
WebSphere MQ Integrator

MRM Primer
Version 2.1

IC00-IA7A-00

���

WebSphere MQ Integrator

MRM Primer
Version 2.1

IC00-IA7A-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under Appendix L,
“Notices” on page 123.

First edition (August 2002)

This edition applies to Version 1.0 of SupportPac™ IA7A MRM Primer and to all subsequent releases and
modifications until otherwise indicated in new editions. The use of this SupportPac is in conjunction with IBM®

WebSphere MQ Integrator Version 2.1 or WebSphere MQ Integrator Broker Version 2.1.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, address
your comments to:

User Technologies (MP095)
IBM United Kingdom Laboratories
Hursley Park
Hursley
Hampshire, SO21 2JN
England

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you. You may continue to use the information that
you supply.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this SupportPac xi
Who this document is for xi
What you need to know to understand this
document xi
General assumptions xii
C header files and Cobol copybooks xiii
Error messages during Check In and Deployment xiii
WebSphere MQ Integrator flexibility xiv
SupportPac contents xiv
Completing the exercises xiv
Testing the exercises xiv

Chapter 1. Introduction to messaging . . 1
WebSphere MQ 1
WebSphere MQ Integrator 2

High level overview 3
Summary 4

Chapter 2. Message processing
concepts 5
Data interpretation 5
Physical format 6
Logical format 6

Chapter 3. Introduction to the MRM . . . 9
The logical message model 10
The buildtime and runtime environments 11

Buildtime environment 11
Runtime environment 11

The message repository 12
Creating message models 12

How the broker processes a message 12

Chapter 4. Importing C or Cobol data
structures into the MRM 15
Reviewing assumptions for this exercise 15
Creating a message set 15
Adding physical format layers 16
Importing the data structure 17
Creating a logical message 19

Chapter 5. Creating and testing a basic
message flow 21
Reviewing assumptions for this exercise 21
Creating the WebSphere MQ resources 22
Creating a basic message flow 22
Defining a broker in the domain 24
Assigning the message flow to the execution group 26
Deploying the message flow to the broker 27

Testing the basic message flow 29
Using WebSphere MQ Explorer. 29
Using IH03 SupportPac 31

Chapter 6. The Trace node 35
Reviewing assumptions for this exercise 35
Use of the Trace node 35
Adding a Trace node to a message flow 36
Demonstrating trace 37

Chapter 7. Converting CWF to TDS . . 41
Reviewing assumptions for this exercise 41
Creating and assigning the message set 41

Creating the message set 42
Adding physical format layers 42
Importing the data structure and creating the
associated message 42
Mapping the TDS physical layer 43
Delimiters 45
Assigning a message set to a broker 45

Create a CWF to TDS message flow 46
Adjusting the Input node properties for the
message set 46
Adding a Compute node 47
Setting the Compute node to convert CWF to
TDS 48
Defining the broker in the domain. 51
Assigning the message flow to the broker . . . 51
Saving all the changes 51
Deploying the configuration to the broker . . . 52

Testing the CWF to TDS message flow 52
Error processing in a message flow 53

Chapter 8. Further CWF input
processing 55
Reviewing the assumptions for this exercise . . . 55
Creating additional message sets 56
Adding physical format layers 56
Importing additional data structures 56
Creating the logical messages 57
Mapping additional TDS layers to the logical layers 57
Assigning the message sets to the broker 58
Creating the additional WebSphere MQ resources . 59
Creating the additional message flows 59
Setting the additional input and output node
properties for CWF to TDS 60
Setting the additional compute node properties for
CWF to TDS 61
Defining the broker in the domain. 61
Assigning the message flows to the execution group 61
Deploying the configuration to the broker 62
Confirm error processing 62
Testing the additional message flows 62

© Copyright IBM Corp. 2002 iii

Chapter 9. Further message
transformation 65
Review the assumptions for this exercise 65
Create the message set. 66

Create a message set based on another message
set 66
Add the message and message types to the
message set workspace 67
Add an XML physical layer 67
Add an element to a message set 67

Create the message flow 69
Create the additional WebSphere MQ resources 70
Copy an existing message flow 70
Update the message flow nodes 70

Assign, deploy, and test the message flow 72
Assign the message set to the broker 72
Assign the message flow to an execution group 72
Deploy the configuration to the broker 72
Test the message flow 72

Chapter 10. Basic message
manipulation 75
Reviewing assumptions for this exercise 75
Creating the message set 75

Create the message set and add the message and
types 76
Copy a message set type 77
Create an element based on the new Type . . . 77
Create a type and add an element 78
Add a new message to the message set 79
Removing an element from a compound type . . 79
Create and add an element to a compound type 80

Creating the message flow 81
Create the additional WebSphere MQ resources 81
Copy an existing message flow 81
Update the message flow nodes 81

Assigning, deploying, and testing the message flow 84
Assign the message set to the broker 84
Assign the message flow to an execution group 84
Deploy the configuration to the broker 84
Test the message flow 85

Appendix A. Example C header files . . 87
Example 1: PaxData1.h 87
Example 2: PaxData2.h 87
Example 3: PaxData3.h 88
Example 4: PaxData4.h 89

Appendix B. Example Cobol copybook
files 91
Example 1: PaxData1.cpy 91
Example 2: PaxData2.cpy 91
Example 3: PaxData3.cpy 92
Example 4: PaxData4.cpy 93

Appendix C. Example input message
files 95
Example 1: PaxData1.ipt 95
Example 2: PaxData2.ipt 95

Example 3: PaxData3.ipt 95
Example 4: PaxData4.ipt 95

Appendix D. Example TDS output . . . 97
Example 1: From PaxData1.ipt 97
Example 2: From PaxData2.ipt 97
Example 3: From PaxData3.ipt 97
Example 4: From PaxData4.ipt 97

Appendix E. .XML trace file 99

Appendix F. .log trace file 101

Appendix G. Example CWF import
report file 105

Appendix H. Variable conversion input
files 107
Example 1: CWF input file
(PaxData4_TR1_CWF.ipt) 107
Example 2: TDS input file (PaxData4_TR1_TDS.ipt) 108
Example 3: XML input file
(PaxData4_TR1_XML.ipt) 108
Example 4: OTH (Other) input file
(PaxData4_TR1_Other.ipt) 109

Appendix I. Variable conversion
output files 111
Example 1: From CWF input file
(PaxData4_TR1_CWF.ipt) 111
Example 2: From TDS input file
(PaxData4_TR1_TDS.ipt) 111
Example 3: From XML input file
(PaxData4_TR1_XML.ipt) 112
Example 4: From OTH (Other) input file
(PaxData4_TR1_Other.ipt) 113

Appendix J. Manipulated output files 115
Example 1: From CWF input file
(PaxData4_TR1_CWF.ipt) 115
Example 2: From TDS input file
(PaxData4_TR1_TDS.ipt) 115
Example 3: From XML input file
(PaxData4_TR1_XML.ipt) 116
Example 4: From OTH (Other) input file
(PaxData4_TR1_Other.ipt) 117

Appendix K. Delimiter examples for
PaxData4 files 119
PaxData4.h 120
PaxData4.cpy 120
A break down of the TDS output showing
delimiter separation 121

Appendix L. Notices 123
Trademarks 125

Bibliography. 127

iv WebSphere MQ Integrator MRM Primer

Index 129 Sending your comments to IBM . . . 131

Contents v

vi WebSphere MQ Integrator MRM Primer

Figures

1. WebSphere MQ Integrator Overview 3
2. MRM processes in the Control Center, the

Configuration Manager, and the broker . . . 9
3. The Control Center on completion of Message

Set creation 16
4. Typical error message generated on deploying

to broker. 17
5. The Control Center after adding the PaxData1

C header to it. 19
6. MQSeries Explorer after adding input and

output queues 22
7. The Control Center after adding MQInput and

MQOutput nodes 24
8. The Control Center after adding the broker:

topology view. 25
9. The Control Center after adding the broker:

Assignments view 26
10. The Control Center after assigning the message

flow to the broker 27
11. The Control Center Log view 28
12. The Control Center Operations view 28
13. WebSphere MQ Explorer showing

MQSI_SAMPLE_QM queue manager queues . 29
14. WebSphere MQ Explorer Put Test Message

dialog 30
15. WebSphere MQ Explorer Message Browser

dialog 30

16. WebSphere MQ Explorer Properties for
Message dialog 31

17. IH03 (rfhutil.exe) initial screen 32
18. IH03 (rfhutil.exe): Data tab 32
19. The Control Center and message flow to be

modified 36
20. The Control Center showing the added Trace

node 37
21. The Control Center after importing the

message. 43
22. Add an existing Compound Type dialog 44
23. The Control Center after assigning a message

set to the broker 46
24. A Compute node properties dialog. 49
25. The IH03 dialog after reading the test message. 53
26. The WebSphere MQ Integrator Control Center

after assigning the message sets 58
27. MQSeries Explorer after adding the additional

local queues 59
28. The Control Center after assigning all the

resources to the broker 62
29. The Check Out List dialog 69
30. Screen shot of the Type tree that has just been

created 79
31. The input and output message 81

© Copyright IBM Corp. 2002 vii

viii WebSphere MQ Integrator MRM Primer

Tables

1. Message set names to create 56
2. CWF header files: physical format layer

parameters 56
3. CWF header files to import 57
4. Message, Message IDs, Message Type names to

use in creating the messages 57
5. Type names requiring modification. 58
6. Message sets to assign to the broker

(MQSI_SAMPLE_BROKER) 58
7. Input and output queues needed for the

message flows 59

8. Message flow and node names 60
9. Input node properties needed for the message

flows. 60
10. Output node properties needed for the

message flows 60
11. Input and output queues needed for the

message flows 61
12. Message flows to assign to the broker. . . . 61
13. Input and output queues needed for the

message flows 63

© Copyright IBM Corp. 2002 ix

x WebSphere MQ Integrator MRM Primer

About this SupportPac

This primer gives users who are new to WebSphere MQ Integrator and the
Message Repository Manager (MRM) a basic understanding of how to use the
MRM to create, deploy, and test a message set through a message flow. It is not
intended to be a document that stands on its own as a reference guide, but must
be used in conjunction with the existing documentation and help supplied with
WebSphere MQ and WebSphere MQ Integrator to assist you to gain a quicker
understanding of the MRM.

The primer and associated files:
v Provide an introduction to messaging
v Provide an introduction to message processing concepts
v Provide an introduction to the MRM
v Show how to import a data structures of increasing complexity (such as one

defined in a C header file or Cobol copybook) and create the associated message
set

v Show how to create a basic message flow and test it
v Provide an introduction to the Trace node
v Show how to create message sets and message flows to:

– Convert a custom wire format (CWF) message into a tagged delimited string
(TDS) message

– Convert a message to a format specified in the input message
– Convert a message to a format specified in the input message, remove the

format element and add a date time stamp to the outgoing message

Where further information is available, this document points a referenceto it. The
“Bibliography” on page 127 refers to the relevant manuals and other information
supplied with WebSphere MQ Integrator.

Who this document is for
This document is for users who are unfamiliar with the MRM in WebSphere MQ
Integrator Version 2.1. It is not intended as a comprehensive guide on the use of
the MRM, but to provide the basic knowledge on which to develop further
experience.

What you need to know to understand this document
You should be familiar with the concepts of WebSphere MQ and with the use of
MQSeries Services and MQSeries Explorer.

You should be familiar with the concepts of WebSphere MQ Integrator and with
message set and message flow design using the Control Center.

The term local error log is used within this document to mean the Event Log on
Windows NT.

© Copyright IBM Corp. 2002 xi

General assumptions
If you download and use the files in this SupportPac, the following are assumed:
v You have installed WebSphere MQ Integrator Version 2.1. Your installation

options include the broker, the Configuration Manager, and the Control Center.
Other components are optional for this purpose.

v You have set up WebSphere MQ, WebSphere MQ Integrator, and DB2 with the
sample names used in the WebSphere MQ Integrator Installation Guide for Windows
NT and Windows 2000. These are the names that are used within this SupportPac.
If you use other names (where the sample names are quoted in this document)
you must substitute your names for the sample ones. Examples of these names
are:
– Broker queue manager: MQSI_SAMPLE_QM
– Broker: MQSI_SAMPLE_BROKER
– Broker database: MQSIBKDB
– Configuration repository database: MQSICMDB
– Message repository database: MQSIMRDB

Where an object is described in any of the processes and has a name in brackets
after it (for example message set (MRMP_MS1)) the name in brackets is the one
that has been used in the procedure and all following procedures and chapters
that use that object. This is to enable you to more easily cross reference the text
with screen shots.

v The queue manager (MQSI_SAMPLE_QM) has a dead letter queue
(dead.letter.queue) for handling any undeliverable messages. As a minimum for
WebSphere MQ and WebSphere MQ Integrator a dead letter queue should be
defined for each queue manager. See the WebSphere MQ documentation for
details on how to create a dead letter queue.

v You have created and started the Configuration Manager on a Windows NT
system. The name of the queue manager is not assumed. However, if your
broker and your Configuration Manager do not share the same queue manager,
you must set up MQSeries communications between the two queue managers.
The WebSphere MQ Integrator Installation Guide for Windows NT and Windows 2000
provides instructions to help you to do this.

v You have created and started a broker on a Windows NT or Windows 2000
system that specifies queue manager MQSI_SAMPLE_QM. The WebSphere MQ
Integrator Installation Guide provides instructions to help you to do this. You can
use a different queue manager if you choose: if you do so, you must modify the
scenario resources after you have imported them as indicated in the appropriate
descriptions.

v You are using WebSphere MQ as the transport protocol between your
application and your broker.

v You have created and initialized the DB2 databases and tables required.
v You have updated your broker domain topology to define the broker to which

you intend to deploy the message flows. This document assumes that you are
assigning message flows to the broker’s default execution group: if you want to
use another execution group, you can do so during the assignment step. For
more information about updating your topology, see the WebSphere MQ
Integrator Using the Control Center book.

v You have installed and are familiar with the SupportPac IH03: MQSeries
Integrator V3 - Message display, test and performance utilities.

General assumptions

xii WebSphere MQ Integrator MRM Primer

The WebSphere MQ Integrator Administration Guide contains detailed information
about using the WebSphere MQ Integrator commands for creating brokers, starting
brokers, and other related objects.

C header files and Cobol copybooks
The exercises in this primer have used the C header files PaxData1.h, PaxData2.h,
PaxData3.h, and PaxData4.h as the primary source of data structures that have
been imported into the MRM for you to work with.

The equivalent Cobol copybooks are also included with this primer and are
PaxData1.cpy, PaxData2.cpy, PaxData3.cpy, and PaxData4.cpy. These files have the
same structure and labels as the C header file and if you imported these instead of
the C header files, they would create an almost identical set of elements, element
values and compound types as the C header files.

There are two main differences that will affect the exercises you will be working
through:
1. Labels from a Cobol copybook will import with all the labels in uppercase. You

will need to make the appropriate substitutions for this in the exercises in this
primer if you work with the supplied Cobol copybooks.

2. A character definition in a Cobol copybook (for example, PaxSurname PIC
X(20).) will import as an MRM STRING type. It will have the padding
character in the custom wire format (CWF) layer set to a SPACE and not the
NUL that is set as a padding character if a C header file is imported.
This will strip any trailing blanks from the input message fields that are written
to the logical message tree and these blanks will not be in the output messages
that can be seen in the appendices. If you need to keep these trailing blanks
then the padding character can be updated to a NUL after importing the Cobol
copybook.

Whether you use the C header files or the Cobol copybooks, once you have
imported the data structure, the steps to complete each of the exercises are the
same.

Error messages during Check In and Deployment
During the development and testing of message sets and message flows, you will
almost certainly receive error messages when you check in information to the
repository or deploy changes to the broker. For example, you might see a message
dialog, or need to view information in a log file.

These error messages are self explanatory and provide information that indicates
why the specified action has failed. Read the messages and make the appropriate
changes to ensure completion the next time you submit this action.

It is not the purpose of this document to provide the answers to all the error
messages that you will encounter. Where it is known that you could or will receive
an error message, it is briefly discussed.

General assumptions

About this SupportPac xiii

WebSphere MQ Integrator flexibility
The methods that are in this SupportPac give you a starting point from where you
can build further experience. This document is not intended to provide a
comprehensive solution to all the ways that you can accomplish the processes that
are covered here. In many cases, there is more than one way that you can complete
a process or a step within a process. These alternate ways are part of what gives
WebSphere MQ Integrator its flexibility.

SupportPac contents
This SupportPac is supplied in a zip file that contains all the files that you need to
use the scenarios described here:
v IA7A-00.pdf (this document)
v Files required for the exercises in this document

– PaxData1.h
– PaxData2.h
– PaxData3.h
– PaxData4.h
– PaxData1.cpy
– PaxData2.cpy
– PaxData3.cpy
– PaxData4.cpy
– PaxData1.ipt
– PaxData2.ipt
– PaxData3.ipt
– PaxData4.ipt
– PaxData4_TR1_CWF.ipt
– PaxData4_TR1_Other.ipt
– PaxData4_TR1_TDS.ipt
– PaxData4_TR1_XML.ipt

Completing the exercises
The exercises in this SupportPac increase in complexity. They often require earlier
exercises to be completed before the later ones can be started. Where this is true,
the exercise will state what you must have completed before you can complete the
current exercise.

Testing the exercises
The exercises are provided as a guide to allow you to import data structures, create
message sets, and create and test message flows. Each scenario includes some
information on how you can test its operation. Each later chapter tends to rely on
procedures finished in an earlier chapter: you must complete the procedures in
that chapter. Where possible, procedures in earlier chapters have been identified to
ensure that testing should complete successfully.

You will find the following helpful in testing:
v The IH03 SupportPac MQSeries Integrator V2 - Message display, test and

performance utilities

WebSphere MQ Integrator flexibility

xiv WebSphere MQ Integrator MRM Primer

This SupportPac is a GUI based program that assists in the testing of WebSphere
MQ Integrator applications. It can display messages in a variety of formats,
including XML, and COBOL copybook representations. It can read data from
and write data to files and WebSphere MQ queues.

v The WebSphere MQ Explorer
This program allows you to view the contents of messages on a queue.
WebSphere MQ Explorer displays a tree view of the queue managers and their
resources. Select the queue manager that hosts your broker, and look for the
queue or queues you are interested in.
Although you cannot use WebSphere MQ Explorer to put messages to a queue
for testing all these scenarios, because it cannot use a file as input, it is useful for
other actions. For example, creating queues.

Testing the exercises

About this SupportPac xv

Testing the exercises

xvi WebSphere MQ Integrator MRM Primer

Chapter 1. Introduction to messaging

The last few years have seen an increasing growth in the market for the
consolidation of applications or hardware. The reasons for this can vary from the
merger and acquisition of companies to the need for a company to integrate
disparate or legacy software to work with new applications on various hardware
platforms or operating systems. As technology progresses, the need for integration
of systems becomes greater due to companies looking to keep costs down through
linking systems together to make a complete solution.

As an example, a customer purchases a computer from a store. The sale through
the till triggers a series of messages that are routed through financial systems for
accounting purposes and to warehousing systems to order a new computer for the
store. If the warehouse does not have any in stock, the manufacturing process logs
the need for a computer to be built and ensures that all the items needed to build
it are in stock or are ordered.

You can see from this relatively simple example how complex the process can
become in linking all the systems together to create the complete solution. From
this need, a number of companies developed software to allow applications to
communicate with each other using messages.

WebSphere MQ
The WebSphere MQ family of products from IBM enables companies to develop
program-to-program communications. Applications can now communicate by
writing and retrieving application-specific data (messages) to or from queues,
without having a private, dedicated, logical connection that must be developed
and maintained by programmers.

Messages are the means by which the data is arranged, addressed, and sent
between applications. Applications no longer need to talk directly to each other,
but can place a message on a WebSphere MQ queue. Applications now have the
ability to run asynchronously. This is where the sending application places a
message on a queue and continues with its own processing and does not wait for a
response from the receiving application. The retrieving application gets the
message in its own time and might not even be running at the time the message
was placed. An example of this is where an application is started at a specific time
for handling the messages as a batch process.

The sending application does not need to know where the receiving application is.
This is handled by a system administrator who configures the queue manager to
ensure the message is routed for the next application. This allows the application
to be on the same system, another system, even one running a different operating
system, and routing and handling of the message is transparent to the sending
application.

Administrators now have the ability to move applications from one system to
another: by changing the parameters and definitions within the queue manager,
the messages can be routed to the new system. This removes the costly need for
any programming changes to any of the applications. This message and queuing
process became a part of what has become known as middleware.

© Copyright IBM Corp. 2002 1

WebSphere MQ Integrator
Just passing the data from one application to another, particularly where they are
on different machines and operating systems, left companies with the problem
where diverse applications need to understand the data that is being processed.
This often needed separate software to be developed to ensure that applications
processing shared data were effectively speaking the same language.

WebSphere MQ Integrator is an application that has been written to enable this
translation to be done for the application, removing the need for the often difficult
process of updating legacy software. Applications continue to send the message to
a queue in the standard way, but a message broker is now monitoring the queue. It
retrieves the message and processes it through a message flow, placing it on an
outgoing queue for the next application to process.

A message flow is a general purpose, reusable application. It is made up of a
sequence of message processing nodes or subflows. This allows a single processing
node or subflow to be used in multiple instances where the processing is common.
An example of this is error handling.

This flow contains a sequence of operations that are performed on the message by
a series of message processing nodes. These can:
v Transform it in terms of structure, layout, or code tables. An example of this

would be from ASCII (American Standard Code for Information Interchange) to
EBCDIC (Extended Binary Coded Decimal Interchange Code) formats

v Route it dependant on message content
v Deliver copies to multiple destinations
v Modify or add to the content of a message, for example adding a date or time

stamp
v Read or update a database dependant on message content
v Perform virtually any operation using custom nodes

For a given application scenario, the message flow describes all the possible
outcomes of processing for that message. Using the earlier example, this includes
routing additional messages to an audit application for a financial transaction,
sending a message to the warehouse for restocking, or handling an invalid
message.

WebSphere MQ Integrator includes a range of message processing nodes called
primitives that provide most of the basic functions such as input (for example:
MQInput) to the message flow and output (MQOutput) from the flow.

Message flow nodes provide the individual processing steps that make up a
message flow, and each node defines a single operation on a message. You can
think of each node, including primitives, as a reusable component in an integration
library. A node is joined to its neighbor by connectors, and it is this combination of
nodes and connectors that make up a message flow.

On completion of the message flow, the flow can be assigned for execution to one
or more brokers for the processing of messages.

WebSphere MQ Integrator

2 WebSphere MQ Integrator MRM Primer

High level overview
WebSphere MQ Integrator comprises the following two integrated components:
v The administrative and modeling environment and this consists of the Control

Center and Configuration Manager. Here the message flows and message sets
are modeled and deployed to the brokers for execution.

v The broker, where the message flows execute.

Configuration Manager and Control Center
The Configuration Manager and the Control Center form the buildtime
environment.

The Configuration Manager is the central component of the WebSphere MQ
Integrator environment and is required to manage the broker domain. The
Configuration Manager provides a service to the other components in the broker
domain, giving them configuration updates in response to activities that you
initiate from the Control Center. It serves three main functions:
v It maintains the database tables that provide a central record of the broker

domain components in the configuration repository
v It manages the initialization and deployment of brokers and message processing

operations in response to actions that you initiate through the Control Center

Broker

ODBC

ODBC

Runtime dictionary
broker DB

User DBWebSphere MQ
queue

Messaging
Application

B
U

IL
D

T
IM

E
R

U
N

T
IM

E

ODBC

JDBC

WebSphere MQ
channel

Configuration Manager

Message Repository
Manager (MRM)

Configuration Manager
Message sets

MRM DB
shared repository

Broker
message flows

configuration DBMade available
to Broker as a
result of "Deploy"

Control Center

WMQI V2.1
Control Center

(GUI)

Broker

Execution group
run-time message

parser

Local
workspace

files

Figure 1. WebSphere MQ Integrator Overview

High level overview

Chapter 1. Introduction to messaging 3

v It checks the authority of defined user IDs to initiate those actions

The Control Center is the graphical development and administrative tool that
interacts with the Configuration Manager. Using the Control Center, you can:
v Configure and control the broker domain
v Create, manipulate, and deploy broker domain resources. Example of these are

message flows and message sets for the broker
v Monitor and manage the operational state of a broker

Message Broker
The message broker exists on the operating system where the message flows are to
execute and are the runtime environment. The broker has three main functions:
v Manage the Administrative Agent and execution groups as they are deployed. It

also restarts failed processes to increase resilience.
v Manage configuration changes through updates to the broker database tables. It

also monitors the brokers input queues for Control Center requests and returns
messages indicating success or failure.

v Manage the execution groups and their message flows.

Summary
Using the Control Center, Configuration Manager, and the broker, WebSphere MQ
Integrator provides you with the framework that supports the supplied, basic
functions, along with plug-in enhancements, to enable the rapid construction and
modification of business processing rules that are applied to messages within a
messaging system.

The Control Center and Configuration Manager form the build environment and
are where messages are modeled, routed and transformed according to the
business rules that the user has defined.

The message broker is the runtime environment and are where these rules are
applied and the messages are processed.

For further details of data processing using WebSphere MQ Integrator see:

WebSphere MQ Integrator Introduction and Planning

WebSphere MQ Integrator Working with Messages

WebSphere MQ Integrator Using the Control Center

Configuration Manager and Control Center

4 WebSphere MQ Integrator MRM Primer

Chapter 2. Message processing concepts

To understand how the MRM handles the data that it receives in the form of
messages placed on a WebSphere MQ queue, it is necessary to understand how the
data is received and broken down into its separate components.

Data that an application sends to a WebSphere MQ queue has control information
attached to it. This includes routing and descriptive information about the message
and how it should be handled by WebSphere MQ. The combination of this control
information and the application data is what forms the message. For the purpose
of this concepts overview, reference is made to the application data only.

Data interpretation
When an application exchanges data with another application, it is essential that
both interpret the data in the same way. If one of the applications interprets all or
part of the message in a different way, it might process the data incorrectly,
produce wrong results, and perhaps pass invalid data to a further application. An
example would be a date being in the position an application is expecting a price.
There needs to be clear understanding of not only the layout of the data, but the
type of data each section represents.

Look at the following:

1 New Court

This looks like an address, but it can be broken down and interpreted in a number
of different ways. Here are some of them:
v ’1 New Court’: where the whole item is a text field
v ’1’ and ’ New Court’: where ’1’ is one text field and the remainder is another
v ’1 ’ and ’New Court’: where ’1 ’ is one text field and the remainder is another

(note: the difference with the one above is that the space has moved from the
beginning of the second field to the end of the first field)

v ’1’ and ’ New Court’: where ’1’ is a binary field of 49 (Hex 31 and displaying
as an ASCII 1) referring to house number 49 and the remainder is a text field

v ’1’, ’New’, and ’Court’ are all separate text fields that are separated by a space
delimiter

v X'31204E657720436F757274' data that just happens to display as 1 New Court!

These are just a few of the many examples of how one short block of data can be
interpreted. This clearly demonstrates that unless the applications are interpreting
the data in the same way, they are not able to share it.

© Copyright IBM Corp. 2002 5

Physical format
To enable an application to interpret the incoming message, the physical format of
the data has to be defined. Using the above example, it has now been changed to
read:

X’0001’’New Court ’

Here is a full description of the data: it comprises of two fields (elements). The first
is a two byte field containing a binary number. The second field is a 10 byte field
containing text characters. In a C header file this would be something like:
struct _Address_Line_1

{
short HouseNumber;
char StreetName [10];

} Address_Line_1;

You could use a Cobol copybook to define it the same way. What you are doing is
describing the physical format of the data, not its content. The physical format of
the data consists of such information as field or element size, and the type of data
(for example binary, character, or hexadecimal) that it holds. In whatever format
the data is physically held, it must be described in a way that is clear and
unambiguous to any of the applications that will make use of it.

If all the applications understand and recognize the physical layout of the data, it
is necessary only to pass the data between the applications. Passing the data from
one application to another can be handled by applications such as WebSphere MQ
and the message queueing process described earlier. The data requires no further
processing other than the sending application placing the message on a queue and
the receiving application retrieving it from a queue.

Logical format
If communicating, applications can require the same data, but in a different
physical format. For example, an application could be processing data using a C
data structure and has to pass this data on to an application that processes the data
in extensible markup language (XML). If multiple applications require this
information, each application is likely to require the data in a different format. The
easiest way to handle this transformation is put the data into a common logical
format from where each of the physical formats can be mapped.

This logical model of the data is a description of the data that is devoid of its
physical representation, and is independent of the platform and the way that the
message is physically constructed. You can view the logical model as the business
meaning of the data.

For example, the letter ’A’ is still the letter ’A’ regardless of whether the physical
format of the data is in ASCII (X'40') or EBCDIC (X'C1'). They are just different
physical manifestations of the same business data.

