IBM WebSphere MQ Integrator for z/OS V2.1 -
Performance Report

Version 1.1

April 19, 2002

Andy Abbey

Les Churchard

MQSeries Performance and Test
IBM UK Laboratories

Hursley Park

Winchester

Hampshire

S021 2JN

Property of IBM

IBM WebSphere MQ Integrator for z/OS V2.1 - Performance report

Take Note!

Before using this report be sure to read the general information under "Notices".

Second edition, April 2002

This edition applies to Version 1.1 of IBM WebSphere MQ Integrator for z/OS - V2.1 Performance
Report and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2002. All rights reserved. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure
is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

IBM WebSphere MQ Integrator for z/OS V2.1 - Performance report

Notices

This report is intended to help the customer understand the performance characteristics and perform
capacity planning for WebSphere MQ Integrator for z/OS - V2.1. The information is not intended as
the specification of any programming interfaces that are provided by MQSeries or WebSphere MQ
Integrator for z/OS - V2.1.

References in this report to IBM products or programs do not imply that IBM intends to make these
available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is distributed
“asis”. The use of this information and the implementation of any of the techniques is the
responsibility of the customer. Much depends on the ability of the customer to evaluate these data
and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

« [BM
e Z/0OS
¢ MQSeries

* WebSphere MQ Integrator

« DB2

The following terms are trademarks of other companies:

¢ Windows NT, Windows 2000, Visual Studio Microsoft Corporation
¢ NEONFormatter, NEONRules, NEON

Other company, product, and service names may be trademarks or service marks
of others.

IBM WebSphere MQ Integrator for z/OS V2.1 - Performance report

Summary of Amendments

Date Changes

20 December 2001 Initial release
19 April 2002 Update with data from evaluation of V2.1 code at CSD2 level

IBM WebSphere MQ Integrator for z/OS V2.1 - Performance report

Contents

L0 CON BT 1
1.4 Major Components 1
1.1.1 The Configuration Manager 1
T2 The Brokers 2
1.1.3 The Control Center 2
114 The UserName Server 3
1.2Message Flows 3
1.3 Messages and Message Sets 4
T4 Message Parsers 6
2.0 BROKER THROUGHPUT MEASUREMENTS 7
2.1 MQInputMQOutput Throughput -~~~ 9
22 Compute Node Throughput =~ 10
221 Simple Compute Node 10
2:2.2 Complex Compute Node 11
2.2.3 Multiple Complex Compute Nodes -~~~ 12
2.2.4 Very Complex Compute Node = 13
2.3 Database Node Throughput -~~~ 14
2.4 Filter Node Throughput = 15
2.5 RouteTolabel Node Throughput -~~~ 17
2.6 Publication Node Throughput -~~~ 18
2.7 What Is The Cost Of Converting Messages To Different Formats > 19
2.8 Parallel Processing options -~~~ 19
2.8.1 What Is The Effect Of Using additional Instances? 20

2.8.2 What Is The Effect of Using Multiple Copies Of a Message Flow Within an
EXECULION GIOUD 2 ..ottt et e e e e e e e e e e e e e 21
2.8.3 What Is The Effect of Increasing The Number of Execution Groups > 29
2.9 What Is The Effect of Making a Message Flow Transactional? 23

2.10 What Is The Effect of Using Coordinated Transaction=yes on a Message Flow? 24

2.11 What Effect Does an Increasing Number of Subscribers Have on

Publish/Subscribe Throughput? i 25
30 CAPACITY PLANNING 28
3 A Throughput 28
3.2 Scaling Message Throughput -~~~ 29
B Memory . 29
3.4 Recommended Minimum Configurations 30
4.0 PERFORMANCE RECOMMENDATIONS ... 32
4.1Understand Recovery Requirements 32
4.2 Optimize Queue Manager 32
4.3 Configuration Considerations 32
44 Maximizing Throughput -~~~ 33

IBM WebSphere MQ Integrator for z/OS V2.1 - Performance report

4.5 Configuring Shared Libraries 34
50 GLOSSARY 36
6.0 APPENDIX A - MEASUREMENT HARDWARE AND SOFTWARE 37
7.0 APPENDIX B - MEASUREMENT DATA 38

7.1 MQInput/MQOutput Throughput Results 38

7.2 Compute Node Throughput Results 38

721 Simple Compute Node 38
7.2.2 Complex Compute Node 38
7.2.3 Multiple Complex Compute Nodes -~~~ 39
7.2.4 Very Complex Compute Node =~ 39

7.3 Database Node Throughput Results -~~~ 39

7.4 Filter Node Throughput Results 39

7.5 RouteTolabel Node Throughput Results -~~~ 40

7.5.1 RouteTolabel 1 destinationentry -~~~ 40
7.5.2 RouteTol.abel 100 destination entries 40

7.6 Publication Node Throughput Results -~~~ 40

7.7 Converting Messages Between Formats 41

78 Parallel Processing 44

7.8.1 The effect of Using Additional Instances -~~~ =~ 44
7.8.2 The Effect of Using Multiple Copies of a Message Flow 44
7.8.3 The Effect of Increasing The Number Of Execution Groups 45

7.9 The Effect of Making a Message Flow Transactonal 46

7.10 The Effect of using coordinatedTransaction=yes 46

7.11 The Effect of Increasing the Number of Subscribers 46
8.0 APPENDIX C - COMPLEX COMPUTENODE '~ 48

8.1 Complex Compute Node -~~~ 48

8.2 Multiple Complex Compute Node 48

8.3 Very Complex Compute Node 48

vi

WebSphere MQ Integrator for z/OS V2.1 - Performance report

1.0 CONCEPTS

WebSphere MQ Integrator (WMQI) is IBMs’ message broker product, addressing the needs of
business and application integration. Business integration is the coordination of all of a company’s
processes. Application integration is the coordination of its applications. This process of integration
involves the bringing together of the data and processes within an organization to maximize the
sharing of data and applications in order to cope with changing organization structure (merger,
acquisition etc.) and increase the effectiveness of the organization.

A key requirement of such business and application integration is that applications are able to
communicate with each other without having to make code changes. WMQI V2.1 makes the required
integration easier through the services that it provides. These services are:

* Route a message to several destinations, using rules that act on the contents of one or more of
the fields in the message or message header.

* Transform a message, so that applications using different formats can exchange messages in
their own formats.

e Store and retrieve a message, or part of a message, in a database.
* Modify the contents of a message (for example, by adding data extracted from a database).

* Publish a message to make it available to other applications. Other applications can choose to
receive publications that relate to specific topics, have specific content, or both.

e Extend the capabilities of rules and formats defined in MQSeries Integrator V2.

The above services are based on the messaging transport services provided by the MQSeries
Messaging products.

For a full description of the concepts introduced in this chapter refer to manual WebSphere MQ
Integrator Introduction and Planning.

1.1 Major Components

The major components of WMQI V2.1 are:

* The Configuration Manager

e The Brokers

e The Control Center.

* The User Name Server.

The Configuration Manager and the Control Center must be run on a Windows NT or Windows 2000

machine. Brokers and the User Name Server run on any of the supported operating systems,
including z/OS.

1.1.1 The Configuration Manager

The Configuration Manager is the main component of the WMQI environment. The components and
resources managed by the Configuration Manager constitute the broker domain. The Configuration
Manager serves three main functions:

WebSphere MQ Integrator for z/OS V2.1 - Performance report

* It maintains configuration details in the configuration repository. This is a set of database tables
that provide a central record of the broker domain components.

* It manages the initialization and deployment of brokers and message processing operations in
response to actions initiated through the Control Center. It communicates with other components
in the broker domain using MQSeries transport services.

e It checks the authority of defined user Ids to initiate those actions.

There is a single Configuration Manager to manage a broker domain. The Configuration Manager
provides a service to other components in the broker domain providing them with configuration
updates in response to actions taken by the user of the Control Center.

1.1.2 The Brokers

The broker is a named resource that hosts and controls the business processes that are defined as
message flows. Applications send new messages to the message flow and receive processed
messages from the message flow, using MQSeries queues and connections.

Any number of brokers can be created within a broker domain. It is possible to create more than one
broker on any one physical system if desired, but there must be a unique queue manager for each
broker. It is possible for a single broker to share a queue manager with the Configuration Manager.

Within each broker it is possible to define execution groups that are responsible for running the
message flows. An execution group is implemented as an operating system process. Within an
execution group it is possible to define additional threads that will also perform the processing of the
message flows, these are known as additional instances. On z/OS brokers run in the Unix System
Services (USS) environment.

When creating message flows that provide a publish/subscribe service it is possible to connect a
number of brokers in a collective using the Control Center. A collective contains a number of brokers
that are all physically interconnected. All the broker queue managers must be connected by pairs of
MQSeries channels.

A collective optimizes the publish/subscribe of messages in the broker domain by reducing the
number of clients per broker, without increasing the hops taken by any message by more than one.
In this way collectives are more efficient than a hierarchy.

It is possible to connect collectives to other collectives and to other individual brokers. When
collectives are connected to a standalone broker only one broker in each collective must provide the
connection.

Messages published to any one broker are propagated to all connected brokers (whether or not they
are in a collective) to which an application has subscribed to the messages topic or content.

1.1.3 The Control Center

The Control Center interfaces with the Configuration Manager to allow the user to configure and
control the broker domain. The Control Center and Configuration Manager exchange messages
(using MQSeries) to provide the information requested and to make updates to the broker domain
configuration.

It is possible to install and invoke any number of Control Center instances. The Control Center can
be installed one the same physical system as the Configuration Manager, or any other system that
can connect to the Configuration Manager.

The Control Center is structured as a number of views on the configuration and message repositories.
The message repository contains all message definitions that have been created or imported through

2

WebSphere MQ Integrator for z/OS V2.1 - Performance report

the Control Center. The configuration repository contains configuration information pertaining to all
other resources within the broker domain; brokers, collectives, message processing nodes, message
flows, topics and subscriptions.

The Control Center can be used to

¢ Develop, modify, assign and deploy message flows.

¢ Develop, modify, assign and deploy message sets.

* Define the broker domain topology and create collectives.
e Control topic security of messages by topic.

¢ View status information.

1.1.4 The User Name Server

The User Name Server monitors the underlying security subsystem provided by the operating system
and provides information about the valid principals (users and groups of users) in the system. The
User Name Server shares this information with the brokers and Configuration Manager and updates it
at frequent intervals. The information can be used to control access to topic-based messages
produced by the publish/subscribe service. Topic-based security gives the ability to control the
authority of applications, identified by the user ID under which they are executing, to publish on topics,
to subscribe to topics and to request persistent delivery of messages on topics.

In WMQI V2.1 it is recommended that the User Name Server is only used with a small number of
userids.

1.2 Message Flows

A message flow is a sequence of operations on a message, performed by a series of message
processing nodes. The actions are defined in terms of the message format, its content, and the
results of individual actions along the message flow.

MQSeries Integrator supplies a number of predefined message processing node types, known as IBM
primitives. These provide basic functions including input, output, filter (on message data content), and
compute (manipulate message content: for example, add data from a database).

