
Websphere MQ Everyplace
Designer

Phill van Leersum
WMQE Development

IBM Hursley Laboratories

page226.0 MQeXML .
page215.2 Investigator Mode .
page215.1 Designer Mode .
page215.0 Installation .
page184.5 Example of a Message Route .
page164.4 Pulling Message Route .
page144.3 Multiple Message Route .
page124.2 Single Message Route .
page114.1 Business Purpose .
page114.0 Message Routes .
page63.1 Filtering Message Route Resolutions .
page63.0 Message Resolution .
page42.6 Default Relationships .
page42.5 Help .
page42.4 Saving to File .
page42.3 Showing and Hiding Glyphs .
page32.2 Editing .
page22.1 Notation .
page22.0 Basics .
page11.0 WMQE Designer .

Change History

First Draft
ChangeVersion

Notes
In this document 'Websphere MQ Everyplace' is often abbreviated to 'WMQe'
WMQE Designer is currently undergoing development. Some of the facilities
mentioned in this document have changed. The documentation will be
corrected when the designer code stabilises, but is still included as 'better
than nothing'.

i

WMQE Designer - First Draft

1.0 WMQE Designer
This is a tool designed to allow the design and comprehension of WMQE networks.
The tool provides the following features:

Model WMQE Network graphically
Save and Load Models (xml format)
Manipulate the view of the model to expose various levels of complexity
Calculate queue route resolutions
Independant of WMQE - requires only java 118 or later

Optional extensions allow the 'Investigator' functionality:

Reading an existing WMQE network into the model
Administering an WMQE network
Creating an WMQE network from a model defininition file.

page1

WMQE Designer - User Guide

2.0 Basics
2.1 Notation
The WMQE Designer interface is a graphical representation of the WMQE Resources
(queue managers, queues etc) in a WMQE network. It combines tree views into a
graphics view. The trees are 'decomposable' into sub trees, simply by dragging an
WMQE Resource from its parent. This is easier to show diagramatically. First here is a
simple diagram showing a host and the WMQE Resources on it:

and the same system where the queue manager 'LocalQM' has been detached from its
parent host:

The line with a diamond shape shows that the queue manager is the child of the host.
This preserves the parent/child relationship from the tree, that would otherwise be lost
by detaching. Any resource shown a shadow is detachable from its parent. The queue
manager has two 'categories' within it - these are not detachable. If the categories are

page2

WMQE Designer - User Guide

empty, then they will not be shown:

Here the local queue has been detached from the queue manager, so the empty queue
category has been hidden. It will be replaced as soon as it is required. Categories
cannot be detached from their parents. The ability to separate out the trees into
components makes diagramming of particular aspects of a WMQE network simple.
Re-attaching the child to its parent is simple. Drag the child so that the mouse pointer is
over the parent and release. The target area for reattachment includes any visible,
attached childrten of the parent. If the parent is still attached to its parent, then any part
of the gand-parent will accept the reattachment.

2.2 Editing
The diagram can be edited by using the popup menus and the edit menu on the menu
bar. All WMQE resource types can be manipulated. There are two modes for editing -
'normal' and 'expert'. MQeDesigner always starts in 'normal' editing mode. In 'normal'
editing mode some model editing actions are dependant upon the resources available.
This constrains the editor to making only valid WMQE configurations. The constraints
are as follows:

To create a 'normal' connection definition, there must be a target listener. The GUI
only allows you to create a 'normal' connection definition on a queue manager by
selecting an existing listener on another queue manager.
To create a 'via' connection definition there must be a normal connection definition,
and a suitable queue manager as target. Suitable queue managers are those for
which there is currently no connection definition. Via connections can be used as
targets for via connections.
To create a remote queue there must be both an ultimate local queue (on another
queue manager) and a connection definition ('normal' or 'via') to the queue manager
owning the ultimate local queue. The GUI will then allow you to select the local
queue, or any of its aliases.

page3

WMQE Designer - User Guide

To create a home server queue there must be a suitable store and forward queue.
A suitable store and forward queue is one that is reachable (ie there is a connection
or set of connections to reach the S&fQueue), that has an appropriate queue
manager entry (same name as queue manager on which home server queue is
being created), and that does not already have a home server queue on the current
queue manager.

