
WebSphere® MQ Integrator Enabler

Model Office Reference Manual

IBM

NOTE:

Before using this information and the product it supports, read the information in
Notices on page 66.

Fifth Edition (June 2002)

© Copyright International Business Machines Corporation 2001, 2002.
All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Printed in USA.

©
 Contents

Contents . i

About this book . v
Who should read this book . v
Terminology used in this book . v
How to get additional information . v
How to send your comments. vi

Chapter 1 Introduction. 1

Chapter 2 Options for XML languages . 3

Chapter 3 Message setup quick start. 4
Message construction process . 5

Identify source and target systems . 5
Define message profile requirements . 6
Build Message profile message . 6
Setup a workflow in MQSeries Workflow . 7
Define System Symbolic(s) and SDR requirements 8
Build SDR message . 8
Build SystemRestart message . 9
Build a request message . 9
Build a response message . 10
Create a TestSuite . 11

Message debugging/execution process . 14
Define any new MQSeries entities . 14
Start MQTester . 14
Debug message profile message . 14
Debug back-end system SDR message. 16
Debug back-end SystemRestart message . 16
Debug HubTest request message . 17
Debug HubTest response message . 18
Revise TestSuite for ease of use . 18

Chapter 4 MQTester . 21
Role of MQTester . 21
Installing MQTester . 22
MQTester overview. 24
Contents i Copyright IBM Corp. 2001, 2002

©
Using MQTester . 25
Configuration possibilities . 29

How to set up an adapter test environment . 30
How to develop an MQTester TestSuite . 30

TestSuite file . 31
TestSuite tag. 33

UseCaseGroup tag . 33
MQSender tag . 34
MQReceiver tag . 36
Compare 'Ignore' notation. 39
Transfer notation. 40
SessionId propagation . 40

Using MQTester remotely . 41
Connecting using MQ server/client. 41

WMQI Enabler machine (MQManager MQSIQM) 41
MQTester machine (MQ Client) . 42

Connecting two MQ Managers via channels 42
MQTester machine (MQManager TESTQM) 43
WMQI Enabler machine (MQManager MQSIQM) 43
Start the channels . 43
MQTester configuration . 44
MQTester UpdateSDREntry commands 44

Chapter 5 WMQI Enabler - Configurator . 45
Overview . 45

Additional features . 47
Installation . 47

Prerequisite software . 47
Installation. 47

Configuration. 48
WMQI Enabler - Configurator configuration 48

Configuration fields . 50
Sending WMQI Enabler messages . 51

Using the WMQI Enabler - Configurator . 52
Logon tab . 53
System tab . 54
System profile Tab . 55
Session tab . 56
Message profile Tab . 57
SDR entry tab . 60
NLS entry Tab . 61
Install Tab . 62
Subscription tab . 63
Model Office Reference Manaul ii Copyright IBM Corp. 2001, 2002

©
CRF tab . 64
XML Tab . 65

Notices. 66
Trademarks . 69
Permission statement . 69

Glossary . 72

Index . 74
Contents iii Copyright IBM Corp. 2001, 2002

©
Model Office Reference Manaul iv Copyright IBM Corp. 2001, 2002

©
 About this book

Who should read this book
Anyone who is working on an WMQI Enabler implementation can review this
reference manual for examples of the various phases of a working WMQI Enabler
solution. Adapter developers may find it helpful to read the discussions on the front-
end and back-end sample applications, as they simulate the work an adapter might
do.

Terminology used in this book
All new terms introduced in this book are defined in the Glossary.

This book uses the following shortened names:

• MQSeries®: a general term for IBM MQSeries messaging products.

• Model Office: a general term used to describe an WMQI Enabler
development and test environment that includes sample front-end and
back-end test applications with implemented use cases.

• Use Case: a general term that refers to the business scenarios used in the
Model Office.

How to get additional information
Visit the following home page at:

http://www.ibm.com/software/mqseries/support/

By following this link you can find:

• The latest information about MQSeries family of products.

• Download SupportPacks.

• Access FAQs.

• Access MQSeries family publications library.
About this book v Copyright IBM Corp. 2001, 2002

©
How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments or suggestions about this book or any other
WebSphere MQ Integrator Enabler documentation:

• By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

• By fax:

- From outside the U.K., after your international access code use
44-1962-816151

- From within the U.K., use 01962-816151

• Electronically, use the appropriate network ID:

- IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink: HURSLEY(IDRCF)
- Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

• The publication title and order number

• The topic to which your comment applies

• Your name and address / telephone number / fax number / network ID
Model Office Reference Manual vi Copyright IBM Corp. 2001, 2002

©
 Chapter 1
 Introduction

This manual is designed to serve as a reference tool for the implementation of
WebSphere MQ Integrator Enabler (WMQI Enabler).

Adapter programs are needed to convert XML messages (for example, Open
Application Group (OAG) or Insurance Application Architecture (IAA) messages)
into actions to be used by an issuing or receiving application and are not included
as part of the Model Office. Adapter programs are very specific to an application
and key IBM Business Partners are already supporting XML messages. The WMQI
Enabler Application Integration Guide lays out design considerations and the
services that need to be provided by these Adapter programs. Plus the Industry
Reference Manuals provide applicable notes on the Adapter Services that may be
unique by industry or XML language.

Identification of what the business environment is to do and accomplish is the
essential starting point of an implementation project. It is this statement of the
business requirements that will drive the customization of the Model Office
business scenarios or creation of new business scenarios. These scenarios will be
used to develop the required system interaction diagrams and flows that will
constitute the new WMQI Enabler implementation.

The WMQI Enabler architecture uses key functions of MQSeries Integrator in
conjunction with MQSeries Workflow to provide the advanced WMQI Enabler
features that can be used to simplify the integration of applications across the
enterprise. Using the WMQI Enabler product can significantly increase productivity
by providing the working architecture and technologies. This starting point allows
the project team to focus their work and effort on the business events and data
needed to make applications inter-operate.

Most of all, the WMQI Enabler solution will provide integration development with a
standardized, repeatable approach.

Also provided are instructions for utilizing the testing tool that is provided with the
product for testing of the various XML messages. Another quick start for
implementations may be found with the description of the WMQI Enabler -
Configurator for building the Hub_Only messages and maintaining those
messages. For more information on these messages see Appendix C of the
Installation and Setup Guide and Chapter 5 of the Development Guide.
Introduction 1 Copyright IBM Corp. 2001, 2002

©
Model Office Reference Manual 2 Copyright IBM Corp. 2001, 2002

©
 Chapter 2
 Options for XML languages

WMQI Enabler use is optimized by a common integration dialect so that numerous
applications or systems can communicate in an understandable format. The above
XML languages provide that for the referenced industries. In many enterprises
today, however, the boundaries of one industry are becoming inter-meshed with
other industries and the communication requirements are more complex. In
addition, many enterprises desire to maintain a consistent meaning for the data
utilized in their enterprise.

In order to communicate, two applications must share the same understanding of
the world. For example, if one application processes a person's address as a single
string of data, and another processes it as comprising street, town, state and
country, they have a built-in impedance to communication.

In order to use the IDM or Model Based XML (MB-XML) approach, a normalized
model is needed that guarantees unique semantics and content structure, i.e., a
common reference point. For example, when two applications communicate about
a Postal Address, they can agree on what it means, what data it contains, and how
it is related to other concepts (such as people and policies).

Recognizing this issue, WMQI Enabler has included an Interface Design Model
(IDM) for each of the industries that takes the data involved with each of these
dialects and has created a common model. This common model ensures that the
use of data throughout the enterprise has a common understanding or meaning.

A sample model is provided with WMQI Enabler that can be used to create such
"multi-industry" messages. Messages created by this model are not OAG, IAA, or
IFX XML but are created as MB-XML for use throughout an enterprise, and
represent the fourth XML option contained in WMQI Enabler.
Options for XML languages 3 Copyright IBM Corp. 2001, 2002

©
 Chapter 3
 Message setup quick start

WMQI Enabler is intended to process messages from a front-end system or
application to a single or multiple back-end systems or applications, and to return
response messages to the front-end system or application. The intent of this
chapter is to highlight the steps needed to accomplish the generation of these
messages along with the testing of the messages to act as a quick start to the
implementation of WMQI Enabler .

As these steps are presented, an indication of where to find more complete
documentation will also be offered.

While WMQI Enabler supports many variations, for explanation purposes the
following specifications have been used:

• WMQI Enabler has been installed successfully.

• SetDestinationIDM workflow process template is used in MQSeries
Workflow.

• The front-end system symbolic is FrontEnd.

• The back-end system symbolic is BESystem.

• The back-end system is set to use QueueManager MQSIQM.

• The back-end system is set to use queue BESYSTEM.

• The userid is set to USERID.

• Store-forward is disabled.

• Sequence validation is disabled.

• Session validation is enabled.

• System interaction check is disabled.

• The test message name is set to HubTest.

• MQTester is installed in the C:\tester directory.

• MQTester is used to process the test message.

• The TestSuite name is set to ExampleTestSuite.xml.
Model Office Reference Manual 4 Copyright IBM Corp. 2001, 2002

©
The message construction process is broken down as follows:

1. Identify source and target systems.

2. Define message profile requirements.

3. Build message profile message.

4. Setup a workflow in MQSeries Workflow.

5. Define System Symbolic(s) and SDR requirements.

6. Build SDR message.

7. Build SystemRestart message.

8. Build a request message.

9. Build a response message.

10. Create a TestSuite.

The message debugging/execution process is as follows:

1. Define any new MQSeries entities.

2. Start MQTester.

3. Debug message profile message.

4. Debug back-end system SDR message.

5. Debug back-end SystemRestart message.

6. Debug HubTest request message.

7. Debug HubTest response message.

8. Revise ExampleTestSuite.xml for ease of use.

The message construction and debugging/execution are further described, in the
following sections.

Message construction process

Identify source and target systems
Before a TestSuite can be executed, the source and target systems that participate
in the message request/response must be identified. For this example, the
participating systems are FrontEnd and BESystem. BESystem is a new system;
FrontEnd already exists in the model office configuration.
Message setup quick start 5 Copyright IBM Corp. 2001, 2002

©
Define message profile requirements
Message profile requirements that need to be defined are as follows:

• The name of the message is set to HubTest.

• SetDestinationIDM workflow process template is used in MQSeries
Workflow.

• The back-end system symbolic is BESystem.

• The userid is set to USERID.

• Store-forward is disabled.

• Sequence validation is disabled.

• Session validation is enabled.

• System interaction check is disabled.

• For the remaining setting use the defaults found in existing message
profiles.

The Message Profile is specified in the Development Guide.

Build Message profile message
The simplest way to define a new message profile is to use an existing message
profile as a template and update the message profile.

The example below uses an existing UpdateMessageProfile as a template where
the points mentioned above in “Define message profile requirements” were
modified.

The resulting message is illustrated below:

<?xml version="1.0" encoding="UTF-8"?>

<Message id="M5551920" sessionId="1654651" version="1.4"
bodyType="HUBONLYOFFLINE" timeStampCreated="2000-31-Aug"
timeStampExpired="" sourceLogicalId="FrontEnd"
authenticationId="SysAdmin" crfPublish="true"
crfCmdMode="alwaysRespond" txnScope="all">

The message
profile may also
be generated
using the WMQI
Enabler -
Configurator ,
which is
documented in
the Model
Office
Reference
Manual,
Chapter 5.
Model Office Reference Manual 6 Copyright IBM Corp. 2001, 2002

©
Setup a workflow in MQSeries Workflow
Define a workflow process template using MQSeries Workflow. Workflow is
normally used to define the step required for message processing.