A message flow and the message processing nodes it contains describe the transformation and
routing applied to an incoming message to transform it into outgoing messages. These actions form
the rules by which the message is processed.

A message flow can also be made up of a sequence of other message flows, that are joined together.
This function allows message flows to be defined and reused in other message flows when required.

When the message flow creation is complete, it can be assigned for execution to one or more
brokers. The message flow must be operationally complete. That is it must contain at least an
MQInput node. Most message flows will also contain at least one MQOutput or one Publication node,
although this is not required.

A message flow can be defined as transactional: it is possible to define message flows to perform all
processing within a single unit of work. Therefore the receipt of every message by the input node,
and the database operations performed as a result of that message being received and processed by
the message flow, are coordinated.

WebSphere MQ Integrator for z/OS V2.1 - Performance report

If an error occurs within a transactional message flow, the transaction is rolled back and the message
will be handled according to normal error handling rules. It is possible to define a message flow to
work outside of a unit of work if this transactional support is not required.

When a message flow is deployed to a broker, the broker automatically starts an instance of the
message flow for each input node (one or more). This is the default behaviour. Each instance
retrieves a message from the input node, and runs in parallel with other instances that retrieve a
message from other input nodes.

The broker provides the run-time environment for a set of deployed message flows: this environment
is called an execution group. An execution group provides an isolated environment, because each is
started as a separate operating system process.

One execution group, the default execution group, is set up for use whenever a broker is created. By
setting up additional execution groups, it is possible to isolate message flows that handle sensitive
data such as payroll records or security information, from other non-senstive message flows.

In order to further increase the throughput of the message flow, it is possible to set a property of the
assigned message flow that defines how many additional instances are to be started by the broker for
that message flow. Itis possible to set the orderMode property of the input node to exercise control
over the order in which messages are processed.

It is possible to increase message flow throughput by assigning more than one copy of the message
flow to the same broker, and by assigning a message flow to more than execution group. This is only
appropriate if the message order is not important because the multiple copies of the message flow
are handled independently by the broker with no correlation between them.

Within an execution group the assigned message flows run in different WMQI thread pools. The size

of the thread pool that is assigned for each message flow is set by specifying the number of additional
instances of each message flow.

1.3 Messages and Message Sets

In WMQI messages are always in one of two broad categories:
* Predefined. The content of a predefined message is described by the message template.
* Self-defining. The content of a self-defining message is described by the message itself.

The message definition process is managed by the Message Repository Manager (MRM) component
of the Control Center.

Message definitions are created or modified using the Control Center, the MRM stores them in the
message repository.

Predefined Messages
A predefined message has a logical structure and a physical structure.

The logical structure defines the contents of the message using a tree structure that identifies each
field and its relation to other fields. The applications sending and receiving messages like this
understand the format and type of each field. For example they might use a C structure that shows
AccountNumber is an eight byte field, AccountName is a 20 byte character field and AccountBalance
is an 8 byte character field.

The physical structure, also known as a wire format, is a string of bytes. Without the logical structure
the physical structure has no intrinsic meaning.

WebSphere MQ Integrator for z/OS V2.1 - Performance report

The physical structure of each element in a message is further defined by its Custom Wire
Format(CWF) characteristics. These give the physical format (for example COBOL packed decimal),
the length, whether the field is signed and so on.

Message Templates

A message template is made up of four values contained within the <Msd> element of the <mcd>
folder in the RFH2 header:

1. Message Domain which identifies the message parser that will interpret the bit-stream of the
message. By default WMQI supports the values MRM, XML, BLOB and NEON. MRM is the
MRM-enabled parser and is used for all messages whose definitions have been created in, or
imported to, the message repository. XML is for self defining messages only. BLOB is used for
messages whose format is not understood, in which case they are treated as a bit stream. NEON
is for NEON messages only.

2. Message set which identifies the grouping of messages within the message domain. Typically a
message set contains a number of related messages that provide the definitions required for a
specific business task or application suite. The message set is similar in concept to the
application group in NEON.

3. Message type which identifies the logical structure of the data in the message. For example the
number and location of character strings and their relationships.

4. Message format which identifies the physical representation of the message (its wire format). The
MRM-enabled parser supports the following wire formats:

XML the message is identified as an XML document that complies with a Document Type
Descriptor (DTD) that can be generated for a message by the MRM. This option does not
apply to self-defining messages, which have the domain XML, rather than MRM.

CWF denotes legacy data structures used in common programming languages (C or COBOL).
Data structures for CWF messages are typically imported into the message repository.

The message format value is only valid for predefined messages and not self-defining messages.
Self-defining messages

Self-defining messages use the XML standard to structure their content. They can be used in any
message flow, and are supported by all message flow nodes.

Self-defining messages do not have to be defined to the Control Center, nor do they have to be
assigned to brokers to ensure that they can be interpreted.

Self defining messages are said to use generic XML.

When a message is processed in a message flow, its format must be determined first so that the
correct parser is used. The message characteristics are identified by the input node of a message
flow in one of two ways:

* For messages with an MQRFH or MQRFH2 architected header, the input node checks the value
in the message header.

* For messages that do not have an MQRFH or MQRFH2 header, the input node uses the default
message template, defined as a properly of the input node, to determine how the message must
be parsed.

WebSphere MQ Integrator for z/OS V2.1 - Performance report

1.4 Message Parsers

WMQI can handle any message template for which a suitable parser is available. The parsers
interact with the message templates stored in the message dictionaries. The range of messages
supported can be extended by creating your own message parsers.

Message parsers are provided for :

Predefined XML. Such messages have an MQRFH or MQRFH2 header.

The standard MQSeries headers: MQCIH, MQDLH, MQIIH, MQMD, MQMDE, MQRFH,
MQRFH2, MQRMH, MQSAPH ,MQCFH, and MQWIH.

Record-orientated C and COBOL language structures.
Self-defining (generic XML) messages.

Messages whose formats are defined in the NEON dictionary (These messages are defined
using the NEON interface not the Control Center).

If no parser can be identified for a message, WMQI treats it as a binary object that passes, of
necessity, unaltered through any message flow. However such a message can be stored in a
database, be routed according to topic, and have headers added or removed.

WMQI V2.1 provides a function that allows messages to be transformed from one format to another.

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.0 BROKER THROUGHPUT MEASUREMENTS

In order to understand the processing characteristics of WMQI V2.1 a number of performance
measurements have been taken using multiple aspects of the product. The test cases used have
been deliberately made trivial in order to be able to report the cost of using WMQI V2.1, rather than to
report the cost of running a particular application. It is very difficult to accurately represent what might
be considered a typical application since the business logic is always enterprise specific.

The effect of the queue manager has been minimized where possible. This has meant using
predominantly non persistent messages.

The performance measurements have focused on the throughput capabilities of the broker using
different processing node types. The aim of the measurements was to be able to answer questions
such as how many messages a second can be processed with each of the node types, what are the
relative costs of the different node types in terms of CPU and memory usage.

In the throughput measurements the following node types have been measured:
¢ MQInput and MQOutput

e Compute

* Database

* Filter

* RouteTolabel

* Publication

Refer to manual WebSphere MQ Integrator Using The Control Center for further information on node
types.

These nodes give a cross section of the possible node types and should be sufficient to cover most
basic types of message transformation and distribution. Some node types have been measured in
more than one configuration in order to investigate the various configuration effects, such as running
multiple execution groups. All the nodes measured used minimal processing where it was possible
(apart from the investigation into complex node processing) so the results presented represent the
best throughput that can be achieved for that node type within a single message flow. This should be
borne in mind when performing capacity planning.

All measurements are for a single instance of a message flow within in a single execution group
unless otherwise specified. Although this does not show the maximum throughput possible with each
type of node it does provide a common methodology and shows the relative costs of nodes.

All measurements were conducted in the same measurement environment. This is described in
Section 6.0 APPENDIX A - MEASUREMENT HARDWARE AND SOFTWARE.

All measurements were driven by an MQSeries program written in C which put messages to the
MQInput node queue, then used get-with-wait for any message on the MQOutput node queue. The
program ran on the same z/OS image as WMQI in 15 concurrent jobs, all sending the same message
format and content. Experimentation showed that on our test system 15 driving jobs kept the broker
sufficiently busy. The Message Queue Interface programming interface was used to write and read
messages.

There was no error processing or error conditions in the measurements. All messages were
successfully passed from one node to another through the out or true terminal. No messages were
passed through the failure terminal of a node.

WebSphere MQ Integrator for z/OS V2.1 - Performance report

The message rates reported are the number of roundtrips between the MQSeries programs and the
MQSeries queue manager to which the input data is written and from which the reply data is read.

For an MQInput and MQOutput node it is possible to define transaction support for a node using the
transactionMode property. Possible values are yes, no and automatic .

A value of yes means that the message flow will take place under transaction control. Any
derived messages subsequently sent by an MQOutput node in the same instance of the message
flow will be sent transactionally unless the MQOutput node has explicitly overridden the use of
transaction control.

A value of no means that the message flow is not under transaction control. Any derived
messages subsequently sent by an MQOutput node in the flow will be sent non-transactionally,
unless the MQOutput node has specified that the message should be put as part of a transaction.

A value of automatic means that the messageflow will be under transaction control if the incoming
message is marked as persistent, otherwise it will not. Any derived messages subsequently sent
by an MQOutput node will be sent under transaction control or not, as determined by the
persistence on the incoming message, unless the MQOutput node has specifically overridden the
use of transaction control.

The use of transaction control means that message processing takes place within an MQSeries unit
of work. This involves additional CPU and I/O processing by MQSeries because the unit of work is
recoverable. The result is inevitably a reduction in message throughput for both persistent and non
persistent messages.

In order to show optimal performance of WMQI V2.1 all the throughput measurements in this
document used a value of automatic for the transaction parameter unless otherwise specified,.

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.1 MQInput/MQOutput Throughput

A message flow consisting of a single MQInput and MQOutput node represents a very simple
message flow. Measuring the throughput achievable with such a message flow shows the maximum
message rate that can be achieved using WMQI V2.1 to move messages between MQSeries queues.

A single message flow was defined, consisting of an MQInput node and MQOutput node. The
transaction mode for the MQInput and MQOutput nodes was set to automatic.

Figure 1 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow.

1400

1200

1000

200

GO0

Messages per Second

400

200

1024 4096 16384 B5536 1024 Persistent

Messane Size

Figure 1: MQInput/MQOutput Throughput Results

With a 1K non persistent message it was possible to process 1176 msgs/second. Increasing the
message size to 4K had an effect on the throughput rate achieved (1057 msgs/second), but the ratio
of decrease was far less than the ratio of increase of extra data being handled. This is consistent with
the behaviour that is observed when using other applications within MQSeries.

Increasing the message size to 16K and beyond had a significant effect on the maximum message
throughput that could be achieved. This decrease in throughput is as a result of the additional
volume of data that must be managed both within WMQI V2.1 and the associated MQSeries queue
manager.

