
MQSeries Everyplace
Configuration Guide

Version 1.1

June 2002

Barry Aldred
IBM Corporation

Hursley Park
Winchester

UK SO21 2JN

barry_aldred@uk.ibm.com

� Copyright IBM Corp. 2002 ii

Take Note!

Before using this report be sure to read the general information under "Appendix A: Notices" on page 133.

License warning

MQSeries Everyplace – Configuration Guide version 1.1 is supplied under the terms of the International Program
License Agreement. Defect correction will be provided under that agreement for users holding valid MQSeries
Everyplace deployment license(s) until the end of service date, June 30, 2003.

Please refer to http://www.ibm.com/software/mqseries for details of the license conditions pertaining to the MQSeries
Everyplace product.

Second Edition, June 2002

This edition applies to Version 1.1 of MQSeries Everyplace – Configuration guide and to all
subsequent releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to US Government Users -- Documentation related to restricted rights -- Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 iii

Table of contents
Table of contents ... iii
Figures... vi
Examples ... viii
Notices... ix
Summary of amendments ... ix
Preface ...x
Bibliography ... xi
Related material... xi
Web references .. xii

Download sites ... xii
Newsgroups ... xii

1 Preparation ..1
1.1 Installation ..1
1.2 Reading ..1
1.3 Programming samples ...2

Installation and sample execution ..2
Coding standards ...3

2 The basics ...4
2.1 MQe objects ...4
2.2 MQe naming rules ..6
2.3 The approach ...6

3 Client queue managers ...8
3.1 Using MQe_Explorer ..8
3.2 Property pages ...11
3.3 Running a client queue manager ...14

Setting up a client environment..14
Starting a client queue manager ..15
Stopping a client queue manager ..16

3.4 Creating a client queue manager ...17
3.5 Queue manager considerations ...18

4 Registry ...19
4.1 Overview ..19

File registry...21
Private registry – queue manager ..21
Private registry – individual queues ...22

4.2 Creating a client queue manager with private registry...23
4.3 Auto-registration with the mini-certificate server ..27

Enabling MQe_MiniCertServer to issue a certificate ...27
Creating a client queue manager using mini-certificates ...31

5 Queue manager properties ...38
5.1 Registry-held properties ...38
5.2 Alias names..39

6 Configuration using admin messages ...40
6.1 Introduction...40
6.2 MQe_Explorer abstractions..45
6.3 Admin programming ...47

General principles ..47
Bridge object specifics ...49

6.4 A queue manager inquiry ...49
Creating and sending the message ...50
Getting the reply ...51
Extracting the information ..52
Handling errors...53

6.5 Other admin examples ...54
Setting a queue manager property...55
Creating a new queue ..57
Adding a connection alias ..59
Inquiry on an MQ bridge...60

� Copyright IBM Corp. 2002 iv

Setting an MQ listener property ...61
7 Channels and transporters ..63

7.1 Client/server channels..63
7.2 Peer-to-peer channels..64
7.3 Channel types compared ...64
7.4 Channel security...65
7.5 Transporters ...66

8 Communications adapters...67
8.1 TCP/IP adapters...67
8.2 HTTP adapters ...67
8.3 UDP adapters...68

9 Connections...69
9.1 Direct connections..70
9.2 Indirect connections ...71
9.3 Local connections...72
9.4 Alias-only/MQ connections...73
9.5 Connection alias names...73
9.6 Configuration ..73

Using MQe_Explorer ..74
Using admin messages..78

10 Listeners ..82
10.1 Client/server listeners...82
10.2 Peer listeners ...84
10.3 Configuration of peer listeners ...84

Using MQe_Explorer ..84
Using admin messages..86

11 Server, gateway and peer queue managers ...88
11.1 Server queue managers...88

Using MQe_Explorer ..88
Using code ...91

11.2 Gateway queue managers ...92
Using MQe_Explorer ..93
Using code ...96

11.3 Peer queue managers..97
Using MQe_Explorer ..98
Using code ...100

12 Queues ..102
12.1 Local queues ..103
12.2 Remote queues ..104
12.3 Home server queues..105
12.4 Store and forward queues..106
12.5 Queue alias names ..107

13 Security..109
13.1 Queue-based security ..109

Introduction...109
Channel security considerations ..111
Setting up a private registry for a queue ..112

13.2 Security classes ...114
Compressor classes...114
Cryptor classes...114
Authenticator classes ...115

14 Storage adapters ...116
15 Single hop messaging ...117

15.1 Synchronous operation ..119
15.2 Asynchronous operation ..121
15.3 Synchronous and asynchronous operation..122
15.4 Source aliases..123
15.5 Destination aliases ...124
15.6 Client/server operation ...125
15.7 Use of store and forward queues ...126

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 v

15.8 Using both remote and store & forward queues ..127
16 Multi-hop and advanced messaging..128

16.1 Synchronous operation ..128
16.2 Asynchronous operation ..129
16.3 Backbone routes ..130
16.4 Alternate routes ..131
16.5 Security considerations in routing ..131
16.6 Routing rules ..132

17 Certificate management ..133
17.1 Examining mini-certificates ..133

Queue manager credential examination ..134
Queue credential examination ...135

17.2 Renewing mini-certificates ...135
Queue manager credential renewal ...135
Queue credential renewal ..136

18 Class requirements..138
19 Appendix A: Notices ..150

Trademarks ..150

� Copyright IBM Corp. 2002 vi

Figures
Figure 3-1: New queue manager panel 8
Figure 3-2: Queue manager creation message 9
Figure 3-3: MQe_Explorer view of myClientQMgr 9
Figure 3-4: Property pages for myClientQMgr 9
Figure 3-5: Client queue manager properties 11
Figure 3-6: The myClientQMgr registry structure 13
Figure 3-7: The myClientQMgr initialization data 14
Figure 4-1: Registry selection based on security requirements 20
Figure 4-2: Create client queue manager (private registry) – General tab 23
Figure 4-3: Create client queue manager (private registry) – Registry tab 24
Figure 4-4: Create client queue manager (private registry) – Security tab 25
Figure 4-5: Create client queue manager (private registry) – Password prompt 25
Figure 4-6: The myPrivateClientQMgr initialization data 26
Figure 4-7: The initial MQe_MiniCertServer window 27
Figure 4-8: MQe_MiniCertServer report window 28
Figure 4-9: Create new profile – General tab 28
Figure 4-10: The running MQe_MiniCertServer window 29
Figure 4-11: The new entity dialog – General tab, with data entered 30
Figure 4-12: Main window before auto-registration 31
Figure 4-13: Create client queue manager (with credentials) – General tab 31
Figure 4-14: Create client queue manager (with credentials) – Registry tab 32
Figure 4-15: Create client queue manager (with credentials) – Security tab 33
Figure 4-16: Create client queue manager (with credentials) – RegistryPIN prompt 33
Figure 4-17: Create client queue manager (with credentials) – Key ring password prompt 34
Figure 4-18: Create client qMgr (private registry) – Cert. server request PIN prompt 34
Figure 4-19: Queue manager certificate details 35
Figure 4-20: The myCertClientQMgr initialization data 36
Figure 6-1: Queue manager refresh admin messages 40
Figure 6-2: First level of a queue manager 'Inquire All' admin request 41
Figure 6-3: Second level of a queue manager 'Inquire All' admin request 43
Figure 6-4: First level of a queue manager 'Inquire All' admin response 43
Figure 6-5: Second level of a queue manager 'Inquire All' admin response 44
Figure 6-6: Third level of a queue manager 'Inquire All' admin response 45
Figure 6-7: MQe_Explorer queue manager abstractions 46
Figure 6-8: MQe_Explorer queue abstractions 46
Figure 6-9: MQe_Explorer connection abstractions 47
Figure 7-1: Channel type comparison 64
Figure 9-1: Creating a new direct connection - General properties 74
Figure 9-2: Creating a new direct connection - Primary adapter 75
Figure 9-3: Creating a new indirect connection - General properties 76
Figure 9-4: Creating a new indirect connection - Primary adapter 77
Figure 10-1: Creating a new peer listener - General properties 84
Figure 10-2: Creating a new peer listener - Primary tab 85
Figure 11-1: Creating a server queue manager – General tab 88
Figure 11-2: Creating a server queue manager – Comms. tab 89
Figure 11-3: The myServerQMgr initialization data 90
Figure 11-4: Creating a gateway queue manager – General tab 93
Figure 11-5: Creating a gateway queue manager – Comms. tab 94
Figure 11-6: The myGatewayQMgr initialization data 95
Figure 11-7: Creating a peer queue manager – General tab 98
Figure 11-8: Creating a peer queue manager – Comms. tab 99
Figure 11-9: The myPeerQMgr initialization data 100
Figure 13-1: The new queue entity dialog – General tab 113
Figure 15-1: Direct, synchronous messaging 119
Figure 15-2: Direct, asynchronous messaging 121
Figure 15-3: Direct, synchronous and asynchronous messaging 122
Figure 15-4: Direct, synchronous messaging with source aliasing 123
Figure 15-5: Direct, synchronous messaging with destination aliasing 124

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 vii

Figure 15-6: Client/server messaging 125
Figure 15-7: Store and forward queues in messaging 126
Figure 15-8: Remote and store & forward queues in messaging 127
Figure 16-1: Indirect, synchronous messaging 128
Figure 16-2: Indirect, asynchronous messaging 129
Figure 16-3: Indirect, asynchronous messaging – with staging 129
Figure 16-4: Backbone routes 130
Figure 16-5: Alternate routes 131
Figure 17-1: Queue mini-certificates 133
Figure 18-1: Class requirements 148

� Copyright IBM Corp. 2002 viii

Examples
Example 1-1: Common variables 3
Example 3-1: Setting up a client queue manager environment 15
Example 3-2: Starting a client queue manager 15
Example 3-3: Stopping a client queue manager 16
Example 3-4: Creating a client queue manager 17
Example 6-1: A queue manager ‘Inquire All’ query 50
Example 6-2: Waiting for a reply 51
Example 6-3: Setting up a message listener 51
Example 6-4: Getting the reply when an event is raised 51
Example 6-5: Getting a specific reply when an event is raised 52
Example 6-6: Extracting the responses to the ‘Inquire All’ query 52
Example 6-7: Sending errors for synchronous admin 53
Example 6-8: Error handling when processing admin replies 54
Example 6-9: Setting the channel timeout on a queue manager 55
Example 6-10: Creating a new remote queue 57
Example 6-11: Adding a connection alias 59
Example 6-12: An MQ bridge ‘Inquire All’ query 60
Example 6-13: Setting the description on an MQ listener 61
Example 9-1: Creating a new direct connection 79
Example 9-2: Creating a new indirect connection 81
Example 10-1: Setting up a client/server listener 83
Example 10-2: Creating a new peer listener 87
Example 11-1: Setting up a server queue manager environment 91
Example 11-2: Starting a server queue manager 91
Example 11-3: Stopping a server queue manager 92
Example 11-4: Starting a gateway queue manager 96
Example 11-5: Stopping a gateway queue manager 96
Example 15-1: Sending a message 117
Example 17-1: Examining queue manager credentials 134
Example 17-2: Examining queue credentials 135
Example 17-3: Renewing queue manager credentials 136
Example 17-4: Renewing queue credentials 137

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 ix

Notices
References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this SupportPac has not been submitted to any formal IBM test and
is distributed "AS-IS". The use of this information and the implementation of any of the
techniques is the responsibility of the reader. Much depends on the ability of the reader to
evaluate these data and project the results to their operational environment.

Trademarks and service marks
The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

�� IBM

�� MQSeries

�� MQSeries Everyplace

�� MQe

�� Websphere

The following terms are trademarks of other companies:

�� Windows 98, Windows NT, Windows 2000, Windows XP – Microsoft Corporation

Summary of amendments

Date Changes

18 January 2002 Version 1.0 (Initial release)

20 June 2002 Version 1.1

Addition of class requirements. Examples upgraded to
MQe_Explorer v 1.27. More detail included on the registry and the
serving of mini-certificates. Naming rules added. Miscellaneous
minor changes and additions

� Copyright IBM Corp. 2002 x

Preface
This book describes how to configure MQSeries Everyplace queue managers and networks.
It complements the existing product publications and contains code samples and
configuration data appropriate to common usage scenarios.

The samples and illustrations relate to MQSeries Everyplace version 1.27 and its associated
management tool MQSeries Everyplace MQe_Explorer version 1.27. Later versions of these
products may exhibit minor differences.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 xi

Bibliography
o MQSeries Everyplace Version 1.2: Introduction, IBM Corporation, SC34-5843

o MQSeries Everyplace Version 1.2: Java Programming Guide, IBM
Corporation, SC34-5845

o MQSeries Everyplace Version 1.2: Java Programming Reference, IBM
Corporation, SC34-5846

o Websphere MQ Everyplace SupportPac ED02: Using MQSeries Everyplace
with WebSphere Everyplace Server

o Websphere MQ Everyplace SupportPac ES02: MQSeries Everyplace –
MQe_Explorer

o Websphere MQ Everyplace SupportPac ES03: MQSeries Everyplace –
WTLS Mini-Certificate Server

o Websphere MQ SupportPac MA88: MQSeries Classes for Java and
MQSeries Classes for Java Message Service

Related material
o Websphere MQ Everyplace SupportPac ED01: MQSeries Everyplace - Get

Started

o Websphere MQ Everyplace SupportPac EA01: MQSeries Everyplace - XML
conversion utility

o Websphere MQ Everyplace SupportPac EAP1: MQSeries Everyplace -
Device code for Palm OS

o Websphere MQ Everyplace SupportPac EP01 MQSeries Everyplace –
Performance report

o Websphere MQ Integrator SupportPac ID03: MQSeries Integrator – Working
with MQSeries Everyplace

� Copyright IBM Corp. 2002 xii

Web references
The following URLs provide useful resources for both MQSeries Everyplace and
MQe_Explorer:

Download sites

IBM WebSphere MQ SupportPacs:

http://www.ibm.com/software/mqseries/txppacs/

IBM Boulder (MQSeries Everyplace product code downloads):

http://www6.software.ibm.com/dl/mqsem/mqsem-p

IBM Visual Age Micro Edition (Java stacks & related technologies):

http://www.embedded.oti.com

Microsoft Corp. (Windows JVM downloads):

http://www.microsoft.com/java/download.htm

Newsgroups

IBM Software Group (MQSeries Everyplace newsgroup):

news://news.software.ibm.com/ibm.software.websphere.mqeveryplace

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 1

1 Preparation
The instructions, illustrations and examples in this book are orientated towards a Windows
operating system (e.g. Windows 2000 or Windows XP). MQSeries Everyplace (MQe) itself
runs on a very broad range of platforms, but Windows has been chosen here simply because
more tools exist for this platform and it is consequently the easiest place to begin. Even if you
intend to deploy later on a non-Windows platform, it is strongly recommended that you learn
the basics first using MQSeries Everyplace on Windows. This book should then provide you
with the basic understanding there that you will need to be able to configure MQe queue
managers and networks on any other platform.

1.1 Installation
You must first install the following products, and in the sequence listed below:

1. MQSeries Everyplace for Multiplatforms, v1.27 or later.

2. MQSeries SupportPac MA88: MQSeries Classes for Java
(only required if you intend to send/receive messages to an MQSeries queue manager).

3. MQSeries SupportPac ES02: MQSeries Everyplace – MQe_Explorer v1.27 or
later.

4. MQSeries SupportPac ES03: MQSeries Everyplace – WTLS Mini-Certificate
Server v1.27 or later (MQe_MiniCertServer).

The code is available from the sites listed in the section Download sites on page xii. In this
book it will always be assumed that the default options and directories have been used during
installation, although custom settings should not give rise to difficulties provided that the
necessary path changes are made to the examples and instructions.

Before installing MQe_Explorer1 read the installation instructions in the MQe_Explorer User
Guide and be certain to:

�� Comply with the Microsoft JVM pre-requisite requirement.

�� Set the classpath variable correctly.

Follow the instructions in the MQe_Explorer User Guide until the end of the section
Configuring a first queue manager, in the Getting started chapter. This will confirm that the
base software has correctly been installed.

1.2 Reading
The MQSeries Everyplace for Multiplatforms v1.27 product includes the MQSeries Everyplace
Version 1.2: Introduction book, which explains the essentials of MQe and presents the basic
concepts. It is assumed that readers are familiar with this material.

The MQe_Explorer is used extensively in this SupportPac to illustrate principles and to
provide examples. To gain familiarity with this management tool you are strongly
recommended to work through at least the first sample script Concepts and objects in the
MQe_Explorer User Guide. The following two scripts, Basic messaging and Advanced
messaging also provide useful information on networking concepts and the use of MQe.

The User Guide contains a fourth script, Gateway configuration and usage, that explores how
MQe and MQ messaging networks can be linked together so that they can exchange

1 If MQe_Explorer has been previously installed, ensure that the options are reset to the default. Use
Tools�Options.

� Copyright IBM Corp. 2002 2

messages. This subject is outside the scope of this SupportPac, though information is
provided here on the creation of a gateway queue manager.

The following chapters of the MQSeries Everyplace Version 1.2: Java Programming Guide
describe the essentials of MQe programming:

Overview

Getting started

MQeFields

Queue managers, messages and queues

Rules

Administering messaging resources

If you intend to use MQe certificate-based security, then it may be helpful to browse the
Getting started chapter of the MQe_MiniCertServer User Guide.

1.3 Programming samples

Installation and sample execution

As far as possible, sample code has been supplied with this SupportPac to illustrate the use
of the programming examples. The Java source code is supplied in the file
MQeConfigGuide.java; the compiled class in the file MQeConfigGuide.class. This class file
should be installed in the directory:

C:\Program Files\MQe\Java\examples\mqe_configuration_guide

The samples must executed from a command prompt2; run each example using the
string:

jview3 examples.mqe_configuration_guide.MQeConfigGuide <example no>

where <example no> is an integer identifying the example (see text)

The above instructions assume that the MQe default installation instructions have been used;
the classpath will have been set to C:\Program Files\MQe\Java.

Detailed instructions for running samples is provided, where appropriate, in highlighted boxes
in the text, for example:

Executing the sample – Running a client queue manager:

Use the command: MQeConfigGuide 1. The sample code is contained in the methods
startClientQMgr() and stopClientQMgr(). By default, the MQe_Explorer-created
myClientQMgr.ini file is used; by editing the sample code, the method
createClientEnvironment() can be used instead.

Generally, samples to run are provided only after several code portions have been illustrated.
The method(s) of interest in MQeConfigGuide are always identified in the highlighted box. To
appreciate exactly what is being run, inspect the logic in the MQeConfigGuide.main() method.

2 These examples have not been designed to run from the Tools�Load menu of MQe_Explorer.
3 For a non-Windows platform, substitute jview with the appropriate command to start the JVM.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 3

In many cases it may be necessary or desirable to modify the sample code. The code
extracts in this book do not purport to show all the relevant code in every case; the extracts
that follow include only the essentials of what is required. For example, exception handling is
generally not included unless it is essential to the example. Before using the example code in
this book, always check the source samples shipped in MQeConfigGuide.java.

Coding standards

As far as possible a consistent set of variables names is used across all the examples. Some
of the more important variables used are:

byte returnCode; //admin return code
byte[] adminKey; //unique identifier
int waitTime; //wait time (mS)
MQeAdminMsg adminMsg; //admin message – normally
 // a specific subclass
MQeAdminMsg adminReply; //admin reply message
MQeChannelListener localChannelListener; //client/server listener
MQeChannelManager localChannelManager; //client/server channel mgr.
MQeFields alias; //alias section
MQeFields channelManager; //channel manager section
MQeFields environment; //environment parameters
MQeFields listener; //listener section
MQeFields mqBridge; //MQ bridge section
MQeFields msgFilter; //message filter
MQeFields parms; //admin parameters
MQeFields queueManager; //queue mgr. section
MQeFields registry; //registry section
MQeMQBridges localBridges; //bridges object
MQeQueueManager qMgr; //local queue manager
MQeQueueManagerConfigure qMgrConfig; //queue manager configurator
String targetQMgrName; //target qMgr name
String targetQName; //target queue name

Example 1-1: Common variables

� Copyright IBM Corp. 2002 4

2 The basics

2.1 MQe objects
Understanding MQe configuration requires an appreciation of a number of basic MQe objects.
The most important of these are:

�� Queue manager

o A queue manager represents an addressable instance of MQe. Each
has a unique name that distinguishes it from any other MQe queue
manager. More than one queue manager can exist on a single
machine. Queue managers own other MQe objects, including
queues, connections and channels. The job of the queue manager is
to manage these resources and to make them available to
application programs.

o Many different types of queue manager can exist, depending upon
the needs of applications. Not only do they differ in their collection of
queues, connections, channels and other objects, but also they may
differ in their expected behaviour. MQe identifies four distinct roles
for queue managers:

�� Client

The essence of a client is that it supplies messages to, or
gets messages from, a server.

�� Peer

A lightweight queue manager that can freely
communicate in a community of its peers.

�� Server

Servers are expected to provide services to many
attached client queue managers. Servers do not
normally instigate data transfers.

�� Gateway

A server queue manager that also has the capability to
exchange messages with MQSeries base messaging
queue managers.

o These distinctions are very soft in MQe, though behaviour can be
rigidly enforced where needed (e.g. in order to respect the rules
concerning access through firewalls). On the other hand, it is easy to
configure a single queue manager with all the attributes assigned
above to clients, peers, servers and gateways4.

�� Queue

o A queue is an addressable entity within a queue manager. Each has
a unique name that distinguishes it from any other queue on that
same queue manager. Many different types of queue exist but each
is generally concerned with messages in some way; one or more of
storing, processing or moving messages.

4 Server and gateway queue managers may be given peer capabilities, quite independently of their
server and gateway functionality.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 5

o The properties of a queue depending upon the type of that queue.
Queues that store messages (either permanently or temporarily)
have properties such as message store and storage adapter. The
message store determines how messages are mapped into the
storage medium; the storage adapter provides basic access to that
medium (e.g. adapters to the file system or memory). Multiple
storage adapters can exist for any particular medium – they may
differ, for example, in the level of certainty that they provide about
data storage.

�� Connection

o A connection provides its local queue manager with all the
information it needs to establish communication channels with a
remote queue manager. The name of a connection is the name of
that remote queue manager. Only one connection definition can
exist on a local queue manager for each remote queue manager
name5.

o The information in a connection varies according to the nature of the
connection (e.g. a direct connection – that goes straight to a target
queue manager; an indirect connection – that goes via another
queue manager). For a simple, direct connection, the information will
typically include: the IP address of the machine hosting the target
queue manager, the port number to be used, the communications
adapter and the channel type.

�� Channel

o A channel is an entity created by a queue manager to move
messages to another queue manager (and with the cooperation of
that remote queue manager). Channels go from source to target
queue manager; they do not go to target queues. Channels are not
accessible to application programs. They have properties such as
security, i.e. encryption and compression. Multiple channels can go
from a local queue manager to the same target queue manager at
any one time.

o Different types of channels exist, for example a client/server channel
allows only the client end to initiate data transfer across the channel
(to push or pull data). A peer-to-peer channel allows either end to
initiate data transfer across the channel.

o Communications adapters are used by channels to provide basic
access to the underlying communications infrastructure (e.g. TCP/IP,
HTTP, UDP etc). Multiple communications adapters can exist for any
particular underlying protocol support – they may differ, for example,
in their performance, efficiency or footprint.

�� Registry
o The registry is the primary store for queue manager-related

information; one exists for each queue manager. Every queue
manager uses the registry to hold details of its properties and child
objects. Optionally, other information (including security credentials)
can be stored and, in certain configurations, multiple registries can
exist for a single queue manager.

5 This curious form of words allows for alias names of remote queue managers. Alias names allow
multiple routes to be defined.

� Copyright IBM Corp. 2002 6

2.2 MQe naming rules
All objects in MQe must be named according to the following rules:

Names can be of unspecified length (though recognize that, because names may
have to be carried in messages, short names are to be preferred for efficiency).

The following characters are permitted:

Numerics: 0 – 9
Characters: a – z (lower and upper case)
Special: _ (underscore), . (period), % (percent)

Restriction: The period character cannot be a leading or trailing character.

Capitalization is significant.

It is recommended that a subset of the MQe naming rules be adopted that restrict the MQe
name space to one that is compatible with MQ. This results in the following rules:

Names can be up to 24 characters in length.

The following characters are permitted:

Numerics: 0 – 9
Characters: a – z (lower and upper case)
Special: . (period), % (percent)

Restriction: The period character cannot be a leading or trailing character.

Capitalization is significant.

2.3 The approach
The aim of this SupportPac is to provide the basic information to allow MQe queue managers
and networks to be configured. This includes:

�� Creating and starting queue managers

�� Defining connectivity between queue managers

�� Establishing the routes taken by messages through an MQe network

�� Exercising control over the protocols used

�� Determining where messages are staged, if appropriate

�� Configuring queue-level security

�� Appreciating the MQe options available and their associated trade-offs

It is important to appreciate that although MQe is like its sister – the MQ messaging product –
at the highest level (i.e. in that it provides messaging services to applications with once-only,
assured delivery), it is also different in many respects. These differences can be
fundamental; beginning with the fact that MQe moves objects, whilst MQ messaging moves
byte arrays. The differences have many consequences such that, at least initially, knowledge
of MQ messaging may not be helpful. It is therefore important that assumptions made from
analogy with MQ Series base messaging, are not applied indiscriminately to MQe. Although
the two products are designed to operate seamlessly together – and indeed that is a great
strength of MQe – function, configuration and application can be very different.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 7

The approach taken here is first to describe the ways in which individual queue managers can
be created and configured (this incidentally provides another example of differences with
base MQ messaging). The Java version of MQe is essentially a set of Java classes6 that can
be deployed by application programmers to construct queue managers. These queue
managers can be either:

�� Embedded within an application

�� Have an independent existence from application(s), thus supporting one or more
concurrent applications

Utilities and samples provided with MQe show how queue managers can be created, or
indeed create them. The easiest way of creating queue managers is to use MQe_Explorer,
though this might not always be appropriate.

Here we first examine the use of MQe_Explorer and then examine the elements that
comprise a queue manager. We look at the code necessary to launch queue managers (of
various kinds) and then the additional code needed to create them from scratch.

