
MQSeries® Financial Services Edition

Technical Architecture Book
Version 1.2.2

IBM

NOTE:

Before using this information and the product it supports, read the information in
“Appendix, Notices” on page 56.

Third Edition (November 2001)

This edition applies to version 1, release 2, modification 2 of MQSeries Financial
Services Edition (product number 7J0423) and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2001.
All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Printed in USA.

Contents i © Copyright IBM Corp. 2000, 2001

 Contents

About this book . vi
Who should read this book . vi
Terminology used in this book . vi
Prerequisite and related information . vi
How to get additional information . vi
How to send your comments .vii

Chapter 1 Introduction . 1

Chapter 2 MQSFSE architecture . 6
New feature highlights for version 1.2.2 . 6
End-to-end view . 7
Business processes . 11
Implementation . 12
Base transport layer . 12
Messaging . 13

Message headers . 13
Message structure . 14

MQMD header . 14
MQSFSE header . 14
Message content . 15
Message classes . 15

Adapters . 16
Adapter services . 16
Approach . 17

Gateways . 20
Cross reference functions . 21
Intelligent routing . 27

Adapter responsibilities . 27
MQSeries integrator . 28
MQSeries workflow . 28
Additional routing features . 28
Message manipulation . 29

Enrichment and manipulation . 29
Additional message manipulation features 29
Code page and data formats . 30

Technical Architecture Book ii © Copyright IBM Corp. 2000, 2001

Processing modes . 30
MQSeries publish/subscribe . 30
Request/Reply . 31
Fire/Forget . 31

Message processing supervisors . 32
Lightweight message-processing supervisor 32
Transactional message-processing supervisor 33

Transaction support . 33
MQSeries sync point . 33
Compensatory transaction processing . 34
Long running . 34
Complex . 34
Collaboration . 35

System management . 35
Deployment . 35
Availability monitoring . 35
Centralized administration . 35
Additional system management features . 36

Logging . 36
Error handling . 36
NLS support . 37
Directory management . 38

Security . 39
Authentication . 39
Additional MQSFSE authentication features 40
Authorization . 41

Scalability . 41
Reliability . 41

Chapter 3 Recommended implementation . 43
Requesting application . 43

XML process initiation . 45
Process execution . 47
Execution of external functions . 47

Target application . 49

Chapter 4 Sample scenarios . 51
Client update from front-end system . 51
Request for client authentication . 53
Client update from front-end with MQSeries Workflow 54

Contents iii © Copyright IBM Corp. 2000, 2001

Appendix Notices . 56
Trademarks . 59
Permission statement . 60

Glossary . 61

Index . 66

Figures iv © Copyright IBM Corp. 2000, 2001

 Figures

Figure 1: Intended MQSFSE use. . 1
Figure 2: A logical view of MQSFSE. 3
Figure 3: MQSFSE implementation. . 7
Figure 4: MQSFSE use of MQSeries. . 13
Figure 5: Basic use of headers in MQSFSE. 14
Figure 6: Message structure illustration. . 14
Figure 7: MQAO adapters, push scenario. . 19
Figure 8: MQAO adapters, pull scenario. 20
Figure 9: MQAO Adapter Environment. 21
Figure 10: MQSFSE CRF. 22
Figure 11: System of truth update/publish. . 25
Figure 12: Inquire/update; not defined by the system of truth. 26
Figure 13: NLS support. 37
Figure 14: NLS process. . 38
Figure 15: Directory maintenance. 39
Figure 16: Authentication process. . 41
Figure 17: MQSFSE reliability. 42
Figure 18: Application view of MQSFSE. 44
Figure 19: XML message paths. . 45
Figure 20: XML message entry to the message
processing supervisors. 46
Figure 21: Message processing Supervisors processing a message. 49
Figure 22: Client update from front-end. . 51
Figure 23: Request for client Authentication. 53
Figure 24: Client update from front-end with Workflow. 54

Technical Architecture Book v © Copyright IBM Corp. 2000, 2001

 Tables

Table 1: MQSFSE database tables. . 8
Table 2: MQSFSE queues. . 9
Table 3: Sample information stored in CRF. 23
Table 4: Party update from front-end explained. 52
Table 5: Request for client Authentication explained. 54
Table 6: Party update from front-end with Workflow. 55

About this book vi © Copyright IBM Corp. 2000, 2001

 About this book

The purpose of this document is to provide a detailed description of the technical
architecture of MQSeries Financial Services Edition (MQSFSE) and does not
include information associated with requirements of specific applications, which
may or may not be integrated with MQSFSE.

Who should read this book
Systems Architects, Developers, and any other I/T professionals interested in
learning more about the MQSFSE technical architecture.

Terminology used in this book
All new terms introduced in this book are defined in the Glossary on page 61.

This book uses the following shortened names:

• MQSeries®: a general term for IBM MQSeries messaging products.

Prerequisite and related information
It is assumed that the reader is familiar with with the prerequisite MQSeries
products, which are MQSeries, MQSeries Integrator, MQSeries WorkFlow.

This document is not intended to be a primer on the MQSeries family; for more
information on the features of MQSeries, please see the MQSeries Family
Documentation.

How to get additional information
Visit the following home page at:

http://www.ibm.com/software/mqseries/support/

By following this link you can find:

• The latest information about MQSeries family of products.

• Download Support Packs.

• Access FAQs.

• Access MQSeries family publications library.

http://www.ibm.com/software/mqseries/support/

Technical Arhitecture Book vii © Copyright IBM Corp. 2000, 2001

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments or suggestions about this book or any other
MQSeries Financial Services Edition documentation:

• Send your comments by e-mail to einet@us.ibm.com. Be sure to include
the name of the book and the specific location of the text you are
commenting on (for example, a page number).

• Send a letter with your comments to:
IBM Corporation
Department: 5EFA/Building: 202
8501 IBM Drive
Charlotte, NC 28262
U.S.A.

1© Copyright IBM Corp. 2000, 2001

 Chapter 1
 Introduction

MQSeries Financial Services Edition version 1.2.2 (MQSFSE) provides the ability
to integrate front-end systems to back-end systems in a non-invasive fashion in a
customer’s enterprise environment.

Figure 1 illustrates the intended use of MQSFSE:

Figure 1: Intended MQSFSE use.

MQSFSE is designed to integrate disparate applications using a hub and spoke
architecture to implement a message bus. MQSFSE architecture requires that
application-specific information be translated into the message dialect used with an
MQSFSE implementation. Within a business event, MQSFSE provides the data
manipulation, application cross-reference, message configuration, symbolic
destination management, and logging required to assure delivery of both the
request XML message to the appropriate target application, as well as the

A
d
a
p
t
e
r
s

Logging

Cross-
referencing

Caching

Symbolic
Destination
Resolution

A
d
a
p
t
e
r
s

Any other
access

Agents

Web Portal

Legacy 1

Legacy 2

Legacy 3

CRM

Message
Delivery

Message Manipulation

Process
Management

Integration
Files

BP
Application

MQSFSE
Header

+
XML

Tracing Store &
Forward

Message
Profile

Session
handling

Application
profile

Units of work

A
d
a
p
t
e
r
s

Logging

Cross-
referencing

Caching

Symbolic
Destination
Resolution

A
d
a
p
t
e
r
s

Any other
access

Agents

Web Portal

Legacy 1

Legacy 2

Legacy 3

CRM

Integration
Files

BP
Application

Tracing Store &
Forward

Message
Profile

Session
handling

Application
profile

Units of Work

Process
Management

Message
Manipulation

Message
Delivery

Application

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 2

response message to the originating application. Adapters are used at the
boundaries to translate application specific information into and out of the XML
message dialects understood by MQSFSE.

In many cases, the nature of the applications themselves dictates a great deal
about what needs to be done to enable the application to be integrated. Once these
specific requirements have been identified for each application, there are a series
of additional requirements imposed by MQSFSE, which allow applications to inter-
operate within an MQSFSE enabled environment

One of the decisions that is required in order to implement MQSFSE, is to
determine what kind of XML vocabulary will be used within the hub. For more
information on product implementation see the MQSFSE Development Guide.
From an MQSFSE perspective, there are two types of XML vocabularies:

• Internal

• External

Internal vocabularies are generally data model based and are used to develop
custom message sets that can be optimized to the specific requirements of the
applications being integrated.

External vocabularies are generally the result of the work of a standards group
such as the Open Application Group (OAG) or Interactive Financial eXchange
(IFX). These messages sets are intended to provide an XML implementation that
governs how content must be communicated. While these standard approaches
usually support some form of extension, there is much less freedom to optimize the
messages to existing application requirements.

Internal vocabulary XML messages can be defined with the Interface Design Model
that is supplied as part of MQSFSE. In this version, the IDM supports versions that
consist of content derived from OAG related content for generic CRM and supply
side integration, Insurance Application Architecture (IAA) for insurance integration,
and IFX for retail banking integration. MQSFSE also supports the external version
of the IFX and OAG XML vocabularies through the use of message gateways. The
message gateways wrap and unwrap the message sets with a header that allows
the message to drive MQSFSE functionality, without the originating applications
being hub aware.

Introduction 3© Copyright IBM Corp. 2000, 2001

Figure 2 shows a logical view of MQSFSE:

Figure 2: A logical view of MQSFSE.

MQSFSE version 1.2.2 is composed of the following services:

• Assured Message delivery.

• Message content manipulation.

• Transaction management of the activities through which a message is
routed.

• Process management of the tasks associated with the activities through
which a message is routed.

• Resolution of the destination to which a message is to be routed via
Symbolic Destination Resolution (SDR) function.

• Cross referencing of the keys used by the application to access the data
contained in the messages via the Cross Reference Function (CRF).

• Logging of message activities and errors via the Logging and Cache (CL)
and the Error Message log (EL) services.

• Support for the message vocabulary used as the semantic for
communication between the applications integrated with MQSFSE via
MQSeries Integrator (MQSI).

XML
Dictionary

Mess
age

De
live

ry

Message

Manipulation

Process

Management Tra
nsa

ctio
n

Mana
gem

ent

CRF SDR

Message Hub and Broker
MQSeries Family

MP SP CL

SS

WP

SI

EL

Requesters Providers

SF

WC

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 4

• Assured delivery of a response message for each request message.

• Dynamic management of system availability via the System Profile (SP)
services.

• Dynamic process management via configurable container definitions
using the Workflow Container Profile (WP) services.

• Session and process management via the Session Status (SS) service,
including state management of both the business event and cross
business event messaging.

• Dynamic availability, rerouting, including Store and Forward (SF) via the
Session Interaction (SI) and System Profile (SP) services.

• Dynamic tracing and debugging via the Error Log (EL) services.

• Complex long running transaction handling with assured response via
MQSeries Workflow (MQSWF) and the Message Profile service.

• Lightweight message handling.

• Optimization of data content through the use of message caching.

• MQSFSE supports the ability to dynamically define container structures
for passing data between MQSI and MQSWF. This architecture provides
a number of capabilities including allowing the content of a message to be
updated, providing the basis for transitions, and as the basis for
collaboration via the MQSeries Workflow APIs.

• MQSFSE supports named versions of messages so that they can be
stored and reused within a transactional message process. By combining
this feature with the dynamic container feature, MQSFSE now provides
support for multiple message types within a message flow.

• MQSFSE supports hub based Logon and Logoff messages that allow
MQSFSE to generate a session token that can be used for simple
session/state handling for validating message affinities.

• MQSFSE supports a message store and forward option that allows
messages to be re-processed when unavailable applications become
available.

• MQSFSE provides support for both a lightweight MQSI based message
processing supervisor and a transactional message processing
supervisor.

Introduction 5© Copyright IBM Corp. 2000, 2001

• MQSFSE provides a profile that allows applications to signal their
availability, as well as the definition of mirror and alternate applications to
use as the target for message requests.

• MQSFSE provides message maintenance of internal tables.

• MQSFSE uses the message types of Request and Reply.