I strongly recommend using 'normal' edit mode whenever possible, as an aid to creating
valid WMQE topologies. Some valid topologies cannot be created using the expert
menus, and then the 'expert' mode can be used. In expert mode there are no
constraints upon the data entered, and so errors are likely - from simple spelling
mistakes to subtly broken topologies. The expert mode can be enabled/disabled using
the 'Edit' menu.

2.3 Showing and Hiding Glyphs
Individual glyphs can be hidden by using the popup menu. To show a glyph, use the
popup menu of its parent to show all children. Host glyphs are children of the windo, so
use the main menu to show all hidden glyphs. Hiding a glyp hides all its attached
children, but not its detached children.

2.4 Showing ‘Boundaries
Sometimes adding a boundary to a diagam helps to make it clear where one collection
of resources starts and another ends. An item in the popup menu (glyph/show
boundary), adds a dotted rectangle around all the children of a component. The
boundary will not be shown if there are no detached children. It helps to have the
owning component (the one whose boundary is being shown) in a prominent position. It

page4

WMQE Designer - User Guide

sounds more complicated than it really is. Play with it:

Host
serverhost

Queue Manager
ServerQM

Store And Forward Queue
ServerQueue@ServerQM

Targets

Local Queue
AdminReplyQ

Host
device

Queue Manager
KestrelQM

Home Server 'Queue'
ServerQueue@ServerQM

Local Queue
AdminQ

Remote Queue
AdminReplyQ@ServerQM

pulls from

resolves to

2.5 Saving to File
Models can be saved as an xml representation (File-->Save Model). The xml model
files can, of course, be loaded (File-->Load Model). Note that loading a file adds to the
current model. To load a file into a clean environment use the 'File-->New Model' menu
item.

Model Diagrams can only be exported as bitmaps; use the 'File-->Save Diagram' menu
item.

2.6 Help
Context sensive help is available for each WMQE resource. Choose help on the popup
menu (if the help window is not already visible), or click on the resource if the help
windo is visible.

2.7 Default Relationships

page5

WMQE Designer - User Guide

Some relationships between resources are very useful, and so these are displayed
automatically when relevant. These are called the 'Default Relationships' and are:

The connection or connection alias used by a remote queue
The connection used by a 'via' connection
The listener to which a connection refers
The store and forward queue that a home server queue pulls from

Some of these can be seen on the following diagram:

Default relationships are enabled/disabled globally by a menu option (View --> Show
Default Relationships).

page6

WMQE Designer - User Guide

3.0 Message Resolution
The designer can show how WMQE will resolve message routing. There are three
reource type that will allow message resolution:

QueueManager: you will be asked to provide the names of the target queue and
target queue manager. This is the most 'natural' of the message resolution as it
mimics the standard putMessage() function available on the WMQE API.
Queue: The names of the target queue and target queue manager are entirely
defined by the queue.
QueueManagerEntry (on store and forward queue): The name of the target queue
manager is the name of the queue manager entry. You will be asked to specify the
target queue name.

The message route resolution is invoked by using the popup menu on the resource.
Note that the resource must be detached from its parent in order be the origin of a
message resolution. The following shows a simple local message put:

The message route is shown with an arrow labelled with the message route name. The
arrow indicates the direction in which the message flows, and the colour of the label
indicates that the message is being 'pushed'. The message route can be hidden using
the 'hide message route' option on the popup menu.

