
MQSeries Integrator

Working with MQSeries Everyplace
Version 1.0

ID03-00

���

MQSeries Integrator

Working with MQSeries Everyplace
Version 1.0

ID03-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 31.

First edition (June 2001)

This edition applies to Version 1.0 of SupportPac™ ID03 ″Working with MQSeries Everyplace″ for IBM® MQSeries
Integrator Version 2 and to all subsequent releases and modifications until otherwise indicated in new editions.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, address
your comments to:

User Technologies (MP095)
IBM United Kingdom Laboratories
Hursley Park
Hursley
Hampshire, SO21 2JN
England

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you. You may continue to use the information that
you supply.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this SupportPac . v
Who this document is for . v
What you need to know to understand this document . v
Assumptions . v
Contents . vi
Where to find more information . vi

Chapter 1. Working with MQSeries Everyplace 1
MQSeries Everyplace overview . 1
Bridge to MQSeries . 3
MQSeries Everyplace and MQSeries Integrator . 3

Input from MQSeries Everyplace . 4
Output to MQSeries Everyplace . 6
MQSeries Everyplace messages in MQSeries Integrator . 7
Security . 8
Problem determination . 8

Chapter 2. MQSeries Everyplace scenarios . 9

Appendix A. MQSeries Everyplace configuration files 13
ServerQM.ini . 13
ClientQM.ini . 15

Appendix B. MQSeries Everyplace queue manager setup files 17
SetupMQeExample1.java . 17
SetupMQeExample2.java . 19

Appendix C. Files for sending MQSeries Everyplace messages 23
SendMessages.java . 23
SendPubSubMessages.java . 27

Appendix D. Notices . 31
Trademarks . 33

Sending your comments to IBM . 35

© Copyright IBM Corp. 2000, 2001 iii

iv MQSeries Integrator – Working with MQSeries Everyplace

About this SupportPac

MQSeries® Integrator is designed to act as a message ’broker’, using the
underlying functionality of MQSeries messaging. In previous versions of MQSeries
Integrator, all messaging was performed by ’base’ MQSeries. From Version 2.0.2,
MQSeries Everyplace messages can also be brokered. To enable this extra ability,
new MQeInput and MQeOutput nodes are provided in MQSeries Integrator. Also,
the Publication node incorporates the function of the MQeOutput node, thus
allowing messages to be published to MQSeries Everyplace.

This SupportPac is provided to help you take advantage of the MQSeries
Integrator connectivity with ’pervasive’ devices provided by MQSeries Everyplace.
It includes sample files to enable you to run a simple example which illustrates the
communication between MQSeries Everyplace and MQSeries Integrator.

This document is in two distinct parts:

“Chapter 1. Working with MQSeries Everyplace” on page 1.
Configuring MQSeries Everyplace to MQSeries Integrator
communication. This chaper provides an explanation, in general terms, of
how MQSeries Everyplace and MQSeries Integrator work together.

“Chapter 2. MQSeries Everyplace scenarios” on page 9.
Using the sample code to configure MQSeries Everyplace to MQSeries
Integrator communication. This chaper provides the information you need
to run the examples provided in this SupportPac.

There is further reference material provided in a number of appendixes which
explains how the supplied sample code operates.

Who this document is for
This document is for users of MQSeries Integrator who want to be able to use the
connectivity with MQSeries Everyplace introduced in Version 2.0.2.

What you need to know to understand this document
You must be familiar with the concepts of MQSeries Integrator and with message
flow design using the Control Center, but not necessarily implementing message
flows with MQSeries Everyplace connectivity. You should refer to the MQSeries
Integrator library if you need further information about the product. (See “Where
to find more information” on page vi.)

Assumptions
If you download and use the files in this SupportPac, the following are assumed:
v You have read and you agree to the conditions documented in file licence.txt

included in this SupportPac.
v You have installed MQSeries Integrator Version 2.0.2 or later (the scenarios will

not work with earlier versions or releases). Your installation options must
include the broker, the Configuration Manager, and the Control Center. Other
components are optional for this purpose.

© Copyright IBM Corp. 2000, 2001 v

v You have created and started a broker on a supported runtime operating system
(AIX, HP-UX, Sun Solaris, Windows® NT). The example here specifies queue
manager MQSI_SAMPLE_QM. You can use a different queue manager if you choose.
If you do so, you must modify the name used in the examples.

v You have created and started the Configuration Manager on a Windows NT®

system. The name of the queue manager is not assumed. However, if your
broker and your Configuration Manager do not share the same queue manager,
you must set up MQSeries communications between the two queue managers.

v You must have access to a Java™ compiler (Version 1.1.8 or higher), not just a
JRE, if you want to modify and re-compile the examples included in this
SupportPac.

v You do not need to have installed MQSeries Everyplace. The parts of MQSeries
Everyplace, including sample code, that are needed by MQSeries Integrator and
this SupportPac are installed as part of the MQSeries Integrator broker
installation.

Contents
This SupportPac is supplied in a zip file that contains all the files that you need to
use the scenarios described here:
v This document (id0300.pdf).
v Licence agreement (licence.txt).
v Version description (level.txt).
v Files for the examples:

– Configuration files (see “Appendix A. MQSeries Everyplace configuration
files” on page 13 for an explanation of these two files):
- ClientQM.ini - for creating an MQSeries Everyplace client queue manager.
- ServerQM.ini - for creating an MQSeries Everyplace server queue manager

within MQSeries Integrator.
– Java source (.java) and compiled (.class) files to create connections between

the queue managers and queues to route messages:
- SetupMQeExample1 - for creating a route between the client queue manager

and the server queue manager, so that messages sent from the client can be
routed to the server.

- SetupMQeExample2 - for creating a queue called Inbox on the server queue
manager that may be used for returning messages from MQSeries
Integrator.

– Java source (.java) and compiled (.class) files for sending messages to the
broker:
- SendMessages - for point-to-point messages.
- SendPubSubMessages - for publish/subscribe messages.

Where to find more information
For further details of how to program with MQSeries Everyplace, you should refer
to the MQSeries Everyplace library.

The ″MQSeries Everyplace for Windows Version 1.1 Whitepaper″ provides a useful
overview of MQSeries Everyplace.

For information specific to the use of MQSeries Everyplace nodes in MQSeries
Integrator, you should refer to:

About this SupportPac

vi MQSeries Integrator – Working with MQSeries Everyplace

v Appendix C. ″MQSeries Everyplace Nodes″ in the MQSeries Integrator Programming
Guide and

v Chapter 5. ″Working with message flows″ in the MQSeries Integrator Using the
Control Center book.

The Whitepaper mentioned above and all MQSeries family books are available
on-line at: http://www.software.ibm.com/ts/MQSeries/library/.

further information

About this SupportPac vii

viii MQSeries Integrator – Working with MQSeries Everyplace

Chapter 1. Working with MQSeries Everyplace

MQSeries Integrator is designed to act as a message ’broker’ in that it provides, in
real-time, for messages to be routed and for the content of messages to be
transformed and formatted, all based on rules which you can define as part of
’message flows’.

In order to transport messages which are manipulated in this way, MQSeries
Integrator takes advantage of the connectivity provided by MQSeries messaging.
MQSeries messaging is available in several flavors. MQSeries itself provides this
messaging function on distributed and host platforms, while MQSeries Everyplace
is designed primarily for messaging to, from and between pervasive devices,
typically small, handheld devices, such as mobile phones and PDAs. SCADA,
similarly, provides a messaging facility for pervasive devices, but it uses a very
lightweight protocol tailored specifically for specialized applications on small
footprint devices; typically in the area of remote data acquisition and process
control.

Until version 2.0.2, all messaging in MQSeries Integrator was performed by
MQSeries. From Version 2.0.2, input and output nodes are provided to allow
messages to be sourced from, and dispatched to MQSeries Everyplace (and also
SCADA).

MQSeries Everyplace applications work in rather different ways to ’normal’
MQSeries Integrator applications, and so you will find that there are different
concepts and procedures involved in setting up and configuring an MQSeries
Integrator system to operate with MQSeries Everyplace. Before going on to
consider how MQSeries Everyplace interacts with MQSeries Integrator, the
following sections look at MQSeries Everyplace itself and how it relates to normal
MQSeries messaging.

