Calling MQSeries from Software AG’s
Natural

Version 1.0

6" December, 2001

Michael Fabianski

IBM UK Ltd

Warwick
michael_fabianski@uk.ibm.com
Ed Fletcher

IBM UK Ltd

Hursley
ed_fletcher@uk.ibm.com
Martin Howson

IBM UK Ltd

Warwick

howsonm@uk.ibm.com

Property of IBM

Calling MQSeries from Software AG’s Natural

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, November 2001

This edition applies to Version 1.0 of Calling MQSeries from Software AG’s Natural and to all
subsequent releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2001. All rights reserved. Note to US
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Calling MQSeries from Software AG’s Natural

Table of Contents

[o] o7 = PP PSP OTPRPTPPPN iv
Trademarks and SEIVICE MAIKScooiiiiiiieeirie ittt e e se e e sre e snre e s neeennreenes iv

L 1= = Lo SRR Vi
23]] [ToTo [ir= o]) V2RSSR vii
ot [0 1Y =T o =T 1T o (SRS viii
SUMMArY Of AMENUMENTS. e et e e e e e e s e bbb et e e e e e e e s e e babeeeeaaaeesaasneeeeaaaeaean ix
LT o] (=T g2 [o] 1o o 1[4) o 1 PSR 1
L@ YT 1 USSP 1
INSTAITALION ...ttt ettt h et e s b e e sh b e e e b et e sbb e e e b e e e ssbe e e be e bn e e anre e e anreennneean 1
Chapter 3. The MQSeries and Natural ENVIFONMENTcooiiiiiiiiiiiiiiiiee e 3
MQSEIES — MESSAGING ... etetieiteee ettt e e e e ettt et et e e e e e s et ittt e e eaa e s e aasabbeeeeeaeeeaaaanbbsseeaaaeesaannnbaeaaeeaaannes 3
SOfWAIE AG’S NAIUFALeeiiiiiiiiii ettt e e e e s e nn e e nn e sneeenes 3
Chapter 4. Connecting Distributed MQSeries to Natural ... 5
OVBIVIBW ...ttt ettt ettt et e e et e e st e e et e o Rt o4 e e e ee et e e e e e e R e e e e R et e nnn e e e ne e s e e e nn e e nneeenes 5
Examples of the Natural statements used to call MQ SEerieS........cccuviiiiieeiiiiiiiieec e 5
Linking Natural with MQSeries 0N UNIX e e s sre e e e e e e e s sannraaeeeaeeeanes 7
Chapter 5. An MQSeries and Natural Example on Windows 2000c.coouiiiiiniiieeniiieeee e 8
INSTAIALION INSIIUCTIONS ...ttt e skt e s s et e s s e e e e e e e snnee s 9
Chapter 6. Configuration Steps Required fOr Z/OS.........coo i 10
Appendix 1 The Natural MaKefileooo e 15
Appendix 2 The Natural JUMPLADIE...........ccciiie e e e e 22
Appendix 3 An example of the ‘C’ code for Connect and diSCONNECT............ccoviviieiiiiiiieiiiiiiee e 23
Appendix 4: Examples of MQSeries Data Structure definitions for Natural................cccccvvieeiee i, 26
MQSeries PUIMESSAGE OPLIONSciiieiiiiiiiie e e e et e e e e e s e s e e e e e e s s st e e e e e e s s s snsanaeeeeeeeseannnrnreeeeeas 26
MQSeEries GEtMESSAGE OPLIONS.ciiiiiiiiiiiie e ittt ettt e et e e e s e e bbb e e e e e e e e e s anbbereeeaaaaesannnbnreeeeaas 26
MQSeries Close Call OPLioN VAIUEScieeeiiiiiiiieieee e e s see e e e e e s e ssannr e e e e e e s e snrnneeeee s 26
MQSENES ODJECE DESCIIPLON ...t iutieee ettt ettt et e e st bt e e s bbe e e e e sabe e e e e aabeeeeennees 27
MQSeries Open Option Variablesooiii i e 27
MQSeries COMPIETION COUES.........ueiieiiiiie ettt et e e e sb e e s e nb e e e nnnees 27
MQSErES MESSAGE DESCIIPLON ..ceiiiiiiiitieie e ettt e ettt e e e e e e bbb e e e e e e e e e anbbebeeeeaaeeeaannbnreeaeeas 28

Calling MQSeries from Software AG’s Natural

Notices

The following paragraph does not apply in any country where such provisions are inconsistent with
local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionally equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product.

Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is
distributed AS-1S. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

e IBM
* MQSeries
* MQSeries Integrator

* MQSeries Workflow

The following terms are trademarks of other companies:

e Windows NT, Windows 2000 Microsoft Corporation
e Natural Software AG
e Solaris Sun Microsystems

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

Calling MQSeries from Software AG’s Natural

Other company, product, and service names, which may be denoted by a double asterisk (**), may be
trademarks or service marks of others.

Calling MQSeries from Software AG’s Natural

Preface

This SupportPac looks at the interaction between MQSeries and Software AG’s Natural. It shows

how calls to MQSeries can be made from within the Natural environment and therefore how it can be
linked to the whole enterprise.

It consists of a number of source files for Natural, an example showing how MQSeries calls can be

made from the Natural environment on Windows NT/2000 and documents the differences on z/OS,
UNIX systems.

Vi

Calling MQSeries from Software AG’s Natural

Bibliography
The expected audience for this document is Natural trained professionals needing to link with
MQSeries. It is expected that the reader is familiar with the concepts and activities involved in setting
up and running Natural and MQSeries.
The following sources of information may be useful:
e Natural product manuals, especially:
* Natural Programming Guide, NAT226-020
* MQSeries product manuals, especially
* MQSeries Application Programming Guide, SC33-0807-12
* MQSeries Application Programming Reference, SC33-1673-08
All of the IBM books are available online. The MQSeries books are at the following URL:

http://www.ibm.com/software/mqseries/library/manualsa/

Education covering MQSeries is available from IBM. Education covering Natural is available from
Software AG.

Vi

Calling MQSeries from Software AG’s Natural

Acknowledgements

A number of people have contributed to the development of this SupportPac. The authors
would like to thank Lee Schofield and Mohammed Ajab of IBM.

viii

Calling MQSeries from Software AG’s Natural

Summary of Amendments

Date Changes

06 December 2001 Initial release

Calling MQSeries from Software AG’s Natural

Chapter 2. Introduction

Overview

This SupportPac originates from work done in several customers in 2000 and 2001 who had Natural
applications running on both mainframes and on Sun Solaris, who then wished to call MQSeries from
those applications.

IBM along with the customers wrote some Natural programs, and created some Natural Local Data
Areas, to allow MQ Series to be called. This SupportPac contains some of the sample code that was
created to make the various MQSeries calls from Natural, it also contains some of the Local data
areas that are required when calling MQSeries with the Connect, Open, Put, Get, Close and
Disconnect verbs. For the other MQSeries commands, the above can be used as templates.

The Natural code to make the calls to MQSeries remains the same regardless of the platform on
which the Natural code is running, the installation and linking of MQSeries does however differ greatly
on the different platforms.

