
MQSeries Integrator V2
ACORD AL3 message adapter

Version 1.0

31st October 2000

Jim MacNair
MQSeries Sales Support

IBM
Somers, NY

USA

macnair@us.ibm.com

Property of IBM

 MQSeries Integrator V2 - ACORD AL3 message adapter

 ii

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, October 2000

This edition applies to Version 1.0 of MQSeries Integrator V2 - ACORD AL3 message
adapter and to all subsequent releases and modifications unless otherwise indicated in new
editions.

© Copyright International Business Machines Corporation 2000. All rights reserved. Note
to US Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 iii

Table of Contents
Table of Contents ...iii
Notices ... v

Trademarks and service marks .. v
Preface .. vi
Acknowledgments ... vi
Introduction to the ACORD AL3 standards .. 1

ACORD AL3 message format .. 1
What does an ACORD AL3 message look like? .. 2

Transactions ... 2
What sorts of data are contained in ACORD messages?.. 2

Compression... 3
ACORD AL3 Data Dictionary (DATADICT.ASC).. 3

Versioning Support ... 3
How ACORD versioning is handled by the Parser ... 4
Metadata Files .. 4

Installation .. 5
SupportPac contents.. 5

Prerequisites... 5
Supported Platforms... 5
Installing the executable programs... 5
Installing the metadata files and environment variable .. 6
Defining the message dictionary in the registry ... 6
Additional considerations ... 7

Using the Parser .. 7
General data structure.. 7
Naming of groups and data elements .. 7

Determining the names of the data items... 8
Input Messages .. 8
Group Names ... 8
Field Names ... 9
Output Messages ... 10

Using the source code ... 11
Building the parser.. 11
Building the Message Catalog.. 11

Using the offline utilities ... 11
Error Messages .. 11
Parser Implementation ... 12

Parse Tree Structure .. 12
Handling of metadata files within the parser .. 12
Some more detailed design points ... 13

Character Compression.. 13
Parsing of input messages ... 13
Parsing of output messages... 14

Handling of headers in output segments .. 14
System management messages.. 14

Recognition of management messages ... 14
Message types supported .. 14
System Management Message Formats.. 15

Flushing and monitoring the metadata cache... 15
Capturing Statistics ... 15
Turning trace on and off and displaying trace status.. 16
Displaying the Level of the Executing Parser ... 17

Implementation considerations... 17

 MQSeries Integrator V2 - ACORD AL3 message adapter

 iv

Generation of names for Groups and Data Elements .. 18
Environment Variables ... 18
Customization of the supplied metadata files .. 19
Implementation details ... 19

Parser Initialization and Termination .. 19
Handling of Input Messages... 19

Parser Context .. 20
Initialization functions.. 21
Parsing Routines... 21
Termination Routines.. 22

Handling of Output Messages .. 22
Offline Utilities .. 22

Building the Metadata files ... 22
Editing entries in the REPEAT.DAT file .. 23

Problem Determination .. 23
Parser Exceptions .. 23
Debug version of the parser ... 24
Using the debug version... 24
Reporting bugs ... 24

Hints and tips for writing a parser... 25
What is a logical message and what is a wire format? .. 25
What do parsers do? .. 25
How do Parsers work? ... 25
What is "partial parsing"? ... 26
Parser Context.. 26
What happens if a parser encounters an error?... 27
How do the completion bits found in message elements work? .. 27
What data types are supported and how are they stored internally?................................... 28
Code pages and input buffers .. 29
Parser Utility Functions... 29
Using the CciLog and CciThrowException utility functions .. 29

Creating a Message Dictionary... 29
Calling the CciLog and CciThrowException functions. ... 30

Using Microsoft Foundation Classes (MFC) in a parser .. 30
What does the iFpIsHeaderParser parser function call do?... 30

Appendix A – Group identifiers and long names.. 31
Appendix B - Error Message Details .. 36

Error Message Text and Likely causes .. 36
Message 10 (No Message Header Group found)... 36
Message 11 (No Message Trailer Group found) .. 36
Message 12 (No Transaction Header Group found) .. 36
Message 20 (Invalid length (nn) in group header (bytes 4-6) for segment (xxxx))........... 36
Message 21 (Message length (nn) does not match sum of group lengths (mm))............ 36
Message 23 (Meta Data file not found for (xxxx) at offset (nn)) 36
Message 24 (Group length (mm) does not match metadata length (nn)) 37

 MQSeries Integrator V2 - ACORD AL3 message adapter

 v

Notices
References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “asis”. The use of this information and the implementation of any of the techniques
is the responsibility of the reader. Much depends on the ability of the reader to evaluate these
data and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks or registered trademarks of the
IBM Corporation in the United States or other countries or both:

� IBM

� MQSeries

� MQSeries Integrator

� MQSI

The following terms are trademarks or registered trademarks of other companies:

• Windows NT, Windows 2000, Visual Studio Microsoft Corporation

• WordPerfect Corel, Ltd.

• ACORD ACORD

 MQSeries Integrator V2 - ACORD AL3 message adapter

 vi

Preface
This SupportPac contains a parser written for MQSeries Integrator Version 2.0.1. The
supplied parser is designed to operate in the Windows NT environment, although steps have
been taken to make the source code platform independent. It adds support for parsing of
input messages and creation of output messages in the ACORD AL3 format. The
SupportPac includes executable programs for the Windows NT and Windows 2000
environments, including metadata files, as well as the source programs and documentation.

The source programs and documentation are useful examples for anyone who is planning to
write a parser.

The ACORD AL3 standard is commonly used within the insurance industry, primarily for the
exchange of electronic data.

All executable programs provided with this SupportPac have been compiled using the
Microsoft Visual C++ V6.0 compiler. All source programs should be compiled with this
compiler as well. The programs are largely written to the ANSI C standard, with some use the
Microsoft Foundation classes. The necessary MFC support has been statically linked with the
executable programs, so no additional DLLs should be required to run the supplied
executable programs.

This document includes a general overview of the ACORD AL3 message formats, and some
additional details on how parsers work in an MQSeries Integrator Version 2.0 environment.
These sections are informational and are not required to install and use this SupportPac.

A general understanding of MQSeries Integrator V2.0.1 is necessary to use this SupportPac.
If the function of the parser is to be changed or customized, by modifying the provided source
code, then an in depth knowledge of MQSeries Integrator V2.0.1, as well as C programming,
is required.

Acknowledgments
The author would like to acknowledge the help that was received from a number of
individuals. First, Malcolm Ayres, Peter Lambros and Phil Coxhead from the IBM Hursley
Laboratories provided invaluable and tremendously useful information many times. They also
displayed remarkable patience with the repeated questions and problems that they were
constantly bombarded with. Second, Neil Kolban of the Dallas Systems Center was very
helpful at numerous times, both for his expertise on both MQSeries Integrator as well as the
Microsoft C++ development environment. Third, Mark Orlandi of the ACORD organization
was very helpful with understanding many of the fine points of the ACORD AL3 standards.
Finally, the author wishes to thank the many people who also helped but who the author has
unintentionally omitted from this brief mention.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 1

Introduction to the ACORD AL3 standards
The ACORD organization is responsible for the maintenance and development of the
Electronic Data Interchange (EDI) standards for the exchange of data between property and
casualty organizations, their agents and other trading partners. These standards allow
industry partners to electronically exchange information such as policy/submission, claim and
accounting data. These standards are known as AL3.

The ACORD standards were originally developed approximately twenty years ago, and have
been continually maintained and enhanced since.

ACORD AL3 standards are available to ACORD members, EDI participants and subscribers.
A brief introduction to ACORD messages is contained in this document for the convenience of
reader. For additional information on using the ACORD AL3 standards, please see the
ACORD web site (see below).

ACORD AL3 message format

The ACORD message format is designed to allow the exchange of insurance data between
different organizations. The AL3 message formats are defined and maintained by the ACORD
organization, which can be located on the web at:

 http://www.acord.com

The actual ACORD standards are kept in WordPerfect documents. Each standard is
assigned a three-digit number. Lines of business are used to organize the standards. The
first digit of the standard number indicates the line of business. For example:

• 300 series - Personal lines

• 500 series - Commercial lines

• 600 series – Claims

• 700 series - Accounting

• 900 series - Common standards

Many of the standards define data elements (fields) and groups (records). A particular field is
uniquely defined with a five-character name (reference name), and may appear in more than
one data element group. If a field does appear in more than one place, its characteristics
(such as length, data type, etc) should be the same. Each data element group has a four-
character identifier, consisting of a number and three letters.

The ACORD standards combine the data groups to form transactions. Each transaction
represents a business event. An AL3 message consists of a message header group and a
message trailer group, with one or more transactions contained between the header and
trailer. Each transaction begins with a transaction request group.

Some standards do not have any data elements or groups, but rather discuss other aspects
of the standard. For example, the 900 standard explains the meaning of the various data
types used in data elements and the 910 standard provides details for the structure of
transactions.

There are approximately 50 current Acord standards defined, of which approximately 40
define data elements and groups.

The metadata (schemas) for all ACORD AL3 standards are contained in a single text file
(datadict.asc). The file is broken into fixed length columns, and includes a definition of each

 MQSeries Integrator V2 - ACORD AL3 message adapter

 2

data element within each data group. The first two data groups defined within the data
dictionary file are the formats of the two types of entries contained within the dictionary itself.
The characteristics of each field, such as the data type, length, offset within the group, and
the standard in which the data element is defined, are specified.

What does an ACORD AL3 message look like?

An Acord AL3 message consists of one or more transactions. Each transaction will contain a
number of individual segments (groups). Each individual group has a header. The first ten
characters of the header are in a standard format, with the first four characters being the
identifier and the next three characters being the length of the group. For all Acord defined
messages, the identifier consists of a number followed by three letters. The next group can
be found by adding the length to the offset of a particular group. The format of the rest of the
group can be determined by using the appropriate metadata for the group. Some groups can
occur more than once within an individual transaction.

The AL3 standards identify message layouts. The groups in a transaction have a hierarchical
structure. For details on these structures, please refer to ACORD standard 921.

All Acord messages should start with a message header group (1MHG) as the first group in
the message and contain a message trailer group (3MTG) as the last group. Individual
transactions are contained between the header and trailer groups within the message. All
transactions start with a transaction header group (2TRG), followed by a transaction control
group (2TCG). The transaction header groups are then followed by a number of other
groups that provide the data for the particular transaction. An individual Acord message can
contain one or more transactions.

Transactions

An ACORD message consists of one or more transactions. A transaction represents a
business event. Each transaction begins with a Transaction Request Group (2TRG),
generally followed by a Transaction Control Group (2TCG). The rest of the transaction
consists of a number of other groups. The particular groups that make up a transaction will
vary depending on the type of transaction. There is a definite hierarchy but the parser
supplied with this SupportPac does not verify whether the particular groups represent a valid
transaction or not.

What sorts of data are contained in ACORD messages?

All data in an ACORD message is in character format (e.g. no binary, packed decimal data,
etc). Numeric data is represented as a string of numbers, padded on the left with leading
zeros. If the number can be signed, then a sign character follows the numbers. If the sign is
a plus character or a blank, the number is assumed to be positive, and if the character is a
minus sign, then the number is assumed to be negative. The number may also contain an
assumed decimal point. There is no support for floating point (real) types of data.