Only after queue managers have been examined in detail, will we explore the networking
aspects. It is impossible to understand MQe networks without a prior understanding of
important queue manager details.

In this book the examples are all given in Java. MQe also provides a C interface to the Java,
as well as a 100% native C implementation. However using both languages in one book is
difficult and unduly repetitive. It is hoped that the Java used here is sufficiently simple that
most readers will be able to extrapolate to the C code equivalent; assisted by the fact that the
MQe C bindings and interfaces map closely to their Java counterparts.

6 This statement ignores the existence of the 100% C code base implementation of MQe.

� Copyright IBM Corp. 2002 8

3 Client queue managers

3.1 Using MQe_Explorer
The simplest MQe queue manager is a client queue manager. Such a queue manager is
intended to connect to servers, though it has full local function, i.e. it owns queues and other
objects. In order to understand the elements of a queue manager we first create a client
using the management tool MQe_Explorer and examine its constituents. Later we will
achieve the same result through programming.

Run MQe_Explorer and create a new client queue manager as follows. Use the
File�New�Queue Manager (or the equivalent button on the toolbar) to display the following
dialog:

Figure 3-1: New queue manager panel

Edit the following fields on the General tab as follows:

QMgr. name: myClientQMgr

Path: C:\Program Files\Java\MQe_Explorer

Type: Check the Client box

Only the Path parameter is not self evident; the significance of this will be seen later.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 9

 Click the Create button to create the new queue manager. The following message is
displayed:

Figure 3-2: Queue manager creation message

The display changes and the new queue manager is seen to be running. Expand all the
nodes in the tree and the display should be similar to:

Figure 3-3: MQe_Explorer view of myClientQMgr

Display the property pages for the queue manager. The following window will appear:

Figure 3-4: Property pages for myClientQMgr

� Copyright IBM Corp. 2002 10

Explore the various tabs – there are a great many properties, essentially set to default values
by MQe_Explorer or chosen as a consequence of creating a client queue manager.

Finally close the queue manager and then restart it. In order to restart it you will have to open
the initialization file – the name of which was displayed during the queue manager creation
process. Opening this file restores the queue manager to exactly the state it was in just
before it was closed. If you were to examine all the property pages you would find nothing
had changed. Now exit from MQe_Explorer.

Much has happened in those few simple steps. In summary:

1. Starting MQe_Explorer created a new JVM; MQe_Explorer ran as an
application in that JVM.

2. Information supplied by the user (QMgr name, Path, etc.) was supplemented
with other values, i.e. relevant defaults, and stored by MQe_Explorer in an
initialization file. Note that this file is the creation of MQe_Explorer – it has
nothing to do with MQe.

3. MQe_Explorer then read in the file (in exactly the same way as it did later
when you restarted the queue manager) and attempted to start the queue
manager, passing relevant information to various MQe classes. We shall
examine these classes later.

4. MQe was unable to start the queue manager because its registry did not
exist, i.e. no registry had been configured for it in the file system (or
elsewhere).

5. MQe_Explorer then used another set of MQe classes to create a queue
manager registry with characteristics corresponding to those requested.

6. MQe_Explorer attempted again to start the queue manager – and this time it
succeeded. Now the MQe queue manager and MQe_Explorer are both
running in the same JVM.

7. MQe_Explorer then queried the queue manager to gets information on all of
its properties. It was then able to display Figure 3-3: MQe_Explorer view of
myClientQMgr and Figure 3-4: Property pages for myClientQMgr.

8. Closing the queue manager involved calls to MQe to shut it down.
Afterwards only MQe_Explorer was running in the JVM.

9. Restarting the queue manager involved re-reading the initialization file and
opening the queue manager, based on the information in that file.

10. Exiting from MQe_Explorer closed the queue manager, terminated the
MQe_Explorer application and destroyed the JVM. The initialization file and
the registry survived.

In order to write code to do the equivalent function, first the nature of the various properties of
a queue manager must be understood. The next stage is to be able to start an existing queue
manager, e.g. the myClientQMgr that MQe_Explorer has just created. The final step is to
create a new queue manager, including a configured registry, from scratch.

The client queue manager is the simplest MQe queue manager that can be created; others
have additional capabilities and consequently require additional features.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 11

3.2 Property pages
The property pages displayed by MQe_Explorer for a client queue manager had the following
tabs. The table below describes these in more detail and, crucially, shows where the
associated data is stored.

Tab name Description Type Location

General Information that identifies the queue
manager, class, type and registry
location

Name: qMgr property
Class: environmental info,
 registry,
Path: environmental info
Type: application concept

Application-defined
Registry

Summary An analysis of other properties (Not applicable) (Not applicable)

Detail A collection of detailed properties QMgr. properties Registry

Aliases Alternative names that resolve to this
queue manager

Local connection property
(see later)

Registry

Registry Information describing how the registry
 is realized and protected

Registry properties Registry

Class aliases Alternative names that can be mapped
to Java class names

Environmental info. Application-defined

Pre-loads A set of classes to be pre-loaded when
the queue manager is loaded

Environmental info. Application-defined

Permissions Information describing which operations
are to be permitted

Environmental info. Application-defined

Figure 3-5: Client queue manager properties

From the table above it can be seen that information is stored in two places – by MQe in the
registry and by the application in a place of its choosing. The application data is used to
establish an environment.

The registry contains what MQe considers to be the queue manager configuration, including
for example:

�� Attributes of the queue manager object itself:

o Name, class, description, channel timeout, …

�� Objects owned by that queue manager:

o Queues

�� Name, class, description, max depth, …

o Connections

�� Name, description, channel class, adapter, address, …

o Various bridge-related objects

�� Name, description, …

Details of these properties are discussed in the chapter Queue manager properties on page
38.

� Copyright IBM Corp. 2002 12

The registry does not contain the queues themselves, nor the messages that these queues
might contain. We will see this later. The registry does however contain information about
where those queues are and how they are to be accessed.

The environment is something that is created by an application before a queue manager is
started (or created). For almost all purposes it can be considered to represent additional
properties of the queue manager that happen not to be stored in the registry. The fact that
they are not in the registry means that the application (or an application) must remember
them between invocations of the queue manager. In principle, it also means that they can be
changed independently of the information stored in the registry; however, with very few
exceptions, this is bad practice. MQe_Explorer chooses to treat this environmental data just
as though it was an extension of the registry – and uses an initialization file to store it7. The
environmental data stored by MQe_Explorer for a client queue manager includes:

�� Registry information:

o Class, path, adapter class, registry type

�� Class alias mappings

�� Queue manager information:

o Class, name

�� Additional information

o Queue manager type, registry type

The use of this environmental data is as follows:

The registry content is sufficient to allow either an existing queue manager to be
started (i.e. its registry located and accessed) or a new queue manager to have a
registry created.

The class alias mappings establish a default sets of names that can be used to refer
to Java classes – and Java class names are used extensively throughout MQe to
customize objects and properties. The long nature of these names means that
shorthand references are useful and are widely used. Consequently, the default
class alias mappings should always be established early when interfacing to MQe.

Starting or creating a queue manager needs a class to instantiate and a name to be
assigned.

The additional information here is specific to MQe_Explorer, although other
applications may need to do something similar. MQe_Explorer presents the concept
of a queue manager type (client, peer, server or gateway) to the user and configures
accordingly. It keeps track of the type (and associated properties); consequently it
must be stored between invocations.

The registry information for myClientQMgr can be found at C:\Program
Files\Java\MQe_Explorer\myClientQMgr. Since default values were used during creation, the
registry type is file registry – though this cannot be deduced from an inspection of the file
system. Registries and registry types are discussed further in the next chapter.

The environmental information is in the initialization file C:\Program
Files\Java\MQe_Explorer\myClientQMgr.ini. MQe_Explorer used the path information
supplied when the user requested that a new queue manager be created to (by default)
generate these locations.

7 In future releases of MQe it is likely that some of this environmental information will be moved
inside the MQe registry.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 13

Using the Windows File Explorer, the structure of the MQe registry for myClientQMgr can be
seen as:

Figure 3-6: The myClientQMgr registry structure

Also shown above is the skeleton structure for the queue storage. Directories are not seen
for the DeadLetterQ and the SYSTEM.DEFAULT.LOCAL.QUEUE because they have yet to
receive a message. MQe will create their directories when the queues become active.

� Copyright IBM Corp. 2002 14

The environmental data, saved by MQe_Explorer in the initialization file, can be inspected
with the Windows Notepad editor:

Figure 3-7: The myClientQMgr initialization data

3.3 Running a client queue manager

Setting up a client environment

In this section we will assume, like MQe_Explorer, that the environmental data has been
arbitrarily stored in an initialization file. Many of the MQe utilities supplied with the product
make the same assumption.

Reading, writing and processing such files is made easy by helper methods in the
examples.queuemanager.MQeQueueManagerUtils class.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 15

The code below sets up the client queue manager environment:

//read in the initialization file
MQeFields environment = MQeQueueManagerUtils.loadConfigFile(filename);

//process class aliases – [Alias] stanza
MQeQueueManagerUtils.processAlias(environment);

//process pre-loads – [PreLoad] stanza
MQeQueueManagerUtils.processPreLoad(environment);

//process permissions – [Permission] stanza
MQeQueueManagerUtils.processPermission(environment);

Example 3-1: Setting up a client queue manager environment

The loadConfigFile() method code above loads the contents of the initialization file into an
MQeFields object. Each stanza name becomes the name of a nested MQeFields object;
within each nested object each item name becomes a field name, its bracketed type prefix
sets the data type, and its assignment value is the item value. The simple default client
queue manager did not have pre-loads and permissions set – hence no corresponding
stanzas are present in Figure 3-7: The myClientQMgr initialization data. Had other options
been exercised before the queue manager had been created, or had changes been made
later when the property pages were displayed, then additional stanzas would have been
created by MQe_Explorer.

The various processXxx() methods take the entire fields object, select the appropriate nested
fields object for processing (i.e. the relevant original stanza) and set up that aspect of the
environment. Since the source of all the example classes is provided, you can examine the
details of each processXxx() method if you wish to use only the relevant parts of the
MQeQueueManagerUtils class, or to directly use the underlying MQe classes and methods.

Starting a client queue manager

Once the environment is established, the queue manager can be started. Again, using a
method in the examples.queuemanager.MQeQueueManagerUtils class:

//start the queue manager
MQeQueueManager qMgr =

MQeQueueManagerUtils.processQueueManager(environment, new Hashtable());

Example 3-2: Starting a client queue manager

The processQueueManager() method uses both the [Registry] and [QueueManager] stanzas.
Again, examining the source of the method will show the details. The second parameter is
set to a new Hashtable object if the queue manager is to be a client, as in this case (i.e. if it
does not have a client/server channel listener and channel manager)8.

8 It can be seen that the method actually instantiates a queue manager of the class that corresponds to
the alias "QueueManager". MQe_Explorer itself looks for the item named "QueueManager" in the
"QueueManager" stanza; if present, it instantiates a queue manager of the class corresponding to that
item's value; otherwise it behaves as the processQueueManager() method described above.

� Copyright IBM Corp. 2002 16

We now have a reference to the queue manager. We can use the methods in the
com.ibm.mqe.MQeQueueManager class to get and put messages, browse queues, add a
message listener to queues, and so on. Similarly, we could complete or change the
configuration of the queue manager by changing queue manager properties, adding queues
and connections and so on. These configuration changes will be described later.

Stopping a client queue manager

A client queue manager can be stopped by using the close() method in the
com.ibm.mqe.MQeQueueManager class:

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//close the queue manager
qMgr.close();

Example 3-3: Stopping a client queue manager

The MQeQueueManager.getReference(null) call gets a reference to the currently active
queue manager. If a reference already exists, for example where the application has
previously started the queue manager, this statement is obviously not needed.

Executing the sample – Running a client queue manager:

Use the command: MQeConfigGuide 1. The sample code is contained in the methods
startClientQMgr() and stopClientQMgr(). By default, the MQe_Explorer-created
myClientQMgr.ini file is used; by editing the sample code, the method
createClientEnvironment() can be used instead.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 17

3.4 Creating a client queue manager
The starting queue manager code above only works correctly if the queue manager exists
(i.e. if the associated registry has already been created); if not, an exception will be thrown
indicating that the queue manager is not configured. The code below configures a queue
manager, i.e. it creates the queue directory, the registry and sets key parameters, and can be
invoked in the exception handler.

//initialize strings
String queueDirectory =

"C:\\Program Files\\MQe\\Java\\MQe_Explorer\\myClientQMgr\\Queues";

//make the queue directory
File qFile = new File(queueDirectory);
qFile.mkdirs();

//set the details for default queue storage
String msgStore = "com.ibm.mqe.messagestore.MQeMessageStore";
String queueAdapter = "com.ibm.mqe.adapters.MQeDiskFieldsAdapter";
String queueStorage = msgStore + ":" + queueAdapter + ":" + queueDirectory;

//create a queue manager configurator
MQeQueueManagerConfigure qMgrConfig =

new MQeQueueManagerConfigure(environment, queueStorage);

//set queue manager properties
qMgrConfig.setDescription("My queue manager");
qMgrConfig.setChnlAttributeRuleName("examples.rules.AttributeRule");
qMgrConfig.setQMgrRuleName("com.ibm.mqe.MQeQueueManagerRule");

//create the queue manager
qMgrConfig.defineQueueManager();

//create default queues
qMgrConfig.defineDefaultAdminQueue(); //AdminQ
qMgrConfig.defineDefaultDeadLetterQueue(); //DeadLetterQ
qMgrConfig.defineDefaultSystemQueue(); //SYSTEM.DEFAULT…
qMgrConfig.defineDefaultAdminReplyQueue(); //AdminReplyQ

//close the configurator
qMgrConfig.close();

Example 3-4: Creating a client queue manager

The code above is fairly clear; there is only a need to create a queue directory if queues are
required on the client queue manager; otherwise set the queue storage string to null. The
queue manager configurator process uses both the [Registry] and the [QueueManager]
stanzas. In this case, a registry of the file registry type will be created.

The queue manager properties shown can be set before the queue manager is defined. After
definition, but before being started, a limited number of queues can be created directly using
the methods shown. It is very useful to create at least the AdminQ and the AdminReplyQ in
this way; the existence of these two queues later allows admin messages to create and/or
modify all the other MQe objects that may be needed on a queue manager. Once the
configurator is closed, the queue manager can be started, as shown earlier.

� Copyright IBM Corp. 2002 18

Executing the sample – Creating a queue manager:

First delete the myClientQMgr created by MQe_Explorer, i.e. use the Windows File Explorer
and delete the directory C:\Program Files\MQe\Java\MQe_Explorer\myClientQMgr\ and all of
its sub-directories. Do not delete the myClientQMgr.ini file in the parent directory.

Then use the command: MQeConfigGuide 2. The sample code is contained in the method
createClientQMgr(). By default, the MQe_Explorer-created myClientQMgr.ini file is used; by
editing the sample code, the method createClientEnvironment() can be used instead.

If subsequently the queue manager needs further configuration, this should be done after the
queue manager has been started, through admin messages. Either the messages can be
generated programmatically (see Configuration using admin messages on page 40, or
MQe_Explorer can be used). In either case, the configuration changes can be effected either
locally or remotely.

3.5 Queue manager considerations
MQe requires that each queue manager in an MQe network is uniquely named; enforcing this
is the responsibility of the user – since MQe itself has no way of knowing of the existence of
all other queue managers. Strict adherence to this condition is essential. Naming and routing
flexibility is available where necessary, through the provision of alias support (see later
sections).

MQe itself poses no restrictions on the number of queue managers on any physical machine;
indeed multiple queue managers per machine is a common way of exploiting MQe or of
prototyping configurations. There is however a restriction of one instance of an MQe queue
manager per JVM.

Queue managers use registry information; the registry gives the queue manager its name and
properties. Consequently a single queue manager owns any particular registry and it is not
permitted to instantiate more than one instance of that queue manager at any one time.
Although MQe does not check for this occurrence, serious errors will occur if a registry is
shared in this way. Such usage should be unnecessary since any single queue manager can
support multiple concurrent applications, each using multiple concurrent threads to
communicate with the queue manager if desired, and queue managers can have remote
access to each other's queues.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 19

4 Registry

4.1 Overview
The registry is the primary store for queue manager-related information; one (or more) exists
for each queue manager and holds details of most of its properties and child objects.
Optionally, user data (including security information) can be stored in the registry. Two kinds
of registry are supported for these purposes:

(a) File registry – an unprotected registry held in the file system.9

(b) Private registry – a protected registry held in the file system, with PIN
protected access. It provides additional services to those available in the file
registry, for example credential storage (such that the entity’s private key may
be used for digital signature and RSA decryption, without the private
credentials leaving the registry). A single private registry can be configured –
associated with the queue manager itself, or additional further private
registries can also be configured, each associated with an individual queue.

Additionally, a queue manager may be configured with facilities for the sharing of public
credentials (mini-certificates), with secure storage, through:

(c) Public registry – a publicly accessible repository for mini-certificates, relevant
only to the use of the message-level security features of MQe. This public
registry is an active service; if accessed to provide a mini-certificate that is
does not hold, and if configured with valid certificate server details, it
automatically attempts to get the requested mini-certificate from the public
registry of that server.

A typical usage scenario for the public registry is to build a store of the mini-
certificates as they are used; alternatively the registry can be pre-loaded with
the mini-certificates required.

The required registry type for a queue manager can be determined from the security
requirements that must be satisfied:

Registry Security requirements supported

File registry No security, plus:
 Use of the compressors in message-level or queue-level security:
 com.ibm.mqe.attributes.GZIPCompressor
 com.ibm.mqe.attributes.LZWCompressor
 com.ibm.mqe.attributes.RleCompressor
 Use of the cryptors in message-level or queue-level security:
 com.ibm.mqe.attributes.MQeXorCryptor
 examples.attributes.TableCryptor
 Use of the authenticators in message-level or queue-level security:
 examples.attributes.UseridAuthenticator
 examples.attributes.NTAuthenticator
 examples.attributes.UnixAuthenticator

9 The registry adapter determines the registry location; typically it is placed in the file system.

� Copyright IBM Corp. 2002 20

Registry Security requirements supported

Private registry Supports all requirements satisfied by file registry, plus:
 Use of the cryptors in message-level or queue-level security:
 com.ibm.mqe.attributes.MQeDESCryptor
 com.ibm.mqe.attributes.MQe3DESCryptor
 com.ibm.mqe.attributes.MQeMARSCryptor
 com.ibm.mqe.attributes.MQeRC4Cryptor
 com.ibm.mqe.attributes.MQeRC6Cryptor
 Use of the authenticator in queue-level security:
 com.ibm.mqe.attributes.MQeWTLSCertAuthenticator
 Local security using:
 com.ibm.mqe.attributes.MQeLocalSecure
 Message-level security using:
 com.ibm.mqe.attributes.MQeMAttribute

Private registry
+
Public registry

Supports all requirements satisfied by file registry alone, plus:
 Use of the authenticator in message-level security:
 com.ibm.mqe.attributes.MQeWTLSCertAuthenticator
 Message-level security using:
 com.ibm.mqe.attributes.MQeMTrustAttribute

Figure 4-1: Registry selection based on security requirements

The various security classes provided with MQe (and mentioned above) are described in
Security chapter on page 109.

When configuring any registry there are three significant properties to set:

�� Registry type (together with the associated class that implements that type)

�� Registry storage adapter class (that maps the registry into a storage medium)

�� Registry location (that determines where the registry will be stored)

Once the registry has been created, these properties cannot be changed; in particular a
registry cannot be upgraded, say from file registry to private registry. Queue registries can
however be added as required (see below).

The characteristics of the various MQe storage adapters are described in the chapter Storage
adapters on page 116. The default class is com.ibm.mqe.adapters.MQeDiskFieldsAdapter, a
class that stores the registry in the file system.

The configuration and use of a public registry is beyond the scope of this book; further details
are provided in the MQe Programming Guide.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 21

File registry

The MQe file registry is provided by the com.ibm.mqe.registry.MQeFileSession class. It
provides full registry services, but with these characteristics:

�� No PIN protection for registry access

�� No ability to store credentials (i.e. certificates, keys etc)

�� No ability to share credentials

There are very significant consequences arising from its inability to store and share
credentials – these form much of the substance of the table in Figure 4-1. It is generally
suitable for queue managers where security is not an important consideration.

Private registry – queue manager

The MQe private registry is provided by the com.ibm.mqe.registry.MQePrivateSession class.
It does not (by itself) have the ability to share credentials, hence there are some restrictions
on the message-level security functions; however it does support fully support queue-level
security. It is PIN protected – in fact, there are three PINs/passwords that are important,
though not all are relevant to all the uses of private registry:

�� Registry PIN (needed to open the registry)

�� Key ring password (used to protect the registry's private key)

�� Certificate server request PIN (used to obtain mini-certificates)

None of the above are stored by MQe.

The registry PIN must be supplied each time a private registry is to be opened. The key ring
password is normally supplied at the same time, though is relevant only when the registry
holds credentials and MQe requires access to the private key. The certificate server request
PIN is used only once for the queue manager private registry (but see the following section on
queue private registries); it is used to obtain a credential (mini-certificate) from the certificate
server. Once used, it is invalid for any further certificate requests for that credential.

� Copyright IBM Corp. 2002 22

There are two scenarios for the use of private registry, each assuming that queue-level
security is important:

�� Where mini-certificates are not required for authentication purposes, i.e. the
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator class is never to be
used:

In this case only the registry PIN is relevant. The various cryptors in
the table above can be used. No certificate server is required.

�� Where mini-certificates are required for authentication purposes, i.e. the
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator class is to be used:

The queue manager must acquire two certificates; its own and that of
the certificate server that issued its certificate. These certificates are
obtained through an auto-registration process, which can take place
whilst the queue manager is first being configured, or at any
subsequent restart of the queue manager. The trigger for auto-
registration is supplying MQe with the key ring password and the
certificate server request PIN (along with addressing details of the
server) at the same time as the other queue manager and registry
section data. If MQe is passed these parameters and the private
registry does not have the necessary credentials, it immediately
attempts to acquire them by making requests to the certificate server.

Note that private registry, with or without credentials, does not in itself protect the queues in
any way. Queue protection results from the setting of queue properties – however the
properties that may be set are constrained by the nature and content of the registry.

Private registry – individual queues

A private registry for an individual queue can only be established if the queue manager itself
has a private registry, and if that registry contains credentials (i.e. the certificates defined
above). The significance of a private queue registry is that a queue has its own credentials
and can use these instead of the queue manager's, i.e. it too can have its own certificate –
and also that of the server that issued it. As previously, these certificates are only relevant to
the use of the com.ibm.mqe.attributes.MQeWTLSCertAuthenticator class.

Queue private registries are created automatically as needed, i.e. when a queue has the
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator for the authenticator property set, as
well as the 'Queue' value for the target registry property. In this case, if the queue does not
have its own credentials, they are automatically acquired. A request is made to the certificate
server using whatever certificate server request PIN was supplied to MQe when the queue
manager was started – this is therefore very likely to be the same certificate server request
PIN that was used to acquire credentials for the queue manager10. A queue private registry
also has a registry PIN and a key ring password; MQe generates both these from a digest of
the corresponding values for the queue manager registry11. Applications can do likewise
should they ever need to work directly with the queue registry.

10 This has great significance in certificate server administration. The certificate server request PIN is
normally assigned by an administrator; in many cases it will be desirable that the PIN assigned for the
queue credentials request be the same as that assigned for the queue manager credentials request. If not,
it will be necessary to start MQe to configure the queue manager with one PIN; then restart MQe with a
different PIN to configure the queue.
11 This technique is used to ensure that the queue manager registry PIN does not persist in memory.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 23

4.2 Creating a client queue manager with private registry
Using MQe_Explorer, a client queue manager with a private registry can be created by setting
the new queue manager creation dialog tabs as follows:

Figure 4-2: Create client queue manager (private registry) – General tab

� Copyright IBM Corp. 2002 24

The registry type is set to Private registry:

Figure 4-3: Create client queue manager (private registry) – Registry tab

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 25

The use of the Prompt for passwords option prevents passwords appearing in the initialization
data:

Figure 4-4: Create client queue manager (private registry) – Security tab

After the Create button is clicked, MQe_Explorer will prompt for a PIN that will be used to
protect the private registry. This PIN is not stored and therefore must be remembered.
Without the PIN the registry is inaccessible; the queue manager cannot be started, and
messages cannot be retrieved.

Figure 4-5: Create client queue manager (private registry) – Password prompt

The password is subject to the following checks by MQe_Explorer:

1. At least 6 characters in length.

2. Contain at least 4 different characters.

3. Not match a number of pre-defined (i.e. obvious) values.

Clicking the Create button creates the new queue manager.

� Copyright IBM Corp. 2002 26

The initialization data associated with the myPrivateClientQMgr is:

Figure 4-6: The myPrivateClientQMgr initialization data

Compare this with the equivalent client queue manager having a file registry, shown in Figure
3-7: The myClientQMgr initialization data on page 14. Excluding trivial name differences:

1. In the [Registry] section the registry type class has changed from
com.ibm.mqe.registry.MQeFileSession to
com.ibm.mqe.registry.MQePrivateSession.

2. A new entry for PIN has been added to the [Registry] section.

The code required to create a client queue manager, is identical to that given earlier for a
queue manager with a file registry. The key call is the creation of
MQeQueueManagerConfigure object, as shown in Example 3-4: Creating a client queue
manager on page 17. This instantiation processes the content of the [Registry] section; it
expects that the PIN entry contains the PIN value. It is passed the environment MQeFields
variable containing the PIN, but removes it after using the value. MQe_Explorer implements
the user prompt by pre-parsing the environment variable, requesting passwords from the user
and substituting the respective value whenever it finds a "(prompt)" value.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 27

4.3 Auto-registration with the mini-certificate server
If the com.ibm.mqe.attributes.MQeWTLSCertAuthenticator is to be used (i.e. mini-certificates)
then the private queue manager registry must have its own credentials. This can most easily
be achieved through auto-registration. The steps involved are:

1. Enable the mini-certificate server to issue a certificate to the authenticatable
entity.

2. Create a queue manager with a secure registry, using mini-certificate based
security.

The description that follows assumes that the MQe_MiniCertServer (from the MQSeries
Everyplace ES03 SupportPac) is used to serve the certificates12. A more detailed version of
the certificate-server aspects of this example is given in the MQe_MiniCertServer User Guide.

