MQSeries Everyplace - Administration tool

User Interface Archiecture Design

Version 1.0

17 August 2000

Phill van Leersum

MQSeries Development

IBM United Kingdom Laboratories
Hursley Park

Hursley

Hampshire, SO21 2JN

UK

phillvi@uk.ibm.com

Property of IBM

User Interface Architecture Design

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, August 2000

This edition applies to Version 1.0 of MQSeries Everyplace - Administration tool and to all
subsequent releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000. All rights reserved. Note
to US Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

User Interface Architecture Design

Table of Contents

NOTICES ... v
Preface ... vii
1 INtrodUCtioncooii i page 1
2 Architecture ... page 2
3 Renderable Interface page 4
3.1 USer ASSIStaNCE ...ttt e page 4
3.2 Renderable ... e e page 4
3.3Renderable Object page 5
3.4 Renderable Operation i page 5
3.5 Renderable Attribute page 5
3.6 Renderable Attribute Type page 5
4 MetaModel Frameworkcccoci. page 6
4.1 Implementation Of Renderable page 6
T =T - Vo -

4.2 Internal ASSOCIAtIONS ...ttt e e page 6
4.3 UIA COMPONENT .ot e e e e e page 7
4.4 Meta Model e page 7
A5 Meta ObjeCt .o page 7
4.6 UlODJECt .. i e page 8
A7 OPEIALION oottt page 8
4.8 Attribute Definition e page 8
4.9 AR DULE . page 8
4. 10 ALTIDULE TY P oottt page 8
A 1L StNG TY PO ottt e e e e e page 8
4.12 Enumerated Ty Pe ...ttt page 8
4,03 INtEGEI Ty P ittt page 8
5 RENAEIEr ... page 9
6 Packaging for Delivery page 10

User Interface Architecture Design

User Interface Architecture Design

Notices

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “AS-IS”". The use of this information and the implementation of any of the
techniques is the responsibility of the reader. Much depends on the ability of the reader to
evaluate these data and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

* |IBM
* MQSeries

* Everyplace

The following terms are trademarks of other companies:

Java Sun Corporation

User Interface Architecture Design

Summary of Amendments

Date Changes

17 August 2000 Initial release

Vi

User Interface Architecture Design

Preface

This document describes the architecture of a platform-independent, low footprint, extensible
admin tool.

It makes use of User Interface Architecture (UIA) recommendations to avail itself of UIA
compliant exchangeable renderers.

The architecture uses a layered approach to maximise reuse of components, and facilitate
customisation, by IBM or its customers.

Vii

User Interface Architecture Design

Bibliography

List any supporting publications here otherwise delete this page. Use following format:
* MetaModel XML format

* MQSeries Everyplace - Administration tool design

viii

User Interface Architecture Design

1 Introduction

This document describes the architecture of a platform-independent, low footprint,

extensible admin tool.
It makes use of UIA recommendations to avail itself of UIA compliant exchangeable

renderers.
The architecture uses a layered approach to maximise reuse of components, and facilitate

customisation, by IBM or its customers.

page 1

User Interface Architecture Design

2 Architecture

Overall concept: Provides a layered implementation of Renderelnterface. Complies with
UIA recommendations. Reusable layers. Use any renderer. The advantage of this
approach is that a Renderer, once written, can be reused for many tools. This gives a
common look-and-feel to al such tools, and ensures compliance with the UIA design
guidelines.

It frees the implementor of the business logic from GUI considerations. It forces a clear
separation between the GUI and the underlying logic, which leads to more reusable and
portable code.

The design is layered for maximum reuse, minimum defects, and maximum maintainability.
Portions of the code are specifically designed to support the User Interface Architecture
(UIA) recommendations currently being defined by IBMs Ease of Use team. When the
recommendations are made formal IBM-wide compliance will be made mandatory. This
code already complies with these requirements as currently known, and will easily adapt to
changes in the UIA requirements.

The designed has been prototyped in fully-portable Java 1.1 compliant code. This means
that it will work on any platform that provides a Java 1.1 compliant JVM. Swing is not
required.

Although the architecture is layered, and designed for reuse, it does not imply a large
footprint. The entire prototype, including the simple renderer but excluding MQe.jar, is a
little less than 100k bytes.

The factory pattern (reference to the Gang Of Four book) for object creation is used
throughout this architecture, to allow customisation of its behaviour through subclassing.
Essentially, the factory pattern allows an instance of one class (A 'factory class') to act as a
factory for instances of another class. This is achieved by the factory object displaying an
instance method that creates an instance of the desired object (sometimes caled a 'factory
method'). This factory method can then be overriden by the implementor of a subclass of
the factory class. The overide can then create instances of its desired class (which must be
a subclass of the original created class). The pattern allows large amounts of reuse of code
to be integrated seamlessly with specialisations of the same code.

page 2

User Interface Architecture Design

Renderer can display models which L

refine the metamodel because it Renderer
implements the Renderable Interface

o \

— * \

Meta Model \

\> Renderable

Interface

* Renderable Interace: provides a standard interface through which GUIs may render an
exposed model, without detailed knowledge of the underlying model. Decouples the
GUI from the underlying model. Allows any GUI to render any compliant model.

