ contains the enumerated list.

+ An attribute list might be coded in XML as follows:

+ <!ATTLIST formula format NOTATION (tex|troff) #REQUIRED>

+ You must code the following SQL to create this element:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)formula='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)formula.(XML.AttributeDef)format='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)formula.(XML.AttributeDef)format.
+ (XML.AttributeDefDefaultType)='REQUIRED';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)formula.(XML.AttributeDef)format.
+ (XML.AttributeDefType)NOTATION='(tex|troff)';

+ A second example of an attribute list is:

+ <!ATTLIST report security (public|confidential|secret)"public">

+ This can be constructed using the following SQL:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)report='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)report.(XML.AttributeDef)security='';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)report.(XML.AttributeDef)security.
+ (XML.AttributeDefType)='(public|confidential|secret)';
+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.AttributeList)report.(XML.AttributeDef)security.
+ (XML.AttributeDefValue)='public';

298 MQSeries Integrator V2.0 Using the Control Center

 Examples for generic XML messages

+ The XML message body
+ Consider the following sample of XML:

+ <?xml version="1. " encoding="ISO-8859-1" standalone="no"?>
+ <A>
+ <B C="TODAY IS FRIDAY">
+ <D E="42"/>
+ <D>test</D>
+
+

+ If you want to address the second <D> tag you must specify:

+ InputRoot.XML.A.B.(XML.tag)D[2]

+ You can also use:

+ InputRoot.XML.A.B.D[2]

+ To change the attribute with name E on the first D tag you must specify:

+ Set OutputRoot.XML.A.B.D.(XML.attr)E='57'

+ This results in:

+ ...<B C="TODAY IS FRIDAY"><D E=57"/><D>test</D>...

+ To change the pcdata field of the second <D> tag you must specify:

+ Set OutputRoot.XML.A.B.D[2](XML.pcdata)='result'

+ The same result could be achieved with the following:

+ Set OutputRoot.XML.A.B.D[2]='result'

+ This gives the following output:

+ ...<B C="TODAY IS FRIDAY"><D E="42"/><D>result</D>...

+ ProcessingInstruction and DocTypePI
+ An XML processing instruction contains information required by a specific
+ application expected to process XML data.

+ SET OutputRoot.XML.A.B.D.(XML.ProcessingInstruction)test='Do this'

+ This statement produces the following output:

+ <A><B C="TODAY IS FRIDAY"><D E="42"><?test Do this?></D>

+ WhiteSpace and DocTypeWhiteSpace: This adds a series of blanks into the
+ message at the desired location.

+ SET OutputRoot.XML.A.B.(XML.WhiteSpace)=' '

+ This produces the output:

+ <?xml version="1. "?><!DOCTYPE Note SYSTEM "note.dtd">
+ <A><B C="TODAY IS FRIDAY"><D E="42">test</D>

 Appendix C. SQL reference 299

 Exception and destination list structure

+ Comment and DocTypeComment: These elements refer to comments within the
+ message.

+ SET OutputRoot.XML.A.B.D.(XML.Comment)='This is a comment'.
+ SET OutputRoot=InputRoot ;
+ SET OutputRoot.XML.A.B.D.(XML.Comment)='This is a comment';"

+ This changes

+ <A><B C="TODAY IS FRIDAY"><D E="42"></D>

+ into

+ <A><B C="TODAY IS FRIDAY"><D E="42"><!--This is a comment--></D>

+ Similarly:

+ SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
+ (XML.DocTypeComment)='comment'

+ produces the following output

+ <?xml version="1. "?><!DOCTYPE Note SYSTEM "note.dtd"
+ [<!--comment-->]><A><B C="TODAY IS FRIDAY"><D E="42">test</D>

+ The declarations and the internal subset have been added by this example.

+ CDataSection: A CDATA section is an area of message text that is to remain
+ unparsed. You can therefore include characters that are normally excluded from
+ markup within the CDATA section.

+ SET OutputRoot.XML.A.B.D.(XML.CDataSection)='1122334455'

+ This produces the output:

+ <A><B C="TODAY IS FRIDAY"><D E="42"><![CDATA[1122334455]]></D>

Exception and destination list structure
A tree representation is used within a broker to represent the data contained in the
bit-stream representation of a message used outside the broker. Within the broker
this tree representation is supplemented by two additional trees: the destination list
and exception list trees. These represent:

� The destinations to which a message is sent.
� The exception conditions that have occurred while processing that message.

A message being processed within the broker consists of three separate syntax
element trees:

� The destination list tree
� The exception list tree
� The message tree

You can query and manipulate each of these trees in much the same way in Filter,
Database, and Compute nodes. Elements can be created, examined, or even
copied from one tree to another. Note that the destination and exception list trees
only exist within the broker and are not replicated in the bit stream. The following
sections describe the structure of the destination and exception lists.

300 MQSeries Integrator V2.0 Using the Control Center

 Exception and destination list structure

 Destination lists
A destination list tree describes a list of external destinations to which a message
will be sent. Output nodes can be configured to examine this list and send the
message to the given destinations. Alternatively, they can be configured to send
messages to a fixed destination. In this case, the destination list has no effect on
broker operations and can be empty (that is, consist of a Destination List element
only).

The destination list tree has a definite structure that is illustrated in the following
figure:

The root of the tree is called “Destination List”. The tree consists of a single name
element called “Destination”: this is the first and only child of the Destination List.
The Destination element consists of a number of children that indicate the transport
types to which the message will be directed. Each element is a single name
element, for example, MQSeries.

The transport name element might contain an element called “Defaults”. If it does,
this must be in the first child that contains a set of name-value elements that give
default values for the message destination and its put options.

The element that identifies the transport might also contain a number of elements
called “DestinationData”. Each of these contains a set of name-value elements that
defines a message destination and its put options. For MQSeries, the set of
elements that define destination are as follows:

 Appendix C. SQL reference 301

 Exception and destination list structure

Name
queueManagerName
queueName
transactionMode
persistenceMode
newMsgId
newCorrelId
segmentationAllowed
alternateUserAuthority

All of these elements have a data type of string. See the description of the
MQOutput node in the on-line help for their descriptions and valid values. You can
access the online help from the Help menu in the Control Center taskbar or by
highlighting an MQOutput node, right clicking, and selecting Help.

 Exception lists
+ If no exception conditions occur while you are processing a message, the exception
+ list associated with that message consists of a root element only. This is, in effect,
+ an empty list of exceptions.

