
Using MQSeries Everyplace with
WebSphere Everyplace Server

Version 1.0

December 2001

Edward McCarthy
Muhammed Omarjee

Juan Rodriquez

IBM Corporation
Research Triangle Park

North Carolina
USA

Take Note!

Before using this report be sure to read the general information under "Notices".

Editor’s note:

This material was first published as a chapter in the IBM Redbook: Enterprise Wireless
Applications using IBM WebSphere Everyplace Server Service Provider and Enable
Offerings, SG24-6519. It has been updated by the Editor to reflect the MQSeries Everyplace
for Multiplatforms V1.26 product and the associated management tool MQe_Explorer V1.26.
Miscellaneous corrections and minor changes are included.

Editor: Barry Aldred
IBM UK Laboratories
Hursley Park
Winchester
Hampshire
UK SO21 2JN

First Edition, December 2001

This edition applies to Version 1.0 of Using MQSeries Everyplace with Websphere
Everyplace Server and to all subsequent releases and modifications unless otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to US Government Users -- Documentation related to restricted rights -- Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

 Copyright IBM Corp. 2001 ii

Using MQSeries Everyplace with WebSphere Everyplace Server

Table of contents
Figures..v
Examples .. vii
Notices... viii
Summary of amendments ... viii
SupportPac contents ... viii
Preface .. ix
Bibliography ..x
URLs x

Download sites ..x
Newsgroups...x

1 Overview... 1
1.1 Queue manager comparison... 1
1.2 Creating an MQSeries Everyplace queue manage... 2
1.3 Types of queue manager... 3
1.4 Channel types.. 4
1.5 Adapters .. 4
1.6 Types of messaging .. 5
1.7 Messages .. 6
1.8 Message persistence... 7
1.9 MQSeries Everyplace bridge... 7
1.10 Administration.. 7
1.11 SupportPac ES02 .. 8
1.12 Security.. 8

2 Installation and samples ... 10
2.1 Install overview .. 10
2.2 Supplied samples .. 10
2.3 Integration with Visual Age for Java .. 14
2.4 Installation of the transaction messaging samples.. 16

3 Chat room – An MQSeries Everyplace application .. 17
3.1 Overview.. 17
3.2 The queue managers .. 18
3.3 Connections... 19
3.4 Queue discovery.. 20
3.5 MQSeries Everyplace queue definitions ... 20
3.6 The application Java packages ... 23
3.7 Client side – class interaction.. 24
3.8 Server side – class interaction... 25

4 Starting a queue manager .. 26
4.1 Started by application .. 26
4.2 Started by the MQe_Explorer .. 28
4.3 Started by a servlet.. 28

5 Starting applications ... 31
5.1 Client side.. 31
5.2 Server side – application loading .. 31
5.3 Applications in WebSphere Application Server ... 33

6 Listening for messages... 34

 Copyright IBM Corp. 2000, 2001 iii

6.1 The MqeMessageListenerInterface... 34
7 Chat room application flows.. 35

7.1 Chat – client to server – direct... 35
7.2 Chat – client to server – via WebSphere... 36
7.3 Chat – server to client – direct... 37
7.4 Chat – Server to client – via WebSphere .. 38

8 Setting up the chat room queue managers .. 39
8.1 Preparing for setup .. 39
8.2 Creating ServerQm queue manager ... 39
8.3 Creating ClientQm queue manager... 43
8.4 Configuring WASSeverQm queue manager ... 44
8.5 Creating connections... 45
8.6 Define ServerQm queues.. 51
8.7 Define ClientQm queues ... 56
8.8 Define WASServerQm queues.. 61
8.9 Java Swing setup .. 61
8.10 Chat room application setup.. 61
8.11 Set up start up list.. 62
8.12 Configure WebSphere ... 62
8.13 Set up property files... 64
8.14 Starting the chat room application... 65
8.15 Operating the chat window.. 67
8.16 Asynchronous chatting .. 67
8.17 The admin GUI .. 69
8.18 Encryption and the stress test ... 70
8.19 Coding administration messages .. 73

9 Extending the YourCo Application.. 75
9.1 Overview.. 75
9.2 YourCo extensions .. 75
9.3 Customized authenticator adapter .. 77
9.4 Queue definitions... 78
9.5 Property file.. 80
9.6 Additional beans .. 80
9.7 Running the YourCo example ... 81

10 Integration with WebSphere Everyplace Suite ... 82
10.1 Using the Wireless Client and Gateway .. 83
10.2 Trying out the Wireless Gateway .. 88
10.3 Tracing... 90

11 OS/390.. 91
11.1 Requirements .. 91
11.2 Classpath... 91
11.3 Configure ServerQm.. 92
11.4 Modify ClientQm .. 93
11.5 Start chat room on OS/390.. 93

 Copyright IBM Corp. 2001 iv

Using MQSeries Everyplace with WebSphere Everyplace Server

Figures
Figure 1-1 MQSeries Everyplace components 1
Figure 1-2 Queue manager configuration 3
Figure 1-3 MQSeries Everyplace message structure 7
Figure 2-1 Expanded view of a queue manager 12
Figure 2-2 Importing .jar files 15
Figure 3-1 Overview of application 18
Figure 3-2 Chat room application queues 23
Figure 3-3 Class object interaction - client side 24
Figure 3-4 Class object interaction - server side 25
Figure 8-1 Initial MQe_Explorer window 39
Figure 8-2 Setting the name and type of ServerQm 40
Figure 8-3 Setting the incoming communications parameters of ServerQm 41
Figure 8-4 ServerQm creation confirmation 41
Figure 8-5 Expanded tree view of ServerQm 42
Figure 8-6 Defining a queue manager alias 43
Figure 8-7 Setting name and type of ClientQm 44
Figure 8-8 ClientQm creation confirmation 44
Figure 8-9 Defining a connection to a remote queue manager 46
Figure 8-10 Defining the location of a remote queue manager 47
Figure 8-11 Defining a connection using the HTTP adapter 48
Figure 8-12 Defining an indirect connection 49
Figure 8-13 Defining an alias on a connection 51
Figure 8-14 Naming the queue to be created 52
Figure 8-15 Setting up alias names for this queue 53
Figure 8-16 Defining a remote queue 54
Figure 8-17 Creating the store and forward queue 55
Figure 8-18 Adding the client queue manager as a target to the store and forward queue 56
Figure 8-19 Defining a remote queue on the client 58
Figure 8-20 Defining a home server queue on the client 60
Figure 8-21 Defining the ChatRoom servlet 63
Figure 8-22 Initial server-side chat window 66
Figure 8-23 Initial client-side chat window 67
Figure 8-24 Messages waiting to be sent 68
Figure 8-25 The administration GUI 69
Figure 8-26 MQSeries Everyplace trace window 70
Figure 8-27 Selecting a cryptor adapter 71
Figure 8-28 Displaying stress test messages 72
Figure 8-29 Encrypted message contents 73
Figure 9-1 Authentication adapter flow 77
Figure 9-2 Specifying a customized authentication adapter 79
Figure 9-3 YourCoQuery password prompt 81
Figure 10-1 Integration with the Wireless Gateway 83
Figure 10-2 Chat room application over a standard LAN 84
Figure 10-3 Wireless gatekeeper GUI 85
Figure 10-4 Selecting no authentication 86
Figure 10-5 Configuring the Wireless Gateway client 87

 Copyright IBM Corp. 2000, 2001 v

Figure 10-6 Incorporating the Wireless Gateway 87
Figure 10-7 Wireless connections 88
Figure 10-8 Connecting to the Wireless Gateway 89

 Copyright IBM Corp. 2001 vi

Using MQSeries Everyplace with WebSphere Everyplace Server

Examples
Example 2-1 Output from running CreateExampleQm.bat 12
Example 2-2 Output from running ExampleMQeClientTest 14
Example 4-1 Reading in the .ini file 26
Example 4-2 Parsing the .ini file 27
Example 4-3 Processing the alias entries 27
Example 4-4 Activating the queue manager 27
Example 4-5 Obtaining the .ini file when starting in WebSphere 29
Example 4-6 Activating a channel manager 29
Example 4-7 Passing HTTP input to the queue manager 30
Example 5-1 Application loading 31
Example 5-2 Passing parameters to applications 31
Example 5-3 Saving a queue manager reference 32
Example 5-4 The RoomMgr run method 32
Example 5-5 Application-related start-up data 32
Example 5-6 Accessing application start-up data 33
Example 5-7 Processing messages in WebSphere 33
Example 6-1 Adding a message listener 34
Example 6-2 Retrieving a message 34
Example 7-1 Putting a message 36
Example 7-2 Setting the value of the target queue 37
Example 8-1 Sample clientChat property file 64
Example 8-2 Properties to locate EJB 65
Example 9-1 Handling messages on the YourCoQuery queue 76
Example 9-2 Calling bean to access YourCo information 76
Example 9-3 Calculating the total of the different leave types 77
Example 9-4 Returning the password for authentication 78
Example 9-5 Validating the password 78
Example 9-6 YourCo query reply message 81
Example 10-1 IP status 89
Example 11-1 ServerQm .ini file for OS/390 92
Example 11-2 Adding the chat room application to the .ini file 93

 Copyright IBM Corp. 2000, 2001 vii

Notices
References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “AS-IS”. The use of this information and the implementation of any of the
techniques is the responsibility of the reader. Much depends on the ability of the reader to
evaluate these data and project the results to their operational environment.

Trademarks and service marks
The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

• IBM

• MQSeries

• MQSeries Everyplace

• MQe

• Websphere

The following terms are trademarks of other companies:

• Windows 98, Windows NT, Windows 2000, Windows XP Microsoft Corporation

Summary of amendments

Date Changes

19 December 2001 Version 1.0 (initial release)

SupportPac contents
This SupportPac comprises:

• Using MQSeries Everyplace with Websphere Everyplace Server manual (this book)

• Sample code

 Copyright IBM Corp. 2001 viii

Using MQSeries Everyplace with WebSphere Everyplace Server

Preface
This book describes transaction messaging, as implemented by the MQSeries Everyplace
component of the WebSphere Everyplace Server. The topics covered are:

Overview on page 1: ♦

♦

♦

♦

♦

o Provides a description of MQSeries Everyplace and its features, together with
a comparison with standard MQSeries

Installation and samples on page 10:

o Describes installation of MQSeries Everyplace, and how to run one of the
supplied examples

Chat room – An MQSeries Everyplace application on page 17, to Setting up the
chat room queue managers on page 39:

o Describe a sample application called the Chat room, the aim of which is to
demonstrate various features of MQSeries Everyplace such as

o Running the queue manager in client and server mode

o Running the queue manager as a servlet in WebSphere Application Server

o Different queue types, such as local and home server

o Synchronous and asynchronous messaging

o Encryption of messages

Extending the YourCo Application on page 75:

o Describes how MQSeries Everyplace can be used to extend access to
existing applications

o Demonstrates a simple customized authentication adapter

Integration with WebSphere Everyplace Suite on page 82:

o Describes how the Wireless Gateway can be used to support MQSeries
Everyplace applications on wireless-type devices

 Copyright IBM Corp. 2000, 2001 ix

Bibliography
o MQSeries Everyplace Version 1.2: Introduction, IBM Corporation, SC34-5843

o MQSeries Everyplace Version 1.2: Java Programming guide, IBM
Corporation, SC34-5845

o MQSeries Everyplace Version 1.2: Java Programming reference, IBM
Corporation, SC34-5846

o MQSeries SupportPac ES02: MQSeries Everyplace for Multiplatforms –
MQe_Explorer, User Guide

o IBM Redbook, Enterprise Wireless Applications using IBM WebSphere
Everyplace Server Service Provider and Enable Offerings, IBM Corporation,
SG24-6519

o IBM Redbook, Programming with Visual Age for Java V3.5, IBM Corporation,
SG24-5264

URLs
The following URLs provide useful resources for both MQSeries Everyplace and
MQe_Explorer:

Download sites

IBM WebSphere (MQSeries SupportPacs):

http://www.ibm.com/software/mqseries/txppacs

IBM Boulder (MQSeries Everyplace downloads):

http://www6.software.ibm.com/dl/mqsem/mqsem-p

IBM Visual Age Micro Edition (Java stacks & related technologies):

http://www.embedded.oti.com

Microsoft Corp. (JVM downloads):

http://www.microsoft.com/java/download.htm

Newsgroups

IBM Software Group (MQSeries Everyplace newsgroup):

news://news.software.ibm.com/ibm.software.websphere.mqeveryplace

 Copyright IBM Corp. 2001 x

http://www.ibm.com/software/mqseries/txppacs
http://www6.software.ibm.com/dl/mqsem/mqsem-p
http://www.embedded.oti.com/
http://www.microsoft.com/java/download.htm
news://news.software.ibm.com/ibm.software.websphere.mqeveryplace

Using MQSeries Everyplace with WebSphere Everyplace Server

1 Overview
The purpose of MQSeries Everyplace (MQe) is to provide a once-only assured delivery of
messages for applications running on devices with one or more of the following
characteristics:

o Typically could not support a fully configured MQSeries queue manager

o Connect via a wireless protocol

The types of devices that would use MQSeries Everyplace are:

o Personal Digital assistants

o Phones

o Sensors

o Laptops

As these sorts of devices are typically being used outside of an organizations intranet,
security is an important factor. MQSeries Everyplace provides comprehensive security
capabilities to address this aspect.

A detailed introduction to MQSeries Everyplace can be found in the manual, MQSeries
Everyplace Introduction, GC34-5843. The following sections provide a brief overview of the
MQSeries Everyplace functionality. The diagram below gives a high level overview of the
MQSeries Everyplace components.

Device(s)

Existing MQSeries
Customer-written
(New)

Customer-written
(Existing or New)

Application

MQ SPI

MQSeries
Everyplace

Gateway Server

Windows NT/2000
AIX

MQSeries
Everyplace
Gateway

Application

MQ SPI/MQI

MQSeries

MQSeries
Integrator

MQSeries
Workflow

Network

 Any MQSeries
MQSeries Integrator
MQSeries Workflow
Platform

Application

MQI

MQSeries
Everyplace
Device Code

Java
 - EPOC
 - WinCE
 - Win xx
C subset
 - Palm OS

Figure 1-1 MQSeries Everyplace components

1.1 Queue manager comparison
The concept of queue managers is quite different in MQSeries Everyplace compared to the
standard MQSeries product.

With standard MQSeries, the typical process is for an MQSeries system administrator to
install the MQSeries product, and then create a queue manager, channels and queues. The
queue manager is generally started and remains active for an extended period of time, e.g.

 Copyright IBM Corp. 2000, 2001 1

weeks or longer. Application developers then use the MQSeries APIs to send and receive
messages from the queue manager.

In MQSeries Everyplace however, a set of Java classes and C bindings are provided, which
are used by programs to create and control the operation of queue managers. For example,
in standard MQSeries, the CRTMQM command is used to create a queue manager, however
there is no equivalent command with MQSeries Everyplace. In fact, there are no commands
at all.

MQSeries Everyplace queue managers are object-oriented. Essentially, an MQSeries
Everyplace queue manager functions as part of the application code. They are active only as
long as the application program that activates them is running. Of course, one application can
take responsibility for initiating and terminating the queue manager, and then other
applications can be concurrently or successively run against this persistent queue manager.

For example, in the case where the Java classes are used to create a queue manager, the
queue manager exists as an object in the Java virtual machine (JVM).

1.2 Creating an MQSeries Everyplace queue manager
To simplify the discussion, we will describe the process of creating MQSeries Everyplace
queue managers using the supplied Java classes.

Creating an MQSeries Everyplace queue manager typically1 involves writing a program. The
program needs to do the following:

1. Create and activate an instance of MQeQueueManagerConfigure

2. Set queue manager properties and queue manager definition

3. Create definitions for the default queues

4. Close the MQeQueueManagerConfigure instance

Typically an .ini file is used to store start-up parameters associated with the queue manager.
It contains a number of parameters that describe the queue manager, with probably the two
most important being:

o The name of the queue manager

o Details about the registry location used to store definitional information that
describes the queue manager

The registry location is a directory on the disk subsystem where MQSeries Everyplace will
store queue manager information, such as queue and connection definitions.

Based on the .ini file contents, a program uses the appropriate Java classes to firstly create
the queue manager and then to start it running when required.

More details about this process can be found in the MQSeries Everyplace Programming
Guide, SC34-5845.

1 The MQe_Explorer, available in the ES02 SupportPac, will create queue managers without
programming; likewise, sample code shipped with MQSeries Everyplace.

 Copyright IBM Corp. 2001 2

Using MQSeries Everyplace with WebSphere Everyplace Server

1.3 Types of queue manager
All MQSeries Everyplace queue managers are essentially the same, but the functionality used
determines their role. The four roles (or types) of MQSeries Everyplace queue managers are:

o Client

o Peer

o Server

o Gateway

Although a particular queue manager normally plays just one role at a time, it is possible for a
queue manager to be simultaneously a client, peer, server and gateway, for example.

The process for creating and starting the queue manager is still the same regardless of what
type of queue manager is being used. The following diagram shows an overview of the
configuration for an MQSeries Everyplace queue manager:

Queue
Manager

Adapter

Registry

Configuration Data
- Queue Manager
- Queues
- Connections
- Security

Configuration
Store

Start-up
Parameters
- MQeFields
(.ini file)

Start-up parms

Adapters

Default Queues

Queue
Store

Figure 1-2 Queue manager configuration

Client queue manager

A client queue manager can connect to any number of other MQSeries Everyplace queue
managers via a client/server type channel. A client queue manager would typically be active
for a short period of time. A characteristic of a client queue manager is that it initiates all data
transfers to other queue managers. Clients can connect to multiple servers simultaneously if
required.

For example, a salesperson each time they make a sale may start up an application on their
laptop. The application starts the client queue manager, and writes information to a queue,
and then ends, stopping the queue manager as well. At the end of the day, the salesman
dials up the office from home, starts the application again, which starts the client queue
manager, which can now connect to a server queue manager and transfer the messages.

