
WebSphere® MQ Integrator Enabler

Application Integration Guide

IBM

NOTE:

Before using this information and the product it supports, read the information in
Notices on page 26.

Fifth Edition (June 2002)

© Copyright International Business Machines Corporation 2001, 2002.
All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Printed in USA.

©
 Contents

Contents . i

About this book . iv
Who should read this book. iv
Terminology used in this book . iv
Prerequisite and related information . iv
How to get additional information. iv
How to send your comments . v

Chapter 1 Introduction . 1
Planning for adapter development . 2

Chapter 2 Adapter services . 3
Overview of services . 3
MQMD header . 5
WMQI Enabler message header . 6
Wrappering. 9

Implementing Wrappering Adapters . 9

Chapter 3 Requirements for generating messages . 11
Application roles. 12

System of truth . 12
Non-system of truth . 12

Responsibilities when using publish/subscribe . 13
Change CRF information . 14

Chapter 4 Adapter message flows. 16
Processing a message. 16
Sending a request message. 17
Ensuring delivery to target destination . 18
Reply . 20

Chapter 5 Adapters and cross-referencing. 21
Approach for using CRF, option 1 (CRF without rollback) 23
Alternate approach for CRF, option 2 (CRF with rollback) 24
CRF processing requirements . 24
Contents i Copyright IBM Corp. 2001, 2002

©
Notices . 26
Trademarks . 29
Permission statement. 29

Glossary . 51

Index. 53
Application Integration Guide ii Copyright IBM Corp. 2001, 2002

©
 About this book

This publication is intended to illustrate how applications integrate with WebSphere
MQ Integrator Enabler (WMQI Enabler). It does not address the construction of
adapters other than as a brief discussion of possible approaches to building
adapters. In addition, the approach of the document presumes that all applications
participating in the enterprise via WMQI Enabler are using XML messages.

Who should read this book
Information technology professionals who will be developing adapters.

Terminology used in this book
All new terms introduced in this book are defined in the Glossary.

This book uses the following short names:

• MQSeries: a general term for IBM MQSeries messaging products.

• MQAO: a general term used for the MQSeries Adapter Offering.

Prerequisite and related information
It is assumed that the reader is familiar with XML.

How to get additional information
Visit the following home page at:

http://www.ibm.com/software/mqseries/support/

By following this link you can find:

• The latest information about MQSeries family of products.

• Download Support Packs.

• Access FAQs.

• Access MQSeries family publications library.
About this book iv Copyright IBM Corp. 2001, 2002

©
How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments or suggestions about this book or any other
WebSphere MQ Integrator Enabler documentation:

• By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

• By fax:

- From outside the U.K., after your international access code use
44-1962-816151

- From within the U.K., use 01962-816151

• Electronically, use the appropriate network ID:

- IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink: HURSLEY(IDRCF)
- Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

• The publication title and order number

• The topic to which your comment applies

• Your name and address / telephone number / fax number / network ID
Application Integration Guide v Copyright IBM Corp. 2001, 2002

©
About this book vi Copyright IBM Corp. 2001, 2002

©
Application Integration Guide vii Copyright IBM Corp. 2001, 2002

©
 Chapter 1
 Introduction

This document describe how applications can integrate with WebSphere MQ
Integrator Enabler (WMQI Enabler). WMQI Enabler provides the ability to integrate
front-end applications with back-end applications in a non-invasive method, using
a common XML vocabulary.

The figure below illustrates the intended use of WMQI Enabler:

Figure 1: Intended WMQI Enabler use.

The boundary of WMQI Enabler is where application specific information must be
translated into the XML message dialect understood by WMQI Enabler. Generally,
adapters are used to provide the application to WMQI Enabler semantic translation
services, but in some cases, applications contain native support for the required
message dialect.

A
d
a
p
t
e
r
s

Logging

Cross-
referencing

Caching

Symbolic
Destination
Resolution

A
d
a
p
t
e
r
s

Any other
access

Agents

Web Portal

Legacy 1

Legacy 2

Legacy 3

CRM

Message

Delivery

Message Manipulation

Process

Management

Integration
Files

BP
Application

MQSFSE
Header

+
XML

Tracing Store &
Forward

Message
Profile

Session
handling

Application
profile

Units of work

A
d
a
p
t
e
r
s

Logging

Cross-
referencing

Caching

Symbolic
Destination
Resolution

A
d
a
p
t
e
r
s

Any other
access

Agents

Web Portal

Legacy 1

Legacy 2

Legacy 3

CRM

Integration
Files

BP
Application

Tracing Store &
Forward

Message
Profile

Session
handling

Application
profile

Units of Work

Process
Management

Message
Manipulation

Message
Delivery

Application
Introduction 1 Copyright IBM Corp. 2001, 2002

©
NOTE Adapters used in this manual have the same meaning as adapter
programs.

Planning for adapter development
The following steps will help ensure that adapters built for WMQI Enabler are
sufficiently robust to withstand unanticipated changes to the enterprise:

1. Use cases should be mapped against an appropriate industry specific model
in order to validate the proposed messaging objectives. Examples are
Insurance Application Architecture (IAA) for insurance, Interactive Financial
eXchange (IFX) for retail banking, and Open Application Group (OAG) for
generic Customer Relationship Management (CRM) and supply chain
activities. The resulting interaction diagrams can then be used to ensure that
the anticipated messaging makes sense from a subject matter perspective.

2. Map the data element requirements across all of the WMQI Enabler
application participants for a particular use case. This mapping ensures that
the messages are sufficiently verbose that all adapters can drive the required
processing with the data contained in the messaging.

3. Identify the roles applications will play in the WMQI Enabler integrated
enterprise. These roles will add additional requirements that must be handled.

4. Construct the messages.

5. Build the adapters.

The remainder of this document provides the technical details associated with
integrating applications for operation with WMQI Enabler.

Adapters are typically used to translate application specific data representations
into those supported by the dialect used within WMQI Enabler. Adapters are
discussed in this document from the following perspective:

1. The services that an adapter must provide.

2. How messages must be used by applications in order to maintain data
integrity.

3. How applications can correlate request and response messages.

4. How adapters drive the WMQI Enabler cross-reference function that allows
the adapted applications to process common entities using local key
definitions.
Application Integration Guide 2 Copyright IBM Corp. 2001, 2002

©
 Chapter 2
 Adapter services

There are two ways to generate WMQI Enabler compatible messages.