This brief digression is deliberately not intended to be a comprehensive
introduction to MQSeries Everyplace. For that, you should refer to the MQSeries
Everyplace library. The ″MQSeries Everyplace for Windows Version 1.1 Whitepaper″
also provides a useful overview of MQSeries Everyplace.

MQSeries Everyplace overview
With MQSeries, you will be familiar with the concept that a client provides assured
messaging for local applications. The client can only access queues on an attached
server, which it does via a synchronous client channel connection. The server,
which can support the attachment of multiple clients, uses message channels to
provide asynchronous delivery to remote queues.

MQSeries Everyplace uses what it calls ’devices’ and ’gateways’. These are
sometimes equated to MQSeries clients and servers, but in reality the analogy is
not exact. The following list describes the terminology associated with the principal
components of MQSeries Everyplace so that you can see the differences and
similarities to MQSeries.

MQSeries Everyplace devices
An MQSeries Everyplace device provides assured messaging for
applications through dynamic channels (see below). It allows both

© Copyright IBM Corp. 2000, 2001 1

synchronous local and remote queue access and asynchronous delivery to
remote queues. It therefore has the function typically associated with a
server application, although it is restricted to handling only one incoming
request at a time.

MQSeries Everyplace device code typically runs on a pervasive MQSeries
Everyplace device and is started and stopped on demand by applications
running intermittently. However, there is nothing to stop you installing a
client on any appropriate machine and running it there.

This code is supplied as part of the MQSeries Integrator installation and it
runs on the same machine as an MQSeries Integrator installation (and the
location of the appropriate jar files are defined in the CLASSPATH
environment variable - see “Chapter 2. MQSeries Everyplace scenarios” on
page 9 for details), it is not necessary to install the MQSeries Everyplace
device code separately.

MQSeries Everyplace gateways
MQSeries Everyplace gateways have the same functionality as clients, but
also have a channel manager (which supports logical concurrent
communication) configured so they can also handle multiple incoming
requests at the same time. Gateways also support the attachment of
MQSeries servers through MQSeries client channels.

Within MQSeries Integrator, the MQeInput node provides access to the
MQSeries Everyplace gateway function, as described in “MQSeries
Everyplace and MQSeries Integrator” on page 3.

MQSeries Everyplace channels
Devices and gateways use dynamic channels (so called to distinguish them
from the MQSeries client and messaging channels) to communicate.
Dynamic channels are a logical connection for sending and receiving data;
they are bi-directional, and support both synchronous and asynchronous
messaging.

Dynamic channels are established by an MQSeries Everyplace queue
manager as required so, although you should be aware of their existence,
they are not ’visible’ to the user and you not need to do anything to enable
their operation.

MQSeries Everyplace adapters
Because MQSeries Everyplace is regularly used on different pervasive
devices, it is capable of using a variety of communication protocols. These
are each implemented as an adapter so that additional protocols can easily
be handled and only those actually required need be installed.

MQSeries Everyplace queue managers
MQSeries Everyplace queue managers are similar to their MQSeries
counterparts in that they control various types of MQSeries Everyplace
queues and channels. However, their architecture is object oriented and
they run inside an instance of a JVM (each queue manager requires a
separate JVM instance). Communications can be synchronous or
asynchronous.

An MQSeries Everyplace queue manager can run:
v on an MQSeries Everyplace device — handling single incoming requests.
v on an MQSeries Everyplace gateway — handling many incoming

requests simultaneously.
v as a servlet — with attributes similar to those of a queue manager

running on an MQSeries Everyplace gateway. As you would expect, only

MQSeries Everyplace overview

2 MQSeries Integrator – Working with MQSeries Everyplace

http adapters can be used. There is no channel listener (used by typical
gateways to listen for incoming connection requests); this function is
handled by the web server.

MQSeries Everyplace queues
MQSeries Everyplace queue managers control various types of queues.
There are three which are particularly significant here:
v Local queues. This type of queue is local to, and is owned by, a specific

queue manager.
v Remote queues. This type of queue does not reside locally. There is a

local queue definition that identifies the real queue and the queue
manager that owns it.

v MQSeries-bridge queues. These provide a path from MQSeries
Everyplace to MQSeries. A bridge queue is a remote MQSeries queue
definition on an MQSeries Everyplace gateway (see below).

MQSeries Everyplace messages
Unlike MQSeries messages (which are defined as byte arrays with a
message header and a message body), MQSeries Everyplace messages are
all passed as Java objects, derived from the base class MQeFields.

You should refer to “MQSeries Everyplace messages in MQSeries
Integrator” on page 7 for details of the derived classes relevant to using
MQSeries Everyplace with MQSeries Integrator.

Bridge to MQSeries
An MQSeries Everyplace gateway (but not an MQSeries Everyplace device) can act
as an interface to an MQSeries server. It does this through an ’MQSeries-bridge
queue’ which uses the MQSeries Java client to interface to one or more MQSeries
queue managers, thereby allowing messages to flow between MQSeries Everyplace
and MQSeries.

The bridge queue is a remote queue definition on the gateway refering to a queue
(the ’target queue’) residing on an MQSeries queue manager. In other words, the
queue holding the messages resides on the MQSeries queue manager, not on the
local MQSeries Everyplace queue manager.

Before being transferred from the MQSeries Everyplace gateway to the MQSeries
server, messages are passed through a ’transformer’ which creates an MQSeries
message from the object oriented MQSeries Everyplace message.

The details of how to configure a bridge between MQSeries Everyplace and
MQSeries are not dealt with here. Although it is helpful to understand – at least in
outline – how a bridge queue operates (as MQSeries Everyplace also uses bridge
queues when communicating with MQSeries Integrator), configuration is different
when communicating with MQSeries Integrator.

MQSeries Everyplace and MQSeries Integrator
Communication between MQSeries Everyplace and MQSeries Integrator is
achieved through the MQSeries Integrator MQeInput and MQeOutput nodes.
Using these nodes, you can write point-to-point applications where an MQSeries
Everyplace input message is transmitted to an MQeOutput or an MQOutput node
or publish/subscribe applications where the message is transmitted to a
Publication node, as shown in Figure 1 on page 4.

MQSeries Everyplace overview

Chapter 1. Working with MQSeries Everyplace 3

You should note that if you want to use MQSeries Everyplace with MQSeries
Integrator, all message flows using an MQeInput node should be within the same
MQSeries Integrator execution group as only a single execution group can be used
in this context.

The general architecture involved is illustrated in Figure 2 on page 5. In order to
pass messages between MQSeries Everyplace and MQSeries Integrator, an
MQSeries Everyplace gateway — as part of an MQeInput node — is inserted into
the MQSeries Integrator JVM (currently Version 1.1.8) running in a particular
MQSeries Integrator broker. This can then communicate with other MQSeries
Everyplace gateways, devices and servlets through a normal MQSeries Everyplace
dynamic channel using appropriate adaptors.

Within this embedded gateway, an MQSeries-bridge queue is created. This, as just
described, is a remote MQSeries Everyplace queue, in reality, a local queue
definition of an MQSeries queue and the queue manager that owns it. In the case
of an MQSeries-bridge queue used by MQSeries Integrator, the latter is the queue
manager hosting the MQSeries Integrator broker.

Input from MQSeries Everyplace
In the example shown in Figure 2 on page 5, the MQSeries Everyplace ’client’
attached to MQSeries Integrator is an MQSeries Everyplace device with an
MQSeries Everyplace queue manager called ClientQM1. The broker, hosted by
MQSeries queue manager MQSI_SAMPLE_QM, has a message flow deployed with an

Figure 1. Examples of the use of MQSeries Everyplace nodes in MQSeries Integrator.