If two applications were processing common data, one with the data in a C data
structure and the other in XML, it would be necessary to write an application to
convert this data from one physical format to the other. If data needs to be
returned to the original application, the ability to convert from XML to the C data
structure will be required. If a third application requires this data, such as SWIFT
(a TDS format), it is possible the following conversions could be required:

Physical format

6 WebSphere MQ Integrator MRM Primer

v C data structure to XML
v XML to C data structure
v C data structure to TDS
v TDS to C data structure
v XML to TDS
v TDS to XML

Adding a third physical format has required another four conversion processes and
if you add a fourth physical format, this new format would need to be mapped to
each of the other existing physical formats. This is a difficult and time consuming
task.

If the data received is translated into a logical format, the mapping of the data to
and from any of the related physical formats becomes much easier and
maintainability is greatly improved. Using a common logical format ensures that
when another application’s physical format is added, that physical format only
needs mapping to the existing logical format. This application will now be able to
communicate with any other application that has already been mapped to the
logical format.

When the data is in this logical model, it can be processed in any way that the
controlling application wishes to handle it. The simplest would be to move the
data from the logical model to a different physical model. This is where the
receiving application is expecting the information in a different order or format
than the sending application is sending it in.

The application could need a date and time stamp in the message. This could be
added to the information in the logical model and sent on as a new message to the
next application. Perhaps one of the fields needs updating with pricing
information. The process could interrogate the data in the logical model for the
item, interrogate a database for its price, multiply it by the number of items in the
data and add this information as a total cost to the logical model. This is now sent
on to the next application for further processing.

If you process the data in a logical format, it means that whatever processing
needs to be done, the process is only coded once and is carried out on the business
data in the logical model.

The data for any new application only needs its physical format to be mapped to
the current logical one to allow its data to be processed in the same way as an
existing application that has already been mapped. If the physical data does not
quite map to the current logical one, it could be pre-processed to match that layout
reducing the need for coding for each message that is received.

You can see from this approach that there is a great flexibility in using the
middleware to develop solutions for linking applications together.

Logical format

Chapter 2. Message processing concepts 7

Logical format

8 WebSphere MQ Integrator MRM Primer

Chapter 3. Introduction to the MRM

The Message Repository Manager (MRM) is a component of WebSphere MQ
Integrator that allows messages to be modeled in the Control Center, and have
their definitions stored in a central message repository. This model is the logical
format discussed in Chapter 2, “Message processing concepts” on page 5.

The MRM also provides a parser that works in the broker to parse incoming
messages, and a message writer to construct outgoing messages that conform to
the message models you have created.

The Control Center interface to the MRM modeler (within the Configuration
Manager) can be used to define the messages that WebSphere MQ Integrator is to
handle. The Control Center works with the Configuration Manager to provide
limited checks to ensure the model is valid, and to store the model in the message
repository. A message set (containing a set of one or more related messages) can be
assigned to a broker. The definitions of this set are retrieved and deployed to the
broker in the form of a runtime dictionary, and describe the message model
associated with the message set.

When a message is received by the broker, it is parsed. If it is identified as an
MRM message, the broker involves the MRM and this interprets the data using the
runtime dictionary, and produces a tree structure to represent the message. This
structure is the broker’s view of the logical message model. It is from this structure
that the message can be manipulated to add, change, or transform the layout of the
data in the message. This structure consists of some or all of the Message tree,
LocalEnvironment tree, Environment tree, and ExceptionList tree. This structure
and the trees created are discussed in detail in the WebSphere MQ Integrator
Working with Messages book.

The runtime dictionary is also used by the MRM message writer to construct the
output message, mapping its structure to the output physical message format
required by the next application. The output message might be a copy of, or
derived from, or bear no resemblance to, the input message.

Control Center Configuration
Manager

Message
Repository

Broker

MRM
Modeler

MRM
Parser and

writer

Figure 2. MRM processes in the Control Center, the Configuration Manager, and the broker

© Copyright IBM Corp. 2002 9

The logical message model
The logical message model is built up of at least the following entities:

Message set
A message set is a collection of one or more related message definitions.
Message sets can be assigned to the broker. When it is assigned to the
broker and deployed, it becomes a runtime dictionary in the broker
database.

Message
A message definition is a depiction of the information that your
applications want to exchange (the actual message). Logically it has one or
more element definitions that represent different kinds of business
information.

Element

An element is a piece of business information. It is always based on a type
and its contents give meaning to the type.

For example: an element with contents such as Downing Street or Baker
Street, might have an element definition called Street Name that is of type
STRING. The name and type are some of the properties that define the
element.

When an element is created, it can have one or more element values
associated with it. This value defines the way an the element will be
constrained. The element value might define a default value for the
element, or perhaps set the maximum length of the element. Each element
value defines a single value for an element and one or more element
values can be associated with each element.

The value constraints are:
v Minimum inclusive value
v Maximum inclusive value
v Minimum length
v Maximum length
v Enumeration
v Default value
v Null permitted
v Scale
v Datetime template
v Pattern

For further information on element values see the WebSphere MQ Integrator
Working with Messages book.

Type There are two kinds of types, simple types and compound types.
v Simple types are predefined as BINARY, BOOLEAN, DATETIME,

DECIMAL, FLOAT, INTEGER, and STRING.
v Compound types are those that you have defined yourself. These

contain a group of elements along the lines of a C structure, that create a
substructure within a message. A compound type can also contain other
compound types.

The logical message model

10 WebSphere MQ Integrator MRM Primer

This list only covers the minimum set of entities that are required to build a valid
logical model that you can deploy to the broker. Further information on entities
can be found in the WebSphere MQ Integrator Working with Messages book.

The buildtime and runtime environments
As stated earlier, the MRM can be looked at in terms of having a buildtime
environment and a runtime environment. These terms are only used in this
SupportPac to help with the understanding of the MRM: they are not used within
the main documentation for WebSphere MQ Integrator.

Buildtime environment
The buildtime environment is analogous to the environment that a software
developer writes and builds their code in. It consists of such things as code,
libraries, macros, and the ability to build their code into a working program and
test it. The MRM is where the systems administrator performs the equivalent
functions for such things as message sets, elements, and types.

The buildtime environment is where:
v You save configuration data in the message repository
v You build messages in the Control Center

– including the logical message format
– including the physical message format

v You design the message manipulation in the Control Center with message nodes
and flows. These are stored in the message repository

v You import messages structures to and export messages structures from the
message repository

v Message sets and message flows are assigned to the broker
v You deploy such things as the message sets and message flows to the broker.

Messages sets are deployed to the broker as a runtime dictionary and the
message flows become libraries that are invoked by the broker to process an
incoming message

v You control the management of messages through:
– Locking
– Versioning
– Migration

Runtime environment
The runtime environment is analogous to the environment that the programs
created by software developers are run in. It is where the system receives a
message on a queue, the broker retrieves it from the queue, parses it, and does any
necessary processing, and finally puts it back on to a queue for the next
application. It consists of:
v Message parsers
v Runtime dictionaries
v Physical format descriptors
v Message flows

The logical message model

Chapter 3. Introduction to the MRM 11

The message repository
The message repository database that you create is where the metadata that
represents the logical message models is kept. This is also where the layers of
additional data, used for mapping the logical model to the physical model, are
stored. The definitions are made up of reusable components and are organized into
message sets.

Creating message models
You create an MRM message definition within, and as a member of, a message set.
A message set is an organizational grouping, and includes the definitions of one or
more related messages, often those used by a single application. You construct each
message using a set of building blocks called message components, some of these
are supplied by WebSphere MQ Integrator (the simple types) and some of these
you define using the Control Center (the compound types).

You can select from the following options to:
v Define your logical message model through the definition of elements and types.
v Import a message model from an external source to create the logical message

model. Most legacy applications have their data defined in some way. Examples
of this are a C header or Cobol copy book. The MRM provides a series of
importers that you can use to take an existing definition and produce the
appropriate entities in the MRM. A message set can be imported from another
message set that has been exported from the same, or another, message
repository.

When you have defined a message set, you must assign it to the brokers that need
access to the message definitions. You do this using the Assignments view in the
Control Center. When you deploy the message set to the broker, the MRM
constructs a message dictionary from each message set and sends this information
to each of the brokers you have assigned it to.

How the broker processes a message
When you have created the message sets, message flows, and all necessary
definitions, you must assign and deploy them to the broker. The broker processes
message data by:
v Receiving the raw data. The data is received on to a WebSphere MQ queue that

the broker is monitoring.
v Parsing the data into the logical format. In the buildtime environment, the

physical layout of the data is defined and deployed to the broker. Based on the
physical layout, the MRM parses the data it has received in to the logical format
that the broker processes. A message in the MRM logical format can be handled
by all the IBM-supplied message processing nodes except the New Era of
Networks nodes.

v Processing the data. Any necessary processing is done to the logical format of
the data within the message flow nodes that have been defined and deployed by
the Control Center.

v Writing (parsing) the data to the physical format. Following the processing, the
data must be put back into a physical format for passing on to the next
application.

v Sending on the processed data. Here the data, back in its raw state again, is
placed on a queue for the next application to pick up and process.

The message repository

12 WebSphere MQ Integrator MRM Primer

Through the definition and mapping of physical models to logical models, the
processing of the data and mapping the data back to the same or a different
physical model is what makes the MRM such a powerful and flexible application
development tool.

How the broker processes a message

Chapter 3. Introduction to the MRM 13

14 WebSphere MQ Integrator MRM Primer

Chapter 4. Importing C or Cobol data structures into the MRM

In this chapter you will look into how to import a C data structure to create a
logical model and to add a custom wire format (CWF) physical format definition
to the logical model. You will do this using a series of exercises and will be using
the file PaxData1.h that is included in the SupportPac and shown in Appendix A,
“Example C header files” on page 87.

The process for importing the equivalent Cobol data structure is virtually identical
to that used to import a C data structure. The PaxData1.cpy file (shown in
Appendix B, “Example Cobol copybook files” on page 91) is included with this
SupportPac and you can import this file instead of the PaxData1.h file.

In this chapter you will look at:
v “Reviewing assumptions for this exercise”
v “Creating a message set”
v “Adding physical format layers” on page 16
v “Importing the data structure” on page 17
v “Creating a logical message” on page 19

Reviewing assumptions for this exercise
In addition to the “General assumptions” on page xii, the following apply:
v You have the default queue manager running
v You have the Configuration Manager running
v You have the default broker running
v You have started the Control Center
v You have access to the files in Appendix A, “Example C header files” on page 87

or Appendix B, “Example Cobol copybook files” on page 91
v If you are importing a Cobol copybook you have reviewed “C header files and

Cobol copybooks” on page xiii

If you not have used the default names, you will need to substitute the names that
you have used.

Creating a message set
Before you can import a data structure into the MRM, you must define a message
set to import it into. Message sets are built using the Control Center. Use the steps
below to create the message set that you will import your formats into.
1. In the Control Center, select the Message Sets tab.
2. Right-click Message Sets in the left pane.
3. Select Create —> Message Set.
4. A Create a new Message Set dialog is displayed. Enter a name for the message

set, and leave the remaining settings to assume their default values. The name
used here is MRMP_MS1

5. Click Finish. This creates the message set and can now be populated with
messages.

© Copyright IBM Corp. 2002 15

In Figure 3 you can see the field Identifier at the bottom of the right pane. This
message set identifier is automatically generated when the message set is
created. The number that you see in Figure 3 (DPQ898C072001) cannot be
changed. The one generated when you create yours will almost certainly be
different.

Adding physical format layers
You must add a physical format layer to the message set to allow the broker to
map the data that is received to the logical format. When you import a C or Cobol
data structure, the physical layer to add is a custom wire format (CWF) layer. You
can add a physical format layer before or after importing the data structure if you
are creating a logical layer. It is recommended that you add this layer before
importing a data structure.

If you add a CWF physical layer before you import a structure, the Control Center
ensures that most elements and element values are correctly set. If you import a
data structure before adding the CWF physical layer, the Control Center is unable
to populate properties that do not yet exist.

For example, if you import a C structure before you add a CWF physical layer:
v An UNSIGNED CHAR maps to BINARY and the element value for the length is

set to 0.
You might not notice this until you try to either check in the object or deploy the
object to the broker after it has been checked in, and an error message is
generated. Figure 4 on page 17 is an example of the type of error message
generated. Read the message to understand the error that has been generated
and investigate and correct it.

Figure 3. The Control Center on completion of Message Set creation

Creating a message set

16 WebSphere MQ Integrator MRM Primer

v A SHORT type maps to INTEGER, but the element value for its length is set to 4
for the element, but the C structure should have an integer length of 2.

v Repeating elements might only have values for the number of repeats set in
some of the required fields and not all of them. If this occurs the incoming
message is not parsed correctly.

To add a CWF physical format layer:
1. In the Control Center, select the Message Sets tab.
2. Right-click the message set (MRMP_MS1) you are adding the physical format

to, and select Check Out.
3. Right-click the message set (MRMP_MS1) again and select Add -> Physical

Format... -> Custom Wire Format.... This brings up the Add a Custom Wire
Format dialog.

4. Enter the name for the physical format, for example CWF or PaxData1CWF.
5. Click Finish.

Importing the data structure
You now need to create the components in the message set that define the
structure of the message to the MRM. In this example, rather than create them all
manually, you will import a C header file or Cobol copybook that the MRM will
use to define these components for you.

You have added the required message set and the physical format layer prior to
importing a data structure. To import the data structure:
1. In the Control Center, select the Message Sets tab.
2. Select one of the following options:

v For importing a C header file.
Right-click the message set that you are to import into (for example
MRMP_MS1)
Select Import to message set -> C.... (You can also do this by selecting the
message set that you wish to import to (for example MRMP_MS1) and
selecting Message Sets -> Import to message set -> C... from the menu bar.)
The C Language Importer dialog is displayed.
The name of the C header file to use is PaxData1.h.

v For importing a Cobol copybook.
Right-click the message set that you are to import into (for example
MRMP_MS1)

Figure 4. Typical error message generated on deploying to broker.

Adding physical format layers

Chapter 4. Importing C or Cobol data structures into the MRM 17

Select Import to message set -> Cobol.... (You can also do this by selecting
the message set that you wish to import to (for example MRMP_MS1) and
selecting Message Sets -> Import to message set -> Cobol... from the menu
bar.)
The Cobol Importer dialog is displayed.
The name of the Cobol copybook to use is PaxData1.cpy.

Note: You should note that all labels from the data structure will be
imported into the MRM in uppercase. You will need to make the
appropriate substitutions for these labels in the following exercises.

3. Either type the full pathname and filename (PaxData1.h or PaxData1.cpy) of the
source file in the Import Source File field, or use the Browse button to search
for and select the file that you are to import. You can generate a report only at
this point by selecting the Report Only check box. This tells you if there are
any errors in the header file but does not create any resources in the Control
Center. The report is also generated when the data is imported. See
Appendix G, “Example CWF import report file” on page 105 for an example of
a report file.

4. Click Finish.
A dialog is displayed indicating if the operation was successful. It gives the
name of the report file that it has generated and the location of this file. It also
states if any user operation is required.

5. Select OK to continue.

When a data structure is imported, the MRM parses the source file and isolates the
data structure definitions. From this information, it creates the logical definitions
that correspond to the source file data structures and sets the appropriate wire
format (CWF) properties that define the mapping between the logical definitions
that are being created in the message set and the physical format of the original
message.

Importing a data structure into a message set creates the compound types, the
elements, and the element values that are associated with the data structure.
Although these are created and added to the message repository, they do not
display in the Control Center until you have added them to your workspace. This
is because there might be a large number of elements, types, and messages and
this allows you to add only those items to the workspace that you require to work
with.

The report that is generated (see step 4 above) describes all the definitions that
have been created, and includes information about any errors or conflicts within
those definitions. By selecting the report only check box (see step 5 above) you can
generate this report without making any changes to the message set. You are
recommended to use this option if you are unsure of the validity of the data
descriptions that you are importing.

If you added the CWF physical layer after importing the data structure, you will
see the following lines at the beginning of the report:
Warning: The Custom Wire Format Plugin is not installed and registered>>
>> for the project.*

No Custom Wire Format values will be set as a result

*The line has been split at >> for the purposes of displaying in this document.

Importing the data structure

18 WebSphere MQ Integrator MRM Primer

Creating a logical message
Before you can use the data structure that you have just imported, you need to
create the message for it:
1. In the Control Center, select the Message Sets tab.
2. Right-click the message set (MRMP_MS1) that you have imported into.

Select Create -> Message.... This will open the Create a new message dialog.
3. Give the message a Name (PaxData1_Msg) and an Identifier (PaxData1ID).
4. Use the Type drop-down selector to list the available message types. The data

structures that you have imported will be listed there. Select
PaxData1Msg_TYPE.

5. Click Finish.
6. From the menu select File -> Check In -> All (Saved to Shared).

The message has now been added to the message set and checked in. By
expanding the MSMP_MS1 message set (click the + to the left of it) and expanding
the Messages folder within that message set structure, you will see PaxData1_Msg
listed. See Figure 5 for an illustration of this.

Figure 5. The Control Center after adding the PaxData1 C header to it.

Creating a logical message

Chapter 4. Importing C or Cobol data structures into the MRM 19

20 WebSphere MQ Integrator MRM Primer

Chapter 5. Creating and testing a basic message flow

In the previous chapter you created a message set. Message sets and message
flows must not be confused with each other. A message set is the definition of the
data, a message flow is how that data is to be processed. They are independent of
each other and a message set can be used with multiple message flows. This
chapter will just address message flows and you will see how to use message sets
and message flows together in a later chapter.

This chapter gives an understanding of creating and testing a basic message flow.
The message flow that you will create performs no transformation or changes to
the message. It only routes the message from an input queue to an output queue
and performs no processing of the message data.

It is important to understand the basic concepts in creating a message flow before
moving on to message manipulation.

This chapter covers:
v “Reviewing assumptions for this exercise”
v “Creating the WebSphere MQ resources” on page 22
v “Creating a basic message flow” on page 22
v “Defining a broker in the domain” on page 24
v “Assigning the message flow to the execution group” on page 26
v “Deploying the message flow to the broker” on page 27
v “Testing the basic message flow” on page 29

Reviewing assumptions for this exercise
In addition to the “General assumptions” on page xii, the following apply:
v You have the default queue manager running
v You have the Configuration Manager running
v You have the default broker running
v You have the Control Center running
v You have the MQSeries Explorer running
v You have access to the files in Appendix C, “Example input message files” on

page 95
v You have installed and understand the use of IH03 SupportPac.

If you have not used the default settings during the installation and setup of
WebSphere MQ Integrator, you will need to substitute the names that you have
used.

© Copyright IBM Corp. 2002 21

Creating the WebSphere MQ resources
This basic verification test requires two queues, one for input and the other for
output. This section shows how to use the MQSeries Explorer to create these
definitions.
1. In MQSeries Explorer, expand the tree under the queue manager

MQSI_SAMPLE_QM. (Click the + to the left of the queue manager name.)
2. Right-click the queues folder and select New -> Local Queue.
3. Enter the queue name MQSI_INQ in the Queue Name field on the Create

Local Queue dialog. You can accept the default values for all the other
properties of the queue.

4. Click OK.
5. Repeat steps 3 and 4 to define the output queue MQSI_OUTQ. Again you can

accept the default value for all other properties.

Creating a basic message flow
Now you will create the message flow that will process the messages you put to
your input queue. The message flow is very basic: the only processing it does is to
retrieve the message from the input queue and put it to the output queue.
1. In the Control Center, select the Message Flows tab.

Right-click the Message Flows in the left pane and select Create -> Message
Flow.
Enter the name MQSI_TEST in the Create new Message Flow dialog.
Click Finish. The new message flow appears in the tree view in the left pane.

2. Expand the IBM Primitives tree (click the + to the left of it) to display the
supplied nodes.

Figure 6. MQSeries Explorer after adding input and output queues

Creating the WebSphere MQ resources

22 WebSphere MQ Integrator MRM Primer

Select the MQSI_TEST message flow in the left pane. Drag and drop an
MQInput node from the list of primitives on to the right pane. This creates an
MQInput node called MQInput1.
MQInput1 is the default name assigned to the MQInput node when it is added
to the message flow. If you add a second MQInput node to the message flow it
would become MQInput2, and so on. You can change the default names of any
of the nodes you add, to names that are more appropriate to their use or
context.
You can create message flows that have nodes in any place on the right pane.
For ease of use and understanding, you are recommended to place nodes in a
consistent order. By providing this level of consistency when you start to
design message flows, you can make maintenance and transfer of ownership a
much easier task. A suggestion is to have inputs come in from either the left or
top of the pane and outputs to the right or bottom of the pane.

3. Right-click the MQInput node (MQInput1) in the right pane and select
Properties.
On the Basic tab, type the MQSeries input queue name of your input queue
(MQSI_INQ).
Click OK.

4. Drag and drop an MQOutput node from the list of primitives on to the right
pane.
Right-click the MQOutput node (MQOutput1) in the right pane and select
Properties.
On the Basic tab, type in the queue manager name (MQSI_SAMPLE_QM) and
the queue name (MQSI_OUTQ) for the output queue.
Click OK.

5. Right-click the MQInput node (MQInput1) and select Connect -> Out. This
gives you a connector attached to your mouse pointer. Drag this to the
MQOutput node (MQOutput1) and add the connector to it by left-clicking over
the node. The connector attaches itself to the input terminal of the MQOutput
node.

6. You have now completed your first message flow. Select File -> Check In ->
All (Save to Shared). This checks in all the resources to the configuration
repository and saves the local copy of the workspace file. If you created a new
workspace for this message flow, you will be prompted to give the workspace a
name when you save it.

Creating a basic message flow

Chapter 5. Creating and testing a basic message flow 23

Defining a broker in the domain
If you have completed the installation process, you will have created a default
broker. (If you have not done this, refer to the WebSphere MQ Integrator Installation
Guide for details on creating a broker.) If you used the default broker name in the
installation guide, this will be MQSI_SAMPLE_BROKER. Although the broker has
been created it is possible that it has not been added to the workspace. You must
add a reference to it within the workspace to be able to work with it:
1. In the Control Center, select the Topology tab.
2. In the left pane, right-click the Topology root and select Check Out. The

topology has to be checked out to create the broker reference in the workspace.
The checked out topology has a key symbol displayed next to it.

3. Right-click the Topology root again and select Create -> Broker.
4. To use the broker that was created during the installation, specify the same

broker name (MQSI_SAMPLE_BROKER) and queue manager name
(MQSI_SAMPLE_QM) that you used during that process.

5. Click Finish.
6. Right-click the Topology root and select Check In.

The Topology view now displays the broker that you have just added to the
workspace.

Figure 7. The Control Center after adding MQInput and MQOutput nodes

Defining a broker in the domain

24 WebSphere MQ Integrator MRM Primer

Figure 8. The Control Center after adding the broker: topology view

Defining a broker in the domain

Chapter 5. Creating and testing a basic message flow 25

Assigning the message flow to the execution group
Having created a message flow, you need to define where you want to run it by
assigning the flow to a execution group:
1. In the Control Center, select the Assignments tab.

2. Expand the broker name (MQSI_SAMPLE_BROKER) in the left pane (click the
+ to the left of the name) to display the execution groups for the broker. The
sample broker currently has one execution group (called default). This
execution group is always created when you create a broker.

3. Right-click the default execution group and select Check Out. This locks the
execution group for you. If this is the first time that you have worked with the
execution group, you might get a message stating that this has never been
checked in. If so, click OK and continue. When any object is checked out a key
symbol appears to the right of the object name in the left pane.

4. Select your message flow (MQSI_TEST) and drag and drop it on the default
execution group in the right pane, where you can see a graphical representation
of the broker and default execution group. You can only drop a message flow
on an execution group and not on the broker itself.

5. Right-click the default execution group in the left pane and select Check In.
You might see a Check in Confirmation dialog showing the other elements
(such as broker and topology) that also need to be checked in. Click OK and all
necessary elements will be checked in, including those listed in the Check In
Confirmation dialog.

Figure 9. The Control Center after adding the broker: Assignments view

Assigning the message flow to the execution group

26 WebSphere MQ Integrator MRM Primer

Deploying the message flow to the broker
An assignment makes a connection between a message flow and a broker within
the Control Center. This connection instructs the Control Center to send the
message flow to the broker when a deployment occurs. It is only when you make a
deployment that the Configuration Manager updates the broker with the
configuration stored in the configuration repository.
1. Before you can deploy any changes, all the updated resources must be checked

in. If you have followed the instructions in this section, all the relevant
resources are checked in. If you are in any doubt, you can check everything in
by selecting File -> Check In -> All (Saved to Shared) from the menu.

2. In the Control Center, select the Assignments view.
3. Right-click the broker name (MQSI_SAMPLE_BROKER) in the left pane and

select Deploy -> Complete Assignments Configuration. When the
Configuration Manager receives this request from the Control Center, it sends
messages to the broker to give it the updated information it needs to be able to
support the new message flow.

4. Check the deploy by selecting the Log tab and clicking the refresh button (the
green icon above the log pane). Check for error messages or success messages.
(There might be a brief time delay before the messages appear.)

Figure 10. The Control Center after assigning the message flow to the broker

Deploy the message flow to the broker

Chapter 5. Creating and testing a basic message flow 27

Note: If you receive an error message, it will provide details of what you need
to change to be able to complete this action.

5. View the deployed configuration graphically in the Operations view. When you
refresh this view, the broker, execution group and message flow are displayed
with green lights to show they are active.

Figure 11. The Control Center Log view

Figure 12. The Control Center Operations view

Deploy the message flow to the broker

28 WebSphere MQ Integrator MRM Primer

Testing the basic message flow
Before you can test a message flow, you must start the broker and then place a
message on the input queue for the broker to process.

To test the message flow, you can use one of the following programs:
v MQSeries Explorer
v The SupportPac IH03

Using WebSphere MQ Explorer
You can use MQSeries Explorer to place a message on the input queue because all
that is required is a text message. You cannot use MQSeries Explorer if the
information in the message contains binary data, or if your messages are large.

This section shows how to use WebSphere MQ Explorer to test your message flow.
1. In WebSphere MQ Explorer, expand the queue manager and the queues folder.

2. Right-click the input queue (MQSI_INQ) and select Put Test Message from the
menu.

3. Enter the text of your message (it can be any text string). Click OK to put the
message on the input queue.

Figure 13. WebSphere MQ Explorer showing MQSI_SAMPLE_QM queue manager queues

Testing the basic message flow

Chapter 5. Creating and testing a basic message flow 29

4. A confirmation dialog appears to confirm that the message has been placed on
the queue. Click OK.

5. Right-click the output queue name (MQSI_OUTQ) and select Browse Messages
from the menu.

6. Your message is displayed. The text of the message is displayed to the right of
the screen. You might have to scroll the pane to the right to see it.
If the message does not appear on the output queue, see “Error processing in a
message flow” on page 53 for further information on error processing.

7. From the Message Browser dialog, you can also select the message, click
Properties, and select the Data tab to view the message data. The other tabs
show further information about the message.

Figure 14. WebSphere MQ Explorer Put Test Message dialog

Figure 15. WebSphere MQ Explorer Message Browser dialog

Using WebSphere MQ Explorer

30 WebSphere MQ Integrator MRM Primer

The test is complete.

Using IH03 SupportPac
You can also use the SupportPac IH03 (rfhutil.exe). This SupportPac reads a file
(whatever the data) and places it on the queue of your choice. It also has the
ability to read or browse messages from a queue. It is therefore, a flexible interface
to your queues.

This section shows you how to us the SupportPac IH03 to test your message flows.
1. Start the rfhutil application. (This is the name of the application that comes as

part of IH03).
2. Under Queue Manager Name (to connect to), enter the name of the queue

manager (MQSI_SAMPLE_QM).
3. Under Queue Name, enter the name of the input queue (MQSI_INQ) that you

are placing the message on to.
4. Click Read File, and use the dialog to select the file PaxData1.ipt (supplied

with this SupportPac) and click Open.

Figure 16. WebSphere MQ Explorer Properties for Message dialog

Using WebSphere MQ Explorer

Chapter 5. Creating and testing a basic message flow 31

5. A message confirming that the file has been opened appears at the bottom of
the dialog. Select the Data tab at the top of the utility: this shows the data it
has read from the file.

Figure 17. IH03 (rfhutil.exe) initial screen

Figure 18. IH03 (rfhutil.exe): Data tab

Using the IH03 SupportPac

32 WebSphere MQ Integrator MRM Primer

6. Click Write Q. This places the data that has been read from the file onto the
specified queue. A confirmation message (for example: ’Message sent to
MQSI_INQ’) will be displayed at the bottom of rfhutil dialog.

7. Click Clear Data to clear all the fields including that in the Data tag. Because
the data that is being written to and read from queue is identical in this
exercise, it could be difficult to see what has been retrieved from the queue.
Clearing the data from the fields will make it clearer that, after reading the
data, a message has actually been retrieved.

