

MQSeries IBM

Intercommunication

 SC33-1872-02

MQSeries IBM

Intercommunication

 SC33-1872-02

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix E, “Notices”
on page 639.

Third edition (January 1999)

This edition applies to the following products:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2M1
� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.1
� MQSeries for OS/390 V2.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for Sun Solaris V5.1
� MQSeries for Tandem NonStop Kernel V2.2
� MQSeries for VSE/ESA V2.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993,1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . xvii
Who this book is for . xvii
What you need to know to understand this book xvii
How to use this book . xviii

Appearance of text in this book . xix
Terms used in this book . xix

MQSeries publications . xx
MQSeries cross-platform publications . xx
MQSeries platform-specific publications . xxiii
MQSeries Level 1 product publications . xxv
Softcopy books . xxv

MQSeries information available on the Internet xxvi
Related publications . xxvii

Programming . xxvii
OS/390 . xxvii
CICS . xxvii
OS/400 . xxvii
Digital . xxvii
SNA . xxvii
SINIX . xxviii

Summary of changes . xxix
| Changes for this edition . xxix
| MQSeries for OS/390 V2.1 . xxix
| MQSeries V5.1 . xxx
| MQSeries for VSE/ESA V2.1 . xxxiv
| MQSeries for AS/400 V4R2M1 . xxxiv

Changes for the second edition . xxxiv

Part 1. Introduction . 1

Chapter 1. Concepts of intercommunication 3
What is intercommunication? . 3
Distributed queuing components . 8
Dead-letter queues . 15
Remote queue definitions . 16
How to get to the remote queue manager . 16

Chapter 2. Making your applications communicate 19
How to send a message to another queue manager 19
Triggering channels . 23
Safety of messages . 25

Chapter 3. More about intercommunication 27
Addressing information . 27
What are aliases? . 27
Queue manager alias definitions . 28
Reply-to queue alias definitions . 30
Networks . 32

 Copyright IBM Corp. 1993,1999 iii

 Contents

Part 2. How intercommunication works . 35

Chapter 4. MQSeries distributed-messaging techniques 39
Message flow control . 39
Putting messages on remote queues . 42
Choosing the transmission queue . 43
Receiving messages . 44
Passing messages through your system . 45
Separating message flows . 47
Concentrating messages to diverse locations 49
Diverting message flows to another destination 50
Sending messages to a distribution list . 51
Reply-to queue . 52
Networking considerations . 58
Return routing . 59
Managing queue name translations . 59
Message sequence numbering . 61
Loopback testing . 62

Chapter 5. DQM implementation . 63
Functions of DQM . 63
Message sending and receiving . 64
Channel control function . 66
What happens when a message cannot be delivered? 78
Initialization and configuration files . 80
Data conversion . 82
Writing your own message channel agents . 82

Chapter 6. Channel attributes . 85
Channel attributes in alphabetical order . 85

Chapter 7. Example configuration chapters in this book 105
Network infrastructure . 106
Communications software . 106
How to use the communication examples . 107

Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem
NSK, and UNIX systems . 109

Chapter 8. Monitoring and controlling channels on distributed platforms
 . 115

The DQM channel control function . 115
Functions available . 116
Getting started . 119
Channel attributes and channel types . 123

Chapter 9. Preparing MQSeries for distributed platforms 129
Transmission queues and triggering . 129
Channel programs . 131
Other things to consider . 131
What next? . 135

iv MQSeries Intercommunication

 Contents

Chapter 10. Setting up communication for OS/2 and Windows NT . . . 137
Deciding on a connection . 137
Defining a TCP connection . 137
Defining an LU 6.2 connection . 140
Defining a NetBIOS connection . 143
Defining an SPX connection . 147

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp . . . 151
Configuration parameters for an LU 6.2 connection 151
Establishing an LU 6.2 connection . 156
Establishing a TCP connection . 165
Establishing a NetBIOS connection . 167
Establishing an SPX connection . 167
MQSeries for OS/2 Warp configuration . 170

Chapter 12. Example configuration - IBM MQSeries for Windows NT . . 177
Configuration parameters for an LU 6.2 connection 177
Establishing an LU 6.2 connection . 182
Establishing a TCP connection . 188
Establishing a NetBIOS connection . 188
Establishing an SPX connection . 189
MQSeries for Windows NT configuration . 191

Chapter 13. Setting up communication in UNIX systems 199
Deciding on a connection . 199
Defining a TCP connection . 200
Defining an LU 6.2 connection . 203

Chapter 14. Example configuration - IBM MQSeries for AIX 207
Configuration parameters for an LU 6.2 connection 207

| Establishing a session using SNA Server for AIX V5 213
Establishing a TCP connection . 218

| Establishing a UDP connection . 218
MQSeries for AIX configuration . 219

Chapter 15. Example configuration - IBM MQSeries for HP-UX 225
Configuration parameters for an LU 6.2 connection 225
Establishing a session using HP SNAplus2 . 230
Establishing a TCP connection . 236
MQSeries for HP-UX configuration . 237

Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX
Version 2.2 . 243

Configuration parameters for an LU 6.2 connection 243
Establishing a connection using AT&T GIS SNA Server 247
Establishing a TCP connection . 251
MQSeries for AT&T GIS UNIX configuration 251

Chapter 17. Example configuration - IBM MQSeries for Sun Solaris . . . 257
Configuration parameters for an LU 6.2 connection 257

| Establishing a connection using SunLink Version 9.1 262
Establishing a TCP connection . 268
MQSeries for Sun Solaris configuration . 268

 Contents v

 Contents

Chapter 18. Setting up communication in Digital OpenVMS systems . . 273
Deciding on a connection . 273
Defining a TCP connection . 273
Defining an LU 6.2 connection . 277
Defining a DECnet Phase IV connection . 282
Defining a DECnet Phase V connection . 284

Chapter 19. Setting up communication in Tandem NSK 285
Deciding on a connection . 285
SNA channels . 285
TCP channels . 287
Communications examples . 288

Chapter 20. Message channel planning example for distributed platforms
 . 301

What the example shows . 301
Running the example . 305

Chapter 21. Example SINIX and DC/OSx configuration files 307
Configuration file on bight . 308
Configuration file on forties . 309
Working configuration files for Pyramid DC/OSx 310

Part 4. DQM in MQSeries for OS/390 . 315

Chapter 22. Monitoring and controlling channels on OS/390 319
The DQM channel control function . 319
Using the panels and the commands . 320
Managing your channels . 322

