
WebSphere® MQ Integrator Enabler

Development Guide

IBM

NOTE:

Before using this information and the product it supports, read the information in
Notices on page 158.

Fifth Edition (June 2002)

© Copyright International Business Machines Corporation 2001, 2002.
All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Printed in USA.

©
 Contents

Contents .i

Figures . vii

About this book .viii
Who should read this book . viii
Terminology used in this book . viii
Prerequisite and related information. viii
How to get additional information . ix
How to send your comments . ix

Chapter 1 Introduction . 1

Chapter 2 Adding a new system . 2
System profile tables. 2
Symbolic destination resolution table . 6
Setting up the queues in MQSeries . 8
Adding entries to the CRF. 9

Chapter 3 Removing a system . 10
System profile tables. 10
Message profile. 10
Symbolic destination resolution . 10
MQSeries queues . 10
Cross reference function. 11

Chapter 4 The XML language & message profile . 12
XML messaging technique . 12
Alternative XML within data model . 13
WMQI Enabler header . 14
Adding the WMQI Enabler header to an existing DTD 15
Message profile requirements. 18
CRF. 21
Disabling a message. 22
Message compression . 22
Message persistency . 22
Copyright IBM Corp. 2001, 2001 Contents i

©
Security and encryption support . 23

Chapter 5 WMQI Enabler and MQSeries Integrator . 25
Modifications to MQSeries Integrator . 25
WMQI Enabler internal message flows. 25
HUB_IN_Flow . 28
MQWF_OUT_Flow . 32
HUB_RWF_IN_Flow. 35
HUB_R_IN_Flow. 36
MQWF_END_Flow . 38
HubOnly flows. 40
MQWF_DEFAULT_ACTIVITY_Flow . 49
StoreMessageTemplate_Flow . 50
LOG_ERROR_BACKUP_Flow. 51
LogMessage_Subflow. 52
CRF_Subflow . 53
Changing the code page. 54

Chapter 6 WMQI Enabler capabilities . 56
HUB commands . 56
Message routing interface. 56
Sequence validation . 56
Interaction check. 57
Symbolic destination resolution . 57
Session validation. 57
CRF. 57
Pub/Sub . 58
PluggablePublish_Subflow . 59
Optional support of LDAP . 60
Enhanced authentication . 60
NLS error handling . 60
Logging capabilities . 73
SDR Implemented in LDAP . 76
MQSI WorkArea . 80
Complex Business Processes Support (Update for Complex Use Cases)83
Synchronous versus Asynchronous Processing. 84
Error Message Destination . 85
Communications Between Remote Systems . 86
Copyright IBM Corp. 2001, 2002 Development Guide ii

©
Chapter 7 WMQI Enabler and MQSeries Workflow. 88
Manipulating workflows. 88
Workflow considerations. 89
Generic workflow samples . 100
Alternative to using MQSeries Workflow. 105
Holosofx . 106

Chapter 8 State tags . 109
Example . 109
state="exists" . 110
state="add" . 110
state="modify". 110
state="delete" . 111

Appendix A State definitions . 112

Appendix B Subflow descriptions. 113

Appendix C WMQI Enabler routing diagram . 129

Appendix D MQSI WorkArea DTD . 130

Appendix E Example MQSI WorkArea . 134

Appendix F MQSeries Workflow container structure . 141
Description . 141
Document changes. 141
Document conventions . 142
Terminology . 142
Template data structures . 143
Messages . 149
Workflow mapping rules . 151
Examples . 152

Appendix G Notices . 158
Trademarks. 161
Permission statement . 161
Copyright IBM Corp. 2001, 2001 Contents iii

©
Glossary . 144

Index. 148
Copyright IBM Corp. 2001, 2002 Development Guide iv

©
 Figures

Sample SYSTEM_STATUS_TABLE. 3
Sample SYSTEM_STORE_FLAG_TABLE. 4
Sample SYSTEM_BACKUP_TABLE. 5
SDR table. 6
IFX structure. 13
HUB_IN_Flow. 29
MQWF_OUT_Flow. 33
HUB_RWF_IN_Flow. 35
HUB_R_IN_Flow. 37
MQWF_END_Flow. 39
HUB_ONLY_ONLINE_Flow. 41
HUB_ONLY_OFFLINE_Flow*. 44
MQWF_DEFAULT_ACTIVITY_Flow. 49
StoreMessageTemplate_Flow 50
LOG_ERROR_BACKUP_Flow. 52
LogMessage_Subflow. 53
CRF_Subflow. 54
PluggablePublish_Subflow 59
Sample UserException area usage. 69
Event log. 75
LDAP system interaction diagram. 77
LDAP_SDR_System. 78
FrontEndLDAPSystem. 79
ActivityImplInvoke is the "instance" of this data structure. 94
Data Structure for ActivityImplInvoke area. 94
Data structure properties. 96
MQSWF AddParty. 98
Modification to a QueueName. 100
SetDestinationIDM workflow process template. 101
SyncAndPublishIDM workflow process template. 102
SyncTwoBackEndsIDM workflow process template. 103
TwoBackEnds workflow process template. 104
PublishOnly workflow process template. 105
Figures vCopyright IBM Corp. 2001, 2002

Development Guide vi

©
 About this book

This publication contains information on how to customize WebSphere MQ
Integrator Enabler (WMQI Enabler). It is designed to give instructions on how to
modify WMQI Enabler as it is shipped with the Model Office, to meet the needs of
a particular implementation. Alternatively, this publication can be used in the
development of an enterprise-wide installation of WMQI Enabler.

Who should read this book
Developers who will be working to customize the WMQI Enabler product for their
requirements, architects who are planning an implementation of WMQI Enabler,
and anyone working with XML messaging.

Terminology used in this book
All new terms introduced in this book are defined in the Glossary.

This book uses the following shortened names:

• MQSeries®: a general term for IBM MQSeries messaging products.

• DB2®: a general term to encompass IBM DB2 Universal Database®
Enterprise Edition, Connect Enterprise Edition, and Extended Enterprise
Edition.

• LDAP: refers to the directory structure as characterized by the Lightweight
Directory Access Protocol.

Prerequisite and related information
It is recommended that readers become familiar with the WMQI Enabler
architecture by reading the WMQI Enabler Technical Architecture Book.

It is not necessary for one person to have all of these skills. These skills can be
represented as a team.

Before beginning work to customize WMQI Enabler, it is recommend that business
analysts and project managers read through the WMQI Enabler Planning Guide
in order to provide input to developers on their implementation requirements.
Copyright IBM Corp. 2001, 2002 About this book vii

©
The following publications contain other related information about WebSphere MQ
Integrator Enabler:

• Installation and Setup Guide

• Application Integration Guide

• Model Office Reference Manual

The following other publication is used for information about the prerequisite
products:

• Business Integration Solutions with MQSeries Integrator (IBM
Redbook).

How to get additional information
Visit the following home page at:

http://www.ibm.com/software/mqseries/support/

By following this link you can find:

• The latest information about MQSeries family of products.

• Download Support Packs.

• Access FAQs.

• Access MQSeries family publications library.

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments or suggestions about this book or any other
WebSphere MQ Integrator Enabler documentation:

• By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom
Copyright IBM Corp. 2001, 2002 Development Guide viii

©
• By fax:

- From outside the U.K., after your international access code use
44-1962-816151

- From within the U.K., use 01962-816151

• Electronically, use the appropriate network ID:

- IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink: HURSLEY(IDRCF)
- Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

• The publication title and order number

• The topic to which your comment applies

• Your name and address / telephone number / fax number / network ID
Copyright IBM Corp. 2001, 2002 About this book ix

©
Copyright IBM Corp. 2001, 2002 Development Guide x

© C
 Chapter 1
 Introduction

WebSphere MQ Integrator Enabler (WMQI Enabler) is a starting point for
integrating applications in an enterprise. Undoubtedly, an implementation will
require various customizations to mold or extend WMQI Enabler to meet specific
needs and business requirements. This guide for developers takes a “how to”
approach, including topics for possible customizations and development work.
Each chapter is based on understanding the modifications necessary for a
particular task or area of the WMQI Enabler implementation.

Both MQSeries Integrator (MQSI) and MQSeries Workflow (MQSWF) are given a
chapter in this publication that describes possible customization options. It is
important to recognize that the development of customized MQSWF process flows
is required for the deployment of WMQI Enabler, if complex process definitions are
required for a particular business implementation. MQSI message flows provide
the functionality that drives WMQI Enabler. The existing MQSI message flow
functionality is designed to generically support all WMQI Enabler messages, and
as a result does not require additional customizations. However, there are a few
instances where customization of some MQSI message flows may be desirable
and possible to extend existing WMQI Enabler functionality. Some opportunities for
such modifications are indicated in this document.
1opyright IBM Corp. 2001, 2002

© C
 Chapter 2
 Adding a new system

New systems will need to be integrated with WebSphere MQ Integrator Enabler
(WMQI Enabler) to allow for processing of transactions through WMQI Enabler to
other systems already integrated with WMQI Enabler. An adapter will have to be
created to act as a translator between the new system and WMQI Enabler. The
WMQI Enabler Application Integration Guide contains information on what
requirements an adapter must satisfy to allow an application to integrate with
WMQI Enabler. Once the adapter is ready to be deployed to the WMQI Enabler
implementation, there will be a few steps necessary for WMQI Enabler to recognize
the new application. The following sections will describe the steps that are
necessary, such as adding an entry for adapters in the WMQI Enabler Symbolic
Destination Resolution (SDR) table.

System profile tables
A system Profile consists of the following three tables:

SYSTEM_STATUS_TABLE

SYSTEM_STORE_FLAG_TABLE

SYSTEM_BACKUP_TABLE

System status table
All systems that require interaction with WMQI Enabler must have an entry in the
SYSTEM_STATUS_TABLE. This allows WMQI Enabler to keep up to date with the
availability of each system. "LANGUAGE" defines the language associated with
the NLS handling of a particular system.
"BLOCKED_BY_SYS_INTERACTION_FLG" indicates if a process using the
system is performing a system interaction check. "SYS_ACTIVE" indicates
whether or not the system is active. "SYS_REQUESTED_SHUTDOWN_FLG"
indicates if the system has requested to shut down. "ERROR_MSG_DEST"
indicates default error processing and allows the system to specify if it would
like error messages related to this system to be returned to the system, the
default error queue, both, or neither. Related values are SOURCE, DEFAULT,
BOTH, and NONE. “RETURN_SUCCESS_CODE” indicates the success code
indicated in a response message required by this system.
“RETURN_FAILURE_CODE” indicates a failure code required by this system.
"SYS_SYMBOLIC" is the symbolic representing the system.
Development Guide 2opyright IBM Corp. 2001, 2002

© C
Note: "RETURN_SUCCESS_CODE", when it exists, populates the Feedback field
of the MQMD header. "RETURN_FAILURE_CODE", though it exists as a
placeholder for customization, is not currently implemented.

This table can be populated and updated by using the hub only commands
SystemRestart and UpdateSystemProfile. SystemRestart will provide a default
profile if one does not already exist for that system. If a profile does exist,
SystemRestart will reset the "SYS_ACTIVE",
"BLOCKED_BY_SYS_INTERACTION_FLG", and
"SYS_RQUESTED_SHUTDOWN_FLG" to indicated that the system is active
and does not wish to shut down. The UpdateSystemProfile command provides
the means for setting the language, error message destination, and the return
codes.

A sample SYSTEM_STATUS_TABLE is shown in the following figure:

Figure 1: Sample SYSTEM_STATUS_TABLE.

System Store Flag Table
The SYSTEM_STORE_FLAG_TABLE allows the system to indicate if it wants to
store a message if it has failed a system interaction check. If the system does store
the message, it is reprocessed once the destination system is restarted.

This table can be populated and updated using the hub only command
UpdateSystemProfile.

A sample SYSTEM_STORE_FLAG_TABLE is shown in the following figure:
opyright IBM Corp. 2001, 2002 Adding a new system 3

© C
Figure 2: Sample SYSTEM_STORE_FLAG_TABLE.

System backup table
The SYSTEM_BACKUP_TABLE contains a linked structure of records that
indicate back up systems. If a system is down when a system interaction check is
performed, the status of its backup, indicated here, is checked. If that backup is
down, then its back up is checked, and so on until an active system is found, or no
more backup systems are indicated. If a backup is found to be active, the message
is sent there.

This table can be populated and updated using the hub only command
UpdateSystemProfile.
Development Guide 4opyright IBM Corp. 2001, 2002

© C
A sample SYSTEM_BACKUP_TABLE is shown in the following figure:

Figure 3: Sample SYSTEM_BACKUP_TABLE.

Putting It Together
For example, a FrontEnd system may indicate that it wants to perform a system
interaction check, and that it requires communications with a BackEnd system.
The record in the System_Status_Table for the BackEnd is examined to
determine if the BackEnd is currently active and not requesting to shutdown. If
the BackEnd is not active or about to shutdown, the System_Backup_Table is
checked to see if the BackEnd has a back up system. If it does, the back up
system is examined to see if it is up. Ultimately, if the BackEnd is not available,
and none of its back up systems are available, the store forward flag of the
FrontEnd system is examined in the System_Store_Flag_Table. If the flag is
"True", then the message is stored to a database. When the BackEnd system
issues a SystemRestart command, the message is pulled from the database
and reprocessed. If the store forward flag for the FrontEnd system is "False"
the request message is discarded, and the FrontEnd receives an error
message indicating that system interaction could not find an available system.
opyright IBM Corp. 2001, 2002 Adding a new system 5

© C
Symbolic destination resolution table

SDR explained
This section describes how to integrate a system with WMQI Enabler by adding an
entry in the Symbolic Destination Resolution (SDR) table. This table is created with
the installation of the WMQI Enabler product and used by the Model Office.
Alternatively, this table can be created in DB2 through the DB2 Control Center or
Command Center, or by using SQL statements. There are 3 columns in the SDR
table, containing the following fields, as shown in the figure below.

SYS_SYMBOLIC (character)

Q_NAME (character)

Q_MGR_NAME (character)

The symbolic name of the system corresponds to the Source Logical ID and
Destination Logical ID in the WMQI Enabler XML message header. The MQSeries
queue designated by the "Q_NAME" is the destination for messages intended for
the associated system.

A sample SDR_TABLE is shown in the following figure:

Figure 4: SDR table.
Development Guide 6opyright IBM Corp. 2001, 2002

© C
SDR duties
The SDR function is used to resolve the logical to physical system identification
needs of the message. The MQSI process flow "SDR" is used to implement this
function.

Request messages
On a request XML message from a front-end source system, the Symbolic
Destination Resolution table is used to find the destination queue for the back-
end system that is the intended receiver of the XML message. The destination
system symbolic can be specified in multiple ways to allow for multiple
scenarios. If the destinationLogicalId attribute of the message is populated,
then it is used to identify the SYS_SYMBOLIC. If the destinationLogicalId is not
populated, the DEFAULT_DESTINATION_SYMBOLIC associated with this
message type as specified in the Message_Profile_Table is used to identify the
SYS_SYMBOLIC. In the event that system interaction is required by a
message, the system symbolics indicated in the System_Interaction_Table
associated with the given message are used to identify the destinations of the
request message. In this case, the destinationLogicalId and the
DEFAULT_DESTINATION_SYMBOLIC are ignored. The "SYS_SYMBOLIC"
name is used to select the "Q_NAME" and "Q_MGR_NAME" in the SDR table.
The system symbolic name in the sourceLogicalId attribute of the message is
stored in the Process_State_Table. Also, information stored in the ReplyQ and
ReplyQMgr fields of the MQMD header of the request message are stored in
the Process_State_Table. Request XML messages can also originate from
back-end source systems.

Response messages
On a response XML message from the destination system, when the message
is leaving the MQSI portion of WMQI Enabler, the SDR table identifies the
queue where the message will be placed. If the reply information of the original
request was available and saved in the Process_State_Table, it is used as the
destination of the response message. In that case, the queue and queue
manager are already specified and the SDR processing is not required. If the
reply information was not available, the Source Logical Id that was stored when
the original request message entered WMQI Enabler is used with the SDR
table to route the response message. If that information does not exist, the
Destination Logical Id in the response message is used for routing.

There could be two different entries with similar symbolic names. For instance, if a
business implementation is using two policy administration systems, there might be
two entries, with the symbolic names being "POLICY1" and "POLICY2". Keep in
mind that entries in the Symbolic Destination Resolution table are case sensitive
and must be precise.
opyright IBM Corp. 2001, 2002 Adding a new system 7

© C
Adding entries to the SDR table
Allowing a new system to be accessible within WMQI Enabler entails adding an
entry for the system in the SDR table. Entries in the SDR table can be added, using
any preferred DB2 method. WMQI Enabler provides a GUI configuration tool called
the WMQI Enabler Configuration Utility for loading entries as well. Additionally,
WMQI Enabler supports an XML-based Hub command called UpdateSDREntry
that can be used to add a record to the table, as well as replacing existing records
with updated information. Anytime a change is made to an MQSeries Queue Name
or Queue Manager, it will be important to ensure that the SDR is updated
accordingly.

For information on how to work with a DB2 database, see IBM DB2 Universal
Database for Windows NT: Quick Beginnings Version 6, Appendix A.

Setting up the queues in MQSeries
There are two methods for setting up the MQSeries queues.

Method 1: All of the queues are local, and belong to the same Queue Manager.

Method 2: Channels are setup between multiple Queue Managers.

For method 1, there is one queue per entry/exit point to the WMQI Enabler portion
on the MQSI Queue Manager. These queues are channel queues. The number of
queues setup should be equal to the number of entry/exit points created for the
various systems.

Method 2 uses at least one (possibly several) additional queue managers, which
are in the same MQSeries cluster. Two channels will need to be setup for each
additional Queue Manager along with a transmission queue, one being a Sender
Channel and one a Receiver Channel.

The name of the queue that MQSeries Workflow uses is called:
FMC.FMCGRP.EXE.XML. It is an Alias and is used as a dynamic queue.

Additional work will be necessary to implement an adapter for each new system
that is planned to be integrated with WMQI Enabler. In addition, it may be
necessary to create an MQSeries Workflow process flow to supervise making a call
to the system associated with this new adapter depending on whether the adapter
is used as a part of a complex or long running message integration scenario.

Keep in mind that the implementation architecture (i.e., number of servers in the
enterprise, queue manager topology, MQSI configuration, MQSWF configuration,
etc.) have an effect on how the MQSeries portion of WMQI Enabler will need to be
configured. More information on this topic can be found in the WMQI Enabler
Technical Architecture Book. The MQSeries product documentation should also
be used for a complete reference on how to implement the WMQI Enabler
integration topology.
Development Guide 8opyright IBM Corp. 2001, 2002

© C
Adding entries to the CRF
By design, once a complete WMQI Enabler solution is up and running, the Cross
Reference Function is an optional feature where all functionality of the Cross
Reference Function (CRF) will occur automatically if desired. However, at the onset
of an WMQI Enabler implementation, it is necessary to populate the CRF table with
information that describes the existing operational environment. This effort
generally entails a significant conversion effort that is based on analyzing existing
systems to determine a normalized view of what systems use automic data as
defined by the XML integration vocabulary, and what systems actually own the
data.

Entries can be added to the CRF table by creating an XML message with the
appropriate WMQI Enabler header entries that represents the state of the data that
is being processed through WMQI Enabler. To ensure data integrity, it is
recommended that entries not be added manually via database tools to the CRF
table database. However, WMQI Enabler supports hub only messages designed
to maintain the CRF table. These messages can be used by adapters to
supplement the CRF processing normally accomplished using information
included as a part of message oriented integration, to do standard add, update,
deleted, and modify activities against CRF entries, When publish and subscribe is
used within WMQI Enabler, the hub CRF messages are required by the subscriber
adapters as a way of synchronizing the CRF with the results of the internal
application processing triggered by receipt of a message via subscription.
opyright IBM Corp. 2001, 2002 Adding a new system 9

© C
 Chapter 3
 Removing a system

If it is necessary to discontinue interaction of a system with WMQI Enabler, the
procedures described here can be taken to ensure that the system will no longer
be able to send and receive messages through WMQI Enabler.

System profile tables
The system can be deactivated by issuing a hub only command of
SystemShutdown. Once the requesting system is no longer in use by WMQI
Enabler processes, it will indicate that it has shutdown, and messages using
system interaction will not be allowed to access that system.

Message profile
The message profile contains metadata describing how a specific type of
message should be processed within the hub. The
MQSI_MSG_ENABLED_FLG in the Message_Profile_Table can be set to
"False", and that message type will not be processed through the hub. The
UpdateMessageProfile message can be used to set this flag and deactivate
definitions for messages that are no longer necessary as a result of removing
systems from the WMQI Enabler integration environment. Also, the record for
the desired Message Profile can be deactivated by setting the
DATE_TIME_OFF field.

Symbolic destination resolution
The corresponding entry in the Symbolic Destination Resolution (SDR) table for the
system that is planned to be removed should be marked as inactive. A record is
considered inactive when it's DATE_TIME_OFF field is populated. This method is
preferred, rather than completely deleting the entry.

MQSeries queues
If there is a specific queue that corresponds to the system to be removed, it should
be taken out of use by using the appropriate MQSeries commands.
Development Guide 10opyright IBM Corp. 2001, 2002

© C
Cross reference function
It is likely that there will be multiple entries in the Cross Reference Function (CRF)
table corresponding to associations with various data elements in other systems.To
maintain data integrity, these entries should be marked as inactive. A record is
considered inactive when it's DATE_TIME_OFF field is populated.
opyright IBM Corp. 2001, 2002 Removing a system 11

© C
 Chapter 4
 XML language and message profile

Within the WMQI Enabler product, XML is utilized as the messaging medium for
the conveyance of data from source, through WMQI Enabler, to the target.

One of the guiding principles of WMQI Enabler is to allow support for industry
specific XML languages and architectures. Examples of this architecture include
the retail and manufacturing industry which uses the OAG XML messaging
architecture, the banking industry which uses the Interactive Financial eXchange
(IFX) messaging architecture, and the insurance industry which uses the IAA-XML
messaging architecture. All of the XML messaging architectures are flexible, open,
and customizable to fit the needs of the business scenarios being implemented.

WMQI Enabler demonstrates two approaches to implementing XML messages.
The first approach is to remodel industry content in the context of the WMQI
Enabler Interface Design Model (IDM). This approach is a modeling exercise that
extends the model as a means of conveying integration semantics through
extension and specialization of a data model. Regardless of the source of the
content (IAA, IFX, OAG, etc.) the messages generated are in the architectural form
of the IDM. IDM messages are useful for internal integration projects where
customized messages yield an optimized integration environment.

The alternative approach is an XML messaging technique that combines the WMQI
Enabler header and an existing XML message architecture, as described below.

XML messaging technique
The "wrappering" technique used to apply the WMQI Enabler header to the
messaging architectures used within this product can be found in the Industry
Reference Manuals. The concept is that the WMQI Enabler header contains a
"command container" that is used to "wrap" or enclose the XML message
associated with a specific XML message dialect. The XML message is then built
using a customized DTD that represents the specified architecture and WMQI
Enabler header.
Development Guide 12opyright IBM Corp. 2001, 2002

© C
The figure below shows a graphical representation of the WMQI Enabler
"wrappering" method using an IFX messaging architecture is illustrated:

Figure 5: IFX structure.

The advantage of this approach is that it allows applications that support existing
standards to leverage WMQI Enabler functionality even if the message set they are
using does not have the required semantics. In this case, the wrappering process
is used to add the header as messages enter the hub and then remove the header
as messages leave the hub, so that the applications do not have to be made hub
aware.

For information about a specific industry, please refer to that Industry Reference
Manual or the industry manual that is the closest match for the industry being
implemented.

Alternative XML within data model
From an WMQI Enabler perspective, there are two types of XML vocabularies:

• Internal

• External

The external vocabulary is described above and these options are further explored
in the Technical Architecture Book. Internal vocabularies are generally data
model-based and are used to develop custom message sets that can be optimized
to the specific requirements of the applications being integrated.

WMQI Enabler Header

IFX Message Tag
IFX Service Type Commands

IFX Command

IFX Aggregates

IFX Properties
opyright IBM Corp. 2001, 2002 The XML language & message profile 13

© C
WMQI Enabler header
The WMQI Enabler message header contains all of the information necessary to
route information from a source system to a target system. The adapter must be
able to insert the necessary information to have a message routed correctly. The
fields are completed based on the business scenario and message architecture
being used. The following fields must have entries in order to correctly process a
message:

authenticationId: Used for authorizing access to specific functions on a
target system. This value may be different than the logon id used to access
web applications or other systems. Authentication Id is used by the WMQI
Enabler Logon and Logoff commands to activate/deactivate a session for
messages requiring session validation.

sourceLogicalId: Is the symbolic name used to represent the source
application initiating the request message. This naming is necessary for the
target system to make sure that the response message is routed correctly
back to its sender.

destinationLogicalId: Is the symbolic name used to represent the target
application to which messages are routed.

sessionId: This is the session id supplied by WMQI Enabler when a Logon
command is processed. It is used during WMQI Enabler session validation.

bodyType: This field is used to identify the type of message to be processed.
For example: WorkFlow indicates that this message was generated by
WorkFlow, HUBONLYONLINE indicates this is a hub only online message,
and IAA-XML indicates this is a message with an IAA structure.

publish: This field indicates whether or not publishing is desired for this
message. This field can be overridden by the message profile.

bodyCategory: Used for the specific message type. Also used as the default
workflow process name. More specifically, it allows WMQI Enabler to
determine the type of message, or command, without parsing actual business
content. This entry ties to the Message Profile metadata entries.

CommandReference: Holds a reference to the command id to assist in
keeping track of multiple commands within one message. There is one
command reference per CrfActionGroup.

keyGroupType: The aggregate name used within the business content
portion of the message. This field is an attribute for the KeyGroup aggregate.

AlternateId: Holds all valid hub information for CRF implementation, the
source system, and necessary processing requests. It is possible to have one
to many associations per KeyGroup. Typically related to the number of
occurrences of the keyGroupType.
Development Guide 14opyright IBM Corp. 2001, 2002

© C
COMMAND: Symbolizes the container used by WMQI Enabler to wrapper the
business content for a specific messaging architecture.

Adding the WMQI Enabler header to an existing DTD
XML is an extensible language that allows the user to define business specific
data. The data is defined within a Data Type Definition (DTD) to assist the user in
creating XML messages for its specific purpose. The WMQI Enabler header is
provided as a text document for easy manipulation. When applying the WMQI
Enabler header to an existing DTD, you can use any text editor of preference. The
following steps are necessary to add the WMQI Enabler header to an existing DTD.

1. Open the Header.txt document. [check filename]

2. Select the entire document and copy to the clipboard.

3. Open the existing DTD in any text editor or XML tool.
(Make sure that you are using the text interface if you are using a graphical
tool).

4. Paste the contents of the clipboard to the beginning of the DTD.
(after the XML tag).

5. Within the Element definition for the COMMAND tag, associate the root of the
existing DTD to this element (<!ELEMENT COMMAND (IFX)>).

This will allow the header information to stop and signify the beginning of the
business content.

6. Check the DTD for errors.

7. Check for conformity and a valid DTD.

In the case of an original DTD being created, it is possible to open the Header.txt
document. Further business specific content can be added, the DTD can be saved
for it's business purpose.
opyright IBM Corp. 2001, 2002 The XML language & message profile 15

© C
The following sample represents XML generated after the addition of the WMQI
Enabler header:

<?xml version="1.0" encoding="UTF-8"?>

<?ifx version="1.0.1" newfileuid="some GUID"?>

<!DOCTYPE IFX PUBLIC "-//ifx forum//ifx 1.0.1 dtd//en"

http://www.ifxforum.org/dtd/ifx1.0.1.dtd>

<!DOCTYPE Message SYSTEM "MQSFSE001222.dtd">

<Message id="M5441920" sessionId="2914320" version="1.4"
bodyType="IAA-XML" timeStampCreated="2000-10-22-08.00.00"
sourceLogicalId="FrontEnd" destinationLogicalId="Party"
authenticationId="SysAdmin" crfCmdMode="alwaysRespond"
publish="true">

<ErrorInfo>

<errorMessageType/>

<errorcode/>

<errorMessageText/>

<errorState/>

</ErrorInfo>

<Default>

<DefaultCurrency>USD</DefaultCurrency>

</Default>

<CrfActionGroup bodyCategory="AddPartyRequest"

crfPublish="true" crfCmdMode="alwaysRespond"

destinationLogicalId="Party">
Development Guide 16opyright IBM Corp. 2001, 2002

© C
The DOCTYPE path can be eliminated by placing the DTD and the XML messages
in the same directory.