The characters permitted in a particular field may be limited, depending on the definition of
the field. Some possible options for the data in an individual data element (field) are
alphabetic, alphanumeric, telephone numbers, and numeric data. Alphabetic data should
contain only the 26 letters in upper case only. Alphanumeric data should consist of upper and
lower case letters, numbers and certain special characters. Telephone numbers should
contain only numbers and certain special characters. Numeric data can be signed or
unsigned. An eight-character date format (YYYYMMDD) and a time format are also used.

Coded fields are also supported. Coded fields must contain one of a set of specifically
defined codes. The codes consist of one or more characters. A specific type of coded fields
is the yes/no field, which consists of a single character that should be either a “Y” (yes) or an
“N” (no).

 MQSeries Integrator V2 - ACORD AL3 message adapter

 3

Individual fields (data elements) are contained in groups (message segments). Each group
starts with a ten-byte header. Some groups have a twenty-byte header extension
immediately after the header. The first four bytes of the header contain a segment identifier.
The next three characters are a length field. The length field contains the length of the entire
segment, including the header, as a three-digit number. The ninth character contains either a
group version or a blank.

Compression

ACORD messages can be sent as normal uncompressed data. Two forms of compression
are supported. There is no indicator in the message to indicate if the message data is in a
compressed format.

The first form of compression is simple character compression. Areas of the message that
contain repeated sequences of the same character are compressed to a four-byte sequence.
The first character of the replacement sequence is a unique data character (hex “FA”) that is
not valid in any other part of the message. The second and third bytes contain a length field,
consisting of two hexadecimal characters that encode the length of the repeated characters
sequence. The fourth character is the repeated character itself.

The second form of compression uses a package provided by an independent software
vendor. The ACORD AL3 parser that is provided as part of this SupportPac does not support
this form of compression.

ACORD AL3 Data Dictionary (DATADICT.ASC)

The official ACORD AL3 standards are stored as WordPerfect documents. A data dictionary
file containing all the data elements and groups defined in the AL3 standards is available as
part of the 910 standard. There are many different versions of the data dictionary file (25 in
total) available on the CD distributed to members of the ACORD organization. Each data
dictionary contains a definition of the ACORD standard at a different point in time. The first
data dictionary contains the standard as defined in November of 1989, and the most recent
dictionary contains the last defined AL3 standard as defined in March of 1999.

The metadata supplied with the parser contain definitions from all the data dictionaries
supplied on the current ACORD CDROM.

Versioning Support

The ACORD AL3 standards support two types of versioning.

Each AL3 standard is represented by a three-digit number, and has a version and
modification level. The version and modification levels are each single digit fields. Valid
levels are the digits 1 through 9, followed by the letters A through Z.

When an ACORD message is built, the transaction control group, with an identifier of 2TCG,
is used to indicate the levels of each standard used within a transaction. For example, if a
5BPI group were included in the message, then the 2TCG group would contain a field with the
standard that defines the 5BPI group, in this case 920, followed by the version and
modification level of the standard that was used. For example, if the version 5 and
modification level 1 version of the 920 standard was used to create the 5BPI group in a
transaction, then the 2TCG group would contain an entry of 92051.

Group versioning support was introduced about 1995. Each defined group can include a
group version number in the group header. The group version is separate and distinct from
the version and modification level of the standard of which the group is a part. If a group
version is present, it takes priority over the standard version and modification level in the
2TCG group. When a change is made to any data element or group within a standard, a new

 MQSeries Integrator V2 - ACORD AL3 message adapter

 4

modification level or version of the standard is created. Groups that are not changed by a
new version or modification of a standard retain their existing group versions.

If the group version is present in the header, it will take priority.

The group version number of each group that is changed with a new level of a standard is
increased by one. Thus, if a group is not changed, than it will retain the same group version it
had in the previous level of the standard. The group version number, if present, should be
located in the 9th byte of the header.

Group version numbers do not appear to be entirely consistent. There are cases where more
than one group version will exist in the same version and modification level of a standard.
There are also cases where a group version number appears to have been skipped, in that
the particular group version does not appear in any of the data dictionary files provided on the
ACORD CDROM.

How ACORD versioning is handled by the Parser

Each group has one or more metadata files associated with it. A metadata file is created for
each version of every group. The file name consists of the four-character group identifier
(such as 5BPI or 2TCG) plus a one or two character extension. If the group has a group
version number, then the group version number is appended to the group identifier to form a
five-character metadata file name. If there is no group version number, then the two
character standard version and modification level is appended to form a six-character file
name. All of these metadata files have a file extension of “mtd”.

To determine the version number for a particular segment, the segment header is first
examined. If it contains a segment version character, then this is used. If this character is not
present (blank), then the segment identifier must be mapped to a particular standard. The
levels of each standard used to build a message are contained in the 2TCG segment. This
segment can hold up to 20 standards and their corresponding version and modification levels.
Once the standard that a segment is part of is identified, then the 2TCG segment is searched
for the version and modification level used to build the message. This standard version and
modification level is then used to find the appropriate level for the particular segment.

The version levels for the message header (1MHG) and trailer (3MTG) are specified in the
message header, and the levels for the transaction headers (2TRG and 2TCG) are specified
in the beginning of the transaction header (2TRG).

Metadata Files

Metadata for ACORD groups are kept in files. Every version for each group is kept in a
separate file.

The metadata files must be installed in a directory on a disk accessible to the MQSI Version 2
broker where the parser will run. An environment variable with a name of ACORDMETADIR
should be set to the drive and directory where the meta data files are installed. If this variable
is not set, then the parser will look for the metadata files on the “C:” drive in a directory named
“\ACORD”.

In addition to the individual metadata files for each group, three additional files are created.

The first file is a cross-reference file between group identifiers and ACORD standard
numbers. This file is named “STDFILE.MTE”. It contains an entry for each group version for
a particular group. It is used to identify which group version number to use for a particular
standard version and revision level. It is also used to identify which standard a particular
group belongs to.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 5

The second file is the default group version file. This file is named “DEFFILE.MTE”. It is
used when no group or standard versions are specified in the group header or in the
transaction control group. It contains an entry for each group identifier, to indicate what
metadata file to use if no group version or standard revision and modification levels are given
in the message.

The third file is the group name file. The normal ACORD names for a particular group consist
of a number and a three-character acronym. The names are short and may therefore be a bit
cryptic. Therefore, an alternative name that is longer and hence more descriptive is provided.
When a message is parsed, the group identifier will be used to find a longer and more
descriptive name for the top-level item corresponding to the group. If the name is not found in
the group name file, then the four-character group name is used, with a leading underscore
character added to the beginning of the name. The underscore character is necessary
because names for data elements in the logical message model may not begin with a
number. For output operations, either the long name or short name may be used for any
group.

The three special metadata files contain character data only and can be edited with a
character editor such as notepad. The metadata files for the individual groups contain binary
data and cannot be edited or changed with a simple text editor. A utility program is provided
to display the contents of these metadata files.

Installation

SupportPac contents
The supplied zip file should be unzipped into a temporary directory. The following files will be
created.

• exec.zip
• metadata.zip
• source.zip
• utilsrc.zip

Prerequisites

This SupportPac provides a parser to be used with the IBM MQSeries Integrator Version
2.0.1 and above. For normal use, there are no other pre-requisite products other than those
required by MQSeries Integrator Version 2.0.1 itself. If any changes are to be made to the
parser or the related utilities, then Microsoft Visual C++ V6 is required.

Supported Platforms

This SupportPac has been developed for and tested in a Windows NT (Windows 2000)
environment.

Installing the executable programs

The executable zip file should be unzipped into a temporary directory. The following files
should be created from the zip file:

• segparse.lil
• acorderr.dll
• segparse.dbg
• MessageFlowsAcord
• acordasc.exe
• printmtd.exe
• procobol.exe

 MQSeries Integrator V2 - ACORD AL3 message adapter

 6

• repeat.dat
• defnames.dat

The parser executable (segparse.lil) should be copied into the bin subdirectory of the
MQSeries Integrator Version 2 root directory (default is c:\Program Files\IBM MQSeries
Integrator 2.0.1\bin). The error message dictionary (acorderr.dll) should be moved to the
messages subdirectory of the MQSeries Integrator root directory (default is c:\Program
Files\IBM MQSeries Integrator 2.0.1\messages). The debug version of the parser
(segparse.dbg) should also be moved to the bin directory.

The MessageFlowsAcord contains three sample message flows that can be used to validate
the proper functioning of the parser. They must be imported into a configuration manager
using the import function of the control center, and then assigned to an execution group and
deployed. The following local queues are used by the sample message flows and therefore
must be defined:

• ACORD.IN
• ACORD.OUT
• ACORDMGT.IN
• ACORDMGT.OUT
• ACORDXML.IN
• ACORDXML.OUT
• FAILURE

The utility executables and related files should be moved to a program directory. This can be
the same directory as the parser or it can be a separate directory.

Installing the metadata files and environment variable

A directory for the metadata files should be created and the corresponding zip file
(metadata.zip) should be unzipped into this directory. The following environment variables
should be set:

• ACORDMETADIR – drive and directory containing metadata files.

If this variable is not set, then the parser will expect the metadata files to be located in a
directory named “Acord” on the “C:” drive.

If fields which are defined as either deleted or reserved for future use are to be ignored on
input parsing operations, the ACORD_IGNORE_FILLER environment variable should be set
to a “1” (without the quotes).

Defining the message dictionary in the registry

Finally, an entry must be made in the Windows NT registry for the message dictionary. To do
this with the registry editor, go to the Windows start button and select Run. Type regedit in
the pop up edit box and press enter. The register editor should start.

The registry editor should show five high level keys, with small plus signs next to them.
Select the HKEY_LOCAL_MACHINE and press the small plus sign next to it. This should
expand the entries under HKEY_LOCAL_MACHINE. In a similar fashion, select the following
entries in order

SYSTEM->CurrentControlSet->Services->EventLog->Application

Highlight the Application entry and click the right mouse button. Select the following options:

 New->Key

 MQSeries Integrator V2 - ACORD AL3 message adapter

 7

Enter “acorderr” (without the double quotes) as the name of the key. Select the new acorderr
entry and click the right mouse button. Select the following options:

 New->String Value

Change the name of this new entry to “EventMessageFile” by typing over the generated
name. Click on the EventMessageFile value item and select Modify. Type in the fully
qualified path name where the executable message file (acorderr.dll) was installed. For
example, with a default MQSI Version 2 installation, this would be as follows:

“C:\Program Files\IBM MQSeries Integrator 2.0.1\messages\acorderr.dll”

Finally, click on the acorderr entry again and select the following options:

New->DWORD value

Change the generated name to “TypesSupported” and then select the new value and click the
right mouse button. Select Modify. Change the value to 7. Close the registry editor. The
message catalog should now be installed.

Additional considerations

If the debug version of the parser is installed, additional environmental variables should be
set, as described in the debugging section below.

If the source code for the parser is to be installed, then a directory for the source code and
related files should be created. The appropriate zip file (source,zip) should then be unzipped
into this directory.

