
MQSeries Integrator V2 
FIX message adapter 

Version 1.0 
 

 

 

17th April 2001 

 

 

 

Jim MacNair 
MQSeries Sales Support 

IBM  
Somers, NY 

USA 

macnair@us.ibm.com 

 

 

 

 

 

 

 

 

Property of IBM 

 



MQSeries Integrator V2 - FIX message adapter 

ii 

Take Note! 

Before using this report be sure to read the general information under "Notices". 

First Edition, April 2001 

This edition applies to Version 1.0 of MQSeries Integrator V2 – Fix message adapter and to all 
subsequent releases and modifications unless otherwise indicated in new editions. 

© Copyright International Business Machines Corporation 2001. All rights reserved. Note to US 
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is 
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp. 



MQSeries Integrator V2 - FIX message adapter 

iii 

Table of ContentsTable of ContentsTable of ContentsTable of Contents    

Notices.................................................................................................................................................. viii 

Trademarks and service marks ........................................................................................................ viii 

Acknowledgments .................................................................................................................................. ix 

Summary of Ammendments....................................................................................................................x 

Preface ................................................................................................................................................... xi 

Chapter 1. Introduction to the FIX standards ..........................................................................................1 

FIX message format.............................................................................................................................1 

What does a FIX message look like? ..................................................................................................1 

Headers and Trailers........................................................................................................................1 

Message Types ................................................................................................................................2 

What types of data are contained in FIX messages? ..........................................................................2 

Compression and Encryption ...........................................................................................................2 

FIX Metadata....................................................................................................................................3 

Versioning Support ..............................................................................................................................3 

How versioning is handled by the Parser.........................................................................................3 

Metadata Files..................................................................................................................................3 

Chapter 2. Installation..............................................................................................................................4 

SupportPac contents............................................................................................................................4 

Prerequisites ........................................................................................................................................4 

Supported Platforms ............................................................................................................................4 

Installing the executable programs......................................................................................................4 

Installation in the Windows NT/2000 environments.............................................................................6 

Installing the metadata .....................................................................................................................6 

Defining the message dictionary in the registry ...............................................................................6 

Installation in an AIX environment .......................................................................................................7 

Installing the executable programs and message catalog...............................................................7 

Installing the metadata .....................................................................................................................7 

Working with the parser source programs on AIX ...........................................................................7 



MQSeries Integrator V2 - FIX message adapter 

iv 

Working with the metadata utility source programs on AIX .............................................................8 

Environment variable for the metadata files ........................................................................................9 

Adding user defined tags to the metadata...........................................................................................9 

Installation Verification .........................................................................................................................9 

Testing encryption function ............................................................................................................10 

Additional considerations...................................................................................................................10 

Chapter 3. Using the Parser..................................................................................................................11 

Message Domains .............................................................................................................................11 

General data structure .......................................................................................................................11 

Naming of data elements...................................................................................................................11 

Determining the names of the data items ......................................................................................11 

Input Messages..................................................................................................................................11 

Encrypted Input ..............................................................................................................................12 

Field Names.......................................................................................................................................12 

Output Messages...............................................................................................................................12 

Encrypted output ............................................................................................................................13 

Output of repeating fields ...............................................................................................................14 

Chapter 4. Using the source code.........................................................................................................15 

Adding encryption and decryption routines .......................................................................................15 

Building the parser (Windows NT/2000) ............................................................................................15 

Building the Message Catalog (Windows NT/2000) ..........................................................................16 

Building the Message Catalog (Unix) ................................................................................................16 

Chapter 5. Error Messages ...................................................................................................................17 

Chapter 6. Customization of the supplied metadata files......................................................................18 

Using the offline utilities .....................................................................................................................18 

Chapter 7. Parser Implementation ........................................................................................................20 

Parse Tree Structure..........................................................................................................................20 

Repeating data items.........................................................................................................................20 

Handling of metadata files within the parser......................................................................................20 

Some more detailed design points ....................................................................................................21 



MQSeries Integrator V2 - FIX message adapter 

v 

Parsing of input messages.............................................................................................................21 

Parsing of output messages...........................................................................................................21 

Handling of headers in output segments .......................................................................................21 

Chapter 8. System management messages .........................................................................................22 

Recognition of management messages ............................................................................................22 

Message types supported..................................................................................................................22 

System Management Message Formats ...........................................................................................22 

Flushing and monitoring the metadata cache....................................................................................22 

Capturing Statistics ............................................................................................................................23 

Turning trace on and off and displaying trace status.........................................................................24 

Displaying the Level of the Executing Parser ....................................................................................24 

Implementation considerations ..........................................................................................................25 

Generation of names for Data Elements........................................................................................25 

Chapter 9. Environment Variables ........................................................................................................26 

Chapter 10. Implementation details.......................................................................................................27 

Parser Initialization and Termination .................................................................................................27 

Handling of Input Messages ..............................................................................................................27 

Parser Context ...............................................................................................................................27 

Initialization functions .....................................................................................................................28 

Parsing Routines ............................................................................................................................29 

Termination Routines .....................................................................................................................29 

Handling of Output Messages ...........................................................................................................29 

Chapter 11. Offline Utilities....................................................................................................................31 

Building the Metadata files.................................................................................................................31 

Chapter 12. Problem Determination......................................................................................................32 

Broker will not start ............................................................................................................................32 

Parser Exceptions..............................................................................................................................32 

Performance ......................................................................................................................................32 

Debug version of the parser ..............................................................................................................32 

Using the debug version ....................................................................................................................32 



MQSeries Integrator V2 - FIX message adapter 

vi 

Reporting bugs...................................................................................................................................33 

Appendix A - Hints and tips for writing a parser ....................................................................................34 

What is a logical message and what is a wire format?......................................................................34 

What do parsers do?..........................................................................................................................34 

How do Parsers work?.......................................................................................................................34 

What is "partial parsing"?...................................................................................................................35 

Parser Context ...................................................................................................................................35 

What happens if a parser encounters an error? ................................................................................36 

How do the completion bits found in message elements work?........................................................36 

What data types are supported and how are they stored internally? ................................................37 

Code pages and input buffers............................................................................................................37 

Parser Utility Functions ......................................................................................................................37 

Using the CciLog and CciThrowException utility functions................................................................38 

Creating a Message Dictionary ......................................................................................................38 

Calling the CciLog and CciThrowException functions. ..................................................................38 

Using Microsoft Foundation Classes (MFC) in a parser....................................................................39 

What does the iFpIsHeaderParser parser function call do? ..............................................................39 

Appendix B – Repeating field names ....................................................................................................40 

Appendix C - Error Message Details .....................................................................................................41 

Error Message Text and Likely causes..............................................................................................41 

Message 10 (No BeginString item found) ......................................................................................41 

Message 11 (No delimiter (0x01) for BeginString data found).......................................................41 

Message 12 (No ending delimiter (0x01) found)............................................................................41 

Message 13 (No CheckSum (tag #10) found) ...............................................................................41 

Message 14 (Calculated check sum does not match checksum item) ..........................................41 

Message 20 (No identifier found preceding equal sign).................................................................41 

Message 21 (Element name (XXX) not found in metadata file).....................................................42 

Message 22 (No metadata found for this fix level - XXX) ..............................................................42 

Message 23 (Tag length too long (> 5 characters)) .......................................................................42 

Message 24 (Invalid character found in tag)..................................................................................42 



MQSeries Integrator V2 - FIX message adapter 

vii 

Message 30 (Invalid data type for length of raw data field) ...........................................................42 

Message 31 (Length field at offset (nn) evaluates to zero)............................................................42 

Message 32 (Length field for raw data field exceeds remaining buffer) ........................................42 

Message 33 (Delimiter at end of  raw data field missing) ..............................................................43 



MQSeries Integrator V2 - FIX message adapter 

viii 

NoticesNoticesNoticesNotices    

The following paragraph does not apply in any country where such provisions are inconsistent with 
local law. 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. 

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore 
this statement may not apply to you. 

References in this publication to IBM products, programs, or services do not imply that IBM intends to 
make these available in all countries in which IBM operates. 

Any reference to an IBM licensed program or other IBM product in this publication is not intended to 
state or imply that only IBM's program or other product may be used.  Any functionally equivalent 
program that does not infringe any of the intellectual property rights may be used instead of the IBM 
product. 

Evaluation and verification of operation in conjunction with other products, except those expressly 
designated by IBM, is the user's responsibility. 

IBM may have patents or pending patent applications covering subject matter in this document.  The 
furnishing of this document does not give you any license to these patents.  You can send license 
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, 
Thornwood, New York 10594, USA. 

The information contained in this document has not be submitted to any formal IBM test and is 
distributed AS-IS.  The use of the information or the implementation of any of these techniques is a 
customer responsibility and depends on the customer's ability to evaluate and integrate them into the 
customer's operational environment.  While each item has been reviewed by IBM for accuracy in a 
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.  
Customers attempting to adapt these techniques to their own environments do so at their own risk. 

Trademarks and service marks 

The following terms, used in this publication, are trademarks or registered trademarks of the IBM 
Corporation in the United States or other countries or both: 

! IBM 

! MQSeries 

! MQSeries Integrator 

! MQSI 

The following terms are trademarks or registered trademarks of other companies: 

• Windows NT, Windows 2000, Visual Studio  Microsoft Corporation 

 



MQSeries Integrator V2 - FIX message adapter 

ix 

AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments    

The author would like to acknowledge the help that was received from a number of individuals.  First, 
Malcolm Ayres, Peter Lambros and Phil Coxhead from the IBM Hursley Laboratories provided 
invaluable and tremendously useful information many times.  They also displayed remarkable 
patience with the repeated questions and problems that they were constantly bombarded with.  
Second, Neil Kolban of the Dallas Systems Center was very helpful at numerous times, both for his 
expertise on both MQSeries Integrator as well as the Microsoft C++ development environment.  
Finally, the author wishes to thank the many people who also helped but who the author has 
unintentionally omitted from this brief mention. 



MQSeries Integrator V2 - FIX message adapter 

x 

Summary of AmmendmentsSummary of AmmendmentsSummary of AmmendmentsSummary of Ammendments    

Date Changes 

April 2001 Initial release 



MQSeries Integrator V2 - FIX message adapter 

xi 

PrefacePrefacePrefacePreface    

The FIX standard is commonly used within the finance (brokerage) industry, primarily for the 
exchange of electronic data related to securities transactions.  

This SupportPac contains an adapter (parser and metadata) for FIX messages.  The adapter is 
designed and written for the MQSeries Integrator Version 2.0.1 environment.  The supplied parser is 
designed to operate in the Windows NT and Windows 2000 environment, and the IBM AIX 
environment.  Steps have been taken to make the source code platform independent.   

The SupportPac adds support to MQSI V2.0.1 for parsing of input messages and creation of output 
messages in the FIX format.  Metadata is provided with this SupportPac for levels 4.2, 4.1 and 4.0 of 
the FIX standard.  The SupportPac includes metadata and executable programs for the Windows 
NT/2000 and AIX environments, as well as documentation and the source programs. 

The source programs and documentation are useful examples for anyone who is planning to write a 
parser. 

All executable programs provided with this SupportPac have been compiled for the Windows 
environment using the Microsoft Visual C++ V6.0 compiler, and for the AIX environment using the IBM 
xlc_r compiler.  The programs are largely written to the ANSI C standard, with some use the Microsoft 
Foundation classes in the Windows version.  The necessary MFC support has been statically linked 
with the executable programs, so no additional DLLs should be required to run the supplied 
executable programs. 

This document includes a general overview of the FIX message formats, and some additional details 
on how parsers work in an MQSeries Integrator Version 2.01 environment.  These sections are 
informational and are not required to install and use this SupportPac. 

A general understanding of MQSeries Integrator V2.0.1 is necessary to use this SupportPac.  If the 
function of the parser is to be changed or customized by modifying the provided source code, then an 
in depth knowledge of MQSeries Integrator V2.0.1, as well as C programming, is required. 



MQSeries Integrator V2 - FIX message adapter 

1 

Chapter 1. Chapter 1. Chapter 1. Chapter 1. Introduction to the FIX standardsIntroduction to the FIX standardsIntroduction to the FIX standardsIntroduction to the FIX standards    

The FIX organization is responsible for the maintenance and development of the Electronic Data 
Interchange (EDI) standards for the exchange of data related to securities markets.  These standards 
allow industry partners to electronically exchange information such as policy/submission, claim and 
accounting data.   

The FIX standards were originally developed approximately nine years ago, and have been 
continually maintained and enhanced since. 

A brief introduction to FIX messages is contained in this document for the convenience of the reader.  
For additional information on the FIX standards, please visit the FIX web site (see below). 

FIX message format 

The FIX message format is designed to allow the exchange of securities related information between 
different organizations. The FIX message formats are defined and maintained by the FIX 
organization, which can be located on the web at: 

 http://www.fixprotocol.org 

In their own words, “The message protocol, as defined, will support a variety of business functions.  
FIX was originally defined for use in supporting US domestic equity trading with message traffic 
flowing directly between principals.  As the protocol evolved, a number of fields were added to support 
limited cross-border and fixed income trading.  Similarly, the protocol was expanded to allow third 
parties to participate in the delivery of messages between trading partners.  As subsequent versions 
of FIX are released, it is expected that functionality will continue to expand.” 

The actual FIX standard is contained in a Microsoft Word document.  Each data element is assigned a 
numeric identifier, name and data type in the document.  These names are used in the metadata files 
that are included with this SupportPac. 

What does a FIX message look like? 

A FIX message consists of a series of delimited tag and value pairs.  A special non-printable ASCII 
character (SOH = #001) at the end of the value delimits each tag and value pair.  The type and value 
are separated by an equal sign.  Each individual item is of the format: 

tag=value<SOH>   

Each data item contains data of a specified type, which can include numbers (either integers or 
floating point), Boolean, date and/or time, string or character data or raw binary data.  All values are 
given in a character format.  For example, a Boolean value should contain either a “Y” or an “N”.  
Integers should consist of numeric digits only, while floating point values can include a decimal point 
(but not an exponent). 

Tags and values must not contain the delimiter character (SOH = 0x01).  There is an exception 
however.  Fields with a data type of “data” (raw data) may contain one or more delimiter characters 
within the data.  All data elements of type data must be preceded by a length field, which specifies the 
length of the data.  The length field must be of type integer. 