* MetaModel Framework: Provides a framework that facilitates the implementation of the
Renderable interface. Allows much/most of the GUI representation to be encoded in
XML. Provides xml rendering capabilities for the Model objects to allow them
persistence/storage.

* Model Layer: exposes a subset of the functionality of the Stub Layer to the Renderer by
implementing the RendererInterface (indirectly, by extending the metamodel).

* Renderer Implementation: A simple renderer has been implemented. This
unsophisticated because it is built entirely using the highly portable AWT 1.1 code.
More sophisticated GUIs are expected to be provided by (amongst others) IBM Ease Of
Use organisation.

page 3

User Interface Architecture Design

3 Renderable Interface

Provides a standard interface through which GUIs may render an exposed model, without
detailed knowledge of the underlying model.

Decouples the GUI from the underlying model.

Allows any GUI to render any compliant model.

Compliance with (implementation of) the interface ensures complance with the UIA
Designers Model recommendations.

Designed to be used/implemented by any project wishing to avail itself of the
multiple-renderer capability, and as such is not strictly part of this project. Implemented as
part of UIA work. (Reference to the UIA documents)

has help
has hint
1<g 1 1 1
<<Interface>> <<Interface>>
Renderable) User Assistance
1 has caption 4

<<Interface>>
Renderable Operationh . <<Interface>>
0. Renderable Attribute

0..*
0..*
has attributes
1 has type
has operations
<<Interface>> 0..*
1 Renderable Object !

<<Interface>>

Renderable Attribute Type
1 .
has children

3.1 User Assistance
This is a general term given to data that aids the user. It can contain text, audio, image etc
data.

3.2 Renderable

Any user perceivable entity must implement this interface. It is a marker for the renderability
of the entity. A renderable contains three User Assistance data, one for each of hint, help,
and caption. Each of these has a different level of detail of the help used by the renderer in
different circumstances.

page 4

User Interface Architecture Design

3.3Renderable Object

Renderable Object marks an entity that forms the smallest unit of manipulation by the user.
Typicaly an implementation of this interface will represent a discrete object in the
designers/users model, for example a file, or a folder.

Renderable Objects have zero or more Renderable Attributes.

Renderable Objects have zero or more Renderable Operations.

Renderable Objects have zero or more Renderable Objects as children.

3.4 Renderable Operation

Renderable Operations represent actions that the user is allowed to invoke upon a
Renderable Object or upon a Renderable Model. These actions consist of a verb-like
command, and an optional path, that allows the operations to be rendered in a hierarchical
manner.

Renderable operations are like signals, in that they have no concept of arguments.
Renderable Operations are typically rendered as menu items or buttons.

3.5 Renderable Attribute

Renderable Attributes represent fragments of state that are inseparable from their owning
Renderable Object.

Renderable Attributes have a name which is unique within their owning Renderable Object.
Renderable Attributes have a single value each, which is considered a primitive data type,
and is always passed around as a strng representation.

Renderable Attributes have a single Renderable Attribute Type each, which constrains the
values allowed for the attribute.

Renderable Attributes can have default values. If not explicitly set, then the default value is
the same as the default value for the Renderable Attribute Type.

3.6 Renderable Attribute Type

Renderable Attribute Types are constraints on allowed values.

Renderable Attributes prvide the functionality to check the legality of a value, and to coherce
a given value nto a legal value.

There are (curently) three broad categories:

e String: any arbitrary text, constrained by an optional length attribute.

* Integer: any legal decimal representaion of an integer

* Enumerated: The value is allowed to be one of a limited, predefined set.

page 5

User Interface Architecture Design

4 MetaModel Framework

Provides a framework that facilitates the implementation of the Renderable interface.
Allows much/most of the GUI representation to be encoded in XML.
Provides xml rendering capabilities for the Model objects to allow them persistence/storage.

Designed/implemented for use by any wishing to implement Renderablelnterface. As such
not strictly part of this project (eventually). Part of UIA work.

The Meta Model Framework includes an XML parser, unparser, and parse-tree
representation.

4.1 Implementation Of Renderable Interface

Diagram below shows how the Renderable interface is implemented by the MetaModel
Framework. Each of the interfaces in the Renderable Interface is implemented by a class in
the Meta Model Framework. The individual classes in the Meta Model Framework are
described in detail later in the section.