If the metadata files are to be displayed, changed or rebuilt, then the corresponding zip file
(utility.zip) should be unzipped into an executable directory.

Using the Parser
General data structure

The ACORD AL3 parser takes input messages in valid ACORD AL3 formats and creates
MQSeries Integrator V2 logical message tree structures that can then be processed by
MQSeries Integrator message flows. Similarly, it will take a logical message tree created by a
message flow and produce the data portion of an MQSeries message in a valid AL3 format.

The parser will create the message tree from an input message in a certain specified format,
and this format must be followed when a message tree is built in an MQSeries Integrator V2
message flow.

All logical message trees used within MQSeries Integrator V2 have a certain basic structure.
There is a single high-level element known as the root element. The user data is found in the
body of the message. The body has a single high-level element that is the last child of the
root element. For an ACORD AL3 message, the name of this element should be “ACORD”,
to match the message domain supported by the parser.

Naming of groups and data elements

Each group within the message will have a top-level element that is a child of the body
element. The name of the top-level element for each group will be the name of the first entry
in the corresponding metadata file. This name is derived from the description field of the
group in the most recent ACORD data dictionary file (19990316 datadict.asc). In some
cases, the name was shortened to be less than thirty characters. In cases where the

 MQSeries Integrator V2 - ACORD AL3 message adapter

 8

description field did not yield a unique name for the group, the name was changed by the
metadata generation utility. The mapping between a particular group identifier and the
corresponding data element name is contained in a special metadata file (segname.mte).
This file is generated by the metadata generation utility.

All of the individual data elements for a particular group are contained in a structure under the
corresponding group element that they belong to. The data elements are expected to be in
the same order as they appear in the data dictionary file. The names of the data elements
are the names as they appear in the metadata file for the corresponding group. If a particular
group appears more than once in the AL3 message, then there will be multiple instances of
the particular group in the logical message tree.

Determining the names of the data items

There are two ways to determine the names that have been assigned to the individual data
elements in each group. The first method is to use the metadata display utility program
(printmtd.exe) to create a list file from a metadata file. The name of the metadata file will be
the four-character group name followed by either the group version number or the standard
version and revision numbers. The list file should be browsed with an editor, such as the
notepad utility.

The second method is to create a valid AL3 input message and pass it through a message
flow that uses the Acord parser provided with this SupportPac. The output should then be
transformed to XML and written to a queue or a trace node should be inserted in the message
flow to dump out the contents of the body of the parsed message.

Input Messages

The ACORD AL3 parser will parse any inbound message that is in a valid AL3 format. It will
perform limited checking of the message format. The AL3 parser will register with the
execution broker for a message domain of “ACORD”. It will attempt to parse any input
message that is read by MQSeries Integrator V2. The message domain can be specified in
an RFH2 header in the message itself, or as a default property on the MQInput node of an
MQSeries Integrator V2 message flow.

The parser will create a logical message tree that reflects the contents of the message. The
name of the top-level element of the body will be “ACORD”. The rest of the data for a
particular group will be built as a logical data structure under this high level element.

It is recommended that the data translation option of the MQInput node not be used. The
message text is translated to Unicode, so any earlier translations are not required and merely
increase overhead.

Input messages can be in either ASCII or EBCDIC. The message text must match the code
page in the MQSeries message descriptor.

The parser will ignore any carriage return or line feed characters that are found between
group entries or at the end of the message. The ACORD standard does not state whether
such sequences are valid or not. However, some messages seem to contain these
sequences between groups or at the end of the message, and therefore the parser will ignore
them if they are found. In the case of EBCDIC messages, the line feed character is assumed
to be a x’25’ character.’ The parser will also translate any binary zero characters found in the
input message to blanks.

Group Names

The ACORD AL3 parser supports two types of names for groups. The first type of name is a
short name, which consists of the four-character group identifier preceded by an underscore
character. Longer and more meaningful names have also been assigned to all groups.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 9

These names are documented in Appendix A. The longer name mappings are kept in one of
the special metadata files (segname.mte). This file is in a text format and can be edited with
a text editor. However, the long names used during input parsing operations are contained in
the individual metadata files. If the long names are changed, then the individual metadata
files must be rebuilt.

By default, the parser will use the longer names for all parsing of input messages. It will
accept either the longer names or the short names for output messages. Use of long and
short names in a single message is supported.

Field Names

There are no generally agreed names for the data elements that are defined within the
ACORD standards. Within the data dictionary file that is provided as a part of standard 010,
there is a five-character reference name and a sixty-character description. The reference
name is short and hence rather cryptic. The reference name can also be used more than
once in a single group. The description is long enough but unfortunately not a good
candidate for variable names in many cases. In the future, when a new XML based standard
is available, a mapping may be available that would provide more descriptive names.

The algorithm used by the offline utilities, which generate the metadata files, is to create a
field name by using the reference name. If the reference name is used more than once in the
individual group, the generated name is made unique by appending the sequence number of
the data element within the group to the end of the reference name. The long name used for
the group itself is contained in a separate file that is used by the utility.

There are two types of fields that are treated specially. First, fields which are reserved for
future use or which have been deleted (reference names ZZZZZ and ZZDEL respectively) are
flagged in the meta data file as filler fields and can be ignored on input parsing operations.
An environment variable can be set to control this behavior (see the section on environment
variables).

The second type of field that is treated specially is the header field. All groups contain the
same ten-byte header at the front of the group, and many groups contain an additional
twenty-byte header extension. The individual data elements (fields) in the header are defined
individually in the metadata files.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 10

The following names are assigned to the individual header and, if present, the header
extension fields.

Name Offset Length Comments

Identifier 0 4

Length 4 3

Format 7 1

Version 8 1

Reserved 9 1 Filler

ProcLevel 10 2

Iteration 12 4

Ref_Identifier 16 4

Ref_ProcLevel 20 2

Ref_Iteration 22 4

ActionFlag 26 3

Spare 29 1 Filler

In certain cases, data elements (fields) or groups of fields can occur more than one time in an
individual group. In these cases, it is more logical to treat these fields as a repeating element
or structure rather than assign each individual field a unique name. Therefore, the metadata
files will indicate a repeating field or structure rather than a series of individual fields.

Output Messages

The message flow must create an output message in a similar format as the input message.

The data in the logical message tree should be in the same order as the individual elements
are found in the group definition. When building an output message, the parser will build the
message from left to right. It will use the top- level elements in the logical message tree to
understand what group needs to be inserted into the output message and in what order.

The parser will attempt to locate the metadata file that is to be used for the output data based
on the name of the root element for each group. If a long name is used for the name of this
element, it will be looked up in the segment name data and converted to a four-character
group identifier. If the name begins with an underscore character, then the second through
fifth characters of the element name will be assumed to be the group identifier.

The parser will use the metadata definition when attempting to match the data elements in the
output logical message tree to elements in the metadata file. The parser will use the
metadata file to construct the output data area for the group. It will first initialize the output
data area, using the initialization string found in the metadata file. It will then step through the
individual fields in the metadata file, attempting to match each element to data in the logical
message tree. When an element is found in the message tree that does not exist in the
metadata, it will be ignored. If a field is not found in the logical message tree, the initialization

 MQSeries Integrator V2 - ACORD AL3 message adapter

 11

value for the field will be used. It is important that the fields in the logical message tree are in
the same order as the fields in the metadata file. If fields are not in the same order, then
some of the values in the logical message tree will be skipped over when trying to find an
earlier value, and the parser will not look at previous values in the message tree when
attempting to match the later field in the metadata file.

The first two fields in the message header (group identifier and length), and the group version,
are already filled complete in the initialization string contained in the metadata file, and thus
may be omitted. Fields designated as reserved or deleted should similarly be omitted,
although these fields will be treated as any other field if values are set in the logical message
tree.

Any fields that are not found in the logical message tree will be set to either blanks or zeros,
depending on the type of field.

Using the source code
Source code for the parser itself, the related message dictionary, and the supporting
metadata utilities are provided as part of this SupportPac. None of these materials are
required to use this SupportPac.

Building the parser

Before the project is opened, the BipSampPluginUtil.c and BipSampPluginUtil.h files should
be copied from the <MQSI_root>\examples\plugin directory to the same directory as the other
source files.

A directory for the source files should be created and the zip file containing the source files for
the parser (segparse.zip) should be unzipped into this directory. The Microsoft Visual C++
Version 6 visual studio should be started, and the open workspace option under the file menu
should be selected. Navigate to the directory that the source files were unzipped into. The
workspace file for the segparse workspace should then be opened.

Before the project can be built successfully, the locations of the include and library files
should be checked and changed if necessary. These files are located under the MQSeries
Integrator Version 2 root directory. Select the version of the project that is to be built (release
or debug). At this point it should be possible to build the project.

Two command files are provided to move the resulting executables to the necessary
MQSeries Integrator directory. The drive and path names used in these command files
should be checked and if necessary corrected before using these command files.

Building the Message Catalog

A command file (buildmsg.cmd) is provided with the necessary steps to build the Windows NT
message dictionary from the source provided. This step may require installation of part of the
Microsoft development environment. The drive and path names used in the command file
should be checked and if necessary corrected before execution of this command file.

Using the offline utilities

Error Messages
There are certain situations where the parser will generate an error. For example, if the
message does not appear to be a valid ACORD AL3 message, then an exception will be
raised and the message will be rejected. For example, if there is no Message Header or
Trailer Group, or if one of the length fields in a group header is invalid, then the parser will
raise an exception. An error message will be written to the event log. The Windows event

 MQSeries Integrator V2 - ACORD AL3 message adapter

 12

viewer should be used to view the error information. For a detailed list of error messages,
see the appendix below.

Parser Implementation
Parse Tree Structure

ACORD messages have a definite structure. Each message begins with a message header
group and ends with a message trailer group. There are one or more transactions contained
between the message header and trailer. Each transaction consists of several groups that
contain the data for a particular business event. Each transaction begins with a transaction
header, which is usually followed by a transaction control group. Additional data groups
provide the necessary data.

The parse tree structure that is built reflects this structure. The first child of the body is a
message header (MessageHdr) element. Information from the message header group
(1MHG) is inserted as children of this element. The last child of the body is a message trailer
(MessageTlr) element. This element contains information from the message trailer group
(3MTG). The data for each transaction in the message is stored under a transaction element
(Tran). The transaction element is a child of the body element. The body will have one child
for each individual transaction in the message plus one child for the message header and one
child for the trailer data.

The message header element is named “MessageHdr”. The name of each transaction
element will vary, reflecting the type of transaction. It consists of the following fields:

• MsgOrig Message address (origination)
• MsgDest Message address (destination)
• ContractNo Contract number
• UserPw Password
• SysType System type code
• RevLevel Interface software revision level
• SeqNo Message sequence number
• TransDate Transaction date (13 char - older standards)
• CntUnitCd Count unit code
• SpecHndlg Special handling
• VERNO Message standard revision level
• NetRefNo Network reference number
• NetResvd Network reserved for future use
• TransDate Transaction date (15 char - more recent standards)

The message trailer element is named “MessageTlr” and contains the following data elements
(fields):

• MsgLen Message length
• AddlDataFlag Additional data flag
• CommTextFlag Communications text flag
• CommText Communications text

Handling of metadata files within the parser

A structure is created to hold the data from up to 200 files and initialized in the
bipGetParserFactory function. This function is called during parser initialization. A pointer to
the structure is maintained in the module that handles metadata file processing
(metadata.cpp) and available to the main parser module. This optimizes performance by
allowing modules in the other parser modules to directly reference metadata.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 13

For output, walk through the copybook structure, matching parent elements to metadata
elements. For each parent, process all the children of the parent before moving to the next
sibling of the parent. The order of processing should be in the same order as the copybook.