Peer queue manager

A peer queue manager is one that can connect to other peer queue managers. Irrespective of
who initiated the connection, the peers can subsequently both exploit it to transfer data. Peers
use peer-to-peer channels as opposed to the client/server channels used by clients and
servers. Client/server channels are able to easily pass through firewalls; peer channels are
not.

 Copyright IBM Corp. 2000, 2001 3

Server queue manager

A server queue manager is one that typically runs for a long period of time and supports
multiple simultaneously attached clients. Additionally, it can connect to any number of server
queue managers. Typically such a queue manager would be located at some central location
in the organization, and the client queue managers would connect to it.

Gateway queue manager

A gateway queue manager is a server queue manager that has been configured with the
ability to use the MQSeries-bridge function. This functionality allows messages to flow
between MQSeries Everyplace queue managers and standard MQSeries queue managers.

1.4 Channel types
In MQSeries Everyplace, your program would define a connection to one or more queue
managers. When the program tries to send a message, then MQSeries Everyplace will
dynamically create a channel to the other queue manager.

MQSeries Everyplace has two types of channels:

o Peer-to-peer

o Client/server

Peer to peer channel

A peer-to-peer channel has the following characteristics:

o Can be established by the queue manager at either end of the channel

o Queue manager at each end can send or receive messages

o A queue manager can have any number of active peer to peer channels to
other queue managers

o A queue manager can only have one active peer to peer channel connected
to it

Client server channel

A client/server channel has the following characteristics:

o Can be established from the client end of the connection

o Only the queue manager at the client end can send or retrieve messages

o A client queue manager can connect via client server channels to any
number of server queue managers

1.5 Adapters
In MQSeries Everyplace, adapters are used to map MQSeries Everyplace components into
device interfaces. Certain adapters are also used to control storage of queues into
appropriate storage media.

 Copyright IBM Corp. 2001 4

Using MQSeries Everyplace with WebSphere Everyplace Server

MQeDiskFieldsAdapter

Provides support for reading and writing MQeFields2 object data and message information to
a local file system. Typically, this is the default adapter for queues and the registry, since it
offers the greatest assurance that data has not been lost. It does not rely on the operating
system to do lazy writes to disk.

MQeMemoryFields Adapter

Provides a non-persistent, temporary store for messages, i.e. in memory. Typically used to
store queues where fast access is required and where the messages need not survive the
queue manager, nor survive system failure. In the current release, this adapter cannot be
used for the registry.

MQeReducedDiskFieldsAdapter

Provides support for a high-speed alternative to the MQeDiskFieldsAdapter for writing
MQeFields object data and message information to disk. However, it does introduce a
dependency on the operating system staying up long enough to empty its buffers on the
physical disk subsystem.

MQeTcpipAdapter

Provides support for reading data over TCP/IP streams. This adapter is used as the ancestor
object for other adapters and cannot be used directly.

MQeTcpipHttpAdapter

Extends the MQeTcpip adapter to provide basic support for the for the HTTP 1.0 protocol.

MQeTcpipLengthAdapter

Extends the MQeTcpipAdapter to provide a simple, byte efficient protocol.

MQeTcpipHistoryAdapter

Extends the MQeTcpipAdapter to provide a more efficient protocol that caches recently used
data. This adapter takes options, such as <PERSIST><HISTORY>.

MQeUdpipAdapter

Provides support for assured data transfer over UDP/IP datagrams.

MQeWesAuthenticationAdapter

Provides support for tunneling HTTP requests through WebSphere Everyplace Authentication
and transparent proxies.

1.6 Types of messaging
In standard MQSeries all messaging is asynchronous, in that a message must be committed
to a queue, before another process can remove the message.

In MQSeries Everyplace, there are two types of message delivery, asynchronous and
synchronous.

2 MQeFields is the base class from which MQSeries message objects are constructed.

 Copyright IBM Corp. 2000, 2001 5

Asynchronous Messaging

Asynchronous messaging is similar to standard MQSeries operation. An application on one
MQSeries Everyplace queue manager wants to put message to a queue located on some
other MQSeries Everyplace queue manager. The local queue manager requires a remote
queue definition of the target queue.

The application puts the message to the remote queue, but it is actually stored locally in the
local definition of the remote queue. At some undetermined time later, MQSeries Everyplace
will deliver that message to the remote queue at the remote queue manager. Actual
transmission of the message would occur when the connection between the queue managers
became available.

Where these messages for remote queues are stored is controlled by the local definition of
that queue on the local queue manager. Different adaptors are available to control were these
messages are stored. For example there is an adaptor to have the messages saved to disk,
but there is also one to save the message to memory.

Synchronous Messaging

Synchronous messaging is when an application attempts to put a message to a remote queue
at a remote queue manager. MQSeries Everyplace will transmit the message only if both the
local and target queue managers are online and a connection can be established.

The advantage of synchronous messaging offers is one of performance in that the message
is not saved locally, but rather transmitted immediately, and knowing that a message has
reached its destination.

1.7 Messages
In standard MQSeries, there are a number of different types of fixed format messages. The
main one is the standard message that consists of an MQSeries Message Descriptor and the
application message. The message descriptor contains a number of fields used by MQSeries.

In MQSeries Everyplace, messages are message objects.

There is no concept of a message header or body. In MQSeries Everyplace, a message
consists of a unique identifier that is generated automatically, plus one or more named field
objects.

Each field object consists of:

o A name

o A type indicator, e.g. numeric, character

o A value

 Copyright IBM Corp. 2001 6

Using MQSeries Everyplace with WebSphere Everyplace Server

The following diagram depicts this concept:

Message Data Data Type Name

Field Object

Field

Message

Field Field

Figure 1-3 MQSeries Everyplace message structure

Each field object is responsible for defining how it is stored and retrieved from a queue. When
an application builds a message, it will eventually put the message to a queue, when it does
MQSeries Everyplace uses the dump specification on each field object to determine how the
value of the field is stored on the queue for transmission. At the end, when an application
retrieves the message, MQSeries Everyplace will use the restore specification on each field
object to determine how to restore the transmitted data back to its original format.

1.8 Message persistence
There is no concept of persistent and non-persistent messages in MQSeries Everyplace, as
essentially every message is treated as persistent. However the strength of this persistence
depends on what method is being used to achieve this persistence.

For example you could define that messages are to be persisted to memory, so clearly if the
device was turned off the messages are lost. Alternatively you could specify that the
messages be written to disk. This means that if the device is powered off, the messages are
still there on the disk drive for subsequent retrieval and transmission

MQSeries Everyplace supplies a number of adaptors to handle this persistence, but
application programmers can develop their own, for example to persist message data to a
database.

1.9 MQSeries Everyplace bridge
The mechanism that allows standard MQSeries and MQSeries Everyplace to exchange
messages is referred to as the MQSeries Everyplace Bridge.

This bridging mechanism is in reality a standard MQSeries Java client connection into a
standard MQSeries queue manager but used in such a way as to maintain state history of
message traffic. This technique results in once-only assured delivery of messages, which is
not a built-in feature of MQSeries client connections. Hence messages transmitted between
MQSeries Everyplace and MQSeries cannot be lost.

A default transformer is supplied with MQSeries Everyplace, which handles conversion
between the standard MQSeries format and the MQSeries Everyplace message structure.
However it is possible to develop your own customized transformer.

1.10 Administration
The standard MQSeries product provides administration tools, for example the runmqsc
command, which allows you to define queues, channels etc.

 Copyright IBM Corp. 2000, 2001 7

MQSeries Everyplace administration is done via specialized administration messages sent to
the queue manager. To perform this type of administration requires that the queue manager
be defined with the following two queues:

o AdminQ

o AdminReplyQ

To perform this administration requires the writing of an application program. The program
needs to build the administration request and then send it to the AdminQ on the target queue
manager. When the message is received at the target queue manager the message is
processed. The resource that the message is targeted at uses the administration information
in the message to action the request.

1.11 SupportPac ES02
As mentioned in the previous sections, creation of the queue manager and associated objects
is achieved by writing programs to do this. While not a complex task, it does require some
familiarity with MQSeries Everyplace to achieve this.

To get going faster with MQSeries Everyplace, it is strongly recommended to use SupportPac
ES02, available at no charge from IBM. This contains the MQe_Explorer program, with full
IBM service support for customers with an MQSeries Everyplace deployment license.
MQe_Explorer is a Java-based GUI administration tool. It is a set of classes that perform the
tasks that have been described above. The GUI interface lets you define queue managers,
queues and connections, and perform many other functions related to MQSeries Everyplace.

It can be downloaded from:

http://www.ibm.com/software/mqseries/txppacs/es02.html

1.12 Security
MQSeries Everyplace provides a comprehensive set of security features to protect message
data when held locally and when transmitted between queue managers. These features
provide authentication, encryption and compression.

Full details about this security are comprehensively covered in the MQSeries Everyplace
Introduction, GC34-5843 manual. Briefly however, what is provided is three categories of
security:

o Local security, which provides local protection of messages

o Queue based security, which provides protection of messages between
queue managers, and

o Message level security, which provides message level protection between
initiator and recipient.

The above security features are invoked when a message is stored or retrieved by MQSeries
Everyplace.

Local security

Local security can be used by an application to store a message locally in a queue manager,
for example to encrypt a message stored on a local queue.

 Copyright IBM Corp. 2001 8

http://www.ibm.com/software/mqseries/txppacs/es02.html

Using MQSeries Everyplace with WebSphere Everyplace Server

Queue based security

Using queue based security means that the application can leave the issue of security to
MQSeries Everyplace. The queues can be defined with attributes that control the type of
authentication and encryption used between queue managers.

The only exception is that authentication cannot be done for asynchronous messaging. If
authentication is required then message level security must be used.

Message level Security

To use message level security requires the application to set up the message level attribute
when putting the message to the queue. There are two supplied attributes that can be used
by applications:

o MQeMAttribute

o MQeMTrustAttribute

MQeMAttribute could be used between queue managers where there is high degree of trust,
as it provides a high level of encryption without the use of Public Key Infrastructure
technology.

MQeMTrustAttribute provides a more advanced solution involving the use of Public Key
Infrastructure. This approach involves the use of digital certificates to authenticate the parties
at both ends. As with all certificate based security mechanisms, it is a non-trivial exercise to
setup and manage. The documentation in the MQSeries Everyplace does cover this area in
depth.

 Copyright IBM Corp. 2000, 2001 9

2 Installation and samples
This section provides a brief overview on installation of MQSeries Everyplace and running
some of the samples supplied with that product. A detailed description is available in the
MQSeries Everyplace Read Me First manual, GC34-5862.

2.1 Install overview
On AIX platforms, the WebSphere Everyplace Server installer can be used to install
MQSeries Everyplace.

On Windows platforms, MQSeries Everyplace installation is done by executing a supplied
Java .jar file. When executed a standard installation process is driven, asking where you want
to install the product to etc. For example, accepting all the defaults during installation on a
Windows 2000 system would result in the product being installed into the C:\Program
Files\MQe directory.

After installation is complete, the directory where MQSeries Everyplace was installed will
contain the Java classes and C bindings that can be used by applications.

Version 1.2.1 of MQSeries Everyplace is shipped with WebSphere Everyplace Server.
However version 1.2.6 of MQSeries Everyplace can be downloaded from

http://www.ibm.com/software/mqseries/everyplace/.

This later version, V1.26 was used during the development of this chapter.

2.2 Supplied samples
A number of sample programs are supplied with the product, which can be used to both verify
the installed classes are working, and to provide sample code showing how to use the
classes.

Chapter 2 of the MQSeries Everyplace Programming Guide, SC34-5845, provides details of
the supplied examples and the different functionality they show.

The simplest example to try as a first step would be to create and then use an MQSeries
Everyplace queue manager.

Creating a sample queue manager

The first step is to create an example queue manager. The Windows platform is used in this
example, but the process is the similar on a Unix platform.

Firstly open a Command prompt window, and change to the directory where MQSeries
Everyplace examples for Windows are installed, in this case to C:\Program
Files\MQe\Java\Demo\Windows.

To create a sample queue manager type in:

CreateExampleQm.bat

 Copyright IBM Corp. 2001 10

http://www.ibm.com/software/mqseries/everyplace/.

Using MQSeries Everyplace with WebSphere Everyplace Server

This batch file uses as input an .ini file called ExamplesMQeServer.ini. The output produced
from running this command looks like this (the output below has had contiguous comments
significantly edited and re-formatted to aid readability):

C:\Program Files\MQe\Java\demo\Windows>createexampleqm

Create the example queue manager – ExampleQM

This batch file invokes the java class that creates and populates a registry for the example queue
manager. The registry must be populated before a Queue Manager can run. The queue manager
created is determined by entries in queue manager startup parameters. The examples shipped
with MQSeries Everyplace use ini files to hold the parameters. By default
.\ExamplesMQeServer.ini startup parameters file is used.

Parameters

java environment name (see JavaEnv.bat file for details)

C:\Program Files\MQe\Java\demo\Windows>call JavaEnv

C:\Program Files\MQe\Java\demo\Windows>Set JDK=c:\IBM\jdk1.1.8

C:\Program Files\MQe\Java\demo\Windows>set JavaCmd=java

C:\Program Files\MQe\Java\demo\Windows>Set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;
C:\WINNT\System32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;
C:\Program Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin

C:\Program Files\MQe\Java\demo\Windows>set MQE_BASE_DIR=C:\Program Files\MQe

C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program Files\MQe\java;..\..

C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program
Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip

C:\Program Files\MQe\Java\demo\Windows>set MQDIR=C:\Program Files\IBM\MQSeries

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program Files\IBM\MQSeries\java\lib"
set CLASSPATH=C:\Program Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip;C:\Program
Files\IBM\MQSeries\java\lib;C:\Program Files\IBM\MQSeries\java\lib\com.ibm.mq.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mqbind.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mq.iiop.jar

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program Files\IBM\MQSeries\java\lib"
set PATH=c:\IBM\jdk1.1.8\bin;C:\Program Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\Syst
em32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program Files\IBM\MQSeries\java\lib

 Copyright IBM Corp. 2000, 2001 11

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program Files\IBM\MQSeries\bin" set
PATH=c:\IBM\jdk1.1.8\bin;C:\Program Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\Syst
em32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program Files\IBM\MQSeries\bin;

C:\Program Files\MQe\Java\demo\Windows>java
examples.install.SimpleCreateQM.\ExamplesMQeServer.ini .\ExampleQM\Queues\

C:\Program Files\MQe\Java\demo\Windows>

Example 2-1 Output from running CreateExampleQm.bat

After this sample completes, a new directory called ExampleQM will now be present. This is
the location specified to store the registry information and queues used for the sample queue
manager. An expanded view of this directory is shown below:

Figure 2-1 Expanded view of a queue manager

Exercising the example queue manager

The next step is to use this example queue manager. From the same Command prompt
window type in:

ExampleMQeClientTest

What the sample does is to write a simple message to the queue
SYSTEM.DEFAULT.LOCAL.QUEUE and then retrieve it.

 Copyright IBM Corp. 2001 12

Using MQSeries Everyplace with WebSphere Everyplace Server

The output produced is shown below:

C:\Program Files\MQe\Java\demo\Windows>examplesmqeclienttest

C:\Program Files\MQe\Java\demo\Windows>call JavaEnv

C:\Program Files\MQe\Java\demo\Windows>Set JDK=c:\IBM\jdk1.1.8

C:\Program Files\MQe\Java\demo\Windows>set JavaCmd=java

C:\Program Files\MQe\Java\demo\Windows>Set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\Syst
em32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin

C:\Program Files\MQe\Java\demo\Windows>set MQE_BASE_DIR=C:\Program Files\MQe

C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program Files\MQe\java;..\..

C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program
Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip

C:\Program Files\MQe\Java\demo\Windows>set MQDIR=C:\Program Files\IBM\MQSeries

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program Files\IBM\MQSeries\java\lib"
set CLASSPATH=C:\Program Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip;C:\Program
Files\IBM\MQSeries\java\lib;C:\Program Files\IBM\MQSeries\java\lib\com.ibm.mq.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mqbind.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mq.iiop.jar

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program Files\IBM\MQSeries\java\lib"
set PATH=c:\IBM\jdk1.1.8\bin;C:\Program Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\Syst
em32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program Files\IBM\MQSeries\java\lib

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program Files\IBM\MQSeries\bin" set
PATH=c:\IBM\jdk1.1.8\bin;C:\Program Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\Syst
em32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program Files\IBM\MQSeries\bin;

C:\Program Files\MQe\Java\demo\Windows>java examples.application.Example1 ExampleQM
.\ExamplesMQeClient.ini
Example1 Started
..Start a queue manager using ini file: .\ExamplesMQeClient.ini
... nested fields [Registry]
LocalRegType = FileRegistry
DirName = .\ExampleQM\Registry\
Adapter = RegistryAdapter
... nested fields [QueueManager]
Name = ExampleQM
... nested fields [Alias]
QueueManager = com.ibm.mqe.MQeQueueManager
DefaultTransporter = com.ibm.mqe.MQeTransporter
RegistryAdapter = com.ibm.mqe.adapters.MQeDiskFieldsAdapter
Trace = examples.trace.MQeTrace
MsgLog = com.ibm.mqe.adapters.MQeDiskFieldsAdapter

 Copyright IBM Corp. 2000, 2001 13

EventLog = examples.log.LogToDiskFile
PrivateRegistry = com.ibm.mqe.registry.MQePrivateSession
FastNetwork = com.ibm.mqe.adapters.MQeTcpipHistoryAdapter
FileRegistry = com.ibm.mqe.registry.MQeFileSession
ChannelAttrRules = examples.rules.AttributeRule
AttributeKey_2 = com.ibm.mqe.attributes.MQeSharedKey
AttributeKey_1 = com.ibm.mqe.MQeKey
DefaultChannel = com.ibm.mqe.MQeChannel
Network = com.ibm.mqe.adapters.MQeTcpipHttpAdapter

..Started queue manager: ExampleQM
..Create a message and add data:Example1:Humpty dumpty sat on a wall ...
..Put the message to QM/queue: ExampleQM/SYSTEM.DEFAULT.LOCAL.QUEUE
..Get a message from QM/queue: ExampleQM/SYSTEM.DEFAULT.LOCAL.QUEUE
..Message retrieved contains data Example1:Humpty dumpty sat on a wall ...
Example1 Finished
C:\Program Files\MQe\Java\demo\Windows>

Example 2-2 Output from running ExampleMQeClientTest

As mentioned in the overview section, the queue manager though defined, only becomes
active when an application program activates it.