MQSeries Everyplace and MQSeries Integrator

4 MQSeries Integrator – Working with MQSeries Everyplace

MQeInput node. This has an embedded MQSeries Everyplace gateway (with its
own MQSeries Everyplace queue manager, ServerQM1 listening on an appropriate
port) which treats MQSI_SAMPLE_QM as a remote MQSeries Everyplace queue
manager. You should note that only one MQSeries Everyplace queue manager can
be supported in a single instance of a JVM. So, if you have more than one
MQeInput node in the same execution group, they must all use the same
MQSeries Everyplace queue manager.

A message from the MQSeries Everyplace ’client’ destined for MQSeries Integrator
must be directed to the queue belonging to the MQSeries queue manager -
MQSI_SAMPLE_QM - hosting the MQSeries Integrator broker (not the the MQSeries
Everyplace queue manager - ServerQM1 - running within MQSeries Integrator).
Then, when the gateway receives a message destined for MQSI_SAMPLE_QM rather
than itself, the message is put on the MQSeries-bridge queue.

At this point, the message is an MQSeries Everyplace object, so it it passed to a
transformer which creates an MQSeries form of the message and passes it back to
the MQSeries- bridge queue. The message, now an MQSeries message, is passed
over a JNI (Java Native Interface) connection and held on a synchronized
MQSeries queue belonging to MQSI_SAMPLE_QM. From this queue, it is taken into the
MQSeries Integrator message flow.

Within MQSeries Integrator, the message can be dealt with in different ways
depending on the message class used for the message, as explained later
(“MQSeries Everyplace messages in MQSeries Integrator” on page 7). You should

Figure 2. Diagram showing the relationship between MQSeries Everyplace and MQSeries Integrator

Input from MQSeries Everyplace

Chapter 1. Working with MQSeries Everyplace 5

note that there is no parser in MQSeries Integrator directly capable of parsing
messages derived from MQSeries Everyplace.

Also note that MQSeries Integrator only supports MQeInput or MQeOutput
nodes in a single execution group. You should therefore ensure that all flows that
communicate with MQSeries Everyplace are within the same execution group.

The MQeInput node
You should set the properties of an MQeInput node using the node’s properties
dialog by filling in at least the mandatory fields. You will find that you can accept
the defaults provided for most other fields. The on-line help provides a useful
reference to the node’s properties.

Among the properties you must specify on the General tab are:

Queue Name
You must specify the name of the MQSeries Everyplace bridge queue from
which this input node retrieves messages. If the queue does not exist, it is
created for you when the message flow is deployed to the broker.

Queue Manager Name
This specifies the name of the MQSeries Everyplace queue manager. This is
not related in any way to the queue manager of the broker to which you
deploy the message flow containing this node. As only one MQSeries
Everyplace queue manager can be supported, this property must be set to
the same value in every MQeInput node.

If you select the Use Config File check box specified on the ″General″ tab of the
MQeInput node’s properties dialog, you can specify a file as the source of
MQeInput node properties. An example of this file is shown in “Appendix A.
MQSeries Everyplace configuration files” on page 13

If you select this check box, the node properties entered on the properties dialog
are ignored except for the following:
v The Queue Name (that is, the name of the MQSeries-bridge queue) and Config

Filename on this tab.
v All properties on the ″Default″ tab.

In the examples in this SupportPac, a configuration file is not used.

As explained in “The MQeOutput node” on page 7, you must configure an
MQeInput node in your message flow, even if you intend only to send output to
MQSeries Everyplace.

Output to MQSeries Everyplace
MQSeries Everyplace output can be sent either by using an MQeOutput node or
by using a Publication node. The Publication node incorporates the function
associated with an MQeOutput node, enabling messages to be retrieved by
subscribers.

The MQeOutput node directs the message to a queue controlled by the MQSeries
Everyplace queue manager hosting the MQSeries Everyplace gateway within
MQSeries Integrator. This queue uses the transformer, mentioned above, to change
the message from a MQSeries format to MQSeries Everyplace; typically creating an
object from the MQeMsgObject class.

Input from MQSeries Everyplace

6 MQSeries Integrator – Working with MQSeries Everyplace

The MQeOutput node
You should set the properties of an MQeOutput node using the node’s properties
dialog. The on-line help provides a useful reference to the node’s properties.

You must have an associated MQeInput node, even if you are only writing
messages to MQSeries Everyplace and not receiving them from MQSeries
Everyplace. There is information (such as the queue manager name and the
listening port) that MQSeries Everyplace clients need to connect to MQSeries
Integrator that is specified only in the MQeInput node.

The Publication node
You should set the properties of a Publication node using the node’s properties
dialog. The on-line help provides a useful reference to the node’s properties.

In an MQSeries publish/subsribe application, you would typically send
subscription messages to SYSTEM.BROKER.CONTROL.QUEUE. When using
publish/subscribe with MQSeries Everyplace, you should not use this queue; all
such messages are dealt with by the MQSeries-bridge queue.

MQSeries Everyplace messages in MQSeries Integrator
As noted above, MQSeries Everyplace messages are entirely object oriented and are
all derived from the base Java class MQeFields. However, this class is not used
directly, and when MQSeries Everyplace communicates with an MQSeries
Integrator network, there are two classes that are used to create MQSeries
Everyplace message objects:
v MQeMsgObject

v MQeMbMsgObject

Objects derived from both of these classes can be placed on the MQSeries-bridge
queue named on the MQeInput node. Each message class produces different
behaviors and each has advantages in different circumstances. The SendMessage
sample provided in the SupportPac passes a message of each type into the
MQeInput node and you can see from the sample how each message is
constructed.

MQeMsgObject
MQeMsgObject does not put any restrictions on the fields it can contain, and so only
predefined fields are transferred to the MQMD (the MQSeries message descriptor)
when the message is passed to an MQSeries network — the remaining fields are
put, ’unparsed’, in the message body. The payload of a message derived from
MQeMsgObject cannot be parsed, but this type of message does enable you to use
special MQSeries Everyplace fields, such as pic. This allows the message to be
reconstructed if it is sent back to MQSeries Everyplace by one of the nodes within
the message flow (primarily the MQeOutput node). However, the payload part of
the message is less parsable within MQSeries Integrator because a parser is
currently not supported to read MQeMsgObject.

MQeMbMsgObject
A message constructed from MQeMbMsgObject has only those fields that are
compatible with the broker passed into the message flow; unrecognized fields are
ignored. Therefore, if this message is routed back to an MQSeries Everyplace
queue, these fields will not be present. Although it enables you to parse the
payload, and therefore manipulate or operate on parts of that data (for example,
store it in a database), you cannot use certain special MQSeries Everyplace fields,
such as pic.

The MQeOutput node

Chapter 1. Working with MQSeries Everyplace 7

Security
If MQSeries Everyplace security is configured then the MQSeries Everyplace
authentication (described in the MQSeries Everyplace manuals) is used until the
message reaches the special bridge queue.

Problem determination
When using MQSeries Everyplace with MQSeries Integrator, you should use all the
normal facilities available to you with MQSeries Integrator, that is:
v trace.
v the application event log.
v the MQSeries Integrator Control Center log.

The use of these is covered in the MQSeries Integrator documentation.

In addition to the MQSeries Integrator trace, you can also choose to enable
MQSeries Everyplace trace. To do this, in the MQeInput node, on the ″General″
tab of the properties dialog, change the default setting of the ″Trace″ property from
none to one of:
v standard
v debug
v full

You should then set the ″Trace Filename″ property to show the path and file where
trace is to be written. The directory structure in which the file is specified must
already exist, but you do not need to have created the file in advance.

Information about MQSeries Everyplace processing within a message flow is sent
to the MQSeries Integrator trace in the event of an error (for example, failure to
create a queue) but, if MQSeries Everyplace trace is active, more information is
contained in the MQSeries Everyplace-specific trace file.

Security

8 MQSeries Integrator – Working with MQSeries Everyplace

Chapter 2. MQSeries Everyplace scenarios

This example provides samples that give you a quick start at connecting MQSeries
Everyplace into an MQSeries Integrator broker. They enable you to:
v Create two MQSeries Everyplace queue managers: a server called ServerQM1 and

a client called ClientQM1.
v Create connections between them and create the queues necessary for routing

messages.
v Transmit sample point-to-point or publish/subscribe messages through the

message broker.