• MQSFSE tracks and records the status of messages as they are
processed through MQSFSE.

• MQSFSE internally traces activities including workflow template
completion to provide comprehensive tracing and problem determination
support.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 6

 Chapter 2
 MQSFSE architecture

New feature highlights for version 1.2.2
The following list describes the new features available in MQSFSE version 1.2.2.
These features are explained within the context of the MQSFSE architecture in the
remainder of this publication.

• Support for OAG customer relationship management and supply side
messages and scenarios.

• Industry neutral Interface Design Model (IDM) for generating internal
message sets optimized to specific applications.

• OAG enhanced IDM.

• OAG MQAO based message gateway provides both an example of
building MQSFSE support for native external vocabularies, and
implements support for the OAG CRM and Supply Side use cases
shipped with the product.

• Improved TestDrive functionality for MQSFSE product evaluation and
model office work.

• Enhanced support for publish and subscribe. MQSFSE provides explicit
support for subscription to topics, and customizable implementation of
publication within MQSFSE.

• Enhanced authentication services for hub related messages.

• Alternative Symbolic Destination Resolution service based on LDAP.

• Enhanced and NLS enabled error handling within MQSFSE.

• Enhanced streamlined Cross Reference function.

• Pub/Sub support for errors within the hub.

MQSFSE architecture 7© Copyright IBM Corp. 2000, 2001

End-to-end view
MQSFSE provides an enterprise-wide scalable framework that allows multiple
front-end applications (e.g. web and call centers) to be connected to multiple back-
end applications (e.g. policy administration and claims systems) in an effective and
efficient manner, as a starting point for services engagements.

Figure 3 illustrates an MQSFSE implementation:

Figure 3: MQSFSE implementation.

FrontEnd_IN

Front End
system

HUB

Back End
system

BackEnd_IN

HUB_INa1, b1, c1

MQSI FLOW
HUB_IN

(A2, A3, A4, A5, A7)
a2, b2, c2

WorkFlow
(A2, A3)

MQSI FLOW
MQWFOut

(A2, A3, A4)

MQWFOut

a5, a13a

a6, a14b a7

MQSI FLOW
HUB_RWF_IN

(A2, A3, A4)

HUB_RWF_IN

a9

a10

FMC.FMCGRP.EXE.XML

a4, a12

a11

a15

a16, b8, c6

MQSI FLOW
HUB_R_IN

(A4, A5)

HUB_R_IN b5

b7

MQWFEnd

a13b

MQSI FLOW
MQWFEnd

(A4, A5)

a14b

a3

b3

b6

a8, b4

MQSI FLOW
HUB_ONLY_

ONLINE
(A4)

HUB_ONLY_ONLINE

c3a

c4a

c5a

MQSI FLOW
HUB_ONLY_

OFFLINE
(A4)

HUB_ONLY_OFFLINE

c3b

c4b c5b

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 8

MQSFSE in it's simplest form requires the following tables in the MQSFSE
Database:

Table 1: MQSFSE database tables.

Service name/Alias Database table name (s)

Cross Reference/
FSE_CRF

CRF_TABLE

Errors/FSE-ERRL END_TRACE_TABLE
ERROR_TABLE
EXCEPTION_TABLE
MESSAGE_TABLE
ORIGINAL_MESSAGE_TABLE
START_TRACE_TABLE

Message logs/
FSE_MSGL

MESSAGE_LOG_TABLE

Message Profile/
FSE_MSGP

MESSAGE_PROFILE_TABLE
SYSTEM_INTERACTION_TABLE
WORKFLOW_PARAMETERS_TABLE

Symbolic Destination
Resolution/FSE_SDR

SDR_TABLE

Sessions and
processes/FSE_SESS

SESSION_TABLE
SESSION_PROCESSES_AND_SYSTEM_USA
GE_TABLE
SESSION_AUTHENTICATION_TABLE
PROCESS_STATE_TABLE

Tracing/FSE_TRAC START_TRACE_TABLE END_TRACE_TABLE

Store and Forward/
FSE_STOF

STORED_MESSAGE_TABLE
INTERACTION_DEPENDENCY_TABLE

System profiles/
FSE_SYSP

SYSTEM_STATUS_TABLE
SYSTEM_STORE_FLAG_TABLE
SYSTEM_BACKUP_TABLE

Workflow control/
FSE_WFCO

WORKFLOW_PARAMETERS_TABLE
WORKFLOW_CORREL_TABLE

MQSFSE architecture 9© Copyright IBM Corp. 2000, 2001

In addition the following messages queues are also needed:

Table 2: MQSFSE queues.

Queue name Description

HUB_IN Input for message requests.

HUB_IN_FAILURE Failure path for queue.

MQWF_OUT MQWF to MQSI message link.

MQWF_OUT_FAILURE Failure path for queue.

HUB_RWF_IN Response queue for WF driven messages
requests.

HUB_RWF_IN_FAILURE Failure path for queue.

HUB_R_IN Response queue for Broker driven message
requests.

HUB_R_IN_FAILURE Failure path for queue.

MQWF_END WF end of process signal graph.

MQWF_END_FAILURE Failure path for queue.

HUB_ONLY_ONLINE Input for messages for online hub functions
(Logon, Logoff, CRF).

HUB_ONLY_ONLINE_FAILURE Failure path for queue.

HUB_ONLY_OFFLINE Input for messages for offline hub functions (File
maintenance).

HUB_ONLY_OFFLINE_FAILURE Failure path for queue.

FMC.FMCGRP.XML.EXE MQSI to MQWF link.

WORKFLOW_DEFAULT_ACTIVI
TY_ERRORS

Holds error information.

WORKFLOW_DEFAULT_ACTIVI
TY_FAILURE

Failure path for queue.

WORKFLOW_DEFAULT_ACTIVI
TY_IN

Place holder flow.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 10

MQSFSE provides a wide range of functions and features capable of handling a
broad range of integration requirements. The intention is that these functions and
features are optimized as a part of the engagement to match customer specific
requirements. By providing support for the addition, subtraction, and changes to
the systems comprising the enterprise environment, MQSFSE diminishes the need
for major programming and or operational changes.

The primary functions of MQSFSE provide:

• A mechanism for rapidly automating new business processes through
application integration.

• Isolation between front-end and back-end systems that eliminates the
need for the various application changes that were historically required
when making enterprise applications aware of each other.

• "Impedance matching"-the ability to facilitate integration by translating
between different system contexts (protocols, designs, languages,
formats).

• A mechanism for leveraging existing applications in new ways, e.g. 24 ×7
availability, and selling/servicing online.

• Synchronization of multiple applications though process management of
a common shared business event.

MQSFSE is designed to be transparent to the end user by providing the underlying
architecture and infrastructure required for integrating applications. This
transparency is accomplished in a fashion that leverages the existing functional
value of the integrated systems within the enterprise. Most interactions with
MQSFSE are limited to customization efforts by the individuals involved with
increasing the scope of the enterprise using automation via process management
definitions that describe the business event. As a result, an implementation of
MQSFSE is scalable to meet the business requirements of the organization with
minimal impact on existing implementations.

MQSFSE can support implementations that are as simple as system-to-system
integration, or as complicated as new application development using process
automation. MQSFSE is designed to support simple scenarios, and as business
needs evolve, add more complex scenarios. By integrating standards-oriented
technologies, projects are encouraged to start with simple high yield
implementations that can be grown over time as business requirements dictate the
need to provide additional support for a wide range of business processes. The
architecture is designed to support addition of features that enable business-to-
business collaboration as required by the enterprise.

MQSFSE architecture 11© Copyright IBM Corp. 2000, 2001

MQSFSE extends the use of basic messaging for application-to-application inter-
operation by adding both business process management and process
collaboration that allows implementation of increasingly sophisticated types of
business automation. MQSFSE provides this support through the use of a hub and
spoke architecture. The message level integration is achieved by using a special
XML header that operates as a wrapper, resulting in a unifying model that provides
the common semantic for the content of messages used to integrate systems. The
MQSFSE header provides access to the services designed to transform and
deliver the messages for use by the end-point applications.

MQSFSE, through the use of MQSeries Workflow (MQSWF), can drive new and
existing processes. The features of MQSWF makes it possible to first capture and
implement existing business process definitions, and then provide new levels of
automation, collaboration, and integration for existing application environments.
MQSWF allows business processes to not only be automated and enhanced
through the introduction of both manual and program activities. Once the business
process flow has been separated from the business service provider, these new
activities can be introduced without requiring changes to the service providers
themselves.

MQSFSE can support simple point-to-point integration requirements by allowing
the type of process automation to be selected on a message-by-message basis.
For complex or long-lived processes, MQSWF base process management can be
used. For simple point-to-point requirements, business process management can
be bypassed in favor of brokered message Delivery.

Business processes
MQSFSE supports many different types of integration efforts by integrating a series
of flexible system components. The goal is to provide a reusable framework for
implementing solutions for a wide range of integration requirements. The intention
is to use MQSFSE as a starting point for custom enhancements, to tailor the
implementation to match client requirements. Use cases are used to document an
understanding of the business problems to be solved by providing a basis for
representing the system interactions, data flows and manipulations required to
satisfy both new and existing business problems. By mapping the use cases
against an appropriate business model, a common representation of the business
problem can be established that removes ambiguity and allows related activities
and information to be integrated across disparate systems.

As an example, the model representations of a business problem can be used for
generating the required XML messages and the tasks and workflow scripts used to
drive the implementation of the use cases in MQSFSE. The non-functional
requirements for scalability, reliability, throughput, and growth rates can then be
addressed through the features of the open standards based system components
making up the MQSFSE framework. The end result is a set of implemented

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 12

business scenarios that provide directly executable solutions, act as building
blocks for future solution implementations, greatly simplify integration efforts, and
reduce the inherent risks of integration efforts. For more information see the
MQSFSE publication titled Planning Guide.

Implementation
The MQSFSE framework is built on the MQSeries family of products, with
extensions designed for several industry specific implementations. The general
design uses XML messages to provide a common semantic for representing
domain content in the form of a vocabulary that allows disparate applications to
communicate. MQSeries provides the base transport layer for this communication
between end-point applications, using a hub and spoke architecture. MQSFSE is
comprised of a set of MQSeries Integrator (MQSI) based message flows that
operate as generic components used to provide functions that facilitate integration
between the end-point applications. For simple integration requirements, the MQSI
components themselves provide direct support for integrating the end-point
applications. For complex scenarios MQSeries Workflow (MQSWF) scripts are
used to exercise the MQSI based components as needed to tie the enterprise
together by providing the integration between the end-point applications.

The next sections describe the various components required to implement
MQSFSE.

Base transport layer
The MQSFSE framework is built on messaging. The assumption is that if a
message is sent from a source application, the message will be processed as soon
as MQSFSE assures delivery to the intended destination.

MQSFSE architecture 13© Copyright IBM Corp. 2000, 2001

MQSFSE uses MQSeries queues for all communication with front-end and
back-end applications as illustrated in Figure 4:

Figure 4: MQSFSE use of MQSeries.

Messaging
The MQSFSE framework uses MQ queue-based messaging as the basis for
integrating the environment, and as a by product fully supports integration via the
Java Messaging Service specification. The MQSFSE framework supports all of the
message types supported by the MQSeries family by wrapping these messages in
a message header. The industry specific extensions implemented on the
MQSeries family of products making up the MQSFSE framework rely on XML as
the architecture defining the base vocabulary for messaging. An MQSFSE header
is used to wrap the data and command parts of the XML message. The XML
architecture provides the data representation based on the architecture of the XML
vocabulary chosen for use within MQSFSE.

Message headers
MQSeries makes extensive use of message headers to drive processing through
the MQSeries family of products. MQSFSE uses the standard MQSeries headers
and a specialized MQSFSE header to drive MQSFSE processing. Essentially, the
MQSeries headers wrap the MQSFSE header, which in turn wraps an XML
message.

