

IBM’s Model-Based XML Methods and Techniques

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 2

Table of Contents

Table of Contents ... 2

Notices ...4

Trademarks and service marks.. 5

About This Book ...6
Who Should Read this Book .. 6
What This Book Contains... 6

Introduction to the MB-XML architecture and the Message Creation
Process..7

Sources: MB-XML .. 7
MB-XML and Middleware architectures ... 7
Document Type Definition (DTD) vs. XML... 8
Recommended Tools ... 8
Adapter Development... 9
Overview of the XML Design Process.. 9
Architecture of an XML Message ... 9

XML Message Design Tasks...10
1. Analyse Requirements for Data and Functions ... 10

Examine Use Cases.. 10
Review Other Documentation ... 11
Deliverable – Data Element Definitions (DED) ... 11
Role ... 11

2. Map the Requirements to Existing DTD(s) ... 11
Deliverable – Extended DED to Include Mapping... 12
Template for Mapping Spreadsheet.. 12
Example of a Partial Mapping Spreadsheet.. 12
Role ... 13

3. Create Message Sequence Diagrams .. 13
Deliverable – Sequence Diagram ... 13
Role ... 13

4. Review Mapping and Proposed Model Extensions... 14
Deliverable – Validated Mapping .. 14
Role ... 14

5. Extend and Customise the Interface Design Model.. 14
Making Additions Directly to the DTD vs. to the Model... 14
Creating Additional Attribute (Data Elements) and Classes in the Model......................... 14
Creating Additional Operations on Interfaces ... 15

Copyright IBM Corp. 2001 Page 3

Scoping a DTD in the Component View of the Model... 15
Use of UML: Modelling Conventions... 16
Deliverable – Extended IAA Interface Design Model .. 21
Role ... 21

6. Execute Rational Rose Script to Create a New DTD.. 21
Deliverable – A New DTD Supporting the Requirements ... 22
Role ... 22

7. Create Sample XML and Other Supporting Documentation... 22
Deliverable – A Sample XML Message and Other Supporting Documentation 23
Role ... 23

Project Considerations ...24
Maintenance and Management of Messages .. 24
Handling Multiple Projects.. 24
Project Estimating .. 25

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 4

Notices
This information was developed for products and services offered in Europe. IBM may
not offer the products, services, or features discussed in this document in all countries.
Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be
used. Any functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

IBM grants limited permission to licensees to make hardcopy or other reproductions of
any machine-readable documentation, provided that each such reproduction shall carry
the IBM copyright notices and that use of the reproduction shall be governed by the
terms and conditions specified by IBM in the license agreement. Any reproduction or
use beyond the limited permission granted herein shall be a breach of the license
agreement and an infringement of the applicable copyrights.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you. This information
could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in editions of the
publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

The product described in this document and all licensed material available for it are
provided by IBM under terms of the IMCL or IMSL agreement or any equivalent
agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

If you are viewing this information on softcopy, the photographs and colour illustrations
may not appear.

Copyright IBM Corp. 2001 Page 5

Trademarks and service marks

The following terms are trademarks or service marks of the IBM Corporation in the
United States or other countries or both:

• IBM
• Insurance Application Architecture
• IAA

Rational Rose® is a trademark of Rational Software Corporation in the United States or
other countries or both.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 6

About This Book

This document provides guidance on the use of IBM’s Model-Based XML architecture
(MB-XML).

Who Should Read this Book

This book is intended for people who are using or planning to use the MB-XML
architecture as the basis for designing XML messages.

What This Book Contains

This document contains:

• An introduction to MB-XML and the message creation process. This part provides
an overview of MB-XML and a summary of its role within a message exchange
network.

• XML message design tasks. This section describes the recommended tasks for
producing the deliverables for an XML message.

Project considerations. A section discussing some of the factors to be considered in
managing a project to produce MB-XML based messages. This section includes
discussion about the maintenance and ongoing support of the XML message
definitions, and on estimating the time required to perform the message design tasks.

Copyright IBM Corp. 2001 Page 7

Introduction to the MB-XML architecture and the
Message Creation Process

Sources: MB-XML

IBM has worked with standards groups, user groups, and individual customers over a
number of years on Model-Based Architectures in many industries. IAA-XML is the
direct ancestor of MB-XML. It is a messaging architecture for inter-application
communications applicable to any industry. It is also a method that explains how to use
this architecture together with a UML model called Interface Design Model (IDM).
Different Interface Design Models can be used depending on the subject domain. IAA-
XML was developed from the Insurance Industry. IAA-XML together with the first
Interface Design Model was published as part of IBM's Insurance Application
Architecture in 2001.

MB-XML and Middleware architectures

MB-XML can be used as the standard for designing messages in a middleware
architecture.