In this example, we are using SetDestinationIDM, but other workflows can also be
defined.

<COMMAND cmdType="UpdateMessageProfile">

<MessageTypeName>HubTest</MessageTypeName>
<MQSISessionValidationFlag>False</MQSISessionValidationFlag>

<MQSIMessageSequenceValidationFlag>False</MQSIMessageSequenceValidat
ionFlag>

<MQSISystemInteractionCheckFlag>False</MQSISystemInteractionCheckFla
g>

<WorkFlowManagementFlag>True</WorkFlowManagementFlag>
<WorkFlowQueueManager>FMCQM</WorkFlowQueueManager>

<WorkFlowDataStructureName>ProcessTemplateExecute</WorkFlowDataStr
uctureName>

<WorkFlowProcessName>SetDestinationIDM</WorkFlowProcessName>
<WorkFlowQueue>FMC.FMCGRP.EXE.XML</WorkFlowQueue>
<WorkFlowSymbolic>Workflow1</WorkFlowSymbolic>
<WorkFlowReplyToQueueManager>MQSIQM</WorkFlowReplyToQueueManage

r>

<WorkFlowReplyToQueue>MQWF_END</WorkFlowReplyToQueue>
<HubQueueManager>MQSIQM</HubQueueManager>

<DefaultDestinationSymbolic>WorkFlowDefault</DefaultDestinationSym
bolic>

<MessageTypeDependency></MessageTypeDependency>
<TraceFlag>False</TraceFlag>
<SystemInteractionList>

<Item>
<SystemSymbolic>BESystem</SystemSymbolic>
<MessageTypeName>HubTest</MessageTypeName>
<RequiredInteractionFlag>True</RequiredInteractionFlag>
<SystemBackup></SystemBackup>

</Item>
</SystemInteractionList>

</COMMAND>
</Message>

Sample
messages are
found on the
WMQI Enabler
Product CD.

More information
on MQSeries
Workflow usage
can be found in
the
Development
Guide, Chapter
7.
Message setup quick start 7 Copyright IBM Corp. 2001, 2002

©
The figure below shows the SetDestinationIDM workflow process template taken
from MQSeries Workflow:

Figure 1: SetDestinationIDM workflow process template.

Define System Symbolic(s) and SDR requirements
There is one new system being added to the Hub.

• Its symbolic is BESystem.

• Its QueueManager is MQSIQM.

• Its queue is BESYSTEM.

Build SDR message
The simplest way to define a new SDREntry is to use an existing SDREntry as a
template and update the SDR.

The example below uses an existing UpdateSDRentry as a template where the
points mentioned above in Define the message profile requirements were modified.

SDR is
discussed in the
Development
Guide, Chapter
2 and 6.
Model Office Reference Manual 8 Copyright IBM Corp. 2001, 2002

©
The resulting message is illustrated below:

Build SystemRestart message
The simplest way to define a new System Restart message is to use an existing
SystemRestart message as a template and update the SystemRestart message.

The example below uses an existing SystemRestart message as a template
where the points mentioned above in “Define message profile requirements” were
modified.

The resulting message is illustrated below:

Build a request message
The contents of request/response messages are, by definition, message specific.
For this example, a simple message, HubTest, is sent into the hub by system
symbolic FrontEnd. The COMMAND section of the HubTest message is a simple
placeholder.

The HubTest message includes a bodyCategory=HubTest. This message setting
tells WMQI Enabler to use the HubTest Message Profile to determine what kind
processing the message supposed to go through. The HubTest message profile
calls out a WorkflowProcessName of SetDestinationIDM. The SetDestinationIDM

<?xml version="1.0" encoding="UTF-8"?>
<Message id="M5551920" sessionId="1654651" version="1.4"
bodyType="HUBONLYOFFLINE" timeStampCreated="2000-31-Aug"
timeStampExpired="" sourceLogicalId="BESystem"
authenticationId="SysAdmin" crfPublish="true"
crfCmdMode="alwaysRespond" txnScope="all">

<COMMAND cmdType="UpdateSDREntry">
<SystemSymbolic>BESystem</SystemSymbolic>
<Queue>BESYSTEM</Queue>
<QueueManager>MQSIQM</QueueManager>

</COMMAND>
</Message>

<?xml version="1.0" encoding="UTF-8"?><Message id="M5551920"
sessionId="1654651" version="1.4" bodyType="HUBONLYONLINE"
timeStampCreated="2000-31-Aug" timeStampExpired=""
sourceLogicalId="BESystem" authenticationId="SysAdmin"
crfPublish="true" crfCmdMode="alwaysRespond" txnScope="all">

<COMMAND cmdType="SystemRestart">
</COMMAND>

</Message>

The SDR may
also be
generated using
the WMQI
Enabler -
Configurator,
which is
documented in
the Model
Office
Reference
Manual.

Sample
messages are
found on the
WMQI Enabler
Product CD.
Message setup quick start 9 Copyright IBM Corp. 2001, 2002

©
workflow uses the contents of the message profile to change the message
destinationLogicalId to the system symbolic noted in the interaction portion of
message profile. For HubTest, that destination symbolic is BESystem.

The resulting request message is illustrated below:

Build a response message
The contents of request/response messages are, by definition, message specific.
For this example, a simple message, HubTest, is sent into the hub by system
symbolic FrontEnd. The COMMAND section of the HubTest message is a simple
placeholder.

The HubTest message includes a bodyCategory=HubTest. This message setting
instructs the Hub to use the HubTest Message Profile to determine what
processing the message is subjected to. The HubTest message profile calls out a
WorkflowProcessName of SetDestinationIDM. This workflow process sends the
request message to the appropriate back-end, in this case BESYSTEM.
BESYSTEM responds with a response message of the HubTest message.
SetDestinationIDM uses the cmdStatus value in the response message to direct
workflow processing. In either the ok or notOk settings, SetDestinationIDM routes
the response message into MQWF_OUT with ProcessReply=True in the response
container. ProcessReply=True tells the Hub to route the response back to the
originating system symbolic with the MQSeries correlationId set to the original
request message's MQSeries messageId.

<?xml version="1.0" encoding="UTF-8"?><Message id="M5441920"
version="1.4" bodyType="OAG" timeStampCreated="2000-10-22-08.00.00"
sourceLogicalId="FrontEnd" authenticationId="USERID"
crfCmdMode="alwaysRespond">

<CrfActionGroup bodyCategory="HubTest" crfPublish="false"
crfCmdMode="alwaysRespond" >

</CrfActionGroup>

<COMMAND>

<HubTest id="CMD1" cmdType="request" cmdMode="alwaysRespond"
echoBack="false">

</HubTest>

</COMMAND>

</Message>

Sample request
XML messages
are located on
the WMQI
Enabler Product
CD and
discussed in the
Model Office
Reference
Manual in
Chapter 4.

Sample
response XML
messages are
located on the
WMQI Enabler
Product CD and
discussed in the
Model Office
Reference
Manual in
Chapter 4.
Model Office Reference Manual 10 Copyright IBM Corp. 2001, 2002

©
The resulting response message is illustrated below:

Create a TestSuite
The TestSuite name is ExampleTestSuite.xml. The TestSuite is placed in
MQTester's home directory, which is assumed to C:\tester in this example.

Again, the simplest way to generate a TestSuite is to copy an existing suite and
modify it to fit your needs. By convention, the folders used to hold requests and
responses mirror the system symbolics sending/receiving those messages.
HubTest uses a requesting symbolic FrontEnd and a response symbolic
BESystem.

TestSuites should be written to allow for their execution without any residual from
any previous testsuites affecting results. For example, HubTest does not require
sessionValidation. A previous TestSuite may have executed a Logon. To ensure
that an open session is closed, ExampleTestSuite includes a Logoff as its first
request message. SDR definitions, MessageProfile, and SystemRestart messages
created in the previous sections follow the Logoff. Once the correct Setup
messages have been executed, the HubTest request message follows.

HubTest's path through the WMQI Enabler is as follows:

1. MQTester places the HubTest request message onto the HUB_IN message
queue.

2. WMQI Enabler uses the HubTest message profile data to route the message
to MQSeries Workflow.

3. MQSeries Workflow executes the SetDestinationIDM Process.

4. MQSeries Workflow places its output on the MQWF_OUT message queue.

5. WMQI Enabler alters the destinationLogicalId to BESystem (parameters
provided by the SetDestinationIDM workflow).

<?xml version="1.0" encoding="UTF-8"?><Message id="M5551921"
version="1.4" bodyType="IAA-XML" timeStampCreated="2000-12-14
14:52:38.937" sourceLogicalId="BESystem" authenticationId="USERID"
crfPublish="false" crfCmdMode="alwaysRespond">

<CrfActionGroup bodyCategory="HubTest" crfPublish="false"
crfCmdMode="alwaysRespond" >

</CrfActionGroup>

<COMMAND>

<HubTest id="CMDRSP1" cmdType="response" refidRequest="CMDRSP1"
refidMsg="M5441920" cmdStatus="ok">

</HubTest>

</COMMAND>

</Message>

Sample
TestSuites may
be found on the
WMQI Enabler
Product CD.

Chapter 4 in the
Model Office
Reference
Manual
documents the
use of MQTester.
Message setup quick start 11 Copyright IBM Corp. 2001, 2002

©
6. WMQI Enabler routes messages to BESYSTEM (the message queue noted
in BESYSTEM's SDR entry).

7. MQTester validates the HubTest request message.

8. MQTester places a HubTest response Message onto the HUB_RWF_IN
message queue, after first setting the appropriate correlation information.

9. WMQI Enabler uses information in the WFCO tables to extract cmdStatus
from the HubTest response message and insert that data into the workflow
ActivityImplInvokeResponse container.

10. WMQI Enabler routes the message back to MQSeries Workflow.

11. MQSeries Workflow continues its execution of the SetDestinationIDM
Process.

12. MQSeries Workflow places its output on the MQWF_OUT MQ message
queue.

13. WMQI Enabler uses the ProcessReply entry in the ActivityImplInvoke
container to route the message to the originating System (FrontEnd). FEIN is
used as the destination queue based FrontEnd's SDR entry. The
correlationID of the message placed on the FEIN message queue matches
the original HubTest request message "messageID".