On the mainframe it is a simple procedure to link the MQSeries modules into the Natural nucleus. The
statement CALL ‘MQOPEN'’ ... for example, is able to call MQSeries directly and pass parameters to
it. The way that the MQSeries load libraries are linked into Natural to achieve this is documented later
in this SupportPac. In customer trials, links from both batch Natural and Natural running under CICS
were successfully achieved.

On the Windows NT/2000 and UNIX operating system however, it is slightly more complicated to call
MQSeries from Natural. The MQSeries calls are provided in a shared library but Natural cannot call a
shared library and locate the correct entry point from a ‘CALL’ statement. A number of ‘C’ functions
need to be written to call the MQSeries shared library with the correct parameters. These ‘C’ functions
can then be called from a Natural program. For example, a number of modules called MQBACK,
MQBEGIN, MQOPEN, MQCLOSE, MQCONN, MQPUT, MQGET, MQDISC and MQCMIT could be
created to be called from Natural. Each of these modules takes the parameters passed to them and
calls the appropriate MQSeries function with those parameters. These C functions are provided
within this SupportPac.

Installation

The SupportPac is supplied in the zip file, md07.zip. This should be uncompressed to a directory of
choice and will produce the following files:

makefile Make file to create DLLs for Natural

mgnama.c C program f[hat forwards calls to' MQxxxx functions to
corresponding NAMQxxxx functions

mgnamgq.def def file for the creation of mgnamg.dll

mgnama.dil DLL that forward_s calls to MQxxxx functions to corresponding
NAMQxxxx functions

mgnamg.exp exp file corresponding to mgnamg.dll

mgnamagq_.lib lib file corresponding to mgnamgq_.dll

mgnamg.obj Obiject file corresponding to mgnamg.dll

Calling MQSeries from Software AG’s Natural

mqgwrapback.c

mqgwrapback.obj

C program that performs MQBACK call

Object file for the MQBACK call

mqgwrapbegin.c

magwrapbegin.obj

C program that performs MQBEGIN call

Obiject file for the MQBEGIN call

magwrapclose.c

mawrapclose.obj

C program that performs MQCLOSE call

Object file for the MQCLOSE call

magwrapcommit.c

mqgwrapcommit.obj

C program that performs MQCMIT call

Object file for the MQCMIT call

mgwrapconnect.c

mqgwrapconnect.obj

C program that performs MQCONN call

Object file for the MQCONN call

mqgwrapdisconnect.c

mqgwrapdisconnect.obj

C program that performs MQDISC call

Obiject file for the MQDISC call

magwrapget.c

mqgwrapget.obj

C program that performs MQGET call

Object file for the MQGET call

mawrapopen.c

mgwrapopen.obj

C program that performs MQOPEN call

Obiject file for the MQOPEN call

mawrapput.c

mqgwrapput.obj

C program that performs MQPUT call

Object file for the MQPUT call

magwrapputl.c

mawrapputl.obj

C program that performs MQPUT1 call

Object file for the MQPUT1 call

namg.def def file for the creation of namq.dll

namg.dll DLL that performs calls to MQSeries functions
namg.exp exp file corresponding to namq.dll

namg.h header file for C programs

namgq.lib lib file corresponding to namq.dll

namqdebug.c

namqdebug.obj

C program containing tracing functions for sample code

Object file for the tracing functions for sample code

Calling MQSeries from Software AG’s Natural

Chapter 3. The MQSeries and Natural Environment

MQSeries — Messaging

MQSeries messaging is now installed in over 7000 customers. Its success has risen from its ability to
provide a connectivity solution that bridges the information gap between transaction-based mainframe
systems and client-server applications running on heterogeneous collections of UNIX and PC
platforms. MQSeries is supported on over 35 different platforms.

MQSeries pervasiveness has arisen from its ability to address the ever-increasing quantity and types
of information flowing within and between organisations in a uniform, highly robust, manner, giving the
quality of service essential to support the business processes. One US government agency, for
example, is processing in excess of 100 million messages a day. A bank reports averaging 144
million messages a day with peaks of 250 million in their organisation. Most users of MQSeries found
the 4 MB maximum message size to be more than adequate, however this has been increased
recently to 100 MB on many platforms in response to customer requests to handle large documents
such as CAD drawings in a single transaction. MQSeries has over 250 partners integrating MQSeries
into their products or providing value-add tools. The new product announcements are intended to
protect their investment and provide new opportunities.

MQSeries programming interfaces remove the need to program
to low-level network protocols, or remote procedure calls.
Applications exchange information without hard coding prior
knowledge of each other, without prior knowledge of which
platform, or where on the LAN or WAN they execute. Not only has
this been very attractive for bespoke development within
organisations, it has been the foundation for ISV partners to

develop MQSeries “ready” applications. &

IBM are introducing new, high level programming interfaces, IBMMSeries ./

which aim to increase development productivity, enabling Redefining the way work is done
MQSeries applications to maximise flexibility and responsiveness

to change.

With Version 5, MQSeries has been enhanced with publish /subscribe functionality to provide
programming styles suited to one-to-many and many-to-many messaging models. A key differentiator
is MQSeries ability to combine assured delivery of messages between two or more applications, with
the fire and forget capability to publish non-transactional messages to an unknown number of
subscribing applications. MQSeries developers can benefit from using the same API to work with all
messaging models, minimizing learning curves. New customers benefit from a single-supplier
solution. IBM are extending MQSeries to include both topic and content based publish /subscribe
solutions.

This SupportPac is designed to assist customers who use Software AG’s Natural programming
environment to use MQSeries, and therefore opens up the world of MQSeries Integrator and
MQSeries Workflow.

Software AG’s Natural

Natural is Software AG'’s integral application development environment, which supports procedural
and non-event-driven (Windows only) programming techniques. It empowers developer to create
complex component-based business applications.

In order to develop and deploy client-server applications a powerful development environment and a
high performance server machine are required. Natural is well placed to do this with its platform

Calling MQSeries from Software AG’s Natural

independent language Natural. Applications can be developed in one environment and deployed to all
the target systems supported by Natural.

Natural is easy to learn, and applications

written in Natural are easy to maintain.

Natural has an open architecture, which Oracle
allows it to provide everything expected

of a strong two-tier development

environment. Thus, the add-on products

available in the Natural world mean that

most customer situations are covered.

New technologies such as the Web or Component development are integrated into Natural. These
technologies are implemented by extending the scope of the proven Natural technology.

Further information on Software AG’s Natural can be found at the Software AG Web site at:

http://www.softwareag.com/natural/product/strategy.htm

Calling MQSeries from Software AG’s Natural

Chapter 4. Connecting Distributed MQSeries to Natural

Overview

On the z/OS environment it is possible to call the MQSeries modules directly from Natural, as the MQ
stub, which is a re-entrant module, is linked into the Natural nucleus, and the entry points into the
module can be defined. The Natural architecture on the UNIX/Windows environments is quite
different, and it is necessary to define some intermediate ‘C’ functions to make the MQ calls, as
Natural has to have external calls mapped onto specific ‘C’ objects, rather than linking in to a library of
objects.

This example uses a number of ‘C’ functions, one for each of the MQSeries commands rather than a
generic bridge for all the MQSeries functions. These individual ‘C’ functions take parameters from
Natural, and pass them on unchanged to the correct MQSeries object. The design was done in this
way to allow Natural to call MQSeries as if it was calling MQSeries directly. So in Natural the MQPUT,
MQGET etc would be coded as normal, providing Natural with the ability to use the full functionality of
MQSeries, and to give Natural full control of MQSeries.