As the input message was non persistent there was no transactional control. We are, therefore
observing the maximum rate at which WMQI V2.1 is able to transfer messages from the input queue
to the output queue for a single execution group. Adding additional execution groups, flows or
instances allows greater throughput to be achieved.

The use of persistent messages had a significant effect on the maximum message throughput rate
that was achievable. For a 1K persistent message the message rate was 248 msgs/second.

When persistent messages are used there are two additional effects that dominate the maximum
message throughput rate achievable:

WebSphere MQ Integrator for z/OS V2.1 - Performance report

1. Any messages read from or written to an MQSeries queue now take place under MQSeries
transaction control

2. The MQSeries queue manager must make the message persistent, which involves a
synchronous write to the MQSeries log. Sufficient queue manager buffers were defined such that
there was no I/Os to the page sets.

As a result of the additional disk 1/0 required the message rate becomes dominated by I/O processing
and is no longer CPU bound. The message rate that is achievable is totally dependent on the speed
of the 1/0 device on which the MQSeries log is located.

The detailed measurement data for the MQInput/MQOutput throughput measurements is available in
Section 7.1 - MQInput/MQoutput Throughput Results.

2.2 Compute Node Throughput

A compute node provides the capability to derive an output message from an input message and also
optionally include user specified processing as well as data values from an external relational
database. The compute node has the potential to vary from simple to complex in its processing. The
degree of complexity specified has a direct bearing on the message throughput rates that can be
achieved using nodes of that type. A series of measurements were taken using varying numbers of
compute nodes as well as varying levels of user specified processing in order to illustrate these
effects.

Each test case consisted of an MQInput and MQOutput node with varying numbers of compute nodes
in between. The level of complexity in the compute nodes was also varied. The following cases were
measured:

* A simple compute node that copied the input message to an output message. The purpose of
this measurement was to show the message throughput that is achievable when copying a
message and modifying a single field. A single field was modified in order to ensure that the
compute node built a new output message based on the input. If no field is modified WMQI V2.1
optimises the process and simply repeats the input message which can give an over optimistic
message rate. This represents the simplest form of compute node.

* Asingle complex compute node that contained user specified ESQL processing as well as the
copying of the input message to an output message. The purpose of this measurement was to
show the effect that additional CPU bound processing has on message throughput.

* Multiple complex compute nodes that consisted of five of the complex compute nodes connected
in sequence. The purpose of this measurement was to establish the cost of using multiple
complex compute nodes.

* Asingle very complex compute node that consisted of five times the processing of the single
complex compute node. The purpose of this measurement was to illustrate the benefit that can
be obtained by combining processing within a single compute node.

In these measurements the transaction mode on the MQInput and MQOutput nodes was set to
automatic.

2.2.1 Simple Compute Node

Figure 2 below shows the results that were obtained as a result of running the simple compute node
with varying message sizes and persistence. There was a single instance and single execution group

10

WebSphere MQ Integrator for z/OS V2.1 - Performance report

running the message flow.

600

500

400

aoa

200

Messages per Second

100

1024 4096 16354 B5536 1024 Persistent

Message Size

Figure 2;: Simple Compute Node Throughput Results

With a 1K non persistent message it was possible to process approximately 525 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages.

With 1K persistent messages it was possible to process approximately 183 msgs/second. This
reduced message rate, when compared with 1K non persistent messages is as a result of the
additional logging within the MQSeries manager.

The detailed measurement data for the Simple Compute Node throughput measurements is available
in Section 7.2 - Compute Node Throughput Results.

2.2.2 Complex Compute Node

Figure 3 below shows the results that were obtained as a result of running a complex message flow
with varying message sizes and persistence. See Appendix C for a description of this complex flow.
There was a single instance and single execution group running the message flow. Due to the
message complexity, the minimum size message that could be used was 4k.

11

WebSphere MQ Integrator for z/OS V2.1 - Performance report

120

100

a0

G0

40

Messages per Second

20

4096 16384 B5536 4096 Persistent

Messane Size

Figure 3: Complex Compute Node Throughput Results

With a 4K non persistent message it was possible to process approximately 110 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages. The lower message rate achieved with this compute
node compared with the simple compute node case above reflects the increased processing that was
added to the compute node.

With 4K persistent messages it was possible to process approximately 76 msgs/second. This
reduced message rate, when compared with 4K non persistent messages is as a result of the
additional logging within the MQSeries manager.

The detailed measurement data for the Compute Node throughput measurements is available in
Section 7.2 - Compute Node Throughput Results.

2.2.3 Multiple Complex Compute Nodes

Figure 4 below shows the results that were obtained as a result of running five of the above complex
nodes daisy chained together for varying message sizes and persistence. See Appendix C for a
description of this complex flow. There was a single instance and single execution group running the
message flow. Due to the message complexity, the minimum size message that could be used was
4k.

12

WebSphere MQ Integrator for z/OS V2.1 - Performance report

40

an

20

Messages per Second

10

4096 16354 B5536 4096 Persistent

Message Size

Figure 4: Multiple Complex Compute Node Throughput Results

With a 4K non persistent message it was possible to process approximately 37 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages.

With 4K persistent messages it was possible to process approximately 33 msgs/second.

The detailed measurement data for the Compute Node throughput measurements is available in
Section 7.2 - Compute Node Throughput Results.

2.2.4 Very Complex Compute Node

Figure 5 below shows the results that were obtained as a result of running a very complex message
flow with varying message sizes and persistence. Appendix C has a description of a very complex
flow. Briefly, a very complex flow is defined as the complex flow repeated 5 times in the same node.
There was a single instance and single execution group running the message flow. Due to the

13

WebSphere MQ Integrator for z/OS V2.1 - Performance report

message complexity, the minimum size message that could be used was 4k.

50
2] Multiple Complex Nodes
B one Wery Complex Node

40
=]
=
o

& 30
T
o
w
i

= 20
i
i)
=

10

0

4096 16354 G5536 4096 Fersistent
Message size

Figure 5: Very Complex Compute Node VS Multiple Complex Compute
Node Throughput Results

With a 4K non persistent message it was possible to process approximately 45 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages.

With 4K persistent messages it was possible to process approximately 38 msgs/second.

For comparison purposes Figure 5 also shows the message throughput rates that were achieved for
the multiple complex compute node case detailed in Section 2.2.3 - Multiple Complex Compute
Nodes.

For 4K non persistent messages there was a 1.16 times improvement in message throughput as a
result of using a single compute node for the processing, rather than using 5 nodes. For performance
reasons it is clearly better to have one node that does the work of several less complex nodes. This
performance improvement has to be offset against the management and support of more complex
nodes.

The detailed measurement data for the Very Complex Compute Node throughput measurements is
available in Section 7.2 - Compute Node Throughput Results.

2.3 Database Node Throughput

A database node allows a database transaction in the form of an ESQL expression to be applied to a
specified ODBC data source. The statement to be applied and the data source are specified on the
database node definition.

A message flow consisting of an MQlInput node, a database node and an MQOutput node was
defined.

14

WebSphere MQ Integrator for z/OS V2.1 - Performance report

The message flow consisted of an insert/delete for a row in a table of a database. The transaction
mode value on the MQInput node was set to a value of automatic. The coordinatedTransaction value
for the message flow was set to yes. The effect of doing this is to specify that the message flow
should be a globally coordinated unit of work.

The maximum possible message throughput rates were determined for a single instance and single
execution group running the message flow. Figure 6 below shows the results that were obtained for
varying message size and persistence.

140

_
S 100
o
o
5
=
[ix]
[ak]
fana]]
=
2 A0
=
0

1024 4096 16384 B5536 1024 Persistent

hMessage Size

Figure 6: Database Insert/Delete Throughput Results

With 1K non persistent messages it was possible to achieve a message throughput rate of 131
msgs/second. This is 131 database insert and deletes per second. The rate of insert/delete activity
reduced with message size.

With 1K persistent messages it was possible to achieve a message throughput rate of 71
msgs/second. This is 71 insert and deletes per second. This lower rate is due to the increased
volume of I/O processing to both the MQSeries queue manager log and the DB2 log. It should be
noted that persistent message throughput is highly dependent on the performance of the 1/0O
subsystem and on the placement of the DB2 and MQSeries logs.

The detailed measurement data for the Database node measurements is available in Section 7.3 -
Database Node Throughput Results.

2.4 Filter Node Throughput

A Filter node evaluates an ESQL expression against the content of the input message. Based on the
result of the expression evaluation the message is propagated to the true terminal if the expression
evaluates to true. It is propagated to the false terminal if the expression evaluates to false.

A message flow consisting of an MQlInput node, a Filter node and an MQOutput node was defined.
The Filter node processing involved selecting a message on the basis of the contents of a tag value.

15

WebSphere MQ Integrator for z/OS V2.1 - Performance report

The input message consisted of a message with an MQRFH2 header, with two tags specified
following the header. The transaction mode on the MQInput and MQOutput nodes was set to
automatic.

Figure 7 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow.

raa

600

500

400

aoa

Messages per Second

200

100

1024 4096 16384 B5536 1024 Persistent

Messane Size

Figure 7: Filter Node Throughput Results

With 1K non-presistent messages it was possible to run 644 msgs/second. The difference between
this rate and the 1127 achieved with an MQInput/MQOutput node pair for 1K non-persistent
messages represents the overhead of using a Filter node. The cost of the Filter node will vary with
the complexity of the filter expression and the number of fields in the input message.

With 1K persistent messages the throughput was 201 msgs/second. The reduction in throughput is as
a result of using persistent messages that involves additional logging within the MQSeries manager
as well as the fact that the message is processed under MQSeries transaction control.

The detailed measurement data for the Filter Node Throughput measurements is available in Section
7.4 - Filter Node Throughput Results.

16

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.5 RouteTolLabel Node Throughput

A RouteTolLabel node provides a dynamic routing facility based on the contents of the destination list
contained within the message. The destination list contains the identity of one or more target Label
nodes identified by their Label Name property (not the node name). The RouteTolLabel node can be
used instead of multiple Filter nodes

The destination list which is used to control the routing must have been created and included in a
previous compute node. Consequently a RouteTolLabel node is more expensive to process than a
single Filter node, but may be cheaper than many Filter nodes. . For a better understanding of how to
choose, please read the recommendations in Supportpac IP04, Designing Message Flows for
Performance (located at URL http://www.ibm.com/software/ts/mqseries/txppacs/ip04.html.)

The cost of this node is dependent on the size of the destination list. For example, we may have 10
or 100 potential target Label nodes. If the destination list has just one entry, the cost will always be
the same. A destination list with 100 entries will cost more to process but a point to note is that this
extra cost is not dependent on whether the Route to first or Route to last option is chosen.

a00
- [1 dest route entry [l 100 dest route entries

400
=
= __
=]
0
o
f-'E' 300 H
T}
=1
a g
= 200 H 7
A
&4
i}
=

100 H

1]
1024 4096 16334 A5536 1024 Persistent
MsgSize

Figure 8: RouteToLabel Node Throughput Results

With 1K non-presistent messages it was possible to run 442 msgs/second when there were only one
destination in the list and only 144 msgs/sec when there were 100 entries in the destination list.

