
MQSeries Everyplace - Administration tool

Design

Version 1.0

17 August 2000

Phill van Leersum
MQSeries Development

IBM United Kingdom Laboratories
Hursley Park

Hursley
Hampshire, SO21 2JN

UK

phillvl@uk.ibm.com

Property of IBM

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, August 2000

This edition applies to Version 1.0 of MQSeries Everyplace - Administration tool and to all
subsequent releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000. All rights reserved. Note
to US Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Design

ii

Table of Contents

page 158 Packaging for Delivery .

page 147 Renderer .

page 136 Bridge Model Layer .

page 125.8 BridgeListener .
page 125.7 BridgeClientConnection .
page 115.6 ContainedQM .
page 115.5 Bridge .
page 115.4 BridgeList .
page 115.3 Abstract Bridge Object Stub .
page 115.2 MQeBridgeQueueManagerStub .
page 115.1 MQeBridgeAdministeringQM .
page 115 Bridge Stub Layer .

page 94.3 Managed Object State Model .
page 84.2 QueueManager State Model .
page 84.1.8 Store And Forward Queue Proxy .
page 84.1.7 Managed Object Proxy .
page 84.1.6 Queue Manager Proxy .
page 84.1.5 MQe Proxy .
page 84.1.4 MQe Attribute .
page 84.1.3 MQe Attribute Definition .
page 74.1.2 MQe Meta Object .
page 74.1.1 MQe Meta Model .
page 74.1 Design .
page 74 Model Layer .

page 63.12 Home Server Queue Stub .
page 63.11 Store and Forward Queue Stub .
page 63.10 Remote Queue Stub .
page 63.9 Abstract Remote Queue Stub .
page 63.8 Local Queue Stub .
page 63.7 Abstract Queue Stub .
page 63.6 Conection Stub .
page 63.5 Managed Object Stub .
page 53.4 Administrative Connection .
page 53.3 Administered Queue Manager Stub .
page 53.2 Administering Queue Manager .
page 53.1 MQe Stub .
page 43 Stub Layer .

page 22 Architecture .

page 11 Introduction .

vi
Preface

. .

iv
Notices

. .

Design

iii

Notices
References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “AS-IS”. The use of this information and the implementation of any of the
techniques is the responsibility of the reader. Much depends on the ability of the reader to
evaluate these data and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

� IBM

� MQSeries

� Everyplace

The following terms are trademarks of other companies:

• Java Sun Corporation

Design

iv

Summary of Amendments

Initial release17 August 2000
ChangesDate

Design

v

Preface
This document describes the architecture of a platform-independent, low footprint, extensible
admin solution for MQSeries Everyplace.
It makes use of UIA recommendations to avail itself of UIA compliant exchangeable
renderers.
The architecture uses a layered approach to maximise reuse of components, and facilitate
customisation, by IBM or its customers.
The design presented here is dependant upon the design of the UIA-compliant
metamodel/rendering interface documented separately.

Design

vi

Bibliography
List any supporting publications here otherwise delete this page. Use following format:

� User Interface Architecture
� MetaModel XML format

Design

vii

1 Introduction

This document describes the architecture of a platform-independent, low footprint, extensible admin
solution for Mseries Everyplace.
It makes use of UIA recommendations to avail itself of UIA compliant exchangeable renderers.
The architecture uses a layered approach to maximise reuse of components, and facilitate
customisation, by IBM or its customers.
The design presented here is dependant upon the design of the UIA-compliant metamodel/rendering
interface documented separately

Design

page 1

2 Architecture

Overall concept: Provides a layered implementation of RendereInterface for Mqe. Complies with UIA
recommendations by using the rendering interface, and allowing the renderer the control of the GUI
(this technology described elsewhere). The advantage of this approach is that a Renderer, once
written, can be reused for many tools. This gives a common look-and-feel to al such tools, and
ensures compliance with the UIA design guidelines.

The designed has been prototyped in fully-portable Java 1.1 compliant code. This means that it will
work on any platform that provides a Java 1.1 compliant JVM. Swing is not required.
Although the architecture is layered, and designed for reuse, it does not imply a large footprint. The
entire prototype, including the simple renderer but excluding MQe.jar, is a little less than 140k bytes.