The ‘C’ routines have been made as simple as possible, so that little or no maintenance of these
routines would be required. As soon as application logic is placed into these ‘C’ routines, the
likelihood that the routines would need to be maintained at some point in the future increases. These
routines will just marshal parameters back and forth; any MQSeries errors that occur will be passed
back to Natural and handled there.

In addition, having a one for one mapping of the ‘C’ functions to the MQSeries calls, means that
whenever new functionality is introduced into MQSeries, Natural will be able to use it without changes
to the existing ‘C’ routines.

Examples of the Natural statements used to call MQ Series

The following calls are the ones that will need to be coded in Natural to call MQSeries for the
Connect, Open, Close, Put and Get commands:

CALL 'MQCONN' #QMGRNAME #HCONN #COMPCODE #REASON

CALL 'MQOPEN' #HCONN #OBJDESC #OPTIONS #REQUEST #HOBJ #COMPCODE
#REASON

CALL 'MQCLOSE' #HCONN #REQUEST-HOBJ #OPTIONS #COMPCODE #REASON
CALL 'MQGET' #HCONN #REQUEST-HOBJ #MSGDESC #GETMSGOPTS
#BUFFERLENGTH #BUFFER (1:#BUFFERLENGTH)
#DATALENGTH #COMPCODE #REASON

CALL 'MQPUT' #HCONN #REPLY-HOBJ #MSGDESC #PUTMSGOPTS #BUFFERLENGTH

#BUFFER(1:#BUFFERLENGTH) #COMPCODE #REASON

Calling MQSeries from Software AG’s Natural

The variable in the calls were defined as follows:

#QMGRNAME (A48)

#HCONN (14)

#COMPCODE (14)

#REASON (14)

#OBJDESC (A168)

#OPTIONS (14)

#HOBJ (14)

#MSGDESC (A72)
#GETMSGOPTS (A128)
#PUTMSGOPTS (A128)
#DATALENGTH (14)
#BUFFERLENGTH (14)
#BUFFER (A1/1:2000)
#REQUEST-OPEN (L) INIT <FALSE>
#REPLY-OPEN (L) INIT <FALSE>

#REQUEST-HOBJ (I14) 0900 1 #REPLY-HOBJ (14)

The variable PUTMSGOPTS has been redefined in Natural with the following structure:

1 MQPMO A128

R 1MQPMO
2 MQPMO-STRUCID A4
2 MQPMO-VERSION 14
2 MQPMO-OPTIONS 14
2 MQPMO-TIMEOUT 14
2 MQPMO-CONTEXT 14
2 MQPMO-KNOWNDESTCOUNT 14
2 MQPMO-UNKNOWNDESTCOUNT 14
2 MQPMO-INVALIDDESTCOUNT 14
2 MQPMO-RESOLVEDQNAME A48
2 MQPMO-RESOLVEDQMGRNAME A48

Structures are similarly defined for all the other MQ parameters such as MQMD etc.

Calling MQSeries from Software AG’s Natural

Linking Natural with MQSeries on UNIX

Within the Natural environment, to call external functions user exits are needed to make these
functions available. Although the Natural documentation says that the user exits can either be placed
in a shared library and linked dynamically, it was found that this didn’t seem to work, so ‘C’ objects
were created and linked statically with the Natural nucleus.

Natural calls external functions via the use of a jump table, which provides a mapping on the object
name used within Natural and the real called object. This jump table is a ‘C’ module and is included in
Appendix 2. It can be seen in the jumptable entry in Appendix 2 that the MQSeries call MQCONN
maps onto a function called NAMQCONN, which is a ‘C’ routine that gets parameters from Natural
and calls the MQCONN routine via the library —Imgm.

This jumptable is linked into the Natural Nucleus; see the makefile in Appendix 1. Whenever a ‘CALL’
statement is then issued in the Natural program, the module defined in the jumptab will be called. In
the example shown here the

CALL 'MQCONN' #QMGRNAME #HCONN #COMPCODE #REASON

Statement will go to the jump table, see that MQCONN maps onto NAMQCONN and will call that
module passing on the parameters listed after the call. The module NAMQCONN (See Appendix 3)
then takes the parameters sent to it and calls the MQSeries function.

Calling MQSeries from Software AG’s Natural

Chapter 5. An MQSeries and Natural Example on Windows

2000

The following objects will be loaded into a Natural user library named MQSERIES:

INIT-GMO.NSC Natural sample Copycode which initialises the MQSeries MQGMO structure

INIT-MD.NSC Natural sample Copycode which initialises the MQSeries MQMD structure

INIT-PMO.NSC Natural sample Copycode which initialises the MQSeries MQPMO structure

MQ-CONN.NS3 Natural sample Dialog which prompts for the name of an MQSeries Queue
manager

MQ-OPEN.NS3 Natural sample Dialog which prompts for the name of an MQSeries Queue

MQ-WRITE.NS3

Natural sample Dialog which prompts for text to be placed on the currently open
MQSeries queue

MQCCV.NSL

Natural sample Local Data Area which defines MQSeries return codes

MQCOV.NSL

Natural sample Local Data Area which defines MQCLOSE option values

MQDIALOG.NS3

Natural sample Dialog which provide the capability to perform MQSeries calls

MQGMO.NSL Natural sample Local Data Area which defines the MQSeries MQGMO structure

MQGMOV.NSL Natural sample Local Data Area which defines initial values for the MQSeries
MQGMO structure

MQMD.NSL Natural sample Local Data Area which defines the MQSeries MQMD structure

MQMDV.NSL Natural sample Local Data Area which defines initial values for the MQSeries
MQMD structure

MQOD.NSL Natural sample Local Data Area which defines the MQSeries MQOD structure

MQOOV.NSL Natural sample Local Data Area which defines MQOPEN option values

MQPMO.NSL Natural sample Local Data Area which defines the MQSeries MQPMO structure

MQPMOV.NSL Natural sample Local Data Area which defines initial values for the MQSeries

MQPMO structure

NAMQTEST.NSP

Natural sample program that invokes MQSeries API calls

Calling MQSeries from Software AG’s Natural

Installation instructions
1. Copy NAMQ.DLL and MQNAMQ.DLL to your Natural bin directory
2. Set the environment variable NATUSER

Start the Control Panel, open System Properties and enter the variable NATUSER into the
environment settings.

Variable: natuser
Value: mgnamq

NOTE: if you want to specify other additional libraries in your NATUSER variable, you have to
separate the names with a semicolon (}),

For example: "Value: mgnamg;userlibl;userlib2;userlib3".
3. Start Natural

4, Invoke the SYSTRANS utility:
Enter the command: LOGON SYSTRANS
Enter the command: MENU
Select 'Load TRANSFER objects' and click on 'OK'
Enter the name of the transfer file - use 'Browse' to locate the file (Natural.dat) - and click on
oK’
Click on 'Load'

5. Exit from the SYSTRANS utility
6. Select the MQSERIES user library
7. Right click on the MQSERIES user library and select 'Cat All’
8. Execute the sample dialog:
Expand the MQSERIES User library to show the available dialogs

Select and run the MQDIALOG dialog
Use the 'File' menu items to perform MQSeries calls

Calling MQSeries from Software AG’s Natural

Chapter 6. Configuration Steps Required for z/OS

This document outlines what was necessary to allow Natural to communicate with MQSeries both
online and in batch.