2.3 Integration with Visual Age for Java
After installing MQSeries Everyplace, in the <install directory>/java/jars directory are the
following .jar files containing the Java classes associated with the product:

o MQeExamples.jar

o MQEHighSecurity.jar

o MQeMQBridge.jar

o MQeMiniCertificateServer.jar

o MQeGateway.jar

o MQeDevice.jar

o MQeDiagnostics.jar

 Copyright IBM Corp. 2001 14

Using MQSeries Everyplace with WebSphere Everyplace Server

To develop programs using Visual Age for Java that use MQSeries Everyplace, the above
packages need to be imported. The following outlines the steps to do this:

1. Start VisualAge for Java

2. Create a project to contain the application you plan to develop, for example
ITSO WES MQe Example

3. Import the MQSeries Everyplace Java .jar files into the project. From the
"workbench" window, select file -> import. Select the radio button to indicate
that the source to be imported is a .jar file. Press Enter, and you will then
view the display shown below:

Figure 2-2 Importing .jar files

4. Use the Browse button to locate the .jar file to import and then click Finish.

Additional information on using Visual Age for Java to develop applications can be found in
the IBM Redbook, Programming with Visual Age for Java V3.5, SG24-5264.

 Copyright IBM Corp. 2000, 2001 15

2.4 Installation of the transaction messaging samples
A number of transaction messaging samples that complement the text in this SupportPac are
supplied in the accompanying zip file. This contains the following:

1. Packages for the chat room application:

itso.mqe.chatwindow
itso.mqe.chatclient
itso.mqe.chatserver

2. Package for running the MQSeries Everyplace queue manager as an
application in Websphere

itso.mqe.was

3. Package for implementing a sample authentication adapter

itso.mqe.security

4. Package for extending the WebSphere YourCo examples

WebSphereSamples.YourCo.Timeout

5. Properties and miscellaneous text files

The default unzipping of the file will create an appropriate relative directory structure. In the
subsequent text it is assumed that the root directory is C:\ED02. Further detailed installation
instructions are given as required, in the sections below:

Chat room application setup on page 61.

Configure WebSphere on page 62.

Set up property files on page 64.

Additional beans on page 80.

 Copyright IBM Corp. 2001 16

Using MQSeries Everyplace with WebSphere Everyplace Server

3 Chat room – An MQSeries Everyplace
application

This section describes a sample application that uses MQSeries Everyplace. The aim of this
application is to show how an application can use MQSeries Everyplace. The application
shows the use of:

o Server type queue manager

o Client type queue manager

o Queue manager running as a servlet in WebSphere Application Server

o Local queue

o Remote queue

o Store and forward queue

o Synchronous messaging

o Asynchronous messaging

o Use of queue manager and queue aliasing

o Controlling access to a queue using an authority adapter

o Encryption of messages

The Windows platform is used throughout this chapter to describe the application, however
the AIX platform can be used if desired.

The application consists of three queue managers. They can all be run on one Windows
system, or spread out over three if desired.

3.1 Overview
This sample application is an implementation of a chat room, except that MQSeries
Everyplace is used to transfer the "chat" as messages between the two participants. The
example has been kept simple, and as such this particular chat room only supports two
participants, the server and one client.

The diagram below shows an overview of the application and the queue managers used.

Chat Direct

Chat Room

Client

Chat Via WebSphere

Chat Direct

Chat Room

Chat Via WebSphere

Server

WASServerQm

WebSphere Application Server

ClientQm ServerQm

Chat Direct

Chat Room

Client

Chat Via WebSphere

Chat Direct

Chat Room

Chat Via WebSphere

Server

WASServerQm

WebSphere Application Server

ClientQm ServerQm

 Copyright IBM Corp. 2000, 2001 17

Figure 3-1 Overview of application

Firstly we will describe how the application works, then describe how to setup this application
and the programs that support it.

The chat room

This application implements a simple chat room. When run, two Java Swing windows are
displayed, the titles of the windows being:

o MQSeries Everyplace Server

o MQSeries Everyplace Client

Each window has an output text box to display chat messages that are sent and received.

Each window has two input text boxes. Text entered into the box labeled Chat Direct, is sent
direct between the ClientQm and ServerQm queue managers.

Text entered into the box labeled Chat Via WebSphere is also sent between the ClientQm
and ServerQm queue managers, but passes through the WASServerQm queue manager
running in a servlet in WebSphere Application Server.

Additionally the client window has three extra buttons labeled:

o Trigger Transmission

o Display Admin GUI

o YourCo Secure Query

The Trigger Transmission button is described in Asynchronous chatting on page 67.

The Display Admin GUI button is described in The admin GUI on page 69.

The YourCoQuery button is described in YourCo extensions on page 75.

When first started, the Chat Direct input text box in the server window is disabled. Only when
the client sends a message does it become enabled.

All that is required to send a message to the other participant is to type in some text in the
input text boxes, and then press the Enter key.

3.2 The queue managers
Three MQSeries Everyplace queue managers are used for this application.

Client side

The application that operates the client side of the chat room uses a client type queue
manager. This is an example of how an application is started, and then starts the queue
manager to perform messaging.

In this example the client queue manager is called ClientQm.

Server side

The application that operates the server side of the chat room uses a server type MQSeries
Everyplace queue manager. This is an example of how the queue manager is initially started,
and then an application is loaded after the start-up is complete.

 Copyright IBM Corp. 2001 18

Using MQSeries Everyplace with WebSphere Everyplace Server

In this example the server queue manager is called ServerQm.

WebSphere Application Server

Within WebSphere, a servlet is used to run the queue manager. This queue manager is used
to act as an intermediary queue manager between the client and server queue managers, but
is also used to allow access to the YourCo sample application that comes with the
WebSphere Application Server.

In this example the queue manager running in WebSphere is called WASServerQm.

Characteristics of the client-side queue manager

The client-side queue manager can establish a connection to any number of queue
managers, which in this case will be to ServerQM and WASServerQM. However no channel
listener is configured for this client-side queue manager, thus no other queue manager can
initiate a client/server channel connection to it.

This means that applications using this queue manager have two ways of receiving
messages:

o Using the getMessage API to get a message from a remote queue on some
remote queue manager, this requires that a connection to a remote queue
manager exists

o Relying on a home-server queue to pull messages from a store and forward
queue on a remote queue manager, which the client queue manager will then
place in a local queue, from were the application can use the getMessage
API to retrieve the message

Characteristics of the server-side queue manager

The server-side queue manager has a channel listener configured, so it is able to receive
connections from client and server type queue managers. It can also establish connections to
other server type queue managers, in this case to WASServerQm

Applications using this queue manager cannot directly put a message on to a queue located
at a remote client type queue manager.

Characteristics of the queue manager in WebSphere

The queue manager in WebSphere is started during the initialization phase of a servlet that is
invoked. This queue manager is a server type queue manager, but has no listener configured.
In essence, the HTTP server that receives HTTP requests is the de-facto listener for the
queue manager. Connections can be established in both directions between this queue
manager and the server-side queue manager.

3.3 Connections
There a number of connections between the various queue managers as follows:

ClientQm to ServerQm

This is a direct channel connection using the default adapter that is the TCP/IP adapter.
Messages are sent in IP packets back and forth over this connection between the queue
managers.

 Copyright IBM Corp. 2000, 2001 19

ClientQM to WASServerQm

This is a direct channel connection using the HTTP adapter. Messages are wrapped in HTTP
headers by the adapter code, and then sent to the machine running WebSphere Application
Server. In the definition is specified the name of the servlet in WebSphere Application Server
to be invoked.

ClientQm to ServerQmViaWas

This is an indirect channel definition. When it is defined, it is configured to first send the
messages to the queue manager WASServerQm. Configuration information in
WASServerQm will then be used to determine how the message is then sent on to the queue
manager named ServerQmViaWas.

ServerQm to WASServerQm

This is a direct channel connection using the HTTP adapter. Messages are sent wrapped in
HTTP headers.

WASServerQm to ServerQm

This is a direct channel connection using the TCP/IP adapter.

3.4 Queue discovery
One of the features of MQSeries Everyplace is an ability to perform queue discovery. For
example, say that there is an existing definition for a queue called ABC on ServerQm. If an
application running on another queue manager called ClientQm, tried to access that queue,
the ClientQm would detect that is has no local definition for this queue. MQSeries Everyplace
requires that the queue managers at each end have a local definition of the queue defined
with the same attributes. This comes into play when MQSeries Everyplace is establishing a
connection between the queue managers, as many connections can be established, but with
different attributes, depending on the queues involved.

When ClientQm detects that it does not have a local copy definition of a queue being
accessed on a remote queue server, it will query the attributes of the queue defined there,
and use those values to define a local definition of the queue.

In this example application however we will define all queue definitions required.

3.5 MQSeries Everyplace queue definitions
The following queue definitions are used in this application. Later sections of this chapter
explain how to actually define these queues using the MQ_Explorer tool.

Server-Side queue definitions

Queue: ChatRoomQ

Type: Local

Mode: Not applicable

Alias: ChatRoomQAsync, ChatRoomQViaWas, ChatRoomQViaAsync

Purpose: Receives messages from the client side, the application retrieves the
messages from this queue and displays them in the output text area on the window.
Note the client-side application can send messages to this queue synchronously or
asynchronously.

 Copyright IBM Corp. 2001 20

Using MQSeries Everyplace with WebSphere Everyplace Server

Queue: ChatSFQ

Type: Store and forward

Target queue manager: none

Mode: Not applicable

Purpose: Hold messages at the server destined for the client. The messages are
subsequently pulled from the server by the client, using the home server queue
ChatSFQ on the client.

Queue: ChatClientQViaWas

Type: Remote

Mode: Synchronous

Alias: None

Target queue manager: WASServerQm

Purpose: This queue is used to demonstrate both indirect messaging and the use of
WebSphere Application Server to run a queue manager. The aim is that a message
typed into the input text area of the window labeled Chat via WebSphere will still end
up in the ChatClientQ on ClientQm, but will travel via the queue manager running in
WebSphere Application Server. Messages entered into the Chat via WebSphere area
will be placed onto this queue.

Client-Side queue definitions

Queue: ChatClientQ

Type: Local

Mode: Not applicable

Alias: None

Purpose: Receives messages from the server-side, the application retrieves the
messages from this queue and displays them in the output text area on the window.

Queue: ChatRoomQAsync

Type: Remote

Target queue manager: ServerQm

Mode: Asynchronous

Purpose: If the application is unable to synchronously put the message onto the
ChatRoomQ local queue on ServerQm, it will put the message to this queue. It is then
the responsibility of MQSeries Everyplace to transfer the message to the target queue
manager, when a connection becomes available.

Queue: ChatRoomQViaWas

Type: Remote

Target queue manager: ServerQmViaWas

Mode: Synchronous

Purpose: Messages entered in the Chat via WebSphere box are to be sent to the
ServerQm via the queue manager in WebSphere Application Server. The application
will put the message to this queue. This is used to demonstrate indirect message
routing.

 Copyright IBM Corp. 2000, 2001 21

Queue: ChatRoomQAsyncViaWas

Type: Remote

Target queue manager: ServerQmViaWas

Mode: Asynchronous

Purpose: If the application is unable to synchronously put the message onto the
ChatRoomQ local queue on ServerQm, it will put the message to this queue.
MQSeries Everyplace will transfer the message to the target queue manager, when a
connection becomes available.

Queue: ChatSFQ

Type: Home server

Target queue manager: ServerQm

Purpose: MQSeries Everyplace polls the corresponding store and forward queue of
the same name on the specified target queue manager. When it detects that a
message is on that queue on the server, it will pull the message from the server to the
client. Once the message is received, MQSeries Everyplace will then place the
message into the local queue specified by the application that originally put the
message on the queue. Note, that applications cannot access this queue in any way

Queue: ChatSFQViaWas

Type: Home server

Target queue manager: WASServerQm

Mode: Not applicable

Alias: None

Purpose: As for the ChatSFQ queue, MQSeries Everyplace will poll the
corresponding store and forward queue of the same name on the WASServerQm and
pull any messages found there for ClientQm.

WebSphere queue definitions

Queue: ChatClientQViaWas

Type: Local

Purpose: Temporary store for messages entered into the Chat via WebSphere area
on the server side.

Queue: ChatSFQViaWas

Type: Store and forward

Target queue manager: none

Mode: Not applicable

Destinations: ClientQm

Purpose: ClientQM will poll this queue, and pull any messages for ClientQm to the
corresponding home server queue.

 Copyright IBM Corp. 2001 22

Using MQSeries Everyplace with WebSphere Everyplace Server

All the queues

The following diagram shows all queues used in the Chat Room Application. Note some
queues in the diagram are described in later sections of this chapter.

ChatSFQ
(Home Server)

ChatClientQ
(Local)

ChatRoomQAsync
(Remote)
(Target: ServerQm)

ChatRoomQViaWas
(Remote)
(Target: ServerQmViaWas)

StressQ
(Local)

ChatRoomQ
(Local)
Alias:
ChatRoomQAsync
ChatRoomQViaWas
ChatRoomQAsyncViaWas

WasServerQm

YourCoQuery
(Local)

StressQ
(Local)

StressQ
(Remote)
(Target: ServerQm)

ChatSFQ
(Store and Forward)

ChatSFQVia Was
(Home Server)

ChatRoomQ
(Remote)
(Target: ServerQm)

ChatRoomQAsyncViaWas
(Remote)
(Target: ServerQmViaWas)

StressQ
(Remote)
(Target: WasServerQm)

YourCoQuery
(Remote)
(Target: WasServerQm)

ChatSFQViaWas
(Store and Forward)

ChatClientQViaWas
(Local)

ChatClientQViaWas
(Remote)
(Target: WasServerQm)

ClientQM
ServerQM
Alias: ServerQmViaWas

Figure 3-2 Chat room application queues

3.6 The application Java packages
The application is written in Java and consists of these packages.

itso.mqe.chatwindow

This package is used to display the chat room window. It has only one class called
RoomWindow. This package is used by the client and server side to display the chat window.

itso.mqe.chatclient

This package is the application used to control the client side of the chat room.

itso.mqe.chatserver

This package is the application used to control the server side of the chat room.

 Copyright IBM Corp. 2000, 2001 23

itso.mqe.was

This package contains the code to run the MQSeries Everyplace queue manager as a servlet
in WebSphere Application Server.

itso.mqe.security

This package contains the code that implements a sample authentication adapter, explained
in YourCo extensions on page 75.

3.7 Client side – class interaction
The diagram below shows a high level view of the interaction between the major classes
involved on the client side:

ClientMgr ClientQm
MQeQueueManager

RoomWindow

startClientQm()

putMessage()

getMessage()

addMessageListener()

loader.loadObject()

activate()

showReceivedMsg()

sendMessage()

messageArrived()showReceivedMsg()

sendMessage()

Figure 3-3 Class object interaction - client side

 Copyright IBM Corp. 2001 24

Using MQSeries Everyplace with WebSphere Everyplace Server

3.8 Server side – class interaction
The diagram below shows a high level view of the interaction between the major classes
involved on the server side.

ChatServerMQeQueueManager RoomWindow

activate()

putMessage()

getMessage()

addMessageListener()
showReceivedMsg()

sendMessage()
messageArrived()

Figure 3-4 Class object interaction - server side

 Copyright IBM Corp. 2000, 2001 25

4 Starting a queue manager
In the chat room application, queue managers are used in three different ways; this section
explains how this occurs.

4.1 Started by application
The client side of the chat room is an example showing where the application is started and
then the application activates the queue manager.

This is the normal approach for client-side type applications, as they do not typically require a
queue manager running at all times. Rather an end user will typically want to start the
application, have the queue manager started, perform some messaging and then end the
application. Such a user does not perhaps require a queue manager running for extended
periods of time.

For the chat room application there are three objects involved in the client side as follows:

o ClientMgr - the main application

o ClientQm - the queue manager

o RoomWindow - controls displaying of the GUI chat window

When the application is started, the main method creates a new instance of RoomMgr, which
results in a RoomWindow object being created by the constructor, and then calls the
startChatRoom method.

The startChatRoom method of the RoomMgr class starts, creates a ClientQm object, and
then calls the startClientQm method of that class.

The startClientQm method contains the code to start the queue manager. The code below, in
Example 4-1 Reading in the .ini file to Example 2-1 Output from running
CreateExampleQm.bat, is all from this method.

Firstly the .ini file containing information relating to the queue manager is read in, as shown
below:

// Access the file
File diskFile = new File(clientIniFile);

// Create a byte array big enough to hold the file's contents.
byte data[] = new byte[(int) diskFile.length()];

// Read the file into the byte array and close the file.
FileInputStream inputFile = new FileInputStream(diskFile);
inputFile.read(data);
inputFile.close();

Example 4-1 Reading in the .ini file

Note: The code above illustrates a standard way of performing file input. An alternate approach would be
to read an .ini file into a fields object, using the MQeQueueManagerUtils.loadConfigFile() method.