The participating applications could be, for example, legacy applications, web front-
ends, call-center applications, and so on. For each application, the corresponding
adapter1 converts the outgoing messages from the specific format used by the
application into commonly understood MB-XML messages. It also converts incoming
MB-XML messages into a format understandable by the application

The figure below shows an example of a message hub built around MB-XML messages.

Application 1

Adapter
API

MB-XML

Application 2

Adapter

API

Application 3

Adapter

API

Figure 1. MB-XML Message Hub

1 An adapter is defined as application code that transforms one message format to another.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 8

Document Type Definition (DTD) vs. XML

The main deliverable of the message design process is a DTD (Document Type
Definition). This provides a template that can be used to support the definition of an
XML message based on the DTD. The adapters use the DTD to understand the rules
for constructing outgoing messages and for understanding the format of incoming
messages. The DTD contains the logical structure of the elements within the message,
and contains information that can be used for field validation. The adapters contain
further rules and logic for performing the full message validation required, i.e., the DTD
is limited in terms of how much validation information can be expressed.

The XML message, which is built based on the DTD, depends on the requirements for
the actual message being sent. For example, optional data elements defined in the DTD
may not necessarily be present in the message.

As an example, below is the DTD of a message element and a sample XML message
conforming to this DTD. In the DTD, type is defined as an optional property in the Place
aggregate, while name is mandatory: the sample XML that specifies a name but no type
conforms to this DTD.

DTD2:

<!ELEMENT Place (name , type?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT type (#PCDATA)>

Example XML:

<Place>
<name>London</name>

</Place>

Recommended Tools

The following tools are recommended to create MB-XML messages:

Rational Rose 2000e is a visual modeling tool that allows you to design object-oriented
models in the Unified Modelling Language (UML) formalism. This tool is used as a
repository for message definitions (logical view and component view) and additional
documentation (sequence diagrams and use-case diagrams) in the use-case view. A
Rational Rose script generates the DTDs based on the model content.

XMLSpy 4.0 is a tool that allows you to validate and check the form of DTDs and XML
messages. Although it doesn't provide the hierarchical view of the entire DTD, it can be
used for message generation. The IDE incorporates a tabular representation to allow
XML editor message generation and DTD generation and validation. You can contact
XMLSpy at http://www.xmlspy.com to download the latest trial version.

VisualDTD is part of the Visual XML Tools suite provided by IBM. This product is not
intended for production use but is a graphical tool used to display a top-down
hierarchical structure. It also provides a tree structure to view all aggregates and
properties within a structure. This tool allows you to generate messages based on the

2 For details about the DTD and XML notations, you should look at the Annotated XML Spec:
http://www.xml.com/axml/axml.html

Copyright IBM Corp. 2001 Page 9

DTD structure. You can download the latest suite of tools at the IBM Alphaworks web-
site: http://www.alphaworks.ibm.com.

Adapter Development

The output of the XML design work provides one of the key inputs to the job of creating
the adapters. The deliverables required by the adapter development team are:

• A DTD that defines the data structures that might be part of the XML message.
• A Data Element Definition (DED) list containing the actual data elements that

might be found in the message, with a mapping from these elements into the DTD
(showing which DTD element supports which data element in the DED).

• A sample XML message showing an example of the actual XML tags which might
be sent in a message.

It may be beneficial to provide the adapter developers with a subset of the full DTD(s)
for use in their initial adapter development and to test out the basic adapter framework
before the full DTD is implemented.

Ideally the adapters should be written in a flexible way so that the amount of hard
coding is limited. The majority of the adapter development work is to support legacy /
backend system integration.

Overview of the XML Design Process

There are two paths in designing the XML for a new message. The first is the ideal case
that can be considered the “fast path”. The other, probably the more typical route,
requires more analysis and quite often includes extending the IAA model.

The steps are:

1. Analyze requirements for data and functions

2. Map the requirements to existing DTD(s) (from the Interface Design Model (IDM))

3. Create message sequence diagrams (optional)

4. Review mapping and proposed model extensions

5. Extend and customise the IDM (not required for “fast path”)

6. Execute Rational Rose script to create a new DTD (not required for “fast path”)

7. Create sample XML and other supporting documentation for the message.

The “fast path” can skip steps 5 and 6 when an existing DTD fulfils the needs of the
business requirements.

Architecture of an XML Message

MB-XML messages structure information into four layers: message, command,
aggregate, and property. Refer to the Message Architecture section in the MB-XML
Architecture document for a more detailed description of these layers.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 10

XML Message Design Tasks
This section contains a description of each task in the XML message design process,
with a description of what deliverable is produced by the task, and what roles and skills
are required to execute the task.