1. Create a sample Natural program that calls MQSeries.
The following program, for example, was called MOQMTEST and was stowed in library DBAAPPL..

Note: the queue manager name, which is ENGQ in our example below may differ between sites, this
can be found from the MQ-Series master address space.

This simple program connects to the MQSeries Queue Manager, and disconnects. Providing that the
return codes (#COMPCODE and #REASON) are both zero, the connection to MQSeries has worked.

DEFINE DATA LOCAL

1 #QMNAME (A48) INIT <ENGQ'>

1 #HCONN (14)

1 #COMPCODE (14)

1 #REASON (14)

END-DEFINE
WRITE *PROGRAM
CALL 'MQCONN' #QMNAME #HCONN #COMPCODE #REASON
WRITE ‘after MQCONN call' #COMPCODE #REASON
CALL 'MQDISC' #HCONN #COMPCODE #REASON
WRITE ‘after MQDISC call #COMPCODE #REASON

END

10

2.

For Batch
2.1.

Calling MQSeries from Software AG’s Natural

Edit the Natural Batch parameter module source and insert the following. Please
ensure that you retain the CSTATIC entries that may be already listed within your

source.

ATTN=ON,

NAFSIZE=1,

CSTATIC=(CMMSG,

CTMOD,
CXLU62,
MQBACK,
MQCMIT,
MQCLOSE,
MQCONN,
MQDISC,
MQGET,
MQINQ,
MQOPEN,
MQPUT,
MQPUTL,

MQSET),

MQSERIES ATTN KEY -

MQSERIES NAF BUFFER -

MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES
MQSERIES

MQSERIES

11

Calling MQSeries from Software AG’s Natural

2.2. Edit the JCL that compiles and link edits the batch parameter module source, ensure
that it includes both of the lines below which contain the MQMLIB string.

/IPRM312BA JOB EXBAAMOO, DBA',MSGCLASS=K, TIME=1440,REGION=0M
IMAIN CLASS=LIVE

/IPROCS JCLLIB ORDER=(ISDPR.PROCLIB)

I*
/IASMPRMC EXEC PGM=ASMA90,

Il PARM='"OBJECT'

/ISYSIN DD DSN=SAG.NXT.TST.SRCE(PRM312BA),

Il DISP=SHR

/ISYSLIB DD DSN=SAG.NAT312.SRCE,

Il DCB=BLKSIZE=30000,DISP=SHR

Il DD DSN=SYS1.MACLIB,DISP=SHR

/ISYSUT1 DD UNIT=SYSDA,SPACE=(1700,(600,100))

/ISYSUT2 DD UNIT=SYSDA,SPACE=(1700,(600,100))

/ISYSUT3 DD UNIT=SYSDA,SPACE=(1700,(600,100))
/ISYSTERM DD SYSOUT=*DCB=BLKSIZE=1809

/ISYSPRINT DD SYSOUT=*DCB=BLKSIZE=1809

/ISYSPUNCH DD DUMMY

/ISYSLIN DD DSN=&&PD,UNIT=SYSDA,

Il DISP=(NEW,PASS,DELETE),SPACE=(1700,(1000,300),RLSE)
I

/ILKDPRMC EXEC PGM=IEWL,

Il PARM="RENT,REUS,XREF,LET,LIST,NCAL,SIZE=(512K,128K)’,
Il COND=(4,LT, ASMPRMC)

/ISYSUT1 DD UNIT=SYSDA,SPACE=(1700,(500,100))
/ISYSPRINT DD SYSOUT=* DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)
/ISYSLMOD DD DSN=SAG.NXT.TST.LOADLIB,

Il DISP=SHR

//IMQMLIB DD DSN=SYS1.MQM.SCSQLOAD,DISP=SHR
/ISYSLIN DD DSN=&&PD,DISP=(OLD,DELETE)

Il DD *

INCLUDE MQMLIB(CSQBSTUB) MQSERIES BATCH STUB

NAME PRM312BA(R)

[

12

Calling MQSeries from Software AG’s Natural

2.3. Submit the modified job and ensure rc00.
2.4. Test the Natural program created in action 1 above via a Natural batch job.
Note: two additional libraries need to be appended to the STEPLIB; these are

SYS1.MQM.SCSQAUTH and SYS1.MQM.SCSQANLE. Below is a sample batch job that calls a
PROC, in our example variables LIB1 and LIB2 are appended to our STEPLIB concatenation.

/INATBATCH JOB EXBAAMOO, DBA',MSGCLASS=K, TIME=1440
IFMAIN CLASS=LIVE

/IPROCS JCLLIB ORDER=(ISDPR.ISD.PROCLIB)

1

/IBATCH EXEC NATBATCH,ENV=TST,SYS=NXT,UDB=NXT,
Il LIB1=SYS1.MQM.SCSQAUTH,

Il LIB2=SYS1.MQM.SCSQANLE

/ISYSIN DD *

LOGON DBAAPPL

MQMTEST

FIN

/*

The expected output is as follows:

Logon accepted to library DBAAPPL.
NEXT LOGON DBAAPPL

Logon accepted to library DBAAPPL.
NEXT MQMTEST

Page 1

MQMTEST

after MQCONN call 0 0
after MQDISC call 0 0
NEXT FIN

NAT9995 Natural SESSION TERMINATED NORMALLY

13

Calling MQSeries from Software AG’s Natural

For CICS

3.1. Repeat action 2.1 on the Natural CICS parameter module source, e.g., PRM312CI

3.2. Repeat action 2.2 on the JCL that compiles and link edits the Natural CICS parameter
module, e.g., PRM312ClI
Note: The MQ-SERIES stub is CSQCSTUB not CSQBSTUB

3.3. Submit the JCL and ensure rc00.

3.4. Newcopy the Natural CICS parameter module.

3.5. Logon to the CICS region and test the sample program that was created in action 1

above.

14

Calling MQSeries from Software AG’s Natural

Appendix 1 The Natural Makefile

HHHHHHH R HHH B HH TR HEE (c) Sof tware AG 1998

File : $NATDI R/ $NATVERS/ sanpl es/ sysexuex/ Makefil e
Creation date : 14:33:37 29.10.100
Machi ne : sun4_sol

Natural version : 311
HUBHHHH RS R H TR R R R R R R R R R R R i

Cener at e executabl e Natural programfromnatraw.o, CMIlibrary,
userexits and dat abase drivers.

To install Natural with the necessary drivers appropiate to your
Dat abase sytsten(s) you have to run this Makefile with sone of
the follow ng flags.

make natural {<flags>}

Pl ease refer to the section about the specific database systemfor
further informations about the fl ags.