 Copyright IBM Corp. 2001 26

Using MQSeries Everyplace with WebSphere Everyplace Server

Once read in, the data is parsed and stored in MQeField type objects, as shown in the code
below:

MQeFields iniSections =

MQeFields.restoreFromString("\r\n", // end of record string
"[#0]", // section pattern
"(#0)#1=#2", // keyword pattern
configDataBuff.toString() + "\r\n");

Example 4-2 Parsing the .ini file

Then a queue manager object is created, alias definitions from the .ini file are processed.
Alias definitions are a way of assigning a shorter logical name to class names. These alias
definitions can then be used in other sections of the .ini file if required. The code to do this is
shown below:

/* Create queue manager object */

qMgr = new MQeQueueManager();

if (iniSections.contains(Section_Alias)) {

// Get all the fields inside the alias section
MQeFields section = iniSections.getFields(Section_Alias);
Enumeration keys = section.fields();
while (keys.hasMoreElements()) {

// For each key, get the value and add the mapping to the MQe
// internal alias table
String key = (String) keys.nextElement();
MQe.alias(key, section.getAscii(key).trim());
System.out.println("Key: " + key + " Val: " + section.getAscii(key).trim());

}

// sectionProcessed(Section_Alias);

}

Example 4-3 Processing the alias entries

Finally now we call the loader method of the MQe class to activate the queue manager, as
shown in the code below:

if (iniSections.contains(Section_QueueManager)) {

qMgr = (MQeQueueManager) MQe.loader.loadObject(Section_QueueManager);
if (qMgr != null) {

// Activate the queue manager.
qMgr.activate(iniSections);

// Processing was successful.

}
}

Example 4-4 Activating the queue manager

 Copyright IBM Corp. 2000, 2001 27

The queue manager is now active within the Java virtual machine and can be used by the
application.

4.2 Started by the MQe_Explorer
On the server side, MQe_Explorer is used to start the queue manager. A program to start the
server-side queue manager, would be similar to the one developed for the client side, except
it would need to start some other queue manager functionality such as the channel listener.

Typically the requirement for a server-side queue manager is to be active at all times, so that
client type queue managers can connect at any time. Any number of applications may be
loaded into the JVM to enable them to perform messaging

MQe_Explorer 1.26 allows you to create and start client, peer, server and gateway queue
managers. Properties of the queue manager can be changed, whether they exist in the
registry or an .ini file. Effectively MQe_Explorer eliminates the need for manual editing of .ini
files and queue managers can be changed between clients, peers, servers or gateways on an
ad hoc basis.

4.3 Started by a servlet
The chat room application demonstrates how a queue manager can be run as a servlet in
WebSphere Application Server. The queue manager that runs in WebSphere is a server type
queue manager.

Normally a server type queue manager has a listener, which listens on a port to which clients
can establish a connection. However a queue manager running in WebSphere cannot start a
listener. The HTTP server is effect the listener for the queue manager. Other queue
managers access the queue manager in WebSphere by sending the message requests
wrapped in HTTP headers.

For the chat room application there are two classes involved in the WebSphere part side as
follows:

o ITSOMQeServlet - starts the queue manager and handles messages
received

o WasQMgr - in essence the application, it acts upon on messages

When another queue manager sends a message to the queue manager running in
WebSphere, the HTTP headers will specify the name of the servlet to be invoked within
WebSphere, in this case ‘ITSOMQeWas’, which is defined to Websphere as a servlet of class
ITSOMQeServlet. The servlet will start the queue manager the first time it is invoked, this
occurs in its init method.

The name of the .ini file to use is found by reading a property file called MQe.properties. The
MQe.properties file should be in a directory in the classpath. The code to obtain the .ini file
name is as follows:

String mqePropName = "MQe";

try {

PropertyResourceBundle resourceBundle =
(PropertyResourceBundle) PropertyResourceBundle.getBundle(mqePropName);
iniFile = resourceBundle.getString("IniFile");

 Copyright IBM Corp. 2001 28

Using MQSeries Everyplace with WebSphere Everyplace Server

Example 4-5 Obtaining the .ini file when starting in WebSphere

The same code as shown in Started by application on page 26 is used to read in the .ini file,
parse it, load the alias and start the queue manager. The only addition is code to activate a
channel manager just prior to activating the queue manager. A channel manager is an object
used to handle the communication processes involved between queue managers. The code
to activate it is shown below:

if (iniSections.contains(Section_ChannelManager)) {

MQeFields section = iniSections.getFields(Section_ChannelManager);
channelManager = new MQeChannelManager();
channelManager.numberOfChannels(section.getInt("MaxChannels"));

// sectionProcessed(Section_ChannelManager);

}

Example 4-6 Activating a channel manager

Once the init method completes, the queue manager is active within WebSphere Server.

After the queue manager is started, a WasQMgr class object is created, and a reference to
the queue manager passed as a parameter. As in the RoomMgr class, the activate method is
called which allows the WasQMgr class to save a reference to the queue manager that has
been started.

The doPost method

The doPost method of the ITSOMQeServlet class is worth discussing here. Queue managers
sending message to a queue manager in WebSphere Application Server, will wrap the
message in a HTTP header, specifying that the HTTP request is a POST to a specified
servlet.

In the chat room application this will cause the doPost method of the ITSOMQeServlet class
to be invoked.

The method is effect performing the same sort of role that the listener does for a server type
queue manager. All it does is to read the HTTP data received and pass it to the channel
manager associated with the queue manager.

The channel manager will then take this data, remove the HTTP headers, and place the
message on the queue.

The response from this method call to the channel manager is not a message as such, rather
it is just a standard HTTP reply that is to be sent back to the sending queue manager as part
of the normal HTTP flow.

The code is show below:

ServletInputStream httpIn = request.getInputStream(); // input stream

// Get the request
read(httpIn, httpInData, max_length_of_data);
String mqeInput = new String(httpInData);
System.out.println("MQeInput: " + "mqeInput");

 Copyright IBM Corp. 2000, 2001 29

// Process the request
byte[] httpOutData = channelManager.process(null, httpInData);
String mqeReply = new String(httpOutData);
System.out.println("MQeReply: " + "mqeReply");

// Appears to be an error in that content-length is not being set
// so we will set it here
response.setContentLength(httpOutData.length);
response.setIntHeader("content-length", httpOutData.length);

// Pass back the response
httpOut.write(httpOutData);

Example 4-7 Passing HTTP input to the queue manager

 Copyright IBM Corp. 2001 30

Using MQSeries Everyplace with WebSphere Everyplace Server

5 Starting applications
In the chat room application, applications that use queue managers are used in three different
ways; this section explains how this occurs.

5.1 Client side
Starting the application on the client side of the chat room is exactly the same as starting any
Java program. The Java command in conjunction with the package and class name is used to
start the application.

5.2 Server side – application loading
The server side of the chat room, is an example showing where the application is started after
the queue manager has started, in effect the queue manager loads it.

This is the normal approach for server-side applications. Typically the requirement is for the
queue manager to be active at all times, so that client type queue managers can connect at
any time. Any number of applications may be loaded into the JVM to enable them to perform
messaging activities.

For the chat room application there are two objects involved in the server side as follows:

o RoomMgr - interacts with the queue manager and the GUI window

o RoomWindow - controls displaying of the GUI chat window

Section Started by the MQe_Explorer on page 28 described how MQe_Explorer was used to
start the queue manager.

In the .ini file for the queue manager is specified the application we want to have loaded when
the queue manger is started, in this case the chat room application. The lines from the .ini file
are as follows:

[AppRunList]
(ascii)App1=itso.mqe.chatserver.RoomMgr

Example 5-1 Application loading

Parameters can also be passed to the application from the .ini file as shown below:

[App1]
(ascii)ClientQueue=ChatClientQ
(ascii)ChatRoomQ=ChatRoomQ

Example 5-2 Passing parameters to applications

A detailed explanation of how applications started this way need to be written starts on page
51 of the MQSeries Everyplace Programming Guide, SC34-5845-04.

 Copyright IBM Corp. 2000, 2001 31

Briefly however, the RoomMgr class extends the base MQe class, and implements these
three interfaces:

o runnable - to allow it to create a new thread to run on

o MQeRunListInterface - to allow queue manager to pass information

o MQeMessageListenerInterface - to allow application to notify queue manager
of what queues it is interested in

The class that will be started must have a method called activate. This will be the first method
executed when the application is started. The first thing it does is to save a reference to the
queue manager passed as a parameter. This will allow the application to interact with the
queue manager. The following line saves the queue manager id:

qmgr = (MQeQueueManager) owner; /* Qmgr is owner of the application */

Example 5-3 Saving a queue manager reference

A new thread is then created and started which will cause the run method of the RoomMgr
class to be executed. The run method consists of this code:

if (itsoChatRoom == null) {

itsoChatRoom = new RoomWindow(this);
itsoChatRoom.showChatWindow();
itsoChatRoom.sendChatMsg();
itsoChatRoom.setupWasInputListener();

}
try {

qmgr.addMessageListener(this, chatRoomQ, null);

Example 5-4 The RoomMgr run method

The above code creates a RoomWindow object and then calls a method on that object to
create the GUI window and display it. Then the code adds a message listener on a specified
queue. The purpose of the message listener is explained in The
MqeMessageListenerInterface on page 34.

The queue manager and application are now both active.

Application data can be passed to the application that is started in this fashion. In the .ini file,
after the section identifying the applications to be loaded, can be added data to pass to the
application. For example, these lines could be added to the .ini file:

[App1]
(ascii)ClientQueue=ChatClientQ
(ascii)ChatRoomQ=ChatRoomQ

Example 5-5 Application-related start-up data

 Copyright IBM Corp. 2001 32

Using MQSeries Everyplace with WebSphere Everyplace Server

Sample code to access this data in the activate method, is shown below:

Enumeration enum = setupData.fields();
try {

while (enum.hasMoreElements()) {
String fieldName = (String) enum.nextElement();
String value = setupData.getAscii(fieldName);
System.out.println("Field name: " + fieldName +
" value: " + value);

}
}

Example 5-6 Accessing application start-up data

5.3 Applications in WebSphere Application Server
Applications that are to run in and access a queue manager in WebSphere Application Server
function essentially the same as the applications written for a server.

The chat room application demonstrates this. Text entered into the Chat Via WebSphere box
on the server side is put to the queue ChatClientQViaWas on the WASServerQm.

When the init method of the ITSOMQeServlet class was executed, it created a WasQMgr
object, passing it a reference to the queue manager, and also added a message listener for
the ChatClientQViaWas queue. The WasQMgr object is the application.

When a message arrives on this queue, the messageArrived method of the WasQMgr object
is invoked. This method then retrieves the message, and puts the message to the
ChatClientQ queue on the ClientQm queue manager, as shown by the code below:

msgObj = wasQMgr.getMessage(null, "ChatClientQViaWas", null, null, 0);
System.out.println("From: " + msgObj.getOriginQMgr() +

" : " + eventQueueName +
" msg: " + msgObj.getAscii("Message"));

System.out.println("Relay chat msg to ClientQm : " + msgObj.getAscii("Message"));
replyMsg.putAscii("Message", msgObj.getAscii("Message"));
wasQMgr.putMessage("ClientQm", "ChatClientQ", replyMsg, null, 0);

Example 5-7 Processing messages in WebSphere

 Copyright IBM Corp. 2000, 2001 33

6 Listening for messages
This section describes how a queue manager notifies an application that a message is
available for processing.

6.1 The MqeMessageListenerInterface
In standard MQSeries, is quite common for an application to wait for a message to arrive on a
queue. It does this by specifying a WAIT option on the GET message API.

In MQSeries Everyplace, the corresponding approach is for an application to implement the
MQeMessageListener interface.

For example this code from the run method of the RoomMgr class tells the queue manager
that the application wants to be notified whenever a message is put onto the queue specified
in the variable chatRoomQ:

qmgr.addMessageListener(this, chatRoomQ, null);

Example 6-1 Adding a message listener

An application can add a listener for as many queues as it requires. The application then
needs to have a messageArrived method, as this will be the method invoked by the queue
manager when a message arrives on any of the queues that a listener has been added for.

The messageArrived method is passed a MessageEvent object, which contains information
about the message that has arrived, such as the queue the message is on and the queue
manager it is from.

It is now up to the application to get the message and process it as required. For example, in
the case of the chat room application, when a message arrives on the ChatRoomQ, the
messageArrived method in class RoomMgr is called, the message is retrieved from the queue
and displayed on the GUI window, as shown in the code below:

try {

MQeMsgObject msgObj = qmgr.getMessage(null, chatRoomQ, null, null, 0);
/* Get the message */
if (originQMgr == null) originQMgr = msgObj.getOriginQMgr();

System.out.println(

"From: " + eventQMgr + " : " + eventQueueName
+ "Really: " + originQMgr + " msg: "
+ msgObj.getAscii("Message"));

itsoChatRoom.showReceivedMsg("From: " + originQMgr + " : " +
msgObj.getAscii("Message"));

Example 6-2 Retrieving a message

The same approach is used on the client side and in WebSphere Application Server. In the
WebSphere case, the init method of the ITSOMQeServlet class adds the message listeners,
and the messageArrived method is implemented in the WasQMgr class.

Note there is no comparable notion of triggering an application in MQSeries Everyplace as
there is in standard MQSeries; however queue rules can be used to achieve this.

 Copyright IBM Corp. 2001 34

Using MQSeries Everyplace with WebSphere Everyplace Server

7 Chat room application flows
The section describes what happens when a message in entered into the various text input
boxes in the chat windows.

7.1 Chat – client to server – direct
The process that occurs when a message is typed into the Chat Direct input box in the
window of the client side of the chat room is as follows:

o Message typed into input text area, Enter key pressed

o The sendChatMessage method in class itso.mqe.chatwindow.RoomWindow
invoked, echoes message to the output text area, calls sendMessage method

o The sendMessage method in class itso.mqe.chatclient.ClientMgr performs
the task of first trying to send the message synchronously, and if that fails, it
puts the message to the alternate queue, to have the message sent
asynchronously, the code from this method is shown below:

try {

MQeMsgObject msgObj = new MQeMsgObject();
//String venturing = e.getQueueManagerName(); /* get id of Qmgr msg from */
//String eventQueueName = e.getQueueName(); /* get queue name */
try {

System.out.println("Msg to send: " + message);

msgObj.putAscii("Message", message); // set up the message

System.out.println("Send to: " + targQMgr + " destQ: " +

targQ + "doing PUT: " + message);

/* If the string 'Stress Test' do not appear in the text typed in, then put
the message to the queue to have it sent synchronously. When the
'Stress Test' string is found, invoke a method to handle that case */

if (message.indexOf("Stress Test") < 0)

myClientQmgr.putMessage(targQMgr, targQ, msgObj, null, 0);
else stressTest(viaWasFlag, message);

System.out.println("Sent to: " + destQMgr + " : " + " msg: " +

msgObj.getAscii("Message"));
} catch (Exception ex) {

/* If an exception occurs as a result of the put message
attempt, put the message to the alternate queue to have
the message sent asynchronously */

System.out.println("Error sending msg" + ex);
chatRoomClient.showReceivedMsg(

"## Chat room server unavailable"
+ " will attempt to send message asynchronously ##");

msgObj.resetMsgUIDFields();

try {

System.out.println(
"Async Send to: " + targQMgr + " destQ: "
+ targQAsync + "doing PUT: " + message);

myClientQmgr.putMessage(targQMgr, targQAsync, msgObj, null, 0);

chatRoomClient.showReceivedMsg(

 Copyright IBM Corp. 2000, 2001 35

"## Message saved, will be sent Asynchonously ##");

} catch (Exception ex2) {
chatRoomClient.showReceivedMsg(

"## Catastrophic failure, async PUT failed ##");
System.out.println("Error doing Async PUT" + ex2);

}
}

Example 7-1 Putting a message

o In this case, targQ is set to a value of ‘ChatRoomQ’, the method attempts to
put the message, synchronously to this queue on the remote queue manager
called ServerQm

o If the remote queue manager is unavailable, the put will fail and an exception
is raised, this is caught by the Java code, the application will then put the
message to the queue targQAsync, which has been set to a value of
‘ChatRoomQAsync’, this is now an asynchronous message operation,
MQSeries Everyplace is now responsible for transferring the message to the
remote queue manager when a connection becomes available

o At some time in the future when the connection to the remote queue manager
becomes available, the queue manager will send the message, however the
application put the message to a queue called ChatRoomQAsync, but there
is no queue called this on the remote queue manager, but the definition for
the ChatRoomQ queue specifies that it has an alias of ChatRoomQAsync,
this means that the message is placed in the ChatRoomQ on the remote
queue manager

7.2 Chat – client to server – via WebSphere
The process that occurs when a message is typed into the Chat via WebSphere input box in
the window of the client side of the chat room is as follows:

o Message typed into input text area, Enter key pressed

o sendChatMessage method in class itso.mqe.chatwindow.RoomWindow
invoked, as it was for the case where text was entered into the Chat Direct
box, echoes message to the output text area, calls sendMessage method

o The sendMessage method in class itso.mqe.chatclient.ClientMgr performs
the task of first trying to send the message synchronously, and if that fails, it
puts the message to the alternate queue, to have the message sent
asynchronously

o The code executed, shown in Example 7-1 Putting a message on page 36 is
the same as it was for the Chat Direct case

 Copyright IBM Corp. 2001 36

Using MQSeries Everyplace with WebSphere Everyplace Server

o The difference is that the target queue manager is set to `ServerQmViaWas'
and targQ and targQAsync are set to different values, this is done by this
code in the sendMessage method:

/* The action listener that is invoked when the Enter key is
 pressed in a text box, sets the value of viaWasFlag when it calls
 this method.

 The value is null if called from the listener for the 'Chat Direct'
 box, and not null if called from the listener for the
 'Chat via WebSphere' box */

if (viaWasFlag == null) {

targQ = destQueue;
targQMgr = destQMgr;
targQAsync = destQueueAsync;

} else {
targQ = destQueueViaWas;
targQMgr = destQMgrViaWas;
targQAsync = destQueueAsyncViaWas;

}

Example 7-2 Setting the value of the target queue

As in the direct case, the application will try to put the message synchronously to the queue
ChatRoomQViaWas on ServerQmViaWas. Recall however that, ChatRoomQViaWas has
been defined as an alias for the ChatRoomQ, and that ServerQmViaWas is an alias for the
ServerQm queue manager. In effect this will become a put to the ChatRoomQ on the
ServerQm. This means the put message request only succeeds if there is a connection right
through to the ServerQm.