The seven steps are described in the section Overview of the XML Design Process.

The figure below shows the relationship between the models and main deliverables
relevant to the XML message design process. It also depicts the flow of the message
design tasks.

Figure 2. Message Design Task Flow

1. Analyze Requirements for Data and Functions

The first step in developing XML is the generation of a list of data elements. This list
contains each piece of data required in the message for that specific set of business
requirements. Generally, these requirements are organized in the form of Use Cases
(UCs).

Examine Use Cases

In the Use Cases, there are often specific references to specific business constructs. List
these references as they are found and add granularity as needed. For instance, if an
agent is mentioned as part of the process early in the UC, add agent to the list. As the
UC becomes more detailed, e.g., it is mentioned that the agent’s phone number and address
are required, add these contact points to the agent in the list. Alternatively, there may be
no further mention of the agent in the UC; in this instance the reader should question if

Use cases, other
documents,
models, etc.

1. Analyse requirements
for data and functions

2. Map requirements to
IDM / existing DTD(s)

4. Review mapping &
proposed model
extensions

3. Create message
sequence diagrams

5. Extend & customise
the IDM

6. Execute RR script
to create new DTD

7. Create sample XML &
other documentation

Fastpath

Optional step

Extended
DED

Sample
XML
Messages

DED

Validated
mapping

Extended
interface design
model

New DTD
supporting
requirements

Message design task flowInput Deliverables

 Interface
Design Model

Sequence
diagrams

Copyright IBM Corp. 2001 Page 11

the agent belongs in the UC or if there is any information required about the agent that
was not mentioned.

Review Other Documentation

Although the UC is the preferred method of communicating business requirements,
they have often been recorded by other means. This medium may be in the form of an
object model, a relational model, spreadsheets, and so on. The generation of a list of
data elements may be easier to create when the requirements are in one of these
forms; however, care must be given to ensuring that the business’ requirements
are still being met. Without the process detail that a UC contains, it is difficult to be sure
if the requirements are a fit for the specific situation the XML is being created for.

Deliverable – Data Element Definitions (DED)

The deliverable from this task is a spreadsheet containing a list of all the data elements
required in the message. The minimum requirement is to include a data element name
with a description of the data element. This can also be a useful vehicle to store other
information about the characteristics of the data element, e.g., data-type, valid values,
usage (mandatory, optional) and so on.

Role3

The person who performs this task should be a business analyst.

2. Map the Requirements to Existing DTD(s)

Once the list is complete, the data elements must be mapped to the model being used
for message generation (i.e., IDM, or a customised version of this).

This process may be as simple as finding matching names:

Data Element DTD Aggregate DTD Property

Name prefix PersonName prefixTitles

Last name PersonName lastName

First name PersonName firstName

However, there are instances that require combining or breaking up data elements:

Data Element DTD Aggregate DTD Property

Business phone number TelephoneNumber countryPhoneCode

 TelephoneNumber areaCode

 TelephoneNumber localNumber

 TelephoneNumber extension

 ContactPreference type = ”business”4

3 Role refers to the skill required to perform the described task and produce the deliverable described in this
section.
4 The fact that a particular phone number is used as business phone number as opposed to a home phone
number is expressed using the type property.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 12

There may be data elements in the list that do not exist in the Interface Design Model. In
this instance, the model must be extended. The key word NEW is used in the mapping
document to reflect this. In the example below, eyeColor was needed, but did not exist,
so it was added to mapping document as a likely model extension.

Data Element DTD Aggregate DTD Property

Eye color Person NEW ->eyeColor

In addition to mapping the data requirements, the functional requirements must be
mapped to commands defined in the DTD.

Functional Requirement DTD Command (request /
response pair)

Parameters Request Parameters Response

Add name address
information

AddParty Party None

Modify party ModifyParty Party None

Inquiry into address record InquiryParty Party or PartySearchCriteria Party

Deliverable – Extended DED to Include Mapping

The deliverable from this task is an extended version of the DED spreadsheet
containing additional columns that explain the mapping of each data element in the DED
to the corresponding property in the DTD. Typically, the extension to the DED contains
a column for the DTD property name, and a column for the parent aggregate. A fourth
column is recommended to define the path through the DTD data structures required to
access the aggregate, if this is not obvious.

Template for Mapping Spreadsheet

Data Element DTD Aggregate DTD Property DTD Access Path Comment
Source
data element

aggregate property access path where
applicable

comment where
applicable

Example of a Partial Mapping Spreadsheet

Data Element Name DTD Aggregate DTD Property DTD Access path

CURRENCY:
CURRENCY
IDENTIFIER

*PriceList *currency : Enumeration *PriceList

DATETIME (effective) *PriceList *effectiveFromDate *PriceList

DATETIME (expiration) *PriceList *effectiveToDate *PriceList

DIVISION: DIVISION
IDENTIFIER

*PriceList *<<attnav>>getDivisionId
entifier() : String

*PriceList

The command mapping can be done in a separate spreadsheet, or as part of the DED
spreadsheet.