Each data group (segment) is represented by a metadata file, which includes the
characteristics of each field as well as the segment overall. In addition, for performance
reasons, an initialization string is included at the end of the file. The file name is the name of
the four-character segment identifier. The files are contained in a directory based on the
version number of the ACORD message segment.

The internal structure of the file is in five parts. The first part of the file is a metadata header.
It contains overall characteristics of the segment and the meta data file, including the version
number of the file. The header format is as follows:

• Length of the header
• Metadata file format version (0 for this version)
• Segment length (Maximum)
• Number of variables
• Offset of name and Unicode name tables
• Offset of initialization string

The next part of the file is the variable table. The third and fourth parts of the file are variable
name tables. The first table contains names as ASCII characters and the second contains
the names in Unicode. The Unicode versions of the names are present to increase
processing efficiency. The last part of the file is optional. If it is present, it contains an
initialization string with the initial values for the data area. This is used when an output data
area is built, to increase processing efficiency.

Initialization strings for ACORD defined groups will only contain space and zero characters,
except for the header. The group identifier, length and group version fields in the header will
be filled in.

Some more detailed design points

Character Compression

An ACORD message may contain long sequences of a single character. To increase
transmission efficiency, the repeated characters are replaced with a four-byte character
sequence. The replacement sequence begins with a unique character (hex “FA”), followed by
a two-character length field and a single occurrence of the replaced character. The length
field consists of two hexadecimal characters, with the largest allowed value being “E6” (230).
For example, if a sequence of 17 spaces was found in the output message, it would be
replaced by four characters, namely a “FA” character, two occurrences of the digit “1”, and a
space character.

Parsing of input messages

When an MQInput node receives an input message, the cpiParseBuffer routine of the parser
is called. This routine will decompress the message, if necessary, and translate the message
to Unicode. By translating the message to Unicode, the parser can accept either ASCII or
EBCDIC input messages. It will validate that the message appears to be in an ACORD AL3
format and will then assume ownership of the body of the message.

The first time that a field in the body of an ACORD message is referenced by a node,
MQSeries Integrator V2.0 calls a routine within the ACORD parser that will begin parsing the
message. This routine builds the logical message tree based on the contents of the incoming
message.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 14

The message is parsed one group (segment) at a time. Each segment is identified by the
value of the first four characters. A three-character length field follows the identifier. The
segment length is checked to ensure that it matches the metadata, and is used to find the
start of the next segment. Parser exceptions are thrown if the identifier is not recognized or
the length is invalid (less than ten or longer than the remaining characters in the message).

An environment variable can be used to control whether fields that are marked as deleted or
reserved for future use are ignored or added to the message tree.

Parsing of output messages

The output message is built from the logical message tree. Each child of the body element
must have a name that is a valid group (segment) identifier with an underscore character
added to the beginning.

For each identified segment, an output segment of the appropriate length is built. Each field
within the segment is then initialized to either blanks or zeroes, depending on the data type.
The first seven characters of the segment header (the identifier and length) and the segment
version are also filled in automatically. If these fields are found in the logical message tree,
the data from the message tree will override these defaults. Each element in the message
tree under the segment element is then examined. If the name of the element matches the
name of an element in the metadata, then the data in the corresponding field is updated. If
the name does not match the name of a field in the metadata file, then the field is ignored.
Fields in the logical message tree must be in the same order as the fields in the metadata.

Handling of headers in output segments

Header fields are optional for groups created in the logical message tree. When a group is
added to the output message, the identifier and length of the segment will be filled in
automatically. The group version number will also be filled in, matching the metadata file that
is used to create the output group (segment). If any of these fields are found in the output
parse tree, then the values in the parse tree will be used.

System management messages
System management messages are special messages that the parser recognizes and which
cause the parser to perform some special action. Normally, the parser expects to receive
messages in a valid ACORD AL3 format. However, there are certain actions that the parser
might need to perform, such as purging cached metadata or identifying the level of the parser
that is currently executing. Special system management messages are used to tell the parser
to perform a system management action rather than perform its usual message parsing
functions.

Recognition of management messages

System management messages must have the MessageSet property is set to the character
string “SYSMGMT”. The MessageType property should be set to one of the values in the
next section. The contents of the message should also be set as described below, and the
domain should be “ACORD”. The contents of the message should then follow the rules
outlined below, rather than the normal ACORD standards.

Message types supported

The following system management message types are supported:

• FLUSH
• FLUSHALL
• CACHSTAT

 MQSeries Integrator V2 - ACORD AL3 message adapter

 15

• STATS
• DUMPSTAT
• TRACEON
• TRACEOFF
• TRACSTAT
• GETLEVEL

System Management Message Formats

All messages will start with a four digit level number, beginning in the first position and
padded on the left with zeros, and a four-digit modification level, padded on the left with
zeros. An eight-digit message type follows. Any data provided with the message follows the
level number header and will vary by the particular message type and the individual request.
If the format of the data is changed in the future, the version and modification level will also be
changed. Any parser should ignore messages that are at a higher level than the parser is
designed to handle. The parser can choose to process lower modification levels.

Flushing and monitoring the metadata cache

The FLUSH and FLUSHALL commands are used to remove in memory copies of metadata
files. The next time the metadata are needed, the metadata will be reloaded from the
metadata file on disk. This allows metadata to be changed without having to stop and restart
a message broker or execution group.

For a FLUSH command, the individual files to be removed from the cache will be contained in
eight character file names following the header. If a file is found, the cached data will be freed
and the name will be changed to all x'BB' characters, and the use counter will be set to zero.
This will remove the metadata entry from the cache. The next time the file is used, it will be
reloaded from disk. A FLUSHALL request is similar, except the entire cache will be flushed.

No additional message data is needed for a FLUSHALL request. For a FLUSH request, the
identifiers of the particular ACORD groups that are to be flushed should be provided, as a
series of four character fields. For example, to flush all entries in the metadata cache for the
5BPI group, then the characters 5BPI should appear in the list of group identifiers to be
purged. All metadata entries that start with the specified group identifier will be flushed from
memory.

With all flush attempts, the defaults, group names and standards file data will also be flushed.

The CACHSTAT command will report on the current status of the metadata cache. It will not
remove any entries from the cache.

All three messages will build a parse tree with one entry for each active entry in the cache. If
desired, this message should be transformed to an output format such as XML and written to
a queue.

Capturing Statistics

When a STATS or DUMPSTAT command is received, then the relevant statistics will be
parsed rather than the message data. The DUMPSTAT command will also attempt to write
the statistics to the file pointed to by the “ACORD_STAT_FILE” environmental variable. The
message data can then be processed in a standard message flow. If the statistics data is to
be written to an output node, the message domain must be changed to a parser, which can
output arbitrary data, such as XML. The statistics can also be written to a file by using a trace
node.

The following parse tree (shown in an XML like format) will be built by a system management
message containing a STATS request.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 16

<ACORD>
<statistics>

<cache>
<filesOpened>nnn</filesOpened>
<filesRemoved>nnn</filesRemoved>
<filesMax>nnn</filesMax>
<useCounter>nnn</useCounter>

</cache>
<messages>

<messageCount>nnn</messageCount>
<compressedmessages>nnn</compressedmessages>
<segmentCount>nnn</segmentCount>
<writeCount>nnn</writeCount>
<invalidMsgCount>nnn</invalidMsgCount>
<maxMessageSize>nnn</maxMessageSize>
<minMessageSize>nnn</minMessageSize>
<averageMessageSize>nnn</averageMessageSize>
<averageUncompressedSize>nnn</averageUncompressedSize>
<writeBufferCount>nnn</writeBufferCount>
<maxOutputMsg>nnn</maxOutputMsg>
<minOutputMsg>nnn</minOutputMsg>
<averageOutputMsg>nnn</averageOutputMsg>
<displayFieldsTruncated>nnn</displayFieldsTruncated>
<numericFieldsTruncated>nnn</numericFieldsTruncated>
<averageParseTime>nnn</averageParseTime>
<maxParseTime>nnn</maxParseTime>
<minParseTime>nnn</minParseTime>
<averageWriteTime>nnn</averageWriteTime>
<maxWriteTime>nnn</maxWriteTime>
<minWriteTime>nnn</minWriteTime>

</messages>
</statistics>

</ACORD>

To access the statistics, a system management message should be sent to the input queue of
a special message flow. The message domain should be set to ACORD, so that the standard
ACORD parser will process the message.

Turning trace on and off and displaying trace status

If the debug level of the parser is installed, a local trace function is provided which will write
detailed trace entries to a file. This trace capability is unique to the debug version of the
ACORD parser and is separate and distinct from the MQSI Version 2 trace capability. The
name and location of this trace file, and the initial settings of the various traces, can be
controlled with environment variables. If the debug version of the parser is being used, it may
be desirable to dynamically turn the trace function on and off.

To turn trace on or off, the MessageType parameter of the message should be set to
TRACEON (padded on the right with a space) or TRACEOFF.

The message data should include the standard sixteen characters of header information,
followed by one or more eight-character entries. Each can set either a particular trace on or
off, or can set all trace functions on or off. To turn all trace types on or off, the trace message
should contain a single eight-character entry after the header information, with the characters
“TRACEALL”. The following character sequences can be used to affect only a particular type
of trace, such as module entries and exits or input parsing details:

• TRPARSE
• TRWRITE
• TRMGMT

 MQSeries Integrator V2 - ACORD AL3 message adapter

 17

• TRMODULE

All entries should be padded on the right with spaces to a length of eight characters.

An entry of TRACEOFF will turn all traces off. This is useful when only selected traces are to
be turned on, since it allows all traces to first be turned off and then the selected trace
functions to be turned on individually.

The TRACSTAT command will report on the current status of the trace. It will not change the
current trace options.

All three messages will build a parse tree with one entry for each trace type. If desired, this
message should be transformed to an output format such as XML and written to a queue.

Displaying the Level of the Executing Parser

In some cases, it may be desirable to know what level of the parser is currently running. If a
message is received with a MessageSet of “SYSTMGMT” and a MessageType of
“GETLEVEL”, then a logical message tree will be built identifying the levels of the main
modules used to build the parser. The parse tree will be of the following format:

<ACORD>
<ModuleLevels>
 <Acordsub>nnn</Acordsub>

<Cobsubs>nnn</Cobsubs>
<Metadata>nnn</Metadata>
<Mgmtmsg>nnn</Mgmtmsg>
<Miscsubs>nnn</Miscsubs>
<Parsubs>nnn</Parsubs>
<SegParse>nnn</SegParse>
<Trace>nnn</Trace>

</ModuleLevels>
</ACORD>

This data should be written out or otherwise processed by a message flow to provide the
desired information.