Enabling MQe_MiniCertServer to issue a certificate

To start the certificate server double click the icon on the desktop or run the
MQe_MiniCertServer.exe from a command line. The following window appears:

Figure 4-7: The initial MQe_MiniCertServer window

Click View�Report to activate and display the report window; this will display all recent server
and significant operator activity.

12 The MQSeries Everyplace SupportPac ES03 includes both a platform neutral, command-driven mini-
certificate server (CommandConsole) and a Windows-only certificate server (MQe_MiniCertServer).
Both of these are fully compatible and can (sequentially) share the same certificate database. The
MQe_MiniCertServer is used here because it supports a graphical user interface.

� Copyright IBM Corp. 2002 28

Figure 4-8: MQe_MiniCertServer report window

Assuming that this is the first time that MCS has been run, a new profile must be created; on
future occasions an existing profile could be opened instead. To create a new profile, click
the new profile icon on the toolbar. The form below will be displayed:

Figure 4-9: Create new profile – General tab

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 29

Enter the following data on the General tab:

1. Name: a unique name for this profile (e.g. "ConfigTests").

2. Passphrase: a password string to protect the registry (e.g. "abcdefghijk").

Enter the following data on the Comms tab:

1. Port: the IP port to receive incoming connection requests (e.g. "8085" is the
expected default value).

2. Adapter: the adapter to be used (by default the
com.ibm.mqe.adapters.MQeTcpipHttpAdapter is used – supporting incoming
requests over the HTTP protocol).

3. Timeout: the channel time out value in seconds (by default "300" is
proposed).

4. Max. channels: the maximum number of simultaneous channels (by default
no maximum limit is set).

Enter the following data on the Storage tab:

1. Adapter: the storage adapter used to hold the server data (by default the
adapter com.ibm.mqe.MQeDiskFieldsAdapter is used).

2. Path: the location of the directories and files used to hold the server data.

3. Log file: the fully qualified path of a file to be used to hold the audit log data
(the file and associated directories will be created if they do not exist).

Click the Create button to save and load the profile. The passphrase will be requested again;
after re-entering, the main window will then change in appearance:

Figure 4-10: The running MQe_MiniCertServer window

The left hand pane holds the tree view of the authenticatable entities; since none exist only
the root representing the MCS server (and associated profile) is shown. The right hand pane
shows the children of the selected tree node in the left hand pane; again, for the same
reason, the pane is empty.

� Copyright IBM Corp. 2002 30

To create a new queue manager authenticable entity, right click on the MQe root node in the
tree pane and select New Entity (or select the MQe root node and use the File�New�Entity
menu item). The new entity dialog appears.

Enter the following data on the General tab:

1. QMgr: the name of the queue manager (in this example "myCertClientQMgr")

2. PIN: the mini-certificate request pin to be used by the queue manager when
retrieving its certificate (e.g. "1122334455")

Figure 4-11: The new entity dialog – General tab, with data entered

The Tries and Months parameters have been left to their default values. Tries controls the
number of attempts that are allowed for the authenticatable entity to retrieve its certificate;
each time an attempt is made with the wrong PIN, one less attempt remains. Months controls
the duration of the certificate; by default certificates are issued for 12 months, but the period
can be set in the range 1 – 15 months.

Other identification data can be entered on the Address tab; each line can contain arbitrary
text. MCS stores and retrieves this information, but does not use it.

Click on the Create button, then the Close button to remove the dialog. The tree and list view
panes of the MQe_MiniCertServer will be updated; likewise the report window will have
logged the activity.

Start the MCS server by clicking the icon on the toolbar (or by using the Action�Start
menu item). The text in red changes to black and the status bar indicates that the server is
now listening for incoming certificate requests. In this running state all administrative
commands are still fully enabled. Leave the MQe_MiniCertServer running so that it can serve
certificates on demand to requests received over the network.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 31

Figure 4-12: Main window before auto-registration

Creating a client queue manager using mini-certificates

Use MQe_Explorer to create a client queue manager with a private registry containing its own
mini-certificate credentials. On the General tab complete the input fields as shown:

Figure 4-13: Create client queue manager (with credentials) – General tab

This General tab is used to enter the queue manager name and to set the type to client.

� Copyright IBM Corp. 2002 32

Using the Registry tab, set the registry type to Private registry:

Figure 4-14: Create client queue manager (with credentials) – Registry tab

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 33

Switch to the Security tab.

As for myPrivateQMgr, the Prompt for passwords option is used. Additionally Certificate-
based box is checked, and the IP address and IP port of the mini-certificate server added.
Leave the Allow queue registry option unchecked – the use of this option is discussed in
Queue-based security on page 109.

The default adapter in this case maps to com.ibm.mqe.adapters.MQeTcpipHttpAdapter.

Figure 4-15: Create client queue manager (with credentials) – Security tab

After the Create button is clicked, MQe_Explorer will prompt for the passwords needed. As
for myPrivateClientQMgr, a registry PIN is required:

Figure 4-16: Create client queue manager (with credentials) – RegistryPIN
prompt

This is subject to the same MQe_Explorer password validation as previously.

� Copyright IBM Corp. 2002 34

A key ring password is also required; used to protect the registry's private key. It is subject to
the same MQe_Explorer validity checking as the registry PIN.

Figure 4-17: Create client queue manager (with credentials) – Key ring password
prompt

Finally, the mini-certificate request PIN is required. This is the value that was entered into the
mini-certificate server for this authenticatable entity (e.g. the string: 1122334455).

Figure 4-18: Create client qMgr (private registry) – Cert. server request PIN
prompt

Clicking the Create button creates the new queue manager. During the creation it will obtain
the necessary certificates and the details of this auto-registration can be seen in the
MQe_MiniCertServer's report window. The summary in the list view pane will need to be
manually refreshed to reflect the recent activity.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 35

Details of the certificates acquired are shown in the Certificates tab, whenever the properties
of the queue manager are displayed, for example:

Figure 4-19: Queue manager certificate details

The panel shows two certificates, and gives the name, owner, issuer and validity dates for
each.

� Copyright IBM Corp. 2002 36

The initialization data associated with the myCertClientQMgr is:

Figure 4-20: The myCertClientQMgr initialization data

Compare this with the same data for myPrivateQMgr, a client queue manager with a private
registry without credentials, as shown in Figure 4-6: The myPrivateClientQMgr initialization
data on page 26. Four new entries have appeared in the [Registry] section:

1. KeyRingPassword

2. CAIPAddrPort (with a composite value)

3. CertReqPIN

4. QueueRegistry

Thus the two additional password entries have now been added, to join the PIN registry
password entry previously described. The CAIPAddrPort value contains all the information
necessary to allow the queue manager to contact the certificate server. The fourth entry
QueueRegistry is only used by MQe_Explorer and is used to retain the knowledge that the
default option, not to allow future queue-based credentials, was selected.

As for a client queue manager with a private registry but no credentials, the code required to
set up the environment and then run the queue manager, is the same as that for a queue
manager with a file registry. The key call is the creation of MQeQueueManagerConfigure
object, as shown in Example 3-4: Creating a client queue manager on page 17. This
instantiation processes the content of the [Registry] section – and hence processes
KeyRingPassword, CAIPAddrPort and CertReqPIN. However it expects that the PIN,
KeyRingPassword and CertReqPIN entries all contain real passwords. It is passed the
environment MQeFields variable containing these entries, but removes them after using the

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 37

values. MQe_Explorer implements the user prompt by pre-parsing the environment variable,
requesting passwords from the user and substituting the respective value whenever it finds a
"(prompt)" value13.

It is not necessary that auto-registration take place at the time that the queue manager
registry is created. It is equally possible to create a queue manager with a file registry and no
credentials, and then to add the credentials later. This is equivalent to adding the relevant
three extra [Registry] entries, after the queue manager has been created, but before re-
starting. In this case the call to the MQeQueueManagerUtils.processQueueManager()
method initiates the auto-registration – see Example 3-2: Starting a client queue manager on
page 15.

After auto-registration, it is essential that the PIN and KeyRingPassword entries in the
[Registry] section are passed whenever the queue manager is re-started. These entries are
needed for access to the certificates. If queue-based authenticatable entities are to be used
as well, then the CertReqPIN must also be present (see Setting up a private registry for a
queue on page 112).

The examination and renewal of mini-certificates is discussed in the chapter Certificate
management on page 133.

13 The "(prompted)" value is used to identify passwords that are no longer required (e.g. the certificate
request PIN is only used once for queue manager, certificate-based credentials).

� Copyright IBM Corp. 2002 38

5 Queue manager properties
In the previous chapter we saw that MQe stores many of the queue manager properties in the
registry. Applications programs must remember other properties, and these may be stored in
initialization files or in program code.

Queue manager properties in the registry are managed through admin messages; the
mechanisms involved are discussed in Configuration using admin messages on page 40.
Here we examine these properties in more detail.

5.1 Registry-held properties
A queue manager has the following properties held in the MQe queue manager registry:

Queue manager name:
Uniquely identifies the queue manager.

Description:
An arbitrary string describing the queue manager.

Aliases:
Alias names are optional alternative names that are mapped by MQe to
this queue manager (see below).

Channel attribute rule:
The class (or alias) of the channel attribute rule associated with the
queue manager (for more details see Channel security on page 65).

Channel timeout:
The class (or alias) of the rule associated with the queue manager.

Class:
The class (or alias) used to realize the queue manager.

Credentials:
Certificates and associated data (file registries only).

Queue adapter:
The default class (or alias) for a queue store (used as the default
property value for queues).

Queue manager rule:
The class (or alias) of the rule associated with the queue manager;
determines behavior when there is a change in state for the queue
manager.

Queue message store:
The default class (or alias) for a queue store (used as the default
property value for queues).

Queue path:
The default location of a queue store (used as the default property
value for queues).

Additionally the registry holds details on child objects of the queue manager, such as
connections, queues and bridge-related objects (i.e. the bridges object itself, bridges, MQ
proxies, client connections and listeners). An admin inquiry enquiry message on the queue
manager, as well as soliciting details of queue manager properties, also provides summary
details on any child objects, i.e. the queue and connection names and the presence/absence
of a bridges object14.

14 This feature applies to MQe version 1.27 and later releases.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 39

5.2 Alias names
The queue manager name is used, inter alia, when MQe needs to deliver a message to the
local queue manager. Such a message may have originated from either a local or remote
queue manager. MQe requires that the target address in the message matches that of the
queue manager to which it is delivered. In some cases however a degree of independence is
needed between the queue manager addresses used by applications, and the actual names
of queue managers in the network. The simplest example is where queue managers have
been renamed after the application has been developed. This flexibility is provided through
aliases.

Queue managers have associated aliases, which allow zero, one or more alias names to be
associated with the local queue manager. These aliases can be regarded as changing a
matching destination queue manager name in the message, such that it is replaced with the
local queue manager name.

Queue manager aliases are not held in the registry as a property of the queue manager;
instead they are held as properties of a local connection (see Local connections on page 72).

� Copyright IBM Corp. 2002 40

6 Configuration using admin messages

6.1 Introduction
Once a queue manager has been created, further configuration should take place through the
sending of admin messages to the target queue manager’s AdminQ. A queue manager that
does not have an AdminQ cannot be administered. The intent behind the use of admin
messages is that both local and remote administration is performed in an identical manner.

The mechanism is that an admin message is created and sent to the admin queue of the
queue manager to be administered. Queue-based security attributes can be applied to that
queue if access control is to be enforced (see Queue-based security on page 109). The
admin message not only includes the details of the request but also indicates whether a
response is required, and where that response is to be sent (in the form of an address
identifying a queue manager and queue). The AdminQ itself acts upon the message and, if
requested, results are returned. Admin messages can inquire on, create, delete or update
objects. For a subset of the objects they can perform additional functions, such as stop and
start.

To view admin messages in action, start MQe_Explorer and open the myClientQMgr created
earlier. Then:

1. Clear any messages off the AdminReplyQ (if you have followed only the
instructions above, then the queue should be empty).

2. Set demo mode (Tools�Demo Mode) – this will make MQe_Explorer keep a
copy of all messages sent & received, on the AdminReplyQ .

3. Refresh the myClientQMgr icon.

4. Un-set demo mode.

5. Set to view off-line admin (View�Offline Admin).

6. Set to view other messages (View�Others).

The display will look like this (empty columns have been shrunk in width):

Figure 6-1: Queue manager refresh admin messages

Twenty messages are shown, all have the action type of 'Inquire all', and for every request
there is a corresponding reply. The messages are sorted by message number and, in this
case, this sequence also corresponds to the time the request (or response) was made. The
list represents attempts by MQe_Explorer to get details on all the objects present on the

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 41

queue manager. In some cases details were requested on objects that did not exist, such as
the bridges object, and a local connection15.

Using the request (or response) time, the messages can also be viewed in another way; this
time the message structure can be examined:

1. Select the AdminReplyQ node in the tree pane.

2. Explore the same messages, using the Creation time to correlate with the off-
line admin window display.

3. Drill down into the messages.

The request message contains the admin instructions required; the corresponding response
illustrates how MQe returns the data.

For example, the first request in Figure 6-1 above is one to get all the details of the
myClientQMgr. The figure below shows the first level of message structure (using the option
to translate field names):

Figure 6-2: First level of a queue manager 'Inquire All' admin request

15 This appears to be a connection of myClientQMgr to itself; local connections have special uses – this
topic is discussed later.

� Copyright IBM Corp. 2002 42

The message shown is a copy of the messages actually sent and consequently certain fields
have been added or changed by MQe_Explorer to avoid this message causing problems with
‘real’ admin messages. The differences are explained in detail the MQe_Explorer User
Guide, but the important fields, from an admin perspective, are unaffected. The fields can be
interpreted as:

Action: 5 - an ‘Inquire All’ request.

Max attempts: 1 – try once.

Target qMgr: myClientQMgr – target of the request.

Parameters: Details of the admin request.

Style: 1 – this is a request; send a response message.

Reply-to qMgr: myClientQMgr – send response to this queue manager.

Reply-to queue: AdminReplyQ – send response to this queue.

The following fields are present in the request for use in the response (they appear in the
message automatically as a consequence of using the admin message constructor):

Attempt: Used to return attempt number.

Errors: Used to return errors.

Reason: Used to return an error reason.

Return code: Used to return an error code.

The remaining fields are either standard in all MQe messages, or are added by
MQe_Explorer for its own purposes, but do not have to be present in admin messages:

Async. load: Used by MQe_Explorer.

Copy info: Used by MQe_Explorer for details of the copy.

Correl. id: Used by MQe_Explorer to correlate request & response.

MQe_Explorer: Used by MQe_Explorer.

Orig. qMgr: Always present in an MQe message.

Original correl. id: Used by MQe_Explorer for details of the original correl. id.

Original UID: Used by MQe_Explorer for details of the original UID.

Time: Always present in an MQe message.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 43

The Parameters field has the structure:

Figure 6-3: Second level of a queue manager 'Inquire All' admin request

The Name field present identifies the name of the object to be inquired upon.

The response to the inquiry is message number 4 (in this case) and shows how the
information is returned:

Figure 6-4: First level of a queue manager 'Inquire All' admin response

Only the two fields have changed, but this is because certain reply fields were pre-loaded with
values. The important fields are:

Attempt: 1 – this is a reply to the first attempt.

Errors: Used to return errors (none in this case).

Reason: Good – the request was successfully processed.

Return code: 00 – the request was successfully processed.

� Copyright IBM Corp. 2002 44

If the Errors field is expanded it will be seen to have no constituent fields, i.e. there is no
detailed error data. The Parameters field has changed considerably and now holds the
requested queue manager details:

Figure 6-5: Second level of a queue manager 'Inquire All' admin response

This is more complicated to interpret. The fields are:

Class: Queue manager class (or alias) – abbreviated format.

Name: Queue manager name.

QMgr. channel attribute rule:
 Queue manager channel attribute rule class (or alias).

QMgr. channel timeout: Queue manager channel timeout.

QMgr. connections: No connections are defined.

QMgr. description: The descriptive text.

QMgr. queue store: The default message store, queue adapter and path in a
composite value.

QMgr. queues: Indicates an MQeFields array present (4 queues).

QMgr. queues:0: Details of queue 0.

QMgr. queues:1: Details of queue 1.

QMgr. queues:2: Details of queue 2.

QMgr. queues:3: Details of queue 3.

QMgr. rule: 00 – request was successfully processed.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 45

Drilling down into the first queue (queue 0) we see:

Figure 6-6: Third level of a queue manager 'Inquire All' admin response

This provides sufficient information to identify the queues:

QMgr. queue: Queue name.

QMgr. queue qMgr. The queue queue manager name.

QMgr. queue type: The queue class (or alias) – abbreviated format.

More information on queues (or connections – had there been any) requires additional admin
message exchange. In exactly the same way that we have just explored the ‘Inquire All’
command on a queue manager, the procedure can be repeated for ‘Inquire All’ on a queue.

Using MQe_Explorer to effect an inquire or a configuration change, followed an inspection of
the messages sent and received, is a very useful way of determining what needs to be in an
admin message to achieve a particular result. The same process would have shown
messages that change property values, create new queues, stop and start bridges objects,
and so on.

6.2 MQe_Explorer abstractions
The object and property view presented by MQe_Explorer does not map exactly to the
underlying MQe objects and properties. The principal differences affect:

�� Queue manager

�� Queues

�� Connections

In those cases where MQe_Explorer presents a property that does not exist at the MQe
object level, MQe_Explorer holds it locally, almost always in its .ini file associated with that
queue manager.

The queue manager property details are:

MQe_Explorer property MQe property

Adapter (incoming connection) Property does not exist (listener config. parameter)

Alias Held as local connection alias

Bridges MQe start-up parameter

Certificate-based security Property does not exist

Certificate server adapter Property does not exist

� Copyright IBM Corp. 2002 46

MQe_Explorer property MQe property

Certificate server IP address Property does not exist

Certificate server IP port Property does not exist

Certificate server request PIN Property does not exist

Channel (incoming connection) Property does not exist (listener config. parameter)

Class aliases MQe start-up parameter

Enc. parameters (incoming
connection)

Property does not exist

IP address (incoming connection) Property does not exist

IP port (incoming connection) Property does not exist (listener config. parameter)

Key ring password MQe start-up parameter

Max. channels (incoming connection) Property does not exist (listener config. parameter)

Message store Held as part of the default queue file descriptor

Options (incoming connection) Property does not exist

Originator Property does not exist

Parameters (incoming connection) Property does not exist

Permissions MQe start-up parameter

Pre-loads MQe start-up parameter

Prompt for passwords Property does not exist

Queue adapter Held as part of the default queue file descriptor

Queue path Held as part of the default queue file descriptor

Registry adapter MQe creation parameter

Registry class MQe start-up parameter

Registry path MQe start-up parameter

Registry PIN MQe start-up parameter

Registry type Registry creation parameter

Rule data (incoming connection) Property does not exist

Timeout (incoming connection) Property does not exist
(listener config. parameter)

Type Property does not exist

Figure 6-7: MQe_Explorer queue manager abstractions

The queue property details are:

MQe_Explorer property MQe property

Message store Held as part of the queue file descriptor

Adapter Held as part of the queue file descriptor

Path Held as part of the queue file descriptor

Type Property does not exist

Figure 6-8: MQe_Explorer queue abstractions

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 47

The connection property details are:

MQe_Explorer property MQe property

Primary adapter Held as part of the adapter file descriptor for the first adapter

Primary IP address Held as part of the adapter file descriptor for the first adapter

Primary IP port Held as part of the adapter file descriptor for the first adapter

Secondary properties Properties not currently supported

Type Property does not exist

Via queue manager Held as a value of the adapter file descriptor for the first
adapter

Figure 6-9: MQe_Explorer connection abstractions

6.3 Admin programming

General principles

Some underlying principles underpin MQe admin programming. In most cases these apply to
all MQe objects (i.e. queue managers, queues, connections, MQ bridges, MQ queue manager
proxies, MQ client connections and MQ listeners). However the bridge-related objects are
treated differently in some important respects; these differences are identified in the next
section. General principles:

1. The AdminQ queue only accepts messages that derive from the class
com.ibm.mqe.MQeAdminMsg.

2. Every supplied MQe object that can be administered has an associated
admin message class (that inherits from com.ibm.mqe.MQeAdminMsg) and
this must be used (with rare exceptions).

i. Queue manager:
com.ibm.mqe.administration.MQeQueueManagerAdminMsg

ii. Queue (according to queue type)16:
com.ibm.mqe.administration.MQeAdminQueueAdminMsg
com.ibm.mqe.administration.MQeHomeServerQueueAdminMsg
com.ibm.mqe.administration.MQeQueueAdminMsg
com.ibm.mqe.administration.MQeRemoteQueueAdminMsg
com.ibm.mqe.administration.MQeStoreAndForwardQueueAdminMsg
com.ibm.mqe.bridges.MQeMQBridgeQueueAdminMsg

iii. Connection
com.ibm.mqe.administration.MQeConnectionAdminMsg

iv. Bridges object
com.ibm.mqe.bridges.MQeBridgesAdminMsg

v. MQ bridge
com.ibm.mqe.bridges.MQeBridgeAdminMsg

vi. MQ qMgr. proxy:
com.ibm.mqe.bridges.MQeMQQMgrProxyAdminMsg

16 On an inquiry the class com.ibm.mqe.administration.MQeQueueAdminMsg can be used irrespective
of the target queue class.

� Copyright IBM Corp. 2002 48

vii. MQ client connection:
com.ibm.mqe.bridges.MQeClientConnectionAdminMsg

viii. MQ listener:
com.ibm.mqe.bridges.MQeListenerAdminMsg

3. Defined constants in com.ibm.mqe.MQeAdminMsg are used for generic field
names and for certain of their standard values.

4. Field names (and standard values) peculiar to a particular object are defined
constants in their associated admin message class (but see exception
below).

5. Names are ASCII values (but see exception below).

6. Where an object has children, generally the identity of those children will be
returned by an inquiry on the parent (but see exception below).

7. Returned abbreviated class names can be expanded by the method
com.ibm.mqe.MQe.abbreviate().

There are a number of deviations from the general principles above:

1. A queue manager cannot be created by sending a
com.ibm.mqe.administration.MQeQueueManagerAdminMsg message – local
programming is required.

2. Queue manager aliases are handled through the admin messages of class
com.ibm.mqe.administration.MQeConnectionAdminMsg.

3. A bridges object cannot be created by sending a
com.ibm.mqe.bridges.MQeBridgesAdminMsg message – local programming
is required.

4. A client/server listener cannot be created, modified or deleted through admin
messages – local programming is required.

5. The administration of peer listeners is handled through the admin messages
of class com.ibm.mqe.administration.MQeConnectionAdminMsg.

The general structure of an admin message is:

Action required

Attempt

Max. attempts

Style (request/response)

Reply-to qMgr.

Reply-to queue

Reason

Return code

Detailed parameters

Errors

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 49

The actions available are:

MQeAdminMsg.Action_Create: create an administered object.

MQeAdminMsg.Action_Delete: delete an administered object.

MQeAdminMsg.Action_Inquire: inquire on a specific administered object property.

MQeAdminMsg.Action_InquireAll: inquire on all administered object properties.

MQeAdminMsg.Action_Update: delete an administered object.

MQeConnectionAdminMsg.Action_AddAlias: add a connection alias.

MQeConnectionAdminMsg.Action_RemoveAlias: remove a connection alias.

MQeQueueAdminMsg.Action_AddAlias: add a queue alias.

MQeQueueAdminMsg.Action_RemoveAlias: remove a queue alias.

MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager: add a
destination queue manager to a store and forward queue.

MQeStoreAndForwardQueueAdminMsg.Action_RemoveQueueManager: remove a
destination queue manager from a store and forward queue.

MQeMQBridgesAdminMsg.Action_Stop: stop bridge-related object(s).

MQeMQBridgesAdminMsg.Action_Start: start bridge-related object(s).

Bridge object specifics

The following differences apply when managing bridge-related objects:

1. All field names (and standard values) that are used in the detailed
parameters specification are defined in
com.ibm.mqe.mqbridge.MQeCharacteristicLabels.

2. The object being managed is identified through an object-specific name, not a
generic admin name.

3. Children are identified through a children/child concept.

4. Names are UNICODE values.

5. Bridge-related objects can be stopped and started.

The programming examples later in this chapter illustrate these points.

A gateway queue manager (i.e. a queue manager with a bridges object) can be identified
from the value of the bridgeCapable property17 returned from a
MQeQueueManagerAdminMsg inquiry. If the value is true, then the object is present and the
other gateway objects (MQ bridge, MQ proxy, client connection and listener) can be created
and/or modified.

6.4 A queue manager inquiry
The following code implements an ‘Inquire All’ query on a remote queue manager.

Many of the admin message classes supply helper methods in order to simplify admin
programming; in all the examples below however, these methods are not used. This has
been done in order to make it clear exactly what is required in the message. In any serious

17 This feature was added in MQe version 1.27. On earlier releases an MQeBridgesAdminMsg had to
be sent; if a reply free from errors was received, then the queue manager was a gateway.

� Copyright IBM Corp. 2002 50

admin application it is generally useful to develop custom helper methods – admin
programming being somewhat repetitive.

Creating and sending the message

The code below uses the local queue manager to create the message, and then sends it to
the AdminQ of the target queue manager called ‘myTargetQMgr’. Admin replies are returned
to the AdminReplyQ on the local queue manager. The same code would be used to inquire
on the local queue manager – the only change would be to insert the appropriate name in the
targetQMgrName variable.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name

//create the basic queue manager admin message
MQeQueueManagerAdminMsg adminMsg = new MQeQueueManagerAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add inquiry command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_InquireAll);

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putAscii(MQeAdminMsg.Admin_Name, targetQMgrName); //admin object
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 6-1: A queue manager ‘Inquire All’ query

This code can be mapped directly to the MQe_Explorer messages seen earlier. The only
curious aspect of the code is the nature and use of the adminKey variable. This is added to
the message in order that the reply can be correlated with the original. The use of the system
time is an easy way to generate a suitable value (provided that only occasional messages are
issued)18. Transforming it into an array of bytes is odd; it is done here because
MQe_Explorer also chooses to do that. Use of a long value would be more natural, and any
field name would suffice. The MQe examples also use the correlation id in this way –
primarily to mirror MQ base messaging programming style.

