
 
 

 

 

 

   

  

 

 

 

 

 IBM’s Model-Based XML Architecture 
 

 

 

 
 



2 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

 

Table of Contents 

Notices ........................................................................................................................ 5 

Trademarks and service marks ................................................................................................ 6 

About this Book.......................................................................................................... 7 

Who Should Read this Book? .................................................................................................. 7 

What this Book Contains .......................................................................................................... 7 

Introduction and Positioning..................................................................................... 8 

Introduction............................................................................................................................... 8 

Sources ............................................................................................................................... 8 

Messaging Environment...................................................................................................... 8 

XML .......................................................................................................................................... 9 

Why MB-XML? .................................................................................................................... 9 

Where Would You Use MB-XML?..................................................................................... 10 

How Would You Use MB-XML? ........................................................................................ 10 

Message Architecture ...............................................................................................12 

MB-XML Four-Layer Architecture........................................................................................... 12 

Message Layer.................................................................................................................. 12 

Command Layer ................................................................................................................ 12 

Aggregate Layer ................................................................................................................ 12 

Property Layer ................................................................................................................... 13 

Example of a Message...................................................................................................... 13 

Mapping to Other Message Standards .................................................................................. 15 

Introduction........................................................................................................................ 15 

ACORD.............................................................................................................................. 15 

IFX ..................................................................................................................................... 15 

OAG................................................................................................................................... 15 

CP Exchange .................................................................................................................... 15 

Types of Communications Supported .................................................................................... 15 

Message Design ........................................................................................................17 

General Design Principles...................................................................................................... 17 

The Use of Types .............................................................................................................. 17 

Inheritance......................................................................................................................... 17 

Use of Identifiers ............................................................................................................... 18 

Representing Relationships between Aggregates ............................................................ 19 

Allocating Elements to Layers........................................................................................... 20 

Specifying Null Values....................................................................................................... 21 

Message Layer....................................................................................................................... 21 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 3 
 

Message and Transaction Scope ......................................................................................21 

Message Layer Rules ........................................................................................................22 

Message Element and Attribute Meaning ..........................................................................22 

Message Example..............................................................................................................31 

Command Layer......................................................................................................................31 

Command Types................................................................................................................32 

Response to a Command ..................................................................................................32 

Naming Conventions for the Commands...........................................................................33 

List of Verbs .......................................................................................................................33 

Inquiry Command Guidelines.............................................................................................33 

Processing Commands in the Message Hub.....................................................................34 

Command Tag and Attribute Meaning ...............................................................................34 

Command Elements...........................................................................................................35 

Command Example............................................................................................................37 

Aggregate Layer......................................................................................................................37 

Aggregate Layer Rules ......................................................................................................38 

Extending Aggregates........................................................................................................38 

Aggregate Tag and Attribute Meaning ...............................................................................38 

Property Layer.........................................................................................................................40 

Property Layer Rules .........................................................................................................40 

Properties and Application Data ........................................................................................40 

Data Types.........................................................................................................................40 

Property Tag and Attribute Meaning..................................................................................42 

Bibliography..............................................................................................................43 

Glossary ....................................................................................................................44 

Appendix A: MB-XML and the underlying UML model ...........................................46 

Benefits of Model-driven Messages........................................................................................46 

Clear Definitions.................................................................................................................46 

Normalisation of Data.........................................................................................................46 

Command Layer.................................................................................................................46 

Appendix B: MB-XML Generation from an Interface Design Model in Rational 
Rose (RR) ..................................................................................................................47 

Appendix C: Data Types...........................................................................................50 

Definition of Data Types..........................................................................................................50 

String..................................................................................................................................50 

Text ....................................................................................................................................50 

Binary .................................................................................................................................50 

Boolean ..............................................................................................................................50 

Date....................................................................................................................................50 

Time ...................................................................................................................................50 

Timestamp .........................................................................................................................51 



4 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

TimeDuration ..................................................................................................................... 51 

Number.............................................................................................................................. 51 

Byte ................................................................................................................................... 51 

Integer ............................................................................................................................... 51 

Short .................................................................................................................................. 51 

Decimal.............................................................................................................................. 51 

Percentage ........................................................................................................................ 52 

Amount .............................................................................................................................. 52 

Currency Amount .............................................................................................................. 52 

Enumeration ...................................................................................................................... 52 

Identifier............................................................................................................................. 52 

Object reference................................................................................................................ 52 

Date and Time Formats.......................................................................................................... 53 

XML Schema Data Types vs. IFX Data Types....................................................................... 53 

 

 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 5 
 

Notices 
This information was developed for products and services offered in Europe. IBM may not offer 
the products, services, or features discussed in this document in all countries. Consult your local 
IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only 
that IBM product, program, or service may be used. Any functionally equivalent product, 
program, or service that does not infringe any IBM intellectual property right may be used 
instead. However, it is the user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service.  

IBM may have patents or pending patent applications covering subject matter described in this 
document. The furnishing of this document does not give you any license to these patents. You 
can send license inquiries, in writing, to: 

IBM Director of Licensing  

IBM Corporation  

North Castle Drive  

Armonk, NY 10504-1785 

U.S.A. 

IBM grants limited permission to licensees to make hardcopy or other reproductions of any 
machine-readable documentation, provided that each such reproduction shall carry the IBM 
copyright notices and that use of the reproduction shall be governed by the terms and conditions 
specified by IBM in the license agreement. Any reproduction or use beyond the limited 
permission granted herein shall be a breach of the license agreement and an infringement of the 
applicable copyrights. 

The following paragraph does not apply to the United Kingdom or any other country 
where such provisions are inconsistent with local law:  

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION 
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow 
disclaimer of express or implied warranties in certain transactions, therefore, this statement may 
not apply to you. This information could include technical inaccuracies or typographical errors. 
Changes are periodically made to the information herein; these changes will be incorporated in 
editions of the publication. IBM may make improvements and/or changes in the product(s) 
and/or the program(s) described in this publication at any time without notice. 

The product described in this document and all licensed material available for it are provided by 
IBM under terms of the IMCL or IMSL agreement or any equivalent agreement between us. 

This information contains examples of data and reports used in daily business operations. To 
illustrate them as completely as possible, the examples include the names of individuals, 
companies, brands, and products. All of these names are fictitious and any similarity to the 
names and addresses used by an actual business enterprise is entirely coincidental. 

If you are viewing this information on softcopy, the photographs and colour illustrations may not 
appear. 



6 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Trademarks and service marks 

The following terms are trademarks or service marks of the IBM Corporation in the United States 
or other countries or both: 

IBM 
Insurance Application Architecture 
IAA 

 
Other company, product, and service names, which may be denoted by a double asterisk (**), 
may be trademarks or service marks of others. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 7 
 

 

This document describes IBM’s Model-Based XML Architecture (MB-XML), with examples of its 
use. 

Who Should Read this Book? 

This book is intended for people who want to understand the MB-XML message architecture, 
with a view to developing and implementing XML-based messaging designs. MB-XML is a 
messaging architecture for inter-application communications applicable to any industry 

The reader is expected to be familiar with XML and XML Document Type Definitions (DTDs). 
Knowledge of object modeling notation will assist in understanding the examples contained 
within this book.  

What this Book Contains 

The document provides an overview of the architecture and approach adopted by MB-XML, and 
contains sections on: 

§ Introduction and Positioning 

§ Message Architecture 

§ Message Design 

 

The document also contains a Glossary, a Bibliography, and the following appendices: 

§ Appendix A: MB-XML and the underlying UML model  

§ Appendix B: MB-XML Generation from an Interface Design Model in Rational Rose (RR) 

§ Appendix C: Data Types 

§ Appendix D: Change History of this Document 

About this Book 



8 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

 

MB-XML is a messaging architecture for inter-application communications applicable to any 
industry. This section explains why MB-XML was developed, what it is, and where and how it 
can be used. 

Introduction 

The MB-XML architecture defines the architectural elements that can appear in MB-XML 
messages, as well as the way they relate to each other.  These architectural elements describe 
the organization of data and commands into messages, and include the concepts of message, 
command, aggregate, aggregate relationship, and property. 

Sources: MB-XML 

IBM has worked with standards groups, user groups and individual customers over a number of 
years on Model Based Architectures in many industries. IAA-XML is the direct ancestor of MB-
XML. It is a messaging architecture for inter-application communications applicable to any 
industry. It is also a method that explains how to use this architecture together with a UML model 
called Interface Design Model (IDM). Different Interface Design Models can be used depending 
on the subject domain. IAA-XML was developed from the Insurance Industry. IAA-XML together 
with the first Interface Design Model was published as part of IBM's Insurance Application 
Architecture in 2001. 

The section “Message Architecture, Mapping to Other Message Standards” explains the 
relationships between MB-XML and some of the message standards produced by these groups. 

The MB-XML architecture can be used independently of any specific message, by anyone, 
independently of any technology, vendor, or subject domain.  

Messaging Environment 

At the heart of an organization are its business processes. Each process is a sequence of steps, 
some automated by computers and some manual. As computerisation increases the number of 
automated steps, the need for applications to interoperate grows.  Where previously there may 
have been a number of manual steps between each automated step, with output from one 
application being massaged prior to being re-entered into another application, now it is common 
for the processing carried out by one application to be immediately followed by that of another. 

The obvious consequence of this increased automation is increased inter-application 
communication.  This would be easy to achieve if every application were built with the same 
understanding and view of the information that it deals with (for example, based on the same 
business model), and implemented according to the same technical architecture.  However, this 
is typically not the case. The fact that different applications are written by different people to 
satisfy different business needs is enough to ensure that analysis and design models differ. 
Furthermore, incompatible technical architectures arise from the natural technology evolution 
(through the 1990s we have seen the shift in design emphasis from 2-tier procedural to 3-tier 
distributed object, to the current flavour of the day, n-tier web-oriented EJBs). 

The XML markup language helps to address the demands of inter-application communication by 
providing a message definition standard designed for easy implementation in commercial and 
web environments. 

Introduction and Positioning 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 9 
 

XML 

The XML messaging standard has achieved a high level of acceptance in business and technical communities, and is 
an open and public domain standard.  Many tools and code libraries exist for handling XML messages. XML is 
supported by international consortiums such as the Organisation for the Advancement of Structured Information 
Standards  (OASIS) and World Wide Web Consortium (W3C).  