The factory pattern for object creation is used throughout this architecture, to allow customisation of its
behaviour through subclassing. Essentially, the factory pattern allows an instance of one class (A
'factory class') to act as a factory for instances of another class. This is achieved by the factory object
displaying an instance method that creates an instance of the desired object (sometimes caled a
'factory method'). This factory method can then be overriden by the implementor of a subclass of the
factory class. The overide can then create instances of its desired class (which must be a subclass of
the original created class). The pattern allows large amounts of reuse of code to be integrated
seamlessly with specialisations of the same code.
The code has been organised into ditinc packages, so that the modules can be reused most
effectively. The clear division between base MQe administrative code and MQ Bridge administrative
code allows delivery of the explorer in two forms:
� MQeExplorer: capable of administering all the base MQe objects. Minimum footprint. No

dependancy on MQSeries
� MQeBridgeExplorer: Adds the ability to administer the MQe Bridge objects to the capabiliies of the

MQe Explorer. Has a dependancy upon MQ Series for correct function.

Renderer

Renderable
Interface

MQe Model

Renderer can display MQe Model
and MQe Bridge Model because they
refine the metamodel which
implements the Renderable Interface

Meta Model
Framework

MQe Stub
Layer

MQe

Stub Layer wrappers the
administrative functions of MQe.

MQe Bridge
Model

MQe Bridge
Stub Layer

Bridge Stub Layer wrappers
the administ rat ive funct ions
of MQ Bridge

MQ Series

MQ Bridge

Design

page 2

� MQSeries:
� MQe: Base MQe code.
� MQ Bridge: code for bridging between MQe and MQ Series.
� Stub Layer: This layer wrappers Mqe with classes that simplify the most common operations on

MQe objects. This can easily be extended (by IBM, or by customers) to include new types of MQe
objects.

� BridgeStub Layer: This layer wrappers MqeBridge with classes that simplify the most common
operations on MQeBridge objects. This can easily be extended (by IBM, or by customers) to
include new types of MQeBridge objects. This package extends the Stub Layer and is dependent
upon it.

� Renderable Interace: provides a standard interface through which GUIs may render an exposed
model, without detailed knowledge of the underlying model. Decouples the GUI from the
underlying model. Allows any GUI to render any compliant model.

� MetaModel Framework: Provides a framework that facilitates the implementation of the
Renderable interface. Allows much/most of the GUI representation to be encoded in XML.
Provides xml rendering capabilities for the Model objects to allow them persistence/storage.

� Model Layer: exposes a subset of the functionality of the Stub Layer to the Renderer by
implementing the RendererInterface (indirectly, by extending the metamodel).

� BridgeModel Layer: exposes a subset of the functionality of the BridgeStub Layer to the Renderer
by implementing the RendererInterface (indirectly, by extending the Model layer and the
metamodel). The Bridge model is an extension of, and dependent upon, the Model Layer.

� Renderer Implementation: A simple renderer has been implemented. This unsophisticated
because it is built entirely using the highly portable AWT 1.1 code. More sophisticated GUIs are
expected to be provided by (amongst others) IBM Ease Of Use organisation.

Design

page 3

3 Stub Layer

This layer wrappers Mqe with classes that simplify the most common operations on MQe objects.
MQe is administered by the sending of administration messages. The particular message type, its
contents, and its addressing are all critical for correct results.
Since the hierarchy of the stub layer reflects the logical hierarchy of Mqe objects, then addition to the
latter can easily be reflected in the former.
This layer conforms to the highest standards of OO design. It is intended for release to customers as
a tool for simplifying MQe administration, and for extension to accomodate customers subclasses of
MQe resources.
The objects currently administered are
� MQeQueueManager
� MQeConnection
� MQeQueue
� MQeRemoteQueue
� MQeHomeServerQueue
� MQeStoreAndForwardQueue
The common operations implemented on all Mqe objects are Create, Delete, Update, and InquireAll.
In addition, all queues and connections may have aliases added/deleted. Store And Forward queues
can have queue manager entries added and deleted.
Operations are performed by polymorphic method dispatch on the hierarchy of stub objects. For
synchronous solutions, the response message from MQe is returned to the method caller. For
asynchronous solutions, the invoker can register as a listener and have the message returned to a
cal-back method.