The first is to take a message set defined externally to WMQI Enabler and wrapper
it with a header that allows WMQI Enabler to process the message. This approach
is generally used when some number of applications already support an XML
message set and it is decided that this message set is appropriate as the basis for
integrating the environment. The "wrappering" process is talked about in more
detail later.

The second approach is to use an adapter that translates an application’s specific
semantics data into an internal message set that was defined specifically as the
means for integration using WMQI Enabler. In this case, the adapter does both the
message transformation and header creation. Adapters for internal message sets
are usually written by the owners of the applications to be adapted, as it requires a
great deal of experience with a particular application to map its API's to the
appropriate XML message definitions. Building adapters to wrap existing
messages on the other hand requires knowledge of the message set.

Regardless of the approach used, messages must be used in a way that maintain
the integrity of the applications being adapted. In order to integrate internal
message sets with WMQI Enabler, an adapter must provide the set of services
described in the following section.

Overview of services
The services that WMQI Enabler compatible adapters must support are as follows:

1. The adapters are responsible for generating the WMQI Enabler header
information, which includes:

Symbolic routing information for defining the application that was the
source of the message and the intended target destination of the message
(the message profile can also be used to define the symbolic destination).

Cross reference control information for driving the translation process
between system specific keys.

Message processing information that will be used to drive a specific
message though a predefined set of activities.

Correlation of request and response messages through the WMQI
Enabler message correlation infrastructure.
Adapter services 3 Copyright IBM Corp. 2001, 2002

©
2. The adapters are responsible for loading and unloading the XML message
data content by translating application specific data into and out of the
appropriate XML representation that includes:

Creating messages that adhere to the WMQI Enabler XML standard.

Managing the application data aggregation associated with the XML
message content going into and out of the application. Generally,
applications do not manage their data at the same granularity that the
XML message provides. As a result, the adapter must ensure that the
application receives the data in the form in which it is expecting to maintain
data integrity.

3. Each interaction between an adapter and its corresponding application must
be an atomic unit of work. An application cannot rely on successive messages
to maintain consistency; instead, consistent state must be the result of each
message interaction. This consistent state is necessary to allow the WMQI
Enabler components that are responsible for rollback and recovery, to treat
each external interaction as either successfully completed or successfully
rolled back to a valid state.

4. The adapter must be capable of informing WMQI Enabler of events that
change the required cross-reference key entries for entities managed by
WMQI Enabler. All events that cause add, delete, and update actions against
managed keys must be communicated to WMQI Enabler. For example, an
application adds a party entry; it must send a message to WMQI Enabler that
creates a cross- reference entry. That entry can be used later as part of a
translation process when the party is referenced in messages to other
applications integrated with WMQI Enabler.

5. Adapters must define their response queues using the MQSeries Message
Descriptor (MQMD) infrastructure.

6. Adapters must provide support for recovery of a message if the adapter’s
application should encounter problems such as a failure. Although WMQI
Enabler has full recovery capability, WMQI Enabler may require the adapter
to recover the message processing.

7. The adapters are responsible for handling application security requirements.
The adapters use the information in the user identification tags in the WMQI
Enabler and MQMD headers to satisfy application authentication and
authorization requirements. In some cases, this determination requires
custom application changes.

8. Logging is utilized for the purposes of creating audit trails for activities in and
out of the application that the adapter is driving.

The way these services are implemented is based on loading the appropriate
information into WMQI Enabler messages.
Application Integration Guide 4 Copyright IBM Corp. 2001, 2002

©
The WMQI Enabler message header is illustrated in the figure below:

Figure 2: WMQI Enabler message header.

The MQSeries Message Descriptor (MQMD) is the standard MQSeries message
header and is used extensively by WMQI Enabler components to drive processing
through the MQSeries Family of products. The WMQI Enabler header is used to
specifically drive processing through the WMQI Enabler functions. The remainder
of the message is the data content represented by the selected XML language
dialect.

MQMD header
WMQI Enabler uses the MQMD header to drive MQSeries processing. This means
the adapter must load appropriate values within the MQMD. Conventions must be
established for the enterprise that define the kinds of values all adapters must use.

An example is the Report and Feedback fields within the MQMD. These fields drive
processing that is not specifically related to WMQI Enabler. They are instead
related to how MQSeries itself provides feedback to applications about messaging
activity. It is important that all WMQI Enabler implementations spend the time
defining what features and services will be used from the MQSeries Family of
products and explicitly determining what is related to WMQI Enabler processing.
For more information on MQMD, fields see the MQSeries Application
Programming Reference.
Adapter services 5 Copyright IBM Corp. 2001, 2002

©
Certain MQMD fields are directly manipulated by WMQI Enabler. These fields are:

Expiry: This is a period of time expressed in tenths of a second, set by the
application that puts the message on the queue. The message becomes
eligible to be discarded from the destination queue once this period of time
elapses.

MsgId: This is a byte string that is used to distinguish one message from
another.

CorrelId: This is a byte string the application can use to correlate one
message to another or to other work that the application is performing.

ReplyToQ: This is the name of the message queue to which the receiving
application should send it's reply messages (MQMT_REPLY) and or report
messages (MQMT_REPORT).

ReplyToQMgr: This is the name of the queue manager to which the reply
message or report message should be sent.

UserIdentifier: This is part of the identity context of the message. It identifies
the user who originated the message to the MQSeries Family infrastructure,
and is used to validate access to the various MQSeries Family components
used in the WMQI Enabler.

MsgType: This indicates the type of message being processed. WMQI
Enabler requires that request messages use the MQMT-REQUEST flag and
response messages use the MQMT-REPLY flag.

The way in which WMQI Enabler uses these fields is discussed in more detail
through the remainder of the document. WMQI Enabler also uses fields in the
WMQI Enabler Message header to drive processing. The WMQI Enabler header
fields are defined in the following section.

