
WebSphere MQ Integrator

SupportPac IC03 –
Examples of message flows
Version 2.1

IC03-01

���

WebSphere MQ Integrator

SupportPac IC03 –
Examples of message flows
Version 2.1

IC03-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 91.

Second edition (August 2002)

This edition applies to Version 2.0 of SupportPac™ IC03 Examples of WebSphere® MQ Integrator message flows and
to all subsequent releases and modifications until otherwise indicated in new editions.

Version 1.0 of SupportPac IC03 was entitled Business Scenarios for IBM® MQSeries® Integrator.

© Copyright International Business Machines Corporation 2001, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this SupportPac ix
Who this document is for x
What you need to know to understand this
document x
Assumptions xi
SupportPac Contents xii
Using the examples xiv

Creating the database xiv
Testing the scenarios xv

Chapter 1. The retail operation 1
Introduction 2
Preparing to use the example 3

Initializing the database 3
Setting up MQSeries resources 3

Creating and completing the message set 5
Creating and configuring the message flows . . . 13

The main flow 15
Audit flow 16
Finance flow 20
Stock flow 25
Partner Flow 28
Register subscriptions flow 35

Assigning the message set and message flows . . . 38
Assigning the message set to the broker 38
Assigning message flows to the execution group 38

Deploying the configuration 38
Testing the message flow 39

Chapter 2. The loan request 41
Introduction 41
Preparing to implement the scenario 42

Initializing the database 42
Setting up MQSeries resources 42

Creating and completing the message set 43
Creating and configuring the message flow. . . . 44

Getting the message 45
Storing message contents in the database . . . 45
Getting the credit rating 46
Checking the credit rating 46
Adding the date 47
Updating the database. 47
Outputting the message 48
Handling requests that are not approved . . . 48

Assigning and deploying the scenario 49
Testing the message flow 49

Chapter 3. Dynamic routing 51
Introduction 51
Preparing to implement the scenario 52

Initializing the database 52
Setting up MQSeries resources 53

Defining the message 53
Creating and configuring the message flow. . . . 54

The input flow 55
Setting up the labelled message flow routes . . 56

Assigning and deploying the scenario 60
Testing the message flow 60
Creating the message set by hand 61

Chapter 4. Travel agent (single-flow)
example 63
Introduction 64
Preparing to implement the example 64

Setting up MQSeries resources 64
Defining the message 65
Creating and configuring the message flow. . . . 66

Creating the travel requests for the journey. . . 66
Collecting the replies from the journey requests 69
The request/reply flow 70

Assigning and deploying the scenario 71
Testing the message flow 71

Chapter 5. Travel agent (double-flow)
example 73
Introduction 73
Preparing to implement the example 73

Setting up MQSeries resources 74
Defining the message 74
Creating and configuring the message flows . . . 75

Creating the travel requests for the journey. . . 75
Collecting the replies from the journey requests 79
The reply flow 80

Assigning and deploying the scenario 82
Testing the message flow 82

Chapter 6. Estimations example 83
Introduction 83
Preparing to implement the example 83

Setting up MQSeries resources 83
Creating and configuring the message flows . . . 84

Requesting estimates 85
The reply flow 86
Collecting the estimates 87

Assigning and deploying the scenario 90
Testing the message flow 90

Appendix. Notices 91
Trademarks 93

Bibliography 95

Sending your comments to IBM 97

© Copyright IBM Corp. 2001, 2002 iii

iv SupportPac IC03

Figures

1. The message set properties, showing the
identifier 6

2. Retail scenario message flow with MRM
message. 13

3. Retail scenario message flow with XML
message. 13

4. MQInput node properties 15
5. Audit message processing nodes for the MRM

message. 16
6. Check node properties 16
7. Warehouse node properties (MRM message) 18
8. Finance message processing nodes for the

MRM message 20
9. Extract node properties 20

10. Trace node properties 22
11. Compute node properties 23
12. Stock message processing nodes 25
13. Partner message processing nodes for the

MRM message 28
14. Partner message processing nodes for the XML

message. 28

15. Filter node properties showing the set up for
the MRM message 29

16. The loop to record data in the database 31
17. DataInsert node properties (MRM message) 32
18. The Register subscriptions flow for the MRM

message. 35
19. The Register subscriptions flow for the XML

message. 35
20. Loan request message flow 41
21. The dynamic routing message flow. 51
22. The aggregation message flow. 64
23. The fan-out flow.. 66
24. The fan-in flow. 69
25. The request/reply flow. 70
26. The fan-out message flow.. 76
27. The fan-in message flow. 79
28. The reply message flow. 80
29. The fan-out message flow.. 85
30. The reply message flow. 87
31. The fan-in message flow. 87

© Copyright IBM Corp. 2001, 2002 v

vi SupportPac IC03

Tables

1. Retail simple elements, types, names, and
identifiers 8

2. Retail STRING elements, lengths, names, and
identifiers 9

3. Retail INTEGER elements, values, names, and
identifiers 9

4. Retail compound type names and identifiers 10
5. Retail elements to add to compound types 10

6. Retail compound type names, identifiers, and
types 11

7. Routing simple elements, types, names, and
identifiers 61

8. Routing STRING elements, lengths, names,
and identifiers 61

9. Routing compound type names and identifiers 61
10. Routing elements to add to compound types 62

© Copyright IBM Corp. 2001, 2002 vii

viii SupportPac IC03

About this SupportPac

This SupportPac, IC03, provides a set of files that define the resources that are
required by six business scenarios that you can use in your WebSphere MQ
Integrator broker domain.

This document provides detailed instructions about how to use these files to:
v Create message sets
v Create and configure message flows
v Deploy the message flows to your brokers

The six examples are:
v A retail operation
v A loan request application
v A dynamic routing example
v A travel agent (single message flow) example
v A travel agent (double message flow) example
v A price quotations, or estimations, example

The description of each example highlights the facilities that are used in that
example. This allows you to assess whether the contents of that example are of
interest to you, and whether it can be used in your broker domain.

Each example is self-contained. You need to install only the files that are provided
for the examples that you want to use.

The documentation of each example provides instructions for using the definition
files that are provided in the SupportPac. It also contains information to help you
use the Control Center to create your own resources, should you prefer to do this
rather than use the supplied definition files.

© Copyright IBM Corp. 2001, 2002 ix

Who this document is for
This document is for users of WebSphere MQ Integrator Version 2.1. The previous
release of this SupportPac should be used for the predecessor product, MQSeries
Integrator Version 2.

The documentation for this SupportPac (IC03-01) and its predecessor (IC03-00) can
be obtained from the Web site at:
http://www.ibm.com/software/mqseries/

What you need to know to understand this document
You must be familiar with the concepts of WebSphere MQ Integrator, and know
how to use the Control Center to design message sets and message flows.

“Bibliography” on page 95 describes the contents of the WebSphere MQ Integrator
library. Refer to the books in this library for more information about WebSphere
MQ Integrator.

Throughout this document, the term UNIX is used to refer to AIX, HP-UX, and
Sun Solaris operating systems, where their behavior is the same.

The term local error log is used within this document to mean the Event Log on
Windows NT, or the syslog on UNIX systems.

The term home directory is used to refer to the directory into which WebSphere MQ
Integrator is installed. The names of the default home directories are shown in the
following table:

Operating System Default Home Directory

AIX /usr/opt/mqsi

HP-UX /opt/mqsi

Solaris /opt/mqsi

Windows NT C:\Program Files\IBM\MQSeries Integrator 2.1\

Introduction

x SupportPac IC03

Assumptions
If you download and use the files in this SupportPac, it is assumed that:
v You have read, and agree to, the conditions documented in the file licence2.txt

that is included in the SupportPac.
v You have installed WebSphere MQ Integrator, Version 2.1 or later. The examples

might not work with earlier versions or releases of WebSphere MQ Integrator.
Your installation options must include the broker, the Configuration Manager,
and the Control Center. The installation of other components of WebSphere MQ
Integrator is optional.

v You have created and started a broker on a supported, runtime, operating
system (AIX, HP-UX, Solaris, or Windows NT) that specifies queue manager
MQSI_SAMPLE_QM.
The WebSphere MQ Integrator Installation Guide for your broker operating system
provides instructions that help you to do this.
You can use a different queue manager if you want. In this case, you must
modify the provided sample resources after you have imported them. Refer to
the instructions for each example for more details about what you need to do.

v You have created and started the Configuration Manager on a Windows NT
system.
The name of the queue manager is not assumed. However, if your broker and
your Configuration Manager do not share the same queue manager, you must
set up MQSeries communications between the two queue managers. The
WebSphere MQ Integrator Installation Guide for your broker operating system
provides instructions that help you to do this.

v You have access to DB2 to create and initialize the database and tables that are
required by these examples.
For more information about initializing a DB2 database, see “Creating the
database” on page xiv.

v You have updated your broker domain topology to define the brokers to which
you intend to deploy the message flows for the examples that you want to use.
This document assumes that you are assigning message flows to the broker’s
default execution group; if you want to use a different execution group, you can
do so during the assignment step documented for each example.
For more information about updating your topology, see the WebSphere MQ
Integrator Using the Control Center book.

The WebSphere MQ Integrator Administration Guide contains detailed information
about using the WebSphere MQ Integrator commands; for example, commands
that create, start, or stop brokers.

Introduction

About this SupportPac xi

SupportPac Contents
This SupportPac is supplied in the zip file, ic03.zip, that contains all the files that
you need to use the examples described in this document:
v ic0301.pdf (this document)
v License agreement licence2.txt
v Version description level.txt

v Files for example 1 (retail operation):
– retail\Counter-MRM.xml - the subflow used to write items from the MRM

receipt message to a database (see Chapter 1, “The retail operation” on page 1
for a definition of MRM)

– retail\CounterXML.xml - the subflow used to write items from the
self-defining XML receipt message to a database

– retail\mrmreceipt.xml - a sample MRM receipt message
– retail\MRMscenario.xml - the main message flow using the MRM message
– retail\ReceiptMessagesMsgSet.mrp - the message set defining the receipt

messages
– retail\RegisterSubscription-MRM.xml - the message flow used to register a

subscription and set a content-based filter on an MRM message
– retail\RegsubXML.xml - the message flow used to register a subscription and

set a content-based filter on a self-defining XML message
– retail\retail.tst - the input file to runqmsc used to define the MQSeries

queues used by the retail message flows
– retail\retail.sql - the input file to DB2 used to define tables within a

database
– retail\subscribemsg.xml - a sample message used to register a subscription
– retail\subscribemsgMRM.xml - a sample self-defining XML receipt message
– retail\xmlscenario.xml - the main message flow using the self-defining XML

message
v Files for example 2 (loan request application):

– loan\credit.cpy - the COBOL copybook defining the message
– loan\LoanRequestMsgSet.mrp - the message set used to define the message
– loan\loanreq.xml - a sample XML loan request message
– loan\Loan Request.xml - the message flow used for the loan request example
– loan\loan.tst - the input file to runmqsc used to define the MQSeries queues

used by the loan request message flow
– loan\loan.sql - the input file to DB2 used to define and populate tables in a

database
v Files for example 3 (dynamic routing example):

– route\RouteToLabel.mrp - the message set defining the input message for the
Route flow

– route\JOURNEYAggregation.xml - the message flow for travel agent example 1
– route\trademsg.xml - a sample XML input message
– route\route.sql - the input file to DB2 used to define and populate tables in

a database
– route\route.tst - the input file to runmqsc used to define the MQSeries

queues used by the message flow
v Files for example 4 (travel agent single-flow example):

Contents

xii SupportPac IC03

– travel1\JOURNEYAggregation.xml - the aggregate message flow
– travel1\travelreq.xml - a sample XML input message
– travel1\journey.tst - the input file to runmqsc used to define the MQSeries

queues used by the message flow
v Files for example 5 (travel agent double-flow example):

– travel2\JOURNEYIn.xml - the fan-in message flow
– travel2\JOURNEYOut.xml - the fan-out message flow
– travel2\JOURNEYReply.xml - the reply message flow
– travel2\travelreq.xml - a sample XML input message
– travel2\journeyagg.tst - the input file to runmqsc used to define the

MQSeries queues used by the message flow
v Files for example 6 (price quotation example):

– estimates\GetEstimatesOut.xml - the fan-out message flow
– estimates\GetEstimatesIn.xml - the fan-in message flow
– estimates\GetEstimatesReply.xml - the reply message flow
– estimates\GetEstimatesAgg.tst - the input file to runmqsc used to define the

MQSeries queues used by the message flow

Contents

About this SupportPac xiii

Using the examples
There are three ways that you can use the supplied examples:
v You can use each complete example as supplied.
v You can use the complete example, but change aspects of its operation to match

your specific requirements.
v You can copy the message flow and delete one or more nodes, leaving only

those nodes that you want to use within your own message flow. You can then
modify the properties of these nodes to match the rest of your message flow.

Creating the database
The message flows that are defined in the examples use a database for the storage
and retrieval of the information that passes through the message flows. Before you
can use these message flows, you must create a database called MYDB, and set up
an ODBC connection for it.

This SupportPac includes files and information that help you to create and
initialize MYDB as a DB2 database. You can use a different database supplier if it
is supported by WebSphere MQ Integrator; however, the SupportPac does not
provide any help for these databases. For further information, refer to the
WebSphere MQ Integrator Installation Guide for your broker operating system.

You can use a different database name, and different table names, if you want. If
you do this, you must change the example resources after you have imported them
as indicated in the appropriate descriptions.

Before you can configure and use the message flows, you must create:
1. A database called MYDB.

If you use DB2 for this database, you can:
v Start the DB2 Control Center and expand the Object tree in the DB2 Control

Center until you find Databases.
Right-click Databases and select Create—>Database Using Wizard.
You must enter a database name and alias, but you can let all the remaining
options take their default values.

v Start a DB2 Command Window and type the following commands:
db2 start database manager
db2 create database MYDB
db2 connect to MYDB
db2 bind <INSTHOME>\bnd\@db2cli.list grant public
db2 connect reset

where <INSTHOME> is the DB2 instance directory for the userid. For example,
it might be c:\sqllib on Windows NT, or /home/db2instl/sqllib on UNIX.

2. An ODBC connection to the MYDB database.
If you use DB2 for this database, you can:
v On Windows NT, select Start—>Settings—>Control Panel.

Double-click the ODBC icon to start the ODBC Data Source Administrator.
Select the System DSN tab, and click Add to add a new IBM DB2 data
source for this database.
For more detailed instructions, see the WebSphere MQ Integrator for Windows
NT Installation Guide.

Using the examples

xiv SupportPac IC03

v On UNIX, edit the file /var/odbc/.odbc.ini.
The WebSphere MQ Integrator Installation Guide for your operating system
provides details to help you to complete this task.

Refer to the WebSphere MQ Integrator Installation Guide for the operating system
on which your broker is running for guidance about how to set up an ODBC
connection if your database is not DB2.

Ensure that each broker to which you deploy the message flows has access to this
database. The userid and password that the broker is using to access databases on
your behalf, specified by the –u and –p flags respectively on the mqsicreatebroker
command, must be authorized for read and update access to MYDB.

Using the supplied DB2 scripts
The SupportPac includes DB2 scripts that you can use to create and initialize the
tables that are required by each example. The description of each example
identifies the supplied script, and tells you how to use it.

The userid from which you use these scripts determines the database schema
name. For example, if you are logged on as userid USER1, the tables you create
have the schema USER1.TABLENAME. If the broker is not running under USER1 (that
is, the –u flag on the mqsicreatebroker command did not specify USER1), it
attempts to access the schema name that includes its runtime userid and access
fails.

The invocation of the DB2 scripts shown in this document assumes that you are
using your login userid and password to access the database, and that you
specified these values on the mqsicreatebroker command. If the broker is running
under another userid, you must specify this when you run the DB2 script to
ensure that the database schema is created with the correct userid to allow access
by the broker.

For example, if you specified –u BKUSER1 and –p BKPW1 on the mqsicreatebroker
command, you must invoke the DB2 scripts specifying these values. For example:
db2 connect to MYDB user BKUSER1 using BKPW1
db2 -f loan.sql

Invoking the DB2 scripts in this way ensures that the tables are created with the
correct schema name to allow access by the broker.

Ensure that, when you select a database table in a node in an example message
flow (for example, in “Configuring the Warehouse node for the MRM message” on
page 17), you reference the correct schema name. This might require you to modify
the message flows that are supplied.

Testing the scenarios
The scenarios are provided as working examples, with import files for messages
and message flows. If you import these files as shown, and complete their
definition, assignment, and deployment, you can pass messages of the defined
format through the flows on your brokers.

Each example includes some information on how you can test its operation.

In addition, you might find the following helpful to you in testing:
v The IH02 SupportPac WebSphere MQ Integrator PUT Utility

Using the examples

About this SupportPac xv

You can obtain this SupportPac from the Web site:
http://www.ibm.com/software/mqseries

This SupportPac provides a utility program, MQSIPUT, that allows messages to
be constructed in various permitted formats, including various headers, within a
file. This allows you to test with messages that can be valid or not valid,
without having to write programs to set up the headers or the message content.

v The MQSeries Explorer
This program allows you to view the contents of messages on a queue.
MQSeries Explorer displays a tree view of the queue managers and their
resources. Select the queue manager that hosts your broker, and look for the
queue, or queues, that you are interested in.
Note that you cannot use MQSeries Explorer to put messages to a queue for
testing these scenarios, because it cannot use a file as input.

Using the examples

xvi SupportPac IC03

Chapter 1. The retail operation

This chapter describes the business scenario for the retail operation that is
discussed in Chapter 3 of the book, WebSphere MQ Integrator Introduction and
Planning, Version 2.1.

In WebSphere MQ Integrator Version 2.0.1, implementation details for this scenario
were provided in Appendix A of the WebSphere MQ Integrator Using the Control
Center book.

This scenario illustrates the following concepts:
v Publish/Subscribe
v Warehousing and writing to databases
v Message subflows
v Controlling the flow of a message using FlowOrder and Filter nodes
v Manipulating the content of a message or message header using Compute and

Extract nodes
v Data conversion
v Tracing message flow activity

The message flows contain at least one example of each of the following IBM
Primitive nodes:
v MQInput
v Check
v Warehouse
v Floworder
v Extract
v Filter
v Trace
v Compute
v Publication
v MQOutput
v Database

The SupportPac includes files that support two versions of this scenario:
v The message flow that uses a message set and messages defined using the

Message Repository Manager (MRM).
The MRM is a component of the Configuration Manager that manages message
definitions and maintains the message repository in which they are stored. You
use the Control Center to define messages to the MRM.

v The message flow that uses a self-defining XML message.

The two versions illustrate the use of different nodes to handle the different
messages. The ESQL within the message flow includes some field references that
are specific to the message format used.

For more information about using these field references in ESQL, refer to the
WebSphere MQ Integrator ESQL Reference book.

© Copyright IBM Corp. 2001, 2002 1

Introduction
The scenario uses three separate message flows:
v The main flow.

The main flow, which is described in “The main flow” on page 15, has one input
node and four output nodes. It is configured to provide different backend
systems with different data, according to their requirements:
– The Audit branch of the flow (described in “Audit flow” on page 16) is used

to check that the incoming message belongs to the expected message set (that
is, the message is a valid receipt), and can therefore be processed by the rest
of the flow.
If the message is valid, the receipt information is stored in a database for later
retrieval.
A FlowOrder node is used to control the order of processing of the Finance
and Stock branches of the flow that follow the Audit flow.

– The Finance branch of the flow (described in “Finance flow” on page 20)
extracts some information from the message to suit the requirements of the
Finance department.
A trace record is written to a file to record what information has been
extracted. A message containing the extracted information is passed on to the
Finance Department. If the message is an MRM message, it is converted into
an IMS format before being passed on to the Finance Department.

– The Stock branch of the flow (described in “Stock flow” on page 25) is used
to add up all instances of an item sold.
This information is used by the Distribution group to maintain stock levels.

– The Partner branch of the flow (described in “Partner Flow” on page 28) is
used to filter messages that contain more than one purchase of the same item.
These messages, known as multibuys, are stored in a database and are
published to subscribers .

v The update multibuy database flow.
This flow, which is described in “Updating the database” on page 29, is an
example of a message flow that has been created as a subflow that can be
embedded within a higher-level message flow.
This illustrates the use of a repeated sequence of actions that can be included at
several points within a larger message flow to provide common function.

v The register subscriptions flow.
This flow, which is described in “Register subscriptions flow” on page 35, is used
to subscribe to publications based on the content of the message.

When you have defined your message and message flows, you must assign them
to the broker on which you want the message flow to run, and you must deploy
the changes you have made to the broker domain to activate those changes. These
steps are described in “Assigning the message set and message flows” on page 38
and “Deploying the configuration” on page 38.

Before you start, you must complete the tasks described in “Preparing to use the
example” on page 3.

The retail operation

2 SupportPac IC03

Preparing to use the example
You must complete the tasks described in the following sections before you can
successfully deploy the retail message flows. Complete these steps before you start
to define your message set and message flows.

Initializing the database
The message flow in this scenario uses a database for the storage of information
passing through the message flow. Before you can configure and use the message
flow, you must create a database, MYDB, and an ODBC connection to that database.
See “Creating the database” on page xiv for further information.