With 1K persistent messages it was possible to run 221 msgs/second when there were only one
destination in the list and only 112 msgs/sec when there were 100 entries in the destination list. The
reduction in throughput is due to additional logging within the MQSeries manager as well as the fact
that the message is processed under MQSeries transaction control.

The detailed measurement data for the RouteToLabel Node Throughput measurements is available in
Section 7.5 - RouteToLabel Node Throughput Results.

17

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.6 Publication Node Throughput

A publication node may be used within a message flow to represent a point from which messages are
"published" that is, a point from which messages are transmitted to a set of subscribers who have
registered interest in a particular set of messages.

A message flow consisting of an MQInput node and a Publication node was defined. The transaction
mode on the MQInput and MQOutput nodes was set to automatic. The measurement used topic
routing with MQRFH2 format messages.

In the throughput measurements each client thread performed the role of publisher and subscriber
queue reader. Firstly, an MQPUT was issued to publish a message on the given topic. Secondly, the
client thread issued an MQGET to receive the published message.

With this measurement there was only one subscriber.
Figure 9 below shows the results that were obtained as a result of running the message flow with

varying message sizes and persistence. There was a single instance and single execution group
running the message flow. The rates shown are the rate at which messages are being published.

GO0

500

400

ana

200

Messages per Second

100

1024 4096 16384 B5536 1024 Persistent

Message Size

Figure 9: Publication Node Throughput Results
With 1K non-presistent messages it was possible to publish 514 msgs/second.

As the message size increased, the rate at which messages were published decreased. This is as
expected.

With 1K persistent messages the throughput was 197 msgs/second. The reduction in throughput is as
a result of using persistent messages which involves additional logging within the MQSeries manager
as well as the fact that the message is processed under MQSeries transaction control.

The detailed measurement data for the Publication Node Throughput measurements is available in
Section 7.6 - Publication Node Throughput Results.

18

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.7 What Is The Cost Of Converting Messages To Different
Formats ?

WMQI V2.1 provides the capability to process messages of different formats as well as the ability to
convert messages between formats. Throughput measurements were taken to show the effect of
using WMQI V2.1 to convert messages between MRM XML, Generic XML and CWF formats, where
MRM XML refers to the predefined XML used within the MRM, Generic XML refers to self-defining
XML and CWF denotes a legacy data structure such as a C structure or COBOL copybook.

The same message type was used for each of the conversions. This was a 4096 byte non persistent
message containing 31 input fields, including 10 fields consisting of a short string (12 characters), 10
fields consisting of a floating pointer number, and 10 integer fields.

The format conversion was achieved using a Compute node with suitable ESQL statements. The
input messages contained an MQRFH2 header in which the message type was set. The output
format was specified in the Compute node processing. Each message format was converted to
Generic XML, CWF and MRM XML and the message throughput achieved was measured. There was
a single execution group running the message flow and no additional instances specified. The results
are presented in Table 1 below.

Conversion [T0 [Genericxl MAMOWE MMM IMAMTAG |
FROM

ieneric }ML 1942 1215 84.6 72.4
MEM CwF 1408 126.1 92.4 74.0
MR ML 100.3 0.7 749 EO.5
MRl Té G 37.8 3.3 333 30.4

Table 1: Message Rates in messages per second, when Converting Between Different Formats

Even when the output message is set to have the same format as the input message there are still
significant costs in processing messages because the messages must be parsed, deconstructed by
WMQI and then reconstructed into the required output format. However the cost of converting
between two formats occurs on a once per message flow basis and not in each node.

The detailed measurement data for cost of message conversion is available in Section 7.7 -
Converting Messages Between Formats Throughput Results.

2.8 Parallel Processing options

If the message processing rate which can be achieved with a single copy of a message flow is not
sufficient for the requirements it is likely that you will need to run multiple copies of the message flow
concurrently. Within WMQI V2.1 there are several ways of doing this, they are:

1. Use additional instances of a message flow within an execution group. Each additional instance is
a thread within the execution group process

2. Run multiple copies of a message flow within an execution group. Each additional message flow
is a thread within the execution group process

3. Run multiple execution groups each processing one or more copies of a message flow. This
option uses the most memory as each execution group is a process.

19

WebSphere MQ Integrator for z/OS V2.1 - Performance report

This section shows the effect of running each of these options for the very complex compute
message flow

Note that all of the scaling measurements in this section were taken on a 2-way processor, hence the
lack of throughput gains with more than 2 instances, flows or execution groups.

2.8.1 What Is The Effect Of Using additional Instances ?

Figure 10 below shows the results that were obtained as a result of running one, two and four
instances of a message flow containing the very complex compute node within a single execution
group. The very complex compute node is described in Appendix C Complex Compute Node. The
transaction mode values on the MQInput and MQOutput node were set to the value of automatic.
The same input and output queues were used for all measurements.

110
&/ a09s

100 -
o E553E

40 43357 bt
a0

4

s
[
) /
270 4
5 /
= g 4
[ak]
= &l 4
m
* r

= 40 [/"'-

an

20

10

1 2 3 4 5

MMurmber of Instances

Figure 10: Additional Instances Throughput Results

Figure 10 shows that greater message throughput can be achieved by using additional instances
within a single execution group. With non persistent 4K messages and one additional instance it was
possible to achieve more than 2 times the throughput that was achieved for a single execution group
with one instance. As the tests were performed on a dual-processor machine, using 3 additional
instances in this case did not produce 4 times the throughput of a single instance, since both
processors reached full capacity (100% CPU busy). 4k persistent messages also benefited from
adding one additional instance.

The detailed measurement data showing the effect of using additional instances is available in
Section 7.8.1 - The Effect of Using Additional Instances.

20

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.8.2 What Is The Effect of Using Multiple Copies Of a Message
Flow Within an Execution Group ?

Figure 11 below shows the results that were obtained as a result of running one, two and four copies
of a message flow containing the very complex compute node within a single execution group. The
very complex compute node is described in Appendix C Complex Compute Node. The transaction
mode values on the MQInput and MQOutput node were set to the value of automatic. The same
input and output queues were used for all measurements.

110

& 1096
1od & 16384 =
QD == GEETL

a0 - 4099/{er5istem ___’__,_._---'"""
NV i
N4

a0 //
N

20

Messages per Second

10

1 2 3 4]

Murnber of Flows

Figure 11: Multiple Copies Throughput Results

Figure 11 shows that greater message throughput can be achieved by using additional copies within
a single execution group. With non persistent 4K messages and two copies of the message flow it
was possible to achieve 2 times more throughput than was achieved for a single copy of the message
flow. As the tests were performed on a dual-processor machine, using 4 copies in this case did not
produce 4 times the throughput of a single copy, again due to the fact that both processors had
reached full capacity (100% CPU busy) in both the two flow and four flow cases.

There was some further limited gain in throughput for 4k persistent messages however, between the
two flow case where CPU was around 90% busy, and the four flow case, where CPU reached 100%
busy. For persistent messages this represents the possible upper limit limit of throughput
improvement to be acheived by increasing numbers of flows therefore, although it should be stressed
that running at 100% CPU busy values is not recommended for either persistent or non-persistent
messages, since this is likely to cause undesirably large queueing delays on some messages.

The detailed measurement data showing the effect of using multiple copies of message flow is
available in Section 7.8.2 - The Effect of Using Multiple Copies of a Message Flow.

21

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.8.3 What Is The Effect of Increasing The Number of Execution
Groups ?

Figure 12 below shows the results that were obtained as a result of running one, two, and four
execution groups for a message flow containing the very complex compute node for varying message
size and persistence. The message flow is described in Appendix C Complex Compute Node. The
transaction mode values on the MQInput and MQOutput node were set to the value of automatic.

The same input and output queues were used for all measurements.

120

100
= —
5 4 409F Persistent &
o 80 - *
ol
]
. G0
ia]
o
&
i 40 2
w
=

20

0

1 2 3 4 5
Mumber of execution Groups

Figure 12: Additional Execution Group Throughput Results

Figure 12 shows that greater message throughput can be achieved by using additional execution
groups. With non persistent 4K messages and two execution groups it was possible to achieve over
twice the throughput that was achieved for a single execution group. As the tests were performed on
a dual-processor machine, using 4 execution groups in this case did not produce 4 times the
throughput of a single execution group, since both processors were at full capacity (100% CPU busy)
for both the two and four execution groups cases.

It is reasonable expect that if measurements were to be taken, for example, on an 8 processor
machine, that the number of execution groups could be increased to seven or eight before the CEC
neared maximum capacity, and that a seven or eight times increase in message throughput over the
single execution group case would result. In this way scalability in message throughput would be
accomplished.

The gain in throughput for 4k persistent messages was also significant. When using two execution
groups it was possible to achieve over 2 times the throughput that was achieved with a single
execution group, again showing the potential for good scaling of message processing.

The benefit of using multiple execution groups in this case is clearly significant. This is principally

because of the nature of the message flow that was used for the measurements. There was a
significant amount of ESQL processing in the node. This meant that the level of queue access as a

22

WebSphere MQ Integrator for z/OS V2.1 - Performance report

proportion of all processing was low and so the potential for conflicts on queue access was low and
consequently multiple execution groups were able to achieve greater throughput.

The detailed measurement data showing the effect of adding execution groups is available in Section
7.8.3 - The Effect of Increasing The Number Of Execution Groups.

2.9 What s The Effect of Making a Message Flow Transactional?

Making a message flow transactional (as opposed to making an individual node transactional) means
that the unit of work is recoverable, but it does result in an additional overhead as work must now take
place under transactional control. This involves the locking of data and logging of data images.

The purpose of these measurements was to illustrate the overhead of making a message flow
transactional. A simple message flow was created consisting of a single MQInput and MQOutput
node. The maximum message throughput rate was measured when the message flow had a
transaction mode value of automatic and then with a value of yes.

Figure 13 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence.

1400
B 1024
W 40ss
1200 El 15554
O es52:
B 1024 Persistert
1000
i
=
(]}
L]
(k]
@ g00
[a k]
o
ol
[ak]
o £00
o —
o
[in]
i _
=
400
200
]
Maon Transactional Transactional

Figure 13: Making a Message Flow Transactional Throughput Results

Making non-persistent messages transactional had a significant effect on message throughput. The
reduction in throughput is as a result of the additional CPU and I/O processing that must take place.
The overhead of making the message flow transactional was most significant with the smaller
message sizes.

For the persistent messages there is little difference in throughput as persistent messages would
proceed under transaction control any way with a transaction mode of automatic.

The detailed measurement data for showing the effect of making a node transactional is available in
Section 7.1 and Section 7.9 - The Effect of Making a Message Flow Transactional.