XML
Dictionary

Mes
sa

ge

Deli
ve

ry

Message

Manipulation

Process

Management Tra
ns

ac
tio

n

Man
ag

em
en

t

Message Hub and Broker
(MQSeries Family)

CRF
Logging /
Caching

Symbolic
Destination
Resolution

Agents

Web Portals

Any Other
Access

Legacy1

.

.

LegacyN

Call Centers
Qcc1

Qa1

Qwp1

Qo1

Qhi1

QL1

QL .

QL . .

QLn

Qho1

Hub

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 14

The basic use of headers by MQSFSE is illustrated in Figure 5:

Figure 5: Basic use of headers in MQSFSE.

Message structure

Figure 6: Message structure illustration.

MQMD header
An MQSeries message header, called the MQSeries Message Descriptor
(MQMD), is placed in front of all MQSeries messages. This header is created at the
message creation time by MQSeries. See the MQSFSE publication titled
Development Guide for more information.

MQSFSE header
An MQSFSE header, called message header, is the first piece of information in the
body of the message. The header contains information used by MQSFSE to
perform message routing, key manipulation, logging, and provide support for
authentication functions. See the MQSeries Application Programming
Reference for more information.

MQSeries XML <container>

MQMD header MQSFSE header XML commands

Message hub Header

MQMD Header

<Command>

</Command>

Message Content (OAG, IAA, IFX...)

MQSFSE architecture 15© Copyright IBM Corp. 2000, 2001

Message content
The Message Data contains the business data in the XML message. In the case of
IAA-XML messages, there are essentially three sections to the Message Data
Header command, aggregate, and property. Since IAA-XML messages are an
XML representation of object form of the IAA model:

properties correspond to the attributes of the object model classes.

aggregates correspond to the classes of the object model.

The commands can be thought of as methods on objects of the model. For IFX and
OAG on the other hand a data model is not required. Instead, the message data is
defined by the associated DTD.

See the MB-XML Architecture book and http://www.ifxforum.com,
http://www.openapplication.org web-sites for more information.

While MQSFSE does provide forms of the IDM that include content derived from
the OAG and IFX messages that have been modeled, the generated messages
use the architecture described above for IAA. The intent of the IFX and OAG IDM
is to allow internal form XML messages to be developed that can be optimized to
the applications requirements of a particular enterprise using the appropriate
message content. The IFX and OAG IDM's do not create IFX or OAG messages,
instead the appropriate IFX and OAG DTD must be used as a child of the MQSFSE
header DTD for this purpose.

Message classes
MQSFSE segregates messages into distinct processing classes based on the type
of message being processed. The MQSFSE header contains a bodyCategory tag
that is used to indicate the message type. By loading the appropriate value into this
tags, MQSFSE will route the messages through the appropriate functionality.

The two available classes are hub-oriented messages and standard content driven
messages. Hub only messages are intended to manage the internal MQSFSE
function components themselves; while standard content driven messages use
hub functions as a means of accessing the applications being integrated by
MQSFSE. The XML design of the hub-oriented messages is dictated by MQSFSE,
and essentially consists of the MQSFSE header and an XML representation of the
table structure. The non-hub-oriented messages are comprised of the MQSFSE
header that wraps a structure defined by a specific message architecture such as
OAG, IAA, IFX, etc.

http://www.ifxforum.com
http://www.openapplication.org

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 16

Adapters
In order for external applications to communicate with MQSFSE, the MQSFSE
framework relies on translation programs also referred to as adapters. Adapters
themselves are not part of MQSFSE, but are responsible for translating the
application specific syntax into the specific syntax of the XML vocabulary that will
be processed by MQSFSE. Generally, adapters must be written by the owners of
the applications to be adapted, as it requires experience with the application to map
the Application Programing Interface (API) to the appropriate XML message
definitions.

Adapter services
The services that adapters must support in order to integrate with and leverage the
features and functions of MQSFSE are as follows:

1. Generating the MQSFSE header information, which includes:

• Symbolic routing information for defining the source of the message and
the intended target destination.

• Cross reference control information for driving the translation process
between system-specific keys.

• Message processing information used to drive a specific message though
a predefined set of activities.

• Correlation of request and response messages through the MQSFSE
message correlation infrastructure.

2. Loading the MQSFSE message data by transcoding application specific data
into the appropriate XML representation that includes:

• Creating messages that adhere to the appropriate DTD.

• Managing data aggregation across one or more messages into and out of
application representations so that application data integrity can be
maintained.

3. Each interaction between an adapter and the adapted application must be an
atomic unit of work. An application cannot rely on successive messages to
maintain consistency; instead, consistent state must be maintained through
each message interaction.

4.The adapter must be capable of informing MQSFSE of events that change the
required cross-reference key entries for entities managed by MQSFSE. All
events that cause an add, delete, or update event against managed keys
must be communicated to MQSFSE. For example, an application adds a

MQSFSE architecture 17© Copyright IBM Corp. 2000, 2001

customer entry. It must send a message to MQSFSE to create a cross-
reference entry in MQSFSE's CRF table that can later be used as a part of a
translation process when the party is referenced in messages to other
applications in the MQSFSE environment.

5. Adapters must define their response queues using the MQMD infrastructure.

6. Adapters must provide support for restart and recovery of the application that
they are servicing. Although MQSFSE itself has full recovery capability, if a
message has been handed off to an adapter by MQSFSE for processing.
Then MQSFSE will treat the activity as a system failure if the adapter does not
restart the message processing on its own.

7. Adapters are responsible for handling application security requirements. The
adapters use the information in the user identification tags in the MQSFSE
and MQMD headers to satisfy application authentication and authorization
requirements. In some cases, this use of the user identification tag requires
custom application changes, but generally it can be handled via the common
logon framework.

8. Adapters are responsible for handling logging for the purposes of creating
audit trails for activity in and out of the application that the adapter is driving.

For more information see the MQSFSE publication titled Application Integration
Guide.

Approach
There are several ways that MQSFSE compatible adapters can be built. The exact
approach is not as important to MQSFSE as is the requirement that the adapters
provide support for the basic services as described in the previous section. The
following describes some of the basic approaches to adapter implementation.

MQSI
MQSI can be used to create an adapter in several ways. First, since MQSI is XML-
aware, it can be used to translate XML dialects if an application to be adapted
already speaks XML. Second, MQSI contains a framework that allows custom
processing nodes and parsers to be integrated into the product. This framework
allows the standard task/workflow scripting tools to be used to generate process
flows designed to act as an adapter.

MQSeries Adapter Offering /MQSeries Adapter Builder
The MQSeries family of products include MQ Adapter Offerings (MQAO)/MQ
Adapter Builders (MQAB). These contain both a buildtime and runtime
environment that is aimed at building adapters that run as native operating system
processes on any platform supported by MQSeries. MQAO/MQAB are built around
the Visual Age Enterprise Access Builder environment that facilitates generating

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 18

code from DTDs and/or copybook/header files in a fashion designed to implement
the data translation and mapping support required in an adapter. MQAO/MQAB
supports creating adapters in Java or C. The code is then added to runtime
services for:

• Accessing MQSeries queues.

• Supporting application authorization.

• XML parsing via the MQAK and XML4J products.

• Setting and resolving symbolic destinations via the symbolic destination
resolution function.

• Logging.

These adapters support both push and pull scenarios, including request/reply,
publish/subscribe, and fire/forget processing modes.

The push scenario is non-invasive in that it does not require the application to be
able to access MQ queues. Instead the framework pushes messages into native
application APIs.

MQSFSE architecture 19© Copyright IBM Corp. 2000, 2001

The diagrams in Figure 7 and Figure 8 illustrate the MQAO capabilities:

Figure 7: MQAO adapters, push scenario.

Native
Adapter LM

S

Q
AIQ

Q
BIQ

Construct
Msg:
 *VAJ/
 MQAO
 *MQAB/
 MQAO

Source
Adapter BOD

B2Bi

BOD
B2Bi Data Transform/

Delivery
* VAJ/EAB
* MQAB/MQAO

Source
Applic

Target
Adapter

Target
Adapter

A
P

I's Target
Applic

Native Adapter

Route/Log/Trace/
 *Directory Svc
 *Trace Svc
 *Log Svc
 *LMS

MQSI

Route/Log/Trace/
Data Transform
*Directory
*MQI

Message Broker

Application Integration Adapter

Msg Receipt/
Delivery
 * Directory Svc
 * Trace Svc
 * Log Svc
 * LMS

App
Adapter
Daemon

Native
AdapterL

M
S Native

AdapterL
M

S

WorkerWorker

Q
AEQ

BOD
B2Bi

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 20

The pull scenario illustrates an application that is capable of accessing MQ queues
natively.

Figure 8: MQAO adapters, pull scenario.

Gateways
There is a special class of adapters that is referred to as a Gateway in the MQSFSE
architecture. A Gateway is a simplified adapter that does not have to deal with
application to XML message vocabulary transformations. Instead, the gateway is
intended to wrap and unwrap an existing message so that it can be processed by
MQSFSE. MQAO can be used for this purpose. In this case, the gateway is
installing and removing the MQSFSE header to allow applications that already
speak using a standard message set (e.g. OAG) to communicate via the hub,
without requiring changes to the applications themselves. If an IDM message set
is used (IAA, IFX/OAG modeled in the IDM) gateways are not required, because
the IDM creates a custom DTD that already contains the MQSFSE header that the
gateway is intended to provide.

See the Application Integration Guide for more information.

Construct
Msg:
 *VAJ/
 MQAO
 *MQAB/
 MQAO

Native
Adapter

LM
S

Q
BIQ

Source
Adapter BOD

B2BI

Q
AIQ

BOD
B2BI

Source
Applic

Native Adapter

Route/Log/Trace/
 *Directory Svc
 *Trace Svc
 *Log Svc
 *LMS

Native Adapter

Route/Log/Trace
 *Directory Svc
 *Trace Svc
 *Log Svc
 *LMS

LM
S Native

Adapter
Data

Transform

* MQAB/MQAO
* XML4J

Data
Mediate

Msg Construction Services

* MQAB/MQAO

Target
Applic

MQSI

Route/Log/Trace/
Data Transform
*Directory
*MQI

Message Broker

MQSFSE architecture 21© Copyright IBM Corp. 2000, 2001

An example of the gateway implementation provided for the OAG messages is
illustrated in Figure 9:

Figure 9: MQAO Adapter Environment.

Cross reference functions
The Cross Reference Function (CRF) of MQSFSE is responsible for providing
translation between the system key representations for specific entities
redundantly hosted in multiple integrated systems. The CRF function is an optional
function that is only required when systems expose their native keys via the
messaging model. When the keys are exposed the CRF provides the facility to
allow applications to have access to their own keys when commanded via XML to
do a particular activity. The CRF uses the source application's key to determine the

RESPONSE

REQUEST
CRM_TARGET_APP

MQSFSE Tester
Target Application

Simulator

CRM_SOURCE_ADAP

OAG-MQSFSE MQAO Adapter Environment
(CRM Example)

CRM_SOURCE_APP

MQSFSE Tester
Source Application

Simulator

CRM_SOURCE_ADAP

MQAO
Source Adapter

HUB_IN

MQSFSE
CRM_TARGET_ADAP

MQAO
Target Adapter

HUB_RWF_IN

CRM_SOURCE_APP

CRM_TARGET_APPCRM_TARGET_ADAP

CRM_SOURCE_ADAP_REPLY

Queue Manager: MQAOXQM

CRM_TARGET_ADAP_REPLY

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 22

keys required by the destination applications. The implementation is done using a
design pattern that requires all end-points to communicate the state of their keys
as business events are processed via the hub and at the adapted end points.

The translation is accomplished using a Universally Unique ID (UUID) generated
by the database that stores the key entries. Each integrated system registers its
key representation for an entity with MQSFSE CRF function so that it can be
attached to a UUID. The adapters are responsible for loading the appropriate
information into the MQSFSE header so that the CRF will be engaged to translate
a particular system key representation to and from the UUID when a key translation
is performed. MQSFSE translates the source key representation into the UUID on
the way into MQSFSE and then translates from the UUID to the target application
on the way out of MQSFSE. All MQSFSE CRF manipulation is done against the
UUID inside MQSFSE.