14. MQTester validates the HubTest response message.

The process
flows of
MQTester are
found in Chapter
4 of the Model
Office
Reference
Manual.
Model Office Reference Manual 12 Copyright IBM Corp. 2001, 2002

©
The resulting ExampleTestSuite.xml is illustrated below:

<?xml version='1.0'?>
<!DOCTYPE TestSuite SYSTEM "TestSuite.dtd" >
<!-- Created by IBM's XMLGenerator -->
<TestSuite TestSuiteName="Example">
<UseCaseGroup UseCaseGroupName="Example" SpecialCharacters="##">
<ResultPath>c:\tester\Example\FrontEnd\</ResultPath>
<!-- xx -->
<MQSender SenderName="FrontEnd">
<UserId>USERID</UserId>
<RequestQMgr>MQSIQM</RequestQMgr>
<RequestQ>HUB_IN</RequestQ>
<ResponseQMgr>MQSIQM</ResponseQMgr>
<ResponseQ>FEIN</ResponseQ>

<RequestPath>
<Path>c:\tester\Example\FrontEnd\Request\</Path>
<File>Logoff.xml</File>
<File>UMPHubTest.xml</File>
<File>UpdateSDREntryFE.xml</File>
<File>UpdateSDREntryBESystem.xml</File>
<File>SystemRestartFE.xml</File>
<File>SystemRestartBESystem.xml</File>
<File>HubTest.xml</File>

</RequestPath>
<ResponseActualPath Verify="No">
c:\tester\Example\FrontEnd\responseActual

</ResponseActualPath>
<ResponseComparePath Compare="Yes">
c:\tester\Example\FrontEnd\responseCompare

</ResponseComparePath>
</MQSender>

<!-- xx -->
<MQReceiver ReceiverName="BESystem">
<RequestQMgr>MQSIQM</RequestQMgr>
<RequestQ>BESYSTEM</RequestQ>
<ResponseQMgr>MQSIQM</ResponseQMgr>
<ResponseQ>HUB_RWF_IN</ResponseQ>
<RequestActualPath Verify="No">
c:\tester\Example\BESystem\requestActual

</RequestActualPath>
<RequestComparePath Compare="No">
c:\tester\Example\BESystem\requestCompare

</RequestComparePath>
<ResponsePath>
c:\tester\Example\BESystem\response

</ResponsePath>
</MQReceiver>

</UseCaseGroup>
</TestSuite>
Message setup quick start 13 Copyright IBM Corp. 2001, 2002

©
Message debugging/execution process

Define any new MQSeries entities
The SDR entry BackEnd makes use of queue BESYSTEM. That queue is not
created as part of the application TestDrive.

Use the MQSeries Explorer tool to create the queue, BESYSTEM, on queue
manager MQSIQM.

Start MQTester
This example assumes MQTester is installed in C:\tester.

1. Go to the C:\tester directory.

2. Execute the file MQtester.bat

3. On the click on the File menu and select Open
or click the Open icon to load a TestSuite.

4. Locate and Open the TestSuite file ExampleTestSuite.xml.

Debug message profile message
Execute ExampleTestSuite.xml in MQTester. Correct any errors in the
UMPHubTest.xml test case. Potential problems may include malformed XML,
invalid message contents, write protected log files, and incorrect values in
MQTester or missing directories in the file system.

UMPHubTest is a HUBONLYOFFLINE message. WMQI Enabler processes this
message and responds to the requesting system (FrontEnd). The UMPHubTest
message processed out of WMQI Enabler is placed into the
FrontEnd/responseActual directory.

The ExampleTestSuite has its compare setting set to Yes. Since no UMPHubTest
responseCompare file exists, no comparison can be performed.

Typically, a new test case's response is known in advance and can be built prior to
test execution. In this example, WMQI Enabler responseActuals will be used as the
starting point for building the responseCompare files.

The UMPHubTest responseActual file is changed to include a ## before the
authenticationId. This indicator, "##", allows the message to be utilized in other
TestSuites that may use a different authenticationId as the requester.
Model Office Reference Manual 14 Copyright IBM Corp. 2001, 2002

©
The resulting UMPHubTest responseCompare file is illustrated below:

<?xml version="1.0" encoding="UTF-8"?>
<!--DOCTYPE Message SYSTEM &quot;MQSFSE_2001.dtd&quot;-->
<Message id="M5551920" version="1.4" bodyType="HUBONLYOFFLINE"
timeStampCreated="2000-31-Aug" timeStampExpired=""
sourceLogicalId="FrontEnd" authenticationId="##SysAdmin"
crfPublish="true" crfCmdMode="alwaysRespond" txnScope="all">

<COMMAND cmdType="UpdateMessageProfile">
<MessageTypeName>HubTest</MessageTypeName>
<MQSISessionValidationFlag>False</MQSISessionValidationFlag>
<MQSIMessageSequenceValidationFlag>False</MQSIMessageSequenceV

alidationFlag>
<MQSISystemInteractionCheckFlag>False</MQSISystemInteractionCh

eckFlag>

<WorkFlowManagementFlag>True</WorkFlowManagementFlag>
<WorkFlowQueueManager>FMCQM</WorkFlowQueueManager>

<WorkFlowDataStructureName>ProcessTemplateExecute</WorkFlowDataStr
uctureName>

<WorkFlowProcessName>SetDestinationIDM</WorkFlowProcessName>
<WorkFlowQueue>FMC.FMCGRP.EXE.XML</WorkFlowQueue>
<WorkFlowSymbolic>Workflow1</WorkFlowSymbolic>
<WorkFlowReplyToQueueManager>MQSIQM</WorkFlowReplyToQueueManag

er>
<WorkFlowReplyToQueue>MQWF_END</WorkFlowReplyToQueue>
<HubQueueManager>MQSIQM</HubQueueManager>
<DefaultDestinationSymbolic>WorkFlowDefault</DefaultDestinatio

nSymbolic>
<MessageTypeDependency/>
<TraceFlag>False</TraceFlag>

<SystemInteractionList>
<Item>

<SystemSymbolic>BESystem</SystemSymbolic>
<MessageTypeName>HubTest</MessageTypeName>
<RequiredInteractionFlag>True</RequiredInteractionFlag>
<SystemBackup/>

</Item>
</SystemInteractionList>
<Result>Success</Result></COMMAND>

<!--filename=UMPHubTest.xml--></Message>
Message setup quick start 15 Copyright IBM Corp. 2001, 2002

©
Debug back-end system SDR message
The UpdateSDREntryBESystem responseActual file is changed to include a ##
before the authenticationId. This indicator, "##", allows the message to be utilized
in other TestSuites that may use a different authenticationId as the requester.

The resulting UpdateSDREntryBESystem responseCompare file is illustrated
below:

Debug back-end SystemRestart message
The RestartBESystem responseActual file is changed to include a ## before the
authenticationId. This indicator, "##", allows the message to be utilized in other
TestSuites that may use a different authenticationId as the requester.

The resulting RestartBESystem responseCompare file is illustrated below:

<?xml version="1.0" encoding="UTF-8"?>
<!--DOCTYPE Message SYSTEM &quot;MQSFSE_2001.dtd&quot;-->
<Message id="M5551920" version="1.4" bodyType="HUBONLYOFFLINE"
timeStampCreated="2000-31-Aug" timeStampExpired=""
sourceLogicalId="BESystem" authenticationId="##SysAdmin"
crfPublish="true" crfCmdMode="alwaysRespond" txnScope="all">

<COMMAND cmdType="UpdateSDREntry">
<SystemSymbolic>BESystem</SystemSymbolic>
<Queue>BESYSTEM</Queue>

<QueueManager>MQSIQM</QueueManager>
<Result>Success</Result></COMMAND>

<!--filename=UpdateSDREntryBESystem.xml--></Message>

<?xml version="1.0" encoding="UTF-8"?>
<!--DOCTYPE Message SYSTEM &quot;MQSFSE_2001.dtd&quot;-->
<Message id="M5551920" version="1.4" bodyType=" HUBONLYONLINE "
timeStampCreated="2000-31-Aug" timeStampExpired=""
sourceLogicalId="BESystem" authenticationId="##SysAdmin"
crfPublish="true" crfCmdMode="alwaysRespond" txnScope="all">

<COMMAND cmdType="SystemRestart">
<Result>Success</Result></COMMAND>

<!--filename=SystemRestartBESystem.xml--></Message>
Model Office Reference Manual 16 Copyright IBM Corp. 2001, 2002

©
Debug HubTest request message
Execute ExampleTestSuite. Correct any errors in the HubTest.xml test case.
Potential problems may include malformed XML, invalid message contents, write
protected log files, and incorrect values in MQTester or missing directories in the
file system.

HubTest is an OAG message. WMQI Enabler processes the message according to
the values set in the message profile. The HubTest message processed out of
WMQI Enabler is placed on BESYSTEM message queue. MQTester places the
resulting message into the BESystem/responseActual directory. The
ExampleTestSuite has its compare setting set to Yes. Since no HubTest
responseCompare file exists, no comparison can be performed.

Typically, a new test case's response is known in advance and can be built prior to
test execution. In this example, WMQI Enabler responseActuals will be used as the
starting point for building the responseCompare files.

The HubTest responseActual file is changed to include a ## before the
authenticationId. This indicator, "##", allows the message to be utilized in other
testsuites that may use a different authenticationId as the requester.

The resulting BESystem/HubTest responseCompare file is illustrated below:

<?xml version="1.0" encoding="UTF-8"?>
<Message id="M5441920" version="1.4" bodyType="OAG"
timeStampCreated="2000-10-22-08.00.00" sourceLogicalId="FrontEnd"
authenticationId="##USERID" crfCmdMode="alwaysRespond"
destinationLogicalId="BESystem">

<CrfActionGroup bodyCategory="HubTest" crfPublish="false"
crfCmdMode="alwaysRespond" destinationLogicalId="BESystem">

</CrfActionGroup>
<COMMAND>

<HubTest id="CMD1" cmdType="request" cmdMode="alwaysRespond"
echoBack="false">

</HubTest>
</COMMAND>

<!--filename=HubTest.xml--></Message>
Message setup quick start 17 Copyright IBM Corp. 2001, 2002

©
Debug HubTest response message
Execute ExampleTestSuite. Correct any errors in the HubTest.xml test case.
Potential problems may include malformed XML, invalid message contents, write-
protected log files, and incorrect values in MQTester or missing directories in the
file system.

HubTest is an OAG message. MQTester, unless instructed otherwise, uses the
incoming request name as the response filename. ExampleTestSuite does not
override the response filename, so MQTester responds with
BESystem/response/HubTest.xml.

The HubTest message processed out of WMQI Enabler is placed on the FEIN
message queue. MQSeries Tester places the resulting message into the
FrontEnd/requestActual.

The HubTest requestActual file is changed to include a ## before the
authenticationId. This indicator, "##", allows the message to be utilized in other
TestSuites that may use a different authenticationId as the requester.

The resulting FrontEnd/HubTest responseCompare file is illustrated below:

Revise TestSuite for ease of use
ExampleTestSuite.xml executes the complete set of test cases each time it is run.
While that is no harm in executing all the test cases on each run, there is value in
separating the setup test cases from the request/response messages that actually
do work.