You can modify any of the samples provided. If you do so, you must recompile the
Java source code.

The following steps explain how to run the example. The directory structures
described assume that you are using Windows NT. On other platforms, you should
change these paths accordingly.
Step 1. Set up the CLASSPATH for every machine from which you will run

programs that communicate with MQSeries Everyplace within MQSeries
Integrator and with MQSeries Everyplace itself (standalone).
You need to add:

<mqsi_root>\classes\mqimqe.jar;

<mqsi_root>\classes\mqedevice.jar;

<mqsi_root>\classes\mqeexamples.jar;

<mqsi_root>\classes\mqegateway.jar;

<mqsi_root>\classes\mqemqbridge.jar;

On Windows NT, there is a limit of 255 characters in a CLASSPATH setting.
To avoid encountering this restriction, you could assign these to a new
environment variable, for example MQEPATH, then add %MQEPATH%; to your
CLASSPATH.

Step 2. Create a directory structure somewhere convenient on your machine for
the sample Java package: /com/ibm/broker/mqimqe/example.

Step 3. Store the files supplied with this SupportPac into that directory.
Step 4. Create MQSeries Everyplace queue managers on the MQSeries

Everyplace client.

From a command prompt, noting that the file name is case sensitive, type:
java examples.install.CreateQueueManager

In the Configuration File box, browse for and select the ClientQM1.ini file,
supplied in this SupportPac. Set the directory for the queues to
x:\ClientQM1 (where x is a drive letter of your choice). Click ’OK’.

An MQSeries Everyplace client queue manager is created with a name
ClientQM1, with a registry located at x:\ClientQM1\Registry.

Step 5. Create the MQSeries Everyplace server queue manager within MQSeries
Integrator.

From a command prompt, noting that the file name is case sensitive, type:
java examples.install.CreateQueueManager

© Copyright IBM Corp. 2000, 2001 9

In the Configuration File box, browse for and select the ServerQM.ini file,
supplied in this SupportPac. Set the directory for the queues to
x:\ServerQM1. Click ’OK’.

An MQSeries Everyplace server queue manager is created with a name
ServerQM1, with a registry located at x:\ServerQM1\Registry.

If you browse the sample ServerQM.ini file, you might notice that the
listener is set to listen on port 8081. This setting is ignored on the creation
of the queue manager. Later in the configuration, if you choose to have
the MQeInput node take its settings from a configuration file, the port
number will be picked up and used.

If you get an error on creating the server queue manager with text:
com.ibm.broker.mqimqe.examples.rule.AttributeRule

check that you have correctly referenced <mqsi_root>\classes\mqimqe.jar
in the CLASSPATH.

Step 6. Configure message flows.

You can either add MQSeries Everyplace nodes to existing message flows
or create new flows. Open the Control Center Message Flows (Designer)
view. Drag and drop the nodes into the message flow. For point-to-point
(non publish/subscribe) messaging, you need an MQeInput node and an
MQeOutput node. For publish/subscribe messaging, you need an
MQeInput node and a Publication node.

Configuring the MQeInput node
For this example, you need to set only the ″Queue Name″ (on the
″General″ tab). Each MQeInput node needs to have a different
queue name. In Step 9 below, the example uses the queue name,
MQeInputQ1.

You may also want to make other configuration changes (for
example, setting the level of trace) but this is not necessary to be
able to run these scripts.

Configuring the MQeOutput node
Check that the ″Destination Mode″ (on the ″Advanced″ tab) is
″Destination List″. Leave all other fields blank.

Configuring the Publication node
No action required.

Step 7. Deploy the message flow.

Check in the message flow, assign it to a broker, and deploy complete
assignments data. Check that the deploy is successful in the Log view of
the Control Center. (You should see BIP404I and BIP2056I).
v The client queue manager is started when the client starts.
v The server queue manager is only started when an MQeInput node is

running and is deployed in a flow where a MQSeries Integrator broker
is running.

v Deploying a point-to-point message flow (MQeInput —> MQeOutput)
also starts the MQSeries Everyplace server queue manager.

Step 8. Set up the MQSeries Everyplace queue managers.

Run the SetupMQeExample1 and SetupMQeExample2 programs to set up the
MQSeries Everyplace queue managers.

MQSeries Everyplace scenarios

10 MQSeries Integrator – Working with MQSeries Everyplace

v SetupMQeExample1 creates a route so that the client queue manager can
contact the server queue manager.

v SetupMQeExample2 creates a queue on the server queue manager called
Inbox that can be used in the examples for returning messages.

These programs take the following parameters. SetupMQeExample1 requires
all five parameters, in the sequence shown. SetupMQeExample2 requires the
first two only.
a. MQSeries Everyplace queue manager name (ServerQM1 in this

example).
b. Path to the MQSeries Everyplace client configuration file

(ClientQM.ini in this example).
c. IP address of the MQSeries Everyplace server(1.23.45.678 in this

example).
d. Port on which the MQSeries Everyplace server is listening. The port

number must match the ″Port″ specified on the ″Listener″ tab of the
MQeInput node properties dialog. By default, the port number in the
MQeInput node properties is 8081.

e. Name of the MQSeries queue manager hosting the MQSeries
Integrator broker (for example MQSI_SAMPLE_QM).

From a command prompt, type on one line (for example):
java com.ibm.broker.mqimqe.example.SetupMQeExample1 ServerQM1

x:\com\ibm\broker\mqimqe\example\ClientQM.ini
1.23.45.678 8081 MQSI_SAMPLE_QM

Step 9. Send messages through the message flows.

v For point-to-point messages, use SendMessages. This sends a message
using both the MQeMsgObj class and the MQeMbMsgObj class.

v For publish/subscribe messages, use SendPubSubMessages. This
subscribes, publishes, reads the message, and then unsubscribes.

Both these programs take the following parameters, all of which must be
present:
a. MQSeries Everyplace queue manager name (ServerQM1 in this

example).
b. Path to the MQSeries Everyplace client configuration file

(ClientQM.ini).
c. Name of the MQSeries queue manager hosting the MQSeries Integrator

broker (for example MQSI_SAMPLE_QM).
d. Name of the MQSeries-bridge queue receiving the input (the queue

you named on the MQInput node ″Queue Name″ property; for
example MQeInputQ1).

e. Name of the MQSeries Everyplace queue where you want to receive
messages back from the broker. The sample code creates a queue called
Inbox but, if you already have an MQSeries Everyplace queue defined,
you can specify that queue.

To send point-to-point messages, type - on one line - at a command
prompt (for example):
java com.ibm.broker.mqimqe.example.SendMessages ServerQM1

x:\com\ibm\broker\mqimqe\example\ClientQM.ini
MQSI_SAMPLE_QM MQeInputQ1 MQeOut

MQSeries Everyplace scenarios

Chapter 2. MQSeries Everyplace scenarios 11

Or, to send publish/subscribe messages, type - on one line - at a
command prompt (for example):
java com.ibm.broker.mqimqe.example.SendPubSubMessages ServerQM1

x:\com\ibm\broker\mqimqe\example\ClientQM.ini
MQSI_SAMPLE_QM MQeInputQ1 MQeOut

In this latter case, if messages are sent and received successfully, you
should see output similar to:
..Started queue manager: ClientQM1
Subscribing to the topics:
climate
humidity
temperature
..Put message to QM/queue: MQSI_SAMPLE_QM/MQeInputQ2
Publishing message to topic 'climate'
..Put message to QM/queue: MQSI_SAMPLE_QM/MQeInputQ2
Reading message from queue
Topic: climate
Message: sunny
un-subscribing from the topics:
climate
humidity
temperature
..Put message to QM/queue: MQSI_SAMPLE_QM/MQeInputQ2

(where MQeInputQ2 is the name of the MQeInput node used).