Chapter 23. Preparing MQSeries for OS/390 337
Setting up communication . 337
Defining DQM requirements to MQSeries . 341
Defining MQSeries objects . 341
Channel operation considerations . 343

| OS/390 Automatic Restart Management (ARM) 343

Chapter 24. Message channel planning example for OS/390 345
What the example shows . 345
Running the example . 349

Chapter 25. Monitoring and controlling channels in OS/390 with CICS . 351
The DQM channel control function . 351
The Message Channel List panel . 353
The channel definition panels . 372
Channel settings panel fields . 374

Chapter 26. Preparing MQSeries for OS/390 when using CICS 381
Setting up CICS communication for MQSeries for OS/390 381
Defining DQM requirements to MQSeries . 384
Defining MQSeries objects . 384
Channel operation considerations . 385

vi MQSeries Intercommunication

 Contents

Chapter 27. Message channel planning example for OS/390 using CICS . 387

Chapter 28. Example configuration - IBM MQSeries for OS/390 395
Configuration parameters for an LU 6.2 connection 395
Establishing an LU 6.2 connection . 401
Establishing an LU 6.2 connection using CICS 402
Establishing a TCP connection . 403
MQSeries for OS/390 configuration . 404

Part 5. DQM in MQSeries for AS/400 . 415

Chapter 29. Monitoring and controlling channels in MQSeries for AS/400
 . 417

The DQM channel control function . 417
Operator commands . 418
Getting started . 420
Creating objects . 420
Creating a channel . 420
Selecting a channel . 423
Browsing a channel . 423
Renaming a channel . 425
Work with channel status . 425
Work-with-channel choices . 427
Panel choices . 428

Chapter 30. Preparing MQSeries for AS/400 433
Creating a transmission queue . 433
Triggering channels . 435
Channel programs . 437
Channel states on OS/400 . 438
Other things to consider . 439

Chapter 31. Setting up communication for MQSeries for AS/400 441
Deciding on a connection . 441
Defining a TCP connection . 441
Defining an LU 6.2 connection . 443

Chapter 32. Example configuration - IBM MQSeries for AS/400 451
Configuration parameters for an LU 6.2 connection 451
Establishing an LU 6.2 connection . 456
Establishing a TCP connection . 458
MQSeries for AS/400 configuration . 459

Chapter 33. Message channel planning example for OS/400 465
What the example shows . 465
Running the example . 470

 Contents vii

 Contents

Part 6. DQM in MQSeries for VSE/ESA . 471

Chapter 34. Example configuration - MQSeries for VSE/ESA 473
Configuration parameters for an LU 6.2 connection 473
Establishing an LU 6.2 connection . 477

| Establishing a TCP connection . 478
MQSeries for VSE/ESA configuration . 478

Part 7. Further intercommunication considerations 487

Chapter 35. Channel-exit programs . 491
What are channel-exit programs? . 491
Writing and compiling channel-exit programs 504
Supplied channel-exit programs using DCE security services 521

Chapter 36. Channel-exit calls and data structures 529
Data definition files . 530
MQ_CHANNEL_EXIT - Channel exit . 532
MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit 539
MQXWAIT - Wait . 543

| MQ_TRANSPORT_EXIT - Transport retry exit 545
MQCD - Channel data structure . 547
MQCXP - Channel exit parameter structure . 585
MQTXP - Transport-exit data structure . 601
MQXWD - Exit wait descriptor structure . 605

Chapter 37. Problem determination in DQM 607
Error message from channel control . 607
Ping . 608
Dead-letter queue considerations . 608
Validation checks . 609
In-doubt relationship . 609
Channel startup negotiation errors . 609
When a channel refuses to run . 609
Retrying the link . 612
Data structures . 612
User exit problems . 613
Disaster recovery . 613
Channel switching . 613
Connection switching . 614
Client problems . 614
Error logs . 615

viii MQSeries Intercommunication

 Contents

Part 8. Appendixes . 617

Appendix A. Channel planning form . 619
How to use the form . 619

Appendix B. Constants for channels and exits 623
List of constants . 623

Appendix C. Queue name resolution . 629
What is queue name resolution? . 630

Appendix D. Configuration file stanzas for distributed queuing 635

Appendix E. Notices . 639
Programming interface information . 640
Trademarks . 642

Part 9. Glossary and index . 643

Glossary of terms and abbreviations . 645

Index . 659

 Contents ix

 Contents

x MQSeries Intercommunication

 Figures

 Figures

1. Overview of the components of distributed queuing 4
2. Sending messages . 5
3. Sending messages in both directions . 6

| 4. A cluster of queue managers . 7
5. A sender-receiver channel . 9

| 6. A cluster-sender channel . 9
7. A requester-server channel . 10
8. A requester-sender channel . 10
9. Channel initiators and listeners . 12

10. Sequence in which channel exit programs are called 15
11. Passing through intermediate queue managers 16
12. Sharing a transmission queue . 17
13. Using multiple channels . 18
14. The concepts of triggering . 24
15. Queue manager alias . 29
16. Reply-to queue alias used for changing reply location 31
17. Network diagram showing all channels . 33
18. Network diagram showing QM-concentrators 34
19. A remote queue definition is used to resolve a queue name to a

transmission queue to an adjacent queue manager 42
20. The remote queue definition allows a different transmission queue to be

used . 43
21. Receiving messages directly, and resolving alias queue manager name 44
22. Three methods of passing messages through your system 45
23. Separating messages flows . 47
24. Combining message flows on to a channel 49
25. Diverting message streams to another destination 50
26. Reply-to queue name substitution during PUT call 52
27. Reply-to queue alias example . 54
28. Distributed queue management model . 64
29. Channel states . 68
30. Flows between channel states . 69
31. What happens when a message cannot be delivered 78
32. MQSeries channel to be set up in the example configuration chapters in

this book . 105
| 33. Local LU window . 215
| 34. Mode window . 215
| 35. CPI-C side information file for SunLink Version 9.0 267

36. The message channel example for OS/2, Windows NT, and UNIX
systems . 302

| 37. The operations and controls initial panel 320
| 38. Listing channels . 321
| 39. Starting a system function . 325
| 40. Stopping a function control . 326
| 41. Starting a channel . 328
| 42. Testing a channel . 329
| 43. Resetting channel sequence numbers 330
| 44. Resolving in-doubt messages . 331
| 45. Stopping a channel . 332
| 46. Listing channel connections . 333

 Copyright IBM Corp. 1993,1999 xi

 Figures

| 47. Displaying channel connections - first panel 334
| 48. Displaying channel connections - second panel 335
| 49. Listing cluster channels . 336