Headers and Trailers 

A FIX message must contain a standard FIX header and trailer.  The header must begin with a “Begin 
String” data element (tag #8), which contains a constant to indicate the level of the standard used to 
create the message.  This BodyLength (tag #9) and MsgType (tag #35) fields must be the second and 
third fields respectively, and follow immediately after the BeginString data element.  For example, if 



MQSeries Integrator V2 - FIX message adapter 

2 

the FIX 4.2 standard was used, the beginning of the message should look like the following, where 
<SOH> represents the delimiter character (#001): 

8=FIX.4.2<SOH>9=nnn<SOH>35=X<SOH> 

The last data element in the message should be the CheckSum (tag #10) data element.  The data 
portion of the CheckSum data element must be three digits and must be followed by a delimiter 
character.  For example, a CheckSum data element should look like the following: 

10=nnn<SOH> 

Any additional header fields must immediately follow the MsgType (tag #35) element, and any 
additional trailer elements must immediately precede the CheckSum element.  The body elements 
can normally appear in any order.  The only exception is fields within repeating data groups, which 
must occur in the same order as specified in the repeating group specification in the FIX standard. 

Message Types 

The data elements that are used in a FIX message will vary with the message type.  For each 
message type, the data elements that are required and the data elements that are optional are 
specified in the FIX standard.  The parser in this SupportPac does not enforce the presence of 
required fields beyond those that are needed to correctly parse a FIX message (basically, the first 
three header items plus the check sum item and any length fields that must precede raw data items). 

What types of data are contained in FIX messages? 

All elements in a FIX message are in character format (e.g. no binary, packed decimal data, etc), with 
the exception of the raw data type.  Numeric data is represented as a string of numbers, possibly with 
a sign character for negative numbers and a decimal point for floating point numbers.  If the number is 
negative, then a minus sign character precedes the numbers. 

No extra blank, character return, line feed, tab or other characters may appear within the message. 

Raw data fields are used to carry data that may contain any possible value in each byte of data.  For 
example, encrypted data is defined as raw data, and may contain any possible value in any position, 
including delimiter characters, null characters, etc.  Raw data fields must be preceded by a data 
element that specifies the length of the data in the raw data field.  The length field must be in integer 
(digits) format, and has its own identifier, equal sign and delimiter.  For example, if encrypted data is 
to be transmitted, the portion of the message containing the encrypted data should be in the following 
format: 

90=nnn<SOH>91=<encrypted data bytes of length nnn><SOH> 

An electronic signature, also of type raw data, should be in the following format: 

93=nnn<SOH>89=<signature data of length nnn><SOH> 

The FIX standard defines the following data types.  All data types except for raw data are expressed 
in a character format, and may not contain delimiter (SOH) characters. 

Compression and Encryption 

FIX messages consist of normal character data.  There is support within the standard for message 
encryption and encryption of certain fields.  Certain fields in the header and trailer parts of the 
message must not be encrypted and are sent in clear text.  Fields can be repeated within the 
encrypted section of the message.  If a field is repeated in the encrypted section of the message, the 
encrypted form is considered more reliable.  The type of encryption used is determined in a logon 
sequence and is sent in the EncryptMethod (tag #98) data element.   



MQSeries Integrator V2 - FIX message adapter 

3 

The parser contained in this SupportPac does not include support for any particular encryption or 
decryption routines.  Rather, entry points are provided where a particular encryption and/or decryption 
routine could be inserted.  The metadata for the parser indicates which fields contain encrypted data, 
and whether the encrypted data is the data for a single tag item or contains any number of encrypted 
tag and data items.   

Any encryption and decryption routines to be used must be thread-safe, since the MQSI V2 
environment is multi-threaded.  They must also not interfere in the normal operation of MQSI V2.  In 
general, this means not starting extra threads, not closing threads or making other changes to the 
runtime environment that are incompatible with MQSI V2.  

The metadata provided includes flags set to indicate which data is to be encrypted and which is to be 
decrypted.  A separate message domain of “FIXONLY” is supported which can be used when 
encryption and decryption is not supported.  In this case, any raw data input fields will be rendered as 
byte arrays.  For output, raw data fields should be specified as byte arrays.  

FIX Metadata 

The official FIX standards are stored in Microsoft Word documents.  Each level of the standard is a 
separate level.  The documents contain a description of every data tag defined in a level of the 
standard.   

A text file has been created based on the document for FIX 4.2 and was used to create the metadata 
file shipped with this SupportPac.  Files for FIX 4.1 and FIX 4.0 levels of the standard were also 
created and are included.  A separate text file is used for support of repeated data items.  This is also 
provided for all three supported levels of the FIX standard. 

Versioning Support 

FIX messages contain the standard version in the BodyString (tag #8) data element in the header 
portion of each message.  The general format of the version is the characters FIX followed by a 
period, the version number, another period and the modification level.  For example, a message that 
uses version 4 of the standard at modification level 2 would be specified as: 

 FIX.4.2 

How versioning is handled by the Parser 

The metadata for each version of the standard is contained in a single metadata file.  The file name 
consists of the standard number that is contained in the standard FIX message header, with the 
periods removed.  All of these metadata files have a file extension of “mtx”.  For example, the 
metadata file for the 4.2 version of the FIX standard would be: 

FIX42.mtx 

Metadata Files 

The metadata used by the FIX parser are kept in files.  Every version is kept in a separate file.  The 
metadata contains the type, data name and data type for each element defined in a particular version 
of the FIX standard, as well as other characteristics. 



MQSeries Integrator V2 - FIX message adapter 

4 

Chapter 2. Chapter 2. Chapter 2. Chapter 2. InsInsInsInstallationtallationtallationtallation    

SupportPac contents 

The supplied zip file should be unzipped into a parent directory.  Certain common files will be 
unzipped into this directory and the following subdirectories will be created under the parent directory: 

• src 
• utilsrc 
• aix (and aix\msgcat) 
• win 
• sample 

Prerequisites 

This SupportPac provides a parser to be used with the IBM MQSeries Integrator Version 2.0.1 and 
above.  For normal use, there are no other pre-requisite products other than those required by 
MQSeries Integrator Version 2.0.1 itself.  If any changes are to be made to the parser or the related 
utilities, then an appropriate C compiler, such as Microsoft Visual C++ V6 or one of the supported C 
compilers for Unix, is required. 

Supported Platforms 

This SupportPac has been developed for and tested in the Windows 2000 and AIX environments.  
Windows NT V4 is also supported.  Input and output messages can be in any single-byte code page.  
Input and output messages in Unicode or which contain double-byte characters are not supported. 

Installing the executable programs 

The zip file should be unzipped into a parent directory.  The following files should be created in the 
main directory: 

• ia0c.pdf 
 
The following files should be found in the win subdirectory: 

• buildmtx.exe 
• FIX40.mtx 
• FIX41.mtx 
• FIX42.mtx 
• fixerr.dll 
• fixparser.dbg 
• fixparser.enc 
• fixparser.lil 
• MessageFlowsFix 
• printmtx.exe 

The following files should be found in the aix subdirectory: 

• FIX40.mtx 
• FIX41.mtx 
• FIX42.mtx 
• fixerr.h 
• fixparser.dbg 
• fixparser.lil 
• Makefile 



MQSeries Integrator V2 - FIX message adapter 

5 

• buildmtx 
• printmtx 

The following files should be found in the msgcat subdirectory under the aix subdirectory: 

• fixerr.cat 
• fixerr.msg 
• Makefile 

The following files should be created in the utilsrc subdirectory : 

• buildmtx.c 
• buildmtx.dsp 
• buildmtx.dsw 
• comsubs.c 
• comsubs.h 
• crmtx.cmd 
• data40.txt 
• data41.txt 
• data42.txt 
• mtxstruc.h 
• printmtx.c 
• printmtx.dsp 
• printmtx.dsw 
• repeat40.txt 
• repeat41.txt 
• repeat42.txt 

The following files should be created in the src subdirectory : 

• buildmsg.cmd 
• common.h 
• context.h 
• fixerr.h 
• fixerr.mc 
• fixparser.cpp 
• fixparser.dsp 
• fixparser.dsw 
• fixparser.h 
• fixparser.ncb 
• fixparser.opt 
• fixparser.plg 
• fixsub.cpp 
• fixsub.h 
• metadata.cpp 
• metadata.h 
• metamem.h 
• mgmtmsg.cpp 
• mgmtmsg.h 
• movelil.cmd 
• moveonly.cmd 
• moverel.cmd 
• mtdstruc.h 
• parsubs.cpp 
• parsubs.h 
• trace.cpp 
• trace.h 



MQSeries Integrator V2 - FIX message adapter 

6 

Installation in the Windows NT/2000 environments 

The parser executable (fixparser.lil) should be moved into the bin subdirectory of the MQSeries 
Integrator Version 2 root directory (default is c:\Program Files\IBM MQSeries Integrator 2.0.1\bin).  
The error message dictionary (fixerr.dll) should be moved to the messages subdirectory of the 
MQSeries Integrator root directory (default is c:\Program Files\IBM MQSeries Integrator 
2.0.1\messages).  The debug version of the parser (fixparser.dbg) should also be moved to the bin 
directory.  

The MessageFlowsFix file contains two sample message flows that can be used to validate the proper 
functioning of the parser.  If they are to be used or viewed, the message flows must be imported into a 
configuration manager using the import function of the control center, and then assigned to an 
execution group and deployed.  The following local queues are used by the sample message flows 
and therefore must be defined if the sample message flows are to be used: 

• FIX.IN 
• FIX.OUT 
• FIXML.IN 
• FIXML.OUT 
• FAILURE 

The utility executables (buildmtx.exe and printmtx.exe) and related files should be moved to a 
program directory.  This can be the same directory as the parser or it can be a separate directory.  

Installing the metadata 

A directory should be created on the broker system for the metadata files.  The default for this 
directory name is “C:\Fix”.  The metadata files (FIX42.mtx, FIX41.mtx and FIX40.mtx) should be 
moved to this directory.  If another location is to be used, then the FIXMETADIR environment variable 
must be set. 

Defining the message dictionary in the registry 

Finally, an entry must be made in the Windows NT registry for the message dictionary.  To do this 
with the registry editor, go to the Windows start button and select Run.  Type regedit in the pop up 
edit box and press enter.  The registry editor should start. 

The registry editor should show five high level keys, with small plus signs next to them.  Select the 
HKEY_LOCAL_MACHINE and press the small plus sign next to it. This should expand the entries 
under HKEY_LOCAL_MACHINE.  In a similar fashion, select the following entries in order 

SYSTEM->CurrentControlSet->Services->EventLog->Application 

Highlight the Application entry and click the right mouse button.  Select the following options: 

 New->Key 

Enter “fixerr” (without the double quotes) as the name of the key.  Select the new fixerr entry and click 
the right mouse button.  Select the following options: 

 New->String Value 

Change the name of this new entry to “EventMessageFile” by typing over the generated name.  Click 
on the EventMessageFile value item and select Modify.  Type in the fully qualified path name where 
the executable message file (fixerr.dll) was installed.  For example, with a default MQSI Version 2 
installation, this would be as follows: 

“C:\Program Files\IBM MQSeries Integrator 2.0.1\messages\fixerr.dll” 



MQSeries Integrator V2 - FIX message adapter 

7 

Finally, click on the fixerr entry again and select the following options: 

New->DWORD value 

Change the generated name to “TypesSupported” and then select the new value and click the right 
mouse button.  Select Modify.  Change the value to 7.  Close the registry editor.  The message 
catalog should now be installed. 

Installation in an AIX environment 

The executable programs and metadata for the AIX environment are contained in the AIX 
subdirectory that is created when the main zip file is unzipped.  The AIX files must be uploaded to the 
AIX system, using a utility like FTP.  Be sure to upload the executable programs, message catalog 
and metadata files in binary mode and the text files in ASCII mode. 

Installing the executable programs and message catalog 

The parser executable programs must be uploaded to the lil subdirectory located under the MQSI 
Version 2 root.  For example, if the MQSI V2 executable programs are located under the /usr/opt/mqsi 
directory, then the parser.lil and parser.dbg executable programs should be uploaded to a directory of 
/usr/opt/mqsi/lil. 

The message catalog (fixer.cat) in the AIX\msgcat directory must be uploaded in binary to the 
/usr/opt/mqsi/messages directory. 

Installing the metadata 

The default directory name for the metadata files is /var/fix.  The metadata files (FIX42.mtx, FIX41.mtx 
and FIX40.mtx) in the AIX subdirectory should be uploaded in binary to this directory.  If a different 
directory is to be used, then the FIXMETADIR environment variable must be set to point to the chosen 
directory, and the files uploaded to that directory rather than /var/fix.  The permissions on the directory 
must be set to allow the message broker runtime to read files in the directory.  If the debug version of 
the parser is to be used, then the message broker runtime also needs write permission to the /tmp 
directory (or to another directory selected by the FIXTRACEFILE environment variable), so that it can 
write to its trace file.  The offline metadata utility programs (buildmtx and printmtx) should also be 
uploaded in binary to the /var/fix directory. 

Be aware that the metadata files contain binary and Unicode data and are therefore platform 
dependent.  The metadata files for Windows platforms will not work in a Unix environment (and vice 
versa). 

Working with the parser source programs on AIX 

If the source programs are to be used in the AIX environment, then the source programs must be 
uploaded to a suitable source directory.  The source programs are provided in two subdirectories.  
The first subdirectory (src) contains the source for the parser executable itself, while the second 
directory (utilsrc) contains the source for the offline utilities to build and display the metadata files.  It is 
important that the source programs be uploaded in text rather than binary mode.   

The following source files must be uploaded from the src subdirectory: 

• fixparser.cpp as fixparser.c 
• fixsub.cpp as fixsub.c 
• metadata.cpp as metadata.c 
• mgmtmsg.cpp as mgmtmsg.c 
• parsubs.cpp as parsubs.c 
• trace.cpp as trace.c 



MQSeries Integrator V2 - FIX message adapter 

8 

The file extensions of the seven source programs for the parser must be changed from “cpp” to “c”.   