Fol | owi ng Environnent Variabl es are needed for successful |inking
of Natural

NATDI R : Natural base directory

NATVERS : Natural version
Usi ng ADABAS :

if you want to use ADABAS with the Natural you are generating, you have to
speci fy the node how ADABAS shoul d be Iinked by using one of the follow ng
conmand |ine flags
ada=dyn use dynam ¢ bi ndi ng of ADABAS (version 1.2 and hi gher)
ada=st at use static binding of ADABAS (prior to version 1.2)
ada=csci dyn use dynamc CSCl interface al so for ADABAS access
ada=cscistat use static CSCl interface also for ADABAS access
The followi ng Environment variables nust be set

ADADI R . ADABAS base directory
ADAVERS . ADABAS versi on

Addi tional Environnent variables for CSCl

NETDI R : NET-WORK base directory
NETVERS : NET- WORK ver si on

Usi ng ENTI RE dat abase :

if you want to use ENTIRE you have to specify follow ng command |ine
flag

ent =yes
The follow ng Environment variabl es nust be set

AERDI R . ENTI RE base directory
AERVERS : ENTI RE version

HHEHFHFHFFHHFEHFFFRFHFFEHFRFHFEFHFRFFFHFEFFRFEHFHFFHFHFEHFRFFEFHRFRFHEFEFEFF TR

15

HHEHFHHFHFHFHFEHFFFRFEHFHFEHFRFHHFHFHRFFHFEFFFEHFHFFHFFEHRFFEFFRFRFEFFEFRFFE TR FEFEFRFFE TR

Calling MQSeries from Software AG’s Natural

Usi ng SQ. dat abases with OSQ :
to link the SQL interface to the Natural system please
specify following flag at the command line. This option is
usable only if the SQL interface libraries are accessible
at the $NATDI R/ $NATVERS/ bi n/build directory.

sql =yes
The followi ng Environment variables nmust be set

OSQDI R : ENTI RE ACCESS base directory
OSQVERS : ENTI RE ACCESS version

Usi ng SQL dat abases with OSX :
to link the SQL interface (OSX version) to the Natural system
pl ease specify following flag at the conmand |line. This option
is usable only if the SQL interface libraries are accessible
at the $NATDI R/ $NATVERS/ bi n/build directory.

0SX=yes

The followi ng Environment variabl es nust be set

OSXDI R : OSX base directory
OSXVERS : OSX version

Usi ng ADABAS SQ. server

to link the ADABAS SQL server interface to the Natural system please
specify following flag at the conmand |i ne.

esqg=yes
The followi ng Environment variabl es nmust be set

ESQDI R . ADABAS SQ server base directory
ESQVERS . ADABAS SQL server version

NETDI R : NET-WORK base directory
NETVERS : NET- WORK version

Usi ng TP noni tor
to link the TP nonitor interface to the Natural system please
specify following flag at the command line. This option is
usable only if the TP nonitor interface libraries are accessible
at the $NATDI R $NATVERS/ bi n/build directory.

t p=yes
Usi ng SYNCSORT :
to use the external SYNCSORT product, please specify follow ng

flag at the comand |i ne.
The default library search path will be used for accessing the library.

16

Calling MQSeries from Software AG’s Natural

sync=yes

Usi ng BROKER St ubs

To use Broker stubs a new Natural nucleus has be |inked. This nucl eus
will support multithreading. In order to use the Broker stubs please
specify the following on conmand line (in addition to other settings)

exx=yes

Usi ng DCOM :

To use EntireX DCOM wi th Natural X a new Natural nucl eus has to be |inked
This nucleus will support DCOM functionality.

In order to use the EntireX DCOM stubs pl ease

specify the following on conmand line (in addition to other settings)

dco=yes
The followi ng Environment variabl es nust be set

DCODI R : EntireX DCOM base directory
DCOVERS : EntireX DCOM version

The result of this nake will be an executable 'natural
which will be placed in the current directory

Use 'neke install' for copying the generated 'natural' program
to $NATDI R/ $NATVERS/ bin. Oiginal 'natural' programw ||l be renaned
to 'natural.old

HHEHFHFHFHFFHFEHFHFFRFHHFFEHRFHEFHRFFFEHFEFFHEFHEHFHFFH R

HHBHHHHBHBHHHHBH BB H BB H BB H B H BB H B R H A R R R
SHELL=/ bi n/ sh

z Default Rule for Help text

iLL: defaul t _text
z###
z Set own userexit files

ﬁSERCBJS = ngw ap. o junptab.o

z Set include directory

?NCU R = -1. -1$(NATD R)/ $(NATVERS) / sanpl es/ sysexuex -1 /opt/nmgn inc
z###
z Set the database specific libraries

z ADABAS :

ada=

adaxver s=

LI B_DBXADA = $(NATDI R)/ $(NATVERS) / bi n/ bui | d/ dbxada$(adaxvers) . a
LI B_ADA_STAT $(ADADI R) / $(ADAVERS) / adabas. a

LI B_ADA_DYN $(ADADI R) / $(ADAVERS) / adabas. o

17

Calling MQSeries from Software AG’s Natural

LI B_CSCl _STAT
LI B_CSCI _DYN

LI B_BROKER STAT
LI B_BROKER_DYN
#

ENTIRE :

$(NETDI R) / $(NETVERS) /| i b/ csci . a
$(NETDI R)/ $(NETVERS) / | i b/ csci . o
$(NETDI R)/ $(NETVERS) / | i b/ br oker . a
$(NETDI R)/ $(NETVERS) / | i b/ br oker. o

ent =

ent xver s=

LI B_DBXENT = $(NATDI R)/ $(NATVERS) / bi n/ bui | d/ dbxent $(ent xvers) . a
LI B_ENT = $(AERDI R)/ $(AERVERS)/ | i b/ ent db. a

sql =

sql xvers=

LI B_DBXSQL = $(NATDI R)/ $(NATVERS) / bi n/ bui | d/ dbxsql $(sql xvers) . a
LI B SQ._LST = $(0sQ R)/ $(OSQVERS) / osql i bs. | st

0SX=
OSXXVer s=

LI B_DBXOSX = $(NATDI R)/ $(NATVERS)/ bi n/ bui | d/ dbxsgl $(osxxvers). a
LI B_OSX_LST = $(OSXDI R) / $(OSXVERS) / osx| i bs. | st

#

ADABAS SQ. server

esq=

LI B_ESQ = $(ESQDI R)/ $(ESQVERS) /1 i b/ esqgint. o
#

TP Monitor

t p=
t pxver s=
LI B_DBXTP
LIB_TP_LST

$(NATDI R) / $(NATVERS) / bi n/ bui | d/ dbxt x$(t pxvers).a
tplibs.|st

dco=

LI B_DCO = $(NATDI R)/ $(NATVERS) / bi n/ nat com a - L$(DCODI R)/ $(DCOVERS) /| i b
-loleaut32 -lole32 -Irpcrt4 -Intrtl -Imutant -lcoolmsc -L/usr/lib -1C-lw -

| pt hr ead

#

#

SyncSort

sync=
LI B_SYNC = -l syncsort

#

HHHBHBHIRH B H SRR R AR R A A R A AR R A R R R
#

Set sone general variables

#

cC = [opt/ SUNWspr o/ bin/cc

CFLAGS =

LD = [opt/ SUNWspr o/ bin/cc

LFLAGS1 =

LFLAGS2 = -Im -1 socket -Ilns

LFLAGS3 = $(exx:yes=-1pthread)