50. The message channel example for MQSeries for OS/390 345
51. Sample configuration of channel control and MCA 352
52. The Message Channel List panel . 353
53. The Message Channel List panel pull-down menus 355
54. The Channel pull-down menu . 357
55. Sender/server Stop action window . 360
56. Requester/receiver Stop action window 361
57. The Reset Channel Sequence Number action window 363
58. The Resolve Channel action window . 364
59. An example of a sender channel Display Channel Status window . . . 365
60. An example of a receiver channel Display Channel Status window . . . 365
61. The Ping action window . 367
62. The Exit confirmation secondary window 367
63. The Copy action window . 368
64. The Create action window . 369
65. Example of default values during Create for a channel 369
66. The Delete action window . 370
67. The Find a Channel action window . 370
68. The Include search criteria action window 371
69. The Help pull-down menu . 372
70. The Help choice pull-down menu . 373
71. The sender channel settings panel . 376
72. The sender channel settings panel - screen 2 376
73. The receiver channel settings panel . 377
74. The receiver channel settings panel - screen 2 377
75. The server channel settings panel . 378
76. The server channel settings panel - screen 2 378
77. The requester channel settings panel . 379
78. The requester channel settings panel - screen 2 379
79. CICS LU 6.2 connection definition . 383
80. Connecting two queue managers in MQSeries for OS/390 using CICS 387
81. Sender settings (1) . 389
82. Sender settings (2) . 390
83. Connection definition (1) . 390
84. Connection definition (2) . 391
85. Connection definition (1) . 391
86. Connection definition (2) . 392
87. Receiver channel settings (1) . 392
88. Receiver channel settings (2) . 393
89. Channel Initiator APPL definition . 401
90. Channel Initiator initialization parameters 402
91. Channel Initiator initialization parameters 403
92. Message queue manager commands . 418
93. Create channel (1) . 421
94. Create channel (2) . 421
95. Create channel (3) . 422
96. Create channel (4) . 422
97. Work with channels . 423
98. Display a TCP/IP channel (1) . 424
99. Display a TCP/IP channel (2) . 424
100. Display a TCP/IP channel (3) . 425

xii MQSeries Intercommunication

 Figures

101. Channel status (1) . 426
102. Channel status (2) . 426
103. Channel status (3) . 427
104. Create a queue (1) . 433
105. Create a queue (2) . 434
106. Create a queue (3) . 434
107. Create a queue (4) . 435
108. Create process (1) . 436
109. Create process (2) . 437
110. LU 6.2 communication setup panel - initiating end 445
111. LU 6.2 communication setup panel - initiated end 448
112. The message channel example for MQSeries for AS/400 465

| 113. Channel configuration panel . 485
114. Security exit loop . 493
115. Example of a send exit at the sender end of message channel 493
116. Example of a receive exit at the receiver end of message channel . . . 494
117. Sender-initiated exchange with agreement 495
118. Sender-initiated exchange with no agreement 496
119. Receiver-initiated exchange with agreement 497
120. Receiver-initiated exchange with no agreement 497
121. Sample source code for a channel exit on OS/2 509
122. Sample DEF file for a channel exit on OS/2 509
123. Sample make file for a channel exit on OS/2 510
124. Sample source code for a channel exit on Windows 3.1 510

| 125. Sample source code for a channel exit on Windows NT, Windows 95, or
| Windows 98 . 511
| 126. Sample DEF file for Windows NT, Windows 95, Windows 98, or
| Windows . 512

127. Sample source code for a channel exit on Windows 513
128. Sample source code for a channel exit on AIX 514
129. Sample compiler and loader commands for channel exits on AIX . . . 514
130. Sample export file for AIX . 514
131. Sample make file for AIX . 515
132. Sample source code for a channel exit on Digital OVMS 515
133. Sample source code for a channel exit on HP-UX 517
134. Sample compiler and loader commands for channel exits on HP-UX . 517
135. Sample source code for a channel exit on AT&T GIS UNIX 518
136. Sample compiler and loader commands for channel exits on AT&T GIS

UNIX . 518
137. Sample source code for a channel exit on Sun Solaris 519
138. Sample compiler and loader commands for channel exits on Sun Solaris 519
139. Sample source code for a channel exit on SINIX and DC/OSx 519
140. Sample compiler and loader commands for channel exits on SINIX and

DC/OSx . 520
141. Security exit flows . 522
142. Name resolution . 629
143. qm.ini stanzas for distributed queuing . 636

 Figures xiii

 Figures

xiv MQSeries Intercommunication

 Tables

 Tables

1. Example of channel names . 33
2. Three ways of using the remote queue definition object 41
3. Reply-to queue alias . 56
4. Queue name resolution at queue manager QMA 60
5. Queue name resolution at queue manager QMB 60
6. Reply-to queue name translation at queue manager QMA 60
7. Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem

NSK, and UNIX systems . 116
8. Channel attributes for the channel types in OS/2, Windows NT, Digital

OpenVMS, Tandem NSK, and UNIX systems 123
9. Channel programs for OS/2 and Windows NT 131

10. Channel programs for UNIX systems, Digital OpenVMS, and Tandem
NSK . 131

| 11. Default outstanding connection requests on OS/2 and Windows NT . . 139
12. Settings on the local OS/2 or Windows NT system for a remote queue

manager platform . 141
| 13. Default outstanding connection requests on OS/2 and Windows NT . . 148

14. Configuration worksheet for Communications Manager/2 152
15. Configuration worksheet for MQSeries for OS/2 Warp 171
16. Configuration worksheet for IBM Communications Server for Windows

NT . 178
17. Configuration worksheet for MQSeries for Windows NT 192

| 18. Default outstanding connection requests 201
19. Settings on the local UNIX system for a remote queue manager platform 203
20. Configuration worksheet for SNA Server for AIX 208
21. Configuration worksheet for MQSeries for AIX 220
22. Configuration worksheet for HP SNAplus2 226
23. Configuration worksheet for MQSeries for HP-UX 238
24. Configuration worksheet for AT&T GIS SNA Services 244
25. Configuration worksheet for MQSeries for AT&T GIS UNIX 252
26. Configuration worksheet for SunLink Version 9.1 258
27. Configuration worksheet for MQSeries for Sun Solaris 269
28. Channel tasks . 322
29. Settings on the local OS/390 system for a remote queue manager

platform . 340
30. Program and transaction names . 352
31. Message Channel List menu-bar choices 354
32. Menu-bar choices on channel panels . 372
33. Channel attribute fields per channel type 374
34. Settings for LU 6.2 TP name on the local OS/390 system for a remote

queue manager platform . 375
35. Configuration worksheet for OS/390 using LU 6.2 396
36. Configuration worksheet for MQSeries for OS/390 404
37. Channel attribute fields per message channel type 429
38. Program and transaction names . 437
39. Channel states on OS/400 . 438
40. Settings on the local OS/400 system for a remote queue manager

platform . 444
41. Configuration worksheet for SNA on an AS/400 system 452
42. Configuration worksheet for MQSeries for AS/400 460