Implementation considerations

There are a number of areas where implementation decisions must be made. For example,
how much data checking and validation should be done on input and output messages? If
the data in a logical message field is longer than the corresponding field, should the data just
be truncated or should an exception be thrown. Extra fields in the logical message model
(e.g. fields which do not match a field in the output message) will be ignored. Fields of type
yes/no fields in the ACORD standard will be initialized to a blank character.

Many of these questions do not have clear answers. Design choices were made to reduce
the complexity and offer the most flexibility.

Field values are not checked for valid data. This includes the characters used in things like
alphabetic or text fields as well as the data values in coded fields. If checking of each field
were to be performed, the overhead would be considerable and the parser would become
much more complex. Some simple checking is performed, primarily to ensure that the data
represents a well-formed ACORD message. In particular, input messages are checked as
follows:

• The message begins with a 1MHG group and ends with a 3MTG group.
• The second group is a transaction group (2TRG).
• All group identifiers are recognized.
• The length of each group is valid and matches the metadata length.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 18

For a group length to be considered valid, it must be at least ten and less than the number of
remaining characters in the message.

For output messages, the following checks are performed:

• All children of the body element and any transaction elements (“Tran”) have names
that are valid AL3 groups.

• The first child must be a message header (“MessageHdr” or “_1MHG”) and the last
child is a message trailer (“MessageTlr” or “_3MTG”).

• The second child of the body is a transaction element (“Tran”).

If any of the above checks fail, then the message is rejected and the parser raises an error
(parser exception).

Data truncation will never occur on an input message. On output, however, the length of the
data in a variable can exceed the length of the corresponding ACORD AL3 data element. In
this case, truncation will occur. All truncations will be counted and are available in the
statistics. In addition, if tracing is enabled, an entry will be written to the trace file for each
field that is truncated.

Generation of names for Groups and Data Elements

Each group is assigned a unique four-character identifier by the ACORD standard. The
identifier consists of a number and three letters, for all groups defined in the standard. The
identifier is not particularly suitable for a data name, since it starts with a number and has only
three meaningful characters. It is desirable to have a longer and more descriptive name for
each group.

Long group names have been assigned for each group. The long name and the associated
group identifier are contained in a text file (defnames.dat). This file is used by the utility that
creates the individual metadata files from the ACORD data dictionary.

The long names are based on the description field associated with each group. In all cases,
the long name has been limited to less than thirty characters. The word “Group” has been
removed from the end of any long name in which it would have otherwise appeared, and
capitalization has been made consistent and many words have been abbreviated. Long
group names that would have duplicated the long names of other groups have been made
unique. These longer names have been used in the generation of all metadata files. The
long names can also be used when a message flow generates a logical message structure
that will be turned into an ACORD message.

A short name is also supported. The short name begins with an underscore character and
includes four more characters. If the group name begins with an underscore, then the group
identifier should be in the next four characters of the element name. This identifier is used to
locate the appropriate metadata.

Environment Variables
An environment variable is used to point to the location of the metadata files used by the
parser. The variable is ACORDMETADIR. If this variable is not set, then a default value of
“C:\ACORD” is used.

If statistics are to be written to a file, the “ACORD_STAT_FILE” should be set to point to a
fully qualified path and file name. Statistics can be forced out at any time with a system
management message and will also be written out when the broker is stopped. (N.B. There
is a bug in MQSeries Integrator V2.0.1 that prevents this from happening. This bug is
supposed to be fixed in CSD1.)

 MQSeries Integrator V2 - ACORD AL3 message adapter

 19

Some additional environment variables can be set to override handling of certain specific
situations that may be encountered in the parsing of ACORD messages. They are as follows:

ACORD_IGNORE_FILLER – This environment variable is used to control the
treatment of fields marked as filler fields in the metadata files. If this variable is set to
a “1” (without the quotes), the contents of any filler fields will be ignored and no
elements will be added to the logical message tree during parsing of an input
message. If this variable is not set or is set to any other value, these fields will be
treated as any other field and the input data contained in them will be accessible to
any message flows. The flag is generally set by a utility that generates the metadata
files, when a field is a deleted field or is reserved for future use. Fields are marked as
filler fields if they are tagged as deleted or reserved for future use in the ACORD
metadata dictionary.

Customization of the supplied metadata files
A complete set of metadata files is supplied with the SupportPac. The metadata files have
been created from the data dictionary files that are delivered on the Acord CDROM. The data
dictionary files are NOT supplied with this SupportPac.

Two utility programs are provided to allow the metadata files to be changed. The first utility
will process an ACORD data dictionary file and produce the corresponding metadata files.
The second utility will process an individual COBOL copybook and generate a metadata file
that corresponds to the copybook. Full source code for both programs is provided. Please
see the utilities section later in this document for details of using these utility programs.

Implementation details
Parser Initialization and Termination

There are also two entry points that are used during initialization and one used during
termination.

The BipCreateParserFactory entry point is called when the execution group initializes. It will
specify the message domain that the parser will handle. Metadata initialization is also
performed, including the loading of three global metadata files. If the debug version of the
parser is being used, trace initialization is also performed.

The cpiCreateContext entry point is called when a thread is created to handle a particular
message flow.

The cpiDeleteContext entry point is called when a thread terminates. The key functions are to
release any memory that was acquired in cpiCreateContext or during the processing of the
last message processed. Statistics are also written to a statistics file and are reset to zero.

Handling of Input Messages

Input messages must be in a valid ACORD format. Each group must have a recognized four-
character identifier followed by a three-character group length field. Subsequent groups must
follow immediately after the preceding group.

There are five entry points used within the parser for the parsing of input messages.

When a message is received in an MQInput node of a message flow, an instance is created
to process this message. The MQInput node will determine the parser to assign to the body
of the message. It creates a root element for the body and assigns it a name based on the
parser domain.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 20

Parser Context

The context area for a processing of a particular message is allocated in the
cpiCreateContext routine. The intent is that the context will be allocated once for each thread
that is started to service a particular message flow, and that the context will be reused by
each succeeding message. There is a bug in MQSeries Integrator version 2.0.1 that results
in this routine being called once per message. This will cause a memory leak. A fix for this
problem is supposed to be made available in the first CSD.

The context area contains the following fields:

eBody Pointer to the root element of the body.

eParent Pointer to the current parent element. Elements with values will be added
as children of this element.

iSize Size of the input message buffer area. If the message was compressed,
this is the size of the message before being decompressed.

iLength Length of the message area to be parsed. If the message was
compressed, this is the length after decompression.

iDataPtr Pointer to the input data buffer.

iBuffer Pointer to the data to be parsed. If the data was not compressed, this is
the data in the original input buffer. If the data was compressed, then this
is a pointer to the buffer is acquired to hold the decompressed data.

iOffset Number of bytes that have already been processed in the message.

iCodePage Code page of the input or output message. This field is taken from the
CodedCharSetId field in the message properties.

iEncoding Numeric encoding format. This field is taken from the Encoding field in the
message properties.

iEncodeInt Integer encoding format. This field indicates if integers are encoded using
PC format (iEncodeInt = 1) or host (iEncodeInt = 0).

iEncodeIPD Packed decimal encoding format. This field indicates if packed decimal
fields are encoded using PC format (iEncodePD = 1) or host (iEncodePD
= 0).

iFiller Indicator if filler fields should be included in the parse tree on input
operations. This indicator is filled in based on the
ACORD_IGNORE_FILLER environment variable.

iMsgType This field will be set to one if the message is a special management
message.

iInTran This field will be set to one if the parser is currently parsing a group which
is part of a transaction. Transactions are started with a transaction control
group, and continue until the next transaction control group or the
message trailer is found. The message header and message trailer
should be the only groups that are not children of a transaction.

hdrVersion Version number of the header and trailer groups. This is taken from the
corresponding field in the 1MHG message group.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 21

trnVersion Version number of the transaction header and control groups. This value
is taken from the corresponding field in the 2TRG group.

msgVersion Version information that is found in the 2TCG group.

iStartTimeHigh and iStartTimeLow The time a particular thread was started.

TotalParseTime The total time that the parser has taken with this message. This value will
be incremented each time another part of the message is parsed. This
value will be added to the statistics when the thread ends or when the
thread parses a new message.

Initialization functions

The bipCreateParserFactory entry point is called when an execution group process is started.
The main function of this entry point is to perform basic parser wide initialization. The parser
will initialize the metadata structures in memory, and will load three specific metadata files
(defaults, group names and standards mapping). If the debug version of the parser is being
loaded, the trace function will also be initialized.

The cpiCreateContext entry point is then called. This routine allocates and initializes memory
for use during the processing of a particular input message. The allocated memory is
initialized to binary zeros.

The cpiParseBuffer entry point is called after the cpiCreateContext entry routine has finished.
This routine will initialize the parser context, and will get the code page and numeric data
format from the message properties. If an alternate buffer area has been allocated for the
previous message, the area will be freed. This routine will assume ownership of the rest of
the message. This routine performs several functions, including the initialization of the fields
in the context area. First, it initializes a pointer (eBody) in the context area to point to the
body root element. It sets context variables to point to the original message data area
(iDataPtr) and the length of the input message (iSize). It checked if the message has been
compressed and if so allocates a new area for the message and decompresses the message.
It then sets a pointer to the message data (iBuffer), and sets the message length field
(iLength). It initializes the parent (iParent) and current element (iCurrentElement) pointers to
null values, to indicate that no parsing of the message has taken place. The code page of
the input message is determined from the message properties and saved in the iCodePage
field.

This routine will next check if the input message has been compressed. If it was
compressed, then a new buffer will be allocated to hold the decompressed message and the
message will be decompressed. The message format will now be checked to make sure that
the input message is in fact an ACORD AL3 message. Finally, the routine returns with a
length equal to the remaining buffer size, indicating that the parser has taken ownership of the
remaining part of the message.

Parsing Routines

Parsing of a message is done when data within the message is first referenced in a message
flow. There are four entry points that can be called, depending on the particular node routine
that was called. The entry points are cpiParseFirstChild, cpiParseLastChild,
cpiParseNextSibling and cpiParsePreviousSibling. Each of these routines will call the
parseNextSegment routine in the acordsub.cpp module until the appropriate element
completion flag has been set.

The message will be parsed from left to right (beginning of the message to the end of the
message).

 MQSeries Integrator V2 - ACORD AL3 message adapter

 22

Termination Routines

The cpiDeleteContext routine is called when a parser thread terminates. A thread will usually
terminate when the execution group process ends. This routine will check if an alternate input
buffer has been allocated, and if so, will release it. The routine then releases the context area
itself.

Handling of Output Messages

Offline Utilities
Three offline utilities are provided to assist in building the necessary metadata files. The first
utility will process the ACORD data dictionary and produce the corresponding metadata files.
The second utility will produce a formatted text file showing the contents of a metadata file.
The third utility will process a COBOL copybook and produce a corresponding metadata file.
The utilities are named ACORDASC, PRINTMTD and PROCOBOL respectively.