The benefits of XML include the following: 
Self-defining Messages 

Using tags to structure and define the content of messages, XML provides a messaging 
capability in which the data is non-positional and self-defining. 

Technology Independence 
XML provides a communication mechanism independent of technology, protocol and 
middleware.  XML is intended to support a wide range of communication protocols, 
including asynchronous message-oriented inter-application communication, and a 
conversational command/return protocol. 

Shared Syntax 
Unlike, for example, COBOL copybooks or C structures, XML does not restrict you to using 
a particular programming language.  This means that it can be used to link applications 
written in any language. 

Extensibility 
The XML mark-up language can be easily extended and customized to meet the 
requirements of specific implementations. 

The XML definition therefore provides a good basis for defining standards for communications 
between applications and disparate systems, but to successfully implement XML, standards for 
its usage must be agreed.  In particular, to achieve reuse of message elements, higher-level 
standards (e.g., common semantics) for the data being transported must be agreed to.  This is 
addressed in MB-XML. 

Why MB-XML? 

The strength of MB-XML lies in its being based on a well-structured, normalized model. This 
provides the following advantages: 

Shared Semantic and Content Structure 
In order to communicate, two applications must share the same understanding of the 
world.  For example, if one application processes a person’s address as a single string of 
data, and another processes it as comprising street, town, state, and country, they have a 
built-in impedance to communication. 

In order to use the MB-XML approach, a normalized model is needed that guarantees 
unique semantics and content structure, i.e., a common reference point.  For example, 
when two applications communicate about a PostalAddress, they can agree on what it 
means, what data it contains, and how it is related to other concepts (such as people and 
policies). 

Structured Extensibility 
As discussed above, XML is designed to be extensible.  The MB-XML architecture 
preserves this extensibility, and indeed it is expected that users will take the base content 
and extend and customize it to support their own requirements.  In addition, with the 
normalized view of data in MB-XML, additional content can be added in a more structured 
way, with more potential for reuse. 



10 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Where Would You Use MB-XML? 

MB-XML messages are expected to be used by applications that share and exchange 
information in a standard and well-structured fashion. 

MB-XML is particularly suitable where there are more than two applications involved, and the 
applications sending the messages are unaware of the characteristics of the applications which 
will receive and process them. 

If there were only ever two applications that would communicate to each other, it is possible that 
there would be other more efficient and responsive choices for inter-application communication.  
However, these more specialised approaches are likely to be an inhibitor if new applications are 
brought into the picture over time.  The opportunities for reuse of existing messages would be 
more limited than with MB-XML. 

MB-XML supports different types of communication, for example: 

request-response messaging protocols. 
publish-subscribe commands. 

 
MB-XML is not appropriate for messaging designs that deal specifically with displaying directly 
the message data, for example with a browser. The protocols supported by MB-XML are 
discussed in more detail in the section Message Architecture, Types of communications 
supported. 

How Would You Use MB-XML? 

One possible use of MB-XML is to make it the XML messaging medium of a message hub. By 
having a common semantic, structure and mark-up, the amount of inter-application 
communication code required is minimised. Consider three applications where each application 
had code to talk to the other two. There would be six sets of inter-application communications 
code. With a common intermediary set of messages implemented on a middleware architecture, 
this number reduces to three, through the reuse of a common messaging approach. As the 
number of applications increase, the benefits increase exponentially, as illustrated in Figure 1. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 11 
 

Application 1

Adapter
API

IAA-XML Messages

Application 2

Adapter
API

Application 3

Adapter
API

 

Figure 1. MB-XML Messages in a middleware Architecture   

 

Further information on how to use MB-XML can be found in the next two sections, Message 
Architecture and Message Design. 



12 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

 

This section presents an overview of the MB-XML message architecture. 

MB-XML Four-Layer Architecture 

MB-XML messages structure information into four layers: message, command, aggregate, and 
property. The structure facilitates effective use of the information across software boundaries. 

Message Layer 

Each MB-XML message contains information common to the entire message.  This information 
allows the communication hub and other systems to identify the message uniquely, interpret the 
message properly, and determine whether a response is required.  

Command Layer 

Each command within the message contains information about an action and the subject of that 
action.  The command layer provides enough information about the command for the receiving 
software to process it accurately. 

The actions include, but are not limited to, add, modify, delete, get (an instance) and search for 
information.  These data-centric actions are the minimum required to communicate across 
software boundaries.  While the data-centric actions are defined completely in the MB-XML 
architecture, MB-XML also applies to business-oriented actions. These business actions can be 
added to MB-XML as needed, and it is likely that future versions of MB-XML will incorporate 
more business-oriented command definitions.    

The subjects of the commands are the fundamental, abstract entities used by the business.  The 
subjects are independent of one another, although relationships can exist between them. 

Three types of commands have been defined in MB-XML.   

1. The request command requests that the action be performed and may also request for a 
response.  A request command may require a response always or only if an error occurs, or 
it may not require a response at all.  A request may also require the responding software to 
return certain passed data unchanged, with the response. 

2. Response is a second command type and signals the response to a request.   

3. Besides request and response, the command may be a notification, informing other software 
about an action that has already occurred. 

An AddPartyRequest asks other software to create a party, while an AddPartyNotification 
informs the other software that the party has been created. 

Note that one message may contain commands of different types. 

Aggregate Layer 

Aggregates provide a convenient way to address groups of properties that are often used 
together. They also may serve as limiting, functional views of the subjects of the commands. 

The identification of aggregates may seem quite arbitrary. Using a UML model makes the 
identification of aggregates much more logical.  Aggregates in MB-XML are identified as follows: 

Message Architecture 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 13 
 

• Each type in the model is the basis for an aggregate. These types may represent logical 
subsets of the properties of the subject; they may also represent relationships between other 
types. Thus, there is an aggregate for Person, Organization, and PersonName. 

• Aggregates can be referred to through their key as explained in the Message design section. 

• Aggregates can also be defined to represent the return of certain operations. 

Another element type, Relationship, is defined in the aggregate layer. A relationship is an 
element that defines a relationship between two aggregates. Relationships are used when 
aggregates could be related to each other in multiple ways. For example, there could be two 
relationships between a person and a communication: sender and receiver. In some rare cases, 
relationships can also have properties. A relationship corresponds to an association-end in the 
Interface Design Model (IDN) MB-XML model. 

Property Layer 

The property layer of the message represents each indivisible piece of data.  Properties may be 
required or optional in aggregates; they may occur multiple times in an aggregate.  These 
capabilities are standard XML functions. 

Example of a Message 

The following example of an XML message, based on the MB-XML Message Architecture, 
describes the creation of a new party - Jane Anderson. Jane's postal address and full name are 
specified. 

Message Layer <Message id='MSG1' version=’1.4’ bodyType=’MB-XML’     
timeStampCreated='1999-12-04T12:33:04' 
sourceLogicalId='METAUTO1' 
destionationLogicalId=’CIIS’ 
authenticationId='SYS' 
crfCmdMode=’alwaysRespond’> 
 
<Default> 
 <DefaultTime zoneOffset='00:00'/> 
</Default> 
 
<CrfActionGroup bodyCategory=’AddNewPerson’> 
       <CommandReference refid=’CMD1’/> 
       <KeyGroup id=’K1’ keyGroupType=’Person’> 
               <UUID>1234</UUID> 
       </KeyGroup> 
       <KeyGroup id=’K2’ keyGroupType=’PostalAddress’> 
               <UUID>1235</UUID> 
       </KeyGroup> 
       <KeyGroup id=’K3’ keyGroupType=’TelephoneNumber’> 
               <UUID>1236</UUID> 
       </KeyGroup> 
</CrfActionGroup> 
 

Command Layer <COMMAND 



14 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

   <AddPartyRequest id=’CMD1’ cmdType=’request’ cmdMode=’always 
Respond’ defaultState=’added’> 

  
Aggregate Layer 
(Person) 

<Person> 
<KeyGroup refid=’K1’/> 
<birthDate>1962-03-04</birthDate> 
<deathDate>2000-02-08</deathDate> 
<gender>Female</gender> 
<maritalStatus>Single</maritalStatus> 
<grossIncome> 
   <currencyAmount>32000</CurrencyAmount> 
   <currencyCode>USD</CurrencyCode> 
</grossIncome> 
             

Aggregate Layer 
(PersonName) 

<PersonName>             
 <usage>Legal</use> 
 <firstName>Jane</firstName> 
 <lastName>Anderson</lastName>             
  
</PersonName> 

Aggregate Layer 
(ContactPreference) 

<ContactPreference> 
       <type>Home</type> 
   
 <preferredLanguage>French</preferredLanguage> 
  

Aggregate Layer 
(PostalAddress) 

              <PostalAddress> 
   <KeyGroup refid=’K2’/> 
             <effectiveFromDate>1943-02-05</effectiveFromDate> 
             <effectiveToDate>2010-01-01</effectiveToDate> 
             <city>Danbury</city> 
             <country>USA</country> 
             <region>New York</region>          
             <street>York Street</street> 
             <houseNumber>21</number> 
             <postalCode>21334</postalCode> 
             </PostalAddress> 
             <TelephoneNumber> 
                 <KeyGroup refid=’K3’/> 
                 <contactInformation>+44-4356742-
1434</contactInformation> 
             </TelephoneNumber> 
      </ContactPreference> 
</Person> 

[End command]    </AddPartyRequest> 
</COMMAND> 
 

[End message] </Message> 
 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 15 
 

Mapping to Other Message Standards 

Introduction 

Various standards organizations are creating messages in XML format for use in different 
industries.  The standards from ACORD, IFX, and OAG have been considered.   

MB-XML, therefore, does not completely adopt any one of these standards. It does, however, 
integrate concepts from all three organizations and can accommodate all of their messages. 

ACORD  

The messages produced by the ACORD group apply to insurance, emphasising the messages 
between brokers and insurance providers. ACORD messages are specifically designed for 
applications that use those forms. They are also appropriate for displaying data in the forms 
used. 

The ACORD message name could be considered an action, but ACORD messages act directly 
on properties or aggregates. An ACORD message corresponds to an MB-XML command 
together with all its parameters (all the aggregates and properties defined as being part of the 
command). 