The following header files should be uploaded from the src subdirectory: 

• common.h 
• comsubs.h 
• context.h 
• fixparser.h 
• fixsub.h 
• metadata.h 
• metamem.h 
• mgmtmsg.h 
• mtxstruc.h 
• parsubs.h 
• trace.h 

All the header files except for fixerr.h and stdafx.h should be uploaded. .  The fixerr.h file found in the 
AIX directory must also be uploaded in text mode.  This file is used in place of the NT equivalent 
found in the src directory. 

Copy the BipSampPluginUtil.c and BipSampPluginUtil.h files from the ${MQSI_ROOT}/sample/plugin 
directory into the same directory as the other source programs 

The Makefile found in the AIX subdirectory should be uploaded as Makefile.  The Makefile should be 
examined and any necessary changes made to match the directory names and compiler executable.  
The fixerr.h file found in the AIX directory should be uploaded.  This file is specific to AIX and is 
different from the fixerr.h file found in the source subdirectory.  Finally, the message catalog source 
(fixerr.msg) should be uploaded. 

Once all of the source programs and the Makefile have been uploaded, the parser executable can be 
built.  Please note that the Makefile that is provided has the _DEBUG compiler switch set.  This will 
result in a debug build being produced.  This variable definition should be removed from the Makefile 
for a production build.  Please delete all intermediate object files before switching build types (e.g. 
perform a make clean or rm *.o).  Once the new parser executable file (fixparser.lil), the broker 
runtime must be stopped and the parser executable moved to the lil directory. 

Working with the metadata utility source programs on AIX 

If the metadata utility programs are to be changed, then the following files should be uploaded in text 
mode from the utilsrc subdirectory: 

• buildmtx.c 
• printmtx.c 
• comsubs.c 
• comsubs.c 
• comsubs.h 
• mtxstruc.h 
• data42.txt 
• data41.txt 
• data40.txt 
• repeat42.txt 
• repeat41.txt 
• repeat40.txt 

The utility programs can be compiled with a simple statement such as: 

 /usr/vac/bin/cc buildmtx.c –o buildmtx 



MQSeries Integrator V2 - FIX message adapter 

9 

Environment variable for the metadata files 

A directory for the metadata files should be created and the corresponding zip file (metadata.zip) 
should be unzipped into this directory.  The following environment variables should be set: 

• FIXMETADIR – drive and directory containing metadata files. 

If this variable is not set, then the parser will expect the metadata files to be located in a directory 
named “Fix” on the “C:” drive.  For Unix systems, the metadata files are located in the /var/fix directory 
by default.  The Windows and Unix versions of the metadata files are similar in structure and size but 
they are not the same.   

Adding user defined tags to the metadata 

The FIX standard reserves tag identifiers from 5000 to 9999 for user defined tag values.  These tag 
values are generally unique to a particular enterprise.  If user defined tags are used, then these tags 
should be added to the data4x.txt files that the metadata files are generated from and the metadata 
files should be rebuilt with the buildmtx offline utility. 

The text input files contain one line for each tag item.  Each line contains four or more values 
separated with commas.  There is no comma at the end of the line.  The first value is the tag identifier.  
The tag identifier should consist of four or five digits from 5000 through 99999.  The second value 
should be the name that is to be used for the identifier.  The name will be used to refer to the item 
when it is being used in a message flow.  The name must be unique and must not be the same as 
any other tag, including tags defined in the FIX standard.  The third field is the data type.  The fourth 
field is the flags field.  The fifth field is used for the flags2 value and the sixth field is used for raw data 
items to indicate the identifier of a length field tag that should be immediately preceding the raw data 
item.  The fifth and sixth items are optional and are generally not used. 

For a list of the allowed values for the data type and flags fields, see the section entitled “Using the 
offline utilities” later in this document. 

Installation Verification 

The following procedure should verify the proper installation and operation of the FIX adapter.  
Several simple test messages and two sample message flows have been provided with this 
SupportPac.  The sample messages and flows verify that the adapter can properly handle incoming 
messages in FIX format and build output messages in FIX format. 

The sample flow FIX2XML will take an input message in FIX format and produce a corresponding 
message in XML format.  This flow will expect its input in the FIX.IN queue and will route output 
messages to the FIXML.OUT queue.  The sample flow XML2FIX will take an input message in an 
XML format and produce a proper FIX message as output.  This flow will look for input messages in 
the FIXML.IN queue and route output messages to the FIX.OUT queue.  If errors are encountered in 
either flow, the input messages will be routed to the FAILURE queue. 

The sample messages are provided as files in the sample subdirectory.  They require a program to 
read the files and write the corresponding data to the suggested input queues.  MQSeries SupportPac 
IH03 contains utilities that will perform this function. 

To verify proper functioning of the adapter, perform the following steps: 

1. Install the adapter. 

2. Create the queues that are required by the sample message flows (FIX.IN, FIX.OUT, 
FIXML.IN, FIXML.OUT, FAILURE). 

3. Import the sample message flows, assign them to an execution group and deploy the 
execution group. 



MQSeries Integrator V2 - FIX message adapter 

10 

4. Using the IH03 utilities (or another utility with equivalent function), read the testfix2.txt or the 
testfix4.txt file and send it to the FIX.IN queue. 

5. Check that a message has been written to the FIXML.OUT queue.  Read the message from 
the queue and save it as a temporary text file, using the IH03 utility (or equivalent).   

6. Using the IH03 utilities (or equivalent), read the testfix2.xml or testfix4.xml file and write it to 
the FIXML.IN queue. 

7. Check that a message has been written to the FIX.OUT queue.  Read the message from the 
queue and save it as a temporary file, using the IH03 utility or equivalent.  Examine the 
message and verify that the message is a valid FIX message. 

Some additional test messages have been provided. 

Testing encryption function 

There are many types of encryption and decryption in common use.  This SupportPac does not 
include support for any particular type of encryption.  It is designed for the easy insertion of the 
desired encryption and decryption methods that are used by a particular installation.   

However, it may be desirable to test the processing of encrypted messages without having to install a 
proper encryption and decryption method.  A special version of the parser is provided in the test 
directory, which includes a fairly simple obfuscation routine that will simulate what encrypted data 
might look like and allow for the testing of message flows using messages containing encrypted data.  
Some sample messages are provided that have been built with this obfuscation routine used in place 
of any encryption methods.  The special version of the parser is available only in a debug version with 
full tracing enabled. 

To use this version of the parser to become familiar with the handling of encrypted data, the special 
version of the parser (fixparser.enc) contained in the test directory must have the extension renamed 
to “lil” and moved to the proper executable directory.  The testfix7.txt file contains a sample message 
with a psuedo-encrypted section, while the testfix7.xml file contains an XML message with a proper 
structure to create a message with a pseudo-encrypted section.   

Once these additional test messages have been used to gain a working knowledge of the use of 
encrypted data with the FIX adapter, the normal production version of the adapter should be 
reinstalled. 

If this function is to be tested on the AIX environment, a version of the parser that supports both 
debug and encrypt must be built from the source programs.  The Makefile used to build the parser 
must be modified to include an additional definition for _ENCRYPT_TEST. 

Additional considerations 

If the debug version of the parser is installed, additional environmental variables should be set, as 
described in the debugging section below. 

If the source code for the parser is to be installed, then a directory for the source code and related 
files should be created.  The appropriate zip file (source.zip) should then be unzipped into this 
directory. 

If the metadata files are to be displayed, changed or rebuilt, then the corresponding zip file (utility.zip) 
should be unzipped into an executable directory. 



MQSeries Integrator V2 - FIX message adapter 

11 

Chapter 3. Chapter 3. Chapter 3. Chapter 3. Using the ParserUsing the ParserUsing the ParserUsing the Parser    

Message Domains 

Each incoming and outgoing message is assigned to a message domain.  For incoming messages, 
the domain can be specified in the message in an RFH2 header, or can be specified in the defaults 
tab of the properties of an MQInput node.  For output, the domain name is determined by the name of 
the body element. 

The parser supplied with this SupportPac supports two additional domains, namely FIX and 
FIXONLY.  The only difference between the two domains if that encryption and decryption support is 
suppressed in the FIXONLY domain, and any encrypted or decrypted fields will be rendered as byte 
arrays in the logical message tree. 

General data structure 

The FIX parser takes input messages in valid FIX formats and creates MQSeries Integrator V2 logical 
message tree structures that can then be processed by MQSeries Integrator message flows.  
Similarly, it will take a logical message tree created by a message flow and produce the data portion 
of an MQSeries message in a valid FIX format.   

The parser will create the message tree from an input message in a certain specified format, and this 
format must be followed when a message tree is built in an MQSeries Integrator V2 message flow. 

All logical message trees used within MQSeries Integrator V2 have a certain basic structure.  There is 
a single high-level element known as the root element.  The user data is found in the body of the 
message.  The body has a single high-level element that is the last child of the root element.  For a 
FIX message, the name of this element should be “FIX”, to match the message domain supported by 
the parser.   

Naming of data elements 

Each data element has an associated name in the metadata file.   These names are the same that 
are used   A second naming convention is also supported, based on the element type numbers used 
in the actual FIX messages.  The alternate name is created by appending the element type number 
(without any leading zeros) to the letters “FX”.   

The alternate names are supported to allow the parser to handle user data types that are not 
contained in the metadata, and to support versions of the standard for which no metadata file is 
available. 

Determining the names of the data items 

The contents of the metadata file can be displayed with the printmtx utility.  This utility will create a list 
file from a metadata file.  The list file will have a file name that is the same as the file name of the 
original metadata file, but with an extension of “msg”.  The list file can be browsed with a text editor, 
such as the notepad utility. 

Input Messages 

The FIX parser will parse any inbound message that is in a valid FIX format.  It will perform limited 
checking of the message format.  The FIX parser will register with the execution broker for a message 
domain of “FIX”.  It will attempt to parse any input message that is read by MQSeries Integrator V2 
that is assigned to the FIX domain.  The message domain can be specified in an RFH2 header in the 
message itself, or as a default property on the MQInput node of an MQSeries Integrator V2 message 
flow. 



MQSeries Integrator V2 - FIX message adapter 

12 

The parser will create a logical message tree that reflects the contents of the message.  The name of 
the top-level element of the body will be “Fix”.  The rest of the data for a particular message will be 
built as a logical data structure under this high level element. 

The data translation option of the MQInput node should not be used, since a FIX message may 
contain non-character data in raw data fields.  The message text is translated to Unicode, so any 
earlier translations are not required and merely increase overhead. 

Input messages can be in either ASCII or EBCDIC.  The message text including all tag names and 
character data must match the code page in the MQSeries message descriptor. 

Encrypted Input 

Encrypted input is identified in the metadata for an individual tag.  The tag must have a data type of 
raw data and must be preceded by a tag that contains the length of the raw data.  There are two kinds 
of encrypted data tags, namely tags where the data for the individual tag is encrypted and tags where 
the encrypted data consists of additional tag and value items. 

If a tag contains additional tag and value items, the tag and the preceding length tag will not appear in 
the input message.  The data will be decrypted and the tags and data in the decrypted data will be 
inserted into the logical message tree as if the item had not been encrypted. 

Field Names 

Two types of names for the data elements are supported.   

The second type of field that is treated specially is the header field.  All groups contain the same ten-
byte header at the front of the group, and many groups contain an additional twenty-byte header 
extension.  The individual data elements (fields) in the header are defined individually in the metadata 
files. 

Output Messages 

The message flow must create an output message in a format similar to the input messages as 
described above. 

The data in the logical message tree should be in the same order as the individual elements are found 
in the group definition.  When building an output message, the parser will build the message from left 
to right.  It will use the top- level elements in the logical message tree to understand what group 
needs to be inserted into the output message and in what order.   

The parser will attempt to locate the metadata file that is to be used for the output data based on the 
name of the root element for each group.  If a long name is used for the name of this element, it will 
be looked up in the segment name data and converted to a four-character group identifier.  If the 
name begins with an underscore character, then the second through fifth characters of the element 
name will be assumed to be the group identifier.   

The parser will use the metadata definition when attempting to match the data elements in the output 
logical message tree to elements in the metadata file.  The parser will use the metadata file to 
construct the output data area for the group.  It will first initialize the output data area, using the 
initialization string found in the metadata file.  It will then step through the individual fields in the 
metadata file, attempting to match each element to data in the logical message tree.  When an 
element is found in the message tree that does not exist in the metadata, it will be ignored.  If a field is 
not found in the logical message tree, the initialization value for the field will be used.  It is important 
that the fields in the logical message tree are in the same order as the fields in the metadata file.  If 
fields are not in the same order, then some of the values in the logical message tree will be skipped 
over when trying to find an earlier value, and the parser will not look at previous values in the 
message tree when attempting to match the later field in the metadata file. 



MQSeries Integrator V2 - FIX message adapter 

13 

The first two fields in the message header (group identifier and length), and the group version, are 
already filled complete in the initialization string contained in the metadata file, and thus may be 
omitted.  Fields designated as reserved or deleted should similarly be omitted, although these fields 
will be treated as any other field if values are set in the logical message tree.  

Any fields that are not found in the logical message tree will be set to either blanks or zeros, 
depending on the type of field. 

Encrypted output 

If encrypted output is desired, then the appropriate encryption routines must be added to the parser 
source and the parser must be rebuilt, as described in the Using the Source Code section of this 
document. 

There are two types of encrypted output that can be produced.  Either the data for a single field can 
be encrypted or a section of the message consisting of additional tags and values can be encrypted. 

All encrypted fields must be of type raw data.  Raw data fields require a length field as the preceding 
field in the FIX message.  This raw data length field will have its own tag associated with it.  In 
addition, one of the encryption flags must be set in the metadata entry for the raw data, and the 
identifier of the raw data length field must be indicated in the same metadata entry.  Two encryption 
flags can be set in the flag field of the metadata for a raw data field, as follows: 

• Individual field with encrypted data 
• Encrypted portion of message, containing tag and value pairs in FIX format 

Since the length of the encrypted data may be different than the length of the input clear text, the 
appropriate raw data length field will be generated and inserted in the message automatically.  
Therefore, no raw data length field is needed in the logical message tree.  The tag for the length field 
must be indicated in the metadata for the raw data item itself. 