<CommandReference refid="CMD1"/>

<KeyGroup id="K1" keyGroupType="Person">

<AlternateId value="123450005"

 sourceLogicalId="FrontEnd" state="referenced"/>

</KeyGroup>

<KeyGroup id="K2" keyGroupType="ContactPreference">

<AlternateId value="123450005"

 sourceLogicalId="FrontEnd" state="referenced"/>

</KeyGroup>

</CrfActionGroup>

<COMMAND>

<IFX>

<SignonRq>

…

</SignonRq>

<PaySvcRq>

<RqUID>some GUID</RqUID>

<SPName>Avolent.com</SPName>

<PmtAddRq>

<RqUID>some GUID</RqUID>

<AsyncRqUID>some GUID</AsyncRqUID>

<PmtInfo>

…

</PmtInfo>

</PmtAddRq>

</PaySvcRq>

</IFX>

</COMMAND>

<Message>
opyright IBM Corp. 2001, 2002 The XML language & message profile 17

© C
Message profile requirements
All messages entering WMQI Enabler require a valid message profile in the
FSE_MSGP database. A script is provided to populate the database with message
profiles for each Hub Only command. The profiles indicate that the MessageType
is enabled and each validation check is not required. Each profile has the following
fields.

Required fields

MessageTypeName
This is the message type that exists in the bodyCategory of CRFActionGroup or
cmdType of hub only commands. For example, ‘AddPerson’ or ‘Logon’. This is the
field used to pull the profile out of the database. This field is also the default name
of the Workflow process associated with the message.

MQSISessionValidationFlag
Specifies if session validation processing is required. Valid values are ‘True’ and
‘False’. Logon and Logoff commands will bypass session processing whether the
flag in their profile indicates it or not. Session validation confirms that the sessionId
in the message header is valid within the hub database. A valid session id is
generated by issuing a logon command.

MQSIMessageSequenceValidationFlag
Specifies if sequence validation processing is required. Valid values are 'True’ and
'False’. This flag can designate the order in which messages are to be processed.
Care should be taken to insure that the initial message does not require a prior
message or processing will be prohibited.

MQSISystemInteractionCheckFlag
Specifies if system interaction processing is required. Valid values are 'True’ and
'False’. If system interaction is specified, the status of the systems in the
SystemInteractionList are checked. If required systems are down with no backup
systems available, and store forward is not specified by the requesting system, an
error message is returned indicating that there were system interaction problems
for the down systems.

WorkFlowManagementFlag
Specifies if the message requires Workflow processing. Valid values are 'True’ and
'False’. The Workflow supporting fields are WorkFlowQueueManager,
WorkFlowQueue, WorkFlowDataStructureName, WorkFlowSymbolic,
WorkFlowReplyToQueueManager, WorkFlowReplyToQueue,
Development Guide 18opyright IBM Corp. 2001, 2002

© C
WorkFlowProcessName, and the WorkflowParameterList. A valid Workflow
process must exist for this message. It can be the same as the message type name
or, if it exists, specified in the WorkFlowProcessName.

TraceFlag
Specifies if a trace dump is desired when using the TraceLog subflow. Valid values
are 'True’ and 'False’. When specified as true, the trace information in the
WorkArea is written to the Trace_Table.

Optional fields

PublishFlag
Specifies if publishing is required. Valid values are 'True’ and 'False’. This flag is
utilized to indicate that the message should be forwarded to subscribed systems in
a non-error situation.

OverrideFlag
The override flag indicates whether the publish attribute in the message header
can be used to specify publishing. Valid values are 'True’ and 'False’.

PublishErrorFlag
Specifies if publishing upon error is required. Valid values are 'True’ and 'False’.
This flag is utilized to indicate that the message should be forwarded to subscribed
systems when an error occurs in this message type.

WorkFlowQueueManager
If Workflow processing is required, this field indicates the queue manager for
Workflow. For example, FMCQM.

WorkFlowQueue
If Workflow processing is required, this field indicates the queue for Workflow For
example, FMC.FMCGRP.EXE.XML.

WorkFlowDataStructureName
This field indicates the data structure name that workflow expects for it's initial
message. For example, ProcessTemplateExecute

WorkFlowSymbolic
This field indicates the symbolic that specifies Workflow in the SDR table. This field
is used in processing if the WorkFlowQueue is not specified. For example,
Workflow.
opyright IBM Corp. 2001, 2002 The XML language & message profile 19

© C
WorkFlowReplyToQueueManager
This field specifies the queue manager that Workflow is to reply to. For example,
MQSIQM.

WorkFlowReplyToQueue
This field specifies the queue that Workflow is to reply to. For example,
MQWF_END.

WorkFlowProcessName
This field specifies the Workflow process name associated with this message type.
If this field is not present, the message type is used. If this field exists, a valid
Workflow process of the same name must exist also.

HubQueueManager
This field specifies the queue manager that the Hub uses. For example, MQSIQM.

UseHubQMgrAsReplyFlag
This flag indicates whether or not response messages should be sent back to
the queue manager specified in the ReplyTo information of the MQMD header,
or the HubQueueManager in the profile. If this field does not exist in the update
message, it is defaulted to 'False', indicating that the ReplyTo information
should be used.

PublishTopic
This field is used to specify the topic that this message is to be considered as when
being published. If this field is null when the UpdateMessageProfile command is
processed, the value of the MessageTypeName is used to populate the column in
the database.

DefaultDestinationSymbolic
This field specifies the default destination symbolic that is used when this message
type does not have a destinationLogicalId. For example, BackEnd

MessageTypeDependency
This field indicates the dependency used in sequence validation. For example,
AddPerson could be a dependency for ModifyPerson.

MQSIMessageEnabledFlag
This flag indicates if this message type is allowed for hub processing. If this is
False, the message is not allowed to continue through HUB_IN, and an error
message is sent to the requesting system. If this flag is not specified during the
update, a default of True is set. Valid values are 'True’ and 'False’.
UpdateMessageProfile and GetMessageProfile will operate whether this flag in
their profiles is set to True or False.
Development Guide 20opyright IBM Corp. 2001, 2002

© C
WorkFlowParametersList
If Workflow processing is required, a list of Workflow parameters can be indicated.
This would be fields and values that Workflow expects to receive in the initial
message from MQSI.

ParameterName: Indicates the field name.

ParameterPath: Indicates where the field can be located within the message.

(Note: See the Dynamic Parameters Area of ProcessTemplateExecute in
“Workflow Considerations” in chapter 7 for a description of the Name and
Path usage.

DefaultValue: Indicates the default value of the field if it is not in the message.

RequiredParameterFlag: Indicates if the field is required. If the field is not in
the message and it is required, the default value is used.

SystemInteractionList
Messages that use system interaction check must have a System Interaction List,
which indicates the systems this system must communicate with. Each system
within this list will receive the message.

SystemSymbolic: Indicates the symbolic of the message

MessageTypeName: Indicates the message type that must use the system.
This message type should be the same as the one specified in the required
fields.

RequiredInteractionFlag: Indicates if this system is required. If the system is
down, no back ups are found, and the system is required, a system interaction
error is generated.

SystemBackup: Specifies a back up for this system.

NOTE: The order that the SystemSymbolics in the SystemInteractionList
appear in the UpdateMessageProfile message is the order in which those
systems will receive the message. In a non-Workflow scenario, those systems
will each be sent at the same time, each BackEnd having no concern for the
other. In a Workflow scenario, each BackEnd system would receive the
message serially, with the response from each one possibly affecting the
message being sent to each subsequent system.

CRF
The addition of any new entries in the CRF such as parties, policies, etc., is
automatic, based on the build in CRF functionality in WMQI Enabler. XML
messages drive the CRF functionality, based on the information in the WMQI
Enabler header. To ensure data integrity, it is recommended that entries never be
manually added to the CRF database.
opyright IBM Corp. 2001, 2002 The XML language & message profile 21

© C
Disabling a message
At some point, the processing of certain types of messages may no longer be
needed or desired. The following action can be taken to disable a message.

1. The MQSWF process flow can be removed.

2. The adapter(s) can be modified so that messages of certain types are no
longer allowed out of or into applications (Optional).

3. The MessageType can be disabled via the UpdateMessageProfile message.

Message compression
Message compression may be desired to optimize the performance of the WMQI
Enabler product, and the manner in which messages are handled. Message
compression is an option within MQSeries and may be invoked, if desired.

Compression is accomplished within MQSeries by means of a Sender and
Receiver exit within a specified Channel. Installation of the compression exit is very
simple. It is an MQSeries offered package named MO02. The send and receive dll
files are set up in the send/receive section of an MQ Channel definition.

There are 4 options:

0) No compression at all.

1) Compress the 1st segment only.

2) Compress 2nd and following segments of message if 1st message was
compressed more than 10%.

3) Always try to compress multiple segmented messages.
The default is 2 (Adaptive compression).

The impact to WMQI Enabler itself is minimal since the compression is done when
a message is placed on a Queue after leaving WMQI Enabler. Decompression
takes place when a message is received on a Queue prior to entering WMQI
Enabler.

Message persistency
The WMQI Enabler application makes extensive use of a Message_Log_Table.
Each message processed though WMQI Enabler is logged to the
Message_Log_Table by all Flows over which that message passes. WMQI Enabler
uses its message log to provide a "chain" by which WMQI Enabler can group
messages across the several Flows that message is processed. These messages
are grouped together with a common process-ID that is generated by WMQI
Enabler.
Development Guide 22opyright IBM Corp. 2001, 2002

© C
MQSeries includes the concept of message persistency. The decision to use
message persistency has definite performance implications. Many users will
choose to use non-persistent message in order to improve message throughput.
WMQI Enabler respects the persistency of messages processed by it.

WMQI Enabler's message log should not be confused with MQSeries message
persistency. WMQI Enabler's message logging scheme should not be viewed by
users as enhancing or replacing the MQSeries message persistency.

Refer to MQSeries documentation for a complete description of message
persistency.

Security and encryption support
Though data encryption and security beyond the normal bounds of the supporting
products is not a part of the WMQI Enabler product currently, such encryption and
security should be considered to secure the data contents of messages processed
by WMQI Enabler. Different options are currently available for such data encryption
and security.

SecureWay Policy Director for MQSeries, by Tivoli, supports message encryption
and decryption at the queue or channel level. SecureWay Policy Director captures
messages going to or coming from queues listed in the Policy Director LDAP and
performs various functions including encryption.

Policy Director for MQSeries (PDMQ) is a comprehensive security solution for
IBM® MQSeries. It provides access control services to restrict, which users, or
applications, can, get/put messages on specific queues. It also allows MQSeries
applications to send data with confidentiality and integrity using keys associated
with the sending and receiving users or applications. These services are provided
transparently to MQSeries since applications are supported without requiring any
changes to them. PDMQ provides centralized authorization, using PKI, for strong
encryption and accountability. It also provides Channel level security, through end-
to-end data signing and encryption of messages.

Another approach to achieve data encryption is found in the JCE 1.2.1 (Java
Cryptography Extension). The JCE Extension is packaged and installed much like
the JDK1.2.2. It is packaged as an .exe file. Once installed there are configuration
files within the product to be updated based on the installation choice you make.
Sun offers documentation on installation and configuration of the product. An
application program makes use of the classes within the JCE. This extension
allows the application to encrypt and decrypt messages using public and private
keys. If a channel is being used, a Send or Receive exit could be used to execute
the function. If no channel is available, a process tied to a queue or a queue listener
program can be employed.
opyright IBM Corp. 2001, 2002 The XML language & message profile 23

© C
Listed below is a Web site that explains what the JCE is, along with some
installation and implementation tips and examples.

http://java.sun.com/products/jce/
Development Guide 24opyright IBM Corp. 2001, 2002

© C
 Chapter 5
 WMQI Enabler and MQSeries Integrator

Modifications to MQSeries Integrator
The MQSeries Integrator (MQSI) flows have been constructed to support the
numerous features found within the WMQI Enabler product regardless of the
specific XML message vocabulary used. Changes to these flows contain the
potential of affecting the overall product functionality and quality. While these
changes may certainly be made, it is imperative that such changes be tracked with
a sound Change Control Process so acceptance of future releases would be
possible without undue effort.

Since MQSI does not use a DTD to process or validate XML messages, any new
DTD that is created to present command content will not require any changes to
the MQSI flows. If changes are made to the message header, above the command
section, these changes will also have to be reflected in the MQSI flows.

WMQI Enabler internal message flows
MQSI uses nine primary process flows to manage the information that is going in
and out of WMQI Enabler. These primary flows encompass subflows implemented
to provide the product features. Some of the subflows are being used in multiple
flows. In addition, this chapter describes the primary flows to aid in the
understanding of the WMQI Enabler product and how it functions internally.

The primary flows and their high level subflows are listed below.

HUB_IN_Flow*

AdvancedInput_Subflow

GetMessageProfile_Subflow

ProcessSession_Subflow

HubOnlyMessageRouter_Subflow

ProcessSystemInteraction_Subflow

ProcessWorkflowStart_Subflow

CRF_Subflow

SDR_Subflow

AdvancedOutput_Subflow

KillProcess_Subflow
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 25

© C
LogError_Subflow

MQWF_OUT_Flow*

AdvancedInput_Subflow

ProcessWorkflowRequest_Subflow

CRF_Subflow

LogError_Subflow

SDR_Subflow

AdvancedOutput_Subflow

HUB_RWF_IN_Flow*

AdvancedInput_Subflow

ProcessWorkflowResponse_Subflow

SDR_Subflow

LogError_Subflow

AdvancedOutput_Subflow

HUB_R_IN_Flow*

AdvancedInput_Subflow

LogError_Subflow

CRF_Subflow

SDR_Subflow

AdvancedOutput_Subflow

KillProcess_Subflow

MQWF_END_Flow*

AdvancedInput_Subflow

LogError_Subflow

LogMessage_Subflow

KillProcess_Subflow

HUB_ONLY_ONLINE_Flow*

AdvancedInput_Subflow

CheckOnlineCommandType_Subflow

LogonAndRespond_Subflow

LogoffandRespond_Subflow

CRF_Subflow

SystemShutdown_Subflow

SystemRestart_Subflow
Development Guide 26opyright IBM Corp. 2001, 2002

© C
SetSubscription_Subflow

FormatHubResponse_Subflow

SDR_Subflow

LogError_Subflow

AdvancedOutput_Subflow

KillProcess

HUB_ONLY_OFFLINE_Flow*

AdvancedInput_Subflow

CheckHubOffileCommandType_Subflow

UpdateSystemProfile_Subflow

GetSystemProfile_Subflow

GetSDREntry_Subflow

UpdateSDREntry_Subflow

KillSession_Subflow

FormatHubResponse_Subflow

KillProcess_Subflow

GetINSEntry_Subflow

UpdateINSEntry_Subflow

GetNLSEntry_Subflow

UpdateNLSEntry_Subflow

GetMessageProfile_Subflow

UpdateMessageProfile_Subflow

LogError_Subflow

SDR_Subflow

AdvancedOutput_Subflow

KillProcess_Subflow

LOG_ERROR_BACKUP_Flow*

LogOriginalMessage_Subflow

DEFAULT_ACTIVITY_FLOW*

* These Message Flows are displayed in this chapter. To view any of the other
Message Flows, you may import them into the MQSI Environment on your system.

NOTE Appendix B contains brief descriptions of every subflow.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 27

© C
HUB_IN_Flow
The HUB_IN_Flow first logs messages to:

• Aid in tracking errors.

• Reduce the size of the message sent into the MQSeries Workflow product.

• Allow MQSeries Workflow to specifically send a particular message.

MQSeries Workflow can request a particular message by name as a result of this
logging process. With the fields found in the MessageLog database, this logging
will allow multiple message access by MQSeries Workflow of the message cache.

The Workflow_Parameters_Table provides for dynamic building of the MQSeries
Workflow container section. This table allows the fields passed between MQSI and
MQSeries Workflow to be determined dynamically. In addition, MQSeries Workflow
processes can be made to dynamically alter the XML message being sent to the
back-end. Implemented in this manner, MQSeries Workflow can perform additional
tasks such as dynamic routing.

Session identification and message sequence validation are handled in the
HUB_IN_Flow as dictated by the message profile. The HUB_IN_ Flow uses the
Message Profile to determine whether the message should be routed through
MQSeries Workflow or directly to the back-end system. In the process of building
MQSeries Workflow messages, this flow also populates the ReplyTo queue and
queue manager with values that govern MQSeries Workflow processing in the
response messages. This ReplyTo information is defaulted to have Workflow
processes respond to WMQI Enabler.

If system interaction processing is chosen for a particular message, the destination
system(s) is checked to determine if the message can be delivered immediately. If
not, the message will either be stored and resent when the destination system
becomes active, or discarded per the store forward flag of the requesting system.
Development Guide 28opyright IBM Corp. 2001, 2002

© C
The figure below shows a graphical representation of the HUB_IN_Flow:

Figure 6: HUB_IN_Flow.

Verbal explanation
The HUB_IN_Flow is the workhorse of the WMQI Enabler product. All
transactions will start through this flow from the queue named HUB_IN. Upon
entry into the WMQI Enabler product (step 1), the complete message is placed
in the MQSI_WorkArea that is used to support internal processing through
WMQI Enabler. The MsgType field of the MQMD header is examined. If it is
MQMT_REQUEST, a field is populated in the work area indicating that this
message will need a response. Otherwise it is populated indicating that this is
a MQMT_DATAGRAM, and an asynchronous request. A ProcessId is
assigned to the message. If the message contains a correlation id in its MQMD
header, indicating it is a response to another message, it is used to search the
message log to find the corresponding process id. The message is then logged
in a database.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 29

© C
Step 2 checks the message to determine whether it is a Hub only message or not.
A flag is set within the work area to aid in future processing. The flag values are as
follows: 0 = Non Hub Only, 1 = Hub Only Online and 2 = Hub Only Offline.

All messages, workflow or not, require the usage of the process id that was
generated in step1. In Step 3, the ProcessId is stored in the FSE_SESS database.

With step 4, the MessageProfile is selected from the FSE_MSGP database and
stored in the MQSI_WorkArea. The "bodyCategory" attribute of the message's
CrfActionGroup is used to determine the message type and the profile selection. If
this is a Hub Only message, the "cmdType" attribute of the COMMAND section is
used to determine the profile selection.

With step 5, if the message profile indicates session processing, the session id of
the message is verified as being valid. A valid session id is created when a Hub
Only Online Logon command is issued. To pass this validation, the message must
contain a non-timed out session id that was issued by a previous logon command.
If the message profile indicates sequence processing, a comparison is then made
between the message's dependency and the last message type that completed
with the same session id. The message type that this message is dependent on
must be the most recently completed process. Sequence Validation can only be
performed if Session Validation was performed also.

Step 6 checks the message to determine whether it is a Hub only. If the message
type flag created in step 1 is a '1' or '2', the message is sent to the appropriate Hub
Only queue being HUB_ONLY_ONLINE or HUB_ONLY_OFFLINE.

Step 7 again uses the message profile. If the message profile indicates system
interaction processing, WMQI Enabler checks the system database to see if the
destinations indicated in the message profile System Interaction List are currently
active. If one is not, the same check is performed on the destination system back
up system, if any, as indicated in the system database. The check continues until
an active system is found, or no more backups are indicated. If any of the required
systems are down and do not have an available backup, the message has failed
system interaction validation. If the requesting system’s profile indicates
StoreMessage, the message is stored to a database to be processed when the
destination system becomes active again.

In step 8, if the message profile indicates that WorkFlow processing is needed, the
WorkFlow Data Container section is built, and the message bypasses the Cross
Reference Function (CRF) to be routed to WorkFlow.

Step 9 determines the destination system(s) for the message. If
SystemInteractionCheck was performed, the systems that were specified in the
system interaction list are used. If SystemInteractionCheck was not performed, the
destinationLogicalId of the message is checked. If it exists, it will be the destination
of the message. If it does not exist, the DefaultDestinationSymbolic in the message
Development Guide 30opyright IBM Corp. 2001, 2002

© C
profile is used as the destination, and is placed in the destinationLogicalId of the
message. If neither the destinationLogicalId or the DefaultDestinationSymbolic
exist, an error is created.

Step 10 checks the error flag generated in the previous step. If it exists, the
message is routed to error processing.

Step 11 performs the CRF function for those messages not requiring MQSeries
Workflow. For MQSeries Workflow messages, CRF would be performed in the
MQWF_OUT_Flow. CRF handles the translation of keys between the Source and
Destination Systems. It also allows for the addition, deletion, or modification of keys
with the WMQI Enabler product's CRF database.

Step 12 places the message destinationLogicalId on the Symbolic Destination
Resolution (SDR) execution list within the MQSI WorkArea. The
destinationLogicalId is equipped with the destination resolved in Step 9. If
SystemInteractionCheck was performed, the systems that were specified in
the system interaction list are used instead of the destinationLogicalId.

In step 13, the SDR takes all of the system symbolics on its execution list, and
selects from the SDR database the queues and queue managers associated with
those system symbolics. These results are stored in the SDR results list within the
MQSI WorkArea.

Step 14 moves the queues and queue managers stored on the SDR results list to
the BuildDestinationList's execution list within the MQSI WorkArea.

Step 15 is a flow order node that indicates the order of processing. In this case,
once step 16 has completed successfully, step 17 will be processed.

In step 16, the message is logged in a database. The queues and queue managers
stored in the BuildDestinationList's execution list are moved to the internal MQSI
destination list structure that is used to route the message. The message is
extracted from the WorkArea structure. The message is output to the queue(s) as
specified in the destination list.

Step 17 checks to see if this message was an asynchronous request not
requiring WorkFlow processing. If both of these conditions are true, the
process id generated for this request is no longer relevant, and step 18,
KillProcess, is used.

If the message fails the validation for message profile, session validation,
sequence validation, or system interaction, or a system error occurs at any point,
the ErrorHandler subflow is invoked. In this case an error message is built by using
NLS error handling processing, deriving the error message from information
provided by the system and pre-built error codes in the database. The destination
of the message is changed to the "reply to" information stored in the MQMD
header. If that "reply to" information exists, the hub queue manager and use hub
queue manager as reply flag are checked in the message profile. If the flag is 'True'
and the HubQueueManager exists, then it is used as the destination queue
manager of the response. If that "reply to" information does not exist, the
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 31

© C
destination of the message is made the same as the source id. This handling
effectively puts a "return to sender" stamp on the message. The message goes
through a Kill Process routine. This termination activity updates the process
database, indicating the error. It also sets the active processes flag of the session
as false if there are no other processes using that session.

This is the main input message flow for the WMQI Enabler Product. There are not
many instances where this flow would need to be modified. The following are
possibilities for modifications:

• Modifications to the XML command section that require changes to the
Message Header.

• Modifications to the error logging.

• Modifications to the way the message is stored in the database.

MQWF_OUT_Flow
The MQWF_OUT_Flow, as with all flows, first logs the message. This flow makes
changes to the outgoing message as specified by MQSeries Workflow. The flow
stores information that MQSeries Workflow has added, such as a specified name
of the response message and fields to return as parameters in the response
message.

The figure below shows a graphical representation of the MQWF_OUT_Flow:
Development Guide 32opyright IBM Corp. 2001, 2002

© C
Figure 7: MQWF_OUT_Flow.

Verbal explanation
When MQSeries Workflow is either finished processing a message or is calling a
target application for a program activity, the message is sent to the
MQWF_OUT_Flow on the MQWF_OUT queue. This flow retrieves the original
message from a database, makes modifications to that message as indicated by
the process in MQSWorkFlow, and sends the message to its intended destination.
Upon entry to the flow (step 1), the message is placed in the MQSI WorkArea. The
MQSI WorkArea is used to support internal processing through WMQI Enabler. A
ProcessId is assigned to the message. When a message is brought into
MQWF_OUT_Flow, it is given the same process id that was given to the original
message when it entered HUB_IN. The message is then logged in a database.

Step 2 stores the MQSFWorkFlow parameters of the message to a database.
These parameters will be used again in another flow (HUB_RWF_IN_Flow), where
the response message to MQSWorkflow is built. The original message is retrieved
from a database and re-parsed into XML format. Changes that were indicated in
MQSIWorkFlow are made to the message.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 33

© C
Step 3 handles the translation of keys between the Source and Destination
Systems with the CRF. It also allows for the addition, deletion, or modification of
keys with the WMQI Enabler CRF database. If this message did not require
WorkFlow processing, the CRF functions would have been performed in the
HUB_IN_Flow.

In Step 4, the SDR execution list is populated with the information of the initiator of
the transaction. That information was stored in the HUB_IN_Flow when the
process id record was written. If that "reply to" information exists, the hub queue
manager and use hub queue manager as reply flag are checked in the message
profile. If the flag is 'True' and the HubQueueManager exists, then it is used as the
destination queue manager of the response. If the initiator information is not
present, the destinationLogicalId of the message is used.

In step 5, the SDR takes all of the system symbolics on its execution list, and
selects from the SDR database the queues and queue managers associated with
those system symbolics. These results are stored in the SDR results list within the
MQSI WorkArea.

Step 6 uses the workflow ProcessReplyFlag to determine if the current message is
the last message the hub will process on the current process. If the flag is set to
"true", the messageId that started the process is moved to the correlId of the reply
message and the destinationId is set to the application that started the process. If
the flag is not "true", no changes are made to the correlId or the destinationId. This
step also moves the queues and queue managers stored on the SDR results
list to the BuildDestinationList's execution list within the MQSI WorkArea. Also,
if a success code exists in the system profile for the destination system of this
response, then it is populated in the MQMD Feedback field. If the usage of the
failure code is implemented, this is where modifications would need to be
made.

Step 7 determines if the flow is required to send the message to another
system. A Workflow may require that activity has an interaction with MQSI, but
not send the message to another destination. For example, a Workflow
process that requires publishing will not need a message sent to another
destination. This is also used in asynchronous scenarios where the front end
does not require a response. It will need the process to end so that the flow
returns control to MQWF_END, where publishing occurs.

Step 8 logs the message in a database. The queues and queue managers stored
in the BuildDestinationList's execution list are moved to the internal MQSI
destination list structure that is used to route the message. The message is
extracted from the MQSI WorkArea structure. The message is output to the
queue(s) as specified in the destination list.

Step 9 determines if the message was sent from the last Workflow process activity
by checking the ProcessReplyFlag in the container. This indicates that the
synchronous activity requires a message from MQSI indicating everything worked
correctly. The Workflow process will not complete without a response.
Development Guide 34opyright IBM Corp. 2001, 2002

© C
Step 10 creates a minimal Workflow message to be sent in response to Workflow’s
request.

Step 11 logs the message to the database and sends it to Workflow.

HUB_RWF_IN_Flow
This MQSI flows main function is to build a response message for MQSeries
Workflow. This message is logged just prior to returning to the MQSeries Workflow
system. It uses the FSE_WFCO database to return any requested fields to
MQSeries Workflow in the container section of the MQSeries Workflow message
header.

See the figure below for a graphical representation of the HUB_RWF_IN_Flow:

Figure 8: HUB_RWF_IN_Flow.

Verbal explanation
Once a message has gone through the WorkFlow processing and the
MQWF_OUT_Flow has sent the message to the destination, the system sends its
response to HUB_RWF_IN_Flow, on the queue HUB_RWF_IN. Upon entry to the
flow (step 1), the message is placed in the MQSI WorkArea. The MQSI WorkArea
is used to support internal processing through WMQI Enabler. A ProcessId is
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 35

© C
assigned to the message. When a message is brought into HUB_RWF_IN_Flow,
it is given the same process id that was given to the original message when it
entered HUB_IN. The message is then logged in a database.

Step 2 retrieves the message profile from the database within
ProcessWorkflowResponse. The WorkFlow parameters stored as part of the
profile are not retrieved. Instead, those parameters that were stored in the
MQWF_OUT_Flow are used. The WorkFlow message is built using those
parameters. If SystemInteraction is required by the message profile, WorkFlow is
expecting active flags for those systems. Since HUB_RWF_IN does not do system
interaction validation, the systems are expected to be up, and the active flags are
set to true. The message log database is updated with the message name, should
one have been assigned by WorkFlow. The SDR execution list is populated with
the WorkFlow symbolic.

In step 3, the SDR takes all of the system symbolics on its execution list, and
selects from the SDR database the queues and queue managers associated with
those system symbolics. These results are stored in the SDR results list within the
MQSI WorkArea.

Step 4 moves the queues and queue managers stored on the SDR results list to
the BuildDestinationList's execution list within the MQSI WorkArea.

Step 5 logs the message in a database. The queues and queue managers stored
in the BuildDestinationList's execution list are moved to the internal MQSI
destination list structure that is used to route the message. The message is
extracted from the MQSI WorkArea structure. The message is output to the
queue(s) as specified in the destination list.