You must also set up the tables RECEIPTINFO, RECEIPTINFO2, and MULTIBUY that are
used by the message flow. You can use the file retail.sql to create these tables, or
you can create the tables yourself. If you use the supplied script, you must review
the guidelines given in “Using the supplied DB2 scripts” on page xv for accessing
the database and creating and using schema names.

To use the file retail.sql, open a DB2 Command Window on the system on
which your broker is running, and type:
db2 connect to MYDB
db2 -f retail.sql

Note that you must type the complete path for the file retail.sql if the file is not
in your current directory.

You might see the error message DB21034E the first time you run this command
file. This is because the file first drops any existing tables, and then creates them. If
the tables do not already exist, error messages are generated. You can ignore these
messages.

Ensure that each broker to which you deploy this message flow has access to this
database.

Setting up MQSeries resources
This scenario gets an input message for the message flow from an MQSeries queue
on the queue manager that hosts the broker to which the message flow has been
deployed. It puts messages to a number of output queues, depending on the action
taken on each message received by the message flow. It also uses a number of
queues to handle publications and subscriptions.

The queues required are:
v IN
v FINANCE
v STOCK
v NOTMULTI
v PARTNERS
v FAILED
v SUBS
v SUBIN
v SUBOUT

You can use the file retail.tst to create these queues, or you can create the
queues yourself.

The retail operation

Chapter 1. The retail operation 3

To use the file retail.tst, type the following on a command line on the system on
which your broker is running:
runmqsc MQSI_SAMPLE_QM <retail.tst

You must type the complete path for the file retail.tst if the file is not in your
current directory. Replace the queue manager name in the command above if the
name shown is not correct for your broker.

You can use different names for these queues if you choose. If you do, you must
edit retail.tst before you use the runmqsc command, and you must modify the
queue properties of the nodes in the message flow to match your new names. See
“Creating and configuring the message flows” on page 13 for more details.

If your brokers and your Configuration Manager are hosted by different queue
managers, you must also set up pairs of channels between each broker queue
manager and the Configuration Manager queue manager. You also need to start an
MQSeries listener for each queue manager. For details of how to do this, refer to
the WebSphere MQ Integrator Installation Guide for your broker operating system.

The retail operation

4 SupportPac IC03

Creating and completing the message set
You can work through this example either with a message that is defined in the
WebSphere MQ Integrator message repository, and that belongs to the message
domain MRM, or with a self-defining XML message that belongs to the message
domain XML. The nodes used in the example differ slightly depending on which
type of message you use, and the field references in the ESQL in the nodes are
different.

The receipt message as an MRM message
If you want to use a predefined message structure, you must use the Control
Center to define the logical structure and the physical structure, also known as the
wire format, of the message to the message repository . The SupportPac includes an
import file, ReceiptMessagesMsgSet.mrp, that creates the message set and message
for you.

To import the message set definition from this file, you must:
1. Open a command prompt window.
2. Stop the Configuration Manager using the command mqsistop configmgr.
3. Change to the directory containing the file ReceiptMessagesMsgSet.mrp.
4. Import the message set by typing:

mqsiimpexpmsgset -i -u mqsiuid -p mqsipw -n MQSIMRDB -f ReceiptMessagesMsgSet.mrp

where mqsiuid and mqsipw are the userid and password that are used for
message repository access, and MQSIMRDB is the name of the message repository.
You must use the same values that you specified for the —u, —p, and —n flags on
the mqsicreateconfigmgr command.The installation guide for your broker
operating system gives more details about the use of the mqsicreateconfigmgr
command.

5. Restart the Configuration Manager using the command mqsistart configmgr.
This picks up the new definition

6. Restart the Control Center from the Windows NT Start menu.
7. In the Control Center Message Sets view, right-click on the Message Sets root

and select Add to Workspace. Select the message set My Receipt Messages, and
click Finish.

You can now view the message set in the left-hand pane of the Message Sets view.
The components of the message set are all present in the message repository, but
are not added to your workspace. If you want to view some or all of these
components, you can add them by right-clicking on the component folder (for
example, for Messages) and selecting Add to Workspace.

The My Receipt Messages message set contains the following messages:
v Receipt Message. This contains information from a shop receipt that is required

by other departments.
v Stock Message. This contains information that is derived from the receipt

message and is used to control stock levels.
v IMS Message. This defines an IMS variable-length string-format message to allow

the receipt message to pass from WebSphere MQ Integrator to IMS on a system
running z/OS.

If you prefer to create the messages yourself, follow the instructions provided in
“Creating the message set by hand” on page 7.

The retail operation

Chapter 1. The retail operation 5

Associating the MRM receipt message with a message repository
definition
When a message received by an MQInput node has a corresponding definition in
the message repository, WebSphere MQ Integrator needs to know which parser
you are expecting to use for the message (called the message domain), which set
the message belongs to (called the message set) and the identifier of the message
definition (called the message type).

This is defined by an association, and can be specified in one of two ways. If you
use the sample message, mrmreceipt.xml, that is supplied by the SupportPac to test
this message flow, the association is already made for you, using the first method
shown.

If you want to create your own messages, you must make the association in one of
the following ways:
1. Define the message domain, the message set, and the message type on the

NAMEVALUEDATA part of an MQRFH2 header.
This method has been used in the sample message file mrmreceipt.xml.
The mcd folder within the message provides basic definition information, the
psc folder contains information specific to publications.
v mcd folder

Msd The parser to be used for this message. This is MRM in this example.
Other values are BLOB, XML, NEON, and NEONMSG. It must be
entered in uppercase.

Set The identifier of the message set to which the message belongs. This

Figure 1. The message set properties, showing the identifier

The retail operation

6 SupportPac IC03

is the identifier assigned by WebSphere MQ Integrator when you
create the message set in the Control Center. In this example, it is
DOHVOCC07M001 (see Figure 1 on page 6).

Type The identifier of the message definition to which this message maps.
It is the identifier you assign when you define the message in the
Control Center. In this example, it is receiptmsg. You cannot copy
and paste the identifier from the message properties in the Control
Center, so make sure that you type it exactly as shown there.

Fmt This is the custom wire format of the message. In this example, it is
XML. Other possible values are CWF and PDF.

v psc folder

Command Specifies that the message is to be published.

Topic Specifies the topic for publication. In this example, the topic
is ″Multibuy″.

2. Define the message domain, the message set, and the message type on the
Default tab of the MQInput node, as shown in Figure 4 on page 15.
This method is not used if you import the message flow and use the supplied
message which contains an MQRFH2 header.

The receipt message as an XML message
A self-defining XML message can be passed through a message flow without
having to be defined as part of a message set in the message repository.

However, if you decide to use an XML message, you cannot use some of the IBM
primitive nodes. For example, Extract nodes and Warehouse nodes can only be
used with predefined messages. Use Compute nodes or Database nodes instead of
these.

An example of an XML message of the format expected by the XML message flow
scenario is provided in the file subscribemsgMRM.xml. You can use this to test your
scenario when you have deployed the message flow. See “Testing the message
flow” on page 39 for more details about testing.

Creating the message set by hand
You can use the information here if you want to create the MRM message set used
by this scenario yourself. It provides a systematic example that shows you how to
create a message for the receipt data. It shows you how to create a message using
the bottom-up approach, but you can also use a top-down approach if you prefer.

The message set you create contains three messages called Receipt Message, Stock
Message, and IMS Message.
v The purpose of the Receipt Message is to take information from a shop receipt

and, through the message flow, feed the information to the people who need it.
For example, a financial controller needs to know the sales figures from each
branch.

v The Stock Message is used to illustrate how information from one message can
be modified and mapped into another message. For example, the stock controller
needs to know the total quantity of a particular item for each receipt. The
Compute node in the Stock message flow adds the number of items and puts
the total into the Stock Message.

The retail operation

Chapter 1. The retail operation 7

v The IMS message contains receipt information in a format acceptable to an IMS
system.

The message uses structured compound elements that you populate with simple
elements. Each element defines a unit of information.

Refer to the relevant chapter of the WebSphere MQ Integrator Using the Control
Center book for details on how to create message sets and messages. The
information provided here focuses on how you set up the properties to make this
example work.
1. Create a message set.

Give this message set any name. In the import files in the SupportPac, it is
called My Receipt Messages. Check that the parser on the Run Time tab is set
to MRM. When you click Finish, WebSphere MQ Integrator assigns the
message set a unique identifier and writes this into the Identifier field of the
message set properties. This is the identifier that you must name, either on the
MQInput node or in the MQRFH2 header.

2. Create simple elements.
These are the lowest-level units of information. You can give them any name
and identifier you want. Table 1 summarizes the simple elements, the type
selected for each one, and the name and identifier used in the import files in
the SupportPac.

Table 1. Retail simple elements, types, names, and identifiers

Simple element name Identifier Type

Store Name storename STRING

Branch Number branchnum INTEGER

Cashier Number cashiernum INTEGER

Till Number tillnum INTEGER

Date date STRING

Time time STRING

Item Name itemname STRING

Item Code itemcode INTEGER

Item Price itemprice FLOAT

Item Quantity itemquantity INTEGER

Total Items totalitems INTEGER

Multibuy multibuy STRING

Total Sales totalsales FLOAT

Change change FLOAT

Total Item Quantity totalitemquantity INTEGER

f_reserve f_reserve INTEGER

IMS_zz IMS_zz INTEGER

LL LL INTEGER

n_reserve n_reserve STRING

q_reserve q_reserve INTEGER

The retail operation

8 SupportPac IC03

The XML descriptor tag for the element in the message must match the
identifier used in the definition. For example, the element Store Name has an
identifier storename and is represented in the message as <storename>.

Note that, for the elements Date and Time, after you click Finish on the
element property pages, but before you move on to the next element, you
should go to the COBOL tab and change the default settings of the COBOL
Language Name property from DATE and TIME to something else. Using a
COBOL keyword in these fields is not permitted.

The following explanation of the last few items in the table might help your
understanding:
v f_reserve is used to hold the value of the counter when, in the subflow

Counter – MRM1 or Counter – XML1, each item in the receipt message is
written to a database.

v IMS_zz is a 2-byte reserved field in the IMS message definition.
v LL is a 2-byte field in the IMS message definition that specifies the total

length of the IMS variable string item (length of LL (2 bytes) + length of zz
(2 bytes) + length of character string itself).

v n_reserve is used to hold the value of the item name when, in the subflow,
each item in the receipt message is written to a database.

v q_reserve is used to hold the value of the item quantity when, in the
subflow, each item in the receipt message is written to a database.

3. Create element lengths for the elements of type STRING.
You can give them any name and identifier you want. Table 2 summarizes the
STRING elements, the length defined for each one, and the name and
identifier used in the import files in the SupportPac.

Table 2. Retail STRING elements, lengths, names, and identifiers

Element name Element length name Maximum
Length

Element length
identifier

Store Name Store Name Length 20 storenamelen

Date Date Length 10 datelen

Time Time Length 10 timelen

Item Name Item Name Length 40 itemnamelen

Multibuy Multibuy Length 5 multibuylen

n_reserve n_reservelen 20 n_reservelen

4. Add the lengths to the corresponding string elements; for example, add Store
Name Length to the element Store Name.

5. Create element valid values for some of the elements.
You can give them any name and identifier you want. Type must be the same
type of the element that the valid value is associated with. Table 3 summarizes
the INTEGER elements, the minimum and maximum valid value defined for
each one, and the name and identifier used in the import files in the
SupportPac.

Table 3. Retail INTEGER elements, values, names, and identifiers

Element name Element valid
value name

Element valid
value identifier

Type Valid value
range

Branch Number Branch Number
Value

branchnumval INTEGER 00000000 –
99999999

The retail operation

Chapter 1. The retail operation 9

Table 3. Retail INTEGER elements, values, names, and identifiers (continued)

Element name Element valid
value name

Element valid
value identifier

Type Valid value
range

Cashier Number Cashier Number
Value

cashiernumval INTEGER 000 – 999

Till Number Till Number
Value

tillnumval INTEGER 000 – 999

6. Add the valid values to the corresponding elements; for example, add Branch
Number Value to the element Branch Number.

7. Create compound types.
These are used as the type for compound elements (higher-level elements)
within the message. Transactionlog is used as the type for the message itself,
thereby bringing all the lower-level structures together. You can give them any
name and identifier you want. Table 4 summarizes the compound types,
names, and identifiers used in the import files in the SupportPac.

Table 4. Retail compound type names and identifiers

Compound type name Identifier

Store Details storedetails

Purchases purchases

Totals totals

Transaction Log transactionlog

Output Transaction Log outputtransactionlog

IMS_LLzz IMS_LLzz

IMS Message Type imsmsgtype

8. Add elements to the compound types. (Leave transactionlog
outputtransactionlog, and imsmsgtype for now.)
The order of elements in the message being passed through the message flow
must match the order of elements in the message definition. This order is
defined by the order of elements in the compound types.
When you add elements to a compound type, they are added in reverse order.
For example, selecting Store Name followed by Branch Number produces the
order Branch Number followed by Store Name. There is a Reorder option on
the Types pull-down to re-sequence the elements within a type.
To match the message shown in Figure 1 on page 6, add the elements in the
sequence shown in Table 5. Use Ctrl+left-click to select multiple elements.

Table 5. Retail elements to add to compound types

Compound type Elements to be added

Store Details v Time
v Date
v Till Number
v Cashier Number
v Branch Number
v Store Name

The retail operation

10 SupportPac IC03

Table 5. Retail elements to add to compound types (continued)

Compound type Elements to be added

Purchases v q_reserve
v Item Quantity
v Item Price
v Item Code
v n_reserve
v Item Name

Totals v f_reserve
v Change
v Total Sales
v Multibuy
v Total Items
v Total Item Quantity

IMS_LLzz v LL
v IMS_zz

9. Create elements with compound types.
These elements bring together a number of lower-level elements. Because you
added the simple elements to the compound type, when you create the
compound element, those simple elements are automatically associated with
it. You can give them any name and identifier you want.
Table 6 summarizes the compound element names, types, and identifiers used
in the import files in the SupportPac.
The XML descriptor tag for the element in the message must match the
identifier used in the message repository definition. For example, the element
Store Details Element has an identifier storedetailselement and is represented
in the message as storedetailselement.

Table 6. Retail compound type names, identifiers, and types

Compound element name Identifier Type

Store Details Element storedetailselement Store Details

Purchases Element purchaseselement Purchases

Totals Element totalselement Totals

IMS_LLzze IMS_LLzze IMS_LLzz

10. Add the compound elements Totals Element, Purchases Element, and Store
Details Element (in that order) to the compound type Transaction Log. This
pulls all the elements of the receipt message together in a single type.

11. Add the elements Total Item Quantity, Purchases Element, Time, Date, Branch
Number, and Store Name (in that order) to the compound type Output
Transaction Log. This pulls all the elements of the stock message together in a
single type.

12. Add the simple elements Total Sales, Date, and Branch number and the
compound element IMS_LLzze to the compound type Ims Message Type. This
pulls all the elements of the IMS message together in a single type.

13. Create a message of type imsmsgtype. Give it any name or identifier you like.
In the import files in the SupportPac, the message name is IMS Message and
the identifier is imsmsg. You must name the identifier in the Compute node
that sets up the message for transmission to IMS.

14. Create a message of type transactionlog. Give it any name or identifier you
like. In the import files in the SupportPac, the message name is Receipt

The retail operation

Chapter 1. The retail operation 11

Message and the identifier is receiptmsg. You must name the identifier either
on the MQInput node or in the MQRFH2 header.

15. Create a message of type outputtransactionlog. Give it any name or identifier
you like. In the import files in the SupportPac, the message name is Stock
Message and the identifier is stockmsg. You must name the identifier either on
the MQInput node or in the MQRFH2 header.

16. Make the Purchases Element a repeating element. Make sure that the types
transactionlog and outputtransactionlog are checked out. In the Receipt
Message, check out the Purchases Element and open its properties pages. On
the Connection tab, change Repeat to yes. Click Apply. Repeat this step for
the Stock Message.

17. Set the Custom Wire Format for the IMS variable string definition. Check out
the compound type IMS_LLzz, open the properties pages of the LL element
within that type, click on the Custom Wire Format tab. Set the Length Count
to 2. Repeat for the IMS_zz element.

18. Create a category to contain the messages. This is optional but might be useful
if you want to experiment with the functions to generate documentation about
the message set. You can give the category any name and identifier you like.
In the import files in the SupportPac, the category name is Transaction Log
Messages and the identifier is transactionlogmsgs.
Add the receipt message and the stock message to the category.

19. Save the definitions to the shared repository. Select File —> Check In —>All
(Save to Shared).

The retail operation

12 SupportPac IC03

Creating and configuring the message flows
The files MRMscenario.xml and xmlscenario.xml contain the definitions of the main
retail message flow and the subflow used within the main flow. The first file uses
the MRM-defined message, the second uses the XML message. Each base message
flow also has an associated subscriptions flow in a separate file. The message flows
are shown in Figure 2 and Figure 3.

“Creating and configuring the message flows” describes how to define these
message flows. The message flows work on messages of a specific format and
content. The definition and manipulation of those messages is described in
“Creating and completing the message set” on page 5.

You can import and configure either pair of message flows by doing the following:
v Select the Message Flows tab.
v Import the retail message flow definition. To do this:

1. Select Import to Workspace... from the File menu.

Figure 2. Retail scenario message flow with MRM message

Figure 3. Retail scenario message flow with XML message

The retail operation

Chapter 1. The retail operation 13

The Message Flows check box is checked by default. This imports only
message flows from the files that you identify as the source of the resources
to import.

2. Locate the files that you need to run the scenario:
a. MRMscenario.xml and RegisterSubscription_MRM.xml if you want to use

this scenario with an MRM message
b. xmlscenario.xml and RegsubXML.xml if you want to use this scenario with

a self-defining XML message

You can type in the full path and file name in the dialog, or you can click
Browse and search for these files.

3. Click Import. The Control Center processes the file and imports the message
flows that are defined within it.
The file MRMscenario.xml contains the main message flow MRMscenario and
the subflow Counter – MRM.
The file RegisterSubscription_MRM.xml contains the message flow Register
subscription – MRM.
The file xmlscenario.xml contains the main message flow xmlscenario and
the subflow Counter – XML.
The file RegsubXML.xml contains the message flow Register subscription –
XML.
A list of the resources that have been imported are displayed in a dialog
when the processing ends.

4. Click OK to dismiss the dialog.

Each new message flow appears in the left-hand pane, marked by the blue cube
icon that indicates that the flow is new. Select each new message flow in turn,
and follow the instructions provided in this section to complete the
configuration of the nodes within the flow. If you have imported the message
flows, the majority of the configuration work is already done for you. If you
want to do some additional configuration of a node, first double-click on that
node, and then click on the Properties attribute.

v When you have completed the configuration updates that are described in the
rest of this section, select File—>Check In—>All (Save to Shared) to check in
the message flows. You must check in the message flows before you can assign
them to a broker.

If you do not use one of the files that are provided, you must create the message
flows yourself, and complete their design by dragging and dropping the
appropriate nodes into the Message Flow Definition pane, using either Figure 2 on
page 13 (if you are using MRM messages) or Figure 3 on page 13 (if you are using
XML messages) as a guide. You must connect the nodes and configure them as
described in the following sections.

When you review and work through the following configuration information,
remember to complete only those sections for the message type (MRM or XML)
that you are using. You can ignore all information that refers to the message type
that you are not using.

The two examples are independent; you can import both if you want.

The retail operation

14 SupportPac IC03

The main flow
The main flow starts with an MQInput node that retrieves messages for processing.
The messages are then passed on through the branches (described in
“Introduction” on page 2) before being sent to various queues for further
processing by other departments.

Getting the message
The first node in the message flow, Receipt Message, is an MQInput node. This node
gets a message from an MQSeries queue on the queue manager hosting the broker.

If you have imported the message flow, this node is fully configured, and identifies
input queue IN. If you are using a different queue name, you must update the
node properties. All other properties are left to take default values.

If you are creating the message flow yourself, you must:
1. Select the Basic tab and type the queue name; the default used in the example

is IN.
2. If you have an MRM message and you do not specify the message domain, the

message set, the message type, the message format, and the topic in the
MQRFH2 header, you must specify these on the Default tab of the MQInput
node, as shown in Figure 4.

3. Click OK to apply your changes.
4. If you are using an MRM message, connect the node’s out terminal to the

Check node Check Message. If you are using an XML message, connect the
node’s out terminal to the Database node Store Message.

5. Connect the node’s failure terminal to the MQOutput node Failure Queue.

Figure 4. MQInput node properties

The retail operation

Chapter 1. The retail operation 15

Audit flow
The Audit branch of the message flow for an MRM message contains three nodes:
a Check node, Check Message, a Warehouse node, Store Message, and a FlowOrder
node, FlowOrder1. The nodes in this part of the message flow check that the
incoming message belongs to the expected message set and can therefore be passed
through the rest of the message flow, store the receipt information in a database for
retrieval later, and control the sequence of processing of subsequent branches.

The Audit branch of the flow for an XML message contains a Database node
instead of the Warehouse node, because you can use a Warehouse node only with
an MRM message, and the same FlowOrder node. This is illustrated in Figure 3 on
page 13. No checking is necessary because there is no defined message set,
therefore there is no Check node.