Abstract Stub

Queue Manager Stub

Connection Stub Abs tract Queue Stub

Local Queue StubAbstract Remote Queue Stub

Remote Queue Stub

Home Server Queue Stub

Store And Forward Queue Stub

Administering Queue Manager Stub

Administered Queue Manager S tub

Managed Object Stub

1 0..*1 0..*

Abstract Administration Connection
1

0..*

1

0..*

This hierarchy strictly enforces the pattern that 'only none-leaf classes shall be instantiated'. While
some may argue that this leads to uneccessary classes, it has been demonstrated that the code
written in this style is more naturally extensible, and more resistant to defects.
Thus, for example, while LocalQueue does not represent a large refinement of the behaviour of
AbstractQueue, and could be considered superfluous, it is subtly different. hs sbtle difference, when
ignored, can send unwanted ripples of complexity and confusion through the design as the code is
extended, mantaned, and modified.

Design

page 4

3.1MQe Stub

represents all common stub behaviour.
implements create, delete, update, inquireAll.
Obtains correct admin message by polymorphic adminMessage() method dispatch.

3.2 Administering Queue Manager

 Each instance of the stub layer requires a queue manager as an entry point to the MQe system.
Currently this is a queue manager created specificaly for this purpose. In later implementations it
could easily be a queue manager that already exists.
The Administering Queue Manager is the MQe resource that actually places messages into, and
receives messages from, the MQe system.
The Administering Queue Manager acts as a factory for Administered Queue Managers.

3.3 Administered Queue Manager Stub

Each MQeQueueManager being administered is represented by an AdministeredQueueManager stub.
This stub allows operations on the queue manager.
Administrative Queue Manager stubs act as factories for stubs representing all the types of managed
objects.
The Administrative Queue Manager stub allows the child managed objects to route their messages via
the administrative connection.

3.4Administrative Connection

Each Administered Queue Manager stub is connected to the Administering Queue Manager by and
Administrative Connection.
The connection controls the resources that allow the message to flow from the Administering Queue
Manager to the MQeQueueManager that is represented by the Administered Queue Manager
The connection controls the dispatch and receipt of messages to and from the managed
MQeQueueManager, via the Adminisering Queue Manager.

Abstract Administration Connection

Connection Stub

Synchronous Administration Connection

Remote Queue Stub

Home Server Queue Stub

Store And Forward Queue Stub

Asynchronous Administration Connection

Simple Asynchronous Connection Store And Forward Connection

The simplest connection is a synchronous connection. In this only an MQeConnection from the
Administering Queue Manager to the managed MQeQueueManager is required. Messages are
addrssed to the managed queue manager, and MQe uses the connection to ensure that they arrive.

Design

page 5

Reply messages are requested to the administered queue managers admin reply queue, and the
connection polls this queue until either a reply is received, or a time-out occurs.
A more complex Admin Connection could involve the creation of a remote queue, a store and forward
queue, and a home server queue, with asynchrounous return of messages.

3.5 Managed Object Stub

A managed object stub represents any MQe resourced managed by a queue manager.
Maintains a reference to the parent queue manager.
Implements the add/delete alias functionality. The correct constants for the messages are derived
polymorhically from the subclasses.

3.6 Conection Stub

Implements connection specific functionality
Implements the polymorphic adminMessage() method.

3.7 Abstract Queue Stub

3.8 Local Queue Stub

Implements the polymorphic adminMessage() method.

3.9 Abstract Remote Queue Stub

3.10 Remote Queue Stub

Implements the polymorphic adminMessage() method.

3.11 Store and Forward Queue Stub

Implements the polymorphic adminMessage() method.

3.12Home Server Queue Stub

Implements the polymorphic adminMessage() method.

Design

page 6

4 Model Layer

exposes a subset of the functionality of the Stub Layer to the Renderer by implementing the Renderer
Interface. Acheives this by subclassing the metamodel appropriately. Thedesign of the metamodel
and of the rendering interface are described separately.

� Flattens the hierarchy defined in the stub layer
� provides GUI display logic
� Wraps the stubs from the stub layer
� place to put attribute dependence.
� designed to add UI visibility to stub

4.1Design

MQe Meta Object

Meta Model
(from Meta Model)

UIObject
(f rom M eta Model)

Meta Object
(f

Attribute Definition
(fAttribute

(f

MQe Attribute

MQe Attribute DefinitionMQe Proxy

Abstract Stub
(f rom MQe Stub L ayer)

1

1

1

1

wraps stub

Store And Forward Queue Proxy

Store And Forward Queue Stub
(from MQe Stub La yer)

1

1

1

1

wraps stub

MQe Managed Object Proxy

Managed Object Stub
(from MQe Stub Layer)

1

1

1

1

wraps stub

Queue Manager S tub
(f rom MQe Stub Laye r)

MQe Queue Manager Proxy

1

1

1

1

wraps stub

MQe Meta Model

Administering Queue Manager Stub
(from MQe Stub Layer)

1

1

1

1
wraps stub

CreatableObject

4.1.1 MQe Meta Model
Subclasses Meta Model in order to overide the factory methods for creating Meta Objects. In this
factory method it creates and returns an instance of MQe Meta Object.
Contains an instance of Administering Queue Manager Stub.