HUB_R_IN_Flow
This MQSI flow is used for response messages from a back-end system which is
not using MQSeries Workflow management for that particular message type.
HUB_R_IN_Flow simply handles these responses by doing any required Cross
Reference Function (CRF) and dynamically routing the message to the original
sender. If these fields are empty, Symbolic Destination Resolution (SDR) will be
performed on the sourceLogicalId stored from the original message in order to get
the response back to the front-end system, which sent the original request
message.

See the figure below for a graphical representation of the HUB_R_IN_Flow:
Development Guide 36opyright IBM Corp. 2001, 2002

© C
Figure 9: HUB_R_IN_Flow.

Verbal explanation
HUB_R_IN_Flow is the response flow of the WMQI Enabler product. The
responses to transactions that initially come through the HUB_IN_Flow, enter
WMQI Enabler in HUB_R_IN_Flow on queue HUB_R_IN. Upon entry to this flow
(step 1), the complete message is placed in the MQSI_WorkArea. A ProcessId is
assigned to the message. If the message contains a correlation id in its MQMD
header, it is used to search the message log to find the corresponding process id.
The message is then logged in a database. Generally, all messages coming into
HUB_R_IN have a correlation id corresponding to the original request's message
id. Therefore, the response message is assigned the same process id that was
given to the request.

Step 2 populates the CRF offset in the MQSI WorkArea. The CRF function uses
that offset for access to the message that contains the CRF instructions.

Step 3 performs the CRF function. Generally, the CRF command provided in the
request is to reference keys. The response coming through the HUB_R_IN_Flow
usually indicates instructions to add, modify, or delete keys.

In Step 4, the SDR execution list is populated with the information of the initiator of
the transaction. That information was stored in the HUB_IN_Flow when the
process id record was written. If that "reply to" information exists, the hub queue
manager and use hub queue manager as reply flag are checked in the message
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 37

© C
profile. If the flag is 'True' and the HubQueueManager exists, then it is used as the
destination queue manager of the response. If the initiator information is not
present, the destinationLogicalId of the response message is used.

In step 5, SDR takes all of the system symbolics on its execution list, and selects
from the SDR database the queues and queue managers associated with those
symbolics. These results are stored in the SDR results list within the MQSI
WorkArea.

Step 6 moves the queues and queue managers stored on the SDR results list to
the BuildDestinationList's execution list within the MQSI WorkArea. Also, if a
success code exists in the system profile for the destination system of this
response, then it is populated in the MQMD Feedback field. If the usage of the
failure code is implemented, this is where modifications would need to be
made.

Step 7 logs the message in a database. The queues and queue managers stored
in the BuildDestinationList's execution list are moved to the internal MQSI
destination list structure that is used to route the message. The message is
extracted from the MQSI WorkArea structure. The message is output to the
queue(s) as specified in the destination list.

Upon successful completion of step 7, the message is sent to the KillProcess
Subflow.

In step 8, the KillProcessSubflow updates the process database, indicating the
process is complete. It also sets the active processes flag of the session as false if
there are no other processes using that session.

MQWF_END_Flow
This MQSI flow is exercised to end an MQSeries Workflow process. The reply
message returning to MQSeries Workflow can tell the system that it is now "okay"
for that system to go down. This system control element is derived from the system
profile.

The flow takes place in three steps:

• First, the message is logged;

• The associated process is terminated; and,

• The MQSeries Workflow message is logged again to evidence that the
process has been terminated.
Development Guide 38opyright IBM Corp. 2001, 2002

© C
See the figure below for a graphical representation of the MQWF_END_Flow:

Figure 10: MQWF_END_Flow.

Verbal explanation
When MQSeries Workflow is finished with processing a message, a message is
sent to MQWF_END_Flow on the MQWF_END queue upon completion of routing
to MQWF_OUT_Flow. This processing is done serially. When the
MQWF_OUT_Flow sends the original message to the destination, the
MQWF_END_Flow terminates the process associated with the message. Upon
entry to the hub (step 1), the message is placed in the MQSI WorkArea. The MQSI
WorkArea is used to support internal processing through WMQI Enabler. A
ProcessId is assigned to the message. When a message is brought into
MQWF_END_Flow, it is given the same process id that was given to the original
message when it entered HUB_IN. The message is then logged in a database.

Step 2, logs an error or exception to the error table if Workflow indicated that there
was one.

Step 3 prepares the message for Kill Process. It places the Process Id and Session
Id in the location within the message that Kill Process is expecting it to be.

Step 4 determines if Workflow requires a message to be published.

Step 5 retrieves, from the database, the message that Workflow designated should
be published.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 39

© C
Step 6 re-parses the message retrieved from the database into XML format.

Step 7 places the re-parsed message into a message item in the work area. It also
sets up the required publishing information.

In step 8, the KillProcessSubflow updates the process database, indicating the
process is complete. It also sets the active processes flag of the session as false if
there are no other processes using that session. If publishing is required, it is done
so in KillProcess.

Step 9 logs the message to a database.

HubOnly flows
This MQSI flow is actually divided into two other MQSI flows. These two flows are
the HUB_ONLY_ONLINE_Flow which will allow the updating of WMQI Enabler hub
database tables while the system is active; the other flow is
HUB_ONLY_OFFLINE_Flow which is employed for viewing and updating the hub
database tables. The standard messages used in these two MQSI flows are:

HUB_ONLY_ONLINE_Flow
The HubLogonRequest provides an authentication facility for the users of the
WMQI Enabler product. The flow sends a message to the queue to have
authentication identification validated and a session identification assigned. The
HubLogoffRequest then releases this session identification.
Development Guide 40opyright IBM Corp. 2001, 2002

© C
See the figure below for a graphical representation of the HUB_ONLY_ONLINE
_Flow:

Figure 11: HUB_ONLY_ONLINE_Flow.

Verbal explanation
The HUB_ONLY_ONLINE_Flow handles online commands to the WMQI Enabler
hub. These commands are SystemRestart, LogoffAndRespond,
LogonAndRespond, SetSubscription, CRF, and SystemShutdown. The
HUB_ONLY_ONLINE_Flow retrieves messages from the HUB_ONLY_ONLINE
queue.

Step 1 places the message in the MQSI WorkArea. The same process id that was
assigned to this message when it entered Hub In is reassigned to the message.

In step 2, the cmdType attribute of the Command section of the message is
examined to determine the type of request being issued.

Step 3 prepares the message if this is a CRF command. The CRF offset is set.

In step 4, the message for CRF processing contains a CrfActionGroup identical to
the one found in any other message. Generally, this CrfActionGroup would be used
for CRF database maintenance of adding, deleting or modifying keys.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 41

© C
Step 5 builds the response message. The message type is set to Reply. The "reply
to" information in the MQMD header is used to populate the BuildDestinationList
execution list. If the "reply to" information does not exist, the sourceLogicalId in the
message header is used as the destination of this message. The other commands
in HUB_ONLY_ONLINE_Flow build their response messages within their sub-
flows.

In step 6, the SDR takes all of the system symbolics on its execution list, and
selects from the SDR database the queues and queue managers associated with
those system symbolics. These results are stored in the SDR results list within the
MQSI WorkArea.

Step 7 moves the queues and queue managers stored on the SDR results list to
the BuildDestinationList's execution list within the MQSI WorkArea.

Step 8 logs the message in a database. The queues and queue managers stored
in the BuildDestinationList's execution list are moved to the internal MQSI
destination list structure that is used to route the message. The message is
extracted from the MQSI WorkArea structure. The message is output to the
queue(s) as specified in the destination list.

Step 9 first sets the system as being active in the database for the SystemRestart
command. It then checks to see if any messages were stored for that system while
it was down. These messages are retrieved from the database, and sent to the
HUB_IN_Flow for reprocessing. The message returned contains a results
message indicating success and the number of messages that were resent.

Step 10 checks to see if the session requesting logoff has active processes for the
Logoff command. If it does not, the session is deactivated in its database. If it does
have active processes, the logoff is denied. The response indicates success or
failure.

Step 11 checks the authenticationId within the message header to see if it is in the
System_Authentication_Table for the Logon command. If it is, a session id is
issued and returned in the response. If the message does not contain a valid
authentication id, the logon is denied.

Step 12 updates the databases to indicate the system's desire to shutdown for the
SystemShutdown command. It checks for processes currently using the system.
When SystemInteractionValidation in the HUB_IN_Flow checks system status, it
does a comparison on the requested shutdown flag and the active processes flag.
For this reason, once the processes on the system are finished, system shutdown
takes effect.

Step 13 allows a system to add and delete subscriptions for various topics. A topic
is the same as a message type. When a message reaches a publishing point,
(located in KillProcess), all the systems subscribed to that topic receive the
message.
Development Guide 42opyright IBM Corp. 2001, 2002

© C
Step 14 processes once the message is successfully sent through
AdvancedOutput. The ProcessId assigned the Hub Only command as it entered
Hub In is killed here.

WMQI Enabler commands
In the case of HUB_ONLY_ONLINE_Flow the following XML messages are
targeted towards the hub as hub commands on an active system:

LogonAndRespond
This command allows the utilization of session management giving the system an
opportunity to log on to a session. A session id will be returned to the system and
should be included in all future messages in the same session.

LogoffAndRespond
This command logs a system off from a session. It can fail if there are still active
processes running.

SystemShutdown
This command handles messages sent into the HUB by a system requesting a
shutdown. A response will be formed telling the requesting system if the request
was successful or not. If the response was successful the system will be allowed
to shutdown. Otherwise, if processes are using the system or are in system
interaction check, the system will have to wait until all of those messages are
cleared from the pipeline to go down.

SystemRestart
This command notifies the HUB that a particular system is back up and running. It
lets the HUB know it can send messages to it.

CRF
This command provides for the management of keys represented in the XML
header form to an internal object form (ConvertToCRFObjectFormat).

SetSubscription
This command allows the addition and deletion of subscriptions for a particular
system. The SetSubscription message will specify a topic and queue and queue
manager to which on-topic messages will be published.

Tester
As an example, these messages can be found under the WMQI Enabler Tester
directory.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 43

© C
HUB_ONLY_OFFLINE_Flow
This main flow handles HUB_ONLY maintenance messages. It is capable of
updating system profile, message profile and SDR tables. Also, it can send back
copies of records from any of these tables. Lastly, it can kill a session or a process
as needed by an outside system.

See the figure below for a graphical representation of the HUB_ONLY_OFFLINE
_Flow:

Figure 12: HUB_ONLY_OFFLINE_Flow*.

*The HubRequest messages are used for internal hub database management and
maintenance.

Verbal explanation
The HUB_ONLY_OFFLINE_Flow handles offline commands to the WMQI Enabler.
These commands are UpdateSystemProfile, GetSystemProfile, GetINSEntry,
UpdateINSEntry, GetNLSEntry, UpdateNLSEntry, GetMessageProfile, and
UpdateMessageProfile. The HUB_ONLY_OFFLINE_Flow retrieves messages
from the HUB_ONLY_OFFLINE queue.
Development Guide 44opyright IBM Corp. 2001, 2002

© C
Step 1 places the message in the MQSI WorkArea. The process id assigned to the
message when it first entered Hub In is reassigned to the message.

In step 2, the cmdType attribute of the Command section of the message is
examined to determine the type of request being issued.

Step 3 prepares a new message within the work area for the GetMessageProfile
command. This message will be used as the response that will take the message
profile back to the requester.

In step 4, the GetMessageProfile Subflow retrieves the profile from the database
for the message type in the CrfActionGroup or cmdType in the COMMAND section
of the requesting message.

Step 5 copies the retrieved profile into the Command section of the response
message. The response message is formatted to return to the message sender. If
the MQMD "reply to" information is present, it is used as the destination of the
response. If not, it uses the original message's sourceLogicalId.

In step 6, the SDR takes all of the system symbolics on its execution list, and
selects from the SDR database the queues and queue managers associated with
those system symbolics. These results are stored in the SDR results list within the
MQSI WorkArea.

Step 7 moves the queues and queue managers stored on the SDR results list to
the BuildDestinationList's execution list within the MQSI WorkArea.

Step 8 logs the message in a database. The queues and queue managers stored
in the BuildDestinationList's execution list are moved to the internal MQSI
destination list structure that is used to route the message. The message is
extracted from the MQSI WorkArea structure. The message is output to the
queue(s) as specified in the destination list.

Step 9 prepares the message for the KillProcess command. The ProcessId field in
the MQSI WorkArea is set from the process id sent in the command area of the
message.

In step 10 the KillProcessSubflow updates the process database, indicating the
process is complete. It also sets the active processes flag of the session as false if
there are no other processes using that session.

Step 11 formats the response message to return to the message sender. If the
MQMD "reply to" information is present, it is used as the destination of the
response. If not, it uses the original message's sourceLogicalId.

Step 12 represents the KillSession Subflow. As it is implied by it's name, this sub
flows kills the session that is supplied to it. Along with invalidation this session, it
kills the processes that are currently using it.

Step 13 formats the response message to return to the message sender. If the
MQMD "reply to" information is present, the hub queue manager and use hub
queue manager as reply flag are checked in the message profile. If the flag is 'True'
and the HubQueueManager exists, then it is used as the destination queue
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 45

© C
manager of the response. Otherwise, the reply to information is used as the
destination of the response. If the reply to information is not present, the original
message's sourceLogicalId is used.

In step 14, the UpdateSystemProfile command updates the system profile
database with the information contained within the command section of the
message. This update includes the system status, the system's back up list, and
the store forward parameters for that system. The records that currently exist for
that system are deactivated by setting the DATE_TIME_OFF field for those records
to the current time stamp. New records are added to the database with the new
profile information. If the update command does not include back up systems, for
example, there will be no back up systems recorded for that system. The response
message is formatted within the UpdateSystemProfile Subflow.

Step 15 returns the system information for the system symbolic in the command
section of the GetSystemProfile message. The information returned includes the
system back up list and store forward parameters. The response message is
formatted within the GetSystemProfile Subflow.

Step 16 updates the SDR information for a specific system symbolic.

Step 17 returns the SDR information for a specific system symbolic.

In step 18, the UpdateMessageProfile command deactivates the current records
for the message type in the Command section, and creates new records within the
databases. The information updated includes the message profile, system
interaction table, and the workflow parameters table. If there are no workflow
parameters indicated in the message, for example, the table will be updated to not
have any parameters that correspond to the message type.

Step 19 allows you to get the INS information for the current Hub set up. This
information includes codes for the hardware platform, product version, and default
language.

Step 20 allows you to update the INS information.

Step 21 allows you to get the information about an NLS error message based on
an error number.

Step 22 allows you to update or add a new NLS error message into the database.

Step 23 kills the process id that was assigned to this message in Hub In.

WMQI Enabler commands
In the case of HUB_ONLY_OFFLINE the following XML messages are targeted
towards the hub as WMQI Enabler Maintenance commands.
Development Guide 46opyright IBM Corp. 2001, 2002

© C
UpdateSystemProfile
This command adds or updates to a particular system profile record as stored in
the Hub, which enables the user to update their system’s profile in the WMQI
Enabler databases.

GetSystemProfile must be called beforehand to get the existing values in the
database. The UpdateSystemProfile always does a complete replace, so data that
is not included is deleted.

GetSystemProfile
This command requests a particular system profile record as stored in the Hub,
which enables the user to get a response message showing what their system’s
profile looks like in the WMQI Enabler databases.

GetSDREntry
This command requests a particular SDR entry as stored in the Hub, which enables
the user to get a response message showing what their system's SDR entry looks
like in the FSE_SDR database.

UpdateSDREntry
This command adds or updates a particular SDR record as stored in the Hub,
which enables the user to update their system's SDR entry in the FSE_SDR
database.

GetSDREntry must be called beforehand to get the existing values in the database.
The UpdateSDREntry always does a complete replace, so data that is not included
is deleted.

KillProcess
This command is sent to kill a particular process. Once it has been killed, any
systems that have requested shutdown but were held up by a Process that has just
been killed can be sent a message telling them it is now safe to shut down.

This condition is only true if the process being killed was the only one using the
system.

The publishing function has been added here as an example. Publishing may be
turned on by setting flags in the message profile with an UpdateMessageProfile
message. Subscriptions can be set by sending SetSubscription messages to the
HUB_ONLY_ONLINE_Flow.

KillSession
This command is sent to kill a particular session.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 47

© C
UpdateMessageProfile
This command adds or updates message profile record in the FSE_MSGP
database. The content of this record can consist of enabling session validation,
system interaction checking, workflow management, setting workflow parameters,
and sequence validation for this particular message type.

GetMessageProfile must be called beforehand to get the existing values in the
database. The UpdateMessageProfile always does a complete replace, so data
that is not included is deleted.

GetMessageProfile
This command requests a particular message profile as stored in the Hub, which
enables the user to get a response message showing what a message profile looks
like for a particular message type in the FSE_MSGP database.

GetINSEntry
This command requests the active INS information from the
INSTALL_DATA_TABLE in the FSE_SYSP database.

UpdateINSEntry
This command updates the INS information within the FSE_SYSP database.

GetNLSEntry
This command returns the error message information for a particular code. These
codes are stored with their two digit language number concatenated with the four
digit error number. For example, the error code of 1499 is stored in English as
101499.

UpdateNLSEntry
This command allows you to update or add a new error code into the NLS error
message database.

As an example, these messages can be found under the MQTester directory.
Development Guide 48opyright IBM Corp. 2001, 2002

© C
MQWF_DEFAULT_ACTIVITY_Flow
This main flow provides a "default" flow that can be utilized by workflow activities.
The flow simply accepts an incoming message, maps the input data to an output
and returns a response containing the mapped data back to a specified queue.

See the figure below for a graphical representation of the
MQWF_DEFAULT_ACTIVITY_Flow:

Figure 13: MQWF_DEFAULT_ACTIVITY_Flow.

Verbal explanation
Step 1 sets up the Destination List using the MQMD header information to define
the response queue information.

Step 2 builds a WorkFlow response message from the WorkFlow request
message.

Step 3 passes the request data, unchanged, to the response data.

Step 4 writes the response to the Queue specified in the Destination List.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 49

© C
StoreMessageTemplate_Flow

Figure 14: StoreMessageTemplate_Flow

This flow is used to store a message template in the Message_Template_Table.
The Template Message has the following form:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Message SYSTEM "MQSFSE_2001.dtd">

<Message>

<SourceQueue>FEIN</SourceQueue>

<SourceQueueManager>MQSIQM</SourceQueueManager>

<Action>INSERT</Action>

<Name>AddParty</Name>

ß---- Message Content ---à

</Message>

<!--filename=AddParty.xml-->

Possible actions are INSERT, UPDATE, and DELETE. The INSERT and UPDATE
commands delete any existing records for the template specified in the Name tag
(if any), and adds a new record with the current template for the specified name.
DELETE deletes any existing records associated with the information in the Name
tag. The SourceQueue and SourceQueueManager tags specify where the
requesting system would like the response of the store template operation sent.
The MQMD header sent in with the template is stored as part of the template.

• MQInput Node Input reads from the TEMPLATE_IN queue.
Development Guide 50opyright IBM Corp. 2001, 2002

© C
• Compute Node SetUpForStore saves the information in the declaration line
to a temporary space in the destination list and nulls out the declaration line
in the XML message.

It also stores the SourceQueue, SourceQueueManager, Action, and Name
information to the destination list and nulls out those tags within the
message. That information is for performing this operation, and should not
be stored with the template.

• Database node StoreMessageTemplate first does a check on the action
specified in the message. If the action is INSERT, UPDATE, or DELETE, a
delete of any existing records with the Name specified is performed.

If the command is INSERT or UPDATE, the MQMD header and message
are stored to the Message_Template_Table. The MQMD header is stored as
individual columns. The information from the declaration line is stored in
individual columns. The message template is bitstreamed into BLOB format.
The doctype at the top of the message is stored in its own column.

• Compute node SetupReply sets up a minimal response message. If the
Source tags were present in the message, that data is used to populate the
MQMD reply to information. If it is not present, the existing MQMD reply to
information is used.

• MQOutput node Output sends the created response message to whatever
information was determined in the previous step.

• Database Node LogError is the end point of all failure paths in this flow. It
stores the existing message in the Message_Table. It also stores whatever
exception information was generated into the Exception_Table. This node
does not generate any response messages to be sent to the requesting
system.

LOG_ERROR_BACKUP_Flow
This main flow provides a backup mechanism for logging an error to the Error Table

See the figure below for a graphical representation of the
LOG_ERROR_BACKUP_Flow:
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 51

© C
Figure 15: LOG_ERROR_BACKUP_Flow.

Verbal explanation
Step 1 checks to see if end trace, error, original message, exception messages and
an error message exists for the message id.

In the event that any of the required information from step 1 is not contained in the
error message, Step 2 updates the Error_Table accordingly.

Step 3 logs the original message if there is one.

LogMessage_Subflow
This subflow provides for the determination of a Process id and logs a message in
the FSE_MSGL database with the correct Process id.

This subflow will either create a new process id or get a process id of a message
already logged in the FSE_MSGL database that is related to the current message
being processed. Alternatively, if this subflow determines it has a message that is
starting some process off, and there is no other message related to it, it will
generate a new process id. A process id is assigned to any message with a non-
NULL msgId and is logged with that process id. If the incoming message is related
to an existing message, it uses the process id previously generated.
Development Guide 52opyright IBM Corp. 2001, 2002

© C
See the figure below for a graphical representation of the LogMessage_Subflow:

Figure 16: LogMessage_Subflow.

CRF_Subflow
The CRF_subflow handles the functionality of the Cross Reference File. This
subflow controls additions. deletions, modifications and translations of key and key
information held in the CRF_Table on the CRF database. The subflow processes
incoming message information, by CRFActionGroup, by KeyGroup. Incoming
messages content is validated against message content and also against existing
CRF_Table data. If the message content is valid, the subflow processes all
deletions, then all modifications, then all additions, then all translations. If the
message content is invalid, or any other processing error occurs, the ErrorHandler
subflow is invoked.

CRF utilizes the SDR_Subflow to validate SDR entries. If SDR_IN_LDAP is
required, the CRF_Subflow should be modified to incorporate the LDAP Subflow.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 53

© C
See the figure below for a graphical representation of the CRF_Subflow:

Figure 17: CRF_Subflow.

Changing the code page
WMQI Enabler assumes that messages routed through it are based on the UTF-8
code page. The value 1208 in the MQMD header field CodedCharSetId specifies
UTF-8. In UTF-8, the strings <ToBLOB> and </ToBLOB> are represented as the
Hex Code values 3c546f424c4f423e and 3c2f546f424c4f423e, respectively.

If the CodedCharSetId is changed to a value other than 1208, then the strings
<ToBLOB> and </ToBLOB> may not be represented by the same Hex Code. If the
Hex Code values are not exactly the same in your new code page, then you must
modify code in two MQSI nodes.

The MQSFSE_LogMessage_Subflow, ConvertMessagesToBlob node and
MQSFSE_StoreMessage_Subflow, StoreMessage node have the following
BLOB/Hex code values in the code:

SET startTag ='3c546f424c4f423e'; -- <ToBLOB>
SET endTag ='3c2f546f424c4f423e'; -- </ToBLOB>
Development Guide 54opyright IBM Corp. 2001, 2002

© C
Both nodes must be modified such that the Hex Codes in the desired code page
are used to represent the ToBLOB and /ToBLOB strings.

NOTE If the length of the Hex Codes change, the SQL code around it must also
change to reflect the difference in length.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Integrator 55

© C
 Chapter 6
 WMQI Enabler capabilities

WMQI Enabler was designed with many capabilities in mind. Its structure was
designed to have connections to multiple front-end and back-end systems. It was
also designed to allow for session management and message sequence
validation. The architecture of WMQI Enabler was designed for high performance
under stress. The CRF functionality allows connections between disparate
systems of keys attached to related entities. WMQI Enabler is capable of
performing dynamic routing of messages to single or multiple destinations.
Systems can choose to have messages destined for inactive systems stored and
forwarded later. Finally, WMQI Enabler maintenance can be performed by sending
messages which interact with the HUB only.

HUB commands
A set of HUB_ONLY_ONLINE and HUB_ONLY_OFFLINE XML message
commands are supported in WMQI Enabler. The commands include requests for
internal database maintenance, Logon and Logoff, System startup notify or
shutdown requests, update SDR profile, get and update system profile, register
and drop subscription requests, kill session requests, get or update NLS error
messages, get or update install data requests, kill process requests, and get or
update message profile requests.

Message routing interface
The message routing interface supports alternative message routing. The XML
messages can be structured to request interface support with:

• The Hub (HUB_ONLY_ONLINE and HUB_ONLY_OFFLINE).

• The Hub and user applications.

• The Hub with MQSeries Workflow and user applications.

Sequence validation
Sequence validation support allows the ordering of messages in the same session
through WMQI Enabler. Each message type can use the
MessageTypeDependency flag in the Message Profile to indicate a message type
Development Guide 56opyright IBM Corp. 2001, 2002

© C
must complete successfully in the same session before the current message type
can begin processing. The sequence of each message can be validated one at a
time to govern a list of message types.

Care should be taken that not all messages are dependent upon the processing of
another message, as some messages must always be first and not dependent
upon other messages. These messages must not rely on sequence validation.

Interaction check
Interaction check support consists of the System Interaction and System Profile
databases containing a list of valid front-end and back-end systems with which to
interact and identifies whether these systems are available, respectively. With
these indicators, WMQI Enabler can check whether active requests to a system
can be made, i.e. whether a system is up, going inactive, or is inactive.

Symbolic destination resolution
The Symbolic Destination Resolution (SDR) utilizes the Symbolic Destination
Resolution (FSE_SDR) database. This database contains a list of symbolic names
to identify systems, the Queue Manager and queues used to communicate with
them. In addition, the SDR supports a backup list for systems that can be used to
send a message if the 'primary' system is unavailable (assuming, of course, the
backup system can successfully receive/process the message).

Session validation
The WMQI Enabler product supports the Logon command to establish a session
ID to be used on subsequent messages. Session validation checks whether the
session exists and hasn't timed out. If timed out, a Logon can be requested again
using the same authorization information to re-establish a session or a Logoff may
be issued to kill a session.

CRF
All cross-reference functionality takes place in this subflow. This subflow can be
called from a number of the main flows including:

HUB_ONLY_ONLINE_Flow

MQWF_OUT_Flow

HUB_R_IN_Flow

HUB_IN_Flow

CRF functions allow the user to add, modify, delete, reference and translate keys.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 57

© C
Pub/Sub
When an application responds to a request message, the response is forwarded
for publication to interested subscribers. This will allow a subscriber to deactivate,
and then upon re-activation solicit the hub for all subsequent changes on a topic.
This allows the subscriber to re-synchronize and allows hub members to only
publish deltas for particular topics. The Pub/Sub features of WMQI Enabler use
the internal publish/subscribe functionality provided with MQSI.

Pub/Sub can be set up as follows:

1. Publishing can be turned on by setting flags in the message profile with an
Update Message Profile message. These fields can be reviewed in the
message profile requirements in Chapter 4.

2. Subscriptions can be set by sending SetSubscription messages (Hub only
Online command message) to WMQI Enabler (HUB_IN_Flow).
SetSubscription commands are outlined in Chapter 5. Once a
subscription is successfully set, it can be viewed under the Subscriptions
tab of the MQSI workspace.

3. Any topics (equivalent to MessageType) must be added and deployed under
the Topics in MQSI Control Center. (More documentation on this subject is
available in MQSI.) Messages can then be published if the message type
matches a publishable topic.

It is important to note that, in the current pub/sub implementation,
publishing only occurs as processes end, in the KillProcess subflow.
Therefore, publishing would only occur in a successful request/response
model in the HUB_R_IN_Flow or in the MQWF_END_Flow or as an
asynchronous message is sent from HUB_IN. That is, a message must
be a response from a "back end" or a final communication from WorkFlow
in order to be published. Publishing can be set to occur when an error
occurs for a particular message type. In this regard, publishing can occur
in all system error scenarios.

4. Systems with subscriptions to that topic will have those messages published
to a queue that was set up when the subscription was registered.
Development Guide 58opyright IBM Corp. 2001, 2002

© C
PluggablePublish_Subflow

Figure 18: PluggablePublish_Subflow

The above subflow provides the ability to plug in the publish functionality
anywhere in the WMQI Enabler flows that the MQSIWorkArea exists in the
message. For example, this means that it must be used anywhere after the
AddWorkArea_Subflow has been used and before the
RemoveWorkArea_Subflow has been used.

This subflow begins with a FlowOrder node. In most scenarios which require
ordered processing, whatever flow is attached to the output node "first" would
finish processing successfully, and then the publish functionality is processed.
The flow gets required fields from the message profile and the message, sets
up the publish offset, checks the fields to see if publishing is to be performed,
and then sends the message to the Publish subflow. At that point an output
terminal labeled "synchronous" exists. Processing that must be done in parallel
to the publishing would be attached to this terminal. For example, in an error
situation, a DatabaseRollback node would be done in parallel to publish
processing.