Checking the message

The Check node Check Message is included in the MRM message flow. It is not
included in the XML message flow.

Figure 5. Audit message processing nodes for the MRM message

Figure 6. Check node properties

The retail operation

16 SupportPac IC03

If you have imported the MRM message flow, this node is fully configured. If you
create the message flow yourself, you must:
1. Configure the node properties as shown in Figure 6 on page 16. The message

set number is the identifier for the message set, and the one that is shown here
is the identifier for the imported message set. If you have created your own
message set following the instructions in “Creating the message set by hand”
on page 7, you must type the identifier that you specified for the message.

2. Click OK to apply your changes.
3. Connect the match terminal of this node to the node Store Message.

The Store Message node is a Warehouse node for the MRM message flow, but a
Database node for the XML message flow.

Storing the message
This part of the message flow stores the message in a database for audit purposes.
The MRM message flow uses a Warehouse node, but the XML message flow uses a
Database node.

Configuring the Warehouse node for the MRM message: You can use a
Warehouse node only with an MRM message. The Warehouse node Store Message
stores the message as a binary object with a timestamp in the MYDB database.

If you have imported the MRM message flow, this node is partially configured. To
complete it, you must:
1. Click Delete to remove the data source and table RECEIPTINFO from the

Output pane. Click Add to add the data source MYDB and the correct table
schema for the RECEIPTINFO table; for example, BKUSER1.RECEIPTINFO.

2. Add the columns SPMSG and MSGTIME.
3. Check the box to Store Message and select the column SPMSG from the

drop-down list.
4. Check the box to Store Timestamp and select the column MSGTIME from the

drop-down list.
5. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click the Add button in the Output pane and add the data source MYDB and

the correct table schema for the RECEIPTINFO table (for example,
BKUSER1.RECEIPTINFO).

2. Add the columns SPMSG and MSGTIME.
3. Check the box to Store Message and select the column SPMSG from the

drop-down list.
4. Check the box to Store Timestamp and select the column MSGTIME from the

drop-down list.
5. Click OK to apply your changes.
6. Connect the out terminal of this node to the FlowOrder node, FlowOrder1.

Note: You do not need to add the input message, receiptmsg, because you are
storing the entire message, and do not need to refer to elements within the
message. However, if you want to change this node to warehouse a subset
of the input message, or if you want to include the message to document its
use in this node, you must add this on the Input pane.

The retail operation

Chapter 1. The retail operation 17

You can check whether the message is stored in the Warehouse. For example, in a
DB2 Command Window type:
db2 connect to MYDB
db2 select * from receiptinfo

You cannot see the text of the message because of the way it is stored (as a BLOB),
but you can see the timestamp at the bottom.

Configuring the Database node for the XML message: If you are using an XML
message, you store the message using Database node Store Message.

If you have imported the XML message flow, this node is partially configured. To
complete it, you must:
1. Click Delete to remove the database table RECEIPTINFO2 from the Output

pane.
2. Click Add and add the data source MYDB and the correct table schema for the

RECEIPTINFO2 table (for example, BKUSER1.RECEIPTINFO2).
3. Add all the columns in the table to this pane.
4. Edit the ESQL in the lower part of the dialog to put the correct schema name in

the initial clause. For example:
INSERT INTO Database.BKUSER1.RECEIPTINFO2 (Storename, Branchnum, Cashiernum,
Tillnum, Date, Time, Itemname, Itemcode, Itemprice, Itemquantity, Change,
Multibuy, Totalsales, Totalitems)

(and so on)

5. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click Add and add the data source MYDB and the correct table schema for the

RECEIPTINFO2 table (for example, BKUSER1.RECEIPTINFO2).
2. Add all the columns in the table to this pane.

Figure 7. Warehouse node properties (MRM message)

The retail operation

18 SupportPac IC03

3. Create a database schema for every element of the message, and itemize every
element in the ESQL used in the node to insert values into database columns.
You must specify the correct schema in this ESQL . Part of the ESQL is shown
below; you must replace BKUSER1 with your required schema value.
INSERT INTO Database.BKUSER1.RECEIPTINFO2 (Storename, Branchnum, Cashiernum,
Tillnum, Date, Time, Itemname, Itemcode, Itemprice, Itemquantity, TotalItems,
Multibuy, Totalsales, Change)
VALUES(Body.Message.receiptmsg.transactionlog.storedetailselement.storename,
Body.Message.receiptmsg.transactionlog.storedetailselement.branchnum,
Body.Message.receiptmsg.transactionlog.storedetailselement.cashiernum,
Body.Message.receiptmsg.transactionlog.storedetailselement.tillnum,

(and so on)

4. Click OK to apply your changes.
5. Connect the out terminal of this node to the FlowOrder node FlowOrder1.

Controlling the order of processing
The FlowOrder node FlowOrder1 does not process a message itself, and has no
properties, but it allows you to control the order of processing in the branches of
the message flow that follow the node.

The node has two output terminals, first and second, that ensure that the message
is propagated to the nodes following on from the first terminal, and that the first
branch of processing has completed, before it propagates the message to the
second terminal. It has a third output terminal, failure, that is not used in this
example.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Connect the first terminal of this node to the Extract node Extract Financial

Information, the first node in the Finance branch of the flow.
This ensures that the Finance branch of the flow completes before the message
is propagated to the other nodes for further processing.

2. Connect the second terminal of this node to the nodes Add Product Instances,
which is the first node in the Stock branch of the flow, and Multibuy Filter,
which is the first node in the Partners branch of the flow.

The retail operation

Chapter 1. The retail operation 19

Finance flow
The Finance department wants to receive only part of the information from the
receipt message. Therefore, the required parts of the receipt message (branch
number, date, and total sales information) are extracted from the receipt message
and used to produce a new message that is passed on for further processing.

This is done in the node Extract Financial Information. For an MRM message, an
Extract node is used. However, an Extract node cannot be used for messages that
are not predefined. Therefore, for an XML message, a Compute node is used. The
information that is used by the Finance department is recorded by the Trace node
Write Trace Entry. An IMS header is added to the MRM message by the Compute
node Add IMS Header before the message is passed to the Finance department
through the MQOutput node Finance Group. The XML message is passed directly
from the Trace node to the MQOutput node Finance Group.

Extracting financial information from the MRM message
The Extract node Extract Financial Information node takes the information required
by the Finance department from the input MRM message to create a new MRM
output message.

If you have imported the MRM message flow, this node is fully configured, and its
properties appear as shown in Figure 9.

Figure 8. Finance message processing nodes for the MRM message

Figure 9. Extract node properties

The retail operation

20 SupportPac IC03

If you are creating the message flow yourself, you must:
1. Click Add and select the message set called My Receipt Messages and the

message called Receipt Message.
2. Expand the elements storedetailselement and totalselement, and drag

branchnum, date, and totalsales into the mapping window below.
3. Click OK to apply your changes.
4. Connect the out terminal of this node to the Trace node Write Trace Entry.

Extracting financial information from the XML message
The Compute node Extract Financial Information node takes the information
required by the Finance department from the input XML message to create a new
XML output message.

If you have imported the XML message flow, this node is fully configured. If you
are creating the message flow yourself, you must:
1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;
END WHILE;
SET
OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum
= InputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.date

= InputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.date;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalsales

= InputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalsales;

3. Click OK to apply your changes.
4. Connect the out terminal of the Compute node to the Trace node Write Trace

Entry.

Use MQSeries Explorer on Windows NT to look at the extracted message; select
the message on the output queue, click Properties, and then the Data tab.

Writing a trace entry
The Trace node Write Trace Entry writes a trace entry according to the pattern that
you define for the node properties. This can include any text that appears as
comments (documentation), and values that are substituted from the message (for
example, field contents). The values to be substituted must be surrounded by the
characters ${value}.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set the Destination to File.
2. Type the file path and name. The destination file used by the imported

examples is mytrace in location c:\$user\trace

3. Type the ESQL pattern that is required to write to a file a trace entry that
contains the three extracted elements and a simple timestamp.

The retail operation

Chapter 1. The retail operation 21

a. For the MRM message:
Message passed through the Trace node with the following fields:
Branch number is: ${Body.storedetailselement.branchnum}
Date is: ${Body.storedetailselement.date}
Total sales are: ${Body.totalselement.totalsales}
Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}:${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

b. For the self-defining XML message:
Message passed through the Trace node with the following fields:
Branch number is: ${Body.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum}
Date is: ${Body.XML.Message.receiptmsg.transactionlog.storedetailselement.date}
Total sales are: ${Body.XML.Message.receiptmsg.transactionlog.totalselement.totalsales}
Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}:${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

4. Click OK to apply your changes.
5. Connect the out terminal of this node to:

a. the Compute node Add IMS Header, if you are using an MRM message
b. the MQOutput node Finance Group, if you are using an XML message

Figure 10 illustrates the node properties set up for the MRM message. The property
Destination has been changed to File and a location for the trace file has been
specified.

Adding an IMS header to the MRM message
The Compute node Add IMS Header restructures the input message into the IMS
format (IMS Variable string), removes the MQRFH2 header, adds an IMS header,
and resets the encoding and code page for the z/OS system. These actions
transform the message to allow it to pass from WebSphere MQ Integrator to IMS.

Figure 10. Trace node properties

The retail operation

22 SupportPac IC03

Figure 11 shows the properties of the Add IMS header Compute node.

However, this example does not require access to an IMS system to be deployed:
the MQOutput node for this flow is defined as a local queue. You can add the
extra complexity to this flow if it is appropriate for your needs. The node is
included to illustrate how you can transform a message to pass it to a different
system that has different requirements on the data content. For further information
about data conversion using WebSphere MQ Integrator nodes as an alternative to
MQSeries data conversion exits, see the WebSphere MQ Integrator ESQL Reference
book.

If you want to view the message content after the transformation, you can insert a
Trace node after Add IMS header and write the entire message contents to a trace
file using the pattern ${Root}.

If you have imported the MRM message flow, this node is fully configured. If you
are creating the message flow yourself, you must:
1. Click Add to add Receipt Message to the Inputs pane.
2. Click Add to add IMS Message to the Output Messages pane.
3. Select the Use as message body option on the Output Messages pane.
4. Select Copy message headers.
5. Select the ESQL tab, and type the following to set up the message and header

contents. You must check that the MessageSet identifier in the ESQL is correct
for your message set:
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) -1 DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;
END WHILE;
-- Enter SQL below this line.

Figure 11. Compute node properties

The retail operation

Chapter 1. The retail operation 23

SQL above this line might be regenerated, causing any modifications to be lost.
SET "OutputRoot"."MQMD"."CodedCharSetId" = 500;
SET "OutputRoot"."MQMD"."Encoding" = 785;
SET "OutputRoot"."MQMD"."Format" = ’MQIMS ’;
--
SET "OutputRoot"."MQIIH"."StrucId" = ’IIH ’;
SET "OutputRoot"."MQIIH"."Version" = 1;
SET "OutputRoot"."MQIIH"."StrucLength" = 84;
SET "OutputRoot"."MQIIH"."Encoding" = 785;
SET "OutputRoot"."MQIIH"."CodedCharSetId" = 500;
SET "OutputRoot"."MQIIH"."Format" = ’MQIMSVS ’;
SET "OutputRoot"."MQIIH"."Flags" = 0;
SET "OutputRoot"."MQIIH"."LTermOverride" = ’REG1IMS ’;
SET "OutputRoot"."MQIIH"."MFSMapName" = ’ ’;
SET "OutputRoot"."MQIIH"."ReplyToFormat" = ’MQIMSVS ’;
SET "OutputRoot"."MQIIH"."Authenticator" = ’ ’;
SET "OutputRoot"."MQIIH"."TranInstanceId" = X’00000000000000000000000000000000’;
SET "OutputRoot"."MQIIH"."TranState" = ’ ’;
SET "OutputRoot"."MQIIH"."CommitMode" = ’0’;
SET "OutputRoot"."MQIIH"."SecurityScope" = ’C’;
SET "OutputRoot"."MQIIH"."Reserved" = ’ ’;
-- LLzz must be defined in the output MRM message -------
SET "OutputRoot"."MRM"."IMS_LLzze"."LL" = 46;
SET "OutputRoot"."MRM"."IMS_LLzze"."IMS_zz" = 0;
SET "OutputRoot"."MRM"."branchnum"="InputBody"."storedetailselement"."branchnum";
SET "OutputRoot"."MRM"."date"="InputBody"."storedetailselement"."date";
SET "OutputRoot"."MRM"."totalsales"="InputBody"."totalselement"."totalsales";
-- input message -------
SET "OutputRoot"."Properties"."MessageSet" = ’DOHVOCC07M001’;
SET "OutputRoot"."Properties"."MessageType" = ’imsmsg’;
-- The message format specified below is the message format identifier specified in the
-- Custom Wire Format of the Message set properties.
SET "OutputRoot"."Properties"."MessageFormat" = ’CWF’;
--

The WHILE loop in this ESQL removes the MQRFH2 header from the incoming
message by specifying CARDINALITY(InputRoot.*[]) -1.

Note the use of the CWF message format in the final line of ESQL: this is the
wire format used by the output IMS message. Therefore this node illustrates the
possibility of switching from one format (XML on input) to another (CWF on
output).

6. Click OK to apply your changes.
7. Connect the out terminal of this node to the node Finance Group.

Outputting the Finance message
The message is passed to the Finance Department on an MQSeries queue, finance,
to which the MQOutput node Finance Group puts it.

If you have imported the message flow, this node is fully configured, and the
output queue is identified as queue FINANCE on queue manager
MQSI_SAMPLE_QM. If you are using different values, you must update the node
properties.

If you are creating the message flow yourself, you must:
1. Select the Basic tab and type the queue and queue manager names for your

output queue. You can leave other values to default.
2. Click OK to apply your changes.

The retail operation

24 SupportPac IC03

Stock flow
The stock branch of the flow is used to add up all instances of an item sold, and
pass this information to the Distribution group to maintain stock levels. For
example, if a shopper buys two bottles of shampoo, the receipt contains two
instances of shampoo.

Using the stock flow with an MRM message
The Compute node Add Product Instances extracts the store name, branch number,
date, time, and purchases details from the MRM message and constructs a new
output message that can be passed on for further processing. It illustrates both
how you can use the drag-and-drop capabilities of the node to map selected
elements from an input message (Receipt Message) onto a different output message
(Stock Message), and how to calculate the total item quantity.

If you have imported the MRM message flow, this node is fully configured. If you
are creating the message flow yourself, you must:
1. Click Add to add the message Receipt Message in the message set My Receipt

Messages to the Inputs pane.
2. Click Add to add the message Stock Message in the message set My Receipt

Messages to the Output Messages pane.
3. Select Use as message body.
4. Select Copy message headers

5. Expand storedetailselement and purchaseselement within the input message.
Drag simple elements storename, branchnum, date, and time of
storedetailselement from the input message onto their equivalent in the output
message. Do the same for elements itemname, n_reserve,itemcode, itemprice,
and itemquantity of purchaseselement. You can see the mappings build up on
the Mappings tab.

6. On the ESQL tab, edit the ESQL as shown below. You must check that the
MessageSet identifier used in the ESQL is correct for your message set. Much of
the ESQL has been generated for you already by the selections you made on
the node properties and by the mappings.
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
SET "OutputRoot"."MRM"."storename" =
"InputBody"."storedetailselement"."storename";
SET "OutputRoot"."MRM"."branchnum" =
"InputBody"."storedetailselement"."branchnum";
SET "OutputRoot"."MRM"."date" =
"InputBody"."storedetailselement"."date";
SET "OutputRoot"."MRM"."time" =
"InputBody"."storedetailselement"."time";

DECLARE stop INTEGER;
DECLARE countitems INTEGER;

Figure 12. Stock message processing nodes

The retail operation

Chapter 1. The retail operation 25

DECLARE current INTEGER;

SET stop = CARDINALITY("InputBody"."purchaseselement"[]);
SET current = 1;
SET countitems = 0;

WHILE current <= stop DO
SET "OutputRoot"."MRM"."purchaseselement"[current] =

"InputBody"."purchaseselement"[current];
IF "InputBody"."purchaseselement"[current]."itemname" = ’Shampoo’ THEN
SET countitems = countitems +

"InputBody"."purchaseselement"[current]."itemquantity";
END IF;
SET current = current + 1;
END WHILE;

SET "OutputRoot"."MRM"."outputtotalselement"."totalitemquantity" = countitems;
SET "OutputRoot"."Properties"."MessageSet" = ’DOHVOCC07M001’;
SET "OutputRoot"."Properties"."MessageType" = ’stockmsg’;

7. Click OK to apply your changes.
8. Connect the out terminal of this node to the node Stock Distribution Group.

Using the stock flow with an XML message
The Compute node Add Product Instances adds up the instances of each product
specified in the XML message and puts the value into a new field
(totalitemquantity) in the message being output from the node.

If you have imported the XML message flow, this node is fully configured. If you
are creating the message flow yourself, you must:
1. Select the ESQL tab and type the following statements:

SET OutputRoot = InputRoot;
DECLARE TotalItemQuantity INTEGER;
SET TotalItemQuantity = (SELECT SUM(CAST(T.itemquantity AS INT))
FROM InputBody.Message.receiptmsg.transactionlog.purchaseselement[] AS T
WHERE CAST(T.itemname AS CHAR) = ’Shampoo’);
SET
"OutputRoot"."XML"."Message"."receiptmsg"."transactionlog"."totalselement"."totalitemquantity"

= TotalItemQuantity;

This declares a new element called TotalItemQuantity as an integer and sets its
value to the sum of ItemQuantity where the ItemName is (in this example)
Shampoo. The TotalItemQuantity element is placed within the Totals compound
element in the output message.

Alternatively, you can use the following ESQL using a WHILE loop to output
the same message:
SET OutputRoot = InputRoot;
DECLARE TotalItemQuantity INTEGER;
SET TotalItemQuantity = 0;
DECLARE current INTEGER;
DECLARE stop INTEGER;
SET current = 1;
SET stop = CARDINALITY(InputBody.Message.receiptmsg.transactionlog.*[]);

WHILE current <= stop DO
IF CAST(InputBody.Message.receiptmsg.transactionlog.purchaseselement[current].
itemname AS CHAR) = ’Shampoo’ THEN

SET TotalItemQuantity = TotalItemQuantity +
CAST(InputBody.Message.receiptmsg.transactionlog.purchaseselement[current]itemquantity

AS INTEGER)
END IF;

The retail operation

26 SupportPac IC03

SET current = current + 1;
END WHILE;
SET "OutputRoot"."XML"."Message"."receiptmsg"."transactionlog"."totalselement"."totalitemquant

= TotalItemQuantity;

This loops through the receipt message increasing the value of
TotalItemQuantity by one each time it comes across an instance of Shampoo,
therefore adding up all instances of the Shampoo product in the receipt. Again,
the TotalItemQuantity element is placed within the Totals compound element in
the output message.

2. Click OK to apply your changes.
3. Connect the out terminal of this node to the node Stock Distribution Group.

Outputting the Stock message
The MQOutput node Stock Distribution Group puts the message to an MQSeries
queue, from which the Stock Distribution Group can retrieve it.

If you have imported the message flow, this node is fully configured, and the
output queue is identified as queue STOCK on queue manager
MQSI_SAMPLE_QM. If you are using different values, you must update the node
properties.

If you are creating the message flow yourself, you must:
1. Select the Basic tab and type the queue and queue manager names for your

output queue. You can leave other values to default.
2. Click OK to apply your changes.

The retail operation

Chapter 1. The retail operation 27

Partner Flow
The partner branch of the flow is used to track and keep details of products that
are selling well. If more than one of the same product is bought on the same
transaction, this is called a ‘multibuy’. Each multibuy record is placed into a
database for easy access and reference by partners.

The message flow contains a Filter node to filter ‘multibuy’ records and a Database
node to insert the records into the Multibuy database for partners.

Database updates are completed in a loop within the flow: this allows the database
to be updated for every item in the receipt message. The loop is defined as a
subflow (Counter – MRM for MRM messages, Counter – XML for XML messages).

The messages are also published through a Publication node. If the message is an
XML message, a Compute node is used to add the required MQRFH2 header
information to the message before routing it to the Publication node. The MRM
message used in this scenario has the MQRFH2 header in it already.

Partners subscribe to the publications by filtering on the content of the message
(the value of the itemname field).

Filtering multibuy records
The Filter node Multibuy Filter is set up to filter all messages with the value Yes in
the Multibuy field to the Multibuy database.

Figure 13. Partner message processing nodes for the MRM message

Figure 14. Partner message processing nodes for the XML message

The retail operation

28 SupportPac IC03

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Configure the filter node for an MRM message:

a. Click Add above the Inputs pane and select the message set My Receipt
Messages and the message Receipt Message.

b. Expand totalselement. Drag and drop the multibuy element into the filter
field in the lower part of the dialog.

c. Edit the ESQL by adding =’Yes’ to the expression that was generated by the
drag and drop (as shown in Figure 15).

2. Configure the filter node for an XML message by entering the following ESQL
in the filter field in the lower part of the dialog:
Body.Message.receiptmsg.transactionlog.totalselement.multibuy = ’Yes’

3. Click OK to apply your changes.
4. Connect the true terminal of this node to the node Set Count.
5. Connect the false terminal of this node to the node Not Multibuy.