If the message cannot be put synchronously, it is put asynchronously, being put to the
ChatRoomQAsyncViaWas queue, for transmission by the queue manager when a connection
via WASServerQm to ServerQm is available.

7.3 Chat – server to client – direct
The process that occurs when a message is typed into the Chat Direct input box in the
window of the server side of the chat room is as follows:

o Message typed into input text area, Enter key pressed

o sendChatMessage method in class itso.mqe.chatwindow.RoomWindow
invoked, echoes message to the output text area, calls sendMessage method

o Note the RoomWindow class is used at both the client and server ends to
display the chat window

o The RoomMgr class has its own sendMessage method, but it is essentially
the same as the one in the ClientMgr class, the application will put the
message to the ChatClientQ on the ClientQm queue manager,

o The major difference here is that the server only sends its messages
asynchronously

o When the put message is executed, the queue manager will store the
message on the ChatSFQ queue, this is because the server-side queue
manager cannot send a message to the client-side queue manager, the
queue manager will store any messages for ClientQm on this store and
forward queue

 Copyright IBM Corp. 2000, 2001 37

o On the client side, the ClientQm has a corresponding home server queue
called ChatSFQ. The queue is configured to poll the corresponding store and
forward queue on the ServerQm every five seconds; when it detects a
message on that queue it will pull the message and place it in the home
server queue, in this case ChatSFQ

o The queue manager will then move the message to the target queue
specified by the application, in this case ChatClientQ'

o The messageArrived method in the ClientMgr object will be invoked by the
queue manager, it will retrieve the message and display it in the output area
of the GUI window

7.4 Chat – Server to client – via WebSphere
The process that occurs when a message is typed into the Chat via WebSphere input box in
the window of the server side of the chat room is as follows:

o Message typed into input text area, Enter key pressed

o sendChatMessage method in class itso.mqe.chatwindow.RoomWindow
invoked, echoes message to the output text area, calls sendMessage
method, but passes a flag to indicate that the message is to be sent via
WebSphere

o The sendMessage method puts the message to a queue called
ChatClientQViaWas on the WASServerQm, a synchronous operation

o Note this message is sent as a HTTP request to WebSphere, where the
ITSOMQeServlet class will be invoked to handle this POST request

o The messageArrived method of the WasQMgr object is invoked by the
WASServerQm, the message is retrieved from the ChatClientQViaWas and
put to the ChatClientQ on the ClientQm queue manager, as shown in
Example 5-7 Processing messages in WebSphere on page 33.

o When the putMessage is executed, the queue manager will store the
message on the ChatSFQViaWas queue, this is because the server-side
queue manager cannot send a message to the client-side queue manager,
the queue manager will store any messages for ClientQm on this store and
forward queue

o On the client side, the ClientQm has a corresponding home server queue
called ChatSFQViaWas, the queue is configured to poll the corresponding
store and forward queue on the ServerQm every five seconds, when it
detects a message on that queue it will pull the message and place it in the
home server queue, in this case ChatSFQViaWas

o The queue manager will then move the message to the target queue
specified by the application, in this case ChatClientQ

o The messageArrived method in the ClientMgr object will be invoked by the
queue manager, it will retrieve the message and display it in the output area
of the GUI window

Note, that messages are traveling over two connections using two different protocols. The
messages between ClientQM and WASServerQM use HTTP, but TCP/IP is used between
ServerQM and WASServerQm.

 Copyright IBM Corp. 2001 38

Using MQSeries Everyplace with WebSphere Everyplace Server

8 Setting up the chat room queue managers
This section describes how to set up the three queue managers used in the chat room
application.

Note that the queue managers can be setup on either one system, on two or on three
systems.

8.1 Preparing for setup
Creation and configuration of the queue managers is done using the MQe_Explorer tool
(SupportPac ES02).

If the default install process is followed, then the product is installed into the C:\program
files\MQe directory.

To run the MQe_Explorer, either add C:\Program Files\MQe\Java to the environment variable
classpath in the System properties of the Control panel folder, or in a DOS window type in the
following:

SET CLASSPATH=C:\Program Files\MQe\Java;%CLASSPATH%

Start a DOS window and change directory to where SupportPac ES02 was installed. Let us
assume it has been installed to C:\Program Files\MQe\Java\MQe_Explorer.

Then to start the MQe_Explorer, type in:

MQe_Explorer.exe

The following window appears:

Figure 8-1 Initial MQe_Explorer window

8.2 Creating ServerQm queue manager
From the initial MQe_Explorer window, select File->New->QueueManager. A window will
appear in which you will define the attributes of the server queue manager. There are several
tabs, the initial one displayed is labeled ‘General’. We will call this queue manager ‘ServerQm’
and define it as being a server-type queue manager. To do this, follow these steps:

 Copyright IBM Corp. 2000, 2001 39

Type ‘ServerQm’ into the field QMgr. name

Make sure the box next to the label Server is ticked.

The window should look similar to this:

Figure 8-2 Setting the name and type of ServerQm

Select the Comms tab which controls the settings related to incoming communications

The IP address of the machine is displayed in the field IP address; the port that this queue
manager will listen on for incoming channel requests is set to the default value used by
MQSeries Everyplace, which is 8082.

The adapter property is concerned with the protocol that the server queue manager will
expect on incoming connections. In this case, use the ‘(default)’ adapter, which is mapped to:

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

or set it explicitly. This adapter uses a TCP/IP based protocol and keeps track of the history of
data already sent in order to reduce network traffic. Later on when you define connections to
this server queue manage, you will need to specify the type of adapter used to connect. It
must match the value you specify here.

The channel property determines the nature of the flows between queue managers, for
example whether client/server flows or peer-to-peer flows are used. Set the value to
‘(default)’ and MQe_Explorer will choose the channel type:

com.ibm.mqe.MQeChannel

 which is compatible with the chosen type of queue manager (in this case a server).

All other properties should be set to their default values.

 Copyright IBM Corp. 2001 40

Using MQSeries Everyplace with WebSphere Everyplace Server

 The window will look similar to this:

Figure 8-3 Setting the incoming communications parameters of ServerQm

Click the Create button to now create the server-side queue manager. Note there are many
other tabs that are not explained here, as all the defaults are taken. A window confirming
creation of the queue manager appears, similar to that shown below. Make a note of the .ini
file name – it will be need when the queue manager is re-started:

Figure 8-4 ServerQm creation confirmation

 Copyright IBM Corp. 2000, 2001 41

The queue manager has now been created, and is in fact running. The MQe_Explorer window
will now have an object called MQe root with a plus sign beside it. Click on the plus sign to
expand the object tree under MQe root, and you will see an object for the ServerQM you have
just created. Continue to expand the objects under ServerQm and you will see the default
queues that have been set up. The display will be similar to this:

Figure 8-5 Expanded tree view of ServerQm

Note: In future, to start this queue manager if it is not running, open the .ini file. Start
MQe_Explorer by double clicking its icon (or by running MQe_Explorer.exe from a
DOS prompt), then select File->Open, locate the ServerQm.ini file and select it. The
queue manager will then be started.

Adding an alias to ServerQm

An alias of ServerQmViaWas for ServerQm is used in this application. An alias can only be
added once the queue manager is defined. However, it is possible for aliases to be changed
thereafter.

 Copyright IBM Corp. 2001 42

Using MQSeries Everyplace with WebSphere Everyplace Server

Right click on the ServerQm object in the tree, then Properties, a window appears, then click
on the Aliases tab. Type in the alias name ServerQmViaWas, and click the Add button. The
window should now look something like this:

Figure 8-6 Defining a queue manager alias

Click the Apply button to make the change. A message indicating that a local connection has
been created will be displayed.3

8.3 Creating ClientQm queue manager
The process for defining the client-side queue manager is very similar to the server-side
queue manager. Start another MQe_Explorer session from the DOS prompt, and from the
initial MQe_Explorer window, select File->New->Queue Manager. Enter the name of the client
queue manager as ‘ClientQm’ in the field QMgr. name.

Click on the Client check box. This will mean that no listener will be setup for this queue
manager, as it is to operate in client mode.

3 This message only appears if a local connection does not already exist (as in this case). Adding
additional aliases will not display the message again.

 Copyright IBM Corp. 2000, 2001 43

The window should look similar to this:

Figure 8-7 Setting name and type of ClientQm

Click the Create button to now create the client-side queue manager. A window confirming
creation of the queue manager appears, similar to this:

Figure 8-8 ClientQm creation confirmation

The queue manager has now been created, and is in fact running. As for the server queue
manager, you can expand the tree in the MQe_Explorer window to view the default objects.

8.4 Configuring WASSeverQm queue manager
Start another MQe_Explorer session, and from the initial MQe_Explorer window, select File-
>New->QueueManager. Enter the name of the queue manager as ‘WASServerQm’ in the
field QMgr. name.

Check that the Server check box is ticked.

Then select the Comms tab. Enter the IP address of the machine. Enter a port number. When
the queue manager is running in WebSphere Application Server, the queue manager will not
have a listener running, so will not be using the port you specify here in any case. However it
is useful to specify a valid port. Doing so means you can run this queue manager outside of

 Copyright IBM Corp. 2001 44

Using MQSeries Everyplace with WebSphere Everyplace Server

WebSphere Application Server to verify connections between it and other queue managers,
and also to enable testing without WebSphere in the mix. If running this queue manager on
the same machine as ServerQm, be sure to specify a different port, e.g. 8083.

As WASServerQM will be running in WebSphere Application Server, it will be expecting HTTP
type communications. In the adapter field, select:

com.ibm.mqe.adapters.MQeTcpipHttpAdapter

In the options field select either ‘(default)’ or ‘(none)’. Options are extra information passed to
the adapter; in the case of the HTTP adapter above, default is interpreted to mean that no
options are to be passed. Do not pass options here; otherwise connections to this queue
manager will not work.

Click the Create button to now create the queue manager. A window confirming creation of
the queue manager will appear.

8.5 Creating connections
Prior to defining the queues create the connections between the queue managers. Creating
remote queue definitions cannot be done with the MQe_Explorer tool unless a connection of
that name exists.

Connection definitions on ClientQm

Using MQe_Explorer, start the ClientQM queue manager.

ClientQm to ServerQm
Right click on the connections object in the tree, and select the New Connection menu item.

In the window that is displayed, enter ‘ServerQM’ into the Name field and a descriptive text
into the Description field.

 Copyright IBM Corp. 2000, 2001 45

The window should look similar to this:

Figure 8-9 Defining a connection to a remote queue manager

Then click on the Primary. This tab is used to specify the IP address of the machine hosting
the remote queue manager that you want to connect to.

There are three fields to change here.

Type in the IP address of the machine you have defined the server queue manager on. It
could be that you have defined the client and server queue manager on the same machine, in
which case you could just enter the IP address of ‘127.0.0.1’, which is the traditional loop
back address. However it is recommended to specify the IP address.

In the Port field type in the port number that ServerQm is listening on. In the description
above for setting up the server queue manager, we used the default value of 8082. Type
‘8082’ into this field.

In the Adapter field, select from the drop down box the same adapter you specified when
setting up the server queue manager. In this case select the adapter called:

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

 Copyright IBM Corp. 2001 46

Using MQSeries Everyplace with WebSphere Everyplace Server

This is a supplied adapter, which will result in the messages flowing between the two queue
managers using standard TCP/IP. The window should look similar to this:

Figure 8-10 Defining the location of a remote queue manager

Then click the Create button to have the connection created. No confirmation window is
displayed, but you can view the connection definition in the MQe_Explorer window.

ClientQm to WASServerQm
Right click on the connection object in the tree, and select the New connection menu item.

In the window that is displayed, enter ‘WASServerQm’ into the Name field.

Then click on the Primary tab. This tab is used to specify the IP address where the remote
queue manager that you want to connect to is located.

There are five fields to change here.

Type in the IP address of the machine where the WebSphere Application Server is running.

In the Port field, type in ‘80’ as the port value, as this is the default port for HTTP traffic, the
HTTP server will be listening on4.

In the Adapter field, select from the drop down box the same adapter you specified when
setting up the queue manager to run in WebSphere. In this case select the adapter called:

com.ibm.mqe.adapters.MQeHTTPAdapter

4 Note version 1.23 and earlier of the ES02 SupportPac do not allow a value of 80 to be entered into
this field.

 Copyright IBM Corp. 2000, 2001 47

This is a supplied adapter, which will result in the messages flowing between the two queue
managers using the HTTP protocol.

In the Options field select ‘(none)’ from the drop down box.

In the Parameters field, type in ‘/ITSO/ITSOMQeWas’, the URL that will invoke the servlet in
WebSphere.

The window should similar to this:

Figure 8-11 Defining a connection using the HTTP adapter

Then click the Create button to have the connection created. No confirmation window is
displayed.

ClientQm to ServerQmViaWas
Right click on the Connections object in the tree, and select the New connection menu item.

In the window that is displayed, enter ‘ServerQmViaWas’ into the Name field. In the Type field
select ‘Indirect connection’. The connection to ServerQmViaWas, is in reality to the queue
manager called ServerQm, and messages are to be sent via the queue manager running in
WebSphere, an indirect connection.

Then click on the Primary tab. Most fields here are greyed out. Enter ‘WASServerQm’ into the
Via qMgr field, to indicate that messages destined for ServerQmViaWas go via the
WASServerQm connection.

 Copyright IBM Corp. 2001 48

Using MQSeries Everyplace with WebSphere Everyplace Server

The window will look similar to this:

Figure 8-12 Defining an indirect connection

Then click the Create button to have the connection created. No confirmation window is
displayed.

Connection definitions on ServerQm

Using MQe_Explorer, start the ServerQm queue manager.

ServerQm to WASServerQm
Right click on the Connections object in the tree, and select the New connection menu item.

In the window that is displayed, enter ‘WASServerQM’ into the Name field.

Then click on the Primary tab. This tab is used to specify the IP address where the remote
queue manager that you want to connect to is located.

There are three fields to change here.

Type in the IP address of the machine where the WebSphere Application Server is running.

In the Port field, type in ‘80’ as the port value, as this is the default port for HTTP traffic, the
HTTP Server will be listening on.

In the Adapter field, select from the drop down box the same adapter you specified when
setting up the queue manager to run in WebSphere. In this case select the adapter called:

com.ibm.mqe.adapters.MQeTcpipHttpAdapter

In the Options field, select ‘(none)’ from the drop down box.

 Copyright IBM Corp. 2000, 2001 49

In the Parameters field, type in ‘/ITSO/ITSOMQeWas’, the URL that will invoke the servlet in
WebSphere.

Then click the Create button to have the connection created. No confirmation window is
displayed.

Connection definitions on WASServerQm

Using MQe_Explorer, start the WASServerQm queue manager.

WASServerQm to ServerQm
Right click on the Connections object in the tree, and select the New Connection menu item.

In the window that is displayed, enter ‘ServerQM’ into the Name field.

Then click on the Primary tab. This tab is used to specify the IP address where the remote
queue manager that you want to connect to is located.

There are three fields to change here.

Type in the IP address of the machine where the ServerQM queue manager is running.

In the Port field, type in ‘8082’ as the port value, the port that the ServerQm is listening on.

In the Adapter field, select from the drop down box the same adapter you specified when
setting up the ServerQm queue manager. In this case select the adapter called:

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

 Copyright IBM Corp. 2001 50

Using MQSeries Everyplace with WebSphere Everyplace Server

The chat room application will be sending messages to WASServerQm that are destined for
ServerQmViaWas, which is an alias for ServerQm. To have these messages forwarded, we
use the alias capability of MQSeries Everyplace. Click on the Aliases tab. Type in
‘ServerQmViaWas’ and click the Add button. The window should look similar to this:

Figure 8-13 Defining an alias on a connection

Then click the Create button to have the connection created. No confirmation window is
displayed.

8.6 Define ServerQm queues
The following queues need to be defined on ServerQm.

Local queue: ChatRoomQ

From the expanded tree view, right click on the Local queues object, and then select the New
Queue menu item. A window will appear, in which to enter the details of the queue you wish
to define.

 Copyright IBM Corp. 2000, 2001 51

On the General tab, type ‘ChatRoomQ’ into the Name field. The window should look similar to
this:

Figure 8-14 Naming the queue to be created

Then click on the Aliases tab. In the input text box on this tab type in ‘ChatRoomQAsync’,
then click the Add button. Add two further entries ‘ChatRoomQViaWas’ and
‘ChatRoomQAsyncViaWas’. These alias entries tell the ServerQm, that any messages that it
receives for these queues are to be placed on the ChatRoomQ queue.

 Copyright IBM Corp. 2001 52

Using MQSeries Everyplace with WebSphere Everyplace Server

The window should look similar to this:

Figure 8-15 Setting up alias names for this queue

Then click the Create button. No confirmation window is displayed, but the Create queue
window is re-displayed allowing you to define another queue if required.

Remote queue: ChatClientQViaWas

You can use the Create queue window still displayed from the previous step, of if you closed
that window then, as before, from the expanded tree view, right click on the Local queues
object, then select the New Queue menu item, and a window will appear.

On the General tab, type ‘ChatClientQViaWas’ into the Name field. There are two more fields
to change here.

Change the queue type to one of ‘Remote queue’, by selecting that value from the drop down
box in the Type field.

In the Queue qMgr field, type in the value ‘WASServerQm’.

Check the Mode field is set to ‘Synchronous’.

 Copyright IBM Corp. 2000, 2001 53

The window should look similar to this:

Figure 8-16 Defining a remote queue

Then click the Create button. No confirmation window is displayed, but the Create queue
window is re-displayed allowing you to define another queue if required.