+ If an exception condition occurs, message processing is suspended and an
+ exception is thrown. Control is passed back to a higher level, that is, an enclosing
+ catch block. An exception list is built to describe the failure condition, and then the
+ whole message, together with the destination list and the newly-populated
+ exception list, is propagated through an exception handling message flow path.

+ Exception handling paths start at a failure terminal (most message processing
+ nodes have these), the catch terminal of an MQInput node, or the catch terminal of
+ a TryCatch node, but are no different in principle from a normal message flow path.
+ Such a flow consists of a set of interconnected message flow nodes defined by the
+ designer of message flow. The exception handling paths differ in detail. For
+ example, they might examine the exception list to determine the nature of the error,
+ and so be able to make an appropriate response.

+ The message and destination list that are propagated to the exception handling
+ message flow path are those in effect at the start of the exception path, not
+ necessarily those in effect when the exception is thrown. Figure 62 on page 303
+ illustrates this point:

+ � A message (M1) and destination list (D1) are being processed by a message
+ flow. They are passed through the TryCatch node to Compute1.

+ � Compute1 updates the message and destination list and propagates a new
+ message (M2) and destination list (D2) to the next node, Compute2.

+ � An exception is thrown in Compute2. The exception is propagated back to the
+ TryCatch node, but the message and destination list are not. Therefore the
+ exception handling path starting at point A has access to the first message and
+ destination list, M1 and D1.

+ � If there had been no TryCatch node in the message flow, and the failure
+ terminal of Compute2 had been connected (point B), the message and
+ destination list M2 and D2 would have been propagated to the node connected
+ to that failure terminal.

302 MQSeries Integrator V2.0 Using the Control Center

 Exception and destination list structure

+ Figure 62. Message and destination list for an exception

+ The exception list tree has a definite structure. The root of the tree is called
+ “ExceptionList”, and the tree itself consists of a set of one or more exception
+ descriptions. Each exception description consists of a name element whose name
+ is one of the following:

 � RecoverableException
 � ParserException
 � ConversionException
 � UserException

These name elements contain children that take the form of a number of
name-value elements that give details of the exception and zero or more name

+ elements whose name is “Insert”. The NLS (National Language Support) message
+ number identified in a name-value element in turn identifies an MQSeries Integrator
+ error message. All error messages are defined in detail in the MQSeries Integrator
+ V2.0 Messages book. The Insert values are used to replace the variables within
+ this message, and provide further detail of the precise cause of the exception.

+ The name-value elements within the exception list are as follows:

 Appendix C. SQL reference 303

 Exception and destination list structure

The exception description structure can be both repeated and nested to produce an
exception list tree. In this tree:

� The depth (that is, the number of parent-child steps from the root) represents
increasingly detailed information for the same exception.

� The width of the tree represents the number of separate exception conditions
that occurred before processing was abandoned. You will find that this number
is usually one, and results in an exception tree that consists of a number of
exception descriptions connected as children of each other.

+ Figure 63 on page 305 illustrates one way in which an exception list can be
+ constructed.

+ Name+ Type+ Description

+ Filep+ String+ C++ source file name

+ Linep+ Integer+ C++ source file line number

+ Functionp+ String+ C++ source function name

+ Typeq+ String+ Source object type

+ Nameq+ String+ Source object name

+ Labelq+ String+ Source object label

+ Textp+ String+ Additional text

+ Catalogr+ String+ NLS message catalog names

+ Severityr+ Integer+ 1=information
+ 2=warning
+ 3=error

+ Numberr+ Integer+ NLS message numbers

+ Insertr+ Type+ String+ The data type of the value

+ Text+ String+ The data value

+ Notes:

+ 1. The File, Line, Function, and Text elements should not be used for exception
+ handling decision making. These elements ensure that information can be written to
+ a log for use by IBM service personnel.

+ 2. The Type, Name, and Label elements define the object (usually a Message Flow
+ node) that was processing the message when the exception condition occurred.

+ 3. The Catalog, Severity, and Number elements define an NLS message: the Insert
+ elements that contain the two name-value elements shown define the inserts into
+ that NLS message.

+ 4. NLS message catalog name and NLS message number refer to a translatable
+ message catalog and message number.

304 MQSeries Integrator V2.0 Using the Control Center

 Exception and destination list structure

+ ExceptionList {
+ RecoverableException = { �1�
+ File = 'f:/build/argo/src/DataFlowEngine/ImbDataFlowNode.cpp'
+ Line = 538
+ Function = 'ImbDataFlowNode::createExceptionList'
+ Type = 'ComIbmComputeNode'
+ Name = ' e416632-de - - 8 -bdb4d59524d5'
+ Label = 'mf1.Compute1'
+ Text = 'Node throwing exception'
+ Catalog = 'MQSeriesIntegrator2'
+ Severity = 3
+ Number = 223
+ RecoverableException = { �2�
+ File = 'f:/build/argo/src/DataFlowEngine/ImbRdlBinaryExpression.cpp'
+ Line = 231
+ Function = 'ImbRdlBinaryExpression::scalarEvaluate'
+ Type = 'ComIbmComputeNode'
+ Name = ' e416632-de - - 8 -bdb4d59524d5'
+ Label = 'mf1.Compute1'
+ Text = 'error evaluating expression'
+ Catalog = 'MQSeriesIntegrator2'
+ Severity = 2
+ Number = 2439
+ Insert = {
+ Type = 2
+ Text = '2'
+ }
+ Insert = {
+ Type = 2
+ Text = '3 '
+ }
+ RecoverableException = { �3�
+ File = 'f:/build/argo/src/DataFlowEngine/ImbRdlValueOperations.cpp'
+ Line = 257
+ Function = 'intDivideInt'
+ Type = 'ComIbmComputeNode'
+ Name = ' e416632-de - - 8 -bdb4d59524d5'
+ Label = 'mf1.Compute1'
+ Text = 'Divide by zero calculating '%1 / %2''
+ Catalog = 'MQSeriesIntegrator2'
+ Severity = 2
+ Number = 245
+ Insert = }
+ Type = 5
+ Text = '1 / '
+ }
+ }
+ }
+ }
+ }

+ Figure 63. Exception list structure

 Appendix C. SQL reference 305

 Exception and destination list structure

+ Notes:

+ 1. The first exception description �1� is a child of the root. This identifies error
+ number 2230, indicating an exception has been thrown. The node that has
+ thrown the exception is also identified (mf1.Compute1).