Figure 10 illustrates how the CRF works:

Figure 10: MQSFSE CRF.

As messages are passed between applications, the CRF translates the
representation based on the information coded in the MQSFSE message header,
so that the source and target applications can maintain a relationship using their
own representations of what is in actuality the same entity. The CRF is used to
store the relationship between all keys used to represent entities in MQSFSE.

Claim
system

Vendor X

M
ap

pi
ng

Get "Benefit Information
(XML)"

"Benefit Information
(XML)"

Get "Benefit Information
(XML)"

"Benefit Information
(XML)"

Administration
System Vendor Y

Client
123

Client
ABC

CRF

Same person

MQSFSE architecture 23© Copyright IBM Corp. 2000, 2001

Table 3 below illustrates the type of information stored in the CRF.

Table 3: Sample information stored in CRF.

UUID: Enterprise-wide unique entity ID defining the specific entity that is
described by the local system key entry and Message type.

Value: System specific key entry defined by the message type.

System Id: Symbolic identifier defining the origin of the key entry.

Key Type: System key type identifier (e.g. policy number, client number) as
defined by the XML message vocabulary used in MQSFSE. This corresponds
to the smallest atomic elements defined by the vocabulary.

Attribute: An adapter specific piece of information that can be used by an
application to further delineate the key type. The value of this field is not used
by the CRF.

The UUID defines a key relationship for each instance of an entity defined to
MQSFSE as a means of providing linkage between the integrated applications. A
CRF entry is required for any entity that requires key translation as a result of
processing an XML message. An indicator and the associated data tags in the
MQSFSE message header define how and if the CRF operations are used. Not all
message flows require CRF functionality. For instance, a query usually only returns
an application view of an entity, and so doesn't affect any other systems also
containing a reference to that entity. However, all add, modify, and delete activities
require an instance of the entity to be defined in the CRF, if the entity is shared
throughout the enterprise. It is the responsibility of the system owning the data,
also known as the system of truth, to publish messages related to add, modify, and
delete activity for an instance of a particular entity stored in the CRF. So that other
applications in the enterprise can use the information to maintain data integrity and
synchronization within MQSFSE.

UUID Value System Id Key Type Attribute

1 123 CIIS Party

1 zx3452 Legacy A Party aaa

1 gssdgdsf Legacy A Party bbb

1 2345 CRM Party

2 2345 CRM ContactPoint

2 345 CIIS ContactPoint

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 24

Figure 10 on page 22 illustrates two important concepts and benefits of the
MQSFSE CRF.

The first benefit is that the design allows MQSFSE to normalize the granularity of
the keys defined by the aggregates within the XML vocabulary to the level of detail
actually implemented in the integrated applications. As an example, the table
shows a 1 to N relationship illustrated for UUID #1 As can be see from the table
entries, CIIS is shown having one key entry for the party keytype; where as, the
system called Legacy A actually has two keys for the party keytype. What this
indicates is that Legacy A actually uses more granularity to store the data
associated with the party aggregate as defined by the XML vocabulary. In addition,
the Attribute column is provided as a way for an adapter to differentiate between
the keys. This differentiation would allow Legacy A to further define for itself what
and how the keys are used. MQSFSE stores but does not use the data stored in
the Attribute column.

The second benefit is that the design allows MQSFSE to support the type of
normalization when an application stores data associated with multiple
aggregates, as defined by the XML vocabulary, using fewer keys. This type of
normalization is illustrated by the CRM entries in the table. In this case the key for
the party and contact point keytypes are the same, which indicates that this
system stores data at a different level of granularity than what is defined by the
XML vocabulary. The important thing to notice is that the CRM application is still
creating key entries at the level of granularity specified by the XML vocabulary.
This level is important because each of these keytypes, or aggregates are
considered an atomic unit of data, and each integrated application must be
prepared to handle data at the level of detail of this aggregate even if it does not
internally store data with the same level of detail. The reason for this is that since
the XML vocabulary defines this as an aggregate, all applications need to be
prepared to communicate at this level of granularity since it is supported by the
message architecture.

MQSFSE architecture 25© Copyright IBM Corp. 2000, 2001

Figure 11 provides an illustration of how the MQSFSE CRF can be used:

Figure 11: System of truth update/publish.

Front-end and back-end applications communicate through MQSFSE using the
CRF to handle key translations. By design, the system of truth is responsible for
controlling adds, updates, and deletes to the actual entities. When these activities
take place, the system of truth publishes the event through its adapter. One
possible way of doing this is by using the MQSFSE support for Publish/Subscribe,
built on the functionality of the MQSeries Family of products; another way is via
MQSFSE process management.

When Publish/Subscribe is used, all systems interested in this information must
subscribe to the events via their adapters, and be prepared to take the appropriate
action against a publish activity for an entity in order to synchronize their local copy.
It is the responsibility of the system of truth to maintain the data integrity of the
information it manages, as MQSFSE does not monitor changes or versions of
entities for the purposes of maintaining data integrity. In the above example, if the
update (3) was actually a create or delete, then the party system, because it is the
system of truth, would be responsible for informing CRF. One thing to keep in mind
is that existing Publish/Subscribe functionality only assures access to the current
version of a topic. As a result, it is usually necessary to publish verbose messages
containing sufficient content to provide the context required to re-synchronize a
subscriber.

In addition, subscribing applications may need to use CRF messages to insure that
the CRF remains synchronized with business events. The process management
approach on the other hand, choreographs delivery directly to the interested

Update (3)

Party
System

Front-end
System

CRFCRF

Party
Update

CRF CRF
Other

System

CRFCRF

Getparty (1)

Party (2)

Publish (4)

Subscribe (5)

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 26

applications. This approach allows MQSFSE to evaluate and handle the response
the message creates in each adapted application and as a result manage CRF
synchronization as a part of handling the message response for each of the
applications integrated via the message delivery process. In some cases a hybrid
approach is useful.

An example is when one or more applications play the role of "system of truth". In
this case process choreography is used to handle delivery to the systems that own
the data to insure proper synchronization of the environment. Once the "system of
truth" have been satisfied, the message is then published to the remaining
interested systems who do not have any sort of veto authority of the message
process.

Figure 12 illustrates system not defined by the system of truth:

Figure 12: Inquire/update; not defined by the system of truth.

As an example, this scenario describes the activities associated with applications
not defined as the system of truth.

It is possible for a front-end system to request information from a back-end system
in a fashion that does not require a CRF operation, because it is an inquiry and
does not affect entity relationship information. An example would be a query such
as a GetPartysByAlphaSearch message. In this case, the request is sent and the

Party
System

CRF
System

System
of Truth

Front-end
System

Front-end
System

Party
UpdateOther

System
CRF

CRF

Front-end
System

CRF CRF

CRF

Getpartys - non keyed access

Parties

Translate keys

RegisterKey

UpdateParty (3)

Publish (1)

Subscribe (2)

MQSFSE architecture 27© Copyright IBM Corp. 2000, 2001

party system of truth returns the appropriate information. The returned information
is translated via the CRF based on the MQSFSE header. Once the front-end
system has a copy of the information, it can keep it or discard it as appropriate. If
the front-end system decides to use the information for an update, then it must first
attach its key to the UUID originally returned from the party system of truth by
registering with the CRF, before processing the update. When the front-end
decides to process the update message, it must send the message to the system
of truth so that the system of truth can process the update (as previously
described), including a subsequent publishing of the event. MQSFSE takes care of
the actual routing of the message based on the MQSFSE message header
information. The adapter for the front-end system is required to set the MQSFSE
header information to indicate that it is an appropriate message type sent to an
appropriate symbolic destination using an appropriate CRF (e.g. UpdateParty(3) to
the Party System).

For more information including other options on how to use CRF, see the MQSFSE
publication titled Application Integration Guide for more information.

Intelligent routing
MQSFSE contains intelligent routing based values contained in the MQSFSE
message header. The routing of messages is based on using the adapters and the
capabilities of MQSI and MQSWF within MQSFSE. In all cases, routing is based
on translating the symbolic destinations loaded into the MQSFSE header using
entries stored in a symbolic destination resolution table or alternative LDAP. This
architecture provides the means of determining the actual destination queue and
queue manager names for the messages. There are many variations within the hub
for how to set the actual value contained in the header within the MQSFSE
framework. The value can be set by the adapters, by workflow, or based on entries
coded in the message profile. Regardless of how the value is set, the goal is to
determine the appropriate MQSeries queue for message delivery. Once the
appropriate queue has been determined, an MQSI flow can put the XML message
into the queue via a destination list so that the message can trigger the appropriate
actions, by another component of MQSFSE, or an adapter.

Adapter responsibilities
As stated in the adapter section, it is the responsibility of the adapter to initially load
the symbolic source and destination identifiers into the MQSFSE header. This
information is used by MQSFSE for message routing. The MQSFSE routing uses
MQSI to interrogate the symbolic names and determine the actual queue names
via entries in the Symbolic Destination Resolution table.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 28

In addition, adapters built using MQAO can provide direct support for routing,
without requiring MQSI. The MQAO framework provides classes capable of
looking up destination ID's via LDAP or configuration files, so those messages can
be routed independent of MQSFSE. This routing is useful for high throughput
scenarios, such as loading payments from a clearinghouse. Additionally, when
Gateways are used in the implementation it is often necessary to use MQAO based
routing because multiple applications provide support for specific message types.
Unless duplicate adapters are deployed, specific messages must be routed
through a common adapter, with the target destination determined after the fact. In
this case, custom routing can be configured via MQAO, or the MQSFSE symbolic
destination can be passed to MQAO as the basis for finally resolving the true
destination of the message.

See the Application Integration Guide for more information.

MQSeries integrator
By its very nature, MQSeries Integrator (MQSI) is a message broker that is capable
of doing content based routing. This content based routing means that custom
flows can be generated based on the content of a message, or the queue that a
message was read from. MQSFSE uses a symbolic destination resolution table
where MQSFSE symbolic names and an MQSI flow to do routing.

MQSeries workflow
By putting an XML message into the XML MQSeries Workflow (MQSWF) queue,
MQSFSE engages the appropriate process management script. As a result, it is
possible to achieve a wide range of routing options based on using the features
inherent in the MQSWF engine. MQSeries Workflow based routing in MQSFSE is
based on the workflow message container content manipulation of the symbolic
destination name.

Additional routing features
In addition to the ability to set destinations based on the features and functions of
the MQSeries Family of products themselves, MQSFSE provides additional routing
capabilities through the use of a System Profile, Message Profile, and System
Interaction table. These tables give MQSFSE the ability to determine if the
intended target of a message is available to process the message being sent to it.
In a situation where the intended target is not available, it is possible to define
alternate destinations for a message. In the case where no alternate destination is
available, it is possible to indicate on a message-by-message basis whether the
message should be discarded with an "application unavailable" reply returned to
the originator or have the message stored until it is possible to reprocess the

MQSFSE architecture 29© Copyright IBM Corp. 2000, 2001

message. When the intended target is available, the message is reactivated for
delivery. Applications can send messages to MQSFSE to indicate their desired
status. MQSFSE will respond back to the system when it has determined there is
no current activity intended for the application, and that all subsequent activities
can be diverted to another target.

Message manipulation
When processing messages throughout the enterprise, it is sometimes necessary
to manipulate the data contained in the message and adjust the format of the data
to match platform requirements. There are many ways to handle these
requirements within the MQSFSE framework, some of which are discussed next.