If, after the sample attempts to put a message to the broker queue
manager and the MQSeries-bridge queue, you see the following MQSeries
Everyplace exception:
java.net.ConnectException: Connection refused

you need to check the following:
a. The broker is started (mqsistart <brokername>).
b. The port number that you specified when you ran SetupMQeExample1

matches the port number specified on the ″Listener″ tab of the
MQeInput node.

c. There is a listener running on that port number (type netstat at a
command prompt to see).

d. You have specified an MQSeries-bridge queue name. (The deploy will
apparently be succesful even if you have not set this parameter.)

MQSeries Everyplace scenarios

12 MQSeries Integrator – Working with MQSeries Everyplace

Appendix A. MQSeries Everyplace configuration files

Following, are two listings of example MQSeries Everyplace configuration files:
v ServerQM.ini is for an MQSeries Everyplace server running inside the message

broker.
v ClientQM.ini is for a simple MQSeries Everyplace client.

ServerQM.ini
*
* MQeConfig.ini
* An example ini file for an MQe server running inside the message broker.
*
[Alias]
*
* Event log class
*
(ascii)EventLog=examples.log.LogToDiskFile
*
* Network adapter class
*
* Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter
*
* Queue Manager class
*
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager
*
* Trace handler (if any)
*
(ascii)Trace=com.ibm.broker.mqimqe.wrapper.trace.MQeTrace
*
* Message Log file interface
*
(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter
*
* Class name for File registry
*
(ascii)FileRegistry=com.ibm.mqe.registry.MQeFileSession
*
* Class name for Private registry
*
(ascii)PrivateRegistry=com.ibm.mqe.registry.MQePrivateSession
*
* Default Channel class
*
(ascii)DefaultChannel=com.ibm.mqe.MQeChannel
*
* Default Transporter class
*
(ascii)DefaultTransporter=com.ibm.mqe.MQeTransporter
*
* Channel Attribute Rules
*
(ascii)ChannelAttrRules=com.ibm.broker.mqimqe.examples.rules.AttributeRule
*
* Name of Base Key
*
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey
*
* Name of Shared Key
*

© Copyright IBM Corp. 2000, 2001 13

(ascii)AttributeKey_2=com.ibm.mqe.attributes.MQeSharedKey
*
(ascii)NetworkHttp=com.ibm.mqe.adapters.MQeTcpipHttpAdapter
--
* Activate listeners
[Listeners]
(ascii)01=ListenerHttp
* TcpipHttp (Web server) listener definition
[ListenerHttp]
(ascii)Accept=NetworkHttp:
(ascii)Adapter=AdapterHttp
(ascii)Class=com.ibm.mqe.MQeChannelListener
(ascii)Manager=com.ibm.mqe.MQeChannelManager
(ascii)MaxChannels=0
(ascii)TimeInterval=300
* Configuration of the HTTP adapter
[MapAdapter]
(ascii)AdapterHttp=FileDescriptor=NetworkHttp::8081;Parameter=;Option=<LISTEN>
--
[QueueManager]
*
* Name for this Queue Manager
*
(ascii)Name=ServerQM1
--
[Registry]
*
* Type of registry for config data
*
(ascii)LocalRegType=FileRegistry
*
* Location of the registry
*
(ascii)DirName=\ServerQM1\Registry\

The above sample configuration file contains a special [Listeners] section that is
not present in a ’normal’ MQSeries Everyplace configuration file. Any
configuration file used on an MQeInput node must be based on this sample and
not an existing file. Without this new section,
v the listener will not operate if you have ticked the box in the MQeInput node

properties to use a configuration file, and so you will not be able to receive any
incoming connections.

v you cannot use MQe_Explorer (available as SupportPac ES02: ″MQSeries
Everyplace MQe_Explorer″) once an MQeInput node has used it.

Furthermore, the [MapAdapter] section, normally optional, is mandatory when
writing a configuration file for the MQSeries Everyplace server within the
MQSeries Integrator message broker. This is because the stand-alone version of
MQSeries Everyplace typically only supports one port number to listen on. But
within the message broker, it is possible to have a different port number for each
MQInput node, and so multiple listeners may be needed in a single MQSeries
Everyplace instance. The example demonstrates how these sections are configured:
v The [Listeners] section contains a list of definitions for listeners. The example

only contains one definition, called ListenerHttp.
v Each definition must have an associated Section, in this case called

[ListenerHttp]. This contains specific information about the listener session. It
also includes the Adapter field, which correlates to a field within the
[MapAdapter] section.

v The [MapAdapter] section contains specific information concerning the port such
as the port number to use and the adapter type.

MQSeries Everyplace configuration files

14 MQSeries Integrator – Working with MQSeries Everyplace

ClientQM.ini
*
* ExamplesMQeClient.ini
* An example ini file for a simple MQe client
*
[Alias]
*
* Event log class
*
(ascii)EventLog=examples.log.LogToDiskFile
*
* Network adapter class
*
(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter
*
* Queue Manager class
*
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager
*
* Trace handler (if any)
*
(ascii)Trace=examples.trace.MQeTrace
*
* Message Log file interface
*
(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter
*
* Class name for File registry
*
(ascii)FileRegistry=com.ibm.mqe.registry.MQeFileSession
*
* Class name for Private registry
*
(ascii)PrivateRegistry=com.ibm.mqe.Registry.MQePrivateSession
*
* Default Channel class
*
(ascii)DefaultChannel=com.ibm.mqe.MQeChannel
*
* Default Transporter class
*
(ascii)DefaultTransporter=com.ibm.mqe.MQeTransporter
*
* Channel Attribute Rules
*
(ascii)ChannelAttrRules=examples.rules.AttributeRule
*
* Name of Base Key
*
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey
*
* Name of Shared Key
*
(ascii)AttributeKey_2=com.ibm.mqe.Attributes.MQeSharedKey
--
*
* Registry (configuration data store)
*
[Registry]
*
* Type of registry for config data
*
(ascii)LocalRegType=FileRegistry
*
* Location of the registry
*

MQSeries Everyplace configuration files

Appendix A. MQSeries Everyplace configuration files 15

(ascii)DirName=\ClientQM1\Registry\
--
*
* Queue manager details
*
[QueueManager]
*
* Name for this Queue Manager
*
(ascii)Name=ClientQM1

MQSeries Everyplace configuration files

16 MQSeries Integrator – Working with MQSeries Everyplace

Appendix B. MQSeries Everyplace queue manager setup files

Following, are two listings of the files to create connections between the queue
managers and queues to route messages:
v SetupMQeExample1.java creates a route so that the client queue manager

knows how to contact the server queue manager.
v SetupMQeExample2.java creates a queue on the server queue manager called

Inbox that can be used in the examples (send (PubSub) messages) for returning
messages.

SetupMQeExample1.java
package com.ibm.broker.mqimqe.example;

/*--*/
/* Licensed Materials - Property of IBM */
/* */
/* MQSeries Everyplace */
/* =================== */
/* */
/* */
/* Copyright IBM Corp 2001. All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, Duplication or disclosure */
/* restricted by GSA ADP Schedule Contract with IBM Corp. */
/*--*/
import com.ibm.mqe.*;
import com.ibm.mqe.administration.*;
import examples.application.*;
import java.io.File;
import examples.administration.simple.*;

public class SetupMQeExample1 extends ExampleAdminBase
{

String routeDest1 = "ServerQM1";
String routeAddress1 = "Network://127.0.0.1:8081";
String routeDest2;

String routeCommand1 = null;
String routeOptions1 = null;
static String iniFileName;

public SetupMQeExample1() throws Exception {
super();

}
public SetupMQeExample1(String args[]) throws Exception {

routeDest1 = args[0]; // MQe server
routeAddress1 = "Network://" + args[2] + ":" + args[3]; // route address
routeCommand1 = null;
routeOptions1 = null;
routeDest2 = args[4]; // MQSeries (not MQe) queue manager name

}
public SetupMQeExample1(String QMgrName) throws Exception {

super(QMgrName);
}
protected void addRoutes() throws Exception {

System.out.println("..Setup an admin message to add some routes ");

// Create an empty queue manager admin message and parameters field
MQeConnectionAdminMsg msg = new MQeConnectionAdminMsg(routeDest1);

© Copyright IBM Corp. 2000, 2001 17

// Prime message with who to reply to and a unique identifier
MQeFields msgTest = primeAdminMsg(msg);