Any flows that would be processed after publishing occurs would need to be
connected to the synchronous output terminal.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 59

© C
Optional support of LDAP
An LDAP protocol is a vehicle for accessing a directory. It defines the operations
one may perform, such as search, add, delete, modify, and change name. It also
defines how operations and data are conveyed. The information model and name
space are based on Entries. An entry is simply a place where one stores attributes.

NOTE LDAP support capability is provided as is and limited to Windows NT
systems only.

The LDAP standard:

• Defines a network protocol for accessing information in the directory.

• Provides an information model defining the form and character of the
information.

• Provides a name space defining how information is referenced and
organized.

• Both the protocol itself and the information model are extensible.

Enhanced authentication
Session validation will encompass all messages within the Hub except for the
Logon and Logoff commands. Valid session id's are created and assigned through
the Logon command. Because of this, it must be allowed to process without a valid
session id. The Logoff command is allowed to operate on a session id that has
timed out. This would fail session validation.

NLS error handling
Error Messages using the National Language Support (NLS) Standard provide
developers and users a structured way to create and read errors and informational
messages. Each message is identified by a 9-digit number that represents the
language, system, and location that the error or informational message occurred.
For the WMQI Enabler implementation, NLS standards will be applied to:

1. Uniquely identify where an error or information message occurred, i.e. Flow
/subflow/node .

2. Allow for multiple languages.

3. Move away from hard coded message text.

4. Allow for cosmetic formatting of error message text.
Development Guide 60opyright IBM Corp. 2001, 2002

© C
5. Position the WMQI Enabler product for future error handling and informational
messaging enhancements.

The National Language Support (NLS) process within WMQI Enabler is performed
when one of the MQ products or a node within the WMQI Enabler application
generates an error. A message number of 1234 can be displayed in English or
French because the NLS_Error_Message_Table can contain message text in any
language. The error number does not change, just the language it is to be
presented in. WMQI Enabler NLS also allows you to add text or program variable
data to a message. NLS error messages are held in the
NLS_Error_Message_Table within the FSE_SYSP database.

Error descriptions
Reserved 0000 - 0999 <== reserved for development use

General 1000 - 1499

CRF 1500 - 1999

Reserved 9000 - 9999 <== reserved for customer use

Error Code Description

1001 Invalid Body Category - specifies the body category
which is invalid. Verify that the body category
specified in either the bodyCategory of the
CrfActionGroup or the cmdType in the COMMAND
section of the hub only message has a message
profile which exists in the Message_Profile_Table.

1002 Message Type Disabled - specifies the message
type that is disabled. This message indicates that
the body category specified in either the
bodyCategory of the CrfActionGroup or the
cmdType in the COMMAND section of the hub only
message has a message profile within the
Message_Profile_Table that has the
MQSI_MSG_ENABLED_FLG set to False.

1003 Invalid Session ID - specifies the session id state
which is either Invalid or TimedOut. The sessionId
attribute in the message header is Invalid if it
contains a value that is not in the Session_Table.
SessionId's are issued through the Logon
command. The sessionId is TimedOut if it exists on
the table, but has been inactive for the time out
interval specified in the Session_Table. The interval
is set at 60 minutes.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 61

© C
1004 Invalid Sequence - contains the message type
dependency for the message being processed. This
indicates that the current message requires it's
dependency to have been the last processed
message type for the same session id.

1005 Invalid Command Type - The hub only command
being processed does not have a valid cmdType in
the COMMAND section of the message.

1006 Null Message Id - The message sent into the hub for
processing does not have a Message Id in it's
MQMD header. The attribute name in the header is
MsgId.

1007 Error creating/retrieving process id - If the message
sent into the hub has a CorrelId in the MQMD
header, a corresponding message with a message
id that is the same as the CorrelId must exist in the
Message_Log_Table. These messages would be
part of the same process and would use the same
ProcessId. If that corresponding message does not
exist, this error is thrown.

1008 Add Work Area Failure - specifies the invalid
message type. If the message sent into the hub does
not have a high level tag of Message or WfMessage,
this error is thrown.

1009 System Interaction Problems - specifies down system. If
system interaction checks are performed and find that a
required system is not active, this error is generated and
specifies which required systems are down.

1010 Queue not found in SDR table - specifies symbolic which
failed processing. All system symbolic used as
destinations and sources must have a valid entry in the
SDR_Table. If the symbolic does not exist in the table, or
it's entry does not specify a queue, this error is thrown.

1011 Queue Manager not found in SDR table - specifies
symbolic which failed processing. All system symbolic
used as destinations and sources must have a valid entry
in the SDR_Table. If the symbolic's entry does not specify
a queue manager, this error is thrown.
Development Guide 62opyright IBM Corp. 2001, 2002

© C
1012 The following required information is null - specifies which
required information is NULL. When a message is sent
from Workflow into MQWF_OUT, a check is made on
information that is required from Workflow for proper MQSI
processing. If one of the items tha is required does not
exist, this error is thrown.

1013 DefaultDestination not provided in profile. Unable to
determine destination for message type: For messages
that do not go through workflow or use system interaction
check, the destinationLogicalId of the message is used to
determine the destination. If the destinationLogicalId does
not exist, the DefaultDestinationSymbolic in the message
profile is used. If that does not exist, the destination is not
able to be determined.

1499 System Generated Exception - This exception is
genererated when the MQSI product triggers an error, i.e.
database exceptions, parsing errors etc. Error 1499 will
also be used if a user generated exception is received in
the NLS Process Error subflow and the NLS number is not
found in the NLS_Error_Message_Table.

1500 CRF Error

1502 CRF Error. Translation was requested, but a
destinationLogicalId attribute was NOT found on either the
Message or CrfActionGroup tags. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The destinationLogicaIId is a required field in order to
access CRF functionality. Neither the message nor the
specific CrfActionGroup contained a destinationLogicalId.

1503 CRF Error. Invalid state. Error at CrfActionGroup[],
KeyGroup[], AtlernateId[].

The state attribute on an AlternateId is invalid. Valid states
are add, delete, modify, referenced, exists, added,
modified, deleted.

1504 CRF Error. NULL state attribute on AlternateId. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The state attribute on an AlternateId is required, but none
was specified.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 63

© C
1505 CRF Error. NULL keyGroupType attribute on KeyGroup
tag. Error at CrfActionGroup[], KeyGroup[],
AtlernateId[].

The keyGroupType attribute on a KeyGroup is required,
but none was specificed.

1506 CRF Error. Invalid UUID within KeyGroup. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The UUID at the referenced message location is invalid.
The UUID either does not exist on the CRF_Table or, if the
first AlternateId has a state of exists, the UUID to which
that AlternateId is attached does not match the UUID in
the KeyGroup.

1507 CRF Error. NULL value attribute on AlternateId. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The value attrbiute on an AlternateId cannot be NULL.

1508 CRF Error. NULL sourceLogicalId on AlternateId. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The sourceLogicalId attribute on an AlternateId cannot be
NULL.

1509 CRF Error. An AlternateId with a state of 'exists' must be
the first and only AlternateId in a KeyGroup. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

If an AlternateId in a KeyGroup is used to index into the
CRF_Table, that AlternateId must specify a state=exists
AND that AlternateId must be the first AlternateId in the
KeyGroup.

1510 CRF Error. AlternateId does not exist in database. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The AlternateId with value, sourceLogicalId and
keyGroupType does not exist on the CRF_Table.

1511 CRF Error. The database record for this AlternateId shows
it connected to a UUID that does not match the UUID on
the KeyGroup. Error at CrfActionGroup[], KeyGroup[],
AtlernateId[].
Development Guide 64opyright IBM Corp. 2001, 2002

© C
1512 CRF Error. The AlternateId to be deleted will be deleted by
a previous AlternateId that specifies a delete. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The message contains multiple deletes for the same
AlternateId.

1513 CRF Error. The AlternateId to be deleted was not found in
the database. Error at CrfActionGroup[], KeyGroup[],
AtlernateId[].

The AlternateId requested for deletion does not exist on
the CRF_Table.

1515 CRF Error. The AlternateId(modify) would be deleted by a
previous AlternateId(delete). Error at CrfActionGroup[],
KeyGroup[], AtlernateId[].

The AlternateId specified for a modify is also specified for
deletion elsewhere within the message.

1516 CRF Error. The AlternateId(modify) would be modified by
a previous AlternateId(modify). Error at CrfActionGroup[
], KeyGroup[], AtlernateId[].

The AlternateId specified for a modify is also specified for
a modify elsewhere within the message.

1517 CRF Error. The AlternateId(modify) was not found in the
database. Error at CrfActionGroup[], KeyGroup[],
AtlernateId[].

The AlternateId specified for a modify does not exist on the
CRF_Table.

1519 CRF Error. The AlternateId(modify) has sourceLogicalId,
newValue, and keyGroupType attributes that already
exists in the database. Error at CrfActionGroup[],
KeyGroup[], AtlernateId[].

The newValue, sourceLogicalId and keyGroupType of the
AlternateId specified already exists on the CRF_Table.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 65

© C
1520 CRF Error. The AlternateId(modify) has the same
sourceLogicalId, newValue, and keyGroupType attributes
as a previous AlternateId(modify). Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The AlernateId specified has a duplicate elsewhere in the
message.

1521 CRF Error. An AlternateId with the given sourceLogicalId,
keyGroupType, and value already exists in the database.
Error at CrfActionGroup[], KeyGroup[], AtlernateId[].

The AlternateId specified already exists on the
CRF_Table.

1522 CRF Error. Exceeded the per message maximum 999999
AlternateId(s) with a state of "Add". Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

Too many adds are being done in this message.

1523 CRF Error. No AlternateIds with given keyGroupType and
destinationLogicalId were found in database connected to
the given UUID. Error at CrfActionGroup[], KeyGroup[
], AtlernateId[].

The specified AlternateId does not exist on the
CRF_Table.

1524 CRF Error. NULL value attribute returned from database
on lookup. Error at CrfActionGroup[], KeyGroup[],
AtlernateId[].

An invalid value was returned from the CRF_Table. The
recor dont he CRF_Table is corrupt.

1525 CRF Error. The AlternateId to be added is being added by
a previous AlternateId(add). Error at CrfActionGroup[],
KeyGroup[], AtlernateId[].

The AlternateId specified for an add is is also specified for
an add elsewhere within the message.
Development Guide 66opyright IBM Corp. 2001, 2002

© C
Table 1: Error descriptions

NLS message components
An NLS error message consists of the following:

Error number
Error numbers are 4 digits long and used to identify where and why an error
occurred. NLS Standards specify a length of 9 characters, but for the WMQI
Enabler implementation we have set aside 5 digits for future use.

Error numbers are assigned based on the examples below:

Reserved 0000 - 0999 <-- reserved for development use.

General 1000 - 1499

CRF 1500 - 1999

Reserved 9000 - 9999 <-- reserved for customer use.

Section numbers
Section numbers are used to maintain the proper sequence of text and values
within a message.

Message text
Message text is used to describe the error that has occurred or to give supporting
information to a value that is placed in the message.

Space before
Space before is the number of spaces to be placed in the message string before
the textual portion of the message is added.

1526 CRF Error. The AlternateId to be added duplicates a
previous AlternateId(modify). Error at CrfActionGroup[],
KeyGroup[], AtlernateId[].

The AlternateId specified for an add will result in a
duplicate of an AlternateId resulting fomr a modify
elsewhere in the message.

1527 CRF Error. Invalid System Symbolic. Error at
CrfActionGroup[], KeyGroup[], AtlernateId[].

The System Symbolic is not defined to the SDR_Table.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 67

© C
Space after
Space after is the number of spaces to be placed in the message string after the
textual or value portion of the message is added.

Text only
Text only means no value will be assigned to this part of the message.

Below is an example that employs together all NLS components:

NLS error creation
When an error is created by MQSI, an exception is thrown to the failure path and
sent to the Error Handler routine. The Error Handler routine reads the exception
and converts it to the format read by the NLS_Error subflow and includes it in the
MQSI_WorkArea. From there it is passed to the Log_Error subflow which contains
the ProcessNLSError subflow. You can see what the Exception format created by
MQSI looks like in the MQSI manual Using the Control Center.

When a UserException created by the WMQI Enabler application occurs, the error
information is placed within the Exception area provided by MQSI. The following
fields are assigned values when a UserException is generated.

<Message_Number>1005</Message_Number>

<Section>

<Section_Number>1</Section_Number>

 <Message_Text>

The Message cmdType was invalid.

</Message_Text>

<Space_Before>2</Space_Before>

<Space_After>2</Space_After>

<Text_Only>False</Text_Only>

</Section>
Development Guide 68opyright IBM Corp. 2001, 2002

© C
The following figure demonstrates a sample use of the UserException area:

Figure 19: Sample UserException area usage.

Adding UserException values to messages
UserExceptions are most commonly placed in a Compute node immediately after
a Filter node, But can be placed in a compute node anywhere in a Flow.

A label is used to identify the Flow/Subflow path and node that generated the error,
as shown below:

The Insert Type field is used to identify the type of data that is included in the Insert
Text field. WMQI Enabler only supports type 2 (String) data to be place in the Insert
Text field. WMQI Enabler has identified a unique Insert Type that is not used by the
MQSI application to identify an exception as a UserException. This is the 999 Insert
Type, as shown below:

SET OutputExceptionList.UserException[i].Label = 'Flow
that had the Error';

SET
OutputExceptionList.UserException[i]."Insert"[1].Type
= 999;
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 69

© C
The Insert Text field is used to contain text describing the error condition or a value
that will be included in the message when the ProcessNLSError subflow generates
the message, as shown below:

Tables used in NLS processing
Language number identifies the language to be used when an error is generated.
It is an additional column to the System_Status_Table.

Default installation information, platform and product version number are added to
the NLS_Error_Message_Table (new to WMQI Enabler) to enhance the debugging
capabilities.

Hardware platform, product version, and default language are added to the
Install_Data_Table (new to WMQI Enabler).

All of these tables are found in the WMQI Enabler database.

ProcessNLSError subflow
This subflow full fills several function, which are explained below with samples.

Converting exceptions to NLS XML format
The ProcessNLSError subflow converts UserExceptions to XML.

Below is a sample converted NLS XML message:

SET
OutputExceptionList.UserException[i]."Insert"[1].Text
= '1005';

<NLSErrorMessage>

 <NodeName>Flow that had the Error</NodeName>

 <Message_Number>1005</Message_Number>

 <Section>

 <Section_Number>1</Section_Number>

 <Value>475</Value>

 </Section>

 <Section>

 <Section_Number>2</Section_Number>

 <Value>55</Value>

 </Section><Section>

</NLSErrorMessage>
Development Guide 70opyright IBM Corp. 2001, 2002

© C
Gets NLS data from NLS_Error_Message_Table
ProcessNLSError subflow retrieves the NLS Error message from the database.

Below is a sample of the retrieved data:

Get Language Number
Retrieves the language number from the System_Status_Table.

Below is a sample of the retrieved data:

Get Default Installation Data
Gets the Default Installation data from the Install_Data_Table.

Below is a sample of the retrieved data:

<NLS_Results>

 <LanguageNumber>10</LanguageNumber>

 <MessageNumber>1005</MessageNumber>

 <Section><SectionNumber>1 </SectionNumber>

 <MessageText>First Part Of Message</MessageText>

 <SpaceBefore>2</SpaceBefore>

 <SpaceAfter>2</SpaceAfter>

 <TextOnly>False</TextOnly>

 </Section>

 <Section>

 <SectionNumber>2 </SectionNumber>

 <MessageText>Second Part Of Message</MessageText>

 <SpaceBefore>2</SpaceBefore>

 <SpaceAfter>2</SpaceAfter>

 <TextOnly>False</TextOnly>

 </Section>

</NLS_Results>

<NLS_Results><LanguageNumber>99</LanguageNumber>

<INS_Results>

<Hardware_Platform>N</Hardware_Platform>

<Product_Version>01</Product_Version>

<Default_Language>10</Default_Language>

</INS_Results>
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 71

© C
Hardware platform
Contains information about the host system, whether it is NT, AIX, MVS, AS400.

Product version
Holds the Product version number as a single digit code.

Default language
States what the default language is set to. The language code for English is 10.

Completed error message
Once all of the information is gathered, ProcessNLSError puts it all together and
creates the message to be logged to the Error_Log table in the FSE_ERRL
database. You can also see the completed error message in the MQSI_WorkArea
before it is removed in the Advanced_Output subflow.

Below is an example of a completed error message that will appear in the
Error_Table of the WMQI Enabler database:

Updating the Install_Data and System_Status tables
The NLS_Error_Message_Table, Install_Data_Table, and System_Status_Tables
are updated and displayed via Hub_Only_Offline commands which are listed
below:

GetNLSEntry
This command requests a particular NLS entry as stored in the Hub, which enables
the user to get a response message showing what their system's NLS entry looks
like in the FSE_SYSP database.

UpdateNLSEntry
This command adds or updates a particular NLS record as stored in the Hub, which
enable the user to update their system's NLS entry in the WMQI Enabler database.

GetNLSEntry must be called beforehand to get the existing values in the database.
The UpdateNLSEntry always does a complete replace, so data that is not included
is deleted.

<Error>Error number N01-991005 occurred in node Flow
that had the Error: First Part Of Message 475 Second
Part Of Message 55</Error>
Development Guide 72opyright IBM Corp. 2001, 2002

© C
GetINSEntry
This command requests a particular INS entry as stored in the Hub, which enables
the user to get a response message showing what their system's INS entry looks
like in the WMQI Enabler database.

UpdateINSEntry
This command adds or updates a particular INS record as stored in the Hub, which
enable the user to update their system's INS entry in the WMQI Enabler database.

GetINSEntry must be called beforehand to get the existing values in the database.
The UpdateINSEntry always does a complete replace, so data that is not included
is deleted.

GetSystemProfile
This command requests a particular system profile record as stored in the Hub,
which enables the user to get a response message showing what their system's
profile looks like in the WMQI Enabler databases.

UpdateSystemProfile
This command adds or updates to a particular system profile record as stored in
the Hub, which enables the user to update their system's profile in the WMQI
Enabler databases.

GetSystemProfile must be called before hand to get the existing values in the
database. The UpdateSystemProfile always does a complete replace, so data that
is not included is deleted.

Logging capabilities
WMQI Enabler provides for a number of options in regards to logging. WMQI
Enabler provides a standard set of logging functions with a design that allows for
additions to be made without a redesign of the logging architecture. Events are
logged for every instance of an occurrence, and data analysis can be performed
very easily in conjunction with these logs. In addition, customizations could be
made to the logging capabilities.

Message logging
The way that message logging is implemented in WMQI Enabler requires DB2 to
store the XML messages as they are being processed through WMQI Enabler. This
storage is done as a means of message caching for MQSI, and to relieve MQSWF
from having to carry the entire message throughout a process flow. Both XML and
MQSeries Workflow messages are logged at the beginning and end of all major
flows.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 73

© C
This logging serves dual purposes. Warehousing of the messages is done for error
and event logging. The messages can be looked at or retrieved at a later time.
Secondly, this allows the large XML message to be placed into DB2 storage while
MQSeries Workflow takes over control of the process. When control is returned to
MQSI, the message is pulled back out of DB2 for further processing.

It is recommended that the system administrator determine how long messages
should be kept. Keep in mind that the information is correlated to the information
that is used by MQSWF during process execution. It is recommended that a copy
be made of the "cached" messages as a way of archiving the information for
analysis and history purposes.

Events log
Event logging is done each time a message is processed through WMQI Enabler.

When a message is received by WMQI Enabler, whether it be a request message
or a response message, the complete message is logged, including each element
of the MQMD Header and the entire XML message. The Header elements are
stored as their respective data types, while the command portion of the message
is stored in BLOB format, to the Message_Log_Table in the WMQI Enabler
database.

The following figure shows both the MQSI Message Flow, and the DB2 database
table that is used:
Development Guide 74opyright IBM Corp. 2001, 2002

© C
Figure 20: Event log.

Logging for history records or data analysis
Since each individual message processed through WMQI Enabler is stored in the
Message log, data can be extracted at any time for analysis work. Statistical
information could be gathered, either manually, or through a custom application,
and the data could then be processed either manually or through the use of a
custom application or vendor specific product.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 75

© C
Error log
When an error of any type occurs, the error message can be found in the
Message_Table of the WMQI Enabler database. The entry for the message in
question could be taken from the database to do any number of analysis functions
on it. In addition, when an error is found internally in MQSI or MQSWF, measures
are taken to document what has occurred. MQSI will place information regarding
the error in the WMQI Enabler database, so that it can be used for problem
determination.

MQ audit log
MQSeries provides a set of standard logs. For information on using and configuring
these, refer to Security Server (RACF) Security Administrator’s Guide.

For information on error handling in WMQI Enabler see the Installation and Setup
Guide, Appendix A.

SDR Implemented in LDAP
Lightweight Directory Access Protocol (LDAP) states that a Directory is like a
database since you can put information in, and later retrieve it. However, it is
specialized. The directory structure is characterized as being designed for reading
more than writing, offering a static view of the data, and providing simple updates
without transactions.

The LDAP standard:

• Defines a network protocol for accessing information in the directory

• Provides an information model defining the form and character of the
information

• Provides a name space defining how information is referenced and
organized

Both the protocol itself and the information model are extensible.

The LDAP protocol is the vehicle for accessing the directory. It defines the
operations one may perform, such as search, add, delete, modify, and change
name. It also defines how operations and data are conveyed. The information
model and name space are based on Entries. An entry is simply a place where one
stores attributes. Each attribute has a type and one or more values:

E.g. (cn is CommonName)

cn = USERID

cn = user

mail = jdoe@us.ibm.com
Development Guide 76opyright IBM Corp. 2001, 2002

© C
IBM SecureWay Directory Server Version 3.2 is a LDAP server. It was used to
create a directory structure in a format that supports the WMQI Enabler SDR
design.

The LDAP custom node provided for MQSI version 2.0.1 or higher takes
parameters from the node properties and the input message, performs a search on
a specified LDAP server using those parameters, and constructs an output
message. The output message is a copy of the input message enriched with the
LDAP search results.

An export of the directory structure created in IBM SecureWay Directory and a
subflow utilizing that structure are provided. The subflow is an implementation of
SDR accessing the LDAP structure rather than a database. To use this subflow,
remove the existing SDR subflow and put the example subflow in its place. It is
entirely compatible with our existing message design and
SDR/BuildDestinationList usage. The substitution of SDR implemented with a
LDAP interface does not change the logical operation of WMQI Enabler.

The system interaction diagram in the following figure shows the use of the LDAP
directory structure:

Figure 21: LDAP system interaction diagram.

LDAP directory structures are designed to exist within a static environment. These
directory structures do not work well in an environment that requires frequent
updates. Within the WMQI Enabler, it would make sense to use an LDAP structure
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 77

© C
for SDR, message profiles, and system profiles. These are areas that may require
only occasional updates. The directory structure would not work to implement
system status, process ids, or CRF functionality. Those concepts require constant
interaction with the product. WMQI Enabler has read only access to the LDAP
structure. There is no update function available for the Hub processes. Updates
must be done from LDAP applications, such as those shown above.

The following figure represents an SDR structure setup in LDAP:

Figure 22: LDAP_SDR_System.

• The LDAP structure is built within IBM SecureWay Directory.

• The host definition name is called systemdef.

• The system has an object group called SystemSymbolics.

• The list contains System objects whose names represent the System
Symbolics.
Development Guide 78opyright IBM Corp. 2001, 2002

© C
The following figure shows a system definition within the LDAP implemented SDR
structure:

Figure 23: FrontEndLDAPSystem.

• Each System object contains the queueName and queuePtr of the system
it represents.

• The queueName is the system's queue.

• The queuePtr is the system's queue manager.

• Within the directory structure, there are a few limitations on naming
conventions. Within the same object list, there cannot be multiple System
objects with the same name. However, different object lists can have
System objects of the same name. Also, an object list can have different
object types with the same name. For example, the object group of
FrontEnds can have a System named FrontEnd and a Person named
FrontEnd.

• To resolve the issue of having a non-System object with a system name, the
query that is built specifically looks for System objects with the system
symbolic names within the SystemSymbolics group list.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 79

© C
• For System objects with the same names across different object lists, the
process will rely on the LDAP server administrator to monitor the directory
and verify that it is properly set up. Updates and configuration for the LDAP
server are out of the Hub's hands and must be properly maintained by its
administrator.

The coding of the SDRFunction_LDAP subflow are system specific. The coding is
directly connected to the LDAP server and structure defined on that server.
Minimally, the properties of the LDAP node must be set to point at the LDAP server
running the directory structure that we provide.

The properties of the LDAP node are set to the following:

Connection

Server: Local or networked machine
(mqsfse01.charlotte.ibm.com or IP address)

Port: 389 (default port)

BindDN: cn=root (admin id)

Password: password (admin password)

MessageTree (If these items are changed, the code must be changed also)

SearchbaseElement: Root.XML.LDAP.SearchBase

FilterElement: Root.XML.LDAP.Filter

SearchResultsRoot: Root.XML.LDAP.Results

Defaults (These must be set for the node to work correctly, even if they are not
used)

Searchbase: dc=* (within all high level definitions…)

Filter: cn=* (find all common names)

* Represents wild cards.

NOTE LDAP support capability is provided as is and limited to Windows NT
systems only.

MQSI WorkArea
The MQSI WorkArea is constructed to enhance message access from the storage
database. As messages flow into the WMQI Enabler product, the message data is
stored in the WMQI Enabler MessageLog Database. The design of the product
indicates that this message data is extracted from the database when required.
Through the use of the MQSI WorkArea, message data that is consistent over the
life of the message is retained in the WorkArea. This WorkArea provides a global,
variable space that is separate from the message structure.
Development Guide 80opyright IBM Corp. 2001, 2002

© C
The WorkArea is basically an information wrapper that is placed around the
message. It is a "work area" to pass parameters between MQSI nodes. It is also
capable of holding multiple messages for the purpose of forming another message
from the original message while retaining the data from the original message. It
functions similarly to a "shopping bag", where data items are placed that will be
used within the message flow.

For instance, the AdvancedInput_Subflow contains an AddWorkArea_Subflow that
has a compute node that is utilized to modify the message with the addition of the
WorkArea. In the same fashion, the AdvancedOutput_Subflow contains a
RemoveWorkArea_Subflow that has a compute node that restructures the
message to remove the WorkArea plus select the proper message to be delivered
to the appropriate destination.

WorkArea tags
A series of tag names are employed to accomplish the features of the WorkArea.
These tags are created and used at different points in the numerous MQSI
subflows. Sample tag names are as follows.

<MQSI_WorkArea>
Functions as a high level tag name that defines the global, variable space

<Message_Group>
Functions to provide every message that the process may be interacting
with.

<OriginalMessageOffset>
Functions to provide the first occurrence of a MessageItem displaying the
original message that started the particular flow.

<MessageItem>
Functions to provide the message type, XML or MQSeries Workflow, the
process identification, and the message name. This MessageItem thus
serves to provide the beginning of the message.

<WfMessage>
Functions to provide the high level tag name for a MQSeries Workflow
message.

<Parameters>
Functions to provide an execution list that resolves multiple or single
system symbolics.

<Results>
Functions to provide the results of the executions found in the
<Parameters> area supplying system symbolics, system status, queue
managers, queues, and status of queues.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 81

© C
<HistoryList>
Functions to provide a history of the result list as new processes are run.
The <HistoryList> has a <Status> to indicate whether the process
succeeded or had an error.

<BuildDestinationList>
Functions to provide the <Parameters>, <Results>, and <HistoryList> for
the definition of the destination queue and queue manager and the reply
to queue and queue manager.

<RemoveWorkArea>
Functions to remove the message tag, found in <MessageItem>, and
route it to a queue.

<LogMessage>
Functions to provide the <Parameters>, <Results>, and <HistoryList> for
use in the LogMessage_Subflow where various attributes are promoted to
the level of the flow.

<LogPoint>
Functions to provide a correlation to the names the MQSeries Workflow
uses to refer to the messages.

<LogMessageOffset>
Functions to point to the offset of the message that is to be logged so
independent data may be pulled, such as MessageId or SessionId.

<LogPath>
Functions to provide the actual content of the "blob" section of the
message log that may contain the entire WorkArea, a single message, or
some wild cards with select statements.

<ErrorList>
Functions to provide a log of errors that will be logged into the
Error_Log_Table.

<TraceArea>
Functions to provide the start and end of trace activity. Can contain
multiple items and is logged to a trace database.

<MessageProfile>
Functions to provide a MQSeries Workflow parameter list that represents
 the information in the MessageProfile database.