Enrichment and manipulation
Message data enrichment can be done in a number of ways. The approaches used
in MQSFSE are either MQSI or MQSWF based. MQSI provides direct access to
database information, including the ability to directly reformat messages via
custom and existing nodes. MQSWF also provides the ability to affect the data
stored within messages. MQSWF uses a container metaphor for passing data
between activity points. At each activity point, the data can be remapped into a new
format, and/or passed out to a process execution server for direct manipulation by
a custom process or even a legacy system. In order to use MQSWF or MQSI for
this purpose, the appropriate XML message is delivered to the appropriate
MQSeries queue to trigger the MQSWF and MQSI process graphs.

Additional message manipulation features
MQSFSE provides the ability to define custom containers for activities within a
workflow using the Message Profile Database. This table stores the specifications
for generating a dynamic message container that is customized to support the
requirements of a specific workflow process template. The purpose of these
dynamic container definitions is to give MQSWF direct access to the specific
message content required to implement the message flow. In addition, MQSFSE
also provides the ability for an activity to request a new "on the fly dynamic
container" be returned when processing results are returned to an activity. To
further enhance this capability, MQSFSE allows each container to be given a name
so that it can be recalled for later use within the MQSWF process graph. This
combination of features provides a high degree of flexibility for generating
messages in the formats required to integrate all aspects of the enterprise.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 30

Code page and data formats
As stated above, both MQSI and MQSWF support enrichment and manipulation of
messages. These functions can be used to satisfy data format requirements. In
addition, MQSFSE uses MQSeries native code page translations to handle cross-
platform data manipulation requirements. Adapters can also be used to handle
data format and code page translation requirements. Adapter based translation is
generally required when a transport layer other than MQSeries queues are used to
deliver information to an adapted application, or to solve volume and/or throughput
requirements.

Processing modes
MQSFSE supports three basic forms of asynchronous messaging.

• MQSeries Publish/Subscribe

• Request/Reply

• Fire/Forget

Essentially these are processed as an agreement between the end-point
applications. The type of processing mode used is usually dependent on the
process being implemented to solve a specific business requirement. However, in
general, MQSeries Publish/Subscribe can be used to notify enterprise applications
of changes when those applications have no veto authority over the change. When
applications have veto authority, as is the case with a system of truth, then
request/reply should be used to ensure that processing is completed in a timely
and appropriate fashion. The last option is fire/forget, which should generally be
used when a response is not required for a message request. The following
describes the three types of processing modes available in MQSFSE.

MQSeries publish/subscribe
MQSFSE is compatible with the native MQSeries Publish/Subscribe feature,
including MQSI publish and subscribe functionality. One approach to executing a
publish/subscribe function is by a source adapter recognizing that a message
should be published and puts the message into a queue managed by an MQSI
flow. That flow in turn implements the publish process and publishes the
information under the appropriate topic to the appropriate queues. The topic should
be hierarchical in nature and could be a function of the message type. Applications
looking for specific information must subscribe to the various topics published by
MQSI.

MQSFSE architecture 31© Copyright IBM Corp. 2000, 2001

The other approach is that MQSFSE provides direct support for defining
subscriptions through a hub only message. Additionally, the MQSFSE architecture
provides for directly defining the timing and message definition that should be
published within the definition of a standard message flow. This approach relies on
the administrator for defining the topic hierarchy and messages are published
using body category as the lowest level topic in the previously defined hierarchy.

NOTE In certain circumstances where a transaction is of high value (e.g.
reinsurance), high impact (e.g. new claim), high risk (e.g. type of business), or high
volume (e.g. batch processes), the integration design is likely to be made more
effective by directing the message to an application-specific queue rather than to
a subscribe queue. In some cases, it may even be appropriate to completely
bypass MQSFSE, and in these cases care must be taken to ensure CRF integrity.

Request/Reply
A request/Reply message set is a process where a source application sends a
request message and asks for a response message. It is the responsibility of the
target adapter to ensure that a response message is sent back to the source
adapter, according to the rules coded into the XML message vocabulary defining
the command being processed. The message vocabulary generally defines the
format for a response to a specific request. The response message is returned to
MQSFSE after the message has been processed, by putting the response
message into the reply-to queue and associated queue manager as defined in the
MQSFSE message header.

In some cases, it is necessary to send a message directly to CRF, if the message
is of a request/reply process mode. In this case, CRF will respond with the
appropriate XML response message.

It is up to the application and the associated adapter to determine if processing
should wait for the response in Request/Reply processing mode, or handle the
response asynchronously when it arrives.

Fire/Forget
A fire/Forget message is one that is sent without expecting a direct response. For
example, this processing mode might be used when a system that is not the
system of truth initiates a change to an entity. In this case, the application does not
require a direct Request/Reply-processing mode, the application would already be
a subscriber in order to receive the eventual notification of the processing results
once it is published by the system of truth.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 32

Messages processed in Fire/Forget mode should not send a reply to the
application after processing the request.

Message processing supervisors
Message-processing supervisors are responsible for guiding a specific message to
completion. MQSFSE provides access to two different message-processing
supervisors. Lightweight message processing is based on MQSI, and assured
reply transactional message processing is based on MQSWF. The MQSFSE
Message Profile contains the definition of which supervisor to use on a message-
by-message basis. Either supervisor can be used, but the default message
processing supervisor is the assured response mode based on MQSWF. The
alternative lightweight version is based on broker based delivery of a message by
MQSI and does not engage MQSWF. This lightweight version does not support the
same level of functionality as is supported by the transactional version, in favor of
better performance.

Lightweight message-processing supervisor
In some cases, the lightweight message processing supervisor requirements are
simple and straightforward, the case where an implementation using workflow only
requires one activity. Essentially, the requirement is point- to- point in that the
requester needs to send a message to a specific target. MQSFSE supports this by
routing the messages directly from the source to the target while still providing
access to the standard hub functions for CRF, SDR, and logging. The benefit is that
this supervisor is functional yet lightweight; the disadvantage is that the
implementation is stateless.

Unlike the transactional supervisor, which maintains states and can detect failures
by an adapter in a fashion that allows the hub to automatically handle any
problems, the lightweight supervisor optimistically assumes that the adapter will
respond in a timely fashion to any messages it receives. Since this is not always
the case, the source adapter has to be prepared to handle a failure, even though
there is no way for it to determine the nature of the failure. In many cases, this
outcome is acceptable, making the lightweight supervisor an excellent choice for
many circumstances. In other cases, where the environment is more complex, the
messages more important, and the exact status of the message processing activity
required, then the transactional message supervisor is a better choice.

33© Copyright IBM Corp. 2000, 2001

Transactional message-processing supervisor
The transactional message-processing supervisor provides access to all of the
functionality in MQSFSE. This supervisor is designed around MQSWF which
manages the states associated with processing a message within the enterprise.
MQSWF drives the message through a series of activities that have been
predefined as a means of handling the events associated with processing a
specific message. The transactional message-processing supervisor is stateful;
and therefore capable of managing the contingencies associated with failures
during the message processing cycle. As a result, compensatory logic is
centralized in the hub using a user oriented flow definition language, instead of
hard coded in a requesting applications adapter. This makes the transactional
message processing adapter far more robust and flexible.

Transaction support
By design, MQSFSE classifies applications into three categories.

1. Primary applications that are considered the system of truth for a specific
business activity.

2. Applications that have some sort of veto authority over changes to an entity.

3. Applications that must just be updated so that they can be kept synchronized
with the changes.

Depending on the class of an application, different types of transactional support
are required to ensure that the environment stays synchronized. The following
sections detail the types of transactional support available in the MQSFSE
environment that are used for supporting specific business requirements of the
scenario being implemented. The correct choice of support is the one that will
ensure that processing always leaves the enterprise in a consistent state.

MQSeries sync point
MQSeries provides support for both single and two-phase commits. This support
means that in the scenarios where there are both primary and secondary
applications, it is possible in many cases, to coordinate the updates to ensure the
integrity of the transaction across a wide range of platforms like CICS, IMS, and
DB2 that support the XA interface. MQSeries exposes access to the sync point
interface through the MQSeries API, which allows adapters to use this
infrastructure when deemed necessary to meet the business requirement. The
MQAO supports participation in the commit process. In addition, both the MQSI
and MQSWF components of MQSFSE can participate in the commit process.
However, care must be taken to determine the commit scope across all

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 34

participants. In some cases, it may be necessary to wrap multiple applications
under a single adapter in order to enable them to participate within the same unit
of work.

Compensatory transaction processing
Applications play primary and secondary roles in the MQSFSE framework. In this
case, MQSI and/or MQSWF processing frameworks can be used to determine how
to handle failure conditions in order to drive updates into the applications. When a
failure occurs during the execution of an MQSWF process template, both MQSI
and MQSWF will roll processing back to predefined error nodes, and initiate
predefined processing scripts, allowing compensatory transactions to be targeted
at the failing applications. Since the adapters are responsible for maintaining a
consistent state for the application, the compensatory transactions are essentially
used to reverse entries that were successfully applied to ensure that the
environment is left in a consistent state at the conclusion of the transaction.

The use and design of compensatory transactions is primarily determined by the
design of the application being adapted. When one or more applications do not
support the XA specification, care must be exercised to ensure the integrity of the
business event. In some cases, it may be necessary to wrap multiple applications
under a single adapter in order to enable them to participate within the same unit
of work.

Long running
In many cases, the applications being integrated may not be able to respond in real
time due to the nature of the business transaction or the activities to be performed.
The MQSFSE framework supports this through the use of MQSWF, and its
graphical design tool. The workflow templates that can be executed to implement
a business process automation solution provide the functions required to handle
application wait time. MQSWF lets the user define parameters framing how to
interact with applications, including time-outs, and resulting compensatory actions.

Complex
In many cases, there may be a large number of individual tasks required to
implement the automation of a business scenario, where tasks can be dependent
on or independent of each other. MQSFSE supports complex transaction designs
through the combination of the graphically defined MQSI and MQSWF process
scripts. Using MQSI and MQSWF, tasks can be run serially, in parallel or they can
be run conditionally depending on data content, and they can entail standards of
service like long waits.

MQSFSE architecture 35© Copyright IBM Corp. 2000, 2001

Collaboration
Through the use of MQSWF, MQSFSE supports the notion of collaboration. Not all
processes in the environment are supported by systems. For systems that require
manual intervention, MQSWF provides the infrastructure to support collaboration
with end users, in a fashion that seamlessly integrates these collaborations with
existing automated activities.

System management
In order to manage the complex distributive environments associated with many-
to-many integration, MQSFSE uses facilities inherent in the MQSeries family
products to provide system management support. The Tivoli products cover the
following aspects:

Deployment
In distributed environments, applications often comprise multiple elements that
must be configured for each platform and then distributed to remote nodes, servers
and clients. The TME 10 Module for MQSeries automates the distribution and
configuration of MQSeries across the enterprise. For example, before distributing
and installing MQSeries, a check is performed to ensure that adequate resources
exist on the target platforms.

Availability monitoring
Availability monitoring ensures the availability of applications and that those
applications are operating optimally for end-users. The TME 10 Module for
MQSeries monitors all MQSeries objects, the systems and networks on which they
rely, while at the same time automating necessary responses to events such as
application or server restarts.

Centralized administration
Centralized administration provides a means of configuring, controlling, and
monitoring the entire application network from a central console or consoles in a
secure fashion. Tivoli's role-based administration model supports the management
of MQSeries networks from any managed node on the network. Different
administrative roles with varying permissions can be assigned to administrators
based on geography, specific business units, or departmental units.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 36

Additional system management features
MQSFSE uses internal tables to track and record the status of a specific message
flowing through the enterprise. Among other pieces of data, these tables contain
the message id, session id, and process id associated with each message. This
information allows correlation between the internal system management
information contained in the Session Status tables and other MQSFSE tables, in
order to provide a comprehensive snap shot of the processing environment at the
time a particular message was processed. Since these tables are standard
database tables, they can be accessed by a wide range of database tools, to obtain
information about the MQSFSE processing environment.