8. Change the queue name to the output queue (MQSI_OUTQ).
9. Click Read Q. This will retrieve the message that was put above and generate

a message stating that a message has been read (for example: ’Message read
from MQSI_OUTQ’) at the bottom of the dialog.

10. Select the Data tag: the data shown in this instance will be identical to that
when you select the Data tag in step 4 above. (See Figure 18 on page 32 for an
example).

This test is complete.

Note: It is possible to select Browse Q in step 9 above. This reads the data from
the message on the queue, but leaves the message on the output queue. For
further details on rfhutil, read the associated documentation in IH03
SupportPac.

Using the IH03 SupportPac

Chapter 5. Creating and testing a basic message flow 33

Using the IH03 SupportPac

34 WebSphere MQ Integrator MRM Primer

Chapter 6. The Trace node

The aim of this chapter is to give an introduction to the Trace node. This chapter
covers:
v “Reviewing assumptions for this exercise”
v “Use of the Trace node”
v “Adding a Trace node to a message flow” on page 36
v “Demonstrating trace” on page 37

Reviewing assumptions for this exercise
In addition to the “General assumptions” on page xii, the following apply:
v You have the default queue manager running
v You have the Configuration Manager running
v You have the default broker running
v You have the Control Center running
v You have created the message flow in Chapter 5, “Creating and testing a basic

message flow” on page 21
v You have access to the files in Appendix C, “Example input message files” on

page 95
v You have installed and understand the use of IH03.

If you have not used the default settings during the installation and setup of
WebSphere MQ Integrator, you will need to substitute the names that you have
used.

Use of the Trace node
The Trace node is one of primitive nodes that is supplied with WebSphere MQ
Integrator. You can use this node during the development of a message flow to
check that the behavior of a message flow is as expected, or to assist in the
diagnosis of errors that could occur. A Trace node can be added at any point in the
message flow and the data captured can incorporate text, message content, and
date and time information.

You can use the Trace node to write out some or all of the contents of the Message
tree, LocalEnvironment tree, Environment tree, and ExceptionList tree to file. This
file can be a user file, a trace log, or a local error log. See Chapter 3, “Introduction
to the MRM” on page 9 for further details on message trees.

Trace nodes can be invaluable in assessing and analyzing what is happening in a
message flow, but this data gathering also adds an overhead to the message flow
processing. If a high throughput is desired, do not leave Trace nodes in message
flows or have trace switched on when you are satisfied that the message flows
have been found to be working correctly. Trace nodes are independent of Trace and
you should be aware that Trace nodes will still gather information even if user
trace is inactive.

For more information on the Trace Node see the Control Center online help and
the WebSphere MQ Integrator Problem Determination Guide.

© Copyright IBM Corp. 2002 35

Adding a Trace node to a message flow
This exercise will add a Trace node to the message flow that was built in
Chapter 5, “Creating and testing a basic message flow” on page 21. If you are using
a message flow other than this one, the principle remains the same.

If you are adding a Trace node to a new message flow that you are creating, you
can do so in exactly the same way as you added the nodes to your first flow in
“Creating a basic message flow” on page 22.

1. In the Control Center, select the Message Flows tab.
2. In the left pane right-click the message flow (MQSI_TEST) to be amended and

select Check Out.
3. Right-click the connector line and select Delete. Click Yes to confirm the

deletion.
4. Expand the IBMPrimitives in the left pane and scroll down to show the Trace

node.
5. Select the Trace node and drag and drop it into the right pane between the

MQInput1 node and the MQOutput1 node. This creates a Trace node with the
default name Trace1.

6. Right-click the Trace node (Trace1) and select Properties.
In the Pattern field type ${Root}. This will make the Trace node (Trace1) trace
the whole message tree passing through it, from the root downwards

7. Right-click the MQInput1 node and select Connect -> Out.
Left-click the Trace node to make the connection from the MQInput1 node.

8. Right-click the Trace node and select Connect -> Out.
Left-click the MQOutput1 node to make the connection from the Trace node.

Figure 19. The Control Center and message flow to be modified

Adding a Trace node to a message flow

36 WebSphere MQ Integrator MRM Primer

9. From the File menu, select Check In —> All (Saved to Shared).

10. In the Assignments view, right-click the broker name
(MQSI_SAMPLE_BROKER) in the left pane.
Select Deploy -> Complete Assignments Configuration. When the
Configuration Manager receives this request from the Control Center, it sends
messages to the broker to give it the updated information it needs to be able
to support the new message flow.

11. Check the deploy by selecting the Log tab and clicking the refresh button (the
green icon above the log pane). Check for success messages. (There might be a
brief time delay before the messages appear.) See Figure 11 on page 28.

12. View the deployed configuration graphically in the Operations view. Refresh
this view and the broker, execution group and message flow are displayed
with green lights to show they are active. See Figure 12 on page 28.

This has added a Trace node to the message flow and deployed it to the broker.
The Trace node has been added with the default setting of user trace. The
information that you request is written to the system generated user trace file in
the log sub-directory. This combines the user trace information with the contents of
the message tree.

Demonstrating trace
In this exercise you will use the trace nodes to create a log file and look at the data
within that file.

For this exercise you will use the message flow (MQSI_TEST) that you added the
Trace node to in “Adding a Trace node to a message flow” on page 36. (The traces
that are shown in this chapter also had the input node updated as in “Adjusting
the Input node properties for the message set” on page 46. This allows the input

Figure 20. The Control Center showing the added Trace node

Adding a Trace node to a message flow

Chapter 6. The Trace node 37

node to interpret the incoming message correctly and the trace file shows this as
the message has been correctly parsed. Further details of this are covered in
Chapter 7, “Converting CWF to TDS” on page 41. The message placed on the
queue to allow this is the one in the PaxData1.ipt file supplied with this
SupportPac.)
1. Place a message on the input queue (MQInput1). Follow the instructions in

either “Using WebSphere MQ Explorer” on page 29 or “Using IH03
SupportPac” on page 31.

2. This will create a file in the log sub-directory of the location where WebSphere
MQ Integrator is installed (for example: C:\IBM\WMQI\log). The default file
name is made up of the broker name, the broker UUID (Universal(ly) Unique
Identifier), and a suffix of userTrace.bin. and a number (For example:
MQSI_SAMPLE_BROKER.46163417-ee00-0000-0080-
df695815836b.userTrace.bin.1). You are also able to give the log file a name
that you specify. See the Trace node in the Control Center online help for
information on how to do this.

3. The file has been recorded in a binary form and you will not be able to read it
directly. The log file needs to be converted and formatted for you to read it.
Open a system Command prompt and change to the log subdirectory. (For
example: cd c:\ibm\wmqi\log).

4. Enter mqsireadlog MQSI_SAMPLE_BROKER -u -e default -o mrmptrace.xml
where:
v MQSI_SAMPLE_BROKER is the name of the broker you are using.
v default is the name of the execution group being traced.
v mrmptrace.xml is the name of the XML output file to be used and is created

in the directory that the command is run from

The mqsireadlog command takes the log file and converts it into an XML
format. This can now be read using an XML file reader (an example would be
Microsoft Internet Explorer). You can find further details on the mqsireadlog
command in the WebSphere MQ Integrator Administration Guide. The file created
can be seen in Appendix E, “.XML trace file” on page 99.

The output files from this command are created within the directory the
command is run from. You are recommended to make this the log subdirectory
to keep all the trace files together.

5. If you want to use a text editor to view the trace contents, use the
mqsiformatlog command. Enter mqsiformatlog -i mrmptrace.xml -o
formatmrmptrace.log

where:
v mrmptrace.xml is the input file
v formatmrmptrace.log is the output file and is created in the directory that

the command is run from

This can now be read by a text editor: you can see an example in Appendix F,
“.log trace file” on page 101. This is an example of a trace where the input node
has been modified to parse the incoming message. As each node processes the
message, trace information is written to the log file. The trace can show:
v The process of the message being received

Demonstrating trace

38 WebSphere MQ Integrator MRM Primer

v The message structure where the input node has the expected message
format defined and the broker is able to parse the message. For example:
(0x1000021)MRM = (

(0x1000013)PaxData1 = (
(0x300000B)PaxSurname = ’PassengerSurname ’
(0x300000B)PaxMealType = 1

)

v The message that will be processed (although there is no processing).
v The output message from the message flow.

Demonstrating trace

Chapter 6. The Trace node 39

Demonstrating trace

40 WebSphere MQ Integrator MRM Primer

Chapter 7. Converting CWF to TDS

This chapter will look at the processes needed to take an input message with a
physical format of Custom Wire Format (CWF) such as a C data Structure and
convert it to an output message with a physical format of Tagged Delimited String
(TDS). Some of these procedures have been covered in earlier chapters and will
only be referenced from this chapter.

This chapter covers:
v “Reviewing assumptions for this exercise”
v “Creating and assigning the message set”
v “Create a CWF to TDS message flow” on page 46
v “Testing the CWF to TDS message flow” on page 52
v “Error processing in a message flow” on page 53

Reviewing assumptions for this exercise
In addition to the “General assumptions” on page xii the following apply:
v You have the default queue manager running
v You have the Configuration Manager running
v You have the default broker running
v You have the Control Center running
v You have created the message set in Chapter 4, “Importing C or Cobol data

structures into the MRM” on page 15
v You have created the message flow in Chapter 5, “Creating and testing a basic

message flow” on page 21
v You have access to the files in Appendix A, “Example C header files” on page 87

or Appendix B, “Example Cobol copybook files” on page 91
v You have access to the files in Appendix C, “Example input message files” on

page 95
v You have installed and understand the use of IH03
v If you are importing a Cobol copybook you have reviewed “C header files and

Cobol copybooks” on page xiii

If you have not used the default settings during the installation and setup of
WebSphere MQ Integrator, you will need to substitute the names that you have
used.

Creating and assigning the message set
This section covers:
v “Creating the message set” on page 42
v “Adding physical format layers” on page 42
v “Importing the data structure and creating the associated message” on page 42
v “Mapping the TDS physical layer” on page 43
v “Delimiters” on page 45
v “Assigning a message set to a broker” on page 45

© Copyright IBM Corp. 2002 41

Creating the message set
Follow the procedure “Creating a message set” on page 15 to create the message
set (MQSI_TEST) required for this exercise.

Adding physical format layers
To enable the broker to communicate with external applications, a runtime
dictionary (created when the message set from “Creating the message set” is
deployed to the broker) holds a physical description of the incoming and outgoing
messages that need to be mapped to the logical format. You must add a physical
layer for each different physical format that the broker will be handling. You are
converting from CWF to TDS and the broker will need to interpret the CWF
format message and write the TDS format message. You need to add both of these
formats as physical layers to the message set.

Note: If you are using the message set created in Chapter 4, “Importing C or
Cobol data structures into the MRM” on page 15, you can skip steps 3 to 5
below as the CWF layer has already been added.

To add CWF and TDS physical format layers:
1. In the Control Center, select the Message Sets tab.
2. Right-click the message set (MRMP_MS1) you are adding the physical formats

to and select Check Out.
3. Right-click the message set (MRMP_MS1) you are adding the CWF physical

format to and select Add -> Physical Format... -> Custom Wire Format.... This
brings up the Add a Custom Wire Format dialog.

4. Enter the name for the physical format, for example CWF or PaxData1CWF.
5. Click Finish.
6. Right-click the message set (MRMP_MS1) you are adding the TDS physical

format to and select Add -> Physical Format... -> Tagged/Delimited Format....
This brings up a Add a Tagged/Delimited Format dialog.

7. Enter the name for the physical format, for example TDS or PaxData1TDS.
8. Click Finish.
9. Right-click the message set and select Check In.

The physical layers have now been added and each of the properties panes for the
message set has additional tabs of the names you gave the CWF and TDS layers.

You might not immediately see the additional tabs until you refresh or restart the
Control Center.

Importing the data structure and creating the associated
message

Note: If you are using the message set created in Chapter 4, “Importing C or
Cobol data structures into the MRM” on page 15, you can skip this section
because the data structure has been imported and the logical message has
been added.

Creating the message set

42 WebSphere MQ Integrator MRM Primer

You have created the message set and added the physical layers required for
importing the data structure. To import and create the message:
1. Use the process “Importing the data structure” on page 17 to import the data

structure. During this process use the PaxData1.h (or PaxData1.cpy for Cobol)
file supplied with this SupportPac as the CWF file to import.

2. Use the process “Creating a logical message” on page 19 to create the required
message.

On completion of these steps the Control Center will look as Figure 21.

Mapping the TDS physical layer
TDS is a very flexible way of defining a message. Each of the fields in the message
could be of variable length with a delimiter, or could be of fixed length as for a
CWF message. Unless you know that the default values that are set for the TDS
layer are correct for the solution you are developing, these default values are likely
to need updating to map correctly. The remainder of this section shows some
typical changes that you might need to complete to ensure the physical and logical
models map correctly.

If the physical layer is added after creating or importing the elements in the logical
model, it is possible that not all the values are set. For further details see “Adding
physical format layers” on page 16.

This exercise will generate a TDS format output message, where each of the
elements is separated by a delimiter. This is achieved by setting the Data Element
Separation property to All Elements Delimited. However, this causes a conflict
with Type Content of Open and would prevent the message set from deploying.

Figure 21. The Control Center after importing the message

Importing the data structure and creating the associated message

Chapter 7. Converting CWF to TDS 43

The Type Content property of the compound type (for example, PaxData1_TYPE)
defaults to Open. This indicates a message or element of this compound type
might contain those elements specified in the model, or any other additional
element. For this exercise you will be working with messages that contain only
those elements specified from the model (for example; a fixed number of elements)
and so the Type Content property needs to be set to Closed to achieve this and to
allow the message set to deploy.

The following exercise will update the message set properties so that:
v The message’s compound type expects a fixed set of fields
v The elements retain a delimiter between each of the message fields

Use the following steps to make the above changes:
1. In the Control Center, select the Message Sets tab.
2. Expand the message set (MRMP_MS1) in the left pane by clicking on the + to

the left of the message set name.
3. Right-click Types and select Add to Workspace —> Compound Type.... This

will bring up the Add an existing Compound Type dialog.

4. Select the PaxData1_TYPE and the PaxData1Msg_TYPE. These were created
when the PaxData1.h file was imported, but were not added to the workspace
at that time. This point was discussed in “Importing the data structure” on
page 17 in Chapter 4, “Importing C or Cobol data structures into the MRM”
on page 15.

5. Click Finish. These types have now been added and can be viewed by
clicking the + to the left of Types in the left pane.

6. Right-click each of PaxData1_TYPE and PaxData1Msg_TYPE in the left pane
and select Check Out.

7. Select PaxData1_TYPE type in the left pane.

Figure 22. Add an existing Compound Type dialog

Mapping the TDS physical layer

44 WebSphere MQ Integrator MRM Primer

8. In the right pane select the PaxData1_TYPE tab.
9. Ensure that Type Composition is set to Ordered Set and that Type Content is

set to Closed.
10. In the right pane select the PaxData1TDS Tab.
11. In the Data Element Separation field select All Elements Delimited.
12. In the Delimiter field enter the character or characters that you will use as the

field separator. This example uses the ’|’ character. You must choose
characters (including hexadecimal) that do not appear in the data within the
message. An example of a poor delimiter would be to use a space character,
but the data in the message contains spaces within the text itself.

13. Repeat steps 7 to 12 for PaxData1Msg_TYPE.
14. From the menu select File —> Check In —> All (Save to Shared).

Delimiters
Delimiters should not be confused with tags. Tags are text bracketted by ’<’ and ’>’
and are often referred to as delimiters. Tags are used in languages such as HTML
and SGML to give structure and meaning to the text they contain. For example,
<p>text</p> defines the word ’text’ as a paragraph.

Delimiters are used to separate the fields or elements in a data stream and provide
no form or structure to the data that they mark out.

Delimiters can be either a string of characters or hexadecimal data. Regardless of
what you use to provide the break between each of the fields or elements in your
data stream, it must be unique to that data stream. If you use a space (’ ’) to
provide the break, this would cause serious problems if the data also contained
spaces. The code that parses the data stream would not be able to differentiate
between the space that was being used as a delimiter, and the space that was just
part of the text.

This primer uses ’|’, ’||’, ’|||’, and ’||||’ as delimiters. This in itself can cause
problems depending on how the parser is coded. For example if the parser is
looking for a ’|’, it could interpret ’||||’ as four single ’|’ characters. If it was
coded to look for the longer string first this problem would not occur. A better
suggestion of delimiters could be ’|01|’, ’|02|’, ’|03|’, or ’|04|’.

When designing the message structure you should spend time to consider what
you will use as a delimiter. This is to ensure that the delimiter that is unique for
the current data stream, as far as possible, remains unique as the contents of the
data being transmitted are changed in the future.

Appendix K, “Delimiter examples for PaxData4 files” on page 119 uses the
PaxData4.h and PaxData4.cpy files to show in more detail how delimiters have
been used in this primer.

Assigning a message set to a broker
For the broker to be able to interpret and process the messages that it receives, it
generally requires a runtime dictionary. This is created when you assign and
deploy the message set to the broker. Use the following steps to add the message
set created or modified in this chapter to the broker:
1. In the Control Center, select the Assignments tab.
2. In the left pane, right-click the broker (MQSI_SAMPLE_BROKER) that you are

to add the message set to and select Check Out.

Mapping the TDS physical layer

Chapter 7. Converting CWF to TDS 45

3. Expand the Message Set field in the center pane by clicking the + to the left of
Message Sets.

4. Drag and drop the message set (MRMP_MS1) that you are to add from the
center pane into the box representing the broker (MQSI_SAMPLE_BROKER) in
the right pane.

5. From the menu select File —> Check In —> All (Save to Shared).

On completion of these steps, the Control Center will look similar to the example
in Figure 23 where the names shown are those that have been used in earlier
procedures.

Create a CWF to TDS message flow
The message set required to convert the message from CWF to TDS has been
created and assigned to the broker in the section “Creating and assigning the
message set” on page 41. In this section you will create the message flow to
convert the incoming message from CWF format to TDS format. It covers:
v “Adjusting the Input node properties for the message set”
v “Adding a Compute node” on page 47
v “Setting the Compute node to convert CWF to TDS” on page 48
v “Defining the broker in the domain” on page 51
v “Assigning the message flow to the broker” on page 51
v “Saving all the changes” on page 51
v “Deploying the configuration to the broker” on page 52

Adjusting the Input node properties for the message set
When the broker receives a message it needs to know how to parse it. The broker
first looks for an MQRFH or MQRFH2 header (An architected message header that

Figure 23. The Control Center after assigning a message set to the broker

Assigning a message set to a broker

46 WebSphere MQ Integrator MRM Primer

is used to provide metadata for the processing of a message). If this is not found,
the broker checks to see if the input node specifies the parser. If the input node
does not specify the parser, the broker uses the BLOB (binary large object) parser
supplied with WebSphere MQ Integrator. A blob represents a block of bytes of data
(for example, the body of a message) that has no discernible meaning, but is
treated as one solid entity that cannot be interpreted.

You have defined how to interpret the incoming message in your message set
(MRMP_MS1). You now need to specify this message set in the input node to
allow the parser to interpret the message it will receive. This is because you are not
setting an MQRFH or MQRFH2 header in the input message that defines how the
message is to be parsed.

Use the following steps to alter the properties of the input node to specify the
message set to use during parsing:
1. In the Control Center, select the Message Flows tab.
2. Select the message flow (MQSI_TEST) created in “Adding a Compute node”.
3. Right-click the input node (MQInput1) and select Properties. This will bring up

the Properties dialog.
4. Select the Default tab.

For Message Domain select MRM.
For Message Set select the identifier of the message set to be used. This
identifier is allocated when the message set is created and is unlikely to the
match the one used in the examples in this document.
If there is more than one identifier in the drop-down section and you are not
sure of the identifier in the message set you wish to use, select the Message
Sets tab in the Control Center and select the name of the message set
(MRMP_MS1) you are using. The identifier is displayed in the right pane under
the tab that has the same name as the message set.
For the Message Type enter the message identifier (PaxData1ID) for the
message to be processed. (You can find this by selecting the Message Set tab
and selecting the message you are processing in the left pane (PaxData1_Msg)
and the Identifier is shown in the right pane.)
For the Message Format select from the drop-down the format (PaxData1CWF)
that has CWF in brackets next to it and that you defined in “Adding physical
format layers” on page 42.

5. Click OK.

Adding a Compute node
This procedure gives an instructions on modifying an existing message flow. In
many cases copying an existing message flow and updating it is a quicker way to
complete a new flow than creating a new one. It is also possible to alter an existing
message flow and deploy it to the broker to change the process that is currently
running.

In this exercise, you will use a message flow that you created in an earlier exercise.
If you have not done this earlier exercise, follow the procedure indicated to create
it.

1. In the Control Center, select the Message Flows tab.
2. Create a message flow as shown in Chapter 5, “Creating and testing a basic

message flow” on page 21 (MQSI_TEST).

Adjusting the Input node properties for the message set

Chapter 7. Converting CWF to TDS 47

3. If the message flow is not checked out, right-click the message flow
(MQSI_TEST) in the left pane and select Check Out.

4. Right-click the connector between the input node (MQInput1) and the output
node (MQOutput1) and select Delete.
Click Yes to confirm the deletion.

5. Expand the IBMPrimitives in the left pane by clicking the + next to it.
6. Scroll down and select the Compute node. Drag and drop it between the

input and output nodes in the right pane. This adds a Compute node called
Compute1.

7. Right-click the input node (MQInput1) and select Connect -> Out.
8. Click the Compute node (Compute1). This adds a connector from the input

node (MQInput1) to the Compute node (Compute1).
9. Right-click the Compute node (Compute1) and select Connect -> Out.

10. Click the output node (MQOutput1). This adds a connector from the Compute
node (Compute1) to the output node (MQOutput1) node.

This creates the basic flow that is required, but the properties of the input node
need to be updated to interpret the message and the Compute node properties
need to be updated to convert the message.

Setting the Compute node to convert CWF to TDS
At this stage you have added a Compute node to the message flow, but it has not
been configured to do any processing. If you deployed this message flow, it would
not be able to process any messages. The Compute node needs to be ’programmed’
so that it knows how to process the incoming message, and how you want the
output message to be written.

The Compute node is a way of building a new message using a set of assignment
statements. It works by always constructing a new message even if there is no
change to the input message being processed. The simplest example of this is
where the Compute node simply constructs an exact copy of the input message.

Introduction to the Compute node Properties dialog
The Compute node processes the input and output message by executing ESQL
statements that allow you to determine the content and structure of the output
message. You can enter these ESQL statements through the properties dialog.

Right-click the Compute node and select Properties: the properties dialog as
shown in Figure 24 on page 49 is displayed.

Adding a Compute node

48 WebSphere MQ Integrator MRM Primer

When the properties dialog is opened, at the bottom of the dialog it displays the
message:
Drag elements from input to output, from ESQL palette to SQL editor, >>
>>or specify SQL, to compose message*

* The line has been split at >> for the purposes of displaying in this document.

This statement informs you that you achieve a number of the operations that you
want to complete by ’dragging and dropping’ objects between the panes of the
dialog.

The dialog has four panes.
v The left pane has predefined ESQL commands or structures that you drag and

drop into the ESQL pane at the bottom. When you select an ESQL command in
the left pane, the code it would generate is displayed at the bottom of the
dialog. For example, the display might read:
if <boolean-value> then <controlled-statements> end if;

When the code has been dropped in to the ESQL pane (using the above
example), it has place holders such as:
<boolean-value>

You must update these to reflect the fields or code you are developing.
v The top two panes are used for selecting the input and output logical messages

that are being processed. These panes give you the ability to select a message or
element in a message and drag and drop it into the ESQL pane creating the text
necessary to address that object in the ESQL code.
When you select Add... the Add... dialog will appear and you can specify the
message set and message that you are to process.

Figure 24. A Compute node properties dialog

Introduction to the Compute node Properties dialog

Chapter 7. Converting CWF to TDS 49

(You can also specify a data source and table to process. See Control Center
Help for further information.)
Selecting either of the radio buttons automatically generates the code that copies
the message headers or the entire message to the output message (it can be
neither).
Changes in the top panes generate ESQL code that can be viewed in the bottom
pane.

v The bottom pane is generally used for viewing ESQL code that has been
generated from the top and left panes, and for modifying the code.

For further information on this dialog, click Help.

Note: The panes at the top and to the left of the dialog, and the information in the
mapping tab in the bottom pane, have no bearing on how the code in the
Compute node will execute. These panes are only an aid in generating the
ESQL code that the Compute node will process. It is only the code that can
be seen in the ESQL tab of the bottom pane that determines the behavior
of the compute node.

Setting the Compute node properties for CWF to TDS conversion
For any CWF to TDS conversion where only the format of the data is changing,
there is no change to the logical representation of the message being processed,
only to the physical format of the message that is being written out. There are two
parts to this exercise:
v You will create an output message that is an exact copy of the input message.
v You will set the property for the output format to TDS.

Use the following steps for this exercise:
1. In the Control Center, select the Message Flows tab.
2. Select the message flow (MQSI_TEST) created in “Adding a Compute node” on

page 47.
3. Right-click the Compute node (Compute1) and select Properties. This will bring

up the Properties dialog.
4. Select the Copy entire message radio button

Click the ESQL tab in the bottom pane. You will see that the following ESQL
statement has been added:
SET OutputRoot = InputRoot;

This code was automatically generated by following step 4 above and copies the
input message to the output message.

The following line also appears:
-- Enter SQL below this line. SQL above this line might be regenerated, >>
>>causing any modifications to be lost.

This line and any code above this line will be automatically generated. If you
change the code above the line and now change one of the parameters that created
the code in the first place, you lose the changes that you have made. To
demonstrate this, select the Copy message headers radio button and see how the
ESQL code changes. Ensure that you select the Copy entire message radio button
again to revert to the correct code.

Introduction to the Compute node Properties dialog

50 WebSphere MQ Integrator MRM Primer

Use the following to complete the ESQL code:
1. Select the ESQL tab in the bottom pane of the Compute node properties dialog.
2. Move the cursor until it is after the last line of text (the one starting -- Enter

SQL below this line).

3. Enter the following text at the beginning of the next line:
SET OutputRoot.Properties.MessageFormat = ’TDS’;

This sets a property that tells the parser to write the output bitstream in TDS
format (not CWF).

On completion of your changes the code will look as follows:
SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,>>
>> causing any modifications to be lost.
SET OutputRoot.Properties.MessageFormat = ’TDS’;

4. Click OK.

You have now created ESQL code that will copy the message that the compute
node receives to the message that it will propagate out. The code also changes a
property in the compute node’s output message that declares the physical format
that the message flow’s output message is to be written in.

Defining the broker in the domain
If you have already completed the work in Chapter 5, “Creating and testing a basic
message flow” on page 21 you can skip this section because your broker is already
defined in the domain.

Use the process “Defining a broker in the domain” on page 24 from Chapter 5,
“Creating and testing a basic message flow” on page 21 to ensure that the broker
that was created during the installation process has been added to the domain you
are working in.

Assigning the message flow to the broker
If you have already completed the work in Chapter 5, “Creating and testing a basic
message flow” on page 21 you can skip this section because you have already
assigned the message flow to the broker.

Use the process “Assigning the message flow to the execution group” on page 26
from Chapter 5, “Creating and testing a basic message flow” on page 21 to ensure
that the message flow has been added to the broker.

Saving all the changes
Before you deploy to the broker, you must save all the changes that have been
made. If you do not save any of the changes, you will see an error message that
lists the resources you have not checked in.

From the Control Center menu select File —> Check In —> All (Saved to
Shared).

Setting the Compute node properties for CWF to TDS conversion

Chapter 7. Converting CWF to TDS 51

Deploying the configuration to the broker
Use the process “Deploying the message flow to the broker” on page 27 to ensure
that all the changes made to the message sets and the message flows are deployed
to the broker for its use in processing messages.

Testing the CWF to TDS message flow
In Chapter 5, “Creating and testing a basic message flow” on page 21, almost any
message would have been acceptable to test the message flow. This was due to the
parser treating the incoming data as a BLOB (Binary Large Object) and not
requiring it to be interpreted.

For the message flow that has been created in this chapter, the input message must
be formatted to match the data structure that was imported and the CWF layer
that this created. If the message fails to meet this format, the broker will not be
able to interpret it and process it correctly.

If you have imported the PaxData1.h or PaxData1.cpy file in “Creating and
assigning the message set” on page 41, you can use the PaxData1.ipt file supplied
with this SupportPac that contains a message that is formatted to test the flow.
This contains a mix of ASCII text and binary data and can be seen in Appendix C,
“Example input message files” on page 95. If you have used another data structure
and created a different CWF layer, you will need to create an appropriate message
file for you to test the message flow with.

This process uses the SupportPac IH03 to test the message flow. Two copies of the
utility are opened, one to put the messages on to queue and the second to read
them.