Handling messages that do not contain multibuys
The MQOutput node Not Multibuy identifies an MQSeries queue to which
messages are put when their “multibuy” value is “no”.

If you have imported the message flow, this node is fully configured, and the
output queue is identified as NOTMULTI on queue manager MQSI_SAMPLE_QM.
If you are using different values, you must update the node properties.

If you are creating the message flow yourself, you must:
1. Select the Basic tab and type the queue and queue manager names for your

output queue. You can leave other values to take default values.
2. Click OK to apply your changes.

Updating the database
Every item in the receipt message for which more than one has been purchased is
recorded in the Multibuy database.

Figure 15. Filter node properties showing the set up for the MRM message

The retail operation

Chapter 1. The retail operation 29

This process is handled by a loop to search the entire receipt to record all such
purchases. The loop is created as a subflow. Before the loop can be entered, a loop
counter is initialized by the Compute node Set Count.

Creating the loop subflow: If you have imported the message flow, the subflow
for the loop has already been imported and created as part of the main message
flow.

If you are creating your own message flow, you must:
1. Right-click on the Message Flows root and create a new, empty message flow.

You can choose any name for this subflow. The names used by the import files
are Counter – MRM (if you are using MRM messages) or Counter – XML (if you
are using XML messages).

2. Drag and drop the following nodes from the set of IBM Primitives in the tree to
the right-hand Message Flow Definition pane:
a. An Input Terminal node InTerminal1. This is the node through which input

messages are received by the subflow. It performs no message processing.
b. A Filter node Test Counter. This is configured to test the value of the flag to

determine if the message is to pass through the loop once more, or is to
return to the main message flow.

c. A Compute node Prepare For Database. This prepares values for
corresponding columns in the Multibuy database.

d. A DataInsert node (for MRM messages) or a Database node (for XML
messages) Update Multibuy Database. This inserts values into the Multibuy
database table.

e. A Compute node Reset Counter. This resets the flag counter and connects
back to Test Counter.

f. An Output Terminal node OutTerminal1. This is the node through which
messages are returned to the main message flow. It performs no message
processing.

3. Connect up these nodes as shown in Figure 16 on page 31.
4. Select the main message flow in the left-hand pane. Its contents are displayed

in the Message Flow Definition pane.
5. Drag and drop your new subflow into the correct location in the main flow and

connect it up in the same way as you do any other node:
a. Connect the out terminal of the node Set Counter to the in terminal of the

subflow node Counter – MRM or Counter – XML.
b. Connect the out terminal of the subflow node to the in terminal of the node

Publication1 (for MRM messages) or Create Publication (for XML messages).
6. Configure each node in the subflow as described in the following sections.

Initializing the loop control flag
The Compute node Set Counter sets the initial value for a counter to control the
loop.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select Copy entire message.
2. If you are using an MRM message:

a. Click Add to add the Receipt Message to the Inputs pane and expand the
tree for element totalselement.

b. Select the ESQL pane.

The retail operation

30 SupportPac IC03

c. Type the following ESQL:
SET "OutputRoot"."MRM"."totalselement"."f_reserve" = CARDINALITY("InputBody"."purchaseselem

3. If you are using an XML message, select the ESQL tab and type the following
ESQL below the comment line:
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.f_reserve =

CARDINALITY(InputRoot.XML.Message.receiptmsg.transactionlog.purchaseselement[]);

4. Click OK to apply your changes.
5. Connect the out terminal of the node to the subflow node Counter – MRM1 or

Counter – XML1.

Figure 16 illustrates the nodes that make up the loop and their connections.

Testing the value of the loop control flag
Within the counter subflow, the node Test Counter ensures the loop is terminated
when the total number of multibuy items have been recorded in the database.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set up the ESQL to test the loop counter:

a. If you are using an MRM message, drag and drop the field f_reserve from
the message to the filter field in the lower part of the dialog, and complete
the statement as follows:
"Body"."totalselement"."f_reserve" > 0

b. If you are using an XML message, type the following ESQL in the filter field
in the lower part of the dialog:
Body.Message.receiptmsg.transactionlog.totalselement.f_reserve > 0

2. Click OK to apply your changes.
3. Connect the true terminal (when the counter indicates the loop must be

reiterated) to the node Prepare For Database. This ensures the loop is executed
one more time.

4. Connect the false terminal (when the counter indicates the loop must be
terminated) to node OutTerminal1. This returns the message to the main flow
node Publication1 (for MRM messages) or the node Create Publication (for XML
messages).

Figure 16. The loop to record data in the database

The retail operation

Chapter 1. The retail operation 31

Preparing the values for insertion in the database
The node Prepare For Database is a Compute node that is used to change the data
type of some fields in the message before they can be stored in the database.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Click Copy entire message.
2. Select the ESQL tab and type the ESQL required:

a. For an MRM message, you need the following statements:
DECLARE elementnum INTEGER;
SET elementnum="InputBody"."totalselement"."f_reserve";
SET "OutputRoot"."MRM"."purchaseselement"."n_reserve"=
"InputBody"."purchaseselement"[elementnum]."itemname";
SET "OutputRoot"."MRM"."purchaseselement"."q_reserve"=
"InputBody"."purchaseselement"[elementnum]."itemquantity";

b. For an XML message, you need the following statements:
DECLARE elementnum INTEGER;
SET OutputRoot = InputRoot;
SET elementnum =
CAST(InputRoot.XML.Message.receiptmsg.transactionlog.totalselement.f_reserve AS INTEGER);
SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.n_reserve =
InputRoot.XML.Message.receiptmsg.transactionlog.purchaseselement[elementnum].itemname;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.q_reserve =
InputRoot.XML.Message.receiptmsg.transactionlog.purchaseselement[elementnum].itemquantity;

3. Connect the out terminal of this node to the node Update Multibuy Database.

Updating the Multibuy database (MRM message)
If you are using an MRM message, the DataInsert node Update Multibuy Database
inserts information from the message into the database.

If you have imported the MRM message flow, this node is partially configured. To
complete it, you must:
1. Click Delete to remove the database table from the Output pane.

Figure 17. DataInsert node properties (MRM message)

The retail operation

32 SupportPac IC03

2. Click Add to add the data source MYDB and the correct table schema for the
MULTIBUY table to the Output pane.

3. Add the columns BRANCHNUM, ITEMNAME, and QUANTITY from the table
to this pane.

4. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click Add and select the message set My Receipt Messages and the message

Receipt Message to add to the Input pane.
2. Click Add to add the data source MYDB and the correct table schema for the

MULTIBUY table to the Output pane.
3. Add the columns BRANCHNUM, ITEMNAME, and QUANTITY from the table

to this pane.
4. Expand storedetailselement and purchaseselement in the input message. Drag

and drop branchnum, n_reserve (the itemname), and q_reserve (the quantity)
onto the name of the target column.

5. Click OK to apply your changes.
6. Connect the out terminal of this node to the node Reset Counter.

Updating the Multibuy database (XML message)
If you are using an XML message, the Database node Update Multibuy Database
updates the database with information from the message.

If you have imported the XML message flow, this node is partially configured. To
complete it, you must:
1. Click Delete to remove the database table MULTIBUY from the Output pane.

Click Add to add the data source MYDB and the correct table schema for the
MULTIBUY table to the Output pane.

2. Add the columns BRANCHNUM, ITEMNAME, and QUANTITY to this pane.
3. Edit the ESQL to correct the schema name, specifying the required value

instead of BKUSER1 in the following example:
INSERT INTO Database.BKUSER1.MULTIBUY(branchnum,itemname,quantity)

4. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click Add to add the data source MYDB and the correct table schema for the

MULTIBUY table to the Output pane.
2. Add the columns from the table to this pane.
3. Type the following ESQL, specifying the correct schema name instead of

BKUSER1:
INSERT INTO Database.BKUSER1.MULTIBUY(branchnum,itemname,quantity)
VALUES(Body.Message.receiptmsg.transactionlog.storedetailselement.branchnum,
Body.Message.receiptmsg.transactionlog.storedetailselement.n_reserve,
Body.Message.receiptmsg.transactionlog.storedetailselement.q_reserve);

4. Click OK to apply your changes.
5. Connect the out terminal of this node to the node Reset Counter.

Updating the value of the loop control counter
The Compute node Reset Counter updates the loop control counter to ensure that
the loop is executed the correct number of times.

The retail operation

Chapter 1. The retail operation 33

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Click Copy entire message.
2. Select the ESQL tab and type the ESQL required:

a. For an MRM message, you need the following statement:
SET "OutputRoot"."MRM"."totalselement"."f_reserve"
= ("InputRoot"."MRM"."totalselement"."f_reserve")-1;

b. For an XML message, you need the following statements:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.f_reserve =
CAST(InputRoot.XML.Message.receiptmsg.transactionlog.totalselement.f_reserve AS INTEGER)-1;

3. Click OK to apply your changes.
4. Connect the out terminal of this node to the node Test Counter.

Completing the Partner flow
When the flow of control returns from the loop subflow into the main flow, the
message is ready for publishing.

Creating the publication (XML message only): The Compute node Create
Publication is used to add an MQRFH2 header to the message to define it as a
publication, and to set a topic of “Multibuy”. This addition enables the message to
be published in the same way as the MRM message, which already has the
MQRFH2 header.

If you have imported the XML message flow, this node is fully configured. If you
are creating the message flow yourself, you must:
1. Click Copy message headers.
2. On the ESQL tab, use the following ESQL:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
SET OutputRoot.MQRFH2.psc.Command = ’Publish’;
SET OutputRoot.MQRFH2.psc.Topic = ’Multibuy’;
SET OutputRoot.XML = InputBody;

3. Click OK to apply your changes.
4. Connect the out terminal of this node to the node Publication1 and to the node

Partners.

Publishing the message: The Publication node Publication1 routes the messages to
the subscribers that have registered an interest in the “Multibuy” topic.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you can leave all properties to assume default
values.

Outputting the Partner message: The MQOutput node Partners puts the message
to an MQSeries queue. This node is used instead of a Publication node so that you
can view the messages that are published. You cannot view messages in a
Publication node. The MQOutput node therefore lets you test your complete flow
by providing a view of the published messages.

The retail operation

34 SupportPac IC03

If you have imported the message flow, this node is fully configured, and the
output queue is identified as the queue PARTNERS on queue manager
MQSI_SAMPLE_QM. If you are using different values, you must update the node
properties.

If you are creating the message flow yourself, you must:
1. Select the Basic tab and type the queue and queue manager names for your

output queue. You can leave other values to take default values.
2. Click OK to apply your changes.

Register subscriptions flow
A separate message flow is used to register a subscription. Two versions of this
flow are provided. One message flow handles MRM messages; see Register
subscription – MRM shown in Figure 18. The other message flow handles XML
messages; seeRegister subscription – XML shown in Figure 19.

The example message flow that has been imported shows filtering on the value of
a field in the message. This is known as content-based filtering. If you want to
subscribe only by topic, remove the filter line. Be aware that if you set up a
subscription on a topic of “Multibuy”, you have to delete that subscription if you
then want to do a content-based filter from the same subscriber application ID. The
second, content-based, subscription does not overwrite the more general
topic-based one. You can delete subscriptions from the Control Center
Subscriptions view.

Receiving the message
The MQInput node Get Subscription Message receives an input message on its
defined input queue.

If you have imported the message flow, this node is fully configured and the input
queue is identified as queue SUBIN. If you are using a different queue name, you
must update the node properties.

Figure 18. The Register subscriptions flow for the MRM message

Figure 19. The Register subscriptions flow for the XML message

The retail operation

Chapter 1. The retail operation 35

If you are creating the message flow yourself, you must:
1. Specify the name of the queue from which the messages are read by the

MQInput queue. The default queue name is SUBIN. You can leave all other
properties to take default values.

2. Click OK to apply your changes.
3. Connect the out terminal of this node to node Set Filter (for MRM messages) or

to Add MQRFH2 Header (for XML messages).

Setting up a subscription filter (MRM message)
The Compute node Set Filter adds subscription registration information and
additional filter criteria into the MQRFH2 header of the MRM message.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Type the following ESQL (note that all quotes used in this example are single

quotes):
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
SET OutputRoot.MQRFH2.psc.Command = ’RegSub’;
SET OutputRoot.MQRFH2.psc.Topic = ’Multibuy’;

SET OutputRoot.MQRFH2.psc.QMName = ’MQSI_SAMPLE_QM’;
SET OutputRoot.MQRFH2.psc.QName = ’SUBS’;

SET OutputRoot.MQRFH2.psc.Filter
= ’purchaseselement.itemname = ’’Shampoo’’’;

QName and QMName identify the queue on which you want to receive any
publication messages that match the subscription.

2. Click OK to apply your changes.
3. Connect the out terminal of this node to the node Register Subscription.

Setting up a subscription filter (XML message)
The Compute node Add MQRFH2 Header adds an MQRFH2 header to the
incoming XML message, and sets subscription registration information and
additional filter criteria within the new header.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Click on Copy message headers.
2. Type the following ESQL (note that all quotes used in this example are single

quotes):
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET "OutputRoot".*[I] = "InputRoot".*[I];
SET I = I+1;

END WHILE;
SET "OutputRoot"."MQRFH2"."psc"."Command" = ’RegSub’;
SET "OutputRoot"."MQRFH2"."psc"."Topic" = ’Multibuy’;

SET "OutputRoot"."MQRFH2"."psc"."QMName" = ’MQSI_SAMPLE_QM’;
SET "OutputRoot"."MQRFH2"."psc"."QName" = ’SUBS’;

The retail operation

36 SupportPac IC03

SET "OutputRoot"."MQRFH2"."psc"."Filter"
= ’Message.receiptmsg.transactionlog.purchaseselement.itemname = ’’Shampoo’’’;

QName and QMName identify the queue on which you want to receive any
publication messages that match the subscription.

3. Click OK to apply your changes.
4. Connect the out terminal of this node to the MQOutput node Register

Subscription.

Registering the subscription
The MQOutput node Register Subscription puts the subscription message to the
broker’s queue SYSTEM.BROKER.CONTROL.QUEUE. If you have set the
subscription message type to 1 (MQMT_REQUEST), the broker sends back a
response. If you want to see this response, which should be ″Completion OK″, you
must update the MQMD of the subscription message to include a ReplyToQ and
ReplyToQmgr. The broker sends the response to the subscription message to this
queue.

All published messages that match the criteria set in the MQRFH2 header of the
subscription message are also put on to the queue named in the MQRFH2 header;
QName identifies the name of the queue, and QMName identifies the name of the
queue manager.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select the Basic tab and set the Queue Name to

SYSTEM.BROKER.CONTROL.QUEUE and the Queue Manager Name to the
name of the queue manager hosting the broker; the default queue manager is
MQSI_SAMPLE_QM.

2. Click OK to apply your changes.

The retail operation

Chapter 1. The retail operation 37

Assigning the message set and message flows
When your message set and message flow definitions are complete, you must
check in all the objects that you have been working with before you can assign
them to a broker. To do this, select File—>Check In—>All (Save to Shared) to
check in all objects at once. For other check-in options, see the WebSphere MQ
Integrator Using the Control Center book.

Assigning the message set to the broker
If you are using a message defined to the message repository (that is, an MRM
message set), you have to assign the message set to the broker. If you are using an
XML message, you do not do this.

In the Assignments view, check out the brokers to which you want to deploy this
scenario. Drag and drop the message set (My Receipt Messages) onto the name of
the broker in the graphic in the Domain Topology pane. When you have finished
these updates, check in the brokers. The message set information is sent to the
broker in the form of a message dictionary when you deploy your changes. See
“Deploying the configuration” for information about deploying.

Assigning message flows to the execution group
Message flows must be assigned to an execution group in a broker before they can
process messages.

In the Assignments view, check out an execution group in the broker to which you
want to assign the message flows associated with this scenario (for example, the
default execution group). Drag and drop the appropriate main flow and its register
subscription flow (MRMscenario and Register subscription – MRM or
xmlscenario and Register subscription – XML) onto the graphic of the execution
group in the Domain Topology pane. The loop counter subflow is assigned
automatically, because it is part of the main flow. When you have finished these
updates, check in the execution group.

Deploying the configuration
Finally, to use the configuration set up, you must deploy it. To do this, select File
—> Deploy —> Complete configuration (all types) —> Normal. For more
deployment options, see the WebSphere MQ Integrator Using the Control Center book.
You can check whether deployment was successful by refreshing and viewing the
messages that are displayed in the Log view.

When the configuration has been successfully deployed, you can put receipt
messages and subscription messages to the appropriate queues and see the
messages processed through the message flows. Further details of how you can
test out your configuration are provided in “Testing the message flow” on page 39.

The retail operation

38 SupportPac IC03

Testing the message flow
The SupportPac includes two test messages that you can use to test out your
deployed message flows.

If you have imported, or have created, the message flows for the MRM message
scenario, you can test the message flow by putting the example message, in file
mrmreceipt.xml, to the input queue (IN) of the message flow. If you are using an
XML message, put the message in file subscribemsgMRM.xml to the same queue.
You must remember to specify the correct queue name if you have chosen not to
use the default queue name.

One way of putting a message to the input queue of the message flow is to use the
utility program, mqsiput, that is provided in SupportPac IH02:
mqsiput IN MQSI_SAMPLE_QM mrmreceipt.xml

When processing has completed, you can find the processed message on queues
FINANCE, STOCK, and PARTNERS.

You can register a subscription on messages containing an itemname of ″Shampoo″
by putting the message in file subscribemsg.xml, which is valid for both MRM and
XML scenarios, to the SUBIN queue for your Register subscriptions flow. If you do
this, you receive a confirmation message on queue SUBOUT, and a ’multibuy’
entry that indicates a successful subscription appears in the Subscription pane of
the Control Center window.

If you then put the mrmreceipt.xml message on the input queue (IN) of the
message flow, a confirmation message is received on queue SUBOUT, and the
processed message appears on queue SUBS.

You can edit the input message to change the path that it takes through the
message flow. For example, you can change the multibuy value to ″no″. After
processing, the message appears on queues FINANCE, STOCK, and NOTMULTI.

If you edit the input message to remove all instances of the item ″Shampoo″, the
message is processed by the message flow, and is published, but because it does
not match the subscription filter, no message is put to queue SUBS.

The retail operation

Chapter 1. The retail operation 39

40 SupportPac IC03

Chapter 2. The loan request

This chapter describes a business scenario that implements a loan request.

Highlights of this example include:
v Importing a ’legacy’ message format
v Populating a message with information retrieved from a database

The message flow examples use the following IBM Primitive nodes:
v MQInput
v Database
v Compute
v Filter
v DataUpdate
v MQOutput

Introduction
This example uses a single message flow, illustrated in Figure 20. The message
flow processes a message of a specific format and content.

The definition of the message is derived from a COBOL copybook that is imported
into the Control Center and created as an MRM message. This is described in
“Creating and completing the message set” on page 43.

“Creating and configuring the message flow” on page 44 describes how to define
and configure the message flow.

Before you create your message and message flow, perform the tasks described in
“Preparing to implement the scenario” on page 42. You must perform these tasks
before you can successfully deploy your message flow.

Figure 20. Loan request message flow

© Copyright IBM Corp. 2001, 2002 41

Preparing to implement the scenario
Before you define your message set and message flows you must:
1. Initialize the database
2. Set up some MQSeries resources; for example, some MQSeries queues

Initializing the database
The message flow used in this example uses a database for the storage of
information that passes through the message flow. Before you can configure and
use the message flow, you must create a database called MYDB, and an ODBC
connection to that database. See “Creating the database” on page xiv for further
information about how to do this.

You must also set up the tables CREDIT and CREDITREF that are used by the message
flow. You can use the file loan.sql, which is supplied in this SupportPac, to create
these tables and to insert data into them. If you use the supplied script, review the
guidelines given in “Using the supplied DB2 scripts” on page xv for accessing the
database and creating and using schema names.

To use loan.sql, open a DB2 Command Window on the system on which your
broker is running, and type:
db2 connect to MYDB user BKUSER1 using BKPW1
(where BKUSER1 and BKPW1 are the values specified for the -u and -p flags

on the mqsicreatebroker command)
db2 -f loan.sql

If the file loan.sql is not in your current directory, you must type the complete
path for the file.

You might see the error message DB21034E when you run this command file for
the first time. This is because the file first drops any existing tables, and then
creates the tables it needs. If the tables don’t already exist, error messages are
generated. You can ignore these messages.

You must also ensure that each broker to which you deploy this message flow has
access to this database.

You can create these tables yourself if you choose, but you must then also provide
sample table entries before you can use the message flow. You can review the SQL
statements contained in file loan.sql to see details of the entries created in the
tables.

Setting up MQSeries resources
This example gets an input message for the message flow from an MQSeries queue
on the queue manager hosting the broker to which the message flow has been
deployed. It puts messages on to one of two output queues, depending on the
success or failure of the action taken by the message flow on each message
received.

The queues required are:
v LOANIN, the input queue for the message flow
v LOANOUT, the output queue for the message flow
v LOANFAIL, the queue to which request messages are put if the loan request

fails

The loan request

42 SupportPac IC03

You can use the file loan.tst to create these queues, or you can create the queues
yourself. To use loan.tst, type the following on a command line on the system on
which your broker is running:
runmqsc MQSI_SAMPLE_QM <loan.tst

If the file loan.tst is not in your current directory, you must type the complete
path name for the file. If you are not using the queue manager MQSI_SAMPLE_QM,
type the name of your queue manager instead of MQSI_SAMPLE_QM.