If an individual field is to be encrypted, then the metadata for the particular FIX tag must have the 
FLAGS_DECRYPT_ONLY (#64 = 0x40) bit set in the flags.  The value of the raw data item will be 
obtained from the logical message tree and translated to the appropriate output code page if 
necessary.  The output data will then be passed to the encryption routine, which will return the 
encrypted data and the length of the encrypted data.  The appropriate raw data length field and raw 
data field will then be inserted into the output message.  For example, if the logical message tree 
contained the following item: 

Fix. EncodedText=’This is some text to be encoded’ 

The output would consist of two items and would be of the following format: 

354=nnn<SOH>355=(encrypted data of length nnn)<SOH> 

Please note that no parentheses are generated in the output message and that the <SOH> sequence 
represents the FIX delimiter character of 0x01. 

If a portion of the message is to be encrypted, then the logical message should have a name element 
that is a parent of the portion of the message that is to be encrypted.  The name of this parent 
element should match the name of the raw data item defined in the metadata (e.g. FX91 or 
SecureData) and the FLAGS_DECRYPT_PARSE (#32 = 0x20) bit should be set in the flags for this 
item.  The logical message under this parent element should contain the normal items that are to be 
included in the encrypted portion of the message.  The items that are children of the parent element 
will be built into a partial FIX message, and the results will then be passed to the encryption routine as 
a single data item.  The encryption routine will return a single encrypted data item and the length of 
the encrypted item.  The appropriate raw data length field and raw data field will then be inserted into 
the output message. 



MQSeries Integrator V2 - FIX message adapter 

14 

For example, assume that a logical message tree includes the following items: 

Fix.SecureData 
Fix.SecureData.MsgSeqNum='233' 
Fix.SecureData.SendingTime='20010322-19:12:00' 
Fix.SecureData.QuoteID='37829B33' 
Fix.SecureData.QuoteReqID='99732/44' 
Fix.SecureData.NoQuoteSets='2' 
Fix.SecureData.QuoteSet.QuoteSetID='1' 
Fix.SecureData.QuoteSet.UnderlyingSymbol='IBM' 
Fix.SecureData.QuoteSet.TotQuoteEntries='2' 
Fix.SecureData.QuoteSet.NoQuoteEntries='2' 
Fix.SecureData.QuoteSet.QuoteEntry.QuoteEntryID='1' 
Fix.SecureData.QuoteSet.QuoteEntry.MaturityMonthYear='200112' 
Fix.SecureData.QuoteSet.QuoteEntry.StrikePrice='25.00' 
Fix.SecureData.QuoteSet.QuoteEntry.PutOrCall='1' 
Fix.SecureData.QuoteSet.QuoteEntry.BidPx='5.00' 
Fix.SecureData.QuoteSet.QuoteEntry.OfferPx='5.25' 
Fix.SecureData.QuoteSet.QuoteEntry.BidSize='10' 
Fix.SecureData.QuoteSet.QuoteEntry.OfferSize='10' 
Fix.SecureData.QuoteSet.QuoteEntry.QuoteEntryID='2' 
Fix.SecureData.QuoteSet.QuoteEntry.MaturityMonthYear='200112' 
Fix.SecureData.QuoteSet.QuoteEntry.StrikePrice='30.00' 
Fix.SecureData.QuoteSet.QuoteEntry.PutOrCall='1' 
Fix.SecureData.QuoteSet.QuoteEntry.BidPx='3.00' 
Fix.SecureData.QuoteSet.QuoteEntry.OfferPx='3.25' 
Fix.SecureData.QuoteSet.QuoteEntry.BidSize='10' 
Fix.SecureData.QuoteSet.QuoteEntry.OfferSize='10' 
Fix.SecureData.QuoteSet.QuoteSetID='2' 
Fix.SecureData.QuoteSet.UnderlyingSymbol='DELL' 
Fix.SecureData.QuoteSet.TotQuoteEntries='1' 
Fix.SecureData.QuoteSet.NoQuoteEntries='1' 
Fix.SecureData.QuoteSet.QuoteEntry.QuoteEntryID='1' 
Fix.SecureData.QuoteSet.QuoteEntry.MaturityMonthYear='200206' 
Fix.SecureData.QuoteSet.QuoteEntry.StrikePrice='57.25' 
Fix.SecureData.QuoteSet.QuoteEntry.PutOrCall='1' 
Fix.SecureData.QuoteSet.QuoteEntry.BidPx='2.00' 
Fix.SecureData.QuoteSet.QuoteEntry.OfferPx='2.25' 
Fix.SecureData.QuoteSet.QuoteEntry.BidSize='25' 
Fix.SecureData.QuoteSet.QuoteEntry.OfferSize='25' 

The output would consist of two items and would be of the following format: 

90=nnn<SOH>91=(encrypted data of length nnn)<SOH> 

Please note that no parentheses are generated in the output message and that the <SOH> sequence 
represents the FIX delimiter character of 0x01. 

Output of repeating fields 

For output purposes, repeating fields can use either a hierarchical structure or they can be specified 
in the desired order as children of the body element (or an encrypted parent element if they are part of 
an encrypted section of the message). 

If a hierarchical structure is used, then no output will be generated from the parent element, and the 
name of the parent element is ignored.  For consistency sake, it is desirable to use the same structure 
and repeating field names that are used when input messages are parsed, but this is not necessary, 
since any hierarchical structure does not carry over to the output message. 



MQSeries Integrator V2 - FIX message adapter 

15 

Chapter 4. Chapter 4. Chapter 4. Chapter 4. Using the source codeUsing the source codeUsing the source codeUsing the source code    

Source code for the parser itself, the related message dictionary, and the supporting metadata utilities 
are provided as part of this SupportPac.  None of these materials are required to use this SupportPac. 

Adding encryption and decryption routines 

Subroutine calls are made to allow for the easy insertion of encryption and/or decryption subroutines 
within the message parser itself.  There are four points in the code where allowances are made for an 
encryption or decryption routine to be inserted.  The first call is in the initialization routine for the 
parser object.  This is a good point to acquire any encryption keys or other data that the encryption 
routines require.  A pointer field (iEncryptionData) in the message context is available to allow for the 
encryption routine to acquire storage for its exclusive use whenever a parser object is created.  This 
should be done in the cpiCreateContext method contained in the fixparser.cpp program.  If any such 
storage is acquired, it must be released in the cpiDeleteContext method contained in the fixparser.cpp 
program.  As an alternative, the definition of the context area itself can be altered to include any 
required fields that the encryption and/or decryption routines require. 

The other two subroutine calls are related to encryption and decryption of individual fields.  Two types 
of encrypted fields are recognized.  The first type of field is a single encrypted field.  The second type 
is where a group of fields has been encrypted as a single element (e.g. SecureData tag).  If the field 
contains tags and data for many fields encrypted as a single raw data field, then the contents must be 
parsed into the individual fields after the single raw field has been decrypted.  In a similar manner, 
output fields can contain a single item or they can contain multiple tag and data items. 

On input, the metadata is used to identify encrypted fields, and to tell whether they contain a single 
data item or a group of tag and data items.  This information is stored in the flags field in each 
individual data item.  When the metadata indicate that a field is encrypted, it will be passed to the 
decrypt routine for decryption.  If the data item contains multiple tag items, then the decrypted field will 
be broken into individual fields.  

On output, the metadata is used to identify fields that contain compressed data.  If an individual data 
item is to be compressed, the encrypt routine will be called, and a raw data item and its corresponding 
length item will be generated in the output message.  If a field is to contain multiple tag and data 
items, then the tag and data items should be children of a single name element.  The name element 
should have the encrypt bit set to indicate that multiple tag and data items are to be generated and 
then encrypted. 

On output, encrypted data will be translated to the desired output code page and then encrypted, 
unless the data type is byte array.  On input, encrypted  data will be decrypted and the data will be 
assumed to be in the code page indicated in the MQSeries message descriptor (MQMD). 

Building the parser (Windows NT/2000) 

A directory for the source files should be created and the zip file containing the source files for the 
parser (fixparser.zip) should be unzipped into this directory.  The Microsoft Visual C++ Version 6 
visual studio should be started, and the open workspace option under the file menu should be 
selected.  Navigate to the directory that the source files were unzipped into.  The workspace file for 
the fixparser workspace should then be opened. 

Before the project is opened, the BipSampPluginUtil.c and BipSampPluginUtil.h files should be copied 
from the <MQSI_root>\examples\plugin directory to the same directory as the other source files.   

Before the project can be built successfully, the locations of all include and library files in the project 
properties should be checked and changed if necessary.  These files are located under the MQSeries 
Integrator Version 2 root directory.  Select the version of the project that is to be built (release or 
debug).  At this point it should be possible to build the project. 



MQSeries Integrator V2 - FIX message adapter 

16 

Command files are provided to move the resulting executables to the necessary MQSeries Integrator 
directory.  The drive and path names used in these command files should be checked and if 
necessary corrected before using these command files. 

Building the Message Catalog (Windows NT/2000) 

A command file (buildmsg.cmd) is provided with the necessary steps to build the Windows NT 
message dictionary from the source provided.  This step may require installation of part of the 
Microsoft development environment.  The drive and path names used in the command file should be 
checked and if necessary corrected before execution of this command file. 

Building the Message Catalog (Unix) 

A Makefile if provided in the AIX\msgcat directory for building the message catalog on AIX.  This step 
is only necessary if the messages in the catalog are changed.  Otherwise, the pre-built message 
catalog (fixer.cat) can be used.  To build the message catalog without using the supplied Makefile, 
use the following commands to build the message catalog and rename the generated include file.  
The include file should then be moved to the parser source directory, replacing the existing include 
file. 

 runcat fixerr  fixerr.msg 
 mv fixerr_msg.h fixerr.h 



MQSeries Integrator V2 - FIX message adapter 

17 

Chapter 5. Chapter 5. Chapter 5. Chapter 5. Error MessagesError MessagesError MessagesError Messages    

There are certain situations where the parser will generate an error and reject the message.  For 
example, if the message does not appear to be a valid FIX message, then an exception will be raised 
and the message will be rejected.  For example, if there is no BeginString element (tag #8) at the 
beginning of the message, then the parser will raise an exception.  When a parser exception is raised, 
an error message will be written to the event log.  The Windows event viewer should be used to view 
the error information.  For Unix systems, the Syslog facilities are used. 

For a detailed list of error messages, see Appendix C. 



MQSeries Integrator V2 - FIX message adapter 

18 

Chapter 6. Chapter 6. Chapter 6. Chapter 6. Customization of the supplied metadata filesCustomization of the supplied metadata filesCustomization of the supplied metadata filesCustomization of the supplied metadata files    

Metadata files for FIX V4.2, FIX V4.1 and FIX V4.0 are supplied with this SupportPac.  The metadata 
files have been created from text files that are also supplied.  The fix standards documents are NOT 
supplied with this SupportPac.  They are available to view or download at the FIX web site.   

A utility program is used to build the actual metadata files from the text definition files.  This program 
is included to allow the metadata files to be changed.  

Using the offline utilities 

An offline utility (buildmtx.exe) is provided to build the metadata files from input text files.  Another 
offline utility (printmtx.exe) is provided to display the contents of a metadata file. 

The utility that creates the metadata files uses two text files as input and creates a metadata file and a 
message file as output.  The first input text file contains one line for each data tag that is defined in 
the standard.  Each line contains four to six fields, separated by commas.  The first field is the tag 
identifier and the second field is the long name that will be used when an input message is parsed.  
The third field is the type of data, expressed as a string and the fourth field is a flags field.  The fifth 
and sixth fields are optional.  The fifth field contains the value of the flags2 field.  The sixth field is only 
used for raw data items and contains the tag identifier of the corresponding length item.  No 
embedded blanks or other extra characters or white space is allowed.  Comment lines are allowed 
and must start with an asterisk (‘*’) character in the first position of the line.  

The following values are allowed for the data type: 

• Int 
• Float 
• Qty 
• Price 
• Priceoffset 
• Amt 
• Boolean 
• String 
• Multiplevaluestring 
• Currency 
• Exchange 
• UTCTimestamp 
• UTCTimeonly 
• UTCDate 
• Localmktdate 
• Data 
• Month-year 
• Day-of-month 

The following bits are defined within the flags byte: 

• 1 - field is count field for a repeating item 
• 2 – field is first field in a repeating sequence 
• 4 – field contains the length of a raw data item 
• 8 – field is message length tag (tag #9) 
• 16 – field is message type tag (tag #35) 
• 32 – field is encrypted and contains other tag and value items 
• 64 – field is encrypted and contains data for an individual item 

The following bits are defined within the flags2 byte: 



MQSeries Integrator V2 - FIX message adapter 

19 

• 1 – suppress field on input 
• 2 – suppress field on output 

The second input file contains one line for each repeating sequence defined in a message type.  The 
line contains a minimum of five fields and may contain many more.  The fields are separated by 
commas.  The first field is the message type as defined in the FIX standard and is contained in the 
MsgType (tag #35) item.  The second field is the tag identifier of the of the count field and the third 
field is the tag identifier of the first data item in the repeating sequence.  The fourth field is a name 
that will be used as a higher-level qualifier for all elements in a repeated sequence.  The rest of the 
fields contain the tag identifiers of all tags that are considered part of the repeated sequence.  A 
repeated sequence is considered to end when a tag is found in the message that is not part of the 
repeated sequence set or when the message trailer is found.  No entry is necessary for repeated 
sequences that contain only the first sequence item. 



MQSeries Integrator V2 - FIX message adapter 

20 

Chapter 7. Chapter 7. Chapter 7. Chapter 7. Parser ImplementationParser ImplementationParser ImplementationParser Implementation    

Parse Tree Structure 

FIX messages begin with a BeginString element followed by a BodyLength element and a MsgType 
element.  The last element in a FIX message must be a CheckSum element.  Additional data 
elements provide the necessary data.  The elements follow one another within the message.  There is 
no hierarchy within the message.   

When a logical message tree is built from an input message by the FIX parser, the structure is 
relatively flat.  A top-level body element is assigned with the name “FIX”.  Each data item in the 
message is then added in sequence as a child of the body, except for the CheckSum element.  The 
value in the CheckSum item is verified but no element is added to the logical message. 

 
There are two exceptions to the relatively flat structure normally used for FIX messages.  The 
exceptions are for items defined as type multiple-string and for repeating data items. 