// Set the admin action to create a new queue
// The connection is setup to use a default channel. This is an alias
// which must have be setup on the queue manager for the connection to be
// valid.
msg.create(routeAddress1, routeCommand1, routeOptions1,

"DefaultChannel", "Example route 1");

// Put the admin message to the admin queue
System.out.println("..Put admin message to QM/queue: " + qMgrName + "/AdminQ");
myQM.putMessage(qMgrName, "AdminQ", msg, null, 0);

// Wait a while for the response message
MQeAdminMsg respMsg = waitForReply(msgTest);
checkReply(respMsg);

// Create a named connection to the message broker, but specifying
// the address of the MQe server QM. Requests will be sent to the
// MQe Server QM, which will in turn put them to the message brokers
// BridgeQueue.
MQeConnectionAdminMsg msg2 = new MQeConnectionAdminMsg(routeDest2);

// Prime message with who to reply to and a unique identifier
MQeFields msgTest2 = primeAdminMsg(msg2);

// Set the admin action to create a new queue
// The connection is setup to use a default channel. This is an alias
// which must have be setup on the queue manager for the connection to be
// valid.
msg2.create(routeAddress1, routeCommand1, routeOptions1,

"DefaultChannel", "Example route 2");

// Put the admin message to the admin queue
System.out.println("..Put admin message to QM/queue: " + qMgrName + "/AdminQ");
myQM.putMessage(qMgrName, "AdminQ", msg2, null, 0);

// Wait a while for the response message
MQeAdminMsg respMsg2 = waitForReply(msgTest2);
checkReply(respMsg2);
System.out.println("..Added route to the message broker");
System.out.println("..Add Routes Successful");

}
/**
* Creates the StoreAndForwardQueue that will hold messages from the broker
*/
protected void createSandFQueue() throws Exception {

String newForwardQueue = "ForwardQueue";
System.out.println("..Setup an admin message to create queue " + newForwardQueue);
// Now create store and forward queue

MQeStoreAndForwardQueueAdminMsg msg =
new MQeStoreAndForwardQueueAdminMsg(qMgrName, newForwardQueue);

MQeFields parms = new MQeFields();

// Prime message with who to reply to and a unique identifier
MQeFields msgTest = primeAdminMsg(msg);

// Set the admin action to create a new queue
msg.create(parms);

// Put the admin message to the admin queue
System.out.println("..Put admin message to QM/queue: " + qMgrName + "/AdminQ");
System.out.println("going to put msg now....");
myQM.putMessage(qMgrName, "AdminQ", msg, null, 0);

MQSeries Everyplace queue manager setup files

18 MQSeries Integrator – Working with MQSeries Everyplace

// Wait a while for the response message
MQeAdminMsg respMsg = waitForReply(msgTest);

// Check that a good reply was received
checkReply(respMsg);
System.out.println("StoreAndForward Queue created successfully");

}
/**
* All work is performed in this method
*/
public void doIt() throws Exception {

try {
System.out.println("Adding route to: " + routeDest2);
// Add route to remote QM
addRoutes();
// Create a store and forward queue
createSandFQueue();

} catch (Exception e) {
e.printStackTrace();
System.out.println(example + " Failed! " + e);

} finally {
// Clean up
close();

}
}
public static void main(String args[]) throws Exception {

// Check that we have the correct number of parameters
if (args.length == 5) {

// Create an instance of the class and call the doIt() method
iniFileName = args[1]; // Client config file name
new SetupMQeExample1(args).doIt();

} else {
System.out.println("The required parameters are:");
System.out.println("1] MQe queue manager name");
System.out.println("2] Client configuration .ini file");
System.out.println("3] IP address of server");
System.out.println("4] Port number used by MQe server");
System.out.println("5] MQSeries queue manager name used by the broker:");

}
}
/**
* Over-ride default parameter settings.
*/
public void setParms() {

startupIni = iniFileName;
}
}

SetupMQeExample2.java
package com.ibm.broker.mqimqe.example;

/*--*/
/* Licensed Materials - Property of IBM */
/* */
/* MQSeries Everyplace */
/* =================== */
/* */
/* */
/* Copyright IBM Corp 2001. All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, Duplication or disclosure */
/* restricted by GSA ADP Schedule Contract with IBM Corp. */
/*--*/
import com.ibm.mqe.*;
import com.ibm.mqe.administration.*;

MQSeries Everyplace queue manager setup files

Appendix B. MQSeries Everyplace queue manager setup files 19

import examples.application.*;
import examples.administration.simple.*;
import java.io.File;

public class SetupMQeExample2 extends ExampleAdminBase {
String newQueue = "Inbox";
static String iniFileName;

public SetupMQeExample2(String QMgrName) throws Exception {
super(QMgrName);

}
/**
* create a "real" queue to place messages from the message broker
*/
protected void createMsgQueue() throws Exception {

System.out.println("..Setup an admin message to create queue " + newQueue);

// Create an empty queue admin message and parameters field
MQeQueueAdminMsg msg2 = new MQeQueueAdminMsg(qMgrName, newQueue);
MQeFields parms = new MQeFields();

// Prime message with who to reply to and a unique identifier
MQeFields msgTest = primeAdminMsg(msg2);

// Set the admin action to create a new queue
msg2.create(parms);

// Put the admin message to the admin queue
System.out.println("..Put admin message to QM/queue: " + qMgrName + "/AdminQ");
myQM.putMessage(qMgrName, "AdminQ", msg2, null, 0);

// Wait a while for the response message
MQeAdminMsg respMsg = waitForReply(msgTest);

// Check that a good reply was receive
checkReply(respMsg);
System.out.println("..Queue creation Successful");

}
/**
* All work is performed in this method
*/
public void doIt() throws Exception {

try {
// create a queue called Inbox
createMsgQueue();

} catch (Exception e) {
e.printStackTrace();
System.out.println(example + " Failed! " + e);

} finally {
// Clean up
close();

}
}
public static void main(String args[]) throws Exception {

// Check that we have the correct number of parameters
if (args.length == 2) {

// Create an instance of the class and call the doIt() method
iniFileName = args[1]; // Client config file name
new SetupMQeExample2(args[0]).doIt();

} else {
System.out.println("The required parameters are:");
System.out.println("1] MQe queue manager name");
System.out.println("2] Client configuration .ini file");

}
}
/**
* Over-ride default parameter settings.
*/

MQSeries Everyplace queue manager setup files

20 MQSeries Integrator – Working with MQSeries Everyplace

public void setParms() {
startupIni = iniFileName;

}
}

MQSeries Everyplace queue manager setup files

Appendix B. MQSeries Everyplace queue manager setup files 21

MQSeries Everyplace queue manager setup files

22 MQSeries Integrator – Working with MQSeries Everyplace

Appendix C. Files for sending MQSeries Everyplace
messages

Following, are two listings of example MQSeries Everyplace configuration files:
v SendMessages.java is for point-to-point messages.
v SendPubSubMessages.java is for publish/subscribe messages.

Some of the atributes which you must set for the MQSeries-bridge queue behave
differently when used in MQSeries Integrator. Note the following:
v MQeMbConstants.TYPE_OF_MSG is a mandatory field. The MQSeries-bridge

only supports one type of message. The MQSeries Everyplace node supports
four types of messages, these are non publication, publication, subscription and
unsubscription messages.

v MsgID and CorrelID are mandatory fields and must be the full length. This
differs from the MQSeries-bridge where field lengths may be shorter than those
required.

v MQe.Msg_ExpireTime is a manditory field. To specify an infinate amount of
time, the value -1 may be used.

v MQeMbConstants.MQ_DestQueueMgr and
MQeMbConstants.MQ_DestQueueName are new fields which are used to
specify a returning queue manager and queue name for messages returning to
MQSeries Everyplace after being processed by the message broker.

v MQeMbConstants.MQ_AccountingToken is a mandatory field.

Note: In the following listings, a ¬ symbol is used to indicate a continuation line
where the code is too long to fit on the page.