4.1.2 MQe Meta Object
Subclasses Meta Object to overide the factory method for creating UIObjects. In this factory method it
creates and returns an instance of one of the subclasses of MQe Proxy as appropriate.

Design

page 7

4.1.3 MQe Attribute Definition
Subclasses Attribute Definition to overide the factory method for Attributes. Creates and returns an
instance of MQe Attribute.

4.1.4 MQe Attribute
Implements functionality specific to MQe model attributes. For example, reading attrbute values from,
and writing attribute values to, MQe Fields objects (base MQe).

4.1.5 MQe Proxy
Superclass for all MQe proxies.
Introduces the notion of wrapping a stub.
Implements generic methods for create/delete/updateinquireAll.
Implements generic method for reading all attributes from an MQeFields object.

4.1.6 Queue Manager Proxy
Subclass of MQe Proxy.
The stub this class contains is an instance of Administered Queue Manager Proxy.
Exposes creation methods for all managed objects.
Exposes connect/disconnect methods .

4.1.7 Managed Object Proxy
Subclass of MQe Proxy.
The stub contaned in this class is an instance of a subclass of Managed Object Stub.
Exposes the add/remove alias functionality.

4.1.8 Store And Forward Queue Proxy
Subclass of Managed Object Proxy.
The stub contaned in this class is an instance of a Store And Forward Queue Stub.
Exposes functionality for add/remove Queue Manager entry.

4.2 QueueManager State Model

The QueueManager states allow for connection/disconnection. Resources can be edited 'offline'.
The states are:
� Disconnected: No connection from administering machine to administered machine, (Blue).
� Connecting: Attempting to establish connection from administering machine to administered

machine, (Cyan).
� Connected: A connection from administering machine to administered machine, exists (Blue).
� Disconnecting: Attempting to remove connection from administering machine to administered

machine, (Cyan).

The events driving state chages are:
� add to workspace: The user adds a queue manager proxy to the workspace.
� "Connect": The user requests that the queue manager is connected;
� "Disconnect": The user requests that the queue manager is disconnected;
� success: an attempt to connect or disconnect succeeded.
� failure : an attempt to connect or disconnect succeeded.
� "Delete": The user requests that the queue manager is removed from the workspace.

Design

page 8

Connected

Disconnecting

Connecting

Disconnected

add to workspace

"Disconnect"

Success

failure

"connect"

"Delete"

success

fai lure

4.3 Managed Object State Model

The creation and deletion allow for offline actions.
Actions are cached as states.
States can be commited or reverted.

ToBeCreated Creating Created

ToBeDeleted

delete

Deleting

failure

commit

revert

success

failure

success

revert

commit

user creates

discovered

States:
� ToBeCreated: initial state. indicates that the entity is waiting to be created on the real MQe

system (Blue).

Design

page 9

� Creating: indicates that the entity is being created on the real MQe system. Implies that a
creation message has been sent (Cyan).

� Created: The entity is known to exist on the real MQe system (Black).
� ToBeDeleted: the entity requires deleting from the real MQe system (Red).
� Deleting: the entity is being deleted from the real MQe System (Magenta).

Events:
� user creates: user creates a proxy representing a resource
� discovered: a proxy is created to represent an MQe resource discovered by an inquiry.
� commit: user requests that pending changes be reflected in the real MQe resource. If the user is

working 'online' then the 'commit' is attached invoked when any change is made. If the user is
working offline, then 'commit' is invoked explicitly by the user. Commit implies the sending of an
admin message to the underlying MQe resource.

� revert: the user undoes the pending changes. this is only meaningful when the user is working
'offline', and there are changes to be made.

� delete: the user specifies that the resource is to be deleted.
� success: an admin reply message is received indicating that the pending operation (creation or

deletion) has been successful.
� failure: an admin reply message is received indicating that the pending operation (creation or

deletion) has been unsuccessful.
.

Design

page 10

5 Bridge Stub Layer

The bridge stub layer extends the stub layer and wrappers the administrative functions of the MQ
bridge components.