+ 2. Exception description �2� is a child of the first exception description �1�. This
+ identifies error number 2439.

+ 3. Exception description �3� is a child of the second exception description �2�.
+ This identifies error number 2450, which indicates that the node has attempted
+ to divide by zero.

Exception handling paths will base their decisions on the number of exception
conditions on:

� The message number, which identifies the type of exception that has occurred.

� The label, which is the known name of the object in which the exception
occurred.

+ Figure 64 illustrates an extract of SQL to show how you can set up a Compute
+ node to use the exception list. The SQL loops through the exception list to the last
+ (nested) exception description, and extracts the error number. This error relates to
+ the original cause of the problem and normally provides the most precise
+ information. Subsequent action taken by the message flow can be decided by the
+ error number retrieved in this way.

+ /V Error number extracted from exception list V/
+ DECLARE Error INTEGER;
+ /V Current path within the exception list V/
+ DECLARE Path CHARACTER;

+ /V Start at first child of exception list V/
+ SET Path = 'InputExceptionList.V[1]';

+ /V Loop until no more children V/
+ WHILE EVAL('FIELDNAME(' || Path || ') IS NOT NULL') DO

+ /V Check if error number is available V/
+ IF EVAL('FIELDNAME(' || Path || '.Number) IS NOT NULL') THEN
+ /V Remember only the deepest error number V/
+ SET Error = EVAL(Path || '.Number');
+ END IF;

+ /V Step to last child of current element (usually a nested exception list V/
+ SET Path = Path || '.V[LAST]';

+ END WHILE; /V End loop V/

+ Figure 64. Retrieving the exception error code

306 MQSeries Integrator V2.0 Using the Control Center

 NEON Rules and Formatter � Combining NEON and MQSeries

Appendix D. NEON Rules and Formatter

The NEON rules and formatter are inherited by MQSeries Integrator from Version 1
of the product. MQSeries Integrator Version 2 message flow nodes do not read
directly from an input queue but instead use the MQInput node. If you are
migrating from Version 1 and need to incorporate NEON messages into your
message flows, you can wire the out terminals on your MQInput nodes into the in
terminal on a NEON Rules node. However, rules and formatting operations will run
unchanged on Version 2 and you will not have to change any of your client
applications.

NEONFormatter and NEONRules nodes
If you are not using Version 1 of MQSeries Integrator you do not have any
migration tasks to complete. Instead, the nodes will appear in the list of IBM
supplied message flow nodes and behave as described in Chapter 4, “Defining
message flows” on page 67.

Further information about the NEON nodes is in this appendix and in the MQSeries
Integrator help, accessible by highlighting either node, right clicking, and selecting
Help from the drop down list.

NEON formatter and rules engine
The NEON formatter and rules engines define a set of formats and rules that
govern how an incoming message is processed.

They are both inherited from MQSeries Integrator Version 1. They enable you to
receive messages from Version 1 and so act as an aid to migration, but the tasks
you have to perform to complete migration from Version 1 involve the broker only.

Combining NEON rules with MQSeries Integrator
When you design message flows that combine the use of the NEONRules and
NEONFormatter nodes in conjunction with other message flow nodes, the following
conditions apply:

� A NEONRules or NEONFormatter node can only process messages defined
using the NEONFormatter interface (they cannot process messages defined
using the MRM).

� A message flow node can parse a message that has been defined as an input
format using the NEONFormatter interface.

� A message flow node cannot create or modify a message whose format has
been defined using the NEONFormatter tool unless it is a NEON node.

According to these conditions, the procedures in the following table should be
carried out when you implement message flows that include NEON nodes.

The NEON Rules node has no attributes. However, it does have to access the
database in which the NEON rules are defined. Because the NEON message
parser has to access the same database, all the NEONRules nodes in a message

 Copyright IBM Corp. 2000 307

 Combining NEON and MQSeries

flow, and any NEON parsers, use the same set of database connection
parameters. These database connection parameters are retrieved from a
configuration file that matches the format of the MQSeries Integrator Version 1
rules engine configuration file. For migration purposes the
MQSI_PARAMETERS_FILE environment variable can be pointed at that file. The
minimum configuration file that is necessary is as follows:

[Rules Database Connection]
 #

rules and formatter database connection information (mandatory)
 # exceptions/notes:
 # - leave "DatabaseInstance" as "???" (Oracle and DB2 only)
 # - enter the database name as the value of "ServerName" (DB2 only)
 #
 ServerName = ???
 UserId = ???
 Password = ???

DatabaseInstance = ???
 #

DatabaseType is a numeric with these values:
SYBASE (CTLIB bindings) = 1
SYBASE (DBLIB bindings) = 2

 # MSSQL = 4
 # DB2 = 5
 # ODBC = 6

ORACLE (version 7.x) = 8
ORACLE (version 8.x) = 9

 #
DatabaseType = 5

 #
end of file!

 #

A message flow node in MQSeries Integrator will accept messages made up of an
MQMD (full details of which are in the on-line help), optionally followed by an
MQRFH or an MQRFH2 header, and a message body that can be parsed by the
NEON parser.

An MQSeries message flow node takes the portion of the bit-stream representation
of the message that is being parsed by the NEON parser. It passes that
representation to the NEON rules processor using the message type and
application group parameters retrieved from the values of the Type and Set
standard properties.

The MQSeries message flow node then processes the actions returned from the
rules processor. Three actions are recognized. These are reformat, putqueue, and
propagate. If no rule is hit then the original message is propagated to the noHit
terminal. If any errors occur whilst evaluating the rules, the original message is
propagated to the failure terminal.

Note: Errors that occur in message flow nodes further down the message flow
than any of the output terminals are not caught by the NEON rules engine. They
are caught by the input node or last tryCatch node instead.

308 MQSeries Integrator V2.0 Using the Control Center

 NEON subscriptions

To make sure that interchange messages are defined in both dictionaries, describe
the message format as a COBOL copybook and then import the record format into
both dictionaries. Alternatively, you can define the messages in the Control Center
and generate the DTD (see Chapter 3, “Defining messages” on page 21 for more
information on generating the DTD) that represents the message set. You can then
import the DTD through the NEON formatter interface.

Table 27. Procedures for implementing message flows with NEON nodes

Circumstance Action

Nodes preceding the NEON node(s) only
examine the content of the message and
do not modify the message content in any
way.

No action required. The message format
only needs to be defined as an input
format to NEON components.