SendMessages.java
package com.ibm.broker.mqimqe.example;

/*--*/
/* Licensed Materials - Property of IBM */
/* */
/* MQSeries Everyplace */
/* =================== */
/* */
/* */
/* Copyright IBM Corp 2001. All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, Duplication or disclosure */
/* restricted by GSA ADP Schedule Contract with IBM Corp. */
/*--*/
import com.ibm.mqe.*;
import com.ibm.mqe.administration.*;
import examples.application.*;
import examples.administration.simple.*;
import java.io.File;
import com.ibm.broker.mqimqe.wrapper.*;
import java.io.*;

public class SendMessages extends ExampleAdminBase
{

static String destQueueManager;
static String destBridgeQueue;

© Copyright IBM Corp. 2000, 2001 23

static String ServerMQe;
static String InboxQueue;
static String iniFileName;

public SendMessages(String QMgrName) throws Exception {
super(QMgrName);

}
/**
* All work is performed in this method
* This time, sending messages as MQe-encoded format
*/
public void doIt() throws Exception {

// Ensure that there are currently no messages on the queue
flushQ();

System.out.println("\n\nSending non publish subscribe message to the broker");
System.out.println("This is constructed using an MQeMsgObject object so all" +

" fields will be passed into the message broker");
// Send MQe message into the message broker
nonPubSub_MQe();
// Read the message returned from the message broker
readqueueMQe();
System.out.println("\n\nSending non publish subscribe message to the broker");
System.out.println("This is constructed using an MQeMbMsgObject so only the" +

" fields compatible within the message broker will be sent");
nonPubSub_Mb();
// Read the message returned from the message broker
readqueueMb();

// Cleanup
close();

}
public void flushQ() throws Exception {

MQeMsgObject msgObj = null;
do {

try {
msgObj = myQM.getMessage(ServerMQe, InboxQueue, null, null, 0);

} catch (Exception e) {
msgObj = null;

}
} while (msgObj != null);

}
public static void main(String args[]) throws Exception {

// Check that we have the correct number of parameters
if (args.length == 5) {

// Set the parameters
ServerMQe = args[0];
iniFileName = args[1];
destQueueManager = args[2];
destBridgeQueue = args[3];
InboxQueue = args[4];

// Create an instance of the class and call the doIt() method
new SendMessages(ServerMQe).doIt();

} else {
System.out.println("The required parameters are:");
System.out.println("1] MQe queue manager name");
System.out.println("2] Client configuration .ini file");
System.out.println("3] MQSeries queue manager name used by the broker");
System.out.println("4] Bridge queue name");
System.out.println("5] Queue name to place the returning messages" +

" from the message broker");
}

}
public void nonPubSub_Mb() throws Exception {

try {
//System.out.println("Non pub sub - Mb message object");
MQeMbMsgObject msg = new MQeMbMsgObject();

Files for sending MQSeries Everyplace messages

24 MQSeries Integrator – Working with MQSeries Everyplace

msg.putInt(MQeMbConstants.TYPE_OF_MSG, MQeMbConstants.TYPE_MQE);
msg.setCorrelationId(

MQe.hexToByte("0100"));
msg.setDestQueueMgr(ServerMQe);
msg.setDestQueueName(InboxQueue);
msg.setReplyToQueueManagerName(myQM.getName());
msg.setReplyToQueueName(MQe.System_Default_Queue_Name);
msg.setMessageId(

MQe.hexToByte("414D51204172676F4D51652020202020E636EB3813211200"));
msg.setExpiry(-1);
msg.setGroupId(

MQe.hexToByte("0001"));
msg.setAccountingToken(

MQe.hexToByte("000¬
0000000000001"));

msg.setPersistence(0);
msg.setMessageType(8);

// Note that this data is passed as is into the message broker but
// only one field is supported. This differs from the MQeMsgObject
// which is not easily parsable within the message broker although
// passes all avliable fields
byte[] theData = asciiToByte("This is the payload");
msg.setData(theData);

myQM.putMessage(destQueueManager, destBridgeQueue, msg, null, 0);
} catch (Exception e) {

e.printStackTrace();
System.out.println(example + " Failed! " + e);

}
}
public void nonPubSub_MQe() throws Exception {

try {
//System.out.println("Non pub sub - MQe message object");
MQeMsgObject msg = new MQeMsgObject();
msg.putInt(MQeMbConstants.TYPE_OF_MSG, MQeMbConstants.TYPE_MQE);
msg.putArrayOfByte(MQe.Msg_CorrelID,

MQe.hexToByte("0100"));
msg.putAscii(MQeMbConstants.MQ_DestQueueMgr, ServerMQe);
msg.putAscii(MQeMbConstants.MQ_DestQueueName, InboxQueue);
msg.putAscii(MQe.Msg_ReplyToQMgr, myQM.getName());
msg.putAscii(MQe.Msg_ReplyToQ, MQe.System_Default_Queue_Name);
msg.putArrayOfByte(MQe.Msg_MsgID,

MQe.hexToByte("414D51204172676F4D51652020202020E636EB3813211200"));
msg.putArrayOfByte(MQeMbConstants.MQ_GroupId,

MQe.hexToByte("00"));
msg.putArrayOfByte(MQeMbConstants.MQ_AccountingToken,

MQe.hexToByte("0100¬
0000000000000000"));

msg.putInt(MQe.Msg_ExpireTime, -1);
msg.putInt(MQeMbConstants.MQ_Persistence, 0);
msg.putInt(MQeMbConstants.MQ_MessageType, 8);

// Note that this data is not easily parsable within the message
// broker although all fields provided are passed. This is unlike
// the MQeMbMsgObject which only supports one payload field although
// is more parsable within the message broker.

// Data
byte[] theData = asciiToByte("This is the payload");
msg.putArrayOfByte(MQeMbConstants.MQ_Data, theData);

// Own Data
String ownData = "My own tag with some data";
msg.putAscii("myOwnTag", ownData);

// Put the message to the bridge queue

Files for sending MQSeries Everyplace messages

Appendix C. Files for sending MQSeries Everyplace messages 25

myQM.putMessage(destQueueManager, destBridgeQueue, msg, null, 0);
} catch (Exception e) {

e.printStackTrace();
System.out.println(example + " Failed! " + e);

}
}
public void readqueueMb() throws Exception {

try {
int limit = 10; // The number of seconds to wait for a message
System.out.println("Reading message from queue");

MQeMsgObject msgObj = null;
while ((msgObj == null) && (limit-- > 0)) {

try {
msgObj = myQM.getMessage(ServerMQe, InboxQueue, null, null, 0);

} catch (Exception e) {
msgObj = null;
Thread.sleep(1000);

}
}
byte data[] = msgObj.getArrayOfByte(MQeMbConstants.MQ_Data);
System.out.println("Message: " + byteToAscii(data));

} catch (Exception e) {
System.out.println("The message retrieved did not contain all of" +

" the expected fields");
}

}
public void readqueueMQe() throws Exception {

try {
int limit = 10; // The number of seconds to wait for a message
System.out.println("Reading message from queue");

MQeMsgObject msgObj = null;
while ((msgObj == null) && (limit-- > 0)) {

try {
msgObj = myQM.getMessage(ServerMQe, InboxQueue, null, null, 0);

} catch (Exception e) {
msgObj = null;
Thread.sleep(1000);

}
}

// Extract the data
byte data[] = msgObj.getArrayOfByte(MQeMbConstants.MQ_Data);
String ownData = msgObj.getAscii("myOwnTag");

// Display the data
System.out.println("Message: " + byteToAscii(data));
System.out.println("Own message tag: " + ownData);

} catch (Exception e) {
System.out.println("The message retrieved did not contain all of" +

" the expected fields");
}

}
/**
* Over-ride default parameter settings.
*/
public void setParms() {

startupIni = iniFileName;
}
}

Files for sending MQSeries Everyplace messages

26 MQSeries Integrator – Working with MQSeries Everyplace

SendPubSubMessages.java
package com.ibm.broker.mqimqe.example;