It can be useful to have two copies of rfhutil running. When you are testing a
range of messages, one copy of the utility can be used to select and place the
messages on queue and the second copy can read the message from the output
queue, without having to be altered.

If you prefer you can use a single copy of the utility, and just alter the queue name
to read or write the messages.

The following steps can be used to test the message flow:
1. Start a copy of rfhutil (IH03). Set the Queue Manager Name (to connect to) to

the name of the queue manager (MQSI_SAMPLE_QM) being used.
2. Set the Queue Name to the name of the input queue (MQSI_INQ).
3. Click Read File and select the message input file (PaxData1.ipt from this

SupportPac) to use.
4. Click Write Q to place the message from the file on the input queue. A

confirmation message Message sent to MQSI_INQ is displayed at the bottom of
the utility.

5. Start a second copy of rfhutil (IH03). Set the Queue Manager Name (to connect
to) to the name of the queue manager (MQSI_SAMPLE_QM) being used.

6. Set the Queue Name to the name of the output queue (MQSI_OUTQ).
7. Click Read Q and a confirmation message Message read from MQSI_OUTQ is

displayed at the bottom of the utility.
8. Select the Data tab in the output utility. The data that has been read from the

message is displayed there.

Deploying the configuration to the broker

52 WebSphere MQ Integrator MRM Primer

You can see in Figure 25 that the data that had been received (see PaxData1.ipt in
Appendix C, “Example input message files” on page 95) has been converted to TDS
output. The data now reads:
00000000 Passenge rSurname 50617373 656E6765 72537572 6E616D65
00000016 |1 20202020 7C31

The data is now all in ASCII code and the two fields are now separated by the ’|’
(X'7C') character that you defined as the delimiter. The meal type integer was
originally X'01000000' (Windows uses little endian integer format), and now reads
a character ’1’ (X'31').

Error processing in a message flow
This chapter does not handle any errors that might occur in processing the
message through the message flow. If you do encounter any errors and want to
know how to handle them, further information on error handling with WebSphere
MQ Integrator is covered in:
v Dealing with errors in message flows and Debugging message flows in Chapter 5 of

WebSphere MQ Integrator Using the Control Center.
v TryCatch Node in Appendix A of WebSphere MQ Integrator Using the Control

Center.
v Error Handling in Chapter 4 of WebSphere MQ Integrator Introduction and Planning.
v Debugging message flows in the Control Center Help.

In addition, each queue manager should have a dead letter queue. See “General
assumptions” on page xii.

Figure 25. The IH03 dialog after reading the test message.

Testing the CWF to TDS message flow

Chapter 7. Converting CWF to TDS 53

Error processing in a message flow

54 WebSphere MQ Integrator MRM Primer

Chapter 8. Further CWF input processing

In Chapter 4, “Importing C or Cobol data structures into the MRM” on page 15,
you looked at importing a data structure and in Chapter 7, “Converting CWF to
TDS” on page 41 you saw how to create a message flow, deploy it, and test it. The
file used (PaxData1.h or PaxData1.cpy), had a very simple structure containing two
elements. In this chapter you will import the remaining data structures that come
with this SupportPac and create the associated message flows.

This is repeating the exercises shown in Chapter 4, “Importing C or Cobol data
structures into the MRM” on page 15, Chapter 5, “Creating and testing a basic
message flow” on page 21, or Chapter 7, “Converting CWF to TDS” on page 41 and
show that with increasing levels of complexity the basic process of importing and
creating messages, message sets, and message flows is the same.

The remaining C files can be seen in Appendix A, “Example C header files” on
page 87 and are PaxData2.h, PaxData3.h, and PaxData4.h.

The remaining Cobol files can be seen in Appendix B, “Example Cobol copybook
files” on page 91 and are PaxData2.cpy, PaxData3.cpy, and PaxData4.cpy.

This chapter covers:
v “Reviewing the assumptions for this exercise”
v “Creating additional message sets” on page 56
v “Adding physical format layers” on page 56
v “Importing additional data structures” on page 56
v “Creating the logical messages” on page 57
v “Mapping additional TDS layers to the logical layers” on page 57
v “Assigning the message sets to the broker” on page 58
v “Creating the additional WebSphere MQ resources” on page 59
v “Creating the additional message flows” on page 59
v “Setting the additional compute node properties for CWF to TDS” on page 61
v “Setting the additional input and output node properties for CWF to TDS” on

page 60
v “Confirm error processing” on page 62
v “Testing the additional message flows” on page 62

Reviewing the assumptions for this exercise
In addition to the “General assumptions” on page xii, the following apply:
v You have the default queue manager running
v You have the Configuration Manager running
v You have the default broker running
v You have started the Control Center
v You have access to the files in Appendix A, “Example C header files” on page 87

or Appendix B, “Example Cobol copybook files” on page 91
v If you are importing Cobol copybooks, you have reviewed “C header files and

Cobol copybooks” on page xiii

© Copyright IBM Corp. 2002 55

If you not have used the defaults, you will need to substitute the names that you
have used.

Creating additional message sets
Use the process “Creating a message set” on page 15 to create the message sets.
Table 1 provides the names of the additional message sets you need.

Table 1. Message set names to create

File Name Message Set

PaxData1.h or PaxData1.cpy MRMP_MS1*

PaxData2.h or PaxData2.cpy MRMP_MS2

PaxData3.h or PaxData3.cpy MRMP_MS3

PaxData4.h or PaxData4.cpy MRMP_MS4

* You created MRMP_MS1 in Chapter 4, “Importing C or Cobol data structures into
the MRM” on page 15.

Adding physical format layers
Use the process “Adding physical format layers” on page 16 to add the physical
layers needed for each of the message sets, prior to importing the data structure.
Table 2 provides the names of the layers to use.

Table 2. CWF header files: physical format layer parameters

File Name Message Set CWF Layer Name TDS Layer Name

PaxData1.h or
PaxData1.cpy*

MRMP_MS1 PaxData1CWF or CWF PaxData1TDS or TDS

PaxData2.h or
PaxData2.cpy

MRMP_MS2 PaxData2CWF or CWF PaxData2TDS or TDS

PaxData3.h or
PaxData3.cpy

MRMP_MS3 PaxData3CWF or CWF PaxData3TDS or TDS

PaxData4.h or
PaxData4.cpy

MRMP_MS4 PaxData4CWF or CWF PaxData4TDS or TDS

* You added PaxData1.h or PaxData1.cpy physical formats in Chapter 7,
“Converting CWF to TDS” on page 41.

Importing additional data structures
Use the process “Importing the data structure” on page 17 to import the data
structures needed for each of the message sets. Table 3 on page 57 provides the
names of the messages and message IDs to use.

Note: At this point, the more complex the file structure you are importing, the
more advisable it is to run a report against the file before actually importing
it. In this way any errors that are likely to be generated will be picked up
before the process of importing and making any changes to the message set.
Appendix G, “Example CWF import report file” on page 105 contains the
output from the report that was generated from importing PaxData4.h
before importing it into the message set.

Reviewing the assumptions for this exercise

56 WebSphere MQ Integrator MRM Primer

Table 3. CWF header files to import

Message Set File Name

MRMP_MS1* PaxData1.h or PaxData1.cpy

MRMP_MS2 PaxData2.h or PaxData2.cpy

MRMP_MS3 PaxData3.h or PaxData3.cpy

MRMP_MS4 PaxData4.h or PaxData4.cpy

* MRMP_MS1 was imported in Chapter 4, “Importing C or Cobol data structures
into the MRM” on page 15.

Creating the logical messages
Use the process “Creating a logical message” on page 19 to create the messages
needed for each of the message sets. Table 4 provides the names of the messages
and message IDs to use.

Table 4. Message, Message IDs, Message Type names to use in creating the messages

Message Set Message Name Message ID Message Type

MRMP_MS1* PaxData1_Msg PaxData1ID PaxData1Msg_TYPE

MRMP_MS2 PaxData2_Msg PaxData2ID PaxData2Msg_TYPE

MRMP_MS3 PaxData3_Msg PaxData3ID PaxData3Msg_TYPE

MRMP_MS4 PaxData4_Msg PaxData4ID PaxData4Msg_TYPE

* The MRMP_MS1 message was created in Chapter 4, “Importing C or Cobol data
structures into the MRM” on page 15.

Mapping additional TDS layers to the logical layers
Use the process “Mapping the TDS physical layer” on page 43 to make the
additional changes to the TDS layer for each of the message sets. Table 5 on
page 58 provides the names of the types for each message set that need updating

Note: The setting of properties in this section is more complex due to the nature of
the structures, substructures, and repeating elements that have been
imported. You will find that when you try to check in MRMP_MS3 and
MRMP_MS4, you could get a TDS delimiter error. Within each of these
structures there are repeating elements within substructures. These lower
level elements will need to have delimiters set in addition to the upper level
elements.

For the examples used in this section, ’||’, ’|||’, and ’||||’ have been
used to delimit increasing levels of structure. Appendix D, “Example TDS
output” on page 97 gives examples of the output that has been created using
these. For further information on delimiters see “Delimiters” on page 45.

Importing additional data structures

Chapter 8. Further CWF input processing 57

Table 5. Type names requiring modification

Message Set Compound Types

MRMP_MS1* PaxData1_TYPE, PaxData1Msg_TYPE

MRMP_MS2 PaxData2_TYPE, PaxData2Msg_TYPE, PaxFirstName_Type

MRMP_MS3 PaxData3_TYPE, PaxData3Msg_TYPE, PaxDestinationMsg_TYPE,
PaxFirstName_TYPE, PaxRoute_TYPE

MRMP_MS4 PaxData4_TYPE, PaxData4Msg_TYPE, PaxDestinationMsg_TYPE,
PaxFirstName_TYPE, PaxRoute_TYPE

* MRMP_MS1 Types were updated in Chapter 7, “Converting CWF to TDS” on
page 41.

Assigning the message sets to the broker
Use the process “Assigning a message set to a broker” on page 45 to assign each of
the message sets to the broker (MQSI_SAMPLE_BROKER). Table 6 provides the
names of the message sets that need assigning to the broker.

Table 6. Message sets to assign to the broker (MQSI_SAMPLE_BROKER)

Message Set

MRMP_MS1*

MRMP_MS2

MRMP_MS3

MRMP_MS4

* You assigned MRMP_MS1 to the broker in Chapter 7, “Converting CWF to TDS”
on page 41.

Figure 26. The WebSphere MQ Integrator Control Center after assigning the message sets

Mapping additional TDS layers to the logical layers

58 WebSphere MQ Integrator MRM Primer

Creating the additional WebSphere MQ resources
Use the process “Creating the WebSphere MQ resources” on page 22 to create each
of the input and output queues needed for the message flows. Table 7 provides the
names for the queues that need creating.

Table 7. Input and output queues needed for the message flows

Message Flow Queue Manager Input Queue Output Queue

MQSI_TEST* MQSI_SAMPLE_QM MQSI_INQ MQSI_OUTQ

MQSI_TEST2 MQSI_SAMPLE_QM MQSI_INQ2 MQSI_OUTQ2

MQSI_TEST3 MQSI_SAMPLE_QM MQSI_INQ3 MQSI_OUTQ3

MQSI_TEST4 MQSI_SAMPLE_QM MQSI_INQ4 MQSI_OUTQ4

* You created the queues for MQSI_TEST in Chapter 5, “Creating and testing a
basic message flow” on page 21.

Creating the additional message flows
Use the process “Adding a Compute node” on page 47 to create a message flow
with a compute node for each of the data structures. Table 8 on page 60 provides
the names for the message flows that need creating. As the input, compute, and
output nodes are all in separate message flows they are able to have the same
name.

Note: It is also possible to copy an existing message flow (this is covered further
in Chapter 9, “Further message transformation” on page 65) and update the
relevant properties or nodes to reflect the changes that you require.

Figure 27. MQSeries Explorer after adding the additional local queues

Creating the additional WebSphere MQ resources

Chapter 8. Further CWF input processing 59

Table 8. Message flow and node names

File Name Message Flow Input Node Compute Node Output Queue

PaxData1.h or
PaxData1.cpy

MQSI_TEST* MQInput1 Compute1 MQOutput1

PaxData2.h or
PaxData2.cpy

MQSI_TEST2 MQInput1 Compute1 MQOutput1

PaxData3.h or
PaxData3.cpy

MQSI_TEST3 MQInput1 Compute1 MQOutput1

PaxData4.h or
PaxData4.cpy

MQSI_TEST4 MQInput1 Compute1 MQOutput1

* The message flow, MQSI_TEST, was created or modified in Chapter 7,
“Converting CWF to TDS” on page 41.

Setting the additional input and output node properties for CWF to
TDS

Use the process “Adjusting the Input node properties for the message set” on
page 46 to update the properties of the input node for each of the data structures
to convert the message from CWF to TDS. Table 9 and Table 10 provide the names
for the relevant properties for each of the input and output nodes that need
updating.

Table 9. Input node properties needed for the message flows

Message Flow Input
Node

Queue Name Message
Domain

Message Set** Message Type Message Format

MQSI_TEST* MQInput1 MQSI_INQ MRM MRMP_MS1 PaxData1ID PaxData1CWF (CWF)

MQSI_TEST2 MQInput1 MQSI_INQ2 MRM MRMP_MS2 PaxData2ID PaxData2CWF (CWF)

MQSI_TEST3 MQInput1 MQSI_INQ3 MRM MRMP_MS3 PaxData3ID PaxData3CWF (CWF)

MQSI_TEST4 MQInput1 MQSI_INQ4 MRM MRMP_MS4 PaxData4ID PaxData4CWF (CWF)

Table 10. Output node properties needed for the message flows

Message Flow Output Node Queue Manager Queue Name

MQSI_TEST MQOutput1 MQSI_SAMPLE_QM MQSI_OUTQ

MQSI_TEST2 MQOutput1 MQSI_SAMPLE_QM MQSI_OUTQ2

MQSI_TEST3 MQOutput1 MQSI_SAMPLE_QM MQSI_OUTQ3

MQSI_TEST4 MQOutput1 MQSI_SAMPLE_QM MQSI_OUTQ4

* You updated the input node in MQSI_TEST in Chapter 7, “Converting CWF to
TDS” on page 41.

** You must specify the message set ID and not its name. This ID is unique to the
message set on your system. Further details are in “Adjusting the Input node
properties for the message set” on page 46.

Creating the additional message flows

60 WebSphere MQ Integrator MRM Primer

Setting the additional compute node properties for CWF to TDS
Use the process “Setting the Compute node properties for CWF to TDS
conversion” on page 50 to update the properties of the compute node for each of
the data structures to convert the message from CWF to TDS. Table 11 provides the
names for the compute nodes for each message flow that needs updating.

Table 11. Input and output queues needed for the message flows

File Name Message Flow Compute Node Message Set Message

PaxData1.h or
PaxData1.cpy*

MQSI_TEST Compute1 MRMP_MS1 PaxData1_Msg

PaxData2.h or
PaxData2.cpy

MQSI_TEST2 Compute1 MRMP_MS2 PaxData2_Msg

PaxData3.h or
PaxData3.cpy

MQSI_TEST3 Compute1 MRMP_MS3 PaxData3_Msg

PaxData4.h or
PaxData4.cpy

MQSI_TEST4 Compute1 MRMP_MS4 PaxData4_Msg

* The compute node in MQSI_TEST was updated in Chapter 7, “Converting CWF
to TDS” on page 41.

Defining the broker in the domain
If you have already completed the work in Chapter 5, “Creating and testing a basic
message flow” on page 21 or Chapter 7, “Converting CWF to TDS” on page 41 you
can skip this section because your broker is already defined.

Use the process “Defining a broker in the domain” on page 24 from Chapter 5,
“Creating and testing a basic message flow” on page 21 to ensure that the broker
that was created during the installation process has been added to the domain you
are working in.

Assigning the message flows to the execution group
Use the process “Assigning the message flow to the execution group” on page 26
to ensure that the message flow has been assigned to the broker. Table 12 provide
the names of the message flows that need assigning to the broker.

Table 12. Message flows to assign to the broker

Message Flow

MQSI_TEST*

MQSI_TEST2

MQSI_TEST3

MQSI_TEST4

* The message flow MQSI_TEST was assigned in Chapter 7, “Converting CWF to
TDS” on page 41.

At the end of this processing your Control Center will appear similar to Figure 28
on page 62.

Setting the additional compute node properties for CWF to TDS

Chapter 8. Further CWF input processing 61

Deploying the configuration to the broker
Use the process “Deploying the message flow to the broker” on page 27 to ensure
that all the changes made to the message sets and the message flows are deployed
to the broker for its use in processing messages.

Note: You were told in an earlier chapter that error messages can be generated
either when you check in or deploy any changes that you have made.
Where BINARY types have been generated for elements that you have
imported, the TDS physical layer will not have set the length for them and
you will get an error when you deploy the message sets that contain these
BINARY elements. You will need to update the TDS length for each of these
elements to have the same length as that shown in the CWF physical layer.

Confirm error processing
Check that a dead letter queue has been set up. “Error processing in a message
flow” on page 53 lists where you can find further information on error processing.

Testing the additional message flows
Use the process “Testing the CWF to TDS message flow” on page 52 to test the
message flows you have created to convert the messages from CWF to TDS.
Table 13 on page 63 provides the names of the input files, input queues, and output
queues that you use for checking each of the flows you have created.

Put the message from the specified file on the appropriate input queue.

Figure 28. The Control Center after assigning all the resources to the broker

Deploying the configuration to the broker

62 WebSphere MQ Integrator MRM Primer

Table 13. Input and output queues needed for the message flows

File Name Queue Manager Input Queue Output Queue

PaxData1.ipt* MQSI_SAMPLE_QM MQSI_INQ MQSI_OUTQ

PaxData2.ipt MQSI_SAMPLE_QM MQSI_INQ2 MQSI_OUTQ2

PaxData3.ipt MQSI_SAMPLE_QM MQSI_INQ3 MQSI_OUTQ3

PaxData4.ipt MQSI_SAMPLE_QM MQSI_INQ4 MQSI_OUTQ4

* You tested the first message flow with PaxData1.ipt in Chapter 7, “Converting
CWF to TDS” on page 41.

Testing the additional message flows

Chapter 8. Further CWF input processing 63

Testing the additional message flows

64 WebSphere MQ Integrator MRM Primer

Chapter 9. Further message transformation

In previous chapters you have imported data structures, created message sets from
them and, using message flows, transformed the incoming messages into a
different data format. This chapter will look at how to examine an element (field)
in an incoming message and process the message as defined by the data in that
element.

This is illustrated in its simplest form to show you the principle of this technique.

This chapter will also introduce how to create message sets based on another
message set, add an element to a message set, and copy a message flow.

The message that you will use to test the message flow is based on PaxData4.ipt
and has an additional field at the beginning of it. This field is used to specify the
output format of the message. It is a three character field and could contain any
data.

The process you will create will expect the characters CWF, TDS, or XML in this
field and this specifies the output format of the message. Any other data that exists
in this field, will cause the output format of the message to default to CWF.

In this chapter you will:
v “Review the assumptions for this exercise”
v “Create the message set” on page 66
v “Create the message flow” on page 69
v “Assign, deploy, and test the message flow” on page 72

Review the assumptions for this exercise
In addition to the “General assumptions” on page xii, the following apply:
v You have the default queue manager running
v You have the Configuration Manager running
v You have the default broker running
v You have started the Control Center
v You have access to the files in Appendix C, “Example input message files” on

page 95
v If you have imported Cobol copybooks, you have reviewed “C header files and

Cobol copybooks” on page xiii

If you not have used the defaults, you will need to substitute the names that you
have used.

© Copyright IBM Corp. 2002 65

Create the message set
In order for the broker to interpret the incoming message, the message needs to be
defined in a message set. You have done this previously, by importing data
structures that have already existed. Message sets can also be created totally within
the MRM without using any external structures or components. In addition to
these methods, you can base a new message set on an existing one, making use of
all components previously created.

During this exercise you will create the message set needed to parse this new
message format, based on an existing one created in an earlier chapter.

In this section you will:
v “Create a message set based on another message set”
v “Add the message and message types to the message set workspace” on page 67
v “Add an XML physical layer” on page 67
v “Add an element to a message set” on page 67

Create a message set based on another message set
To create a message set based on another, the message set to be copied must be in
Finalized state. Details on message set states can be found in the Working with
Messages book. A message set that has been finalized cannot be changed or checked
out.

The message sets that you have created so far are in Normal state (that is, they are
checked in) and could be considered to be ’work in progress’. You can Finalize a
message set when you have completed its development and do not need to make
any changes to it. This does not stop development of the message set in the future
because it can be copied and have the same name. This gives you the ability to
create versions of the message set showing the evolution of how it developed.

You will use the last message set that you created in Chapter 8, “Further CWF
input processing” on page 55 (MRMP_MS4) to base your new message set on.

To create a message set based on another message set:
1. In the Control Center, select the Message Sets tab.
2. Right-click the message set (MRMP_MS4) you are copying and select Finalize.

Select Yes to confirm you want to finalize the message set.
You cannot create a message set based on another without doing this first. You
will see that the finalized field in the right pane is now set to true.

3. Right-click the Message Sets root in the left pane and select Create —>
Message Set.... This opens the Create a new Message Set dialog.

4. Give the message set a name (MRMP_MS_TR1) and from the Base Message Set
drop down list at the bottom of the dialog, select the name of the message set
(MRMP_MS4) you are basing this message set on.

5. Click Finish.

This creates the new message set based on the original you developed in earlier
chapters. At this point it has only created the base message set. Such things as the
message, or types have not yet been added to the workspace.

Create the message set

66 WebSphere MQ Integrator MRM Primer

Add the message and message types to the message set
workspace

You saw in an earlier chapter that importing a data structure creates the
components such as messages, elements, and types, but they are not present in the
workspace until you add them yourself. You will need to work with the message
and message types, therefore you must add these to the workspace:
1. In the Control Center, select the Message Sets tab.
2. Expand the message set (MRMP_MS_TR1) root in the left pane. (Click the + to

the left of the message set name.)
3. Right-click Messages and select Add to Workspace —> Message....
4. This opens the Add existing Message dialog. Select the message

(PaxData4_Msg) from this dialog.
5. Click Finish.
6. Right-click Types and select Add to Workspace —> Compound Types....
7. This opens the Add an existing Compound Type dialog. Select all the Types

from this dialog.
8. Click Finish.

All the messages and types that were in the original message sets workspace have
been added to this one. By expanding the message set, messages, and types root
for both message sets (MRMP_MS4 and MRMP_MS_TR1) you can see that they are
the same.

What you will see is that the icons to the left of the components in the new
message set (MRMP_MS_TR1) are different. This icon (a small world) indicates that
these objects have an external reference. The color of this icon indicates the state of
the component. For further information on the definition of these icons see the
Control Center help.

Add an XML physical layer
The message set (MRMP_MS4) that was used as the base to create this message set
already had a CWF and TDS physical layer added to it. You can see this by
selecting a message set component in the Control Center and see the CWF or TDS
tabs in the right pane.

This exercise will allow the output format to be a choice of either CWF, TDS, or
XML. To format the output to XML, you must add an XML physical layer to the
message set.

To add an XML physical layer to the message set:
1. In the Control Center, select the Message Sets tab.
2. Right-click the message set (MRMP_MS_TR1) root in the left pane and select

Add —> Physical Format... —> XML Format.... This opens the Add a XML
Format dialog.

3. Enter the name for this XML layer (XML or PaxData4XML).
4. Click Finish.

Add an element to a message set
The message flow you are creating will read an element (field) in the message that
is received. Based on the data in this element, it will adjust the output format to
the one defined in the element.

Add the message and message types to the message set workspace

Chapter 9. Further message transformation 67

The basis of the message to be used is the most complex message created in
Chapter 8, “Further CWF input processing” on page 55 (PaxData4). All that you
will add to the structure of this message is an element at the beginning that will
define the message output format. The process for adding an element is the same,
regardless of how the message is constructed (for example, either a new message
or an imported one).

To add an element into a message:
1. In the Control Center, select the Message Sets tab.
2. Expand the message set (MRMP_MS_TR1) root in the left pane. (Click the + to

the left of the message set name.)
3. Right-click the Elements root and select Create —> Element.... This opens the

Create a new Element dialog.
In the Name field, enter the name (OptMsgFormat) for your element.
In the Identifier field, enter the identifier name (OptMsgFormatID) for your
element.

Note: You will use this identifier to address this element when you create
ESQL code to process a message in the compute node.

In the Type field, use the drop-down box to select STRING.

Click Finish.
4. Right-click the element (OptMsgFormat) and select Check In.

This has created a new element, and its properties include the TDS and XML
layers, but not the CWF layer. TDS and XML elements have both element
properties and Type Member properties (created when an element is
instantiated as a child of a compound type). CWF elements just have Type
Member properties and this is why the CWF tab does not appear at the
element level. Type Member properties can be viewed by selecting the element
within the parent type.
You will now add this element to a compound type.

5. Expand the Types root for the message set (MRMP_MS_TR1) in the left pane.
(Click the + to the left of Types.)
Expand the main message compound type (PaxData4Msg_TYPE). (Click the +
to the left of the compound type name (PaxData4Msg_TYPE).)

6. Right-click the compound type name to add the element to (PaxData4_TYPE)
and select Check Out List....
The Check Out List dialog appears. Select Check Out.

7. Right-click the compound type name to add the element to (PaxData4_TYPE)
and select Add —> Element.... This will open the Add an existing Element
dialog.
Select the element that you have just created (OptMsgFormat) and click
Finish.

8. From the File menu, select Check In —> All (Saved to Shared).
If you select the element that you have just added from within the compound
type, you will see that the CWF layer is visible.

9. Right-click the compound type (PaxData4_TYPE) and select Check Out List....
This opens the Check Out List dialog (see Figure 29 on page 69). This dialog
has listed and selected all the components (for example Elements, Element
Values, and Types) that are associated with this compound type. Click Check
Out.

Add an element to a message set

68 WebSphere MQ Integrator MRM Primer

It can be useful to check out components in this manner if you are not sure
whether the property you want to update is an element property or a type
member property.

10. Under the Type root in the left pane, expand the message compound type
(PaxData4Msg_TYPE) until you can see the output message format element
(OptMsgFormat) element and select it.
In the right pane select the CWF physical layer tab (CWF or PaxData4CWF).
Update the Length Count (currently empty) to read 3.
Click Apply in the bottom of the right pane.

11. From the menu select File —> Check In —> All (Saved to Shared).

Create the message flow
As in previous exercises you will need a message flow to process the message and
make any changes to it. In the previous exercises you have created the message
flows from the beginning, but in this one you will copy an existing message flow
and update it to handle the new processing.

In this section you will:
v “Create the additional WebSphere MQ resources” on page 70
v “Copy an existing message flow” on page 70
v “Update the message flow nodes” on page 70

Figure 29. The Check Out List dialog

Add an element to a message set

Chapter 9. Further message transformation 69

Create the additional WebSphere MQ resources
Use the process “Creating the WebSphere MQ resources” on page 22 from
Chapter 5, “Creating and testing a basic message flow” on page 21 to create an
additional input (MQSI_INQ_TR1) and output (MQSI_OUTQ_TR1) queue needed
for the new message flow.

Copy an existing message flow
To copy an existing message flow:
1. In the Control Center, select the Message Flows tab.
2. In the left pane, right-click the message flow that you are to copy

(MQSI_TEST4) and select Copy.
3. In the left pane, right-click the Message Flows root and select Paste.

This adds a copy of the message flow with a similar name (MQSI_TEST4_1) to
the message flow being copied. All the nodes in the new message flow will
have the same attributes as those in the original message flow.

4. Right-click the new message flow name (MQSI_TEST4_1) and select Rename....
This opens the Rename Message Flow dialog.
Change the name to the name (MQSI_TEST_TR1) you will use during this
exercise.
Click Finish.

You have now added a copy of a message flow to your workspace. Apart from the
new name that you have assigned, it is identical to the original.

Update the message flow nodes
This new message flow has input and output nodes that have properties
associating them with the original message flow queues. In addition, the input
node has the original message flow’s message set defined in it. All of these need
changing to reflect the new processing this message flow is to assume.

Update the input node
To update the input node:
1. In the Control Center, select the Message Flows tab.
2. In the right pane, right-click the input node (MQInput1) and select Properties.

This opens the input node (MQInput1) properties dialog.
3. Select the Basic tab.

Change the Queue Name field to the name of the new input queue
(MQSI_INQ_TR1).

4. Select the Default tab.
5. Ensure the Message Domain field specifies MRM

Change the Message Set field to the ID of the message set you created in
“Create a message set based on another message set” on page 66.
Ensure the Message Type field is the Identifier (PaxData4ID) of your incoming
message. (From the message in your new message set, but based on the
original.)
Ensure the Message Format field reads the name of your CWF layer
(PaxData4CWF (CWF)). (From the new message set, but based on the original.)