#

set nane of tenporary files used for I|inking
#

t mpdbexe=. dbexe
t npdbext =. dbext

18

Calling MQSeries from Software AG’s Natural

t npspr od=. sprod

#

HE R R R R R R R R
#

Set location of prelinked natural and some libraries

#
NATRAW = $(NATDI R)/ $(NATVERS) / bi n/ nat r aw. o
LI B_OW = $(NATDI R)/ $(NATVERS) / bi n/ bui | d/ | i bow. a
LI B CM = $(NATDI R)/ $(NATVERS) / bi n/ bui I d/ I i bcm a
LI B_RESOLY = $(NATDI R)/ $(NATVERS)/ bi n/ buil d/libresolv. a
LI B_STUBCSCI = $(NATDI R)/ $(NATVERS)/ bi n/ bui | d/ st ubcsci . a
LI B_STUBSYNC = $(NATDI R)/ $(NATVERS) / bi n/ bui | d/ st ubsync. a
PRCLIB_LST = natprolib.Ist
MQLI BS =-L /opt/mgmlib \

-t \

-1 mgm \

-1 mgnts \

-l mgnzse \

-1 socket \

-1 nsl \

-1dl
#
Get directory for external libraries fromNatural.IN file
#
NAT_EXTLIB = grep NATEXTLI B $(NATDI R)/ $(NATVERS)/etc/ Natural . INI|sed 's/ //g'|sed
BTN
#

HHBHAHHBHAH BB A R R A AR R A R R R R R H R R
defaul t _text:
@Cho ! :::::::::::::::::::::::::::::::::::::::'
@cho ' Natural link script (c) SOFTWARE AG
@Cho ! :::::::::::::::::::::::::::::::::::::::'
@cho 'This Makefile is currently executing the default rule for'
@cho 'giving you sone help."'
@cho "'
@cho 'Use followi ng conmand line for creating a new Natural in'
@cho 'current directory:’

@cho '

@cho ' make natural {<flags>}"

@cho '’

@cho 'For installation after successful creation call:’'

@cho ''

@cho ' nmeke install'’

@cho ''

@cho 'Following Natural DB interface options {<flags>} are avail able:’
@cho ''

@cho ' ada=stat link with static ADABAS interface'

@cho ' ada=dyn link with dynam ¢ ADABAS i nterface'

@cho ' ada=csci st at link with static CSCl library al so for ADABAS
@cho ' ada=cscidyn link with dynamic CSCl library also for ADABAS
@cho ''

@cho ' ent=yes link with ENTIRE interface'

@cho ''

@cho ' sql =yes link with SQL interface (0SQ'

@cho ''

@cho ' osx=yes link with SQL interface (0SX)'

@cho ''

@cho ' esqg=yes link with ADABAS SQ. server interface'

@cho ''

@cho ' tp=yes link with TP interface'

@cho ''

@cho ' sync=yes link with SYNCSORT library’

@cho ''

@cho ' exx=yes link with multithread library (used for Broker)'
@cho ''

@cho ' dco=yes link with DCOM support'

@cho ''

@cho 'see top of Makefile for nmore information'

19

Calling MQSeries from Software AG’s Natural

@Cho ! —————----————------———————————=—=—=—=—==—==='
@cho ''

HHHBHBHIRH B H SRR AR AR R R AR R A AR R R A R R
#
Rule to build a new natural
#
natural : db_all $(USEROBJS)
(@Yo 1o R eI e '
@cho used db-interfaces:
@at $(tnpdbexe) $(tnpdbext)
(@ 1o s I e e '
@cho used subproducts:
@at $(tnpsprod)
(@ 1o o I e e L '
@cho | i nking:
$(LD) $(LFLAGS1) \
$(NATRAW \
$(LIB_ON \
$(LIB_CM) $(USEROBIS) \
“cat $(tnpdbexe) $(tnpdbext) $(tnpsprod)” \
$(LI B_RESOLV) \
$(LFLAGS2) -m-1dl $(LFLAGS3) $(MXLIBS) -0 natural
@m -f $(tnmpdbexe) $(tnpdbext) $(tnpsprod)
-rm-f $(USEROBJIS)
@cho 'Ilinking conplete'

HHIHH AR B R AR S R AR S R AR S R AR SRR I R

dependency rules for DB interfaces

HHIHH AT R B R AR S R AR S R AR S R AR SRR I R

db_all : db_start db_tp_$(tp) db_sql _$(sql) db_ent_$(ent) db_osx_$(osx) \
db_esqg_$(esq) db_ada_$(ada) db_sync_$(sync) db_dco_$(dco)

db_start :
@rm-f $(tnpdbexe) $(tnpdbext) $(tnpsprod)

@touch $(tnpdbexe) $(tnpdbext) $(tnpsprod)

@touch " $(NAT_EXTLI B) "/ $(PROLI B_LST)

@cho "echo \" cat \ $(NAT_EXTLIB)\ /$(PROLIB_LST) "\"" | sh >> $(tnpsprod)

db_tp_yes :
@touch " $(NAT_EXTLIB) /$(LI B_TP_LST)
@cho $(LIB _DBXTP) >> $(tnpdbexe)
@cho "echo \"“cat \"$(NAT_EXTLIB)\ /$(LIB_TP_LST) \"" | sh >> $(tnpdbext)

db_tp_ :
db_sql _yes :
@touch $(LIB_SQ._LST)
@cho $(LIB_DBXSQ) >> $(tnpdbexe)
@cho "echo \""cat $(LIB_SQ_LST) \"" | sh >> $(tnpdbext)
db_sql _ :
db_osx_yes :
@touch $(LIB_OSX_LST)
@cho $(LIB_DBXOSX) >> $(tnpdbexe)
@cho "echo \" cat $(LIB_OSX_LST) ' \"" | sh >> $(tnpdbext)
db_osx_ :
db_ent _yes :
@cho $(LIB_DBXENT) >> $(tnpdbexe)
@cho $(LIB_ENT) >> $(t nmpdbext)
db_ent _ :

db_esq_yes :
@cho $(LIB_DBXADA) >> $(tnpdbexe)

20

Calling MQSeries from Software AG’s Natural

@cho $(LIB_STUBCSC) >> $(t npdbext)

@cho $(LIB_ESQ >> $(t npdbext)

@cho $(LIB_CSCl_DYN) >> $(t npdbext)

@cho $(LI B_BROKER STAT) >> $(t npdbext)
db_esq_ :
db_ada_stat :

@cho $(LI B_DBXADA) >> $(tnpdbexe)

@cho $(LI B_ADA_STAT) >> $(t npdbext)
db_ada_dyn :

@cho $(LI B_DBXADA) >> $(tnpdbexe)

@cho $(LI B_ADA DYN) >> $(t npdbext)

db_ada_cscistat :
@cho $(LIB_DBXADA) >> $(tnpdbexe)
@cho $(LIB_STUBCSCl) >> $(t npdbext)
@cho $(LIB_CSCl _STAT) >> $(t nmpdbext)

db_ada_csci dyn :
@cho $(LI B_DBXADA) >> $(tnpdbexe)