You can use different names for the queues, but, if you do, you must edit the file
loan.tst before you use the runmqsc command, and you must change the queue
properties of the nodes in the message flow to match your new names. See
“Creating and configuring the message flow” on page 44 for more details.

Creating and completing the message set
You must import the COBOL copybook into the Control Center to create a message
that can be processed by the message flow. Start the Control Center and ensure
that your user role is set to All roles (use Preferences in the File menu to view and
change the user role).
v Create a new message set in the Control Center (Message Sets view). Specify the

name RequestLoan, and leave all other values to assume default values.
v Right click on your new message set and select Import to Message Set then

COBOL....
v Either type the full path of credit.cpy in the Cobol Importer dialog, or click

Browse to locate the file.
v Click Finish. The Control Center imports the copybook and creates a set of

elements that correspond to the contents of the copybook. It displays an
information dialog when it has completed the import.

v Add the following new elements to the Elements folder in your new message
set.
To do this, right click on the Elements folder, select Add to Workspace, and
select the elements listed:
– APPROVAL
– CHECK_1
– COMMENTS
– CUST_ACCT_NUM
– CUST_BANK_NAME
– DETAILS
– FIRST_NAME
– INTEREST_RATE
– LAST_NAME
– LOAN_AMOUNT
– STARTDATE
– TERM

v Add the following new compound types to the Types folder in your new
message set.
To do this, right click on the Types folder, select Add to Workspace, and select
the types listed:
– DETAILS_TYPE
– FX_LOAN_REQUEST_TYPE

v Add the following new element values to the Element Values folder in your new
message set.

The loan request

Chapter 2. The loan request 43

To do this, right click on the Element Values folder, select Add to Workspace,
and select the element values listed:
– APPROVAL_VALUE
– COMMENTS_VALUE
– CUST_BANK_NAME_VALUE
– FIRST_NAME_VALUE
– LAST_NAME_VALUE
– STARTDATE_VALUE

v Now create the message:
1. Right click on the Messages folder within your message set.
2. Select Create then Message. The dialog Create a new message is displayed.
3. On the Message tab, type the name of the message, FX_LOAN_REQUEST.

Type an identifier of loanrequestmessage, and select a Type of
FX_LOAN_REQUEST_TYPE. Let all other fields take their default value.

4. Click Finish. The message is created with the correct contents in the correct
order.

5. Check in all your message resources.
To do this, select File then Check In then List.... Expand the Message Sets
tree and select all the resources shown there. Click Check In.

Creating and configuring the message flow
The file Loan Request.xml contains the definition of the loan request message flow.
To import and configure this message flow:
v Select the Message Flows tab.
v Import the loan request message flow definition:

1. From the File menu, select Import to Workspace.
2. Locate the file Loan Request.xml that contains the message flow definition.

Either type in the full path and file name in the dialog, or click Browse and
search for the file.
The Message Flows check box is checked by default. This imports message
flows only from the file that you have identified as the source of the
resources to be imported.

3. Click Import. The Control Center processes the file and imports the message
flows that are defined within it. The file Loan Request.xml contains just one
message flow, Loan request. A list of resources that have been imported are
displayed in a dialog when the processing has completed. Click OK to
dismiss the dialog.

v The new message flow appears in the left-hand pane, with a blue cube beside it
to show that it is new. Select this new message flow. You can now configure the
nodes within it before checking it in to the configuration repository.

v Select File—>Check In—>All (Save to Shared) to check in the message flow.

If you do not use the import file provided, you must create the message flow
yourself, and complete its design by dragging and dropping the appropriate nodes
into the Message Flow Definition pane. You must connect the nodes and configure
them as described in the following sections.

The loan request

44 SupportPac IC03

Getting the message
The MQInput node LOANIN gets the loan request input messages from the input
queue LOANIN.

If you have imported the message flow, this node is partially configured. To
complete it, you must:
1. Select the Default tab, and set the message domain to MRM and the message

set to the identifier of your new message set; you can select this from the
drop-down list. This step is necessary because the identifier is created when
you create the message set, and cannot be correctly specified in the message
flow for import.

2. If you are not using the default queue name, you must type the correct name
on the Basic tab.

3. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. On the Basic tab, type the name of the input queue. The default is LOANIN,

but you can use another value if you choose.
2. Select the Default tab, and set the message domain to MRM, the message set to

the identifier of your new message set (you can select this from the drop-down
list), the message type to the identifier of your new message,
loanrequestmessage, and the message format to CWF.

3. Click OK to finish.
4. Connect the node’s out terminal to the DataInsert node Set up database.

Storing message contents in the database
The DataInsert node Set up database stores into the database values from within the
message into the database.

If you have imported the message flow, this node is partially configured. To
complete it, you must:
1. Click Delete to remove the database table from the Output pane.
2. Click Add in the Output pane and add the data source MYDB and the correct

table schema for the CREDIT table.
3. Select Add column to add each column in the CREDIT table (LastName,

FirstName, BankName, AcctNum, Check1, Approval, StartDate, Term, Rate,
Amount, Comments).

4. Map the message elements to the database table columns by dragging the input
message elements onto the corresponding column in the output database table.

5. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click Add above the Input pane and select your new message set and new

message from the drop-down lists on the Add dialog.
2. Click Add above the Output pane and type datasource (MYDB) and the correct

table schema for the CREDIT table (for example, BKUSER1.CREDIT) to add the
database table.

3. Right-click in the Output pane and select Add column to add each column in
the CREDIT table (LastName, FirstName, BankName, AcctNum, Check1,
Approval, StartDate, Term, Rate, Amount, Comments).

The loan request

Chapter 2. The loan request 45

4. Map the message elements to the database table columns by dragging the input
message elements onto the corresponding column in the output database table.

5. Click OK to finish.
6. Connect the node’s out terminal to the Compute node Get credit rating.

Getting the credit rating
The Compute node Get credit rating extracts the credit rating information for the
requestor from the database and adds it to the message.

If you have imported the message flow, this node is partially configured. To
complete it you must:
1. Click Delete to remove the CREDITREF database table from the Inputs pane.

Click Add and add datasource MYDB and the correct table schema for the
CREDIT table to the Inputs pane.

2. Select the ESQL tab and edit the ESQL to specify the correct schema name. For
example:
SET "OutputRoot"."MRM"."CHECK_1"=THE(SELECT ITEM T.SCORE FROM

Database.BKUSER1.CREDITREF AS T WHERE T.LastName="InputBody"."LastName");

3. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click Add and add the loan request message FX_LOAN_REQUEST to the

Inputs pane.
2. Click Add and add datasource MYDB and the correct table schema for the

CREDIT table to the Inputs pane.
3. Click Add and add the loan request message to the Output Messages pane.
4. Select the Copy entire message radio button.
5. On the lower part of this tab, select the ESQL tab and type the following

statement, substituting the correct database schema name for BKUSER1:
SET "OutputRoot"."MRM"."CHECK_1"=THE(SELECT ITEM T.SCORE FROM

Database.BKUSER1.CREDITREF AS T WHERE T.LastName="InputBody"."LastName");

6. Click OK to finish.
7. Connect the node’s out terminal to the Filter node Check credit rating.

Checking the credit rating
The Filter node Check credit rating uses the credit rating information with the
details of the request in the message to check whether the request can be honored.
The node checks that the credit rating is greater than 70.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Click Add to add the input message to the Inputs pane. (You do not have to do

this, but it does ensure that the message used for this node is documented
here.)

2. Type the following ESQL on the Check credit rating tab:
"Body"."CHECK_1">70

3. Click OK to finish.
4. Connect the node’s false terminal to the MQOutput node LOANFAIL.
5. Connect the node’s true terminal to the Compute node Add approval and date.

The loan request

46 SupportPac IC03

Adding the date
The Compute node Add approval and date modifies the message by adding the start
date for the loan, and marking it as approved. The current message is only passed
to this node if the contents of the message indicate that the credit rating of the
request is acceptable.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Click Add in both Inputs and the Output Messages panes to add the loan

request message.
2. Select Copy entire message.
3. Select the ESQL tab in the lower part of the pane, and type the following

statements:
SET "OutputRoot"."MRM"."APPROVAL"=’YES’;
SET "OutputRoot"."MRM"."STARTDATE"=CAST((CURRENT_DATE + INTERVAL
’1’ MONTH)AS CHAR);

The second statement casts the CURRENT_DATE as a character string to
convert the date value to a format that can be stored in a column in the
database table.

4. Click OK to finish.
5. Connect the node’s out terminal to the DataUpdate node Update database.

Updating the database
The DataUpdate node Update database retrieves information about the approved
loan from the message, and updates the loan database.

If you have imported the message flow, this node is partially configured. To
complete it, you must:
1. Click Delete to delete the database from the Output pane.
2. Click Add and add datasource MYDB and the correct table schema for the

CREDIT table to the Output pane.
3. Add the columns CHECK1, APPROVAL, and STARTDATE.
4. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click Add and add the loan request message on the Input pane.
2. Click Add and add datasource MYDB and the correct table schema for the

CREDIT table to the Output pane.
3. Add the columns CHECK1, APPROVAL, and STARTDATE.
4. Drag and drop the fields from the input message to the equivalent columns in

the database. The following mappings are generated in the Update Mappings
tab.
"Body"."CHECK_1"—>CHECK1;
"Body"."APPROVAL"—>APPROVAL;
"Body"."STARTDATE"—>STARTDATE;

5. Click OK to finish.
6. Connect the node’s out terminal to the MQOutput node LOANOUT.

The loan request

Chapter 2. The loan request 47

Outputting the message
The MQOutput node LOANOUT places the message on the output queue from
which another application can retrieve it and take any further action.

If you have imported the message flow, this node is fully configured and identifies
queue LOANOUT, on broker MQSI_SAMPLE_BROKER, as the output queue. If
you are using a different queue or queue manager name, you must update the
node properties. All other properties are left to take default values.

If you are creating the message flow yourself, you must:
1. Select the Basic tab. Type the name of the queue manager and the queue that

you are using for output. You can let all other properties take their default
value.

2. Click OK to finish.

Handling requests that are not approved
If the loan request is not approved, the check in the Filter node Check credit rating
fails and the message is routed to the MQOutput node LOANFAIL.

If you have imported the message flow, this node is fully configured and identifies
output queue LOANFAIL on queue manager MQSI_SAMPLE_QM. If you are
using a different queue name, you must update the node properties.

If you are creating the message flow yourself, you must:
1. Select the Basic tab. Type the name of the queue manager and the queue that

you are using for failure output. You can let all other properties take their
default value.

2. Click OK to finish.

The loan request

48 SupportPac IC03

Assigning and deploying the scenario
When your message set and message flow definitions are complete, you must
check in all the objects that you have been working with before you can assign
them to a broker. To do this, select File—>Check In—>All (Save to Shared) to
check in all objects at once. For other check in options, see the WebSphere MQ
Integrator Using the Control Center book.

When you have completed message flow configuration, you must assign and
deploy the resources so that you can use the message flow. Select the Assignments
view in the Control Center and check out the brokers to which you want to deploy
this scenario. Drag and drop the message set that contains the
FX_LOAN_REQUEST message from the Assignable Resource pane to the brokers
pictured in the Domain Topology pane. When you have finished these updates,
check in the brokers.

Check out an execution group on each broker to which you are deploying the
scenario. Drag and drop the message flow Loan request from the Assignable
Resource pane to an execution group within each broker. When you have done
this, check in the execution groups.

When you have completed your assignments, you can deploy your changes. You
can do this in one of the following two ways:
1. Deploy the delta or complete configuration data (all types) from the File menu.
2. Deploy only Assignments configuration data by right clicking on the broker to

which you want to deploy and selecting Deploy.

You can check the success of the deployment by going to the Log view, and
refreshing the contents of the log.

For more details about assignment and deployment, refer to the WebSphere MQ
Integrator Using the Control Center book.

Testing the message flow
The SupportPac includes a test message that you can use to check out your
message flow. It is defined in file loanreq.xml. The contents of the message assume
that you have used loan.sql to set up and populate the database. If you have not
initialized the database tables using loan.sql, the credit check fails and the
message is output to the LOANFAIL queue.

You can edit the message in file loanreq.xml to replace the existing name
(einstein). If you do, you must remember to keep the full length of the name field
by inserting the correct number of blanks in this field.

The loan request

Chapter 2. The loan request 49

50 SupportPac IC03

Chapter 3. Dynamic routing

This scenario illustrates how you can use the RouteToLabel node to determine
processing of the message based on content of the message itself.

Highlights of this scenario include:
v Dynamically routing messages based on their content
v Using data retrieved from a database with data within a message to calculate

values that determine the path of a message through the message flow

The example message flows use the following IBM Primitive nodes:
v MQInput
v Compute
v RouteToLabel
v Label
v DataUpdate
v MQOutput

Introduction
This scenario shows how you might handle brokerage transactions if you want to
process trading requests and requests to update customer details differently. It uses
a message flow, illustrated in Figure 21, that supports dynamic routing of messages
according to their content.

The flow is made up of subflows that are associated with the main flow using
RouteToLabel and Label nodes.
v The input flow. This flow, described in “The input flow” on page 55, receives

each message from an input queue, constructs a destination list for the message,
and passes the message to a RouteToLabel node that decides on further
processing.

v The customer details flow. This flow, described in “The customer details flow”
on page 56, handles incoming messages that have a value of ″custdetails″ in the

Figure 21. The dynamic routing message flow.

© Copyright IBM Corp. 2001, 2002 51

request field of the message. It performs processing specific to requests to
update customer details, for example, updating a customer details database. It
ends in a RouteToLabel node to send the message on to the next destination in
the list.

v The trade flow. This flow, described in “The trade flow” on page 58, handles
incoming messages that have a value of ″lowtrade″ in the request field of the
message and performs processing specific to low-value trading requests. It ends
in a RouteToLabel node to send the message on to the next destination in the
list.

v The completion flow. This flow, described in “The completion flow” on page 59,
receives messages that have been processed and are now ready to continue
through the message flow. In this example, the message is put directly to an
MQOutput node, but it is likely that you might create a message flow that has a
sequence of nodes that process both types of message before reaching the output
node.

The use of RouteToLabel and Label nodes makes a simpler message flow than the
message flow you would need if you used a sequence of Filter nodes that identify
and route the message for different processing, or a sequence of nodes that each
performs an action on a subset of the total number of messages processed by the
message flow.

The message flow provided is sufficient to illustrate the concept of dynamic
routing using the RouteToLabel and Label nodes. Your requirements are probably
for a more complex flow, but you can build on the techniques adopted in this
scenario to create more comprehensive message flows that handle a wider range of
options in message processing, For example, a likely extension to this supplied
message flow is to add subflows that handle a larger number of request types.

The message flow processes messages of a specific format and content. The
definition of the messages is described in “Defining the message” on page 53.

“Creating and configuring the message flow” on page 54 describes how to define
the message flow.

Before you create your message and message flow, perform the tasks described in
“Preparing to implement the scenario”, which are required before you can
successfully deploy your message flow.

Preparing to implement the scenario
You must perform the tasks described in the following sections before you can
successfully deploy your message flow. Perform these tasks before you start to
define your message set and message flows.

Initializing the database
The message flow in this scenario uses a database for the storage of information
passing through the message flow. Before you can configure and use the message
flow, you must create a database called MYDB, and an ODBC connection to that
database. See “Creating the database” on page xiv for further information.

You must also set up the tables STOCKPRICE and CUSTOMER that are used by the
message flow. You can use the file route.sql to create these tables if you choose, or
you can create them yourself. If you use the supplied script, you must review the

Dynamic routing

52 SupportPac IC03

guidelines given in “Using the supplied DB2 scripts” on page xv for accessing the
database and creating and using schema names.

To use route.sql, open a DB2 Command Window on the system on which your
broker is running, and type:
db2 connect to MYDB user BKUSER1 using BKPW1
(where BKUSER1 and BKPW1 are the values specified for the -u and -p flags

on the mqsicreatebroker command)
db2 -f route.sql

You must enter the complete path for the file route.sql if it is not in your current
directory.

You might see error DB21034E the first time you run this command file. This is
because the file first drops any existing tables, and then creates them. If the tables
don’t already exist, error messages are generated. You can ignore these messages.

You must also ensure that each broker to which you deploy this message flow has
access to this database.

Setting up MQSeries resources
This scenario gets an input message for the message flow from an MQSeries queue
on the queue manager hosting the broker to which the message flow has been
deployed. It puts messages on to an output queue when message processing has
been completed.

The queues required are:
v LABELIN
v LABELOUT

You can use the file route.tst to create these queues if you choose, or you can
create them yourself. To use route.tst, type the following on a command line on
the system on which your broker is running:
runmqsc MQSI_SAMPLE_QM <route.tst

You must enter the complete path for the file route.tst if it is not in your current
directory. Replace the queue manager name in the command above if the name
shown is not correct for your broker.

You can use different names for these queues if you choose. If you do, you must
edit route.tst before you use the runmqsc command, and you must modify the
queue properties of the nodes in the message flow to match your new names. See
“Creating and configuring the message flow” on page 54 for more details.

Defining the message
The message used in this brokerage example is an MRM message (that is, it is
defined to the message repository) with a message format of XML. If you prefer,
you could use other formats (for example, a self-defining XML message).

The message has a request field that indicates whether the message contains
″lowtrade″ or ″custdetails″ information. Each type is routed to a different sequence
of nodes before being completed by a common flow.

To use the predefined message structure, you must import the definition that is
provided in the file RouteToLabelMsgSet.mrp. To import this file, you must:

Dynamic routing

Chapter 3. Dynamic routing 53

1. Open a command prompt window.
2. Stop the Configuration Manager using the mqsistop configmgr command.
3. Change to the directory that contains the file RouteToLabelMsgSet.mrp.
4. Import the message set by typing:

mqsiimpexpmsgset -i -u mqsiuid -p mqsipw -n MQSIMRDB -f RouteToLabel.mrp

where —u and —p are the userID and password that are used for message
repository access, and —n specifies the name of the message repository (you
specified these parameters using the —n, —u, and —p flags on the
mqsicreateconfigmgr command). The installation guide for your broker
operating system gives more details about the use of this command.

5. Restart the Configuration Manager using the command mqsistart configmgr.
This picks up the new definition

6. Restart the Control Center from the Windows NT Start menu.
7. In the Control Center Message Sets view, right-click on the Message Sets root

and select Add to Workspace.
8. Select the message set RouteToLabelMsgSet, and click Finish.

You can now view the message set in the left-hand pane of the Message Sets view.
The components of the message set are all present in the message repository, but
are not added to your workspace. If you want to view some or all of these
components, you can add them by right-clicking on the component folder (for
example, for Messages) and selecting Add to Workspace.

The RouteToLabelMsgSet message set contains the following messages:
v Trade message. This contains trade and customer details.

If you prefer to create the message yourself, instructions are provided in “Creating
the message set by hand” on page 61.

Creating and configuring the message flow
The file DynamicRouting.xml contains the definition of the dynamic routing
message flow. You can import and configure this message flow as follows:
v Select the Message Flows tab.
v Import the dynamic routing message flow definition:

1. Select Import to Workspace... from the File menu.
2. Locate file DynamicRouting.xml that contains the message flow definition

(you can type in the full path and file name in the dialog, or you can click
Browse and search for the file).
The Message Flows check box is checked by default. This imports message
flows only from the file that you have identified as the source of the
resources to import.

3. Click Import. The Control Center processes the file and imports the message
flows that are defined within it. The file DynamicRouting.xml contains just
one message flow, DynamicRouting. A list of resources that have been
imported are displayed in a dialog when the processing has completed.

4. Click OK to dismiss the dialog.
v The new message flow appears in the left hand pane, with a blue cube beside it

to show that it is new. Select this new message flow: you can now configure the
nodes within it before checking it in to the configuration repository. The majority
of the configuration work is already done in the imported flow.

Dynamic routing

54 SupportPac IC03

v Select File—>Check In—>All (Save to Shared) to check in the message flows.

If you choose not to use the import file provided, you must create the message
flow and complete its design by dragging and dropping the appropriate nodes into
the Message Flow Definition pane. You must connect the nodes and configure
them as described in the following sections.

You must ensure that you include all related Label nodes and the subflows that
follow from the Label nodes within the Message Flow Definition pane of the
message flow or subflow that contains the RouteToLabel node or nodes that route
messages to these Label nodes. This ensures that all the Label nodes are included
when you deploy the message flow.

The Label node is not connected to a prior node: if you create a subflow that starts
with any other type of node, the subflow defined in the Message Flow definition
pane is ignored when the message flow is deployed. Subflows that start with a
Label node are not ignored.

For more information about destination lists, see the WebSphere MQ Integrator ESQL
Reference book. If you intend to derive destination values from the message itself,
or from a database, you might also need to cast values from one type to another.
Casts are described in more detail in the WebSphere MQ Integrator ESQL Reference
book.

The input flow
This receives each message from an input queue, constructs a destination list for
the message, and passes the message to a RouteToLabel node that decides on
further processing.