<?xml version="1.0" encoding="UTF-8"?>
<Message id="M5551921" version="1.4" bodyType="OAG"
timeStampCreated="2000-12-14 14:52:38.937" sourceLogicalId="BESystem"
authenticationId="##USERID" crfPublish="false"
crfCmdMode="alwaysRespond">

<CrfActionGroup bodyCategory="HubTest" crfPublish="false"
crfCmdMode="alwaysRespond">

</CrfActionGroup>
<COMMAND>

<HubTest id="CMDRSP1" cmdType="response"
refidRequest="CMDRSP1" refidMsg="M5441920" cmdStatus="ok">

</HubTest>
</COMMAND>

</Message>
Model Office Reference Manual 18 Copyright IBM Corp. 2001, 2002

©
A slightly longer, yet more usable, TestSuite is illustrated below:

<?xml version='1.0'?><!DOCTYPE TestSuite SYSTEM "TestSuite.dtd" >
<!-- Created by IBM's XMLGenerator -->
<TestSuite TestSuiteName="Example">
<UseCaseGroup UseCaseGroupName="ExampleSetup" SpecialCharacters="##">
<ResultPath>c:\tester\Example\FrontEnd\</ResultPath>
<!-- xx -->
<MQSender SenderName="FrontEnd">
<UserId>USERID</UserId>
<RequestQMgr>MQSIQM</RequestQMgr>
<RequestQ>HUB_IN</RequestQ>
<ResponseQMgr>MQSIQM</ResponseQMgr>
<ResponseQ>FEIN</ResponseQ>
<RequestPath>
<Path>c:\tester\Example\FrontEnd\Request\</Path>
<File>Logoff.xml</File>
<File>UMPHubTest.xml</File>
<File>UpdateSDREntryFE.xml</File>
<File>UpdateSDREntryBESystem.xml</File>

<File>SystemRestartFE.xml</File>
<File>SystemRestartBESystem.xml</File>

</RequestPath>
<ResponseActualPath Verify="No">
c:\tester\Example\FrontEnd\responseActual

</ResponseActualPath>
<ResponseComparePath Compare="Yes">
c:\tester\Example\FrontEnd\responseCompare

</ResponseComparePath>
</MQSender>

</UseCaseGroup>
<UseCaseGroup UseCaseGroupName="Example" SpecialCharacters="##">
<ResultPath>c:\tester\Example\FrontEnd\</ResultPath>
<!-- xx -->

<MQSender SenderName="FrontEnd">
<UserId>USERID</UserId>
<RequestQMgr>MQSIQM</RequestQMgr>
<RequestQ>HUB_IN</RequestQ>
<ResponseQMgr>MQSIQM</ResponseQMgr>
<ResponseQ>FEIN</ResponseQ>
<RequestPath>
<Path>c:\tester\Example\FrontEnd\Request\</Path>
<File>HubTest.xml</File>

</RequestPath>
<ResponseActualPath Verify="No">
c:\tester\Example\FrontEnd\responseActual

</ResponseActualPath>
<ResponseComparePath Compare="Yes">
c:\tester\Example\FrontEnd\responseCompare

</ResponseComparePath>
</MQSender>
<!-- xx -->
Message setup quick start 19 Copyright IBM Corp. 2001, 2002

©
 <MQReceiver ReceiverName="BESystem">
<RequestQMgr>MQSIQM</RequestQMgr>
<RequestQ>BESYSTEM</RequestQ>
<ResponseQMgr>MQSIQM</ResponseQMgr>
<ResponseQ>HUB_RWF_IN</ResponseQ>
<RequestActualPath Verify="No">

c:\tester\Example\BESystem\requestActual
</RequestActualPath>
<RequestComparePath Compare="No">
c:\tester\Example\BESystem\requestCompare

</RequestComparePath>
<ResponsePath>
c:\tester\Example\BESystem\response

</ResponsePath>
</MQReceiver>

</UseCaseGroup>
</TestSuite>
Model Office Reference Manual 20 Copyright IBM Corp. 2001, 2002

©
 Chapter 4
 MQTester

MQTester provides a generic method for processing messages through the WMQI
Enabler product to confirm that the associated WMQI Enabler message flows are
working as intended. This tool is intended to provide a mechanism to verify the
constructed message flows in the WMQI Enabler Model Office and the WMQI
Enabler product early in the implementation process, even prior to the final
construction of adapter programs.

The MQTester tool simulates an WMQI Enabler environment by creating process
threads of two types:

Different configurations with single or multiple back-end or front-end applications
can be simulated and used in conjunction with WMQI Enabler. No actual or real
processing is done, but rather the message request is tied to the message
response with data mapping where appropriate.

The MQTester is a Java application developed specifically to test the WMQI
Enabler product, although it can be configured to operate in a non-WMQI Enabler
environment. This testing tool allows users to specify XML-formatted message files
that should be sent to and received from the WMQI Enabler product from the
perspectives of a user-defined front-end and back-end MQSeries applications. In
addition, users can build compare files for comparing selected output values and
also have the ability to specify text or attribute values that must be transferred from
the request to the response.

Role of MQTester
The MQTester has been constructed to allow the generation of test suites of
scenarios to verify the passage of messages from simulated front-end to back-end
systems.

MQSender Simulates a front-end application, submits a request
message, and waits for a response. Optionally, a
datagram can be sent and no response will be
expected.

MQReceiver Simulates a back-end application, receives a request, and
sends the appropriate response. If a datagram is received,
no response is returned.
MQTester 21 Copyright IBM Corp. 2001, 2002

©
Through the construction of TestSuites, the business purpose of the WMQI Enabler
product can be thoroughly exemplified. Pre-defined TestSuites are provided with
the product that may be exercised to demonstrate the working of the message flow,
and, also, provide samples that may serve as guides to the establishment of other
TestSuites. Since the establishment of adapter programs is not required in order to
use the testing tool, the construction of messages can be leveraged and enhanced
with the additional opportunities for message verification.

The MQTester provides a tool that is both generic and flexible in application.
Multiple configurations are possible as well as the routing of multiple messages.
The use of multiple machines is also provided. MQTester is the product
recommended tool to be employed for product installation verification and use in
the implementation process.

Installing MQTester
The MQTester tool is installed by performing these steps:

1. Create a directory called C:\tester for the MQTester tool.

(If if you do not wish to install on the C: drive see step 3).

2. Unzip the MQTester.zip file supplied on the product CD into the \tester
directory.

Presently, only a Windows version of the MQTester exists.

This application also requires Java 1.2 runtime or higher.

The Tester tool is shipped with a sample TestSuite folder which will be placed in the
\tester directory. The Hub sample requires the WMQI Enabler product and the
No_Hub sample does not, as it just hooks the front-end to the back-end directly.
Model Office Reference Manual 22 Copyright IBM Corp. 2001, 2002

©
The instructions below show how to run the No_Hub sample. The sample TestSuite
directories represent a suggested (but not required) directory structure for the
MQTester files:

Figure 2: Suggested MQTester directory structure.

*NoHub.log is the results file.

3. If you installed in a directory other than C:\tester, edit the TestSuite XML file
and change all references from C:\tester to your drive and directory.

If you run the sample TestSuite files as they are, you will need an MQSeries
configuration as follows:

Table 1: Sample TestSuite MQSeries configuration.

These are the MQSeries settings defined in the MQSender and MQReceiver
definitions. You can change them if you like.

\NoHub
NoHub.log*

\frontEnd

\request

AddPerson.xml

\responseActual

\responseCompare

AddPerson.xml

\backEnd

\response

AddPerson.xml

\requestActual

\requestCompare

AddPerson.xml

Test Suite MQ Manager Queues

Hub MQSIQM HUB_IN
FEIN
BEIN

No_Hub MQSIQM FEIN
BEIN
MQTester 23 Copyright IBM Corp. 2001, 2002

©
MQTester overview
The execution of the MQTester requires a pre-existing MQSeries environment and
files that must be created by the user. The environment below shows how the
MQTester tool is used to test the WMQI Enabler product.

Figure 3: MQTester tool overview.

As shown in the figure above, MQTester starts MQSender and MQReceiver
threads as defined by a user in the MQTester TestSuite XML File. This process
starts after a user selects which Use Case Groups they want to execute.
Model Office Reference Manual 24 Copyright IBM Corp. 2001, 2002

©
Using MQTester
1. Start MQTester using the MQTester.bat file.

An icon file, MQTester.ico, is provided if you want to make a shortcut to
MQTester.bat and assign an icon to the shortcut.

The application starts and appears as shown in Figure 4:

Figure 4: Starting MQTester.
MQTester 25 Copyright IBM Corp. 2001, 2002

©
MQTester is shipped with seven pre-defined TestSuites:

a. Hub: a simple example of using the WMQI Enabler product with an
AddPerson request and the required system messages for initialization.

b. NoHub: a simple example that connects a front-end directly to a back-end
and sends an AddPerson request.

c. OAG_CRM: CRM OAG messages and their associated system messages.

d. OAG_SupplySide: Supply Management OAG messages and their
associated system messages.

e. OAGIDM-CRM: CRM OAG messages built using IBM's OAG data model.

f. OAGIDM-SupplySide: Supply Management OAG messages built using
IBM's OAG data model.

g. Two Backend: is an example of output to two back-end systems.
Model Office Reference Manual 26 Copyright IBM Corp. 2001, 2002

©
2. Select the TestSuite XML file, No_Hub_sampleTS.xml and click Open.

MQTester displays the TestSuite as a tree collapsed to the UseCaseGroup
level on the left as shown in the figure below:

Figure 5: Loading a TestSuite in MQTester.

Expand, collapse, and select any items in the tree, however, the only selections
that count are UseCaseGroup selections. Expanding the tree will show you the
configurations of the UseCaseGroups.
MQTester 27 Copyright IBM Corp. 2001, 2002

©
An example of an expanded tree is shown below:

Figure 6: Configuring UseCaseGroups in MQTester.

3. Select the desired use case groups (in this case there is only one).

4. Then execute them using the go button (green man running).

Test results are displayed in the text area on the right and written to the
ResultsPath directory.

The results text area can be cleared by pressing the delete button (eraser
head on paper).

To load and run additional MQTester TestSuite files, select the open icon from
the tool bar or the File menu.

A Result file is written to the \No_Hub directory named No_Hub.log, which
has the same messages as displayed to the screen.
Model Office Reference Manual 28 Copyright IBM Corp. 2001, 2002

©
Configuration possibilities
The MQTester TestSuite XML files can be configured in several ways with the
following restrictions:

Multiple MQSenders/MQReceivers
The senders and receivers must not share target path definitions or input queue
definitions.

MQSender Only
The back-end that is used must put the MQMD header messageId field from the
request into the MQMD header correlationId of the response.

This configuration supports development of back-end applications. The back-end
must place the incoming MQMD messageId into the MQMD correlId in its response
message in order to allow the MQSender to correctly identify the response. The
incoming message will contain a comment that communicates the filename used
to generate the request. How or if that filename is used depends on the back-end
system.

MQReceiver Only
For an MQReceiver to correlate the incoming request with the desired response,
the request XML must contain a comment to communicate the filename that should
be used to compare and respond to the request. The comment must be in the exact
form as the example below for file AddPerson.xml:

This configuration supports the development of front-end applications. The front-
end must place a filename comment into its message in order to supply the
MQReceiver with the information it needs to compare and respond correctly to the
front-end’s request message. Then MQReceiver will place the request’s MQMD
header messageId into the MQMD correlId of its response.

NOTE comments may not come before the XML declaration, which must be the
first item in the message.

Multiple MQTester Processes
Multiple MQTester processes can be used if not relying on the same target paths
or input queues. Also, results will contain only results for MQSenders and
MQReceivers in that process.

Multiple Machine MQTester Processes
Same as above.

<!--filename=AddPerson.xml-->
MQTester 29 Copyright IBM Corp. 2001, 2002

©
How to set up an adapter test environment
• Decide if your adapter will operate as a sender or receiver.

• Identify the need for a new queue.

• Create queue(s) as needed.

• Configure MQTester to operate in the mode(s) that your adapter requires.

• If your adapter test environment utilizes MQTester, ensure your adapter
conforms to the restrictions noted in the Configuration possibilities
section.

• Generate adapter messages.

• Generate MQTester messages.

• Configure WMQI Enabler as needed to support the adapter/MQTester test
messages.

• Perform end-to-end testing.