IFX 

Interactive Financial Exchange (IFX) messages are oriented towards business-to-business 
transactions for banking.  They are structured the same as MB-XML: an MB-XML message is 
called a "service" in IFX; a command is an IFX "message. The IFX actions are data-oriented; 
they map easily to MB-XML commands.   

OAG 

The participants in the Open Application Group (OAG) come primarily from the manufacturing 
industry.  

OAG messages contain a single command. This structure can be seen as a subset of the MB-
XML structure. OAG messages support the concepts of "verb," which corresponds to the MB-
XML command, and "noun," which corresponds to the subject of the command. And OAG 
defines aggregates, but like ACORD aggregates, some of them are somewhat arbitrary. OAG 
"verbs" tend to be data-oriented and can be mapped to MB-XML commands. 

CP Exchange 

CP Exchange is an emerging XML standard in the area of Party information.  There has been a 
strong collaboration between MB-XML and CP Exchange, both in terms of business content and 
architecture. The model used for CP Exchange is the Party area of the IAA model, with very few 
modifications. 

Types of Communications Supported 

There are several modes of software communication, and these modes may have an impact on 
the content of the messages used, as shown in Table 1. 

 

 



16 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Table 1. Types of Communication Supported 

Type Description MB-XML  
 

Conversational The parties to the conversation are "connected" and have 
access to a single parameter set.  

 

Not supported. 

Request / 
Response 

The sender of the message requests some action to be 
performed by the receiver and expects some response back.  
The response may be requested only when an error occurs, or 
it may ALWAYS be required. The request by the sender is not 
synchronised with the receiver, although the sender may wait 
for the reply before proceeding and thus simulate 
conversational communication. 

Two commands: 

1. Command type request with 
response mode of always or error 
only 

2. Command type response. 

 

Fire and Forget The sender of the message requests some action to be 
performed by the receiver but does not expect a response. 

 

Command type request with 
response mode of never. There is no 
response command. 

 

Publish / 
Subscribe 

The sender of the message notifies others that some action 
has occurred, generally in response to a business event.  
Software interested in the action must subscribe to it through 
the messaging facility.   

Command type notification.  
Response mode of always or on error 
only refers to responses from the 
outgoing adapter or the message 
hub.  Responses from the subscriber 
end of the message are not reported.  

 
The command types Notification, Request, and Response are all in some ways a notification.  All 
messages are intended to communicate information to something.  The differences in command 
types are merely ways to make the style of communication more obvious.  In all cases, the 
middleware determines where to send the message, based on rules that examine the message 
content.  

Note that the message middleware facilities determine how messages are routed. Products such 
as WebSphere MQ Integrator enable users to specify rules for subscriptions that examine the XML 
message elements. The details of how that specification is performed, however, are outside the 
scope of this document. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 17 
 

 

In addition to the architecture described above there are a number of general design principles 
that underpin MB-XML as well as more specific implementation rules for each of the four MB-
XML message layers. 

General Design Principles 

Focus on messages that support the business  
Use industry standard terminology wherever possible 
Do not repeat business data within a message 
Reduce the amount and depth of tag nesting where possible 
Aid reuse by limiting the number of alternative MB-XML representations for the same 

  instantiated graph of type instances 
Express the specification in data type definitions (DTD)s 

 

The Use of Types 

It is useful at this point to understand the general Type concepts that underlie the MB-XML Type 
tag definitions, and which are referred to later in this document. These are based on established 
Object-Oriented class structuring concepts.  

Abstract and Concrete Types 
Every type can be qualified as either abstract or concrete. An abstract type is never directly 
instantiated but is used to identify commonalties between different business concepts. For 
example, Party is an abstract type, while Organization and Person are the concrete subtypes of 
Party. 

Inheritance 

In order to reduce the complexity of the DTD, all the type hierarchies from the UML model have 
been “flattened” in the DTD. A property or association defined at the level of a superclass is 
duplicated in the definitions of all the subclasses. 1 

For example, in the model, PostalAddress is defined as a subtype of the abstract type 
ContactPoint. 

There will be no element for ContactPoint (because it is an abstract type) and PostalAddress 
will look like: 

<!ELEMENT PostalAddress 
(KeyGroup?,effectiveFromDate?,effectiveToDate?,city?,country?,region?,street?,houseNu
mber?,addressLines*,postalCode?,boxNumber?,unitNumber?,floorNumber?,buildingName?,t
ype?,contactInformation?,Place?)> 
 

 

With the part in bold being all the attributes and associations inherited from ContactPoint. 

 

While this approach implies that there will be some redundancy in the DTD, it has absolutely 
no impact on the XML messages. The redundancy in the DTD is itself not a problem in our 

                                                           
1 Originally, XML entities were used to represent the type hierarchies but most of the existing tools on the market could not 
support multiple levels of entities nesting so we had to back up to a simpler DTD. 

Message Design 



18 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

approach since the repository for the content of the message definitions is still the UML 
model.  

Finally, if you want to define an abstract association to ContactPoint, which means an 
association to any concrete subtype of ContactPoint, or if you want to specify the super-type 
as a parameter in a command, you must define an entity for the abstract super-type to make 
the link to the concrete subtypes: 

<!ENTITY % InheritanceContactPoint 
"(TelephoneNumber|EMailAddress|PostalAddress|UnstructuredContactPoint|CareOfAddress)”> 
 

This ensures that every time a ContactPoint is referenced (via InheritanceContactPoint), the 
XML is valid when any one of the concrete subtypes of ContactPoint is provided. 

Use of Identifiers 

When it comes to referring to an existing aggregate (as with a request to modify or delete an 
aggregate), some mechanism is required to identify the target data of the modification or 
deletion. Identifiers are also necessary to reference aggregates, as explained in the following 
section. 

Key 

A key identifies an aggregate uniquely across the whole space of messages.  

Typically, when a piece of data is created, one system takes responsibility for owning it and 
managing it. This system is referred to as its system of record and has the right to allocate its 
unique universal id (UUID). Sometimes this UUID may be allocated by special management 
software, and this is the case for WMQI Enabler, where the hub allocates UUIDs that can be used 
across systems.  The key information (which includes the unique universal id), or a reference to 
it, appears as the first element within an aggregate. 

Keys are represented in a special structure called KeyGroup. 

The following is an example of a key defined for a Person aggregate. 

 <Person > 
  <KeyGroup> 
   <UUID> PERS00432342 </UUID> 
  </KeyGroup> … 
 </Person> 

Alternate ids 

An alternate id is a key by which a specific system would know an aggregate. Alternate ids are 
represented as part of the KeyGroup structure in MB-XML: 

  <Person > 
  <KeyGroup> 
   <UUID> PERS00432342 </UUID> 
   <AlternateId value=’rowId123’ sourceLogicalId=’Siebel’ state=’added’/> 
  </KeyGroup> … 
 </Person> 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 19 
 

 
Using Keys in the Context of a Message Hub 

If messages are sent via a message hub, all key information must be placed in the message 
header, and the aggregates contain only references to entries in the key section of the message 
header: 

<Message> 
  … 
  <KeyGroup id=’K1’> 
   <UUID> PERS00432342 </UUID> 
                               <AlternateId value=’rowId123’ sourceLogicalId=’Siebel’ state=’added’/> 
  
                </KeyGroup> … 
  … 
 <COMMAND > 
  <AddPartyRequest id=’C1’> 
  
   <Person > 
    <KeyGroup refid=‘K1’/>  
    … 
   </Person> 
 
  </AddPartyRequest> 
    </COMMAND> 
</Message> 

 
Representing Relationships between Aggregates 

There are several ways to represent relationships between aggregates: embedding (direct or 
indirect) and referencing (internal or external). 

Embedding 

The simplest way is direct embedding. Embedding is used when there is no possible ambiguity 
in the nature of the relationship between two aggregates. 

<Person> 
 … 
 <PersonName> 
  … 
 </PersonName> 
</Person> 

 

A slightly more complex way is embedding through a relationship construct, as shown below. 

<Communication> 
 … 
 <sender> 
  <Person> 
   … 
  </Person> 
 </sender> 
</Communication > 

 



20 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

A relationship construct is used when the same aggregate (in this case Person) could be used in 
multiple ways by the referencing aggregate (sender or receiver of the Communication, for 
example). 

Referencing 

In order to avoid data redundancy in the XML documents, referencing is used when the same 
information is needed in multiple places within the same XML message. 

The standard way of referencing is by using id (id attribute of type ID: unique identifier for the 
element instance within the document/message) and references to the id (refid attribute of type 
IDREF: reference to an id within the document/message). 

 
<Person> 
 <ownedOrganization> 
  <Organization refid='123'/>     
 </ownedOrganization> 
</Person> 
.. and somewhere else in the message 

<Organization id='123'> 
 … 
</Organization> 

 
The final case for referencing is when you want to reference something not defined in the 
document. Using IDREFs is not appropriate in that case because IDREFs can only reference an 
id within the document. In this case, the reference is expressed as element content of the 
<UUID> property in the KeyGroup structure, and the externalRefid is set to true. 

The following example shows a message where you want to pass the information that a person 
owns an organization without passing the organization itself. The UUID of the organization is 
passed as content of the Organization aggregate. 

<Person> 
 <ownedOrganization> 
  <Organization  externalRefid='true'/> 
   <KeyGroup> 
    <UUID>12345B568135131</UUID> 
   </KeyGroup> 
  </Organization> 
 </ownedOrganization> 
</Person> 

 
The DTD reflects both cases, embedding and referencing. One limitation of this approach is that 
all properties and relationships must become optional in the DTD, since if the element is 
referenced and not embedded, its properties will not be present.  

Allocating Elements to Layers 

Every layer has a corresponding entity that contains all the XML attributes defined at this level. 
For example, the %Aggregate entity defines all the XML attributes for MB-XML aggregates.  
Every MB-XML aggregate will include these attributes as part of its definition.  In order to 
recognise that an element is part of a certain layer (and thereby has the attributes of that layer 
defined for it), it requires a link to the entity through the ATTLIST construct of XML. 