Getting the message
The MQInput node MQInput1 retrieves input messages from the input queue.

If you have imported the message flow, this node is fully configured and identifies
input queue LABELIN. If you are using a different queue name, you must update
the node properties. All other properties are left to take default values.

If you are creating the message flow yourself, you must:
1. On the Basic tab, enter the input queue name. The default is LABELIN.
2. On the Default tab, enter the message domain (MRM), message set identifier,

message type (trademessage), and message format (XML).
3. Click OK to finish.
4. Connect the out terminal to the node Set destination labels.

Setting the destination labels
The Compute node Set destination labels sets up the DestinationList for the message
received.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Create a destination list in the message.

The destinations are set up as a list of label names. The label names can be any
string value, and can be explicitly specified in the compute node or taken or

Dynamic routing

Chapter 3. Dynamic routing 55

cast from any field in the message or from a database. A label name in the
destination list must, however, match the Label Name property of a
corresponding Label Node.
On the lower part of the properties dialog, select the ESQL tab and enter the
following below the comment line:
SET "OutputDestinationList"."Destination"."RouterList"."DestinationData"[1].
"labelname" = ’continue’;
SET "OutputDestinationList"."Destination"."RouterList"."DestinationData"[2].
"labelname" = "InputRoot"."MRM"."request";

2. Select the Advanced tab on the Compute node properties dialog, and select the
option LocalEnvironment and Message from the drop-down list.

3. Click Copy entire message radio button.
4. Click OK to finish.
5. Connect the out terminal to the node RouteToLabel1.

Configuring the RouteToLabel node
The RouteToLabel node RouteToLabel1 uses the destination list within a message
(created in the Set destination labels node) to route the message to a target node of
type Label that matches the label within the destination list item.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set Mode to Route to Last.
2. Click OK to finish.

When Mode is set to Route to Last in the RouteToLabel node properties, a message
is routed to the last label in the destination list. The destination list created by the
node Set destination labels is created assuming the mode is set this way.

The RouteToLabel node matches the value of the ″request″ field in the message. A
message with a value of ″lowtrade″ in the request field is routed to the Label node
with a Label Name property of ″lowtrade″. A message with a value of ″custdetails″
in the request field is routed to the Label node with the Label Name property of
″custdetails″.

If a message fragment performing the dynamically routed work itself ends in a
RouteToLabel node, the message is passed to the next destination in the list. In this
example, the message is passed to the Label node with a Label Name property of
″continue″, and continues along the common part of the message flow.

Setting up the labelled message flow routes
There are three routes, each beginning with a Label node. The Label Name property
on each Label node must match either the labelname specified in the Compute node
that set the destination labels, or the value of a field in an incoming message.
These routes do not have connections between them and the RouteToLabel nodes:
this looks unusual, and is the only situation in which an unconnected node is
processed in a message flow. (If you leave other nodes unconnected, they are
ignored.)

The customer details flow
This flow starts with a Label node Customer details that has the Label Name
property set to custdetails. It handles incoming messages that have a value of
″custdetails″ in the request field of the message, and performs processing specific
to requests to update customer details in a customer details database.

Dynamic routing

56 SupportPac IC03

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set the Label Name property to custdetails.
2. Click OK to finish.
3. Connect the out terminal to the node Update customer details.

Updating the customer details
The DataUpdate node Update customer details interacts with the database to make
the changes contained within the message. A DataUpdate node is selected because
the input message is an MRM message: using the DataUpdate node allows you to
drag and drop message elements onto the database columns.

(You can use a Database node if you prefer, but if you do you must construct the
ESQL yourself. If you are using an XML message, you must use a Database node
and construct the ESQL yourself, because the elements are not defined and
therefore cannot be dragged.)

If you have imported the message flow, this node is partially configured. To
complete it, you must:
1. Click Delete and remove the datasource from the Output pane.
2. Click Add to add datasource MYDB and the correct table schema for the

CUSTOMER table (for example, BKUSER1.CUSTOMER) to the Output pane.
3. Add the columns CUSTACCTNUM, BANKACCTNUM, HOUSENUM, STREET,

TOWN, and POSTCODE to the Output pane.
4. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. On the Input pane, add the message Trade message.
2. On the Output pane, add the table CUSTOMER (in datasource MYDB), and

add the columns CUSTACCTNUM, BANKACCTNUM, HOUSENUM, STREET,
TOWN, and POSTCODE.

3. Drag the message element custacctnum from the Input pane and drop it onto
the name CUSTACCTNUM in the Output pane. This element is used as the key
into the database information.

4. Select the Update Mappings tab. Drag the message elements housenum, street,
town, and postcode into the Update Mappings pane. These elements are used
to update the details in the database.

5. Click OK to finish.
6. Connect the out terminal to the node RouteToLabel3.

Completing message processing
This message flow fragment itself ends in a RouteToLabel node, RouteToLabel3. The
message is passed to the next destination in the list. In this scenario, the message is
passed to the Label node with a Label Name property of ″continue″, and continues
along the common part of the message flow.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set Mode to Route to Last.
2. Click OK to finish.

Dynamic routing

Chapter 3. Dynamic routing 57

The trade flow
This flow starts with a Label node Trade that has the Label Name property set to
lowtrade. It handles incoming messages that have a value of ″lowtrade″ in the
request field of the message, and performs processing specific to low-value trading
requests.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set the Label Name property to lowtrade.
2. Click OK to finish.
3. Connect the out terminal to the node Calculate trade value.

Calculating the trade value
The Compute node Calculate trade value retrieves the stock price from a DB2
database, and calculates the value of the trade request based on that price and the
quantity of stock requested. It also updates the message with the calculated value.

If you have imported the message flow, this node is partially configured. To
complete it, you must:
1. Click Delete to remove the database table STOCKPRICE from the Inputs pane.
2. Click Add to add datasource MYDB and the correct table schema for the

STOCKPRICE table (for example, BKUSER1.STOCKPRICE) to the Inputs pane.
3. Add the columns STOCK and PRICE.
4. In the lower part of the properties dialog, select the ESQL tab and edit the

following statement to insert the correct schema name. For example:
SET "OutputRoot"."MRM"."stockprice"=THE(SELECT ITEM T.PRICE FROM

Database.BKUSER1.STOCKPRICE AS T WHERE T.STOCK="InputRoot"."MRM"."stock");
SET "OutputRoot"."MRM"."tradevalue"= ("OutputRoot"."MRM"."stockprice")*

("InputRoot"."MRM"."stockquantity");

5. Click OK to apply your changes.

If you are creating the message flow yourself, you must:
1. Click Add to add the message Trade message to the Inputs pane.
2. Click Add to add datasource MYDB and the correct table schema for the

STOCKPRICE table (for example, BKUSER1.STOCKPRICE) to the Inputs pane.
Add the columns STOCK and PRICE.

3. Click Add to add the message Trade message to the Output Messages pane.
4. Select Copy entire message.
5. In the lower part of the properties dialog, select the ESQL tab and enter the

following below the comment line (substituting the correct schema name for
your database):
SET "OutputRoot"."MRM"."stockprice"=THE(SELECT ITEM T.PRICE FROM

Database.BKUSER1.STOCKPRICE AS T WHERE T.STOCK="InputRoot"."MRM"."stock");
SET "OutputRoot"."MRM"."tradevalue"= ("OutputRoot"."MRM"."stockprice")*

("InputRoot"."MRM"."stockquantity");

6. Click OK to finish.
7. Connect the out terminal to the node RouteToLabel2.

Completing message processing
This message flow fragment itself ends in a RouteToLabel node, RouteToLabel2. The
message is passed to the next destination in the list. In the example above, the
message is passed to the Label node with a Label Name property of ″continue″,
and continues along the common part of the message flow.

Dynamic routing

58 SupportPac IC03

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set Mode to Route to Last.
2. Click OK to finish.

The completion flow
This flow starting with a Label node Continue Flow which has the Label Name
property set to continue. It receives messages that have been processed and are now
ready to continue through the message flow. In this example, the message is put
directly to an output node, but it is likely that you might create a message flow
that has a sequence of nodes that process both types of message before reaching
the output node.

Typically, the Label Name of this fragment is the one at index [1] of the destination
list. This means that, when all the dynamically routed work is complete, the flow
either finishes or continues with common processing.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Set the Label Name property to continue.
2. Click OK to finish.
3. Connect the out terminal to the node MQOutput1.

Outputting the message
The MQOutput node MQOutput1 places the message on the output queue from
which another application can retrieve it and take any further action.

If you have imported the message flow, this node is fully configured and identifies
queue LABELOUT on queue manager MQSI_SAMPLE_QM. If you are using a
different queue, you must enter the correct identifiers on the Basic tab.

If you are creating the message flow yourself, you must:
1. Select the Basic tab. Enter the name of the queue manager and the queue that

you are using for output. You can let all other properties take their default
value.

2. Click OK to finish.

Dynamic routing

Chapter 3. Dynamic routing 59

Assigning and deploying the scenario
When your message set and message flow definitions are complete, you must
check in all the objects that you have been working with before you can assign
them to a broker. To do this, select File—>Check In—>All (Save to Shared) to
check in all objects at once. (For other check in options, see the WebSphere MQ
Integrator Using the Control Center book.)

You must now assign and deploy the resources so that you can use the message
flow. Select the Assignments view in the Control Center and check out the brokers
to which you want to deploy this scenario. Drag and drop the RouteToLabel
message set that contains the trade message from the Assignable Resources pane to
the brokers pictured in the Domain Topology pane. When you have finished these
updates, check in the brokers.

Check out an execution group on each broker to which you are deploying the
scenario. Drag and drop the message flow RouteToLabel from the Assignable
Resource pane to an execution group within each broker. When you have done
this, check in the execution groups.

When you have completed your assignments, you can deploy your changes. You
can do this in one of the following two ways:
1. Deploy the delta or complete configuration data (all types) from the File menu.
2. Deploy only Assignments configuration data by right clicking on the broker to

which you want to deploy and selecting Deploy.

You can check the success of the deployment by going to the Log view, and
refreshing the contents of the log.

For more details about assignment and deployment, refer to the WebSphere MQ
Integrator Using the Control Center book.

Testing the message flow
The SupportPac includes a test message that you can use to test out your deployed
message flow.

You can test this message flow by putting the XML message trademsg.xml to the
input queue for this message flow on a broker to which it has been deployed.

You can edit the XML message file (for example, using Notepad) to change the
value of the request field from ″lowtrade″ to ″custdetails″. When you put this
updated message to the input queue of the message flow, the message passes
through the Customer Details route.

Dynamic routing

60 SupportPac IC03

Creating the message set by hand
You can create the MRM message set by hand if you prefer, by following the
following guidance:
v Create the message set RouteToLabel.
v Create the elements:

Table 7. Routing simple elements, types, names, and identifiers

Simple element name Identifier Type

request request STRING

stock stock STRING

Stock quantity stockquantity INTEGER

Stock Price stockprice FLOAT

Trade value tradevalue FLOAT

Customer Account Number custacctnum INTEGER

Bank Account Number bankacctnum INTEGER

House Number housenum INTEGER

Street street STRING

Town town STRING

Postcode postcode STRING

v Create lengths for the string elements:

Table 8. Routing STRING elements, lengths, names, and identifiers

Element name Element length
name

Maximum Length Element length
identifier

request reqlen 12 reqlen

stock stocklen 40 stocklen

Street Street Length 20 streetlen

Town Town Length 20 townlen

Postcode Postcode Length 10 postcodelen

Add the lengths to the corresponding string elements. For example, add
stocklen to the element stock.

v Create the compound types:

Table 9. Routing compound type names and identifiers

Compound type name Identifier

Address Address

Trade message trademsg

v Add elements to the compound types. The order of elements in the message
being passed through the message flow must match the order of elements in the
message definition. This order is defined by the order of elements in the
compound types.
When you add elements to a compound type, the most recent is added at the
top, so you must add these in reverse order. Table 10 on page 62 lists the
elements to add in the order in which you must add them. (There is a Reorder

Dynamic routing

Chapter 3. Dynamic routing 61

option on the Types pull-down to re-sequence the elements within a type.)

Table 10. Routing elements to add to compound types

Compound type Elements to be added

Address – Postcode
– Town
– Street
– House Number

Trade message – Address
– Bank Account Number
– Customer Acct Number
– Trade value
– Stock Price
– Stock quantity
– stock
– request

v Create the message Trade message, with identifier trademessage, of type Trade
message. This definition matches the XML message supplied in trademsg.xml.
The message in this file has an MQRFH2 header in it already: if you create your
own message definition, you must make sure that the message set identifier,
message identifier, and element identifier in the message input file match your
MRM definitions.

v Save the definitions to the shared repository. Select File —> Check In —> All
(Save to Shared).

Dynamic routing

62 SupportPac IC03

Chapter 4. Travel agent (single-flow) example

This example is the first of three examples which illustrate the concept of message
aggregation.

Message aggregation extends the request/reply metaphor by enabling a single
message, or request, to be sent to more than one node, receiving back replies from
some, or all, of these nodes, and then combining these replies into a single reply
message.

To use message aggregation, you must construct two message flows; the ’fan-out’
flow sends the input message to the nodes from which a reply is required; the
’fan-in’ flow receives the replies from these nodes and combines into one,
aggregated, reply.

To support message aggregation, three IBM Primitive nodes are provided. These
are the:
v AggregateControl node
v AggregateReply node
v AggregateRequest node

The AggregateControl node marks the beginning of a fan-out of the requests that
are part of an aggregation.

The AggregateReply node marks the end of a fan-in of the requests that are part of
an aggregation. It collects the replies and combines them into a single, compound,
reply.

The AggregateRequest node records the fact that request messages have been sent,
and collects information that helps the AggregateReply node to construct the
compound reply message.

© Copyright IBM Corp. 2001, 2002 63

Introduction
In this example, we show how a travel agent might handle requests to arrange a
journey that requires a taxi to be booked and a hotel room to be reserved. The
message flow that is illustrated in Figure 22 is used.

This message flow is made up of the following subflows:
v The fan-out flow. This flow, which is shown in the upper part of Figure 22, is

described in “Creating the travel requests for the journey” on page 66.
v The fan-in flow. This flow, which is shown in the middle part of Figure 22, is

described in “Collecting the replies from the journey requests” on page 69.
v The request/reply flow. This flow, which is shown in the lower part of Figure 22,

is described in “The request/reply flow” on page 70.

The message flow illustrates the concept of message aggregation using the
AggregateControl, AggregateRequest, and AggregateReply nodes. Your
requirements might be for a more complex flow than the one shown here, but you
can use the techniques shown in this example to create more complicated, or
larger, message flows.

The message flow works with messages of a specific format and content. “Defining
the message” on page 65 describes how to define the messages that are required.

“Creating and configuring the message flow” on page 66 describes how to define
the message flow.

Before you can successfully deploy your message flow, you must set up some
MQSeries resources. Refer to “Preparing to implement the example” for more
information about what you need to do.

Preparing to implement the example
You must complete the tasks described in the following sections before you can
successfully deploy your message flow. Do what is described here before you start
to define your message set and message flows.

Setting up MQSeries resources
This example gets an input message for the message flow from an MQSeries
queue, JOURNEYIN, on the queue manager that hosts the broker to which the

Figure 22. The aggregation message flow.

Travel agent (single flow)

64 SupportPac IC03

message flow has been deployed. The queue manager puts messages onto an
output queue, JOURNEYOUT, when message processing has been completed.

A requests queue, REQUEST, and a reply-to queue, REPLIES, are also required.

The following queues are required :
v JOURNEYIN
v JOURNEYOUT
v REPLIES
v REQUEST

Use the supplied file journey.tst to create these queues, or create the queues
yourself.

To use journey.tst, type the following on a command line on the system on which
your broker is running:
runmqsc MQSI_SAMPLE_QM <journey.tst

If the file, journey.tst, is not in your current directory, but is somewhere else on
your computer, you must enter the complete path name. Replace the queue
manager name in the command above if the name shown is not correct for your
broker.

You can use other names for these queues if you want. If you do, you must edit
journey.tst before you use the runmqsc command, and you must modify the
queue properties of the nodes in the message flow to match your new names. See
“Creating and configuring the message flow” on page 66 for more details.

Defining the message
The self-defining XML message travelreq.xml is provided. To import this file, you
must:
1. Open a command prompt window.
2. Stop the Configuration Manager using the mqsistop configmgr command.
3. Change to the directory containing the file travelreq.xml.
4. Import the message by typing:

mqsiimpexpmsgset -i -u mqsiuid -p mqsipw -n MQSIMRDB -f travelreq.xml

where mqsiuid and mqsipw are the userID and password that are used for
message repository access, and MQSIMRDB specifies the name of the message
repository. You specified these parameters using the —n, —u, and —p flags on the
mqsicreateconfigmgr command.

5. Restart the Configuration Manager using the command mqsistart configmgr.
This picks up the new definition.

6. Restart the Control Center from the Windows NT Start menu.
7. In the Control Center Message Sets view, right-click on the Message Sets root

and select Add to Workspace. Select the message travelreq.xml, and click
Finish.

The message set appears in your workspace.

Travel agent (single flow)

Chapter 4. Travel agent (single-flow) example 65

Creating and configuring the message flow
The file JOURNEYAggregation.xml contains the definition of the aggregate message
flow. Do the following to import and configure this message flow:
1. Select the Message Flows tab.
2. Import the message flow definition:

a. Select Import to Workspace... from the File menu.
b. Locate file JOURNEYAggregation.xml that contains the message flow

definition. You can type in the full path and file name in the dialog, or you
can click Browse and search for the file.

c. The Message Flows check box is checked by default. This will import
message flows only from the file you have identified as the source of the
resources to import.

d. Click Import. The Control Center processes the file and imports the
message flows that are defined within it. A list of resources that have been
imported are displayed in a dialog when the processing has completed.

e. Click OK to dismiss the dialog.
3. The new message flow appears in the left hand pane, with a blue cube beside it

to show that it is new. Select this new message flow. You can now configure the
nodes within it before checking it in to the configuration repository. The
majority of the configuration work is already done in the imported flow.

4. Select File—>Check In—>All (Save to Shared) to check in the message flows.

If you choose not to use the import file provided, you must create the message
flow yourself and complete its design by dragging and dropping the appropriate
nodes into the Message Flow Definition pane. You must connect the nodes and
configure them as described in the following sections.

Creating the travel requests for the journey

The fan-out flow receives a message from the MQInput node, JOURNEY, and uses
an AggregateControl node, AggControlJOURNEY to fan the message out through
two Compute nodes, ComputeTAXI and ComputeHOTEL, to two MQOutput nodes,
TAXI and HOTEL, and on to two AggregateRequest nodes, rqTAXI and rqHOTEL.
It also sends a control message to the corresponding AggregateReply node on the
fan-in flow.

Getting the message
The MQInput node JOURNEY retrieves input messages from the input queue.

If you have imported the message flow, this node is fully configured and identifies
input queue JOURNEYIN. If you are using a different queue name, you must
update the node properties. All other properties are left to take default values.

Figure 23. The fan-out flow.

Travel agent (single flow)

66 SupportPac IC03

If you are creating the message flow yourself, you must:
1. On the Basic tab, enter the input queue name. The default is JOURNEYIN.
2. Click OK to finish.
3. Connect the out terminal to the node AggControlJOURNEY.

Starting the aggregation
The AggregateControl node, AggControlJOURNEY, connects the MQInput node
JOURNEY to the Compute nodes ComputeTAXI and ComputeHOTEL.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select the Aggregate Name field and enter the name JOURNEY.

The AggregateName field identifies the function of the aggregation and is used
to associate this fan-out message flow with the corresponding fan-in message
flow.

2. Select the Advanced tab on the Compute node properties dialog, and select an
option that includes Destination from the drop-down list. For example,
Destination And Message.

3. Click OK to finish.
4. Connect the out terminal to the two Compute nodes, ComputeTaxi and

ComputeHotel.
5. Connect the control output terminal to the control input terminal of the

AggregateReply node.

Booking a taxi
The Compute node, ComputeTAXI extracts appropriate information from the
message and constructs the request to book a taxi.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:

DECLARE I INTEGER;
DECLARE J INTEGER;
SET J = CARDINALITY (InputRoot.*[]);
SET I = 1;
WHILE I<J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
IF CAST(InputRoot.travelreqmsg.carreqd AS INTEGER) = 1

THEN SET OutputRoot.XML.travelreqmsg.dates_t
= InputRoot.XML.travelreqmsg.dates_t;
ELSE RETURN FALSE;

END IF;

3. Click OK to apply your changes.
4. Connect the out terminal of the Compute node, ComputeTAXI to the MQOutput

node, TAXI.

Reserving a hotel room
The Compute node, ComputeHOTEL extracts appropriate information from the
message and constructs the request to reserve a hotel room.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:

Travel agent (single flow)

Chapter 4. Travel agent (single-flow) example 67

1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:

DECLARE I INTEGER;
DECLARE J INTEGER;
SET J = CARDINALITY (InputRoot.*[]);
SET I = 1;
WHILE I<J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
IF CAST(InputRoot.travelreqmsg.hotel_t.required AS INTEGER) = 1

THEN SET OutputRoot.XML.travelreqmsg.hotel_t
= InputRoot.XML.travelreqmsg.hotel_t;

SET OutputRoot.XML.travelreqmsg.dates_t
= InputRoot.XML.travelreqmsg.dates_t;
ELSE RETURN FALSE;

END IF;

3. Click OK to apply your changes.
4. Connect the out terminal of the Compute node, ComputeHOTEL to the

MQOutput node, HOTEL.