@cho $(LIB_STUBCSCl) >> $(t npdbext)
@cho $(LIB_CSCl _DYN) >> $(t npdbext)
db_ada_ :
db_sync_yes :
@cho $(LI B_STUBSYNC) >> $(t npdbext)
@-cho $(LIB_SYNC) >> $(t npdbext)
db_sync_ :
db_dco_yes :
@cho $(LI B_DCO >> $(t npdbext)
db_dco_ :
#

Use the following target to install the executable Natural.
The one in the current directory is NOT renpved!
(call 'nmake install' at command |ine)
#
install:
if [-f $(NATDI R)/$(NATVERS)/ bi n/natural] ; then \
rm-f $(NATDI R)/ $(NATVERS) / bi n/ natural .old ; \
cp $(NATDI R)/ $(NATVERS) / bi n/ nat ural $(NATDI R) / $(NATVERS) / bi n/ natural .ol d ; \
fi
cp natural $(NATDI R)/$(NATVERS)/ bi n/ nat ur al

#
Use following target to clean up the current directory.
(call 'make clean' at conmand |ine)
#
cl ean:
-rm-f natural
-rm-f *.o0
#
Rule to conpile a .c file
#
.C.o0:
$(CO $(CFLAGS) -c -O $(INCDIR) -DOS_UNI X=1 $*.c
#

21

Calling MQSeries from Software AG’s Natural

Appendix 2 The Natural Jumptable

*/

#i ncl ude "nattab. h"

#i ncl ude "natuser.h"

/*

** gsection 2: define external exanple routines
* %

* %

** START OF CODE TO BE CHANGED BY THE USER

*/

extern NATFCT NAMQCONN NATARGDCL(pcnt, pdat, pinf);
extern NATFCT NAMQDI SC NATARGDCL(pcnt, pdat, pinf);

** gection 3: initialize the junptable

** the function nane visible to Natural nust not be |onger than 8
** yppercase characters. they must contain only uppercase letters.
** the entries in the array nust be al phabetically sorted by the
** function names.
*/
TAB_STRUCT n_cal | _table[] = {

{ "MQCONN', NAMQCONN }

{ "MQDI SC', NAMQDI SC }
s
/*
** section 4: nmake nunber of elenments in the junp table availale to
** Natural .

* %

** END OF CODE TO BE CHANGED BY THE USER

K K L o o o o o e =
*/

TAB_SI ZE n_cal |l _tab = sizeof(n_call _table) / sizeof(n_call_table[0]);

/*

** end of file junptab.c

*/

22

Calling MQSeries from Software AG’s Natural

Appendix 3 An example of the ‘C’ code for Connect and
disconnect

/********************~k*********~k**********~k*~k*********************************
* %

** File: ngwr ap. ¢

** Pur pose: Exanpl e of MQ and Natural Interface

** Description: MQ functions
* %

** (c) Copyright 2000 by |BM

***/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h> /* Menory and type conversions */

#include <string. h> /* strcpy stuff */

#i ncl ude <ctype. h> /* is upper stuff */

#i ncl ude <tine.h> /* time of course */

#i ncl ude <errno. h> /* contains errno , last error indicator */
#i ncl ude <fcntl. h> /* FILEI1/Orelated protos and defines */
#include <limts. h> /* FILE 1/Orelated protos and defines */
#i ncl ude <uni std. h> /* defines for file access */
#i ncl ude <sys/types. h> /* for data types sycj as tine */
#i ncl ude <sys/stat. h> /* finding out status info */
#i ncl ude "cnygc. h" /* MQ Headers */

#i ncl ude "natuser.h" /* Natural User Exit */

/*

** define function prototypes to avoid conpiler warnings

*/

NATFCT NAMQCONN NATARGDCL(nparm parnptr, parndec);

NATFCT NAMQDI SC NATARGDCL(nparm parnptr, parndec);

voi d ng_connect (MJHCONN * con_hndl, MQCHAR48 con_nane, MQLONG *cc, MALONG *rc);
voi d ng_di sconnect (MQHCONN * con_hndl, MXYLONG *cc, MQALONG *rc) ;

NATFCT NAMQCONN NATARGDEF(nparm parnptr, parndec)
{
static char * func = "NAMQCONN : " ;
int step ;
int i; /* loop counter */
MHCONN con_hndl
MQCHAR4 8 con_nane ;

ML ONG cc ;
MALONG rc ;
/*

** test number of argunents
*/

if (nparm!= 4)

printf("\n% Not ENough Paraneters!\n" ,func) ;

return 1;
/*
** test types of arguments
for (i =0; i < (int) nparm i++)
{
if (parmdec[i].typevar !'="1" ||
parmdec[i].flen.Ifield != sizeof (NATTYP_I 4))
{
printf("\ nParameter nunber % is of incorrect type \n" ,
i)
return 2;
}
}
*/
/*

** move Con nane from Natural to Local variable

23

Calling MQSeries from Software AG’s Natural

*

/

memove ((char *) con_nane, (char *) parnptr[0], sizeof(MQCHAR4S));
printf("\n% con nanme is '%'\n", func , con_nanme) ;

/*

** Call the connect routine

*/

ng_connect (&con_hndl, con_nane, &cc, &rc);

printf("\n% handle = % cc is % , rc = % \n", func , con_hndl , cc, rc) ;
/*

** npve Handle to Natural Return bl ock

*/

n’fn’rrove ((char *) parnptr[1], (char *) &con_hndl, sizeof (NATTYP_I4));
/:* nove Condition Code to Natural Return bl ock

rrfl;:'n"rrove ((char *) parnptr[2], (char *) &cc, sizeof (NATTYP_l4));

/:* nove Return Code to Natural Return bl ock

rrfan’rrove ((char *) parnptr[3], (char *) &rc, sizeof (NATTYP_l4));
return O;

} /* MQCON */
NATFCT NAMQPDI SC NATARGDEF(nparm parnptr, parndec)
{
static char * func = "NAMDI SC :
int step ;
int i; /* loop counter */
MOHCONN con_hndl ;
ML ONG cc ;
ML ONG rc ;
/*
** test number of argunents
*/
if (nparm!= 3)
{
printf("\n% Not Enough Paraneters!\n" , func) ;
return 1;
}
/*
** test types of arguments
for (i =0; i < (int) nparm i++)
if (parndec[i].typevar !="1"'
parmdec[i].flen.Ifield != sizeof (NATTYP_I 4))
{
printf("\nParameter nunmber % is of incorrect type \n" ,
i)
return 2;
}
}
*/
/*
** npve Con handle from Natural to Local variable
*/
memmove ((char *) &con_hndl, (char *) parnptr[0], sizeof (NATTYP_I4));
printf("\n% con handle = "%"' \n", func , con_hndl) ;
/*
** Call the Disconnect routine
*/

ng_di sconnect (&con_hndl, &cc, &rc);
printf("\n% cc is %d , rc = 9% \n", func, cc, rc) ;
/*