For example, the following DTD expresses the fact that a postal address is an aggregate: 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 21 
 

<!ATTLIST PostalAddress  %Aggregate;> 

Specifying Null Values 

The distinction between property values that are blank and those that have been omitted or 
unknown must be supported by MB-XML messages.   

MB-XML recognises null values, signifying omission, in one of two ways. If an aggregate is 
being added initially and the tag is optional, the sender can simply omit the tag to signify null 
values. Or the sender can signify null values on an add or a modify by specifying no spaces 
between the begin and end tags. If a response requests a tag that is nulls, the same 
mechanism is used. To specify blank values rather than null, at least one space must exist 
between the begin tags and end tags. 

The following examples show this mechanism: 

Adding a null value: 
 <tag state=’added’></tag> 
(If the aggregate to which the tag is being added does not exist prior to the request, the tag 
can simply be omitted from the request, as well). 
 
Update to a null value: 
  <tag state=’modified’></tag> 
 or <tag state=’deleted’></tag> 
 
Return nulls from inquiry: 
  <tag></tag> 
 
Adding a blank value: 
  <tag state=’added’>       </tag> 
 
Updating to a blank value: 
  <tag state=’modified’>       </tag> 
 
Returning a blank value: 
  <tag>     </tag> 

Message Layer 

The Message represents the top layer in the MB-XML message architecture. Messages include 
one or more commands that are related; for example, as part of a business transaction or even 
just grouped for performance reasons. 

Message and Transaction Scope 

An XML attribute, txnScope tells you whether the commands of a given message are 
transaction-independent. If the txnScope attribute is set to all, each command in a message is 
part of one single business transaction and if one fails, they all must be rolled back. If this 
attribute is set to any, the commands are transaction-independent. 

Note: The stringency attached to database transactions does not need to apply to business 
transactions. If one of a sequence of commands fails, it is permissible for an alert to be 
generated on a console and for a human operator to regress the applied changes.  A full two-
phase commit, if it can be implemented, is the ideal way to manage business transactions. 



22 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Message Layer Rules 

A Message can be seen as a container for a set of business information (Commands, 
Aggregates and Properties). 

A Message can enclose 1:m Commands.  

A Message can also contain default values, message origination information, and message 
processing information. 

The Message contains header information for message management and authentication. The 
header defines default routing and message processing (acknowledgement and publication). 
The header also contains one action group for each MB-XML command, connected via an XML 
reference to a COMMAND element wrapping each MB-XML command. This allows the message 
hub to deal with each MB-XML command separately for routing and message response 
purposes.  

At the level of the message header, a default command mode (type of acknowledgement 
requested) and publication information must be defined. These can be overridden at the level of 
an individual command inside the action group. 

Within the action group, optional routing, message acknowledgement, and publication 
information can be specified at a command level. If this information is not present, the top 
(Message) level values are used.  

Within each action group is a key group. The key group holds the actual key entries for 
aggregates contained in a command. If it is to be processed by the hub, keys for MB-XML 
aggregates are not stored in the aggregates, but in the key group inside the message header 
and are accessed via the XML reference mechanism.  

WMQI Enabler will process information in the header and use it to update its internal state 
information.  

Note that the primary focus of MB-XML is to provide a basis for representing the business 
content of a message. The message layer specification in MB-XML provides an example of the 
type of information that should be specified at this level, e.g. elements and attributes are 
provided to represent system and routing related information, and information about system 
defaults.   

These definitions may be extended in the future to provide consistency with other adopted XML 
standards.  

Message Element and Attribute Meaning 

Table 2 outlines the meaning of the elements and attributes defined at the message layer. 

Table 2. Message Elements and Attribute Meanings2 

Element Structure Attribute Data Type Usage Default Description 

Message  (top level)3   Required  A Message is a 
container for 
Commands. It 
can also contain 

                                                           
2 WMQI Enabler-specific elements and attributes are pre-fixed with crf, which stands for Cross-Reference File. 
3 If text is shown in parenthesis, it is not interpreted literally but refers to an MB-XML construct that can be inferred from 
the context.  In this particular case, (top level) indicates that the Message element should appear as the highest level tag 
inside an MB-XML message. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 23 
 

special elements 
such as 
Defaults, 
ErrorInfo and 
CrfActionGroup 
(described 
below). 

  id ID Required - A unique id of 
the message. 
Every instance 
of every 
message must 
have its own 
unique id. 

  sessionId String Optional - A number of 
Messages may 
be sent on the 
same topic OR a 
chain of 
messages may 
originate from 
one Message. 
The sessionId 
attribute is used 
to associate 
these messages 
together. 
Associated 
messages (such 
as a the 
messages 
containing a 
Command and 
the one 
containing its 
Response) will 
have the same 
sessionId value. 

  version String Required - The version of 
the MB-XML 
architecture /  
message 
structure. Only 
applies to MB-
XML if 
bodyType=’MB-
XML’. For this 
version of the 
MB-XML 
specification, 
version=’1.54’ 

  bodyType Enumeration Required - Identifier that 
describes the 
architecture of 
the message 
content. Defined 
values: 

                                                           
4 Although, this is the first officially published version, this is actually the fifth iteration of the specification. 



24 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

MB-XML 

EID 

… 

  timeStampCreated 

 

Timestamp Required - The time at 
which the 
message was 
created in the 
issuing system. 
Specified as a 
full yyyy-mm-
ddThh:mm:ss.ffff
ff timestamp. 

  timeStampExpired Timestamp Optional - The time at 
which the 
message is no 
longer valid / 
expires. 

  sourceLogicalId String Required - An identifier of 
the system that 
issued the 
message. 

  destinationLogicalId String Optional  - An identifier of 
the system that 
should receive 
the message. 

In the case of a 
notification, the 
DestinationLogic
alId attribute will 
usually not be 
taken into 
account (it might 
be taken into 
account if the 
notification does 
not use the 
publish-
subscribe 
mechanism) 

  authenticationId String Optional - An identifier of 
the end user  
using the 
system that 
issued the 
message. 

In most cases 
messages to 
modify or query 
data will need 
some form of 
credential to 
ensure the 
sender is 
authorized. This 
credential can 
be stored in the 
authenticationId 
attribute. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 25 
 

  crfPublish Boolean Optional false Defines whether 
to publish the 
hub activity to 
subscribers. 
Permitted 
values: 

true 

false 

Defines the 
default value for 
the crfPublish 
attribute inside 
CrfActionGroup. 

  crfCmdMode String Optional onlyRe
spondI
nError 

Defines what 
type of response 
the hub will 
generate. 
Permitted 
values: 

alwaysRespond 

neverRespond 

onlyRespondInE
rror 
Defines the 
default value for 
the crfCmdMode 
attribute inside 
CrfActionGroup. 

  txnScope String Optional all Permitted 
values: 

all 

any 

all means that 
all Commands in 
the Message are 
considered part 
of a transaction. 
any indicates 
that Commands 
are transaction 
independent. 

ErrorInfo in 
Message 

    Structure 
describing the 
error condition 
for this action 
group. See 
section 
‘Command layer 
(Command 
elements)’ for 
details on the 
ErrorInfo 
structure. 

       

Default  in 
Message 

  Optional  There are a 
number of XML 
attributes listed 



26 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

below which can 
appear (mostly 
as XML 
elements) many 
times in a 
message but 
which typically 
take the same 
value. The 
Defaults section 
allows them to 
be predefined so 
to reduce 
verbosity and 
reduce message 
size. 

       

DefaultTi
me 

in Default   Optional  Pertains to 
properties of 
type Timestamp 

  zoneOffset  UTCOffset Optional - The default time 
zone offset from 
UTC. Values 
must be within –
720 through 
+720. Value is 
typically a 
multiple of 60 
(an exact 
number of 
hours) but the 
offset may also 
include half and 
quarter hours. If 
this attribute is 
not included, an 
offset of 0 is 
assumed. 

DefaultC
urrency 

in Default   Optional  Pertains to 
properties of 
type 
CurrencyAmoun
nt 

  currencyCode Enumeration Required - The default 
currency code 
value for all the 
currency 
amounts not 
specifying a 
value for the 
currency code. 
The currency 
codes use the 
ISO-4217 
values. 

DefaultU
nit 

in Default  String Optional, 
Repeatin
g 

 Defines the unit 
to be used by 
default for 
measuring 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 27 
 

something 
corresponding to 
the measured 
concept. An 
example would 
be kg for weight. 

  measuredConcept String Required - The measured 
concept such as 
weight, distance, 
temperature… 

       

       

CrfAction
Group 

in 
Message 

  Optional, 
Repeatin
g 

 Grouping of hub 
activity related 
to a command 
section. Must be 
defined per 
command 
contained in the 
message. 
Required if 
message to be 
processed by 
the hub. 

  bodyCategory String Required - The name of the 
Workflow script 
that the adapter 
wants used to 
process a 
message. 

  crfPublish Boolean Optional false Determines if 
the messages 
need to be 
published 
specific to this 
action group. 

Permitted 
values: 

true 

false 

 

  crfCmdMode Enumeration Optional onlyRe
spondI
nError 

The type of 
response the 
action group will 
need. 

Permitted 
values:  

alwaysRespond 

neverRespond 

onlyRespondInE
rror 

This attribute 
represents a 
specialised 
version of 
cmdType 



28 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

attribute defined 
for MB-XML 
commands. 

  destinationLogicalId String Optional - Who will receive 
the message 
specific to this 
action group. 

 

Comman
dReferen
ce 

in 
CrfActionG
roup 

  Optional  Refers to a 
(command) in 
the core 
(business 
content) section 
of the message. 

  refid IDREF Optional - Reference to a 
COMMAND 
element which 
corresponds to 
this action 
group. 

ErrorInfo in 
CrfActionG
roup 

  Optional  Structure 
describing the 
error condition 
for this action 
group. See 
section 
“Command layer 
(Command 
elements)” for 
details on the 
ErrorInfo 
structure. 

       

KeyGrou
p 

in 
CrfActionG
roup 

  Optional, 
Repeatin
g 

 Must be defined 
per aggregate 
contained in a 
particular 
command.  For 

the WMQI Enabler 
hub, the 
Keygroup 
information is 
provided in the 
message header 
instead of in the 
aggregate.   The 
aggregate refers 
to its keygroup 
by a refid.   