How to develop an MQTester TestSuite
MQTester is a very generic and flexible tool. Prior to using MQTester, the user must
prepare a configuration file, and the associated test message files. The primary file
that drives MQTester is the configuration file known as the MQTester TestSuite file.
This TestSuite file contains XML, which conforms to the TestSuite.dtd. Before
going through the elements of this file, it is necessary to understand some terms
used in the MQTester environment that relate to user-developed files.
Model Office Reference Manual 30 Copyright IBM Corp. 2001, 2002

©
Figure 7: Developing a TestSuite for MQTester.

TestSuite file
The TestSuite file is the test configuration file for the MQTester tool. When the tool
is started, a TestSuite file must be opened. After testing Use Case Groups in one
TestSuite file, other TestSuite files can be opened. A TestSuite file is an XML file
that conforms to the TestSuite.dtd and may be given any valid filename.

Refer to the sample TestSuite file Hub_SampleTS.xml below.
MQTester 31 Copyright IBM Corp. 2001, 2002

©
<?xml version='1.0'?>

<!DOCTYPE TestSuite SYSTEM "TestSuite.dtd" >

<!-- Created by IBM's XMLGenerator -->

<TestSuite TestSuiteName="Hub_sampleTS">
<UseCaseGroup UseCaseGroupName="Hub" SpecialCharacters="##">

 <ResultPath>D:\tester\Hub\</ResultPath>

 <MQSender SenderName="FrontEnd">

 <UserId>USERID</UserId>

 <AuthenticationId>USERID</AuthenticationId>

 <RequestQMgr>MQSIQM</RequestQMgr>

 <RequestQ>HUB_IN</RequestQ>

 <ResponseQMgr>MQSIQM</ResponseQMgr>

 <ResponseQ>FEIN</ResponseQ>

 <RequestPath>

<Path>D:\tester\Hub\frontEnd\request</Path>

 <File>AddPerson.xml</File>

 </RequestPath>

 <ResponseActualPath Verify="No">

 D:\tester\Hub\frontEnd\responseActual

 </ResponseActualPath>

 <ResponseComparePath Compare="Yes">

 D:\tester\Hub\frontEnd\responseCompare

 </ResponseComparePath>

 </MQSender>

 <MQReceiver ReceiverName="BackEnd">

 <RequestQMgr>MQSIQM</RequestQMgr>

 <RequestQ>BEIN</RequestQ>

 <ResponseQMgr>MQSIQM</ResponseQMgr>

 <ResponseQ>HUB_IN</ResponseQ>

 <RequestActualPath Verify="No">

 D:\tester\Hub\backEnd\requestActual

 </RequestActualPath>

 <RequestComparePath Compare="Yes">

 D:\tester\Hub\backEnd\requestCompare

 </RequestComparePath>

<ResponsePath>

 D:\tester\Hub\backEnd\response

 </ResponsePath>

 </MQReceiver>

 </UseCaseGroup>

</TestSuite>
Model Office Reference Manual 32 Copyright IBM Corp. 2001, 2002

©
TestSuite tag
The structure of the TestSuite file includes some number of <UseCaseGroup(s)>,
which contain a specification for some number of <MQSender(s)> and
<MQReceiver(s)>, which in turn contain specifications for MQSeries queues and
file paths.

Attributes

TestSuiteName (required)

A user defined name given to the TestSuite.

Child Elements

UseCaseGroup (required, one or more)

UseCaseGroup tag
This refers to a grouping of use case test messages and a specification of the
MQSender and MQReceiver environment which those messages require.

The UseCaseGroup code sample above, Hub, executes the AddParty use case in
the <File> tag. There could have been many <File> tags in this UseCaseGroup and
they would be executed in the order defined.

Multiple UseCaseGroups can occur within a TestSuite file. After a TestSuite file is
loaded into the MQTester tool, only the UseCaseGroups that the user selects will
be executed.

The tool starts the MQSenders/Receivers as threads. These threads are stopped
at the end of that UseCaseGroup.

Attributes

UseCaseGroupName (required)

A user defined name given to the UseCaseGroup. This name
will also be the name of the .log results file.

SpecialCharacter (optional)

Specifies the characters you want to use for compare and
transfer notation. If not specified, the default, ##, is used.

Child Elements

ResultPath (optional)

Specifies a path, without filename, where the result log will be
placed. The result log is equivalent to what is displayed
during execution.

MQSender (optional, 0 or more)

Describes a message originator needed for this
UseCaseGroup.
MQTester 33 Copyright IBM Corp. 2001, 2002

©
MQReceiver (optional, 0 or more)

Describes a message receiver needed for this
UseCaseGroup.

MQSender tag
An MQSender initiates a use case message cycle. It gets a request message from
the <RequestPath> using the <Path>, in the order specified by the sequence of
<File> tags. This path is the only MQTester path specification allowing the user
specification of a file name. All other directories specified in this MQSender and its
associated MQReceivers must use the same file name given here to allow
association. MQSenders will wait for responses to requests that they have sent.
MQSender will only get a response off its response queue that has a correlation Id
that matches the current request message Id.

Attributes

SenderName (required)

A user defined name given to the MQSender.

Child Elements

AuthenticationId (optional)

Specifies a value to be placed in the authenticationId
attribute of the message tag of messages originating from
this MQSender. This tag is required if you want to use the
MQTester sessionId propagation feature.

LocalQMgr (optional)

The name of the MQSeries Queue Manager that the
MQTester will use as a local interface.

MQMDReplyToQ (optional)

The value that will be placed in the MQSeries MQMD header
replyToQueue field for the outgoing request message. If not
specified, the value in the ResponseQ tag will be used.

MQMDReplyToQMgr (optional)

The value that will be placed in the MQSeries MQMD header
replyToQueueManager field for the outgoing request
message. If not specified, the value in the ResponseQMgr
tag will be used.
Model Office Reference Manual 34 Copyright IBM Corp. 2001, 2002

©
RequestPath (required)

Specifies two child elements:

Path (required): the path, without filename, that
contains the requests for this MQSender.

File (required, one or more): the filenames, with
extensions, in the order of execution.

Datagram Attribute: The File tag has an
optional attribute, Datagram, that defaults
to "No". Using Datagram = "Yes" will
cause the MQSender to send an MQSeries
datagram and not wait for a response.

DelayBefore Attribute: The File tag has an
optional attribute, DelayBefore, that allow
specification of a delay in milliseconds to
wait before sending the message. The
default is no delay.

DelayAfter Attribute: The File tag has an
optional attribute, DelayAfter, that allow
specification of a delay in milliseconds to
wait after sending the message before
sending the next message or terminating
the MQSender if this was the last message.
The default is no delay.

RequestQ (required)

The name of the MQSeries Queue that this MQSenders
outgoing requests will be placed on.

RequestQMgr (required)

The name of the MQSeries Queue Manager that owns the
queue that this MQSenders outgoing requests will be placed
on.

ResponseActualPath (optional)

Specified the path where the MQTester will place actual
responses that come back to this MQSender. Thiselement
has an optional attribute, Verify="Yes"/"No". Thedefault is
"No" which means a DTD verification will not be done. If
Verify is "Yes", the user must supply the required DTD files in
the MQTester directory.
MQTester 35 Copyright IBM Corp. 2001, 2002

©
ResponseComparePath (optional)

Specified the path where the MQTester will find a user
specified XML file to compare with the actual response. This
element has an optional attribute, Compare="Yes"/"No". The
default is "Yes" which causes a compare against the actual
to be done.

ResponseQ (required)

The name of the MQSeries Queue that this MQSender will
expect to receive incoming responses.

ResponseQMgr (required)

The name of the MQSeries Queue Manager that owns the
queue that this MQSender will expect to receive incoming
responses.

UserId (optional)

The userId that will be placed in the MQSeries MQMD
header identity context field, userId, of the outgoing request

 to identify the originator of the message. If not specified, the
userId running the MQTester session will be used.

MQReceiver tag
MQReceiver waits on a request queue, gets a request, and sends back a response
to the response queue. MQReceivers read every message that comes to their
request queue regardless of correlationId. The MQReceiver correlates the request
with compare files and responses by expecting the XML to have a filename
comment that was added by the MQSender. If this comment is missing, the
MQReceiver will not be able to compare or send a response. In this case, the
MQReceiver will save the received request in the <RequestActualPath> directory
with a filename of Unknown(n).xml. An optional compare capability is provided. In
addition, MQReceiver has the ability to move specified fields in the received
request to the response.

Attributes

ReceiverName (required)

A user defined name given to the MQReceiver.

Child Elements

LocalQMgr (optional)

The name of the MQSeries Queue Manager that the
 MQTester will use as a local interface.
Model Office Reference Manual 36 Copyright IBM Corp. 2001, 2002

©
MQMDReplyToQ (optional)

The value that will be placed in the MQSeries MQMD header
replyToQueue field for the outgoing response message. If
not specified, the value in the RequestQ tag will be used.

MQMDReplyToQMgr (optional)

The value that will be placed in the MQSeries MQMD header
replyToQueueManager field for the outgoing response
message. If not specified, the value in the RequestQMgr tag
will be used.

RequestActualPath (optional)

Specified the path where the MQTester will place actual
requests that come to this MQReceiver. This element has an
optional attribute, Verify="Yes"/"No". The default is "No"
which means a DTD verification will not be done. If Verify is
"Yes", the user must supply the required DTD files in the
MQTester directory.

RequestComparePath (optional)

Specified the path where the MQTester will find a user
specified XML file to compare with the actual request. This
element has an optional attribute, Compare="Yes"/"No". The
default is "Yes" which causes a compare against the actual
to be done. Since this file is also used for transferring values,
set Compare to "No" if you want to transfer but not compare.

RequestQ (required)

The name of the MQSeries Queue that this MQReceivers
incoming requests will be placed on.

RequestQMgr (required)

The name of the MQSeries Queue Manager that owns the
queue that this MQReceivers incoming requests will be
placed on.

ResponsePath (required)

Specifies the path, without filename, that contains the
 responses this MQReceiver will return.

ResponseQ (required)

The name of the MQSeries Queue that this MQReceiver will
 place outgoing responses. If the request message MQMD

header contains a replyTo Queue, that response destination
is used instead of this one.
MQTester 37 Copyright IBM Corp. 2001, 2002

©
ResponseQMgr (required)

The name of the MQSeries Queue Manager that owns the
queue that this MQReceiver will place outgoing responses. If
the request message MQMD header contains a replyTo
Queue Manager, that response destination is used instead of
this one.

RequestResponseMap (optional)

A new element tag, <RequestResponseMap>, is available
for MQReceivers to allow the response filename to differ
from the request file name. The MQSender specification of

 the request file is unchanged.

The use of this element is optional and all exiting TestSuites
will still work. If a particular request file does not have a
response file mapping, it will be assumed that the response
file is named the same as the request file. This element is
required for messages such as OAG that have different
request/response names

Child Elements:

Map (1 or more)

RequestFile Attribute: specifies the name
of the file being sent as a request.

ResponseFile Attribute: specifies the
name of the file that the MQReceiver
should return as a response to the specified
request.
Model Office Reference Manual 38 Copyright IBM Corp. 2001, 2002

©
Compare 'Ignore' notation
To enable MQReceiver request comparing or MQSender response comparing,
provide the associated <xxxActualPath>, the <xxxComparePath>, and "known
good files". These files must have the same name as the associated request file
that began the message cycle. Equality is determined by comparing several things:

All other aspects of the document, such as white space, comments, doctype
declaration, processing instructions, and name spaces, are ignored.