 Copyright IBM Corp. 1993,1999 xv

 Tables

43. Configuration worksheet for VSE/ESA using APPC 474
44. Configuration worksheet for MQSeries for VSE/ESA 479
45. Channel exits available for each channel type 492

| 46. Identifying API calls . 500
47. Fields in MQCD . 547
48. Fields in MQCXP . 585

| 49. Fields in MQTXP . 601
50. Fields in MQXWD . 605
51. Channel planning form . 621
52. Channel planning form . 622
53. Queue name resolution . 632

xvi MQSeries Intercommunication

 About this book

About this book

This book describes intercommunication between MQSeries products. It introduces
the concepts of intercommunication; transmission queues, message channel agent
programs, and communication links, that are brought together to form message
channels. It describes how geographically separated queue managers are linked
together by message channels to form a network of queue managers. It discusses
the distributed queue management (DQM) facility of IBM MQSeries, which provides
the services that enable applications to communicate via queue managers.

DQM provides communications that conform to the MQSeries Message Channel
Protocol. Each MQSeries product has its own implementation of this specification,
and this book is concerned with these implementations.

Who this book is for
This book is for anyone needing a description of DQM. In addition, the following
readers are specifically addressed:

� Network planners responsible for designing the overall queue manager
network.

� Local channel planners responsible for implementing the network plan on one
node.

� Application programmers responsible for designing applications that include
processes, queues, and channels, perhaps without the assistance of a systems
administrator.

� Systems administrators responsible for monitoring the local system, controlling
exception situations, and implementing some of the planning details.

� System programmers with responsibility for designing and programming the
user exits.

What you need to know to understand this book
To use and control DQM you need to have a good knowledge of MQSeries in
general. You also need to understand the MQSeries products for the specific
platforms you will be using, and the communications protocols that will be used on
those platforms.

 Copyright IBM Corp. 1993,1999 xvii

 About this book

How to use this book
This book has the following parts:

Part 1, “Introduction” on page 1 Introduces the concepts of MQSeries
intercommunication.

Part 2, “How intercommunication works” on page 35 Describes the functions
performed by the distributed queue management (DQM) facilities. Read this
part to understand DQM’s role in the context of MQSeries.

Part 3, “DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems” on page 109 Is specific to MQSeries
products on distributed platforms. It helps you to install and customize DQM
on these platforms. It explains how to establish message channels to other
systems and how to manage and control them.

Part 4, “DQM in MQSeries for OS/390” on page 315 Is specific to MQSeries for
OS/390. It helps you to install and customize DQM. It explains how to
establish message channels to other systems and how to manage and
control them.

Part 5, “DQM in MQSeries for AS/400” on page 415 Is specific to MQSeries for
AS/400. It helps you to install and customize DQM. It explains how to
establish message channels to other systems and how to manage and
control them.

Part 6, “DQM in MQSeries for VSE/ESA” on page 471 Is specific to MQSeries
for VSE/ESA. It contains an example of how to set up communication to
other systems.

Part 7, “Further intercommunication considerations” on page 487 Tells you
about channel exit programs, which are an optional feature of DQM that
allow you to add your own facilities to distributed queuing. It gives some
guidance on the problems you may experience, how to recognize these
problems, and what to do about them.

Part 8, “Appendixes” on page 617 Contains extra information that is pertinent to
DQM:

Appendix A, “Channel planning form”
Read this appendix for an explanation of one suggested method of
planning and maintaining DQM objects and channels.

Appendix B, “Constants for channels and exits”
This gives the values of named constants that apply to the channels
and exits in the MQI that are discussed in this book.

Appendix C, “Queue name resolution”
This is a detailed description of name resolution by queue managers.
You need to understand this process in order to take full advantage of
DQM.

Appendix D, “Configuration file stanzas for distributed queuing”
This gives information about the configuration file stanzas that relate
to distributed queuing.

xviii MQSeries Intercommunication

 About this book

Appearance of text in this book
This book uses the following type styles:

CompCode Example of the name of a parameter of a call

Terms used in this book
In the body of this book, the following shortened names are used:

CICS The CICS/Enterprise Systems Architecture (CICS Transaction
Server for OS/390) product. (Note that, unlike other MQSeries
books, this book does not use the term generically to include other
CICS products such as CICS for VSE/ESA.)

OS/2 OS/2 Warp

The term “UNIX systems” is used to denote the following UNIX operating systems:

 � AIX
� AT&T GIS UNIX

 � HP-UX
� SINIX and DC/OSx

 � Sun Solaris

The term “MQSeries Version 5 products” applies to the following MQSeries
products:

� IBM MQSeries for AIX Version 5
� IBM MQSeries for HP-UX Version 5
� IBM MQSeries for OS/2 Warp Version 5
� IBM MQSeries for Sun Solaris Version 5
� IBM MQSeries for Windows NT Version 5

Throughout this book, the name mqmtop has been used to represent the name of
the base directory where MQSeries is installed on UNIX systems.

� For AIX, the name of the actual directory is /usr/mqm
� For other UNIX systems, the name of the actual directory is /opt/mqm

OS/390 In general, function described in this book as supported by
MQSeries for OS/390 is also supported by MQSeries for MVS/ESA
(see “Changes for this edition” on page xxix).

 About this book xix

 MQSeries publications

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2

| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1

� MQSeries for SINIX and DC/OSx V2.2
| � MQSeries for Sun Solaris V5.1

� MQSeries for Tandem NonStop Kernel V2.2
| � MQSeries for VSE/ESA V2.1

� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

| � MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xxv. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

xx MQSeries Intercommunication

 MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as

| security, recovery and restart, transactional support, problem determination, and the
| dead-letter queue handler. It also includes the syntax of the MQSeries control

commands.