23

WebSphere MQ Integrator for z/OS V2.1 - Performance report

2.10 What Is The Effect of Using Coordinated Transaction=yes on a
Message Flow?

Specifying a value of yes for the Coordinated Transaction parameter on a message flow means that

all updates performed within the message flow will take place as a global unit of work. Any database
updates that are in the message flow will be committed atomically with the message processing. On
z/OS however, unlike on other platforms, all WMQI transaction coordination is managed by RRS.

If data is to be updated in an MQSeries message and a relational database, and recovery is required,
this configuration must be used.

Measurements were taken to illustrate the comparative costs associated with using the Coordinated
Transaction parameter on an execution group definition. The message flow consisted of an MQInput,
database and MQOutput node. The database node performed an update of a row of in a relational
database. The purpose of this measurement was to illustrate the base cost of a defining the
transaction as a coordinated transaction..

Figure 14 below shows two sets of results. The first is for the case when coordinatedTransaction
was set to no on the message flow and transaction mode was set to automatic on the MQInput and
MQOutput nodes. The second case shows the results that were obtained when a value of yes was
specified for coordinatedTransaction on the message flow.

300

B 1024
W a03E
E 15354
| =ttt
B 1024 Persisterg

260

200

150

Messages per Secaond

100

a0

Coordinated tin=no Coordinated tin=yes

Figure 14: Database Update with coordinatedTransaction=yes.

Figure 14 shows that a message rate of approximately 266 msgs/second was achieved for 1K
non-persistent messages and 113 msgs/second for persistent messages when coordinated
Transaction was set to “no” on the message flow, transaction mode was set to automatic on the
MQInput and MQOutput nodes.

With coordinatedTransaction set to “yes” on the message flow a rate of 266 msgs/second was
achieved for non persistent messages and 114 msgs/second for persistent messages.

24

WebSphere MQ Integrator for z/OS V2.1 - Performance report

The results show that message throughput was very similar for both the coordinatedTransaction=no
and coordinatedTransaction=yes cases. This is because RRS is included by default as the
transaction coordinator when WebSphere MQ and database operations performed within the same
message flow. In this particular measurement there was an insert and delete of a message into a
database table. It is not possible to run without RRS where an external resource is involved and this
is why we see no difference in message rate.

The detailed measurement data showing the effect of using coordinatedTransaction set to the value
of yes is available in Section 7.10 - The Effect of using coordinatedTransaction=yes.

2.11 What Effect Does an Increasing Number of Subscribers Have
on Publish/Subscribe Throughput?

As an increasing number of subscribers register an interest in receiving published messages on a
given topic, so the broker must undertake additional processing to maintain a list of currently
subscriptions and write a message to each subscribers queue when a message is published.

In order to illustrate the effect of coping with an additional number of subscribers for a given topic a
series of measurements were taken with 1, 10, 30, 50, 70, 100, and 1000 subscribers. Messages of
varying size and persistence were published to a single topic. The results obtained are presented in
Figure 15 below. The X axis shows the number of subscribers. The Y axis shows the number of
seconds taken to process a message. It is derived from the reciprocal of the message rate.

015
= 1024
2 16384
- BHh36
== 1024 Perzistent
o 04
fan]
(113
&
Lak)
=
T
=
o
]
=
5 /
[ak]
o nos //E
u}

u] 20 40 EOQ 20 100

Humber of Subscribers

Figure 15: Varying Number of Subscribers

25

WebSphere MQ Integrator for z/OS V2.1 - Performance report

From the graph it is possible to see that the processing required to deliver messages to the
subscribers rises with the increasing number of subscribers. This makes sense since with each
additional subscriber there is an additional MQSeries queue to write a message to.

The cost of publishing persistent messages is significantly higher as the processing is dominated by
the necessary /0O processing. Before examining the measurement data for varying number of
subscribers it is important to understand the way in which the measurement was taken.

For each subscriber that registered to receive publications the published message was written to a
queue for that subscriber. With 30 subscribers for example, a single message was written to each of
30 queues. In the measurement environment there was a background program consuming all but
one of the published messages. Taking the example of 10 subscribers, 9 of the published messages
were consumed by this program. The remaining message was read by the client program emulating
the subscriber. In this situation a message count of 1 was registered for the purposes of reporting
message rates, although the WMQI V2.1 broker had written multiple messages. It is because of this
that the reported message rate declines with an increasing number of subscribers, although the level
of work performed by the broker is obviously much greater with an increasing number of subscribers.

2000

£ 1024 -- B5536

= 4096+ 1024
“ 15354 PE[SiSWE\
2500

2000

R4 /A
e
/=

u] 20 40 0 20 100

Total ressages per second

mumber of subscribers

Figure 16: Total Message Rate with Varying Number of Subscribers

The above chart shows, for each message size, that as the number of subscribers was increased, the
overall number of messages processed per second reached a peak, and then tailed off as the number
of subscribers was further increased.

All measurements in this section with more than 20 subscribers used the mgsichangeproperties
command to increase the size of the cache used to hold open queue descriptors. The default value is
30. If the number of open queue descriptors has to increase by 1 beyond the cache size, a queue
must be closed before another can be opened and the published message delivered. This can have
a significant effect on the rate at which messages can be published. This sequence of closing one
queue and opening another will occur each time a message is published unless the cache size is

26

WebSphere MQ Integrator for z/OS V2.1 - Performance report

increased. It is recommended to increase the size of the cache in accordance with the number of
registered subscribers, although care should be taken not to exceed 500 cache handles.

The mgsichangeproperties command used to increase the cache for the 100 subscriber
measurements was issued using the following JCL:

WWQ CHGP JOB MBSGCLASS=A, NOTI FY=&SYSUI D, REG ON=0M

R R S O O S S O I G S S S

*

* JCL to issue the ngsichangeproperties command to change the *
* nunber of queue cache handl es. *
*

EE R O S O o O S R S S O S o O S o

STEPLI B DD DI SP=SHR, DSN=PP. ADLE370. 0S390R12. SCEERUN

DD DI SP=SHR, DSN=SYS2. DB2. V610. SDSNEXI T
DD DI SP=SHR, DSN=SYS2. DB2. V610. SDSNLQAD
DD DI SP=SHR, DSN=MM V520. SCSQAUTH
DD DI SP=SHR, DSN=MQM V520. SCSQANLE

/1 STDENV DD PATHOPTS=(ORDONLY),

/1 PATH=' [u/ wrgi / V52GBRK/ ENVFI LE'

/1 STDOQUT DD PATHOPTS=(OARONLY, OCREAT) ,

/| PATHMODE=(SI RAKU, SI RW\KG) ,

/1 PATH=' / u/ wgi / V52GBRK/ out put / ngsi cpout '’

// STDERR DD PATHOPTS=(OARONLY, OCREAT) ,

/1 PATHMODE=(SI RAXU, SI R\KG)

/1 PATH="/ u/ wrgi / V52GBRK/ out put / ngsi cperr’

/1 SYSPRI NT DD SYSOUT=*

/[SYSTSPRT DD SysoUT=*

/I SYSTSIN DD *

BPXBATCH PGM -

/usr/| pp/ wrgi / bi n/ ngsi changeproperties -

V52GBRK -

-e pubsub -

-0 Com bmMQConnect i onManager -

-n queueCacheMaxSi ze -

-v 100

/*

I
1
/1
I
I
/1 Bl PILMPS EXEC PGVEI KJIEFTO1, REG ON=0M
/1
I
I
1
/1

where V52GBRK was the name of the WMQI Broker and pubsub was the name of the execution
group running the message flow. This command was issued on the machine running the broker.

The command needs to be issued for each execution group containing a publication node with more
than 30 subscribers.

The detailed measurement data showing the effect of an increasing number of subscribers is
available in Section 7.5 and Section 7.11 - The Effect of Increasing the Number of Subscribers.

27

WebSphere MQ Integrator for z/OS V2.1 - Performance report

3.0 CAPACITY PLANNING

This section gives general guidelines on capacity planning for WMQI V2.1. For more detailed
assistance in estimating message rates for particular message flows and the processing power
required to support them see Supportpac IP03, MQSeries Integrator V2 - Capacity Planning Tool,
available from URL http://www.ibm.com/software/ts/mqgseries/txppacs/ip03.html. The remainder
of this section provides general guidelines to assist with the implementation of WMQI V2.1.

When capacity planning for the introduction of a new software it is important to be able to establish
two things:

¢ How much resource (CPU, disk space, memory) is required to support the required message
rate.

e Ifitis possible to run the software at the expected message rate? Has the software been run at
that rate before, and will the deployed system be working within known limits ?

The way in which WMQI V2.1 can be used varies enormously. For this reason it is not possible to
provide detailed guidance on the resources that are required for all possible configurations of WMQI
V2.1. ltis possible however to provide a series of guidelines in order to get an initial estimate of the
required capacity. Once a prototype implementation has been developed, future resource
requirements can be based on measurement and observation of the prototype and its successor
implementations, which is the only meaningful exercise for you. The problem is invariably one of
getting started. This section helps with that process.

In gauging the capabilities of WMQI V2.1 to process messages at the required rate examine the
various throughput measurements detailed in Section 2.0 - BROKER THROUGHPUT
MEASUREMENTS. Remember that the message rates are typically for one instance of a message
flow running in one execution group and so these numbers do not represent the highest total
message rate which is achievable. They show what one copy of the message flow is capable of.

Projecting measurement results to other machine types is difficult because performance depends on
many factors. The only method currently available to gauge relative machine performance is to use
published performance figures such as the Large Scale Processor Ratio (LSPR.) LSPR figures can

be found at URL http://lwww.ibm.com/servers/eserver/zseries/Ispr/izSeries.html. For a WMQI or
MQSeries type workload, it is recommended that the ‘Mixed’ LSPR figures are used.

3.1 Throughput

Key factors affecting the throughput rate that is achievable are:

* Use of non-persistent vs persistent messages.

e The types of WMQI V2.1 nodes being used.

e The amount of processing in the nodes, simple vs complex compute nodes for example.
e The number of WMQI V2.1 nodes being used.

e The number of times messages are written to an MQSeries queue from a node.

* The complexity of processing in the nodes, for example complex ESQL statements vs simple
copying.

Of the above, those having most effect on message throughput are:

¢ The use of persistent messages. If persistent messages are used the maximum message rate
will be governed by I/O subsystem performance rather than by processor speed.

28

WebSphere MQ Integrator for z/OS V2.1 - Performance report

e The amount of user supplied (ESQL) processing in compute nodes.
* The average number of subscribers to match a topic for a Publication node.

Processing of non persistent messages is CPU intensive. It is therefore important to ensure that
there is sufficient CPU available to process the message in order to maximize throughput. Unless
otherwise stated, the measurements contained in this report are based on a two-way LPAR of a
9672-XZ7 processor (approximately equivalent to a 9672-X27; LSPR = 1.28.) Using faster or slower
processors will have a corresponding effect.

Processing of persistent messages is I/O intensive. It is therefore important to ensure that the
adjacent MQSeries queue manager logs are located on separate disks, as well ensuring that the
other standard MQSeries tuning tasks have been performed. When running persistent messages
CPU utilization will be lower than for non-persistent messages, and so in order to fully utilise available
processors it may be necessary to run more copies of the message flow.