Passing on the journey requests
Each MQOutput node, TAXI or HOTEL, puts the request message received onto its
output queue and also passes it on to the AggregateRequest node.

If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the Basic properties tab, set a Queue Manager Name

(MQSI_SAMPLE_QUEUE is the default name) and a Queue Name (for
example, REQUEST).

3. On the Request properties tab, check the Request option box and set a Reply-to
queue manager and a Reply-to queue (for example, REPLIES).

4. Click OK to apply your changes.
5. Connect the out terminal of the two MQOutput nodes, TAXI and HOTEL, to

the AggregateRequest nodes, rqTAXI and rqHOTEL, respectively.

Recording the journey requests sent
The two AggregateRequest nodes, rqTAXI and rqHOTEL, are used to record that a
request has been sent.

If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the Basic properties tab, set the Folder Name (to TAXI and HOTEL

respectively).
3. Click OK to apply your changes.

The AggregateRequest node records that a request has been sent. The Folder Name
is used by the corresponding AggregateReply node in the fan-in flow.

Travel agent (single flow)

68 SupportPac IC03

Collecting the replies from the journey requests

The fan-in flow routes a reply message from the MQInput node, Replies, through
the AggregateReply node, AggReplyJOURNEY, and the Compute node,
ComputeJOURNEY, to the MQOutput node, OutputJOURNEY. A control message is
also routed to the AggregateReply node, AggReplyJOURNEY, from the
AggregateControl node in the fan-out flow.

Getting the message
The MQInput node Replies retrieves reply messages from the REPLIES queue.

If you have imported the message flow, this node is fully configured.

If you are creating the message flow yourself, you must:
1. On the Basic tab, set the queue name to REPLIES.
2. Click OK to finish.
3. Connect the out terminal to the AggregateReply node AggReplyJOURNEY.

Setting the aggregation node
The AggregateReply node AggReplyJOURNEY connects the MQInput node Replies
to the Compute node ComputeJOURNEY.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select the Aggregation Name field and enter the name JOURNEY.
2. Click OK to finish.
3. Connect the out terminal to the node ComputeJOURNEY.

Each reply message received by the AggregateReply node is stored in the broker
database. When all the replies have been received, an aggregated reply message is
created and passed to the Compute node ComputeJOURNEY.

Extracting the information for output
The Compute node, ComputeJOURNEY, extracts appropriate information from the
aggregated reply message and constructs a suitable message to output from the
flow.

If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:

SET "OutputRoot"."MQMD"."Version" = 2;
SET "OutputRoot"."MQMD"."xyz" = abc;
.
.
.
SET "OutputRoot"."XML"."Journey"."TaxiTime" = InputRoot.ComIbmAggregateReplyBody.TAXI.Time;

3. Click OK to apply your changes.

Figure 24. The fan-in flow.

Travel agent (single flow)

Chapter 4. Travel agent (single-flow) example 69

4. Connect the out terminal of the Compute node, ComputeJOURNEY, to the
MQOutput node, OutputJOURNEY.

Outputting the journey information
The MQOutput node, OutputJOURNEY, puts the output message onto the output
queue JOURNEYOUT.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select Copy message headers.
2. On the Basic properties tab, set a Queue Manager Name

(MQSI_SAMPLE_QUEUE is the default name) and the Queue Name
(JOURNEYOUT).

3. Click OK to apply your changes.

The request/reply flow

This request/reply flow illustrates the route of a reply message from the MQInput
node, JourneyB, to the MQReply node, JOURNEYReply. It shows the message flow
that might be used at the taxi company or hotel to handle a request for a taxi or a
hotel room.

Getting the message
The MQInput node JourneyB retrieves input messages from the input queue.

If you have imported the message flow, this node is fully configured and identifies
input queue JOURNEYOUT. If you are using a different queue name, you must
update the node properties. All other properties are left to take default values.

If you are creating the message flow yourself, you must:
1. On the Basic tab, enter the input queue name, JOURNEYOUT.
2. Click OK to finish.
3. Connect the out terminal to the MQReply node, JOURNEYReply.

Handling the journey requests
The MQReply node JOURNEYReply puts the message on the queue, REPLIES, that
is specified in the message header.

Figure 25. The request/reply flow.

Travel agent (single flow)

70 SupportPac IC03

Assigning and deploying the scenario
When your message set and message flow definitions are complete, you must
check in all the objects that you have been working with before you can assign
them to a broker. To do this, select File—>Check In—>All (Save to Shared) to
check in all objects at once. For other check in options, see the WebSphere MQ
Integrator Using the Control Center book.

You must now assign and deploy the resources so that you can use the message
flow. Select the Assignments view in the Control Center and check out the brokers
to which you want to deploy this scenario.

Check out an execution group on each broker to which you are deploying the
scenario. Drag and drop the message flow JOURNEYAggregation from the
Assignable Resource pane to an execution group within the broker. When you have
done this, Check In the execution group.

When you have completed your assignments, you can deploy your changes. You
can do this in one of the following two ways:
1. Deploy the delta or complete configuration data (all types) from the File menu.
2. Deploy only Assignments configuration data by right clicking on the broker to

which you want to deploy and selecting Deploy.

You can check the success of the deployment by going to the Log view, and
refreshing the contents of the log.

For more details about assignment and deployment, refer to the WebSphere MQ
Integrator Using the Control Center book.

Testing the message flow
The SupportPac includes a test message that you can use to test your deployed
message flow.

You can test this message flow by putting the XML message travelreq.xml to the
input queue for this message flow on a broker to which it has been deployed.

Travel agent (single flow)

Chapter 4. Travel agent (single-flow) example 71

72 SupportPac IC03

Chapter 5. Travel agent (double-flow) example

This example illustrates the use of message aggregation where the fan-in and
fan-out message flows are in separate message flows. It shows the use of the
AggregateControl, AggregateRequest, and AggregateReply nodes in a more
complicated message flow than that shown in the previous scenario.

Introduction
In this example, a travel agent arranges a journey that requires a hotel room and a
rental car to be reserved, and the correct currency to be obtained.

The example uses the following message flows:
v JourneyOut. This fan-out flow is shown in Figure 26 on page 76 and is described

in “Creating the travel requests for the journey” on page 75.
It receives a message from the MQInput node, JOURNEY, and uses an
AggregateControl node, AggJOURNEY to fan the message out through five
Compute nodes, ComputeTRAVEL, ComputeHOTEL, ComputeCARDATES,
ComputeCURRENCY, and SaveMQMDData, to five MQOutput nodes,
TRAVELLER, HOTEL, CAR, CURRENCY, and MQMD_Details, and five
AggregateRequest nodes, rqTRAVEL, rqHOTEL, rqDATES, rqCURRENCY, and
rqMQMD.

v JourneyIn. This fan-in flow is shown in Figure 27 on page 79 and is described in
“Collecting the replies from the journey requests” on page 79.
It routes reply messages from MQInput node, Replies, through the
AggregateReply node, AggReplyJOURNEY, and the Compute node,
ComputeJOURNEY, to the MQOutput node, OutputJOURNEY.
Other parts of this message flow show how timeout messages, error messages,
and undefined messages, are handled.

v JourneyReply. This flow is shown in Figure 28 on page 80 and is described in
“The reply flow” on page 80.
It illustrates the route of the reply message from the MQInput nodes, TRAVEL,
HOTEL, CAR, CURRENCY, and SAVED_MQMD, through optional Compute
nodes to the MQReply node, JOURNEYReply.

The message flow works with messages of a specific format and content.

“Defining the message” on page 74 describes how to define the messages that are
required, and “Creating and configuring the message flows” on page 75 describes
how to define the message flows.

Before you can successfully deploy your message flow, you must set up some
MQSeries resources. Refer to “Preparing to implement the example”, for more
information about what you need to do.

Preparing to implement the example
You must complete the tasks described in the following sections before you can
successfully deploy your message flow. Do what is described here before you start
to define your message set and message flows.

© Copyright IBM Corp. 2001, 2002 73

Setting up MQSeries resources
In this example, an input message is obtained from the message flow from an
MQSeries queue, JOURNEYIN, on the queue manager that hosts the broker to
which the message flow has been deployed.

The queue manager adds messages to the output MQSeries queue, JOURNEYOUT,
when message processing has been completed.

The queues required are:
v JOURNEYIN
v JOURNEYOUT
v REPLIES
v CONTROL
v TRAVEL
v HOTEL
v CAR
v CURRENCY
v SAVED_MQMD
v TIMEOUT
v FAILURE
v UNKNOWN

Use the supplied file journeyagg.tst to create these queues, or create the queues
yourself.

To use journeyagg.tst, type the following on a command line on the system on
which your broker is running:
runmqsc MQSI_SAMPLE_QM <journeyagg.tst

If the file, journeyagg.tst, is not in your current directory, you must enter the
complete path name. Replace the queue manager name in the command above if
the name shown is not correct for your broker.

You can use other names for these queues if you want. If you do, you must edit
journeyagg.tst before you use the runmqsc command, and you must modify the
queue properties of the nodes in the message flow to match your new names. See
“Creating and configuring the message flows” on page 75 for more details.

Defining the message
The self-defining XML message Travelreq.xml is provided. To import this file, you
must:
1. Open a command prompt window.
2. Stop the Configuration Manager using the mqsistop configmgr command.
3. Change to the directory containing the file RouteToLabel.mrp.
4. Import the message set by typing:

mqsiimpexpmsgset -i -u mqsiuid -p mqsipw -n MQSIMRDB -f Travelreq.xml

where mqsiuid and mqsipw are the userID and password that are used for
message repository access, and MQSIMRDB specifies the name of the message
repository. You specified these parameters using the —n, —u, and —p flags on the
mqsicreateconfigmgr command.

5. Restart the Configuration Manager using the command mqsistart configmgr.
This picks up the new definition.

Travel agent (double flow)

74 SupportPac IC03

6. Restart the Control Center from the Windows NT Start menu.
7. In the Control Center Message Sets view, right-click on the Message Sets root

and select Add to Workspace. Select the message Travelreq.xml, and click
Finish.

Creating and configuring the message flows
The files JourneyIn.xml, JourneyOut.xml, and JourneyReply.xmlcontain the
definitions of the message flows. Do the following to import and configure the
message flows:
1. Select the Message Flows tab.
2. Import the message flow definitions:

a. Select Import to Workspace... from the File menu.
b. Locate files JourneyIn.xml, JourneyOut.xml, and JourneyReply.xml that

contain the message flow definitions. You can type in the full path and file
names in the dialog, or you can click Browse and search for the files.

c. The Message Flows check box is checked by default. This will import
message flows only from the files you have identified as the source of the
resources to import.

d. Click Import. The Control Center processes the files and imports the
message flows that are defined within them. A list of resources that have
been imported are displayed in a dialog when the processing has
completed.

e. Click OK to dismiss the dialog.
3. The new message flows appear in the left hand pane, with a blue cube beside

each one to show that it is new. Select each new message flow in turn. You can
now configure the nodes within it before checking it in to the configuration
repository. The majority of the configuration work is already done in the
imported flow.

4. Select File—>Check In—>All (Save to Shared) to check in the message flows.

If you choose not to use the import files provided, you must create the message
flows yourself and complete their design by dragging and dropping the
appropriate nodes into the Message Flow Definition pane. You must connect the
nodes and configure them as described in the following sections.

Creating the travel requests for the journey
This receives each message from an input queue, JOURNEYIN, and passes the
message to an AggregateControl node that decides on further processing.

Travel agent (double flow)

Chapter 5. Travel agent (double-flow) example 75

Getting the message
The MQInput node JOURNEY retrieves input messages from the input queue.

If you have imported the message flow, this node is fully configured and identifies
input queue JOURNEYIN. If you are using a different queue name, you must
update the node properties. All other properties are left to take default values.

If you are creating the message flow yourself, you must:
1. On the Basic tab, enter the input queue name. The default is JOURNEYIN.
2. Click OK to finish.
3. Connect the out terminal to the AggregateControl node AggJOURNEY.

Starting the aggregation
The AggregateControl node AggJOURNEY connects the MQInput node JOURNEY
to the five Compute nodes SaveMQMDData, ComputeTRAVEL, ComputeHOTEL,
ComputeCARDATES, and ComputeCURRENCY.

If you have imported the message flow, the Aggregate Control node is fully
configured. If you are creating the message flow yourself, you must:
1. Select the Aggregate Name field and enter the name AggJOURNEY.
2. Click OK to finish.
3. Connect the output terminal to the five Compute nodes listed.
4. Connect the control terminal to the Compute node AddMQMD.

Figure 26. The fan-out message flow.

Travel agent (double flow)

76 SupportPac IC03

Configuring the Compute nodes
If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:

v For the SaveMQMDData node:
DECLARE I INTEGER;
DECLARE J INTEGER;
SET J = CARDINALITY (InputRoot.*[]);
SET I = 1;
WHILE I<J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
SET OutputRoot.XML.INMQMD.CorrelId = CAST(InputRoot.MQMD.CorrelId AS CHARACTER);
SET OutputRoot.XML.INMQMD.MsgId = CAST(InputRoot.MQMD.MsgId AS CHARACTER);
SET OutputRoot.XML.INMQMD.Version = InputRoot.MQMD.Version;
SET OutputRoot.XML.INMQMD.ReplyToQ = InputRoot.MQMD.ReplyToQ;
SET OutputRoot.XML.INMQMD.ReplyToQMgr = InputRoot.MQMD.ReplyToQMgr;

v For the ComputeTRAVEL node:
DECLARE I INTEGER;
DECLARE J INTEGER;
SET J = CARDINALITY (InputRoot.*[]);
SET I = 1;
WHILE I<J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
SET I = CAST(InputRoot.XML.travelreqmsg.travellernum AS INTEGER);
SET J = 1;
WHILE J<=I DO

SET OutputRoot.XML.travelreqmsg.travellerdetails_e[J]
= InputRoot.XML.travelreqmsg.travellerdetails_e[J];

SET J = J+1;
END WHILE;

v For the ComputeHOTEL node:
DECLARE I INTEGER;
DECLARE J INTEGER;
SET J = CARDINALITY (InputRoot.*[]);
SET I = 1;
WHILE I<J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
IF CAST(InputRoot.travelreqmsg.hotel_t.required AS INTEGER) = 1

THEN SET OutputRoot.XML.travelreqmsg.hotel_t
= InputRoot.XML.travelreqmsg.hotel_t;

SET OutputRoot.XML.travelreqmsg.dates_t
= InputRoot.XML.travelreqmsg.dates_t;
ELSE RETURN FALSE;

END IF;

v For the ComputeCARDATES node:
DECLARE I INTEGER;
DECLARE J INTEGER;
SET J = CARDINALITY (InputRoot.*[]);
SET I = 1;
WHILE I<J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
IF CAST(InputRoot.travelreqmsg.carreqd AS INTEGER) = 1

Travel agent (double flow)

Chapter 5. Travel agent (double-flow) example 77

THEN SET OutputRoot.XML.travelreqmsg.dates_t
= InputRoot.XML.travelreqmsg.dates_t;
ELSE RETURN FALSE;

END IF;

v For the ComputeCURRENCY node:
DECLARE I INTEGER;
DECLARE J INTEGER;
SET J = CARDINALITY (InputRoot.*[]);
SET I = 1;
WHILE I<J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
IF CAST(InputRoot.travelreqmsg.currencyreqd AS INTEGER) = 1

THEN SET I = CARDINALITY(InputRoot.XML.travelreqmsg.currencyreqd_t[]);
SET J = 1;
WHILE J<=I DO;

SET OutputRoot.XML.travelreqmsg.currencyreqd_t[J]
= InputRoot.XML.travelreqmsg.currencyreqd_t[J];

SET J = J+1;
END WHILE;

ELSE RETURN FALSE;
END IF;

v For the Add MQMD node:
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;
SET OutputRoot.MQMD.XML = InputRoot.XML;

3. Click OK to apply your changes.
4. Connect the out terminal of the five Compute nodes, SaveMQMDData,

ComputeTRAVEL, ComputeHOTEL, ComputeCARDATES, and
ComputeCURRENCY, to the MQOutput nodes, MQMD_Details, TRAVELLER,
HOTEL, CAR, and CURRENCY, respectively.

5. Connect the error terminal of the Compute node, ComputeTRAVEL, to the
MQOutput node, MQFailure1, and connect the error terminal of the Compute
node, ComputeHOTEL, to the MQOutput node, MQFailure2.

Passing on the travel requests
If you have imported the message flow, the MQOutput nodes are fully configured.

If you are creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the Basic properties tab, select a default queue manager and the following

queues:
v For the MQMD_Details node: SAVED_MQMD
v For the TRAVELLER node: TRAVEL
v For the HOTEL node: HOTEL
v For the CAR node: CAR
v For the CURRENCY node: CURRENCY
v For the CONTROL node: CONTROL
v For the MQFailure1 node: FAILURE
v For the MQFailure2 node: FAILURE1

3. Click OK to apply your changes.
4. Connect the out terminal of the five MQOutput nodes, MQMD_Details,

TRAVELLER, HOTEL, CAR, and CURRENCY, to the AggregateRequest nodes,
rqMQMD, rqTRAVEL, rqHOTEL, rqDATES, and rqCURRENCY, respectively.

Travel agent (double flow)

78 SupportPac IC03

Recording the journey requests sent
The AggregateRequest nodes are used to record the journey requests that have
been sent.

If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the BASIC tab, select the following folder names:

v For the rqMQMD node: MsgRequestMQMD
v For the rqTRAVEL node: MsgRequest1
v For the rqHOTEL node: MsgRequest2
v For the rqDATES node: MsgRequest3
v For the rqCURRENCY node: MsgRequest4

3. Click OK to apply your changes.

Collecting the replies from the journey requests

Setting the aggregation node
The AggregateReply node AggReplyJOURNEY connects the MQInput node Replies
to the Compute node ComputeJOURNEY.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select the Aggregate Name field and enter the name JOURNEY.
2. Click OK to finish.
3. Connect the output terminal to the Compute node, ComputeJOURNEY.
4. Connect the failure terminal to the MQOutput node, Failure.
5. Connect the unknown terminal to the MQOutput node, Unknown.
6. Connect the timeout terminal to the Compute node, Process Timeout message.

Extracting information to be output
The Compute node, ComputeJOURNEY, extracts appropriate information from the
aggregated reply message and constructs a suitable message to output from the
flow.

Figure 27. The fan-in message flow.

Travel agent (double flow)

Chapter 5. Travel agent (double-flow) example 79

If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:
3. Click OK to apply your changes.
4. Connect the out terminal of the Compute node, ComputeJOURNEY, to the

MQOutput node, OutputJOURNEY.

If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:

Outputting information about the journey
If you have imported the message flow, the MQOutput nodes are fully configured.
If you are creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the BASIC tab, select a default queue manager and the following queues:

v For the Failure node: FAILURE
v For the Unknown node: UNKNOWN
v For the OutputJOURNEY node: JOURNEYOUT
v For the Timeout node: TIMEOUT

3. Click OK to apply your changes.

The reply flow

Getting the message
The MQInput nodes, SAVED_MQMD, TRAVEL, HOTEL, CAR, and CURRENCY
retrieve messages from the REPLIES queue.

If you have imported the message flow, these nodes are fully configured and
identify the input queue REPLIES. If you are using a different queue name, you
must update the node properties. All other properties are left to take default
values.

If you are creating the message flow yourself, you must:
1. On the Basic tab, enter the input queue name. The default is REPLIES.
2. Click OK to finish.

Figure 28. The reply message flow.

Travel agent (double flow)

80 SupportPac IC03

3. Connect the out terminals to the Compute nodes ComputeTRAVEL,
ComputeHOTEL, ComputeCAR, and ComputeCURRENCY.

Setting the Compute nodes
The Compute nodes, ComputeTRAVEL, ComputeHOTEL, ComputeCAR, and
ComputeCURRENCY, can be used to add value to the input message before
creating the output message.

If you have imported the message flow, these nodes are dummy Compute nodes.
The input message is copied unchanged into the output message. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the ESQL tab, use your own ESQL to add value to the input message and

create an output message.
3. Click OK to apply your changes.
4. Connect the out terminal to the MQOutput node, JOURNEYReply.

Responding to the travel request
The MQReply node JOURNEYReply puts the message on the queue, REPLIES, that
is specified in the message header.

Travel agent (double flow)

Chapter 5. Travel agent (double-flow) example 81

Assigning and deploying the scenario
When your message set and message flow definitions are complete, you must
check in all the objects that you have been working with before you can assign
them to a broker. To do this, select File—>Check In—>All (Save to Shared) to
check in all objects at once. (For other check in options, see the WebSphere MQ
Integrator Using the Control Center book.)

You must now assign and deploy the resources so that you can use the message
flow. Select the Assignments view in the Control Center and check out the brokers
to which you want to deploy this scenario.

Check out an execution group on each broker to which you are deploying the
scenario. Drag and drop the message flow JOURNEYAggregation from the
Assignable Resource pane to an execution group within the broker. When you have
done this, Check In the execution group.