Abstract Stub
(from MQe Stub Layer)

Administered Queue Manager Stub
(from MQe Stub Layer)

Administering Queue Manager Stub
(from MQe Stub Layer)

MQeBridgeAdministeringQM

Abs tractBridgeObjectStubMQeBridgeQueueManagerStub

BridgeList Bridge ContainedQM BridgeClientConnection BridgeListener

5.1 MQeBridgeAdministeringQM

Subclasses AdministeringQueueManagerStub, soley to overide the factory method for creating
administered queue managers.

5.2 MQeBridgeQueueManagerStub

Subclasses Administered Queue Manager Stub.
Provides factory method for creating BridgeLists.
Provides functionality to query existence of bridge list.

5.3Abstract Bridge Object Stub

Provides ability to start/stop/start all.

5.4 BridgeList

Provides a local representation of the Bridges object on the remote Bridge Queue Manager.
Specialises CreatableObject.
Provides factory method for creating Bridges

5.5 Bridge

Provides a local representation of the Bridge object on the remote Bridge Queue Manager.
Provides factory method for creating ContainedQMs

5.6 ContainedQM

Design

page 11

Provides a local representation of a BridgeQueueManagerProxy object on the remote Bridge Queue
Manager.
Provides factory method for creating BridgeClientConnections

5.7 BridgeClientConnection

Provides a local representation of the BridgeConnection object on the remote Bridge Queue Manager.
Provides factory method for creating BridgeListeners.

5.8BridgeListener

Provides a local representation of a BridgeConnectionListener object on the remote Bridge Queue
Manager.

Design

page 12

6 Bridge Model Layer

The bridge model extends the MQe model, and wrappers the bridge stub layer.

MQeBridgeMetaModel

MQe Meta Model
(from MQe Model)

MQeBridgeMetaObject

MQe Meta Object
(from MQe Model)

MQe Queue Manager Proxy
(from MQe Model)

AbstractBridgeObject

CreatableObject
(from MQe Model)

MQeBridgeQueueManagerProxy

MQeBridgeQueueManagerStub
(from MQe B ridge Stub Layer)

MQeBridgeListProxy

BridgeList
(f ro m M Qe Bridge Stub Layer)

MQeBridgeProxy

Bridge
(from MQe Bridge Stub Layer)

MQeBridgeQMProxy

ContainedQM
(from MQe Bridge Stub Layer)

MQeBridgeConnectionProxy

BridgeClientConnection
(from MQe Bridge Stub Layer)

BridgeListener
(from MQe Bridge Stub Layer)

MQeBridgeListenerProxy

Design

page 13

7 Renderer

 A simple renderer has been implemented. This unsophisticated because it is built entirely using the
highly portable AWT 1.1 code. More sophisticated GUIs are expected to be provided by (amongst
others) IBM Ease Of Use organisation.

Renderer
(f rom Renderable Inte rface)

<<Interface>>

Renderable Model
(from Renderable Interface)

<<Interface>>

Menu Bar

Tree View

Renderable Object
(f rom Rend era bl e Interfa ce)

<<Interface>>

0..*

1

0..*

1

renders

Popup MenuTree Node

Model Renderer

1

1

1

1

renders

11

RendererNode

List View

1

0..*

1

0..*

Renderer Object Node

1

1

1

1

renders

1

1

1

1

Menu Item
1..*1..*

Renderer Attribute Node

Renderable Att ribute
(from Renderable Interface)

<<Interface>>

1

11

1

Menu Item

1..*1..*

Renderable Operat ionh
(from Renderable Interface)

<<Interface>>

1

1

1

1

renders renders renders

Root Tree Node

Design

page 14

8 Packaging for Delivery

The Packages are be combined into four jar files for delivery:

Contains:
Renderer

Meta.Model.Jar

mqeModel.jar

mqeBridgeModel.jar

renderer. jar

Contains:
MQe Bridge Model
MQe Bridge Stub
MQe Bridge Renderer

Contains:
MQe Model
MQe Stub
MQe Renderer

Contains:
Rendering Interface
MetaModel

For the simple MQe Explorer version the mqeBridgeModel.jar is not required.
Third parties can replace the renderer.jar with their own renderer
MQe Renderer and MQe Bridge Renderer are two packages that contain a single class each. This
class has only static methods, and is used soley to create the correct metamodel from the metamodel
xml file, and invoke the renderer. In future versions these packages should not be part of the
mqeModel and mqeBridgeModel jars.

Design

page 15