Node following the NEON node(s) only
examine the properties of the message or
the message headers. They do not
examine the content of the message.

No action required.

Message flow nodes that follow the NEON
nodes in a message flow examine and
modify the content of a message.

The format of the message passed out of
the NEON node must be defined either
as both an input and output format in the
NEON dictionary, or as an output format
in the NEON dictionary and as any
format in the MRM.

In this second case, the interchange
message must be a format that can be
built by the NEON formatter and parsed
by the IBM parser.

 NEON subscriptions
Three actions are supported in NEON subscriptions:

 � Reformat
 � Putqueue
 � Propagate

The propagate action is accessed by choosing the generic action and putting
propagate as its name. When you fire the propagate action, a message has the
name of the queue it is going to added to its destination list. It is then propagated
to the putqueue terminal.

If no rule is triggered the input message is propagated to the noHit terminal of the
NEONRules node. If a failure occurs during processing the input message is
propagated to the failure terminal of the NEONRules node.

Although the NEONRules node has no attributes, it must access the database in
which the NEON Rules are defined. The NEON message parser must also access
this database so all the NEONRules nodes in a message flow, and any NEON
parsers and the NEON Formatter node, use the same set of database configuration
parameters. The database connection parameters are retrieved from a
configuration file, the location of which is given in the MQSI_PARAMETERS_FILE
environment variable. The format of this configuration file matches the format of
the MQSeries Integrator Version 1 rules engine configuration file.

 Appendix D. NEON Rules and Formatter 309

 NEON subscriptions

NEONRules allows you to evaluate a message and then respond to the results of
an evaluation carried out by the node. You can carry out different types of
processing within the NEONRules node.

Application groups are logical divisions of rule sets for different business needs.
You can define as many application groups as you need. For example, you might
want rules for the accounting department and the application development
department separated into two groups. You could define "Accounting" as one
application group, "Application Development" as another, and then associate rules
with each group as appropriate.

Message types are defined by you and define the layout of a message. Each
application group can contain several message types, and a message type can be
used in more than one application group.

Note: The message type is the same as the input format name. This format
name is used by the NEONFormatter to parse input messages for rules evaluation.

When you create any rules, you must give each rule a rule name and associate the
rule name with an application group and message type. Each rule is uniquely
identified by its application group/message type/rule name triplet.

Each rule must have the following three parameters defined:

� Evaluation criteria (an expression containing arguments and operators),

� Subscription information (subscriptions, actions, and options),

 � Permission information.

An example of an MQSeries Integrator message flow that can replicate the Version
1.1 rules engine functionality is shown in Figure 65 on page 311.

310 MQSeries Integrator V2.0 Using the Control Center

 NEON subscriptions

Figure 65. Message flow that replicates MQSeries Integrator V1 functionality

 Appendix D. NEON Rules and Formatter 311

 NEON subscriptions

312 MQSeries Integrator V2.0 Using the Control Center

 Notices

 Appendix E. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

 Copyright IBM Corp. 2000 313

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

314 MQSeries Integrator V2.0 Using the Control Center

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both:

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, or service names, may be the trademarks or service
marks of others.

DB2 DB2 Universal Database IBM
MQSeries SupportPac

 Appendix E. Notices 315

 Notices

316 MQSeries Integrator V2.0 Using the Control Center

 Access Control List (ACL) � element

Glossary of terms and abbreviations

This glossary defines MQSeries Integrator terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute. Copies may be ordered
from the American National Standards Institute, 11
West 42 Street, New York, New York 10036. Definitions
are identified by the symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that
have explicit permissions (to publish, to subscribe to,
and to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The
programming interface provided by MQSeries that
defines a high level interface to message queuing
services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid entity
that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a
common configuration, together with the single
Configuration Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are
related in some way. For example, messages that
relate to a particular application.

collective. A hyperconnected (totally connected) set of
brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers,
execution groups, message flows and message sets
assigned to them, topics and access control
specifications.

Configuration Manager. A component of MQSeries
Integrator that acts as the interface between the
configuration repository and an executing set of brokers.
It provides brokers with their initial configuration, and
updates them with any subsequent changes. It
maintains the broker domain configuration.

configuration repository. Persistent storage for
broker configuration and topology definition.

connector. See message processing node
connector.

content-based filter. An expression that is applied to
the content of a message to determine how the
message is to be processed.

context tag. A tag that is applied to an element within
a message to enable that element to be treated
differently in different contexts. For example, an element
could be mandatory in one context and optional in
another.

Control Center. The graphical interface that provides
facilities for defining, configuring, deploying, and
monitoring resources of the MQSeries Integrator
network.

D
datagram. The simplest form of message that
MQSeries supports. Also known as send-and-forget.
This type of message does not require a reply.
Compare with request/reply.

deploy. Make operational the configuration and
topology of the broker domain.

distribution list. A list of MQSeries queues to which a
message can be put using a single statement.

E
e-business. A term describing the commercial use of
the Internet and World Wide Web to conduct business
(short for electronic-business).

element. A unit of data within a message that has
business meaning, for example, street name

 Copyright IBM Corp. 2000 317

 element qualifier � message queue interface (MQI)

element qualifier. See context tag.

execution group. A named grouping of message
flows that have been assigned to a broker. The broker
is guaranteed to enforce some degree of isolation
between message flows in distinct execution groups by
ensuring that they execute in separate address spaces,
or as unique processes.

Extensible Markup Language (XML). A W3C
standard for the representation of data.

F
filter. An expression that is applied to the content of a
message to determine how the message is to be
processed.

format. A format defines the internal structure of a
message, in terms of the fields and order of those
fields. A format can be self-defining, in which case the
message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a
software product that is graphical rather than textual. It
refers to window-based operational characteristics.

I
implementation function. Function written by a
third-party developer for a plug-in node or parser. Also
known as a callback function.

input node. A message flow node that represents a
source of messages for the message flow.

installation mode. The installation mode can be Full,
Custom, or Broker only. The mode defines the
components of the product installed by the installation
process.

J
Java Database Connectivity (JDBC). An application
programming interface that has the same characteristics
as ODBC but is specifically designed for use by Java
database applications.

Java Development Kit (JDK). A software package
that can be used to write, compile, debug, and run Java
applets and applications.

Java Message Service (JMS). An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment. A subset of the Java
Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes and supporting files.

JDBC. Java Database Connectivity.

JDK. Java Development Kit.

JMS. Java Message Service. See also AMI and MQI.