This book applies to the following MQSeries products only:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

 About this book xxi

 MQSeries publications

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1

| � Windows 95 and Windows 98

| MQSeries Using Java 
| MQSeries Using Java, SC34-5456, provides both guidance and reference
| information for users of the MQSeries Bindings for Java and the MQSeries Client
| for Java. MQSeries Java is supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| MQSeries Administration Interface Programming Guide and Reference
| The MQSeries Administration Interface Programming Guide and Reference,
| SC34-5390, provides information for users of the MQAI. The MQAI is a
| programming interface that simplifies the way in which applications manipulate
| Programmable Command Format (PCF) messages and their associated data
| structures.

| This book applies to the following MQSeries products only:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

xxii MQSeries Intercommunication

 MQSeries publications

| MQSeries Queue Manager Clusters
| MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
| explains the concepts and terminology and shows how you can benefit by taking
| advantage of clustering. It details changes to the MQI, and summarizes the syntax
| of new and changed MQSeries commands. It shows a number of examples of
| tasks you can perform to set up and maintain clusters of queue managers.

| This book applies to the following MQSeries products only:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for OS/390 V2.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

| MQSeries for AIX Version 5 Release 1 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

| MQSeries for Digital UNIX

| MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
| GC34-5483

MQSeries for HP-UX

| MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869

| MQSeries for OS/2 Warp

| MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868

 About this book xxiii

 MQSeries publications

| MQSeries for OS/390

| MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
| GC34-5377

| MQSeries for OS/390 Version 2 Release 1 Program Directory

| MQSeries for OS/390 Version 2 Release 1 System Management Guide,
| SC34-5374

| MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

| MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
| GC34-5376

MQSeries link for R/3

| MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries for Sun Solaris

| MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

| MQSeries for VSE/ESA

| MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
| GC34-5365

| MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
| GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

| MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
| MQSeries for Windows NT Using the Component Object Model Interface,
| SC34-5387
| MQSeries LotusScript Extension, SC34-5404

xxiv MQSeries Intercommunication

 MQSeries publications

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager  format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1 (compiled HTML)
| � MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

 http://www.software.ibm.com/ts/mqseries/

| Portable Document Format (PDF)
| PDF files can be viewed and printed using the Adobe Acrobat Reader.

| If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
| information about the platforms on which the Acrobat Reader is supported, visit the
| Adobe Systems Inc. Web site at:

| http://www.adobe.com/

 About this book xxv

http://www.software.ibm.com/ts/mqseries/
http://www.adobe.com/

 MQSeries on the Internet

| PDF versions of relevant MQSeries books are supplied with these MQSeries
| products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1
| � MQSeries link for R/3 V1.2

| PDF versions of all current MQSeries books are also available from the MQSeries
| product family Web site at:

| http://www.software.ibm.com/ts/mqseries/

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available on the Internet
MQSeries Web site

The MQSeries product family Web site is at:

 http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:

� Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML and PDF formats.

� Download MQSeries SupportPacs.

xxvi MQSeries Intercommunication

http://www.software.ibm.com/ts/mqseries/
http://www.software.ibm.com/ts/mqseries/

 Related publications

 Related publications
This section lists related documentation mentioned in this book.

 Programming
| OS/390 C/C++ Programming Guide, SC09-2362

 OS/390
OS/390 OpenEdition Planning, SC28-1890

 CICS
CICS Family: Interproduct Communication, SC33-0824
CICS/400 Intercommunication, SC33-1388

| CICS Intercommunication Guide, SC33-1695
| CICS Resource Definition Guide, SC33-1684

 OS/400
OS/400 Communication Configuration, SC41-3401
OS/400 Communication Management, SC41-3406
OS/400 Work Management, SC41-3306
OS/400 APPC Communications Programming, SC41-3443

 Digital
Digital DECnet SNA Gateway Guide to IBM Parameters
Digital DECnet for OpenVMS Networking Manual

 SNA
Microsoft SNA Server APPC Programmers Guide
Microsoft SNA Server CPI-C Programmers Guide
OpenNet LU 6.2, System Administrator’s Guide
OpenNet SNA Engine, System Administrator’s Guide

 About this book xxvii

 Related publications

 SINIX
Transit SINIX Version 3.2 Administration of Transit

You may also find the following International Technical Support Organization “Red
Books” useful:

APPC Security: MVS/ESA, CICS/ESA, and OS/2, GG24-3960

Examples of Using MQSeries on S/390, RS/6000, AS/400, and PS/2,
GG24-4326

Multiplatform APPC Configuration Guide, GG24-4485

You can find a list of all the red books available at URL
http://www.almaden.ibm.com/redbooks/

Request these books through your IBM representative.

xxviii MQSeries Intercommunication

http://www.almaden.ibm.com/redbooks/

 Summary of changes

Summary of changes

Throughout the book, changes to the previous edition are marked with vertical bars
in the left-hand margin.

| Changes for this edition
| This edition of MQSeries Intercommunication applies to these new versions and
| releases of MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for VSE/ESA V2.1
| � MQSeries for Windows NT V5.1

| Major new function supplied with each of these MQSeries products is summarized
| here.

| MQSeries for OS/390 V2.1
| MQSeries for OS/390 V2.1 is a new product for the OS/390 platform that offers
| functional enhancements over MQSeries for MVS/ESA V1.2. Those functional
| enhancements specific to MQSeries for OS/390 are summarized here. As a
| general rule, other function described in this book as supported by MQSeries for
| OS/390 is also supported by MQSeries for MVS/ESA V1.2.

| MQSeries queue manager clusters
| MQSeries queue managers can be connected to form a cluster of queue
| managers. Within a cluster, queue managers can make the queues they host
| available to every other queue manager. Any queue manager can send a
| message to any other queue manager in the same cluster without the need for
| explicit channel definitions, remote queue definitions, or transmission queues for
| each destination. The main benefits of MQSeries clusters are:

| � Fewer system administration tasks
| � Increased availability
| � Workload balancing

 Copyright IBM Corp. 1993,1999 xxix

 Summary of changes

| Clusters are supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
| description of this function.

| OS/390 Automatic Restart Manager (ARM)
| If an MQSeries queue manager or channel initiator fails, the OS/390 Automatic
| Restart Manager (ARM) can restart it automatically on the same OS/390 image.
| If the OS/390 image itself fails, ARM can restart that image’s subsystems and
| applications automatically on another OS/390 image in the sysplex, provided that
| the LU 6.2 communication protocol is being used. By removing the need for
| operator intervention, OS/390 ARM improves the availability of your MQSeries
| subsystems.