<SystemInteractionList>
Functions to provide a list of the systems that the message needs to
access.
Development Guide 82opyright IBM Corp. 2001, 2002

© C
<InteractionProblemFlag>
Functions to locate backup systems or to report if there is a problem with
the system interaction.

<Session>
Functions to provide session data for session authentication.

<SystemProfileArea>
Function to provide the system profile information that is contained in the
System Profile database.

<CRF_WorkArea>
Functions to provide the information that is required at various points for
the cross-reference functionality.

Complex Business Processes Support (Update for Complex
Use Cases)

Communication between WMQI Enabler and Workflow was implemented so that
WMQI Enabler must be the initiator of the process. Complex Processes Support
enables Workflow to initiate the communication with WMQI Enabler. A Workflow
process sends a request message to WMQI Enabler. Workflow is unable to send a
message in an WMQI Enabler format (such as AddParty), but it is able to specify
the name of a message type. Templates that correspond to message types can be
stored in an WMQI Enabler database. These templates can be skeletons of the
basic message format or contain as much common data as the user requires.
Along with the template name, Workflow sends the message fields and data that
are to be added or manipulated within the template. Upon receiving the Workflow
request to process a template, WMQI Enabler retrieves the template, performs the
requested field changes and additions, creating a fully formatted WMQI Enabler
message, and sends this message to HUB_IN for processing. The message
behaves as if it came from any FrontEnd requesting system. It requires a message
profile, SDR entries, a valid session ID if Session Validation is required, system
profiles if Interaction Check is required, and valid CRF information if the message
specifies CRF processing, to name a few examples. After the template message
has completed processing, the final response message is sent to the Workflow
process that made the request.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 83

© C
Using this functionality
To use this functionality, the message template table must be populated. Three
example messages are provided: AddPartyInsert, AddPartyUpdate, and
AddPartyDelete. MQSIGet can be used to place these messages on the
TEMPLATE_IN queue. Currently, these messages specify FEIN as the response
queue.

A process called Supervisor is provided to kick off a message to WMQI Enabler. To
use this process, import it (Supervisor.fdl) into Workflow runtime, open the
Workflow client, and select the supervisor process using the right mouse button.
Choose “Create and Start Instance”. A window will open requesting input data.
Because input data is not required, click OK to start the process. Workflow will then
send a message to MQWF_OUT requesting to use the AddParty template. A valid
message profile must exist in the database for AddParty.

In addition, a test suite is provided for handling the AddParty processing. This suite
is contained in a .zip file called IAACBP.zip, and is called IAACBP_Testsuite.xml.
Its primary function is to provide a listener for the backend system and to send the
sample response. The test suite also sets the Stored Message Template and then
sends a message to Workflow to initiate the Supervisor process within MQSeries
Workflow (as an alternative to manual processing as mentioned in the previous
paragraph). The Supervisor process then sends a message to WMQI Enabler that
calls out the users Stored Message Template message for processing.

Once processing is done, check the Message_Log_Table to verify that the proper
path has been taken. There should be a MQWF_OUT for the original message,
HUB_IN for the entry of the AddParty, MQWF_OUT, HUB_RWF_IN, or HUB_R_IN
logs for the add party, depending on whether or not it processed through Workflow,
a HUB_RWF_IN entry for the response to the Supervisor process, and a single
MQWF_END if the AddParty went through Workflow.

Synchronous versus Asynchronous Processing
WMQI Enabler processes request messages that require a response (syn-
chronous) and those that do not require a response (asynchronous). The
specification is made by the requesting system which must set the MsgType
field of the MQMD header. A value of MQMT_REQUEST identifies the mes-
sage as being synchronous. Values of MQMT_DATAGRAM and
MQMT_REPLY indicate that message is asynchronous.
Development Guide 84opyright IBM Corp. 2001, 2002

© C
Synchronous Processing Requirements
A request message that is synchronous must provide information indicating where
responses need to go. This can be done in two ways: populating the MQMD header
ReplyToQ and ReplyToQMgr fields, and/or providing a sourceLogicalId attribute in
the message. If both exist, the reply to information from the MQMD is used to send
back the response and any error messages that occur.

Upon sending the response message, (HUB_R_IN for non-Workflow processing,
MQWF_OUT for Workflow processing) KillProcess is used to deactivate the
process id generated for this transaction.

Asynchronous Processing
In the event that a front end requesting system does not require a response, reply
to information and the sourceLogicalId are not required.

NOTE: The sourceLogicalId is required if this message intends to use system
interaction check. Upon failure of system interaction, the sourceLogicalId is
required to pull out the store forward flag in the system profile.

At the end of HUB_IN, if the message is asynchronous and not going to Workflow,
KillProcess is used to deactivate the process id generated for this transaction.

For asynchronous transactions that use Workflow, a Workflow process must be
configured to not send the final response to the requesting system. In the final
activity of the process, the NoDestination flag must be set to “True”. This will tell
MQWF_OUT to not send out the response. AddPartyAsync.fdl is provided as an
example.

Error Message Destination
In an error situation, the generated error message would be sent to the reply
information provided by the message. If that reply information does not exist, the
message is routed to the system specified in the sourceLogicalId of the message.
If the sourceLogicalId doesn’t exist, the message is routed to a default system
symbolic of “ErrorSystem”. The queue and queue manager associated with this
symbolic are configurable in the SDR table. ErrorSystem is giving a default queue
and queue manager of “ERROR_BUCKET” and "MQSIQM".

A system may specify how it would like to use the default error system symbolic.
Within the system profile is the field ERROR_MSG_DEST. This field has five
possible values that WMQI Enabler supports: ‘ ’, ‘SOURCE", “DEFAULT", “BOTH",
and “NONE". ‘ ‘ indicates that the field is empty and the error message will attempt
delivery to the source system. SOURCE indicates that the error message is to go
to the source system. DEFAULT indicates that error messages for this system
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 85

© C
should go to the default error system of ErrorSystem. BOTH indicates that the error
messages should go to the source system and the default error system. NONE
indicates that error messages should not be sent anywhere.

Within the PUB/SUB functionality, specific messages can be set to
PublishOnError, based in the message profile. In this case, the request
message will be published with error information if an error occurs.

Communications Between Remote Systems
The reply to information specified in request messages that enter WMQI Enabler
for processing can specify remote queue managers that WMQI Enabler does not
have visibility to WMQI Enabler and this remote system would be communicating
through a series of channels and remote queue definitions.

For example, if we are using a system FE on queue manager FEQM, and this
system is communicating with the WMQI Enabler queue manager MQSIQM, both
queue managers would have a pair of sender and reciever channels possibly
called FEQM.TO.MQSIQM and .MQSIQM.TO.FEQM.

System FE would have a transmission queue possibly named MQSIQM.XMIT, and
a remote queue definition for HUB_IN that would identify the remote queue name
as HUB_IN, the remote queue manager as MQSIQM, and the transmission queue
of MQSIQM.XMIT. When sending a message to WMQI Enabler, FE would place it's
request on the remote queue definition of HUB_IN located on queue manager
FEQM.

Ideally, MQSIQM would have a smiliar set up, having a transmission queue
possibly named FEQM.XMIT, and a remote queue definition of FE_RESPONSE,
that would identifiy remote queue name of FE_RESPONSE, the remote queue
manager of FEQM, and the transmission queue of FEQM.XMIT. WMQI Enabler
would look at the reply to information provided by the request message. If that reply
to information is of queue FE_RESPONSE and queue manager of MQSIQM,
WMQI Enabler would see the local remote queue definition FE_RESPONSE on
MQSIQM, send the message to there, and because it is a remote queue definition,
the FE system would receive its response on the FE_RESPONSE queue on queue
manager FEQM.

However, if the reply to information provided by system FE specifies a queue name
of FE_RESPONSE and the queue manager FEQM, MQSeries used by WMQI
Enabler will not be able to resolve that queue manger name, because it does not
have visibility to it. The message must be sent to the remote queue definition on
the local WMQI Enabler queue manager of MQSIQM. For this functionality, WMQI
Enabler provides two fields in the message profile: UseHubQMgrAsReplyFlag, and
HubQueueManager. When the flag is 'True', and the hub queue manager is
populated, every response situation, (error message issued by WMQI Enabler, hub
only command response generated by WMQI Enabler, and the actual response
Development Guide 86opyright IBM Corp. 2001, 2002

© C
from the back system being sent through WMQI Enabler), uses the hub queue
manager as the destination queue manager, and ignores the queue manager
specified in the reply to information of the request.

In the example, FE would send in a request message of AddPerson with reply to
information of FE_RESPONSE on FEQM. The message profile for AddPerson
would indicate that the HubQueueManager is 'MQSIQM', and the flag
UseHubQMgrAsReplyFlag is 'True'. When the response from the back-end system
is being sent to FE, WMQI Enabler would send it to the "reply to" queue
FE_RESPONSE located on the hub queue manager MQSIQM. This would cause
MQSeries to send the message to the remote queue definition of FE_RESPONSE
on MQSIQM, causing the message to properly go to FE_RESPONSE on FEQM.
opyright IBM Corp. 2001, 2002 WMQI Enabler capabilities 87

© C
 Chapter 7
 WMQI Enabler and MQSeries Workflow

A key feature of WMQI Enabler is the ability to move business processing into the
WMQI Enabler product. This feature allows for customization of the business
process to become a real part of the enterprise without the need to modify existing
applications. Coupled with MQSI, MQSeries Workflow provides supervision of
these business processes and features:

1. Moving the business transaction requirement from desk top to completion.

2. Supports transaction logging and recording of history.

3. Rapid updates of business transaction processes.

Manipulating workflows
MQSWF provides a Buildtime environment for visually designing and creating the
graphical diagram of the business transaction process flows. The use case and
business transaction sequence diagram plus the system interaction diagram are
helpful and act as a guide in this design to more precisely lay out the graphical
representation of the business process. The MQSWF modelers should be familiar
with the XML message being processed since data flows are part and parcel of
MQSWF. In addition, construction of the MQSWF data containers is key to a
successful transaction.

Any number of workflow templates can be created to satisfy the needs of the
existing applications, and these workflow process templates are a direct result of
the business transactions that are being modeled. Any previously designed
workflow process templates may be used as a starting point, and often, with only
minor modifications, can be customized to achieve a new workflow. Of course, any
workflow process templates that are determined to be not applicable can simply be
removed or deleted from the Buildtime component of MQSWF. Once satisfied with
these business transaction flows, they can be imported into an MQSWF Runtime
environment for testing and implementation into a production environment.
Development Guide 88opyright IBM Corp. 2001, 2002

© C
Workflow considerations
WMQI Enabler uses the MQ Workflow process flow to control the processing of
messages. In order to activate the required MQSWF process flow, the XML
message must be "wrappered" in a MQSWF XML header that provides MQSWF
with the information required to initiate MQSWF processing. MQSI is used to
accomplish this action.

The MQSI XML to MQSWF XML "wrappering" process copies control information
into the MQSWF header. Additionally, the message profile is used to pre-define the
content of the XML message that should be included in the workflow container.
This "Message Profile" gives the ability to have custom content in the workflow
container on a message by message basis. The contents of the XML message are
stored in a database. This action allows access to the XML structure when required
but maintains a lightweight message container for MQSWF. Once this "wrappering"
process is completed, the newly formed MQSWF XML message is put to the
MQSWF XML queue so that the appropriate MQSWF process template can be
initiated.

Once execution begins within the MQSWF process template flow, the response to
the original XML message request can be obtained by executing the steps within
the predefined process flow. There are four types of activities that can take place:

1. Execution of a hub function.

2. Execution of an external application via an adapter.

3. Execution of an internal workflow function.

4. Execution of a workflow client related activity.

The workflow functions and client activities do not require special support within
WMQI Enabler, but they can be used to provide powerful features and function as
a part of the solution to an WMQI Enabler implemented use case.

In the case where external workflow process or workflow clients are used, the
process can either access the XML content from the message cache directly,
although they will have to parse the content, or they can rely on the content
available in the workflow container. In either case, the process is interacting directly
with workflow and as such must follow the MQSWF API conventions.

In the case where an activity is intended to interface with an external application
via an adapter, the MQSWF flow releases the message to a pre-defined queue. In
the Model Office implementation that queue name is "MQWF_OUT". Once the
message is on the queue, MQSI takes the message off of the queue and processes
it using the message flow "MQWF_OUT_Flow".

The "Message Profile", attached in Appendix C of the Installation and Setup
Guide and described in Chapter 4 of this manual, is a DB2 table that must be built
for each message. The options provided in the Message Profile database table will
guide how the message works and flows within WMQI Enabler. Special attention
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 89

© C
should be given, however, to the "Parameter_Name" and "Parameter_Path" fields.
In these fields, any message data that is required in the workflow template initial
activity can be specified.

In the workflow templates found in the WMQI Enabler product, the name,
"WFTransition", has been specified in the "Parameter_Name" field, and the
"Parameter_Path" is specified as
XML.(XML.tag)”Message”.(XML.tag)”COMMAND”.(XML.tag)”AddPartyResponse”
.”(XML.attr)”cmdStatus”.

The "Parameter_Path" field will allow the product to go that spot in the XML
message, returning values of "ok" or "notok", and assign them to the
"Parameter_Name" of "WFTransition".

This setup, then, allows the use of "WFTransition" to define the transition
conditions within MQSWF. Multiple fields may be established in the Message
Profile database for use in the initial activity. The path in the message would then
need to locate the value for use, e.g.
XML.(XML.tag)”Message”.(XML.tag)”COMMAND”.(XML.tag)”AddPartyResponse”
.(XML.attr)”cmdStatus”.

The settings or values found in the Message Profile only apply to the initial activity.
The use for such values as "RequestedParameters" or "FieldChanges" (see
definition in the ensuing comments) will have to be defaulted in the containers,
either input, output, or both, if they are used in the messages for later activities. The
standard techniques for defaulting values, as outlined in the MQSWF
documentation, should be employed for that purpose.

The activity must use the WMQI Enabler container structures defined for request
and response processing in a workflow activity. These containers allow the activity
to update content and define the returning container definition on the request side.
The response container must match the definition specified in the initial request.
Further, the request defines the name of the response container so that MQSI
knows how to name the response container when processing in the adapter is
completed and the response is returned to MQSWF.

While the input and output data containers can have varying data within them, the
MQSI messages require certain fields in order to process the data through the
MQSI flows. The described data may be named according to user's discretion, but
the field names, if utilized, may be found in the following specification. In addition,
MQSI will look for the exact name for the template data structures, which
represents what is pre-defined in the MQSI flows and may be found in the
FSE_WFCO table. The template data structures also anticipate multiple level
nesting of the data, and that nesting scheme is pictured with the indenting in the
ensuing comments. The pictured levels found in the nesting of data is also required
for MQSI to recognize the data fields and to employ them for message processing.
Development Guide 90opyright IBM Corp. 2001, 2002

© C
The template data structures are described in the following comments:

ProcessTemplateExecute
The data described here is necessary to process the initiation of the workflow
process template. The message is sent from MQSI to MQSWF to start the process.
The data for this message flow is:

1. CommonArea made up of the following data elements:

SessionId: This element is a variable length string that holds the id of the
session that MQSI has assigned to a hub connection.

ProcessId: This element is a variable length string that holds the id of the
process that MQSI has assigned to the message type.

OriginalMessageId: This element is a variable length string that holds the id
of the message that started the workflow process.

MessageId: This element is a variable length string that holds the id of the
message that MQSI has received. This field is only used by MQSI when the
MessageName data element of the OutGoingMessageArea is not provided
(See the following comments for definition of the MessageName and
OutGoingMessageArea under ActivityImplInvoke).

Publish: In the event that a PUBLISH is required, this element is a variable
length string that holds topic.

2. SystemInfoArea made up of the following data elements:

System X: This data element is an array of elements where "X" is the number
of system(s) for which MQSWF is expecting to receive information.

Symbolic: This data element is a variable length string that holds the
system symbolic which is used to retrieve routing information from the
Symbolic Destination Routing (SDR) table.

ActiveFlag: This data element is a variable length string that holds the
system active flag that is a Boolean expression that indicates whether a
system is ready to receive messages.

3. DynamicParametersArea made up of the following data elements:

Parameter:

Name: This data element is a variable length string that holds the name
of one parameter (a data element).

Path: This data element is a variable length string that holds the path that
is used to retrieve the value for the parameter from the message, e.g.
XML.(XML.tag)”Message”.(XML.tag)”COMMAND”.(XML.tag)”AddParty
Response”.”(XML.attr)”cmdStatus”. The parameter can also be pulled
from the MQMD header, e.g. MQMD.MsgId
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 91

© C
ActivityImplInvoke
This set of data elements is required to request a set of services from MQSWF.
Simply stated, it starts an activity.

1. CommonArea Same data elements as seen in the ProcessTemplateExecute
set.

2. OutgoingMessageArea

MessageName: This data element is a variable length string that holds the
name to be given to the out going message (request message) so that it can
be referenced later.

ProcessReplyFlag: This data element indicates that a reply to the System that
started the Wrokflow is required. Generally, this element is set to 'True' when
the workflow is ready to respond to the originator.

FieldChanges:

Change X: This data element is an array of elements where "X" is the
number of the field to which changes will be applied.

Path: This data element is a variable length string that holds the
path to a changing field, i.e. Message.destinationLogicalId.

NewValue: This data element is a variable length string that holds
the new value to place in the changing field.

NoDestinationFlag: this data element is used in conjunction with the Publish
flags to control the routing of outbound messages. When set to 'False' the
outbound message will not be routed to destinationLogicalId(s). Using a
combination of Publish and NoDestinationFlag it is possible to publish a
message without sending that message to any specific destination(s).

3. IncomingMessageArea

MessageName: This data element is a variable length string that holds the
name to be given to the incoming message (response message) so that it can
be referenced later.

WorkFlowDataStructureName: This data element is a variable length string
that holds the name of the data structure (established in MQSWF
Implementations of Data) that MQSWF is expecting to see in the container
section of the ActivityImplInvokeResponse message, i.e.
ActivityImplInvoke001.
Development Guide 92opyright IBM Corp. 2001, 2002

© C
Requested Parameters:

Parameter X: This data element is an array of elements where "X" is the
number of the parameter MQSWF is requesting to be sent.

Name: This data element is a variable length string that holds the
name of one parameter that will appear in the
DynamicParametersArea of the ActivityImplInvokeResponse
message.

Path: This data element is a variable length that holds the path to
be used for retrieval of the value for the parameter from the
message.

ActivityImplInvokeResponse
This set of data elements is sent from MQSI to MQSWF as a response to the
ActivityImplInvoke set of data elements. It represents the response from the target
applications.

1. CommonArea Same data elements as seen in the ProcessTemplateExecute
set.

2. SystemInfoArea Same data elements as seen in the
ProcessTemplateExecute set.

3. DynamicParametersArea Same data elements as seen in the
ProcesTemplateExecute set.

4. ErrorInfoArea

Error: This data element is a variable length string that holds information
describing the error that MQSI needs to send to MQSWF in the
ActivityImplInvokeResponse or ProcessTemplateExecuteResponse
message.

ProcessTemplateExecuteResponse
This set of data elements is utilized to signal the end of the process and return such
a message to the front-end application. This set of data is used by an activity that
precedes the sink node found in MQSWF so that the message may be returned to
the front-end application.

1. CommonArea Same data elements as seen in the ProcessTemplateExecute
set.

2. ErrorInfoArea Same data elements as seen in the
ActivityImplInvokeResponse message.

While the name of the data structure in MQSWF may be specified by the individual
WMQI Enabler product user, the "instance" of the data structure must coincide with
the templates in the preceding comments for them to be used.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 93

© C
The following figures show a data structure that is nested within another data
structure:

Figure 24: ActivityImplInvoke is the "instance" of this data structure.

Figure 25: Data Structure for ActivityImplInvoke area.
Development Guide 94opyright IBM Corp. 2001, 2002

© C
It has a user specified data structure of "CommonMessageAreaData" that contains
the data elements shown. "CommonArea" is the requirement of the MQSI message
flow.

It is necessary that the naming conventions between the Body Category in the XML
message, as a default value, or the name of the workflow process found in the
Message Profile and MQSeries Workflow be consistent. It is required to know when
the workflow process template has completed or ended. This can be accomplished
by having a signal come from the sink node in the process template, since that sink
node marks the end of the process. It is also required to send a message back to
the source system with a response so some other option had to be created. It is
now necessary to have a separate activity in the workflow process template for the
purpose of responding to the source system of the message and to mark the end
of the process. This last activity should immediately precede the sink node.

Modifying a data structure in a workflow
The MQSeries Workflow data structures that are to be used in the MQSWF data
containers must maintain consistency with the underlying MQSI flows that support
WMQI Enabler.

The MQSI flows support:

1. A message sent from MQSI to MQSWF to start a new occurrence of a
Workflow process.

2. A message sent from MQSWF to MQSI so that MQSWF can request a service
to be completed by MQSI. Generally, this is an activity implementation.

3. A message from MQSI to MQSWF to supply a response to the request for
service.

4. A message sent from MQSWF to MQSI to indicate the process is complete
and may be terminated.

MQSWF now has the freedom to indicate the data that is required for the message
to process. The message also works in harmony with the Message Profile
Database that is established for each message and the System Profile database
that is built for each system attached to WMQI Enabler.

The WMQI Enabler architecture allows the business analyst the freedom to define
the container required to support the process flow without requiring programming
changes to the underlying WMQI Enabler architecture, within the constraints of the
MQSWF product. The user specifies the required content in the message profile
database, and this content and the predefined WMQI Enabler content are
combined to build the container that becomes available in the source node of the
process graph. The user then uses the predefined container structures to define
the updated data to be sent as a part of the activity request message and the data
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 95

© C
to be included in the response message. In both cases the analyst is free to define
the specific content required to support the activity without requiring changes to
WMQI Enabler, within the limits of the WMQI Enabler container architecture.

The user may also refer to the MQSeries Workflow manuals, but a user could
simply double-click on the predefined data structure and then modify the data
structure. Care should be taken to ensure that any changes remain within the
boundaries described in this manual. The user will need to Apply, Save, Verify, and
Re-export for the changes to be accepted.

For more information see the IBM MQSeries Workflow: Getting Started with
Buildtime, Chapter 3 Creating a process model, Defining data structure section.

Figure 26: Data structure properties.
Development Guide 96opyright IBM Corp. 2001, 2002

© C
Adding a workflow
Samples of the use cases, sequence diagrams, system interaction diagrams, and
MQSWF templates are provided in the Model Office Reference Manual.
However, the WMQI Enabler user may have a business need to add a new
workflow to correspond to a new use case. This action will depend upon the needs
and requirements of the individual business. The details of creating a new workflow
are not covered in this manual; they are, however, discussed in the WMQI Enabler
Planning Guide, as each new workflow is considered a new implementation for
WMQI Enabler.

For more information, please see the IBM MQSeries Workflow: Getting Started
with Buildtime, Chapter 3 Creating a process model.

In accord with the WMQI Enabler architecture, the data structures, programs, and
queue names will need to be verified with the MQSI and XML teams as this new
workflow template is built.

Modifying a workflow in MQSWF
If the WMQI Enabler user wishes to modify an existing workflow, such as adding a
new program/business rule to a claim process, then they may use the current
workflow (found in the Model Office Reference Manual), and a new program
(Implementation area of MQSWF Build-time) and a program or process activity
node (Processes area of Buildtime) may be added to affect such a change. This
new program or process activity, of course, would have the proper transition codes
reflecting the new business rule to control the flow of work in the changed MQSWF
workflow process. WMQI Enabler provides access to any content contained in the
XML message being processed. This content forms the basis for the transition
conditions that are coded within the workflow process. This is different than
previous releases where a static Transition code was included in the data structure.
In the previous release, this required verification from the XML and MQSI teams.
(Transition codes may also come through the adapters to the external systems as
return codes from those systems). Now, since any content is readily available, the
analyst is free to setup the transition codes as they see fit. Please note that in some
cases this implies that there will be additional setup in the message profile
database table, so that the required content is available upon entry to workflow.

The WMQI Enabler user would then need to Apply, Save, Verify and Re-export for
these changes to be utilized. MQSeries Workflow also provides Change Control for
modified processes. This feature will allow the user to select a date in which the
modified process will be activated. The date control feature may be found on the
General Tab of the Process. The date control feature also helps to ensure that
MQSWF Buildtime and MQSWF Runtime remain in proper synchronization.

For more information see the IBM MQSeries Workflow: Getting Started with
Buildtime, Chapter 3 Creating a process model.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 97

© C
The Process Tab, which is shown on the upper right of Figure 18, is where
"processes" are defined.

The "AddParty" process is shown in detail; it may be added to other processes as
a process node.

In the following figure, the process activity or node is indicated in the middle column
and is the third icon down in the column:

Figure 27: MQSWF AddParty.

Removing a workflow
Removing a workflow requires coordination of all parties affected by the removal of
a business process. Notification should be sent to both business parties and
technical parties to discuss the impact, as this business process would not be used
again. Following consensus on the removal of the workflow process template, an
effective date for the removal should be determined, and the workflow terminated
on that date. To remove the workflow process, reference the MQSeries Workflow
manuals.

For more information see the IBM MQSeries Workflow: Getting Started with
Buildtime, Chapter 1 Introducing Buildtime.
Development Guide 98opyright IBM Corp. 2001, 2002

© C
Using program clients
The MQSeries Workflow Client starts processes and monitors their execution. The
Administration Utility administers the system and the Program Execution Agent
invokes application programs that are used in the workflow. With an MQSeries
Workflow Client, a process may be started, and a work list used to manage work
items. MQSeries Workflow offers a standard MQSeries Workflow Client that is
based on API’s. This Client is named Runtime.

MQSeries Workflow offers API’s to support the interaction between the MQSeries
Workflow server and client components. In addition, the API’s may be used to
invoke applications that are needed for workflow tasks. Using the client API’s,
custom clients may be built. For example, an MQSeries Workflow Client may be
built so that users may manage their work items.

For more details on the MQSeries Workflow Clients, please refer to the IBM
MQSeries Workflow Programming Guide.

Modifying program names & queue names
In accordance with the WMQI Enabler architecture, any modifications to a program
name or queue name should be discussed with the XML and MQSI team to verify
any impacts or changes that may need to be acknowledged by them as well. See
the figure, below.

For more information see the IBM MQSeries Workflow: Image and Workflow
Library: MQSeries Workflow Concepts, Installation, and Administration. Chapter 3
MQSeries Workflow Topology and Design Issues, Queue Manager section,
Snapshot - of queue section.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 99

© C
Figure 28: Modification to a QueueName.

Generic workflow samples
WMQI Enabler ships with a working set of MQSeries Workflow Processes included
in the MQSFSEWorkFlowProcesses.fdl. Many of the processes are used by
specific use case/test case scenarios. All of the processes in the FDL can be used
by any messageType.

Message Profiles allow the workflow process used by a messageType to be
different that the messageType name. This new feature allows any workflow
process to be used by any messageType.

Several processes can be employed for general purpose application. These
general workflow processes can be used as-is and are also supplied as sample,
generic template from which more advanced and customized processes can be
constructed.

These generic sample workflows are described in the following sections.
Development Guide 100opyright IBM Corp. 2001, 2002

© C
SetDestinationIDM workflow process template

Figure 29: SetDestinationIDM workflow process template.

Verbal explanation
The SetDestinationIDM process uses information provided to the process to route
an incoming message to the supplied destinationLogicalId. The response returned
from that destination is checked and routed to the next activity based the value of
the response message's cmdStatus (a part of a message). The response message
is then routed back to the originating System. The process ends.

Recommended use
This workflow template can be used by any messageType that conforms to the IBM
IDM (that is, uses cmdStatus to indicate message response status).
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 101

© C
SyncAndPublishIDM workflow process template

Figure 30: SyncAndPublishIDM workflow process template.

Verbal explanation
The SyncAndPublishIDM process uses information provided to the process to
route an incoming message to the supplied destinationLogicalId. The response
returned from that destination is checked and routed to the next activity based on
the value of the response message's cmdStatus. The response message is then
routed back to the originating System. The original message is then sent to WMQI
Enabler for possible publishing to the supplied PublishTopic. The process ends.

Recommended use
This workflow can be used by any messageType that conforms to the IBM IDM
(that is, uses cmdStatus to indicate message response status) that wants a Publish
performed on message processing completion.
Development Guide 102opyright IBM Corp. 2001, 2002

© C
SyncTwoBackEndsIDM workflow process template

Figure 31: SyncTwoBackEndsIDM workflow process template.