WMQI Enabler message header
Once the MQMD fields have been filled in with appropriate values, the WMQI
Enabler message header fields need to be loaded based on the content and
context of the XML command an adapter wishes to execute. It is important to
address the specific set of fields that are used to drive processing.

The following list of fields are associated with integrating applications with WMQI
Enabler. The message header field names and their usage is as follows:

sourceLogicalId: This is the symbolic name used to represent the application
that generated the message. This value can be resolved by the Symbolic
Destination Resolution (SDR) function into a specific queue and queue
manager name for routing purposes. Additionally, this value can be used
within MQSeries Workflow to identify the process associated with the
message request. This value should also match the value coded in the
AlternateId tag attribute named sourceLogicalId.
Application Integration Guide 6 Copyright IBM Corp. 2001, 2002

©
destinationLogicalId: This is the symbolic name used to represent the
application to which this message is to be routed. This value can be resolved
by the SDR function into a specific queue and queue manager name for
routing purposes. Although the WMQI Enabler message header supports
multiple destinationLogicalIds, one for each CrfActionGroup, WMQI
Enabler currently only routes based on the first destinationLogicalId
encountered.

authenticationId: This ID is to be used for authorizing access to specific
functions. This value can be used within MQSeries Workflow to identify and
validate the role of the entity requesting this message. This value may be
different from the UserIdentifier in the MQMD which is used to validate access
to MQSeries family resources. WMQI Enabler also uses the authenticationId
as a part of the simple authorization process provided with a WMQI Enabler
Logon command.

sessionId: This is the session ID supplied by WMQI Enabler when a Logon
command is processed. It is used during WMQI Enabler session validation.

bodyType: This field is used to identify the type of message to be processed.
For example: WorkFlow indicates that this message was generated by
WorkFlow, HUBONLYONLINE indicates this is a hub only online message,
and IAA-XML indicates this is a message with an IAA structure.

publish: This field indicates whether or not publishing is desired for this
message. This field can be overridden by the message profile.

ErrorInfo: This structure is intended to contain error information associated
with WMQI Enabler processing, and is used by WMQI Enabler itself.

bodyCategory: Body category is used to identify the specific MQSeries
Workflow process that is used for this message type. This tag is also used to
identify the message type to WMQI Enabler. It can, but is not required to be
the same as the command value that it is connected to by the CrfActionGroup
reference ID. The contents of this tag no longer requires the request/response
suffix as it did in the previous version of WMQI Enabler. Instead,
request/response is indicated by the MQMD MsgType.

KeyGroup: KeyGoups are defined per aggregate contained in a particular
command. Related by refId. If an aggregate has multiple keys, multiple
alternate ids are needed within the KeyGroup. This assumes all keys are
related by UUID and have the same keyGroupType. There can be multiple
KeyGroups per CrfActionGroup depending on the structure of the XML
command.

NOTE: There can be more KeyGroups than there are aggregates for a
command, but there has to be at least one KeyGroup for each aggregate
containing a reference Id. The reason for this is that the number of KeyGroups
Adapter services 7 Copyright IBM Corp. 2001, 2002

©
has to be flexible enough to represent the appropriate activities for the CRF in
order to maintain the required UUID relationships, but each aggregate
requires a key so that it can be referenced.

The fields' destinationLogicalID and bodyCategory can be loaded as default values
and then overridden for each command. This allows the potential for each
command to be handled independently. However, this feature is not currently
supported by WMQI Enabler and would require customization to enable.

Now that the fields that control processing have been identified, it is necessary to
describe how applications and their associated adapters must use the XML
messaging semantic.

Below is a sample WMQI Enabler header:

<Message id="M5441920" sessionId="2914320" version="1.4"
bodyType="XML" timeStampCreated="2000-10-22-08.00.00"
sourceLogicalId="FrontEnd" destinationLogicalId="BackEnd"
authenticationId="SysAdmin" crfCmdMode="alwaysRespond"
publish="true">

<Default>

 <DefaultCurrency>USD</DefaultCurrency>

</Default>

<CrfActionGroup bodyCategory="AddPerson" crfPublish="true"
crfCmdMode="alwaysRespond" destinationLogicalId="BackEnd">

 <CommandReference refid="CMD1"/>

<KeyGroup id="K1" keyGroupType="Person">

<AlternateId value="123450050" sourceLogicalId="FrontEnd"
state="add"/>

 </KeyGroup>

<KeyGroup id="K2" keyGroupType="PostalAddress">

 <AlternateId value="123450050" sourceLogicalId="FrontEnd"
state="add"/>

 </KeyGroup>

<KeyGroup id="K3" keyGroupType="TelephoneNumber">

 <AlternateId value="123450050" sourceLogicalId="FrontEnd"
state="add"/>

</KeyGroup>

</CrfActionGroup>

<ErrorInfo>

<COMMAND>
Application Integration Guide 8 Copyright IBM Corp. 2001, 2002

©
Wrappering
As stated earlier, wrappering is the process used to add an WMQI Enabler header
to a message so that it can be used by the hub.

Wrappering is both a flexible and an extensible way to provide the capability of
handling a variety of business situations.

The wrappering message structure is illustrated in the figure below:

Figure 3: WMQI Enabler message structure for IAA.

Specific examples of the XML architecture are offered in Industry Reference
Manuals to assist in the preparation of the adapter programs. The WMQI Enabler
header contains the critical information for the product including the identification
of the XML architecture being employed. Therefore, the product users, while
restricted to XML, are not confined to one XML dialect, but may decide what
architecture fits with their strategic objectives.

Implementing Wrappering Adapters
A key issue that must be addressed when wrappering a message set is to
determine the topology. Regardless of the approach, care must be taken to insure
that the capabilities of the adapters are addressed as a part of an WMQI Enabler
implementation. In the case of the MQAO example there are essentially two
approaches.

Message hub Header

MQMD Header

<Command>

</Command>

Message Content (OAG, IAA, IFX...)
Adapter services 9 Copyright IBM Corp. 2001, 2002

©
First, adapters can be written to generically deal with a specific message.

Second, adapters can be written to support specific applications.