If an aggregate 
has multiple 
keys, multiple 
alternate ids will 
show within 
KeyGroup. 
Assumes all 
keys are related 
by UUID. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 29 
 

  id ID Optional - Identifier to 
allow 
referencing of 
key blocks 
within a 
message. 

  refid IDREF Optional - Reference to 
key block (used 
at the level of 
the aggregates 
to reference to 
their keys in the 
header). 

  keyGroupType String Optional - Identifies the 
type of key. 
Corresponds to 
the aggregate 
type. For 
example: 
‘Person’, 
‘PostalAddress’ 

UUID in 
KeyGroup 

 String Optional  Universal unique 
identifier used to 
access all keys 
for all systems 
corresponding to 
this entry. 

AlternateI
d 

in 
KeyGroup 

  Optional, 
Repeatin
g 

 Alternative / 
system specific 
key used by a 
particular 
system to 
identify an 
aggregate.  

  value String Required - Contains a key 
value stored in a 
particular 
system (if 
different from 
UUID). 

  sourceLogicalId String Required - Identification of 
the system 
owning this key. 

  attributeString String Optional - Holds a (set of) 
string(s) which 
may be required 
by certain 
systems to be 
held in the hub 
cross reference 
file (CRF).  If a 
separator is 
used, it should 
be a comma. 

 

  state Enumeration Required referen
ced 

Action to be 
performed / that 
was performed 



30 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

on the key 
where: 

referenced     => 
means the key 
is just 
information sent 
from one system 
to another and 
that CRF should 
not have an 
entry for it 

add      => 
means the key 
was just created 
in a system and 
needs to be 
added to CRF, 
only for 
message into 
hub 

added  => 
means the key 
was just created 
in the originating 
system and in 
the CRF, only 
for message 
coming from hub 

exists  => 
means the key 
is in the CRF & 
should be 
translated for 
another system 

modify => 
means the key 
was modified in 
its system and 
needs to be 
changed in the 
CRF, only for 
message into 
hub 

modified => 
means the key 
was modified in 
the originating 
system and in 
the CRF, only 
for message 
coming from hub 

delete => means 
the key needs to 
be removed 
from the CRF, 
only for 
message into 
hub 

 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 31 
 

  newValue String Optional, 
only valid 
for 
state=’m
odify’ 

- Value the key 
should be 
modified to.  If a 
newValue is 
present, then 
the 
atttributeString 
attribute (if 
present) 
contains the 
new 
attributeString.   

 

Message Example 

<Message id='M1' version=’1.4’ bodyType=’MB-XML’ 
 timeStampCreated='2000-08-22-T23:59:00' 
 timeStampExpired=’2000-10-14-T23:59:00’ 
 sourceLogicalId='YourSystem' 
 authenticationId='MyUserId'’ 
        -> this is a required attribute 
 crfPublish=’true’> 
      <Default> 
  <DefaultTime zoneOffset='00:00'/> 
  <DefaultCurrency currencyCode='USD'/> 
  <DefaultUnit measuredConcept=’weight’>kg</DefaultUnit 
      </Default> 
      <CrfActionGroup bodyCategory=’AddNewPerson’> 
  <CommandReference refid=’xx’/> 
  <KeyGroup id=’K1’ keyGroupType=’Person’> 
   <AlternateId value=’rowId123’ 
    sourceLogicalId=’SIEBEL’  
    attributeString = ‘the agent number’  
    state=‘add’ 
     
  </KeyGroup> 
  … 
 </CrfActionGroup> 
 <COMMAND> 
  <AddPartyRequest id=’xx’ cmdType=’request’> 
        <Person> 
    <KeyGroup refid = ‘k1’/> 
   … 
   </Person> 
  </AddPartyRequest> 
 </COMMAND> 
 …   
</Message> 

 
 

Command Layer 

Properties and aggregates specify data content and relationships; they do not describe what to 
do with the data. The command layer provides this information. While the elements of the 
aggregate and property layers are derived from the types defined in the model, and are 
generally applicable to several areas, the commands represent the particular reason this 
message was sent. Each command is unique, but the aggregates and properties may be reused 
many times across multiple commands.  



32 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Commands are the third layer of the MB-XML architecture. A command encloses a number of 
aggregates. The exact set of aggregates enclosed depends on the command. Think of 
commands as a procedure call, or an operation on an object, which takes parameters. The 
command is the procedure (or operation) name and the enclosed aggregates are the 
parameters of the command (in the case of the object analogy, one of the aggregates may be 
considered to be the object on which the command executes while the remaining aggregates are 
parameters). 

Commands can only appear inside a Message element as defined in the message layer. 

Command Types 

Three types of commands are defined in the MB-XML architecture: Request, Response, and 
Notification. 

A Notification command corresponds to publishing an event that has already happened. Such a 
command does not expect any response from any system. It is an informative command. Each 
application must decide what events are to be broadcast. A CRM application may decide to 
notify the world each time a party entry is created (AddParty notification). All applications that 
have subscribed to that particular event are informed and will take whatever action they consider 
necessary. The notification command usually implies a Publish/Subscribe mechanism. 

A Request command is used when the originating application expects a particular system to 
take an action. An order management system can issue an AddParty request command to 
create a new customer. It is assumed that one and only one system has registered to this event 
and will process the request. In such a case, the order management expects the Party system to 
respond to the request with a confirmation such as party created successfully and possibly the 
party UUID (using a Response command). 

A Response command is used to respond to a Request command. A response is sent only to 
the originating system. Other applications are notified by the notification mechanism. 

Response to a Command 

A notification or response command never expects a response. A request command must 
specify the type of response it expects. It must also specify if the original data must be echoed 
back in the response message. 

The attribute cmdMode is used to specify the type of response a command expects. It has three 
possible values:  

alwaysRespond 
neverRespond 
onlyRespondInError 

 
A response message includes the attribute cmdStatus to indicate if the request could be 
executed successfully. 

Message and Command Id 
A response command must match a request and must therefore contain a reference to (the id of) 
both the requesting message (attribute refidMsg) and the requesting command in this message 
(attribute refidRequest). 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 33 
 

Naming Conventions for the Commands 

Every command name consists of three elements: 

a verb 
a noun 
a suffix 

 
The verb defines the action to be applied to the data passed in a command. Verbs encompass 
Create/Update/Delete (CRUD) type verbs and also more business-oriented ones.  

The noun specifies the data the action should be applies to. 

The suffix specifies Request, Response, or Notification depending on the command type.  

An example of a command is AddPartyRequest.  

List of Verbs 

A minimum list of verbs must include the usual data-centric actions to add, modify, delete, get 
(an instance) and search for information. The MB-XML terminology is aligned to IFX for this 
purpose:  

Add 
Modify 
Delete 
Cancel 
Inquiry 

 
As we move into more transactional commands, we will add other verbs such as Submit, Accept, 
Issue, and so on. 

Inquiry Command Guidelines 

For very simple inquiries, the aggregate defined for a corresponding Add command could be 
reused. For example, if you search for a particular postal address (independent from its 
relationship to a person, etc.), the PostalAddress aggregate could be used in an 
inquiryPostalAddress command. However, in most cases a different aggregate is defined to 
specify the search criteria for an inquiry command. It assembles properties found on a set of 
different aggregates, such as Person, ContactPreference and PostalAddress for an 
inquiryPartyRequest command. The properties in this aggregate mean the same as properties 
used in any other command, but their values specify what the property matches for the search.  
Thus <lastName>Smith</lastName> specifies that the last name is Smith in all persons retrieved 
by the command.  

As the logical operator for the commands is matches, the values can include wildcards in the 
same way that SQL “matches” values can use wildcards.  An asterisk (*), for instance, matches 
any character.  If more than one element is specified, the elements are combined with the and 
logical connector.  Thus:  

<lastName>Smith</lastName>  
<firstName>Betty</firstName> 
 

retrieves all persons whose last name is “Smith” and whose first name is “Betty.”   



34 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Note that the XML specification allows these criteria, but it does not implement the search.  For 
the search to be successful, the receiving program must interpret and use the criteria as 
specified. 

Processing Commands in the Message Hub 

For processing within the message hub, the MB-XML command must be enclosed in 
<COMMAND> </COMMAND> tags. The COMMAND element is not considered as a separate 
layer in the MB-XML architecture. It is part of the command layer and only represents a technical 
wrapper around the actual command. Command-related information, such as the command type 
or command mode, are defined as part of the actual command element.5  

Command Tag and Attribute Meaning 

Table 3 defines the elements and attributes used in the command layer. 

Table 3. Command Tags and Attribute Meanings 

Element Structure Attribute Data Type Usage Default Description 

COMMAN
D 

in Message   Required if 
message is 
to be 
processed 
by the 
WMQI 
Enabler hub. 

 A wrapper defining that 
the enclosed element is 
an MB-XML command. 

       

(command) in 
COMMAND 

  Required  A command specifies an 
operation on one or more 
nested Aggregates. 

  id ID Required - Id is a unique reference 
to the Command within 
the scope of the 
message. 

  cmdType Enumeration Optional request The type of command as 
defined by the issuing 
system. 

Permitted values:  

request 

response 

notification 

  cmdMod
e 

Enumeration Optional onlyResp
ondInErr
or 

Permitted values:  

alwaysRespond 

neverRespond 

onlyRespondInError 

The type of response 
expected by the sending 
system. 

  echoBac
k 

Boolean Optional, 
only 
applies to 
cmdType 
“request” 

false Permitted value:  

true 

false 

Defines if the content of a 
                                                           
5 The <COMMAND> wrapper might be integrated with the actual command tag in future versions of MB-XML. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 35 
 

“request” request command should 
be contained in a 
response command. 

  refidReq
uest 

String Required, 
only 
applies to 
cmdType 
“response” 

- refidRequest contains the 
id value of the request 
command that the 
response is issued in 
respect of 

  refidMsg String Required, 
only 
applies to 
cmdType 
“response” 

- refidMsg contains the id 
value of the Message 
that the response is 
issued in respect of. 

  cmdStatu
s 

Enumeration Required, 
only 
applies to 
cmdType 
“response” 

- Depending on whether 
the Command succeeded 
or failed.  