Copyright IBM Corp. 2001 Page 13

Role

The person who performs this task should be a business analyst, ideally with some
business modeling skills and experience.

3. Create Message Sequence Diagrams

 : *OrderManagementInterface

 :
SequenceDiagramActor

*addSalesOrder(*Order)

 : *InventoryInterface :
OagPartyInterface

*updateInventory(*InventoryItem)

getCustomer(*PartySearchData)

getCredit(*PartySearchData, *Order)

*getItemSpecs(ManufacturedItem)

Figure 3. Sequence diagram

It can be beneficial to create sequence diagrams to graphically represent the messages
and their use. The diagram shows the commands that an invoking system sends to the
defined interfaces. Every arrow represents one of these commands, including the name
of the aggregates passed and received as parameters.

Sequence diagrams are created in Rational Rose, in the Use Case View of the Interface
Design Model. The IDM defines operations available on the interfaces of several
components. When building sequence diagrams, operations will be used following the
command mapping. Where the requirement for a new command has been identified as
part of the mapping, a new one is created by customising the model.

The sequence diagram serves as a useful illustration of the interaction between
systems, and can be a good basis for understanding and documenting the work-flows
supporting the message flows.

Deliverable – Sequence Diagram

The deliverable from this task is a sequence diagram. This is an optional step.

Role

The person who performs this task should be a business analyst, ideally with knowledge
of the IDM.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 14

4. Review Mapping and Proposed Model Extensions

Once the mapping document is complete, an expert in the IDM should be consulted to
ensure it is correct. If sequence diagrams have been created, they should also be
validated at this stage. It is vital not make uncoordinated changes to the model to
maintain its usefulness and value.

Deliverable – Validated Mapping

The deliverable from this task are the extended DED and the sequence diagrams from
the previous tasks, amended, if required, to take account of the specialist’s review input.

Role

The person who performs this task should be a modeling specialist and know the IDM
in detail.

5. Extend and Customise the Interface Design Model

One of the results of the previous steps is a list of extensions to apply to the model.
Applying these changes requires the knowledge of all the relevant modeling
conventions.

Making Additions Directly to the DTD vs. to the Model

There may be times when a previously generated DTD is missing only one or two
elements to complete the mapping to the business requirements. At first it appears to be
easier to just add these elements manually to the DTD and not the model. There are
some important issues that must be considered before using this approach.

The model is the repository for all business requirements and to insure integrity and
consistency across all generated messages it must remain current. There is potentially
additional maintenance resulting from adding anything to the requirements outside of
the model. There may be instances when an element is considered useful to the
enterprise and it may be reasonable to leave it out of the model. However, another
project may work on the same subject area and need the same element, and if it is not
in the model it is quite likely that the project will add it to the model with a different
name, or the project may use the same name but the element may have a different
meaning.

Creating Additional Attribute (Data Elements) and Classes in the Model

Classes are used to define the aggregate layer; their attributes are used to define the
property layer of the messages. For example, a Person class results in a Person
aggregate in the DTD, where all attributes of the Person class result in property
definitions related to that aggregate. Any relationships the Person class (or any of its
super-classes) has to other classes in the model will end up as Relationship5

 definition
in the DTD.

Properties, aggregates and relationships identified in the mapping spreadsheet as NEW
have to be added to the Interface Design Model so they will appear in the DTD.

5 As explained later, this is only true if the relationship is stereotyped as <<generate>>. If it is not, then the
relationship will result in a direct inclusion of the target aggregate in the definition of the source aggregate.

Copyright IBM Corp. 2001 Page 15

To add an attribute on an existing class in Rational Rose, first locate the class within the
Logical View, then add the attribute, including its data type. Refer to Appendix C in the
MB-XML Architecture document for a description of valid data types to be used.

When using the data type Enumeration, define the list of permitted values as part of the
attribute description, using the following syntax:

eg: value 1
eg: value 2

To add a new class, identify the subject area (e.g. Party) where the new class belongs,
then allocate the class to the appropriate component. Where applicable, make the new
class a sub-class of an existing class in the model. If no existing class would apply as a
super-class, make it a subclass of BusinessModelObject to ensure it has a type
attribute and can hold key information.

Check the document MB-XML Architecture document, section <cross ref> Use of UML:
Modeling conventions for more details on how attributes and relationships are defined
in the model.