Logging
In addition to the system management facilities provided by the third party products
that may be used to support the MQSFSE environment, MQSFSE provides audit
and error log information that can be used by system monitoring tools. The
adapters and the CRF support logs so that an end-to-end view of the message
processing status and results are available. The MQAO adapter kit uses a common
framework for ensuring consistent audit and error logging. In addition, the CRF
provides logging of translation activities in MQSFSE. MQSFSE provides access to
all iterations of a particular message in the Message log; as well as detailed error
information and trace results in the Error log.

Error handling
All message flows within MQSFSE are handled transaction-by-transaction so that
the hub has the ability to roll back any changes whenever an error is detected.
Messages that contain errors are routed to failure queues. The hub uses a series
of tables to track the progress of a message, that can be used to determine the type
and location of an error. When errors are reported, they are accessed by keys that
provide National Language Support (NLS). Whenever an error message is
created, it can be sent directly to a database error table, or it can be sent to the
Pub/Sub Flow to be published to interested subscribers. The Message Profile
contains a flag indication for the approach to use.

MQSFSE architecture 37© Copyright IBM Corp. 2000, 2001

The NLS support is illustrated in Figure 13:

Figure 13: NLS support.

NLS support
MQSFSE uses an NLS architecture for generating messages that are sent to log
files. The NLS Architecture describes a message that contains 9 digits as follows:

Position 1-2: Language

Position 3: Error Type

Position 4: Architecture

Position 7: Sub Module (i.e. Flow or Subflow)

Position 9: Error Number

The first 2 positions of the number are language. Language will be stored in the
System_Status_Table. In order to provide multiple language support from a single
physical application attaching to the Hub, that application would need to define
itself to the Hub using multiple entries in the System_Status_Table. Each entry
would define a different language default.

The remaining 7 positions will be assigned to identify an occurrence of an error. It
is possible that an error code could be utilized by multiple flows. In such cases, the
sub-module portion of the error code will be set to a value that indicates a "generic"
entry.

The result is a 9-digit error code. Each error code is associated with a single end
user. Error messages may consist of text only messages or may be augmented
with user supplied runtime values. An error code is associated to a message that
assumes a fixed number of user-supplied values (0 or more).

Retrieve Pub/Sub Error
Flag from Message

Profile Table if
Required

If Pub/Sub Error
Flag equals

Send to Pub/Sub

Continue Processing

True

False

Continue Processing

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 38

The error message text is constructed by concatenating text strings stored in the
proper sequence in a database table with user-supplied values. The values, if
required, are inserted, in the order received, into the message text. If more values
are provided than the message requires, the extra values are ignored.

Formatting rules are used to help present the error message in a readable fashion.

The format of an error message as displayed to the end user is as follows:

Where:

MQSHUB is a fixed string that indicates the HUB application.

######### is the 9 digit error code.

location is a String that indicates a failure log point. This value is optional. If
provided, it must not contain any language specific content.

messageText is the language specific error test associated with the error
code and augmented with user supplied values.

Processing is illustrated Figure 14:

Figure 14: NLS process.

Directory management
IBM Secure Way Directory Server Version 3.2 is a LDAP server used to create a
directory structure in a format that supports the Hub's SDR design. MQSFSE uses
a MQSI flow and the LDAP as a way of providing an alternate approach to storing
system symbolic destination resolution entries to the existing DB2 table approach.

The implementation uses a host definition name of systemsdefs that contains an
object group called SystemSymbolics. This, in turn, contains System objects
whose names represent the SystemSymbolics. Each System object contains the
queue and queue manager name.

NOTE LDAP support is limited to Windows NT systems only.

MQSHUB ######### location messageText

Get Error
Text from
Database

Combine
Text and
Values

Pass to
Log_Error

MQSFSE architecture 39© Copyright IBM Corp. 2000, 2001

MQSFSE directory maintenance is illustrated in Figure 15:

Figure 15: Directory maintenance.

Security
Security is an important aspect of any environment. MQSFSE assumes that it is
running in a trusted environment, and relies on the MQ Series family of products to
provide support for authentication and authorization.

Authentication
MQSeries is the base transport for MQSFSE, and in the default configuration only
provides authorization services to protect access to queue and queue manager
services. In order to ensure that messages are authentic, MQSeries provides the
programming exits that allow custom installation of PKI certificates. This allows
MQSFSE to validate the identity of the process that sent a particular message.
MQSeries allows messages to be digitally signed and/or encrypted via additional
user exits, so that MQSFSE can be certain that the messages have not been
tampered with.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 40

Additional MQSFSE authentication features
In addition to the support provided by the MQSeries family of products and
associated add-ons, MQSFSE provides simple session management support. As
delivered, MQSFSE provides simplistic authentication support via a database table
lookup function. However, the expectations are that this function will be replaced
by a custom integration to whatever authentication service exists in the enterprise.

Regardless of how authentication functions are implemented, the MQSFSE
Message Profile (MP) indicates whether MQSFSE internal session management is
enabled for a particular message. When session management is enabled for a
message, MQSFSE expects that the client application has initially processed a
Hub specific Logon message that contains the appropriate credentials in the
MQSFSE header authentication tag. This message is routed through MQSFSE
and at implementation time should be integrated with whatever authentication
system is available in the enterprise. If the authentication system indicates a
successful authentication based on the return of a predefined response message,
MQSFSE will generate an entry in its own Session Status table (SS) and return a
Session Id in the MQSFSE header.

For all subsequent messages that have the session indicator set in the Message
Profile, MQSFSE will expect a valid session entry to be loaded into the MQSFSE
header as a part of the request message initialization. If the Session Id is invalid or
missing, the message will be rejected. MQSFSE also performs a time-out check to
determine if the session was inactive longer than the specified inactivity period.
Inactive sessions require a new logon process. If the Session Id is active and valid,
then MQSFSE will accept the message for processing.

In addition to the validation of sessions, MQSFSE can execute simple message-
to- message affinity checking. The implementation checks to see if a pre-requisite
message has been processed immediately prior to processing the current
message. Since the session management feature tracks the previous message by
intercepting the message at completion, this implementation illustrates how to
manage states across independent messages. It is expected that this function can
and would be extended as a means of managing state related content across
message flows. This is the mechanism intended for helping solve impedance
problems between applications designed to support specific message standards
and those applications that are being adapted, but where not initially designed to
support, these message standards.

MQSFSE architecture 41© Copyright IBM Corp. 2000, 2001

The authentication process is illustrated in Figure 16:

Figure 16: Authentication process.

Authorization
MQSeries provides Access Control List (ACL) support to ensure that the process
that sent the message has access only to functions for which sufficient
authorization exists. Further MQSFSE is compatible with the the MQAO based
logon framework that uses LDAP to store credentials for accessing adapted
systems, based on the credentials carried in the XML messages. In addition, the
Message profile Defines whether a particular message requires a valid session
token as a means of authorizing access to a specific function.

Scalability
MQSFSE provides scalability by leveraging the inherent features of the MQSeries
family of products. Queues between front-end and back-end applications can be
clustered, MQSI and MQSWF components of MQSFSE can be duplicated, multiple
adapters can target adapted applications, and adapters are multi-threaded. As a
result, MQSFSE can be scaled in an existing topology, but also can be scaled by
migrating to new additions to the topology.

Reliability
The MQSeries family of products are high availability enabled. MQSeries queues
assure delivery and provide round robin clustering, adapter frameworks provide
redundancy and restart/retry capabilities, and MQSFSE components like MQSI
and MQSWF, are transactional and fully restart/retry capable to ensure that the
environment produces consistent and timely results.

Enter the flow Register new
process

Get Message
Profile

Validate session
id:

Not including
Logon/Logoff

Check for Hub
Only Command

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 42

MQSFSE reliability illustrated in Figure 17:

Figure 17: MQSFSE reliability.

MQSFSE provides additional features like store and forward and the definition of
alternate/mirror applications; as well as comprehensive logging to provide as much
flexibility as possible in integrating disparate applications and technologies.

Retrieve Pub/Sub Error
Flag from Message

Profile Table if
Required

If Pub/Sub Error
Flag equals Send to Pub/Sub

Continue Processing

True

False

Continue Processing

Recommended implementation 43© Copyright IBM Corp. 2000, 2001

 Chapter 3
 Recommended implementation

MQSFSE uses a combination of MQSeries services for message transport,
message routing, message manipulation, message formatting, lightweight
message processing, and for transactional message processing in order to drive
the activities associated with implementing business scenarios. An MQSFSE
implementation starts with a requesting application , then MQSFSE in the middle,
and some number of target applications as the end-points, depending on the
business scenario being satisfied. The following sections detail a sample MQSFSE
implementation designed to balance complexity with functionality.

Requesting application
The requesting application is any application that requires services from MQSFSE
and connected target applications, and is considered the source or originating
application. The source application determines which XML messages are
generated to trigger a desired set of predefined activities within MQSFSE and
related target applications. The source application uses its adapter to format XML
messages.

Formatting messages includes populating the MQSFSE message header and
MQMD header with information pertinent to the initiating message request. An
adapter puts the message on the MQSFSE input queue. If the message is intended
to be a fire and forget type message, then processing is complete. If the message
is a request/reply type message, then the adapter should monitor its response
queue for the correlated response. Monitoring the queue can be done in an
asynchronous or synchronous mode depending on what is most suited to the
requesting application. Depending on the implementation, the adapter may also
have to monitor subscription queues in order to obtain information about
add/modify/delete activities on entities for which the application is interested, or to
learn about errors detected by the hub during message processing. In this case,
the application can use a hub specific message to create the appropriate
subscriptions. MQSFSE will create the subscription entries from this message.

In its simplest form, MQSFSE uses entries in the Message Profile, the Symbolic
Destination Resolution table, and the Cross Reference Function table to determine
how to process the message.

See the MQSFSE publication titled Installation and Setup Guide for more
information on these tables. In order to optimize processing, the content of the XML
message is stored in the message cache.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 44

Figure 18 illustrates the application view of MQSFSE:

Figure 18: Application view of MQSFSE.

XML
Dictionary

Mess
age

De
live

ry

Message

Manipulation

Process

Management Tra
nsa

ctio
n

Mana
gem

ent

CRF SDR

Message Hub and Broker
MQSeries Family

MP SP

SS

WP

SI

EL

Providers

SF

Requester

HUB_IN

FrontEnd_IN

(ReplyToQ)

XML Request

EID Header

XML Message Cache

(CL)

ODBC

XML Request

EID Header

XML Response

EID Header

XML Response

EID Header

WC

Recommended implementation 45© Copyright IBM Corp. 2000, 2001

XML process initiation
Once an application has put an XML message on a queue, MQSFSE must
interrogate the message profile in order to determine how to handle the message.

• Hub messages are processed against the hub function that they target,
with a response message immediately returned to the originator.

• Messages intended for the lightweight message-processor are processed
by the HUB_IN_Flow and then delivered to the target application.

• For complex messages, MQSFSE must attach the incoming message
request to an appropriate MQSWF process, by using the MQSI
HUB_IN_Flow and then activating an MQSWF based workflow template.

Figure 19 illustrates the message flows depending on the configuration for the
message in the Message Profile:

Figure 19: XML message paths.

For both lightweight and transactional message processing, MQSFSE uses the
MQSI based HUB_IN_Flow to provide access to MQSFSE functionality. The
Functionality provided by the HUB_IN_Flow determines the following:

1. Should a session be validated, created, terminated, or bypassed?

2. If there is an active session, should message state validation take place?

3. Should we check for available systems?

4. Are the appropriate systems or alternatives available?

CRF SDR

Message Hub and Broker
MQSeries Family

MP SP CL

SS

WP

SI

EL

Requesters Providers

SF
MQSWF

HubIn

MQSI
Hub Only

 ReplyToQ

HubWFOut

HubRWFIn

HubRIn
Response

WC

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 46

5. If the appropriate systems are not available, should the message be
terminated or should it be stored until a system is available to process the
message?

6. Should the message use transactional workflow or should it be sent through
the cross referencing and symbolic destination functions so that it can be
delivered directly to the target application (lightweight message processing)?