3.1 Filtering Message Route Resolutions

page7

WMQE Designer - User Guide

Message route resolutions can get quite complex. Here is a route resolution using a
pushing store and forward queue:

It is quite a busy diagram. Forget the logic of the route for a momment, and we can
filter out some details. For a start, resolution via localhost is not really of interest. There
is a menu item under the view menu on the main menu bar to include/exclude hosts

page8

WMQE Designer - User Guide

from the message resolution:

There is a similar menu item to remove queue managers from the route resolution, but
there is also a more general way to do this: a route will not be shown via any resource
that is still 'attached' to its parent. So if we drag the queue manager 'TargetQM' back

page9

WMQE Designer - User Guide

into its host we get:

The advantage of dragging the queue manager is its ease and selectivity - route
resolution can be 'turned off' for individual queue managers. The disadvantage is that it
can be unclear which queue manager on a host a queue or connection belongs to. With
only one queue manager on host 127.0.0.2 there is no possibility for confusion here.

page10

WMQE Designer - User Guide

Filtering of message resolution can provide a much simplified view:

page11

WMQE Designer - User Guide

4.0 Message Routes
There is a higher level construct that we can create from the raw WMQE components,
and these are called 'Message Routes'. Each message path shows the ability of
messages to move from one queue manager to another. There are three kinds of
message path:

Single message path: These can move messages for a defined queue on a defined
queue manager. For example targetQueue@targetQM. These paths are
constructed from a remote queue (eg targetQueue@targetQM), a connection
definition (eg targetQM) on the same queue manager, and a receiving queue on
another queue manager. The receiving queue must be a queue that will accept
messages from the sending queue. It may be a local or remote queue (eg
targetQueue@targetQM) or a store and forward queue with an aprpriate queue
manager entry (eg targetQM). If all of these WMQE resources are present then
together they form a single message path. This path will move messages targeted at
one queue (eg targetQueue) and one queue manager (eg targetQM).
Multiple message path: These can move messages for a any queue on one or more
defined queue managers. For example *@targetQM. These paths are constructed
from a pushing store and forward queue (eg safq@targetQM, with a
queueManagerEntry called targetQM) a connection definition (eg targetQM) on the
same queue manager, and one or more receiving queues. The receiving queue
might be a store and forward queue with entries for the destination queue
manager(s) defined by the source queue, in which case the route wil move all
messages for the destination queue manager(s). If there is no s&f receiving queue,
then the messages will be put to any of the queues accepting messages for the
specified queue managers. If all of these WMQE resources are present then
together they form a multiple message path.
Pulling Message Route: A pulling message path allows messages for any queue on
a specified queue manager to be pulled to that queue manager. A pulling message
path consists of a home server queue (eg hsq@remoteQM), a cnnection definition
(eg remoteQM) and a store and forward queue at remoteQM with an apropriate
queueManagerEntry.

Note that these message paths do not exist as single entities within the WMQE system,
but are higher level posibilities iplied by the presence of certain resources. If the
resources are present then we can talk about the path existing. If any of the required
resources is missing, or incorrectly configured then the path does not exist.

Message paths are only considered for asynchronous message movements.

Message paths are calculated dynamically by the designer tool.

4.1 Business Purpose
Message routes show a high level view of the underlying components. The higher level
constructs often relate directly to a business purpose. Message Routes and queues
can be labelled with a business purpose in order to reflect this. Since each message

page12

WMQE Designer - User Guide

route is derived from a source queue, the label for the message route is the same as
that of the source queue. (Also useful as message routes are not persistent, but
derived from the lower level components so the business purpose can be stored with
the source queue). The purpose can be set either from the source queue or from the
message route. If a purpose has been set for a source queue, then the user can
choose to show either the route/queue name or the business purpose. This decision
affects both the source queue and the message route.

Home Server Queuepull
Store and Forward Queuemultiple push
Remote Queuesingle push
source queueMessage route type

4.2 Single Message Route
These can move messages for a defined queue on a defined queue manager. For
example targetQueue@targetQM. These paths are constructed from a remote queue
(eg targetQueue@targetQM) and a connection definition (eg targetQM) on the same
queue manager. If both of these WMQE resources are present then together they form
a single message path. Here is a diagram of the components of a simple message path:

page13

WMQE Designer - User Guide

The components imply a simple message path, which appears as below:

page14

WMQE Designer - User Guide

The path is linked to its component parts, but this can complicate the picture. Far better
to reattach the component parts to their parents and see the message route:

Future examples will not bother with the complex view showing the relationship between
the path and its components.