18 A more certain way of generating unique values is provided by the MQe.uniqueValue() method.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 51

If the intent is synchronous administration, then no pre-configuration of queues is required.
The standard defaults should suffice. If the remote AdminQ does not have a corresponding
local remote queue definition, then MQe will generate one dynamically. Other error situations
are considered later in this chapter.

Getting the reply

There are two ways in which the reply can be retrieved. The synchronous way is to wait, for
example:

//create a filter
MQeFields msgFilter = new MQeFields(); //new filter
msgFilter.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//wait for reply
int waitTime = 10000; //wait 10 secs
MQeAdminMsg adminReply = (MQeAdminMsg) qMgr.waitForMessage(
 thisQMgrName , MQe.Admin_Reply_Queue_Name,
 msgFilter, null, 0, waitTime); //get reply

Example 6-2: Waiting for a reply

If no reply is received, an exception is thrown.

Alternatively a message listener can be set-up before the admin message is sent, as below:

//create a filter
MQeFields msgFilter = new MQeFields(); //new filter
msgFilter.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//set up message listener
qMgr.addMessageListener(this, MQe.Admin_Reply_Queue_Name,
 msgFilter);

Example 6-3: Setting up a message listener

The following code will then be called when a reply arrives:

//called when admin reply arrives
public void messageArrived (MQeMessageEvent e) throws Exception
{
 //get the reply
 MQeAdminMsg adminReply = qMgr.getMessage(thisQMgrName ,
 MQe.Admin_Reply_Queue_Name, msgFilter, null, 0);
}

Example 6-4: Getting the reply when an event is raised

� Copyright IBM Corp. 2002 52

This code uses the same message filter in two places; firstly to get the event raised when the
reply is received, and subsequently to retrieve it from the AdminReplyQ. More typically, a
generic message listener would be established that is capable of getting replies to multiple
messages (i.e. by using a less restrictive message filter); each response could then be
retrieved by:

//called when one of a number of admin replies are received
public void messageArrived (MQeMessageEvent e) throws Exception
{
 //get a particular reply

eventFilter = e.getMsgFields(); //get message data
 MQeAdminMsg adminReply = qMgr.getMessage(thisQMgrName,
 MQe.Admin_Reply_Queue_Name, eventFilter, null, 0);
}

Example 6-5: Getting a specific reply when an event is raised

The getMsgFields() method returns the MQeFields object that caused the event. Using this to
retrieve the message, ensures that the message that caused the event is removed from the
queue monitored by the message listener.

Extracting the information

The requested data is returned in the command parameters. Originally only the name of the
administered object was set in the inquiry, i.e. the queue manager name in this case. On a
successful inquiry, all the properties have now been added to the response, e.g.

//extract the command parameters
parms = adminReply.getFields(MQeAdminMsg.Admin_Parms);

//extract each property
String descr = parms.getUnicode(
 MQeQueueManagerAdminMsg.QMgr_Description); //description
long chTimeout = parms.getLong(
 MQeQueueManagerAdminMsg.QMgr_ChnlTimeout); //channel timeout

// etc.

Example 6-6: Extracting the responses to the ‘Inquire All’ query

Executing the sample – Queue manager inquiry:

This depends upon the existence of the configured myClientQMgr queue manager created
earlier.

Then use the command: MQeConfigGuide 3. The sample code is contained in the method
inquireClientQMgr(). By default, the MQe_Explorer-created myClientQMgr.ini file is used; by
editing the sample code, the method createClientEnvironment() can be used instead.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 53

Handling errors

The two likely places where errors might occur are either on the sending of the admin
message, or on its receipt. Assuming synchronous administration, sending errors are likely to
be the result of remote queue managers being unavailable, or of networking problems. These
are presented as exceptions on the putMessage(), i.e.

//send admin message
try
{

qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);
}
catch (MQeException mqe)
{

//handle MQe error
 int errCode = mqe.code();

}
catch (java.io.IOException ioe)
{

//handle I/O error
}
catch (Exception e)
{

 //handle other errors
}

Example 6-7: Sending errors for synchronous admin

Error handling whilst processing the reply is more complicated. Whilst this particular example
of an ‘Inquire All’ is unlikely to produce complex errors, the general philosophy is described
below and is relevant when updates to MQe object properties are attempted. Error
notification can happen:

1. As an exception on the getMessage() or waitForMessage().

The normal reason for an exception here is that there is no admin reply on the
AdminReplyQ.

2. In the Reason and Return code parameters.

The Reason text parameter is used for overall admin errors, for example that the
object being administered does not exist, or that an attempt is being made to
create an object that already exists. The Return code has three possible values:

i. MQeAdminMsg.RC_Success – complete success.
ii. MQeAdminMsg.RC_Fail – complete failure.
iii. MQeAdminMsg.RC_Mixed – partial success.

3. In the Errors array

Errors is used to give error information on a per-property basis.

� Copyright IBM Corp. 2002 54

The example below shows a way in which error information can be handled:

//send admin message
try
{
 MQeAdminMsg adminReply = qMgr.getMessage(localQMgrName,
 MQe.Admin_Reply_Queue_Name, eventFilter, null, 0);

 //check for errors
 if (adminReply.getByte(MQeAdminMsg.Admin_RC) != MQeAdminMsg.RC_Success)
 {
 //errors occurred – get reason
 String reason = adminReply.getUnicode(MQeAdminMsg.Admin_Reason);

 //get detail
 MQeFields errors = adminReply.getFields(MQeAdminMsg.Admin_Errors);
 if (errors != null)

{
Enumeration contents = errors.fields();
while (contents.hasMoreElements())
{

//get property name
String property = (String) contents.nextElement();
//get associated error

 String error = errors.getAscii(property));
 }
 }
 }
}
catch (MQeException mqe) {//handle MQe errors…. }
catch (java.io.IOException ioe) {//handle I/O errors …. }
catch (Exception e) {//handle other errors …. }

Example 6-8: Error handling when processing admin replies

A successful return code indicates that no error information is present; any other value
indicates that either or both of the Reason and Errors parameters contain error information.

6.5 Other admin examples
The above example was a simple inquiry; more complex examples below include the setting
of property values and the handling of bridge-related objects. Only message creation is
shown; extracting information and error handling is substantially the same as the inquiry case
above.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 55

Setting a queue manager property

The example below shows how to set the channel timeout property of a queue manager. The
example uses the local queue manager to modify a remote queue manager called
‘myTargetQMgr’. Admin replies are returned to the AdminReplyQ on the local queue
manager.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name

//create the basic queue manager admin message
MQeQueueManagerAdminMsg adminMsg = new MQeQueueManagerAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add update command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_Update);

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putAscii(MQeAdminMsg.Admin_Name, targetQMgrName); //admin object
parms.putAscii(MQeAdminMsg.Admin_Class,
 "com.ibm.MQeQueueManager"); //object class
parms.putLong(MQeQueueManagerAdminMsg.QMgr_ChnlTimeout,
 1000000L); //new timeout
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 6-9: Setting the channel timeout on a queue manager

Compared with the queue manager ‘Inquire All’ example, the points to note are:

1. The update command has been specified.

2. The object class has been added to the parameters.

3. The channel timeout has been added to the parameters.

� Copyright IBM Corp. 2002 56

Executing the sample – Set a queue manager property:

This depends upon the existence of the configured myClientQMgr queue manager created
earlier.

Then use the command: MQeConfigGuide 4. The sample code is contained in the method
setPropertyClientQMgr(). By default, the MQe_Explorer-created myClientQMgr.ini file is used;
by editing the sample code, the method createClientEnvironment() can be used instead.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 57

Creating a new queue

The example below shows how to create a remote queue definition; only a subset of the
possible parameters is specified – the rest will take their default values. The example uses
the local queue manager to create a remote queue called ‘myQueue’, on a queue manager
called ‘myTargetQMgr’. The remote queue is a proxy for a local queue called ‘myQueue’ on a
queue manager called ‘remoteQMgr’. It implements asynchronous messaging, with a
transporter that uses XOR compression. Admin replies are returned to the AdminReplyQ on
the local queue manager.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name
String queueQMgrName = "remoteQMgr"; //remote qMgr name
String queueName = "myQueue"; //queue name - target
String descrText = "My remote queue"; //description

//create the basic queue admin message
MQeRemoteQueueAdminMsg adminMsg = new MQeRemoteQueueAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add create command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_Create);

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putAscii(MQeAdminMsg.Admin_Name, queueName); //queue name
parms.putAscii(MQeAdminMsg.Admin_Class,
 "com.ibm.MQeRemoteQueue"); //object class
parms.putAscii(MQeQueueAdminMsg.Queue_QMgrName,
 queueQMgrName); //queue qMgr. name
parms.putUnicode(MQeQueueAdminMsg.Queue_Description,
 descrText); //queue description
parms.putByte(MQeQueueAdminMsg.Queue_Mode,
 MQeQueueAdminMsg.Queue_Asynchronous); //asynchronous mode
msgParms.putBoolean(MQeRemoteQueueAdminMsg.Queue_TransporterXOR,
 true); //XOR compress
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 6-10: Creating a new remote queue

� Copyright IBM Corp. 2002 58

Compared with the queue manager ‘Inquire All’ example, the points to note are:

1. The admin message class has been changed to match the queue class being
created.

2. The create command has been specified.

3. The remote queue object class has been added to the parameters.

4. The admin name is now the name of the new queue being created

5. The queue qMgr. name has been added (needed to identify the queue).

6. The queue description, mode and transporter XOR compress have been set.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 59

Adding a connection alias

The example below shows how to add a connection alias to an existing connection. The
example uses the local queue manager to add an alias ‘aliasRemoteQMgr’ to a connection
called ‘RemoteQMgr’, on a queue manager called ‘myTargetQMgr’. Admin replies are
returned to the AdminReplyQ on the local queue manager.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name
String connName = "RemoteQMgr"; //connection name
String aliasName = "aliasRemoteQMgr" //alias name

//create the basic connection admin message
MQeConnectionAdminMsg adminMsg = new MQeConnectionAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add add alias command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeConnectionAdminMsg.Action_AddAlias);

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putAscii(MQeAdminMsg.Admin_Name, connName); //connection name
parms.putAscii(MQeAdminMsg.Admin_Class,
 "com.ibm.mqe.MQeConnectionDefinition"); //object class
String[] aliasesArray = new String[1]; //alias array
aliasesArray[0] = aliasName; //load aliases
parms.putAsciiArray(MQeConnectionAdminMsg.Con_Aliases,
 aliasesArray); //add aliases
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 6-11: Adding a connection alias

Compared with the queue manager ‘Inquire All’ example, the points to note are:

1. The admin message class has been changed to reflect a connection
definition.

2. The add alias command has been specified.

3. The connection object class has been added to the parameters.

4. The admin name is now the name of the connection being modified

5. The alias name has been set.

� Copyright IBM Corp. 2002 60

Inquiry on an MQ bridge

The code below uses the local queue manager to inquire on an MQ bridge called
‘myMQBridge’ hosted on a queue manager called ‘myTargetQMgr’. Admin replies are
returned to the AdminReplyQ on the local queue manager.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name
String bridgeName = "myMQBridge"; //MQ bridge name

//create the basic MQ bridge admin message
MQeMQBridgeAdminMsg adminMsg = new MQeMQBridgeAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add inquiry command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_InquireAll);

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putUnicode(MQeCharacteristicLabels.MQE_FIELD_LABEL_BRIDGE_NAME,
 bridgeName); //MQ bridge name
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 6-12: An MQ bridge ‘Inquire All’ query

Compared with the queue manager ‘Inquire All’ example, the points to note are:

1. The admin message class has been changed to reflect an MQ bridge object.

2. The admin name in the command parameters is replaced by the bridge
name; the value is UNICODE instead of ASCII.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 61

Setting an MQ listener property

The code below uses the local queue manager to set the description property of an MQ
listener. The listener is called ‘myMQListener’, with a parent called ‘myMQClientConnection’,
itself with a parent ‘myMQProxy’, on an MQ bridge called ‘myMQBridge’, hosted on a queue
manager ‘myTargetQMgr’. Admin replies are returned to the AdminReplyQ on the local
queue manager.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myTargetQMgr"; //target qMgr name
String bridgeName = "myMQBridge"; //MQ bridge name
String proxyName = "myMQProxy"; //MQ proxy name
String clientConnName = "myMQClientConnection"; //MQ client conn name
String listenerName = "myMQListener"; //MQ listener name
String descrText = "My listener"; //description

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(thisQMgrName);

//create the basic MQ listener admin message
MQeListenerAdminMsg adminMsg = new MQeListenerAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, MQeWatcher.adminKey); //add key

//add update command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_Update);

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putUnicode(MQeCharacteristicLabels.MQE_FIELD_LABEL_LISTENER_NAME,
 listenerName); //MQ listener name
parms.putUnicode(MQeCharacteristicLabels.MQE_FIELD_LABEL_CLIENT_CONNECTION_NAME,
 clientConnName); //MQ client conn name
parms.putUnicode(MQeCharacteristicLabels.MQE_FIELD_LABEL_MQ_Q_MGR_PROXY_NAME,
 proxyName); //MQ proxy name
parms.putUnicode(MQeCharacteristicLabels.MQE_FIELD_LABEL_BRIDGE_NAME,
 bridgeName); //MQ bridge name
parms.putUnicode(MQeCharacteristicLabels.MQE_FIELD_LABEL_DESCRIPTION,
 descrText); //description
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 6-13: Setting the description on an MQ listener

� Copyright IBM Corp. 2002 62

Compared with the setting of a queue manager property example, the points to note are:

1. The admin message class has been changed to reflect an MQ listener object.

2. The admin name in the command parameters is no longer present. It is
replaced by multiple UNICODE parameters that collectively identify the
listener.

3. All parameter field names are taken from the
com.ibm.mqe.mqbridge.MQeCharacteristicLabels class.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 63

7 Channels and transporters
Channels are the objects used by MQe to move messages between queue managers. The
creation and management of channels is the responsibility of queue managers – there is no
configuration or other user involvement in channel operation. Channels have security
attributes reflecting the level of protection that must be given to their traffic – again MQe
handles this automatically. Channels use communications adapters to provide access to the
underlying communications infrastructure (e.g. TCP/IP, HTTP, UDP etc).

Given this – there would seem to be no obvious reason why channels need to be understood
by administrators. However the reason that channels surface is that MQe offers two channel
types – and the type to be used to communicate to any particular remote queue manager is
selectable. It is specified as a parameter on the connection definition; hence it is controllable
at the remote queue manager level. More details on connection definitions follow in the
chapter – to begin, the two channel types will be described. These are:

�� Client/server

�� Peer-to-peer

The channel type in use has no implications for MQe application programming; applications
are unaware of channel type. The only impact of channel type is to affect message flow
initiation between queue managers.

7.1 Client/server channels
In client/server communication, the client and the server play two distinct roles:

Client: initiates transfers of data – transfers can be either to or from the server.

Server: responds to requests from the client.

The essence of client/server is that the client is in control of data transfers; the server cannot
force data on to or off the client; the client must, in all cases, initiate data transfers. Transfers,
when they take place may be uni- or bi-directional19.

Although client/server behavior may seem unduly restrictive, this may be exactly what is
required. Clients may not want unsolicited data transfer initiated by a server; or alternatively
the presence of firewalls in the network may require precise control over which party initiated
a data transfer.

The client/server characteristics are on a per-channel basis. So, for any one client-server
channel the above is true; and indeed, all channels arising from a single connection definition
will have the same characteristics. However, the following is also possible, and very
common. Two queue managers, A and B, wish to exchange data. Queue manager A has a
connection definition to B such that all channels instigated by A to B are client/server, where
A is the client and B is the server. Likewise, queue manager B has a connection definition to
A such that all channels instigated by B to A are client/server, where B is the client and A is
the server. Now both A and B can be simultaneously clients and servers – and either can
initiate freely data transfers to each other, and all data is being transferred over client/server
channels.

In client/server communication, in order to set up a channel, the client must first make a
connection request. This requires knowledge of the address of the server, and of the port
being listened on by the server for such incoming connection requests. The server needs to
have such a listener active but does not need any prior knowledge of the address or port
being used by the client.

19 How a server sends data to a client is discussed under home server queues.

� Copyright IBM Corp. 2002 64

MQe provides a client/server channel listener that listens on a single port for multiple
incoming connection requests from clients. Each client request is then handed off to another
port for the socket to be created; thus one port (with a fixed port number) can be continuously
available to service incoming requests. The client/server listener is described in the section
Client/server listeners on page 82.

7.2 Peer-to-peer channels
In peer-to-peer communication, both parties are equal and have identical capabilities.
However two distinct roles can be identified, which either can play:

Master: initiates the establishment of the channel.

Slave: responds to the establishment request from the master.

Once a channel is established it is bi-directional and either peer can use it to send data to the
other.

In peer-to-peer communication, in order to set up a channel, the master must first make a
connection request. This requires knowledge of the address of the slave, and of the port
being listened on by the slave for such incoming connection requests. The slave needs to
have such a listener active but does not need any prior knowledge of the address or port
being used by the master.

MQe provides a peer channel listener that listens on a single port for an incoming connection
request from a master. It then uses that same port to create the sockets for the subsequent
channel(s). The port is not free to service another incoming request whilst the channel(s)
exist. The peer listener is described in the section Peer listeners on page 84.

7.3 Channel types compared
The principal differences between MQe channel types are summarized in the following table:

Property Client/server Peer-to-peer

Initiator Client only Either peer

Bi-directional data flows Client can send data
Client can pull data
Server cannot send data

Either peer can send data
Either peer can pull data

Channel duration Timeout set by client Timeout set by master

Addressability Client needs address of
server listener

Server does not need
addressability to client

Master needs address of
slave listener

Slave does not need
addressability to client

Listener port Server can listen for multiple
incoming requests on a
single port

Client does not need a
listener

Slave can listen for one
incoming request at a time

Master does not need a listener

Default class name com.ibm.mqe.MQeChannel com.ibm.mqe.MQePeerChannel

Figure 7-1: Channel type comparison

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 65

The principal disadvantages of peer-to-peer channels arise because the peer channel listener
can only listen for one request at a time. The other problem with peer-to-peer channels is that
the channel timeout is set by the master; if the slave is using a channel created by a master
then there is no guarantee that the channel will be there when needed by the slave. This
problem becomes irrelevant if the slave queue manager has a connection definition to the
master queue manager, because then a new channel capable of sending to the master can
be created when needed.

The principal disadvantage of client/server channels is that the server cannot use them to
send data to the client. Arrangements must be made (see later) for the client to pull data from
the server. Again this problem becomes irrelevant if the server queue manager has a
connection definition to the client queue manager, because then a new channel capable of
sending to the ‘client’ can be created when needed.

If in doubt, by default client/server channels should be configured in connection definitions –
and peer-to-peer channels used only if their specific capabilities are known to be required.

7.4 Channel security
Channels have an associated security attribute that is managed automatically by MQe.
However channel security behavior is controlled through an attribute rule; this rule is
configured for a queue manager (see Registry-held properties on page 38); a related rule is
set for queues (see Queues on page 102).

The process is as follows. When a local queue manager needs to send a message to a
target queue on a remote queue manager, it first retrieves the security details of that target
queue. This will typically be from a remote queue definition stored locally – though if the
definition is not present it will attempt to discover the details from the remote queue manager.
The local queue manager then attempts to re-use any existing channel to the target queue
manager – with the local queue manager's attribute rule being used to determine whether
such a channel can be re-used (or possibly upgraded). Depending upon the results from the
rule, a channel is re-used or a new channel created. At the remote queue manager, the
attribute rule associated with the target queue is consulted to determine whether this chosen
channel is acceptable. If it is the message transfer takes place, if not an exception is thrown.

The sample attribute rule examples.rules.AttributeRule has the following characteristics:

(a) If the queue has an authenticator, the channel must have the same authenticator.
If the queue does not have an authenticator, it does not matter whether the
channel has one or not. If the channel has been authenticated it cannot be
upgraded, but if it does not have one, an authenticator can be added to a
channel.

(b) If the queue has a cryptor, the channel must have a cryptor that is the same as or
better than that on the queue. If the queue does not have a cryptor it does not
matter whether the channel has one or not. A cryptor can be added to a channel
or strengthened. A cryptor cannot be removed from the channel or replaced with
a weaker cryptor.

Better is defined as:

i. Any cryptor is the same as or better than XOR

ii. Any cryptor, except XOR, is the same as or better then DES

iii. The remaining cryptors (triple DES, RC4, RC6, and MARS) are
considered equal to each other and all are better than XOR and DES.

(c) It does not matter what compressors are defined for the queue or channel. A
compressor can be changed, added to, or removed from the channel.

� Copyright IBM Corp. 2002 66

It can be seen from the above description that it is not necessary that the remote queue
definition security attributes match the target queue attributes, since negotiation takes place.
This ability for mismatches to be tolerated can be exploited, for example, if it is desired that
the messages flow from the source queue manager to the target queue manager over secure
channels – even though the target queue is unprotected. This can be achieved by setting
security attributes on the remote queue definition; even they do not exist on the target queue.

7.5 Transporters
Transporters convey messages to target queues, using the services of a channel. Thus
channels are addressed to queue managers, whilst transporters are addressed to queues at
queue managers. MQe automatically handles transporter management; however the
transporter class to be used can be specified as a property of those queue types that move
messages (i.e. remote queues, store and forward queues and home server queues) – for
more details see Queues on page 102. The transporter can be regarded as doing puts and
gets of messages on behalf of the sending (or receiving queue), ensuring that the conditions
of once-only assured delivery are met; this is similar to the mechanisms used by an
application to get and receive messages from a queue.

MQe offers a single transporter com.ibm.mqe.MQeTransporter as standard, which
implements once only, assured delivery over MQe channels. It does allow certain aspects of
its behavior to be set; again these parameters are presented as queue properties:

XOR compress:
Indicates whether the transporter is to implement XOR compression of
the field data with previous field data (this process also assists any
compressor that may have been defined).

Close if idle:
Indicates if the transporter is to be closed after transmitting all available
messages.

In principle, other transporters could be developed which might, for example, offer increased
performance at the expense of delivery assurance.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 67

8 Communications adapters
Channels use communications adapters to provide access to the underlying communications
infrastructure (e.g. TCP/IP, HTTP, UDP etc). Multiple communications adapters can exist for
any particular underlying protocol support with different characteristics – they may differ, for
example, in their performance, efficiency or footprint. MQe provides a number of
communications adapters that may be specified in connection and listener definitions. In
summary, the following are available:

8.1 TCP/IP adapters

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

This adapter implements an efficient protocol over TCP/IP. By default, this is the
preferred adapter for TCP/IP, offering better performance than either
com.ibm.mqe.adapters.MQeTcpipLengthAdapter or
com.ibm.mqe.adapters.MQeTcpipHTTPAdapter. It takes options that control its
operation:

<HISTORY> ensures that recently used data is cached to avoid re-
transmission.

<NOHISTORY> ensures that recently used data is not cached.

<NOPERSIST> ensures that the connection does not beyond a single data
transfers.

<PERSIST> ensures that the connection survives data transfers and is re-
used.

<HISTORY><PERSIST> are the defaults if no options are specified.

Adapter options are specified in connection definitions (see Communications
adapters on page 67).

com.ibm.mqe.adapters.MQeTcpipLengthAdapter

This adapter implements a simple, byte-efficient protocol over TCP/IP. The
connection is not maintained between data transfers. For almost all purposes where
TCP/IP is required, excepting where minimal storage is an important consideration,
the com.ibm.mqe.adapters.MQeTcpipHistoryAdapter should be used in preference.

8.2 HTTP adapters

com.ibm.mqe.adapters.MQeTcpipHttpAdapter

This adapter implements communications over HTTP using the HTTP 1.0 protocol.
Since HTTP adds additional overhead, where there is a choice of underlying protocol
the com.ibm.mqe.adapters.MQeTcpipHistoryAdapter should be used in preference.

com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

This adapter provides support for tunneling HTTP requests through WebSphere
Everyplace Authentication and transparent proxies.

� Copyright IBM Corp. 2002 68

8.3 UDP adapters

com.ibm.mqe.adapters.MQeUdpipAdapter

This adapter provides support for assured data transfer using UDP/IP datagrams. It
uses Java properties to set the values that control its behavior. The property names
are:

MQeUdpipAdapter.Packet.Size
MQeUdpipAdapter.Timeout
MQeUdpipAdapter.Connection.Timeout
MQeUdpipAdapter.Retry.Interval

If the Java properties are not set by the user application then the default values are
used. These are:

 DefaultTimeOut = -1
 DefaultPacketSize = 532
 DefaultConnectionTimeout = 10000
 DefaultRetryInterval = 250

These properties should be changed with care. However, the networks over which
UDP is an appropriate protocol (such as mobile and satellite) vary greatly in operating
characteristics (such as latency, error rate and bandwidth) and the properties should
be set accordingly.

The default timeout of -1 means that no time out is set, which is appropriate
under most circumstances.

The packet size should be altered to the optimum packet size for the network
being used, minus 60 bytes for the IP header. The default packet size is set
for a mobile network.

The connection timeout is divided by the retry interval to determine the
number of times that the connection is tested before assuming the remote
end is not going to respond to a request.

The retry interval is used variously to set the socket timeout and to set the
retry limit with the connection timeout value.

These properties may be set by the command line parameter to the JVM using the -D
option, for instance -DMQeUdpipAdapter.Timeout=500 or within a program using the
System.setProperties() method, for instance:

System.setProperties("MQeUdpipAdapter.Timeout", "500").

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 69

9 Connections
A connection provides its local queue manager with all the information needed to establish
communications with a remote queue manager. The name of a connection is the name of
that remote queue manager. Detailed information, where appropriate, in the definition
identifies the channel type and the communications adapter to be used.