/*--*/
/* Licensed Materials - Property of IBM */
/* */
/* MQSeries Everyplace */
/* =================== */
/* */
/* */
/* Copyright IBM Corp 2001. All rights reserved. */
/* */
/* US Government Users Restricted Rights - Use, Duplication or disclosure */
/* restricted by GSA ADP Schedule Contract with IBM Corp. */
/*--*/
import com.ibm.mqe.*;
import com.ibm.mqe.administration.*;
import examples.application.*;
import examples.administration.simple.*;
import java.io.File;
import com.ibm.broker.mqimqe.wrapper.*;

public class SendPubSubMessages extends ExampleAdminBase
{

static String destQueueManager;
static String destBridgeQueue;
static String ServerMQe;
static String InboxQueue;
static String iniFileName;

public SendPubSubMessages(String QMgrName) throws Exception {
super(QMgrName);

}
public void doIt() throws Exception {

// Ensure that there are currently no messages on the queue
flushQ();
// Send a subscription message
Subscribe();
// Sens a publication message
Publish();
// Read any messages published for the given subscription
readqueue();
// Send an unsubscription message
UnSubscribe();
// Cleanup
close();

}
public void flushQ() throws Exception {

MQeMsgObject msgObj = null;
do {

try {
msgObj = myQM.getMessage(ServerMQe, InboxQueue, null, null, 0);

} catch (Exception e) {
msgObj = null;

}
} while (msgObj != null);

}
public static void main(String args[]) throws Exception {

// Check that we have the correct number of parameters
if (args.length == 5) {

// Set the parameters
ServerMQe = args[0];
iniFileName = args[1];
destQueueManager = args[2];
destBridgeQueue = args[3];
InboxQueue = args[4];

Files for sending MQSeries Everyplace messages

Appendix C. Files for sending MQSeries Everyplace messages 27

// Create an instance of the class and call the doIt() method
new SendPubSubMessages(ServerMQe).doIt();

} else {
System.out.println("The required parameters are:");
System.out.println("1] MQe queue manager name");
System.out.println("2] Client configuration .ini file");
System.out.println("3] MQSeries queue manager name used by the broker");
System.out.println("4] Bridge queue name");
System.out.println("5] Queue name to place the returning messages from" +

" the message broker");
}

}
public void Publish() throws Exception {

try {
String topic = "weather/climate";
byte[] message = asciiToByte("cold");
System.out.println("Publishing message to topic '" + topic + "'");

// Create a message object
MQeMsgObject msg = new MQeMsgObject();
// Set the message type to publish
msg.putInt(MQeMbConstants.TYPE_OF_MSG, MQeMbConstants.TYPE_PUB);
// Set the topic for the publication message
msg.putAscii(MQeMbConstants.TOPIC, topic);
// Insert the payload
msg.putArrayOfByte(MQeMbConstants.MESSAGE, message);
// Set the persistence of the message (zero is non-persistent)
msg.putInt(MQeMbConstants.MQ_Persistence, 0);
// Specify that the message is not persistant
msg.putBoolean(MQeMbConstants.RETAINED, false);
// Put the message to the MQe bridge queue
myQM.putMessage(destQueueManager, destBridgeQueue, msg, null, 0);

} catch (Exception e) {
e.printStackTrace();
System.out.println(example + " Failed! " + e);

}
}
public void readqueue() throws Exception {

try {
int limit = 10; // The number of seconds to wait for a message
System.out.println("Reading message from queue");

MQeMsgObject msgObj = null;
while ((msgObj == null) && (limit-- > 0)) {

try {
msgObj = myQM.getMessage(ServerMQe, InboxQueue, null, null, 0);

} catch (Exception e) {
msgObj = null;
Thread.sleep(1000);

}
}
// Extract the relevant data from the object and display it
String topic = msgObj.getAscii(MQeMbConstants.TOPIC);
byte data[] = msgObj.getArrayOfByte(MQeMbConstants.MESSAGE);
// Display the data
System.out.println("Topic: " + topic);
System.out.println("Message: " + byteToAscii(data));

} catch (Exception e) {
System.out.println("No message found");

}
}
/**
* Over-ride default parameter settings.
*/
public void setParms() {

startupIni = iniFileName;
}

Files for sending MQSeries Everyplace messages

28 MQSeries Integrator – Working with MQSeries Everyplace

public void Subscribe() throws Exception {
try {

String[] topics = {"weather/climate", "weather/humidity", "weather/temperature"};
System.out.println("Subscribing to the topics:");
for (int numTopics = 0; numTopics < topics.length; numTopics++) {

System.out.println(topics[numTopics]);
}
// Create the message object
MQeMsgObject msg = new MQeMsgObject();
// Set the message type to a subscription message
msg.putInt(MQeMbConstants.TYPE_OF_MSG, MQeMbLaunch.TYPE_SUB);
// Set the three topics
msg.putAsciiArray(MQeMbConstants.TOPIC, topics);
// Set the queue and queue manager to place any messages for this subscription
msg.putAscii(MQeMbConstants.MQ_DestQueueName, "Inbox");
msg.putAscii(MQeMbConstants.MQ_DestQueueMgr, "ServerQM1");
// Put the subscription message to the bridge queue within MQe
myQM.putMessage(destQueueManager, destBridgeQueue, msg, null, 0);

} catch (Exception e) {
e.printStackTrace();
System.out.println(example + " Failed! " + e);

}
}
public void UnSubscribe() throws Exception {

try {
String[] topics = {"weather/climate", "weather/humidity", "weather/temperature"};
System.out.println("un-subscribing from the topics:");
for (int numTopics = 0; numTopics < topics.length; numTopics++) {

System.out.println(topics[numTopics]);
}
// Create the message object
MQeMsgObject msg = new MQeMsgObject();
// Set the message type to an unsubscription message
msg.putInt(MQeMbConstants.TYPE_OF_MSG, MQeMbLaunch.TYPE_UNSUB);
// Set the topics that we want to unsubscribe from
msg.putAsciiArray(MQeMbConstants.TOPIC, topics);
// Specify the queue and queue manager that we specified to place messages to
msg.putAscii(MQeMbConstants.MQ_DestQueueName, "Inbox");
msg.putAscii(MQeMbConstants.MQ_DestQueueMgr, "ServerQM1");
// Put the unsubscription message to the bridge queue within MQe
myQM.putMessage(destQueueManager, destBridgeQueue, msg, null, 0);

} catch (Exception e) {
e.printStackTrace();
System.out.println(example + " Failed! " + e);

}
}
}

Files for sending MQSeries Everyplace messages

Appendix C. Files for sending MQSeries Everyplace messages 29

Files for sending MQSeries Everyplace messages

30 MQSeries Integrator – Working with MQSeries Everyplace

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2001 31

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

32 MQSeries Integrator – Working with MQSeries Everyplace

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM MQSeries MQSeries Integrator
MQSeries Everyplace SupportPac

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix D. Notices 33

34 MQSeries Integrator – Working with MQSeries Everyplace

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–842327
– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2001 35

36 MQSeries Integrator – Working with MQSeries Everyplace

����

Printed in U.S.A.

	Contents
	About this SupportPac
	Who this document is for
	What you need to know to understand this document
	Assumptions
	Contents
	Where to find more information

	Chapter 1. Working with MQSeries Everyplace
	MQSeries Everyplace overview
	Bridge to MQSeries
	MQSeries Everyplace and MQSeries Integrator
	Input from MQSeries Everyplace
	The MQeInput node

	Output to MQSeries Everyplace
	The MQeOutput node
	The Publication node

	MQSeries Everyplace messages in MQSeries Integrator
	MQeMsgObject
	MQeMbMsgObject

	Security
	Problem determination

	Chapter 2. MQSeries Everyplace scenarios
	Appendix A. MQSeries Everyplace configuration files
	ServerQM.ini
	ClientQM.ini

	Appendix B. MQSeries Everyplace queue manager setup files
	SetupMQeExample1.java
	SetupMQeExample2.java

	Appendix C. Files for sending MQSeries Everyplace messages
	SendMessages.java
	SendPubSubMessages.java

	Appendix D. Notices
	Trademarks

	Sending your comments to IBM