The print utility is a program that can be used to produce a listing of the contents of a
particular metadata file. It is provided because the contents of the metadata files are in binary
and therefore it can be difficult to understand their contents.

The last utility program is provided in case an individual user has produced their own COBOL
copybooks to represent ACORD groups. It is not normally used to build the metadata files
used by the parser.

In general, the offline utilities are not required, since this SupportPac includes a complete set
of metadata files for all versions of the ACORD data dictionaries that are provided by
ACORD.

Building the Metadata files

This section documents how the metadata files that are provided with the parser were built.
Since pre-built versions of the metadata files are provided with this SupportPac, there is
generally no need to build the metadata files. This procedure would only be required when
modifications are to be made to the standard ACORD data areas, or different data naming
conventions are desired.

The metadata files are built using the ACORD data dictionary command line utility
(ACORDASC.EXE). A command file is provided that will process all data dictionary files
provided on the ACORD CDROM. These files are located in the “Data Dictionary” directory.

The utility uses a repeated data element file and a group name file that contains long names
to be used for group names. A repeated data element is a data element with the same
reference name that has more than one occurrence in the same group, and which would
normally be represented as multiple occurrences of the same variable. There are cases
where the same reference name is used in a group but the variables are not really
occurrences of the same item. Therefore, a control file is necessary.

 The repeated data element file (REPEAT.DAT) is used in the processing of variables that
are repeated in a particular group. If a variable’s reference name and sequence number
matches an entry in the repeated data file, then this variable will be treated as a group entry
rather than individual data elements. The result will be a metadata structure with multiple
occurrences of a data item rather than as individual data items with unique names. A version
of this file is provided with the SupportPac and the file normally does not have to be changed.
A description of the layout of this file is given below. The REPEAT.DAT and
DEFNAMES.DAT files should be in the same directory as the ACORDASC.EXE utility when
the utility is executed.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 23

The input to the dictionary processing utility is an ACORD data dictionary file. The dictionary
file is processed, and a metadata file is produced for each data group (segment) encountered.
In addition to the individual metadata files, a defaults file and a version standard mapping file
are produced. The parser uses the version standard mapping file to determine the proper
metadata file to use for a particular data group, based on the version and modification level of
the standards in the Transaction Control Group.

The first step in using the dictionary processing utility is to create a directory and copy the
executable program (ACORDASC.EXE), the repeating data file (REPEAT.DAT), group names
file (defnames.dat), the command file (BUILDMTD.CMD) and the ACORD data dictionary files
from the ACORD CDROM into a directory. The command file should then be executed, and
all the metadata files for the parser will then be created. All the files created will have an
extension of either “MTD” or “MTE”. If necessary, the metadata files should then be moved or
copied to the desired execution directory. The ACORDMETADATA environment variable
should be set to point to this directory.

Editing entries in the REPEAT.DAT file

The repeating items file (REPEAT.DAT) is used as input to the utility program that processes
ACORD data dictionary files and creates the corresponding metadata files. This file is a text
file. Each line consists of a variable length text string. The first part of the string is in a fixed
format, and there is an optional variable name at the end of the line. Each line must end with
a carriage return and line feed (CRLF) sequence.

The fixed portion of the line contains the following fields:

• 4 character group identifier

• 5 character reference name

• A single character of either ‘S’ for a single repeating variable or ‘C’ for a group of
repeating variables.

• 4 digit number with the number of occurrences

• 4 digit sequence number of the first variable

• 4 digit sequence number of the last variable for a single repeating variable or a count
of the number of variables for a group

• Variable name (up to 30 characters)

Problem Determination
There are many types of problems that can arise. Some of the more common problems that
can arise are discussed below.

Parser Exceptions

The ACORD AL3 parser does not perform a thorough check of the contents of a message.
However, a message must meet certain minimum criteria for the parser to be able to handle
the message. If the message does not meet the minimum criteria, then the parser cannot
process the message and will therefore raise an exception. This will normally cause the
message flow to fail and the message will usually wind up on some sort of failure or dead
letter queue.

When a parser exception is raised, an entry is written to the application log. In the Windows
NT environment, this log can be viewed using the event viewer. When a message is not
properly processed, and the message flow appears to fail, the event log is usually the first
place to look.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 24

The parser must be able to find and use the proper metadata for the version of the group or
standard that was used to build a message. A message flow can fail if the wrong version is
specified or if a version is not specified for a group. If a message flow fails and the event log
contains a message indicating that either a metadata file could not be found or that the group
length in the metadata file did not match the length in the group header, the group version in
the group header and standard version in the transaction control group should be checked.

Debug version of the parser

A special debug version of the parser is provided with this SupportPac. This version of the
parser contains a detailed tracing facility. This special trace is written to a text file. The trace
is quite detailed and therefore can be quite large. Therefore, this version of the parser should
not generally be run in a production environment.

Using the debug version

If the debugging version of the parser is installed, the following environment variable should
be set.

• ACORDTRACEFILEDEF – location and name of trace file.

The following environment variables can be used to control the initial setting of the trace
options.

• ACORDTRACE
• ACORDTRACEPARSER
• ACORDTRACEWRITE
• ACORDTRACEMODULE
• ACORDTRACEMGMT

The ACORDTRACE variable controls the overall setting of the trace as on or off. This
variable must be set to a ‘1’ if tracing is to be enabled when the parser starts. The other
variables allow for limiting the type of trace information that is collected. At least one of these
trace functions should be set to a ‘1’.

If none of the environment variables are set, then tracing of all types will be enabled. If the
trace file location is not specified in an environment variable, then the default location of
“\ACORD\parser.trc” on the “C:” drive will be used. If this directory does not exist, no trace
output will be produced.

To install the debug version of the parser, the message broker must first be stopped. If the
standard installation instructions have been followed, the executables for both versions of the
parser should be located in the <MQSI_root>\bin directory. The normal release version of the
parser (SegParse.lil) should be renamed with a different extension (e.g. SegParse.rel) and
the debug version of the parser should be renamed from SegParse.dbg to SegParse.lil. The
broker should then be restarted and the desired message(s) processed. Once the messages
have been processed, the broker should be stopped again and the files renamed to their
original names. The broker can now be restarted.

The trace function can also be turned on and off by using system management messages.

Reporting bugs

Although no official support is provided, the author is interested in hearing of any problems or
suggestions for improvement for this SupportPac. If a bug is suspected, please send an
email with a problem description. If possible, please attach a file with a copy of the message
so that the author can reproduce the problem locally. The author’s email address is on the
front cover of this document.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 25

Hints and tips for writing a parser
What is a logical message and what is a wire format?

A logical message is the interpreted version of a message that the message flow elements
(nodes) process. The logical message data consists of the data as individual fields. A wire
format is the actual data from an MQSeries message. A parser is used to convert a message
from one format to the other.

What do parsers do?

In MQSeries Integrator V2, parsers provide the function needed to interpret incoming
messages and create a logical message based on the data within the message. The logical
message usually consists of the individual data fields within the message. Parsers are also
responsible for creating an output message based on the data found within the logical
message.

In some cases, parsers rely on external data representations stored in some kind of metadata
repository. For example, the IBM supplied MRM parser stores information about the
message formats it can recognize in a repository stored in a relational database. In other
cases, the message format itself is self-defining and no metadata is required to parse a
message.

How do Parsers work?

A parser is initially loaded when an MQSeries Integrator version 2 message broker is started.
The broker in turn starts one or more execution groups. Each execution group operates as a
separate operating system process, running a module called "DataFlowEngine". Each
execution group loads all modules found in the <MQSI root>\bin directory with an extension of
"LIL". The parser modules are built as DLLs. The execution group then calls an entry point
within the parser (bipGetParserFactory), which completes its initialization process and
indicates what types of messages (domain) the parser will process. The parser is now loaded
and ready to process messages.

The execution group then loads any messages flows and starts an active thread for each
MQInput node within each message flow. Each thread issues an MQGet with wait for each
input queue.

When a message arrives in the queue, the MQGet completes and the MQInput node begins
to process the message. It first starts another thread (if the number of threads for the
message flow is less than the maximum allowed) to issue another MQGet to the input queue.
The thread then creates a root element for the logical message, and starts to identify the
various parts of the message.

The MQInput node creates a child element of the root for the message properties and MQMD.
It then identifies any additional parts of the message and creates a child element of the root
for each additional section of the message (generally message headers, such as an RFH2
header) and the body of the message (the user data). The parser for the body of the
message is identified by the domain value in the RFH2 header. If there is no RFH2 header,
then the default domain specified in the MQInput node defaults property is used. If there is no
default domain specified in the MQInput node defaults, then the message body is treated as a
blob.

The cpiCreateContext entry point is called once when a thread is initialized. The purpose is
to acquire a storage area for any context that is to be saved during parsing of a message.
This is primarily of use for a partial parser, which will be called repeatedly to parse a complete
message.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 26

The cpiParseMessage entry point is called during the initial processing of a message by the
MQInput node. A primary function of this entry point is to allow the parser to determine which
part of the message the parser will assume ownership of, and prepare to process the
message. The parser should defer parsing of the message until a particular part of the
message needs to be parsed. When a part of the body of the message is referred to in the
message flow, and the message must be parsed, one of the parsing entry points, such as
cpiParseFirstChild or cpiParseNextSibling, is called. None of the other major sections of the
message are parsed at this time, and the elements for each section are NOT marked as
complete.

The message is then propagated to the Out terminal of the MQInput node. When a field
within the body of the message is referenced within the message in a later node (such as a
filter node or a compute node), and an attempt is made to retrieve either a child or a sibling of
a message element which is not marked as complete, one of four entry points within the
parser will be called. The four entry points are cpiParseFirstChild, cpiParseLastChild,
cpiParseLeftSibling and cpiParseRightSibling. Each entry point is passed the address of the
element that the message flow was attempting to navigate from. The particular routine should
then complete enough of the parse tree and set the appropriate completion in the referenced
element for the message flow to continue processing.

The cpiDeleteContext function is only called when the thread is finished. It should release
any memory acquired by the cpiCreateContext function.

What is "partial parsing"?

The MQSeries Integrator Version 2 broker is written to support what is called partial parsing.
Since an individual message may contain hundreds or even thousands of individual fields, the
parsing operation can require considerable memory and processor resources to complete.
Since an individual message flow may only reference a few of these fields, or possibly none
at all, it is inefficient to parse every input message completely. For this reason, MQSeries
Integrator Version 2 has been designed to allow for parsing of messages on an as needed
basis. This does not prevent a parser from processing the entire message all at once, and
some parsers are written to do exactly this.

Rather than parse the entire message contents and build a complete logical message, the
broker waits until a part of the message is referenced, and then invokes the parser to parse
that part of the message. This will reduce the overhead when a large part of a message is
not referenced in a message flow. To understand how this works, one must be familiar with
MQSeries Integrator Version 2 nodes, and how they refer to fields within the message.
Nodes refer to fields within the message using hierarchical names. The name begins at the
root of the message and then proceeds down the message tree until the particular element is
located. If an element is encountered without the completion bits set, and further navigation
from this element is required, then the appropriate parser entry point will be called to parse
the necessary part of the message. The relevant part of the message should be parsed, and
appropriate elements added to the logical message tree, and the element in question should
then be marked as complete. If the element is not marked as complete, a looping condition
can then arise.