Store and forward queue: ChatSFQ

You can use the Create queue window still displayed from the previous step, of if you closed
that window, then as before from the expanded tree view, right click on the Local queues
object, then select the New Queue menu item. A window will appear, in which to enter the
details of the queue you wish to define.

On the General tab, type ‘ChatSFQ’ into the Name field.

Most importantly, change the queue type to one of ‘Store and forward queue’, by selecting
that value from the drop down box in the Type field. Also ensure that the Target qMgr field is
set to ‘(none)’, i.e. messages are not be forwarded to another queue manager.

 Copyright IBM Corp. 2001 54

Using MQSeries Everyplace with WebSphere Everyplace Server

The display will look similar to this:

Figure 8-17 Creating the store and forward queue

 Copyright IBM Corp. 2000, 2001 55

This queue is used to store messages that will subsequently be pulled by remote, client-type
queue managers, in our case the client-side queue manager. The server-side queue manager
needs to know that it is to use this queue to store messages destined for the client-side queue
manager. To do this, select the Destinations tab. In the window type in the value ‘ClientQm’
and click the Add button. The display will look similar to this:

Figure 8-18 Adding the client queue manager as a target to the store and
forward queue

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

8.7 Define ClientQm queues
Local queue: ChatClientQ

This is the same process as for setting up the local queue called ChatRoomQ on the server
queue manager.

From the expanded tree view, right click on the Local queues object, then select the New
Queue menu item. A window will appear, in which to enter the details of the queue you wish
to define.

On the General tab, type ‘ChatClientQ’ into the Name field.

Then click the Create button. No confirmation window is displayed, but the Create queue
window is re-displayed, allowing you to define another queue if required.

Remote Queue: ChatRoomQ

You can use the Create queue window still displayed from the previous step, of if you closed
that window, then as before from the expanded tree view, right click on the Local queues

 Copyright IBM Corp. 2001 56

Using MQSeries Everyplace with WebSphere Everyplace Server

object, then select the New Queue menu item. A window will appear, in which to enter the
details of the queue you wish to define.

On the General tab, type ‘ChatRoomQ’ into the Name field.

There are three fields to change here.

Change the queue type to one of ‘Remote queue’, by selecting that value from the drop down
box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case ‘ServerQm’.

Change the mode to ‘Synchronous’, by selecting that value from the drop down box in the
Mode field.

Then click the Create button. No confirmation window is displayed, but the Create queue
window is re-displayed allowing you to define another queue if required.

Remote Queue: ChatRoomQAsync

You can use the Create queue window still displayed from the previous step, of if you closed
that window, then as before from the expanded tree view, right click on the Local Queues,
then select New Queue menu item. A window will appear, in which to enter the details of the
queue you wish to define.

On the General tab, type ‘ChatRoomQAsync’ into the Name field.

There are three fields to change here.

Change the queue type to one of ‘Remote queue’, by selecting that value from the drop down
box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case ‘ServerQm’.

 Copyright IBM Corp. 2000, 2001 57

Change the mode to ‘Asynchronous’, by selecting that value from the drop down box in the
Mode field. The display will be similar to this:

Figure 8-19 Defining a remote queue on the client

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

When the chat room application tries to send a message, it first tries to put the message to
the local queue called ChatRoomQ on the server queue manager.

If there is no connection, the application will put the message to this queue. However,
because the mode is asynchronous, the queue manager will store the message locally, and
then send it to the server queue manager when the connection becomes available.

If the mode was synchronous and the connection was down, then the put message would fail.

Remote Queue: ChatRoomQViaWas

In the window for defining a new queue, on the General tab, type ‘ChatRoomQViaWas’ into
the Name field.

There are three fields to change here.

Change the queue type to one of ‘Remote queue’, by selecting that value from the drop down
box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case ‘WASServerQm’.

Change the mode to ‘Synchronous’, by selecting that value from the drop down box in the
Mode field.

 Copyright IBM Corp. 2001 58

Using MQSeries Everyplace with WebSphere Everyplace Server

Then click the Create button. No confirmation window is displayed, but the Create queue
window is re-displayed allowing you to define another queue if required.

Remote Queue: ChatRoomQAsyncViaWas

In the window for defining a new queue, on the General tab, type ‘ChatRoomQAsyncViaWas’
into the Name field.

There are three fields to change here.

Change the queue type to one of ‘Remote queue’, by selecting that value from the drop down
box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case ‘WASServerQm’.

Change the mode to ‘Asynchronous’, by selecting that value from the drop down box in the
Mode field.

Then click the Create button. No confirmation window is displayed, but the Create queue
window is re-displayed allowing you to define another queue if required.

Home Server Queue: ChatSFQ

In the window for defining a new queue, on the General tab, type ‘ChatSFQ’ into the Name
field.

There are two fields to change here.

Change the queue type to one of ‘Home server queue’, by selecting that value from the drop
down box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case ‘ServerQm’.

This home server queue will poll the remote corresponding store and forward queue on the
remote queue manager, and pull any messages it find there to this queue.

 Copyright IBM Corp. 2000, 2001 59

The window will look something like this:

Figure 8-20 Defining a home server queue on the client

Then click on the Properties tab. There is one field here to be changed, Time interval.

Specify a value here in milliseconds. Specifying a value here greater then zero, tells the client
queue manager how often to automatically poll the server-side queue. Set this to some
reasonable value, such as 5000, which will mean a check occurs every 5 seconds.

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

Home Server Queue: ChatSFQViaWas

In the window for defining a new queue, on the General tab, type ‘ChatSFQViaWas’ into the
Name field.

There are two fields to change here.

Change the queue type to one of Home server queue, by selecting that value from the drop
down box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case, WASServerQm.

Then click on the Properties tab. There is one field here to be changed, Time interval.

Specify a value here in milliseconds. Specifying a value here greater then zero, tells the client
queue manager how often to automatically poll the server-side queue. Set this to some
reasonable value, such as 5000, which will mean a check occurs every 5 seconds.

 Copyright IBM Corp. 2001 60

Using MQSeries Everyplace with WebSphere Everyplace Server

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

8.8 Define WASServerQm queues
Local: ChatClientQViaWas

In the window for defining a new queue, on the General tab, type ‘ChatClientQViaWas’ into
the Name field.

The Mode should default to ‘Synchronous’, and the Type to ‘Local queue’.

Then click the Create button. No confirmation window is displayed, but the Create queue
window is re-displayed allowing you to define another queue if required.

Store and forward queue: ChatSFQViaWas

In the window for defining a new queue, on the General tab, type ‘ChatSFQViaWas’ into the
Name field.

Most importantly, change the queue type to ‘Store and forward queue’, by selecting that value
from the drop down box in the Type field. Also ensure that the Target qMgr field is set to
‘(none)’, i.e. messages are not be forwarded to another queue manager.

Select the Destinations tab. In the window type in the value ‘ClientQm’ and click the Add
button.

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

8.9 Java Swing setup
The chat room application uses the Java swing classes to display windows. These classes
are located in a .jar file called SwingAll.jar. Search your system for one of these files and then
add it to the classpath. For example:

set CLASSPATH=%CLASSPATH%;c:\Program Files\sqllib\java\swingall.jar

Note, be sure that the MQSeries Everyplace java classes are also accessible via the
classpath, as mentioned in Preparing for setup on page 39.

8.10 Chat room application setup
As mentioned, the chat room application consists of a number of packages. Extracting the
supplied files in the .zip file will create the appropriate relative directory structure and put the
classes in the correct place.

Modify the classpath so that these classes are found when the application is run, by typing in:

set CLASSPATH=C:\ED02\;.;%CLASSPATH%

The `.' tells the system to look in the current directory.

 Copyright IBM Corp. 2000, 2001 61

8.11 Set up start up list
The chat room application demonstrates two ways of running applications with MQSeries
Everyplace.

On the server side, the MQSeries Everyplace queue manager is started first, and then the
chat room application is loaded.

On the client side, the chat room application is started first, and it starts the MQSeries queue
manager.

Start-up List

The start up list approach demonstrates how to use MQe_Explorer to have an application
loaded when the queue manager starts.

This is done by editing the .ini file associated with the queue manager (in this case
ServerQm.ini).

Add the following to the bottom of the .ini file used for ServerQm:

[AppRunList]
(ascii)App1=itso.mqe.chatserver.RoomMgr

Note that more then one application can be specified, and initialization data can also be
passed if required.

8.12 Configure WebSphere
WebSphere Application server will require some configuration to allow the servlet to be run.
The servlet was tested in both V3.5 and V4 of WebSphere Application Server, but will only
describe here deployment of the servlet in V3.5.

Defining the servlet to WebSphere can be done in many ways, however we chose to define a
separate web application under the default application server.

 Copyright IBM Corp. 2001 62

Using MQSeries Everyplace with WebSphere Everyplace Server

Use the WebSphere Administrative console, to create a new web application, and then create
a servlet definition. The window that defines the servlet should look similar to this:

Figure 8-21 Defining the ChatRoom servlet

Add the following directories to the classpath for the web application that will run the servlet:

o C:\Program Files\MQe\Java

o C:\ED02

o C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets

What is being added here is the location of the MQSeries Everyplace class files, and the
classes used by the chat room application. The last classpath is required as the servlet that
runs the queue manager, imports this package as part of the YourCo example (see Extending
the YourCo Application on page 75). Note you will need to copy the TotalLeaveBean class
from the .zip file containing the chat room application, to the above directory, as this class
was developed for this SupportPac, and is not part of the supplied WebSphere Application
Server YourCo sample.

Note that messages written out by the chat room application are written to standard output,
which will appear in the default standard output file for the application server. These
messages advise if the queue manager is started successfully for example.

 Copyright IBM Corp. 2000, 2001 63

8.13 Set up property files
The following property files need to be defined.

clientChat.properties

This property file is used only on the client side, and can be used to pass the names of
queues and queue managers to the application to be used instead of the defaults coded in
the Java programs. A sample is shown below:

iniFile=C:\\ED02\\ClientQm.ini
clientQueue=ChatClientQ
destQueue=ChatRoomQ
destQueueAsync=ChatRoomQAsync
destQMgr=ServerQm
clientQm=ClientQm
WASIpAddr=9.24.106.53

Example 8-1 Sample clientChat property file

Note the values shown above match the default values coded in the java code, so a property
file does not need to be used if the defaults are used.

It should be placed in the ED02 directory.

MQe.properties

This property file is used only by the servlet running in WebSpere Application Server. This
property file is used to pass in the location of the .ini file for the queue manager to be started
by the servlet, and a flag to do with the YourCo example described in Extending the YourCo
Application on page 75.

The file contains just two lines like this:

IniFile=C:\\ED02\\WasServerQm.ini
YourCo=No

If you do plan to use the YourCo example, then set the value of the YourCo property to
anything other then ‘Yes’. If the value is set to ‘Yes’, then you will need to define the
YourCoQuery queue in the WASServerQM, otherwise you will get an exception in the servlet.
The property file should also be placed in the ED02 directory.

 Copyright IBM Corp. 2001 64

Using MQSeries Everyplace with WebSphere Everyplace Server

ejbLocation.properties

A number of parameters are required so that the bean used in WebSphere can locate the
EJB of the YourCo application. These parameters are specified in this property file. The
contents of which look like this:

userID=WSDEMO
password=wsdemo1
URL=jdbc:db2:SAMPLE
driver=COM.ibm.db2.jdbc.app.DB2Driver
dataSourceName=jdbc/sample
factory=com.ibm.ejs.ns.jndi.CNInitialContextFactory
accessName=Access
providerURL=iiop://9.24.104.13:900

Example 8-2 Properties to locate EJB

The IP address in the example above needs to be the address of the system that is executing
the EJBs.

This file should be placed into the ED02 directory. Note that if you do not plan to try out the
YourCo example, then you do not need to set up this property file.

8.14 Starting the chat room application
This section describes how to start and use the chat room application.

Starting the server side

To start the server side of the chat room application, follow these steps.

o Open a DOS window

o Set up the classpath as described in Preparing for setup on page 39

o Change to the C:\Program Files\MQe\Java\MQe_Explorer directory

o Type in ‘MQe_Explorer.exe’

• This displays MQe Explorer window, select File->Open
• A file dialog box appears, locate the .ini file for the server queue

manager called ServerQm.ini and select it
• The queue manager will start, and its objects can be viewed in the

tree
• It will start the chat room application due to it being specified in the

AppRunList stanza of the .ini file
• A window will appear titled ‘MQSeries Everyplace Server’
• Note: you cannot send any messages until the client connects

 Copyright IBM Corp. 2000, 2001 65

Server-side chat window

The server-side chat window will initially look like this:

Figure 8-22 Initial server-side chat window

Starting the client side

To start the client side of the chat room application, follow these steps.

o Open a DOS window where ClientQM is set up and setup the classpath

o Type in ‘java itso.mqe.chatclient.ClientMgr’

• Note that this will first start the chat room application, then application
will start the queue manager

• If you have set up a property file for the client side, add ‘-p’ to the line
that invokes the application, this causes the application to read the
property file

o A window will appear titled ‘MQSeries Everyplace Client’

 Copyright IBM Corp. 2001 66

Using MQSeries Everyplace with WebSphere Everyplace Server

Client-side chat window

The client-side chat window will initially look like this:

Figure 8-23 Initial client-side chat window

8.15 Operating the chat window
Once the two windows are displayed, you are ready to begin chatting.

Note that the client side must initiate the chat.

In the client window, in the input box below the text ‘Chat Direct’, type in some text and press
the Enter key.

The text you have typed in should then appear in the server-side window, in output text area
below the text ‘ITSO Chat Room’.

The Chat Direct input text area on the server-side chat room will now be enabled for input.
Type in a message and press the Enter key. There will be a slight delay before the message
appears in the output text area on the client window, as recall that the client is polling the
server store and forward queue at a defined interval.

Then to test chatting via WebSphere, type messages into the Chat via WebSphere input
boxes.

Continue to chat between the two windows as required.

8.16 Asynchronous chatting
To demonstrate asynchronous message transfer, the client side of the application can be run
without the ServerQm or WASServerQm queue managers being active.

Start just the chat room application on the client side. In the Chat Direct input text box type a
message. The application first tries to put to the local queue on the remote server, but will not

 Copyright IBM Corp. 2000, 2001 67

be able to as the server-side queue manager is down. The application detects this, and then
puts the message to the remote queue called ChatRoomQAsync. MQSeries Everyplace
stores the message locally.

You can verify this by looking in the directory on the file subsystem that is being used to store
messages. For example say you typed in three messages, then you can see that there are
three files in the corresponding directory, as shown below:

Figure 8-24 Messages waiting to be sent

The messages are in the ChatRoomQAsync directory.

MQSeries Everyplace will send these messages when there is a connection to the server-side
queue manager.

You can also try stopping the application server where the servlet is defined. Then try to send
a message using the Chat via WebSphere boxes. As no connection can be established, the
messages will be written to the ChatRoomQAsyncViaWas queue on ClientQm.

Triggering transmission

However for asynchronous message transfer to occur, the queue manager must be triggered.
When triggered, the queue manager will attempt to send the queued messages. If a
connection is available the messages are sent, if the connection is down, no messages are
sent.

The queue manager will not try again until triggered again.

Thus if you now start the server-side queue manager, the messages are not automatically
sent.

With the chat room application, there are two ways to trigger this transfer once the server
queue manager is restarted.

 Copyright IBM Corp. 2001 68

Using MQSeries Everyplace with WebSphere Everyplace Server

One way is to stop the client queue manager and restart it. When restarted the trigger
transmission method is invoked which causes it to try to send any queued messages.

The second way is to leave the client chat room application running, and click the Trigger
Transmission button labeled in the client chat window. When clicked this causes the trigger
transmission method to be invoked on the queue manager, and the messages to be sent.

It is the responsibility of the application to provide some method to have a trigger transmission
method issued on the queue manager, if asynchronous messaging is being used.

8.17 The admin GUI
On the client chat room window is a Display Admin GUI button. When clicked the following
window appears:

Figure 8-25 The administration GUI

This GUI is an example supplied with MQSeries Everyplace. Its use is described in the
MQSeries Everyplace Programming Guide.

It can be used to inquire, update and create definitions in the queue manager.

 Copyright IBM Corp. 2000, 2001 69

Trace facility

One of the most useful features is the trace option. If you click on the trace button, the
following window appears:

Figure 8-26 MQSeries Everyplace trace window

This can be used to trace activity in MQSeries Everyplace. If your Java program writes
messages to standard output, they will appear in this window.

8.18 Encryption and the stress test
As a simple example of using the encryption services supplied with MQSeries Everyplace,
and as a measure to compare the performance of using TCP/IP versus HTTP over TCP/IP for
sending messages a very simple stress test is incorporated into the chat room application.

The following section describes how to set it up the queues required, how to run the test, and
also how to set up and verify encryption.

ClientQm queues

Shut down the client side of the chat room application if it is running, and start up the
ClientQM queue manager using MQe_Explorer.

Open a create queue window.

On the General tab, type ‘StressQ’ into the Name field.

There are three fields to change here.

Change the queue type to one of ‘Remote queue’, by selecting that value from the drop down
box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case ‘ServerQm’.

Check the mode is ‘Synchronous’, by selecting that value from the drop down box in the
Mode field.

 Copyright IBM Corp. 2001 70

Using MQSeries Everyplace with WebSphere Everyplace Server

Then click on the Security tab. In the Cryptor field select
‘com.ibm.mqe.attributes.MqeXorCryptor’. The window should look something like this:

Figure 8-27 Selecting a cryptor adapter

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

Repeat this process to create another remote queue, but with a value of ‘WASServerQm’ in
the Queue qMgr field.

ServerQm queue

Using MQe_Explorer, start the ServerQm queue manager, and open the Create queue
window.

On the General tab, type ‘StressQ’ into the Name field.

The queue type should be ‘Local queue’, the mode ‘Synchronous’.

Then click on the security tab. In the Cryptor field, select
‘com.ibm.mqe.attributes.MqeXorCryptor’.