Avoid deleting attributes, classes or associations in the model. If you want to remove a
particular class from the generated XML, exclude it from the scope of the component. If
you want to remove a relationship or an attribute from the generated XML, stereotype it
<<componentsonly>>.

Creating Additional Operations on Interfaces

The operations defined on the interfaces6 are used to define the command layer of the
MB-XML messages. For example, an addParty() operation on a Party interface results
in a twin set of commands: <addPartyRequest> and <addPartyResponse>. In order to
create a new command element in the DTD, add a corresponding operation in the
interface model.

Scoping a DTD in the Component View of the Model

The Interface Design Model is grouped around subject areas such as Party. When
working in a component-based environment, it is recommended to retain that structure
in the generated DTDs.

To limit the scope of a DTD to a subset of the model, create a component in the
component view of Rational Rose and allocate to it all the classes desired in the DTD.
The generation is always done for one component; the generated DTD includes
aggregates for all the classes assigned to that component, as well as the classes of the
Common component. The Common component includes all the classes that need to be
included in every DTD based on MB-XML.

The classes in the selected component and the common classes are generated with
their full definition (their attributes and associations). Other classes that are referenced
(such as the other end of an association or parameter of an operation) are generated as
empty stubs.

For the interfaces selected, it is usual to also include in the component scope all the
parameters passed in the interface operations. Otherwise, it means that only references
can be passed as parameters and not the aggregate themselves.

6 An interface is defined as a class with the <<interface>> stereotype.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 16

The commands are only generated for the operations on the interfaces assigned to the
component defining the scope of the generation.

Use of UML: Modeling Conventions

In order to be able to generate DTDs from a UML model, some generation directives
need to be specified. The UML notion of stereotype is used for this purpose. By using
the stereotypes, extensions can be made to the model that allow an attribute, operation,
association, or class to be made available or unavailable to the scripts. These
stereotypes also allow a modeler to quickly interpret why elements have been added to
the model that would not normally be there.

[] – Square Brackets

Empty square brackets are used to signify multiplicity. The brackets are placed after the
return type on an operation (signifies multiplicity on parameter in response command),
or after a parameter passed in an operation (signifies multiplicity on parameter in
request command). An example is the operation findParty (PartySearchCriteria, Party) :
Party[] on the SpecificPartyInterface.

When the XML generation script executes, it reads the brackets and adds an asterisk (*)
in the appropriate areas of the DTD.

Another situation where empty square brackets are used is to define multiplicity on an
attribute in the model. For example, addressLines : String[], an attribute on the
PostalAddress class in the model, gets translated to addressLines* in the DTD.

<!ELEMENT PostalAddress (…addressLines*…)>

All other attributes get translated as single optional properties:

<!ELEMENT PostalAddress
(KeyGroup?,effectiveFromDate?,effectiveToDate?,city?
,country?,region?,street?,houseNumber?,addressLines*
,postalCode?,boxNumber?,unitNumber?,floorNumber?,bui
ldingName?,type?,contactInformation?,Place?)>

<<attnav>>

This stereotype is used when an attribute already exists in a class but the navigation
from where it is defined to where it is required is too complex to express in XML. The
goal is to add an additional property element in XML without adding an unnecessary
attribute to the model. A new operation stereotyped as <<attnav>> is added to the
model and the generation script transforms it into a property element definition in the
DTD.

The figure below shows an example of how the ContactPreference of type Home is modeled.

Copyright IBM Corp. 2001 Page 17

BusinessModelObject
(from Common Classes)

Type

name : String

(from Common Classes)

0..n 10..n

+type

1

ContactPreference
(from PARTY COMPONENT CLASSES)

Figure 4. UML Model for ContactPreference

If this model is directly transferred into XML the result is a large structure that adds
unnecessary complexity:

<ContactPreference>
 <Type>
 <name>Home</name>
 </Type>
</ContactPreference>

The figure below shows how the ContactPreference of type Home is modeled when <<attnav>>
is used on the new type() operation.

BusinessModelObject

<<attnav>> type() : String

(from Common Classes)

ContactPreference
(from PARTY COMPONENT CLASSES)

Figure 5. Example of <<attnav>>

The resulting XML is then much simpler:

<ContactPreference>
 <type>Home</type>
</ContactPreference>

<<typenav>>

This stereotype is used to represent an association that already exists in the model, but
with a navigation too complex for XML. A good example of this is the operation
getRegisteringAuthority() defined on the Registration class as shown in below.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 18

*PartyRegistration
(from PARTY COMPONENT CLASSES)

Registration

<<typenav>> getRegisteringAuthority() : Organization

(from Common Classes)

<<extensible>>

DriversLicence
(from PARTY COMPONENT CLASSES)

<<example>>

Figure 6. Example of a <<typenav>>

In the model, this is a navigation from Registration to Organization representing the
registering authority of a registration. By stereotyping this operation with <<typenav>>,
the model is still able to use it as an operation and the XML generation script generates
it as a relationship on all the concrete subtypes of Registration.