When you have completed your assignments, you can deploy your changes. You
can do this in one of the following two ways:
1. Deploy the delta or complete configuration data (all types) from the File menu.
2. Deploy only Assignments configuration data by right clicking on the broker to

which you want to deploy and selecting Deploy.

You can check the success of the deployment by going to the Log view, and
refreshing the contents of the log.

For more details about assignment and deployment, refer to the WebSphere MQ
Integrator Using the Control Center book.

Testing the message flow
The SupportPac includes a test message that you can use to test out your deployed
message flow.

You can test this message flow by putting the XML message travelreq.xml to the
input queue for this message flow on a broker to which it has been deployed.

Travel agent (double flow)

82 SupportPac IC03

Chapter 6. Estimations example

This example illustrates the use of message aggregation where the fan-in and
fan-out message flows are in separate message flows. Like the previous two
examples, this example shows the use of the AggregateControl, AggregateRequest,
and AggregateReply nodes.

Introduction
In this example, you request pricing quotations, or price estimates, for work to
repair a fence that has been damaged by recent storms.

The quotation request is sent to five different companies, some of whom might not
reply. The example shows how you can aggregate the quotations received into one
reply message in which the quotations are sorted in ascending order of preferred
supplier (based upon the quoted price).

The example uses the following message flows:
v GetEstimatesOut. This fan-out flow is shown in Figure 29 on page 85 and is

described in “Requesting estimates” on page 85. The message flow sends
requests for quotations to five different suppliers and specifies a time that will
be waited before replies received are analyzed.

v GetEstimatesIn. This fan-in flow is shown in Figure 31 on page 87 and is
described in “Collecting the estimates” on page 87. The message flow gathers
together the information sent back from the five suppliers, makes sure that at
least three replies have been received, and sorts the replies in ascending order of
the price quotations.

v GetEstimatesReply. This flow is shown in Figure 30 on page 87 and is described
in “The reply flow” on page 86.

“Creating and configuring the message flows” on page 84 describes how to define
the message flows.

Before you can successfully deploy your message flow, you must set up some
MQSeries resources. Refer to “Preparing to implement the example”, for more
information about what you need to do.

Preparing to implement the example
You must complete the tasks described in the following sections before you can
successfully deploy your message flow. Do what is described here before you start
to define your message set and message flows.

Setting up MQSeries resources
In this example, an input message is obtained from the message flow from an
MQSeries queue on the queue manager that hosts the broker to which the message
flow has been deployed. The queue manager puts messages on to an output queue
when message processing has been completed.

The queues required are:
v ESTREQUEST

© Copyright IBM Corp. 2001, 2002 83

v DEVER
v PANDA
v HAYDOCK
v CLOVER
v DREWS
v CONTROL
v REPLIES
v FAILURE
v UNKNOWN
v ESTIMATESOUT
v TIMEOUT

Use the supplied file GetEstimatesAgg.tst to create these queues, or create the
queues yourself.

To use GetEstimatesAgg.tst, type the following on a command line on the system
on which your broker is running:
runmqsc MQSI_SAMPLE_QM < GetEstimatesAgg.tst

You must enter the complete path for the file GetEstimatesAgg.tst if it is not in
your current directory. Replace the queue manager name in the command above if
the name shown is not correct for your broker.

You can use different names for these queues if you choose. If you do, you must
edit GetEstimatesAgg.tst before you use the runmqsc command, and you must
modify the queue properties of the nodes in the message flow to match your new
names. See “Creating and configuring the message flows” for more details.

Creating and configuring the message flows
The files GetEstimatesIn.xml, GetEstimatesOut.xml, and
GetEstimatesAggReply.xmlcontain the definitions of the message flows. Do the
following to import and configure the message flows:
v Select the Message Flows tab.
v Import the dynamic routing message flow definition:

1. Select Import to Workspace... from the File menu.
2. Locate files GetEstimatesIn.xml, GetEstimatesOut.xml, and

GetEstimatesAggReply.xml that contain the message flow definitions (you can
type in the full path and file names in the dialog, or you can click Browse
and search for the files).

3. The Message Flows check box is checked by default. This will import
message flows only from the files you have identified as the source of the
resources to import.

4. Click Import. The Control Center processes the files and imports the message
flows that are defined within them. Each file contains just one message flow.
A list of resources that have been imported are displayed in a dialog when
the processing has completed.

5. Click OK to dismiss the dialog.
v The new message flows appear in the left hand pane, with a blue cube beside

each one to show that it is new. Select each new message flow in turn. You can
now configure the nodes within it before checking it in to the configuration
repository. The majority of the configuration work is already done in the
imported flow.

Estimations example

84 SupportPac IC03

v Select File—>Check In—>All (Save to Shared) to check in the message flows.

If you choose not to use the import files provided, you must create the message
flows yourself and complete their design by dragging and dropping the
appropriate nodes into the Message Flow Definition pane. You must connect the
nodes and configure them as described in the following sections.

Requesting estimates
A fan-out flow is used to request estimates from several potential suppliers of
fencing. The message is received from the MQInput node EstRequest. The
AggregateControl node AggGetEstimates is used to fan the request out through
MQOutput nodes to each of the potential suppliers of fencing.

Getting the message
The MQInput node EstRequest retrieves input messages from the input queue.

If you have imported the message flow, this node is fully configured and identifies
input queue ESTREQUEST. If you are using a different queue name, you must
update the node properties. All other properties are left to take default values.

If you are creating the message flow yourself, you must:
1. On the Basic tab, enter the input queue name. The default is ESTREQUEST.
2. Click OK to finish.
3. Connect the out terminal to the AggregateControl node AggGetEstimates.

Starting the aggregation
The AggregateControl node AggGetEstimates connects the MQInput node EstRequest
to the five MQOutput nodes Dever Contracts, Panda Fencing, Haydock Fencing, Clover
Fencing, and Drews Fencing. The five MQOutput nodes correspond to the five
companies from which an estimate has been requested.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:

Figure 29. The fan-out message flow.

Estimations example

Chapter 6. Estimations example 85

1. Select the Aggregate Name field and enter the name AggGetEstimates.
2. Click OK to finish.
3. Connect the output terminal to the five MQOutput nodes listed.
4. Connect the control terminal to the Compute node AddMQMD.

Requesting the estimates
If you have imported the message flow, these nodes are fully configured. If you are
creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the BASIC tab, select a default queue manager and the following queues:

v For the Dever Contracts node: DEVER
v For the Panda Fencing node: PANDA
v For the Haydock Fencing node: HAYDOCK
v For the Clover Fencing node: CLOVER
v For the Drews Fencing node: DREWS

3. Click OK to apply your changes.
4. Connect the out terminal of the five MQOutput nodes, Dever Contracts, Panda

Fencing, Haydock Fencing, Clover Fencing, and Drews Fencing, to the
AggregateRequest nodes, rqDever Contracts, rqPanda Fencing, rqHaydock Fencing,
rqClover Fencing, and rqDrews Fencing, respectively.

Recording the estimates requested
If you have imported the message flow, these AggregateRequest nodes are fully
configured. If you are creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the BASIC tab, select the following folder names:

v For the rqDeverContracts node: DeverContracts
v For the rqPandaFencing node: PandaFencing
v For the rqHaydockFencing node: HaydockFencing
v For the rqCloverFencing node: CloverFencing
v For the rqDrewsFencing node: DrewsFencing

3. Click OK to apply your configuration.

The reply flow
The fan-in message flow shown in Figure 30 on page 87 is used to gather together
the estimates from the suppliers of fencing.

Estimations example

86 SupportPac IC03

Getting the message
The MQInput nodes DEVER, PANDA, HAYDOCK, CLOVER, and DREWS retrieve
input messages from the input queues, DEVER, PANDA, HAYDOCK, CLOVER,
and DREWS respectively.

If you have imported the message flow, these nodes are fully configured and
identify the input queues specified above. If you want to use different queue name,
you must update the node properties accordingly. All other properties are left to
take default values.

If you are creating the message flow yourself, for each MQInput node you must:
1. On the Basic tab, enter the input queue name.
2. Click OK to finish.
3. Connect the out terminal to the appropriate Compute node: Dever’s Pricing,

Panda’s Pricing, Haydock’s Pricing, Clover’s Pricing, or Drews’ Pricing.

Collecting the estimates

Figure 30. The reply message flow.

Figure 31. The fan-in message flow.

Estimations example

Chapter 6. Estimations example 87

Getting the message
The MQInput node Replies retrieves reply messages from the REPLIES queue.

If you have imported the message flow, this node is fully configured.

If you are creating the message flow yourself, you must:
1. On the Basic tab, set the queue name to REPLIES.
2. Click OK to finish.
3. Connect the out terminal to the AggregateReply node AggReplyEstimates.

The MQInput node Control (IN) retrieves reply messages from the CONTROL
queue.

If you have imported the message flow, this node is fully configured.

If you are creating the message flow yourself, you must:
1. On the Basic tab, set the queue name to CONTROL.
2. Click OK to finish.
3. Connect the out terminal to the AggregateReply node AggReplyEstimates.

Setting the aggregation node
The AggregateReply node AggReplyEstimates connects the MQInput node Replies to
the Compute node SelectEstimates.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. Select the Aggregate Name field and enter the name AggGetEstimates.
2. Click OK to finish.
3. Connect the output terminal to the Compute node, SelectEstimates.
4. Connect the failure terminal to the MQOutput node, Failure.
5. Connect the unknown terminal to the MQOutput node, Unknown.
6. Connect the timeout terminal to the Filter node, FilterNoOfReplies.

Analyzing the replies
The Filter node FilterNoOfReplies receives an aggregated reply message which
contains all the estimates received by the time specified in the Timeout property of
the AggregateControl node.

The Filter node then decides which of the replies in the aggregated reply message
meet the criteria specified in the original requests for estimates from each of the
five suppliers. There must be valid replies from at least three of the suppliers for
the request to be forwarded through the output terminal; otherwise, the failure
terminal is chosen.

If you have imported the message flow, this node is fully configured. If you are
creating the message flow yourself, you must:
1. On the Basic tab, enter the queue name REPLIES.
2. Click OK to finish.
3. Connect the output terminal to the Compute node, Select Estimates.
4. Connect the failure terminal to the Compute node, ProcessTimeouts.

Estimations example

88 SupportPac IC03

Preparing the final response
If you have imported the message flow, the Compute nodes are fully configured. If
you are creating the message flow yourself, for each node you must:
1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:

v For the SelectEstimates node:
DECLARE i INTEGER;
DECLARE j INTEGER;
DECLARE k INTEGER;
DECLARE MyInput REFERENCE TO InputRoot.ComIbmAggregateReplyBody;
--
-- Set the MQMD
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
--
-- Copy Input message to Output message adding the company name
-- taken from the folder name
--
SET i = CARDINALITY (MyInput.*[]);
SET j = 1;
WHILE j<=i DO

SET OutputRoot.XML.Estimates.Company[j].Name = FIELDNAME (MyInput.*[j]);
SET OutputRoot.XML.Estimates.Company[j].Data = MyInput.*[j].XML.GetEstimates;

END WHILE;
DECLARE MyOutput REFERENCE TO OutputRoot.XML.Estimates;
--
-- and now sort the output into ascending order
--
SET j = 1;
WHILE j<i DO

SET k = j+1;
WHILE k<=i DO

IF CAST (MyOutput.Company[k].Data.quotation AS DECIMAL)
< CAST (MyOutput.Company[j].Data.quotation AS DECIMAL)
THEN SET MyPutput.Company[i+1].Name = MyOutput.Company[k].Name;

SET MyPutput.Company[i+1].Data = MyOutput.Company[k].Data;
SET MyPutput.Company[k].Name = MyOutput.Company[j].Name;
SET MyPutput.Company[k].Data = MyOutput.Company[j].Data;
SET MyPutput.Company[j].Name = MyOutput.Company[i+1].Name;
SET MyPutput.Company[j].Data = MyOutput.Company[i+1].Data;

END IF;
SET k = k+1;

END WHILE;
SET j = j+1;

END WHILE;
--
-- and delete the temporary i+1 slot
--
DETACH MyOutput.Company[i+1].Name;
DETACH MyOutput.Company[i+1].Data;

v For the ProcessTimeouts node:
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.XML.Test = InputRoot.ComIbmAggregateReplyBody;

3. Click OK to apply your changes.
4. Connect the out terminal of the two Compute nodes, SelectEstimates and

ProcessTimeouts, to the MQOutput nodes, EstimatesOut and Timeout, respectively.

Providing the estimates
If you have imported the message flow, the MQOutput nodes are fully configured.
If you are creating the message flow yourself, for each node you must:
1. Select Copy message headers.

Estimations example

Chapter 6. Estimations example 89

2. On the BASIC tab, select a default queue manager and the following queues:
v For the Failure node: FAILURE
v For the Unknown node: UNKNOWN
v For the EstimatesOut node: ESTIMATESOUT
v For the Timeout node: TIMEOUT

3. Click OK to apply your changes.

Assigning and deploying the scenario
When your message set and message flow definitions are complete, you must
check in all the objects that you have been working with before you can assign
them to a broker. To do this, select File—>Check In—>All (Save to Shared) to
check in all objects at once. (For other check in options, see the WebSphere MQ
Integrator Using the Control Center book.)

You must now assign and deploy the resources so that you can use the message
flow. Select the Assignments view in the Control Center and check out the brokers
to which you want to deploy this scenario. Drag and drop the message set from
the Assignable Resources pane to the brokers pictured in the Domain Topology
pane. When you have finished these updates, check in the brokers.

Check out an execution group on each broker to which you are deploying the
scenario. Drag and drop the message flows from the Assignable Resource pane to
an execution group within each broker. When you have done this, check in the
execution groups.

When you have completed your assignments, you can deploy your changes. You
can do this in one of the following two ways:
1. Deploy the delta or complete configuration data (all types) from the File menu.
2. Deploy only Assignments configuration data by right clicking on the broker to

which you want to deploy and selecting Deploy.

You can check the success of the deployment by going to the Log view, and
refreshing the contents of the log.

For more details about assignment and deployment, refer to the WebSphere MQ
Integrator Using the Control Center book.

Testing the message flow
The SupportPac includes a test message that you can use to test out your deployed
message flow.

You can test this message flow by putting the XML message GetEstimatesMsg.xml
to the input queue for this message flow on a broker to which it has been
deployed.

Estimations example

90 SupportPac IC03

Appendix. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001, 2002 91

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

92 SupportPac IC03

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

DB2 IBM MQSeries
SupportPac VisualAge WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix. Notices 93

94 SupportPac IC03

Bibliography

v IBM WebSphere MQ Integrator Version 2.1 Introduction and Planning, GC34-5599
This provides an overview of the product, and introduces the concepts and the facilities that are
available. It is available in hard and soft copy.

v The operating system specific installation guides:
IBM WebSphere MQ Integrator for AIX Version 2.1 Installation Guide, GC34-5841
IBM WebSphere MQ Integrator for HP-UX Version 2.1 Installation Guide, GC34-5907
IBM WebSphere MQ Integrator for Sun Solaris Version 2.1 Installation Guide, GC34-5842
IBM WebSphere MQ Integrator for Windows NT Version 2.1 Installation Guide, GC34-5600
IBM WebSphere MQ Integrator for z/OS Version 2.1 Installation Guide, GC34-5919

These books describe the tasks you need to complete to install MQSeries Integrator Version 2 on the
appropriate operating system, and to verify your installation. They also provide details about servicing
and uninstalling the product.

v IBM WebSphere MQ Integrator Version 2.1 Using the Control Center, SC34-5602
This book introduces the Control Center, and provides detailed instruction on how to work with
message sets, message sets, topics, and the broker domain topology. It explains the MRM message
model and how to manipulate messages. It also contains examples of how you can use all the message
processing nodes.

v IBM WebSphere MQ Integrator Version 2.1 ESQL Reference, SC34–5923
This book provides a comprehensive reference and examples of the use of ESQL with the WebSphere
MQ Integrator message processing nodes.

v IBM WebSphere MQ Integrator Version 2.1 Programming Guide, SC34-5603
This book is for application programmers who are writing or updating applications to use the facilities
provided by WebSphere MQ Integrator Version 2.1.

v IBM WebSphere MQ Integrator Version 2.1 Administration Guide, SC34-5792
This book is a reference book for WebSphere MQ Integrator Version 2.1 system administrators. It also
provides guidance information for configuring and maintaining a broker domain.

v IBM WebSphere MQ Integrator Version 2.1 Messages, GC34-5601
This book documents the error and information messages generated by the product.

v IBM WebSphere MQ Integrator Version 2.1 Working with Messages, GC34-6039
This book explains the message model used by WebSphere MQ Integrator, and discusses the message
domains that are supported, and the structure of messages within those domains. It also provides
guidance for customizing message flows to process the messages in each supported domain.

© Copyright IBM Corp. 2001, 2002 95

96 SupportPac IC03

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–842327
– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2001, 2002 97

98 SupportPac IC03

����

Printed in U.S.A.

	Contents
	Figures
	Tables
	About this SupportPac
	Who this document is for
	What you need to know to understand this document
	Assumptions
	SupportPac Contents
	Using the examples
	Creating the database
	Using the supplied DB2 scripts

	Testing the scenarios

	Chapter 1. The retail operation
	Introduction
	Preparing to use the example
	Initializing the database
	Setting up MQSeries resources

	Creating and completing the message set
	Creating and configuring the message flows
	The main flow
	Getting the message

	Audit flow
	Checking the message
	Storing the message
	Controlling the order of processing

	Finance flow
	Extracting financial information from the MRM message
	Extracting financial information from the XML message
	Writing a trace entry
	Adding an IMS header to the MRM message
	Outputting the Finance message

	Stock flow
	Using the stock flow with an MRM message
	Using the stock flow with an XML message
	Outputting the Stock message

	Partner Flow
	Filtering multibuy records
	Handling messages that do not contain multibuys
	Updating the database
	Initializing the loop control flag
	Testing the value of the loop control flag
	Preparing the values for insertion in the database
	Updating the Multibuy database (MRM message)
	Updating the Multibuy database (XML message)
	Updating the value of the loop control counter
	Completing the Partner flow

	Register subscriptions flow
	Receiving the message
	Setting up a subscription filter (MRM message)
	Setting up a subscription filter (XML message)
	Registering the subscription

	Assigning the message set and message flows
	Assigning the message set to the broker
	Assigning message flows to the execution group

	Deploying the configuration
	Testing the message flow

	Chapter 2. The loan request
	Introduction
	Preparing to implement the scenario
	Initializing the database
	Setting up MQSeries resources

	Creating and completing the message set
	Creating and configuring the message flow
	Getting the message
	Storing message contents in the database
	Getting the credit rating
	Checking the credit rating
	Adding the date
	Updating the database
	Outputting the message
	Handling requests that are not approved

	Assigning and deploying the scenario
	Testing the message flow

	Chapter 3. Dynamic routing
	Introduction
	Preparing to implement the scenario
	Initializing the database
	Setting up MQSeries resources

	Defining the message
	Creating and configuring the message flow
	The input flow
	Getting the message
	Setting the destination labels
	Configuring the RouteToLabel node

	Setting up the labelled message flow routes
	The customer details flow
	Updating the customer details
	Completing message processing
	The trade flow
	Calculating the trade value
	Completing message processing
	The completion flow
	Outputting the message

	Assigning and deploying the scenario
	Testing the message flow
	Creating the message set by hand

	Chapter 4. Travel agent (single-flow) example
	Introduction
	Preparing to implement the example
	Setting up MQSeries resources

	Defining the message
	Creating and configuring the message flow
	Creating the travel requests for the journey
	Getting the message
	Starting the aggregation
	Booking a taxi
	Reserving a hotel room
	Passing on the journey requests
	Recording the journey requests sent

	Collecting the replies from the journey requests
	Getting the message
	Setting the aggregation node
	Extracting the information for output
	Outputting the journey information

	The request/reply flow
	Getting the message
	Handling the journey requests

	Assigning and deploying the scenario
	Testing the message flow

	Chapter 5. Travel agent (double-flow) example
	Introduction
	Preparing to implement the example
	Setting up MQSeries resources

	Defining the message
	Creating and configuring the message flows
	Creating the travel requests for the journey
	Getting the message
	Starting the aggregation
	Configuring the Compute nodes
	Passing on the travel requests
	Recording the journey requests sent

	Collecting the replies from the journey requests
	Setting the aggregation node
	Extracting information to be output
	Outputting information about the journey

	The reply flow
	Getting the message
	Setting the Compute nodes
	Responding to the travel request

	Assigning and deploying the scenario
	Testing the message flow

	Chapter 6. Estimations example
	Introduction
	Preparing to implement the example
	Setting up MQSeries resources

	Creating and configuring the message flows
	Requesting estimates
	Getting the message
	Starting the aggregation
	Requesting the estimates
	Recording the estimates requested

	The reply flow
	Getting the message

	Collecting the estimates
	Getting the message
	Setting the aggregation node
	Analyzing the replies
	Preparing the final response
	Providing the estimates

	Assigning and deploying the scenario
	Testing the message flow

	Appendix. Notices
	Trademarks

	Bibliography
	Sending your comments to IBM