JRE. Java Runtime Environment.

M
message broker. A set of execution processes
hosting one or more message flows.

messages. Entities exchanged between a broker and
its clients.

message dictionary. A repository for (predefined)
message type specifications.

message domain. The source of a message
definition. For example, a domain of MRM identifies
messages defined using the Control Center, a domain
of NEON identifies messages created using the NEON
user interfaces.

message flow. A directed graph that represents the
set of activities performed on a message or event as it
passes through a broker. A message flow consists of a
set of message processing nodes and message
processing node connectors.

message flow component. See message flow.

message parser. A program that interprets a message
bitstream.

message processing node. A node in the message
flow, representing a well defined processing stage. A
message processing node can be one of several
primitive types or can represent a subflow.

message processing node connector. An entity that
connects the output terminal of one message
processing node to the input terminal of another. A
message processing node connector represents the
flow of control and data between two message flow
nodes.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. The
programming interface allows application programs to
access message queuing services. See also AMI and
JMS.

318 MQSeries Integrator V2.0 Using the Control Center

 message repository � queue manager

message repository. A database holding message
template definitions.

message set. A grouping of related messages.

message template. A named and managed entity that
represents the format of a particular message. Message
templates represent a business asset of an
organization.

message type. The logical structure of the data within
a message. For example, the number and location of
character strings.

metadata. Data that describes the characteristic of
stored data.

MQI. Message queue interface.

MQRFH. An architected message header that is used
to provide metadata for the processing of a message.
This header is supported by MQSeries
Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing
enhanced function in message processing.

multi-level wildcard. A wildcard that can be specified
in subscriptions to match any number of levels in a
topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and non-relational database management
systems. Using this API, database applications can
access data stored in database management systems
on a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the X/Open
SQL Access Group.

output node. A message processing node that
represents a point at which messages flow out of the
message flow.

P
plug-in. An extension to the broker, written by a
third-party developer, to provide a new message
processing node or message parser in addition to those
supplied with the product. See also implementation
function and utility function.

point-to-point. Style of messaging application in which
the sending application knows the destination of the
message. Compare with publish/subscribe.

predefined message. A message with a structure that
is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied
with the product.

principal. An individual user ID (for example, a log-in
ID) or a group. A group can contain individual user IDs
and other groups, to the level of nesting supported by
the underlying facility.

property. One of a set of characteristics that define
the values and behaviors of objects in the Control
Center. For example, message processing nodes and
deployed message flows have properties.

publication node. An end point of a specific path
through a message flow to which a client application
subscribes. A publication node has an attribute,
subscription point. If this is not specified, the publication
node represents the default subscription point for the
message flow.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. An application that makes information
about a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that

 Glossary of terms and abbreviations 319

 retained publication � XML

programs can access messages on the queues that the
queue manager owns.

R
retained publication. A published message that is
kept at the broker for propagation to clients that
subscribe at some point in the future.

request/reply. Type of messaging application in which
a request message is used to request a reply from
another application. Compare with datagram.

rule. A rule is a definition of a process, or set of
processes, applied to a message on receipt by the
broker. Rules are defined on a message format basis,
so any message of a particular format will be subjected
to the same set of rules.

S
self-defining message. A message that defines its
structure within its content. For example, a message
coded in XML is self-defining. Compare with pre-defined
message.

send and forget. See datagram.

setup type. The definition of the type of installation
requested. This can be one of Full, Broker only, or
Custom.

shared. All configuration data that is shared by users
of the Control Center. This data is not operational until it
has been deployed.

signature. The definition of the external characteristics
of a message processing node.

single-level wildcard. A wildcard that can be specified
in subscriptions to match a single level in a topic.

subscriber. An application that requests information
about a specified topic from a publish/subscribe broker.

subscription. Information held within a publication
node, that records the details of a subscriber
application, including the identity of the queue on which
that subscriber wants to receive relevant publications.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

subscription point. An attribute of a publication node
that differentiates it from other publication nodes on the
same message flow and therefore represents a specific
path through the message flow. An unnamed
publication node (that is, one without a specific

subscription point) is known as the default publication
node.

T
terminal. The point at which one node in a message
flow is connected to another node. Terminals enable
you to control the route that a message takes,
depending whether the operation performed by a node
on that message is successful.

topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

topology. In the broker domain, the brokers,
collectives, and connections between them.

transform. A defined way in which a message of one
format is converted into one or more messages of
another format.

U
User Name Server. The MQSeries Integrator
component that interfaces with operating system
facilities to determine valid users and groups.

utility function. Function provided by MQSeries
Integrator for the benefit of third-party developers writing
plug-in nodes or parsers.

W
warehouse. A persistent, historical datastore for
events (or messages). The Warehouse node within a
message flow supports the recording of information in a
database for subsequent retrieval and processing by
other applications.

wildcard. A character that can be specified in
subscriptions to match a range of topics. See also
multilevel wildcard and single-level wildcard.

wire format. This describes the physical
representation of a message within the bit-stream.

W3C. World Wide Web Consortium. An international
industry consortium set up to develop common
protocols to promote evolution and interoperability of the
World Wide Web.

X
XML. Extensible Markup Language.

320 MQSeries Integrator V2.0 Using the Control Center

 Index

 Index

A
Add an existing Broker dialog 148
Add an existing Message Flow dialog 162
Add an existing Message Set dialog 165
adding

brokers to collectives 148
message components to the workspace 56
message sets to the workspace 56
principal to an ACL 191

adding to the workspace
message flows 74

Additional Instances property 163
all configuration data

deploying 184, 185
assigning

message flows to execution groups 162
message sets to brokers 165

assignments
checking in 169
deploying 178, 179
view

displaying 159
authorization required for

assigning resources to brokers 159
creating messages and message sets 42
running the broker domain 195
setting up publish/subscribe access control 187

B
broker

adding to a collective 148
connecting to another broker 152
creating 144
creating to add to a collective 150
deleting 154
deleting connections 153
domain, running 195
removing from a collective 151
renaming 155
topology

defining 141

C
C and COBOL default mappings 235
C language bindings, generating 59
categories

adding to the workspace 56
category component of message definition 34
changing user roles 11