** npve Handle to Natural Return bl ock

*/

menmove ((char *) parnptr[0], (char *) &con_hndl, sizeof (NATTYP_I4));
/*

** npve Condition Code to Natural Return block

*/

24

Calling MQSeries from Software AG’s Natural

mermove ((char *) parnptr[1l], (char *) &cc, sizeof (NATTYP_l4));
/*
** npve Return Code to Natural Return bl ock
*/
memrmove ((char *) parnptr[2], (char *) &rc, sizeof (NATTYP_l4));
return O;
} /* NAMQDI SC */
/*
R R R I S I I O R O I R R I
ng_connect
R R R S I S O O R R S R R I
*/
voi d ng_connect (MJHCONN * con_hndl, MXHAR48 con_name, MALONG *cc, MALONG *rc)
static char * func = "ng_connect : " ;
int step ;
#i f def MQ _DEBUG
printf("in %\n" , func) ; getchar() ; getchar() ;
#endi f
MQYCONN(con_nare, con_hndl, cc , rc) ;
if ((*cc == MCC_ WARNING) && (*rc == MQRC_ALREADY_CONNECTED))

{
printf("% Al ready connected .. Warning ignored by programn", func);
*cc = MXC XK ;
}
if (*cc == MQCC_FAI LED)
{
printf("% Failed to Connect\n", func);
}
return ;
}
/*

Rk S S S Rk Ik S O S R Rk S b S R R b o R R R S R S R R R o S O S R

nmg_di sconnect

EE R R S I O R S R S S S

*/
voi d ng_di sconnect (MQHCONN * con_hndl, MJYLONG *cc, MQLONG *rc)
{

static char * func = "ng_di sconnect : " ;

int step ;
#i f def MQ_DEBUG
printf("in %\n" , func) ; getchar() ; getchar() ;
#endi f
MQDI SC(con_hndl, cc, rc);
if (*cc != MXC_X)
{

}

return ;

printf("\n% cc is %d , rc = % \n", func, cc, rc) ;

25

Calling MQSeries from Software AG’s Natural

Appendix 4: Examples of MQSeries Data Structure

definitions for Natural

MQSeries PutMessage Options

1 MQPMO A 128
R 1 MQPMO /* REDEF. BEGIN : MQPMO

2 MQPMO-STRUCID A 4
2 MQPMO-VERSION I 4

2 MQPMO-OPTIONS I 4

2 MQPMO-TIMEOUT I 4

2 MQPMO-CONTEXT I 4

2 MQPMO-KNOWNDESTCOUNT I 4

2 MQPMO-UNKNOWNDESTCOUNT I 4

2 MQPMO-INVALIDDESTCOUNT I 4

2 MQPMO-RESOLVEDQNAME A 48
2 MQPMO-RESOLVEDQMGRNAME A 48

MQSeries GetMessage Options

1 MQGMOV

2 MQGMO-STRUCID

2 MQGMO-RESOLVEDQNAME A 48

A 4 INIT<GMO™>

2 MQGMO-VERSION | 4 INIT<1>
2 MQGMO-OPTIONS I 4
2 MQGMO-WAITINTERVAL I 4
2 MQGMO-SIGNAL1 I 4
2 MQGMO-SIGNAL2 I 4

MQSeries Close Call Option Values

1 MQCO-NONE I 4 INIT<0>
1 MQCO-DELETE I 4INIT<1>
1 MQCO-DELETE-PURGE I 4 INIT<2>

26

Calling MQSeries from Software AG’s Natural

MQSeries Object Descriptor

1 MQOD
R 1MQOD

2 MQOD-STRUCID A 4
2 MQOD-VERSION [
2 MQOD-OBJECTTYPE [
2 MQOD-OBJECTNAME

A
2 MQOD-OBJECTQMGRNAME A
2 MQOD-DYNAMICQNAME A

A

2 MQOD-ALTERNATEUSERID

A 168

/* REDEF. BEGIN : MQOD

4

4

48

48

48

12

MQSeries Open Option Variables

1 MQOO-INPUT-AS-Q-DEF
1 MQOO-INPUT-SHARED

1 MQOO-INPUT-EXCLUSIVE

1 MQOO-BROWSE

1 MQOO-OUTPUT

1 MQOO-INQUIRE

1 MQOO-SET

1 MQOO-SAVE-ALL-CONTEXT

1 MQOO-PASS-IDENTITY-CONTEXT
1 MQOO-PASS-ALL-CONTEXT

1 MQOO-SET-IDENTITY-CONTEXT

1 MQOO-SET-ALL-CONTEXT

1 MQOO-FAIL-IF-QUIESCING

1 MQOO-ALTERNATE-USER-AUTHORITY I

I 4INIT<1>

I 4INIT<2>

I 4INIT<4>

I 4INIT<8>

I 4 INIT<16>

I 4 INIT<32>

I 4 INIT<64>

| 4INIT<128>

I 4 INIT<256>

I 4 INIT<512>

| 4INIT<1024>

| 4 INIT<2048>

4 INIT<4096>

I 4INIT<8192>

MQSeries Completion Codes

1 MQCC-OK I 4 INIT<0>
1 MQCC-WARNING I 4INIT<1>
1 MQCC-FAILED I 4INIT<2>
1 MQCC-UNKNOWN I 4INIT<-1>

27

Calling MQSeries from Software AG’s Natural

MQSeries Message Descriptor

1 MQMDV
2 MQMD-STRUCID
2 MQMD-VERSION
2 MQMD-REPORT
2 MQMD-MSGTYPE
2 MQMD-EXPIRY
2 MQMD-FEEDBACK
2 MQMD-ENCODING
2 MQMD-CODEDCHARSETID
2 MQMD-FORMAT
2 MQMD-PRIORITY
2 MQMD-PERSISTENCE
2 MQMD-MSGID
2 MQMD-CORRELID
2 MQMD-BACKOUTCOUNT
2 MQMD-REPLYTOQ
2 MQMD-REPLYTOQMGR
2 MQMD-USERIDENTIFIER
2 MQMD-ACCOUNTINGTOKEN
2 MQMD-APPLIDENTITYDATA
2 MQMD-PUTAPPLTYPE
2 MQMD-PUTAPPLNAME
2 MQMD-PUTDATE
2 MQMD-PUTTIME

2 MQMD-APPLORIGINDATA

A 4 INIT<'MD ">

I 4INIT<1>

I 4 INIT<0>

I 4INIT<8>

I 4INIT<-1>

I 4 INIT<0>

I 4 INIT<785>

I 4 INIT<0>

A 8INIT< ">

I 4INIT<-1>

I 4INIT<2>

24 INIT FULL LENGTH<H'00">

> >

24 INIT FULL LENGTH<H'00>

4 INIT<0>

A 48 INIT<'"™>

A 48 INIT<'"™>

A 12 INIT<' ">
A 32 INIT FULL LENGTH<H'00">
A 32 INIT<' ">

I 4 INIT<0>
A 28 INIT<' ">
A 8INIT< ">
A 8INIT< ">
A

4 INIT<'"™>

End of Document

28

	Trademarks and service marks
	Introduction
	Overview
	Installation

	The MQSeries and Natural Environment
	MQSeries – Messaging
	Software AG’s Natural

	Connecting Distributed MQSeries to Natural
	Overview
	Examples of the Natural statements used to call MQ Series
	Linking Natural with MQSeries on UNIX

	An MQSeries and Natural Example on Windows 2000
	Installation instructions

	Configuration Steps Required for z/OS
	MQSeries PutMessage Options
	MQSeries GetMessage Options
	MQSeries Close Call Option Values
	MQSeries Object Descriptor
	MQSeries Open Option Variables
	MQSeries Completion Codes
	MQSeries Message Descriptor