If there are values in the file that are dynamic and cannot be predetermined, have
the compare ignore them. To ignore a value, first characters of the element text or
attribute value must be the SpecialCharacters as specified on the UseCaseGroup
element, or the default "##" can be used. To ignore, only place these characters at
the beginning so as not to confuse them with the “transfer” notation which has the
special characters at the beginning and end.

The following examples are valid “ignore” notation when the default special
characters are used:

<elementName>##</elementName>

<elementName>##textValue</elementName>

<elementName>########</elementName>

AttributeName="##"

AttributeName="##attributeValue"

AttributeName="######"

Structure The compared XML documents must have the same
element/child element structure.

Attributes Corresponding elements must have the same number of
attributes.

Attribute Values Corresponding attribute values must match.

Element Text Corresponding element text values must match (leading
and trailing white space is trimmed from the text before
comparing).
MQTester 39 Copyright IBM Corp. 2001, 2002

©
Transfer notation
One of the features specific to an MQReceiver is the ability to transfer element text
or attribute values from the RequestActual to the Response file. Notation to
indicate this is found in the RequestCompare and Response files. Values come
from the RequestActual. The RequestCompare file contains the 'transfer' notation
to indicate the location of the value in the RequestActual. For this reason, in order
to do transfers, the RequestCompare must mimic the RequestActual in the
following ways:

• Navigation from the root to the selected element must be identical in terms
of parent/child names. All document structure need not match.

• Repeating elements must be the same in number to find the corresponding
element.

• Unlike comparing, only the desired attribute has to exist.

In some cases, it may be to transfer values but not cause a compare. To do this,
specify the Compare="No" attribute on the <RequestComparePath> tag. Source
values in the RequestActual can only be element text or attribute values. When
placing that value in the Response, however, it can go anywhere in the file. To
indicate a value to transfer, the element text or attribute value must be bracketed
by the SpecialCharacters as specified on the UseCaseGroup element, or the
default "##". The value can be any unique value (unique among other transfer
notations within that RequestCompare file). A target Response file can have
multiple occurrences of a single transfer notation. Note that any transfer is also an
ignore if a compare is done.

The following examples are valid 'transfer' notation when the default special
characters are used:

<elementName>##whatever##</elementName>

AttributeName="##whatever##"

SessionId propagation
If you are issuing a WMQI Enabler logon message and want the returned sessionId
to be placed in subsequent messages, you will want to use MQTester sessionId
propagation. In order to do this you must place the AuthenticationId tag in your
MQSender specification.
Model Office Reference Manual 40 Copyright IBM Corp. 2001, 2002

©
This will have the following effect:

• When a WMQI Enabler logon message is issued, it will have that
AuthenticationId placed in the logon request.

• The Hub will verify the authenticationId and issue a sessionId in the logon
response.

• MQTester will relate this pair together for the rest of your MQTester session
or until another logon for the same authenticationId replaces it.

• Subsequent messages issued after the logon will have both the
authenticationId and the corresponding sessionId placed into the Message
tag attributes.

• If you are also configuring an MQReceiver to receive these subsequent
messages, use transfer notation to move the authenticationId and sessionId
from the received request to the response as described above.

• If your MQSender is doing compares, you may want to use ignore notation
in the ResponseCompare file to avoid failing on the sessionId compare.

Using MQTester remotely
Often it is convenient to run the MQTester tool from a machine other than the one
with the WMQI Enabler MQ Manager. There are two ways to do this:

• Using the MQ server/client feature.

• Connecting two MQ managers via channels.

Connecting using MQ server/client
The MQTester can connect to a remote MQ manager using the MQ Client feature.
This does not require the installation of a complete MQ Series server, only the client
software. Below are the instructions to configure MQ client on the WMQI Enabler
and MQTester machines.

WMQI Enabler machine (MQManager MQSIQM)
1. Using the MQSeries Explorer, create a Server Connection Channel for MQ

Manager, MQSIQM.

2. Note the port that MQSIQM uses for a Listener. (The port can be noted using the
MQSeries Services window and examining Listener properties)
MQTester 41 Copyright IBM Corp. 2001, 2002

©
3. Using the MQSeries Explorer, start the Server Connection Channel created
above

MQTester machine (MQ Client)
1. Install IBM MQSeries Client software

2. Edit tester\lib\MQTester.properties to include the following properties:

HOSTNAME = <the hostname of the WMQI Enabler machine>

CHANNEL = <the Server Connection Channel created above>

PORT = <the Listener port for MQSIQM>

NOTE: If you want to use a local MQ Manager instead of the MQ Client, set the
values above to NONE or leave them blank

Connecting two MQ Managers via channels
The environment will resemble the diagram shown in Figure 8:

Figure 8: Running MQTester from a remote system
Model Office Reference Manual 42 Copyright IBM Corp. 2001, 2002

©
This example assumes MQTester is running under MQManager, TESTQM, and
WMQI Enabler is running on a different machine under MQManager MQSIQM. If
the MQTester machine also has an MQ Manager named MQSIQM, make sure that
it is stopped to avoid a resolution conflict. Using the MQSeries Explorer, create the
following objects on the two machines:

MQTester machine (MQManager TESTQM)
1. Create a local queue named MQSIQM

Usage = Transmission

2. Create local queues FEIN, BEIN

3. Create sender channel TEST2MQSFSE

Connection Name = IP address of WMQI Enabler Machine

Transmission Queue = MQSIQM

NOTE: If your MQManager does not use the default port 1414, specify the
IP address with a port in the form: <ip>(<port#>)

4. Create receiver channel MQSFSE2TEST

WMQI Enabler machine (MQManager MQSIQM)
1. Create a local queue named TESTQM

Usage = Transmission

2. Local queue HUB_IN should already exist

3. Create sender channel MQSFSE2TEST

Connection Name = IP address of MQTester Machine

Transmission Queue = TESTQM

NOTE: If your MQManager does not use the default port 1414, specify the
IP address with a port in the form: <ip>(<port#>)

4. Create receiver channel TEST2MQSFSE

Start the channels
1. Start the sender channel TEST2MQSFSE on MQManager TESTQM

2. Start the sender channel MQSFSE2TEST on MQManager MQSIQM
MQTester 43 Copyright IBM Corp. 2001, 2002

©
MQTester configuration
When connecting remotely, you must use the LocalQMgr tag to indicate the
Queue manager is directly accessable by MQTester. Also, as indicated below, an
MQSenders ResponseQMgr and ResponseQ and an MQRecivers RequestQMgr
and RequestQ must be local.

To achieve proper routing, two hub-only messages must be issued to alter the
WMQI Enabler Symbolic Destination Resolution (SDR) table.

MQTester UpdateSDREntry commands
WMQI Enabler maintains a Symbolic Destination Resolution (SDR) table to know
what MQManager and Queue a system monitors. The UpdateSDREntry
commands below will set the SDR table:

<MQSender SenderName="FrontEnd">

 <UserId>USERID</UserId>

 <LocalQMgr>TESTQM</LocalQMgr>

 <RequestQMgr>MQSIQM</RequestQMgr>

<RequestQ>HUB_IN</RequestQ>

<!-ResponseQMgr/Q must be local>

<ResponseQMgr>TESTQM</ResponseQMgr>

<ResponseQ>FEIN</ResponseQ>

……………

<MQReceiver ReceiverName="BackEnd">

<LocalQMgr>TESTQM</LocalQMgr>

<!-RequestQMgr/Q must be local>

<RequestQMgr>TESTQM</RequestQMgr>

<RequestQ>BEIN</RequestQ>

<ResponseQMgr>MQSIQM</ResponseQMgr>

<ResponseQ>HUB_IN</ResponseQ>

For FrontEnd:

<COMMAND cmdType="UpdateSDREntry">
<SystemSymbolic>FrontEnd</SystemSymbolic>

<Queue>FEIN</Queue>
<QueueManager>TESTQM</QueueManager>

</COMMAND>

For BackEnd:

<COMMAND cmdType="UpdateSDREntry">
<SystemSymbolic>BackEnd</SystemSymbolic>

<Queue>BEIN</Queue>
<QueueManager>TESTQM</QueueManager>

</COMMAND>
Model Office Reference Manual 44 Copyright IBM Corp. 2001, 2002

©
 Chapter 5
 WMQI Enabler - Configurator

WMQI Enabler uses the services of multiple DB2 database tables. Much of the
operational characteristics are configurable. Presently, direct database
manipulation and HUBONLY messages are used to setup and manage an WMQI
Enabler instance. This chapter describes a tool that allows an end user to manage
an WMQI Enabler instance.

Overview
The figure below shows the WMQI Enabler - Configurator communicating with an
WMQI Enabler installation. The WMQI Enabler - Configurator builds and sends an
WMQI Enabler Hubonly XML request message to WMQI Enabler and waits for an
WMQI Enabler Hubonly XML response message.

Figure 9: Configuration utility overview.
WMQI Enabler - Configurator 45 Copyright IBM Corp. 2001, 2002

©
WMQI Enabler - Configurator supports the following WMQI Enabler HubOnly
messages:

• Logon

• Logoff

• SystemRestart

• SystemShutdown

• GetSystemProfile

• UpdateSystemProfile

• KillSession

• KillProcess

• GetMessageProfile

• UpdateMessageProfile

• GetSDREntry

• UpdateSDREntry

• GetNLSEntry

• UpdateNLSEntry

• GetINSEntry

• UpdateINSEntry

• SetSubscription

• CRF
Model Office Reference Manual 46 Copyright IBM Corp. 2001, 2002

©
Additional features
In addition to sending and receiving the WMQI Enabler HubOnly messages, the
WMQI Enabler - Configurator includes the following features:

• Logon Session ID Propagation: When a user sends the WMQI Enabler
Logon command and successfully receives a response with the assigned
session ID, that session ID is placed in the WMQI Enabler header of
subsequent messages.

• Saved Preferences: The choices a user makes for preferences such as
MQSeries and user ID values are saved in a configuration file. The user
may choose from multiple, previously saved configuration files.

• XML Message View: The user can select the XML tab to see the last
request that was sent and the last response that was received in XML
format.

Installation

Prerequisite software
• Microsoft Windows NT v4.0 Service Pack 5 or greater.

• MQSeries v5.2 + SupportPack MA88.

• WebSphere MQ Integrator Enabler v1.2.2 .

• IBM Java Development Kit (JDK) v1.2.2 or greater.

Installation
Installation of the WMQI Enabler - Configurator is typically handled by the WMQI
Enabler installation process. After installation you should expect to see the
following files in the /wmqiecfg directory:

• default.config: the default configuration file.

• wmqiecfg.bat: a command file for starting the WMQI Enabler -
Configurator.

• wmqiecfg.ico: an icon that can be associated with the .bat file shortcut.
WMQI Enabler - Configurator 47 Copyright IBM Corp. 2001, 2002

©
• wmqiecfg.jar: the WMQI Enabler - Configurator Java jar.

• session.$config: a system file to save last used configuration.