3.2 Scaling Message Throughput

Running multiple copies of a message flow provides the opportunity to increase message throughput.
This is normally done because the message rate that is achievable with a single execution group is
not sufficient for the planned message rates. In general the ability to scale message throughput
depends on a number of factors:

1. The availability of sufficient resources (CPU, disks, memory) to cope with the increased resource
demands as a result of simply processing more messages.

2. The ability to schedule multiple pieces of work in parallel.
3. A minimum of contention between the parallel pieces of work.

If we look at each of these issues with respect to WMQI V2.1: resolving item 1 above depends on
having sufficient hardware of sufficient speed (CPU and disk) available. This is principally a planning
issue; Foritem 2, WMQI V2.1 provides the ability to schedule multiple pieces of work in parallel by
the use of multiple execution groups for example; The contention between pieces of work (item 3)
depends on the message type (persistent vs non persistent messages), the amount of access to
MQSeries queues (high level of access vs low level) and the nature of additional database processing
where it is used (Insert/Update/Delete vs read only).

The level of contention in any implementation is largely determined by the nature of the application
being implemented and minimizing the effects of contention is an essential part of the application

architecture, design and implementation. This is a large subject and is not covered in any level of
detail in this report.

3.3 Memory

In estimating memory requirements for WMQI V2.1 there are a number of components that need to
be considered. These are:

* The Control Center. There are likely to be multiple Control centers in use.

* The Configuration Manager. There is one Configuration Manager per WMQI V2.1
implementation.

e The Broker. There may be multiple brokers and within these multiple execution groups and so
multiple operating system processes.

* MQSeries Queue Manager. There will be one queue manager per broker.

29

WebSphere MQ Integrator for z/OS V2.1 - Performance report

* Relational Database. DB2 systems are required to hold information on behalf of the Configuration
Manager and the broker. Additional relational databases may be in use which hold business
data.

For the Control Center an at initial recommendation is to allow 100MB memory per Control Center.
This would be for development use.

The Configuration Manager and its associated DB2 database and queue manager should have a
minimum of 512MB of memory available in a development environment, but the recommendation is
to have more.

The amount of memory (real storage) required by a broker will depend on the way in which it is
configured. A guideline is to allow 180MB for WMQI V2.1 and its dependent software (broker related
components only, no User Name Server), with an additional 130 MB per running execution group.
This recommendation is based on an MQSeries queue manager and channel initiator configuration
consisting of 20 active channels processing 1 KB messages. If the number of MQSeries resources
(channels, queues etc.) to be configured in a system is different or you have a large number of nodes
in a flow or very large messages being processed you must make an allowance and amend the
amount of memory required accordingly.

3.4 Recommended Minimum Configurations

This section contains recommendations on the type of hardware on which an WMQI V2.1
configuration should be based when running in production. These are only minimum
recommendations and are not a substitute for a formal planning and sizing exercise in which
requirements are accurately determined.

For production use it is recommended that the components of WMQI V2.1 are allocated over multiple
machines with the following purposes:

e One or more Windows NT machines to support Control Center usage.

¢ One Windows NT machine to support the Configuration Manager. This may also include one
Control Center.

¢ One or more machines to support brokers.

It is important that processing on the broker machine proceeds without competition for resources from
other processes in order to ensure the smooth flow of messages through the enterprise.

A recommended Windows NT machine specification for the Control Center is a fast uni-processor
with 512MB memory.

A recommended Windows NT machine specification for the Configuration Manager is a fast
uni-processor with 512MB or more of memory.

The specification of the broker machine is more difficult to determine since it requires knowledge of
the expected message rate, the types of node that are to be used and the level of transaction control
that is used. A recommended minimum specification would be a 2 way processor with 2048MB real
storage. The processor speed and number of CPUs may need to be upgraded if the required
message rates are high. In such cases more detailed planning would be required. Prototyping and
benchmarking should be considered in order to accurately determine resource requirements. The
results produced will then be specific and tailored to the individual configuration being built.

If persistent messages are to be used the use of a fast disk subsystem is recommended for the

devices on which the MQSeries queue manager logs are located, for example IBM ESS model
2105-F20. Adjacent MQSeries logs should be placed on separate disk volumes.

30

WebSphere MQ Integrator for z/OS V2.1 - Performance report

If business data is accessed from a relational database the database logs and data should each be
located on dedicated disks. Consider using a fast device for the database manager log.

31

WebSphere MQ Integrator for z/OS V2.1 - Performance report

4.0 PERFORMANCE RECOMMENDATIONS

This section contains a number of recommendations to assist in the planning and implementation of
an efficient WMQI V2.1 configuration.

4.1 Understand Recovery Requirements

In designing messageflows within WMQI V2.1 it is important that the subject of data recovery is
approached from the top down rather than bottom up. If you do not consider the recovery needs as a
whole it is possible that more logging than is actually required will be undertaken. This will lead to a
drop in the throughput rate that is achievable with a message flow as the flow becomes I/0O bound.

In designing the message flow it is important to establish whether the whole message flow is to be
made a recoverable or whether only certain parts of it are. It is also important to establish whether
external resource managers such as a database are required. Establish whether data updated in an
external resource manager is to be committed within a global unit of work or not.

If a message flow is to involve data held in an external resource manager, i.e. not a queue manager,
then consider using the coordinatedTransaction parameter in order to make all changes to external
data within the scope of a single unit of work.

Think carefully about when deciding to use MQSeries transactional control on messageflows. Maybe
this is something that is only required for persistent messages.

4.2 Optimize Queue Manager

The performance of the underlying queue manager for a broker plays a key role in the performance
that can be obtained from using WMQI V2.1.

To improve overall performance with the queue manager consider minimizing message sizes and
only use persistent messages where required.

With non persistent messages there is little that can be done to optimize queue manager performance
other than ensuring that there is sufficient memory and CPU available.

With persistent messages the limiting factor is the speed at which the MQSeries queue manager log
operates. To minimize the amount of logging taking place and improve the efficiency where possible
consider the following points:

* The MQSeries queue manager adjacent logs should be placed on separate disks.

* Use the fastest disks available for the MQSeries log.

* Ensure that the amount of disk space made available to the MQSeries logs is sufficient for the
volumes and rates at which message data will be logged, so that offloading/archiving is kept to a
minimum.

* Run with parallel applications rather than a single application. There is some benefit to be
obtained from coat tailing on log 1/0 that occurs when there is more than one application running

with the queue manager. This can be achieved by using multiple copies of a message flow,
additional instances or multiple execution groups.

4.3 Configuration Considerations

Consider the following points when building an WMQI V2.1 configuration:

32

WebSphere MQ Integrator for z/OS V2.1 - Performance report

It is not recommended to use the database instances for the Configuration Manager or broker to
hold business data.

It is recommended to ensure that the database instance for the Configuration Manager is local to
the machine on which the Configuration Manager is installed.

It is recommended to ensure that the database instance for the broker is local to the machine on
which the broker runs.

It is recommended to use a local database for business data. Where such a database is remote
from the broker machine, ensure that there is a fast, preferably dedicated, communications link
between the broker machine and the database manager.

Carefully examine default settings for nodes and messageflows, especially those related to
recovery, to ensure that the values are those required. The transaction mode parameter for an
MQInput node will default to yes, meaning that the message flow will proceed under transaction
control. This may not be what was required.

When creating and deploying large messageflows increase the heap allocation of the
Configuration Manager database. In DB2 this is the APP_CTL_HEAP_SIZE parameter. You
should increase the value empirically.

It is recommended that all HFSs relating to WMQI are mounted locally in a sysplex environment.

4.4 Maximizing Throughput

In order to improve the message throughput for a message flow, consider the following points:

Achieve as much parallelism as possible. This can be achieved in WMQI V2.1 by running
multiple copies of a message flow. Doing this will result in the creation and use of another thread
or process which provides the potential to increase CPU utilization by using another processor.
These approaches are only effective on a machine that has multiple processors. With a single
processor machine it will not be possible to improve throughput in this way. However, it may still
be necessary to configure multiple execution groups for other reasons.

Avoid small message flows which use MQSeries queues to communicate. Writing a message to
a queue is a relatively expensive operation when compared with moving a message between
nodes in the same message flow. It would be better to form one larger single message flow, do
not move to the other extreme though and put all processing into one single flow.

Compute nodes are expensive in processing costs because they build a representation of the
input message. Aim to minimize the number of compute nodes therefore. Dependent on the
circumstances, you may consider using a filter node instead of a compute node if message
selection is required.

When using publication nodes ensure that the open queue cache size is set appropriately. See
section 2.12 What Effect Does an Increasing Number of Subscribers Have on Publish/Subscriber
Throughput? for more details.

When designing messages, make them as simple as possible. Large and more complex
messages require more parsing. This consumes more CPU.

Regularly monitor the performance of any database containing business data.

Ensure that there are sufficient resources available to the database manager (CPU, memory,
disk) so that it does not becoming a limiting factor in message throughput.

Use fast disks for the queue manager log. See Section 4.2 - Optimize Queue Manager above.

33

WebSphere MQ Integrator for z/OS V2.1 - Performance report

* Use fast disks for the database log where insert/delete/update activity is taking place in message
flows.

* Turn on Dynamic Statement Cacheing for your DB2 system (add CACHEDYN = YES to the
DB2 Zparm member) if your flows contain DB2 database insert/delete/update activity, as this has
been found to considerably improve throughput.

¢ Consider the recommendations described in Supportpac IP04, Designing Message Flows for
Performance. This Supportpac makes a number of recommendations for message flow design
and the use of ESQL.

4.5 Configuring Shared Libraries

Each WMQI execution group results in a new z/OS USS address space and for each, separate
copies of the WMQI libraries are loaded. In a configuration which employs multiple execution groups,
the multiple library copies can soon put a strain on real storage, often resulting in excessive
swapping which in turn adversely affects performance.

One way of reducing the load on real storage is to make use of USS shared library support. When
the extended attribute st_sharelib is set for an executable, upon first use it is loaded into the USS
shared library region from where it can be shared by multiple USS address spaces. Full details of the
use of st_sharelib can be found in manuals UNIX System Services Programming: Assembler Callable
Services Reference and UNIX System Services Planning.

Below is a checklist of the tasks required to enable shared DLLs for WMQI:

* Ensure your userid has READ authority to RACF facility class BPX.FILEATTR.SHARELIB.
This is needed in order to use the extattr +1 (Note, lowercase L) command which sets the
st_sharelib attribute .

* Run extattr against the *.a and *.lil WMQI executables, located in directories /usr/lpp/wmqi/lib
and /usr/Ipp/wmgqi/lil respectively, thus

cd /usr/| pp/ wi
extattr +l lib/*.alil/*. il

e Ensure that all shared executables have read permission set for 'other’, i.e.

cd /usr/| pp/ wi
chrmod -R o+r lib lil

¢ Check the current setting of USS parameter SHRLIBRGNSIZE - it needs to be set to around
300MB to accommodate the WMQI shared libraries. z/OS command /D OMVS,L displays the
current setting. SHRLIBRGNSIZE can be increased with the command /SETOMVS
SHRLIBRGNSIZE=300000000.