Check node 84
checking in

assignments 169
message flows 81
message sets 66

checking out
message flows 81

click, definition of xi
COBOL language bindings, generating 59
code-page considerations, external database 72
collective

creating 146
complete deployment of configuration data 173
compound types

adding to the workspace 56
Compute node 86
configuration data 3
configuration repository 3
connecting

brokers 152
connections, external database 72
Control Center

exiting 9
main functions of 3
preparation for using 7
starting 7
workspace 4

Control Center views
Message Flows 67
Message Sets 43

Create a new Broker dialog 144
Create a new Collective dialog 146
Create a new Execution Group dialog 161
creating

brokers 144
brokers to add to collectives 150
collectives 146
execution groups 161
message flow categories 73
message flow nodes 82
message flows 69, 76
message sets 44
messages 46, 54
topics 189
workspace 12

D
data model layers 39
Database node 90
DataDelete node 93

 Copyright IBM Corp. 2000 321

 Index

DataInsert node 96
DataUpdate node 99
deleting

brokers 154
connections between brokers 153
promoted property from a message flow 79
subscriptions 207

delta deployment of configuration data 173
deployed configuration 4
deploying

all configuration data, complete 185
all configuration data, delta 184
all data, forcibly 186
assignments, complete 179
assignments, delta 178
topics, complete 181
topics, delta 180
topology 182, 183

deployment of configuration data
authorization to perform 177
complete 173
delta 173
forced 174
monitoring progress of 175
stages of 174

destination list structure 300
documentation, generating 60
double-click, definition of xi
drag, definition of xi
DTDs, generating 42

E
editing

message properties 61
element component of message definition 33
element length component of message definition 34
element lengths

adding to the workspace 56
element qualifier component of message definition 34
element qualifiers

adding to the workspace 56
element valid value component of message

definition 34
element valid values

adding to the workspace 56
elements

adding to the workspace 56
examples

promoting message flow node properties 79
exception list structure 300
execution group

removing from a broker 167
execution groups

creating 161

exiting the Control Center 9
exporting the workspace 13
external database

code-page considerations 72
connections 72
globally coordinated transactions 72

Extract node 102

F
Filter node 104
forced deployment of configuration data 174
forcing deployment of all data 186

G
generating

documentation 60
language bindings 59
message set DTDs 42
XML DTDs 58

glossary, generating 60

I
identifiers of message components 35
importing legacy formats 41
importing message definitions 57
importing resources into a workspace 13
Input Terminal node 76

L
language bindings, generating 59
layout graph action

Message Flow Definition pane 68
Topology pane 142

legacy formats, importing 41
legacy formats, messages 23
local configuration 5
Log view, description of 196

M
manhattan style action

Message Flow Definition pane 68
Topology pane 142

member relationship between message
components 33

message
generic XML 25
interpretation 22
self-defining 25

message book, generating 60
message component of message definition 33
message definition

category component 34

322 MQSeries Integrator V2.0 Using the Control Center

 Index

message definition (continued)
components of 33
element component 33
element length component 34
element qualifier component 34
element valid value component 34
identifiers of components 35
member relationship between components 33
message component 33
names of components 35
reference relationship between components 33
type component 34

message definitions
importing 57

message domain
additional 25
MRM 23
NEON 24
XML 22

message flow
removing from an execution group 168

message flow nodes
Check

configuring 84
description of 84
properties 84
terminals 84

Compute
configuring 87
description of 86
properties 86
terminals 86

creating 82
Database

configuring 91
description of 90
properties 90
terminals 90

DataDelete
configuring 94
description of 93
properties 93
terminals 93

DataInsert
configuring 97
description of 96
properties 96
terminals 96

DataUpdate
configuring 100
description of 99
properties 99
terminals 99

Extract
configuring 102
description of 102
properties 102

message flow nodes (continued)
Extract (continued)

terminals 102
Filter

configuring 105
description of 104
properties 104
terminals 104

Input Terminal 76
MQInput

configuring 109
description of 107
properties 107
terminals 107

MQOutput
configuring 113
description of 112
properties 112
terminals 112

MQReply
configuring 116
description of 115
properties 115
terminals 115

NEONFormatter
configuring 117
description of 117
properties 117
terminals 117

NEONRules
configuring 119
description of 119
properties 119
terminals 119

Output Terminal 76
properties, promoting 77
Publication

configuring 121
description of 121
properties 121
terminals 121

renaming 70
ResetContentDescriptor

configuring 124
description of 123
properties 123
terminals 123

Throw
configuring 126
description of 126
properties 126
terminals 126

Trace
configuring 128
description of 128
properties 128
terminals 128

 Index 323

 Index

message flow nodes (continued)
TryCatch

configuring 130
description of 130
properties 130
terminals 130

Warehouse
configuring 133, 135
description of 132
properties 133
terminals 132

message flows
adding to the workspace 74
Additional Instances property 163
assigning to execution groups 162
authorization to work with 67
categories of, creating 73
checking in 81
checking out 81
creating 69
default 137
for installation verification (IVP) 137
IBM-supplied 137
including in other message flows 76
pane, organizing 68
setting properties of 163
starting 199
stopping 201
view

displaying 67
message model 33
message repository 3
message repository manager (MRM) 31
message set

removing from a broker 167
message sets 37

adding to the workspace 56
assigning to brokers 165
checking in and out 66
creating 44
properties of 37
states 38
versions of 39
view 43

messages
adding to the workspace 56
creating 46, 54
CWF format 23
legacy formats 23
PDF format 23
predefined MRM 23
predefined NEON 24
self-defining 22
XML format 23

monitoring the broker domain 198

MQInput node 107
MQOutput node 112
MQReply node 115
MQSeries Integrator groups 10
MRM

message definition process 32
MRM (message repository manager) 31

N
names of message components 35
naming Control Center resources 15
NEON rules and formatter 307
NEONFormatter node 117
NEONRules node 119

O
ODBC connections 72
opening

workspace 12
Operations view, description of 195
Output Terminal node 76

P
parser

plug-in 25
predefined MRM messages 23
predefined NEON messages 24
principal, add to ACL 191
problem determination 15
problem determination Q&A website xii
Promote Attribute dialog 77
promoting message flow node properties 77
properties of message sets 37
Publication node 121
publish/subscribe access control 187

R
reference relationship between message

components 33
removing

brokers from collectives 151
execution group from a broker 167
message flow from an execution group 168
message set from a broker 167
principal from an ACL 191

renaming
brokers 155
message flow nodes 70
promoted message flow node properties 79