4.3 Multiple Message Route
These can move messages for a any queue on one or more defined queue managers.
For example *@targetQM. These paths are constructed from a pushing store and
forward queue (eg safq@targetQM, with a queueanagerEntry called targetQM) and a
connection definition (eg targetQM) on the same queue manager. If both of these
WMQE resources are present then together they form a multiple message path. Below

page15

WMQE Designer - User Guide

is a diagram showing the components of a multiple path:

page16

WMQE Designer - User Guide

The multiple path itself simplifies the diagram considerably:

4.4 Pulling Message Route
A pulling message path allows messages for any queue on a specified queue manager
to be pulled to that queue manager. A pulling message path consists of a home server
queue (eg hsq@remoteQM), a cnnection definition (eg remoteQM) and a store and
forward queue at remoteQM with an apropriate queueManagerEntry. The diagram

page17

WMQE Designer - User Guide

below shows the constituents of a pulling path:

page18

WMQE Designer - User Guide

And the maching path representation:

4.5 Example of a Message Route

page19

WMQE Designer - User Guide

The folowing diagram shows how message paths can be simplified:

Here we have a system where messages can move from AnotherQM to LocalQM in two
hops. The first hop is a mulitple push path (using S&F queue), and the second hop is a

page20

WMQE Designer - User Guide

pulling path. To see the logic more clearly we can show the paths themselves:

page21

WMQE Designer - User Guide

5.0 Installation
The tool can be installed in either 'Designer' or 'Investigator' modes. The only difference
is in the classes available on the classpath.

5.1 Designer Mode
In 'designer' mode, the tool is independant of WMQE, and requires only that Java is
available (118 or higher).

Choose (or create) a directory for the tool.
Ensure that the directory contains the following file:

designer.jar
Ensure that java executables are available on the path, and that the java class
libraries are available on the classpath. If java has been installed on your machine
then these will be set up correctly.
Ensure that the classpath includes designer.jar eg on windows:

classpath=%classpath%;.\designer.jar
start java using the class designer.MQeDesigner as an argument:

java designer.MQeDesigner

You could choose to create a batch file, or to edit the one supplied.

5.2 Investigator Mode
For 'investigator' mode you will need to perform the above actions, but you will also
need WMQE classes and an extra jar file in the classpath:

Ensure that WMQE is on the classpath; for correct operation the MQeMQ bridge
class files must be present.
Ensure that the file investigator.jar is on the classpath
Start java with the same command as above.

The tool will then allow the 'Administer' action on the popup menu for queue managers
if they have at least one declared listener. Only 'server' queue managers can be
administered (currently). The declared listener must match an existing listener on the
server queue manager. Selecting the runtime administrator will enable live
administration of the queue manager. Resources can be read from the real queue
manager. All the normal actions available in designer mode are also avalable in
investigator mode. Please note that the administration facilities are based on WMQE
v1.x functionality, and so listeners cannot be added/removed/queried remotely.

Please note that WMQE v1.x models Queue Manager Aliases internally as aliases on
connection definitions. Creating a queue manager alias in MQeDesigner without first
creating the connection definition will succeed in the Designer but fail to be reflected in
the 'real' system. So to create an alias for RemoteQM, it is neccesary first to create a
connection definition to RemoteQM.

MQ Resources cannot be administrered (maybe one day.....).

page22

WMQE Designer - User Guide

6.0 MQeXML
Models are stored in a version of XML called MQeXML. The format can easily be
deduced from the files themselves, or the following DTD (data type definition) can be
used. Note that the dtd does not (yet) contain attribute definitions
<?xml version='1.0' encoding="UTF-8"?>

<!ELEMENT Bridge (BridgeQueueManager)>
<!ATTLIST Bridge name CDATA #IMPLIED >

<!ELEMENT BridgeConnection (BridgeListener)>
<!ATTLIST BridgeConnection name CDATA #IMPLIED>