6. Click OK.

Create the additional WebSphere MQ resources

70 WebSphere MQ Integrator MRM Primer

Update the output node
To update the output node:
1. In the Control Center, select the Message Flows tab.
2. In the right pane, right-click the output node (MQOutput1) and select

Properties. This opens the output node (MQOutput1) properties dialog.
3. Select the Basic tab.
4. Ensure the Queue Manager field reads name of the queue manager you are

using (MQSI_SAMPLE_QM).
Change the Queue Name field to the name of the new output queue
(MQSI_OUTQ_TR1).

5. Click OK.

Update the compute node
In previous exercises, the compute node has only handled the transformation from
CWF format to TDS format. In this exercise the compute node needs to look at
data in the output message to decide what format the message needs to be written
in.

This is done using ESQL statements to check the data and set the output format
for the message. Other than this transformation, no other processing of the data
occurs. What you need to do is update the ESQL code.

To update the compute node:
1. In the Control Center, select the Message Flows tab.
2. In the left pane select the message flow to update (MQSI_TEST_TR1).
3. In the right pane, right-click the compute node (Compute1) and select

Properties. This opens the compute node (Compute1) properties dialog.
4. Select the ESQL tab in the bottom pane. The code showing in this field is:

SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,>>
>> causing any modifications to be lost.*
SET OutputRoot.Properties.MessageFormat = ’TDS’;

* The line has been split at >> for the purposes of displaying in this document.
5. Update the field to reflect the following changes:

SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,>>
>> causing any modifications to be lost.*
-- Default output format is to be CWF
IF (InputBody.PaxData4.OptMsgFormatID = ’TDS’) THEN

SET OutputRoot.Properties.MessageFormat = ’TDS’;
ELSE

IF (InputBody.PaxData4.OptMsgFormatID = ’XML’) THEN
SET OutputRoot.Properties.MessageFormat = ’XML’;

END IF;
END IF;

* The line has been split at >> for the purposes of displaying in this document.

Note: PaxData4 and OptMsgFormatID are the names used in the development
of this and earlier exercises. If you have used other names, you must
substitute these in the code.

Update the output node

Chapter 9. Further message transformation 71

The comment clarifies the purpose of the code indicating that if the message
received specifies something other than expected, it will default to a CWF
output format.

The code checks the output message format field and sets the format
accordingly.

There are a number of different ways you could code this and still achieve the
same result. This is just one of them and it works!

6. Click OK.
7. From the menu select File —> Check In —> All (Save to Shared).

Assign, deploy, and test the message flow
In this chapter, you have created the message set, message, and message flow
needed for this exercise. In this section you will:
v “Assign the message set to the broker”
v “Assign the message flow to an execution group”
v “Deploy the configuration to the broker”
v “Test the message flow”

Assign the message set to the broker
Using the instructions in “Assigning a message set to a broker” on page 45 from
Chapter 7, “Converting CWF to TDS” on page 41, assign the message set
(MRMP_MS_TR1) to the broker (MQSI_SAMPLE_BROKER).

Assign the message flow to an execution group
Use the process “Assigning the message flow to the execution group” on page 26
from Chapter 5, “Creating and testing a basic message flow” on page 21 to add the
message flow (MQSI_TEST_TR1) to the broker.

Deploy the configuration to the broker
Use the process “Deploying the message flow to the broker” on page 27 from
Chapter 5, “Creating and testing a basic message flow” on page 21 to ensure that
all the changes made to the message sets and the message flows are deployed to
the broker for its use in processing messages.

Test the message flow
Use the process “Testing the CWF to TDS message flow” on page 52 from
Chapter 7, “Converting CWF to TDS” on page 41 to test the message flow you
have created.

Use the input and output message queues that you created in “Create the
additional WebSphere MQ resources” on page 70.

The input files MQSI_TR1_CWF.ipt, MQSI_TR1_TDS.ipt, MQSI_TR1_XML.ipt, and
MQSI_TR1_Other.ipt have been created to help you test the message flow. The first
three characters in the message contained in the file are set to the three letters
defined in the file name. You can see these files in Appendix H, “Variable
conversion input files” on page 107.

Update the compute node

72 WebSphere MQ Integrator MRM Primer

You can see the output that is generated from each of these files in Appendix I,
“Variable conversion output files” on page 111. The default for the output message
that is generated is CWF. You will see that the output from the CWF input file and
the Other input file, is almost identical. The only difference is the OTH string in
the Other input file: because this is not explicitly handled in the ESQL, the
corresponding element in the output message defaults to CWF.

Test the message flow

Chapter 9. Further message transformation 73

Test the message flow

74 WebSphere MQ Integrator MRM Primer

Chapter 10. Basic message manipulation

In previous exercises you have transformed the message from one format to
another and looked at data within the message to determine the output format for
the message.

In this chapter you will look at how to perform some basic message manipulation.
You will:
v Remove an element from the input message
v Add a date time stamp to the output message

As in previous chapters, you will be referred to exercises that are performed in
earlier chapters if they need repeating in this chapter. You will be provided with
alternate names if they are needed.

This chapter covers:
v “Reviewing assumptions for this exercise”
v “Creating the message set”
v “Creating the message flow” on page 81
v “Assigning, deploying, and testing the message flow” on page 84

Reviewing assumptions for this exercise
In addition to the “General assumptions” on page xii, the following apply:
v You have the default queue manager running
v You have the Configuration Manager running
v You have the default broker running
v You have started the Control Center
v You have access to the files in Appendix C, “Example input message files” on

page 95
v If you have imported Cobol copybooks, you have reviewed “C header files and

Cobol copybooks” on page xiii

If you not have used the defaults, you will need to substitute the names that you
have used.

Creating the message set
For this exercise, you will base the new message set on one created in an earlier
exercise. When you are manipulating data within a message, if it is only the data
within an element that is changing, you can use the same message definition for
both the input and output. Because you are adding elements and deleting
elements, you will use a separate message for both the input and the output to
ensure that the message is handled and parsed correctly.

In this section, you need to create a new message set based on an earlier one and
then create the necessary elements, types, and messages to support the processing
in this chapter. A majority of the information in the new objects is identical to the
original incoming message. For this reason most of the new objects are based on
the original message set.

© Copyright IBM Corp. 2002 75

One of the features of the structures you have been working with, is that they
consists of a structure within a structure. For example PaxData4.h reads:
struct _PaxData4Msg /*Start of first structure*/
{

struct _PaxData4 /*Start of second structure*/
{

char PaxSurname [20];
struct _PaxFirstName
{

char Pax1stName [20];
}PaxFirstName;
unsigned char PaxTitle[10];
struct _PaxRoute
{

char PaxRouteClass [20];
struct _PaxDestinationMsg
{

char PaxDestination [20];
float PaxDestinationCost;
char PaxDestinationStops [3] [10];

} PaxDestinationMsg [4];
}PaxRoute [2];
unsigned char PaxBaggageAllowance[2];
short PaxMealType;
char PaxMealPreference [20];
float PaxTotalCost;

} PaxData4; /*End of second structure*/
}PaxData4Msg; /*End of first structure*/

Each of the example C header files (and equivalent Cobol copybooks) that you
have been using have had this type of structure. This ’doubling’ style of definition
has little bearing on the form of the message, but does add an extra layer of
complexity in defining and creating the objects within the MRM.

After importing the data structure, it would have been possible to create a message
without this ’double’ structure and still process the message correctly within the
MRM. This could have been achieved by importing the data structure and creating
a new message that is based on the Type of the ’inner’ structure. This would also
have had a follow on effect on the addressing of objects as the exercises
progressed.

In this exercise you are still using this type of structure and need to create an
output message (PaxData5_Msg) and an element (PaxData5) based on a type to
reflect the structure that has been imported and provide consistency in the
processing.

Create the message set and add the message and types
You will need to create a message set based on the message set that you created in
Chapter 9, “Further message transformation” on page 65.

Use the following steps for this section:
1. “Create a message set based on another message set” on page 66. The message

set to base it on is the one you created in that specific exercise
(MRMP_MS_TR1 and not MRMP_MS4) and you will create a new one
(MRMP_MS_TR2).

2. “Add the message and message types to the message set workspace” on
page 67. Use the new message set name (MRMP_MS_TR2).

Creating the message set

76 WebSphere MQ Integrator MRM Primer

You will not need to add the XML layer to this message set because it was added
to the message set that this new one is based (MRMP_MS_TR1) on.

Copy a message set type
The fastest way to create a new message type with the necessary elements is to
copy an existing one and update it as necessary. This is not always appropriate if
the new message type is completely unrelated to an existing one. In this exercise
there is only one difference, and copying is therefore an appropriate method for
creating this new message type.

Use the following steps for this exercise:
1. In the Control Center, select the Message Sets tab.
2. In the left pane, expand (click the + to the left of an object) the message set

(MRMP_MS_TR2) root and the Types within that message set to show all the
data types.

3. Right-click the PaxData4_Type (or the name you assigned in the earlier
exercise) and select Copy.

4. Right-click Types and select Paste. This creates a new message type called
PaxData4_TYPE_1.

5. Right-click this new Type and select Rename. This opens the Rename
Compound Type dialog.

6. Give the Type the name PaxData5_TYPE.
7. Click Finish.
8. From the menu select Check In —> All (Saved to Shared).

Create an element based on the new Type
The next stage in the creating your new message set is to create an element that is
based on the type you created in “Copy a message set type”. This is required to
ensure that the new message you are creating has the same format and structure as
the message being received.

Use the following steps for this exercise:
1. In the Control Center, select the Message Sets tab.
2. In the left pane, expand (click the + to the left of an object) the message set

(MRMP_MS_TR2) root.
3. Right-click Elements and select Create. This opens a Create a new Element

dialog.
4. Give the Element the name PaxData5 and the identifier PaxData5.
5. In the Type property, use the drop down selection box and select

PaxData5_TYPE.
6. Click Finish.
7. From the menu select Check In —> All (Saved to Shared).

Create the message set and add the message and types

Chapter 10. Basic message manipulation 77

Create a type and add an element
In “Copy a message set type” on page 77 and “Create an element based on the
new Type” on page 77 you have created the ’inner’ structure of the message as
discussed in “Creating the message set” on page 75. In this section you will now
create the type and add the element to it that completes the structure (the inner
structure created above) within a structure (the outer structure created in this
section).

Use the following steps for this exercise:
1. In the Control Center, select the Message Sets tab.
2. In the left pane, expand (click the + to the left of an object) the message set

(MRMP_MS_TR2) root.
3. Right-click Types and select Create —> Compound Type.... This opens a Create

a new Compound Type dialog.
Set the Name: to PaxData5Msg_TYPE.
Set the Type Content from the drop-down selection to Closed.
Set the Identifier to PaxData5Msg_TYPE.
Leave all other settings to their default value.
Click Finish.
Right-click the new compound type (PaxData5Msg_TYPE) and select Check In.
The TDS layer tab will now display.
Right-click the new compound type (PaxData5Msg_TYPE) and select Check
Out.
Select the TDS tab (PaxData4TDS as defined in the original message set) in the
right pane.
Set the Data Element Separation to All Elements Delimited.
Set the Delimiter to ’|’.
Select Apply in the bottom of the right pane.

4. Right-click the new Type name (PaxData5Msg_TYPE) and select Add —>
Element.... This opens the Add an existing Element dialog.

5. Select the element created in “Create an element based on the new Type” on
page 77 (PaxData5).

6. Click Finish.
7. From the menu select Check In —> All (Saved to Shared).

At this stage you now have the compound Types PaxData4, PaxData4Msg,
PaxData5 and PaxData5Msg. If you now compare the contents of each of the types
(PaxData4 to PaxData5, and PaxData4Msg to PaxData5Msg), apart from the icons,
the elements will be identical. See Figure 30 on page 79.

Create a Type and add an Element

78 WebSphere MQ Integrator MRM Primer

Add a new message to the message set
So far you have added the necessary Elements and Types to your message set that
you require for the output message. You will now need to create this new message
in the message set.

Use the following steps for this exercise:
1. In the Control Center, select the Message Sets tab.
2. In the left pane, expand (click the + to the left of an object) the message set

(MRMP_MS_TR2) root.
3. Right-click Messages and select Create —> Message.... This opens a Create a

new Message dialog.
4. Give the Message the name PaxData5_Msg and the identifier PaxData5ID.
5. For the Type use the drop down box to select the Type PaxData5Msg_TYPE.
6. Click Finish.
7. From the menu select Check In —> All (Saved to Shared).

At this point you will now have two messages in the workspace that have the
same elements within their data types. This can be seen by expanding (click the +
to the left of an object) the data types within the message to show the elements.

Removing an element from a compound type
At this point you have created a copy of the incoming message and these are the
templates used for parsing the incoming and outgoing message. You know that the
incoming message definition is correct because it is identical to the one used to test
in Chapter 9, “Further message transformation” on page 65. At this point the
outgoing message definition has not been updated and needs to reflect the content
and structure of the message you are to send.

Now you need to change the message to remove an element that you do not want
to send.

Figure 30. Screen shot of the Type tree that has just been created

Add a new message to the message set

Chapter 10. Basic message manipulation 79

Use the following steps for this exercise:
1. In the Control Center, select the Message Sets tab.
2. In the left pane, expand (click the + to the left of an object) the root the

message set (MRMP_MS_TR2) root.
3. In the left pane, expand the Types root.
4. Right-click PaxData5_TYPE and select Check Out.
5. Expand the PaxData5_TYPE and right-click OptMsgFormat. Select Remove.
6. From the menu select Check In —> All (Saved to Shared).

This removes the Element OptMsgFormat from the Type PaxData5_TYPE. If you
expand the PaxData5Msg_TYPE under Types or the PaxData5_Msg under
Messages, you will see that this removal applies to the element wherever it
appears in the PaxData5 message structure.

Create and add an element to a compound type
You now need to create and add the new element that is to contain the additional
data you need to send. This element is going to hold a date time stamp as a string.

Use the following steps for this exercise:
1. In the Control Center, select the Message Sets tab.
2. In the left pane, expand (click the + to the left of an object) the root the

message set (MRMP_MS_TR2) root.
3. Right-click Elements and select Create —> Element.... This opens the Create a

new Element dialog.
4. In the Name field enter DateTimeStamp.
5. In the Identifier field enter DateTimeStampID.
6. In the Type field, use the drop down box to select STRING.
7. Click Finish.
8. Right-click PaxData5_TYPE under the Types root. and select Check Out.
9. Right-click PaxData5_TYPE under the Types root. and select Add —>

Element.... This opens the Add an existing Element dialog.
10. Select DateTimeStamp and click Finish. This adds the element

DateTimeStamp to the Type.
This has added the DateTimeStamp element to the top of the list of elements
within the compound type. The order of the elements in a compound type can
be important for some physical formats (for example CWF) as it will be the
order that the broker expects to receive the elements in a message and the
order it will write them in.
It is possible to reorder the elements by right-clicking the compound type and
selecting Reorder.
For the message you are creating, the DateTimeStamp has been added in the
correct position.

11. From the menu select Check In —> All (Saved to Shared). This is required to
ensure the physical layers are displayed correctly with the new element.

12. Right-click PaxData5_TYPE under the Types root. and select Check Out.
13. Right-click DateTimeStamp under PaxData5_TYPE and select Check Out.
14. Select the CWF tab (PaxDataCWF) in the right pane for the DateTimeStamp

element.

Removing an element from a compound type

80 WebSphere MQ Integrator MRM Primer

Set the Length Count property to 23. This will be the length of the date time
stamp in the output message.
Click Apply at the bottom of the right pane.

15. From the menu select Check In —> All (Saved to Shared).

You will now have an input message (PaxData4_Msg) and an output message
(PaxData5_Msg) that will look as those shown in Figure 31.

Creating the message flow
In the previous section you have created the necessary message set that will allow
the broker to interpret the message it receives and to correctly format the data for
the output message. In this section you will be creating the message flow that will
propagate the incoming data to the outgoing message.

Create the additional WebSphere MQ resources
Use the process “Creating the WebSphere MQ resources” on page 22 from
Chapter 5, “Creating and testing a basic message flow” on page 21 to create an
additional input (MQSI_INQ_TR2) and output (MQSI_OUTQ_TR2) queue needed
for the new message flow.

Copy an existing message flow
Use the section “Copy an existing message flow” on page 70 to copy the message
flow. The changes to the process are:
v MQSI_TEST_TR1 is the message flow to copy.
v MQSI_TEST_TR1_1 is the message flow name created.
v MQSI_TEST_TR2 is the message flow name to rename it to.

Update the message flow nodes
This new message flow has input and output nodes that have properties assigning
them to the original message flow queues. In addition, the input node has the
original message flows message set assigned to it. All of these need changing to
reflect the new processing this message flow is to assume.

Figure 31. The input and output message

Create and add an element to a compound type

Chapter 10. Basic message manipulation 81

Update the input node
Use the section “Update the input node” on page 70 to update the input node to
use the new input queue and also set the new message set information to ensure
that it is correctly parsed. The changes to the process are:
v The message flow to update is MQSI_TEST_TR2.
v The message set to use is that created in MRMP_MS_TR2.

Update the output node
Use the section “Update the output node” on page 71 to update the output node to
use the new output queue. The only change to the process is the output message
queue is MQSI_OUTQ_TR2.

Update the compute node
The processing in previous compute nodes has been fairly basic. In the earlier ones
the input message was copied to the output message and later on had the format
setting changed to send the message in a different format.

In this section you will be manipulating the data and ensuring that it is sent in the
correct order. The section Message Tree Structures in the Working with Messages book
and Referring to information in messages in the ESQL Reference book are useful
sections to read to understand some of the concepts that will be dealt with during
the changes to this node.

To update the compute node:
1. In the Control Center, select the Message Flows tab.
2. In the left pane select the message flow to update (MQSI_TEST_TR2).
3. In the right pane, right-click the compute node (Compute1) and select

Properties. This opens the compute node (Compute1) properties dialog.
4. Select the ESQL tab in the bottom pane. The code showing in this field is

currently:
SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,>>
>> causing any modifications to be lost.*
-- Default output format is to be CWF
IF (InputBody.PaxData4.OptMsgFormatID = ’TDS’) THEN

SET OutputRoot.Properties.MessageFormat = ’TDS’;
ELSE

IF (InputBody.PaxData4.OptMsgFormatID = ’XML’) THEN
SET OutputRoot.Properties.MessageFormat = ’XML’;

END IF;
END IF;

* The lines have been split at >> for the purposes of displaying in this
document.

5. In the processing that you will apply here, you do not need all the data from
the input message. You will delete the OptMsgFormat element by not copying
it to the output message. This means that you will not need to copy the whole
message, but only the header. The first step is to select the radio button Copy
Message Headers. This will change the code from:
SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,>>
>> causing any modifications to be lost.

Update the input node

82 WebSphere MQ Integrator MRM Primer

to:
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;
END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,>>
>> causing any modifications to be lost.

6. The broker needs to be told to use the new message (PaxData5) to write (parse)
the data to the output message. To do this add the following statement:
SET OutputRoot.Properties.MessageType = ’PaxData5ID’;

7. You will now add the code to set the data in the output message. The order
that you copy the data to the output message in could be important . If you
have a message type that has a Type Composition of Ordered Set (this is the
default), and you copy the data across in the wrong order, the broker will
produce an error if the output format is CWF. If the output format is XML, the
broker would not produce an error and the order of the elements would be the
order they had been in the message tree.
You will need to consider this carefully when you decide how to develop your
messages. If you want the broker to handle the data in an unordered manner,
the Type Composition should be set to Unordered Set.
Because the Type Composition is Ordered Set the message data needs copying
across in the correct order. Add the following to the ESQL code:
-- Set the date/time stamp
SET OutputRoot.MRM.PaxData5.DateTimeStampID = SUBSTRING(CAST(current_>>
>>timestamp AS CHAR) FROM 12 FOR 23);

-- Copy across the remaining elements leaving out the OptMsgFormat
SET I = 2;
WHILE I <= CARDINALITY(InputBody.PaxData4.*[]) DO
SET OutputRoot.MRM.PaxData5.*[I] = InputBody.PaxData4.*[I];
SET I=I+1;
END WHILE;

The first part sets the date time stamp. Note that the DateTimeStamp element is
of type STRING, but current_timestamp is of type DATETIME. The CAST
command overcomes this issue. In addition the SUBSTRING command removes
the data that is not needed from the current_timestamp. (It includes the word
TIMESTAMP and quotes.)

8. The last section of code is to set the correct output format. This code is
identical to that completed in Chapter 9, “Further message transformation” on
page 65. It will read:
-- Set the output format for the message - Default is to be CWF
IF (InputBody.PaxData4.OptMsgFormatID = ’TDS’) THEN

SET OutputRoot.Properties.MessageFormat = ’TDS’;
ELSE

IF (InputBody.PaxData4.OptMsgFormatID = ’XML’) THEN
SET OutputRoot.Properties.MessageFormat = ’XML’;

END IF;
END IF;

9. Click OK.

Update the compute node

Chapter 10. Basic message manipulation 83

On completion of these changes the code will read:
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;
END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,>>
>> causing any modifications to be lost.**

-- Define the output message that the broker uses to format the output
SET OutputRoot.Properties.MessageType = ’PaxData5ID’;

-- Set the date/time stamp
SET OutputRoot.MRM.PaxData5.DateTimeStampID = SUBSTRING(CAST(current_>>
>>timestamp AS CHAR) FROM 12 FOR 23);**

-- Copy across the remaining elements leaving out the OptMsgFormat
SET I = 2;
WHILE I <= CARDINALITY(InputBody.PaxData4.*[]) DO
SET OutputRoot.MRM.PaxData5.*[I] = InputBody.PaxData4.*[I];
SET I=I+1;
END WHILE;

-- Set the output format for the message - Default is to be CWF
IF (InputBody.PaxData4.OptMsgFormatID = ’TDS’) THEN

SET OutputRoot.Properties.MessageFormat = ’TDS’;
ELSE

IF (InputBody.PaxData4.OptMsgFormatID = ’XML’) THEN
SET OutputRoot.Properties.MessageFormat = ’XML’;

END IF;
END IF;

** The lines have been split at >> for the purposes of displaying in this document.
(Do not leave the ’**’ in the code!)

Assigning, deploying, and testing the message flow
In this chapter, you have created the message set, message, message flow needed
for this exercise. In this section you will:
v “Assign the message set to the broker”
v “Assign the message flow to an execution group”
v “Deploy the configuration to the broker”
v “Test the message flow” on page 85

Assign the message set to the broker
Using the instructions in “Assigning a message set to a broker” on page 45 from
Chapter 7, “Converting CWF to TDS” on page 41, assign the message set
(MRMP_MS_TR2) to the broker (MQSI_SAMPLE_BROKER).

Assign the message flow to an execution group
Use the process “Assigning the message flow to the execution group” on page 26
from Chapter 5, “Creating and testing a basic message flow” on page 21 to add the
message flow (MQSI_TEST_TR2) to the broker.

Deploy the configuration to the broker
Use the process “Deploying the message flow to the broker” on page 27 from
Chapter 5, “Creating and testing a basic message flow” on page 21 to ensure that

Update the compute node

84 WebSphere MQ Integrator MRM Primer

all the changes made to the message sets and the message flows are deployed to
the broker for its use in processing messages.

Test the message flow
Use the process “Testing the CWF to TDS message flow” on page 52 from
Chapter 7, “Converting CWF to TDS” on page 41 to test the message flow you
have created.

Use the input and output message queues that you created in “Create the
additional WebSphere MQ resources” on page 81.

The input files MQSI_TR1_CWF.ipt, MQSI_TR1_TDS.ipt, MQSI_TR1_XML.ipt, and
MQSI_TR1_Other.ipt that were used in the previous chapter can also be used to
help you test the message flow.

You can see the output that is generated from each of these files in Appendix J,
“Manipulated output files” on page 115. You will see that the first field that
specified the output message format has been replaced with a date and time
stamp. Using the OTH input file creates a CWF output format with the date time
stamp the only difference.

Deploy the configuration to the broker

Chapter 10. Basic message manipulation 85

Test the message flow

86 WebSphere MQ Integrator MRM Primer

Appendix A. Example C header files

The following files are the C header files used in the examples within this
document.

Example 1: PaxData1.h
/*
**

Passenger Data Test Trees for the C Importer
Filename: PaxData1.h
Description:
Four headers describe four sizes of PaxData test.
This is the smallest header.

**
*/
struct _PaxData1Msg
{

struct _PaxData1
{

char PaxSurname [20];
long PaxMealType;

} PaxData1;
}PaxData1Msg;

Example 2: PaxData2.h
/*
**

Passenger Data Test Trees for the C Importer
Filename: PaxData2.h
Description:
Four headers describe four sizes of PaxData test.
This is the second smallest header.

**
*/
struct _PaxData2Msg
{

struct _PaxData2
{

char PaxSurname [20];
struct _PaxFirstName
{

char Pax1stName [20];
}PaxFirstName;
unsigned char PaxTitle[10];
long PaxMealType;
char PaxMealPreference [20];

} PaxData2;
}PaxData2Msg;

© Copyright IBM Corp. 2002 87

Example 3: PaxData3.h
/*
**

Passenger Data Test Trees for the C Importer
Filename: PaxData3.h
Description:
Four headers describe four sizes of PaxData test.
This is the second largest header.

**
*/
struct _PaxData3Msg
{

struct _PaxData3
{

char PaxSurname [20];
struct _PaxFirstName
{

char Pax1stName [20];
}PaxFirstName;
unsigned char PaxTitle[10];
struct _PaxRoute
{

char PaxRouteClass [20];
struct _PaxDestinationMsg
{

char PaxDestination [20];
double PaxDestinationCost;
char PaxDestinationStops [3] [10];

} PaxDestinationMsg;
}PaxRoute;
unsigned char PaxBaggageAllowance[2];
long PaxMealType;
char PaxMealPreference [20];

} PaxData3;
}PaxData3Msg;

Example C header files

88 WebSphere MQ Integrator MRM Primer

Example 4: PaxData4.h
/*
**

Passenger Data Test Trees for the C Importer
Filename: PaxData4.h
Description:
Four headers describe four sizes of PaxData test.
This is the largest header.

**
*/
struct _PaxData4Msg
{

struct _PaxData4
{

char PaxSurname [20];
struct _PaxFirstName
{

char Pax1stName [20];
}PaxFirstName;
unsigned char PaxTitle[10];
struct _PaxRoute
{

char PaxRouteClass [20];
struct _PaxDestinationMsg
{

char PaxDestination [20];
double PaxDestinationCost;
char PaxDestinationStops [3] [10];

} PaxDestinationMsg [4];
}PaxRoute [2];
unsigned char PaxBaggageAllowance[2];
long PaxMealType;
char PaxMealPreference [20];
double PaxTotalCost;

} PaxData4;
}PaxData4Msg;

Example C header files

Appendix A. Example C header files 89

Example C header files

90 WebSphere MQ Integrator MRM Primer

Appendix B. Example Cobol copybook files

The following files are the Cobol copybook files that you can use in the exercises
within this document.

Example 1: PaxData1.cpy

* Passenger Data Test Trees for the Cobol Importer
* Filename: PaxData1.cpy
* Description:
* Four structures describe four sizes of PaxData test.
* This is the smallest structure.

*
01 PaxData1Msg.

03 PaxData1.
05 PaxSurname PIC X(20).
05 PaxMealtype PIC S9(9) COMP-5.

Example 2: PaxData2.cpy
**
* Passenger Data Test Trees for the Cobol Importer
* Filename: PaxData2.cpy
* Description:
* Four headers describe four sizes of PaxData test.
* This is the second smallest header.
**
*
01 PaxData2Msg.

03 PaxData2.
05 PaxSurname PIC X(20).
05 PaxFirstName.

07 Pax1stName PIC X(20).
05 PaxTitle PIC X(10).
05 PaxMealType PIC S9(9) COMP-5.
05 PaxMealPreference PIC X(20).

**
*

© Copyright IBM Corp. 2002 91

Example 3: PaxData3.cpy
**
* Passenger Data Test Trees for the Cobol Importer
* Filename: PaxData3.cpy
* Description:
* Four headers describe four sizes of PaxData test.
* This is the second largest header.
**
*
01 PaxData3Msg.

03 PaxData3.
05 PaxSurname PIC X(20).
05 PaxFirstName.

10 Pax1stName PIC X(20).
05 PaxTitle PIC X(10).
05 PaxRoute.

10 PaxRouteClass PIC X(20).
10 PaxDestinationMsg.

15 PaxDestination PIC X(20).
15 PaxDestinationCost COMP-2.
15 PaxDestinationStops OCCURS 3 TIMES PIC X(10).

05 PaxBaggageAllowance PIC XX.
05 PaxMealType PIC S9(9) COMP-5.
05 PaxMealPreference PIC X(20).
05 PaxTotalCost COMP-2.

**
*

Example Cobol copybook files

92 WebSphere MQ Integrator MRM Primer

Example 4: PaxData4.cpy
**
* Passenger Data Test Trees for the Cobol Importer
* Filename: PaxData4.cpy
* Description:
* Four headers describe four sizes of PaxData test.
* This is the second largest header.
**
*
01 PaxData4Msg.