Permitted values:  

ok 

fail 

notApplied 

A value of notApplied 
indicates that a previous 
Command in the 
message failed or was 
never executed and as a 
consequence the 
transaction was halted. 

  defaultSt
ate 

 

Enumeration Optional reference
d 

The default for the state 
attribute at the aggregate 
and property levels of this 
command.  If defaultState 
is not specified, it is 
derived from the verb 
part of the command 
name. 

Permitted values:  

added 

modified 

deleted 

referenced 

 

Command Elements 

An important design concept in MB-XML is the separation of business data from the system-
specific attributes in a message. The message header already holds some system attributes, 
which are generic to all messages regardless of content. However, there may also be a need to 
hold system- and transaction-specific information that varies depending on the processing needs 
of the sending or receiving application. To support this, a generic structure has been created in 
each command, called SystemInfo:  

 <SystemInfo> 
 <ErrorInfo> 
  <errorMessageType>text</errorMessageType>  
      <errorCode>text</errorCode> 
  <errorMessageText>text</errorMessageText>  



36 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

  <errorStatus>text</errorStatus>  
  </ErrorInfo> 
 
 <CodeValue> 
   <code>text</code>  
   <value>text</value>  
  </CodeValue> 
 
 </SystemInfo> 

 

SystemInfo is intended to hold system-specific information, without business value but required 
by legacy applications. It includes: 

System error codes  
Error information related to the processing 

 
The ErrorInfo structure contains information related to the physical processing of the data, such 
as data return codes or message text. 

The CodeValue structure allows you to record, for example, sequence codes and values, which 
help the receiving application to interpret and rebuild a series of related messages. 

A sending or receiving application may not have the ability to process the complete message at 
one time, and may send or receive different parts of one logical message within several physical 
messages. For example, an XML structure may support an insurance agreement and all the 
vehicles and drivers insured, but the sending application may only provide this information as a 
series of messages by individual driver, while the receiving application needs sequence codes in 
order to rebuild the information. The CodeValue structure, with the code and value element pair, 
may be used to describe the type of sequence and the value.   

SystemInfo is intended as a generic structure that can hold multiple error messages or system 
codes and values defined by the applications. It is important to ensure that any information 
targeted for the SystemInfo aggregate has been through a rigorous analysis to ensure it is truly 
system dependent, and has no business value. 

Table 4 defines the System info element and its structural parts. 

Table 4. SystemInfo Elements and Attributes 

Element Structure Data 
Type 

Usage Default Description 

SystemInfo in (command)  Optional  Holds information that a system may 
want to expose to the command.  It is 
associated with each command.  The 
information does not contain business 
content, but may contain information 
about the transaction or internal 
identifications that apply to the business 
information in the command. 

ErrorInfo in SystemInfo, 
in Message or 
in 
CrfActionGroup 

 Optional, 
Repeating 

 Contains information about errors that 
may be reflected by this command (this 
message). 

errorMessageType in ErrorInfo String Optional  Designates the severity of the message 
– sever error, error, warning, 
information. 

errorCode in ErrorInfo String Optional - Encodes the message for easier 
tracking. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 37 
 

tracking. 

errorMessageText in ErrorInfo Text Optional - Specifies exactly what the error is. 

errorStatus in ErrorInfo String Optional - Specifies the Status of the command. 

CodeValue in SystemInfo  Optional, 
Repeating 

 Contains a pair of a name and its value. 

code in CodeValue  String Required - Specifies what type of information the 
associated value contains. 

value in CodeValue String Required - Contains a value the system wants to 
pass in the message. 

 
Parameters for Requests and Responses 
Response commands contain structures (aggregates) that can hold the original data from the 
request command so that they can echo back the request data. 

Command Example 

    <COMMAND>  
  <ModifyPartyRequest id=’id1’ cmdType=’request’> 
  <SystemInfo/>…</SystemInfo> 
  <Person/>…</Person> 
        </ModifyPartyRequest > 
    </COMMAND> 
    <COMMAND> 
 <AddPartyRequest id=’id2’ cmdType=’request’ echoBack=’true’> 
  <SystemInfo/>…</SystemInfo> 
  <Person/>…</Person> 
 </AddPartyRequest > 
    </COMMAND>   
 
 

Aggregate Layer 

The aggregate layer defines groups of related elements to provide a mechanism for coding 
composition rules, and a convenient method to refer to related information using a single name.  
The single name used for an aggregate represents a type. 

For example, the composition rules can define that “element 1 or element 2 must be provided”, 
and the aggregate also provides a convenient way for programmers to specify all of the related 
information by using a single name. 

An aggregate represents one type of information or a well-defined set of related types of 
information that are commonly used together. 

An aggregate groups together property elements (see Property Layer) and other aggregates. 

Aggregate examples include, among others, <Person/> and <PersonName/>. 

<PersonName id=’PN00454’> 

 <KeyGroup refid=’K1’/> 

   <usage>Legal</usage> 
  <firstName>Jane</firstName> 
   <lastName>Anderson</lastName> 
</PersonName> 



38 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

 
Note: In IFX, this layer is called the Aggregate building block. 

Aggregate Layer Rules 

Aggregate names are case sensitive. They are defined with first character as a capital letter 
(e.g. Person, ContactPreference). They should not contain special characters such as colons 
or spaces. 

Aggregates can be sparsely populated. Not all property elements and aggregate elements 
defined in the specification must be specified when constructing a message. 

Elements contained in an aggregate have a pre-defined order. Properties appear first in 
prescribed order, related aggregates appear next, also in a prescribed order. 

In an MB-XML message, aggregates can only appear inside a command. 

Elements contained in an aggregate have a pre-defined order. Properties appear first in 
prescribed order, related aggregates appear next, also in prescribed order. 

Extending Aggregates 

The supertype attribute allows you to extend the MB-XML specification by defining additional 
aggregates, while keeping a reference to the aggregate they extend. 

For example, if you want to extend Organization by creating a new subtype called SportsClub, 
the XML will look like: 

<SportsClub supertype='Organization'> 
 <startDate>...</startDate> 
 <numberOfMembers>...</numberOfMembers> 
 <league>...</league> 
</SportsClub> 

 
So, someone who does not understand SportClub but does understand Organization could 
convert the XML into: 

<Organization> 
 <startDate>...</startDate> 
 <numberOfMembers>...</numberOfMembers> 
 <league>...</league> 
<Organizati on> 

 
The properties defined on Organization (foundationDate and numberOfMembers) would be 
understood, while the ones added on SportsClub (league) would be ignored. 

Aggregate Tag and Attribute Meaning 

Table 5 defines the elements and attributes defined at the aggregate level. 

Table 5. Elements and Attributes of the Aggregate Level 

Element Structure Attribute Data Type Usage Default Description 

(aggregate) in command 
OR in 
(aggregate) 
OR in 
(relationship)- 

  Required  Specifies the name of the 
aggregate. 

  id ID Optional - A unique identifier for the 
aggregate within the scope of 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 39 
 

 the message. If defined, the 
aggregate can be referenced 
by an attribute of type idref on 
another aggregate, 
somewhere else in the 
document. 

  refid IDREF Optional - Refers to an aggregate 
already defined in the 
message. Uniquely identifies 
the referenced aggregate 
within the scope of the 
message.  

  externalRefid Boolean Optional - Defines that the information 
provided in the KeyGroup 
structure refers to an 
aggregate not defined in the 
message. The UUID or 
AlternateId of the referenced 
aggregate has to be specified 
in the KeyGroup structure. 

Permitted values: 

true 

false 

  state Enumeration Optional referenced An attribute indicating what the 
state of the information 
contained in the aggregate is. 
Permitted values: 

added 

modified 

deleted 

referenced 

State defaults to the value of 
the defaultState attribute in the 
command if it is not specified 
at the aggregate level. 

  supertype String Optional - Defines the super type of an 
aggregate. To be used for 
extensions of the MB-XML 
specification. 

KeyGroup in 
(aggregate), 
must appear 
as first item 
inside 
aggregate 

  Optional - Definition see “Message layer” 
section. 

 

The KeyGroup is defined as 
part of the aggregate if and 
only if it has not already been 
defined in the message layer. 

(relationshi
p) 

In command 
OR in 
(aggregate) 

  Optional  Specifies the name (type of) 
relationship between the 
enclosing and the enclosed 
aggregate. 

 

When an aggregate is first defined in a command, then either the KeyGroup is present and the 
refid is not, or the KeyGroup is given in the message header and the refid here refers to the id 
defined in that KeyGroup.   If the aggregate is defined elsewhere in the parameters of this MB-



40 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

XML command, then the refid of the aggregate (as opposed to the refid on KeyGroup) refers to 
the id associated with that aggregate.  

Property Layer 

The Property layer defines the atomic elements of the MB-XML Message specification. A 
Property is the most basic unit of data in the MB-XML Specification.  

A Property defines a single piece of information passed between applications. The format of the 
information is specified in the property’s data type. The definition provided with the property 
describes more precisely the purpose of this information. 

Properties can only appear inside an aggregate or a relationship as defined in the aggregate 
layer. 

Property examples include a Person’s <birthDate/>, or <street/> as part of PostalAddress.  

Note: In IFX, this layer is referred to as an Element Building Block. This name is not used in MB-
XML because of the specific meaning of element in an XML environment. 

Property Layer Rules 

Property names are case sensitive. They are defined with first character as a small letter (e.g., 
gender, firstName). They should not contain special characters such as colons or spaces. 

Properties are contained in aggregates or relationships. 

 <Person> 
  <birthDate>1965-05-15</birthDate> 
 </Person> 

Properties and Application Data 

All 'application data' is represented by the values between the property start and end tags. 

 <referenceNumber>5077-512F</referenceNumber> 

Application data is typed. Each data type has a well-defined and unambiguous format. The data 
type for each property is specified in the in the DTDs generated from the model. 

<birthDate>1965-05-15</birthDate> holds data of type ‘Date’ and is formatted accordingly 
 

Data Types 

The MB-XML data type definitions are based on: 

• XML Schema data type definitions, as defined in XML schema draft specification of data 
types, found at http://www.w3c.org/TR/2000/WD-xmlschema-2-20000225 

Java 2 built-in data types, as defined in Mastering Java 2, John Zukowski, Sybex 

• IFX data type definitions as defined in Interactive Financial Exchange Business Message 
Specification, Version 1.0.1, Public Review Draft January 3, 20006.  