Verbal explanation
The SyncTwoBackEndsIDM process uses information provided to the process to
route an incoming message to the supplied destinationLogicalIds, in order. The
response returned from the first destination is checked and routed to the next
activity based on the value of the response message's cmdStatus. The original
message is then routed to the second supplied destinationLogicalId. The second
destination's response message is then routed back to the originating System. The
process ends.

Recommended use
This workflow can be used by any messageType that conforms to the IBM IDM
(that is, uses cmdStatus to indicate message response status) that requires the
same message to be routed to two destinations serially.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 103

© C
TwoBackEnds workflow process template

Figure 32: TwoBackEnds workflow process template.

Verbal explanation
The TwoBackEnds process uses information provided to the process to route an
incoming message to the supplied destinationLogicalIds, in order. The response
returned from the first destination is checked and routed to the next activity based
on the value of the Message's cmdStatus. The response message from the first
destination is then routed to the second supplied destinationLogicalId. The second
destination's response message is then routed back to the originating System. The
process then ends.

Recommended use
This workflow can be used by any messageType that conforms to the IBM IDM
(that is, uses cmdStatus to indicate message response status) that requires a
message to be routed to destination A with the response from A being routed on to
B. The response from B is routed back to the originator.
Development Guide 104opyright IBM Corp. 2001, 2002

© C
PublishOnly workflow process template

Figure 33: PublishOnly workflow process template.

Verbal explanation
The PublishOnly process uses information provided to the process to send an
incoming message to WMQI Enabler for possible publishing to the supplied
PublishTopic. The process ends. The message is not routed to any specific
destinationLogicalId.

Recommended use
This workflow can be used by any messageType that conforms to the IBM IDM
(that is, uses cmdStatus to indicate message response status) that wants a Publish
performed.

The first three workflow processes described above are used by the OAG use
case/test case suites. TwoBackEnds is utilized in the TwoBackEnd example. No
shipped example of the PublishhOnly workflow process is provided.

Alternative to using MQSeries Workflow
WMQI Enabler is a pre-assembeld solution that combines MQSeries products in
an integrated architecture and reference implementation. WMQI Enabler uses
MQSeries Workflow for the following reasons:

• Restart/recovery.

• State management of the message flow.

• Mechanism for supporting long running transactions.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 105

© C
• Mechanism for supporting compensatory transactions.

• History and reporting capabilities.

• Task management infrastructure.

• Standardized (WFMC) API's for process integration.

• Scalability.

• Assured delivery of the request and response message pair.

WMQI Enabler uses the message profile to indicate how a message should be
delivered.

The first delivery option is the "transactional message processing supervisor"
implemented using MQSWF.

The second delivery option is the "lightweight message processing supervisor"
(LMPS). This lightweight message processing supervisor is essentially the
HUB_IN_Flow that processes the message through the WMQI Enabler features so
that it can be directly delivered to the queues for the target adapter represented by
the symbolic destination id, "DestinationLogicalId".

The advantage of the LMPS is that it allows the design to develop a highly
optimized path to the target application, yet still provides access to specific WMQI
Enabler functions for cross referencing keys, symbolic destination resolution,
logging, system availability management,store and forward, and logging.

There are a number of design considerations when opting for the LMPS approach.

• LMPS is only capable of delivering content to a single target.

• LMPS uses an "optimistic processing model" that relies on a response from
the target adapter in order to trigger a response to the source application.
This means that unlike the transactional message processing supervisor,
adapters have to be more sophisticated to handle the fact that the
application has an error or exception.

Holosofx
The Holosofx company has created a tool that is complementary to the MQSeries
Workflow tool and can be used for the development of workflow process templates.
Holosofx Business Process Management (BPM) Suite© offers a solution for
process management in today's business world. The BPM Workbench can be
utilized to create process charts that are exportable to the MQSeries Workflow tool
and, thus, is fully compatible with the WMQI Enabler product.
Development Guide 106opyright IBM Corp. 2001, 2002

© C
BPM components
The BPM Suite consists of three components:

• BPM Workbench

• BPM Monitor

• BPM Server

BPM Workbench further consists of a Business Modeler, UML Modeler, Xform
Designer, and XML Mapper. With this workbench tool, it is possible to create flow
chart based process modeling, perform cost and time analysis, create a process
redesign report template, perform process simulation, do UML-based object
modeling, create a GUI design, and create XML-based application communication.
With this component, business processes can be modeled, design work can be
reused, business models printed, and the results exported to the IBM MQSeries®
Workflow tool. This tool provides a powerful analytical tool suitable for the
professional operations analyst, and individuals working within the process are
often the best candidates to model and analyze the process.

The BPM Monitor provides real time process tracking. One of its features is time,
cost, and performance evaluation. In addition, a Web-based interface is available.
It has as components both a "workflow dashboard" and a "business dashboard."

The BPM Server provides intra-company policy, procedure, and process
distribution. It also has a Web based interface and is made up of a repository and
has Web Publishing capability.

Potential use with WMQI Enabler
Holosofx was used to generate workflow process templates to validate its
compatibility with WMQI Enabler. Holosofx BPM Workbench version 4.1 build 4205
was used to construct the workflows and it operated seamlessly with MQSeries
Workflow version 3.3. The use of the tool requires the utilization of the IBM MQ
Workflow edit mode for consistency with the MQSeries Workflow product. This
mode is one of the eight editing modes offered within the Holosofx BPM
Workbench product. The business process is defined within the BPM Workbench
product through the use of the repositories: organization and process.

Within the organization repository, the domain, systems, queues, and
applications are specified.

Within the process repository, the data is defined as "Phis" (input and output
data) and the logic of the diagram can be specified through the use of
decisions and choices.
opyright IBM Corp. 2001, 2002 WMQI Enabler and MQSeries Workflow 107

© C
The graphical interface for the process diagrams is based on this information and
offers choices of task and process, similar to the workflow activities and processes,
the "Phis" are separate icons for the data, the decisions and decision choices
represent the logic of the diagram, and there is a connector for graphical
representation of the business flow.

In addition, the MQSeries Workflow process templates can be imported and
exported to the MQSeries Workflow tool by selecting File on the menu bar and
clicking Import/Export. Here, several alternative choices are also presented for
achieving this activity.

Within the BPM Workbench tool, numerous reports may be run to analyze costs,
time expended, and performance. The process templates may be validated and the
processes simulated prior to moving them into MQSeries Workflow. Using the BPM
Monitor, these processes may be monitored in real time as well.

More information on Holosofx can be obtained at www.holosofx.com.
Development Guide 108opyright IBM Corp. 2001, 2002

© C
 Chapter 8
 State tags

The usage of the state tags can vary from system to system due to the variances
in the functionality that needs to be mimicked through WMQI Enabler. It is
suggested that a clear understanding of the keys used for the front-end and back-
end be clearly documented before beginning because the state tags represent an
action that is (or was, depending on the status of the message) performed on the
key. Further, the intent of the data, as described in the use case, and not
necessarily the associated command, should be used as the primary factor in
determining how the state tag values should be set for each aggregate within a
message.

Example
An AddParty message will use "add" for all alternate ids, not because it is an add
of party information. Adding a party generally entails that all aggregates and their
data associated with the new party are actually new and need to be added.

Compare this with an "addClaim" message and you will see that the states do not
necessarily correspond with the fact that this is an add command. In the case of an
"addClaim", there are usually references to policy and coverage aggregates and
their data. Since the policy and coverages aggregates exist as the basis for making
the claim, the state tags associated with the aggregates for policy and coverage
data, will use the tag value of "exists" so that the keys can be translated to their
appropriate values between the source and target systems. The claim aggregate,
on the other hand, will use “add”, since it is actually being created.

Compare this to a modification of a Policy. In most cases changes to existing data
would require that the state tags be set to "exists" for the aggregates containing the
data. This is because the aggregate exists and the keys need to be translated
between the source and target applications so that they can properly reference the
correct aggregate and make the required modifications to the appropriate
attributes.

However it is also possible to modify a policy by adding new pieces of data to the
policy. In these types of cases the state tag must be set to "add" for the affected
aggregates.

It is necessary to look at the intent of the data contained in affected aggregates, as
described by the use cases in order to determine how the value of the state tag
should be set. Given this, there is still value in looking at types of messages and
their corresponding usage of the state values in order to establish some general
guidelines.
opyright IBM Corp. 2001, 2002 State tags 109

© C
For a list of state definitions, see Appendix C.

An example of the KeyGroup section of the IAA-XML message:

state="exists"
For inquiry messages, the state attribute should be set to "exists" on the request
portion of the message. As the back-end creates a message, the system will set
the state to "referenced" within the response portion of the message. Once the
response enters the hub, the hub will continue the translation of keys and change
the state to "referenced" as it sends it back to the front-end. In addition, values are
required in the KeyGroupType, state, value and sourceLogicalid tags.

state="add"
For add messages, it would be typical to use "add" as a state value. In our use
cases we will use "referenced" on the request message to assist with the systems
handling rollbacks. As the back-end creates their message, the system will set the
state to "add" within the response portion of the message. Once the response
enters the hub, the hub will create the UUID to associate all keys provided and will
change the state to "added" as it is sent back to the front-end system. In addition,
values are required in the KeyGroupType, state, value, and sourceLogicalid tags.
Additionally, when another system wishes to attach keys to an existing UUID, the
"add" state is also used. In this case either the UUID or an alternate id entry
containing an existing value, system id, and state of "exists" must be provided as
the first entry in the key group. This existing alternate id or the UUID will be used
as the basis for attaching the alternate ids with the state of "add".

state="modify"
For modification messages where the intent is to modify the key stored in the cross-
reference file we would use "modify" as a state value for the request portion of the
message. CRF will change the key entry in the cross-reference file. If the front-end
system doesn't change keys during a modification, then you should use the "exists"
value. Once the hub returns the message to the front-end, it will change the state
to "modified". In addition, values are required in the keyGroupType, state, value,
sourceLogicalid, and new value tags.

<KeyGroup id="K1"
keyGroupType="InsurancePolicySearchCriteria">

<AlternateId sourceLogicalId="PolicySYS"
state="referenced"/>
Development Guide 110opyright IBM Corp. 2001, 2002

© C
For modification messages where the intent is to modify data in existing
aggregates, the state tags should be set to "exists". In addition, values are required
in the KeyGroupType, state, value, and sourceLogicalid.

In the event that the only change desired is a change to the attributeString, issue a
"modify" where value and newValue are identical. Whatever is specified in the
attrbiuteString will be updated on the CRF table.

state="delete"
For delete messages, the front-end system will set the state value to "delete" for
the request. The back-end system will also set the response value to "delete" and
both keys will be marked inactive in the CRF table. There will be a change in state
to "deleted". In most scenarios, a system will not truly delete a record but may mark
it as invalid; therefore we may only see "delete" on a request message without
needing a response back from the back-end system. In addition, values are
required in the KeyGroupType, state, value, and sourceLogicalid tags.

For query type messages, generally the request message doesn't require
KeyGroup or state information, because we are asking the target application to find
information based on search criteria instead of keys. (As a result, when the target
application responds we generally do not need to use the cross reference function
for the response. This is because the response message generally returns all of
the items that match the search criteria and their keys.) Since the front-end does
not have equivalent keys, there is no reason to translate the back-end keys. If the
front-end decides to persist this information, it should use an add message to
attach to the existing entries from the back-end system as described above.

For get and put messages, the state tag should be set to "exists" so that the get/put
request key for the front-end can be translated into the corresponding equivalent
in the back-end system.
opyright IBM Corp. 2001, 2002 State tags 111

© C
 Appendix A
 State definitions

Action to be performed/that was performed on the key where:

referenced
Means the key is just information sent from one system to another.

add
Means the key needs to be added to CRF, only for message into hub.

added
Means the key was just created in the CRF, only for message coming from hub.

exists
Means the key is in the CRF & should be translated for another system specified
by the destinationLogicalID.

modify
Means the key was modified and needs to be changed in the CRF, only for
message into hub.

modified
Means the key was modified in the CRF, only for message coming from hub.

delete
Means the key needs to be removed from the CRF, only for message into hub.

deleted
Means the key was removed from the CRF, only for message coming out of the
hub.
Development Guide 112opyright IBM Corp. 2001, 2002

© C
 Appendix B
 Subflow descriptions

AddWorkArea
Creates the WorkArea and populates it. The WorkArea provides an information
wrapper that is used to pass parameters between MQSI nodes. The WorkArea may
hold multiple messages. If the message does not contain Message or WfMessage
as the high level tag, an error is generated. If the MQMD MsgType field has
MQMT_REQUEST, a field in the work area is set to indicate that this is a
synchronous message. Otherwise, it is identified as an asynchronous
message.

AdvancedInput
Reads a message in from an MQ queue.

Passes control to the try path of a catch block. If an error occurs during the

execution of the try path, flow control is throw back to the catch path.

 Try

Executes the AddWorkArea subflow.

Executes the LogMessage subflow.

 Catch

Executes the LogOriginalMessage subflow.

Executes the CauseDataRollback subflow.

AdvancedOutput
Executes the LogMessage subflow.

Executes the BuildDestinationList subflow.

Executes the RemoveWorkArea subflow.

Writes the message to the specified Queue.
opyright IBM Corp. 2001, 2002 Subflow descriptions 113

© C
BuildDestinationList
Clears out the destination list.

If there are items in the execution list

then

Sets up the defaults of the destination list

Defaults are :

 Name = 'Defaults';

transactionMode = 'automatic';

persistenceMode = 'automatic';

newMsgId = 'no';

newCorrelId = 'no';

segmentationAllowed = 'no';

alternateUserAuthority = 'no';

Moves every item in the results list into the historylist.

Moves the reply to information in work area into the mqmd. Nulls out the mqmd
first, to insure the new mqmd information is used.

Takes every item in the execution list and moves it into the the
MQDestinationList data.

CheckOfflineBodyCategory
Validates the incoming HUBONLYOFFLINE request message contains a valid
body category and routes the message to the corresponding label in the
HUB_ONLY_OFFLINE flow.

CheckOnlineBodyCategory
Validates the incoming HUBONLYONLINE request message contains a valid body
category and routes the message to the corresponding label in the
HUB_ONLY_ONLINE flow.

CRF
Creates a working copy of the current message for use by the CRF subflows.

For every CrfActionGroup in a message, loop through the key groups and process
them.

If an error occurs during CRF processing, return the original message to the
requester instead of the "in progress" working copy.
Development Guide 114opyright IBM Corp. 2001, 2002

© C
The symbolic of each key group is verified through the SDRFunction sub flow. If an
error occurs in that subflow, CRF captures it and processes it.

ErrorHandler
Call the ProcessNLSError subflow to build the NLS error message.

Sets the destination list to look for the appropriate route to label.

Sets an error indicator for use by the KillProcess subflow.

Routes the error via a RouteTo node with mode of Route To Last.

FormatHubResponse
Formats Hub command responses. There is a node with promoted attributes that
allows for unique code to be generated for each command, such as setting a status
flag.

An additional node is used for the common functions of building a response, such
as setting the destination of the message, populating the SDR execution list, and
formatting the response message.

GetINSEntry
Get the active INS entry out of the Install_Data_Table in the FSE_SYP database.
This table provides the installation information on this system such as the platform,
version, and default language.

Calls FormatHubResponse to generate the response message to the requesting
system.

GetMessageProfile
Gets the message profile for this body category from the Message_Profile_Table
on the FSE_MSGP database. If the body category does not exist, this is a Hub Only
message and the cmdType is used.

Moves the temporary sequence flag field into the used sequence flag field.

Gets the system interaction list for this body category from the
System_Interaction_Table.

If a valid message profile does not exist for this message type, or the message is
disabled from hub processing with a MQSIMessageEnabledFlag of False, an error
is generated.
opyright IBM Corp. 2001, 2002 Subflow descriptions 115

© C
GetNLSEntry
Gets the error message information for a specified error number.

Calls FormatHubResponse to generate the response message to the requesting
system.

GetSDREntry
Gets the Queue Manager for this system symbolic from the SDR_Table on the
FSE_SDR database.

Gets the Queue for this system symbolic from the SDR_Table.

Executes the FormatHubResponse subflow.

GetSystemProfile
Gets the system back up list for this system symbolic from the
System_Backup_Table on the FSE_SYSP database.

Gets the store forward flag list for this system symbolic from the
System_Store_Flag_Table.

Gets the values of all flags and fields, including language, shutdown
information, active flag, return codes, and error message destination from the
System_Status_Table.

Executes the FormatHubResponse subflow.

HUB_IN_LDAP
Duplicates HUB_IN, but uses SDR implemented with an LDAP interface.

HubOnlyMessageRouter
Based on the flag set in the node PrepHubOnlyFlag, sends the message to
HUB_ONLY_ONLINE, or HUB_ONLY_OFFLINE message queues. The flag is 0
for not Hub Only, 1 for Hub Only Offline, and 2 for Hub Only Online.

If the message is not a Hub Only command, it continues through the out terminal.

KillProcess
Updates the Process_State_Table indicating that the process is complete or had
an error.

If this was the last process using the current system, sets the Session_Table
indicating it is no longer active.
Development Guide 116opyright IBM Corp. 2001, 2002

© C
Each system using the process that requested a shut down, is now allowed to
shutdown if they:

Do not have a process currently in system interaction check.

Do not have any active sessions.

Send a message to each of these systems indicating that it can now shut down.

Process the publishing of a message by calling the PluggablePublish subflow.

KillSession
Deactivates the record for this session in the Session_Table on the FSE_SESS
database.

Gets all the process ids using this session id from the Process_State_Table.

For each process in the session:

Sets up to kill the process.

Executes the KillProcess subflow.

LogError
Sets up the process id, getting the information from the message or wfmessage in
the WorkArea structure.

Sets up the session id and message, getting the information from the message or
wfmessage WorkArea structure.

Inserts the error into the Error_Table on the FSE_ERRL database.

Inserts the message into the Message_Table.

If exceptions exists, inserts them, one at a time, into the Exception_Table.

Stores trace information into the Trace_Table and the Trace_Table, as appropriate.

Checks the current error to ensure it is not the same as the last error logged,

If they are identical, then

The process is looping. Break out of the loop.

Creates an error response, adding in workflow information if the error is a workflow
error.

Executes the SDR subflow.

Sets up the destination list and executes the AdvancedOutput subflow.

Executes the KillProcess subflow and starts a database rollback.
opyright IBM Corp. 2001, 2002 Subflow descriptions 117

© C
LogErrorOnly
Processes only the database update found in the LogError subflow.

LogMessage
For messages with a non-NULL msgID,

Generate process ID or assign an existing process ID if correct information is
populated.

While there are items in the results list, move them to the history list and then
clear them from results.

While there are items in the ExecutionList, insert each messageItem message
to the Message_Log_Table on the FSE_MSGL database.

LogoffAndRespond
Gets the active processes flag of the session from the Session_Table on the
FSE_SESS

If the active processes flag does not exist, then

Sets an invalid session indication.

Else

Checks to see if the session has active processes.

If there are active processes, then

deny logoff.

 Else

Updates the session table to invalidate session id.

Executes the FormatHubResponse subflow.

LogonAndRespond
Checks the authentication id passed in the message, to see if it exists in the
Session_Authentication_Table on the FSE_SESS database.

If the authentication id is found, then

creates a session id and moves that id to the message.

Else

clears out the session id information.

Inserts the newly created session id into the Session_Table on the FSE_SESS
database.

Executes the FormatHubResponse subflow.
Development Guide 118opyright IBM Corp. 2001, 2002

© C
LogOriginalMessage
Inserts a Message into the Original_Message_Table on the FSE_ERRL database

ProcessNLSError
First, the exception that is passed in is checked to see if it is a terminal error, such
as a parsing error. If it is, the error is logged and processing finishes.

If this is not a terminal error, the exception is converted into NLS format.

Based on the language and error number, the error message is retrieved from the
NLS error database and formatted.

The error is passed to LogError for processing.

ProcessSequenceValidation
If sequence validation is required by the message profile then do the following:

Gets the timestamp from the last process that completed on this session.

Uses the timestamp to get the message type name of that completed message
from the Process_State_Table.

Compares the message type name to the message dependency of our current
message.

If the dependency is met, then

Transfer control to the valid terminal.

Else,

Executes the SequenceInvalid node.

ProcessSession
If session validation is required by the message profile do the following:

If true,

Executes the ProcessSessionValidation subflow.

Executes the ProcessSequenceValidation subflow.

Transfers control to the out terminal for every path through the subflow.

ProcessSessionValidation
Checks for a valid session.

If valid, then

Updates the session record information.
opyright IBM Corp. 2001, 2002 Subflow descriptions 119

© C
else

Generates an error message.

ProcessSystemInteraction
If system interaction is enabled,

Executes the ProcessSystemInteractionCheck subflow.

If there are Interaction Problems, executes the StoreMessage subflow.

ProcessSystemInteractionCheck
Updates the process state to indicate system interaction check is in progress.

Gets the time stamp at the start of the system interaction check from the
Process_State_Table on the FSE_SESS database.

Checks for required systems. If a system is not there, checks for an available
backup. If required system and all of its backups are unavailable, sets the
InteractionProblemsFlag.

If checking multiple systems and one required system is not there, none of the
systems receive the message. All required systems must be up. If a required
system is not up, an available backup must be found up. Otherwise, an error
is created.

Updates process state to indicate system interaction check is complete.

If system interaction problems were found, transfer control to the problems
terminal. Else transfer control to the out terminal.

ProcessWorkflowRequest
If a response is required to workflow,

Checks that correlId, message id, original id, and work flow data structure name
are included in the Request.

If any is NULL, error and exit.

Stores the work flow parameters into the Workflow_Parameters_Table on the
FSE_WFCO database.

Retrieves the message stored to the MESSAGE_LOG_TABLE on the FSE_MSGL
database to the WorkaArea.

Applies any workflow requested messages changes.
Development Guide 120opyright IBM Corp. 2001, 2002

© C
Modification for Complex Business Processes Support (UFCU)
Once a Workflow process generates a message for communication with WMQI
Enabler, the message is sent to MQWF_OUT. The message flows to
ProcessWorkflowRequest_Subflow.

• Database Node StoreWorkflowParameters stores the reply to information
specified in the MQMD header in the Workflow_Correl_Table, along with the
message id, workflow correl id, message name, original message id, and
the data structure name that the workflow expects to see in its response
message. The reply to information is used in HUB_RWF_IN to send the
response back to the requesting instance of Workflow.

• Compute Node RetrieveRequestedSendMessage examines the incoming
Workflow message for the MessageTemplateFlag. If this flag is “True”, the
data in the MessageName tag is used to pull a template out of the
Message_Template_Table.

If the flag is not “True”, processing continues as before, using
MessageName and process id to pull a requesting message from the
Message_Log_Table

• After the retrieved message is reset in the ResetContentDescriptor Node,
Compute Node ApplyMessageChanges adds tag TemplateId to the
Message. This tag is a temporary field that will be used to identify necessary
correlation information to HUB_IN. It contains the message id within the
MQMD header of the requesting WorkflowMessage.

• The message then flows back to MQWF_OUT. Within Compute Node
PrepSDRParameters, if this message is a template, then queue HUB_IN on
queue manager MQSIQM is set as the destination for the message.
opyright IBM Corp. 2001, 2002 Subflow descriptions 121

© C
Within Compute Node PrepBuildDestinationList, as with all messages in this
flow, queue HUB_RWF_IN is specified as the response queue.

The message template is then sent to HUB_IN with a new message id in the
MQMD header, and it is treated as all messages are.

Within Compute Node ProcessWorkFlowCheck of ProcessWorkFlowStart, if the
TemplateId exists within the message and workflow processing is required, it is
used to set the OriginalMessageId in the workflow message being created. If
workflow processing is not required the TemplateId is used to replace the MQMD
header MsgId and the message is sent to whatever backend is specified in its
message profile or in its destinationLogicalId.

ProcessWorkflowResponse
Loads static work flow related information from the Message_Profile_Table on the
FSE_MSGP database

Moves the temporary field of sequence validation to
MQSIMessageSequenceValidationFlag.

Gets the system interaction list for this message from the
System_Interaction_Table.

Gets information stored to the WorkFlow_Correl_Table on the FSE_WFCO
database for the response message.

Loads the Workflow container header information.

Loads the Workflow container CommonArea.

Loads the Workflow container SystemInfoArea with the system interaction list.

Loads the Workflow container DynamicParametersArea.

Sets up the destination list parameters.

Sets the active flags for the system in the interaction list from the
Session_Processes_And_System_Usage_Table on the FSE_SESS database.

For our current message id, updates the message log with a message name
requested by work flow.

Modification for Complex Business Processes Support (UFCU)
Once the message template processes to completion, the response message is
sent to HUB_RWFIN. This process is controlled from MQWF_OUT; when the
template is sent to HUB_IN, HUB_RWF_IN is specified as the requesting system
reply to information.
Development Guide 122opyright IBM Corp. 2001, 2002

© C
ProcessWorkflowResponse_Subflow within HUB_RWF_IN builds the message
that responds to the Workflow process that invoked the template. Within Compute
Node BuildWorkflowMessage, the correl id in the MQMD header is used to pull the
appropriate information out of the Workflow_Correl_Table. At this point the correl
id is populated with the message id of the original Workflow message. This is
controlled in one of two ways.

If the template is processed through Workflow, the message id is saved in the
OriginalMessageId field within the workflow process. When it is last processed in
MQWF_OUT, this OriginalMessageId is moved into the correl id of the MQMD
header.

If the template is not processed through Workflow, the message id of the original
Workflow message replaces the message id of the requesting template message.
Once the template message reaches the back end system, the message id is
moved to the correl id of the MQMD header.

The Workflow correlation information is pulled from the Workflow_Correl_Table
and used to build a response message to Workflow, and the initial process within
workflow is completed.

ProcessWorkflowStart
If the message profile indicates that WorkFlow Management is enabled,

then

Gets the WorkFlow parameters list from the Workflow_Parameters_Table on the
FSE_MSGP database.

Loads the Workflow container CommonArea.

Loads the Workflow container SystemInfoArea with the system interaction list.

Loads the Workflow container DynamicParametersArea.

Sets up the destination list parameters.

Transfers control to the workflow terminal.
opyright IBM Corp. 2001, 2002 Subflow descriptions 123

© C
Else

Sets the CRF offset to the last message in the list of messages.

Transfers control to the no workflow terminal.

Publish
Adds the correct MQRFH2 parameters and a publishable message to the outgoing
message. Sends this extract to a Publish node. Messages will be published to a
topic specified in the message profile.

PluggablePublish
Provides a publish function that can be used anywhere within the flows where the
MQSIWorkArea still exists within the message. It sets up the publish topic based
on the message profile contents and checks to see if publishing is required based
on flags in the message profile, flags in the message, and whether or not it is an
error situation.

RemoveWorkArea
Passes the output destination list through to the output node.

Removes the WorkArea.

Moves the XML version, encoding and standalone parameters stored back into the
outgoing message.

SDR
Calls the SDRFunction subflow, and captures it's errors.

SDRFunction
Moves every item in the results list into the history list.

Clears out the SDR error tag.

For every item in the execution list.

Checks to see if the item in the execution list is in the historylist.

If the item is in the historylist, move it to the results list. Otherwise, get result from
the SDR_Table on the FSE_SDR database. Validates SDR results for correct
Queue and QueueManager.

Clears the execution list.

If an error was found in the SDR processing, transfer control to the
ValidatSDR?_False terminal.
Development Guide 124opyright IBM Corp. 2001, 2002

© C
SDR_IN_LDAP
Calls the SDRFunction_LDAP subflow, and captures it's errors

SDRFunction_LDAP
Moves every item in the results list into the history list.

Clears out the SDR error tag.

For every item in the execution list.

Checks to see if the item in the execution list is in the historylist.

If the item is in the historylist, move it to the results list. Otherwise, get result from
the SDR Structure on a specified LDAP server. Validates SDR results for correct
Queue and QueueManager.

Clears the execution list.

If an error was found in the SDR processing, transfer control to the
ValidatSDR?_False terminal.

StoreMessage
If Store Message is required,

Extract the BLOB portion of the WorkArea message and store it to the
Stored_Message_Table on the FSE_STOF database.

Checks the system interaction requirements for this message, and stores
correlating information of the stored message into the
Interaction_Dependency_Table.

Updates the Process_State_Table, indicating the message was stored for
forwarding when the system is restarting.

Else

Pass on the exception generated in ProcessSystemInteractionCheck to the
Error Handler.

SetSubscription
Generates subscription information based on the COMMAND section of the
message.

Sends that information to the Broker's control queue.

Builds response message for the requesting system.

Used to register and drop subscriptions.
opyright IBM Corp. 2001, 2002 Subflow descriptions 125

© C
SystemRestart
Deactivates the existing records of the System_Status_Table on the FSE_SYSP
database for the system symbolic.

Inserts a new record into the System_Status_Table for our system symbolic.