The definition for DriversLicence for example is the following:

<!ELEMENT DriversLicence
(KeyGroup?,description?,expirationDate?,externalRefe
rence?,requestDate?,issueDate?,statusDate?,status?,s
tatusReason?,dateOfDisqualification?,renewalDate?,ty
pe?,placeOfIssue?,countryOfIssue?,registeredPartyNam
es*,registeredContactPoints*,registeringAuthority?)>

<!ELEMENT registeringAuthority (Organization?)>
<!ATTLIST registeringAuthority %Relationship;>

<<derived>>

This stereotype can be used on attributes and relationships. When using it on an
attribute, it designates the attribute as XML only. The scripts used for the IDM ignore it,
as should the modelers working with the model. Examples include the derived attribute
smoker on the Person class as shown in the figure below.

Person

<<derived>> smoker : Boolean

(from PARTY COMPONENT CLASSES)

Figure 7. Example of <<derived>> attribute

However, if the attribute is viewed as something that could prove to be valuable to both
the XML and the model, add the new XML attribute as an operation on the class with
the <<attnav>> stereotype. This way, both can use the element without unnecessarily
adding a class attribute to the model.

When using the stereotype <<derived>> on a relationship, it designates the relationship
as XML only. This is different from adding an operation with stereotype <<typenav>>

Copyright IBM Corp. 2001 Page 19

where the relationship itself does not become part of the model, but the operation can
still be used by the IDM scripts. In the resulting DTD, the relationship is still generated.

<<generate>>

This stereotype is used on an association when you want to generate an additional level
for the association-end.

The next figure shows a class model that would result in an additional <defaultName>
element in XML:

RolePlayer

(f rom PARTY COMPONENT CLASSES)
<<generate>>

+def aultName

0..1

PartyName

(f rom PARTY COMPONENT CLASSES)

<<extensible>>

Figure 8. Example of <<generate>> association

The resulting XML with the <<generate>> stereotype then includes defaultName as an
element.

 <Person>
 <defaultName>
 <PersonName>
 </PersonName>
 </defaultName>
 </Person>

The XML generated without the <<generate>> stereotype would be more compact.

 <Person>
 <PersonName>
 </PersonName>
 </Person>

The <<generate>> stereotype must be used whenever multiple associations exist
between the same two classes to ensure a well-defined DTD.

The next figure shows the different relationships that can be created using the
stereotype <<generate>>.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 20

PostalAddress
(from Party Contact Points & ContactPreference)

*Order

+deliveryAddress

<<generate>>

+invoiceAddress

<<generate>>

Figure 9. Distinguishing different relationships using stereotype <<generate>>

<<componentsonly>>

This stereotype is used for those modeling elements that have already been expressed
in the DTD by one of the various methods listed above. When the Rose script comes
across an element in the model with the <<componentsonly>> stereotype, it does not
include it in the generated DTD.

Referring back to the <<attnav>> example, the stereotype <<componentsonly>> is
added to the class Type because that concept was already expressed with the addition
of the new operation in BusinessModelObject.

The stereotype can also be placed on associations, such as the one between
BusinessModelObject and Type, and to attributes such as objectId.

The next figure shows an example of these different <<componentsonly>> model
elements.

ContactPreference

(from PARTY COMPONENT
CLASSES)

BusinessModelObject

<<componentsonly>> objectId : String
<<componentsonly>> componentId : String

isATypeOf()
save()
<<attnav>> type()

(from Common Classes)

Type
(from Common Classes)

<<componentsonly>>0..n 10..n

+type

1
<<componentsonly>>

Figure 10. Example of <<componentsonly>>

In general, the strategy for the DTD generation is to make the resulting XML as concrete
and specific as possible, whereas the guiding principle in the IDM is to be as generic
and flexible as possible. Therefore, most of the generic types and their associations in

Copyright IBM Corp. 2001 Page 21

the model (for example, Role, ActivityRole, Type) have been marked
<<componentsonly>>, and more specific associations (using stereotype <<typenav>>
as well as more concrete subtypes have been introduced.

Deliverable – Extended IAA Interface Design Model

The deliverable from this task is an extended and customized version of the Interface
Design Model. The IDM is available in the Rational Rose tool, but being UML-
conformant, it can be moved into other preferred environments if required. However,
note that the supplied script for DTD generation (see next step) is a Rational Rose
script, and is therefore dependant on the use of Rational Rose.