Parser Context

When a parser is called up to parse a message, it is useful to have an area where information
about the specific message that is currently being parsed can be kept. This is particularly
useful when a parser is parsing a message incrementally (partial parsing) and must
remember how much of the message it has already parsed. MQSeries Integrator version 2
provides a facility for a parser to acquire an area of storage and associate it with a particular
message. This area of storage is called the parser context. There is one context maintained
for each thread that has parsed a message that has required the use of a particular parser.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 27

To understand the parser context, some understanding of the threading model used within
MQSeries Integrator Version 2 is required.

MQSeries Integrator Version 2 uses a multi-process multi-thread architecture. Every
execution group defined within a broker runs as a separate operating system process.
Threading is used within individual execution groups. When a message flow is assigned to
an execution group, and the execution group is started, one or more threads will be started to
process messages associated with that message flow. First, a thread is started for each
MQInput node within the flow. These threads issue an MQGet with wait against the queue
specified in the MQInput node. There is a parameter (additionalInstances) that can be set on
the message flow that controls the number of additional threads that the particular message
flow can use to process more than one message at a time. These additional threads are also
started, but they wait on a semaphore.

When a message arrives on an input queue, the MQGet is satisfied and the thread starts to
process the message. Prior to exiting the MQInput node, the thread will check if there are
any additional instances in the pool for this message flow. If there are, one of these threads
will be posted and will issue an MQGet with wait. The current thread will then process the
message. When it completes the current message, it will check if another thread has issued
an MQGet with wait. If another thread has issued the MQGet, then this thread will then rejoin
the thread pool and wait on a semaphore. If there is no thread with an outstanding MQGet,
the current thread will reissue the MQGet.

The input node identifies the parser(s) needed to parse the input message. If a parser is
required that has not been used before by the particular thread, then an instance of the parser
object will be instantiated for that thread. This parser object will be retained for the duration of
the thread. The threads are usually retained until the execution group (or broker) is stopped.
The thread will also be stopped if the message flow is changed and a deployment operation is
initiated.

Whenever the message passes through a Compute node (or Extract node), a new message
tree will be created. When the body element of the new message tree is created (using a call
such as cniCreateElementAsFirstChildUsingParser), an owning parser is created for the body
of the message. This parser will be used to create an output buffer from the logical message
tree data when required (generally as a result of a later MQOutput node). Any parser objects
that are created to handle subsequent message trees will be destroyed when the particular
instance (message) completes.

When a parser object is created, the cpiCreateContext entry point will be called. The parser
should acquire any storage that it needs and return the address when this routine is finished.
This storage will be retained and reused for the life of the parser object. When the parser
object is destroyed, the cpiDeleteContext entry point is called.

What happens if a parser encounters an error?

If a parser encounters invalid data or other types of errors, it has two basic options. It can
ignore the error or it can create (throw) an exception and cause the message flow to be
terminated.

How do the completion bits found in message elements
work?

Every element in a parse tree has five logical pointers. The pointers are to the parent,
previous sibling, next sibling, first child and last child. The parser builds the parse tree
structure by adding elements as either the first child or the last child of a previous element.
The appropriate pointers of all surrounding elements are adjusted when a new element is
added to the parse tree. The pointers are always valid. This means they will either point to
an element that is a sibling or child of the element, or they will have a null address.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 28

When a node needs to find an element in the tree, it must navigate to the desired element,
starting at the root element. The node can use any of the five pointers to locate the desired
element. For example, if a node needs to locate the element that corresponds to
InputBody.A.B, it could accomplish this is in the following manner.

First, the root element must be found, using the cniRootElement function. The node would
then use the cniLastChild function to get a pointer to the last child of the root element. This
would be the body element. The node must now locate the child of the body whose name is
A. To do this, it would use the cniFirstChild to locate the first child of the body. It would then
search through the children of the body, using the cniNextSibling function as needed, looking
for an element whose name is A. When the A element is located, the cniFirstChild function
would again be called to locate the first child of element A. The children of element A would
then be searched using the cniNextSibling function until an element with a name of B is
located. The desired element has now been located.

MQSeries Integrator version 2 supports late or partial parsing, to reduce the overhead in
certain common situations. This means that the parse tree will only be built when it is
needed. To support partial parsing, the parser must be able to indicate where the parse tree
is complete and where it is not. To do this, two bits are available within each element. The
parser to indicate whether the first child pointer is complete, and whether the last child pointer
is complete set the bits. To be considered complete, the first child pointer must point to the
element that is really the first child of the current element, and the last child complete bit
indicates that the last child pointer is pointing to the element that is truly the last child of the
current element.

When the various node navigation functions (such as cniFirstChild or cniNextSibling) are
called, they look at the corresponding completion bits to determine if they need to invoke the
parser before they return the result. The cniFirstChild function will call the parser until the
completePrevious bit is set, and will then return the first child pointer from the given element.
The cniLastChild will call the parser if the completeNext bit is not set, and after this bit is set
by the parser, will return the last child pointer from the given element. The cniPreviousSibling
function will check the completePrevious bit in the parent of the given element, and if that bit
is not set, will call the parser. After the parser sets the completePrevious bit in the parent,
then the previous sibling pointer from the given element will be returned. In a similar manner,
cniNextSibling will check the completeNext bit in the parent, and if necessary, invoke the
parser. When this bit is set by the parser, the next sibling pointer will be returned.

Most parsers are will operate from left to right (from the beginning of a message to the end).
If the first child has been parsed, or if there are no children, then the completePrevious bit of
the parent should be set. If the last child of an element has been parsed, or if there are no
children, then the completeNext bit of the parent should be set.

What data types are supported and how are they stored
internally?

The logical message model supports many types of data, as defined within the ESQL
standard. Data types include character, integer, decimal, floating point, boolean and
date/time formats. The input numeric data representation for integer and packed decimal
data is determined from the MQMD encoding parameter, and the output data format is
determined from the encoding parameter in the message properties (first child of the root).
Internally, character data is stored as unicode characters, while integers are stored as 64 bit
values using the encoding sequence native to the platform on which MQSeries Integrator
Version 2 is running (e.g. for Windows NT, this would be "little endian", whereas if the broker
were to run on an RS/6000 processor under AIX, it would use "big endian" format internally).
Decimal data is stored as characters in either little endian or big endian order. No conversion
of floating point data is provided. Date and time values are stored as data structures.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 29

Code pages and input buffers

The code page of the input buffer is contained in the properties. The input buffer should be
translated to Unicode before any processing and the subsequent processing should be done
using Unicode. This makes the parser independent of the code page of the incoming
message. The code page of the data in the input buffer is contained in the properties.

Parser Utility Functions

What is the difference between similarly named node and parser functions, such as
cniNextSibling and cpiNextSibling? The parser functions will not cause the invocation of a
parser, and hence are recommended to use within parser routines. The node utility functions
will invoke a parser if the completion bits are not set. If a parser were to use the node utility
functions on a part of the parse tree that it is responsible for, then the parser could be called
recursively and a loop could result.

There is one instance where the node functions must be used. If a parser needs to access
the message properties, the individual fields under the main properties element may not have
been created. If the parser utility functions are used for this navigation, then the desired
element may not be found. If the node utility functions are used, the properties parser will be
invoked as needed to complete the properties section of the parse tree. In fact, this function
is used in several places within the provided ACORD AL3 parser.

Using the CciLog and CciThrowException utility functions

The CciLog and CciThrowException functions write an entry into the Windows NT event log.
The CciThrowException function will generate an exception. The exception may be handled
by the message flow or, if not handler is present, it may cause the message flow to be
terminated. The CciLog function will write an event into the event log and execution of the
message flow will then continue.

The CciThrowException function requires a parameter that indicates the type of error. Most
errors that are detected with the contents of a particular message should use an error type of
CCI_PARSER_EXCEPTION. This will result in a runtime error being raised within the
particular instance that is being processed, and will generally result in the message being
rejected. The message is usually placed on some kind of failure or dead letter queue. If an
error type of CCI_FATAL_EXCEPTION is used, then the entire execution group will be
brought down. This exception type should only be used for serious errors that are likely to
affect the entire execution group, such as memory corruption.

All errors thrown by the provided ACORD AL3 parser are of the parser exception type.

Creating a Message Dictionary

Both the CciLog and CciThrowException functions require a Windows message dictionary to
be created and registered in the Windows registry.

The first step in creating a message dictionary is to create the source input for the messages
themselves. This SupportPac includes a message dictionary, including the source code for
the messages. The source file for the message dictionary is called “acorderr.mc”. More
documentation for the message dictionary formats is contained in the Microsoft SDK for
Windows NT.

A registry entry is also needed in the system that the parser will execute on. Instructions on
creation of this registry entry are included in the installation part of this document.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 30

Calling the CciLog and CciThrowException functions.

A number of parameters must be passed to either the CciLog or CciThrowException
functions. Two of the parameters are the name of a message dictionary and the message
identifier within the message dictionary. An include file with definitions of the message
identifiers is generated by the message compiler and should be included in the source
program using the message dictionary. The message dictionary name is a character string
with a null termination.

An error message defined in a message dictionary can include additional parameters in the
message definition that are to be filled in at execution time. All such parameters must be
character strings. The last parameter passed to either of the above functions should be a
parameter of zero. This indicates the end of the execution time parameters list. Even if there
are no run time parameters, a single parameter with a value of zero should be passed to the
above utility functions.

The message dictionary format for an insertion is a percent sign followed by a number, which
in turn is followed by an exclamation point, the letter “s” and a second exclamation point. The
number indicates which parameter should be used. The first parameter that is passed on the
utility function call is matched to the insertion sequence identified by the number two. If the
parameter number in the message is the digit one (e.g. the insertion sequence of %1!s!), then
a character sequence consisting of the broker name and execution group name is inserted.
The first parameter passed on the utility function call will replace the sequence %2!s!, the
second parameter will replace the sequence %3!s!, and so on.

Microsoft documentation should be used for further information on the format of a message
dictionary. A sample message dictionary is also provided (acorderr.mc).

Using Microsoft Foundation Classes (MFC) in a parser

The Microsoft Foundation Classes (MFC) can be used in a parser. However, their use can
cause link edit errors. Two steps should to avoid these problems. First, the _USRDLL
definition in the preprocessor section of the C/C++ tab in the project properties should be
removed if present. The second step is to explicitly add the appropriate MFC library to the
beginning of the Object/Library modules area in the general section of the Link tab.

What does the iFpIsHeaderParser parser function call do?