Figure 20 illustrates the processing for both the lightweight and transactional
message processing:

Figure 20: XML message entry to the message processing supervisors.

At this point, the lightweight message-processing supervisor has delivered the
message to the target queue. In this case, the processing is dependent on the
target adapter to respond in order to activate the return trip component of this
supervisor. On the other hand, in order to activate the transactional message
processing, the XML message must be wrapped in a MQSWF XML header that
provides MQSWF with the information required to initiate MQSWF processing. The
MQSI XML to MQSWF XML wrapping process copies control information including
the content specified in the Workflow Profile from the MQSFSE message into the
MQSWF message.

In general, the contents of an XML message is not needed by an MQSWF process,
so MQSFSE stores the message in a database, with the key stored in the MQSWF
XML header. This storage allows access to the XML structure when required but
maintains a lightweight message container for MQSWF. Once this wrapping

 ReplyToQ

Requesters

CRF SDR

Message Hub and Broker
MQSeries Family (Hub-In)

MP SP CL SS WPSI

EL SF

Validate
Session

Validate
State Y Validate

Systems Y

Response

Providers

Systems
Available Y Message

processor Y

MQSWF

MQWFOut

CRF/SDR

N N

StoreN

WC

Recommended implementation 47© Copyright IBM Corp. 2000, 2001

process is completed, the newly formed MQSWF XML message, plus any
specified message content, and system availability information is put into the
MQSWF XML queue so that the appropriate MQSWF process flow can be initiated.

Process execution
After execution begins within the MQSWF workflow template, the response to the
original XML message request is obtained by executing the steps within the
predefined process graph. There are three types of activities that can take place.

1. Execution of an external application via an adapter XML message.

2. Execution of a workflow function.

3. Execution of a workflow client related activity.

The workflow functions and client activities do not require special support within
MQSFSE, but they can be used to provide powerful features and functions as a
part of the solution to an MQSFSE implemented use case. Client related functions
include implementing manual procedures within the automated message flow.
Workflow functions include using the existing Workflow Management Coalition
standardized API's to directly access programs and processes. This type of
integration can include message content by specifying the correct content in the
dynamic container definition stored in the Workflow Profile of the message being
executed. Execution of external applications via an XML message is described
next.

Execution of external functions
MQSWF process flows are defined at build time to satisfy the request associated
with the command name loaded into the MQSWF XML header. The command
name is loaded from the MQSFSE Message header bodytype tag in the original
XML message that instantiated the workflow. This process graph definition
includes steps for invoking the appropriate activities to satisfy the use case
associated with the message being processed.

At each activity point, the activity can define a new custom container designed to
deliver the information required to satisfy the exit conditions of the activity and or
provide data for the next activity. Additionally, the Activity can override content
such as the symbolic destination resolution name in order to affect the delivery of
the message to a specific destination. If the activity invokes a native MQSWF
interface, then MQSWF based implementation rules are used. If the activity is
intended to leverage MQSFSE functionality to activate an integrated component of
the enterprise, then an XML message is routed to the MQSI MQWF_OUT_Flow
using a standard User Defined Process Execution Server.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 48

The MQWF_OUT_Flow provides access to the MQSI based symbolic destination
resolution and cross- referencing services required to deliver the message the
target application. The MQSI routing capabilities translate the symbolic destination
name, coded within the XML message, to the actual queue names associated with
the destination applications responsible for providing the services described by the
symbolic destination name. For instance, the symbolic destination name may be
"customer system of truth". The resolution would be a queue name that has been
predefined in the enterprise to deliver messages to a customer system like CIIS.
This approach allows applications to be flexibly introduced into the environment
without changes to either the application or the workflow template. The only time
the process flows are required to change is when the a business process is
changed. At this point, container definitions can be changed, messages types can
be saved, updated, and or reused, destinations can be added, changed, or
removed, and transition checks can be manipulated, all without affecting or
requiring changes to MQSFSE or the enterprise itself.

Additionally, MQSFSE will invoke other functions like the MQSI based cross-
reference function to translate the keys associated with the data content of the XML
commands, based on the XML symbolic destination name. These functions allow
the keys to be dynamically translated to the target destination application format
and value as needed to support the integration process.

The CRF, logging, and symbolic destination functions are built into the MQSI
portion of MQSFSE. They are designed to understand processing associated with
both the lightweight and transactional message processing supervisors. One big
difference between the two supervisors is the ability to manipulate versions of the
message, as well as the content of the messages sent by the transactional
supervisor. Regardless of the message sent, every change to a message is logged
and stored in the message cache.

An additional option is to publish the message under a topic corresponding to the
bodycategory of the message. This allows the message to be directly delivered to
the system of truth, and some unknown number of additional interested parties.
MQSFSE also provides support for creation of the subscriptions for required topics.

Execution continues once the target adapter returns a response or when the
complex message-processing supervisor terminates waiting for a response. In the
normal case, processing continues based on reconciliation of the Correlation ID
stored in the MQMD header. MQSFSE handles the MQSWF Correlation ID for all
MQSI based functions. It is the responsibility of the adapters to process the
Correlation Id in the response message based on the parameters coded in the
MQMD.

For the lightweight message-processing supervisor, the process is completed with
the delivery of the response directly to the originating application, Although if a
publication was made, there might be some sort of related activity by a subscriber.

Recommended implementation 49© Copyright IBM Corp. 2000, 2001

For the complex message-processing supervisor, the workflow template is
responsible for interrogating the returning MQSWF XML to ensure that processing
completed correctly.

Figure 21 illustrates the steps associated with an MQSWF activity using MQSI
based functions:

Figure 21: Message processing Supervisors processing a message.

Target application
The target application receives the request for processing. It must respond to the
request by providing feedback in the form of an XML response for the specific XML
request, based on the semantics of the XML vocabulary being used. It is possible
to have the MQSWF workflow process template determine how this response is
handled, either by publishing the response so that all subscribers can view the
activity, or if a direct response should be routed back to the originator of the
request. The appropriate approach depends on the requirements defined in the
use case that is being implemented.

It is the responsibility of the target application to ensure that the MQMD Correlation
Id is set based on the parameters coded into the MQMD, so that the source
application can correlate this response to the original request.

When the complex supervisor is used, a number of activities can be defined for
processing a message, and the contents of the message can be used to
interrogate the response from the target adapter. When the process graph

 ReplyToQ

Requesters

CRF SDR

Message Hub and Broker
MQSeries Family (HubR-)

MP SP CL SS WPSI

EL SF

Response

CRF/SDRKill
Process

Providers

HUB_R_IN

HUB_RWF_IN

WC

WF
CORRELName WFBuild WFMQSWF

WF End

WFOUT

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 50

determines that the appropriate response has been received, then an activity is
used to send that response to the source adapter. In this case a flag is set to
indicate that this is the response to the source adapter, and the process is handled
in a fire and forget fashion. It is additionally possible for the hub to publish this
response message so that interested subscribers can gain access.

Sample scenarios 51© Copyright IBM Corp. 2000, 2001

 Chapter 4
 Sample scenarios

This section of the document describes a set of scenarios that illustrate how the
various pieces of the environment are used to implement an MQSFSE solution.
The illustrations are just that, and may never be implemented, or may be
implemented differently in MQSFSE depending on the use case details. Some of
these examples use MQSI to drive processing, others use MQSWF. This decision
is based on the needs of the enterprise in which the implementations are intended
to operate.

Client update from front-end system

Figure 22: Client update from front-end.

MQSFSE HUB

LDAP

6,14,18
7,15,19

PUB/SUB

16 17

MQ Workflow

MQ Integrator

MQ Series

Log

2,10 3,11

IIW

CIIS

Qc1 Qc2

Qw1 Qw2

9

8,20

21b,23b

Front-end

Integration
Connection

IAA-XML Plugin

Qcp1 Qcp2

21a,23a

1,22a

xRef

4,12
5,13

22b

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 52

The table below explains how this process works:

Table 4: Party update from front-end explained.

This example presumes that the Front-end has a fresh copy of the party, but is not
the system of truth, and that IIW, CIIS, and Front-end do not use the UUID as their
internal key for the party being updated.

Step # Explanation

1 Front-end sends MQSFSE a client update event.

2,3 MQSFSE logs request, logged.

4,5 UUID translation requested, translated.

6,7 Request resolution for “system of truth” request, queue id returned.

8 Client update request to CIIS or client system.

9 Client information publish request; presume that update is acceptable.

10,11 Request for client update detected, logged.

12,13 UUID translation request, translated.

14,15 Request resolution for publish, queue Id returned.

16,17 MQ/MQSI publishes the client update, published.

18,19 Request resolution for return system, queue Ids returned.

20 CIIS notified that publish request processed.

21a,21b Subscribers notified of client update via publication.

22a,22b UUID translation requested, translate.

23b,23a UUID translation requested, translate.

Sample scenarios 53© Copyright IBM Corp. 2000, 2001

Request for client authentication

Figure 23: Request for client Authentication.

The table below explains how this process works:

Step # Explanation

1 Front-end makes a request/response for user authentication.

2,3 MQSFSE detects request, logged.

4,5 Request resolution for authentication request, queue Id returned.

6 Request for authentication.

MQSFSE HUB

LDAP

4,10 5,11

xRef

12 13

MQ Workflow

MQ Integrator

MQ Series

6

Log

2,8 3,9

Front-end

Integration
Connection

IAA-XML Plugin

Qcp

1

Qcp

2

1

14

CIIS
Qw1 Qw2

7

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 54

Table 5: Request for client Authentication explained.

Presumes that front-end system does not use UUID as key for party returned on
authentication request.

Client update from front-end with MQSeries Workflow

Figure 24: Client update from front-end with Workflow.

7 Authentication result returned; CIIS validates UID, PWD, domain tuple,
returns UUID for client.

8,9 Detected result of authentication request, logged.

10,11 Request resolution for return system, queue Id returned.

12,13 UUID translation request, translate.

14 Authentication request reply returned containing client key.

Step # Explanation (Continued)

MQSFSE HUB

LDAP

6,14,18
7,15,19

PUB/SUB

21 22

MQ Workflow

MQ Integrator

MQ Series

Log

2,19 3,20

Front-end

Integration
Connection

IAA-XML Plugin

Qcp1 Qcp2

24a,26a

1,25a

xRef

4,9,14
5,10,15

25b
IIWQc1 Qc2

24b,26b

CIISQw1 Qw212

11

Legacy
SystemQw1 Qw217

16

8,13,18,23

Sample scenarios 55© Copyright IBM Corp. 2000, 2001

The table below explains how this process works:

Table 6: Party update from front-end with Workflow.

This example presumes that the front-end has a fresh copy of the party, but is not
the system of truth, and that IIW, CIIS, and Front-end do not use the UUID as their
internal key for the party being updated. In addition, both CIIS and Legacy must be
updated cooperatively to stay in sync.

Step # Explanation

1 Front-end sends MQSFSE a client update event.

2,3 MQSFSE logs request, logged.

4,5 UUID translation request, translated.

6,7 Request resolution for “system of truth” requested, queue Id returned.

8 Client update request workflow engaged.

9,10 UUID translation request, translated.

11 Client update dropped in CIIS queue.

12 Returned to workflow; presumes that the update is acceptable.

13 Workflow engaged to next activity.

14,15 UUID translation request, translated.

16 Client update dropped in legacy queue.

17 Returned to workflow; presumes that the update is acceptable.

18 Workflow engaged to next activity.

19,20 Request for Client update detected, logged.

21,22 MQ/MQSI publishes the client update, published.

23 Workflow notified that publish request processed; workflow disengaged.

24a,24b Subscribers notified of client update via publication.