The approach taken depends on the type and number of applications to be
integrated. Generally this ends up being a decision on whether to duplicately
deploy message oriented adapters (adapting systems), or to externally implement
routing (adapting specific messages). When adapting for systems,WMQI Enabler
provides the symbolic destination capabilities. The challenge for the adapter writer
is to determine how to create the proper combination of adapters to support the
specific message requirements of an application. Essentially some number of "fat"
adapters or physical grouping of adapters is created for an application. The hub
delivers the messages to the application's queue and the adapter group processes
the messages for the application.

The other option is to route all messages to a particular type of adapter designed
for those types of messages. In this case WMQI Enabler is merely resolving the
symbolic destination to a specific queue of an adapter, and the adapter technology
itself must then determine where to deliver the specific messages.

Regardless of the approach the adapters must still insure that the messages are
correlated properly and returned to the replyToQueue and replyToQueueManager
as specified by WMQI Enabler.
Application Integration Guide 10 Copyright IBM Corp. 2001, 2002

©
 Chapter 3
 Requirements for generating messages

In order to properly integrate applications with WMQI Enabler the appropriate
message set must be selected. WMQI Enabler supports external standards based
messages like OAG, IAA, and IFX. WMQI Enabler also supports internal message
sets based off of the WMQI Enabler interface design model (IDM).

Once the message set is selected, there are a number of requirements that must
be satisfied when generating messages that can be successfully processed by
WMQI Enabler.

1. Messages must be well-formed and valid XML messages based on the XML
message specification and the appropriate DTD. This ensures that the
messages will be usable through out the WMQI Enabler integrated enterprise.
While it is certainly possible to write custom flows within WMQI Enabler to
validate message content, by default WMQI Enabler relies on the end-points
to do this validation (although it is possible to update message content as a
part of processing within a workflow using MQSeries Workflow). When the
transactional message processing supervisor is used, the activities can
request access to and update any tag within the XML message. Access to the
message content is made available within the MQSeries Workflow activity
and the MQSeries Workflow profile table.

2. End-points must ensure that the generated XML messages maintain
application integrity as these applications transition from one valid state to
another. WMQI Enabler architecture presumes all workflow activities are
supported by message implementations that can be processed as complete
units of work in order to facilitate restart and recovery. As long as the
application is in a valid state, after completion of a message, then this
requirement has been satisfied. An example, in the case of a fictitious
GetAgreement message that contains both policy and client information
would be to store the client information with a pending status that would not
be activated until the GetAgreement response message is received.

There are two reasons for an application to generate messages.

1. To respond to a message.

2. To notify the rest of the systems in an WMQI Enabler infrastructure when data
has changed.
Requirements for generating messages 11 Copyright IBM Corp. 2001, 2002

©
Application roles
As stated earlier, the role an application plays dictates specific requirements for the
Implementation of the use case within the environment. The adapter for an
application generally does not need to know the role the adapted application is
playing, unless certain cross referencing design patterns are used. See the
Adapters and Cross-Referencing section "Approach for using CRF option 1
(CRF without rollback)."

System of truth
When the role of the application is the system of truth, then there are special
requirements. “System of truth” refers to the singular system in the enterprise
responsible for maintaining the correct information for an entity. There may be
multiple systems of truth for a type of entity, such as clients, but there should be a
clear delineation as to which system manages which client. If there is not, then the
systems that redundantly make up the systems of truth must be treated as one
entity for WMQI Enabler. In this case, a workflow is required that interrogates the
success of the systems of truth to insure that events are processed such that the
applications remain synchronized.

Regardless of who the system or systems of truth are, all requests for message
processing should be sent to it in order to preserve data integrity throughout the
topology. Routing requests to the system of truth allows those systems to insure
that the event is validated by applicable business rules. This routing is generally
handled within WMQI Enabler by implementing an appropriate MQSWF workflow
to ensure message requests are sent to the appropriate target applications. See
the WMQI Enabler Planning Guide and Development Guide for more details on
how these tasks are accomplished.

It is the responsibility of all integrated applications to publish the result of a
message event to the hub so that it can be received by other interested parties in
the environment. In some cases, this publishing may be accomplished via a simple
response message, other times it may require the use of a publish and subscribe
mechanism. The decision is made based on the requirements captured in the use
case and the steps documented earlier.

Non-system of truth
When the application is not the system of truth, the adapter is responsible for
notifying the system of truth of the changes to internally managed data; as well as
requests for changes to data managed externally to the application. This type of
notification means applications must be aware of their internal activities to trigger
the appropriate XML messages to be generated. In this case, MQSWF is used with
WMQI Enabler to handle message delivery to the appropriate applications.
Application Integration Guide 12 Copyright IBM Corp. 2001, 2002

©
The application should also be capable of handling messages when the system of
truth notifies that the request has been rejected. In this case, the originating system
now needs to adjust its data appropriately, which is defined based on how the use
case specifies to handle this situation.

Responsibilities when using publish/subscribe
Two message delivery methods were described. The first was MQSWF driven. The
second was MQSeries Integrator Publish/Subscribe.

NOTE Access to Publish/Subscribe could be MQSWF driven, but the difference
between this and using MQSWF activities alone is the indeterminate nature of
when a subscription is satisfied by a publication. As a result, when
Publish/Subscribe is used the originating application must be prepared for the
latency inherent in this approach.

The latter approach adds a few additional requirements on an adapter. When
MQSeries Publish/Subscribe is used, the adapter is responsible for insuring the
sequencing of internally processed events, with those coming from the subscription
queue to ensure that processing occurs in the correct order.

An additional requirement is that by convention, adapters generating publications
and those using subscriptions must be kept in sync by defining topics at the level
of granularity matching what is specified in the XML vocabulary's aggregate
definitions. The reason for this is the aggregates specify the granularity of the keys
within the CRF, thus defining the level of detail at which applications can
communicate through WMQI Enabler. This complicates matters because as
previously discussed, XML aggregates may not match internal application data
requirements. See the MB-XML Architecture Book for more insurance industry
specific details.

MQSeries Publish/Subscribe functionality can assure delivery of published data,
but only the current version of the publication is retained. Using current
functionality, published messages must be sufficiently verbose allowing
subscribers access to whatever message content is required to synchronize the
environment. In the future it may be possible to publish only the changed data,
currently this would require customization to the WMQI Enabler environment.