03 PaxData4.
05 PaxSurname PIC X(20).
05 PaxFirstName.

10 Pax1stName PIC X(20).
05 PaxTitle PIC X(10).
05 PaxRoute OCCURS 2 TIMES.

10 PaxRouteClass PIC X(20).
10 PaxDestinationMsg OCCURS 4 TIMES.

15 PaxDestination PIC X(20).
15 PaxDestinationCost COMP-2.
15 PaxDestinationStops OCCURS 3 TIMES PIC X(10).

05 PaxBaggageAllowance PIC XX.
05 PaxMealType PIC S9(9) COMP-5.
05 PaxMealPreference PIC X(20).
05 PaxTotalCost COMP-2.

**
*

Example Cobol copybook files

Appendix B. Example Cobol copybook files 93

Example Cobol copybook files

94 WebSphere MQ Integrator MRM Primer

Appendix C. Example input message files

The following files are the example input message files used in the exercises within
this document. The files are formatted as follows:
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
00000000 Passenge rSurname 50617373 656E6765 72537572 6E616D65

v The first column gives the displacement of the beginning of the data on that
display line from the beginning of the file.

v Columns 2 and 3 show the ASCII representation of the data for each line of the
display.

v Columns 4 to 7 show the hexadecimal representation of the data for each line of
the display

There are no spaces between columns 2 and 3 or columns 4 to 7. The data is
displayed this way to assist in reading!

Example 1: PaxData1.ipt
00000000 Passenge rSurname 50617373 656E6765 72537572 6E616D65
00000016 20202020 01000000

Example 2: PaxData2.ipt
00000000 Passenge rSurname 50617373 656E6765 72537572 6E616D65
00000016 Pass engerFir 20202020 50617373 656E6765 72466972
00000032 stname PaxTitle 73746E61 6D652020 50617854 69746C65
00000048Pa xMealPre 20200100 00005061 784D6561 6C507265
00000064 ference 66657265 6E636520 2020

Example 3: PaxData3.ipt
00000000 Passenge rSurname 50617373 656E6765 72537572 6E616D65
00000016 Pass engerFir 20202020 50617373 656E6765 72466972
00000032 stname PaxTitle 73746E61 6D652020 50617854 69746C65
00000048 Passen gerRoute 20205061 7373656E 67657252 6F757465
00000064 Class Pa ssengerD 436C6173 73205061 7373656E 67657244
00000080 estinati onU0*..I 65737469 6E617469 6F6E5530 2AA9D349
00000096 .@PaxSto pOnePaxS 93405061 7853746F 704F6E65 50617853
00000112 topTwoPa xDestThr 746F7054 776F5061 78446573 74546872
00000128 BA....Pa xMealPre 42410100 00005061 784D6561 6C507265
00000144 ference 66657265 6E636520 2020

Example 4: PaxData4.ipt
00000000 Passenge rSurname 50617373 656E6765 72537572 6E616D65
00000016 Pass engerFir 20202020 50617373 656E6765 72466972
00000032 stname PaxTitle 73746E61 6D652020 50617854 69746C65
00000048 Passen gerRoute 20205061 7373656E 67657252 6F757465
00000064 Class Pa ssengerD 436C6173 73205061 7373656E 67657244
00000080 estinat1 -1U0*..I 65737469 6E617431 2D315530 2AA9D349
00000096 .@PaxSto p1-1PaxS 93405061 7853746F 70312D31 50617853
00000112 top1-2Pa xStop1-3 746F7031 2D325061 7853746F 70312D33
00000128 Passenge rDestina 50617373 656E6765 72446573 74696E61
00000144 t1-2U0*. .I.@PaxS 74312D32 55302AA9 D3499340 50617853
00000160 top2-1Pa xStop2-2 746F7032 2D315061 7853746F 70322D32
00000176 PaxStop2 -3Passen 50617853 746F7032 2D335061 7373656E
00000192 gerDesti nat1-3U0 67657244 65737469 6E617431 2D335530

© Copyright IBM Corp. 2002 95

00000208 *..I.@Pa xStop3-1 2AA9D349 93405061 7853746F 70332D31
00000224 PaxStop3 -2PaxSto 50617853 746F7033 2D325061 7853746F
00000240 p3-3Pass engerDes 70332D33 50617373 656E6765 72446573
00000256 tinat1-4 U0*..I.@ 74696E61 74312D34 55302AA9 D3499340
00000272 PaxStop4 -1PaxSto 50617853 746F7034 2D315061 7853746F
00000288 p4-2PaxS top4-3Pa 70342D32 50617853 746F7034 2D335061
00000304 ssengerR outeClas 7373656E 67657252 6F757465 436C6173
00000320 s Passen gerDesti 73205061 7373656E 67657244 65737469
00000336 nat2-1U0 *..I.@Pa 6E617432 2D315530 2AA9D349 93405061
00000352 xStop1-1 PaxStop1 7853746F 70312D31 50617853 746F7031
00000368 -2PaxSto p1-3Pass 2D325061 7853746F 70312D33 50617373
00000384 engerDes tinat2-2 656E6765 72446573 74696E61 74322D32
00000400 U0*..I.@ PaxStop2 55302AA9 D3499340 50617853 746F7032
00000416 -1PaxSto p2-2PaxS 2D315061 7853746F 70322D32 50617853
00000432 top2-3Pa ssengerD 746F7032 2D335061 7373656E 67657244
00000448 estinat2 -3U0*..I 65737469 6E617432 2D335530 2AA9D349
00000464 .@PaxSto p3-1PaxS 93405061 7853746F 70332D31 50617853
00000480 top3-2Pa xStop3-3 746F7033 2D325061 7853746F 70332D33
00000496 Passenge rDestina 50617373 656E6765 72446573 74696E61
00000512 t2-4U0*. .I.@PaxS 74322D34 55302AA9 D3499340 50617853
00000528 top4-1Pa xStop4-2 746F7034 2D315061 7853746F 70342D32
00000544 PaxStop4 -3BA.... 50617853 746F7034 2D334241 01000000
00000560 PaxMealP referenc 5061784D 65616C50 72656665 72656E63
00000576 e U0*. .I.@ 65202020 55302AA9 D3499340

Example input message files

96 WebSphere MQ Integrator MRM Primer

Appendix D. Example TDS output

The following output examples show the TDS data that is generated from the
input files in Appendix C, “Example input message files” on page 95.

Note: If you have imported Cobol copybooks, review “C header files and Cobol
copybooks” on page xiii. You will find that if you have left the padding
character set to SPACE for STRING elements, the blanks at the end of those
input message fields will not be in the output message.

The data is formatted as follows:
Column 1 Column 2
00000000 PassengerSurname |PassengerFi

v The first column gives the displacement (in hexadecimal) of the beginning of the
data on that display line from the beginning of the file.

v Columns 2 displays the data for that line

Example 1: From PaxData1.ipt
00000000 PassengerSurname |1

Example 2: From PaxData2.ipt
00000000 PassengerSurname |PassengerFi
00000032 rstname |PaxTitle |1|PaxMealPr
00000064 eference

Example 3: From PaxData3.ipt
00000000 PassengerSurname |PassengerFi
00000032 rstname |PaxTitle |PassengerRo
00000064 uteClass |PassengerDestination|1
00000096 234.4567|PaxStopOne||PaxStopTwo|
00000128 |PaxDestThr|BA|1|PaxMealPreferen
00000160 ce

Example 4: From PaxData4.ipt
00000000 PassengerSurname |PassengerFi
00000032 rstname |PaxTitle |PassengerRo
00000064 uteClass |PassengerDestinat1-1|1
00000096 234.4567|PaxStop1-1||||PaxStop1-
00000128 2||||PaxStop1-3|||PassengerDesti
00000160 nat1-2|1234.4567|PaxStop2-1||||P
00000192 axStop2-2||||PaxStop2-3|||Passen
00000224 gerDestinat1-3|1234.4567|PaxStop
00000256 3-1||||PaxStop3-2||||PaxStop3-3|
00000288 ||PassengerDestinat1-4|1234.4567
00000320 |PaxStop4-1||||PaxStop4-2||||Pax
00000352 Stop4-3||PassengerRouteClass |Pa
00000384 ssengerDestinat2-1|1234.4567|Pax
00000416 Stop1-1||||PaxStop1-2||||PaxStop
00000448 1-3|||PassengerDestinat2-2|1234.
00000480 4567|PaxStop2-1||||PaxStop2-2|||
00000512 |PaxStop2-3|||PassengerDestinat2
00000544 -3|1234.4567|PaxStop3-1||||PaxSt

© Copyright IBM Corp. 2002 97

00000576 op3-2||||PaxStop3-3|||PassengerD
00000608 estinat2-4|1234.4567|PaxStop4-1|
00000640 |||PaxStop4-2||||PaxStop4-3|BA|1
00000672 |PaxMealPreference |1234.4567

Example TDS output

98 WebSphere MQ Integrator MRM Primer

Appendix E. .XML trace file

This is the XML file that was created by the mqsireadlog command in Chapter 6,
“The Trace node” on page 35. For the purposes of this document, it has been
necessary to split some of the lines at ’>>’.
<:?xml version="1.0" encoding="UTF-8" ?><UserTraceLog uuid="UserTraceLo>>
>>g" userTraceLevel="none" traceLevel="none" userTraceFilter="debugTrace" t>>
>>raceFilter="none" fileSize="4194304" bufferSize="0" fileMode="safe"><Er>>
>>ror timestamp=’2002-07-02 08:26:07.295000’ thread=’2628’ function=’ImbLibra>>
>>ry::ImbLibrary’ text=’Failed to load library file’ catalog=’WMQIv210’ numbe>>
>>r=’2308’ file=’F:\build\S210_P\src\DataFlowEngine\DataFlowDLL\Win32\ImbLibr>>
>>ary.cpp’ line=’83’><Insert type=’string’>C:\IBM\WMQI\bin\imbdfneo.lil>>
>></Insert><Insert type=’integer’>126</Insert></Error><Erro>>
>>r timestamp=’2002-07-02 08:26:13.654000’ thread=’2628’ function=’ImbLibrary>>
>>::ImbLibrary’ text=’Failed to load library file’ catalog=’WMQIv210’ number=>>

... 665 lines deleted for the purposes of this document

>>IbmTraceNode’ name=’6bde51c6-ee00-0000-0080-df695815836b’ label=’MQSI_TEST.>>
>>Trace1’ text=’Evaluating expression at (&1, &2)’ catalog=’WMQIv210’>>
>> number=’2538’ file=’F:\build\S210_P\src\DataFlowEngine\ImbRdl\ImbRdlFieldR>>
>>ef.cpp’ line=’1234’><Insert type=’integer’>1</Insert><Insert ty>>
>>pe=’integer’>3</Insert><Insert type=’string’>Root</Insert><>>
>>Insert type=’string’>MQSI_TEST.Trace1</Insert></UserTrace><User>>
>>Trace timestamp=’2002-07-02 08:32:53.048000’ thread=’764’ function=’ImbTrac>>
>>eNode::writeToLog’ type=’ComIbmTraceNode’ name=’6bde51c6-ee00-0000-0080-df6>>
>>95815836b’ label=’MQSI_TEST.Trace1’ text=’Application trace output from Tra>>
>>ceNode’ catalog=’WMQIv210’ number=’4060’ file=’F:\build\S210_P\src\DataFlow>>
>>Engine\ImbTraceNode.cpp’ line=’426’><Insert type=’string’>(

(0x1000000)Properties = (
(0x3000000)MessageSet = ’DPQ898C072001’
(0x3000000)MessageType = ’PaxData1Msg’
(0x3000000)MessageFormat = ’CWF’
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Transactional = TRUE
(0x3000000)Persistence = FALSE
(0x3000000)CreationTime = GMTTIMESTAMP ’2002-07-02 08:32:52.750’
(0x3000000)ExpirationTime = -1
(0x3000000)Priority = 0
(0x3000000)ReplyIdentifier = X’0000000000000000000000000000000000000>>
>>00000000000’
(0x3000000)ReplyProtocol = ’MQ’
(0x3000000)Topic = NULL

)
(0x1000000)MQMD = (

(0x3000000)SourceQueue = ’MQSI_INQ’
(0x3000000)Transactional = TRUE
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Format = ’ ’
(0x3000000)Version = 2
(0x3000000)Report = 0
(0x3000000)MsgType = 8
(0x3000000)Expiry = -1
(0x3000000)Feedback = 0
(0x3000000)Priority = 0
(0x3000000)Persistence = 0
(0x3000000)MsgId = X’414d51204d5153495f53414d504c455f2163>>
>>213d12900000’
(0x3000000)CorrelId = X’000000000000000000000000000000000000>>
>>000000000000’

© Copyright IBM Corp. 2002 99

(0x3000000)BackoutCount = 0
(0x3000000)ReplyToQ = ’ >>
>> ’
(0x3000000)ReplyToQMgr = ’MQSI_SAMPLE_QM >>
>> ’
(0x3000000)UserIdentifier = ’ZZ112233 ’
(0x3000000)AccountingToken = X’16010515000000c373de18cb4a5f7d4738b7>>
>>5ff401000000000000000000000b’
(0x3000000)ApplIdentityData = ’ ’
(0x3000000)PutApplType = 11
(0x3000000)PutApplName = ’C:\IBM\IH03\rfhutil.exe ’
(0x3000000)PutDate = DATE ’2002-07-02’
(0x3000000)PutTime = GMTTIME ’08:32:52.750’
(0x3000000)ApplOriginData = ’ ’
(0x3000000)GroupId = X’000000000000000000000000000000000000>>
>>000000000000’
(0x3000000)MsgSeqNumber = 1
(0x3000000)Offset = 0
(0x3000000)MsgFlags = 0
(0x3000000)OriginalLength = -1

)
(0x1000021)MRM = (

(0x1000013)PaxData1 = (
(0x300000B)PaxSurname = ’PassengerSurname ’
(0x300000B)PaxMealType = 1

)
)

)
</Insert><Insert type=’string’>MQSI_TEST.Trace1</Insert></UserT>>
>>race><UserTrace timestamp=’2002-07-02 08:32:53.048000’ thread=’764’ fun>>
>>ction=’ImbTraceNode::evaluate’ type=’ComIbmTraceNode’ name=’6bde51c6-ee00-0>>
>>000-0080-df695815836b’ label=’MQSI_TEST.Trace1’ text=’Propagating to output>>
>> terminal’ catalog=’WMQIv210’ number=’4067’ file=’F:\build\S210_P\src\DataF>>
>>lowEngine\ImbTraceNode.cpp’ line=’337’><Insert type=’string’>MQSI_TES>>
>>T.Trace1</Insert></UserTrace><UserTrace timestamp=’2002-07-02 08:>>
>>32:53.048000’ thread=’764’ function=’ImbMqOutputNode::putMessage’ type=’Com>>
>>IbmMQOutputNode’ name=’07241a17-ee00-0000-0080-df695815836b’ label=’MQSI_TE>>
>>ST.MQOutput1’ text=’MQPUT issued to put message to the specified output que>>

... 111 lines deleted for the purposes of this document

>> type=’integer’>364</Insert><Insert type=’string’>MQHMD</Insert>>
>>><Insert type=’string’>ConfigurationMessageFlow.InputNode</Insert>>>
>></UserTrace><UserTrace timestamp=’2002-07-02 08:36:20.096000’ thread>>
>>=’2692’ function=’ImbRootParser::parseNextItem’ type=’ComIbmMQInputNode’ na>>
>>me=’InputNode’ label=’ConfigurationMessageFlow.InputNode’ text=’Created par>>
>>ser’ catalog=’WMQIv210’ number=’6061’ file=’F:\build\S210_P\src\DataFlowEng>>
>>ine\ImbRootParser.cpp’ line=’523’><Insert type=’string’>XML</Insert>>
>>><Insert type=’integer’>364</Insert><Insert type=’integer’>24>>
>>1</Insert><Insert type=’string’>XML</Insert><Insert type=’str>>
>>ing’>ConfigurationMessageFlow.InputNode</Insert></UserTrace></U>>
>>serTraceLog>

XML trace file

100 WebSphere MQ Integrator MRM Primer

Appendix F. .log trace file

This is the formatted log file that was created by the mqsiformatlog command in
Chapter 6, “The Trace node” on page 35.

Some of the lines in this Trace file have been split at ’>>’ for the purposes of
displaying in this document.

Timestamps are formatted in local time, 60 minutes past GMT.

2002-07-02 09:32:25.048000 2692 UserTrace BIP2632I: Message received and propagated to ’out’>>
>> terminal of MQ input node node ’ConfigurationMessageFlow.InputNode’.
2002-07-02 09:32:25.048000 2692 UserTrace BIP6060I: Parser type ’Properties’ created on beh>>
>>alf of node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length >>
>>0 bytes beginning at offset ’0’.
2002-07-02 09:32:25.048000 2692 UserTrace BIP6061I: Parser type ’MQMD’ created on behalf of>>
>> node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length ’364’ >>
>>bytes beginning at offset ’0’. Parser type selected based on value ’MQHMD’ from previous parser.
2002-07-02 09:32:25.048000 2692 UserTrace BIP6061I: Parser type ’XML’ created on behalf of >>
>>node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length ’241’ b>>
>>ytes beginning at offset ’364’. Parser type selected based on value ’XML’ from previous parser.
2002-07-02 09:32:29.795000 2692 UserTrace BIP2265I: Attribute in message flow ’MQSI_TEST’ (>>
>>uuid=’0b870817-ee00-0000-0080-df695815836b’) successfully changed.

The message broker received a configuration message containi>>
>>ng an instruction to change an attribute in the message flow ’MQSI_TEST’ (uuid=’0b870817-ee00-000>>
>>0-0080-df695815836b’) and successfully performed this action.

No user action required.
2002-07-02 09:32:29.954999 2692 UserTrace BIP4040I: The Execution Group ’default’ has proce>>
>>ssed a configuration message successfully.

A configuration message has been processed successfully. Any>>
>> configuration changes have been made and stored persistently.

No user action required.
2002-07-02 09:32:29.995000 2692 UserTrace BIP2638I: The MQ output node ’ConfigurationMessag>>
>>eFlow.outputNode’ attempted to write a message to the specified queue ’SYSTEM.BROKER.EXECUTIONGRO>>
>>UP.REPLY’ connected to queue manager ’MQSI_SAMPLE_QM’. The MQCC was 0 and the MQRC was 0.
2002-07-02 09:32:29.995000 2692 UserTrace BIP2622I: Message successfully output by MQ outpu>>
>>t node ’ConfigurationMessageFlow.outputNode’ to queue ’SYSTEM.BROKER.EXECUTIONGROUP.REPLY’ on que>>
>>ue manager ’MQSI_SAMPLE_QM’.
2002-07-02 09:32:52.757999 764 UserTrace BIP2632I: Message received and propagated to ’out’>>
>> terminal of MQ input node node ’MQSI_TEST.MQInput1’.
2002-07-02 09:32:52.757999 764 UserTrace BIP6060I: Parser type ’Properties’ created on beh>>
>>alf of node ’MQSI_TEST.MQInput1’ to handle portion of incoming message of length 0 bytes beginnin>>
>>g at offset ’0’.
2002-07-02 09:32:52.757999 764 UserTrace BIP6061I: Parser type ’MQMD’ created on behalf of>>
>> node ’MQSI_TEST.MQInput1’ to handle portion of incoming message of length ’364’ bytes beginning a>>
>>t offset ’0’. Parser type selected based on value ’MQHMD’ from previous parser.
2002-07-02 09:32:52.958000 764 UserTrace BIP6061I: Parser type ’MRM’ created on behalf of >>
>>node ’MQSI_TEST.MQInput1’ to handle portion of incoming message of length ’24’ bytes beginning at>>
>> offset ’364’. Parser type selected based on value ’MRM’ from previous parser.
2002-07-02 09:32:52.998001 764 UserTrace BIP2538I: Node ’MQSI_TEST.Trace1’: Evaluating exp>>
>>ression ’Root’ at (1, 3).
2002-07-02 09:32:53.048000 764 UserTrace BIP4060I: Data ’(

(0x1000000)Properties = (
(0x3000000)MessageSet = ’DPQ898C072001’
(0x3000000)MessageType = ’PaxData1Msg’
(0x3000000)MessageFormat = ’CWF’
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Transactional = TRUE
(0x3000000)Persistence = FALSE
(0x3000000)CreationTime = GMTTIMESTAMP ’2002-07-02 08>>
>>:32:52.750’
(0x3000000)ExpirationTime = -1

© Copyright IBM Corp. 2002 101

(0x3000000)Priority = 0
(0x3000000)ReplyIdentifier = X’0000000000000000000000000>>
>>00000000000000000000000’
(0x3000000)ReplyProtocol = ’MQ’
(0x3000000)Topic = NULL

)
(0x1000000)MQMD = (

(0x3000000)SourceQueue = ’MQSI_INQ’
(0x3000000)Transactional = TRUE
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Format = ’ ’
(0x3000000)Version = 2
(0x3000000)Report = 0
(0x3000000)MsgType = 8
(0x3000000)Expiry = -1
(0x3000000)Feedback = 0
(0x3000000)Priority = 0
(0x3000000)Persistence = 0
(0x3000000)MsgId = X’414d51204d5153495f53414d>>
>>504c455f2163213d12900000’
(0x3000000)CorrelId = X’000000000000000000000000>>
>>000000000000000000000000’
(0x3000000)BackoutCount = 0
(0x3000000)ReplyToQ = ’ ’
(0x3000000)ReplyToQMgr = ’MQSI_SAMPLE_QM ’
(0x3000000)UserIdentifier = ’GB028334 ’
(0x3000000)AccountingToken = X’16010515000000c373de18cb>>
>>4a5f7d4738b75ff401000000000000000000000b’
(0x3000000)ApplIdentityData = ’ ’
(0x3000000)PutApplType = 11
(0x3000000)PutApplName = ’C:\IBM\IH03\rfhutil.exe’
(0x3000000)PutDate = DATE ’2002-07-02’
(0x3000000)PutTime = GMTTIME ’08:32:52.750’
(0x3000000)ApplOriginData = ’ ’
(0x3000000)GroupId = X’000000000000000000000000>>
>>000000000000000000000000’
(0x3000000)MsgSeqNumber = 1
(0x3000000)Offset = 0
(0x3000000)MsgFlags = 0
(0x3000000)OriginalLength = -1

)
(0x1000021)MRM = (

(0x1000013)PaxData1 = (
(0x300000B)PaxSurname = ’PassengerSurname ’
(0x300000B)PaxMealType = 1

)
)

)
’ from trace node ’MQSI_TEST.Trace1’.
The trace node ’MQSI_TEST.Trace1’ has output the specified tr>>
>>ace data.
This is an information message provided by the message flow >>
>>designer. The user response will be determined by the loc>>
>>al environment.

2002-07-02 09:32:53.048000 764 UserTrace BIP4067I: Message propagated to output terminal f>>
>>or trace node ’MQSI_TEST.Trace1’.

The trace node ’MQSI_TEST.Trace1’ has received a message and >>
>>is propagating it to any nodes connected to its output terminal.

No user action required.
2002-07-02 09:32:53.048000 764 UserTrace BIP2638I: The MQ output node ’MQSI_TEST.MQOutput1>>
>>’ attempted to write a message to the specified queue ’MQSI_OUTQ’ connected to queue manager ’MQS>>
>>I_SAMPLE_QM’. The MQCC was 0 and the MQRC was 0.
2002-07-02 09:32:53.048000 764 UserTrace BIP2622I: Message successfully output by MQ outpu>>
>>t node ’MQSI_TEST.MQOutput1’ to queue ’MQSI_OUTQ’ on queue manager ’MQSI_SAMPLE_QM’.
2002-07-02 09:34:02.338000 2692 UserTrace BIP2632I: Message received and propagated to ’out’>>
>> terminal of MQ input node node ’ConfigurationMessageFlow.InputNode’.

log trace file

102 WebSphere MQ Integrator MRM Primer

2002-07-02 09:34:02.338000 2692 UserTrace BIP6060I: Parser type ’Properties’ created on beh>>
>>alf of node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length >>
>>0 bytes beginning at offset ’0’.
2002-07-02 09:34:02.338000 2692 UserTrace BIP6061I: Parser type ’MQMD’ created on behalf of>>
>> node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length ’364’ >>
>>bytes beginning at offset ’0’. Parser type selected based on value ’MQHMD’ from previous parser.
2002-07-02 09:34:02.338000 2692 UserTrace BIP6061I: Parser type ’XML’ created on behalf of >>
>>node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length ’235’ b>>
>>ytes beginning at offset ’364’. Parser type selected based on value ’XML’ from previous parser.
2002-07-02 09:34:03.069000 2692 UserTrace BIP2265I: Attribute in message flow ’MQSI_TEST’ (>>
>>uuid=’0b870817-ee00-0000-0080-df695815836b’) successfully changed.

The message broker received a configuration message containi>>
>>ng an instruction to change an attribute in the message flow ’MQSI_TEST’ (uuid=’0b870817-ee00-000>>
>>0-0080-df695815836b’) and successfully performed this action.

No user action required.
2002-07-02 09:34:03.108999 2692 UserTrace BIP4040I: The Execution Group ’default’ has proce>>
>>ssed a configuration message successfully.

A configuration message has been processed successfully. Any>>
>> configuration changes have been made and stored persistently.

No user action required.
2002-07-02 09:34:03.108999 2692 UserTrace BIP2638I: The MQ output node ’ConfigurationMessag>>
>>eFlow.outputNode’ attempted to write a message to the specified queue ’SYSTEM.BROKER.EXECUTIONGRO>>
>>UP.REPLY’ connected to queue manager ’MQSI_SAMPLE_QM’. The MQCC was 0 and the MQRC was 0.
2002-07-02 09:34:03.108999 2692 UserTrace BIP2622I: Message successfully output by MQ outpu>>
>>t node ’ConfigurationMessageFlow.outputNode’ to queue ’SYSTEM.BROKER.EXECUTIONGROUP.REPLY’ on que>>
>>ue manager ’MQSI_SAMPLE_QM’.
2002-07-02 09:36:20.096000 2692 UserTrace BIP2632I: Message received and propagated to ’out>>
>>’ terminal of MQ input node node ’ConfigurationMessageFlow.InputNode’.
2002-07-02 09:36:20.096000 2692 UserTrace BIP6060I: Parser type ’Properties’ created on beh>>
>>alf of node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length >>
>>0 bytes beginning at offset ’0’.
2002-07-02 09:36:20.096000 2692 UserTrace BIP6061I: Parser type ’MQMD’ created on behalf of>>
>> node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length ’364’ >>
>>bytes beginning at offset ’0’. Parser type selected based on value ’MQHMD’ from previous parser.
2002-07-02 09:36:20.096000 2692 UserTrace BIP6061I: Parser type ’XML’ created on behalf of >>
>>node ’ConfigurationMessageFlow.InputNode’ to handle portion of incoming message of length ’241’ b>>
>>ytes beginning at offset ’364’. Parser type selected based on value ’XML’ from previous parser.

Threads encountered in this trace:
2692

log trace file

Appendix F. .log trace file 103

log trace file

104 WebSphere MQ Integrator MRM Primer

Appendix G. Example CWF import report file

The following file was generated by importing PaxData4.h (See Appendix A,
“Example C header files” on page 87) into a message set.

The warning that is at the top of the file is generated because PaxData4.h is
imported before the CWF layer was added. This is discussed further in Chapter 4,
“Importing C or Cobol data structures into the MRM” on page 15.

Importing C header file C:\PaxData4.h...

Warning: The Custom Wire Format Plugin is not installed and registered for the project.
No Custom Wire Format values will be set as a result

Created Value DEFAULT_CHAR_VALUE.
Importing C structure PaxData4Msg.
Importing C structure PaxData4.
Created Value PAXSURNAME_VALUE.
Created Element PaxSurname.
Inserted Value PAXSURNAME_VALUE into Element PaxSurname.
Importing C structure PaxFirstName.
Created Value PAX1STNAME_VALUE.
Created Element Pax1stName.
Inserted Value PAX1STNAME_VALUE into Element Pax1stName.
Created Type PaxFirstName_TYPE.
Inserted Element Pax1stName into Type PaxFirstName_TYPE.
Created Element PaxFirstName.
Created Element PaxTitle.
Importing C structure PaxRoute.
Created Value PAXROUTECLASS_VALUE.
Created Element PaxRouteClass.
Inserted Value PAXROUTECLASS_VALUE into Element PaxRouteClass.
Importing C structure PaxDestinationMsg.
Created Value PAXDESTINATION_VALUE.
Created Element PaxDestination.
Inserted Value PAXDESTINATION_VALUE into Element PaxDestination.
Created Element PaxDestinationCost.
Created Value PAXDESTINATIONSTOPS_VALUE.
Created Element PaxDestinationStops.
Inserted Value PAXDESTINATIONSTOPS_VALUE into Element PaxDestinationStops.
Created Type PaxDestinationMsg_TYPE.
Inserted Element PaxDestination into Type PaxDestinationMsg_TYPE.
Inserted Element PaxDestinationCost into Type PaxDestinationMsg_TYPE.
Inserted Element PaxDestinationStops into Type PaxDestinationMsg_TYPE.
Created Element PaxDestinationMsg.
Created Type PaxRoute_TYPE.
Inserted Element PaxRouteClass into Type PaxRoute_TYPE.
Inserted Element PaxDestinationMsg into Type PaxRoute_TYPE.
Created Element PaxRoute.
Created Element PaxBaggageAllowance.
Created Element PaxMealType.
Created Value PAXMEALPREFERENCE_VALUE.
Created Element PaxMealPreference.
Inserted Value PAXMEALPREFERENCE_VALUE into Element PaxMealPreference.
Created Element PaxTotalCost.
Created Type PaxData4_TYPE.
Inserted Element PaxSurname into Type PaxData4_TYPE.
Inserted Element PaxFirstName into Type PaxData4_TYPE.
Inserted Element PaxTitle into Type PaxData4_TYPE.
Inserted Element PaxRoute into Type PaxData4_TYPE.
Inserted Element PaxBaggageAllowance into Type PaxData4_TYPE.