Only one connection definition can exist on an individual local queue manager for any
particular remote queue manager. MQe supports different types of connections; the two most
common being:

�� Direct

A direct connection supplies the information needed for the local queue
manager to create channels directly to another queue manager
elsewhere in the MQe network. The connection name matches the name
of that remote queue manager. Direct indicates that the channels go to
the remote queue manager without passing through an intermediate
queue manager.

�� Indirect

An indirect connection (or via connection) indicates that messages
destined for a remote queue manager elsewhere in the MQe network are
to be sent to an intermediate queue manager (for which a direct
connection will also exist). The connection name matches the name of
the remote queue manager.

MQe has two variants on the direct connection:

�� Alias-only

An alias-only connection is a specialized type of direct connection that is
used to give alias names to remote queue managers that feature as
destinations in store and forward queue definitions. No other parameters
are required because the store and forward queue itself handles any
associated delivery aspects.

�� MQ

This is a specialized type of direct connection that identifies a remote
queue manager as an MQSeries queue manager, as opposed to an MQe
queue manager. It can also assign aliases to the name of the MQ queue
manager.

� Copyright IBM Corp. 2002 70

MQe also has the concept of a local connection, of which two variants exist:

�� Local (simple version)

This is a specialized type of connection that is actually created as a
queue manager connection to itself, i.e. the name of the connection is the
same as the name of the local queue manager. Local connections are
best regarded as system definitions used by MQe to store local queue
manager aliases and/or a peer listener definition (see below). It should
not be necessary to explicitly create local connections when using the
MQe_Explorer management tool; they are automatically created as
required. By the same token, when using that tool, local connections
should not normally be deleted.

�� Peer listener

This is a specialized type of connection that is used to define a peer
channel listener and is simply an extended variant of the local connection
above. For local queue managers created by the MQe_Explorer
management tool it should not normally be necessary to define such a
connection; MQe_Explorer will automatically create/delete one as
required by the type setting of the local queue manager. The peer
listener is described in the section Client/server listeners on page 82.

9.1 Direct connections
A direct connection definition typically has the following properties, as presented by the
MQe_Explorer management tool:

Connection name:
Identifies the name of the target queue manager.

Local qMgr:
The name of the local queue manager owning the connection
definition.

Aliases:
Alias names are optional alternative names that are mapped by the
local queue manager to this same connection name (see below).

Channel class:
The channel class (or alias) used to realize the connection.

Description:
An arbitrary string describing the connection.

Primary adapter class:
The communication adapter class (or alias) that will be used to realize
the connection. Adapters provide access to the underlying
communications infrastructure (e.g. TCP/IP, HTTP, UDP etc). The
various adapters are briefly described in Communications adapters on
page 67.

Primary adapter encoded parameters:
Adapter encoded parameters are a byte string passed to the adapter in
order to realize the connection. Not all adapters take encoded
parameters.

Primary adapter IP address:
The IP address of the target queue manager.

Primary adapter IP port:
The port that the target queue manager is listening on for an incoming
connection request.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 71

Primary adapter options:
Adapter options are an ASCII string passed to the adapter in order to
control its operation (e.g. keep a socket open between data transfer
requests). Not all adapters take options.

Primary adapter parameters:
Adapter parameters are an ASCII string passed to the adapter in order
to realize the connection. For example, for an HTTP connection, the
adapter parameter would be the name of the servlet. Not all adapters
take parameters.

Secondary adapter properties:
Secondary adapters are not supported by current versions of MQe.

The essence of a direct connection definition is that it provides the network addressing
information required to contact the remote queue manager. It also instructs MQe on the
channel class to be used with that connection, and the adapter class. For every direct
connection it is also necessary to ensure that the target queue manager has a listener
configured in a totally compatible manner. Any mismatch is likely to mean that MQe cannot
setup the channels between the source and target queue managers, and consequently that
messages cannot be transferred.

MQe uses the connection definition at the channel level – not at the queue level.
Consequently, the connection definition does not determine whether messages are sent
synchronously or asynchronously. Control of this aspect is determined by queue definitions,
and is discussed first in the chapter Queues on page 102 and then in subsequent chapters.

The property list above was carefully described as being that view presented by
MQe_Explorer. At the MQe level the situation is subtly different; three of the above properties
are combined into a composite property, as shown below:

Primary adapter file descriptor:

<primary adpt. class> : <primary adpt. IP address> : <primary adpt. IP port>

The chapter Configuration using admin messages on page 40 provides information on the
use of admin messages to configure connections.

9.2 Indirect connections
Indirect connection definitions are another way to provide MQe with the information needed to
contact a remote queue manager. They instruct MQe to go via another queue manager and
thus enforce an indirect routing on the message flow.

An indirect connection definition is simple because MQe gets the detailed information it needs
from the via queue manager connection definition.

An indirect connection definition has the following properties:

Connection name:
Identifies the name of the target queue manager.

Local qMgr:
The name of the local queue manager owning the connection
definition.

Aliases:
Alias names are optional alternative names that are mapped by the
local queue manager to this same connection name (see below).

� Copyright IBM Corp. 2002 72

Description:
An arbitrary string describing the connection.

Via queue manager:
The name of the queue manager through which the channel should be
routed.

Indirect (or via connections) are a vital tool in messaging routing, along with other MQe
features, such as store and forward queues and home server queues. The routing aspects
are discussed in Multi-hop and advanced messaging on page 128.

9.3 Local connections
Local connections are not concerned with the setup of channels to remote queue managers.
The simple form of a local connection is a means to give alias names to a local queue
manager. Although it might seem more appropriate to have queue manager alias names as a
property of the queue manager, MQe introduces the concept of a local connection, where the
name of the connection matches that of the local queue manager. All connection definitions
can have aliases; in this case the aliases become aliases for the local queue manager itself.

MQe_Explorer presents a more logical view of this situation and manages these aliases as
queue manager properties. It creates and manages local connections as required.

A local connection has the following properties20:

Connection name:
The name of the local queue manager.

Local qMgr:
The name of the local queue manager.

Aliases:
Alias names are optional alternative names for the local queue
manager (see below).

Description:
An arbitrary string describing the connection.

A more complex form of the local connection is described in Client/server listeners on page
82.

20 For the reasons stated, MQe_Explorer does not present all these properties for a local connection.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 73

9.4 Alias-only/MQ connections
Alias-only/MQ connections exist to inform MQe of the presence of a connection, even though
it will not be necessary for MQe to use the associated data to establish connectivity.

They have the following properties:

Connection name:
The name of the target queue manager.

Local qMgr:
The name of the local queue manager.

Aliases:
Alias names are optional alternative names for the target queue
manager (see below).

Description:
An arbitrary string describing the connection.

9.5 Connection alias names
Connection definitions are used when MQe needs to deliver a message to a remote queue
manager. The queue manager destination in the message requires MQe to create a (or use
an existing) channel to that destination. In some cases however a degree of independence is
needed between the queue manager addresses used by applications, and the actual names
of queue managers in the network. The simplest example is where queue managers have
been renamed after the application has been developed. This flexibility is provided through
aliases.

Connections have an aliases property, which allows zero, one or more alias names to be
associated with the connection. These aliases are not just alternative names that map to the
same connection; they also change the destination queue manager name in the message.
This latter property is important, otherwise the message would be put on a channel destined
for the target queue manager, but would be rejected when it arrived because of the name
mismatch.

Consequently if a message is addressed to a queue manager name that is defined as an
alias of a connection name, then MQe changes the queue manager address in the message
to become the connection name.

Connection aliases also play a crucial role in allowing alternative routes to be defined through
an MQe network.

9.6 Configuration
Configuration of connection definitions requires the use of admin messages. These
messages can either be issued programmatically, or through the use of the MQe_Explorer
management tool. This chapter describes the creation and/or modification of the most
common connection definitions, first using MQe_Explorer, and then through programming.
The programming description builds upon the principles and examples presented in the
chapter Configuration using admin messages on page 40.

� Copyright IBM Corp. 2002 74

Using MQe_Explorer

Remote connections

Using the MQe_Explorer, a new connection to a remote queue manager is made through the
New connection dialogue. The type can be set to any one of these relevant values:

�� Direct connection

�� Indirect connection

�� Alias-only/MQ connection

For example, the two tabs below are used to enter all the details necessary for the
myClientQMgr to connect to its server (here called myServerQMgr). The first tab collects the
adapter-independent data:

Figure 9-1: Creating a new direct connection - General properties

The default channel class for a direct connection is com.ibm.mqe.MQeChannel, i.e. a
client/server channel.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 75

The second tab collects the primary adapter-specific data:

Figure 9-2: Creating a new direct connection - Primary adapter

The IP address is the loop-back address and thus assumes that myServerQMgr is running on
the local machine; port 8082 has been identified as the port on which it is listening for
incoming client/server connection requests. The default primary adapter class for a direct
connection is com.ibm.mqe.adapters.MQeTcpipHistoryAdapter, i.e. the most efficient MQe
exploitation of the TCP/IP protocol. The default primary adapter options for this adapter are
<PERSIST><HISTORY>, i.e. to use a persistent connection and to record history to minimize
data transmission. The default channel class is that for a client/server channel. The default
parameters are "", assuming for example, that a servlet is not present. By default, no
encoded parameter data is supplied.

Once a connection has been created it can be modified through the Modify connection
dialogue – in this way any parameters can be changed, including the Type of the connection.
Alternatively (but less efficiently) the connection can be deleted and a new one then created.
A disadvantage of this delete/new approach is that any remote queue definitions that have
been created for the original connection will be lost on its deletion.

Be aware that when any primary adapter property is changed, MQe requires that all other
primary adapter properties be re-supplied and are reset to the new values. MQe_Explorer will
handle this automatically as far as is possible when the administered queue manager is on-
line; if off-line however, all the adapter property values must be explicitly set.

� Copyright IBM Corp. 2002 76

The following example illustrates how an indirect connection can be created. In this case it is
assumed that a queue manager myOtherQMgr is reachable from myClientQMgr through
myServerQMgr. The relevant MQe_Explorer property tab values are as follows. The first tab
is almost as previously:

Figure 9-3: Creating a new indirect connection - General properties

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 77

The second tab has minimal, but vital, information:

Figure 9-4: Creating a new indirect connection - Primary adapter

Local connections

MQe_Explorer handles many aspects of local connection configuration automatically.

For all queue managers:

�� A local connection is automatically created and/or updated, if needed to store
queue manager aliases.

Additionally, only for the queue manager hosting MQe_Explorer:

�� A peer listener form of the local connection may be created/updated/revoked
depending upon the type setting of the queue manager:

o true – if the queue manager is either a peer or client.

o false – if the queue manager is either a server or gateway.

Otherwise the New connection dialogue can be used to create either a simple local
connection or a peer listener; the Modify connection dialogue must be used to change
between these forms, through setting the Type property.

� Copyright IBM Corp. 2002 78

Using admin messages

Remote connections

The first example below shows how to programmatically create the remote direct connection
shown above as an MQe_Explorer example. The properties are:

Connection name: myServerQMgr

Description: Direct connection to myServerQMgr

Type: Direct

Channel class: com.ibm.mqe.MQeChannel

Primary IP address: 127.0.0.1

Primary IP port: 8082

Primary adapter: com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

Primary adapter options: <PERSIST><HISTORY>

Primary adapter parms: (none)

A local queue manager is used, with admin replies returned to its AdminReplyQ.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name
String connName = "myServerQMgr"; //connection name
String descrText = "Direct connection to myServerQMgr"; //description
String adapterText = "com.ibm.mqe.adapters.MQeTcpipHistoryAdapter"; //adapter class
String portText = "8082"; //IP port
String addressText = "127.0.0.1"; //IP address
String channelText = "com.ibm.mqe.MQeChannel"; //channel class
String optionsText = "<PERSIST><HISTORY>"; //adapter options
String parmsText = ""; //adapter parameters

//create the basic connection admin message
MQeConnectionAdminMsg adminMsg = new MQeConnectionAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add create command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_Create);

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putAscii(MQeAdminMsg.Admin_Name, connName); //connection name
parms.putAscii(MQeAdminMsg.Admin_Class,
 "com.ibm.mqe.MQeConnectionDefinition"); //object class

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 79

parms.putUnicode(MQeConnectionAdminMsg.Con_Description,
 descrText); //description
parms.putAscii(MQeConnectionAdminMsg.Con_Channel,
 channelText); //channel class
MQeFields[] adapterArray = new MQeFields[1]; //adapter array
adapterArray[0] = new MQeFields(); //primary member
adapterArray[0].putAscii(MQeConnectionAdminMsg.Con_Adapter,
 adapterText + ":" + addressText + ":" + portText); //file descriptor
adapterArray[0].putAscii(MQeConnectionAdminMsg.Con_AdapterOptions,
 optionsText); //options
adapterArray[0].putAscii(MQeConnectionAdminMsg.Con_AdapterAsciiParm,
 parmsText); //parameters
parms.putFieldsArray(MQeConnectionAdminMsg.Con_Adapters,
 adapterArray); //adapter array
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 9-1: Creating a new direct connection

This example follows on naturally from the cases described in Admin programming on page
47. The principal points of interest are:

1. The file descriptor parameter needed for the admin message is a composite
string.

2. Adapter details are specified in an array of MQeFields objects.

Executing the sample – Create a direct connection:

This depends upon the existence of the configured myClientQMgr queue manager created
earlier.

Then use the command: MQeConfigGuide 5. The sample code is contained in the method
createDirectConnection(). By default, the MQe_Explorer-created myClientQMgr.ini file is
used; by editing the sample code, the method createClientEnvironment() can be used
instead.

The sample cannot be re-run without first deleting the created direct connection – use
MQe_Explorer to do this (or write code).

� Copyright IBM Corp. 2002 80

The second example here shows how to programmatically create the remote indirect
connection shown above as an MQe_Explorer example. The properties are:

Connection name: myOtherQMgr

Description: Indirect connection to myOtherQMgr via myServerQMgr

Type: Indirect

Channel class: com.ibm.mqe.MQeChannel

Via qMgr: myServerQMgr

A local queue manager is used, with admin replies returned to its AdminReplyQ.

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name
String connName = "myOtherQMgr"; //connection name
String viaName = "myServerQMgr"; //via qMgr name
String channelText = "com.ibm.mqe.MQeChannel"; //channel class
String descrText =
 "Indirect connection to myOtherQmgr via myServerQM"; //description

//create the basic connection admin message
MQeConnectionAdminMsg adminMsg = new MQeConnectionAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add create command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_Create);

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 81

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putAscii(MQeAdminMsg.Admin_Name, connName); //connection name
parms.putAscii(MQeAdminMsg.Admin_Class,
 "com.ibm.mqe.MQeConnectionDefinition"); //object class
parms.putUnicode(MQeConnectionAdminMsg.Con_Description,
 descrText); //description
parms.putAscii(MQeConnectionAdminMsg.Con_Channel,
 channelText); //channel class
MQeFields[] adapterArray = new MQeFields[1]; //adapter array
adapterArray[0] = new MQeFields(); //primary member
adapterArray[0].putAscii(MQeConnectionAdminMsg.Con_Adapter,
 viaName); //file descriptor
parms.putFieldsArray(MQeConnectionAdminMsg.Con_Adapters,
 adapterArray); //adapter array
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 9-2: Creating a new indirect connection

This example follows on naturally from the cases described in Admin programming on page
47. The only additional point of interest is:

1. The file descriptor parameter needed for the admin message is the name of
the via queue manager.

Executing the sample – Create a direct connection:

This depends upon the existence of both the configured myClientQMgr queue manager
created earlier and of the connection to myServerQMgr.

Then use the command: MQeConfigGuide 6. The sample code is contained in the method
createIndirectConnection(). By default, the MQe_Explorer-created myClientQMgr.ini file is
used; by editing the sample code, the method createClientEnvironment() can be used
instead.

The sample cannot be re-run without first deleting the created indirect connection – use
MQe_Explorer to do this (or write code).

Local connections

The use of admin messages to create peer listeners is shown in the section Using admin
messages on page 86.

� Copyright IBM Corp. 2002 82

10 Listeners
In the chapter The basics on page 4, four types of queue manager were defined: client, peer,
server and gateway. The client queue manager has already been described in some detail in
the chapter Client queue managers on page 8 and its fundamental characteristic is that it can
only make (outgoing) connection requests; it cannot accept them. The essence of the other
queue manager types is that they can all handle (incoming) connection requests. The peer
queue manager handles them from other peers, the server (and the gateway) from client
queue managers. Receiving such incoming requests requires the queue manager to have an
active listener; such an active listener is protocol-specific and it listens for requests on a
particular port. Making an outgoing connection request requires the initiating queue manager
to have an appropriate connection definition.

MQe defines two classes of listener:

o Client/server – listens for incoming requests from a client queue
manager, subsequently moving data over a client/server channel.

o Peer – listens for incoming requests from a peer queue manager,
subsequently moving data over a peer channel.

The types of listeners are thus directly linked to the MQe channels types. For more
information on channel types, see the chapter Channels on page 63.

10.1 Client/server listeners
MQe provides a client/server channel listener that listens on a single port for multiple
incoming connection requests from clients. Each client request is then handed off to another
port for the socket to be created; thus one port (with a fixed port number) can be continuously
available to service incoming requests.

The client/server listener is not manageable object, i.e. it cannot be created, modified or
deleted through admin messages; nor are its details stored in the MQe registry. The
client/server listener must be created as part of the process of starting a queue manager.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 83

Extending the earlier example given in Running a client queue manager on page 14, where a
client queue manager was started, the additional code required is:

//create the queue manager environment
…. //use MQeFields environment

//create the client/server channel manager
MQeChannelManager localChannelManager = new MQeChannelManager();

//set the maximum number of concurrent channels
localChannelManager.numberOfChannels(0); //no limit

//start the queue manager
MQeQueueManager qMgr =
 MQeQueueManagerUtils.processQueueManager(environment,
 localChannelManager.getGlobalHashtable());

//create a client/server channel listener
String listenerAdapterText = "com.ibm.mqe.adapters.MQeTcpipHistoryAdapter";
String spawnAdapterText = "com.ibm.mqe.adapters.MQeTcpipHistoryAdapter";
String listenerPort = "8082";
MQeChannelListener localChannelListener = newMQeChannelListener(
 listenerAdapterText + "::" + listenerPort ,
 spawnAdapterText,
 localChannelManager));

//set the channel timeout interval for the listener
int timeInterval = 300;
localChannelListener.setTimer(timeInterval);

Example 10-1: Setting up a client/server listener

A client/server listener first requires the queue manager to have a channel manager object
present; this gives the queue manager the ability to manager multiple concurrent channels.
The channel manager is created before the queue manager is started, and can be configured
to restrict the maximum number of concurrent channels.

In the code extract above it is assumed that an MQeFields variable environment contains the
environmental parameters, exactly as shown previously for the myClientQMgr queue
manager. Now however, starting the queue manager using the processQueueManager()
method in the examples.queuemanager.MQeQueueManagerUtils class, requires that the
channel manager's global hash table is passed to the queue manager. Previously for the
client queue manager, a null was passed, indicating no channel manager.

After the queue manager is running, one or more client/server listeners can be created. For a
listener, the adapter and port appropriate to the incoming connection request are specified.
Additionally the adapter to be subsequently used for continuing communication must be
identified; typically both adapters will be identical. The time interval specifies how long an idle
channel is allowed to remain active before being destroyed.

From the code above it is easy to see how additional client/server listeners can be created,
such that MQe can listen concurrently on multiple ports and/or protocols.

The MQe_Explorer management tool configures a client/server listener when a server or
gateway queue manager is created or started; however v1.27 of the tool only supports one
such listener. Creation of server queue managers is further described in the section Server
queue manager on page 88.

� Copyright IBM Corp. 2002 84

10.2 Peer listeners
MQe provides a peer channel listener that listens on a single port for an incoming connection
request from a master. It then uses that same port to create the sockets for the subsequent
channel(s). The port is not free to service another incoming request whilst the channel(s)
exist.

The peer channel listener is a manageable object, i.e. it can be created, modified or deleted
through admin messages. Details are stored in the MQe registry. The only slightly unusual
aspect of this support is that the client/server listener is managed as a local connection, i.e. a
special case of a connection definition.

10.3 Configuration of peer listeners

Using MQe_Explorer

The MQe_Explorer management tool configures a peer channel listener when a peer queue
manager is created or started. Clearly, this is restricted to local queue managers, i.e. the
queue manager hosting MQe_Explorer. If a remote queue manager requires a new peer
listener, the it is created through the New connection dialogue. The type of the connection is
set to 'Peer listener'.

For example using the myClientQMgr queue manager created earlier, the two tabs below are
used to enter all the details necessary for it to be configured with a peer listener. The first tab
collects the adapter-independent data:

Figure 10-1: Creating a new peer listener - General properties

The default channel class for a peer listener is com.ibm.mqe.MQePeerChannel, i.e. a peer
channel.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 85

The second (primary) tab collects the communications-specific data:

Figure 10-2: Creating a new peer listener - Primary tab

The port to be used is shown in the above example as '8084'. The default primary adapter
class for a direct connection is com.ibm.mqe.adapters.MQeTcpipHistoryAdapter, i.e. the most
efficient exploitation of the TCP/IP protocol. All other properties are disabled since they are
not relevant.

The example shown above is somewhat contrived. We have used the New connection
dialogue to create a peer listener for the local queue manager, when it is intended to be used
for a remote queue manager21. MQe_Explorer explicitly handles the type property of local
queue managers and here it has been set to client. When the queue manager is stopped and
then restarted, MQe_Explorer will detect the presence of this peer channel listener and
downgrade it to be just a simple local connection22. If it were allowed to remain, the queue
manager would actually be a peer, yet it is supposed to be a client23.

Once a peer listener has been created it can be modified via the Modify connection dialogue
– in this way any parameters can be changed. Alternatively (but less efficiently) the
connection can be deleted and a new one then created.

Since the creation of peer listeners is independent of client/server listeners, then it is
obviously possible to create queue managers that listen for both client/server and peer
incoming connection requests.

21 We did this because so far, we have only created one queue manager, so there is no remote queue
manager that we can use for this purpose.
22 MQe_Explorer does not just delete it because the definition may also be being used to hold queue
manager aliases – these would be lost if the definition is deleted.
23 If the local queue manager were defined to be either a server or a gateway, then MQe_Explorer
would not downgrade the peer listener definition to a simple local connection.

� Copyright IBM Corp. 2002 86

Using admin messages

The example below shows how to programmatically create the peer listener shown above as
an MQe_Explorer example. The properties are:

Description: Peer listener on port 8084

Adapter: com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

IP port: 8084

A local queue manager is used, with admin replies returned to its AdminReplyQ:

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set up strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String targetQMgrName = "myClientQMgr"; //target qMgr name
String descrText = "Peer listener on port 8084"; //description
String adapterText = "com.ibm.mqe.adapters.MQeTcpipHistoryAdapter"; //adapter class
String portText = "8084"; //IP port
String channelText = "com.ibm.mqe.MQePeerChannel"; //channel class

//create the basic connection admin message
MQeConnectionAdminMsg adminMsg = new MQeConnectionAdminMsg();

//add command-neutral elements
adminMsg.putAscii(MQeAdminMsg.Admin_TargetQMgr, targetQMgrName);//set target qMgr
adminMsg.putInt(MQeAdminMsg.Admin_MaxAttempts, 1); //set max tries
adminMsg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request); //need a reply
adminMsg.putAscii(MQe.Msg_ReplyToQMgr, thisQMgrName); //reply queue manager
adminMsg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);//reply queue

//add unique reference
byte[] adminKey = MQe.longToByte(System.currentTimeMillis()); //generate unique key
adminMsg.putArrayOfByte(MQe.Msg_CorrelID, adminKey); //add key

//add create command
adminMsg.putInt(MQeAdminMsg.Admin_Action, MQeAdminMsg.Action_Create);

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 87

//add command parameters
MQeFields parms = new MQeFields(); //new parms object
parms.putAscii(MQeAdminMsg.Admin_Name, targetQMgrName); //connection name
parms.putAscii(MQeAdminMsg.Admin_Class,
 "com.ibm.mqe.MQeConnectionDefinition"); //object class
parms.putUnicode(MQeConnectionAdminMsg.Con_Description,
 descrText); //description
parms.putAscii(MQeConnectionAdminMsg.Con_Channel,
 channelText); //channel class
MQeFields[] adapterArray = new MQeFields[1]; //adapter array
adapterArray[0] = new MQeFields(); //primary member
adapterArray[0].putAscii(MQeConnectionAdminMsg.Con_Adapter,
 adapterText + "::" + portText); //file descriptor
parms.putFieldsArray(MQeConnectionAdminMsg.Con_Adapters,
 adapterArray); //adapter array
adminMsg.putFields(MQeAdminMsg.Admin_Parms, parms); //add parms

//send admin message
qMgr.putMessage(targetQMgrName, MQe.Admin_Queue_Name, adminMsg , null, 0);

Example 10-2: Creating a new peer listener

This example follows on naturally from the cases described in Admin programming on page
47. The principal points of interest are:

1. The file descriptor parameter needed for the admin message is a composite
string combining the adapter and the port number.

Executing the sample – Create a peer listener:

This depends upon the existence of the configured myClientQMgr queue manager created
earlier.

Then use the command: MQeConfigGuide 7. The sample code is contained in the method
createPeerListener(). By default, the MQe_Explorer-created myClientQMgr.ini file is used; by
editing the sample code, the method createClientEnvironment() can be used instead.

The effect of running this sample is to change the client queue manager into a peer. The
sample cannot be re-run without first deleting the created peer listener – use MQe_Explorer
to do this (or write code). If using MQe_Explorer, note that when it starts the queue
manager it will downgrade the peer listener to a simple connection, because the queue
manager is defined to be a client. This simple connection must itself be deleted.

� Copyright IBM Corp. 2002 88

11 Server, gateway and peer queue managers

11.1 Server queue managers
The chapter Client queue managers on page 8 presented the information necessary to create
and start client queue managers, either indirectly through MQe_Explorer or directly in code.
Following that, channels, connections and listeners have been discussed. Together, all the
information required to both create and start server queue managers has been described. In
this section we will pull together just those elements that relate to server queue managers.