Another requirement is that system of truth applications must be able to version the
data they own so that they can determine if updates are based on the proper
revision of an aggregate. It is assumed that only the systems of truth will publish
updates, since they own data integrity for the information being published.
Requirements for generating messages 13 Copyright IBM Corp. 2001, 2002

©
Change CRF information
In many cases it is necessary to process changes that affect the keys contained in
the cross reference file. WMQI Enabler provides two mechanisms to support
changes to CRF information.

The first is to imbed the proper key state information within messages flowed
through the hub. The CRF will analyze the keygroups containing the CRF entries
in the form of alternateId entries and make the appropriate adjustments. Normally
this processes is done as a part of the response message processing and is
sufficient when a deterministic request response model is used.

The second is similar to using publish and subscribe, there is no explicit
requirement for a response message. An example is the receipt of a message via
a subscription queue, where the contents of the message dictate CRF changes for
locally managed data. In this case, an application must use a HUB_Only CRF
message. The HUB_Only CRF messages allow the application to send explicit
commands to the WMQI Enabler CRF function. An example would be to register a
key for a new party aggregate that is received via a subscription to an AddParty
topic and persisted locally. The HUB_Only CRF command must be used by the
application to keep the CRF file synchronized with the enterprise.

The following is a set of rules governing CRF activity:

• If a CrfActionGroup does not have a destinationLogicalId attribute when
entering the CRF subflow, if the destinationLogicalId on the message tag
exists it will be copied to that CrfActionGroup's destinationLogicalId
attribute.The message will leave the CRF subflow with this change.

• If no destinationLogicalId attribute is found on the message tag then their
must be one on every KeyGroup that contains an AlternateId with the state
of exists.

• There can be only one AlternateId with the state of exists per KeyGroup
and it must be the first AlternateId in that KeyGroup.

• All AlternateId(s) with the same state will be processed together in the
order in which they appear in the message. These groups of AlternateId(s)
with the same state are processed in the order exists, delete, modify, and
add.

• The state attribute of an AlternateId is converted to all lowercase letters
before matching is done. When a state is updated, after the operation is
complete, it is in all lowercase letters.

• Validation of all CrfActionGroup(s), KeyGroup(s), and AlternateId(s) is
performed before any processing is started.
Application Integration Guide 14 Copyright IBM Corp. 2001, 2002

©
• All AlternateId(s) within a KeyGroup that are present in the CRF database
must be connected to the same UUID. If any AlternateId(s) with the states
of exists, delete, and modify are found connected to a different UUID than
is either specified in the KeyGroup or is found connected to other
AlternateId(s) in that KeyGroup of the same three state, then a error is
declared and an exception is thrown.

• All AlternateId(s) with the states referenced, deleted, modified, and added
are ignored by the CRF completely. No validation or processing is done
on these AlternateId(s).

• An AlternateId or one set of value, sourceLogicalId, and keyGroupType
can be connected to one and only one UUID.

• The attributeString held for an AlternateId in the CRF can be modified.
To modify an attributeString, specifically the attributes value and
newValue to hold the same string.

• KeyGroup attribute tag uuidLookup is processed as follows:

If uuidLookup="true" AND the KeyGroup includes a UUID element AND
the KeyGroup does not include any AlternateId elements, then the UUID
value supplied is used for the CRF lookup. The CRF processsing done
using that UUID is identical to the processing performed when an
AlternateId with state="exists" is provided.

If the uuidLookup="true" AND the KeyGroup includes an AlternateId
element with a state="exists", then the UUID value is supplied even if the
destinationLogicalId does not have an entry attached to that KeyGroup.

In all other cases, the state or absence of uuidLookup is ignored.
Requirements for generating messages 15 Copyright IBM Corp. 2001, 2002

©
 Chapter 4
 Adapter message flows

Processing a message
As previously discussed, adapters drive messages through WMQI Enabler, and
process messages from WMQI Enabler based on specific fields in the MQMD and
WMQI Enabler message headers. Essentially the source application adapter puts
a message in the HUB_IN queue for WMQI Enabler and sets the appropriate fields
causing WMQI Enabler to manipulate and eventually deliver the message to the
appropriate target applications. Assuming a MQSeries Workflow is required, WMQI
Enabler processes messages by attaching the message to the appropriate
workflow script. The adapters are responsible for ensuring the proper workflow
process is activated based on the values loaded into the MQMD and WMQI
Enabler message headers.

The figure below illustrates this process:

Figure 4: Processing a message to the appropriate workflow.

Workstation

QHub in

MQSI

MQSI
Rules

XML

EID Message
Header

Qworkflow XML

XML Active Message Cache
ODBC

MQWF Message
Header

Control XML

MQWF

bodyCategory
opt: sourceLogicalID

AuthenticationID

CorrelId
MsgId
Application Integration Guide 16 Copyright IBM Corp. 2001, 2002

©
Sending a request message
The source application adapter must indicate that the message is a request by
setting the MQMD msgType field to MQMT_REQUEST. The ReplyQ and
ReplyQMgr must be set to indicate where a response should be delivered. The
CorrelId and MsgId are set using the default MQMD value of copy MsgId to
CorrelId so the request can be correlated. The key to processing the message
based on the use case requirements is that the value of the bodyCategory tag
contains the name of the workflow process to execute. The Workflow process can
also be designated within the message profile of the message type indicated in the
bodyCategory. MQSeries Workflow is designed to execute the requirements of the
use case as described in the message usage section. Once the message is in
MQSeries Workflow, then various functions may need to be called to manipulate
the message.

The figure below illustrates this process:

Figure 5: Workflow processing of message.

MQWF

QWF OUT

MQSI

MQSI
Rules

QMQSI IN

XML Active Message
Cache

ODBC

Control XML

MQWF Message
Header

MQWF Message
Header

Control XML

MQSI

MQSI
Rules

CRF

MQSI

MQSI
Rules

LOG

MQSI

MQSI
Rules

Symbolic

Destination

QWF IN

MQSI

MQSI
Rules

QMQSI OUT

Control XML

MQWF Message
Header

MQWF Message
Header

Control XML

ODBC

KeyGroup

destinationLogicalId

destinationLogicalId
ErrorInfo

timeStampExpired
Adapter message flows 17 Copyright IBM Corp. 2001, 2002

©
In the case of lightweight message processing, the message is delivered directly
to the target adapter without invoking a workflow.