All items are added as name-value items with the value in character format, except for multiple string 
items and elements whose data is in raw data format.  Any items with input data in a raw data format 
will have its data stored as a byte array rather than a character string.  This is necessary because the 
data may contain characters that are not allowed in character fields, such as binary zeros. 

Multiple string items contain several different items within the same data element.  In order to treat the 
data as individual items belonging to the same element, a top-level name element is created for the 
multiple string item.  The multiple string data is then broken into one or more values and these values 
are then added as children of the name element.  To make the individual value items easier to 
reference in a message flow, each value item is given an arbitrary name of “VAL”.  Therefore, the 
second value item in an ExecInst (tag #18) would be referenced as: 

 Body.ExecInst.Val[2] 

To find out how many individual value items are contained in the above example, the following 
expression could be used: 

 CARDINALITY(Body.ExecInst.Val[]) 

Repeating data items 

The FIX standard specifies certain data elements as repeating data items.  A repeating data item 
allows a sequence of individual items in a specific order to occur more than once in a single message.  
Furthermore, repeating data items can be nested in that a repeating data item can contain another 
data item that is itself a repeating data item. 

Handling of metadata files within the parser 

A structure is created to hold the data from up to 200 files and initialized in the bipGetParserFactory 
function.  This function is called during parser initialization.  A pointer to the structure is maintained in 
the module that handles metadata file processing (metadata.cpp) and available to the main parser 
module.  This optimizes performance by allowing modules in the other parser modules to directly 
reference metadata. 

For output, walk through the copybook structure, matching parent elements to metadata elements.  
For each parent, process all the children of the parent before moving to the next sibling of the parent.  
The order of processing should be in the same order as the copybook. 



MQSeries Integrator V2 - FIX message adapter 

21 

Each data group (segment) is represented by a metadata file, which includes the characteristics of 
each field as well as the segment overall.  In addition, for performance reasons, an initialization string 

is included at the end of the file.  The file name is the name of the four-character segment identifier 
plus a version number. 

The internal structure of the file is in four parts.  The first part of the file is a metadata header.  It 
contains overall characteristics of the segment and the metadata file, including the version number of 
the file.  The header format is as follows: 

• Length of the header 
• Metadata file format version (0 for this version) 
• Number of variables 
• Number of repeated tags 
• Offset of name and Unicode name tables 
• Repeated tags table 

The next part of the file is the variable table.  The third and fourth parts of the file are variable name 
tables.  The first table contains field names as ASCII characters and the second contains the names 
in Unicode.  The Unicode versions of the names are present to increase processing efficiency.  The 
last part of the file is the repeated item table.  There is one entry for every repeated sequence. 

Some more detailed design points 

Parsing of input messages 

When an MQInput node receives an input message, the cpiParseBuffer routine of the parser is called.  
This routine will decompress the message, if necessary, and translate the message to Unicode.  By 
translating the message to Unicode, the parser can accept either ASCII or EBCDIC input messages.  
It will validate that the message appears to be in an FIX format and will then assume ownership of the 
body of the message. 

The first time that a field in the body of a FIX message is referenced by a node, MQSeries Integrator 
V2.01 calls a routine within the FIX parser that will begin parsing the message.  This routine builds the 
logical message tree based on the contents of the incoming message. 

The message is parsed one element at a time.  A type tag contained in the individual element 
identifies each data element.   

Parsing of output messages 

The output message is built from the logical message tree.  Each child of the body element and each 
child of a name element must have a name that is a valid name.  This can be a short name (letters 
“FX” followed by the tag identifier) or a long name that is defined in the metadata.   

Handling of headers in output segments 

Header fields are optional for groups created in the logical message tree.  When a group is added to 
the output message, the identifier and length of the segment will be filled in automatically.  The group 
version number will also be filled in, matching the metadata file that is used to create the output group 
(segment).   If any of these fields are found in the output parse tree, then the values in the parse tree 
will be used. 



MQSeries Integrator V2 - FIX message adapter 

22 

Chapter 8. Chapter 8. Chapter 8. Chapter 8. System management messagesSystem management messagesSystem management messagesSystem management messages    

System management messages are special messages that the parser recognizes and which cause 
the parser to perform some special action.  Normally, the parser expects to receive messages in a 
valid FIX format.  However, there are certain actions that the parser might need to perform, such as 
purging cached metadata or identifying the level of the parser that is currently executing.  Special 
system management messages are used to tell the parser to perform a system management action 
rather than perform its usual message parsing functions.   

Recognition of management messages 

System management messages must have the MessageSet property is set to the character string 
“SYSTMGMT”.   The MessageType property should be set to one of the values in the next section.  
The contents of the message should also be set as described below, and the domain should be “FIX”. 
The contents of the message should then follow the rules outlined below, rather than the normal FIX 
standards. 

Message types supported 

The following system management message types are supported:   

• FLUSH 
• FLUSHALL 
• CACHSTAT 
• STATS 
• DUMPSTAT 
• TRACEON 
• TRACEOFF 
• TRACSTAT 
• GETLEVEL 

System Management Message Formats 

All messages will start with a four digit level number, beginning in the first position and padded on the 
left with zeros, and a four-digit modification level, padded on the left with zeros.  An eight-digit 
message type follows.  Any data provided with the message follows the level number header and will 
vary by the particular message type and the individual request.  If the format of the data is changed in 
the future, the version and modification level will also be changed.  Any parser should ignore 
messages that are at a higher level than the parser is designed to handle.  The parser can choose to 
process lower modification levels. 

Flushing and monitoring the metadata cache 

The FLUSH and FLUSHALL commands are used to remove in memory copies of metadata files.  The 
next time the metadata are needed, the metadata will be reloaded from the metadata file on disk.  
This allows metadata to be changed without having to stop and restart a message broker or execution 
group. 

For a FLUSH command, the individual files to be removed from the cache will be contained in eight 
character file names following the header.  If a file is found, the cached data will be freed and the 
name will be changed to all x'BB' characters, and the use counter will be set to zero.  This will remove 
the metadata entry from the cache.  The next time the file is used, it will be reloaded from disk.  A 
FLUSHALL request is similar, except the entire cache will be flushed.  

No additional message data is needed for a FLUSHALL request.  For a FLUSH request, the identifiers 
of the particular FIX metadata files that are to be flushed should be provided, as a series of eight 



MQSeries Integrator V2 - FIX message adapter 

23 

character fields.   For example, to flush the entry in the metadata cache for the FIX 4.2 standard, the 
characters FIX42 should appear in the list of files to be purged.   

With all flush attempts, the defaults, group names and standards file data will also be flushed. 

The CACHSTAT command will report on the current status of the metadata cache.  It will not remove 
any entries from the cache. 

All three messages will build a parse tree with one entry for each active entry in the cache.  If desired, 
this message should be transformed to an output format such as XML and written to a queue. 

Capturing Statistics  

When a STATS or DUMPSTAT command is received, then the relevant statistics will be parsed rather 
than the message data.  The DUMPSTAT command will also attempt to write the statistics to the file 
pointed to by the “FIX_STAT_FILE” environmental variable.  The message data can then be 
processed in a standard message flow.  If the statistics data is to be written to an output node, the 
message domain must be changed to a parser, which can output arbitrary data, such as XML.  The 
statistics can also be written to a file by using a trace node. 

The following parse tree (shown in an XML like format) will be built by a system management 
message containing a STATS request. 

<FIX> 
<statistics> 

<cache> 
<filesOpened>nnn</filesOpened> 
<filesRemoved>nnn</filesRemoved> 
<filesMax>nnn</filesMax> 
<useCounter>nnn</useCounter> 

</cache> 
<messages> 

<inMessageCount>nnn</inMessageCount>  
<inTagCount>nnn</inTagCount> 
<invalidMsgCount>nnn</invalidMsgCount> 
<maxMessageSize>nnn</maxMessageSize> 
<minMessageSize>nnn</minMessageSize> 
<averageMessageSize>nnn</averageMessageSize> 
<outMessageCount>nnn</outMessageCount> 
<averageParseTime>nnn</averageParseTime> 
<maxParseTime>nnn</maxParseTime> 
<minParseTime>nnn</minParseTime> 
<writeCount>nnn</writeCount> 
<outTagCount>nnn</outTagCount> 
<invalidOutputCount>nnn</invalidOutputCount> 
<averageOutputSize>nnn</averageOutputSize> 
<maxOutputSize>nnn</maxOutputSize> 
<minOutputSize>nnn</minOutputSize> 
<averageWriteTime>nnn</averageWriteTime> 
<maxWriteTime>nnn</maxWriteTime> 
<minWriteTime>nnn</minWriteTime> 

</messages> 
</statistics> 

</FIX>                                              

To access the statistics, a system management message should be sent to the input queue of a 
special message flow.  The message domain should be set to FIX, so that the standard FIX parser will 
process the message. 



MQSeries Integrator V2 - FIX message adapter 

24 

Turning trace on and off and displaying trace status 

If the debug level of the parser is installed, a local trace function is provided which will write detailed 
trace entries to a file.  This trace capability is unique to the debug version of the  parser and is 
separate and distinct from the MQSI Version 2 trace capability.  The name and location of this trace 
file, and the initial settings of the various traces, can be controlled with environment variables.  If the 
debug version of the parser is being used, it may be desirable to dynamically turn the trace function 
on and off. 

To turn trace on or off, the MessageType parameter of the message should be set to TRACEON 
(padded on the right with a space) or TRACEOFF.   

The message data should include the standard sixteen characters of header information, followed by 
one or more eight-character entries.  Each can set either a particular trace on or off, or can set all 
trace functions on or off.  To turn all trace types on or off, the trace message should contain a single 
eight-character entry after the header information, with the characters “TRACEALL”.  The following 
character sequences can be used to affect only a particular type of trace, such as module entries and 
exits or input parsing details: 

• TRPARSE 
• TRWRITE 
• TRMGMT 
• TRMODULE 

All entries should be padded on the right with spaces to a length of eight characters.   

An entry of TRACEOFF will turn all traces off.  This is useful when only selected traces are to be 
turned on, since it allows all traces to first be turned off and then the selected trace functions to be 
turned on individually. 

The TRACSTAT command will report on the current status of the trace.  It will not change the current 
trace options. 

All three messages will build a parse tree with one entry for each trace type.  If desired, this message 
should be transformed to an output format such as XML and written to a queue. 

Displaying the Level of the Executing Parser   

In some cases, it may be desirable to know what level of the parser is currently running.  If a message 
is received with a MessageSet of “SYSTMGMT” and a MessageType of “GETLEVEL”, then a logical 
message tree will be built identifying the levels of the main modules used to build the parser.  The 
parse tree will be of the following format: 

<FIX> 
<ModuleLevels> 

<FixParse>nnn</FixParse> 
<Fixsub>nnn</Fixsub> 
<Metadata>nnn</Metadata> 
<Mgmtmsg>nnn</Mgmtmsg> 
<Parsubs>nnn</Parsubs> 
<Trace>nnn</Trace> 

</ModuleLevels> 
</FIX> 

This data should be written out or otherwise processed by a message flow to provide the desired 
information. 



MQSeries Integrator V2 - FIX message adapter 

25 

Implementation considerations 

There are a number of areas where implementation decisions must be made.  For example, how 
much data checking and validation should be done on input and output messages?  If the data in a 
logical message field is longer than the corresponding field, should the data just be truncated or 
should an exception be thrown.  Many of these questions do not have clear answers.  Design choices 
were made to reduce the complexity and offer the most flexibility. 

The parser does a minimal amount of validation on input and output messages.  The purpose of the 
input validation is to ensure that the input message is a well-formed FIX message that can be parsed 
properly.  The following characteristics are checked:   

• The message must have a BeginString item in the front of the message and end with a 
CheckSum item.   

• The value in the CheckSum item is verified against the message contents. 
• Tags must consist of only the digits zero through nine. 
• Tags must be from one to five digits long. 
• Raw data items, such as an encrypted section of the message, must have a length field as 

the previous data item.   
• The length field is verified to be of the proper data type, that the length is greater than zero 

and does not extend beyond the end of the message.  
• The character immediately following the data is a data delimiter. 

If any of the above checks fail, then the message is rejected and the parser raises an error (parser 
exception). 

While more extensive checking and validation of individual data items could be performed, this would 
result in data editing functions being moved out of applications and into the parser.  It is usually better 
to perform data editing functions in the applications that process the message rather than a data 
transformation and routing engine. 

Individual field values are generally not checked for valid data.  This includes the characters used in 
things like integer fields as well as the data values in coded fields.  If checking of each field were to be 
performed, the overhead would be considerable and the parser would become much more complex.  

Minimal checking is performed on output messages as well, as follows:   

• Data element names must have a corresponding entry in the metadata. 
• A metadata file must exist for the level of the FIX standard indicated in the output message 

tree. 

On output, the BodyLength field is calculated automatically and inserted as the second data item in 
the output message.  The CheckSum field is also calculated automatically and inserted as the last 
item in the message. 

Generation of names for Data Elements 

Each data element is assigned a unique numeric identifier by the FIX standard.  The identifier is not 
particularly suitable for a data name, since it starts with a number and is not meaningful in any useful 
way.  It is desirable to have a longer and more descriptive name for each data element.   

Meaningful names have been assigned for each data element in the FIX standard.  The long name 
and the associated data identifier are contained in a text file (namedata.txt).  This file is used by the 
utility that creates the individual metadata files.   

A short name is also supported.  The short name begins with the uppercase characters “FX” with the 
data identifier appended.  The metadata for each data element can be looked up using either the 
longer name or the shorter name. 



MQSeries Integrator V2 - FIX message adapter 

26 

Chapter 9. Chapter 9. Chapter 9. Chapter 9. Environment VariablesEnvironment VariablesEnvironment VariablesEnvironment Variables    

An environment variable is used to point to the location of the metadata files used by the parser.  The 
variable is FIXMETADIR.  If this variable is not set, then a default value of “C:\FIX” is used. 