We have seen that a server queue manager can be regarded as just a client queue manager
– but one that also has the additional capability of accepting incoming client/server channel
connection requests, i.e. it has an active client/server listener. Moreover, it has been seen
that the client/server listener needs the services of a channel manager. The configuration
aspects of these various server-related elements are not stored in the registry, but are
created and configured as the queue manager itself is started. So, a queue manager can, in
principle, be started as a client, subsequently re-started as a server, and indeed re-started
again as a client. In practice, such flexibility of behavior is unlikely to be needed.

Rather than start the client queue manager myClientQMgr that we have already created, as a
server, it is useful now to create a second queue manager myServerQMgr that we can treat
as a server – and indeed be capable of acting as an MQe server to myClientQMgr.

Using MQe_Explorer

Run MQe_Explorer and create a new server queue manager as below. On the General tab
set the input fields as shown:

Figure 11-1: Creating a server queue manager – General tab

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 89

On the Comms. tab, set the client/server listener properties as shown:

Figure 11-2: Creating a server queue manager – Comms. tab

This creates a server queue manager myServerQMgr that listens for incoming connections on
the TCP/IP port 8082 and uses the com.ibm.mqe.adapters.MQeTcpipHistoryAdapter adapter.
These choices intentionally match the properties used in the myServerQMgr connection
definition held by myClientQMgr and created earlier in the connection section Configuration
on page 73.

� Copyright IBM Corp. 2002 90

The associated initialization file has the contents:

Figure 11-3: The myServerQMgr initialization data

It is interesting to compare this data with that in Figure 3-7: The myClientQMgr initialization
data on page 14. The additional contents here are:

5. A [Listener] section containing configuration information for the client/server
channel listener.

6. A [ChannelManager] section containing configuration information for the
channel manager.

7. Additional and changed content in the [MQe_Explorer] section.

This allows MQe_Explorer to create and configure the client/server channel listener and
channel manager, whilst starting the queue manager.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 91

Using code

It follows from what we have seen earlier that the information in the section Creating a client
queue manager on page 17 is equally applicable to creating a server queue manager – there
being no difference. However the code shown both in Setting up a client environment on
page 14 and in Starting a client queue manager on page 15, must be extended to cover the
needs of a server.

Using the methods in the examples.queuemanager.MQeQueueManagerUtils class as before,
but now processing a server initialization file – such as that just created by MQe_Explorer for
myServerQMgr – the code is modified to become:

//read in the initialization file
MQeFields environment = MQeQueueManagerUtils.loadConfigFile(filename);

//process class aliases – [Alias] stanza
MQeQueueManagerUtils.processAlias(environment);

//process pre-loads – [PreLoad] stanza
MQeQueueManagerUtils.processPreLoad(environment);

//process permissions – [Permission] stanza
MQeQueueManagerUtils.processPermission(environment);

//process channel manager – [ChannelManager] stanza
MQeChannelManager localChannelManager =
 MQeQueueManagerUtils.processChannelManager(environment);

Example 11-1: Setting up a server queue manager environment

Thus a channel manager is created from the [ChannelManager] stanza; an alternative – and
more direct way of doing this – was shown in the Example 10-1: Setting up a client/server
listener on page 83.

Once the environment is established, the queue manager can be started. Again, using the
methods in the examples.queuemanager.MQeQueueManagerUtils class:

//start the queue manager
MQeQueueManager qMgr =
 MQeQueueManagerUtils.processQueueManager(environment,
 localChannelManager.getGlobalHashtable());

//process the client/server channel listener
MQeChannelListener localChannelListener =
 MQeQueueManagerUtils.processListener(environment,
 localChannelManager);

Example 11-2: Starting a server queue manager

The differences here from the client queue manager case are:

1. Passing the channel manager global hash table for use when the queue
manager is started.

2. Processing the [Listener] stanza to create the client/server channel listener.

� Copyright IBM Corp. 2002 92

An alternative – and more direct way of creating and configuring the client/server channel
listener – was shown in the Example 10-1: Setting up a client/server listener on page 83.

A server queue manager can be stopped by using the various close() and stop() methods on
the relevant objects:

//close the listener
localChannelListener.stop();

//close the queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);
 qMgr.close();

Example 11-3: Stopping a server queue manager

Executing the sample – Running a server queue manager:

Use the command: MQeConfigGuide 8. The sample code is contained in the methods
startServerQMgr() and stopServerQMgr(). By default, the MQe_Explorer-created
myServerQMgr.ini file is used; by editing the sample code, the method
createServerEnvironment() can be used instead.

11.2 Gateway queue managers
A gateway queue manager is defined as a server queue manager – but one that also has the
additional capability of exchanging messages with MQSeries queue managers. In other
words, it is a server queue manager that is also has an active bridges object. The
configuration aspect of the bridges object is not stored in the registry24, but is created as the
queue manager itself is started. So, a gateway queue manager can, in principle, be started
as a server (or client) or as a gateway, depending upon the needs at the time. In practice,
there are few occasions, if any, when this is appropriate.

Rather than start a queue manager such as myClientQMgr or myServerQMgr that we have
already created, as a gateway, it is useful now to create a third queue manager
myGatewayQMgr that is a gateway – and also capable of both acting as an MQe server to
myClientQMgr and of connecting to myServerQMgr.

24 Note that the children of a bridges object are stored in the MQe registry.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 93

Using MQe_Explorer

Run MQe_Explorer and create a new gateway queue manager as below. On the General tab
set the input fields as shown:

Figure 11-4: Creating a gateway queue manager – General tab

� Copyright IBM Corp. 2002 94

On the Comms. tab, set the client/server listener properties as shown:

Figure 11-5: Creating a gateway queue manager – Comms. tab

This creates a gateway queue manager myGatewayQMgr that listens for incoming
connections on the TCP/IP port 8083 and uses the
com.ibm.mqe.adapters.MQeTcpipHistoryAdapter adapter. The port number does not conflict
with that used by myServerQMgr to listener for incoming connection requests, created earlier
in the section Server queue managers on page 88.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 95

The associated initialization file has the contents:

Figure 11-6: The myGatewayQMgr initialization data

If this is compared with the file in Figure 11-3: The myServerQMgr initialization data on page
90, the differences are:

1. A [MQBridge] section containing configuration information for the bridges
object and its children.

2. Changed content in the [MQe_Explorer] section.

This allows MQe_Explorer to create and configure the bridges object and its dependencies,
whilst starting the queue manager itself.

� Copyright IBM Corp. 2002 96

Using code

It follows from what we have seen earlier that the information in the section Creating a client
queue manager on page 17 is equally applicable to creating a gateway queue manager (as it
was to a server). Likewise the code shown in Example 11-1: Setting up a server queue
manager environment on page 91; the gateway requirements here are identical25 to those of a
server (although a superset of what was needed for a client). The Example 11-2: Starting a
server queue manager on page 91 however, must be extended to cover the needs of a
gateway.

The server code is modified to become:

//start the queue manager
MQeQueueManager qMgr =
 MQeQueueManagerUtils.processQueueManager(environment,
 localChannelManager.getGlobalHashtable());

//process the client/server channel listener
MQeChannelListener localChannelListener =
 MQeQueueManagerUtils.processListener(environment,
 localChannelManager);

//start the bridges object
MQeMQBridges localBridges = new MQeMQBridges();
localBridges.activate(environment);

Example 11-4: Starting a gateway queue manager

The differences from the server queue manager case are:

1. A bridges object is instantiated.

2. The bridges object is activated, and passed a rule that describes which child
MQ bridges are to be loaded (using the default rule, all are loaded – however
for a new gateway queue manager, none will exist).

A gateway queue manager can be stopped by using the various close() and stop() methods
on the relevant objects:

//close the listener
localChannelListener.stop();

//close the bridges object
localBridges.close();

//close the queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);
 qMgr.close();

Example 11-5: Stopping a gateway queue manager

25 Although the gateway environment set-up is identical to server environment set-up, be aware that in
the examples used here, the environment variable for a gateway includes an additional [MQBridge]
stanza that is used when the gateway queue manager is being started.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 97

Executing the sample – Running a gateway queue manager:

Use the command: MQeConfigGuide 9. The sample code is contained in the methods
startGatewayQMgr() and stopGatewayQMgr(). By default, the MQe_Explorer-created
myGatewayQMgr.ini file is used; by editing the sample code, the method
createGatewayEnvironment() can be used instead.

The gateway queue manager is not able to exchange messages with MQSeries until various
child objects of the bridges object are created and configured. This can only be done through
admin messages; for more details of the mechanisms to be used, see Admin programming on
page 47. The objects that must be created form two families, i.e.

Connection definition (to the MQSeries queue manager)

 Remote queue definition (of type Bridge queue)

MQ bridge (child of the bridges object)

 MQ queue manager proxy

 MQ client connection

 MQ listener

For a detailed example describing these objects, along with their required properties, see the
Gateway Configuration and Usage script in the MQe_Explorer User Guide.

11.3 Peer queue managers
A peer queue manager is simply a queue manager that has the ability to listener for incoming
peer connection requests, i.e. it has an active peer channel listener. The peer listener is
created and configured through admin messages as a special case of a local connection –
this was discussed in detail in the chapter Listeners on page 82.

Creating a peer queue manager is therefore identical to creating a client queue manager, with
an additional step of creating a peer channel listener, once the queue manager is up and
running.

This can be demonstrated by creating a peer queue manager myPeerQMgr. Note that this
queue manager will be unable to receive messages from the other queue managers created
so far (i.e. myClientQMgr, myServerQMgr and myGatewayQMgr) unless they are each further
configured with appropriate connection definitions (specifying the correct port, address,
adapter and the peer channel type). Moreover, if these queue managers are to act as slaves
and respond to connection requests from myPeerQMgr, then they must each also have a
peer channel listener defined.

� Copyright IBM Corp. 2002 98

Using MQe_Explorer

Run MQe_Explorer and create a new peer queue manager as below. On the General tab set
the input fields as shown:

Figure 11-7: Creating a peer queue manager – General tab

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 99

On the Comms. tab, set the peer listener properties as shown:

Figure 11-8: Creating a peer queue manager – Comms. tab

This creates a peer queue manager myPeerQMgr that listens for incoming connections on the
TCP/IP port 8084 and uses the com.ibm.mqe.adapters.MQeTcpipHistoryAdapter adapter.

� Copyright IBM Corp. 2002 100

The associated initialization file has the contents:

Figure 11-9: The myPeerQMgr initialization data

Comparing this data with that in Figure 3-7: The myClientQMgr initialization data on page 14:

1. All sections, excepting [MQe_Explorer], are identical (apart from the queue
manager name itself).

2. The [MQe_Explorer] includes, inter alia, the information necessary for
MQe_Explorer to configure a peer channel listener.

Using code

The information in the sections: Creating a client queue manager on page 17, Setting up a
client environment on page 14, and in Starting a client queue manager on page 15, is equally
applicable to creating a peer queue manager.

The peer channel listener can be created with the code in the Example 10-2: Creating a new
peer listener on page 87.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 101

Executing the sample – Running a peer queue manager:

Use the command: MQeConfigGuide 10. The sample code is contained in the methods
startPeerQMgr() and stopPeerQMgr(). By default, the MQe_Explorer-created myPeerQMgr.ini
file is used; by editing the sample code, the method createPeerEnvironment() can be used
instead.

The myPeerQMgr queue manager already has a peer listener created by MQe_Explorer. If
the queue manager type is changed to be a client and then MQe_Explorer is used to restart
the queue manager, the peer listener will be replaced by a simple local connection definition.
The code in Sample 7 can then be edited to refer to myPeerQMgr instead of myClientQMgr
and used to re-create the peer listener; note that the create command for the local
connection must be changed to an update command (alternatively the local connection can
first be deleted). If MQe_Explorer is subsequently used to start this queue manager it will
convert it back to a client queue manager, in accordance with its queue manager type.

� Copyright IBM Corp. 2002 102

12 Queues
Queues can play an important part in determining message flow across MQe networks. MQe
supports the following queue types:

�� Admin

A queue of type admin queue is a local queue (see below) that accepts
admin messages. It processes those messages, executing their
contained instructions

�� Bridge

A queue of type bridge queue is a proxy for a remote queue on an
MQSeries queue manager. Bridge queues are only defined on MQe
gateways.

�� Home server

A queue of type home server queue is a queue that points to a store and
forward queue elsewhere in the MQe network. Home server queues pull
messages destined for their local queue manager from those remote
queues and deliver them to the relevant local queues. Home server
queues should be regarded as system queues – messages are never
addressed to home server queues and their contents are not accessible
to applications.

�� Local

A queue of type local queue stores messages. Its contents are
accessible to applications – and most messages are addressed to local
queues.

�� Remote

A queue of type remote queue is a proxy for a local queue on a remote
queue manager elsewhere in the MQe network. This remote queue
manager is known as the queue queue manager. The proxy sends
messages to the remote local queue; additionally, if the proxy is defined
as asynchronous, then it will temporarily store the messages locally until
it is able to send them. Applications are not able to view messages
awaiting transmission; attempts to browse remote queue definitions are
interpreted as a browse of the remote local queue itself.

�� Store and forward

A queue of type store and forward queue collects messages on its local
queue manager that are destined for elsewhere in the MQe network. A
single store and forward queue can collect messages addressed to one
or more remote queue managers – these queue managers are referred to
as destination queue managers. A store and forward queue can
optionally send the messages it has collected to a remote queue
manager – this named queue manager is called the target queue
manager, i.e. the queue is forwarding messages to the target queue
manager. In some cases it is desirable that the messages are just
collected and not forwarded – the queue is now just a store, and there is
no target queue manager defined. Store queues normally have
messages pulled from them by home server queues. Store (and forward)
queues should be regarded as system queues – messages are never
addressed to store and forward queues and their contents are not
accessible to applications.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 103

From an MQe networking perspective therefore, the important queue types are: local, remote,
home server and store and forward. Queues of type local are simply the destinations to
which messages are addressed; the other queue types affect the way in which MQe flows the
messages across the network to those destinations. Message flow is the subject of a later
chapter.

12.1 Local queues
A local queue definition typically has the following basic properties, as presented by the
MQe_Explorer management tool. Other advanced properties may be relevant, depending
upon the values set for the basic properties.

Queue name:
Identifies the name of the local queue.

Local qMgr:
The name of the local queue manager owning the queue.

Adapter:
The class (or alias) of a storage adapter that provides access to the
message storage medium (see Storage adapters on page 116).

Aliases:
Alias names are optional alternative names for the queue (see below).

Attribute rule:
The attribute class (or alias) associated with the security attributes of
the queue (for more details see later in this chapter).

Authenticator:
The authenticator class (or alias) associated with the queue (for more
details see later in this chapter).

Class:
The class (or alias) used to realize the local queue.

Compressor:
The compressor class (or alias) associated with the queue (for more
details see later in this chapter).

Cryptor:
The cryptor class (or alias) associated with the queue (for more details
see later in this chapter).

Description:
An arbitrary string describing the queue.

Expiry:
The time after which messages placed on the queue expire.

Max. depth:
The maximum number of messages that may be placed on the queue.

Max. message length:
The maximum length of a message that may be placed on the queue.

Message store:
The class (or alias) that determines how messages on the local queue
are stored.

Path:
The location of the queue store.

Priority:
The default priority associated with messages on the queue.

� Copyright IBM Corp. 2002 104

Rule:
The class (or alias) of the rule associated with the queue; determines
behavior when there is a change in state for the queue.

Target registry:
The target registry to be used with the authenticator class (i.e. “None”,
“Queue”, or “Queue manager”).

12.2 Remote queues
A remote queue definition typically has the following basic properties, as presented by the
MQe_Explorer management tool. Other advanced properties may be relevant, depending
upon the values set for the basic properties. In the text below the phrase remote queue refers
to the queue proxy; the phrase target queue refers to the local queue on the remote queue
manager.

Queue name:
Identifies the name of the remote queue (which must be the same as
the name of the target queue).

Local qMgr:
The name of the queue manager owning the remote queue.

Queue qMgr:
The name of the queue manager owning the target queue.

Adapter:
Only valid if the mode is asynchronous: The class (or alias) of a
storage adapter that provides access to the message storage medium
(see Storage adapters on page 116).

Aliases:
Alias names are optional alternative names for the remote queue (see
below).

Attribute rule:
The attribute class (or alias) associated with the security attributes of
the remote queue (for more details see later in this chapter).

Authenticator:
The authenticator class (or alias) associated with the remote queue (for
more details see later in this chapter).

Class:
The class (or alias) used to realize the remote queue.

Close if idle:
Indicates if the transporter is to be closed after transmitting all available
messages.

Compressor:
The compressor class (or alias) associated with the remote queue (for
more details see later in this chapter).

Cryptor:
The cryptor class (or alias) associated with the remote queue (for more
details see later in this chapter).

Description:
An arbitrary string describing the remote queue.

Expiry:
The time after which messages placed on the remote queue expire.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 105

Max. depth:
Only valid if the mode is asynchronous: the maximum number of
messages that may be placed on the remote queue.

Max. message length:
The maximum length of a message that may be placed on the remote
queue.

Message store:
Only valid if the mode is asynchronous: The class (or alias) that
determines how messages awaiting transmission on the remote queue
are stored.

Mode:
Indicates whether the remote queue can store messages pending
transmission (asynchronous) or cannot (synchronous).

Path:
Only valid if the mode is asynchronous: the location of the queue store
for the remote queue.

Priority:
The default priority associated with messages on the remote queue.

Rule:
The class (or alias) of the rule associated with the remote queue;
determines behavior when there is a change in state for the remote
queue.

Target registry:
The target registry to be used with the authenticator class (i.e. “None”,
“Queue”, or “Queue manager”).

Transporter:
The class (or alias) that flows messages over the channel to the target
queue.

XOR compress:
Indicates whether the transporter is to implement XOR compression of
the field data with previous data (this process also assists any
compressor that may have been defined).

12.3 Home server queues
A home server queue definition typically has the following basic properties, as presented by
the MQe_Explorer management tool. Other advanced properties may be relevant, depending
upon the values set for the basic properties.

Queue name:
Identifies the name of the home server queue (which must be the same
as the name of the target store and forward queue).

Local qMgr:
The name of the queue manager owning the home server queue.

Queue qMgr:
The name of the queue manager owning the target store and forward
queue.

Attribute rule:
The attribute class (or alias) associated with the security attributes of
the queue (for more details see later in this chapter).

Authenticator:
The authenticator class (or alias) associated with the queue (for more
details see later in this chapter).

� Copyright IBM Corp. 2002 106

Class:
The class (or alias) used to realize the home server queue.

Close if idle:
Indicates if the transporter is to be closed after transmitting all available
messages.

Compressor:
The compressor class (or alias) associated with the queue (for more
details see later in this chapter).

Cryptor:
The cryptor class (or alias) associated with the queue (for more details
see later in this chapter).

Description:
An arbitrary string describing the home server queue.

Target registry:
The target registry to be used with the authenticator class (i.e. “None”,
“Queue”, or “Queue manager”).

Time interval:
The time between the attempts to get messages from the target store
and forward queue.

Transporter:
The class (or alias) that flows messages over the channel from the
store and forward queue.

XOR compress:
Indicates whether the transporter is to implement XOR compression of
the field data with previous data (this process also assists any
compressor that may have been defined).

12.4 Store and forward queues
A store and forward queue definition typically has the following basic properties, as presented
by the MQe_Explorer management tool. Other advanced properties may be relevant,
depending upon the values set for the basic properties.

Queue name:
Identifies the name of the store and forward queue.

Local qMgr:
The name of the queue manager owning the store and forward queue.

Target qMgr:
Only valid if the queue is to forward messages: the name of the queue
manager to which messages are forwarded.

Message store:
The class (or alias) of a storage adapter that provides access to the
message storage medium (see Storage adapters on page 116).

Attribute rule:
The attribute class (or alias) associated with the security attributes of
the queue (for more details see later in this chapter).

Authenticator:
The authenticator class (or alias) associated with the queue (for more
details see later in this chapter).

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 107

Class:
The class (or alias) used to realize the store and forward queue.

Close if idle:
Indicates if the transporter is to be closed after transmitting all available
messages.

Compressor:
The compressor class (or alias) associated with the queue (for more
details see later in this chapter).

Cryptor:
The cryptor class (or alias) associated with the queue (for more details
see later in this chapter).

Description:
An arbitrary string describing the store and forward queue.

Destinations:
The list of remote queue manager names for which the store and
forward queue will store messages.

Expiry:
The time after which messages placed on the queue expire.

Max. depth:
The maximum number of messages that may be placed on the store
and forward queue.

Max. message length:
The maximum length of a message that may be placed on the queue.

Message store:
The class (or alias) that determines how messages awaiting
transmission on the store and forward queue are stored.

Path:
The location of the queue store for the store and forward queue.

Priority:
The default priority associated with messages on the queue.

Rule:
The class (or alias) of the rule associated with the store and forward
queue; determines behavior when there is a change in state for the
store and forward queue.

Target registry:
The target registry to be used with the authenticator class (i.e. “None”,
“Queue”, or “Queue manager”).

Transporter:
The class (or alias) that flows messages over the channel to the target
queue manager (if required).

XOR compress:
Indicates whether the transporter is to implement XOR compression of
the field data with previous data (this process also assists any
compressor that may have been defined).

12.5 Queue alias names
Queue definitions are used when MQe needs to deliver a message to either a remote or local
queue; the queue name identifies the target queue. In some cases however a degree of
independence is needed between the queue name used by sending applications, and the
actual names of queues at the target queue manager. This flexibility is provided through
aliases.

� Copyright IBM Corp. 2002 108

Queues have an aliases property, which allows zero, one or more alias names to be
associated with the queue. These aliases are not just alternative names that map to the
same queue; they also change the destination queue name in the message. This latter
property is important for remote messaging, otherwise the message would be put on a
channel destined for the target queue manager, but would be rejected when it arrived
because of the queue name mismatch.

Consequently if a message is addressed to a queue name that is defined as an alias of a
queue name, then MQe changes the name in the message address to that queue name.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 109

13 Security
MQe provides two security mechanisms directly concerned with the transport of messages:

�� Message-based security:

o Messages are protected by the application, using MQe services, and
passed to MQe for transport in a fully protected state. MQe delivers the
messages to a target queue, from which they are removed by an
application and subsequently unprotected, again using MQe services.
Since the messages are fully protected when being directly handled by
MQe, they can be flowed over clear channels and held on unprotected
intermediate queues.

�� Queue-based security

o Messages are not protected by the application and therefore passed to
MQe for transport in an unprotected state. MQe delivers the messages
to a target queue, from which they are removed by an application, being
delivered by MQe in an unprotected state. MQe protects the messages
on receipt and flows them over secure channels; they are also held
protected on any intermediate queues and on the destination queue.

Message-based security is beyond the scope of this book.

13.1 Queue-based security

Introduction

The level of queue-based security to be used is determined through the setting of attributes
on queues. As a consequence of these attributes, MQe uses appropriate secure channels,
cryptors and compressors and controls access (if required) through authenticators. The
relevant queue properties are:

�� Compressor

�� Cryptor

�� Authenticator

�� Attribute rule

� Copyright IBM Corp. 2002 110

These properties can be set on all queue definitions; the effect they have depends upon the
kind of queue definition involved, i.e.

�� Local queue: determines how the data is stored and whether the incoming
channel characteristics are acceptable.

�� Remote queue: determines how the data is stored pending transmission (if
applicable) and how the outgoing channel is negotiated.

�� Store & forward queue: determines how the data is stored pending transmission
and how the outgoing channel is negotiated (if applicable).

�� Home server queue: determines how the outgoing channel is negotiated.

The compressor determines whether the data should be compressed. The choice of
compressor is one of:

(null)
com.ibm.mqe.attributes.GZIPCompressor
com.ibm.mqe.attributes.LZWCompressor
com.ibm.mqe.attributes.RleCompressor

Details of the compressor characteristics are given Compressor classes on page 114.

The cryptor determines whether the data should be encoded to hide the significance of the
contents. The choice of cryptor is one of:

(null)
com.ibm.mqe.attributes.MQe3DESCrypto
com.ibm.mqe.attributes.MQeDESCryptor
com.ibm.mqe.attributes.MQeMARSCryptor
com.ibm.mqe.attributes.MQeRC4Cryptor
com.ibm.mqe.attributes.MQeRC6Cryptor
com.ibm.mqe.attributes.MQeXorCryptor
examples.attributes.TableCryptor

Details of the cryptor characteristics are given in Cryptor on page 114. The
specification of certain cryptors is only allowed if the queue manager registry is of the
private registry type; see Figure 4-1: Registry selection based on security requirements
on page 20.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 111

The authenticator determines whether the data access should be controlled. The choice of
authenticator is one of:

(null)
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator
examples.attributes.UseridAuthenticator
examples.attributes.NTAuthenticator
examples.attributes.UnixAuthenticator

Details of the authenticator characteristics are given in Authenticator on page 115.
The specification of certain authenticators is only allowed if the queue manager registry
is of the private registry type (see Figure 4-1: Registry selection based on security
requirements on page 20).

If the com.ibm.mqe.attributes.MQeWTLSCertAuthenticator class authenticator is used
then an additional parameter target registry must also be set. This parameter
determines which registry is to supply the credentials for authentication, and can have
the value of either "Queue manager" or "Queue".

If "Queue manager" is specified, then the credentials used are those of the
queue manager owning the queue, and come from the private registry of the
queue manager. The queue manager originally obtains these credentials
through auto-registration with the mini-certificate server (see the section
Auto-registration with the mini-certificate server on page 27). This option is
the recommended default.

If "Queue" is specified, then the credentials used are those of the queue
itself, and come from the private registry of the queue. The queue originally
obtains these credentials through auto-registration with the mini-certificate
server (see below).

The attribute rule determines whether a channel is allowed access to the queue. It does this
by comparing the security properties of the queue, with those of the channel. The attribute
rule is therefore important when the channel attributes and the queue attributes are not
identical. MQe ships an example attribute rule:

examples.attributes.AttributeRule

Details of the behavior enforced by this rule, and the way in which attributes rules are
used, is given in Channel security on page 65.