25a,25b UUID translation request, translate

26a,26b UUID translation request, translate

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 56

 Appendix
 Notices

This information was developed for products and services offered in the U.S.A. and
Europe. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

Notices 57© Copyright IBM Corp. 2000, 2001

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you. Licensees of this program who
wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:

IBM Corporation
Department: 5EFA/Building: 202
8501 IBM Drive
Charlotte, NC 28262
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 58

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-
level systems and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,

Notices 59© Copyright IBM Corp. 2000, 2001

modify, and distribute these sample programs in any form without payment to IBM
for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© Copyright IBM Corp. 2000, 2001. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks or services of IBM Corporation in the United
States or other countries or both:

IBM®
MQSeries®
DB2®
IAA®
Insurance Application Architecture®

OAG is a trademark of the Open Applications Group in the United States or other
countries or both.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 2000, 2001 Technical Architecture Book 60

Permission statement
Copyright © 2001 Interactive Financial eXchange Forum. All Rights Reserved.

Redistribution and use of this material for both commercial and noncommercial
purposes are permitted subject to the below-stated conditions:

1. This Permission Statement shall be reproduced in its entirety in each copy of
the material;

2. This material is provided AS IS without warranty of any kind, including but not
limited to, any warranty of noninfringement or any warranty (express or
implied) of merchantability or fitness for a particular purpose; and

3. The material may be modified provided

a. Prior written notice of each modification is provided to the Interactive
Financial eXchange Forum at the address listed below,

Interactive Financial Exchange Forum, Inc.
333 John Carlyle Street
Suite 600
Alexandria, VA 22314
U.S.A.

b. Any redistribution of modified materials shall be accompanied by a notice
that modifications have been made and a clear description of the
modifications, and

c. The party making the modifications assumes all responsibility for the
consequences of the modifications.

Glossary 61 © Copyright IBM Corp. 2000, 2001

 Glossary

This glossary defines terms and
abbreviations used in this book. If
you do not find the term you are
looking for, see the Index or the IBM
Dictionary of Computing, New
York: McGraw-Hill, 1994.

A

ACL: Access Control List
A list of the services available on a
server- each with a list of the hosts
permitted to use that server.

Adapters
(1) A part that electrically or
physically connects a device to a
computer or to another device.

(2) A circuit board that adds function
to a computer.

(3) Event Adapter: In a Tivoli
environment, software that converts
events into a format that the Tivoli
Enterprise Console can use and
forwards the events to the event
server. Using the Tivoli Event
Integration Facility, an organization
can develop its own event adapters,
tailored to its network environment
and specific needs.

API: Application Programming
Interface
(1) A software interface that enables
applications to communicate with
each other. An API is the set of

programming language constructs or
statements that can be coded in an
application program to obtain the
specific functions and services
provided by an underlying operating
system or service program.

(2) In VTAM, the language structure
used in control blocks so that
application programs can reference
them and be identified to VTAM.

Attribute
(1) A characteristic that identifies and
describes a managed object. The
characteristic can be determined,
and possibly changed, through
operations on the managed object.
(2) Information within a managed
object that is visible at the object
boundary. An attribute has a type,
which indicates the range of
information given by the attribute,
and a value, which is within that
range.

B

Business Event:
The series of activities that define the
steps required to complete a useful
unit of work. Examples are : Add
policy, get loan balance, etc. The
business event can contain both
automated and manual activities,
including collaboration.

Technical Architecture Book 62 © Copyright IBM Corp. 2000, 2001

BPM: Business process
management
MQSFSE feature for managing a
message through the life-cycle of
activities associated with a business
event.

C
CAF: Common Adapter
Framework

CIIS: Client Information Integra-
tion Solution
An implementation of a Party
Management System based on the
IAA model.

CL: Message Cache
MQSFSE table used to cache
versions of messages as they are
processed though MQSFE, serves
as the historical log.

Class
A UML class. A description of an
object.

CRF: Cross Reference Function
MQSFSE function that translates
keys from one application into keys
for another application as a means of
aiding integration between
applications.

D

DB2
An IBM relational database
management system that is
available as a licensed program on
several operating systems.
Programmers and users of DB2 can

create, access, modify, and delete
data in relational tables using a
variety of interfaces.

DTD: Document Type Definition
The rules that specify the structure
for a particular class of SGML or
XML documents. The DTD defines
the structure with elements,
attributes, and notations, and it
establishes constraints for how each
element, attribute, and notation may
be used within the particular class of
documents. A DTD is analogous to a
database schema in that the DTD
completely describes the structure
for a particular markup language.

E

EL: Error Logging
MQSFSE function that tracks and
records the progress for messages
through MQSFSE

I

IAA: Insurance Application
Architecture
IBM's business model for the
insurance and financial services
industry.

L

LDAP: Lightweight Directory
Access Protocol
An open protocol that (a) uses
TCP/IP to provide access to
directories that support an X.500

Glossary 63 © Copyright IBM Corp. 2000, 2001

model and (b) does not incur the
resource requirements of the more
complex X.500 Directory Access
Protocol (DAP). Applications that
use LDAP (known as directory-
enabled applications) can use the
directory as a common data store
and for retrieving information about
people or services, such as e-mail
addresses, public keys, or service-
specific configuration parameters.
LDAP was originally specified in
RFC 1777. LDAP version 3 is
specified in RFC 2251, and the IETF
continues work on additional
standard functions. Some of the
IETF-defined standard schemes for
LDAP are found in RFC 2256.

LMPS: Lightweight message
processing supervisor
Broker based message delivery.
Supports all MQSFE functions but
only one target.

Log
A record of a sequence of
operational activities on a computer.

M

Message Broker
A set of execution processes hosting
one or more message flows.

MP: Message profile
MQSFSE table that contains the
operational definition of the
messages processed through
MQSFSE.

MQAB: MQ Adapter Builder

MQAO: MQ Adapter Offering

MQMD: MQSeries Message
Descriptor
The MQSeries Integrator (MQSI)
header that contains basic control
information that must travel with the
message.

MQRFH
An architected message header that
is used to provide metadata for the
processing of a message. This
header is supported by MQSeries
Publish/Subscribe.

MQSeries
Pertaining to a family of IBM licensed
programs that provide message
queuing services.

MQSFSE: MQSeries Financial
Services Edition
A complete scalable messaging and
information integration add-on to the
MQSeries family of products.
Especially designed for the needs of
the financial services industry,
MQSeries Financial Services Edition
can integrate front-end systems with
back-end systems using a
hub/spoke architecture using XML
as the common vocabulary across
systems.

MQSI: MQSeries Integrator
It provides graphical tools for
constructing how critical data or
business events are handled, by
visually connecting a sequence of
processing function to dynamically
manipulate and route messages,
combine them with data from
corporate databases, warehouse in-
flight message data for auditing or

Technical Architecture Book 64 © Copyright IBM Corp. 2000, 2001

subsequent analysis, and distribute
information efficiently to business
applications.

MQSWF: MQSeries Workflow
A business process management
system, which facilitates the rapid
development and management of
the business processes that
integrate the IT and organizational
infrastructure of a company. It is a
client/server system used to design,
refine, document, and control a
company's business processes
using a graphical editor in one of its
primary components to facilitate
such modeling.

O

Object
Instance of a class.

P

Party
Any person or organization that the
insurance company has, or had, or
may have a business interest in.

Property
A data value of a type.

Q

Queue
An MQSeries object. Message
queuing applications can put
messages on, and get messages
from, a queue. A queue is owned

and maintained by a queue
manager. Local queues can contain
a list of messages waiting to be
processed. Queues of other types
cannot contain messages: they point
to other queues, or can be used as
models for dynamic queues.

S

SDR: Symbolic Destination Res-
olution
MQSFSE function that translates a
symbolic name to specific queue and
queue manager name.

SF: Store and Forward
MQSFSE function that stores and
retrieves messages in a database
table.

SI: System Interaction
MQSFSE function that determines
based on parameters stored in a
database, whether MQSFSE can
deliver a message to the
preconfigured targets.

System of Truth
This is a system that is accurate at all
times. Any data that is
added/change/verified comes from
this system. The system of truth is
defined for use by MQSFSE, which
is the primary system or the system
that would hold the most accurate
data at any point in time for the
systems attached to MQSFSE. It is
regarded as the authority for any
data being referenced and is the
primary system for receiving any
data updates.

Glossary 65 © Copyright IBM Corp. 2000, 2001

SP: System profile
MQSFSE table the contains the
operational definition of the systems
attached to MQSFSE.

SS: System status
MQSFSE function that is used to
track the availability of systems
defined by symbolic names, using a
database table.

T

Tag
An XML construct <Tag....>.

Tivoli
Management Software made by
Tivoli Systems Inc.

TMPS: Transactional message
processing supervisor:
Assured response message
processing function provided by
MQSWF for MQSFSE. Supports all
MQSFSE functions and multiple
targets.

Type tag
An XML tag representing an IAA
type.

U

UUID: Universally Unique Identi-
fier
This is a key used by the MQSFSE to
uniquely identify the entities which
outside systems need to reference.

W

WC: Workflow correlation table
MQSFSE table used to correlate
requests and responses for MQSWF
activities.

WP: Workflow profile
MQSFSE component of the MP that
provides the definition of the initial
container used by workflow.

X

XML
eXtensible Markup Language. XML
is a markup language for message
definition, and is an open and public
domain standard. XML is a subset of
SGML designed for easy
implementation in commercial and
web environments.

XML attribute (or just attribute)
Appears in an opening tag, used to
specify values in the tag. <Tag
attributively'...>

Index 66 © Copyright IBM Corp. 2000, 2001

 Index

A
Access Control List 41
Adapter Services 16
asynchronous messaging 30
Authentication 39
Authorization 41
Availability monitoring 35

B
Base transport layer 12
Business processes 11

C
Centralized administration 35
Code Page 30
Collaboration 35
Compensatory processing 34

D
Data Formats 30
Deployment 35

E
EID 1
EID header 14
Enrichment and Manipulation 29

F
Formatting rules 38

I
Implementation 12

L
LDAP server 38
Logging 35

Long Running 34

M
Message data header 15
Message headers 13
Message Manipulation 29
Message structure 14
Messaging 13
MQ Adapter Builder 17
MQ Adapter Offering 17
MQ System Integrator 28
MQ Work Flow 28
MQMD header 14
MQMD headers 17
MQRFH2 header 14
MQSeries Sync Point 33

N
NLS architecture 37

P
primary applications 33
Processing Modes 30

R
Reliability 41
Request for client Authentication 53

S
scenarios 51
Security 39
System Management 35

T
transactional support 33

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Terminology used in this book
	Prerequisite and related information
	How to get additional information
	How to send your comments

	Chapter 1 Introduction
	Chapter 2 MQSFSE architecture
	New feature highlights for version 1.2.2
	End-to-end view
	Business processes
	Implementation
	Base transport layer
	Messaging
	Message headers
	Message structure
	MQMD header
	MQSFSE header
	Message content
	Message classes

	Adapters
	Adapter services
	Approach

	Gateways
	Cross reference functions
	Intelligent routing
	Adapter responsibilities

	MQSeries integrator
	MQSeries workflow
	Additional routing features
	Message manipulation
	Enrichment and manipulation
	Additional message manipulation features
	Code page and data formats

	Processing modes
	MQSeries publish/subscribe
	Request/Reply
	Fire/Forget

	Message processing supervisors
	Lightweight message-processing supervisor
	Transactional message-processing supervisor

	Transaction support
	MQSeries sync point
	Compensatory transaction processing
	Long running
	Complex
	Collaboration

	System management
	Deployment
	Availability monitoring
	Centralized administration
	Additional system management features

	Logging
	Error handling
	NLS support
	Directory management

	Security
	Authentication
	Additional MQSFSE authentication features
	Authorization

	Scalability
	Reliability

	Chapter 3 Recommended implementation
	Requesting application
	XML process initiation
	Process execution
	Execution of external functions

	Target application

	Chapter 4 Sample scenarios
	Client update from front-end system
	Request for client authentication
	Client update from front-end with MQSeries Workflow

	Appendix Notices
	Trademarks
	Permission statement

	Glossary
	Index