                                                           
6 The latest version of the IFX specification can be downloaded from the Internet: 
http://www.ifxforum.org. 

 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 41 
 

 

The following data types are supported in MB-XML: 

String       
Text      
Binary   
Boolean          
Date 
Time 
Timestamp    
Time duration 
Number 
Byte 
Integer 
Short 
Decimal 
Percentage 
Amount 
Currency amount       
Enumeration        
Identifier        

 

For the definition of the MB-XML data types, please refer to the section MB-XML Data Types, 
page 53.  

Units of Measure 
A specific data type, Amount, is used in MB-XML to represent anything that is measurable. It 
contains a required element for the value (theAmount) and an optional element for the units 
(unit). The DefaultUnit element contains an XML attribute, measuredConcept, so that defaults 
can be specified for every measured concept at the level of the message (see Message layer). 

For example, you can specify the following default at the level of the message:  

<DefaultUnit measuredConcept=’weight’>kg<DefaultUnit> 
 

 

The effect is that the following element: 

<bodyWeight> 
  <theAmount>65</theAmount> 
</bodyWeight> 

 

is interpreted as follows: 

<bodyWeight> 
  <theAmount>65</theAmount> 
  <unit>kg</unit> 
</bodyWeight>  

 

In the DTD, the following entity is defined: 



42 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

<!ENTITY % Amount ‘ theAmount, unit?’> 
<!ELEMENT theAmount(#PCDATA)> 
<!ELEMENT unit (#PCDATA)> 
<!ATTLIST theAmount measuredConcept> 
 

 

Amount can be used in the same way as any other data types by specifying: 

<!ELEMENT bodyWeight (%Amount;)> 
 

 

Property Tag and Attribute Meaning 

Table 6 defines the XML attributes defined at the level of the property layer. 

Table 6. Attribute Definitions at the Property Layer 

Element Structure Attribute Usage Default Description 

(property) in 
(aggregate) 
OR in 
(relationship) 

 Required  Specifies the name of the  property. The actual data 
(value) is defined as element content. 

  state Optional 

 

referenced An attribute indicating the state of the information 
contained in the property. Permitted values: 

added 

modified 

deleted 

referenced 

Defaults to state from the aggregate level to which this 
property belongs, if aggregate state exists. 

Defaults to defaultState at the command level if there is 
no state defined at the aggregate and property levels. 

 
 
Note that certain combinations of the state property at the aggregate and property levels are not 
logical. For instance, it makes no sense to delete an aggregate but at the same time add or 
modify one of its properties.  We cannot prevent such requests through XML, but we also cannot 
predict the action of applications receiving such a request. 

 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 43 
 

 

This section contains a list of the books and other reference sources used to prepare this 
document. 

David Megginson, Structuring XML Documents (from the Series on Open Information 
Management from Charles F Glodfarb) (Prentice Hall) 

Luis Ennser, Christophe Chuvan, Paul Fremantle, Ramani Routray, Jouko Ruuskanen, The 
XML Files: Using XML and XSL with IBM WebSphere V3.0, IBM Red Books 

 

ACORD:  http://www.acord.org 

CPEX: Customer Profile Exchange 

IFX: (Interactive Financial exchange):  http://www.IFXForum.org  

OAG:  http://www.openapplications.org 

OASIS:  http://www.oasis-open.org 

XML.ORG:  http://www.xml.org 

W3C (World Wide Web Consortium):  http://www.w3.org 

 

Bibliography 



44 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

 

This section contains a list of terms and abbreviations used in this document. 

ACORD 
A US standards body. ACORD have produced the ACORD Insurance Service Business 
Message Specification for Property and Casualty. 

API 
Application Programming Interface. 

CIIS  
Client Information Integration Solution, an implementation of a Party Management System 
based on the IAA model. 

Class 
A UML class. A description of an object. 

DTD 
Document Type Definition. 

EJB 
Enterprise Java Bean. 

IAA 
Insurance Application Architecture.  IBM’s business model for the insurance and financial 
services industry. 

IFX 
Interactive Financial eXchange.  A cooperative industry effort among major financial 
institutions produced by the IFX Business Message Specification for the financial services 
industry. 

OAG 
Open Applications Group.  A non-profit industry consortium comprised of many of the most 
prominent stakeholders in the business software component interoperability arena in the 
world.  It was formed in February, 1995 in response to the rapidly expanding problem of tying 
disparate software applications together. 

OASIS 
(Organisation for the Advancement of Structured Information Standards).  A non-profit 
international consortium founded in 1993 to advance the open interchange of documents and 
structured information objects.  Originally focused on SGML, OASIS has evolved to more 
actively support XML. 

Object 
Instance of a class. 

Party 
Any person or organization  that the insurance company has, or had, or may have a business 
interest in. 

Glossary 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 45 
 

Property 
A data value of a type. 

Operation 
A function defined on a class and executable on the object. 

Property tag 
An XML tag representing a property of an IAA type (represented as an UML attribute). 

Root type 
A type which is (one of) the main type(s) of an IAA component. The type to which types 
outside of the component are related to, and on which most of the types of the component 
depend on. 

Tag 
An XML construct <Tag....>. 

Type tag 
An XML tag representing an IAA type. 

UML 
Unified Modeling Language. 

W3C 
World Wide Web Consortium. 

XML 
eXtensible Markup Language.  XML is a markup language for message definition, and is an 
open and public domain standard.  XML is a subset of SGML designed for easy 
implementation in commercial and web environments. 

XML attribute (or just attribute) 
Appears in an opening tag, used to specify values in the tag. <Tag attribute=’val’...> . 

 



46 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Appendix A: MB-XML and the underlying UML model 

Benefits of Model-driven Messages 

Clear Definitions 

In order to fully benefit from the MB-XML approach, it is advised to use an underlying IUML 
model as the basis for the generation of the DTDs. This model could vary depending on the 
problem domain. Any model playing this role is commonly referred to as an Interface Design 
Model (IDM). 

Every concept identified in the Interface Design Model must be defined precisely so that 
messages defined based on this model are consistent in structure and have a clear meaning. A 
type such as PersonName is defined unambiguously in the interface design model; the 
corresponding XML aggregate benefits from this definition. The same holds for attributes of the 
Interface Design Model. 

Normalisation of Data 
An Interface Design Model should be a normalized model. Every piece of data is defined once at 
the right place. Some compromises have to be made to guarantee performance from an 
implementation perspective, the structure of the XML messages can only benefit from being 
normalized. 

Basing MB-XML on a normalized Interface Design Model allows for defining message sets 
around subject areas with no data redundancy. 

Command Layer 

The command layer is closely related to the Interface Design Model interfaces. An operation on 
an interface translates to a request/response command pair in MB-XML. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 47 
 

Appendix B: MB-XML Generation from an Interface Design 
Model in Rational Rose (RR) 

Legend:  

In the Rational Rose column, words in bold represent defined terms (constructs) within the 
Rational Rose tool 
In the DTD column, words in italics represent dynamic parts of the generated DTD Normal text 

represents static parts of the DTD 
Rational Rose DTD Comments 

 “Hard-coded” ELEMENTs of DTD  

   

 ENTITY Command  

 ENTITY CommandReuqest  

 ENTITY CommandResponse  

 ENTITY Aggregate  

 ENTITY Relationship  

 ENTITY Property  

defined in Interface Design Model, but 
not used for generation 

ENTITY DataTypes includes definitions for all MB-XML 
data types defined in this document 

   

 ELEMENT Message  

 ELEMENT Command  

 ELEMENT Default (Time, Currency, 
DefaultUnit) 

 

 ELEMENT CrfActionGroup  

 ELEMENT KeyGroup (AlternateId, UUID)  

 ELEMENT SystemInfo, CodeValue and 
ErrorInfo 

 

   

GENERAL RULES   

Component defined in RR 
Component View 

defines scope of DTD  

   

OPERATIONS COMMAND LAYER  

Operation defined on an interface  

assigned to component in RR 
Component View, no stereotype 
assigned 

Command pair of Request and  
Response (and Notification) 

 

<!ELEMENT OperationNameRequest 
(%Command; , OperationInputParameter) 
> 

<!ATTLIST operationNameRequest 
%CommandRequest;> 

 

<!ELEMENT OperationNameResponse 
(%Command; operationReturnType)> 

<!ATTLIST operationNameResponse 
%CommandResponse;> 

for MB-XML 1.4, the ‘Notification’ 
commands are not generated 

   



48 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

CLASSES AGGREGATE LAYER – AGGREGATES  

Any class with subclasses 

assigned to component in RR 
Component View 

abstract superclass: 

<!ENTITIY % 
InheritanceSuperClassName 
‘SubClassName1 | SubClassName2’> 

concrete superclass: 

<!ENTITIY % 
InheritanceSuperClassName “ClassName 
| SubClassName1 | SubClassName2”> 

if SubClass is not assigned to component, 
an ‘empty / stub’ %Aggregate  is 
generated for it 

Used for  

- associations that exist between 
this abstract class and others 

- abstract class as parameter in a 
command 

Any concrete class 
assigned to component in RR 
Component View 

<!ELEMENT  ClassName ( KeyGroup, 
attributeName1, attributeName2, 
relationship1, relationship2)> 

<!ATTLIST ClassName %Aggregate;> 

 

   

ATTRIBUTES PROPERTY LAYER  

Attribute defined on a class 

where class assigned to Component 
View in RR 

no stereotype or stereotype 
<<derived>> 

<!ELEMENT attributeName (%DataType; )> 
<!ATTLIST attributeName %Property; > 
order: same as found in RR model; 

generated as first set of ELEMENTs 
included in aggregate  

The order in which the properties appear 
as elements does not matter in the DTD. 
It matters only in the definition of the 
aggregate. 