If the debug version of the parser is being used, then a trace file will be produced.  The default 
location of the trace file is c:\Fix\Parser.trc (/tmp/Parser.trc on Unix).   The location and name of this 
file can be changed with the FIXTRACEFILE environment variable.  The initial trace settings can also 
be set with the following environment variables: 

• FIXTRACEALL 
• FIXTRACEPARSER 
• FIXTRACEWRITE 
• FIXTRACEMODULE 
• FIXTRACEMGMT 

If statistics are to be written to a file, the “FIX_STAT_FILE” should be set to point to a fully qualified 
path and file name.  Statistics can be forced out at any time with a system management message and 
will also be written out when the broker is stopped.  (N.B.  There is a bug in MQSeries Integrator 
V2.0.1 that prevents this from happening.  This bug is supposed to be fixed in CSD1.) 



MQSeries Integrator V2 - FIX message adapter 

27 

Chapter 10. Chapter 10. Chapter 10. Chapter 10. Implementation detailsImplementation detailsImplementation detailsImplementation details    

Parser Initialization and Termination 

There are also two entry points that are used during initialization and one used during termination. 

The BipCreateParserFactory entry point is called when the execution group initializes.  It will specify 
the message domain that the parser will handle.  Metadata initialization is also performed, including 
the loading of three global metadata files.  If the debug version of the parser is being used, trace 
initialization is also performed. 

The cpiCreateContext entry point is called when a thread is created to handle a particular message 
flow.   

The cpiDeleteContext entry point is called when a thread terminates.  The key functions are to release 
any memory that was acquired in cpiCreateContext or during the processing of the last message 
processed.  Statistics are also written to a statistics file and are reset to zero. 

Handling of Input Messages 

Input messages must be in a valid FIX format.  Each item must have a recognized one-digit to five-
digit identifier for each data item.  The standard items all have an identifier of one to three numeric 
digits (user defined items can have a five-digit identifier).  The identifier is used to look up a 
descriptive name for each data item.  

The CheckSum data element is verified but is not added to the logical message tree.  All other data 
elements are added to the parse tree. 

There are five entry points used within the parser for the parsing of input messages.   

When a message is received in an MQInput node of a message flow, an instance is created to 
process this message.  The MQInput node will determine the parser to assign to the body of the 
message.  It creates a root element for the body and assigns it a name based on the parser domain. 

Parser Context 

The context area for a processing of a particular message is allocated in the cpiCreateContext 
routine.  The intent is that the context will be allocated once for each thread that is started to service a 
particular message flow, and that the context will be reused by each succeeding message.  There is a 
bug in MQSeries Integrator version 2.0.1 that results in this routine being called once per message.  
This will cause a memory leak.  A fix for this problem is supposed to be made available in the first 
CSD. 

The context area contains the following fields: 

eBody   Pointer to the root element of the body. 

eCurrentElement   Pointer to the current parent element.  Elements with values will be added as 
children of this element. 

iSize  Size of the input message buffer area.   

iLength  Length of the message area to be parsed.  

iInput  Pointer to the raw input data buffer. 



MQSeries Integrator V2 - FIX message adapter 

28 

iBuffer  Pointer to the data to be parsed, translated to Unicode.   This pointer will be used 
for identification of all tags and for all data values except raw data items. 

iIndex  Number of bytes that have already been processed in the message. 

iRemaining Number of bytes left in the output buffer. 

iCodePage  Code page of the input or output message.  This field is taken from the 
CodedCharSetId field in the message properties. 

iEncoding  Numeric encoding format.  This field is taken from the Encoding field in the 
message properties. 

iPrevTag  Pointer to the tag identifier of the previous item, translated to Unicode. 

iPrevData  Pointer to the data portion of the previous item, translated to Unicode. 

iPrevDataType  Data type of the previous item, from the metadata entry. 

iMsgType  This field will be set to one if the message is a special management message.  

iCurrentCharacter  The value of the character at the offset being parsed, in the local code page of the 
parser system. 

sMsgType  Message type from the MsgType tag (#35). 

sLevelName  Version string from the BeginString tag (#8).  This field is used to find the metadata 
for the message. 

iRepeat  Pointer to a repeating data structure, which is used to retain information while 
processing a set of repeating items. 

msgDomain  Message domain to be used for this message. 

msgSet  Value of the MessageSet item in the properties folder. 

msgType Value of the MessageType item in the properties folder. 

iStartTimeHigh and iStartTimeLow  The time a particular thread was started. 

TotalParseTime The total time that the parser has taken with this message.  This value will be 
incremented each time another part of the message is parsed.  This value will be 
added to the statistics when the thread ends or when the thread parses a new 
message. 

Initialization functions 

The bipCreateParserFactory entry point is called when an execution group process is started.  The 
main function of this entry point is to perform basic parser wide initialization.  The parser will initialize 
the metadata structures in memory, and will load three specific metadata files (defaults, group names 
and standards mapping).  If the debug version of the parser is being loaded, the trace function will 
also be initialized. 

The cpiCreateContext entry point is then called.  This routine allocates and initializes memory for use 
during the processing of a particular input message.  The allocated memory is initialized to binary 
zeros. 

The cpiParseBuffer entry point is called after the cpiCreateContext entry routine has finished.  This 
routine will initialize the parser context, and will get the code page and numeric data format from the 



MQSeries Integrator V2 - FIX message adapter 

29 

message properties.  If an alternate buffer area has been allocated for the previous message, the 
area will be freed.  This routine will assume ownership of the rest of the message.  This routine 
performs several functions, including the initialization of the fields in the context area.  First, it 
initializes a pointer (eBody) in the context area to point to the body root element.  It sets context 
variables to point to the original message data area (iInput) and the length of the input message 
(iSize).  It checked if the message has been compressed and if so allocates a new area for the 
message and decompresses the message.  It then sets a pointer to the message data (iBuffer), and 
sets the message length field (iSize).  It initializes the parent (eCurrentElement) and current element 
(iCurrentElement) pointers to null values, to indicate that no parsing of the message has taken place.   
The code page of the input message is determined from the message properties and saved in the 
iCodePage field. 

The message format will now be checked to make sure that the input message appears to be a FIX 
message.  Finally, the routine returns with a length equal to the remaining buffer size, indicating that 
the parser has taken ownership of the remaining part of the message. 

Parsing Routines 

Parsing of a message is done when data within the message is first referenced in a message flow.  
There are four entry points that can be called, depending on the particular node routine that was 
called.  The entry points are cpiParseFirstChild,  cpiParseLastChild, cpiParseNextSibling and 
cpiParsePreviousSibling.  Each of these routines will call the parseNextSegment routine in the 
fixsub.cpp module until the appropriate element completion flag has been set. 

The message will be parsed from left to right (beginning of the message to the end of the message).   

Termination Routines 

The cpiDeleteContext routine is called when a parser thread terminates.  A thread will usually 
terminate when the execution group process ends.  This routine will check if an alternate input buffer 
has been allocated, and if so, will release it.  The routine then releases the context area itself. 

Handling of Output Messages 

Three of the required data items for a FIX message are generated automatically when an output 
message is built from a logical message tree.  These fields are the BeginString (tag #8) item, the 
BodyLength (tag #9) and the CheckSum (tag #10) items.   

If the BeginString item is found as the first child of the body element, then the value contained in the 
parse tree will be used.  Otherwise, a default value of “FIX.4.2” is used, to indicate that the message 
will be at the Version 4.2 level.  This value also determines the metadata that is used to process the 
rest of the logical message tree.  

The BodyLength and CheckSum items will be automatically calculated and inserted in their proper 
locations within the output message.  These items are difficult to calculate within a message flow, and 
may change if the message is encrypted during output.  The BodyLength element will be ignored if it 
is present, since the length will be calculated and this element inserted automatically.  The CheckSum 
item should not be used, since this element will be automatically appended at the end of the 
message.  If the item is found in the logical message tree, it will also be included in the output 
message, resulting in two CheckSum items. 

All other items in the message will be generated based on the names and values contained in the 
logical message tree.  If the name of an item begins with the letters “FX”, it will be assumed to contain 
the tag identifier following the first two letters.  For example, if an element has a name of “FX47”, and 
a value of  “3”, then the following data would be inserted in the output message: 

 47=3<SOH> 



MQSeries Integrator V2 - FIX message adapter 

30 

All other names will be looked up in the metadata file associated with the given level of the FIX 
standards.  If it is found, then the tag identifier associated with the data name is found and used to 
build the FIX output.  For example, if an element in the logical message tree has a name of “OrdType” 
and a value of “A”, then the following data would be inserted in the output message: 

 40=A<SOH> 

All data in the parse tree will be translated to character data in the specified code page, except for 
data that is specified as raw data in the metadata or data that is held as ByteArray type data in the 
logical message tree. 

Neither the names nor the data values within data items in the logical message tree should contain 
delimiter characters (either an equal sign or a 0x01 data delimiter character).  The delimiter characters 
will be inserted in the output message as needed. 



MQSeries Integrator V2 - FIX message adapter 

31 

Chapter 11. Chapter 11. Chapter 11. Chapter 11. OfflOfflOfflOffline Utilitiesine Utilitiesine Utilitiesine Utilities    

Two offline utilities are provided to assist in building the necessary metadata files.  The utilities are 
named “buildmtx” and “printmtx” respectively.  The first utility will process a text file and produce the 
corresponding metadata file.  The second utility will produce a formatted text file showing the contents 
of a metadata file. 

The print utility is a program that can be used to produce a listing of the contents of a particular 
metadata file.  It is provided because the contents of the metadata files are in binary and therefore it 
can be difficult to understand their contents. 

In general, the offline utilities are not required, since this SupportPac includes a complete set of 
metadata files for the commonly used versions of the FIX standard. 

Building the Metadata files 

This section documents how the metadata files that are provided with the parser were built.  Since 
pre-built versions of the metadata files are provided with this SupportPac, there is generally no need 
to build the metadata files.  This procedure would only be required when modifications are to be made 
to the standard FIX data areas, different data naming conventions are desired or user defined data 
elements are to be added to the metadata files. 

The metadata files are built using the BUILDMTX command line utility (BUILDMTX.EXE).  A 
command file is provided that will process the text files supplied with this SupportPac.   

The input to the metadata processing utility is two simple text files.  The first text file contains the 
characteristics of the individual tag and value items.  The second text file is used to identify repeating 
data items. 

The metadata files contain binary and Unicode data and are therefore platform dependent.  The 
metadata files must be built on the platform that they will be used on.  Metadata files intended to be 
used on Windows platforms must be built on Windows and metadata files intended to be used on 
Unix platforms must be built on Unix platforms. 



MQSeries Integrator V2 - FIX message adapter 

32 

Chapter 12. Chapter 12. Chapter 12. Chapter 12. Problem DeterminationProblem DeterminationProblem DeterminationProblem Determination    

There are many types of problems that can arise.  Some of the more common problems are 
discussed below. 

Broker will not start 

If your broker is running on Windows NT or windows 2000, look in the application log using the event 
viewer.  If you are running on Unix, look in the /etc/syslog.conf file.  Near the bottom there should be 
an entry for a user.debug, with an associated file name.  Look in this file for messages that explain 
why the broker is not starting.  If there is any indication that the parser may be causing a problem 
when it is loaded during the initialization of the broker, the parser executable (fixparser.lil) should be 
moved out of the <MQSI_ROOT>/lil directory. 

Parser Exceptions 

The FIX parser does not perform a thorough check of the contents of a message.  However, a 
message must meet certain minimum criteria for the parser to be able to handle the message.  If the 
message does not meet the minimum criteria, then the parser cannot process the message and will 
raise an exception.  This will normally cause the message flow to fail and the message will usually 
wind up on some sort of failure or dead letter queue. 

When a parser exception is raised, an entry is written to the application log.  In the Windows NT 
environment, this log can be viewed using the event viewer.  When a message is not properly 
processed, and the message flow appears to fail, the event log is usually the first place to look. 

The parser must be able to find and use the proper metadata for the version of the group or standard 
that was used to build a message.  A message flow can fail if the wrong version is specified or if a 
version is not specified for a group. If a message flow fails and the event log contains a message 
indicating that either a metadata file could not be found or that the group length in the metadata file 
did not match the length in the group header, the group version in the group header and standard 
version in the transaction control group should be checked. 

Performance 

Make sure that the release build is being used.  The debug version of the parser writes extensive 
trace data to a trace file and performance will be significantly degraded.  Check the file size of the 
fixparser.lil file in the {MQSI_ROOT}\bin directory to be sure that the release build is being used. 

Debug version of the parser 

A special debug version of the parser is provided with this SupportPac.  This version of the parser 
contains a detailed tracing facility.  This special trace is written to a text file.   The trace is quite 
detailed and therefore can be quite large.  Therefore, this version of the parser should not be run in a 
production environment. 

Using the debug version  

If the debugging version of the parser is installed, the following environment variable should be set. 

• FIXTRACEFILE – location and name of trace file. 

The following environment variables can be used to control the initial setting of the trace options.   

• FIXTRACE 
• FIXTRACEPARSER 



MQSeries Integrator V2 - FIX message adapter 

33 

• FIXTRACEWRITE 
• FIXTRACEMODULE 
• FIXTRACEMGMT 

The FIXTRACE variable controls the overall setting of the trace as on or off.  This variable must be set 
to a ‘1’ if tracing is to be enabled when the parser starts.  The other variables allow for limiting the type 
of trace information that is collected.  At least one of these trace functions should be set to a ‘1’.   

If none of the environment variables are set, then tracing of all types will be enabled.  If the trace file 
location is not specified in an environment variable, then the default file and location of 
“\FIX\parser.trc” on the “C:” drive for Windows and /tmp/parser.trc for Unix will be used.  If this 
directory does not exist, no trace output will be produced.   

To install the debug version of the parser, the message broker must first be stopped.  If the standard 
installation instructions have been followed, the executables for both versions of the parser should be 
located in the <MQSI_root>\bin directory.  The normal release version of the parser (fixparser.lil) 
should be renamed with a different extension (e.g. fixparser.rel) and the debug version of the parser 
should be renamed from fixparser.dbg to fixparser.lil.  The broker should then be restarted and the 
desired message(s) processed.  Once the messages have been processed, the broker should be 
stopped again and the files renamed to their original names.  The broker can now be restarted. 

The trace function can also be turned on and off by using system management messages. 