Ensuring delivery to target destination
The MQSI functions of WMQI Enabler use the destinationLogicalId as a way to find
the queue name associated with the target application for a message. Both the
adapter and the workflow template created using MQSeries Workflow can set the
value of this field. The cross-reference function uses the values coded in the
KeyGroup to do key translations. The cross-reference will be addressed in more
detail in the following section. The workflow template can update the message
content information also update the message timeStampExpired information. The
final aspect of driving processing from the adapter point of view is accessing a
target application and adapter.

The following figure illustrates this process:
Application Integration Guide 18 Copyright IBM Corp. 2001, 2002

©
Figure 6: Final processing of message.

MQWF

QWF OUT
MQSI

MQSI
Rules

QAPP IN

XML Active Message
Cache

ODBC

XML

EID Message
Header

MQWF Message
Header

Control XML QWF IN

MQSI

MQSI
Rules

QAPP OUT

XML

EID Message
Header

ODBC

Application

Adapter

MQWF Message
Header

Control XML

destinationLogicalId
ErrorInfo

timeStampExpired

ReplyQ
ReplyQMgr
ErrorInfo
destinationLogicalId
correlId
MsgId
Adapter message flows 19 Copyright IBM Corp. 2001, 2002

©
Reply
At the simplest level, the target application adapter must look into the XML
command and determine what message-processing mode is being requested.
While there are several modes, the one that requires specific actions associated
with WMQI Enabler is request/reply. In this case, the target adapter must indicate
that the message is a response by setting the MQMD msgType field to
MQMT_REPLY. The MsgId and CorrelId must be set based on the option set in the
MQMD Report field. There are many approaches to correlating messages, but
WMQI Enabler has been specifically designed to support the Correlation-identifier
option in the MQMD, MQRO_COPY_MSG_ID_TO_CORREL_ID, which indicates
copying the message identifier to the correlation identifier. This is the default value
and an approach supported by MQSeries. The way the response is delivered to the
source adapter and application is via the values coded in the MQMD ReplyQ and
ReplyQMgr.

At this point, the creation of the appropriate message and the routing of that
message through WMQI Enabler has been handled. The remaining issue is to
handle the cross-referencing of application specific keys so that applications can
reference the same entities using their native keys.
Application Integration Guide 20 Copyright IBM Corp. 2001, 2002

©
 Chapter 5
 Adapters and cross-referencing

Cross-referencing is an optional feature for WMQI Enabler, that provides database
key translations between applications when using XML message models that
expose low level database keys. When used, end points not only have to define
how the message should process through WMQI Enabler, via the settings loaded
in the MQMD and the WMQI Enabler message header, but they are also required
to control how key cross-referencing should work between applications. The
reason for this is that key cross-referencing requirements closely mirror the use
cases that the message processing scenarios are designed to support. Key cross-
referencing designs should take into account, unit of work requirements in order to
ensure the cross-reference file stays synchronized with the applications being
supported. As a result, the best-practices rules for handling exception conditions
when processing applications must also be considered.

The Cross Reference Function (CRF) supports the following based on the value
loaded into the state tag, which is an AlternateId attribute and is used to describe
the state of the key. The CRF changes the value of the state attribute once the
AlternateId has been processed. The definitions are as follows:

Initial state Definition of processing Final state

add without UUID
(Create)

This new UUID entry
including the values coded
in the AlternateId tag.

added

add with UUID
(Attach)

Since the UUID exists, this
is a request to attach a
new AlternateId entry to an
existing UUID.

added

referenced Indicates that the key
should be ignored.

referenced

exists Indicates that the key
should be translated to the
value held for the system
coded in the
sourceLogicalId attribute
field of the AlternateId tag.

referenced
Adapters and cross-referencing 21 Copyright IBM Corp. 2001, 2002

©
Table 1: CRF supported functions.

The CRF cycles through all AlternateIds within a KeyGroup, all KeyGroups within
a CrfActionGroup, and all CrfActionGroups within an WMQI Enabler message
header. The responsibility of adapters is to setup the KeyGroups in such a way that
the cross-reference function maintains and translates keys as required to support
the WMQI Enabler integrated applications. This KeyGroup setup means for each
state of a key used as a part of message processing (add, modify, exist, and
delete), the adapters must drive the Cross Reference Function consistently for
each aggregate contained in the message. This setup is important because
aggregates must have state codes that will cause the Cross Reference Function to
do things with the keys for the aggregate that facilitate the requirements laid out in
the use case.

As a result, a message may indicate a Claim is to be added. There will be a Claim
aggregate with a state of add, but their may be other aggregates in the message
that may contain Policy information. In this case, these aggregates were not added
and the state tag should be set to the value reflected in the use case. The way that
the state tag values are determined is based on the use cases that define the
requirements for how to manage the information passed through the enterprise and
the conventions used to satisfy the cross-reference processing requirements. The
next sections illustrate examples of how the CRF can be used with IAA-XML
messages. Regardless of the selected message dialect, the processing described
remains the same.

modify Indicates that the value of
the AlternateId attribute
value should be replaced
by the value of the
AlternateId attribute
newValue.

modified

delete Indicates that the value of
the AlternateId attribute
value should be
invalidated from the UUID.

deleted

Initial state
 (Continued)

Definition of processing Final state
Application Integration Guide 22 Copyright IBM Corp. 2001, 2002

©
Approach for using CRF, option 1 (CRF without rollback)
As an example, a front-end application sends an addParty message to the party
system. For this to occur, the front-end system creates a keygroup representing
each of the aggregates associated with the IAA-XML AddParty message
command. The keygroups contains the front-end system's keys for each of those
aggregates. At this point, the state should be set to “reference” so that the CRF
ignores the keys.