Checks the Interaction_Dependency_Table on the FSE_STOF database for stored
messages stored with our current system as a destination.

For every stored message, retrieve the original message from the
Stored_Message_Table and re-parses the message.

Once all stored messages and restarted, executes the FormatHubResponse
subflow.

SystemShutdown
Sets the requested shutdown flag in the System_Status_Table on the FSE_SYSP
dB to true for the system symbolic.

Sets the requested shutdown flag in the
Session_Processes_And_System_Usage_Table on the FSE_SESS db to true for
the system symbolic.

Gets the requested shutdown timestamp from the System_Status_Table for every
system with our symbolic that wants to shutdown.

Checks the Process_State_Table to see if any of the systems that want to
shutdown are currently in system interaction check state. If a system that wants to
shutdown is in system interaction check or has a process currently using it, setup
to deny shutdown.

If the system cannot shutdown, set the blocked by system interaction flag in the
System_Status_Table to true.

If the system can shutdown, sets the Active flag in the System_Status_Table to
false.

Executes the FormatHubResponse subflow.

TraceLog
If the trace flag is not in the work area, retrieve it from the message profile database

If trace is enabled, copies the information in the WorkArea TraceArea to the
Trace_Table, then clears the WorkArea TraceArea.

UpdateINSEntry
Deactivates the active record in the Install_Data_Table within the FSE_SYSP
database.
Development Guide 126opyright IBM Corp. 2001, 2002

© C
Inserts a new record in the table with the information in the COMMAND section of
the message.

UpdateMessageProfile
Deactivates the records in the Message_Profile_Table with the current Message
Type Name.

Deactivates the records in the System_Interaction_Table with the current Message
Type Name.

Inserts a new record in the Message_Profile_Table with the information from the
COMMAND section.

Deactivates the Workflow Parameters in the Workflow_Parameters_table for the
current message type.

Inserts Workflow Parameters in the Workflow_Parameters_Table on FSE_MSGP
with the information from the COMMAND section.

Deactivates entries on the System_Interaction_Table for the current Message Type
and System Symbolic.

Inserts System_Interaction_Table record(s) with the information from the
COMMAND section.

Executes the FormatHubResponse subflow.

UpdateNLSEntry
Deactivates all records for the error number specified in the message in the
NLS_Error_Message_Table.

Inserts new records in the table with the information in the COMMAND section of
the message.

UpdateSDREntry
Deactivates all SDR records in the SDR_Table with the current system symbolic.

Inserts a new record into the SDR_Table using the information passed in the
COMMAND section.

Executes the FormatHubResponse subflow.

UpdateSystemProfile
Deactivates all existing records in the System_Status_Table with the current
system symbolic.

Deactivates all existing records in the System_Backup_Table with the current
system symbolic.
opyright IBM Corp. 2001, 2002 Subflow descriptions 127

© C
Deactivates all existing records in the System_Store_Flag_Table with the current
system symbolic.

Inserts the supplied Backups into the System_Backup_Table.

Inserts the supplied Store Forward flags into the Store_Forward_Flag_Table.

Inserts the supplied System information into the System_Status_Table.

Executes the FormatHubResponse subflow.

Version1.2.2
Contains the version indicator 1.2.2.
Development Guide 128opyright IBM Corp. 2001, 2002

© C
 Appendix C
 WMQI Enabler routing diagram

The illustration on the next page shows an WMQI Enabler routing diagram that
demonstrates three possible scenarios.

Scenario a: Shows a message passing through the HUB that uses MQSeries
Workflow. See steps a1 through a16 to follow its path. Steps a13a, a13b, a14a, and
a14b are steps that run in parallel.

Scenario b: Shows a message passing through the HUB that does not use
MQSeries Workflow. See steps b1 through b8 to follow its path.

Scenario c: Shows a hub-only message. See steps c1 through c6 to follow its path.
Steps c3a, c4a, and c5a follow the HUB_ONLY_ONLINE path. Steps c3b, c4b, and
c5b follow the HUB_ONLY_OFFLINE path.

In this diagram FMC.FMCGRP.EXE.XML is the standard input queue for Workflow.
opyright IBM Corp. 2001, 2002 WMQI Enabler routing diagram 129

FrontE
nd_IN

Front E
nd

system

W
M

Q
I E

n
ab

ler

B
ack E

nd
system

B
ackE

nd_IN

H
U

B
_IN

a1, b1, c1

H
U

B
_IN

(A
2, A

3, A
4, A

5, A
7)

a2, b2, c2

W
orkF

low
(A

2, A
3)

M
Q

W
F

_O
U

T
(A

2, A
3, A

4)

M
Q

W
F

_O
U

T

a5, a13a

a6, a14b
a7

H
U

B
_R

W
F

_IN
(A

2, A
3, A

4)

H
U

B
_R

W
F

_IN

a9

a10

FM
C

.FM
C

G
R

P
.E

X
E

.X
M

L

a4, a12

a11

a15

a16, b8, c6

H
U

B
_R

_IN
(A

4, A
5)

H
U

B
_R

_IN
b5

b7

M
Q

W
F

_E
N

D

a13b

M
Q

W
F

_E
N

D
(A

4, A
5)

a14b

a3

b3

b6

a8, b4

H
U

B
_O

N
L

Y
_

O
N

L
IN

E
(A

4)

H
U

B
_O

N
LY

_O
N

LIN
E

c3a

c4a

c5a

H
U

B
_O

N
L

Y
_

O
F

F
L

IN
E

(A
4)

H
U

B
_O

N
LY

_O
FFLIN

E

c3b

c4b
c5b

© Copyright IBM Corp. 2000, 2001

© C
 Appendix D
 MQSI WorkArea DTD

The MQSI_WorkArea DTD is as follows:

<!ELEMENT MessageGroup (OriginalMessageOffset? , MessageItem* ,
Type? , ProcessId? , MessageName? , Message? , WFMessage?,
NLSErrorMesssage?, NLS_Results?, INS_Results?,
CompletedNLSErrorMessage?)>
<!ELEMENT OriginalMessageOffset (#PCDATA)>
<!ELEMENT MessageItem (Type? , ProcessId? , WfMessage? ,
MessageName? , Message?)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT ProcessId (#PCDATA)>
<!ELEMENT MessageName (#PCDATA)>
<!ELEMENT Message (#PCDATA)>
<!ATTLIST Message sourceLogicalId CDATA #IMPLIED >
<!ELEMENT WFMessage (#PCDATA)>
<!ELEMENT Parameters (SDR? , BuildDestinationList? , RemoveWorkArea?
, LogMessage?)>
<!ELEMENT SDR (ExecutionList , ResultsList , HistoryList)>
<!ELEMENT MQSI_WorkArea (MessageGroup? , Parameters? , ErrorList? ,
TraceArea? , MessageProfile? , Session? , SystemProfileArea? ,
CRF_WorkArea?, Publish?)>
<!ELEMENT ErrorList (Error*)>
<!ELEMENT TraceArea (StartTraceList? , EndTraceList?)>
<!ELEMENT MessageProfile (MessageTypeName? ,
MQSISessionValidationFlag? , MQSIMessageSequenceValidationFlag? ,
MQSISystemInteractionCheckFlag? , WorkFlowManagementFlag? ,
WorkFlowQueueManager? , WorkFlowQueue? ,
WorkFlowReplyToQueueManager? , WorkFlowReplyToQueue? ,
WorkFlowSymbolic? , WorkFlowDataStructureName? ,
DefaultDestinationSymbolic? , MessageTypeDependency? ,
WorkFlowParametersList? , SystemInteractionList?,TraceFlag? ,
PublishFlag? , OverrideFlag? , PublishErrorsFlag? ,
MQSIMessageEnabledFlag?, WorkFlowProcessName?)>
<!ELEMENT Session (SessionId? , SessionState?)>
<!ELEMENT SystemProfileArea (SourceSystemProfile? , SystemSymbolic?
, StoreFlag? , DestinationSystemProfileList? , Language?)>
<!ELEMENT CRF_WorkArea (MessageOffset)>
Development Guide 130opyright IBM Corp. 2001, 2002

© C
<!ELEMENT BuildDestinationList (ExecutionList? , ResultsList? ,
HistoryList?)>
<!ELEMENT INS_Results (Hardware+platform? Default_Language?,
Prodcut_Version?)>
<!ELEMENT NLSErrorMessage (Messsage_Number?, Section?, NodeName?)>
<!ELEMENT NLS_Results (LanguageNumber?, MessageNumber?, Section?)>
<!ELEMENT Publish (PublishMessageOffset? , TopicList?)>
<!ELEMENT TopicList (Topic?)>
<!ELEMENT RemoveWorkArea (OutGoingMessageOffset?)>
<!ELEMENT LogMessage (ExecutionList? , ResultsList? , HistoryList?
)>
<!ELEMENT ExecutionList (Item? , Destination? , QueueManager? ,
ReplyTo?)>
<!ELEMENT ResultsList (Item?)>
<!ELEMENT HistoryList (NumberOfItems? , Item*)>
<!ELEMENT Item (SystemSymbolic? , Status? , QueueManager? , Queue?
, LogPointName? , LogMessageOffset? , LogPath? , Name? , Result? ,
ParameterName? , ParameterPath? , DefaultValue? , Destination? ,
RequiredParameterFlag? , ReplyTo? , RequiredInteractionFlag? ,
SystemMirror? , SystemBackup?)>
<!ELEMENT Section (Section_Number?, Value?, SectionNumber?,
MessageText?, SpaceBefore?, SpaceAfter?, TextOnly?)>
<!ELEMENT Section_Number (#PCDATA)>
<!ELEMENT Value (#PCDATA)>
<!ELEMENT NodeName (#PCDATA)>
<!ELEMENT Message_Number (#PCDATA)>
<!ELEMENT MessageNumber (#PCDATA)>
<!ELEMENT SectionNumber (#PCDATA)>
<!ELEMENT MessageText (#PCDATA)>
<!ELEMENT TextOnly (#PCDATA)>
<!ELEMENT CompletedNLSErrorMessage (#PCDATA)>
<!ELEMENT LanguageNumber (#PCDATA)>
<!ELEMENT Hardware_Platform (#PCDATA)>
<!ELEMENT Product_Version (#PCDATA)>
<!ELEMENT Default_Language (#PCDATA)>
<!ELEMENT SpaceBefore (#PCDATA)>
<!ELEMENT SpaceAfter (#PCDATA)>
<!ELEMENT SystemSymbolic (#PCDATA)>
<!ELEMENT Status (#PCDATA)>
<!ELEMENT QueueManager (#PCDATA)>
<!ELEMENT Queue (#PCDATA)>
<!ELEMENT LogPointName (#PCDATA)>
<!ELEMENT LogMessageOffset (#PCDATA)>
<!ELEMENT LogPath (#PCDATA)>
opyright IBM Corp. 2001, 2002 MQSI WorkArea DTD 131

© C
<!ELEMENT NumberOfItems (#PCDATA)*>
<!ELEMENT OutGoingMessageOffset (#PCDATA)>
<!ELEMENT Error (#PCDATA)>
<!ELEMENT StartTraceList (Item*)>
<!ELEMENT EndTraceList (Item*)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Result (#PCDATA)>
<!ELEMENT ParameterName (#PCDATA)>
<!ELEMENT ParameterPath (#PCDATA)>
<!ELEMENT DefaultValue (#PCDATA)>
<!ELEMENT RequiredParameterFlag (#PCDATA)>
<!ELEMENT MessageTypeName (#PCDATA)>
<!ELEMENT MQSISessionValidationFlag (#PCDATA)>
<!ELEMENT MQSIMessageSequenceValidationFlag (#PCDATA)>
<!ELEMENT MQSISystemInteractionCheckFlag (#PCDATA)>
<!ELEMENT WorkFlowManagementFlag (#PCDATA)>
<!ELEMENT WorkFlowProcessName (#PCDATA)>
<!ELEMENT WorkFlowQueueManager (#PCDATA)>
<!ELEMENT WorkFlowQueue (#PCDATA)>
<!ELEMENT WorkFlowReplyToQueueManager (#PCDATA)>
<!ELEMENT WorkFlowReplyToQueue (#PCDATA)>
<!ELEMENT WorkFlowSymbolic (#PCDATA)>
<!ELEMENT DefaultDestinationSymbolic (#PCDATA)>
<!ELEMENT MessageTypeDependency (#PCDATA)>
<!ELEMENT PublishTopic (#PCDATA)>
<!ELEMENT PublishFlag (#PCDATA)>
<!ELEMENT OverrideFlag (#PCDATA)>
<!ELEMENT PublishErrorsFlag (#PCDATA)>
<!ELEMENT MQSIMessageEnabledFlag (#PCDATA)>
<!ELEMENT WorkFlowParametersList (Item?)>
<!ELEMENT SystemInteractionList (InteractionProblemsFlag? , Item?)>
<!ELEMENT sourceLogicalId (#PCDATA)>
<!ELEMENT Destination (QueueManager? , Queue?)>
<!ELEMENT ReplyTo (QueueManager? , Queue?)>
<!ELEMENT InteractionProblemsFlag (#PCDATA)>
<!ELEMENT SessionId (#PCDATA)>
<!ELEMENT SessionState (#PCDATA)>
<!ELEMENT SourceSystemProfile (SystemSymbolic? , StoreFlag?)>
<!ELEMENT StoreFlag (#PCDATA)>
<!ELEMENT DestinationSystemProfileList (#PCDATA)>
<!ELEMENT MessageOffset (#PCDATA)>
<!ELEMENT RequiredInteractionFlag (#PCDATA)>
<!ELEMENT SystemMirror (#PCDATA)>
Development Guide 132opyright IBM Corp. 2001, 2002

© C
<!ELEMENT WorkFlowDataStructureName (#PCDATA)>
<!ELEMENT SystemBackup (#PCDATA)>
<!ELEMENT WfMessage (#PCDATA)>
opyright IBM Corp. 2001, 2002 MQSI WorkArea DTD 133

© C
 Appendix E
 Example MQSI WorkArea

An example MQSI_WorkArea structure is as follows:

<MQSI_WorkArea>
 <MessageGroup>
 <OriginalMessageOffset>1</OriginalMessageOffset>
 <MessageItem>
 <Type>IAA-XML</Type>
 <ProcessId></ProcessId>
 <MessageName></MessageName>
 <Message>
 </Message>

 </MessageItem>
 <MessageItem>
 <Type>WorkFlow</Type>
 <ProcessId></ProcessId>
 <WfMessage>
 </WfMessage>

 </MessageItem>
 <MessageItem>
 <Type>IAA-XML</Type>
 <ProcessId></ProcessId>
 <Message sourceLogicalId="Siebel">
 </Message>
 </MessageItem>
 <NLSErrorMessage>
 <NodeName>aComputeNode</NodeName>
 <Message_Number>1499</Message_Number>
 <Section>
 <Section_Number>1</Section_Number>
 <Value>Something bad happened</Value>
 </Section>

</NLSErrorMessage>
 <NLS_Results>
 <LanguageNumber>10</LanguageNumber>
 <MessageNumber>N101499</MessageNumber>

<Section>
Development Guide 134opyright IBM Corp. 2001, 2002

© C
 <SectionNumber>1</SectionNumber>
 <MessageText>Something bad happened</MessageText>
 <SpaceBefore>True</SpaceBefore>
 <SpaceAfter>True</SpaceAfter>
 <TextOnly>True</TextOnly>
 </Section>
</NLS_Results>
 <INS_Results>
 <Hardware_Platform>NT</Hardware_Platform>
 <Product_Version>01</Product_Version>
 <Default_Language>EN_US</Default_Language>
 </INS_Results>
 <CompletedNLSErrorMessage>N101499 Something bad happened
</CompletedNLSErrorMessage>
 </MessageGroup>
<Parameters>
 <SDR>
 <ExecutionList>
 <Item>
 <SystemSymbolic>Siebel</SystemSymbolic>
 <Item>
 </ExecutionList>
 <ResultsList>
 <Item>
 <SystemSymbolic>CIIS</SystemSymbolic>
 <Status>Processed Successfully</Status>
 <QueueManager>CIISQM1</QueueManager>
 <Queue>CIISIN1</Queue>
 </Item>
 </ResultsList>
 <HistoryList>
 <Item>
 <SystemSymbolic>SLU</SystemSymbolic>
 <Status>Processed Successfully</Status>
 <QueueManager>SLUQM1</QueueManager>
 <Queue>SLUIN1</Queue>
 </Item>
 </HistoryList>

 </SDR>
opyright IBM Corp. 2001, 2002 Example MQSI WorkArea 135

© C
 <BuildDestinationList>
 <ExecutionList>

 <ReplyTo>
 <QueueManager>MQSIQM</QueueManager>
 <Queue>MQWFEND</Queue>
 </ReplyTo>
 <Item>
 <Destination>
 <QueueManager>FMCQM</QueueManager>
 <Queue>FMC.FMCGRP.EXE.XML</Queue>
 </Destination
 </Item>
 </ExecutionList>
 <ResultsList>

 <ReplyTo>
 <QueueManager></QueueManager
 <Queue></Queue>
<\ReplyTo>
 <Item>
 <Destination>
 <QueueManager>QM5</QueueManager>
 <Queue></Queue>
 </Destination>
 <Status>Error: Destination.Queue is NULL</Status>
 </Item>
 </ResultsList>
 <HistoryList>
 <Item>
 </Item>
 </HistoryList>
 </BuildDestinationList>
 <RemoveWorkArea>
 <OutGoingMessageOffset>1</OutGoingMessageOffset>
 </RemoveWorkArea>
 <LogMessage>
 <ExecutionList>
 <Item>

<LogPointName>HUB_IN Log At Start</LogPointName>
 <LogMessageOffset>1</LogMessageOffset>

<LogPath>
Development Guide 136opyright IBM Corp. 2001, 2002

© C
MQSI_WorkArea.MessageGroup.MessageItem[MQSI_WorkArea.MessageGroup.O
riginalMessageOffset].Message

 </LogPath>

 </Item>

 </ExecutionList>

 <ResultsList>

 <Item>

 <LogPointName>HUB_IN Log At Start</LogPointName>

 <LogMessageOffset>1</LogMessageOffset>

 <LogPath>
MQSI_WorkArea.MessageGroup.MessageItem[MQSI_WorkArea.MessageGroup.O
riginalMessageOffset].Message

 </LogPath>

 <Status>Processed Successfully</Status>

 </Item>

 </ResultsList>

 <HistoryList>

 <Item>

 </Item>

 <Item>

 </Item>

 </HistoryList>

 </LogMessage>

</Parameters>

<Publish>

 <PublishMessageOffset></PublishMessageOffset>

 <TopicList>

 <Topic>AddParty</Topic>
</TopicList>

</Publish>

<ErrorList>

 <Error>LogMessage_Failure</Error>

 <Error>SDR_Failure</Error>

 <Error>SDR_Failure</Error>

</ErrorList>

<TraceArea>
opyright IBM Corp. 2001, 2002 Example MQSI WorkArea 137

© C
 <StartTraceList>

 <Item>

 <Name>Check for duplicate Message names</Name>

 <Status>Incomplete</Status>

 </Item>

 <Item>

 <Name>Update database record to name message</Name>

 <Status>Incomplete</Status>

 </Item>

 </StartTraceList>

 <EndTraceList>

 <Item>

 <Name>Load WorkFlow correl parameters from database</Name>

 <Status>Processed Successfully</Status>

 <Result>WorkFlow correl data loaded</Result>

 </Item>

 <Item>

 <Name>Is this a WorkFlow message?</Name>

 <Status>Processed Successfully</Status>

 <Result>It is a WorkFlow message</Result>

 </Item>

 </EndTraceList>

</TraceArea>

<MessageProfile>

<MessageTypeName>AddParty</MessageTypeName>

 <MQSISessionValidationFlag>True</MQSISessionValidationFlag>
<MQSIMessageSequenceValidationFlag>False</MQSIMessageSequenceValida
tionFlag>

<MQSISystemInteractionCheckFlag>False</MQSISystemInteractionCheckF
lag>

 <WorkFlowManagementFlag>True</WorkFlowManagementFlag>
 <WorkFlowQueueManager>FMCQM</WorkFlowQueueManager>
 <PublishFlag>True</PublishFlag>
 <OverrideFlag>True</OverrideFlag>

<PublishErrorsFlag>True</PublishErrorsFlag>
<PublishTopic>SyncCustomer</PublishTopic>
Development Guide 138opyright IBM Corp. 2001, 2002

© C
<WorkFlowDataStructureName>Test_ProcessTemplateExecute_1</WorkFlo
Data StructureName>
<WorkFlowProcessName>SetDestination</WorkFlowProcessName>
 <WorkFlowQueue>FMC.FMCGRP.EXE.XML</WorkFlowQueue>
 <WorkFlowSymbolic>Workflow1</WorkFlowSymbolic>
 <WorkFlowReplyToQueueManager>MQSIQM</WorkFlowReplyToQueueMan-
ager>
 <WorkFlowReplyToQueue>MQWF_END</WorkFlowReplyToQueue>
 <HubQueueManager>MQSIQM</HubQueueManager>
 <DefaultDestinationSymbolic>WorkFlowDefault</DefaultDestina-
tionSymbolic>
 <MessageTypeDependency></MessageTypeDependency>
 <TraceFlag>False</TraceFlag>
 <MQSIMessageEnabledFlag>True</MQSIMessageEnabledFlag>
 <WorkFlowParametersList>
 <Item>
 <ParameterName></ParameterName>
 <ParameterPath></ParameterPath>
 <DefaultValue></DefaultValue>
 <RequiredParameterFlag></RequiredParameterFlag>

</Item>
</WorkFlowParametersList>
 <SystemInteractionList>
 <InteractionProblemsFlag>False</InteractionProblemsFlag>
 <Item>
 <SystemSymbolic>CIIS</SystemSymbolic>
 <RequiredInteractionFlag>True</RequiredInteractionFlag>
 <SystemMirror>CIISMirror1</SystemMirror>
 <SystemBackup>CIISBackup1</SystemBackup>
 </Item>
 </SystemInteractionList>
 </MessageProfile>
 <Session>
 <SessionId> </SessionId>
 <SessionState>Valid</SessionState>
</Session>
<SystemProfileArea>
 <SourceSystemProfile>

<SystemSymbolic></SystemSymbolic>
opyright IBM Corp. 2001, 2002 Example MQSI WorkArea 139

© C
<StoreFlag></StoreFlag>
<Language>10</Language>

</SourceSystemProfile>
<DestinationSystemProfileList>
 <Item>
 <SystemSymbolic>CIIS1</SystemSymbolic>
 <MessageTypeName>AddParty</MessageTypeName>
 <StoreFlag>True</StoreFlag>
 <NextBackup>CIIS2</NextBackup>
 </Item>
 </DestinationSystemProfileList>
 </SystemProfileArea>
 <CRF_WorkArea>

<MessageOffset>X</MessageOffset>
 </CRF_WorkArea>

</MQSI_WorkArea>
Development Guide 140opyright IBM Corp. 2001, 2002

© C
 Appendix F
 MQSeries Workflow container structure

Description
This document describes the structures and content, and gives XML examples for,
the container sections of the four WorkFlow messages that WMQI Enabler uses in
communications between MQSI and WorkFlow. The container section is only part
of a WorkFlow message. There is more content needed to create a valid WorkFlow
message than this document discusses. Please refer to the WorkFlow application
documentation for the structure of other areas of these messages.

Document changes
1. The OriginalMessageId field along with a description is now in the
CommonArea template data structure.

2. The ProcessReplyFlag field along with a description is now in the
OutgoingMessageArea template data structure.

3. The format for specifying multiple Systems in the SystemInfoArea was
change from an array structure to numbered tags. The description was
updated accordingly and examples are now given.

4. The format for specifying multiple Changes within the FieldChanges
template was change from an array structure to numbered tags. The
description was updated accordingly and examples are now given.

5. The format for specifying multiple Parameters within the
RequestedParameters template was change from an array structure to
numbered tags. The description was updated accordingly and examples are
now given.

6. The ProcessTemplateExecute, ActivityImplInvoke,
ActivityImplInvokeResponse, and ProcessTemplateExecuteResponse
message examples have been updated to reflect changes (1 - 5) listed above.
Also, the paths included in the Path tags have been update to reflect new API
path rules.

7. A section titled WorkFlow Mapping Rules has been added to the document
with a section on General rules.

8.The Publish field and its description have been added to the CommonArea
section.
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 141

© C
9.The NoDestinationFlag, MessageTemplateFlag, and NameMessage fields
have been added to the OutgoingMessageArea along with descriptions for
each.

Document conventions
Text in monospace font must be used (coded) in the exact form represented. All
upper and lower case letters must be maintained. All occurrences and absences of
space and other symbols must also be maintained.

Terminology
This section will list each term and its definition in the effort to reduce confusion.
This document will use some terminology that is derived from an Object Oriented
environment. While the terms will be defined as well as possible, please refer to
literature on Object Oriented Terminology if you need a complete background.

container
This is the section of the WorkFlow message that is used to pass data between
MQSI and WorkFlow.

data structure
This is an actual data structure use to define the WorkFlow container. Each data
structure will need to be built in the WorkFlow build time GUI. See the WorkFlow
application documentation for a more complete definition.

subdata structure
This is a data structure that is used to define parts (elements) of other data
structures.

template data structure
This is a sub data structure that is never used alone to define the WorkFlow
container. This is similar to the Object Oriented term "class". Also the term's short
version (template) is used.

template data structure name
This refers to the name of a template data structure. Also the term's short version
(template name) is used.

data structure instance
This refers to the element of a data structure that is defined by a template data
structure. This is similar to the Object Oriented term "instance" or "class instance".
Also the term's short version (instance) is used.
Development Guide 142opyright IBM Corp. 2001, 2002

© C
data structure instance name
This refers to the name of a data structure element that is defined by a template
data structure. Also the term's short version (instance name) is used.

system
This refers to a front end or back end system (computer) that interacts with the hub.

system symbolic
This is a string that represents a system. The string is use to retrieve routing
information from the SDR. WorkFlow places the system symbolic in the
destinationLogicalId attribute of the Message tag to have a message routed to the
system. Also the term's short version (symbolic) is used.

system active flag
This is a Boolean value that indicates whether or not a system is ready to receive
messages. If the flag is True, then the system is currently active or up. If the flag is
False, then the system is currently inactive or down.

A message should never be sent to an inactive system. The value of False is only
placed in the system active flag of a system that is specified as NOT a required
interaction in the message profile. This does not mean that in some uncommon
circumstances that WorkFlow will never require interaction with these systems. It
only means that it is possible to complete the process with out the interaction. If it
is NOT possible for WorkFlow to complete a process with out interacting with a
given system, then it should be listed in the message profile as required.

If MQSI receives a message that requires interaction with a system that is NOT
currently active, then the message will be returned to the sender with an error or
held until the system(s) required for interaction are active. This means that
WorkFlow should never receive a message if a system that WorkFlow always uses
is NOT active. Also the term's short version (active flag) is used.

Template data structures

CommonArea
This template data structure holds fields that are required for all messages. Only
one version of this template is needed, because all of its fields are always used.
The instance name given to an element defined by this template must always be
CommonArea. The template built in the WorkFlow build time can have a different
name.
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 143

© C
This template data structure holds fields that are required for all messages. Only
one version of this template is needed, because all of its fields are always used.
The instance name given to an element defined by this template must always be
CommonArea. The template built in the WorkFlow build time can have a different
name.

SessionId This field is a string that holds the id of the session that
MQSI has assigned to a hub connection.

ProcessId This field is a string that holds the id of the process that
MQSI has assigned to the message type.

OriginalMessageId This field is a string that holds the id of the original
message that MQSI received from a front-end system,
which is requesting a process to be started.

MessageId This field is a string that holds the id of the message that
MQSI has received. This field is only used by MQSI if the
MessageName field of the OutGoingMessageArea is
NOT provided.

Publish This field is a string that holds the topic to which the
message should be published. If the field is null, no
publish action will be taken.

System
This is a template data structure that holds information pertaining to a single
system that WorkFlow can communicate with to complete the executed process.
Only one version of this template is needed, because all of its fields are always
used. The instance name given to an element defined by this template must always
be System. The template built in the WorkFlow build time can have a different
name.

Symbolic This field is a string that holds a system symbolic.

ActiveFlag This field is a string that holds a system active flag.

SystemInfoArea
This template data structure holds information on the systems that workflow can
use to complete the executed process. Multiple template data structures may have
to be created to provide the variations in the content of this structure. The instance
name given to an element defined by one of these templates must always be
SystemInfoArea regardless of the name of the template
Development Guide 144opyright IBM Corp. 2001, 2002

© C
SystemX This is an array of elements of the template data
structure called System, where X is a variable number of
system(s) on which WorkFlow is expecting to receive
information. WorkFlow must already know how each
system is used by the order in which they appear or by
their numbering (example: System1, System2, System3,
…). The order and total number of systems are
equivalent to that which appears in the message profile
for the current message type.