Reporting bugs 

Although no official support is provided, the author is interested in hearing of any problems or 
suggestions for improvement for this SupportPac.  If a bug is suspected, please send an email with a 
problem description.  If possible, please attach a file with a copy of the message so that the author 
can reproduce the problem locally.  The author’s email address is on the front cover of this document. 



MQSeries Integrator V2 - FIX message adapter 

34 

Appendix A Appendix A Appendix A Appendix A ---- Hints and tips for writing a parser Hints and tips for writing a parser Hints and tips for writing a parser Hints and tips for writing a parser    

This section contains a discussion of some areas that are not covered in the Programming Guide or 
other standard product documentation. 

What is a logical message and what is a wire format? 

A logical message is the interpreted version of a message that the message flow elements (nodes) 
process.  The logical message data consists of the data as individual fields.  A wire format is the 
actual data from an MQSeries message.  A parser is used to convert a message from one format to 
the other. 

What do parsers do? 

In MQSeries Integrator V2, parsers provide the function needed to interpret incoming messages and 
create a logical message based on the data within the message.  The logical message usually 
consists of the individual data fields within the message.  Parsers are also responsible for creating an 
output message based on the data found within the logical message. 

In some cases, parsers rely on external data representations stored in some kind of metadata 
repository.  For example, the IBM supplied MRM parser stores information about the message 
formats it can recognize in a repository stored in a relational database.  In other cases, the message 
format itself is self-defining and no metadata is required to parse a message. 

How do Parsers work? 

A parser is initially loaded when an MQSeries Integrator version 2 message broker is started.  The 
broker in turn starts one or more execution groups.  Each execution group operates as a separate 
operating system process, running a module called "DataFlowEngine".  Each execution group loads 
all modules found in the <MQSI root>\bin directory with an extension of "LIL". The parser modules are 
built as DLLs.  The execution group then calls an entry point within the parser (bipGetParserFactory), 
which completes its initialization process and indicates what types of messages (domain) the parser 
will process.  The parser is now loaded and ready to process messages. 

The execution group then loads any messages flows and starts an active thread for each MQInput 
node within each message flow.  Each thread issues an MQGet with wait for each input queue.   

When a message arrives in the queue, the MQGet completes and the MQInput node begins to 
process the message.  It first starts another thread (if the number of threads for the message flow is 
less than the maximum allowed) to issue another MQGet to the input queue.  The thread then creates 
a root element for the logical message, and starts to identify the various parts of the message. 

The MQInput node creates a child element of the root for the message properties and MQMD.  It then 
identifies any additional parts of the message and creates a child element of the root for each 
additional section of the message (generally message headers, such as an RFH2 header) and the 
body of the message (the user data).  The parser for the body of the message is identified by the 
domain value in the RFH2 header.  If there is no RFH2 header, then the default domain specified in 
the MQInput node defaults property is used.  If there is no default domain specified in the MQInput 
node defaults, then the message body is treated as a blob. 

The cpiCreateContext entry point is called once when a thread is initialized.  The purpose is to 
acquire a storage area for any context that is to be saved during parsing of a message.  This is 
primarily of use for a partial parser, which will be called repeatedly to parse a complete message. 

The cpiParseMessage entry point is called during the initial processing of a message by the MQInput 
node.  A primary function of this entry point is to allow the parser to determine which part of the 
message the parser will assume ownership of, and prepare to process the message.  The parser 



MQSeries Integrator V2 - FIX message adapter 

35 

should defer parsing of the message until a particular part of the message needs to be parsed.   
When a part of the body of the message is referred to in the message flow, and the message must be 
parsed, one of the parsing entry points, such as cpiParseFirstChild or cpiParseNextSibling, is called.  
None of the other major sections of the message are parsed at this time, and the elements for each 
section are NOT marked as complete.     

The message is then propagated to the Out terminal of the MQInput node.  When a field within the 
body of the message is referenced within the message in a later node (such as a filter node or a 
compute node), and an attempt is made to retrieve either a child or a sibling of a message element 
which is not marked as complete, one of four entry points within the parser will be called.  The four 
entry points are cpiParseFirstChild, cpiParseLastChild, cpiParseLeftSibling and cpiParseRightSibling.  
Each entry point is passed the address of the element that the message flow was attempting to 
navigate from.  The particular routine should then complete enough of the parse tree and set the 
appropriate completion in the referenced element for the message flow to continue processing. 

The cpiDeleteContext function is only called when the thread is finished.  It should release any 
memory acquired by the cpiCreateContext function. 

What is "partial parsing"? 

The MQSeries Integrator Version 2 broker is written to support what is called partial parsing.  Since an 
individual message may contain hundreds or even thousands of individual fields, the parsing 
operation can require considerable memory and processor resources to complete.  Since an 
individual message flow may only reference a few of these fields, or possibly none at all, it is 
inefficient to parse every input message completely.  For this reason, MQSeries Integrator Version 2 
has been designed to allow for parsing of messages on an as needed basis.  This does not prevent a 
parser from processing the entire message all at once, and some parsers are written to do exactly 
this. 

Rather than parse the entire message contents and build a complete logical message, the broker 
waits until a part of the message is referenced, and then invokes the parser to parse that part of the 
message.  This will reduce the overhead when a large part of a message is not referenced in a 
message flow.  To understand how this works, one must be familiar with MQSeries Integrator Version 
2 nodes, and how they refer to fields within the message.  Nodes refer to fields within the message 
using hierarchical names.  The name begins at the root of the message and then proceeds down the 
message tree until the particular element is located.  If an element is encountered without the 
completion bits set, and further navigation from this element is required, then the appropriate parser 
entry point will be called to parse the necessary part of the message.  The relevant part of the 
message should be parsed, and appropriate elements added to the logical message tree, and the 
element in question should then be marked as complete.  If the element is not marked as complete, a 
looping condition can then arise. 

Parser Context 

When a parser is called up to parse a message, it is useful to have an area where information about 
the specific message that is currently being parsed can be kept.  This is particularly useful when a 
parser is parsing a message incrementally (partial parsing) and must remember how much of the 
message it has already parsed.  MQSeries Integrator version 2 provides a facility for a parser to 
acquire an area of storage and associate it with a particular message.  This area of storage is called 
the parser context.  There is one context maintained for each thread that has parsed a message that 
has required the use of a particular parser. 

To understand the parser context, some understanding of the threading model used within MQSeries 
Integrator Version 2 is required.   

MQSeries Integrator Version 2 uses a multi-process multi-thread architecture.  Every execution group 
defined within a broker runs as a separate operating system process.  Threading is used within 
individual execution groups.  When a message flow is assigned to an execution group, and the 
execution group is started, one or more threads will be started to process messages associated with 



MQSeries Integrator V2 - FIX message adapter 

36 

that message flow.  First, a thread is started for each MQInput node within the flow.  These threads 
issue an MQGet with wait against the queue specified in the MQInput node.  There is a parameter 
(additionalInstances) that can be set on the message flow that controls the number of additional 
threads that the particular message flow can use to process more than one message at a time.  
These additional threads are also started, but they wait on a semaphore. 

When a message arrives on an input queue, the MQGet is satisfied and the thread starts to process 
the message.  Prior to exiting the MQInput node, the thread will check if there are any additional 
instances in the pool for this message flow.  If there are, one of these threads will be posted and will 
issue an MQGet with wait.  The current thread will then process the message.  When it completes the 
current message, it will check if another thread has issued an MQGet with wait.  If another thread has 
issued the MQGet, then this thread will then rejoin the thread pool and wait on a semaphore.  If there 
is no thread with an outstanding MQGet, the current thread will reissue the MQGet. 

The input node identifies the parser(s) needed to parse the input message.  If a parser is required that 
has not been used before by the particular thread, then an instance of the parser object will be 
instantiated for that thread.  This parser object will be retained for the duration of the thread.  The 
threads are usually retained until the execution group (or broker) is stopped.  The thread will also be 
stopped if the message flow is changed and a deployment operation is initiated.   

Whenever the message passes through a Compute node (or Extract node), a new message tree will 
be created.  When the body element of the new message tree is created (using a call such as 
cniCreateElementAsFirstChildUsingParser), an owning parser is created for the body of the message.  
This parser will be used to create an output buffer from the logical message tree data when required 
(generally as a result of a later MQOutput node).  Any parser objects that are created to handle 
subsequent message trees will be destroyed when the particular instance (message) completes. 

When a parser object is created, the cpiCreateContext entry point will be called.  The parser should 
acquire any storage that it needs and return the address when this routine is finished.  This storage 
will be retained and reused for the life of the parser object.  When the parser object is destroyed, the 
cpiDeleteContext entry point is called.   

What happens if a parser encounters an error? 

If a parser encounters invalid data or other types of errors, it has two basic options.  It can ignore the 
error or it can create (throw) an exception and cause the message flow to be terminated. 

How do the completion bits found in message elements work? 

Every element in a parse tree has five logical pointers.  The pointers are to the parent, previous 
sibling, next sibling, first child and last child.  The parser builds the parse tree structure by adding 
elements as either the first child or the last child of a previous element.  The appropriate pointers of all 
surrounding elements are adjusted when a new element is added to the parse tree.  The pointers are 
always valid.  This means they will either point to an element that is a sibling or child of the element, 
or they will have a null address.   

When a node needs to find an element in the tree, it must navigate to the desired element, starting at 
the root element.  The node can use any of the five pointers to locate the desired element.  For 
example, if a node needs to locate the element that corresponds to InputBody.A.B, it could 
accomplish this is in the following manner. 

First, the root element must be found, using the cniRootElement function.  The node would then use 
the cniLastChild function to get a pointer to the last child of the root element.  This would be the body 
element.  The node must now locate the child of the body whose name is A.  To do this, it would use 
the cniFirstChild to locate the first child of the body.  It would then search through the children of the 
body, using the cniNextSibling function as needed, looking for an element whose name is A.  When 
the A element is located, the cniFirstChild function would again be called to locate the first child of 
element A.  The children of element A would then be searched using the cniNextSibling function until 
an element with a name of B is located.  The desired element has now been located. 



MQSeries Integrator V2 - FIX message adapter 

37 

MQSeries Integrator version 2 supports late or partial parsing, to reduce the overhead in certain 
common situations.  This means that the parse tree will only be built when it is needed.  To support 
partial parsing, the parser must be able to indicate where the parse tree is complete and where it is 
not.  To do this, two bits are available within each element.  The parser to indicate whether the first 
child pointer is complete, and whether the last child pointer is complete set the bits.  To be considered 
complete, the first child pointer must point to the element that is really the first child of the current 
element, and the last child complete bit indicates that the last child pointer is pointing to the element 
that is truly the last child of the current element.   

When the various node navigation functions (such as cniFirstChild or cniNextSibling) are called, they 
look at the corresponding completion bits to determine if they need to invoke the parser before they 
return the result.  The cniFirstChild function will call the parser until the completePrevious bit is set, 
and will then return the first child pointer from the given element.  The cniLastChild will call the parser 
if the completeNext bit is not set, and after this bit is set by the parser, will return the last child pointer 
from the given element.  The cniPreviousSibling function will check the completePrevious bit in the 
parent of the given element, and if that bit is not set, will call the parser.  After the parser sets the 
completePrevious bit in the parent, then the previous sibling pointer from the given element will be 
returned.  In a similar manner, cniNextSibling will check the completeNext bit in the parent, and if 
necessary, invoke the parser.  When this bit is set by the parser, the next sibling pointer will be 
returned. 

Most parsers are will operate from left to right (from the beginning of a message to the end).  If the 
first child has been parsed, or if there are no children, then the completePrevious bit of the parent 
should be set.  If the last child of an element has been parsed, or if there are no children, then the 
completeNext bit of the parent should be set. 

What data types are supported and how are they stored internally? 

The logical message model supports many types of data, as defined within the ESQL standard.  Data 
types include character, integer, decimal, floating point, boolean and date/time formats.  The input 
numeric data representation for integer and packed decimal data is determined from the MQMD 
encoding parameter, and the output data format is determined from the encoding parameter in the 
message properties (first child of the root).  Internally, character data is stored as unicode characters, 
while integers are stored as 64 bit values using the encoding sequence native to the platform on 
which MQSeries Integrator Version 2 is running (e.g. for Windows NT, this would be "little endian", 
whereas if the broker were to run on an RS/6000 processor under AIX, it would use "big endian" 
format internally).  Decimal data is stored as characters in either little endian or big endian order.  No 
conversion of floating point data is provided.  Date and time values are stored as data structures.   

Code pages and input buffers 

The code page of the input buffer is contained in the properties.  The input buffer should be translated 
to Unicode before any processing and the subsequent processing should be done using Unicode.  
This makes the parser independent of the code page of the incoming message.  The code page of the 
data in the input buffer is contained in the properties. 

Parser Utility Functions 

What is the difference between similarly named node and parser functions, such as cniNextSibling 
and cpiNextSibling?  The parser functions will not cause the invocation of a parser, and hence are 
recommended to use within parser routines.  The node utility functions will invoke a parser if the 
completion bits are not set.  If a parser were to use the node utility functions on a part of the parse 
tree that it is responsible for, then the parser could be called recursively and a loop could result. 

There is one instance where the node functions must be used.  If a parser needs to access the 
message properties, the individual fields under the main properties element may not have been 
created.  If the parser utility functions are used for this navigation, then the desired element may not 
be found.  If the node utility functions are used, the properties parser will be invoked as needed to 



MQSeries Integrator V2 - FIX message adapter 

38 

complete the properties section of the parse tree.  In fact, this function is used in several places within 
the provided FIX parser. 

Using the CciLog and CciThrowException utility functions 

The CciLog and CciThrowException functions write an entry into the Windows NT event log.  The 
CciThrowException function will generate an exception.  The exception may be handled by the 
message flow or, if not handler is present, it may cause the message flow to be terminated. The 
CciLog function will write an event into the event log and execution of the message flow will then 
continue.   

The CciThrowException function requires a parameter that indicates the type of error.  Most errors 
that are detected with the contents of a particular message should use an error type of 
CCI_PARSER_EXCEPTION.  This will result in a runtime error being raised within the particular 
instance that is being processed, and will generally result in the message being rejected.  The 
message is usually placed on some kind of failure or dead letter queue.  If an error type of 
CCI_FATAL_EXCEPTION is used, then the entire execution group will be brought down.  This 
exception type should only be used for serious errors that are likely to affect the entire execution 
group, such as memory corruption. 