NOTE: This would be appropriate if the front-end is not the system of truth for party
and there is no need to use MQSeries Workflow to handle potential cross-
reference table back out scenarios.

The party system receives the message from WMQI Enabler and processes the
addParty message. The party system adapter writes an IAA-XML AddParty
response message to the front-end indicating the success or failure of the process.

When the add is successful, the party system puts the key information for the front-
end and back-end systems in the AddParty response message. (Again, this is
being done to simplify the rollback requirements for the CRF). This addition
includes keys for all of the aggregates in the request and response messages. The
reason all of the aggregates must be processed is because relationships must be
setup in the CRF for all of the aggregates contained within the AddParty message.

In order to do this key information addition, all of the key relationships must be
added to the cross-reference tables at the granularity that XML specifies. This
statement means there is not a one-to-one relationship between the keygroups and
the aggregates in the command. If the command contains aggregates with keys
(implemented as reference ids), there will be at least one keyGroup for the
aggregates. This use of reference ids ensures the CRF has access to all of the
KeyGroups required to maintain the necessary relationships and ensures that each
processed aggregate is represented by a UUID.

Using the CRF at the aggregate level of granularity ensures messages will not
have to be remodeled in the future as business requirements and system
participants change. In order to use the CRF at this level, the state information for
the keys should be set to “add” within the response message. CRF will create a
new UUID for the first AlternateId contained in the response message and then
store the UUID in the message. The CRF will then see the UUID, and the
remainder of the AlternateIds will be treated as attachments for the remaining keys
in the message. This is the approach illustrated by the sample WMQI Enabler use
case templates in the Model Office.
Adapters and cross-referencing 23 Copyright IBM Corp. 2001, 2002

©
Alternate approach for CRF, option 2 (CRF with rollback)
It is important to remember that WMQI Enabler does not dictate how flows using
CRF are implemented, only that the flows maintain the integrity of the environment.
Another approach would be to have the front-end system send the request
message with the state tags for all of the keys set to “add”. This approach will cause
the CRF to create a UUID and attach the keys to the UUID as new entries in the
CRF. The message would then be sent to the target application with the state tag
updated to “referenced”, and the new UUID included.

In this case, the target application will generate a response to the original request.
This response will be routed back to the front-end system that originated the
request. If the processing was successful, the back-end loads its own keys for the
added information with state tags set to “add”. The alternate ids from the original
request can be cleared or ignored since the CRF set their state tags to
“referenced”. However, the UUID must be copied from the request message to the
response message so the CRF will see it and treat the “add” states as "attaches"
for the back-end system's keys in the response message.

Again, there will be keyGroups for aggregates that are not contained in the
response message, because we are building the relationship between the front-
end and bank-end systems for the content of the add message. There will also be
keyGroups for any aggregates in the response message itself so the CRF can do
the appropriate cross-referencing as the response is delivered back to the
originating application. If the processing failed, the back-end does not have to load
its keys in the response. However, the front-end seeing the add failed, would be
responsible for deleting the keys it had originally asked the CRF to add in the initial
request.

Both approaches are valid. WMQI Enabler provides the flexibility to use either for
the systems being integrated, based on the requirements detailed in the use cases.
The only requirement is that whichever approach is being used, it must be used
consistently. The CRF must be kept in sync with the business content of the
messages being processed through WMQI Enabler.

CRF processing requirements
The following is a list of processing requirements based on the cross-reference
functionality provided in WMQI Enabler.

1. WMQI Enabler supports either including a UUID or using the AlternateId tag
and associated attributes to indicate a CRF entry.

2. If a KeyGroup has an AlternateId with the state of “exist”, then it must be the
first AlternateId in the list of AlternateIds for a KeyGroup.
Application Integration Guide 24 Copyright IBM Corp. 2001, 2002

©
3. Adding new keys in the form of AlternateIds to an existing UUID requires
either an AlternateId with the state of “exists”, so the CRF can first determine
the correct UUID and where to attach the remaining AlternateIds or a UUID.

4. Adapters must use the sourceLogicalId attribute of the AlternateId tag in order
to find the correct AlternateIds. The order of AlternateIds within a KeyGroup,
or even the KeyGroups themselves is not guaranteed.

5. The CRF does not remove AlternateIds from key groups. Response
messages can either start new KeyGroup AlternateId lists or include the
entries from the original request messages. This technique allows the CRF to
change the state of the AlternateId entries as they are processed.

6. Keys must be processed based on all of the aggregates defined in the
messages. The cross-reference function is not designed to maintain
relationships between KeyGroupTypes. Instead, the KeyGroupTypes must
match the aggregate types. UUIDs are also defined on an aggregate basis.
The model maintains all aggregate-to-aggregate relationships.

All keys added to the CRF table must have entries corresponding to
applications requiring access to the data.
Adapters and cross-referencing 25 Copyright IBM Corp. 2001, 2002

©
 Appendix
 Notices

This information was developed for products and services offered in the U.S.A. and
Europe. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
Application Integration Guide 26 Copyright IBM Corp. 2001, 2002

©
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you. Licensees of this program who
wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:

IBM United Kingdom Laboratories
Hursley Park
WINCHESTER, Hampshire
SO21 2JN
United Kingdom

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.
Notices 27 Copyright IBM Corp. 2001, 2002

©
Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-
level systems and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify,
Application Integration Guide 28 Copyright IBM Corp. 2001, 2002

©
and distribute these sample programs in any form without payment to IBM for the
purposes of developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© Copyright IBM Corp. 2000, 2001. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks or services of IBM Corporation in the United
States or other countries or both:

IBM

MQSeries

DB2

OAG is a trademark of the Open Architecture Group in the United States or other
countries or both.

Other company, product, and service names may be trademarks or service marks
of others.

Permission statement
Copyright © 2001 Interactive Financial eXchange Forum. All Rights Reserved.