 

- generated as ELEMENTs after 
KeyGroup 

- all MB-XML properties are 
optional 

RR Type maps to DataType where DataType must 
refer to a data type as defined in hard-
coded section  

 

RR Initial value; permitted values for 
data type Enumeration 

not defined in DTD, only in MB-XML 
documentation 

 

Operation stereotype <<attnav>> 

  

generated as %Property (see above); 

operation name = property name 

return type = property data type 

 

   
ASSOCIATIONS AGGREGATE LAYER – 

RELATIONSHIP 
 

Navigable association from 
SourceClass to TargetClass 

- both ends of association assigned 
to component in RR Component 
View 

- stereotype <<generate>>  

 

<!ELEMENT  associationEndName 
(TargetClass)> 

<!ATTLIST associationEndName 
%Relationship;> 

the %Relationship (associationEndName)  
is included in the SourceClass 
%Aggregate  

if TargetClass is not assigned to the 
component, an “empty / stub” 
%Aggregate  is generated for it 

generated as sub-sequent 
ELEMENTs after properties 

 

Operation, stereotype <<typenav>> generated as %Relationship (see above); 

name = associationEndName 

return type = TargetClass embedded in 

 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 49 
 

%Relationship 

[] used to express 0:m 

   

   

 



50 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

Appendix C: Data Types 

Definition of Data Types 

String 

A string of characters (optionally containing blanks) for which a maximum length can be 
specified. 

String indicates an element that allows character data up to a maximum number of characters. 
The number after the hyphen specifies the maximum number of characters. For example, S-12 
specifies an element of characters with a maximum length 12 characters. S-8 indicates an 
element with no maximum length. It is expected that character type elements may contain 
multibyte representations of characters in some implementations, depending on the allowable 
character sets. 

Text 

A string of characters (optionally containing blanks) for which a maximum length cannot 
realistically be fixed. 

Binary 

A finite sequence of binary octets. The definition consists of three logical elements: content type, 
binary data and binary data length. 

The Binary data type is a compound type consisting of three logical elements: 

Tag Type Usage Description 

<contentType> Enumeration Optional Specified in IETF RFC 2046. 

<binLength> Integer Required Identifies the size of the binary data in number of bytes. 

<binData> Raw Binary Data Required Binary data. 
 

Boolean 
A logical TRUE or FALSE condition. 

Date 

An indication of a particular day in the Gregorian calendar. 

Elements of data type Date contain an indication of a particular day. This data type describes a 
unique period of time, normally 24 hours (not a repeating portion of every year). 

Logically, this data type must contain a 4-digit year, and may contain a month and day number.. 

Time 

An indication of a particular time in a day expressed with a maximum precision of one 
microsecond. 

Elements of data type Time contain an indication of a particular time during a date. This data 
type describes a repeating portion of a day. That is, each time described (ignoring leap seconds) 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 51 
 

occurs once per calendar date. Based on the IFX specification, it is required that a time data 
type be able to represent a specific period with indefinite precision. Milliseconds are the 
minimum required precision of the data type time. 

A time represented using this data type must not be ambiguous with respect to morning and 
afternoon. That is, the time must occur once and only once each 24-hour period. 

In addition, the Time data type must not be ambiguous with respect to location at which the time 
occurs. If unspecified, the time zone defaults to Coordinated Universal Time (UTC). Generally, 
use of a specific time zone in the representation is preferred. The time zone should always be 
specified to avoid ambiguous communication between clients and servers. 

Timestamp 

An indication of a particular date and time expressed with a precision of one microsecond. 

Elements of data type Timestamp contain year, month, day, hour, minute, second, fraction and 
utcOffset. Timestamp information is not intended to be meaningful at the other end of the 
communication. In addition, microseconds are the minimum required precision of the time 
portion of this data type. 

For example, a Timestamp value may be generated at a server when creating an audit 
response. The client application may return that value to the server in later requests, but the 
client software should not interpret the information. 

TimeDuration 

A duration of time expressed in years, months, days, hours, minutes, and seconds.  

Number 

A numeric count not requiring any units. 

Byte 

A signed integer between –128 and +127, of type Number. 

Integer 

A signed integer between –2147483648 and +2147483647, of type Number. 

Short 

A signed integer between –32768 and +32767, of type Number. 

Decimal 

A numeric value that is up to fifteen digits long, excluding any punctuation (e.g., sign, decimal, 
currency symbol, etc.); or is not restricted to integer values and has a decimal point that may be 
placed anywhere from the left. 

Decimal indicates a numeric value up to fifteen (15) digits in length, excluding any punctuation 
(e.g., sign, decimal, currency symbol, etc.); orlue is not restricted to integer values and has a 
decimal point that may be placed anywhere from the left of the leftmost digit to the right of the 
rightmost digit (e.g., +.12345678901234 is acceptable while 12345678901234567 is not). 



52 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

The sign is always optional. If it is absent, the value is assumed to be positive. 

Percentage 

A percentage.  

Amount 

A numeric count including units, such as litres, inches, or kilometres per litre. For example: 150 
km/h. 

An Amount is a compound data type consisting of two logical elements: 

Tag Type Usage Description 

<theAmount> Decimal Required Amount. 

<unit> String Required Unit.  
 

TheAmount has an attribute called measuredConcept that specifies what the amount measures 
(weight or distance for example). 

Currency Amount 

A monetary amount including the currency. 

A Currency amount is a compound data type consisting of two logical elements: 

Tag Type Usage Description 

<currencyAmount> Decimal Required Amount. 

<currencyCode> String Required Currency code.  
 
All monetary amounts in MB-XML are handled with the Currency amount data type. When 
included, this data type contains a decimal value for the amount, and an optional three-letter 
currency code defined in ISO-4217.  

Enumeration 

A value out of a limited set, each with a specific, mutually exclusive meaning. 

Enumeration is a Value type that has a limited number of specified valid values, each of which is 
represented by a tag of up to 80 characters each.  

At present, the MB-XML specification does not provide a syntax to define permitted values for an 
Enumeration type. Where defined, the permitted values will be found in the description of a 
property.  

Identifier 

A value without business meaning that uniquely distinguishes an occurrence. 

Object reference 

An identifier, unique across both space and time, with respect to the space of all Object 
references. 



Copyright IBM Corp. 2000 IBM’s Model-Based XML Architecture 53 
 

Date and Time Formats 

Time is specified at the hub in a character format at the moment, with no validation expected.  
We highly recommend, however, that users follow the ISO8601 standard, which is the proposed 
standard for dates and times in XML schemas.   The ISO8601 specifies time as follows: 

 CCYY-MM-DDThh:mm:ss.sssZ 

Where CCYY is the year; MM, month; DD, day; T is the literal ‘T’ used as a date-time separator; 
hh, hours using a 24 hour clock, mm, minutes; and ss.sss, seconds.   

The ‘Z’ indicates that the time is in Universal Time Coordinated (UTC).  To indicate a timezone 
different than UTC, follow the time with ±hh:mm to signify the difference from UTC and omit the 
‘Z’. 

So the following times are valid and equivalent: 

 2000-04-06T19:30:40Z  signifying GMT and  

 2000-04-06T20:30:40+1:00 signifying CET and 

 2000-04-06T13:30:40-6:00 signifying CT (US) 

ISO8601 also specifies the format for time duration.  It allows the omissions of parts of the date 
and time.  This can be useful, for instance, when we are only interested in the underwriting year 
or the renewal month and year.  The representation allowing these omissions follows: 

 PnYnMnDTnHnMnS 

An optional preceding ‘-‘ (before the P) may be specified to signal a negative duration.  For 
example, P1Y2M3DT10H30M signifies 1year, 2 months, 3 days, 10 hours and 30 minutes; -
P10Y means 10 years ago.  The specification may be truncated on the right. 

Time periods can be specified using several combinations of times, either the start instant and a 
duration, the start instant and end instant, or the end instant and a negative duration.    

Please refer to the ISO Standard document for more details. 

XML Schema Data Types vs. IFX Data Types 

The W3C committee is defining a schema to be used for XML message definition and validation.  
One of the advantages of using the XML schema over DTDs is the ability to use and validate 
data types. The schema implementation is not yet available, however,  which requires the first 
implementation of MB-XML to use DTDs. 

We have examined the XML schema draft specification of data types, found at 
http://www.w3c.org/TR/2000/WD-xmlschema-2-20000225, and compared them with the IFX 
data types, as follows: 

MB-XML Data 
Types 

IFX Data Type XML Schema Primitive Data Type 

String Character   
  

String 

Text   

Not supported Narrow Character   String with a length attribute specified 

Binary Binary Binary 

Boolean Boolean Boolean 



54 IBM’s Model-Based XML Architecture Copyright IBM Corp. 2000   

 YrMon TimeInstant with the with the day, hour, minute, 
and second omitted 

Date Date TimeInstant with the hour, minute, and second 
omitted  

Time Time TimeInstant with the year, month, and day omitted  

 DateTime TimeInstant with seconds expressed as integers 

Timestamp Timestamp TimeInstant with decimal values included in 
seconds 

Amount    

Currency Amount Currency Amount Not supported  

Not supported Closed Enum Supported by enumeration attribute of each data 
type 

Enumeration Open Enum Supported by enumeration attribute of each data 
type 

Short Long    Supported by length attribute on decimal, with 
scale attribute of 0 

Identifier Identifier ID 

Not supported Phone Number  
  

Not supported 

Decimal Decimal  Decimal 

Not supported Universally Unique Identifier 
(UUID) 

Not supported 

Not Supported URL URI-reference 

 

 The XML schema has additional primitive data types for float (floating point number), double 
(double precision floating point number), time instant, time duration, recurring instant, IDREF 
(like IDREF in DTDs), ENTITY (like ENTITY in DTDs), and NOTATION (like NOTATION in 
DTDs).  In addition,  the XML schema contains/includes derived data types that are 
specialisations of primitive data types, such as language, integer, date, time, and name. It also 
supports user-defined data types.   

The MB-XML DTDs include definitions for all valid MB-XML data types.  We recognise that in 
future we will move from DTD specifications to using XML schema for message definitions.  We 
recommend, therefore, that those MB-XML data types that XML schema does not support are 
used with great care – only on message types that are expected to be short-lived. 

Furthermore, the date and time formats for IFX, although functionally equivalent, are 
implemented differently.  The IFX timestamp specification is the same as the XML schema 
format.  If MB-XML users choose to implement IFX conventions for other date and time formats 
in adapters, those adapters will have to change when the XML schema is adopted. MB-XML 
DTDs do not use the IFX date and time data types at this time. 