Configuration
Creating an NT shortcut (optional)

If it is preferred, an NT shortcut can be created to the WMQI Enabler - Configurator
as indicated below:

1. Highlight the wmqiecfg.bat file

2. Right click the highlighted file from the previous step.

3. Choose Create Shortcut from the pop-up menu.

Next you may rename the shortcut if desired and drag to the desktop or to another
location. To change the icon of the shortcut, flow the steps below:

1. Highlight the shortcut file.

2. Right click on the highlighted file from the previous step.

3. Choose Properties from the pop-up menu.

4. Click on the Shortcut tab

5. Click on the Change Icon button

6. Click on the Browse button to locate the file wmqiecfg.ico

7. When finished click OK twice

WMQI Enabler - Configurator configuration
To configure the WMQI Enabler - Configurator, you must first start it.

1. Run wmqiecfg.bat
(or use the shortcut created in the previous step)

2. From the File menu select Preferences
Model Office Reference Manual 48 Copyright IBM Corp. 2001, 2002

©
Figure 10: Selecting Preferences in the WMQI Enabler - Configurator

This will allow you to change any of the default fields below:

Figure 11: Change Configuration screen
WMQI Enabler - Configurator 49 Copyright IBM Corp. 2001, 2002

©
Configuration fields
User Id: The User Id that will be used in the MQSeries MQMD header. If blank,
the current Windows NT user Id will be used.

Authentication Id: The User Id that will be placed in the WMQI Enabler header.

Source Logical Id: The logical name of the sending system in the WMQI Enabler
header.

Local Queue Manager: The MQSeries queue manager accessible by the WMQI
Enabler - Configurator.

Request Queue Manager: The MQSeries queue manager of the WMQI Enabler
installation.

Request Queue: The request input queue for WMQI Enabler.

Response Queue Manager: The MQSeries queue manager of the queue where
the WMQI Enabler - Configurator will read responses.

Response Queue: The MQSeries queue where the WMQI Enabler - Configurator
will read responses.

Hostname (MQ Client Only): If using MQSeries Client, put the hostname of the
machine that is acting as your MQ Series server.

Channel (MQ Client Only): If using MQSeries Client, put the name of the server
connection channel on the host machine.

Port (MQ Client Only): If using MQSeries Client, put the port number of the
hosting MQSeries manager listener. For example: 1414

To create a new configuration file to use instead of the default.config,

1. From the File menu, select New
(or click the New Configuration File button on the main toolbar)

You will see the fields defaulted to your last configuration's values as below.

2. Edit the fields as desired, click Save As,and name the new configuration file
Model Office Reference Manual 50 Copyright IBM Corp. 2001, 2002

©
Figure 12: New configuration screen.

To choose which configuration is in effect.

1. From the File menu, select Open
(or click the Open Configuration File button on the main toolbar)

Notice that the path to the current configuration file is displayed in the application
title bar.

Sending WMQI Enabler messages
The main view of the MQFSFE Configuration Utility is a series of tabs that group
the supported commands into logical areas. The headings below give the details
on using each of these command tabs.

Each of the command area tabs share certain function:

Cancel Capability: when a request is sent, the WMQI Enabler - Configurator
periodically polls the response queue until a response for that request (based on
correlation ID) is received. Pressing the Cancel button will stop that polling.

Status Bar Information: the status bar at the bottom of the application window will
give a status about the state of the transaction including error messages.

XML Tab: All messages that are sent and received will log the XML on the XML tab
page. Only the last transaction is viewable. This is primarily for problem
determination or verification of values not reported to the individual command
screens.
WMQI Enabler - Configurator 51 Copyright IBM Corp. 2001, 2002

©
Get Update Pattern: the messages that have a get/update pair share the same
page. A get can be executed to see the current values, followed by an update after
changes have been made to those values.

Using the WMQI Enabler - Configurator
The WMQI Enabler - Configurator user interface consists of one multi-tabbed
folder. Each tabbed page is for sending the message or messages that relate to
that tab.

Messages are generally sent by first providing some identifying value, or key, for
the requested information. Clicking the Get button would send the message to
WMQI Enabler. If necessary, the Cancel button will interrupt the wait for the
response. When the response is received, the received values are displayed.

In the case of Get/Update pair messages, changes can be made to the displayed
values and pressing the Update button will send the Update message.

The status line at the bottom of the application screen will provide status during
your message transactions. If more detail is needed, the XML tab shows the last
message sent and received. The sections below show each tab page and give
information specific to that page.

The Logon page is displayed first. If your WMQI Enabler installation has been
configured to require session management for HubOnly messages, you will need
to Logon before issuing other messages. The returned session Id will be placed in
the header of subsequent messages that you issue in that session. Remember to
logoff if you logon.
Model Office Reference Manual 52 Copyright IBM Corp. 2001, 2002

©
Logon tab

Figure 13: Logon tab.

Use Logon if your WMQI Enabler installation is configured to require session
management on HubOnly messages. The returned session ID will be placed in the
WMQI Enabler header of subsequent messages. Remember to Logoff when you
are finished.

Logon: Enter an AuthenticationId and SessionId and click the Logon button to
initiate a logon.

Logoff: Enter an AuthenticationId and SessionId and click the Logoff button to
initiate a logoff.
WMQI Enabler - Configurator 53 Copyright IBM Corp. 2001, 2002

©
System tab

Figure 14: System tab.

Starts the "System Symbolic" system and considers that system ready to send
and/or receive message traffic. It also initiates a shutdown of the "System
Symbolic" system.

SystemRestart: Enter a System Symbolic and click the Restart button to request
a system restart.

SystemShutdown: Enter a System Symbolic and click the Shutdown button to
request a system shutdown.
Model Office Reference Manual 54 Copyright IBM Corp. 2001, 2002

©
System profile Tab

Figure 15: System profile tab.

Allows reading and updating of the tables used in system profiles.

GetSystemProfile: Enter a System Symbolic and click the Get button to request
the Profile for that System Symbolic.

UpdateSystemProfile: Enter a System Symbolic and the parameters defining that
system's profile. Click the Update button to change the system's profile.

The fields in the system profile tab are explained below:

System Symbolic: The symbolic name for this system must be entered for Get or
Update.

Language: The language code number for this system.
For example, US English = 10.

System BackUp List: List of systems that can also do the same function as this
one.

System Symbolic: The symbolic name for this system. Should be same as
at the top of this Tab.
WMQI Enabler - Configurator 55 Copyright IBM Corp. 2001, 2002

©
Message Type Name: The message type that would use this backup system
if necessary.

Next Backup: The symbolic name for the next backup system in the chain.

System Store Forward List: Message types destined for this system that should
be stored and forwarded later if this system is temporarily unavailable.

Message Type Name: The message type to be forwarded.

Store Flag: Set to True if this message type is to be stored and forwarded.
Set to False otherwise.

The Add Row/Delete Row: For these last two sections, add and delete rows from
the text area, respectively.

Session tab

Figure 16: Session tab.

Allows a user to manually terminate a session or process.

KillSession: After entering the Session Id, click the Kill Session button to
terminate the session.

KillProcess: After entering the Process Id, click the Kill Process button to
terminate the process.
Model Office Reference Manual 56 Copyright IBM Corp. 2001, 2002

©
Message profile Tab

Figure 17: Message profile tab.

The Message Profile is a configurable table of flags and other values that can be
toggled to change the way messages of a specific type are processed through
WMQI Enabler. This Tab allows the user to read or update message profiles in the
WMQI Enabler Database.

GetMessageProfile: Enter a Message Type Name and click the Get button to read
all Non-Null fields from the entry in the MESSAGE_PROFILE_TABLE.

UpdateMessageProfile: Enter a Message Type Name and all fields necessary for
this Message Type. Click the Update button to update that entry in the
MESSAGE_PROFILE_TABLE.
WMQI Enabler - Configurator 57 Copyright IBM Corp. 2001, 2002

©
The fields in the message profile tab are explained below:

Message Type Name: Required Field. This is determining value for what type of
message is flowing through the hub. The Message Type Name determines which
message profile is pulled from the MESSAGE_PROFILE_TABLE.

MQSI Session Validation: Select this radio button if you want this message type
to utilize session validation.

MQSI Message Sequence Validation: Select this radio button if you want this
message type to utilize message sequence validation.

MQSI System Interaction Check: Select this radio button if you want this
message type to utilize system interaction checking. This will allow WMQI Enabler
to determine whether required systems are available to receive this message.

WorkFlow Management: Select this radio button if you want this message type to
utilize a WorkFlow Process template.

MQSI Message Enabled: Select this radio button if you want this message type to
be enabled. This will allow this type of message to pass through WMQI Enabler.

Generate Trace: Select this radio button if you want tracing to be turned on when
this type of message flows through WMQI Enabler.

Publish: Select this radio button if you want this message type to be published to
subscribers.

Allow Publish Override: Select this radio button if you want this message type to
published in the case that a field in the message is set to 'publish = true' even
though the above field radio button is off.

Publish Errors: Select this radio button if you want this message type to publish
any errors which may occur during processing through WMQI Enabler.

WorkFlow Symbolic: Specifies the SDR symbolic to be used when determining
which queue and queue manager to put messages which are destined for
MQSeries Workflow.

Default Destination Symbolic: Specifies a default destination symbolic to be
used in SDR in case the message does not have a destinationLogicalId.

Message Type Dependency: In the case of using MQSI Message Sequence
Validation, this tells WMQI Enabler what message type must occur immediately
before the current message type.

Hub Queue Manager: Specifies a default queue manager for WMQI Enabler.

WorkFlow Queue Manager: Specifies a default queue manager for MQSeries
Workflow.

WorkFlow Queue: Specifies a default queue for MQ Series Workflow.

WorkFlow Reply To Queue Manager: Specifies a default queue manager for
MQSeries Workflow to which to reply.
Model Office Reference Manual 58 Copyright IBM Corp. 2001, 2002

©
WorkFlow Reply To Queue: Specifies a default queue for MQSeries Workflow to
which to reply.

WorkFlow Process Name: Specifies a default Workflow process template to use
for this message type.

WorkFlow Data Structure Name: Specifies a default Workflow data structure to
use when building messages destined for MQSeries Workflow.

Publish Topic: Specifies a topic under which this message type will be published
if publishing is used.

System Interaction List: Each item is a system that this message will use at some
point in processing.

System Symbolic: The symbolic value of the system.

Message Type Name: Should coincide with the Message Type Name at the
top of the Tab

Required Interaction Flag: True if this system is absolutely required for this
message type to be processed. False otherwise.

System Backup: The symbolic value of the next backup system in line if this
system is down.

WorkFlow Parameters List: Listing of any extra fields that should be added to the
WorkFlow container section for messages utilizing MQSeries Workflow.

Parameter Name: The name of the field as it appears in XML.

Parameter Path: The path that should be used to pull this value from the
message and put it into the container section.
Example: Message.COMMAND.cmdStatus

Default Value: Specifies a value to put in this field if it cannot be found in the
path specified.

Required Parameter Flag: True specifies that the parameter is required.
Code should respond with an error if no value can be found in the path or in
the default value field.

The Add Row/Delete Row: For these last two sections add and delete rows from
the text area, respectively.
WMQI Enabler - Configurator 59 Copyright IBM Corp. 2001, 2002

©
SDR entry tab

Figure 18: SDR entry tab.

Use this tab to define Queue and Queue Manager by System Symbolic. This table
will be used for routing messages destined for a particular system.

GetSDREntry: Enter a valid System Symbolic and click the Get button to see what
Queue and Queue Manager receive messages for this system.

UpdateSDREntry: Enter a valid System Symbolic, Queue and Queue Manager.
Click the Update button to see change the entry in the SDR_TABLE.