Role

The person who performs this task should be a modeling specialist with a good
understanding of the MB-XML modelling conventions.

6. Execute Rational Rose Script to Create a New DTD

A script has been developed to generate a DTD from a specific component in the
Rational Rose model (i.e., the Interface Design Model with any customization). This
script executes against definitions in the Component View and adds items necessary for
the XML message, e.g., each operation is translated in a Request and Response
command, and an operation’s return type in the model is the response’s parameter in
XML. The script also automatically includes the common elements7 necessary in all
components, e.g., Business Model Object.

For more detail, it is recommended to read Appendix B in the MB-XML Architecture
document.

How the Model is transformed into a DTD

When looking at the model (as opposed to the generated DTD), keep the following
transformations in mind:

The following translation of CRUD8-related operation names to command names
occurs:

Interface Design Model DTD

get Inquiry

find Inquiry

create Add

update Modify

delete Delete

remove Delete

Thus an operation updateParty() in the model results in two commands:
ModifyPartyRequest and ModifyPartyResponse.

7 The common elements are defined as all the classes assigned to the Common component.
8 CRUD stands for Create, Read, Update, Delete.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 22

For response commands, the aggregates passed to the corresponding request
command will be generated first to support echoing back the request content. Then the
actual parameter of the response message is shown:

<!ELEMENT InquiryPartyRequest
((%Command;),PartySearchCriteria?,%InheritanceParty;
)>

<!ATTLIST InquiryPartyRequest %CommandRequest;>
<!ELEMENT InquiryPartyResponse ((%Command;),

PartySearchCriteria?,%InheritanceParty;,%Inheritance
Party;)>

<!ATTLIST InquiryPartyResponse %CommandResponse;>

Only associations stereotyped <<generate>> will be generated as additional layers in
the XML structure.

Only operations on interfaces will be generated as commands; operations on classes
will be ignored unless they are stereotyped as follows:

• <<attnav>>, in which case an attribute will be generated
• <<typenav>>, in which case the return type will be embedded in the aggregate

(treated similar to association in the model)

The concepts of keys, represented as objectId and componentId on
BusinessModelObject in the IDM, are represented differently in MB-XML, using the
KeyGroup structure. The link between BusinessModelObject and KeyGroup is created
by the script.

The concept of an application context is represented with the ApplicationContext class
in the IDM. As this information is represented differently in MB-XML, as part of the
message header and as attributes on an MB-XML command, any reference to
ApplicationContext is removed by the script.

Classes outside the scope of a component, but referenced in an association on a class
inside the scope of the component will be generated in a section titled “Empty stubs” in
the DTD. No properties or relationships will be generated for these classes.

Deliverable – A New DTD Supporting the Requirements

The deliverable from this task is the DTD that contains the data elements and
commands required for the message. The DTD can be reviewed (and modified) with a
tool such as XML Spy or Visual DTD.

Role

The person who performs this task should be an IT operations administrator.

7. Create Sample XML and Other Supporting Documentation

Several pieces of documentation support the users of the main message DTD
deliverable.

The adapter developers need a sample XML message (or messages) to supplement a
DTD as early as possible so that proper testing and understanding can occur. One

Copyright IBM Corp. 2001 Page 23

message could contain just the mandatory fields and another message could also
include additional data.

Other documents that have proved useful for integration projects:

• An explanatory document that gives a brief summary of the nature of the
message, and which covers any issues and questions resulting from the message
design work. Change control details for the message should also be recorded in
this document.

• A data dictionary that lists all the XML properties used by the message set being
developed. Each property should have a single generic definition. Additionally, it is
also possible, if needed, to produce for each property a cross-reference to any
message using the property. The generic definition should ideally come from the
IDM element from which the property is generated.

• An XML Message Design Guidelines document. The MB-XML Architecture
document contains guidelines for the use of MB-XML. These need to be extended
or supplemented to accommodate the usage standards for the actual project.
Examples of areas to be dealt with include:

• Approach to handling currencies and currency exchange
• Approach for dates and times
• Standards for aggregate and property naming
• How to handle permitted values for properties with data type Enumeration
• When to use referencing vs. embedding

Deliverable – A Sample XML Message and Other Supporting Documentation

The deliverable from this task is:

• An example XML message or set of messages. There are some tools that can aid
in the development of these sample messages, but they still require some manual
effort.

• Message documentation, as described above:
• Message explanatory document
• Message data dictionary
• Message design guidelines

Role

The person who creates the sample XML message should be a business analyst with
an understanding of the business context of the message.