ResetContentDescriptor node 123
resolving permissions 191
revert to shared 14

324 MQSeries Integrator V2.0 Using the Control Center

 Index

right click, definition of xi
running the broker domain 195

S
saving

workspace 13
saving the workspace 5
self-defining messages 22
service trace 16
shared configuration 4
SmartGuide, using to create messages 54
snap to grid action

Message Flow Definition pane 68
topology pane 142

SQL reference 243
basic message structure 243
case sensitivity of SQL syntax 292
complicated SELECTs 266
Compute node SQL 263
data types 245
database node statements 275
destination list structure 300
exception list structure 300
field references 262
function summary 279
optional fields and NULLS 256
predicates 248
querying external databases 272
repeating fields 257
simple filter 245
symbolic constants 256

starting
Control Center 7
message flows 199
user tracing 203

states of message sets 38
stopping

message flows 201
user tracing 204

subscriptions
deleting 207
view

clearing data from 206
description of 205
filtering information displayed in 205
refreshing 206

T
Throw node 126
topics

creating 189
deploying 180, 181
view

displaying 187

topology
authorization to work with 141
checking in 156
checking out 143
deploying, complete 183
deploying, delta 182
pane, organizing 142
view

displaying 141
Trace node 128
TryCatch node 130
type component of message definition 34

U
user roles, setting 11
user tracing

starting 203
stopping 204

V
versions of message sets 39

W
Warehouse node 132
workspace 4, 12

X
XML DTDs, generating 58

Z
zoom action

Message Flow Definition pane 68
Topology pane 142

 Index 325

Sending your comments to IBM
MQSeries Integrator

Using the Control Center

SC34-5602-00

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries Integrator

Using the Control Center

SC34-5602-00
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries Integrator

MQSeries Integrator V2.0 Using the Control Center SC34-5602-00

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-56 2-

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	Where to find more information
	MQSeries Integrator publications
	MQSeries information available on the Internet

	Part 1. Introducing the Control Center
	Chapter 1. Control Center concepts
	Working with configuration data
	Configuration and message repositories
	Shared and deployed configurations

	The workspace
	Managing the contents of the workspace
	Saving the workspace

	Monitoring the broker domain

	Chapter 2. Getting started with the Control Center
	Before you start
	Starting the Control Center
	Exiting the Control Center

	Managing permissions to Control Center tasks
	Adding users and groups to the MQSeries Integrator groups
	Setting user roles

	Performing workspace tasks
	Creating a new workspace
	Opening an existing workspace
	Saving the workspace
	Importing resources
	Exporting the workspace
	Updating the workspace
	Updating the workspace from the shared repository
	Reverting your workspace to the shared repository
	Saving the workspace to the shared repository

	Checking in resources

	Naming Control Center resources
	Problem determination
	Controlling service traces

	Part 2. Using the Control Center
	Chapter 3. Defining messages
	Basic message concepts
	A message tree
	Message domains
	Self-defining messages in the XML domain
	Predefined messages in the MRM domain
	Predefined messages in the NEON domain

	How a message is interpreted

	Working with messages in the XML domain
	XML Declaration
	XmlDecl

	Document Type Declaration
	DocTypeDecl
	NotationDecl
	Entities
	ElementDef
	AttributeList
	AttributeDef
	DocTypePI and ProcessingInstruction
	DocTypeWhiteSpace and WhiteSpace
	DocTypeComment and Comment

	The XML message body
	ProcessingInstruction
	WhiteSpace
	Comment
	AsisElementContent
	CDataSection
	EntityReferenceStart and EntityReferenceEnd

	Working with messages in the MRM domain
	An overview of the message definition process
	The message model
	Reference relationship
	Member relationship
	The components of a message definition
	Component identifiers and names
	An example message definition
	Message sets
	Message set properties
	Message set states
	Message set versioning

	The data model layers
	The documentation layer
	The C language layer
	The COBOL language layer
	The Custom Wire Format layer

	Importing legacy formats
	Generating MRM message set Document Type Descriptors (DTDs)
	Authorization to work with Messages
	The Message Sets view
	Creating message sets
	Creating messages
	Using the SmartGuide to create messages
	Adding message sets and message components to the workspace
	Importing message definitions
	Generating MRM message set definitions in XML DTDs
	Generating language bindings
	Generating documentation
	Editing message sets and components
	Changing the state of a message set
	Checking in and checking out message sets

	Chapter 4. Defining message flows
	Authorization to work with message flows
	The Message Flows view
	Controlling the appearance of the Message Flow Definition pane

	Creating a message flow
	Creating a message flow category
	Adding a message flow to your workspace
	Including one message flow in another
	Promoting message flow node properties
	Promoting properties through a hierarchy of message flows
	Converging multiple properties
	Renaming promoted properties
	Deleting a promoted property from a message flow
	Promoting mandatory properties
	Example: promoting message flow node properties

	Checking in message flows
	Creating your own message nodes
	The IBM Primitives
	Check node
	Check node properties
	Configuring the check node

	Compute node
	Compute node properties
	Configuring the Compute node

	Database node
	Database node properties
	Configuring the Database node

	DataDelete node
	DataDelete node properties
	Configuring a DataDelete node

	DataInsert node
	DataInsert node properties
	Configuring a DataInsert node

	DataUpdate node
	DataUpdate node properties
	Configuring a DataUpdate node

	Extract node
	Extract node properties
	Configuring an Extract node

	Filter node
	Filter node properties
	Configuring a filter node

	MQInput node
	MQInput node properties
	Configuring an MQInput node

	MQOutput node
	MQOutput node properties
	Configuring an MQOutput node

	MQReply node
	MQReply node properties
	Configuring an MQReply node

	NEONFormatter node
	NEONFormatter node properties
	Configuring a NEONFormatter node

	NEONRules node
	NEONRules node properties
	Configuring a NEONRules node

	Publication node
	Publication node properties
	Configuring the Publication node

	ResetContentDescriptor node
	ResetContentDescriptor node properties
	Configuring the ResetContentDescriptor node

	Throw node
	Throw node properties
	Configuring a Throw node

	Trace node
	Trace node properties
	Configuring the Trace node

	TryCatch node
	TryCatch node properties
	Configuring the TryCatch node

	Warehouse node
	Storing the entire message
	Storing parts of the message
	Warehouse node properties
	Configuring the Warehouse node to store the entire message
	Configuring the Warehouse node to store parts of a message

	Using the IBM-supplied message flows
	Version 1 Migration Compatibility message flow
	The default publish/subscribe message flow
	Importing and saving the supplied message flows
	Copying the default message flows