<!ELEMENT BridgeListener EMPTY>
<!ATTLIST BridgeListener name CDATA #IMPLIED>

<!ELEMENT BridgeQueue (QueueAlias)>
<!ATTLIST BridgeQueue name CDATA #IMPLIED>
<!ATTLIST BridgeQueue queueManagerName CDATA #IMPLIED>

<!ELEMENT BridgeQueueManager (BridgeConnection)>
<!ATTLIST BridgeQueueManager name CDATA #IMPLIED>

<!ELEMENT Connection (ConnectionAlias,ConnectionAdapter)>
<!ATTLIST Connection name CDATA #IMPLIED>

<!ELEMENT ConnectionAdapter EMPTY>
<!ATTLIST ConnectionAdapter name CDATA #IMPLIED>

<!ELEMENT ConnectionAlias EMPTY>
<!ATTLIST ConnectionAlias name CDATA #IMPLIED>

<!ELEMENT HomeServerQueue (QueueAlias)>
<!ATTLIST HomeServerQueue name CDATA #IMPLIED>
<!ATTLIST HomeServerQueue queueManagerName CDATA #IMPLIED>

<!ELEMENT Host (QueueManager,MQQueueManager)>
<!ATTLIST Host name CDATA #IMPLIED>

<!ELEMENT LocalQueue (QueueAlias)>
<!ATTLIST LocalQueue name CDATA #IMPLIED>
<!ATTLIST LocalQueue queueManagerName CDATA #IMPLIED>

<!ELEMENT MQChanel EMPTY>
<!ATTLIST MQChanel name CDATA #IMPLIED>

<!ELEMENT MQLocalQueue EMPTY>
<!ATTLIST MQLocalQueue name CDATA #IMPLIED>
<!ATTLIST MQLocalQueue queueManagerName CDATA #IMPLIED>

<!ELEMENT MQQueueManager
 (MQLocalQueue,MQRemoteQueue,MQXmitQueue,MQChanel)>
<!ATTLIST MQQueueManager name CDATA #IMPLIED>

<!ELEMENT MQRemoteQueue EMPTY>
<!ATTLIST MQRemoteQueue name CDATA #IMPLIED>
<!ATTLIST MQRemoteQueue queueManagerName CDATA #IMPLIED>

<!ELEMENT MQXmitQueue EMPTY>
<!ATTLIST MQXmitQueue name CDATA #IMPLIED>

page23

WMQE Designer - User Guide

<!ATTLIST MQXmitQueue queueManagerName CDATA #IMPLIED>

<!ELEMENT MQeModel (Host)>

<!ELEMENT QueueAlias EMPTY>
<!ATTLIST QueueAlias name CDATA #IMPLIED>

<!ELEMENT QueueManager
 (LocalQueue,RemoteQueue,StoreAndForwardQueue,HomeServerQueue,BridgeQueue,Connection,Bridge)>
<!ATTLIST QueueManager adapter CDATA #IMPLIED>
<!ATTLIST QueueManager channel CDATA #IMPLIED>
<!ATTLIST QueueManager name CDATA #IMPLIED>
<!ATTLIST QueueManager port CDATA #IMPLIED>

<!ELEMENT QueueManagerEntry EMPTY>
<!ATTLIST QueueManagerEntry name CDATA #IMPLIED>

<!ELEMENT RemoteQueue (QueueAlias)>
<!ATTLIST RemoteQueue name CDATA #IMPLIED>
<!ATTLIST RemoteQueue queueManagerName CDATA #IMPLIED>

<!ELEMENT StoreAndForwardQueue (QueueAlias,QueueManagerEntry)>
<!ATTLIST StoreAndForwardQueue name CDATA #IMPLIED>
<!ATTLIST StoreAndForwardQueue queueManagerName CDATA #IMPLIED>

It is entirely possible to edit the xml files to create different models. Indeed this could be
a powerful technique for creating variations from templates. Direct editing of the XML
circumvents the consistency checking applied by the GUI. Under some circumstances
this may be desirable.

page24

WMQE Designer - User Guide