34

WebSphere MQ Integrator for z/OS V2.1 - Performance report

Start the WMQI brokers. The /D OMVS,L command can be used to check that the shared
library region is being used - the current usage column of the display output should contain a

value other than 0, e.g.

D OWS, L
BPXO051I

12.13.01 DI SPLAY OWS 682

Oows 000F ACTI VE OWS=(P3, 12, 25)
SYSTEM WDE LIM TS: LI MVBSG=NONE

CURRENT HI GHWATER SYSTEM

USAGE USAGE LIMT

MAXPROCSYS 41 46 512
MAXUI DS 4 5 100
MAXPTYS 1 4 256
MAXMVAPAREA 3 3 40960
MAXSHAREPAGES 12032 19203 32768000
| PCVSGNI DS 10 10 500
| PCSEMNI DS 9 10 500
| PCSHWNI DS 0 0 500
| PCSHVSPAGES 0 0 262144
| PCVSGQBYTES --- 12 2147483647
| PCVSGQWNUM --- 1 10000
| PCSHMVPAGES --- 0 25600
SHRLI BRGNSI ZE 219152384 219152384 300000000 *
SHRLI BMAXPAGES 2965 2965 4096

35

WebSphere MQ Integrator for z/OS V2.1 - Performance report

5.0 GLOSSARY

* CPU%

Average % busy time of the entire machine. 100% means all processors in the machine are
busy.

¢ CPU mS per message
CPU milliseconds consumed per message. These figures are relative to a single processor of
the 9672-XZ7 CEC on which the evaluation was performed and are derived from the average

CPU % busy figure, i.e. they are calculated as.....

(((CPU % / 100) x (No-of-processors used in LPAR (2)) / (Messages per second)) x 1000

* Msg Size

Size of the user portion of a message. Does not include the MQSeries header size.
* Persistent or Persist

Indicates whether the message type was persistent (yes) or non persistent (no).
* Process

On z/OS a process typically runs in a separate address, but this depends on how the process
was created.

* MQRFH

Rules and Formatting Header(RFH) used for Publish/Subscribe applications. Publishing and
Subscribing applications send their messages to the broker in MQRFH format

* MQRFH2
MQSeries Rules and Formatting Header(MQRFHZ2) version 2. The principal use is to contain
message format information, and, for Publish/Subscribe additional control information for
publications and subscriptions.

e Thread
On z/OS a thread runs under a separate TCB.

e Msgs/sec
Messages throughput in messages per second processed by the WMQI broker. An individual
message operation starts when the request message is put to the broker by the driving
application and ends when the reply message (or messages) is received by the driving
application.

e USS

Unix System Services. The unix environment provided by z/OS.

36

WebSphere MQ Integrator for z/OS V2.1 - Performance report

6.0 APPENDIX A - MEASUREMENT HARDWARE AND
SOFTWARE

All throughput measurements where taken on a single server machine driven by MQSeries programs
running on the same processor as the WMQI broker and the MQSeries queue manager.

Broker Machine

The broker machine hardware consisted of

¢ Atwo-engined LPAR of a 9672-XZ7 processor. This is approximately equivalent to a 9672-X27
which has a mixed workload LSPR figure of = 1.28 compared to the LSPR reference zSeries 900
2064-1C1machine .

* An ESS 2105-E20 DASD subsystem with Feature 2121

e 2048 MB real storage.

The broker machine software consisted of:

e 2z/OSV1.2.0.

e MQSeries for zZZOS V5.2 .

* WebSphere MQSeries Integrator for z/OS V2.1.

 DB2 for z/OS V6.1.

37

WebSphere MQ Integrator for z/OS V2.1 - Performance report

7.0 APPENDIX B - MEASUREMENT DATA

This section contains the detailed results of the WMQI V2.1 performance measurements described in
Section 2.0 - Measurement Results. For an explanation of column headings see Section 5.0 -
Glossary. The CPU utilization reported for the host machine, under the headings “Cpu %” and “Cpu
mS per msg” in each table, is the total CPU utilization on the host machine. This includes all
processes on the machine. The figure therefore reflects the cost of the MQSeries queue manager
processes, the driving application, DB2 where appropriate etc. in addition to the CPU used by the
WMQI V2.1 broker.

The default messages used in the performance measurements were not set to any particular type, i.e.
MQRFH, MQRFH2 or XML. Where a particular type was used it is indicated.

7.1 MQInput/MQOutput Throughput Results
Fersist MsgSize Msgsfsec CRUZ | CPU m= per msg

no 1024 1175.64 79.43 1.351
no 4045 1057.36 83.1 1.571
na 163584 6.6 546k 1.843
na Bhh3E BY0.16 gE6.14 3023
Wes 1024 248.38 3246 2613

7.2 Compute Node Throughput Results

7.2.1 Simple Compute Node

This measurement used a message type of XML

Fersist MsgSize Msgs/sec CFLE: CFU m= per msg

no 1024 hEh.Z22 k3.54 2.414
na 4046 374917 k3.64 3.35k
na 16384 233.7 k014 5151
na k5E3E 5876 R7.37 12.926
MBS 1024 182.56 3663 4.012

7.2.2 Complex Compute Node

This measurement used a message type of XML.

Fersist MsgSize Msgsfsec | CPUS CRU m3S per msg

na 4045 109.77 ER.E 10,112
na 16384 70.54 54.78 15.531
na b5E3E 29.01 B3.83 371
MBS 4046 /h.57 4549 12.039

38

WebSphere MQ Integrator for z/OS V2.1 - Performance report

7.2.3 Multiple Complex Compute Nodes

This measurement used a message type of XML.

Fersist MsgSize Msgsfsec

no
no
no
WES

4096

16384
EB536

4096

373
3.0
19.28
J2.36

CPLE:
5315
B3.2
53.15
49.3

CPU mS per msg
28.495
33.874
55.134
30.469

7.2.4 Very Complex Compute Node

This measurement used a message type of XML.

Fersist MsgSize Msgsfsec

no
no
no
WES

40496

16354
EB536

40496

44,55
36.43
21.07
37.58

CPLI%
B3.37
B34
53.32
48.83

CFU mS per msg
23.959
29.321
RO.E12
2h.987

7.3 Database Node Throughput Results

Database Insert/Delete with transaction coordination, using XML messages

Fersist MsgSize Msgs/sec

no
no
no
no
WES

1024
4046

16384
k5E3E

1024

131.44
126.14
111.92
104.91

71.43

CRLES
38.35
39.74
41.97
45 .58
31.36

CRFUmS per msg
5.835
B.305
7.5
5.689
5.78

7.4 Filter Node Throughput Results

This measurement used xml messages.

Fersist MsgSize Msgsfsec

no
no
no
no
WES

1024
4046
16384
b5E3E
1024

k44.07
B33.35
353.93
271.53
201.41

CRLE
bE. 4B
kBB
k4.38
70,72
33.97

CRUmS per msg
2.063
2.497
3.638
5.207
3.373

39

WebSphere MQ Integrator for z/OS V2.1 - Performance report

7.5 RouteTolLabel Node Throughput Results

7.5.1 RouteTolLabel 1 destination entry

This measurement used xml messages.

Fersist Msglize Msgsfsec | CPLUE: CPUmS per msg

na 1024 441,94 k4. 61 2523
na 40496 42761 kb 98 3132
no 16354 J66.48 BE.63 3.756
no EB536 2h4.14 BE.51 .39
s 1024 22063 35.9 3.254

7.5.2 RouteToLabel 100 destination entries

This measurement used xml messages.

Fersist MzgSize Msgsfsec CRL% CFU m3 per msg

no 1024 143.62 555 7.735
no 4096 141.25 h6.64 §.045
no 16354 124.55 5762 9.252
no EB536 107.66 B9.57 11.066
WVES 1024 112.45 43.02 §.718

7.6 Publication Node Throughput Results

This measurement used MQRFH2 messages.

Fersist MsgSize Msgsfsec CFLU | CRUmMS per msg

na 1024 513.65 k5.1 2.534
na 4046 484. 26 h7.53 2,780
na 16384 450. k4 E3.11 3.0687
na B5E36 333.848 B2 4.554
VES 1024 197.08 36.33 3.884

40

WebSphere MQ Integrator for z/OS V2.1 - Performance report

7.7 Converting Messages Between Formats

This measurement is from generic xml to generic xml format.

Fersist Msglize Msgsfsec | CPU% CPU mS per msg

na 4096 194.2 B9 b.463
na 16384 100,44 BE.03 11.151
no EB536 3322 54.19 Je.624
WVES 4096 110.05 44.11 5.016

This measurement is from generic xml to cwf format

Fersist MsgSize Msgsfsec CRL CFU mS per msg

na 40496 121.5 Bh.5E 3.144
na 16384 a0.1 55 4k 13.847
na B5E36 40.0k 54.53 27.224
VES 40496 5728 47.40k 10,967

This measurement is from generic xml to mrm xml format

Fersist Msglize Msgsfsec | CRPUS CFU m3 per msq

na 4045 54.59 B4.73 12.94
na 16384 48.35 B3.92 22.304
na b5E3E 17.57 B3.14 k0.489
WES 4045 k2. BY 48.22 15,383

This measurement is from generic xml to tag (tds) format

Fersist Msglize Msgsfsec | CPU CFU m3S per msg

no 4046 72.38 B4.18 14.97
na 16384 BB 31 54.18 19.243
no b5E3E 24936 B3.95 3675
WES 4046 BR.24 49.13 16.871

This measurement is from cwf format to generic xml format.

Fersist Msglize Msgsfsec | CPU% CPU m3S per msg

na 4096 140,75 BE. 75 8.063
na 16384 ge. Bh.3 13.437
na kb53k 31.53 Ba.07 34.297
s 4096 §7.04 45,32 10.9413

This measurement is from cwf format to cwf format.

Fersist MsgSize Msgs/sec CRLS CFU mS per msg

na 4046 126.11 BE.1Z 8.4
na 167384 §a. 65 BhE 12.543
no k5E3E 3b.85 B4.75 30.543
WES 4046 ge.7y 47.11 10.734

41

WebSphere MQ Integrator for z/OS V2.1 - Performance report

This measurement is from cwf format to mrm xml format.

Fersist Msglize Msgsfsec | CPU% CPU mS per msg

no 4096 82.43 54.985 11,696
na 16384 hO.32 54.04 21.225
no EB536 18.37 53.15 h7.G66
WVES 4096 B7.41 45. 2 14.3

This measurement is from cwf format to tag (tds) format

Fersist MsgSize Msgsfsec CRL CFU mS per msg

na 40496 74.03 54.91 14.649
na 16384 57.BY 543 18.824
na B5E36 3.6 54012 34.736
VES 40496 BE.22 48.72 17,331

This measurement is from mrm xml format to generic xml format.