The people responsible for producing the documentation should be the team who were
involved in the previous message design steps. Some aspects of the message design
guide may require input from the project technical architects and end-to-end designers.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 24

Project Considerations

Maintenance and Management of Messages

Once messages have been created, their management requires some attention. A
change control process should be implemented to ensure that message changes are
effected in a controlled way. Typically, the following steps might be followed:

1. The business users or designers identify a required change or set of changes
to a current message.

2. The impact and timing of the change should be reviewed and agreed with all the
relevant parties (business, design, message developers, and so on).

3. The XML message development team should assess which properties and
aggregates are affected, and identify which messages will require updating to
support the change. The data dictionary will be useful in helping in this task.

4. The change should be made to the various deliverables (e.g., DED, mapping
document, customised model, DTDs, explanatory document, sample XML), and
new versions of these distributed under version control.

A project may need to accommodate different versions of a message being supported at
a given time. For example, it is likely that a restructured message will require adapter
modifications, and it may be that different adapters get updated at different times. For
this reason, it may be necessary to retain back-level versions of the models that support
these older messages. Good repository management techniques for all the message
deliverable elements are essential.

Handling Multiple Projects

An additional consideration relates to handling multiple, and essentially independent,
projects that are to share the same XML message definitions, for example, in the case
of a multinational company whose local companies are each planning to use the same
base message definitions across the message middleware.

One approach is to assign totally separate repositories/models to each project.
However, greater reuse can be achieved by generating messages from a shared model,
which represents an enterprise view of the company.

In doing this, the following factors should be considered:

• Careful model management procedures need to be implemented, so that the
customised model represents the combined business inputs from each project.
Additional questions may need to be asked to confirm the business meaning of
data elements across the participating projects.

• The data dictionary can be used to identify which properties are used by which
projects. This is important in the impact analysis of any proposed changes.

• Different levels of sharing across the projects can be achieved depending on the
project requirements and overall design:

• It may be possible for the DTDs to be shared across the projects (i.e., a common
modelling view), but to design the messages that use the DTDs as specific to each
project (i.e., the DEDs/sample XML messages and so on will be different). The
adapters could be customised to support these different usages of the DTD.

Copyright IBM Corp. 2001 Page 25

• Some messages may be totally shared across projects (i.e., having the same set
of data elements and common adapter code to process them), for example: a common
message to broadcast new client details.

Project Estimating

The following factors should be taken into consideration when estimating the time
required to complete XML message design:

Project Characteristics:

• Is this message design for a new company (new business terminology, standards,
etc., will need to be accommodated)?

• Does the new messages design take the analysis into new business areas that
have not been dealt with in the project before (e.g., Telecommunications,
Government…)

• Are the business requirements well defined and the data elements clearly
explained? Poorly defined data elements lead to additional work in clarifying these
requirements.

These factors affect the amount of time needed to assimilate the business information
(i.e., understand the data elements, do the mappings, extend the model).

Project Team Skills
There will be a learning curve as team members pick up skills and experience with
using XML, MB-XML, the tools, and the method. The figures below assume a team
skilled with the process and associated tools.

Metrics

• Number of message definitions
• Number of data elements per message definition
• Extent to which data elements across the message definitions are repeated,

enabling reuse of an existing property to achieve the mapping. For example,
postal address data elements may appear in several messages. Level of reuse is
clearly difficult to predict, but recent projects have experienced a reuse factor9 of
between 3 and 7 times for sets or approx 15 messages containing about 400
discrete data elements.

• Number of versions expected before the message definition is approved. This
depends on the quality of the review of each version, and the length of time
allocated to it. There is an overhead of producing new versions. Given a good
review process, approximately 3 versions (including the initial version) should be
allowed for.

As a general guideline, the following figures based on previous projects can be used to
produce an initial estimate:

Time to create an initial version of a message definition with all of its associated
deliverables (excluding sample XML):

• 1.5 days per message definition (simple message – approx 20 data elements)
• 2 days per message definition (medium message – approx 100 data elements)
• 4 days per message definition (complex message – approx 400 data elements)

9 The reuse factor is the average number of times that a data element is used in a project.

IBM’s Model-Based XML Methods and Techniques
Copyright IBM Corp. 2001 Page 26

This assumes:

• This is one of about 15 message definitions for the same project
• The “reuse factor” for these message definitions is 5
• No learning curve (skilled with method, tools, and so on.)
• These are the first message definitions for the project, and that there are some

new business areas and lines of business to deal with.

To this estimate the following needs to be added:

• Overhead of creating new versions (second and third version assumed): Total 1
day per message definition, assuming 2 new version updates required (i.e.,
approximately 4 hours per version per message definition, but this depends on the
extent of change required in the new version).

• Fixed overheads for the project:
• Project planning/control and so on. (about 2 hours/week)
• Create data dictionary (2–3 days)
• Create message design guide (2–3 days).