© Copyright IBM Corp. 2002 105

Inserted Element PaxMealType into Type PaxData4_TYPE.
Inserted Element PaxMealPreference into Type PaxData4_TYPE.
Inserted Element PaxTotalCost into Type PaxData4_TYPE.
Created Element PaxData4.
Created Type PaxData4Msg_TYPE.
Inserted Element PaxData4 into Type PaxData4Msg_TYPE.
C Structure PaxData4Msg successfully imported.

Summary:
No. of Errors: 0
No. of Types created: 5
No. of Elements created: 15
No. of Values created: 7

Example CWF import report file

106 WebSphere MQ Integrator MRM Primer

Appendix H. Variable conversion input files

The following files are those that have been created to test the message flow
created in Chapter 9, “Further message transformation” on page 65. These files are
all based on the PaxData4.ipt file used earlier in this document with an additional
field of 3 characters being added at the beginning to define the output format.

The files are formatted as follows:
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
00000000 Passenge rSurname 50617373 656E6765 72537572 6E616D65

v The first column gives the displacement of the beginning of the data on that
display line from the beginning of the file.

v Columns 2 and 3 show the ASCII representation of the data for each line of the
display.

v Columns 4 to 7 show the hexadecimal representation of the data for each line of
the display

Example 1: CWF input file (PaxData4_TR1_CWF.ipt)
00000000 CWFPasse ngerSurn 43574650 61737365 6E676572 5375726E
00000016 ame P assenger 616D6520 20202050 61737365 6E676572
00000032 Firstnam e PaxTi 46697273 746E616D 65202050 61785469
00000048 tle Pas sengerRo 746C6520 20506173 73656E67 6572526F
00000064 uteClass Passeng 75746543 6C617373 20506173 73656E67
00000080 erDestin at1-1U0* 65724465 7374696E 6174312D 3155302A
00000096 ..I.@Pax Stop1-1P A9D34993 40506178 53746F70 312D3150
00000112 axStop1- 2PaxStop 61785374 6F70312D 32506178 53746F70
00000128 1-3Passe ngerDest 312D3350 61737365 6E676572 44657374
00000144 inat1-2U 0*..I.@P 696E6174 312D3255 302AA9D3 49934050
00000160 axStop2- 1PaxStop 61785374 6F70322D 31506178 53746F70
00000176 2-2PaxSt op2-3Pas 322D3250 61785374 6F70322D 33506173
00000192 sengerDe stinat1- 73656E67 65724465 7374696E 6174312D
00000208 3U0*..I. @PaxStop 3355302A A9D34993 40506178 53746F70
00000224 3-1PaxSt op3-2Pax 332D3150 61785374 6F70332D 32506178
00000240 Stop3-3P assenger 53746F70 332D3350 61737365 6E676572
00000256 Destinat 1-4U0*.. 44657374 696E6174 312D3455 302AA9D3
00000272 I.@PaxSt op4-1Pax 49934050 61785374 6F70342D 31506178
00000288 Stop4-2P axStop4- 53746F70 342D3250 61785374 6F70342D
00000304 3Passeng erRouteC 33506173 73656E67 6572526F 75746543
00000320 lass Pas sengerDe 6C617373 20506173 73656E67 65724465
00000336 stinat2- 1U0*..I. 7374696E 6174322D 3155302A A9D34993
00000352 @PaxStop 1-1PaxSt 40506178 53746F70 312D3150 61785374
00000368 op1-2Pax Stop1-3P 6F70312D 32506178 53746F70 312D3350
00000384 assenger Destinat 61737365 6E676572 44657374 696E6174
00000400 2-2U0*.. I.@PaxSt 322D3255 302AA9D3 49934050 61785374
00000416 op2-1Pax Stop2-2P 6F70322D 31506178 53746F70 322D3250
00000432 axStop2- 3Passeng 61785374 6F70322D 33506173 73656E67
00000448 erDestin at2-3U0* 65724465 7374696E 6174322D 3355302A
00000464 ..I.@Pax Stop3-1P A9D34993 40506178 53746F70 332D3150
00000480 axStop3- 2PaxStop 61785374 6F70332D 32506178 53746F70
00000496 3-3Passe ngerDest 332D3350 61737365 6E676572 44657374
00000512 inat2-4U 0*..I.@P 696E6174 322D3455 302AA9D3 49934050
00000528 axStop4- 1PaxStop 61785374 6F70342D 31506178 53746F70
00000544 4-2PaxSt op4-3BA. 342D3250 61785374 6F70342D 33424101
00000560 ...PaxMe alPrefer 00000050 61784D65 616C5072 65666572
00000576 ence U 0*..I.@ 656E6365 20202055 302AA9D3 499340

© Copyright IBM Corp. 2002 107

Example 2: TDS input file (PaxData4_TR1_TDS.ipt)
00000000 TDSPasse ngerSurn 54445350 61737365 6E676572 5375726E
00000016 ame P assenger 616D6520 20202050 61737365 6E676572
00000032 Firstnam e PaxTi 46697273 746E616D 65202050 61785469
00000048 tle Pas sengerRo 746C6520 20506173 73656E67 6572526F
00000064 uteClass Passeng 75746543 6C617373 20506173 73656E67
00000080 erDestin at1-1U0* 65724465 7374696E 6174312D 3155302A
00000096 ..I.@Pax Stop1-1P A9D34993 40506178 53746F70 312D3150
00000112 axStop1- 2PaxStop 61785374 6F70312D 32506178 53746F70
00000128 1-3Passe ngerDest 312D3350 61737365 6E676572 44657374
00000144 inat1-2U 0*..I.@P 696E6174 312D3255 302AA9D3 49934050
00000160 axStop2- 1PaxStop 61785374 6F70322D 31506178 53746F70
00000176 2-2PaxSt op2-3Pas 322D3250 61785374 6F70322D 33506173
00000192 sengerDe stinat1- 73656E67 65724465 7374696E 6174312D
00000208 3U0*..I. @PaxStop 3355302A A9D34993 40506178 53746F70
00000224 3-1PaxSt op3-2Pax 332D3150 61785374 6F70332D 32506178
00000240 Stop3-3P assenger 53746F70 332D3350 61737365 6E676572
00000256 Destinat 1-4U0*.. 44657374 696E6174 312D3455 302AA9D3
00000272 I.@PaxSt op4-1Pax 49934050 61785374 6F70342D 31506178
00000288 Stop4-2P axStop4- 53746F70 342D3250 61785374 6F70342D
00000304 3Passeng erRouteC 33506173 73656E67 6572526F 75746543
00000320 lass Pas sengerDe 6C617373 20506173 73656E67 65724465
00000336 stinat2- 1U0*..I. 7374696E 6174322D 3155302A A9D34993
00000352 @PaxStop 1-1PaxSt 40506178 53746F70 312D3150 61785374
00000368 op1-2Pax Stop1-3P 6F70312D 32506178 53746F70 312D3350
00000384 assenger Destinat 61737365 6E676572 44657374 696E6174
00000400 2-2U0*.. I.@PaxSt 322D3255 302AA9D3 49934050 61785374
00000416 op2-1Pax Stop2-2P 6F70322D 31506178 53746F70 322D3250
00000432 axStop2- 3Passeng 61785374 6F70322D 33506173 73656E67
00000448 erDestin at2-3U0* 65724465 7374696E 6174322D 3355302A
00000464 ..I.@Pax Stop3-1P A9D34993 40506178 53746F70 332D3150
00000480 axStop3- 2PaxStop 61785374 6F70332D 32506178 53746F70
00000496 3-3Passe ngerDest 332D3350 61737365 6E676572 44657374
00000512 inat2-4U 0*..I.@P 696E6174 322D3455 302AA9D3 49934050
00000528 axStop4- 1PaxStop 61785374 6F70342D 31506178 53746F70
00000544 4-2PaxSt op4-3BA. 342D3250 61785374 6F70342D 33424101
00000560 ...PaxMe alPrefer 00000050 61784D65 616C5072 65666572
00000576 ence U 0*..I.@ 656E6365 20202055 302AA9D3 499340

Example 3: XML input file (PaxData4_TR1_XML.ipt)
00000000 XMLPasse ngerSurn 584D4C50 61737365 6E676572 5375726E
00000016 ame P assenger 616D6520 20202050 61737365 6E676572
00000032 Firstnam e PaxTi 46697273 746E616D 65202050 61785469
00000048 tle Pas sengerRo 746C6520 20506173 73656E67 6572526F
00000064 uteClass Passeng 75746543 6C617373 20506173 73656E67
00000080 erDestin at1-1U0* 65724465 7374696E 6174312D 3155302A
00000096 ..I.@Pax Stop1-1P A9D34993 40506178 53746F70 312D3150
00000112 axStop1- 2PaxStop 61785374 6F70312D 32506178 53746F70
00000128 1-3Passe ngerDest 312D3350 61737365 6E676572 44657374
00000144 inat1-2U 0*..I.@P 696E6174 312D3255 302AA9D3 49934050
00000160 axStop2- 1PaxStop 61785374 6F70322D 31506178 53746F70
00000176 2-2PaxSt op2-3Pas 322D3250 61785374 6F70322D 33506173
00000192 sengerDe stinat1- 73656E67 65724465 7374696E 6174312D
00000208 3U0*..I. @PaxStop 3355302A A9D34993 40506178 53746F70
00000224 3-1PaxSt op3-2Pax 332D3150 61785374 6F70332D 32506178
00000240 Stop3-3P assenger 53746F70 332D3350 61737365 6E676572
00000256 Destinat 1-4U0*.. 44657374 696E6174 312D3455 302AA9D3
00000272 I.@PaxSt op4-1Pax 49934050 61785374 6F70342D 31506178
00000288 Stop4-2P axStop4- 53746F70 342D3250 61785374 6F70342D
00000304 3Passeng erRouteC 33506173 73656E67 6572526F 75746543
00000320 lass Pas sengerDe 6C617373 20506173 73656E67 65724465
00000336 stinat2- 1U0*..I. 7374696E 6174322D 3155302A A9D34993
00000352 @PaxStop 1-1PaxSt 40506178 53746F70 312D3150 61785374
00000368 op1-2Pax Stop1-3P 6F70312D 32506178 53746F70 312D3350

Variable conversion input files

108 WebSphere MQ Integrator MRM Primer

00000384 assenger Destinat 61737365 6E676572 44657374 696E6174
00000400 2-2U0*.. I.@PaxSt 322D3255 302AA9D3 49934050 61785374
00000416 op2-1Pax Stop2-2P 6F70322D 31506178 53746F70 322D3250
00000432 axStop2- 3Passeng 61785374 6F70322D 33506173 73656E67
00000448 erDestin at2-3U0* 65724465 7374696E 6174322D 3355302A
00000464 ..I.@Pax Stop3-1P A9D34993 40506178 53746F70 332D3150
00000480 axStop3- 2PaxStop 61785374 6F70332D 32506178 53746F70
00000496 3-3Passe ngerDest 332D3350 61737365 6E676572 44657374
00000512 inat2-4U 0*..I.@P 696E6174 322D3455 302AA9D3 49934050
00000528 axStop4- 1PaxStop 61785374 6F70342D 31506178 53746F70
00000544 4-2PaxSt op4-3BA. 342D3250 61785374 6F70342D 33424101
00000560 ...PaxMe alPrefer 00000050 61784D65 616C5072 65666572
00000576 ence U 0*..I.@ 656E6365 20202055 302AA9D3 499340

Example 4: OTH (Other) input file (PaxData4_TR1_Other.ipt)
00000000 OTHPasse ngerSurn 4F544850 61737365 6E676572 5375726E
00000016 ame P assenger 616D6520 20202050 61737365 6E676572
00000032 Firstnam e PaxTi 46697273 746E616D 65202050 61785469
00000048 tle Pas sengerRo 746C6520 20506173 73656E67 6572526F
00000064 uteClass Passeng 75746543 6C617373 20506173 73656E67
00000080 erDestin at1-1U0* 65724465 7374696E 6174312D 3155302A
00000096 ..I.@Pax Stop1-1P A9D34993 40506178 53746F70 312D3150
00000112 axStop1- 2PaxStop 61785374 6F70312D 32506178 53746F70
00000128 1-3Passe ngerDest 312D3350 61737365 6E676572 44657374
00000144 inat1-2U 0*..I.@P 696E6174 312D3255 302AA9D3 49934050
00000160 axStop2- 1PaxStop 61785374 6F70322D 31506178 53746F70
00000176 2-2PaxSt op2-3Pas 322D3250 61785374 6F70322D 33506173
00000192 sengerDe stinat1- 73656E67 65724465 7374696E 6174312D
00000208 3U0*..I. @PaxStop 3355302A A9D34993 40506178 53746F70
00000224 3-1PaxSt op3-2Pax 332D3150 61785374 6F70332D 32506178
00000240 Stop3-3P assenger 53746F70 332D3350 61737365 6E676572
00000256 Destinat 1-4U0*.. 44657374 696E6174 312D3455 302AA9D3
00000272 I.@PaxSt op4-1Pax 49934050 61785374 6F70342D 31506178
00000288 Stop4-2P axStop4- 53746F70 342D3250 61785374 6F70342D
00000304 3Passeng erRouteC 33506173 73656E67 6572526F 75746543
00000320 lass Pas sengerDe 6C617373 20506173 73656E67 65724465
00000336 stinat2- 1U0*..I. 7374696E 6174322D 3155302A A9D34993
00000352 @PaxStop 1-1PaxSt 40506178 53746F70 312D3150 61785374
00000368 op1-2Pax Stop1-3P 6F70312D 32506178 53746F70 312D3350
00000384 assenger Destinat 61737365 6E676572 44657374 696E6174
00000400 2-2U0*.. I.@PaxSt 322D3255 302AA9D3 49934050 61785374
00000416 op2-1Pax Stop2-2P 6F70322D 31506178 53746F70 322D3250
00000432 axStop2- 3Passeng 61785374 6F70322D 33506173 73656E67
00000448 erDestin at2-3U0* 65724465 7374696E 6174322D 3355302A
00000464 ..I.@Pax Stop3-1P A9D34993 40506178 53746F70 332D3150
00000480 axStop3- 2PaxStop 61785374 6F70332D 32506178 53746F70
00000496 3-3Passe ngerDest 332D3350 61737365 6E676572 44657374
00000512 inat2-4U 0*..I.@P 696E6174 322D3455 302AA9D3 49934050
00000528 axStop4- 1PaxStop 61785374 6F70342D 31506178 53746F70
00000544 4-2PaxSt op4-3BA. 342D3250 61785374 6F70342D 33424101
00000560 ...PaxMe alPrefer 00000050 61784D65 616C5072 65666572
00000576 ence U 0*..I.@ 656E6365 20202055 302AA9D3 499340

Variable conversion input files

Appendix H. Variable conversion input files 109

Variable conversion input files

110 WebSphere MQ Integrator MRM Primer

Appendix I. Variable conversion output files

The following files are the output messages that were generated from the input test
files in Appendix H, “Variable conversion input files” on page 107. These were
used to test the message flow created in Chapter 9, “Further message
transformation” on page 65. These files contain three characters at the start of each
file that define the format the output was to be created in.

The default for the output was CWF. You can see that the last file that had a
format type of OTH (Other), was not coded for in the compute node and was
created in the default format of CWF.
v The first column is the displacement from the beginning of the data of the first

character in the second column.
v The second column is the data

Note: If you have imported Cobol copybooks, review “C header files and Cobol
copybooks” on page xiii. You will find that if you have left the padding
character set to SPACE for STRING elements, the blanks at the end of those
input message fields will not be in the output message.

Example 1: From CWF input file (PaxData4_TR1_CWF.ipt)
00000000 CWFPassengerSurname Passenger
00000032 Firstname PaxTitle PassengerRo
00000064 uteClass PassengerDestinat1-1U0*
00000096 ..I.@PaxStop1-1PaxStop1-2PaxStop
00000128 1-3PassengerDestinat1-2U0*..I.@P
00000160 axStop2-1PaxStop2-2PaxStop2-3Pas
00000192 sengerDestinat1-3U0*..I.@PaxStop
00000224 3-1PaxStop3-2PaxStop3-3Passenger
00000256 Destinat1-4U0*..I.@PaxStop4-1Pax
00000288 Stop4-2PaxStop4-3PassengerRouteC
00000320 lass PassengerDestinat2-1U0*..I.
00000352 @PaxStop1-1PaxStop1-2PaxStop1-3P
00000384 assengerDestinat2-2U0*..I.@PaxSt
00000416 op2-1PaxStop2-2PaxStop2-3Passeng
00000448 erDestinat2-3U0*..I.@PaxStop3-1P
00000480 axStop3-2PaxStop3-3PassengerDest
00000512 inat2-4U0*..I.@PaxStop4-1PaxStop
00000544 4-2PaxStop4-3BA....PaxMealPrefer
00000576 ence U0*..I.@

Example 2: From TDS input file (PaxData4_TR1_TDS.ipt)
00000000 TDS|PassengerSurname |Passeng
00000032 erFirstname |PaxTitle |Passeng
00000064 erRouteClass |PassengerDestinat1
00000096 -1|1234.4567|PaxStop1-1||||PaxSt
00000128 op1-2||||PaxStop1-3|||PassengerD
00000160 estinat1-2|1234.4567|PaxStop2-1|
00000192 |||PaxStop2-2||||PaxStop2-3|||Pa
00000224 ssengerDestinat1-3|1234.4567|Pax
00000256 Stop3-1||||PaxStop3-2||||PaxStop
00000288 3-3|||PassengerDestinat1-4|1234.
00000320 4567|PaxStop4-1||||PaxStop4-2|||
00000352 |PaxStop4-3||PassengerRouteClass
00000384 |PassengerDestinat2-1|1234.4567
00000416 |PaxStop1-1||||PaxStop1-2||||Pax

© Copyright IBM Corp. 2002 111

00000448 Stop1-3|||PassengerDestinat2-2|1
00000480 234.4567|PaxStop2-1||||PaxStop2-
00000512 2||||PaxStop2-3|||PassengerDesti
00000544 nat2-3|1234.4567|PaxStop3-1||||P
00000576 axStop3-2||||PaxStop3-3|||Passen
00000608 gerDestinat2-4|1234.4567|PaxStop
00000640 4-1||||PaxStop4-2||||PaxStop4-3|
00000672 BA|1|PaxMealPreference |1234.4
00000704 567

Example 3: From XML input file (PaxData4_TR1_XML.ipt)
00000000 <?xml version="1.0"?><!DOCTYPE M
00000032 RM PUBLIC "DPQ898C07E001" "www.m
00000064 rmnames.net/DPQ898C07E001"><!--M
00000096 RM Generated XML Output on :Mon
00000128 Jul 29 16:00:10 2002--><MRM xmln
00000160 s="www.mrmnames.net/DPQ898C07C00
00000192 1" xmlns:N1="www.mrmnames.net/DP
00000224 Q898C07C001-DPQ898C07E001"><PaxD
00000256 ata4ID><PaxData4><OptMsgFormatID
00000288 >XML</OptMsgFormatID><PaxSurname
00000320 >PassengerSurname </PaxSurnam
00000352 e><PaxFirstName><Pax1stName>Pass
00000384 engerFirstname </Pax1stName></P
00000416 axFirstName><PaxTitle><![CDATA[5
00000448 061785469746c652020]]></PaxTitle
00000480 ><PaxRoute><PaxRouteClass>Passen
00000512 gerRouteClass </PaxRouteClass><P
00000544 axDestinationMsg><PaxDestination
00000576 >PassengerDestinat1-1</PaxDestin
00000608 ation><PaxDestinationCost>1.2344
00000640 567E+3</PaxDestinationCost><PaxD
00000672 estinationStops>PaxStop1-1</PaxD
00000704 estinationStops><PaxDestinationS
00000736 tops>PaxStop1-2</PaxDestinationS
00000768 tops><PaxDestinationStops>PaxSto
00000800 p1-3</PaxDestinationStops></PaxD
00000832 estinationMsg><PaxDestinationMsg
00000864 ><PaxDestination>PassengerDestin
00000896 at1-2</PaxDestination><PaxDestin
00000928 ationCost>1.2344567E+3</PaxDesti
00000960 nationCost><PaxDestinationStops>
00000992 PaxStop2-1</PaxDestinationStops>
00001024 <PaxDestinationStops>PaxStop2-2<
00001056 /PaxDestinationStops><PaxDestina
00001088 tionStops>PaxStop2-3</PaxDestina
00001120 tionStops></PaxDestinationMsg><P
00001152 axDestinationMsg><PaxDestination
00001184 >PassengerDestinat1-3</PaxDestin
00001216 ation><PaxDestinationCost>1.2344
00001248 567E+3</PaxDestinationCost><PaxD
00001280 estinationStops>PaxStop3-1</PaxD
00001312 estinationStops><PaxDestinationS
00001344 tops>PaxStop3-2</PaxDestinationS
00001376 tops><PaxDestinationStops>PaxSto
00001408 p3-3</PaxDestinationStops></PaxD
00001440 estinationMsg><PaxDestinationMsg
00001472 ><PaxDestination>PassengerDestin
00001504 at1-4</PaxDestination><PaxDestin
00001536 ationCost>1.2344567E+3</PaxDesti
00001568 nationCost><PaxDestinationStops>
00001600 PaxStop4-1</PaxDestinationStops>
00001632 <PaxDestinationStops>PaxStop4-2<
00001664 /PaxDestinationStops><PaxDestina
00001696 tionStops>PaxStop4-3</PaxDestina
00001728 tionStops></PaxDestinationMsg></

Variable conversion output files

112 WebSphere MQ Integrator MRM Primer

00001760 PaxRoute><PaxRoute><PaxRouteClas
00001792 s>PassengerRouteClass </PaxRoute
00001824 Class><PaxDestinationMsg><PaxDes
00001856 tination>PassengerDestinat2-1</P
00001888 axDestination><PaxDestinationCos
00001920 t>1.2344567E+3</PaxDestinationCo
00001952 st><PaxDestinationStops>PaxStop1
00001984 -1</PaxDestinationStops><PaxDest
00002016 inationStops>PaxStop1-2</PaxDest
00002048 inationStops><PaxDestinationStop
00002080 s>PaxStop1-3</PaxDestinationStop
00002112 s></PaxDestinationMsg><PaxDestin
00002144 ationMsg><PaxDestination>Passeng
00002176 erDestinat2-2</PaxDestination><P
00002208 axDestinationCost>1.2344567E+3</
00002240 PaxDestinationCost><PaxDestinati
00002272 onStops>PaxStop2-1</PaxDestinati
00002304 onStops><PaxDestinationStops>Pax
00002336 Stop2-2</PaxDestinationStops><Pa
00002368 xDestinationStops>PaxStop2-3</Pa
00002400 xDestinationStops></PaxDestinati
00002432 onMsg><PaxDestinationMsg><PaxDes
00002464 tination>PassengerDestinat2-3</P
00002496 axDestination><PaxDestinationCos
00002528 t>1.2344567E+3</PaxDestinationCo
00002560 st><PaxDestinationStops>PaxStop3
00002592 -1</PaxDestinationStops><PaxDest
00002624 inationStops>PaxStop3-2</PaxDest
00002656 inationStops><PaxDestinationStop
00002688 s>PaxStop3-3</PaxDestinationStop
00002720 s></PaxDestinationMsg><PaxDestin
00002752 ationMsg><PaxDestination>Passeng
00002784 erDestinat2-4</PaxDestination><P
00002816 axDestinationCost>1.2344567E+3</
00002848 PaxDestinationCost><PaxDestinati
00002880 onStops>PaxStop4-1</PaxDestinati
00002912 onStops><PaxDestinationStops>Pax
00002944 Stop4-2</PaxDestinationStops><Pa
00002976 xDestinationStops>PaxStop4-3</Pa
00003008 xDestinationStops></PaxDestinati
00003040 onMsg></PaxRoute><PaxBaggageAllo
00003072 wance><![CDATA[4241]]></PaxBagga
00003104 geAllowance><PaxMealType>1</PaxM
00003136 ealType><PaxMealPreference>PaxMe
00003168 alPreference </PaxMealPreferen
00003200 ce><PaxTotalCost>1.2344567E+3</P
00003232 axTotalCost></PaxData4></PaxData
00003264 4ID></MRM>

Example 4: From OTH (Other) input file (PaxData4_TR1_Other.ipt)
00000000 OTHPassengerSurname Passenger
00000032 Firstname PaxTitle PassengerRo
00000064 uteClass PassengerDestinat1-1U0*
00000096 ..I.@PaxStop1-1PaxStop1-2PaxStop
00000128 1-3PassengerDestinat1-2U0*..I.@P
00000160 axStop2-1PaxStop2-2PaxStop2-3Pas
00000192 sengerDestinat1-3U0*..I.@PaxStop
00000224 3-1PaxStop3-2PaxStop3-3Passenger
00000256 Destinat1-4U0*..I.@PaxStop4-1Pax
00000288 Stop4-2PaxStop4-3PassengerRouteC
00000320 lass PassengerDestinat2-1U0*..I.
00000352 @PaxStop1-1PaxStop1-2PaxStop1-3P
00000384 assengerDestinat2-2U0*..I.@PaxSt
00000416 op2-1PaxStop2-2PaxStop2-3Passeng
00000448 erDestinat2-3U0*..I.@PaxStop3-1P

Variable conversion output files

Appendix I. Variable conversion output files 113

00000480 axStop3-2PaxStop3-3PassengerDest
00000512 inat2-4U0*..I.@PaxStop4-1PaxStop
00000544 4-2PaxStop4-3BA....PaxMealPrefer
00000576 ence U0*..I.@

Variable conversion output files

114 WebSphere MQ Integrator MRM Primer

Appendix J. Manipulated output files

The following files are the output messages that were generated from the input test
files in Appendix H, “Variable conversion input files” on page 107. These were
used to test the message flow created in Chapter 10, “Basic message manipulation”
on page 75. These files contained three characters at the start of each file that

defined the format the output was to be created in.

The first three characters were removed and a time stamp added to transform the
message.

The default for the output was CWF. You can see that the last file that had a
format type of OTH (Other), was not coded for in the compute node and was
created in the default format of CWF.
v The first column is the displacement from the beginning of the data of the first

character in the second column.
v The second column is the data

Note: If you have imported Cobol copybooks, review “C header files and Cobol
copybooks” on page xiii. You will find that if you have left the padding
character set to SPACE for STRING elements, the blanks at the end of those
input message fields will not be in the output message.