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

WASServerQm queue

Using the WebSphere Application Server console, stop the application server that is running
the ITSOMQeWas servlet. The using MQe_Explorer, start the WASServerQm queue
manager, and open the Create queue window.

In the tab labeled `General', type StressQ into the field labeled `Name'.

 Copyright IBM Corp. 2000, 2001 71

The queue type should be ‘Local queue’, the mode ‘Synchronous’.

Then click on the Security tab. In the Cryptor field, select
‘com.ibm.mqe.attributes.MqeXorCryptor’.

Then click the Create button and the queue will be defined. No confirmation window is
displayed.

Then stop MQe_Explorer and restart the application server in WebSphere Application Server.

Run a stress test

Start the client side of the chat room application again. Then in the Chat Direct window type in
the string ‘Stress Test’ and press the Enter key. The code in the sendMessage method of
ClientMgr checks for the above string in the message to be sent. When it detects it, it will
invoke the stressTest method. All this method does is to send ten messages of 150 bytes
each to the ServerQm. It records the time it takes for this to occur, and calculates the
throughput rate. It then displays a message with the results in the chat room window.

Typing the same string in the Chat via WebSphere box, sends the same set of messages to
the StressQ on the WASServerQm.

If you set up the client queue manager on one workstation, and the WASServerQm and
ServerQm on some other workstation, then you can use this simple stress test to compare
sending messages via TCP/IP versus via HTTP.

Encryption

Since the queues were defined using an encryption adapter, the messages have been
encrypted. The messages are encrypted as they are put onto the queue, and not decrypted till
they are retrieved from the queue and passed to the application.

Note even though this is a synchronous put message to a local queue on a remote queue
manager, the encryption would still occur on the client-side queue manager before the
messages were sent.

Using MQe_Explorer, right click on the StressQ object, and you will see that it contains a
number of messages. Double click on one of these messages, and you will have a display
similar to the one shown below:

Figure 8-28 Displaying stress test messages

 Copyright IBM Corp. 2001 72

Using MQSeries Everyplace with WebSphere Everyplace Server

The text of the message is shown under the Value column heading, on the line with a value of
‘Message’ under the Name. The message contents can be viewed, because the application,
in this case MQe_Explorer, has read the message, and the queue manager has decrypted it.

To check that the message is indeed encrypted, use the Windows Explorer program, and drill
down to the StressQ folder in the directory where the queues associated with the ServerQm
are stored. In this directory you will see a number of files; each file represents a message.
Double click on one of the messages, and it will display in a default editor (Notepad.exe is
fine). The contents will look something like this:

Figure 8-29 Encrypted message contents

As the message is encrypted, the contents displayed are unintelligible.

MQSeries Everyplace comes with adapters that provide much stronger levels of encryption
then the one used in this example, though there are some additional steps involved in using
them, which are explained in Chapter 8 in the MQSeries Everyplace Programming Guide,
SC34-5845.

TCP/IP vs HTTP - comparison

Using this simple stress test, we compared throughput rate of TCP/IP between queue
managers, to that of HTTP between queue managers.

We set up ClientQm on one machine, and WASServerQm and ServerQm on a second
machine, connected over a LAN. Then ran the above stress test to each with these results:

o Took 250ms to send 1500 bytes to ServerQm using TCP/IP

• Throughput rate 6000 bytes/sec

o Took 1844ms to send 10 messages of total of 1500 bytes to WASServerQm
using HTTP, with WASServerQm running in WebSphere

• Throughput rate 813 bytes/sec

8.19 Coding administration messages
Because in our example we have used MQe_Explorer to configure our queue managers, it
has not been necessary to develop any code to do this task. Without MQe_Explorer, it would
have been necessary to develop programs to perform the administrative task of creating and
configuring queue mangers.

Configuration is done using MQSeries Everyplace administrative type messages. When a
queue manager is defined, two queues to handle administration are defined. They are called:

o AdminQ

o AdminReplyQ

The messages are written to the AdminQ, where the queue manager actions the message,
and replies are typically received on the AdminReplyQ.

 Copyright IBM Corp. 2000, 2001 73

Building these administration messages requires writing a program to just that. MQe_Explorer
does this for you, by turning the actions you generate by clicking on various objects, into
administration messages.

In the ClientMgr class there are two methods, which provide sample code to show how to
build administration type messages. The addConnection defines a connection, while the
addQueue method defines a queue.

 Copyright IBM Corp. 2001 74

Using MQSeries Everyplace with WebSphere Everyplace Server

9 Extending the YourCo Application
This section describes how MQSeries Everyplace can be used to extend existing
applications.

9.1 Overview
The YourCo application is a sample application supplied with WebSphere Application Server.
As supplied it demonstrates various features of WebSphere, EJBs, servlets etc, with access
being browser based.

As part of the chat room application, some extra code was developed to demonstrate how
MQSeries Everyplace could be used to access an existing application running in WebSphere.
Also this example demonstrates how to set up a simple adapter to implement authenticated
access to a queue.

The YourCo sample application consists in part of a database containing in one database
table a list of employees, and in another table a list of different types of leave that the
employees have owing them.

The aim of the example is to show how a manager on a remote device could access
information securely from an application that to that stage only had a browser interface.

This example is implemented on typical Windows type desktops, with the client application
running on a Windows desktop. However the client application could be implemented on a
device like a palm type device, which perhaps does not support a normal browser interface.
Using MQSeries everyplace, and the Wireless Gateway support of the WebSphere
Everyplace Suite, a person could gain remote secure access an application that previously
had required a browser to access.

9.2 YourCo extensions
The example set up here involves sending a predefined message to the YourCoQuery queue
in the WASServerQm queue manager running in WebSphere. When the message arrives, a
bean is invoked to determine the total amount of different types of leave due to all staff of
YourCo. A message with these totals is returned to the chat room window.

The following describes the extra Java packages set up to handle the interaction with the
YourCo application.

Part of the supplied YourCo application is the WebSphereamples.YourCo.Timeout package.
This is used to display leave information about individual staff members of YourCo on a
browser. The code was copied into Visual Age for Java, and then the following new classes
developed:

o totalLeaveBean - used to store leave values

o totalLeaveServlet - contains method to retrieve leave info

 Copyright IBM Corp. 2000, 2001 75

When the init method of the ITSOMQeWas servlet is run, a message listener is defined for
the YourCoQuery queue. When a message arrives on that queue, the messageArrived
method of the WasQMgr object is called. The following shows the code executed from this
method:

if (eventQueueName.indexOf("YourCoQuery") >= 0) {

System.out.println("call ejb to get info");
msgObj = wasQMgr.getMessage(null, "YourCoQuery", null, null, 0);
System.out.println("From: " + msgObj.getOriginQMgr() +

" : " + eventQueueName +
" msg: " + msgObj.getAscii("Message"));

findTotalLeave();
String yourCoMsg = "YourCo leave Totals: Vactional: " + sumVactional +

" Personal: " + sumPersonal +
" Sick: " + sumSick;

replyMsg.putAscii("Message", yourCoMsg);
wasQMgr.putMessage("ClientQm", "ChatClientQ", replyMsg, null, 0);

Example 9-1 Handling messages on the YourCoQuery queue

The result of the above code is that the findTotalLeave method of the WasQMgr object is
called. This main part of this method is shown below:

TotalLeaveBean totalLeaveInfo = new TotalLeaveBean();

totalLeaveInfo = totalLeaveServlet.calcTotalLeave(null);

sumVactional = totalLeaveInfo.getTotalVactional();
sumPersonal = totalLeaveInfo.getTotalPersonal();
sumSick = totalLeaveInfo.getTotalSick();

Example 9-2 Calling bean to access YourCo information

The above code shows that a Java bean object of type TotalLeaveBean is created. This bean
was written for this example. The totalLeaveServlet class was written initially to run the
TotalLeaveBean via a browser to test it's functionality, prior to using it in this example.

The above code shows that the calcTotalLeave method of the totalLeaveServlet class is
called, which will return a bean of type totalLeaveInfo.

The calcTotalLeave method of the totalLeaveServlet class uses another bean developed for
this SupportPac, InviteesDBBean. This bean returns a list of all employees from the YourCo
database. Then for each employee in the list, the amount of different types of leave they have
is obtained, using an existing EJB, and a running total kept for each type. The code is shown
below:

try {

while (true) {
ii = ii + 1;
employeeId = Integer.valueOf(InviteesDBBean.getEMPNO(ii)).intValue();
System.out.println(

"Employee id: " + employeeId + " String: " +
InviteesDBBean.getEMPNO(ii));

try {
totalVactional = totalVactional + access.getBalance(employeeId, 1);

 Copyright IBM Corp. 2001 76

Using MQSeries Everyplace with WebSphere Everyplace Server

totalPersonal = totalPersonal + access.getBalance(employeeId, 2);
totalSick = totalSick + access.getBalance(employeeId, 3);
System.out.println("tv:" + access.getBalance(employeeId, 1));

} catch (Exception e) {
System.out.println("TL - Exception: " + e.getMessage());
e.printStackTrace();

}
} // End while

} // End try

Example 9-3 Calculating the total of the different leave types

What we have demonstrated here is that a remote application using the messaging
technology of MQSeries Everyplace, can easily be used to access an existing web based
application.

9.3 Customized authenticator adapter
MQSeries Everyplace comes with some sample authentication type adapters. For this
example however, a simple authentication adapter was developed to illustrate the principles
involved.

A detailed description of the MQSeries Everyplace authentication adapter can be found in
Chapter 2 of the MQSeries Everyplace Programming Reference manual, SC34-5846.

The following diagram outlines the processing that occurs when an authentication adapter is
used.

Application

putMessage
to
YourCoQuery

(2) activateMaster

(4) slaveResponse

setAuthenticateID

ClientQm

setAuthenticateID

WASServerQm

(3) activateSlave

(1)

Figure 9-1 Authentication adapter flow

The processing that occurs, with reference to the above diagram, is as follows:

1. The application issues a putMessage to the YourCoQuery queue

 Copyright IBM Corp. 2000, 2001 77

2. The ClientQm queue manager detects that an authentication adapter is
specified in the queue definition, and invokes the activateMaster in the class
specified, in this case the customized adapter is in the package
itso.mqe.security.QueueAuthenticator

i. The activateMaster method will then display a small window to ask
the end user for a password

ii. The password entered by the user is returned to the queue manager
to pass to the corresponding activateSlave method on the server
queue manager, the code to do this is shown below:

/* Password entered by user is passed back to queue manager, which
 will send it to the corresponding activateSlave method on the server
 queue manager */

System.out.println("pwd: " + password);
String replyTxt = "From Master: " + password;
byte [] replyMsg = replyTxt.getBytes();
return replyMsg;

Example 9-4 Returning the password for authentication

3. On the WASServerQm queue manager, the activateSlave method of the
QueueAuthenticator class is invoked

i. The data passed to this method contains the password entered by
the end user, code in the method validates the password and sends
back a positive response, the code that does this is shown below:

if (recvMsg.indexOf("shazam") > 0){
try
{

setAuthenticatedID(authID);
replyMsg = "From Slave: Auth ok: ".getBytes();
return replyMsg;

} /*

Example 9-5 Validating the password

ii. If the password is incorrect, an exception is thrown which will result in
the activateMaster method being re-invoked on the ClientQm queue
manager, which will re-display the window asking for the password

iii. The setAuthenticatedID method call tells the queue manager that
authentication has been successfully established for the queue

4. On the ClientQm queue manager, the slaveResponse method in the
QueueAuthenticator class is called, this method simply calls the
setAuthenticatedID method to notify the ClientQm that access to the queue
has been authenticated

9.4 Queue definitions
To run the example, set up the following queue definitions. It is assumed that you have setup
the Chat Room Client example described in Chat room – An MQSeries Everyplace
application on page 17.

 Copyright IBM Corp. 2001 78

Using MQSeries Everyplace with WebSphere Everyplace Server

On ClientQM: remote queue – YourCoQuery

This is a similar process you have been using to define queues in the Chat Room application.

Stop the chat room application if running, and use MQe_Explorer to load up the ClientQm
queue manager.

From the expanded tree view, right click on the Local queues object, and then select the New
Queue menu item. A window will appear, in which to enter the details of the queue you wish
to define.

On the General tab, type ‘YourCoQuery’ into the Name field.

Change the queue type to one of ‘Remote queue’, by selecting that value from the drop down
box in the Type field.

In the Queue qMgr box, select from the drop down box the name of the remote queue
manager, in this case ‘WASServerQm’.

Check the mode is ‘Synchronous’, by selecting that value from the drop down box in the
Mode field.

Then click on the Security tab. In the Authenticator field type in this value:

itso.mqe.security.QueueAuthenticator

The screen should look similar to this:

Figure 9-2 Specifying a customized authentication adapter

Then click the Create button. No confirmation window is displayed.

 Copyright IBM Corp. 2000, 2001 79

On WASServerQM: local queue – YourCoQuery

Stop the application server in WebSphere Application Server if the queue manager is active in
the servlet. Then use MQe_Explorer to load up the WASServerQm queue manager.

From the expanded tree view, right click on the Local queues object, and then select the New
Queue menu item. A window will appear, in which to enter the details of the queue you wish
to define.

On the General tab, type ‘YourCoQuery’ into the Name field.

The queue type should be local, mode synchronous.

Then click on the Security tab. In the Authenticator field type in this value:

itso.mqe.security.QueueAuthenticator

Then click the Create button. No confirmation window is displayed.

9.5 Property file
Check that in the MQe.property file, the flag for the YourCo property is set to ‘Yes’. The line in
the property file should look like this:

YourCo=Yes

9.6 Additional beans
The YourCo application comes as supplied example with WebSphere Application Server.
Additional beans and servlets were developed to demonstrate new functionality of
WebSphere Everyplace Server. These additional beans are supplied with the .zip file for this
SupportPac. They need to be copied to the directory containing the rest of the YourCo
example.

This directory also needs to be added to the classpath in the Web Application definition in
WebSphere Application Server:

C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets

These additional classes:

WebSphereSamples.YourCo.Timeout.TotalLeaveBean
WebSphereSamples.YourCo.Timeout.TotalLeaveServlet

need to be copied to this directory:

C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets\WebSphereS
amples\YourCo\Timeout

This class:

WebSphereSamples.YourCo.Meeting.InviteesDBBean

needs to be copied to this directory:

C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets\WebSphereS
amples\YourCo\Meeting

 Refer to the installation instructions.

 Copyright IBM Corp. 2001 80

Using MQSeries Everyplace with WebSphere Everyplace Server

9.7 Running the YourCo example
To run this example, start the client side of the chat room application. Then click on the
YourCo Secure Query button. You will then be prompted to enter a password before access
to the YourCoQuery queue is allowed, the window is as shown below:

Figure 9-3 YourCoQuery password prompt

Enter the password ‘shazam’ into the password field and click on the OK button.

After a few seconds the reply message advising the total leave values by type will appear in
the chat room window. The message will be similar to this:

From: WASServerQm : ChatClientQ msg: YourCo leave Totals: Vactional: 11 Personal: 14 Sick:
20

Example 9-6 YourCo query reply message

 Copyright IBM Corp. 2000, 2001 81

10 Integration with WebSphere Everyplace Suite
So far in this chapter, the examples of using MQSeries Everyplace with applications have
been done on standard desktops using Windows 2000, over a standard LAN. However one of
the reasons that MQSeries Everyplace was developed was to provide assured messaging
capability over non-traditional networks, such as those now available for wireless connection.

The connectivity support provided by the Wireless Gateway component of WebSphere
Everyplace Server, means that applications that use MQSeries Everyplace can use this
connection support to allow them to run on wireless devices. While this chapter has only
described using MQSeries Everyplace on Windows systems, the product does provide
support for other devices such as palm type devices.

The Wireless Gateway consists of a server component that would typically be run within an
organizations data center, and a client component installed on the wireless device. This client
component handles the process of communicating with the server side of the Wireless
Gateway.

One of the advantages of using the Wireless Gateway is that it can be configured to provide
authentication and encryption services. Enabling authentication means that, when an end
user establishes a wireless connection, the Wireless client will prompt them for their
authentication details. Enabling encryption means that all data transferred between the client
and the server is encrypted preventing unauthorized people from viewing the data.

These authentication and encryption services of the Wireless Gateway can be in addition to
any authentication and encryption that applications or other products may use, that are
communicating via the Wireless Gateway.

Applications using MQSeries Everyplace, when run on a device using the Wireless Gateway
for handling the communication, require no modifications. Applications using MQSeries
Everyplace do not handle any part of the communication process; rather MQSeries
Everyplace does this. Additionally MQSeries Everyplace configuration does not require any
special configuration to use the Wireless Client support.

An advantage that MQSeries Everyplace provides is that it can send messages using the
HTTP protocol as well as via TCP/IP. This means that a site that has the typical firewall setup
to allow in HTTP traffic through to back end web servers, does not need to change this setup
to allow applications on wireless devices access into the system. Since the packets of data
from the MQSeries Everyplace applications will be standard HTTP packets, coming in on the
standard HTTP port 80, the firewall will not require modifications.

By using client type queue managers on the wireless device, MQSeries Everyplace will only
be establishing connections from the outside world into the organizations site. No connections
are established from within the organization site to devices outside.

WebTraffic Express

As MQSeries Everyplace can use the standard HTTP protocol, those requests that will invoke
a servlet in WebSphere Application Server, can be initially routed to the WebTraffic Express
component of WebSphere Everyplace Server. WebTraffic Express can then use the WebSeal
Lite plugin, to verify with Policy Director if the request should be allowed to pass through to
the backend server.

A sample authentication adapter is shipped with MQSeries Everyplace, which can be used to
add to the HTTP request an authentication header, containing the user id and password of
the end user. The user id and password are encoded using a base64 algorithm, just as is
done in browsers, meaning that it is a trivial task to decrypt it. However enabling the
encryption support of the Wireless Gateway means that the HTTP requests sent by MQSeries
Everyplace would be encrypted using a much stronger algorithm, which protects the user id
and password in the HTTP request.