Channel security considerations

For efficiency in queue-based security, an MQe channel uses symmetric cryptors (e.g. DES,
3DES, MARS, RC4, RC6); a consequence of which is that the two queue managers at either
end must use the same encryption key. When such a channel is established, a protocol,
called the Diffie Hellman key exchange, is used to establish a secret key that only the two
queue managers know. This protocol is susceptible to a "man in the middle" attack, but for
that to be successful, the "man in the middle" must know some of the data that is fed into the
Diffie Hellman protocol. This data is held in the com.ibm.mqe.attributes.MQeDHk class. It is
possible for an attacker to get hold of this data, by examining the shipped MQe classes.
However, this data can be changed by running the com.ibm.mqe.attributes.MQeGenDH
utility; it generates a new java source file com.ibm.mqe.attributes.MQeDHk.java. This file can
then be compiled into a replacement com.ibm.mqe.attributes.MQeDHk.class file.

� Copyright IBM Corp. 2002 112

Setting up a private registry for a queue

A private registry for a queue is only relevant where:

1. Queue-based security is to be used.

2. The authenticator required is: com.ibm.mqe.attributes.MQeWTLSCertAuthenticator.

3. The target registry property of the queue has been set to "Queue" (i.e. credentials
owned by the queue itself are to be used during authentication, rather than
credentials owned by the queue manager).

In order to establish such a private registry, the following conditions must be met:

1. The owing queue manager must itself have a registry of type private registry (see
Registry on page 19).

2. The owning queue manager must have previously auto-registered with the mini-
certificate server (see Auto-registration with the mini-certificate server on page 27.

3. In starting the queue manager, the parameters CertReqPIN, KeyRingPassword, and
CAIPAddrPort were passed whilst the opening the registry (these parameters are
described in the section Auto-registration with the mini-certificate server).

4. The mini-certificate server is running when the authenticator property is being set (or
modified) and has been primed to issue a mini-certificate for the queue.

Where MQe_Explorer is used to create and launch the queue manager, the following
conditions apply:

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 113

1. The owing queue manager must itself have a registry of type private registry (see
Registry on page 19).

2. The option Allow queue registry (on the Security tab) must have been checked at
creation time.

3. The owning queue manager must have previously auto-registered with the mini-
certificate server (this should have happened automatically).

4. The mini-certificate server is running when the authenticator property is being set (or
modified) and has been primed to issue a mini-certificate for the queue.

Setting up the MQe_MiniCertServer to issue queue credentials is very similar to the queue
manager case described in Enabling MQe_MiniCertServer to issue a certificate on page 27.
The only difference is that to create a new queue authenticable entity, right click on the parent
queue manager in the tree pane and select New Entity (or select the node and use the
File�New�Entity menu item). The new entity dialog appears:

Figure 13-1: The new queue entity dialog – General tab

Enter the following data on the General tab:

1. Queue: the name of the queue

2. PIN: the mini-certificate request pin to be used by the queue when retrieving
its certificate

 When the queue is created (or modified) a process exactly analogous to queue manager
auto-registration takes place, with the queue acquiring a registry containing its own mini-
certificate. There is no specific programming required to accomplish queue auto-registration.

Queue credential examination and renewal is discussed in the chapter Certificate
management on page 133.

� Copyright IBM Corp. 2002 114

13.2 Security classes
Security classes are used in both message-level and queue-level security. Where queue-
level security is in use, MQe automatically associates security classes with the channels used
to move messages between queue managers. In summary, the following classes are
available:

Compressor classes

com.ibm.mqe.attributes.MQeGZIPCompressor

Compresses and decompresses a byte array using the GZIP algorithm. This likely to
be effective where the data has frequently repeating words or byte patterns; the
algorithm uses a reference back to the first occurrence of a pattern.

com.ibm.mqe.attributes.MQeLZWCompressor

Compresses and decompresses a byte array using the LZW algorithm. The algorithm
uses a dictionary structure and is likely to be effective where the data has frequently
repeating words or byte patterns.

com.ibm.mqe.attributes.MQeRleCompressor

Compresses and decompresses a byte array using a simple run length encoding
algorithm. This is effective where the data to be compressed contains strings of
repeated bytes.

Cryptor classes

com.ibm.mqe.attributes.MQe3DESCryptor

Provides an MQeCryptor object that uses triple DES CBC to encrypt/decrypt a byte
array.

com.ibm.mqe.attributes.MQeDESCryptor

Provides an MQeCryptor object that uses DES CBC to encrypt/decrypt a byte array.

com.ibm.mqe.attributes.MQeMARSCryptor

Provides an MQeCryptor object that uses MARS to encrypt/decrypt a byte array.

com.ibm.mqe.attributes.MQeRC4Cryptor

Provides an MQeCryptor object that uses RC4 to encrypt/decrypt a byte array.

com.ibm.mqe.attributes.MQeRC6Cryptor

Provides an MQeCryptor object that uses RC6 to encrypt/decrypt a byte array.

com.ibm.mqe.attributes.MQeXorCryptor

Provides an MQeCryptor object that uses a simple exclusive OR algorithm to disguise
the data. This cryptor does not provide a high level of data protection but obscures
the data sufficiently to prevent visual recognition.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 115

examples.attributes.TableCryptor

Provides an example of an MQeCryptor object that uses a simple data substitution
table to encrypt/decrypt a byte array. The source code is provided.

Authenticator classes

com.ibm.mqe.attributes.MQeWTLSCertAuthenticator

Manages mutual authentication using WTLS size-optimized certificates.

examples.attributes.NTAuthenticator

A sample authenticator, specific to Windows NT/2000/XP systems, that presents a
simple GUI interface for the local user to supply his/her Windows user credentials
(user id/password/domain). The source code is provided.

examples.attributes.UnixAuthenticator

Provides an example of an authenticator, specific to Unix systems, that presents a
simple GUI interface for the local user to supply his/her user credentials (user
id/password). The source code is provided.

examples.attributes.UseridAuthenticator

Provides an example of an authenticator using a user id and password file that
presents a simple GUI interface for the local user to supply his/her user credentials.
The source code is provided.

� Copyright IBM Corp. 2002 116

14 Storage adapters
MQe uses storage adapters to provide access to underlying storage media. In summary, the
following are available:

com.ibm.mqe.adapters.MQeDiskFieldsAdapter

Provides a persistent store for data, using the file system. Typically this is the default
adapter for queues and the registry, since it offers the greatest assurance that data
has not been lost. It does not rely on the operating system to complete lazy writes.

com.ibm.mqe.adapters.MQeCaseInsensensitiveDiskAdapter

A subclass of the com.ibm.mqe.adapters.MQeDiskFieldsAdapter that performs its
comparison of filenames in a case insensitive fashion. This is required on some
JVM/OS combinations (e.g. IBM 4690 OS) where the case of the name of the file
created is not the same as that reported from a File.list() method call; in these cases
the standard disk fields adapter will not match the files.

com.ibm.mqe.adapters.MQeMemoryFieldsAdapter

Provides a non-persistent, temporary store for data, using memory. Typically this
adapter is used to store queues where fast access is required and where the
messages need not survive the queue manager, nor survive system failure. In the
current release, a registry service provider cannot use this adapter.

com.ibm.mqe.adapters.MQeReducedDiskFieldsAdapter

Provides a persistent store for data, using the file system. This adapter is a higher-
speed alternative to the com.ibm.mqe.adapters.MQeDiskFieldsAdapter. However, it
does introduce a dependency on the operating system staying up long enough to
complete lazy writes.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 117

15 Single hop messaging
In previous chapters we have seen the various types of queue manager (client, server,
gateway etc.) and understood that messages flow between queue managers over channels,
created and managed by queue managers. Moreover, the nature of these channels are
determined by connection definitions, with each queue manager having a set of connection
definitions that define how channels are to be created to remote queue managers26.

None of these considerations are visible to application programs. In this chapter we will
consider message flow from both an application and from an administrative perspective, using
just a pair of queue managers.

The code required to create and send a message is very simple27:

//get addressability to the local queue manager
MQeQueueManager qMgr = MQeQueueManager.getReference(null);

//set strings
String targetQMgrName = "myServerQMgr";
String targetQName = "myTargetQueue";

//create the message
MQeMsgObject message = new MQeMsgObject();

//send the message
qMgr.putMessage(targetQMgrName, targetQName, message, null, 0);

Example 15-1: Sending a message

The key method call in the example above is putMessage(). This behaves as follows:

1. It attempts to send the message on its way to the final destination (i.e. a
queue of type local on the destination queue manager). If it can do so it will
return normally. Such a normal return means that the message has either
reached its destination or is held in some intermediate queue. If held in an
intermediate queue it is the responsibility of MQe to move the message
progressively to its destination. Network errors or incorrect configuration may
mean that such a message cannot be delivered – but it will not be
inadvertently lost or discarded.

2. If it cannot be sent on its way to its final destination then MQe will throw an
exception – the reason will be found in the exception data. MQe does not
have the message and is not responsible for its delivery – that remains with
the application.

26 This is a slight simplification that fails to take into account: (a) peer channels established by the
remote queue manager – but then used by the local queue manager; (b) home server queues on a remote
queue manager – that pull messages from the local queue manager over channels established by the
remote queue manager; (c) store and forward queues – that send messages destined to remote queue
managers through intermediate queue managers. These exceptions are detailed later.
27 In this book we are neither concerned with attribute objects on messages, nor with the use of the
confirm id.

� Copyright IBM Corp. 2002 118

MQe is frequently described as supporting either synchronous or asynchronous delivery. The
situation is much more complicated; in fact:

1. Messages may be delivered over multiple hops from the sending queue
manager to the target queue manager.

2. Each hop can be regarded as having the potential to be synchronous or
asynchronous:

i. An asynchronous hop is one where the message is queued at the
queue manager sending over the hop.

ii. A synchronous hop is one where the message cannot be queued at
the queue manager sending over the hop.

3. Messages are always delivered to a target queue (i.e. they are queued until
collected by an application).

Where only one hop is involved, it can be seen that the above description reflects either
synchronous or asynchronous messaging over that hop.

The simplest MQe network that can be envisaged is one that comprises just two queue
managers (SourceQMgr and TargetQMgr) and where each may freely communicate with the
other. By freely is meant that each can establish channels to the other whenever data needs
to be sent. This condition is satisfied by:

1. Both SourceQMgr and TargetQMgr are server queue managers, each with an
appropriate connection definition to the other28.

2. Both SourceQMgr and TargetQMgr are peer queue managers, each with an
appropriate connection definition to the other.

The case where SourceQMgr is a client and TargetQMgr is a server will be described later.
For the purpose of the next examples, two server queue managers will be used.

28 As a reminder – this configuration of server queue managers is acceptable because a server
automatically has client capabilities. So each can act both as a client and as a server to the other.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 119

15.1 Synchronous operation
The figure below shows an application on SourceQMgr sending a message to the TargetQ
queue on TargetQMgr.

SourceQMgr TargetQMgr

putMessage()

Local queuesConnections

Remote queues

Name: TargetQMgr
Aliases: …
Type: Direct

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Name: TargetQ
Aliases: ...

Name: SourceQMgr
Type: Server
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

Figure 15-1: Direct, synchronous messaging

The objects present on each queue manager are shown, together with their key properties.
TargetQMgr only has the destination queue defined, which is of type local queue. The
sending queue manager, SourceQMgr, has two relevant objects: a connection definition to he
target and a remote queue definition.

The connection definition on SourceQMgr allows MQe to set up a channel to TargetQMgr. If
this were not present, then the application would get an exception on attempting the
putMessage() call.

The remote queue definition on SourceQMgr gives MQe the details of the destination
queue29. In this case the important property of the remote queue definition is the mode, which
has the value of synchronous. It is this value that determines that the delivery will be
synchronous over the hop. Another way of viewing the situation is that the remote queue on
SourceQMgr does not have the ability to store messages awaiting transmission, and so
synchronous messaging is the only option.

29 In this case the details are trivial. However if the destination queue had security attributes set then
these would be reflected in the remote queue definition on SourceQMgr and would be used by MQe to
ensure that a secure channel was used to move the message.

� Copyright IBM Corp. 2002 120

If the remote queue definition on SourceQMgr were not present, in this simple case30 MQe
would itself attempt to determine details of the TargetQ on TargetQMgr – this is known as
queue discovery. If it were able to do so, it would then create a synchronous remote queue
definition on SourceQMgr (exactly as shown in the figure), and then synchronously transfer
the message. If it could not, then the application would receive an exception on the
putMessage(). The following characteristics of the target queues are discovered (and thus
used in the remote queue definition31):

Attribute rule
Authenticator
Compressor
Cryptor
Description
Expiry
Max. depth
Max. message size
Priority
Target registry

If for any reason, such as network failure, the synchronous putMessage() cannot be
completed, the application receives an exception. If the application needs to determine the
exact state of message transfer, e.g. if the message got sent just before the error occurred,
then the more advanced form of putMessage() is used, exploiting confirm ids. This topic is
outside the scope of this book.

If application(s) at SourceQMgr need to send to multiple queues on TargetQMgr, then
multiple queue definitions are needed at SourceQMgr, one remote queue definition for each
target queue.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr is a client and TargetQMgr is a server.

30 Queue discovery would not take place if, for example, SourceQMgr had a store and forward queue
that collected messages for TargetQMgr.
31 This default behavior may not always be desirable, e.g. the presence of MQe-created remote queue
definitions may prevent user-created definitions being established (until deleted). Certain properties of
the remote queue definition need not match the target queue (e.g. description, max. queue depth etc).

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 121

15.2 Asynchronous operation
The figure below shows an application on SourceQMgr sending a message to the TargetQ
queue on TargetQMgr; unlike the previous example, the remote queue definition on
SourceQMgr has the mode property set to asynchronous.

SourceQMgr TargetQMgr

putMessage()

Local queuesConnections

Remote queues

Name: TargetQMgr
Aliases: …
Type: Direct

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Asynchronous

Name: TargetQ
Aliases: ...

Name: SourceQMgr
Type: Server
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

Figure 15-2: Direct, asynchronous messaging

Remote queue definition TargetQ now has the ability to store messages awaiting
transmission. When the application does the putMessage() the message will first be stored
on the remote queue definition on SourceQMgr. An attempt will be made to send the
messages when the queue manager is triggered; by default this happens when a message is
put on a queue for delivery. A discussion of triggering is beyond the scope of this book.

The messages will therefore be sent asynchronously over the hop. The application is very
unlikely get an exception from the putMessage() call, certainly network or target queue
manager unavailability would not be a reason.

If application(s) at SourceQMgr need to send to multiple queues on TargetQMgr, then
multiple queue definitions are needed at SourceQMgr, one remote queue definition for each
target queue.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr is a client and TargetQMgr is a server.

� Copyright IBM Corp. 2002 122

15.3 Synchronous and asynchronous operation
In some cases it may be necessary to support simultaneous (or sequential) synchronous and
asynchronous communication from a queue manager to a target queue. The figure below
shows the configuration required:

SourceQMgr TargetQMgr

putMessage()

Local queuesConnections

Remote queues

Name: TargetQMgr
Aliases: …
Type: Direct

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Name: TargetQ
Aliases: AsyncTargetQ

Name: SourceQMgr
Type: Server
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

Name: AsyncTargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Asynchronous

putMessage()
QMgr: TargetQMgr
Queue: AsyncTargetQ

Figure 15-3: Direct, synchronous and asynchronous messaging

The key to this configuration is the alias name of AsyncTargetQ set for the TargetQ on
TargetQMgr. Messages that arrive on queue manager TargetQMgr addressed to either
TargetQ or AsyncTargetQ will be resolved to the same local queue.

On the SourceQMgr two remote queue definitions have been defined; remote queue TargetQ
has the mode set to synchronous; remote queue AsyncTargetQ has mode set to
asynchronous.

Two putMessage() calls are shown; the first will be synchronous because it specifies the
target queue as TargetQ; the second will be asynchronous because it specified the target
queue as AsyncTargetQ. Both calls will result in their messages arriving at the same local
queue on TargetQMgr.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr is a client and TargetQMgr is a server.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 123

15.4 Source aliases
Aliases have many uses. For example in the configuration below they are used at
SourceQMgr to redirect messages from an (old) application to the correct target queue and
queue manager. Synchronous messaging has been used but the principles apply equally to
asynchronous messaging.

SourceQMgr TargetQMgr

putMessage()

Local queuesConnections

Remote queues

Name: TargetQMgr
Aliases: OldTargetQMgr
Type: Direct

Name: TargetQ
Aliases: OldTargetQ
Queue qMgr: TargetQMgr
Mode: Synchronous

Name: TargetQ
Aliases: ...

Name: SourceQMgr
Type: Server
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

QMgr: OldTargetQMgr
Queue: OldTargetQ

Figure 15-4: Direct, synchronous messaging with source aliasing

The application consequences of this configuration are identical to that shown in Figure 15-1:
Direct, synchronous messaging on page 119. In this case the application refers to the target
queue and queue manager as OldTargetQ and OldTargetQMgr respectively; however these
are substituted in the message with the names TargetQ and TargetQMgr. At TargetQMgr
there is no discernable difference from the earlier example.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr is a client and TargetQMgr is a server.

� Copyright IBM Corp. 2002 124

15.5 Destination aliases
Similarly, aliases can be used at the destination (or indeed elsewhere in the network) to
resolve naming differences. For example:

SourceQMgr NewTargetQMgr

putMessage()

Local queuesConnections

Remote queues

Name: TargetQMgr
Aliases: ...
Type: Direct

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Name: NewTargetQ
Aliases: TargetQ

Name: SourceQMgr
Type: Server
Aliases: ...

Name: NewTargetQMgr
Type: Server
Aliases: TargetQMgr

QMgr: TargetQMgr
Queue: TargetQ

Figure 15-5: Direct, synchronous messaging with destination aliasing

Here the destination queue manager and queue has been changed from that expected by
both the application and configuration objects at SourceQMgr. However use of a queue
manager alias and a local queue alias at NewTargetQMgr means that the messages are
accepted onto the target queue.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr is a client and TargetQMgr is a server.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 125

15.6 Client/server operation
The examples so far have shown a source queue manager pushing messages to a target
queue manager. If SourceQMgr were a server queue manager and TargetQMgr a client
queue manager then this would not be possible, because the client cannot accept an
incoming channel request. Consequently, in this case TargetQMgr must pull the messages
from the source.

SourceQMgr TargetQMgr

putMessage()

Local queues

ConnectionsStore queues

Name: SourceQMgr
Aliases: …
Type: Direct

Name: SF1Q
Aliases: ...
Target qMgr: ...
Destinations: TargetQMgr

Name: TargetQ
Aliases: ...

Name: SourceQMgr
Type: Server
Aliases: ...

Name: TargetQMgr
Type: Client
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

Home server queues

Name: SF1Q
Queue qMgr: SourceQMgr
Aliases: ...

PULL

Figure 15-6: Client/server messaging

In this configuration the server queue manager has no connection definition to the client;
instead it has a store queue (i.e. a store and forward queue with no target queue manager)
that collects all messages bound for the client. This message collection embraces all queue
destinations on the client.

The client pulls the messages from the store queue using a home server queue pointing at
the store queue on the client. The home server queue never stores messages itself – it
collects them from the store queue and delivers them to their destinations on the client. The
client makes the connection request to the server using its connection definition.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr and TargetQMgr are both servers.

� Copyright IBM Corp. 2002 126

15.7 Use of store and forward queues
An attractive feature of the configuration above, where messages are pulled, is that the server
object definitions apply independently of the specific queues that must be accessed on the
client. A similar result can be achieved for cases where messages are pushed.

SourceQMgr TargetQMgr

putMessage()

Local queuesConnections

Store and forward queues

Name: TargetQMgr
Aliases: …
Type: Direct

Name: SF2Q
Aliases: ...
Target qMgr: TargetQMgr
Destinations: TargetQMgr

Name: TargetQ
Aliases: ...

Name: SourceQMgr
Type: Server
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

Figure 15-7: Store and forward queues in messaging

The store and forward queue SF2Q collects all messages on SourceQMgr bound for the
TargetQMgr queue manager and forwards them, irrespective of their target queue.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr is a client and TargetQMgr is a server.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 127

15.8 Using both remote and store & forward queues
In the configuration below, both a store and forward queue, and a remote queue are defined
on SourceQMgr. The TargetQMgr has two local queues, TargetQ and TargetQ1, to which
messages are put by an application on SourceQMgr.

SourceQMgr TargetQMgr

putMessage()

Local queuesConnections

Store and forward queues

Name: TargetQMgr
Aliases: …
Type: Direct

Name: SF2Q
Aliases: ...
Target qMgr: TargetQMgr
Destinations: TargetQMgr

Name: TargetQ
Aliases: ...

Name: SourceQMgr
Type: Server
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

Name: TargetQ1
Aliases: ...

Remote queues

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Asynchronous

putMessage()
QMgr: TargetQMgr
Queue: TargetQ1

Figure 15-8: Remote and store & forward queues in messaging

In this case the messages put to TargetQ will go (asynchronously) from SourceQMgr, via the
TargetQ remote queue on SourceQMgr. The messages to TargetQ1 will go (asynchronously)
via the store and forward queue SFQ2. This configuration illustrates the fact when MQe
makes a routing decision between a remote queue definition and a store and forward queue,
then the remote queue definition takes priority. If synchronous communication was needed to
TargetQ, the remote queue definition on SourceQMgr must have the mode specified as
synchronous.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr and TargetQMgr are both peers.

(b) SourceQMgr is a client and TargetQMgr is a server.

� Copyright IBM Corp. 2002 128

16 Multi-hop and advanced messaging
In most cases simple point-to-point messaging configurations are not adequate to represent
commercial requirements. In this chapter we consider networks of three queue managers,
though the principles extend to any number of levels of indirect indirection.

16.1 Synchronous operation
The configuration below is an extension of the example Figure 15-1: Direct, synchronous
messaging on page 119. The application on SourceQMgr is to send messages, as before, to
the queue TargetQ on the TargetQMgr. In this case however, the message is to go via an
intermediate queue manager ViaQMgr. Both hops are to be synchronous, with the TCP/IP
protocol used between SourceQMgr and ViaQMgr, and the UDP protocol between ViaQMgr
and TargetQMgr.

SourceQMgr ViaQMgr

putMessage()

Connections

Remote queues

Name: TargetQMgr
Aliases: …
Type: Indirect
Via qMgr: ViaQMgr

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Name: SourceQMgr
Type: Server
Aliases: ...

Name: ViaQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

TargetQMgr

Local queues

Name: TargetQ
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

Connections

Name: TargetQMgr
Aliases: …
Type: Direct
Protocol: UDP

Name: ViaQMgr
Aliases: …
Type: Direct
Protocol: TCP/IP

Remote queues

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Figure 16-1: Indirect, synchronous messaging

In the diagram above, the key changes on SourceQMgr are:

(a) The connection definition for TargetQMgr is changed from direct to indirect.

(b) A new connection definition for ViaQMgr is added (specifying TCP/IP).

On the ViaQMgr:

(a) The connection definition for TargetQMgr is direct (specifying UDP).

(b) A synchronous remote queue definition for TargetQ on TargetQMgr.

No application change is required and exceptions will be received just as described
previously. As there are no remote asynchronous queue definitions, or store (and forward)
queue definitions involved, the message will never be stored in the network. It will either be
delivered to the TargetQ or the application will receive an exception.

If the synchronous remote queue definition for TargetQ is not defined on ViaQMgr, then MQe
will automatically add it through queue discovery.

The above configuration is equally applicable to the situations where:

(a) SourceQMgr, ViaQMgr and TargetQMgr are all peers.

(b) SourceQMgr is a client; ViaQmgr and TargetQMgr are servers.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 129

16.2 Asynchronous operation
The only change needed to make transmission asynchronous, with messages awaiting
transmission being queued in the remote queue TargetQ on SourceQMgr, is to change the
mode of this queue to asynchronous:

SourceQMgr ViaQMgr

putMessage()

Connections

Remote queues

Name: TargetQMgr
Aliases: …
Type: Indirect
Via qMgr: ViaQMgr

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Asynchronous

Name: SourceQMgr
Type: Server
Aliases: ...

Name: ViaQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

TargetQMgr

Local queues

Name: TargetQ
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

Connections

Name: TargetQMgr
Aliases: …
Type: Direct
Protocol: UDP

Name: ViaQMgr
Aliases: …
Type: Direct
Protocol: TCP/IP

Remote queues

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Figure 16-2: Indirect, asynchronous messaging

This exactly parallels the direct case shown in Figure 15-2: Direct, asynchronous messaging
on page 121.

If the possibility for additional message staging is required on the ViaQMgr, then this can be
achieved by changing the remote queue definition there to be asynchronous, as shown
below:

SourceQMgr ViaQMgr

putMessage()

Connections

Remote queues

Name: TargetQMgr
Aliases: …
Type: Indirect
Via qMgr: ViaQMgr

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Asynchronous

Name: SourceQMgr
Type: Server
Aliases: ...

Name: ViaQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

TargetQMgr

Local queues

Name: TargetQ
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

Connections

Name: TargetQMgr
Aliases: …
Type: Direct
Protocol: UDP

Name: ViaQMgr
Aliases: …
Type: Direct
Protocol: TCP/IP

Remote queues

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Asynchronous

Figure 16-3: Indirect, asynchronous messaging – with staging

� Copyright IBM Corp. 2002 130

If the staging on ViaQMgr is to be generic and cover all queues on TargetQMgr, then the
asynchronous TargetQ remote queue definition can be replaced with a store and forward
queue that pushes messages to the TargetQMgr, as seen in the simpler configuration of
Figure 15-7: Store and forward queues in messaging on page 126. Similarly, it cannot be
configured not to forward them, but keep them instead until collected, as seen previously in
Figure 15-6: Client/server messaging on page 125.

The above configurations are equally applicable to the situations where:

(c) SourceQMgr, ViaQMgr and TargetQMgr are all peers.

(d) SourceQMgr is a client; ViaQMgr and TargetQMgr are servers.

16.3 Backbone routes
A backbone route is a common network route that is shared by multiple source queue
managers sending to multiple targets. Here the configuration is illustrated with six queue
managers:

SourceQMgr ViaQMgr

putMessage()

Connections

Remote queues

Name: TargetQMgr
Aliases: …
Type: Indirect
Via qMgr: ViaQMgr

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Name: SourceQMgr
Type: Server
Aliases: ...