Example 1: From CWF input file (PaxData4_TR1_CWF.ipt)
00000000 2002-07-31 10:00:02.371Passenger
00000032 Surname PassengerFirstname P
00000064 axTitle PassengerRouteClass Pas
00000096 sengerDestinat1-1U0*..I.@PaxStop
00000128 1-1PaxStop1-2PaxStop1-3Passenger
00000160 Destinat1-2U0*..I.@PaxStop2-1Pax
00000192 Stop2-2PaxStop2-3PassengerDestin
00000224 at1-3U0*..I.@PaxStop3-1PaxStop3-
00000256 2PaxStop3-3PassengerDestinat1-4U
00000288 0*..I.@PaxStop4-1PaxStop4-2PaxSt
00000320 op4-3PassengerRouteClass Passeng
00000352 erDestinat2-1U0*..I.@PaxStop1-1P
00000384 axStop1-2PaxStop1-3PassengerDest
00000416 inat2-2U0*..I.@PaxStop2-1PaxStop
00000448 2-2PaxStop2-3PassengerDestinat2-
00000480 3U0*..I.@PaxStop3-1PaxStop3-2Pax
00000512 Stop3-3PassengerDestinat2-4U0*..
00000544 I.@PaxStop4-1PaxStop4-2PaxStop4-
00000576 3BA....PaxMealPreference U0*..
00000608 I.@

Example 2: From TDS input file (PaxData4_TR1_TDS.ipt)
00000000 2002-07-31 10:02:07.641|Passenge
00000032 rSurname |PassengerFirstname
00000064 |PaxTitle |PassengerRouteClass
00000096 |PassengerDestinat1-1|1234.4567
00000128 |PaxStop1-1||||PaxStop1-2||||Pax
00000160 Stop1-3|||PassengerDestinat1-2|1
00000192 234.4567|PaxStop2-1||||PaxStop2-
00000224 2||||PaxStop2-3|||PassengerDesti
00000256 nat1-3|1234.4567|PaxStop3-1||||P

© Copyright IBM Corp. 2002 115

00000288 axStop3-2||||PaxStop3-3|||Passen
00000320 gerDestinat1-4|1234.4567|PaxStop
00000352 4-1||||PaxStop4-2||||PaxStop4-3|
00000384 |PassengerRouteClass |PassengerD
00000416 estinat2-1|1234.4567|PaxStop1-1|
00000448 |||PaxStop1-2||||PaxStop1-3|||Pa
00000480 ssengerDestinat2-2|1234.4567|Pax
00000512 Stop2-1||||PaxStop2-2||||PaxStop
00000544 2-3|||PassengerDestinat2-3|1234.
00000576 4567|PaxStop3-1||||PaxStop3-2|||
00000608 |PaxStop3-3|||PassengerDestinat2
00000640 -4|1234.4567|PaxStop4-1||||PaxSt
00000672 op4-2||||PaxStop4-3|BA|1|PaxMeal
00000704 Preference |1234.4567

Example 3: From XML input file (PaxData4_TR1_XML.ipt)
00000000 <?xml version="1.0"?><!DOCTYPE M
00000032 RM PUBLIC "DPQ898C07G001" "www.m
00000064 rmnames.net/DPQ898C07G001"><!--M
00000096 RM Generated XML Output on :Wed
00000128 Jul 31 10:02:55 2002--><MRM xmln
00000160 s="www.mrmnames.net/DPQ898C07C00
00000192 1" xmlns:N1="www.mrmnames.net/DP
00000224 Q898C07C001-DPQ898C07E001" xmlns
00000256 :N2="www.mrmnames.net/DPQ898C07E
00000288 001-DPQ898C07G001"><PaxData5ID><
00000320 PaxData5><DateTimeStampID>2002-0
00000352 7-31 10:02:55.510</DateTimeStamp
00000384 ID><PaxSurname>PassengerSurname
00000416 </PaxSurname><PaxFirstName><P
00000448 ax1stName>PassengerFirstname </
00000480 Pax1stName></PaxFirstName><PaxTi
00000512 tle><![CDATA[5061785469746c65202
00000544 0]]></PaxTitle><PaxRoute><PaxRou
00000576 teClass>PassengerRouteClass </Pa
00000608 xRouteClass><PaxDestinationMsg><
00000640 PaxDestination>PassengerDestinat
00000672 1-1</PaxDestination><PaxDestinat
00000704 ionCost>1.2344567E+3</PaxDestina
00000736 tionCost><PaxDestinationStops>Pa
00000768 xStop1-1</PaxDestinationStops><P
00000800 axDestinationStops>PaxStop1-2</P
00000832 axDestinationStops><PaxDestinati
00000864 onStops>PaxStop1-3</PaxDestinati
00000896 onStops></PaxDestinationMsg><Pax
00000928 DestinationMsg><PaxDestination>P
00000960 assengerDestinat1-2</PaxDestinat
00000992 ion><PaxDestinationCost>1.234456
00001024 7E+3</PaxDestinationCost><PaxDes
00001056 tinationStops>PaxStop2-1</PaxDes
00001088 tinationStops><PaxDestinationSto
00001120 ps>PaxStop2-2</PaxDestinationSto
00001152 ps><PaxDestinationStops>PaxStop2
00001184 -3</PaxDestinationStops></PaxDes
00001216 tinationMsg><PaxDestinationMsg><
00001248 PaxDestination>PassengerDestinat
00001280 1-3</PaxDestination><PaxDestinat
00001312 ionCost>1.2344567E+3</PaxDestina
00001344 tionCost><PaxDestinationStops>Pa
00001376 xStop3-1</PaxDestinationStops><P
00001408 axDestinationStops>PaxStop3-2</P
00001440 axDestinationStops><PaxDestinati
00001472 onStops>PaxStop3-3</PaxDestinati
00001504 onStops></PaxDestinationMsg><Pax
00001536 DestinationMsg><PaxDestination>P
00001568 assengerDestinat1-4</PaxDestinat

Manipulated output files

116 WebSphere MQ Integrator MRM Primer

00001600 ion><PaxDestinationCost>1.234456
00001632 7E+3</PaxDestinationCost><PaxDes
00001664 tinationStops>PaxStop4-1</PaxDes
00001696 tinationStops><PaxDestinationSto
00001728 ps>PaxStop4-2</PaxDestinationSto
00001760 ps><PaxDestinationStops>PaxStop4
00001792 -3</PaxDestinationStops></PaxDes
00001824 tinationMsg></PaxRoute><PaxRoute
00001856 ><PaxRouteClass>PassengerRouteCl
00001888 ass </PaxRouteClass><PaxDestinat
00001920 ionMsg><PaxDestination>Passenger
00001952 Destinat2-1</PaxDestination><Pax
00001984 DestinationCost>1.2344567E+3</Pa
00002016 xDestinationCost><PaxDestination
00002048 Stops>PaxStop1-1</PaxDestination
00002080 Stops><PaxDestinationStops>PaxSt
00002112 op1-2</PaxDestinationStops><PaxD
00002144 estinationStops>PaxStop1-3</PaxD
00002176 estinationStops></PaxDestination
00002208 Msg><PaxDestinationMsg><PaxDesti
00002240 nation>PassengerDestinat2-2</Pax
00002272 Destination><PaxDestinationCost>
00002304 1.2344567E+3</PaxDestinationCost
00002336 ><PaxDestinationStops>PaxStop2-1
00002368 </PaxDestinationStops><PaxDestin
00002400 ationStops>PaxStop2-2</PaxDestin
00002432 ationStops><PaxDestinationStops>
00002464 PaxStop2-3</PaxDestinationStops>
00002496 </PaxDestinationMsg><PaxDestinat
00002528 ionMsg><PaxDestination>Passenger
00002560 Destinat2-3</PaxDestination><Pax
00002592 DestinationCost>1.2344567E+3</Pa
00002624 xDestinationCost><PaxDestination
00002656 Stops>PaxStop3-1</PaxDestination
00002688 Stops><PaxDestinationStops>PaxSt
00002720 op3-2</PaxDestinationStops><PaxD
00002752 estinationStops>PaxStop3-3</PaxD
00002784 estinationStops></PaxDestination
00002816 Msg><PaxDestinationMsg><PaxDesti
00002848 nation>PassengerDestinat2-4</Pax
00002880 Destination><PaxDestinationCost>
00002912 1.2344567E+3</PaxDestinationCost
00002944 ><PaxDestinationStops>PaxStop4-1
00002976 </PaxDestinationStops><PaxDestin
00003008 ationStops>PaxStop4-2</PaxDestin
00003040 ationStops><PaxDestinationStops>
00003072 PaxStop4-3</PaxDestinationStops>
00003104 </PaxDestinationMsg></PaxRoute><
00003136 PaxBaggageAllowance><![CDATA[424
00003168 1]]></PaxBaggageAllowance><PaxMe
00003200 alType>1</PaxMealType><PaxMealPr
00003232 eference>PaxMealPreference </P
00003264 axMealPreference><PaxTotalCost>1
00003296 .2344567E+3</PaxTotalCost></PaxD
00003328 ata5></PaxData5ID></MRM>

Example 4: From OTH (Other) input file (PaxData4_TR1_Other.ipt)
00000000 2002-07-31 10:01:12.524Passenger
00000032 Surname PassengerFirstname P
00000064 axTitle PassengerRouteClass Pas
00000096 sengerDestinat1-1U0*..I.@PaxStop
00000128 1-1PaxStop1-2PaxStop1-3Passenger
00000160 Destinat1-2U0*..I.@PaxStop2-1Pax
00000192 Stop2-2PaxStop2-3PassengerDestin
00000224 at1-3U0*..I.@PaxStop3-1PaxStop3-
00000256 2PaxStop3-3PassengerDestinat1-4U

Manipulated output files

Appendix J. Manipulated output files 117

00000288 0*..I.@PaxStop4-1PaxStop4-2PaxSt
00000320 op4-3PassengerRouteClass Passeng
00000352 erDestinat2-1U0*..I.@PaxStop1-1P
00000384 axStop1-2PaxStop1-3PassengerDest
00000416 inat2-2U0*..I.@PaxStop2-1PaxStop
00000448 2-2PaxStop2-3PassengerDestinat2-
00000480 3U0*..I.@PaxStop3-1PaxStop3-2Pax
00000512 Stop3-3PassengerDestinat2-4U0*..
00000544 I.@PaxStop4-1PaxStop4-2PaxStop4-
00000576 3BA....PaxMealPreference U0*..
00000608 I.@

Manipulated output files

118 WebSphere MQ Integrator MRM Primer

Appendix K. Delimiter examples for PaxData4 files

This appendix uses the PaxData4.h and PaxData4.cpy files to demonstrate how you
could use delimiters to separate the fields in the structures and substructures of
these files.

The points in the files below that are marked *1, *2, *3, and *4 are where the files
either start or increase the depth of the structure through repeating elements.
v *1. Is the start of the main structure within the message. You could call this the

first or top level and where you might set a particular delimiter to reflect this.
In this primer the ’|’ was used to delimit this level, but it was discussed in
“Delimiters” on page 45 that you could also use other delimiters such as ’|1|’ .

v *2. PaxRoute is a repeating element within the main message. When developing
your message structures you need to consider whether to use the same delimiter
between repeating elements as you used between the top level elements.
Attributes of the message that you might need to consider are if your message
always has the same number of repeating elements, if there is the possibility that
the message has variable numbers of repeating elements, or if the elements are
fixed or variable lengths. You will find that having a different delimiter at this
level will aid you in looking at the data in the message.
This primer uses ’||’ as the delimiter between these repeating elements.

v *3. PaxDestinationMsg is a repeating element within PaxRoute. This has again
increased the depth of the message and you need to consider the points made
for *2.
This primer uses ’|||’ as the delimiter between these repeating elements.

v *4. PaxDestinationStops is a repeating element within PaxDestinationMsg. At
this level within the structure you have a repeating element, within a repeating
element, within a repeating element, within the main message. This message
structure has been deliberately created to demonstrate this approach of repeating
elements within elements and you will find that this type of structure is
common within existing messages as well as those messages you will create.
This primer uses ’||||’ as the delimiter between each of these repeating
elements.

The TDS output file for these structures and the delimiters used in this primer can
be seen in “Example 4: From PaxData4.ipt” on page 97. The delimiters that have
been used in this primer might not be appropriate for the messages that you are
working with or developing, and you need to make sure that you fully review
your design.

© Copyright IBM Corp. 2002 119

PaxData4.h
/*
**

Passenger Data Test Trees for the C Importer
Filename: PaxData4.h
Description:
Four headers describe four sizes of PaxData test.
This is the largest header.

**
*/
struct _PaxData4Msg
{

struct _PaxData4
{

char PaxSurname [20]; *1
struct _PaxFirstName
{

char Pax1stName [20];
}PaxFirstName;
unsigned char PaxTitle[10];
struct _PaxRoute *2
{

char PaxRouteClass [20];
struct _PaxDestinationMsg *3
{

char PaxDestination [20];
double PaxDestinationCost;
char PaxDestinationStops [3] [10]; *4

} PaxDestinationMsg [4];
}PaxRoute [2];
unsigned char PaxBaggageAllowance[2];
long PaxMealType;
char PaxMealPreference [20];
double PaxTotalCost;

} PaxData4;
}PaxData4Msg;

PaxData4.cpy
**
* Passenger Data Test Trees for the Cobol Importer
* Filename: PaxData4.cpy
* Description:
* Four headers describe four sizes of PaxData test.
* This is the second largest header.
**
*
01 PaxData4Msg.

03 PaxData4.
05 PaxSurname PIC X(20). *1
05 PaxFirstName.

10 Pax1stName PIC X(20).
05 PaxTitle PIC X(10).
05 PaxRoute OCCURS 2 TIMES. *2

10 PaxRouteClass PIC X(20).
10 PaxDestinationMsg OCCURS 4 TIMES. *3

15 PaxDestination PIC X(20).
15 PaxDestinationCost COMP-2.
15 PaxDestinationStops OCCURS 3 TIMES PIC X(10). *4

05 PaxBaggageAllowance PIC XX.
05 PaxMealType PIC S9(9) COMP-5.
05 PaxMealPreference PIC X(20).
05 PaxTotalCost COMP-2.

**
*

Delimiter examples for PaxData4 files

120 WebSphere MQ Integrator MRM Primer

A break down of the TDS output showing delimiter separation
The following break down of the TDS output file in “Example 4: From
PaxData4.ipt” on page 97 uses the *1, *2, *3, and *4 to show the increasing depth of
the repeating elements in PaxData4.h and PaxData4.cpy. What you will see is that
the repeating element delimiters only occur between each of the repeating elements
and not before the first of the repeating elements, or after the last of the repeating
elements.

The elements that are not marked are a non-repeating element within a repeating
element. You could decide that these need to have a different delimiter and you
would need to update the message set to reflect this.
PassengerSurname *1
|PassengerFirstname *1
|PaxTitle *1

|PassengerRouteClass *2

|PassengerDestinat1-1 *3
|1234.4567
|PaxStop1-1 *4
||||PaxStop1-2 *4
||||PaxStop1-3 *4

|||PassengerDestinat1-2 *3
|1234.4567
|PaxStop2-1 *4
||||PaxStop2-2 *4
||||PaxStop2-3 *4

|||PassengerDestinat1-3 *3
|1234.4567
|PaxStop3-1 *4
||||PaxStop3-2 *4
||||PaxStop3-3 *4

|||PassengerDestinat1-4 *3
|1234.4567
|PaxStop4-1 *4
||||PaxStop4-2 *4
||||PaxStop4-3 *4

||PassengerRouteClass *2

|PassengerDestinat2-1 *3
|1234.4567
|PaxStop1-1 *4
||||PaxStop1-2 *4
||||PaxStop1-3 *4

|||PassengerDestinat2-2 *3
|1234.4567
|PaxStop2-1 *4
||||PaxStop2-2 *4
||||PaxStop2-3 *4

|||PassengerDestinat2-3 *3
|1234.4567
|PaxStop3-1 *4
||||PaxStop3-2 *4
||||PaxStop3-3 *4

|||PassengerDestinat2-4 *3
|1234.4567

Delimiter examples for PaxData4 files

Appendix K. Delimiter examples for PaxData4 files 121

|PaxStop4-1 *4
||||PaxStop4-2 *4
||||PaxStop4-3 *4

|BA *1
|1 *1
|PaxMealPreference *1
|1234.4567 *1

Delimiter examples for PaxData4 files

122 WebSphere MQ Integrator MRM Primer

Appendix L. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002 123

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

124 WebSphere MQ Integrator MRM Primer

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

DB2 IBM MQSeries
SupportPac WebSphere

Microsoft, Windows, Windows NT, Windows 2000 and the Windows logo are
trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix L. Notices 125

126 WebSphere MQ Integrator MRM Primer

Bibliography

v IBM WebSphere MQ Integrator Version 2.1
Introduction and Planning, GC34-5599
This provides an overview of the product, and
introduces the concepts and the facilities that
are available. It is available in hard and soft
copy.

v The operating system specific installation
guides:

IBM WebSphere MQ Integrator for Windows
NT Version 2.1 Installation Guide, GC34-5600

These books describe the tasks you need to
complete to install MQSeries Integrator Version
2 on the appropriate operating system, and to
verify your installation. They also provide
details about servicing and uninstalling the
product.

v IBM WebSphere MQ Integrator Version 2.1 Using
the Control Center, SC34-5602
This book introduces the Control Center, and
provides detailed instruction on how to work
with message sets, message sets, topics, and the
broker domain topology. It explains the MRM
message model and how to manipulate
messages. It also contains examples of how you
can use all the message processing nodes.

v IBM WebSphere MQ Integrator Version 2.1
Working with Messages, SC34–5923
This book provides a comprehensive reference
and examples of the use of ESQL with the
WebSphere MQ Integrator message processing
nodes.

v IBM WebSphere MQ Integrator Version 2.1 ESQL
Reference, SC34–6039
This book provides a comprehensive reference
and examples of the use of ESQL with the
WebSphere MQ Integrator message processing
nodes.

v IBM WebSphere MQ Integrator Version 2.1
Programming Guide, SC34-5603
This book is for application programmers who
are writing or updating applications to use the
facilities provided by MQSeries Integrator
Version 2.

v IBM WebSphere MQ Integrator Version 2.1
Administration Guide, SC34-5792
This book is a reference book for MQSeries
Integrator Version 2 system administrators. It

also provides guidance information for
configuring and maintaining a broker domain.

v IBM WebSphere MQ Integrator Version 2.1
Messages, GC34-5601
This book documents the error and information
messages generated by the product.

v IH03 MQSeries Integrator V2 — Message display,
test and performance utilities

This is message display and test utility is a GUI
based program to assist in the development
and testing of WebSphere MQ Integrator
applications. It can display messages in a
variety of formats, including XML and COBOL
copybook representations. It can read data from
files and write data to files as well as
WebSphere MQ queues. (See:http://www-
3.ibm.com
/software/ts/mqseries/txppacs/txpm1.html)

© Copyright IBM Corp. 2002 127

128 WebSphere MQ Integrator MRM Primer

Index

A
about this SupportPac xi
add

element to compound type 80
Add a new message to the message

set 79
Add an element to a message set 67
Add an XML physical layer 67
Add the message and message types to

the message set workspace 67
adding

Compute node 47
element to message set 67
XML physical layer 67

Adding a Compute node 47
adding a Trace node to a message

flow 36
adding physical format layers 16, 42
adjusting the Input node properties 46
Assigning a message set to a broker 45
assigning the message flow to the

execution group 26
assumptions

general xii

B
Basic message manipulation

Assign, deploy and test the message
flow 84

broker
assigning a message set 45
defining 24
deploying message flow 27

Buildtime and runtime environments 11
buildtime environment 11

C
C data structure

importing 17
C data structures

importing 15
C header files xiii, 87

PaxData1.h 87
PaxData2.h 87
PaxData3.h 88
PaxData4.h 89

check in
error messages xiii

Cobol copybook files 91
PaxData1.cpy 91
PaxData2.cpy 91
PaxData3.cpy 92
PaxData4.cpy 93

Cobol copybooks xiii
Cobol data structure

importing 17
Cobol data structures

importing 15

compound type
add element 80
removing an element 79

compute node
update 71, 82

Compute node
adding 47
introduction to properties 48
setting properties 50

Configuration Manager 3
Control Center 3
copy

existing message flow 70
message set type 77

copy a message set type 77
copy an existing message flow 70
create

element 80
element based on new Type 77
message set based on another message

set 66
Create a CWF to TDS message flow 46
create a message set based on another

message set 66
create a type and add an element 78
create an element based on the new

Type 77
create and add an element to a

compound type 80
creating

logical message 19
message flow 22
message set 15, 42
MQ resources 22
WebSphere MQ resources 22

creating a basic message flow 22
creating a logical message 19
creating a message set 15
Creating and assigning the message

set 41
creating and testing a basic message

flow 21
creating message models 12
Creating the WebSphere MQ

resources 22
CWF import report file

example 105

D
data interpretation 5
defining a broker in the domain 24
delimiter examples for PaxData4

files 119
Delimiters 45
deploying the message flow to the

broker 27
deployment

error messages xiii

E
element

add to message set 67
create 80
removing from compound type 79

environment
buildtime 11
runtime 11

error messages
check in xiii
deployment xiii

error messages during check in and
deployment xiii

error processing in a message flow 53
Example C header files 87
example Cobol copybook files 91
Example CWF import report file 105
example input files

PaxData1.ipt 95
PaxData2.ipt 95
PaxData3.ipt 95
PaxData4.ipt 95

example input message files 95
example TDS output 97
execution group

assigning a message flow 26
exercise testing xiv

F
flexibility xiv
Further message transformation 65

H
how the broker processes a message 12

I
importing a C data structure 17
importing a Cobol data structure 17
importing C data structures 15
importing Cobol data structures 15
input message files 95
input node

update 70
Input node

adjusting properties 46
introduction to messaging 1
Introduction to the Compute node

Properties dialog 48
Introduction to the MRM 9

L
log trace file 101
logical format 6
logical message

creating 19

© Copyright IBM Corp. 2002 129

logical message model 10
element 10
message 10
message set 10
type 10

M
Manipulated output files 115

from CWF input file 115
from OTH input file 117
from TDS input file 115
from XML input file 116

mapping the TDS physical layer 43
message

add to message set 79
add to workspace 67
logical format 6
physical format 6

message flow
adding a Trace node 36
assigning 26
copying 70
creating 22
deploying 27

Message flow
error processing 53

message model
logical 10

message models
creating 12

message processing concepts 5
message repository 12
message set

add message 79
assigning 45
creating 15, 42

message set type
copy 77

message types
add to workspace 67

MQ resources
creating 22

MRM
introduction 9

O
output node

update 71

P
physical format 6
physical format layers

adding 16, 42
physical layer

TDS mapping 43

R
removing an element from a compound

type 79
required knowledge xi
runtime environment 11

S
Setting the Compute node properties for

CWF to TDS conversion 50
Setting the Compute node to convert

CWF to TDS 48
SupportPac contents xiv

T
TDS output

PaxData1.ipt 97
PaxData2.ipt 97
PaxData3.ipt 97
PaxData4.ipt 97

TDS Output 97
TDS physical layer

mapping 43
testing

Using the IH03 SupportPac 31
Using WebSphere MQ Explorer 29

Testing the CWF to TDS message
flow 52

testing the exercises xiv
trace

demonstrating 37
Trace node 35

adding to a message flow 36

U
update

compute node 71, 82
input node 70
output node 71

update the compute node 71, 82
update the input node 70
update the output node 71
Use of the Trace node 35

V
variable conversion input files 107

CWF input file 107
OTH input file 109
TDS input file 108
XML input file 108

variable conversion output files 111
from CWF input file 111
from OTH input file 113
from TDS input file 111
from XML input file 112

W
WebSphere MQ 1
WebSphere MQ Integrator 2

Configuration Manager and Control
Center 3

high level overview 3
message broker 4
summary 4

WebSphere MQ resources
creating 22

who this document is for xi

X
XML physical layer

adding 67
XML trace file 99

130 WebSphere MQ Integrator MRM Primer

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM®.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–842327
– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2002 131

132 WebSphere MQ Integrator MRM Primer

���

IC00-IA7A-00

	Contents
	Figures
	Tables
	About this SupportPac
	Who this document is for
	What you need to know to understand this document
	General assumptions
	C header files and Cobol copybooks
	Error messages during Check In and Deployment
	WebSphere MQ Integrator flexibility
	SupportPac contents
	Completing the exercises
	Testing the exercises

	Chapter 1. Introduction to messaging
	WebSphere MQ
	WebSphere MQ Integrator
	High level overview
	Configuration Manager and Control Center
	Message Broker

	Summary

	Chapter 2. Message processing concepts
	Data interpretation
	Physical format
	Logical format

	Chapter 3. Introduction to the MRM
	The logical message model
	The buildtime and runtime environments
	Buildtime environment
	Runtime environment

	The message repository
	Creating message models

	How the broker processes a message

	Chapter 4. Importing C or Cobol data structures into the MRM
	Reviewing assumptions for this exercise
	Creating a message set
	Adding physical format layers
	Importing the data structure
	Creating a logical message

	Chapter 5. Creating and testing a basic message flow
	Reviewing assumptions for this exercise
	Creating the WebSphere MQ resources
	Creating a basic message flow
	Defining a broker in the domain
	Assigning the message flow to the execution group
	Deploying the message flow to the broker
	Testing the basic message flow
	Using WebSphere MQ Explorer
	Using IH03 SupportPac

	Chapter 6. The Trace node
	Reviewing assumptions for this exercise
	Use of the Trace node
	Adding a Trace node to a message flow
	Demonstrating trace

	Chapter 7. Converting CWF to TDS
	Reviewing assumptions for this exercise
	Creating and assigning the message set
	Creating the message set
	Adding physical format layers
	Importing the data structure and creating the associated message
	Mapping the TDS physical layer
	Delimiters
	Assigning a message set to a broker

	Create a CWF to TDS message flow
	Adjusting the Input node properties for the message set
	Adding a Compute node
	Setting the Compute node to convert CWF to TDS
	Introduction to the Compute node Properties dialog
	Setting the Compute node properties for CWF to TDS conversion

	Defining the broker in the domain
	Assigning the message flow to the broker
	Saving all the changes
	Deploying the configuration to the broker

	Testing the CWF to TDS message flow
	Error processing in a message flow

	Chapter 8. Further CWF input processing
	Reviewing the assumptions for this exercise
	Creating additional message sets
	Adding physical format layers
	Importing additional data structures
	Creating the logical messages
	Mapping additional TDS layers to the logical layers
	Assigning the message sets to the broker
	Creating the additional WebSphere MQ resources
	Creating the additional message flows
	Setting the additional input and output node properties for CWF to TDS
	Setting the additional compute node properties for CWF to TDS
	Defining the broker in the domain
	Assigning the message flows to the execution group
	Deploying the configuration to the broker
	Confirm error processing
	Testing the additional message flows

	Chapter 9. Further message transformation
	Review the assumptions for this exercise
	Create the message set
	Create a message set based on another message set
	Add the message and message types to the message set workspace
	Add an XML physical layer
	Add an element to a message set

	Create the message flow
	Create the additional WebSphere MQ resources
	Copy an existing message flow
	Update the message flow nodes
	Update the input node
	Update the output node
	Update the compute node

	Assign, deploy, and test the message flow
	Assign the message set to the broker
	Assign the message flow to an execution group
	Deploy the configuration to the broker
	Test the message flow

	Chapter 10. Basic message manipulation
	Reviewing assumptions for this exercise
	Creating the message set
	Create the message set and add the message and types
	Copy a message set type
	Create an element based on the new Type
	Create a type and add an element
	Add a new message to the message set
	Removing an element from a compound type
	Create and add an element to a compound type

	Creating the message flow
	Create the additional WebSphere MQ resources
	Copy an existing message flow
	Update the message flow nodes
	Update the input node
	Update the output node
	Update the compute node

	Assigning, deploying, and testing the message flow
	Assign the message set to the broker
	Assign the message flow to an execution group
	Deploy the configuration to the broker
	Test the message flow

	Appendix A. Example C header files
	Example 1: PaxData1.h
	Example 2: PaxData2.h
	Example 3: PaxData3.h
	Example 4: PaxData4.h

	Appendix B. Example Cobol copybook files
	Example 1: PaxData1.cpy
	Example 2: PaxData2.cpy
	Example 3: PaxData3.cpy
	Example 4: PaxData4.cpy

	Appendix C. Example input message files
	Example 1: PaxData1.ipt
	Example 2: PaxData2.ipt
	Example 3: PaxData3.ipt
	Example 4: PaxData4.ipt

	Appendix D. Example TDS output
	Example 1: From PaxData1.ipt
	Example 2: From PaxData2.ipt
	Example 3: From PaxData3.ipt
	Example 4: From PaxData4.ipt

	Appendix E. .XML trace file
	Appendix F. .log trace file
	Appendix G. Example CWF import report file
	Appendix H. Variable conversion input files
	Example 1: CWF input file (PaxData4_TR1_CWF.ipt)
	Example 2: TDS input file (PaxData4_TR1_TDS.ipt)
	Example 3: XML input file (PaxData4_TR1_XML.ipt)
	Example 4: OTH (Other) input file (PaxData4_TR1_Other.ipt)

	Appendix I. Variable conversion output files
	Example 1: From CWF input file (PaxData4_TR1_CWF.ipt)
	Example 2: From TDS input file (PaxData4_TR1_TDS.ipt)
	Example 3: From XML input file (PaxData4_TR1_XML.ipt)
	Example 4: From OTH (Other) input file (PaxData4_TR1_Other.ipt)

	Appendix J. Manipulated output files
	Example 1: From CWF input file (PaxData4_TR1_CWF.ipt)
	Example 2: From TDS input file (PaxData4_TR1_TDS.ipt)
	Example 3: From XML input file (PaxData4_TR1_XML.ipt)
	Example 4: From OTH (Other) input file (PaxData4_TR1_Other.ipt)

	Appendix K. Delimiter examples for PaxData4 files
	PaxData4.h
	PaxData4.cpy
	A break down of the TDS output showing delimiter separation

	Appendix L. Notices
	Trademarks

	Bibliography
	Index
	Sending your comments to IBM