All errors thrown by the provided FIX parser are of the parser exception type. 

Creating a Message Dictionary 

Both the CciLog and CciThrowException functions require a Windows message dictionary to be 
created and registered in the Windows registry.   

The first step in creating a message dictionary is to create the source input for the messages 
themselves.  This SupportPac includes a message dictionary, including the source code for the 
messages.  The source file for the message dictionary is called “fixerr.mc”.  More documentation for 
the message dictionary formats is contained in the Microsoft SDK for Windows NT.  A sample 
command file is included with this SupportPac (buildmsg.cmd) that will create the fixerr.dll message 
dictionary and copy it to the execution directory.  Directory names and drive locations may have to be 
changed to match a given installation. 

A registry entry is also needed in the system that the parser will execute on.   Instructions on creation 
of this registry entry are included in the installation part of this document. 

Calling the CciLog and CciThrowException functions. 

A number of parameters must be passed to either the CciLog or CciThrowException functions.  Two 
of the parameters are the name of a message dictionary and the message identifier within the 
message dictionary.  An include file with definitions of the message identifiers is generated by the 
message compiler and should be included in the source program using the message dictionary.  The 
message dictionary name is a character string with a null termination.   

An error message defined in a message dictionary can include additional parameters in the message 
definition that are to be filled in at execution time.  All such parameters must be character strings.  The 
last parameter passed to either of the above functions should be a parameter of zero.  This indicates 
the end of the execution time parameters list.  Even if there are no run time parameters, a single 
parameter with a value of zero should be passed to the above utility functions.   

The message dictionary format for an insertion is a percent sign followed by a number, which in turn is 
followed by an exclamation point, the letter “s” and a second exclamation point.  The number 
indicates which parameter should be used.  The first parameter that is passed on the utility function 
call is matched to the insertion sequence identified by the number two.   If the parameter number in 
the message is the digit one (e.g. the insertion sequence of %1!s!), then a character sequence 
consisting of the broker name and execution group name is inserted.  The first parameter passed on 



MQSeries Integrator V2 - FIX message adapter 

39 

the utility function call will replace the sequence %2!s!, the second parameter will replace the 
sequence %3!s!, and so on. 

Microsoft documentation should be used for further information on the format of a message dictionary. 
A sample message dictionary is also provided (fixerr.mc). 

Using Microsoft Foundation Classes (MFC) in a parser 

The Microsoft Foundation Classes (MFC) can be used in a parser.  However, their use can cause link 
edit errors.  Two steps should to avoid these problems.  First, the _USRDLL definition in the 
preprocessor section of the C/C++ tab in the project properties should be removed if present.  The 
second step is to explicitly add the appropriate MFC library to the beginning of the Object/Library 
modules area in the general section of the Link tab. 

What does the iFpIsHeaderParser parser function call do? 

MQSeries Integrator Version 2 sets the format field in the MQMD to the parser domain name if the 
cpiParserType routine returns a value of zero.  If this routine returns a non-zero (TRUE) value, then 
the format field is not set to the domain name of the parser.  It can then be set by a message flow.  If 
this routine is not implemented in the parser, then the format field is always set to the name of the 
parser domain. 



MQSeries Integrator V2 - FIX message adapter 

40 

Appendix B Appendix B Appendix B Appendix B –––– Repeating field names Repeating field names Repeating field names Repeating field names    

Some FIX message types can contain multiple occurrences of certain tag items, and some 
of the repeated tag items can themselves have multiple occurrences.  Without a hierarchical 
structure in the logical message tree, it can be difficult or impossible to know which repeated 
items belong to which higher-level items.  
 
To provide a hierarchical structure, some additional high-level names are required.  These 
additional higher-level names are contained in the repeating data section of the metadata 
files.  The list below indicates the high-level names that are used when an input message is 
parsed and a logical message tree is constructed.  The first column indicates the FIX 
message type, the second column indicates the tag identifier for the first item in the 
repeating sequence and the third column indicates the high-level name that is assigned for 
the sequence. 
 
MsgType Tag  Element name 

 6 216  RoutingInfo 
 B 216  Routing 
 B 58  Textlines 
 C 216  Routing 
 C 58  Textlines 
 R 55  Symbol 
 i 302  QuoteSet 
 i 299  QuoteEntry 
 Z 299  QuoteEntry 
 b 302  QuoteSet 
 b 299  QuoteEntry 
 V 55  Symbol 
 W 269  MarketData 
 X 279  RefreshData 
 c 311  Security 
 d 311  Security 
 D 79  Allocation 
 8 375  ContraBroker 
 G 79  Allocation 
 J 11  Orders 
 J 32  IndExec 
 J 79  AllocGroup 
 J 137  MiscFee 
 k 399  BidDesc 
 k 66  BidComp 
 l 12  BidComp 
 E 11  Orders 
 E 79  AllocAcct 
 m 55  StrikePrice 
 N 11  Orders 
 A 35  MsgTypes 



MQSeries Integrator V2 - FIX message adapter 

41 

Appendix C Appendix C Appendix C Appendix C ----    Error Message DetailsError Message DetailsError Message DetailsError Message Details    

The parser may produce the following error messages.  Error messages will be recorded in the 
application log and can be viewed with the Windows NT event viewer.  On Unix platforms, the Syslog 
facility is used.   

A detailed description of the error, as well as the common causes of the message, is provided below.  
In all cases, the message will be preceded by the broker and execution group names. 

Error Message Text and Likely causes 

Message 10 (No BeginString item found) 

This message will be produced if no type “8” element is found at the beginning of the message.  This 
group is required as the first group for all FIX messages.  This error generally indicates that the 
message is not a valid FIX message. 

Message 11 (No delimiter (0x01) for BeginString data found) 

The data portion of the BeginString item should be terminated with a delimiter (0x01) character.  No 
such delimiter was found within the first 30 bytes of data following the BeginString identifier.  This is 
usually an application error in the application that created the message. 

Message 12 (No ending delimiter (0x01) found) 

This message indicates that no delimiter character was found at the end of the message.  This 
delimiter character is required as the last character in all FIX messages.  This is usually an application 
error in the sending application. 

Message 13 (No CheckSum (tag #10) found) 

The last data item in a FIX message should be a check sum item (tag #10).  The check sum item 
should occupy the last 7 characters of the message and must be in clear (unencrypted) text.  The first 
three bytes are the identifying tag (10) and an equal sign.  The next three characters are digits that 
represent the check sum (which is a number in the range of 0 through 255) and the final character is 
an item delimiter (0x01).  This message indicates that the identifier (“10=”) was not found starting 
seven characters before the end of the input message. 

Message 14 (Calculated check sum does not match checksum item) 

The last data item in a FIX message should be a check sum item (tag #10).  The check sum item 
should occupy the last 7 characters of the message and must be in clear (unencrypted) text.  The first 
three bytes are the identifying tag (10) and an equal sign.  The next three characters are digits that 
represent the check sum (which is a number in the range of 0 through 255) and the final character is 
an item delimiter (0x01).  The check sum is calculated by adding (modulo 256) the character value of 
each individual character from the beginning of the message (BeginString identifier “8”) to the 
character just before the beginning of the check sum item itself.  

Message 20 (No identifier found preceding equal sign) 

A data item was found with no data identifier preceding the equal sign.  Each data item within a FIX 
message must be of the following format: 

 Identifier=value<SOH> 

Where identifier is a numeric identifier that indicates the name of the item, value represents the value 
of this item and the terminator character (<SOH>) indicates the end of one item and the beginning of 



MQSeries Integrator V2 - FIX message adapter 

42 

the next item.  The terminator character (<SOH) is a single byte with a value of binary one and does 
not represent a printable ASCII character.  Identifiers should not have leading zeros and can be from 
one to three digits long.  User defined identifiers can be up to five digits long. 

Message 21 (Element name (XXX) not found in metadata file) 

The element name contained in the message was not found in the metadata.  The element name may 
be invalid or misspelled, or the element name may not be valid at the level of FIX standard that is 
being used to create this output message. 

Message 22 (No metadata found for this fix level - XXX) 

No metadata file was found that matched the fix level specified in the BeginString (tag #8) element in 
the logical message tree.  If no BeginString element is missing, then the default value of FIX42 is 
used.  This error can also be caused if the metadata directory is specified incorrectly.  Check if the 
FIXMETADIR environment variable is specified and if it points to the expected location.  The default 
metadata directory is C:\fix on Windows platforms and /var/fix on Unix platforms.  Metadata files 
should have a file extension of “mtx” and should have a file name of the format FIXnn, where nn is the 
version and modification level of the FIX standard that the metadata is supposed to match. 

Message 23 (Tag length too long (> 5 characters)) 

The length of a tag cannot be more than 5 digits long and must be delimited with an equal sign.  If an 
equal sign is not found within 6 characters, this error is raised.  It can be due to a missing equal sign 
or an invalid tag value.  Tag values should not have leading zeros. 

Message 24 (Invalid character found in tag) 

Tags must consist of from one to five digits.  This error indicates that a character other than a numeric 
digit was found in a tag.  Tags must be delimited with an equal sign.  This error can also be caused by 
a missing or invalid equal sign or an invalid code page value in the MQSeries message descriptor 
(MQMD). 

Message 30 (Invalid data type for length of raw data field) 

Raw data items are used for data that can contain any data characters, including the normal delimiter 
character used to indicate the end of the data portion of an individual item.  Although a delimiter 
character must be used after the data in a raw data field, the delimiter character cannot be used to 
indicate the length of the data.  Therefore, a length item must immediately precede the raw data item, 
to indicate the length of the raw data.  This length is used to determine the end of the data contained 
in a raw data item.  This length field should be of type integer.  If the field immediately preceding a 
raw data field is not of type integer, then that field is assumed to be something other than the required 
length field and therefore the required length field is assumed to be missing. 

Message 31 (Length field at offset (nn) evaluates to zero) 

A length field must immediately precede a raw data item.  The length field must be an integer and 
must have a length that is greater than zero.  The field immediately before the raw data item has a 
value of zero or a negative value. 

Message 32 (Length field for raw data field exceeds remaining buffer) 

This message indicates that the length field for a raw data item is greater than the remaining 
characters in the message.  This usually indicates a problem with the application that created the 
message data. 



MQSeries Integrator V2 - FIX message adapter 

43 

Message 33 (Delimiter at end of  raw data field missing) 

This message indicates that the delimiter character that must follow the data portion of the raw data 
item is missing.  This usually indicates a problem with the application that created the message data.  
It can also indicate a problem with the length field that is contained in the field just before the raw data 
item. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

----- End of Document ---- 


	Trademarks and service marks
	Introduction to the FIX standards
	FIX message format
	What does a FIX message look like?
	Headers and Trailers
	Message Types

	What types of data are contained in FIX messages?
	Compression and Encryption
	FIX Metadata

	Versioning Support
	How versioning is handled by the Parser
	Metadata Files


	Installation
	SupportPac contents
	Prerequisites
	Supported Platforms
	Installing the executable programs
	Installation in the Windows NT/2000 environments
	Installing the metadata
	Defining the message dictionary in the registry

	Installation in an AIX environment
	Installing the executable programs and message catalog
	Installing the metadata
	Working with the parser source programs on AIX
	Working with the metadata utility source programs on AIX

	Environment variable for the metadata files
	Adding user defined tags to the metadata
	Installation Verification
	Testing encryption function

	Additional considerations

	Using the Parser
	Message Domains
	General data structure
	Naming of data elements
	Determining the names of the data items

	Input Messages
	Encrypted Input

	Field Names
	Output Messages
	Encrypted output
	Output of repeating fields


	Using the source code
	Adding encryption and decryption routines
	Building the parser (Windows NT/2000)
	Building the Message Catalog (Windows NT/2000)
	Building the Message Catalog (Unix)

	Error Messages
	Customization of the supplied metadata files
	Using the offline utilities

	Parser Implementation
	Parse Tree Structure
	Repeating data items
	Handling of metadata files within the parser
	Some more detailed design points
	Parsing of input messages
	Parsing of output messages
	Handling of headers in output segments


	System management messages
	Recognition of management messages
	Message types supported
	System Management Message Formats
	Flushing and monitoring the metadata cache
	Capturing Statistics
	Turning trace on and off and displaying trace status
	Displaying the Level of the Executing Parser
	Implementation considerations
	Generation of names for Data Elements


	Environment Variables
	Implementation details
	Parser Initialization and Termination
	Handling of Input Messages
	Parser Context
	Initialization functions
	Parsing Routines
	Termination Routines

	Handling of Output Messages

	Offline Utilities
	Building the Metadata files

	Problem Determination
	Broker will not start
	Parser Exceptions
	Performance
	Debug version of the parser
	Using the debug version
	Reporting bugs

	Appendix A - Hints and tips for writing a parser
	What is a logical message and what is a wire format?
	What do parsers do?
	How do Parsers work?
	What is "partial parsing"?
	Parser Context
	What happens if a parser encounters an error?
	How do the completion bits found in message elements work?
	What data types are supported and how are they stored internally?
	Code pages and input buffers
	Parser Utility Functions
	Using the CciLog and CciThrowException utility functions
	Creating a Message Dictionary
	Calling the CciLog and CciThrowException functions.

	Using Microsoft Foundation Classes (MFC) in a parser
	What does the iFpIsHeaderParser parser function call do?

	Appendix B – Repeating field names
	Appendix C - Error Message Details
	Error Message Text and Likely causes
	Message 10 (No BeginString item found)
	Message 11 (No delimiter (0x01) for BeginString data found)
	Message 12 (No ending delimiter (0x01) found)
	Message 13 (No CheckSum (tag #10) found)
	Message 14 (Calculated check sum does not match checksum item)
	Message 20 (No identifier found preceding equal sign)
	Message 21 (Element name (XXX) not found in metadata file)
	Message 22 (No metadata found for this fix level - XXX)
	Message 23 (Tag length too long (> 5 characters))
	Message 24 (Invalid character found in tag)
	Message 30 (Invalid data type for length of raw data field)
	Message 31 (Length field at offset (nn) evaluates to zero)
	Message 32 (Length field for raw data field exceeds remaining buffer)
	Message 33 (Delimiter at end of  raw data field missing)