UIA Component

‘ Operation ‘ ‘ UlObject ‘ ‘ Meta Model ‘ ‘ Attribute ‘ ‘ Attribute Type ‘

1

\ /
\/

N/
\/

<<Interface>>

<<Interface>> Renderable Attribute
Renderable Object

(from Renderable Interface)

(from Renderable Interface)

7
\ /

<<Interface>>
Renderable Attribute Type
(fom Renderable Interface)

<<lInterface>>
Renderable Operationh
(from Renderable Interface)

N

/
\ /

<<Interface>>
M Renderable
from Renderable Interface)

4.2 Internal Associations
Diagram below shows how the components of the Meta Model Framework interact to create
a functional model.

page 6

User Interface Architecture Design

<>

Meta Model
0..* 1
UlObject Meta Object S G
Attribute Definition | Attribute Type ‘
/
Attribute
String Type Integer Type

Enumerated Type

4.3 UIA Component

Implements Renderable.

Implements the interfaces that allow conversion to and from the XML parse-tree
representation. The methods that perform the transformations to and from XML are
overidden as required in subclasses so that all elements of the Meta Model Framework, and
all subclasses are capable of both rendering themselves as XML, and of being restored
from XML. This has two benefits. Firstly most of the Ul specific information can be stored
in flat-file format, allowing easy modification and internationalisation. Secondly, any
subclasses of the model objects are immediately serialisable in human and computer
readable form.

When reading itself from XML, a UIA Component will automaticaly create any dependent
objects as neccesary. When producing XML the same pattern of recursive descent ensures
the complete tree is translated.

4.4 Meta Model

Implements Renderable Model.
Acts as factory for Meta Obijects.
Acts as factory for Attribute Types.

4.5 Meta Object

Represents a ‘type’ of UlObject.

Acts as factory for UlObjects.

Acts as factory for Attribute Definitions.
Acts as factory for Operations.

page 7

User Interface Architecture Design

The Meta Obiject is a repository for all data common to a ‘type’ of UIObject: Operations and
Attribute Definitions. In this way reduces the memory footprint.

4.6 UlObject

Implements Renderable Object.

Has a reference to the Meta Object that defines its ‘type’.

The Operations of a UlObject are the Operations held by the UlObjects Meta Object.

4.7 Operation
Implements Renderable Operation.

4.8 Attribute Definition

Provides a place to store data common to all attributes of the same name associated a Meta
Object. In this way reduces memory footprint.

Acts as factory for Attributes.

Attribute Definitions are held by the Meta Object for which they are defined.

Attribute Definitions have a defined Attribute Type which constrains the values of all
attributes referencing the Attribute Type.

Attribute Types can be marked as ‘essential’ to indicate that a legal value is required for
validity of attributes referencing the Attribute Type.

Attribute Types can be marked as ‘read only’ to indicate that a user editing of of attributes
referencing the Attribute Type is a meaningless activity.

4.9 Attribute

Implements Renderable Attribute.

Maintans a reference to an Attribute Definition, from which comes all the information no
specific to a particular instance.

Has a current value.

Is considered ‘essential’ if the referenced Attribute Definition is marked ‘essential’.

Is considered ‘read’ if the referenced Attribute Definition is marked ‘read only’.

Constrains its values by use of the Attribute Type held by the referenced Attribute Definition.

4.10Attribute Type
Implements Renderable Attribute Type.
Acts as a constraint upon the values allowed to an attribute.

4.11 String Type
Implements the logic associated with ‘string’ Attribute Types (curently only truncation).

4.12 Enumerated Type
Implements the logic associated with ‘enumerated’ Attribute Types.
Holds a list of valid values.

4.13 Integer Type
Implements the logic associated with ‘integer’ Attribute Types.
Can parse and unparse strings of decimal digits.

page 8

5 Renderer
A simple renderer has been implemented. This unsophisticated because it is built entirely

using the highly portable AWT 1.1 code.

User Interface Architecture Design

provided by (amongst others) IBM Ease Of Use organisation.

More sophisticated GUIs are expected to be

<<Interface>>

Renderer

(from Renderable Interface)

/\

[

renders

Model Renderer

(from Renderable Interface)

page 9

(from Renderable Interface)

¢ :
List View
Tree View
{} 1
1 Menu Bar
RendererNode
o)
[\
1.*
‘ Menu Item
Renderer Object Node Renderer Attribute Node
,"\\)1
T 1 1
Nt
Tree Node Popup Menu
/TL O
Root Tree Node 1
Menu Item
1
renders renders renders renders renders
O”*
1
<<lInterface>> <<Interface>>
Renderable Object |« Renderable Attribute
(fom Renderabl e Interface) 1 1 (from Renderable Interface)
/
<<Interface>> <<Interface>>
Renderable Model Renderable Operationh

User Interface Architecture Design

6 Packaging for Delivery

The Packages are be combined into four jar files for delivery:

renderer.jar

Contains:
Renderer

Meta.Model.Jar

Contains:

Rendering Interface
MetaModel

Third parties can replace the renderer.jar with their own renderer

page 10