The fields in the SDR entry tab are explained below:

System Symbolic: The symbolic name for the system.

Queue Manager: The name of the queue manager used by this system.

Queue: The queue from which this system reads.
Model Office Reference Manual 60 Copyright IBM Corp. 2001, 2002

©
NLS entry Tab

Figure 19: NLS entry tab.

This tab is used to read and update the Natural Language Support function of
WMQI Enabler.

GetNLSEntry: Enter a valid Message Number and click the Get button to see the
corresponding table entry.

UpdateNLSEntry: Enter a valid Message Number and fill in the required Section
List fields. Click Update to make changes to the
NLS_ERROR_MESSAGE_TABLE.

The fields in the NLS entry tab are explained below:

Section List: Defines a NLS error message by section.

Section: The section number. Should start at 1 and go up incrementally by 1.

Text Only: True if message is text only. False otherwise.

Space before: True if a space is required before this section of the message.

Space after: True if a space is required after this section of the message.
WMQI Enabler - Configurator 61 Copyright IBM Corp. 2001, 2002

©
The Add Row/Delete Row: For these last two sections add and delete rows from
the text area, respectively.

Install Tab

Figure 20: Install tab.

Allows the user to read or update entries in the INSTALL_DATA_TABLE.
GetINSEntry: Click the Get button to see the data for your hub installation.

UpdateINSEntry: Enter data in each field and click Update to add/change data for
your hub installation.

The fields in the Install entry tab are explained below:

Hardware Platform: Platform of WMQI Enabler is installation. Example, 'NT'

Product Version: WMQI Enabler product version. For Example: 01

Default Language: Default language code for the system.
For example: US English = 10.
Model Office Reference Manual 62 Copyright IBM Corp. 2001, 2002

©
Subscription tab

Figure 21: Subscription tab.

Allows the user to Register and drop subscriptions. All fields are required for
registering and dropping subscriptions. The command for registering is 'RegSub'.
The command for dropping (de registering) is 'DeregSub'.

SetSubscription: Enter values in each field and click Update to register or drop a
subscription. The subscription will be registered/dropped per topic for just one
queue and queue manager.

The fields in the subscription tab are explained below:

Command: 'RegSub' to register a subscription. 'DeregSub' to drop (deregister).

Topic: Topic about which subscriber wishes to receive publications.
For example: 'AddParty'

Queue Manager: Queue Manager to which publications should be published.

Queue: Queue to which publications should be published.
WMQI Enabler - Configurator 63 Copyright IBM Corp. 2001, 2002

©
The Add Row/Delete Row: For these last two sections add and delete rows from
the text area, respectively.

CRF tab

Figure 22: CRF tab.

This Tab allows the user to perform CRF actions.

CRF: The actual code that would appear in an WMQI Enabler header
CrfActionGroup should be put in the text field. Click the Send button to send the
message.

The CRF message page is different in that it is a “free for input” page where you
would put the actual XML that made up the CRFActionGroup. The input field is
initialized with the XML structure of the CRFActionGroup as a pattern.
Model Office Reference Manual 64 Copyright IBM Corp. 2001, 2002

©
XML Tab

Figure 23: XML tab.

This page shows the actual Request/Response XML generated by the actions
performed on the other Tabs.

Last Request: Displays the last Request message.

Last Response: Displays the last Response message.
WMQI Enabler - Configurator 65 Copyright IBM Corp. 2001, 2002

©
 Appendix
 Notices

This information was developed for products and services offered in the U.S.A. and
Europe. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
Model Office Reference Manual 66 Copyright IBM Corp. 2001, 2002

©
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you. Licensees of this program who
wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:

IBM United Kingdom Laboratories
Hursley Park
WINCHESTER, Hampshire
SO21 2JN
United Kingdom

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-
level systems and there is no guarantee that these measurements will be the same
Notices 67 Copyright IBM Corp. 2001, 2002

©
on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify,
and distribute these sample programs in any form without payment to IBM for the
purposes of developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.
Model Office Reference Manual 68 Copyright IBM Corp. 2001, 2002

©
Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© Copyright IBM Corp. 2000, 2001. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks or services of IBM Corporation in the United
States or other countries or both:

IBM®
MQSeries®
DB2®
IAA®
Insurance Application Architecture®

Rational Rose® is a trademark of Rational Software Corporation in the United
States or other countries or both.

OAG is a trademark of the Open Architecture Group in the United States or other
countries or both.

Other company, product, and service names may be trademarks or service marks
of others.

Permission statement
Copyright © 2001 Interactive Financial eXchange Forum. All Rights Reserved.

Redistribution and use of this material for both commercial and noncommercial
purposes are permitted subject to the below-stated conditions:

1. This Permission Statement shall be reproduced in its entirety in each copy of
the material;

2. This material is provided AS IS without warranty of any kind, including but not
limited to, any warranty of noninfringement or any warranty (express or
implied) of merchantability or fitness for a particular purpose; and

3. The material may be modified provided

a. Prior written notice of each modification is provided to the Interactive
Financial eXchange Forum at the address listed below,
Notices 69 Copyright IBM Corp. 2001, 2002

©
Interactive Financial Exchange Forum, Inc.
333 John Carlyle Street
Suite 600
Alexandria, VA 22314
U.S.A.

b. Any redistribution of modified materials shall be accompanied by a notice
that modifications have been made and a clear description of the
modifications, and

c. The party making the modifications assumes all responsibility for the
consequences of the modifications.
Model Office Reference Manual 70 Copyright IBM Corp. 2001, 2002

©
 Glossary

This glossary defines terms and
abbreviations used in this book. If
you do not find the term you are
looking for, see the Index or the IBM
Dictionary of Computing, New
York: McGraw-Hill, 1994.

A

API: Application Programming
Interface
(1) A software interface that enables
applications to communicate with
each other. An API is the set of
programming language constructs or
statements that can be coded in an
application program to obtain the
specific functions and services
provided by an underlying operating
system or service program.

(2) In VTAM, the language structure
used in control blocks so that
application programs can reference
them and be identified to VTAM.

C

Class
(1) A UML class. A description of an
object. (2) refers to object oriented
programming, a description of a set
of similar objects.

D

DB2
An IBM relational database
management system that is
available as a licensed program on
several operating systems.
Programmers and users of DB2 can
create, access, modify, and delete
data in relational tables using a
variety of interfaces.

E
EID: Enterprise Integration
Domain

EIDBe: Enterprise Integration
Domain Back-end

I

IAA: Insurance Application
Architecture
IBM's business model for the
insurance and financial services
industry.

IAA-XML: Insurance Applica-
tion Architecture-eXtensible
Markup
Language.
The Common Language used
across integrated applications in
MQSeries.
Glossary 72 Copyright IBM Corp. 2001, 2002

© C
L

Log
A record of a sequence of
operational activities on a computer.

M

MQSeries
Pertaining to a family of IBM licensed
programs that provide message
queuing services.

O

Object
Instance of a class.

P

Party
Any person or organization that the
insurance company has, or had, or
may have a business interest in.

Q

Queue
An MQSeries object. Message
queuing applications can put
messages on, and get messages
from, a queue. A queue is owned
and maintained by a queue
manager. Local queues can contain
a list of messages waiting to be
processed. Queues of other types

cannot contain messages: they point
to other queues, or can be used as
models for dynamic queues.

S

SQL: Structured Query Lan-
guage
A programming language that is
used to define and manipulate data
in a relational database. It is often
embedded in general purpose
programming languages.

U

UML: Unified Modeling Lan-
guage

W

WMQI Enabler: WebSphere MQ
Integrator Enabler
A complete scalable messaging and
information integration add-on to the
MQSeries family of products.
Especially designed for the needs of
the financial services industry, WMQI
Enabler can integrate front-end
systems with back-end systems
using a hub/spoke architecture using
XML as the common vocabulary
across systems.
Model Office Reference Manual 73 opyright IBM Corp. 2001, 2002

©
X

XML
eXtensible Markup Language. XML
is a markup language for message
definition, and is an open and public

domain standard. XML is a subset of
SGML designed for easy
implementation in commercial and
web environments.
Glossary 74 Copyright IBM Corp. 2001, 2002

 75

©
 Index

A
Adapter programs 1
attribute values 40

B
built-in impedance 3

C
common model 3
communication requirements 3
configuration file 30
CRF message 64

I
IBM Business Partners 1
implementation 4
Interface Design Model 3
ites 14

L
language code 55, 62
Logoff 53
Logon 53

M
message flows 21
message profile 6
MQ managers 41
MQ server/client 41
MQReceiver 21, 36
MQSender 21, 34
MQSeries applications 21
MQSFSE header 64

N
new SDREntry 8

NLS entry 61

P
Pre-defined TestSuites 22
predefined TestSuites 26

R
request message 12
request/response 9, 10
Request/Response XML 65
response message 12

S
Saved Preferences 47
SDR entry 60
symbolic name 55
system interaction diagrams 1
System Symbolic 54, 55

T
target systems 5
testing 4
TestSuite 14, 31
testsuite 11
TestSuites 22

U
understandable format 3
Update message 52
UseCaseGroup 27
UseCaseGroups 33

X
XML language 1
XML Message View 47
Index 74 Copyright IBM Corp. 2001, 2002

©
Copyright IBM Corp. 2001, 2002 Model Office Reference Manual 75

	About this book
	Who should read this book
	Terminology used in this book
	How to get additional information
	How to send your comments

	Chapter 1 Introduction
	Chapter 2 Options for XML languages
	Chapter 3 Message setup quick start
	Message construction process
	Identify source and target systems
	Define message profile requirements
	Build Message profile message
	Setup a workflow in MQSeries Workflow
	Define System Symbolic(s) and SDR requirements
	Build SDR message
	Build SystemRestart message
	Build a request message
	Build a response message
	Create a TestSuite

	Message debugging/execution process
	Define any new MQSeries entities
	Start MQTester
	Debug message profile message
	Debug back-end system SDR message
	Debug back-end SystemRestart message
	Debug HubTest request message
	Debug HubTest response message
	Revise TestSuite for ease of use

	Chapter 4 MQTester
	Role of MQTester
	Installing MQTester
	MQTester overview
	Using MQTester
	Configuration possibilities

	How to set up an adapter test environment
	How to develop an MQTester TestSuite
	TestSuite file
	TestSuite tag
	UseCaseGroup tag

	MQSender tag
	MQReceiver tag
	Compare 'Ignore' notation
	Transfer notation
	SessionId propagation

	Using MQTester remotely
	Connecting using MQ server/client
	WMQI Enabler machine (MQManager MQSIQM)
	MQTester machine (MQ Client)

	Connecting two MQ Managers via channels
	MQTester machine (MQManager TESTQM)
	WMQI Enabler machine (MQManager MQSIQM)
	Start the channels
	MQTester configuration
	MQTester UpdateSDREntry commands

	Chapter 5 WMQI Enabler - Configurator
	Overview
	Additional features

	Installation
	Prerequisite software
	Installation

	Configuration
	WMQI Enabler - Configurator configuration
	Configuration fields

	Sending WMQI Enabler messages
	Using the WMQI Enabler - Configurator
	Logon tab
	System tab
	System profile Tab
	Session tab
	Message profile Tab
	SDR entry tab
	NLS entry Tab
	Install Tab
	Subscription tab
	CRF tab
	XML Tab

	Appendix - Notices
	Trademarks
	Permission statement

	Glossary
	Index