| OS/390 Resource Recovery Services (RRS)
| MQSeries Batch and TSO applications can participate in two-phase commit
| protocols with other RRS-enabled products, such as DB2, coordinated by the
| OS/390 RRS facility.

| MQSeries Workflow
| MQSeries Workflow allows applications on various network clients to perform
| business functions through System/390 by driving one or more CICS, IMS, or
| MQSeries applications. This is achieved through format, rule, and table
| definition, rather than through application programming.

| Support for C ++

| MQSeries for OS/390 V2.1 applications can be written in C++.

| Euro support
| MQSeries supports new and changed code pages that use the euro currency
| symbol. Details of code pages that include the euro symbol are provided in the
| MQSeries Application Programming Reference book.

| MQSeries V5.1
| The MQSeries Version 5 Release 1 products are:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

xxx MQSeries Intercommunication

 Summary of changes

| The following new function is provided in all of the V5.1 products:

| MQSeries queue manager clusters
| MQSeries queue managers can be connected to form a cluster of queue
| managers. Within a cluster, queue managers can make the queues they host
| available to every other queue manager. Any queue manager can send a
| message to any other queue manager in the same cluster without the need for
| explicit channel definitions, remote queue definitions, or transmission queues for
| each destination. The main benefits of MQSeries clusters are:

| � Fewer system administration tasks
| � Increased availability
| � Workload balancing

| Clusters are supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
| description of this function.

| MQSeries Administration Interface (MQAI)
| The MQSeries Administration Interface is an MQSeries programming interface
| that simplifies manipulation of MQSeries PCF messages for administrative tasks.
| It is described in a new book, MQSeries Administration Interface Programming
| Guide and Reference, SC34-5390.

| Support for Windows 98 clients
| A Windows 98 client can connect to any MQSeries V5.1 server.

| Message queue size
| A message queue can be up to 2 GB.

| Controlled, synchronous shutdown of a queue manager
| A new option has been added to the endmqm command to allow controlled,
| synchronous shutdown of a queue manager.

| Java support
| The MQSeries Client for Java and MQSeries Bindings for Java are provided with
| all MQSeries V5.1 products. The client, bindings, and common files have been
| packaged into .jar files for ease of installation.

| Euro support
| MQSeries supports new and changed code pages that use the euro currency
| symbol. Details of code pages that include the euro symbol are provided in the
| MQSeries Application Programming Reference book.

| Conversion of the EBCDIC new-line character
| You can control the conversion of EBCDIC new-line characters to ensure that
| data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
| unaltered by the ASCII conversion.

| Client connections via MQCONNX
| A client application can specify the definition of the client-connection channel at
| run time in the MQCNO structure of the MQCONNX call.

 Summary of changes xxxi

 Summary of changes

| Additional new function in MQSeries for AIX V5.1
| � The UDP transport protocol is supported.
| � Sybase databases can participate in global units of work.
| � Multithreaded channels are supported.

| Additional new function in MQSeries for HP-UX V5.1
| � MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
| � Multithreaded channels are supported.
| � Both HP-UX kernel threads and DCE threads are supported.

| Additional new function in MQSeries for OS/2 Warp V5.1
| OS/2 high memory support is provided.

| Additional new function in MQSeries for Sun Solaris V5.1
| � MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris
| 7.

| � Sybase databases can participate in global units of work.

| � Multithreaded channels are supported.

| Additional new function in MQSeries for Windows NT V5.1
| MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
| NT. New function in this release includes:

| � Close integration with Microsoft Windows NT Version 4.0, including exploitation
| of extra function provided by additional Microsoft offerings. The main highlights
| are:

| – Graphical tools and applications for managing, controlling, and exploring
| MQSeries:

| - MQSeries Explorer—a snap-in for the Microsoft management console
| (MMC) that allows you to query, change, and create the local, remote,
| and cluster objects across an MQSeries network.

| - MQSeries Services—an MMC snap-in that controls the operation of
| MQSeries components, either locally or remotely within the Windows
| NT domain. It monitors the operation of MQSeries servers and
| provides extensive error detection and recovery functions.

| - MQSeries API Exerciser—a graphical application for exploring the
| messaging and queuing programming functions that MQSeries
| provides. It can also be used in conjunction with the MQSeries
| Explorer to gain a deeper understanding of the effects of MQSeries
| operations on objects and messages.

| - MQSeries Postcard—a sample application that can be used to verify an
| MQSeries installation, for either local or remote messaging.

| – Support for the following features of Windows NT has been added:

| - Windows NT performance monitor—used to access and display
| MQSeries information, such as the current depth of a queue and the
| rate at which message data is put onto and taken off queues.

| - ActiveDirectory—programmable access to MQSeries objects is
| available through the Active Directory Service Interfaces (ADSI).

xxxii MQSeries Intercommunication

 Summary of changes

| - Windows NT user IDs—previous MQSeries restrictions on the validity of
| Windows NT user IDs have been removed. All valid Windows NT user
| IDs are now valid identifiers for MQSeries operations. MQSeries uses
| the associated Windows NT Security Identifier (SID) and the Security
| Account Manager (SAM). The SID allows the MQSeries Object
| Authority Manager (OAM) to identify the specific user for an
| authorization request.

| - Windows NT registry—now used to hold all configuration and related
| data. The contents of any configuration (.INI) files from previous
| MQSeries installations of MQSeries for Windows NT products are
| migrated into the registry; the .INI files are then deleted.

| - A set of Component Object Model (COM) classes, which allow ActiveX
| applications to access the MQSeries Message Queue Interface (MQI)
| and the MQSeries Administration Interface (MQAI).

| – An online Quick Tour of the product concepts and functions.

| – An online Information Center that gives you quick access to task help
| information, reference information, and Web-based online books and home
| pages.

| – Simplified installation of MQSeries for Windows NT, with default options
| and automatic configuration.

| � Support for web-based administration of an MQSeries network, which provides
| a simplified way of using the MQSC commands and scripts and allows you to
| create powerful macros for standard administration tasks.

| � Support for MQSeries LotusScript Extension (MQLSX), which allows Lotus
| Notes applications that are written in LotusScript to communicate with
| applications that run in non-Notes environments.

| � Support for Microsoft Visual Basic for Windows Version 5.0.

| � Performance improvements over the MQSeries for Windows NT Version 5.0
| product.

| � Information and examples on how MQSeries applications can interface with and
| exploit the lightweight directory access protocol (LDAP) directories.

| � Support for Sybase participation in global units of work.