Redistribution and use of this material for both commercial and noncommercial
purposes are permitted subject to the below-stated conditions:

1. This Permission Statement shall be reproduced in its entirety in each copy of
the material;

2. This material is provided AS IS without warranty of any kind, including but not
limited to, any warranty of noninfringement or any warranty (express or
implied) of merchantability or fitness for a particular purpose; and

3. The material may be modified provided

a. Prior written notice of each modification is provided to the Interactive
Financial eXchange Forum at the address listed below,
Notices 29 Copyright IBM Corp. 2001, 2002

©
Interactive Financial Exchange Forum, Inc.
333 John Carlyle Street
Suite 600
Alexandria, VA 22314
U.S.A.

b. Any redistribution of modified materials shall be accompanied by a notice
that modifications have been made and a clear description of the
modifications, and

c. The party making the modifications assumes all responsibility for the
consequences of the modifications.
Application Integration Guide 30 Copyright IBM Corp. 2001, 2002

©
 Glossary

This glossary defines terms and
abbreviations used in this book. If
you do not find the term you are
looking for, see the Index or the IBM
Dictionary of Computing, New
York: McGraw-Hill, 1994.

A

Adapters
(1) A part that electrically or
physically connects a device to a
computer or to another device.

(2) A circuit board that adds function
to a computer.

(3) Event Adapter: In a Tivoli
environment, software that converts
events into a format that the Tivoli
Enterprise Console can use and
forwards the events to the event
server. Using the Tivoli Event
Integration Facility, an organization
can develop its own event adapters,
tailored to its network environment
and specific needs.

API: Application Programming
Interface
(1) A software interface that enables
applications to communicate with
each other. An API is the set of
programming language constructs or
statements that can be coded in an
application program to obtain the

specific functions and services
provided by an underlying operating
system or service program.

(2) In VTAM, the language structure
used in control blocks so that
application programs can reference
them and be identified to VTAM.

C

CRF: Cross Reference Function
This refers specifically to the storage
system WMQI Enabler uses in order
to keep track of creations of and
attachments to UUID's.

D

DTD: Document Type Definition
The rules that specify the structure
for a particular class of SGML or
XML documents. The DTD defines
the structure with elements,
attributes, and notations, and it
establishes constraints for how each
element, attribute, and notation may
be used within the particular class of
documents. A DTD is analogous to a
database schema in that the DTD
completely describes the structure
for a particular markup language.
Glossary 31 Copyright IBM Corp. 2001, 2002

©
M

MQMD: MQSeries Message
Descriptor
The MQSeries Integrator (MQSI)
header that contains basic control
information that must travel with the
message.

MQRFH
An architected message header that
is used to provide metadata for the
processing of a message. This
header is supported by MQSeries
Publish/Subscribe.

MQSeries
Pertaining to a family of IBM licensed
programs that provide message
queuing services.

MQSI: MQSeries Integrator
It provides graphical tools for
constructing how critical data or
business events are handled, by
visually connecting a sequence of
processing function to dynamically
manipulate and route messages,
combine them with data from
corporate databases, warehouse in-
flight message data for auditing or
subsequent analysis, and distribute
information efficiently to business
applications.

P

Party
Any person or organization that the
insurance company has, or had, or
may have a business interest in.

Property
A data value of a type.

Q

Queue
An MQSeries object. Message
queuing applications can put
messages on, and get messages
from, a queue. A queue is owned
and maintained by a queue
manager. Local queues can contain
a list of messages waiting to be
processed. Queues of other types
cannot contain messages: they point
to other queues, or can be used as
models for dynamic queues.

S

System of Truth
This is a system that is accurate at all
times. Any data that is
added/change/verified comes from
this system. The system of truth is
defined for use by WMQI Enabler,
which is the primary system or the
system that would hold the most
accurate data at any point in time for
the systems attached to WMQI
Enabler. It is regarded as the
authority for any data being
referenced and is the primary system
for receiving any data updates.
Application Integration Manual 32 Copyright IBM Corp. 2001, 2002

©
U

UUID: Universally Unique Identi-
fier
This is a key used by the WMQI
Enabler to uniquely identify the
entities which outside systems need
to reference.

W

WMQI Enabler: WebSphere MQ
Integrator Enabler
A complete scalable messaging and
information integration add-on to the
MQSeries family of products.
Especially designed for the needs of
the financial services industry,
WebSphere MQ Integrator Enabler
can integrate front-end systems with
back-end systems using a
hub/spoke architecture using XML
as the common vocabulary across
systems.

X

XML: eXtensible Markup Lan-
guage
XML is a markup language for
message definition, and is an open
and public domain standard. XML is
a subset of SGML designed for easy
implementation in commercial and
web environments.
Glossary 33 Copyright IBM Corp. 2001, 2002

©
Glossary 34 Copyright IBM Corp. 2001, 2002

©
 Index

A
application authentication 4
application authorization 4
application security requirements 4
applications within EID 6

C
correlating messages 20

E
EID 4
EID header information 3
EID XML standard 4

I
integrating applications 2

K
KeyGroup 18

M
mapping 2
message-processing mode 20
MQ Message Descriptor 5

MQ Series Family 5
MQMD fields 5, 6
MQSeries Family 5
MQSFSE message structure 5
MQSFSE messages 4

N
native keys 20
non-invasive method 1

R
Report and Feedback fields 5
response queues 4

S
support for recovery 4

U
user identification tags 4

X
XML messaging semantic 8
XML representation 4
Index 35 Copyright IBM Corp. 2001, 2002

©
Application Integration Manual 36 Copyright IBM Corp. 2001, 2002

	About this book
	Who should read this book
	Terminology used in this book
	Prerequisite and related information
	How to get additional information
	How to send your comments

	Chapter 1 Introduction
	Planning for adapter development

	Chapter 2 Adapter services
	Overview of services
	MQMD header
	WMQI Enabler message header
	Wrappering
	Implementing Wrappering Adapters

	Chapter 3 Requirements for generating messages
	Application roles
	System of truth
	Non-system of truth

	Responsibilities when using publish/subscribe
	Change CRF information

	Chapter 4 Adapter message flows
	Processing a message
	Sending a request message
	Ensuring delivery to target destination
	Reply

	Chapter 5 Adapters and cross-referencing
	Approach for using CRF, option 1 (CRF without rollback)
	Alternate approach for CRF, option 2 (CRF with rollback)
	CRF processing requirements

	Appendix Notices
	Trademarks
	Permission statement

	Glossary
	Index