Name: ViaQMgr
Type: Server
Aliases: ...

QMgr: TargetQMgr
Queue: TargetQ

TargetQMgr

Local queues

Name: TargetQ
Aliases: ...

Name: TargetQMgr
Type: Server
Aliases: ...

Connections

Name: TargetQMgr
Aliases: …
Type: Direct
Protocol: UDP

Name: ViaQMgr
Aliases: …
Type: Direct
Protocol: TCP/IP

Remote queues

Name: TargetQ
Aliases: ...
Queue qMgr: TargetQMgr
Mode: Synchronous

Figure 16-4: Backbone routes

Only a subset of the objects are shown, being just those on the two backbone queue
managers ViaQmgr1 and ViaQMgr2, concerned with sending messages from the source
queue managers to the targets. In this example a single connection definition on ViaQMgr1
has been used; this gives a path to ViaQMgr2 only. All messages arriving on ViaQMgr1 are
collected on a single store and forward queue and sent to ViaQMgr2. On ViaQMgr2,
connection definitions exist to all the targets, and a store and forward queue per target
collects the messages.

Many other variations are possible, even assuming messages are to be routed at the queue
manager rather than the queue level. For example, on ViaQMgr1, there could have been
store and forward queues per target queue manager, this breaking up the messages on a per
target basis. Alternatively on this queue manager, there could have been indirect connection
definitions for all the targets, routing them through ViaQMgr2; in this case there would have
been no need for a list of target queue managers in the store and forward queue SFQ, just
the single ViaQMgr2 queue manager name. In situations where a choice of queue manager-
level routing occurs, because both a connection definition and a store and forward queue
definition exist for the same destination, the store and forward queue will always be used.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 131

16.4 Alternate routes
Queue manager aliases allow alternates routes to be defined. For example, in the
configuration below, there are two different routes defined between SourceQMgr and
TargetQMgr:

ViaQMgr1

TargetQMgrConnections

Name: TargetQMgr
Type: Direct

ViaQMgr2

SourceQMgr

Connections

Name: TargetQMgrX
Type: Direct

Connections

Name: TargetQMgr
Type: Indirect
Via qMgr: ViaQMgr1

Name: TargetQMgrX
Type: Indirect
Via qMgr: ViaQMgr2

Name: TargetQMgr
Aliases: TargetQMgrX

Figure 16-5: Alternate routes

A putMessage() on SourceQMgr to TargetQMgr sends the message via ViaQMgr1; a
putMessage() to TargetQMgrX sends the message to the same target but via ViaQMgr2.

In more complicated networks, both connection aliases and queue manager aliases can be
used in this way.

16.5 Security considerations in routing
In the section Channel security on page 65 it was seen that remote queue definitions define
the security requirements that must be satisfied by channels moving messages to target
queues. The queue manager attribute rule defines the rules for upgrading channels;
consequently with a sufficiently flexible rule, multiple security requirements can be met by a
single channel.

When a message must be stored on a queue, either en route or at the destination, then the
queue attribute rule determines if the channel security meets the requirements of the queue.
Note however that there are message transfers that do not involve a channel, e.g. when a
home server places a message it has received from a store queue on to its destination queue.
In these cases there are no security requirements to be satisfied in the transfer, but the
message will be stored in its destination queue in a manner controlled by that queue's
security characteristics. Thus to continue this example in more depth, when the home server
queue gets the message from the store queue a channel is involved (with characteristics
determined by the home server queue and which must be acceptable to the store queue);
however, when the home server queue passes the message to the destination queue, there
are no channel characteristics to be compared with the destination queue's security
characteristics.

� Copyright IBM Corp. 2002 132

In a single hop, message transfer, the security checking is between the source and target
queue managers. In multiple hop, asynchronous message transfers, security checking
occurs stepwise over each hop.

16.6 Routing rules
In the examples so far we have seen how MQe resolves conflicts between definitions:

1. A remote queue definition takes priority over a store and forward queue
definition.

2. A store and forward queue definition takes priority over a connection
definition.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 133

17 Certificate management
In the chapter Registry on page 19 the concept of WLTS mini-certificates was introduced.
These certificates are used to establish identity and are used in conjunction with the
com.ibm.mqe.attributes.MQeWLTSCertAuthenticator. Mini-certificates can be associated
with the queue manager itself, and optionally and additionally, also with individual queues.
Mini-certificates are acquired through auto-registration, whereby MQe contacts the mini-
certificate server and requests the required certificates. At the queue manager level, auto-
registration can take place when the queue manager itself is being configured or started (for
more detail see Auto-registration with the mini-certificate server on page 27); at the queue
level, auto registration can take place when the queue is being created or modified (for more
details see Setting up a private registry for a queue on page 112).

Certificates are normally issued with a lifetime of 12 months; after this time they must be
renewed. Consequently certificates must be periodically examined to determine their expiry
dates and renew if necessary.

17.1 Examining mini-certificates
MQe_Explorer allows mini-certificates to be examined; they are shown on the property pages
for the relevant authenticatable object. For example, for a queue:

Figure 17-1: Queue mini-certificates

Not all the columns are visible in the figure; the full set of columns is: Name, Subject, To,
From and Issuer. Multiple certificates are shown, a current ones for the queue and the
certificate server, plus two sets of replaced (and renamed) certificates.

� Copyright IBM Corp. 2002 134

Queue manager credential examination

The code necessary to access the queue manager certificates is shown below:

//get queue manager registry
MQeRegistry registry = qMgr.getRegistry(); //qMgr registry

if (registry != null)
{

//get certificates
 MQeFields certs = registry.search(MQeRegistry.MiniCert);
 Enumeration enCerts = certs.fields();
 String certName = null //certificate name
 long beforeTime = 0; //before time (ms)
 long afterTime = 0; //after time (ms)
 String issuer = null; //issuer name
 String subject = null; //subject name
 MQeWTLSCertificate certificate = null; //WTLS certificate
 MQeFields cert = null;
 while (enCerts.hasMoreElements())
 {

 //for each certificate
 certName = (String) enCerts.nextElement();
 cert = certs.getFields(certName);
 certificate = new MQeWTLSCertificate(cert.getArrayOfByte("WTLS"));
 beforeTime = certificate.getNotBefore()*1000;
 afterTime = certificate.getNotAfter()*1000;
 issuer = certificate.getIssuerString();
 subject = certificate.getSubjectString();
 }
}

Example 17-1: Examining queue manager credentials

The queue manager registry object allows access to the registry. The certificates are
returned in an MQeFields object from the search() method on the registry object; enumeration
provides access to each certificate in turn, with the name of embedded MQeFields object
being the name of that certificate. These certificate MQeFields objects are each then
transformed into a MQeWTLSCertificate object, followed by queries to return the properties.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 135

Queue credential examination

The code necessary to access queue certificates is very similar, only the registry access is
changed:

//get queue registry
String entityName = qMgr.getName() + "+" + queueName;
MQeRegistry registry = qMgr.getRegistry(entityName); //queue registry

if (registry != null)

//get certificates
 MQeFields certs = registry.search(MQeRegistry.MiniCert);
 Enumeration enCerts = certs.fields();
 String certName = null //certificate name
 long beforeTime = 0; //before time (ms)
 long afterTime = 0; //after time (ms)
 String issuer = null; //issuer name
 String subject = null; //subject name
 MQeWTLSCertificate certificate = null; //WTLS certificate
 MQeFields cert = null;
 while (enCerts.hasMoreElements())
 {

 //for each certificate
 certName = (String) enCerts.nextElement();
 cert = certs.getFields(certName);
 certificate = new MQeWTLSCertificate(cert.getArrayOfByte("WTLS"));
 beforeTime = certificate.getNotBefore()*1000;
 afterTime = certificate.getNotAfter()*1000;
 issuer = certificate.getIssuerString();
 subject = certificate.getSubjectString();
 }
}

Example 17-2: Examining queue credentials

The variable queueName holds the name of the queue whose credentials are required.

17.2 Renewing mini-certificates
Mini-certificates can be renewed at any time; it is not necessary to wait until a certificate is
close to expiry or has even expired. The standard practice is not to discard the old
certificates but to rename them and keep them. If necessary, such retained certificates can
be renamed back and brought into use. Another key aspect of the renewal process is that the
public and private keys of the new certificate remain the same as the one bring expired, the
only significant change therefore being the new expiry date.

Queue manager credential renewal

Renewal of a queue manager credentials is a similar process to that of the original issue; first
the mini-certificate server must be authorized to issue a certificate, then the request must be
made. Renewal also includes the receipt of an updated version of the mini-certificate server's
own certificate.

To authorize renewal, put the certificate server in admin mode, enter the name of the
authenticatable entity, together with a new certificate request PIN. Then click the Update
button. Close the server and restart it in server mode.

� Copyright IBM Corp. 2002 136

Using MQe_Explorer, start the queue manager and select its icon in either the tree or list view
panes. Then click on the Action�Renew Credentials menu item; MQe_Explorer will prompt
for the new certificate request PIN. The display of queue manager properties will now show
four certificates, the two previously present have been renamed, and two new ones have
been added.

The equivalent code is shown below:

//initialize strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String regPin = "xxxx"; //private registry PIN
String certReqPIN = "yyyy"; //new request PIN
String registryAdapter = "com.ibm.mqe.MQeTcpipHttpAdapter"; //cert. server adapter
String registryAddress = "127.0.0.1"; //cert. server IP
 // address
String registryPort = "8085"; //cert. server port
String prefix = Long.toString(new Date().getTime()) + "_"; //arbitrary prefix

//get [Registry] section
MQeFields regSect = environment.getFields("Registry"); //registry section

//instantiate a private registry configure object
MQePrivateRegistryConfigure regConf = new MQePrivateRegistryConfigure(

thisQMgrName , regSect, regPIN);

//renew
regConf.renewCertificates(regPIN,
 registryAdapter + ":" + registryAddress + ":" + registryPort,
 certReqPIN, prefix);

//close the configurator
regConf.close();

Example 17-3: Renewing queue manager credentials

Care must be taken when using the environment variable – if it has ever been passed to
MQe, then the passwords will have been removed on return. If needed for credential
renewal, a cloned copy should be saved with the contents in tact. The prefix variable holds
an arbitrary string that is prefixed to the name of the old certificate.

Queue credential renewal

Mini-certificates associated with queues are identical to those associated with queue
managers; consequently they expire 12 months after issue and must be renewed. Renewal is
a similar process to that of the original issue; first the mini-certificate server must be
authorized to issue an updated certificate, then the request must be made.

To authorize renewal, put the certificate server in admin mode, enter the name of the
authenticatable entity, together with a new certificate request PIN. Then click the Update
button. Close the server and restart it in server mode.

Using MQe_Explorer, start the queue manager and select the relevant queue icon in either
the tree or list view panes. Then click on the Action�Renew Credentials menu item;
MQe_Explorer will prompt for the new certificate request PIN. The subsequent display of
queue properties will show that the previous pair of certificates in force have been renamed,
and two new ones have been added.

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 137

The equivalent code is shown below, this differs significantly to that shown for queue
manager credential renewal in Example 17-4:

//initialize strings
String thisQMgrName = qMgr.getName(); //local qMgr name
String thisQName = "mySecureQ"; //queue name
String regPin = "xxxx"; //private registry PIN
String certReqPIN = "yyyy"; //new request PIN
String registryAdapter = "com.ibm.mqe.MQeTcpipHttpAdapter"; //cert. server adapter
String registryAddress = "127.0.0.1"; //cert. server IP
 // address
String registryPort = "8085"; //cert. server port
String prefix = Long.toString(new Date().getTime()) + "_"; //arbitrary prefix

//calculate queue registry PIN
byte[] qRegPINByte = new byte[20];
MQeKey.sha(MQe.asciiToByte(regPIN), 0, regPIN.length(), qRegPINByte, 0);
String qRegPIN = MQe.byteToAscii(qRegPINByte);

//get [Registry] section and update
MQeFields regSect = environment.getFields("Registry"); //registry section
regSect.putAscii("PIN", qRegPIN);

//instantiate a private registry configure object
MQePrivateRegistryConfigure regConf = new MQePrivateRegistryConfigure(

thisQMgrName + "+" + thisQName , regSect, regPIN);

//renew
regConf.renewCertificates(regPIN,
 registryAdapter + ":" + registryAddress + ":" + registryPort,
 certReqPIN, prefix);

//close the configurator
regConf.close();

Example 17-4: Renewing queue credentials

Care must be taken when using the environment variable – if it has ever been passed to
MQe, then the passwords will have been removed on return. If needed for credential
renewal, a cloned copy should be saved with the contents in tact. The prefix variable holds
an arbitrary string that is prefixed to the name of the old certificate.

The key features of the above code are the calculation of the queue registry PIN from a digest
the queue manager registry PIN, and its subsequent storage in the registry section fields
object. The entity name to be renewed is now a composite string constructed from the queue
manager and queue name.

� Copyright IBM Corp. 2002 138

18 Class requirements
MQe ships as a class library, but not all classes are required in any particular deployment.
Where footprint is a consideration, only essential classes should be present. The table below
indicates the classes groups associated with a particular function or configuration:

�� Mandatory classes

�� Queue manager type

�� Registry type

�� Communications

�� Queue types

�� Message storage

�� Storage adapters

�� Message types

�� Administration

�� Queue manager creation and deletion

�� Authenticators

�� Compressors

�� Cryptors

�� Application security services

�� Miscellaneous

�� Bindings

�� Queue manager services

�� User-defined MQe extensions

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 139

Category Detail Classes required
Mandatory classes For all queue managers com.ibm.mqe.MQe

com.ibm.mqe.MQeAbstractQueueManagerProxy
com.ibm.mqe.MQeAdapter
com.ibm.mqe.MQeAttribute
com.ibm.mqe.MQeAuthenticator
com.ibm.mqe.MQeCompressor
com.ibm.mqe.MQeCryptor
com.ibm.mqe.MQeEnumeration
com.ibm.mqe.MQeEventLogInterface
com.ibm.mqe.MQeException
com.ibm.mqe.MQeField
com.ibm.mqe.MQeFields
com.ibm.mqe.MQeKey
com.ibm.mqe.MQeLoader
com.ibm.mqe.MQeLocalQueueManagerProxy
com.ibm.mqe.MQeMessageEvent
com.ibm.mqe.MQeMessageListenerInterface
com.ibm.mqe.MQeMsgObject
com.ibm.mqe.MQeQueueManager
com.ibm.mqe.MQeQueueManagerRule (or replacement)
com.ibm.mqe.MQeSecurityInterface
com.ibm.mqe.MQeTraceInterface
com.ibm.mqe.registry.MQeRegistry
com.ibm.mqe.MQeRule
examples.AttributeRule (or replacement)
examples.Trace.* (desirable)

� Copyright IBM Corp. 2002 140

Category Detail Classes required
Registry type One option in this category

must be selected

File registry Add required:
 Storage adapter

com.ibm.mqe.registry.MQeFileSession
com.ibm.mqe.registry.MQeRegistrySession

Private registry
w/o

credentials

Add:
 File registry

com.ibm.mqe.registry.MQePrivateRegistry
com.ibm.mqe.registry.MQePrivateSession

Private registry
with mini certificates

credentials

Add:
 Private registry
 w/o credentials

com.ibm.mqe.attributes.MQeMiniCertRequest
com.ibm.mqe.attributes.MQeSharedKey
com.ibm.mqe.attributes.MQeWTLSCertificate

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 141

Category Detail Classes required
Queue manager type For all types add required:

 Administration
 Storage adapters
 Message store
 Authenticators
 Cryptors
 Compressors
 Rules
 Security

Standalone qMgr.

Client qMgr. Add required:
 Communications

com.ibm.mqe.MQeChannel
com.ibm.mqe.MQeChannelCommandInterface
com.ibm.mqe.MQeConnectionDefinition
com.ibm.mqe.MQeRemoteQueueManagerProxy
com.ibm.mqe.MQeTransporter

Peer qMgr. Add:
 Client qMgr.
Add required:
 Communications

com.ibm.mqe.PeerChannel
com.ibm.mqe.PeerChannelReceiver
com.ibm.mqe.PeerChannelThread

Server qMgr. Add:
 Client qMgr.
Add required:
 Communications

com.ibm.mqe.ChannelListener
com.ibm.mqe.ChannelListenerSlave
com.ibm.mqe.ChannelListenerTimer
com.ibm.mqe.ChannelManager

Gateway qMgr. Add:
 Server qMgr.
Add required
 Communications
 Transformers

com.ibm.mqe.mqbridge.*
examples.trace.*
examples.mqbridge.trace.*

� Copyright IBM Corp. 2002 142

Category Detail Classes required
Communications

TCP/IP
w/o

history & persistence

 com.ibm.mqe.adapters.MQeTcpipAdapter
com.ibm.mqe.adapters.MQeTcpipLengthAdapter

TCP/IP
with

history & persistence

Add:
 TCP/IP
 w/o history and
 persistence

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter
com.ibm.mqe.adapters.MQeTcpipHistoryAdapterElement

HTTP 1.0
Not to WES Proxy

Authentication server

 com.ibm.mqe.adapters.MQeTcpipAdapter
com.ibm.mqe.adapters.MQeTcpipHttpAdapter

HTTP
To WES Proxy

Authentication server

 com.ibm.mqe.adapters.MQeTcpipAdapter
com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

UDP com.ibm.mqe.adapters.MQeUdpipAdapter
com.ibm.mqe.adapters.MQeUdpipAdapter$Address
com.ibm.mqe.adapters.MQeUdpipAdapter$Queue
com.ibm.mqe.adapters.MQeUdpipAdapter$Queue$Item
com.ibm.mqe.adapters.MQeUdpipAdapter$State
com.ibm.mqe.adapters.MQeUdpipDatagramPacket
com.ibm.mqe.adapters.MQeUdpipDatagramPacket$Id
com.ibm.mqe.adapters.MQeUdpipDatagramPacket$Queue
com.ibm.mqe.adapters.MQeUdpipDatagramPacket$Queue$Item
com.ibm.mqe.adapters.MQeUdpipPacketReader

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 143

Category Detail Classes required
Queue types For all queue types add

required:
 Authenticators
 Cryptors
 Compressors
 Rules

Local Add:
 Storage adapter
 Message storage

com.ibm.mqe.MQeAbstractQueueComponent
com.ibm.mqe.MQeEventTrigger
com.ibm.mqe.MQeMessageAcceptor
com.ibm.mqe.MQeQueue
com.ibm.mqe.MQeQueueRule (or replacement)

Remote Add:
 Local queue
 (storage adapter
 & msg. storage
 only if needed)

com.ibm.mqe.MQeRemoteQueue
com.ibm.mqe.MQeMessageDispatcher
com.ibm.mqe.MQeWriteOnlyFunctionFilter

Home server Add:
 Remote queue
 (no storage
 adapter or msg.
 storage)

com.ibm.mqe.MQeHomeServerQueue

Store and forward Add:
 Remote queue

com.ibm.mqe.MQeStoreAndForwardQueue

Bridge queue Add:
 Remote queue

com.ibm.mqe.mqbridge.MQeMQBridgeAdminMsg
com.ibm.mqe.mqbridge.MQeBridgeServices
com.ibm.mqe.mqbridge.MQeMQBridgeQueue
com.ibm.mqe.mqbridge.MQeMQQMgrName
com.ibm.mqe.mqbridge.MQeMQQName

� Copyright IBM Corp. 2002 144

Category Detail Classes required
Message storage

Standard Default requirements com.ibm.mqe.messagestore.MQeMessageStore
com.ibm.mqe.MQeAbstractMessageStore
com.ibm.mqe.messagestoreMQeIndexEntryConstants
com.ibm.mqe.messagestoreMQeIndexEntry
com.ibm.mqe.messagestore.MQeMessageStore1Enumerator

Short filename Only if instructed
Add:
 Standard
 message store

com.ibm.mqe.messagestoreMQeShortFilenameMessageStore

4690-only 4690-specific
Add:
 Short filename
 message store

com.ibm.mqe.messagestoreMQe4690ShortFilenameMessageStore

Message type

Basic Support for com.ibm.mqe.MQeMsgObject is in Mandatory classes

MQSeries com.ibm.mqe.mqemqmessage.*

Storage adapters

Assured disk Independence from OS
lazy writes

com.ibm.mqe.adapters.MQeDiskFieldsAdapter

Non-assured disk Dependence on OS lazy
writes
Add:
 Assured disk

com.ibm.mqe.adapters.MQeReducedDiskFieldsAdapter

Memory Volatile storage com.ibm.mqe.adapters.MQeMemoryFieldsAdapter

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 145

Category Detail Classes required
Administration

All targets Add:
 Local queue

com.ibm.mqe.administration.MQeAdminQueueAdminMsg
com.ibm.mqe.administration.MQeQueueAdminMsg
com.ibm.mqe.administration.MQeQueueManagerAdminMsg
com.ibm.mqe.MQeAdministrator
com.ibm.mqe.MQeAdminMsg
com.ibm.mqe.MQeAdminQueue
com.ibm.mqe.MQeAdminQueueTimer

Target with
connection definitions

Add:
 All targets

com.ibm.mqe.administration.MQeConnectionAdminMsg

Target with
remote queues

Add:
 All targets

com.ibm.mqe.administration.MQeRemoteQueueAdminMsg

Target with
home server queues

Add:
 Remote queues

com.ibm.mqe.administration.MQeHomeServerQueueAdminMsg

Target with
store and forward queues

Add:
 Remote queues

com.ibm.mqe.administration.MQeStoreAndForwardQueueAdminMsg

Target with
bridge queues

Add:
 Remote queues

com.ibm.mqe.mqbridge.MQeMQBridgeQueueAdminMsg
com.ibm.mqe.mqbridge.MQeCharacteristicLabels

Target with
a bridge to MQSeries

Add:
 Remote queues

com.ibm.mqe.mqbridge.*

Queue manager creation
and deletion

 com.ibm.mqe.MQeQueueManagerConfigure

� Copyright IBM Corp. 2002 146

Category Detail Classes required
Authenticators

mini-certificate com.ibm.mqe.attributes.DHk (source may be generated)
com.ibm.mqe.attributes.MQeSharedKey
com.ibm.mqe.attributes.MQeRandom
com.ibm.mqe.attributes.MQeWTLSCertificate
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator

Compressors

GZIP com.ibm.mqe.attributes.MQeGZIPCompressor

LZW com.ibm.mqe.attributes.MQeLZWCompressor
com.ibm.mqe.attributes.MQeLZWDictionaryItem

RLE com.ibm.mqe.attributes.MQeRleCompressor

Cryptors

triple DES com.ibm.mqe.attributes.MQe3DESCryptor

DES com.ibm.mqe.attributes.MQeDESCryptor

MARS com.ibm.mqe.attributes.MQeMARSCryptor

RC4 com.ibm.mqe.attributes.MQeRC4Cryptor

RC6 com.ibm.mqe.attributes.MQeRC6Cryptor

XOR com.ibm.mqe.attributes.MQeXorCryptor

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 147

Category Detail Classes required
Application security
services

Local security Add required:
 Cryptors

com.ibm.mqe.attributes.MQeLocalSecure

Message-level security Add required:
 Cryptors

com.ibm.mqe.attributes.MQeMAttribute

Message-level security
with digital signature &

validation

Add:
 Public registry.
Add required:
 Cryptors

com.ibm.mqe.attributes.MQeMTrustAttribute

Miscellaneous

Cryptographic support Application or installation
use only

com.ibm.mqe.attributes.MQeCL32
com.ibm.mqe.attributes.MQeGenDH (generates a version of
 com.ibm.mqe.attributes.MQeDHk.java)

Mini-certificate server
SupportPac ES03

 MQe_MiniCertServer (or command line tool)
See ES03 installation instructions

MQe_Explorer
SupportPac ES02

 MQe_Explorer
See ES02 installation instructions

Public registry Applicable to types of
message-level security
Add:
 Private registry
 with credentials

com.ibm.mqe.registry.MQePublicRegistry

Private registry Mini-certificate
management functions

com.ibm.mqe.attributes.MQeListCertificates
com.ibm.mqe.registry.MQePrivateRegistryConfigure

32 Requires com.ibm.mqe.attributes.MQeRandom

� Copyright IBM Corp. 2002 148

Category Detail Classes required
Queue manager services

Application run list com.ibm.mqe.RunList
com.ibm.mqe.RunListInterface

Bindings Access to Java classes
from other languages

C language com.ibm.mqe.bindings.*

User-defined MQe
extensions

 Authenticators
Communications adapters
Compressors
Cryptors
Logging classes
Message classes
Rule classes
Security control
Storage adapters
Trace handler

Figure 18-1: Class requirements

MQSeries Everyplace: Configuration Guide

� Copyright IBM Corp. 2002 149

Excepting a number of important classes that are only available as examples (such as
examples.rules.MQeAttribute Rule) the classes in the examples.* directories are not listed in
the above table.

The table indicates the classes are actually used by MQe, as opposed to the classes that are
referenced in the code. There are two considerations that apply:

1. Certain JVMs insist on loading all classes that are referenced, at the time
that the first class is loaded. In these cases, additional classes may be
required.

2. Certain smart linkers will optionally remove classes that are deemed not to
be required; this will happen to all classes that are dynamically loaded by
MQe (for example all classes referenced through an MQe class alias are
dynamically loaded). Care should be taken to either avoid this option or to
explicitly name classes that must be present, even though not apparently
referenced in the code.

� Copyright IBM Corp. 2002 150

19 Appendix A: Notices
The following paragraph does not apply in any country where such provisions are inconsistent with local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to state or imply
that only IBM's program or other product may be used. Any functionally equivalent program that does not infringe
any of the intellectual property rights may be used instead of the IBM product.

Evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM,
is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this
document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is distributed AS-IS.
The use of the information or the implementation of any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the customer's operational environment. While IBM has
reviewed each item for accuracy in a specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own
risk.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques
on various operating platforms. You may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the application programming interface for the operating platform for which the sample programs are written. These
examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business machines Corporation in the United States, or other
countries, or both.

AIX

IBM

MQSeries

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and/or other countries.

UNIX is a registered trademark of X/Open in the United States and other countries.

Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks of others.

End of Document