 Copyright IBM Corp. 2001 82

Using MQSeries Everyplace with WebSphere Everyplace Server

The following diagram shows how the Chat Room application would be implemented across
multiple devices with the Wireless Gateway handling the communication between the client
and other queue managers.

Chat Direct

Chat Room

Client

Chat Via WebSphere
Chat Direct

Chat Room

Chat Via WebSphere

Server

WASServerQm

WebSphere Application Server

ClientQm
ServerQm

Wireless
Gateway

Web
Traffic
Express

TCP/IP

HTTP HTTP

HTTP

TCP/IP

TCP/IP

Figure 10-1 Integration with the Wireless Gateway

The IBM Redbook, Enterprise Wireless Applications using IBM WebSphere Everyplace
Server Service Provider and Enable Offerings, SG24-6519, describes another feature of
WebSphere Everyplace Suite, called Location Based Services. Location Based Services
allows information about the location of the end user to be added to the HTTP request when
received on the server side. Since MQSeries Everyplace could be configured to send it
messages as HTTP requests, these requests could be routed through the system running the
Location Based Services component.

Location information would be added to the HTTP request, which would then flow onto the
servlet in WebSphere Application Server. The servlet, as well as passing the message to
MQSeries Everyplace, could extract the location information and use this as required.

By using client type queue managers on the wireless device, MQSeries Everyplace will only
be establishing connections from the outside world into the organizations site. No connections
are established from within the organization site to devices outside.

10.1 Using the Wireless Client and Gateway
This section demonstrates how to use the Wireless Gateway in conjunction with MQSeries
Everyplace.

 Copyright IBM Corp. 2000, 2001 83

The following diagram shows how we initially configured the chat room application to run
across two Windows 2000 machines.

Chat Direct

Chat Room

Client

Chat Via WebSphere

Chat Direct

Chat Room

Chat Via WebSphere

Server 9.24.104.13

WASServerQm

WebSphere Application Server

ClientQm ServerQm

TCP/IP

HTTP

TCP/IP

9.24.106.53 9.24.104.13

Figure 10-2 Chat room application over a standard LAN

The above diagram shows the client side running on a PC at address 9.24.106.53, while the
server queue manager and WebSphere Application Server both run on the PC at address
9.24.104.13.

We now want to use the Wireless Gateway to handle communication between these two
devices.

The Wireless gateway was setup on an AIX system, and the Wireless client installed on the
client-side PC.

 Copyright IBM Corp. 2001 84

Using MQSeries Everyplace with WebSphere Everyplace Server

The Wireless Gatekeeper is the tool used to administer the Wireless Gateway. In the lab, we
had the Wireless Gateway running on an AIX system. A sample screen shot is shown below.

Figure 10-3 Wireless gatekeeper GUI

On an AIX system, the gatekeeper is started by typing in ‘wgcfg’.

On the left hand side of the gatekeeper window is a tree structure showing the various objects
being managed by the gateway. In the tree, the object labeled RS615001 represents the AIX
system running the Wireless Gateway. Under this object are two objects relating to the
Wireless gateway.

 Copyright IBM Corp. 2000, 2001 85

Mobile network connection

The first is an icon of a connection with a lightening bolt. This icon represents a Mobile
Network Connection or MNC. This represents the interface to a network provider for the
Wireless Gateway. Right click on this icon, and select properties. The right hand side of the
window displays its associated properties. For this example we do not want to use the
authorization facility of the Wireless gateway. To set this level of authentication, click on the
tab labeled 'Security'. Then click on the radio button corresponding to 'No validation', then
click on the Apply button to effect the change. The screen will look similar to this:

Figure 10-4 Selecting no authentication

Mobile network interface

The next object of interest is the one that appears as a light blue icon with a lightening bolt
through it. This icon represents the Mobile Network Interface, or MNI. This interface defines
an IP subnet, through which the Wireless Gateway routes traffic for Wireless Clients. When a
device connects using the Wireless client, it will be allocated an address from this subnet.
Right click on this icon, and select properties. The right hand side of the Gatekeeper window
will then display the properties on the MNI. Click on the tab labeled 'Interface'. The field
labeled 'IP address' is where you specify the IP subnet that will be used to support the clients.

Configuring this IP subnet correctly is a key issue when setting up a wireless gateway.

 Copyright IBM Corp. 2001 86

Using MQSeries Everyplace with WebSphere Everyplace Server

For our example we set up a virtual IP subnet at address 10.0.0.1. Thus the value entered in
the 'IP Address' field in our case was '10.0.0.1'. The gatekeeper screen looked like this:

Figure 10-5 Configuring the Wireless Gateway client

Our configuration with the Wireless Gateway incorporated now looks as shown below:

Chat Direct

Chat Room

Client

Chat Via WebSphere
Chat Direct

Chat Room

Chat Via WebSphere

Server 9.24.104.13

WASServerQm

WebSphere Application Server

ClientQm

ServerQm

TCP/IP

HTTP

TCP/IP

10.0.0.2

9.24.104.13

Wireless Client

Wireless
Gateway

9.24.104.65

HTTP

TCP/IP

Figure 10-6 Incorporating the Wireless Gateway

 Copyright IBM Corp. 2000, 2001 87

Note that the client now has an IP address of 10.0.0.2. This is the IP address it has been
allocated by the Wireless Gateway when it connects using the Wireless Client. If it
reconnected at a later time, the address may change, for example to 10.0.0.5.

In this case we are running the wireless protocol over the LAN to demonstrate the use of the
Wireless Gateway and client.

IP packets can now flow from the client through the gateway to the 9.24.104.13 machine.
However an entry needs to be added to the route table on the 9.24.104.13 machine so that it
knows where to send reply packets destined for the client address at 10.0.0.2. On the
Windows 2000 machine at 9.24.104.13, open a DOS window and enter this command:

route ADD 10.0.0.0 MASK 255.255.255.0 9.24.104.65

This adds a temporary TCP/IP routing entry, that tells that system, to route packets destined
for 10.0.0.* to 9.24.104.65, which is the Wireless Gateway.

Note this setup is for example purposes only. A production implementation would require a
proper IP subnet and routing tables to be configured.

10.2 Trying out the Wireless Gateway
First set up the chat room application on two machines as depicted in Figure 10-2 Chat room
application over a standard LAN on page 84 and ensure the application is working normally.

Then stop the chat room application on the client side. This must be done before starting the
Wireless Client.

Install the Wireless Client software on the Windows 2000 machine on the client side. This is a
straightforward process.

Then from the Start button, find the IBM Wireless Client, and select ‘Connections’. In the
window displayed, create a connection definition if one has not already been defined. This
creation process is straightforward. The most important item to know is the IP address of the
Wireless Gateway that needs to be entered.

In the lab we created a connection called `France', as shown below:

Figure 10-7 Wireless connections

 Copyright IBM Corp. 2001 88

Using MQSeries Everyplace with WebSphere Everyplace Server

To establish a wireless connection, just double click on the Gateway to France icon. A
window similar to the one shown below appears:

Figure 10-8 Connecting to the Wireless Gateway

When the three boxes all turn green, the connection is established, and the window
disappears. On the right hand side of the Windows 2000 task bar, appears a small icon of a
transmission tower.

To test your wireless connection is working open a DOS window. Type in ‘IPCONFIG’ and
you will get a display similar to this:

C:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter {21959871-44F7-46A7-BE57-6501A133852C}:

Connection-specific DNS Suffix . :
IP Address. : 10.0.0.3
Subnet Mask : 255.255.255.0
Default Gateway : 10.0.0.1

Token Ring adapter Local Area Connection:

Connection-specific DNS Suffix . : itso.ral.ibm.com
IP Address. : 9.24.106.53
Subnet Mask : 255.255.255.0
Default Gateway :

Example 10-1 IP status

This output shows that you still have the LAN connection, but now have also been allocated a
new IP address of 10.0.0.3, which is your wireless connection.

Then PING the address of the machine running your server-side queue managers. Watch the
little transmission tower icon, you will see a lightening bolt flash to indicate that IP traffic is
being sent.

 Copyright IBM Corp. 2000, 2001 89

Restart the client side of the chat room application, and send some messages and it should
function as before.

This example demonstrates that MQSeries Everyplace applications can be deployed to run
on wireless devices, with the Wireless Gateway providing the communication support.

10.3 Tracing
On the client

The Wireless client provides a tracing capability to assist with resolving communications
problems. Right click on the small transmission tower icon, and select `Trace'. A window
allowing you to set trace options appears. You can set trace to various levels as required.

Trace information is written to a file arttrace.txt which is located in the directory where the
Wireless client was installed, which is a default install is C:\Program Files\IBM\Wireless
Client.

This trace file contains formatted trace output, showing IP traffic that has occurred.

On the server

Various levels of logging and tracing can be enabled in the Wireless Gateway. Using the
Wireless Gatekeeper does this. Right click on the icon representing the AIX system you wish
to set logging for, select ‘Properties’, then in the panel on the right, click on the Logging tab.

This tab shows the logging and trace file names, and the level of logging and tracing that is
active. These values can be adjusted as required.

 Copyright IBM Corp. 2001 90

Using MQSeries Everyplace with WebSphere Everyplace Server

11 OS/390
The OS/390 platform also provides excellent Java support, so we decided to try out MQSeries
Everyplace on OS/390. We had access to an OS/390 system running Z/OS V1. We were able
to successfully run the chat room application using MQSeries Everyplace on the OS/3905
system. This section describes how this was done.

We only had time to set up the environment on OS/390 to allow messages to be sent from the
client chat room to the server chat room. However it would only require the appropriate
definitions to allow the server side to function fully. No Java programs required any
modification or recompilation.

11.1 Requirements
OS/390 Z/OS contains an Open/Edition environment that provides a UNIX environment. A
Windows server is required to allow the Open/Edition (Unix) Services to display the GUI
window of the chat room application when it is run.

We installed a X-Windows server onto a Windows 2000 desktop. Then we opened a Telnet
session to the OS/390 system, and issued this command to set the address of the machine to
display the GUI on:

export DISPLAY=9.24.106.53:0.0

The MQSeries Everyplace product is shipped as a .zip file. There is no supplied facility in
Open/Edition to unzip a zip file. However the Infozip product has been ported to run on
OS/390 Open/Edition. It can be downloaded from here:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html

We downloaded this file, ftp'd it to Open/Edition in OS/390, then installed it, which involved
simply un-tarring it.

This then provided us a way to unzip any .zip files we created on the Windows platform.

We then used WinZip to zip up the directory containing the MQSeries Everyplace product,
ftp'd this file to the OpenEdition environment and unzipped it.

Then we zipped up the directory containing the chat room application packages, ftp'd this to
Open/Edition and unzipped it.

Note: Like all Unix environments, Open/Edition is case sensitive, thus it is very important to ensure that
case of the directory names matches the package names coded in the java programs.

After this transfer process was complete, the MQSeries Everyplace product was located at
/u/.edward/mqe3/MQe, while the Chat Room application was located at /u/edward/itso.

11.2 Classpath
To be able to define the queue manager and run the application (based on where we had
unzipped files to, as mentioned above) we set classpath using this command:

export CLASSPATH=/u/edward/mqe3/MQe/Java:/u/edward:.

5 At the time of writing IBM was determining licensing issues with MQSeries Everyplace on OS/390
and its use is restricted at this time. Apply to IBM if you wish to deploy on this platform.

 Copyright IBM Corp. 2000, 2001 91

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html

Also the PATH environment variable should reference the location of the Java executable, for
example on our system we set the PATH as follows:

export PATH=/usr/lpp/java213/J1.3/bin

11.3 Configure ServerQm
The MQe_Explorer tool cannot be run from OS/390, though it can remotely administer such
queue managers after they have been created. However the MQSeries Everyplace product
comes with many example Java programs that can be used from a command line to perform
queue manager administration tasks. We used these tools to setup the ServerQm on OS/390.

Note we only set up the server side to allow the client chat window to send messages to the
server side.

Create .ini file

Firstly need to create the .ini file defining the initialization parameters for the ServerQm queue
manager. Due to the way the supplied samples have been written, they expect that the .ini file
will be in ASCII. While you can store the .ini file in ASCII in Open/Edition, you cannot edit it
there.

Thus use notepad to code up the .ini file, then do a binary transfer of this file to the
OpenEdition environment. We placed the .ini file in a directory called /u/edward/os390.

The .ini file is shown below:

[Registry]
(ascii)LocalRegType=FileRegistry
(ascii)DirName=/u/edward/os390/ServerQm/Registry/
(ascii)Adapter=RegistryAdapter
[ChannelManager]
(int)MaxChannels=0
[QueueManager]
(ascii)Name=ServerQm
[Listener]
(int)TimeInterval=300
(ascii)Listen=FastNetwork::8082
(ascii)Network=FastNetwork:
[Alias]
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager
(ascii)DefaultTransporter=com.ibm.mqe.MQeTransporter
(ascii)RegistryAdapter=com.ibm.mqe.adapters.MQeDiskFieldsAdapter
(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter
(ascii)PrivateRegistry=com.ibm.mqe.registry.MQePrivateSession
(ascii)FastNetwork=com.ibm.mqe.adapters.MQeTcpipHistoryAdapter
(ascii)FileRegistry=com.ibm.mqe.registry.MQeFileSession
(ascii)Server=examples.queuemanager.MQeServer
(ascii)ChannelAttrRules=examples.rules.AttributeRule
(ascii)Admin=examples.administration.console.Admin
(ascii)AttributeKey_2=com.ibm.mqe.attributes.MQeSharedKey
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey
(ascii)DefaultChannel=com.ibm.mqe.MQeChannel
(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter

Example 11-1 ServerQm .ini file for OS/390

 Copyright IBM Corp. 2001 92

Using MQSeries Everyplace with WebSphere Everyplace Server

Create ServerQm queue manager

We then issued this command to create the ServerQM queue manager:

java examples.install.SimpleCreateQM /u/edward/os390/ServerQm.ini

Basic test of ServerQm

We then ran of the supplied examples just to test the queue manager could be run
successfully by issuing this command:

java examples.application.Example1 ServerQm /u/edward/os390/ServerQm.ini

Add chat room application

We then added the chat room application to the .ini file, and ftp'd that to Open/Edition. The
lines added to the bottom of the .ini file are shown below:

[AppRunList]
(ascii)App1=itso.mqe.chatserver.RoomMgr
[App1]
(ascii)ClientQueue=ChatClientQ
(ascii)ChatRoomQ=ChatRoomQ

Example 11-2 Adding the chat room application to the .ini file

Define ChatRoomQ

We issued this command to define the local queue, ChatRoomQ, to the ServerQm queue
manager:

java examples.administration.commandline.LocalQueueCreator ChatRoomQ null null null nolimit
nolimit ServerQm /u/edward/os390/ServerQm.ini
com.ibm.mqe.adapters.MQeDiskFieldsAdapter:/u/edward/os390/ServerQm

11.4 Modify ClientQm
We then used the MQe_Explorer to modify the connection definition to ServerQm in
ClientQm. We changed the IP address to the IP address of the OS/390 system, then
shutdown MQe_Explorer.

11.5 Start chat room on OS/390
We then started the ServerQm queue manager on OS/390 by issuing this command:

java examples.queuemanager.MQeServer /u/edward/os390/ServerQm.ini

Note, prior to doing this be sure you have set the DISPLAY environment variable in your
Open/Edition telnet session, and that you have the X-Windows server running on the system
were you want the GUI window to appear.

Once the above command was issued, the server-side GUI window of the chat room
application appeared on our Windows desktop.

 Copyright IBM Corp. 2000, 2001 93

Start client side of chat room

We then started the client side of the chat room application, as explained in Starting the chat
room application on page 65. The client side GUI window appeared. We then typed a
message in on the client side, and it duly appeared in the server chat room window.

End of Document

 Copyright IBM Corp. 2001 94

	Download sites
	Newsgroups
	Overview
	Queue manager comparison
	Creating an MQSeries Everyplace queue manager
	Types of queue manager
	Channel types
	Adapters
	Types of messaging
	Messages
	Message persistence
	MQSeries Everyplace bridge
	Administration
	SupportPac ES02
	Security

	Installation and samples
	Install overview
	Supplied samples
	Integration with Visual Age for Java
	Installation of the transaction messaging samples

	Chat room – An MQSeries Everyplace application
	Overview
	The queue managers
	Connections
	Queue discovery
	MQSeries Everyplace queue definitions
	The application Java packages
	Client side – class interaction
	Server side – class interaction

	Starting a queue manager
	Started by application
	Started by the MQe_Explorer
	Started by a servlet

	Starting applications
	Client side
	Server side – application loading
	Applications in WebSphere Application Server

	Listening for messages
	The MqeMessageListenerInterface

	Chat room application flows
	Chat – client to server – direct
	Chat – client to server – via WebSphere
	Chat – server to client – direct
	Chat – Server to client – via WebSphere

	Setting up the chat room queue managers
	Preparing for setup
	Creating ServerQm queue manager
	Creating ClientQm queue manager
	Configuring WASSeverQm queue manager
	Creating connections
	Define ServerQm queues
	Define ClientQm queues
	Define WASServerQm queues
	Java Swing setup
	Chat room application setup
	Set up start up list
	Configure WebSphere
	Set up property files
	Starting the chat room application
	Operating the chat window
	Asynchronous chatting
	The admin GUI
	Encryption and the stress test
	Coding administration messages

	Extending the YourCo Application
	Overview
	YourCo extensions
	Customized authenticator adapter
	Queue definitions
	Property file
	Additional beans
	Running the YourCo example

	Integration with WebSphere Everyplace Suite
	Using the Wireless Client and Gateway
	Trying out the Wireless Gateway
	Tracing

	OS/390
	Requirements
	Classpath
	Configure ServerQm
	Modify ClientQm
	Start chat room on OS/390