Fersist MsgSize Msgsfsec | CPUS CRU m3S per msg

na 4045 100,26 Bh.24 11.019
na 16384 EE.15 5463 16.517
na b5E3E 2727 h3.86 39.501
MBS 4046 72.48 47.84 13.214

This measurement is from mrm xml to cwf format

Fersist Msglize Msgsfsec | CPU CFU m3S per msg

no 4046 q0.67 B4.64 12.052
no 16384 kR, 44 5475 15.883
no b5E3E 3413 B4.23 3.778
WES 4046 /0.53 49.03 13.903

This measurement is from mrm xml format to mrm xml format.

Fersist Msglize Msgsfsec | CPU% CPU m3S per msg

na 4096 74.93 ha. 47 14.538
na 16384 44,53 h3.G2 24.M
no EB536 16.96 53.06 Be.57?
s 4096 B9.36 4. 56 16. 462

This measurement is from mrm xml format to tag (tds) format

Fersist MsgSize Msos/sec CRL: CFU mS per msg

na 4046 B0.5 h3.482 17.791
na 167384 48.77 53.85 22.083
no k5E3E 2654 R3.7Y 39.942
MBS 4046 48.15 49.45 20.539

42

WebSphere MQ Integrator for z/OS V2.1 - Performance report

This measurement is from tag (tds) format to generic xml format.

Fersist Msglize Msgsfsec | CPU% CPU mS per msg

no 4096 37.79 B3.18 268.145
na 16384 18.04 he.hh .27
no EB536 h.65 he.2h 176,666
WVES 4096 3317 49.66 30.063

This measurement is from tag (tds) to cwf format

Fersist MsgSize Msgsfsec CRL CFU mS per msg

na 40496 JB.33 53.18 29.276
na 16384 18,21 5264 R7.814
na B5E36 B 0k hE.2h 172,475
VES 40496 32,35 50. 45 31196

This measurement is from tag (tds) format to mrm xml format.

Fersist MsgSize Msgsfsec | CPUS CRU m3S per msg

na 4045 3327 R2.9Y9 31.854
na 16384 1591 B2.54 kBB 046
na b5E3E h.14 B2 202,762
MBS 4046 29.71 B0.33 33.88

This measurement is from tag (tds) format to tag (tds) format.

Fersist Msglize Msgsfsec | CPU CFU m3S per msg

no 4046 30.35 R2.91 34.86k
no 16384 16.41 R2.54 E4.034
no b5E3E h.8h RE2.28 178.735
WES 4046 2rh B0.55 36.763

43

WebSphere MQ Integrator for z/OS V2.1 - Performance report

7.8 Parallel Processing

This section contains the results of running with additional instances, multiple copies of a message
flow and multiple execution groups for a message flow with a complex compute node.

7.8.1 The effect of Using Additional Instances

One Instance of a Very Complex Compute Message Flow Running in One Execution Group

Fersist MsgSize Msgsfsec | CPUS CRU m3S per msg

na 4046 44,55 B3.37 23.959
na 16384 3643 53.41 29.321
no b5E3E 21.07 B3.32 BO.B12
MBS 4046 37.58 48.83 2h.987

Two Instances of a Very Complex Compute Message Flow Running in One Execution Group

Fersist MsgSize Msgsfsec CRL CFU mS per msg

na 4096 1001 100 19.98
na 16354 79.58 100 25.131
na B5E36 43.71 100 45,756
VES 40496 BE.15 5224 21.413

Four Instances of a Very Complex Compute Message Flow Running in One Execution Group

Fersist Msglize Msgsfsec | CPU CFU m3S per msg

no 4046 48.Eh 100 20,271
no 16384 /8,48 100 2h. 484
no b5E3E 43.44 100 46.04
WES 4046 BE. 48 549.95 23.115

7.8.2 The Effect of Using Multiple Copies of a Message Flow

One Copy of a Very Complex Compute Message Flow Running in One Execution Group

Fersist MsgSize Msgsfsec | CPUS CRU m3S per msg

na 4046 44,55 B3.37 23.959
na 16384 3643 53.41 29.321
na b5E3E 21.07 B3.32 BO.B12
MBS 4046 37.58 48.83 2h.987

Two Copies of a Very Complex Compute Message Flow Running in One Execution Group

Fersist MzgSize Msgsfsec CRLI%E CFU mS per msg

na 4096 89.9 100 20.m3a
na 16354 79.58 100 25.131
na B5E36 43.7 100 45, 7hE
VES 40496 74.51 91.32 24.754

44

WebSphere MQ Integrator for z/OS V2.1 - Performance report

Four Copies of a Very Complex Compute Message Flow Running in One Execution Group

Fersist MzgSize Msgsfsec CRL CFU mS per msg
no 4096 8738 100 20.538
no 16384 7755 100 2h. 789
no BRA36 43.08 100 46,425
WES 4096 86.11 99.98 23.221

7.8.3 The Effect of Increasing The Number Of Execution Groups

One Execution Group Running a very complex Compute Message Flow

Fersist MsgSize Msgsfsec

i 4096
hio 16384
i RER3E
WES 4096

44,55
3643
21.07
37.58

Fersist MzgSize Msgsfsec

no 4096
no 16354
no RE536
VES 4096

Four Execution Groups Running a Very Complex Compute Message Flow

100561
79.95
43.8h
7764

Fersist MsgSize Msgsfsec

i 4096
i 16384
no RER3E
WES 4096

8514
77.48
42,71
8h.494

CRLIZ
B3.37
53.41
B3.32
48.83

CPLIZ:
100
100
100
90.84

CRLI
59.99
100
100
99.97

CRU m3S per msg
23.959
29.321
B0.612
25,9587

Two Execution Groups Running a very complex Compute Message Flow

CFU mS per msg
19.878

25.015

45,549

234

CFU m3S per msg
21.09
25.813
46.827
23.265

45

WebSphere MQ Integrator for z/OS V2.1 - Performance report

7.9 The Effect of Making a Message Flow Transactional

Transactional MQInput/MQOutput Message Flow (Transaction Mode set to yes)

Fersist MsgSize Msgsfsec CPUX | CPUmS per msg

na 1024 §75.13 7e.d 1.654
na 40496 §03.54 75493 1.877
no 16354 726.28 70.6 2.158
no EB536 492.97 §2.58 3.35
s 1024 247 .96 3248 2.614

7.10 The Effect of using coordinatedTransaction=yes

coordinatedTransaction=no, Transaction Mode=automatic, Using XML Messages

Fersist MsgSize Msgsfsec CFL CFU m3= per msg

na 1024 26581 5506 4142
na 4096 2358.02 5506 4. 626
na 16384 184.86 55.44 564
na B5E36 157.07 hh.BZ /.082
VES 1024 113.06 3617 k. 3498

coordinatedTransaction=yes, Using XML Messages

Fersist MzgSize Msgsfsec CFL CFU m3= per msg

na 1024 266,31 55 4.13
na 4046 238.69 5h.02 461
na 16384 184.56 551 h.Bhh
na B5E36 156.89 hh.BY 7.094
WES 1024 114.44 36,61 k. 3498

7.11 The Effect of Increasing the Number of Subscribers

10 Subscribers Receiving MQRFH2 Type Published Messages
Fersist MsgSize Msgsfsec CRUX | CPUmS per msg

na 1024 197.9 B7.01 B.772
na 4046 161.76 k3.51 8.47
no 16384 119.37 kE.02 11.061
na b5E3E h8.6h k1.56 20.988
MBS 1024 101.25 44.74 8.847

30 Subscribers Receiving MQRFH2 Type Published Messages
Fersist MsgSize Msgsfsec CRUX | CPUmS per msg

no 1024 81.52 k3.8 15.662
no 4046 773 70.84 18.368
na 163584 B1.12 B9.09 22607
na kb53k 29.19 B399 43.50
WES 1024 45.31 45.54 18.977

46

WebSphere MQ Integrator for z/OS V2.1 - Performance report

50 Subscribers Receiving MQRFH2 Type Published Messages
Fersist MsgSize Msgsfsec CPUX | CPUmS per msg

no 1024 54.33 Be.? 23.081
na 40496 46,53 k965 29,758
no 16354 381z B3.59 35577
no EB536 19.25 B4.43 B6.94
WVES 1024 3.6 46.54 29.636

70 Subscribers Receiving MQRFH2 Type Published Messages
Fersist MsgSize Msgsfsec CFLU | CRUmMS per msg

na 1024 39.06 B2.17 31.833
na 4046 33.54 B3.67 41,452
na 16384 2616 k3.8 h2.884
na B5E36 14.65 k462 B0.218
VES 1024 23.5h 50.97 43.268

100 Subscribers Receiving MQRFH2 Type Published Messages
Fersist MzgSize Msgsfsec CFLU | CRUmMS per msg

na 1024 18.03 h3.96 70.945
na 4046 15.91 h4.24 §0.817
no 16384 13.18 h3.94 97025
na k5E3E /.84 k1.54 156.121
WES 1024 14.53 54.24 74.728

1000 Subscribers Receiving MQRFH2 Type Published Messages
Fersist MsgSize Msgsfsec CRUX | CPUmS per msg

no 1024 1.95 k4.02 BhE.B15
na 4046 1.36 k3.82 435.529
no 16384 1.06 k1.87 1167.358
no b5E3E 0.7z 5321 1644722
WES 1024 1.58 R7.58 /25.86

47

WebSphere MQ Integrator for z/OS V2.1 - Performance report

8.0 APPENDIX C - COMPLEX COMPUTE NODE

This section contains details of the complex, multiple complex and very complex compute nodes.
8.1 Complex Compute Node

The ESQL statements used in the complex compute node are given below. The variable i has a
maximum value of 20.

Set OutputRoot=InputRoot;
DECLARE i INTEGER;
DECLARE C INTEGER;
SET C=CARDINALITY(OutputRoot. XML.CSIM.TestCase.Stack.ProcessingPath.Element][]);
SETi=1;
WHILE i <= C DO
SET OutputRoot. XML.CSIM.TestCase.ProcessingPath.Component[i].Name =
OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[i. COMPONENT;
SET OutputRoot. XML.CSIM.TestCase.ProcessingPath.Component[i]. Transport.(XML.attr) Type="A’;

SET OutputRoot.XML.CSIM.TestCase.ProcessingPath.Component[i]. Transport.Queue =
OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[i]. QUEUE;

SETi=i+1,;
END WHILE;

8.2 Multiple Complex Compute Node

The multiple complex compute nodes consisted of five identical complex compute nodes that were
daisy chained. The logic within each of the complex compute nodes was the same as that for the
complex compute node given in Section 8.1 - Complex Compute Node.

8.3 Very Complex Compute Node

The very complex compute node consisted of five repetitions of the logic for complex compute node
(see Section 8.1 - Complex Compute Node) all contained within one compute node.

48

WebSphere MQ Integrator for z/OS V2.1 - Performance report

End of Document

49