	Chapter 5. Defining the broker topology
	Authorization to work with Topology
	The Topology view
	Controlling the appearance of the Topology pane

	Checking out the Topology
	Creating a broker
	Creating a collective
	Adding an existing broker to a collective
	Creating a broker to add to a collective
	Removing a broker from a collective
	Connecting brokers
	Deleting the connection between brokers
	Deleting a broker
	Renaming a broker
	Checking in the Topology
	Checking in Topology changes
	Checking in all changes

	Making changes operational

	Chapter 6. Assigning resources to a broker
	Authorization to assign resources to a broker
	The Assignments view
	Creating an execution group
	Assigning message flows to execution groups
	Setting the properties of an assigned message flow

	Assigning message sets to brokers
	Removing resources from a broker
	Removing an execution group from a broker
	Removing a message set from a broker
	Removing a message flow from an execution group

	Checking in the Assignments
	Checking in assignments
	Checking in all changes

	Making changes operational

	Chapter 7. Deploying configuration data
	Three types of deployment
	Complete deployment
	Delta deployment
	Forced deployment
	A summary of deployment actions

	The stages of the deployment process
	Stage one of deployment
	Stage two of deployment

	Which data is deployed?
	If some data has not been checked in

	Finding out whether deployment has worked
	If deployment times out
	If the broker is not running

	Deleting a broker from the system
	Authorization to deploy configuration data
	Deploying delta assignments
	Deploying complete assignments
	Deploying delta topics
	Deploying complete topics
	Deploying delta topology
	Deploying complete topology
	Deploying delta data of all types
	Deploying complete data of all types
	Forcing deployment of all data

	Chapter 8. Setting up publish/subscribe access control
	Authorization to set up publish/subscribe access control
	The Topics view
	Creating topics
	Renaming, duplicating, and deleting topics

	Adding a principal to an ACL
	Resolving permissions

	Checking in topics data
	Checking in all changes

	Making changes operational

	Chapter 9. Running the broker domain
	Authorization to run the broker domain
	The Operations and Log views
	Monitoring the operational state of the broker domain
	Starting message flows
	Starting all message flows for a broker
	Starting all message flows within an execution group
	Starting a single message flow

	Stopping message flows
	Stopping all message flows for a broker
	Stopping all message flows within an execution group
	Stopping a single message flow

	Starting user tracing
	Starting user tracing for an execution group
	Starting user tracing for a single message flow

	Stopping user tracing
	Stopping user tracing for an execution group
	Stopping user tracing for a single message flow

	The Subscriptions view
	Filtering the information in the Subscriptions view
	Refreshing the Subscriptions view

	Deleting subscriptions

	Part 3. Appendixes
	Appendix A. A example scenario
	The receipt message as an XML message
	Defining the message in the message repository
	Associating the receipt message with a message repository definition

	Assigning the message set to the broker
	Message flows
	Getting the message
	Audit flow
	Checking the message
	Storing the entire message

	Finance flow
	Extracting elements from the message
	Writing a trace entry

	Stock flow
	Using the stock flow with an XML message
	Using the stock flow with a predefined message

	Partner Flow
	Filtering multibuy records
	Updating the Multibuy database

	Assigning message flows to the execution group
	Deploying the configuration

	Appendix B. C and COBOL default mappings
	Mapping C datatypes to MRM datatypes
	Mapping COBOL datatypes to MRM datatypes

	Appendix C. SQL reference
	Basic message structure
	Referring to simple fields in a message

	A simple filter
	Data types
	Numbers
	Strings
	Datetime types
	Interval
	Boolean

	Predicates
	Comparisons
	Numeric types
	Character strings
	Datetime values
	Booleans
	Intervals
	Character strings and other types

	BETWEEN predicate
	LIKE predicate
	IN predicate

	Other sorts of expression
	Character string expressions
	SUBSTRING function
	POSITION function
	TRIM function

	CAST expressions
	Numeric expressions
	Datetime expressions
	Adding an interval to a Datetime value
	Adding or subtracting two intervals
	Subtracting two Datetime values
	Scaling Intervals
	Extracting fields from Datetimes and Intervals

	CASE expressions
	Comments

	Symbolic constants
	Optional fields and NULLs
	NULLs and expressions
	The NULL predicate

	Repeating fields
	Array indices
	Arbitrary repeats: the quantified predicate
	Arbitrary repeats: the SELECT expression

	Field references
	Anonymous field names
	Field types

	Compute node SQL
	Assignment statement
	DECLARE statement
	WHILE statement
	IF statement
	Some common examples of compute nodes

	More complicated SELECTs: ROWs and LISTs
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Other expressions
	EXISTS predicate

	Querying external databases
	Example 1
	Example 2
	Example 3
	Example 4

	Database node statements
	INSERT statement
	Example

	DELETE statement
	Examples

	UPDATE statement
	Example 1
	Example 2
	Example 3

	PASSTHRU

	Function reference
	CAST specifications
	Supported CASTs

	Functions
	String manipulation functions
	POSITION
	LENGTH
	TRIM
	LTRIM
	RTRIM
	SUBSTRING
	UPPER
	LOWER
	OVERLAY
	COALESCE
	NULLIF

	Numeric functions
	ABS
	BITAND
	BITNOT
	BITOR
	BITXOR
	CEIL
	FLOOR
	MOD
	ROUND
	SQRT
	TRUNCATE

	Datetime functions
	EXTRACT
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_GMTDATE
	CURRENT_GMTTIME
	CURRENT_GMTTIMESTAMP
	LOCAL_TIMEZONE

	Miscellaneous functions
	CARDINALITY
	FIELDNAME
	FIELDTYPE
	BITSTREAM

	Reserved keywords
	Initial correlation names
	Case sensitivity of SQL syntax
	Expression parsing and evaluation
	Expression type checking

	Examples for generic XML messages
	XML declaration
	XmlDecl

	Document Type Declaration
	DocTypeDecl
	NotationDecl
	Entities
	Subcomponents used in Entities
	ElementDef
	Attribute definitions

	The XML message body
	ProcessingInstruction and DocTypePI

	Exception and destination list structure
	Destination lists
	Exception lists

	Appendix D. NEON Rules and Formatter
	NEONFormatter and NEONRules nodes
	NEON formatter and rules engine
	Combining NEON rules with MQSeries Integrator
	NEON subscriptions

	Appendix E. Notices
	Trademarks

	Glossary of terms and abbreviations
	Index