DynamicParametersArea
This template data structure holds a variable number of parameters that the
message profile specified for this message. The order and number of parameters
is the same as appears in the message profile for the current message type. Each
one of the parameters has the form described below. Multiple template data
structures may have to be created to provide the variations in the content of this
structure. The instance name given to an element defined by one of these
templates must always be DynamicParametersArea regardless of the name of
the template.

X Where X is the name of the field, which is a string that
holds a parameter value. The name of the field and the
value of the string are determined by two different
methods. Each method is defined in the section
describing the WorkFlow message in which it is used.
The DynamicParametersArea template is used in the
ProcessTemplateExecute and
ActivityImplInvokeResponse messages.

Change
This template data structure holds information pertaining to one particular change
to a field that WorkFlow is requesting MQSI to make to the outgoing message. Only
one version of this template is needed, because all of its fields are always used.
The instance name given to an element defined by this template must always be
Change regardless of the name of the template. The template built in the WorkFlow
build time can have a different name.

Path This field is a string that holds the path to a changing
field.

NewValue This field is a string that holds the new value to place in
the changing field.
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 145

© C
FieldChanges
This template data structure holds a variable number of elements of the Change
template. Each one of the parameters has the form described below. Multiple
template data structures may have to be created to provide the variations in the
content of this structure. The instance name given to an element defined by one of
these templates must always be FieldChanges regardless of the name of the
template.

ChangeX This is an array of elements of the template data
structure called Change, where X is a variable number,
which corresponds to a single field change. For
example, if three changes were needed then you would
see Change1, Change2, and Change3.

OutgoingMessageArea
This template data structure holds fields describing the requests WorkFlow is
making of MQSI related to the outgoing message. Multiple template data structures
may have to be created to provide the variations in the content of this structure. The
instance name given to an element defined by one of these templates must always
be OutgoingMessageArea regardless of the name of the template.

MessageTemplateFlagThis element is a string that holds the text representation
of a Boolean value. When its value is False, the
message identified by the name within the element
LoadMessage is a message named by WorkFlow
previously. When its value is True, the message
identified by the name within the element LoadMessage
is a message template available for creating a new
message. If this element is null then the value false is
assumed.

MessageName This element is a string that holds the name of a
message to be loaded and sent as the outgoing
message. If this element is null then no loading is done
and the last message received and identified by the
MessageId element within the CommonArea will be sent
as the outgoing message.

ProcessReplyFlag This element is a string that holds the text representation
of a Boolean value. When its value is False no special
processing is activated. When its value is True then logic
is preformed by MQSI to correctly form and send the
specified message as a reply to the system that sent the
original message, which started the process.
Development Guide 146opyright IBM Corp. 2001, 2002

© C
FieldChanges This element is an instance of the template data
structure called FieldChanges. It specifies changes to
make to the outgoing message.

NoDestinationFlag This element is a string that holds the text representation
of a Boolean value. When its value is False a message
is sent out of the hub by the MQSI flows. When its value
is True then the MQSI flows know to perform all
requested processing of the specified message, but
does not send it out of the hub.

MessageTemplateFlagThis element is a string that holds the name of the
message template to load from the database. This
message template is used for all processing.

NameMessage This element is a string that holds the name to be given
to the outgoing message after any specified changes
have been made, so that the message can be
referenced later.

Parameter
This template data structure holds fields describing a single parameter WorkFlow
is requesting to be sent in the ActivityImplInvokeResponse message. Only
one version of this template is needed, because all of its fields are always used.
The instance name given to an element defined by this template must always be
Parameter regardless of the name of the template. The template built in the
WorkFlow build time can have a different name.

Name This element is a string holding the name of one
parameter that will appear in the
DynamicParametersArea of the
ActivityImplInvokeResponse message.

Path This element is a string holding the path used to retrieve
from the message the value of the parameter.

RequestedParameters
This template data structure holds information pertaining to the parameters
WorkFlow is requesting to be sent in the ActivityImplInvokeResponse
message. Multiple template data structures may have to be created to provide the
variations in the content of this structure. The instance name given to an element
defined by one of these templates must always be RequestedParameters
regardless of the name of the template.
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 147

© C
ParameterX This is an array of elements of the template data
structure called Parameter, where X is a variable
number, which corresponds to a single parameter that
WorkFlow is requesting to be sent. For example, if three
parameters were needed then you would see
Parameter1, Parameter2, and Parameter3.

IncomingMessageArea
This template data structure holds fields describing the requests WorkFlow is
making of MQSI related to the incoming message. Multiple template data
structures may have to be created to provide the variations in the content of this
structure. The instance name given to an element defined by one of these
templates must always be IncomingMessageArea regardless of the name of the
template.

MessageName This element is a string holding the name to be given to
the incoming message so that is can be referenced later.

WorkFlowDataStructureName

This element is a string holding the name of the data
structure that WorkFlow is expecting to see in the
container section of the
ActivityImplInvokeResponse message.

RequestedParametersThis element is an instance of the template data
structure called RequestedParameters.

ErrorInfoArea
This template data structure holds information pertaining to a single error MQSI or
WorkFlow may have found while performing request or process respectively. Only
one version of this template is needed, because all of its fields are always used.
The instance name given to an element defined by this template must always be
ErrorInfoArea regardless of the name of the template. The template built in the
WorkFlow build time can have a different name.

Error This field is a string holding information describing the
error that MQSI needs to send to WorkFlow in the
ActivityImplInvokeResponse message or that WorkFlow
needs to send to MQSI in the
ProcessTemplateExecuteResponse message.
Development Guide 148opyright IBM Corp. 2001, 2002

© C
Messages

ProcessTemplateExecute
This message is sent from MQSI to WorkFlow to start a new WorkFlow process.

CommonArea This element is an instance of the template data
structure called CommonArea. Its three string elements
are SessionId, ProcessId, and MessageId. For
more details, see the CommonArea under the Template
Data Structures section of this document.

SystemInfoArea This element is an instance of the template data
structure called SystemInfoArea. It holds a dynamic
number of elements of the template data structure called
System. For more details, see the SystemInfoArea
under the Template Data Structures section of this
document.

DynamicParametersArea

This element is an instance of the template data
structure called DynamicParametersArea. It holds a
variable number of elements. Each field's name and
value is determined by referencing the message profile
of the current message type. If the value of the field
cannot be resolved by MQSI and the field is defined as
not required in the message profile, then it is omitted. If
a parameter is defined as required and the value cannot
be resolved, then MQSI will declare an error and
WorkFlow will never receive this message.

ActivityImplInvoke
This message is sent from WorkFlow to MQSI to perform a specified set of
activities.

CommonArea This element is an instance of the template data
structure called CommonArea. Its three string elements
are SessionId, ProcessId, and MessageId. For
more details, see the CommonArea under the Template
Data Structures section of this document.
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 149

© C
OutgoingMessageAreaThis element is an instance of the template data
structure called OutgoingMessageArea. Its two
elements are MessageName and FieldChanges. For
more details, see the OutgoingMessageArea under the
Template Data Structures section of this document.

IncomingMessageAreaThis element is an instance of the template data
structure called IncomingMessageArea. Its three
elements are MessageName,
WorkFlowDataStructureName, and
RequestedParameters. For more details, see the
IncomingMessageArea under the Template Data
Structures section of this document.

ActivityImplInvokeResponse
This message is sent from MQSI to WorkFlow as a response to the
ActivityImplInvoke message.

CommonArea This element is an instance of the template data
structure called CommonArea. Its three string elements
are SessionId, ProcessId, and MessageId. For
more details, see the CommonArea under the Template
Data Structures section of this document.

SystemInfoArea This element is an instance of the template data
structure called SystemInfoArea. It holds a dynamic
number of elements of the template data structure called
System. For more details, see the SystemInfoArea
under the Template Data Structures section of this
document.

DynamicParametersArea

This element is an instance of the template data
structure called DynamicParametersArea. It holds a
variable number of parameters. Each parameter name
and value is determined by referencing the data stored
from the IncomingMessageArea of the
ActivityImplInvoke message. If the value of the
field cannot be resolved by MQSI, then MQSI will
declare an error and WorkFlow will receive this message
with an ErrorInfoArea describing the problem.

ErrorInfoArea This element is an instance of the template data
structure called ErrorInfoArea. It can be omitted if an
error has NOT occurred. The ErrorInfoArea template
holds a string element called Error, which describes an
Development Guide 150opyright IBM Corp. 2001, 2002

© C
error that has occurred. For more details, see the
ErrorInfoArea under the Template Data Structures
section of this document.

ProcessTemplateExecuteResponse
This message is sent from WorkFlow to MQSI as a declaration of process
completion.

CommonArea This element is an instance of the template data
structure called CommonArea. Its three string elements
are SessionId, ProcessId, and MessageId. For
more details, see the CommonArea under the Template
Data Structures section of this document.

ErrorInfoArea This element is an instance of the template data
structure called ErrorInfoArea. It can be omitted if an
error has NOT occurred. The ErrorInfoArea template
holds a string element called Error, which describes an
error that has occurred. For more details, see the
ErrorInfoArea under the Template Data Structures
section of this document.

Workflow mapping rules

General
1. The information in CommonArea must always be maintained to communicate

with the MQSI flows. This means that it should always be mapped to the
CommonArea of a data structure that is being sent to the MQSI flows. This
holds for both the ActivityImplInvoke and
ProcessTemplateExecuteResponse messages.

2. When a WorkFlow process terminates itself because of an error, the value(s)
that were used to arrive at the decision should be sent to the MQSI flows. This
is so that the flows can record the ending conditions of the process. To
accomplish this, the value(s) should be mapped to the Error field of the
ErrorInfoArea in the ProcessTemplateExecuteResponse message.
This is the message that is sent to the MQSI flows via the process sink. Values
that should be saved include the value of the Error field in an
ActivityImplInvokeResponse message, if it caused a decision for
termination.

3. When message naming is not used, careful mapping must be done to
maintain the value of the MessageId of the CommonArea.
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 151

© C
Examples

Workflow XML message examples

NOTE: When an asterisk ("*") appears before and after a tag name it means the
actual tag name is dynamic. When a period (".") appears at the same indention
point the next line below a tag, it means that there can be more occurrences of that
tag at the current level of nesting. Neither the asterisk nor the period should be
included as part of an actual instance of this XML message. In the examples below
all possible tags are included together in their respective messages even though
they may never appear together in the same instance of a message. Again, only
the container sections of the WorkFlow messages are included.
Development Guide 152opyright IBM Corp. 2001, 2002

© C
ProcessTemplateExecute

<*DataStructureNameHere*>

<CommonArea>

<SessionId> </SessionId>

<ProcessId> </ProcessId>

<OriginalMessageId> </OriginalMessageId>

<MessageId> </MessageId>

<Publish> </Publish>

</CommonArea>

<SystemInfoArea>

<System1>

<Symbolic>CIIS</Symbolic>

<ActiveFlag>True</ActiveFlag>

</System1>

<System2>

<Symbolic>CIIS2</Symbolic>

<ActiveFlag>False</ActiveFlag>

</System2>

</SystemInfoArea>

<DynamicParametersArea>

<*DynamicParameterName1*>

</*DynamicParameterName1*>

<*DynamicParameterName2*>

</*DynamicParameterName2*>

<*DynamicParameterName3*>

</*DynamicParameterName3*>

<*DynamicParameterNameN*>

</*DynamicParameterNameN*>

</DynamicParametersArea>

</*DataStructureNameHere*>
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 153

© C
ActivityImplInvoke

<*DataStructureNameHere*>

<CommonArea>

<SessionId> </SessionId>

<ProcessId> </ProcessId>

<OriginalMessageId> </OriginalMessageId>

<MessageId> </MessageId>

<Publish> </Publish>

</CommonArea>

<OutgoingMessageArea>

<MessageTemplateFlag>True</MessageTemplate-

Flag>

<MessageName>Activity12a</MessageName>

<ProcessReplyFlag>False</ProcessReplyFlag>

<FieldChanges>

<Change1>

<Path>(XML.tag)”Mes-

sage”.(XML.attr)”destinationLogi-

calId”</Path>

<NewValue>Party</NewValue>

</Change1>

<Change2>

<Path>

 (XML.tag)”Message”.(XML.tag)”COM-

MAND”.(XML.tag)[1].

 (XML.attr)”cmdStatus”

</Path>

<NewValue>notok</NewValue>

</Change2>

</FieldChanges>

<NoDestinationFlag></NoDestinationFlag>

<NameMessage>Activity1Request</NameMessage>

</OutgoingMessageArea>

<IncomingMessageArea>

<MessageName>Activity1Reply</MessageName>

<WorkFlowDataStructure-

Name>ActivityImplInvoke1</WorkFlowData-

StructureName>

<RequestedParameters>
Development Guide 154opyright IBM Corp. 2001, 2002

© C
<Parameter1>

<Name>WFTransition</Name>

<Path>

 XML.(XML.tag)”Mes-

sage”.(XML.tag)”COMMAND”.(XML.tag[1].

 (XML.attr)”cmdStatus”

</Path>

</Parameter1>

<Parameter2>

<Name>PutTime</Name>

<Path>MQMD.PutTime</Path>

</Parameter2>

</RequestedParameters>

</IncomingMessageArea>

</*DataStructureNameHere*>
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 155

© C
ActivityImplInvokeResponse

<*DataStructureNameHere*>

<CommonArea>

<SessionId> </SessionId>

<ProcessId> </ProcessId>

<OriginalMessageId> </OriginalMessageId>

<MessageId> </MessageId>

<Publish> </Publish>

</CommonArea>

<SystemInfoArea>

<System1>

<Symbolic>CIIS</Symbolic>

<ActiveFlag>True</ActiveFlag>

</System1>

<System2>

<Symbolic>CIIS2</Symbolic>

<ActiveFlag>False</ActiveFlag>

</System2>

</SystemInfoArea>

<DynamicParametersArea>

<*DynamicParameterName1*>

</*DynamicParameterName1*>

<*DynamicParameterName2*>

</*DynamicParameterName2*>

<*DynamicParameterName3*>

</*DynamicParameterName3*>

<*DynamicParameterNameN*> </*DynamicParame-

terNameN*>

</DynamicParametersArea>

<ErrorInfoArea>

<Error>Bad path to parameter #1</Error>

</ErrorInfoArea>

</*DataStructureNameHere*>
Development Guide 156opyright IBM Corp. 2001, 2002

© C
ProcessTemplateExecuteResponse

<*DataStructureNameHere*>

<CommonArea>

<SessionId> </SessionId>

<ProcessId> </ProcessId>

<OriginalMessageId> </OriginalMessageId>

<MessageId> </MessageId>

<Publish> </Publish>
</CommonArea>

<ErrorInfoArea>

<Error>Unknown parameter value</Error>

</ErrorInfoArea>

</*DataStructureNameHere*>
opyright IBM Corp. 2001, 2002 MQSeries Workflow container structure 157

© C
 Appendix G
 Notices

This information was developed for products and services offered in the U.S.A. and
Europe. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
Development Guide 158opyright IBM Corp. 2001, 2002

© C
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you. Licensees of this program who
wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:

IBM United Kingdom Laboratories
Hursley Park
WINCHESTER, Hampshire
SO21 2JN
United Kingdom

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-
level systems and there is no guarantee that these measurements will be the same
opyright IBM Corp. 2001, 2002 Notices 159

© C
on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify,
and distribute these sample programs in any form without payment to IBM for the
purposes of developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.
Development Guide 160opyright IBM Corp. 2001, 2002

© C
Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© Copyright IBM Corp. 2000, 2001. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks or services of IBM Corporation in the United
States or other countries or both:

IBM®
MQSeries®
DB2®
IAA®
Insurance Application Architecture®

BPM Workbench, BPM Monitor, and BPM Server are a trademarks of Holosofx,
Inc. in the United States or other countries or both.

OAG is a trademark of the Open Architecture Group in the United States or other
countries or both.

Other company, product, and service names may be trademarks or service marks
of others.

Permission statement
Copyright © 2001 Interactive Financial eXchange Forum. All Rights Reserved.

Redistribution and use of this material for both commercial and noncommercial
purposes are permitted subject to the below-stated conditions:

1. This Permission Statement shall be reproduced in its entirety in each copy of
the material;

2. This material is provided AS IS without warranty of any kind, including but not
limited to, any warranty of noninfringement or any warranty (express or
implied) of merchantability or fitness for a particular purpose; and

3. The material may be modified provided

a. Prior written notice of each modification is provided to the Interactive
Financial eXchange Forum at the address listed below,
opyright IBM Corp. 2001, 2002 Notices 161

© C
Interactive Financial Exchange Forum, Inc.
333 John Carlyle Street
Suite 600
Alexandria, VA 22314
U.S.A.

b. Any redistribution of modified materials shall be accompanied by a notice
that modifications have been made and a clear description of the
modifications, and

c. The party making the modifications assumes all responsibility for the
consequences of the modifications.
Development Guide 162opyright IBM Corp. 2001, 2002

©
 Glossary

This glossary defines terms and
abbreviations used in this book. If
you do not find the term you are
looking for, see the Index or the IBM
Dictionary of Computing, New
York: McGraw-Hill, 1994.

A

Adapters
(1) A part that electrically or
physically connects a device to a
computer or to another device.

(2) A circuit board that adds function
to a computer.

(3) Event Adapter: In a Tivoli
environment, software that converts
events into a format that the Tivoli
Enterprise Console can use and
forwards the events to the event
server. Using the Tivoli Event
Integration Facility, an organization
can develop its own event adapters,
tailored to its network environment
and specific needs.

API: Application Programming
Interface
(1) A software interface that enables
applications to communicate with
each other. An API is the set of
programming language constructs or
statements that can be coded in an
application program to obtain the
specific functions and services
provided by an underlying operating
system or service program.

(2) In VTAM, the language structure
used in control blocks so that
application programs can reference
them and be identified to VTAM.

C

CRF: Cross Reference Function
This refers specifically to the storage
system WMQI Enabler uses in order
to keep track of creations of and
attachments to UUID's.

D

DB2
An IBM relational database
management system that is
available as a licensed program on
several operating systems.
Programmers and users of DB2 can
create, access, modify, and delete
data in relational tables using a
variety of interfaces.

DTD: Document Type Definition
The rules that specify the structure
for a particular class of SGML or
XML documents. The DTD defines
the structure with elements,
attributes, and notations, and it
establishes constraints for how each
element, attribute, and notation may
be used within the particular class of
documents. A DTD is analogous to a
Development Guide 144Copyright IBM Corp. 2001, 2002

©
database schema in that the DTD
completely describes the structure
for a particular markup language.

I

IAA: Insurance Application
Architecture
IBM's business model for the
insurance and financial services
industry.

L

LDAP: Lightweight Directory
Access Protocol
An open protocol that (a) uses
TCP/IP to provide access to
directories that support an X.500
model and (b) does not incur the
resource requirements of the more
complex X.500 Directory Access
Protocol (DAP). Applications that
use LDAP (known as directory-
enabled applications) can use the
directory as a common data store
and for retrieving information about
people or services, such as e-mail
addresses, public keys, or service-
specific configuration parameters.
LDAP was originally specified in RFC
1777. LDAP version 3 is specified in
RFC 2251, and the IETF continues
work on additional standard
functions. Some of the IETF-defined
standard schemes for LDAP are
found in RFC 2256.

M

MQSeries
Pertaining to a family of IBM licensed
programs that provide message
queuing services.

MQSI: MQSeries Integrator
It provides graphical tools for
constructing how critical data or
business events are handled, by
visually connecting a sequence of
processing function to dynamically
manipulate and route messages,
combine them with data from
corporate databases, warehouse in-
flight message data for auditing or
subsequent analysis, and distribute
information efficiently to business
applications.

MQSWF: MQSeries Workflow
A business process management
system, which facilitates the rapid
development and management of
the business processes that
integrate the IT and organizational
infrastructure of a company. It is a
client/server system used to design,
refine, document, and control a
company's business processes
using a graphical editor in one of its
primary components to facilitate
such modeling.

P

Party
Any person or organization that the
insurance company has, or had, or
may have a business interest in.
Copyright IBM Corp. 2001, 2002 Glossary 145

©
Property
A data value of a type.

Property tag
An XML tag representing a property
of an IAA type (represented as an
UML attribute).

Q

Queue
An MQSeries object. Message
queuing applications can put
messages on, and get messages
from, a queue. A queue is owned
and maintained by a queue
manager. Local queues can contain
a list of messages waiting to be
processed. Queues of other types
cannot contain messages: they point
to other queues, or can be used as
models for dynamic queues.

Queue Manager
A system program that provides
queuing services to applications. It
provides an application
programming interface (the MQI) so
that programs can access messages
on the queues that the queue
manager owns.

S

SQL: Structured Query Lan-
guage
A programming language that is
used to define and manipulate data
in a relational database. It is often
embedded in general purpose
programming languages.

T

Tag
An XML construct <Tag....>.

Type tag
An XML tag representing an IAA
type.

U

UUID: Universally Unique Identi-
fier
This is a key used by the WMQI
Enabler to uniquely identify the
entities which outside systems need
to reference.

X

XML
eXtensible Markup Language. XML
is a markup language for message
definition, and is an open and public
domain standard. XML is a subset of
SGML designed for easy
implementation in commercial and
web environments.
Development Guide 146Copyright IBM Corp. 2001, 2002

©
XML attribute (or just attribute)
Appears in an opening tag, used to
specify values in the tag. <Tag
attribute='val'...>
Copyright IBM Corp. 2001, 2002 Glossary 147

©
 Index

A
addClaim message 109
affected aggregates 109
aggregates 109
analysis functions 76

B
BLOB format 74

C
claim aggregate 109
coverage aggregates 109
coverage data 109
cross-reference file 110
custom application 75

D
data integrity 11
DB2 6

Command Center 6
Control Center 6

delete messages 111
Destination Logical ID 6
dynamic queue 8

E
Error Messages 60

F
further processing 74

G
get and put messages 111

H
Header elements 74

I
information for analysis 74

information model 60
Interface Design Model 12
Introducing Buildtime 98

L
Logging capabilites

Events logging 74
logging capabilities 73

M
modification of a Policy 109
modify data 111
MQSeries cluster 8
MQSeries commands 10

N
network protocol 60
new application 2
NLS standards 60

P
problem determination 76

R
Receive Channel 8
remove a workflow 98
request message 74, 110
response message 74

S
SDR table 6
Send Channel 8
Source Logical ID 6
SQL statements 6
state tag values 109
Statistical information 75
Symbolic Destination Resolution table

2, 7, 10
symbolic names 7
Copyright IBM Corp. 2001, 2002 Index 148

©
W
Warehousing of the messages 74

workflow process template 98
Development Guide 149Copyright IBM Corp. 2001, 2002

	About this book
	Who should read this book
	Terminology used in this book
	Prerequisite and related information
	How to get additional information
	How to send your comments

	Chapter 1 Introduction
	Chapter 2 Adding a new system
	System profile tables
	System status table
	System Store Flag Table
	System backup table
	Putting It Together

	Symbolic destination resolution table
	Setting up the queues in MQSeries
	Adding entries to the CRF

	Chapter 3 Removing a system
	System profile tables
	Message profile
	Symbolic destination resolution
	MQSeries queues
	Cross reference function

	Chapter 4 XML language and message profile
	XML messaging technique
	Alternative XML within data model
	WMQI Enabler header
	Adding the WMQI Enabler header to an existing DTD
	Message profile requirements
	Required fields
	Optional fields

	CRF
	Disabling a message
	Message compression
	Message persistency
	Security and encryption support

	Chapter 5 WMQI Enabler and MQSeries Integrator
	Modifications to MQSeries Integrator
	WMQI Enabler internal message flows
	HUB_IN_Flow
	MQWF_OUT_Flow
	Verbal explanation

	HUB_RWF_IN_Flow
	Verbal explanation

	HUB_R_IN_Flow
	MQWF_END_Flow
	Verbal explanation

	HubOnly flows
	HUB_ONLY_ONLINE_Flow
	Verbal explanation
	WMQI Enabler commands

	HUB_ONLY_OFFLINE_Flow
	Verbal explanation
	WMQI Enabler commands

	MQWF_DEFAULT_ACTIVITY_Flow
	Verbal explanation

	StoreMessageTemplate_Flow
	LOG_ERROR_BACKUP_Flow
	Verbal explanation

	LogMessage_Subflow
	CRF_Subflow
	Changing the code page

	Chapter 6 WMQI Enabler capabilities
	HUB commands
	Message routing interface
	Sequence validation
	Interaction check
	Symbolic destination resolution
	Session validation
	CRF
	Pub/Sub
	PluggablePublish_Subflow
	Optional support of LDAP
	Enhanced authentication
	NLS error handling
	NLS message components
	NLS error creation
	Adding UserException values to messages
	Tables used in NLS processing

	ProcessNLSError subflow
	Completed error message
	Updating the Install_Data and System_Status tables

	Logging capabilities
	Message logging
	Events log

	Logging for history records or data analysis
	Error log
	MQ audit log

	SDR Implemented in LDAP
	MQSI WorkArea
	WorkArea tags

	Complex Business Processes Support (Update for Complex Use Cases)
	Using this functionality

	Synchronous versus Asynchronous Processing
	Synchronous Processing Requirements
	Asynchronous Processing

	Error Message Destination
	Communications Between Remote Systems

	Chapter 7 WMQI Enabler and MQSeries Workflow
	Manipulating workflows
	Workflow considerations
	ProcessTemplateExecute
	ActivityImplInvoke
	ActivityImplInvokeResponse
	ProcessTemplateExecuteResponse
	Modifying a data structure in a workflow
	Adding a workflow
	Modifying a workflow in MQSWF
	Removing a workflow
	Using program clients
	Modifying program names & queue names

	Generic workflow samples
	SetDestinationIDM workflow process template
	Verbal explanation
	Recommended use

	SyncAndPublishIDM workflow process template
	Verbal explanation
	Recommended use

	SyncTwoBackEndsIDM workflow process template
	Verbal explanation
	Recommended use

	TwoBackEnds workflow process template
	Verbal explanation
	Recommended use

	PublishOnly workflow process template
	Verbal explanation
	Recommended use

	Alternative to using MQSeries Workflow
	Holosofx
	BPM components
	Potential use with WMQI Enabler

	Chapter 8 State tags
	Example
	state="exists"
	state="add"
	state="modify"
	state="delete"

	Appendix A State definitions
	Appendix B Subflow descriptions
	AddWorkArea
	AdvancedInput
	AdvancedOutput
	BuildDestinationList
	CheckOfflineBodyCategory
	CheckOnlineBodyCategory
	CRF
	ErrorHandler
	FormatHubResponse
	GetINSEntry
	GetMessageProfile
	GetNLSEntry
	GetSDREntry
	GetSystemProfile
	HUB_IN_LDAP
	HubOnlyMessageRouter
	KillProcess
	KillSession
	LogError
	LogErrorOnly
	LogMessage
	LogoffAndRespond
	LogonAndRespond
	LogOriginalMessage
	ProcessNLSError
	ProcessSequenceValidation
	ProcessSession
	ProcessSessionValidation
	ProcessSystemInteraction
	ProcessSystemInteractionCheck
	ProcessWorkflowRequest
	ProcessWorkflowResponse
	ProcessWorkflowStart
	Publish
	PluggablePublish
	RemoveWorkArea
	SDR
	SDRFunction
	SDR_IN_LDAP
	SDRFunction_LDAP
	StoreMessage
	SetSubscription
	SystemRestart
	SystemShutdown
	TraceLog
	UpdateINSEntry
	UpdateMessageProfile
	UpdateNLSEntry
	UpdateSDREntry
	UpdateSystemProfile
	Version1.2.2

	Appendix C WMQI Enabler routing diagram
	Appendix D MQSI WorkArea DTD
	Appendix E Example MQSI WorkArea
	Appendix F MQSeries Workflow container structure
	Description
	Document changes
	Document conventions
	Terminology
	Template data structures
	CommonArea
	System
	SystemInfoArea
	DynamicParametersArea
	Change
	FieldChanges
	OutgoingMessageArea
	Parameter
	RequestedParameters
	IncomingMessageArea
	ErrorInfoArea

	Messages
	ProcessTemplateExecute
	ActivityImplInvoke
	ActivityImplInvokeResponse
	ProcessTemplateExecuteResponse

	Workflow mapping rules
	General

	Examples
	Workflow XML message examples
	ProcessTemplateExecute
	ActivityImplInvoke
	ActivityImplInvokeResponse
	ProcessTemplateExecuteResponse

	Appendix G Notices
	Trademarks
	Permission statement

	Glossary
	Index