 Summary of changes xxxiii

 Summary of changes

| MQSeries for VSE/ESA V2.1
| MQSeries for VSE/ESA joins the MQSeries Level 2 products. New function in
| Version 2 Release 1 of MQSeries for VSE/ESA includes:

| � Transmission Control Protocol/Internet Protocol (TCP/IP) is supported.

| � MQSeries clients can connect to the MQSeries for VSE/ESA server via the
| TCP/IP protocol. (Note, however, that there is no MQSeries for VSE/ESA
| client.)

| � Messages may be up to 4 MB in size.

| � A user-selected, coded character set ID (CCSID) can be specified for all
| messages written locally.

| � Messages sent to remote, non-VSE/ESA systems can be flagged as
| nonpersistent.

| � Confirmation-on-delivery (COD) and confirmation-on-arrival (COA) messages
| are supported.

| � A message priority, in the range 0 through 9, can be specified on MQPUT and
| MQPUT1 calls.

| � Automated reorganization of queue storage is supported.

| � Messages can be sent and received in batches of a user-specified size.

| � Support has been added for the C and PL/I application-programming
| languages. Copy books, macros, and include files are provided for each
| language.

| � Messages can be retrieved from queues by message identifier (MsgID) and
| correlation identifier (CorrelId).

| � Message Channel Agents (MCAs) record more diagnostic information in the
| SYSTEM.LOG when communications failures occur.

| MQSeries for AS/400 V4R2M1
| New function in MQSeries for AS/400 V4R2M1 includes:

| � Support for the MQSeries dead-letter queue handler
| � Improvements to installation and migration procedures

Changes for the second edition
Changes for edition number SC33-1872-01 include:

� Addition of support for MQSeries for AS/400 V4R2.

� Addition of support for MQSeries for Tandem NonStop Kernel V2.2.

� Addition of an example LU 6.2 configuration using IBM Communications Server
for Windows NT.

� Minor technical and editorial improvements throughout the book.

xxxiv MQSeries Intercommunication

 Part 1. Introduction

This part of the book introduces MQSeries intercommunication. The description in
this part is general, and is not restricted to a particular platform or system.

Note: Some references are made to individual MQSeries products. Details are
given only for the products that this edition of the book applies to (see the edition
notice for information about which MQSeries products these are).

Chapter 1. Concepts of intercommunication 3
What is intercommunication? . 3

How does distributed queuing work? . 3
Distributed queuing components . 8

Message channels . 8
Message channel agents . 11
Transmission queues . 11
Channel initiators and listeners . 11
Channel-exit programs . 13

Dead-letter queues . 15
Remote queue definitions . 16
How to get to the remote queue manager . 16

Multi-hopping . 16
Sharing channels . 17
Using different channels . 17

| Using clustering . 18

Chapter 2. Making your applications communicate 19
How to send a message to another queue manager 19

Defining the channels . 20
Defining the queues . 22
Sending the messages . 23
Starting the channel . 23

Triggering channels . 23
Safety of messages . 25

Fast, nonpersistent messages . 26
Undelivered messages . 26

Chapter 3. More about intercommunication 27
Addressing information . 27
What are aliases? . 27

Queue name resolution . 28
Queue manager alias definitions . 28

Outbound messages - remapping the queue manager name 29
Outbound messages - altering or specifying the transmission queue 29
Inbound messages - determining the destination 30

Reply-to queue alias definitions . 30
What is a reply-to queue alias definition? . 30
Reply-to queue name . 32

Networks . 32
Channel and transmission queue names . 32
Network planner . 33

 Copyright IBM Corp. 1993,1999 1

2 MQSeries Intercommunication

 Concepts of intercommunication � What is intercommunication?

Chapter 1. Concepts of intercommunication

This chapter introduces the concepts of intercommunication in MQSeries.

� The basic concepts of intercommunication are explained in “What is
intercommunication?”

� The objects that you need for intercommunication are described in “Distributed
queuing components” on page 8.

This chapter goes on to introduce:

� “Dead-letter queues” on page 15
� “Remote queue definitions” on page 16
� “How to get to the remote queue manager” on page 16

What is intercommunication?
In MQSeries, intercommunication means sending messages from one queue
manager that are received by another queue manager. The receiving queue
manager could be on the same machine or another; nearby or on the other side of
the world. It could be running on the same platform as the local queue manager,
or could be on any of the platforms supported by MQSeries. MQSeries handles
communication in a distributed environment such as this using Distributed Queue
Management (DQM).

The local queue manager is sometimes called the source queue manager and the
remote queue manager is sometimes called the target queue manager or the
partner queue manager.

How does distributed queuing work?
Figure 1 on page 4 shows an overview of the components of distributed queuing.

 Copyright IBM Corp. 1993,1999 3

 What is intercommunication?

Transport Service

QM1 QM2

Moving

Service

Moving

Service

QUEUE

DEFNS

QUEUE

DEFNS

Message

Store

Message

Store

MQOPEN

Figure 1. Overview of the components of distributed queuing

1. An application uses the MQOPEN call to open a queue so that it can put
messages on it.

2. A queue manager has a definition for each of its queues, specifying information
such as the maximum number of messages allowed on the queue.

3. If the messages are destined for a queue on a remote system, the local queue
manager holds them in a message store until it is ready to forward them to the
remote queue manager. This can be transparent to the application.

4. Each queue manager contains communications software called the moving
service component; through this, the queue manager can communicate with
other queue managers.

5. The transport service is independent of the queue manager and can be any
one of the following (depending on the platform):

� Systems Network Architecture Advanced Program-to Program
Communication (SNA APPC)

� Transmission Control Protocol/Internet Protocol (TCP/IP)
� Network Basic Input/Output System (NetBIOS)
� Sequenced Packet Exchange (SPX)

| � User-Datagram Protocol (UDP)

4 MQSeries Intercommunication

 What is intercommunication?

What do we call the components?
1. MQSeries applications put messages onto a local queue, that is, a queue on

the same queue manager.

2. A queue manager has a definition for each of its queues. It may also have
definitions for queues that are owned by other queue managers. These are
called remote queue definitions.

3. If the messages are destined for a remote queue manager, the local queue
manager stores them on a transmission queue until it is ready to send them to
the remote queue manager. A transmission queue is a special type of local
queue on which messages are stored until they can be successfully transmitted
and stored at the remote queue manager.

4. The software that handles the sending and receiving of messages is called the
Message Channel Agent (MCA).

5. Messages are transmitted between queue managers on a channel. A channel
is a one-way communication link between two queue managers. It can carry
messages destined for any number of queues at the remote queue manager.