MQSeries Integrator Version 2 sets the format field in the MQMD to the parser domain name
if the cpiParserType routine returns a value of zero. If this routine returns a non-zero (TRUE)
value, then the format field is not set to the domain name of the parser. It can then be set by
a message flow. If this routine is not implemented in the parser, then the format field is
always set to the name of the parser domain.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 31

 Appendix A – Group identifiers and long names
1MHG MessageHdr
2ACI AgencyCompanyInfo
2FID FileTransferIdent
2FTT FileTransferTlr
2GCG OmittedGroupCtrl
2TAG TransAgency
2TCG TransCtrl
2TRG TransHdr
3MTG MessageTlr
4CRG CtrlReq
4CRR CtrlReqRej
4MAK MessageAck
4NMK NegativeMessage
4PTG PhaseTerminator
4ROC ReceiveOptCtrl
4SOF Signoff
4SOG Signon
4SOR SignonRejection
4STG StreamTerminator
5ACT PolicyActivity
5AOI AddlOthInt
5ATT Attachments
5BCI BldConst
5BIS BasInsuredInfo
5BNG BinderNotification
5BPI BasPolicyInfo
5CAR CommlLinesAuto
5CER CertHolder
5CFG CommonFactgroup
5CHG Charges
5CLD MiscCov
5CNR CancelNonRenewReinstate
5COV CovAndAdj
5CVG CommlLinesCov
5DCV CovInfo
5DRV Driver
5DSF DiscountSurchargeFact
5DSP BatchDownloadSetup
5ELG ExtendedLine
5FCI FloodCommunityInfo
5FOR Forms
5GIG GenInfo
5GNA GenNameAddr
5GPP GenLiabilityPriPol
5GUR MiscUnitAtRisk
5IIG DwellingInspection
5ISI InsuredsSuppl
5LAG LocAddr
5LHG LossHistory
5MED MedStatement
5NID NameIdentifier
5OIC OthInsWithCompany
5PAY PayPlanInfo
5PCG PolicyCov
5PIG PackageInfo
5PIN PremiumInfo
5PMI PayMethodInfo
5PPH PriPolHistory

 MQSeries Integrator V2 - ACORD AL3 message adapter

 32

5PPI PerPropItem
5PPS PerPropSchedule
5PSU PrintImageElement
5PTL LongLine
5PTS ShortLine
5PUL PerUmbLiability
5QIG QuoteInfo
5REP DwellingReplCost
5RMK Remarks
5SLC SubLoc
5SNG SupplName
5SSG StateSummary
5TAI TexasAddlInsured
5UQG UnderwritingQuestion
5VEH Vehicle
5YRI YearlyReportingInfo
6ADR AddlRestrictions
6ATF BusinessAutoTruckFiling
6AUR BusinessAutoTruckUW
6BAU BusinessAutoTruckNotOwned
6BFR BusinessAutoTruckFinResp
6BKH BoeckhHighvaluedDwelling
6BKS BoeckhSquareFootMethod
6BMA BMOccupancyRateTable
6BMB BMObjectCovered
6BMC BMCovAdj
6BRT BusinessAutoTruckSuplRating
6BVS BusinessAutoTruckVehSupl
6CAS BusinessAutoTruckCoverAutoSym
6CCG LossNoticeCov
6CCI CrimeCtrlInfo
6CCV CrimeCov
6CDI DriverSupplement
6CEC CrimeEmployeesClass
6CFS ClaimFinancialSummary
6CIE InjuryInfo
6CKY ClaimKeys
6CLI CrimeLocInfo
6CMP CrimeMessengerProt
6CMS CrimeMoneyandSecurities
6COC Occurrence
6COI LossNoticeOthIns
6COL CommlPropCauseloss
6COM CommunicationsIdInfo
6CPA ClaimPaySummary
6CPC CommlLinesPriPol
6CPD ClaimPayDetail
6CPH CommlPropPriPol
6CPK CommlPropBlanket
6CPL PropLoss
6CPN CommlPropUW
6CPO CommlLinesPolicy
6CPP PremisesProdOth
6CPS CrimePremisesSafeProt
6CPU CommlProp
6CRM CrimeUnitAtRisk
6CSV CrimeSafeVaultInfo
6CUA CLUmbExcessAddl
6CUB CLUmbExcessVehicle
6CUC CareCustodyCtrl

 MQSeries Integrator V2 - ACORD AL3 message adapter

 33

6CUE CLUmbExcessCov
6CUL CLUmbExcessLoc
6CUR ScapCrimeUnitAtRisk
6CUU CLUmbExcessUnderlying
6CVA PerAutoCov
6CVC BusinessAutoTruckCoverAdj
6CVF DwellingFireCov
6CVH HomeownersDwellingFireCover
6CVL VehicleLossInfo
6DBC DirBillCommStmtSum
6DBD DirBillCommStmtDet
6DBS DirBillPayStatus
6DIS DriverDiscount
6DRA AddlDriverRestriction
6EMP WCompEmpl
6FRU DwellingFireSuppl
6FSR DwellingLocInfo
6GCM GenLiabilityClaimsMade
6GGA DealersPhysicalDamage
6GGI GarageandDealersInfo
6GGK GarageKeepersLiability
6GGL GarageLiability
6GGP GaragePhysicalDamage
6GIC ContractorsUnderwriting
6GLC GenLiability
6GLS GenLiabilityStateRating
6GLT GenLiabilityTransition
6GPC ProdCompletedOperations
6GPD ProdDetail
6GSU GlassSignUnderwriting
6GUW GenLiabilityUnderwriting
6HRU HomeownersDwellingFireRateUW
6ICR InlandMarineComputerRoom
6IMA CommInlandMarineUnitAtRisk
6IMB CommlScheduledItem
6IMC CommlInlandMarine
6IMD InlandMarineMediaData
6IPI InvolvedParty
6IRU PerInlandMarine
6LUR AllLocUnitRisk
6MEM MemoHdr
6MHT MobileHomeTlr
6MRG MemoRouting
6MSA MarshallSwiftSeriesData
6MVR MotorVehReqResp
6PAD AcctCurrDetail
6PAL PolicyAcctLine
6PAS AcctCurrSummary
6PCV CommlPropCov
6PDA PerAutoDriving
6PDC AcctCurrDiscrepancy
6PDR PerAutoDriver
6PDS PerAutoSpecial
6PGS CommlPropGlassSign
6PIM PerInlandMarineCov
6PIS PerAutoInsured
6POI CommlPropOth
6PRP PerUmbPriPol
6PSL CommlPropSubLoc
6PSO CommlPropSubjOpt

 MQSeries Integrator V2 - ACORD AL3 message adapter

 34

6PSR CommlPropSpecific
6PST CommlPropState
6PTI ProtInfo
6PUM PerUmbCov
6PUR ScapPropUnitAtRisk
6PUS PerUmb
6PVH PerAutoVehicle
6RCA ReplCostAddl
6RPT ReportOrderingInfo
6SAM SuretyJointVentureAmounts
6SBA SuretyBondUnitAtRisk
6SBB SuretyBondCov
6SBC SuretyBondPolicyInfo
6SBF BeneficiariesInfo
6SBL SuretyPremiumBilling
6SBR BasBondReq
6SBT BankruptcyTrusteeReceiver
6SBX BasBondExecution
6SCN ContractSuretyBond
6SCO CollateralInfo
6SDV CommlLinesDriver
6SFI FiduciaryBondInfo
6SIG InsInfo
6SJU JudicialBondInfo
6SLI ScapLocInfo
6SLP LicensePermitBondInfo
6SMB SnowmobileLiability
6SMI MiscBondInfo
6SOI CommlPropSubjIns
6SPC SpecialtyLinesCommon
6SPG PrincipalInfo
6SPI SmallCommlAccts
6SPL ScapPolicyLimits
6SPO PublicOfficialBond
6SRG ContractSuretyBidResults
6SRT SuretyRatingInfo
6SSR StateInfo
6STR SuretyTermsInfo
6SUB SubsidiaryInfo
6SUC ScapUnderlyingCov
6SUU ScapUmbUnitAtRisk
6SWC SelfInsuredWorkers
6TEQ TruckersEquipment
6TTI TruckersTlrInterchange
6TTR TruckersTerminal
6TZO BusinessAutoTruckZone
6VIO MvrAccidentviolations
6WAL WaterUnitLiability
6WAS WaterUnitSuppl
6WCA WCompAssigned
6WCC WCompPremium
6WCD WCompDefCover
6WCH WCompPolicy
6WCI WCompIndivual
6WCL WCompInjury
6WCP WCompPolicyOld
6WCR WCompRating
6WCS WCompState
6WCT WCompOth
6WCU WCompUnique

 MQSeries Integrator V2 - ACORD AL3 message adapter

 35

6WCV WCompCoverAdj
6YDQ YoungDriverQuestionnaire
8CDD CompanyUniqueDataDictionary
8DED SingleFieldEditDef
8DEF TemporaryFieldDef
8DER RelationalEditDef
8TBL TableDef
9ADR AddlDriverInfo
9AOI AddlIntExt
9BIS BasInsuredExt
9CKY ClaimKeysExt
9COC OccurrenceExt
9CVL VehicleLossInfoExt
9EMP WCompEmplExt
9IPI InvolvedPartyExt
9WCL WcompInjuryExt

 MQSeries Integrator V2 - ACORD AL3 message adapter

 36

Appendix B - Error Message Details
The parser may produce the following error messages. The messages will be recorded in the
Windows NT event viewer. A detailed description of the error, as well as the common causes
of the message, is provided below. In all cases, the message will be preceded by the broker
and execution group names.

Error Message Text and Likely causes

Message 10 (No Message Header Group found)

This message will be produced if not ACORD message header group (1MHG) segment is
found at the beginning of the message. This group is required as the first group for all
ACORD messages. This message generally indicates that the message is not a valid
ACORD AL3 message.

Message 11 (No Message Trailer Group found)

This message indicates that no message trailer group (3MTG) was found at the end of the
message. This group is required as the last group in all ACORD messages. This is usually
an application error in the sending application. An incorrect length in a group header can also
cause it.

Message 12 (No Transaction Header Group found)

The second group in all ACORD messages must be a Transaction Header Group (2TRG).
This error will occur if this group is not a transaction header. There can be more than one
2TRG group in a message. Each 2TRG group starts a new transaction. This message
usually indicates a problem with the sending application.

Message 20 (Invalid length (nn) in group header (bytes 4-6) for segment
(xxxx))

This indicates that the length field in the group header is invalid. It is either less than ten or
contains non-numeric characters. The three bytes following the group identifier must contain
the length of the group segment. This length must be at least ten and not more than the
number of bytes that remain in the message, after the beginning of this group. An incorrect
length in the previous group header can also cause this message.

The offset given is the beginning of the group and the length is the value that was calculated
from the three characters in the header that should contain the length. This error usually
indicates a problem with the sending application.

Message 21 (Message length (nn) does not match sum of group lengths
(mm))

The length of the complete input message does not match the sum of the lengths given in the
group headers. There are several things that can cause this error. The most common cause
is an error in one of the length fields in a group header. Data truncation can also cause this
problem. The most likely cause of this problem is an error in the originating application.

Message 23 (Meta Data file not found for (xxxx) at offset (nn))

No metadata file was found for the indicated message group. This can indicate an invalid
group identifier. Invalid or unrecognized group version numbers or standard level and
revision numbers will also cause this error.

 MQSeries Integrator V2 - ACORD AL3 message adapter

 37

Message 24 (Group length (mm) does not match metadata length (nn))

This message indicates that the length of the metadata for this group does not match that
specified in the group header. An invalid length in the group header can cause this problem.
An invalid group version number or standard level and revision number can also cause this
error to occur.

 ----- End of Document ----