Components needed to send a message
If a message is to be sent to a remote queue manager, the local queue manager
needs definitions for a transmission queue and a channel.

Each end of a channel has a separate definition, defining it, for example, as the
sending end or the receiving end. A simple channel consists of a sender channel
definition at the local queue manager and a receiver channel definition at the
remote queue manager. These two definitions must have the same name, and
together constitute one channel.

There is also a message channel agent (MCA) at each end of a channel.

Each queue manager should have a dead-letter queue. Messages are put on this
queue if, for some reason, they cannot be delivered to their destination.

Figure 2 shows the relationship between queue managers, transmission queues,
channels, and MCAs.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel

Dead Letter QueueDead Letter Queue

QM2

Application
Queues

Application

Figure 2. Sending messages

 Chapter 1. Concepts of intercommunication 5

 What is intercommunication?

Components needed to return a message
If your application requires messages to be returned from the remote queue
manager, you need to define another channel, to run in the opposite direction
between the queue managers, as shown in Figure 3.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channels

Message Flow
MCA MCA

QM2

Application
Queue

Transmission
Queue

Application
Queue

Figure 3. Sending messages in both directions

| Cluster components
| An alternative to the traditional MQSeries network is the use of clusters. Clusters
| are supported on MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, MQSeries for
| OS/2 Warp V5.1, MQSeries for OS/390, MQSeries for Sun Solaris V5.1, and
| MQSeries for Windows NT V5.1 only.

| A cluster is a network of queue managers that are logically associated in some
| way. You can group queue managers in a cluster so that queue managers can
| make the queues that they host available to every other queue manager in the
| cluster. Assuming you have the necessary network infrastructure in place, any
| queue manager can send a message to any other queue manager in the same
| cluster without the need for explicit channel definitions, remote-queue definitions, or
| transmission queues for each destination. Every queue manager in a cluster has a
| single transmission queue that transmits messages to any other queue manager in
| the cluster. Each queue manager needs to define only one cluster-receiver
| channel and one cluster-sender channel.

6 MQSeries Intercommunication

 What is intercommunication?

| Figure 4 shows the components of a cluster called CLUSTER:

| � CLUSTER contains three queue managers, QM1, QM2, and QM3.

| � QM1 and QM2 host repositories of information about the queue managers and
| queues in the cluster.

| � QM2 and QM3 host some cluster queues, that is, queues that are accessible to
| any other queue manager in the cluster.

| � Each queue manager has a cluster-receiver channel called TO.qmgr on which
| it can receive messages.

| � Each queue manager also has a cluster-sender channel on which it can send
| information to one of the repository queue managers.

| � QM1 and QM3 send to the repository at QM2 and QM2 sends to the repository
| at QM1.

CLUSTER

QM2QM1 TO.QM1

TO.QM3

TO.QM2

QM3

| Figure 4. A cluster of queue managers

| As with distributed queuing, you use the MQPUT call to put a message to a queue
| at any queue manager. You use the MQGET call to retrieve messages from a
| local queue.

| For further information about clusters, see the MQSeries Queue Manager Clusters
| book.

 Chapter 1. Concepts of intercommunication 7

 Distributed queuing components

Distributed queuing components
This section describes the components of distributed queuing. These are:

 � Message channels
� Message channel agents

 � Transmission queues
� Channel initiators and listeners

 � Channel-exit programs

 Message channels
Message channels are the channels that carry messages from one queue manager
to another.

Do not confuse message channels with MQI channels. There are two types of MQI
channel, server-connection and client-connection. These are discussed in
Chapter 8, “Using channels” in the MQSeries Clients book.

The definition of each end of a message channel can be one of the following types:

 � Sender
 � Receiver
 � Server
 � Requester

| � Cluster sender
| � Cluster receiver

A message channel is defined using one of these types defined at one end, and a
compatible type at the other end. Possible combinations are:

 � Sender-receiver
 � Requester-server
 � Requester-sender (callback)
 � Server-receiver

| � Cluster sender-cluster receiver

 Sender-receiver channels
A sender in one system starts the channel so that it can send messages to the
other system. The sender requests the receiver at the other end of the channel to
start. The sender sends messages from its transmission queue to the receiver.
The receiver puts the messages on the destination queue.

8 MQSeries Intercommunication

 Distributed queuing components

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel Application
Queues

RECEIVERSENDER
Session Initiation

QM2

Figure 5. A sender-receiver channel

 Server-receiver channel
This is similar to sender-receiver but applies only to fully qualified servers, that is
server channels that have the connection name of the partner specified in the
channel definition. Channel startup must be initiated at the server end of the link.
The illustration of this is similar to the illustration in Figure 5.

| Cluster-sender channels
| In a cluster, each queue manager has a cluster-sender channel on which it can
| send cluster information to one of the repository queue managers. Queue
| managers can also send messages to other queue managers on cluster-sender
| channels.

Message
Flow

QM2QM1

SYSTEM.
CLUSTER.
TRANSMIT.
QUEUE

Application
Queues

TO.QM2
MCA MCA

| Figure 6. A cluster-sender channel

 Requester-server channel
A requester in one system starts the channel so that it can receive messages from
the other system. The requester requests the server at the other end of the
channel to start. The server sends messages to the requester from the
transmission queue defined in its channel definition.

 Chapter 1. Concepts of intercommunication 9

 Distributed queuing components

A server channel can also initiate the communication and send messages to a
requester, but this applies only to fully qualified servers, that is server channels that
have the connection name of the partner specified in the channel definition. A fully
qualified server may either be started by a requester, or may initiate a
communication with a requester.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel Application
Queues

QM2

Session InitiationSERVER REQUESTER

Figure 7. A requester-server channel

 Requester-sender channel
The requester starts the channel and the sender terminates the call. The sender
then restarts the communication according to information in its channel definition
(this is known as callback). It sends messages from the transmission queue to the
requester.

QM1

Message Flow

MCA MCA

Transmission

Queue

Channel
Application

Queues

QM2

Session Initiation

SENDER REQUESTERCallback

Figure 8. A requester-sender channel

| Cluster-receiver channels
| In a cluster, each queue manager has a cluster-receiver channel on which it can
| receive messages and information about the cluster. The illustration of this is
| similar to the illustration in Figure 6 on page 9.

10 MQSeries Intercommunication

 Distributed queuing components

Message channel agents
A message channel agent (MCA) is a program that controls the sending and
receiving of messages. There is one message channel agent at each end of a
channel. One MCA takes messages from the transmission queue and puts them
on the communication link. The other MCA receives messages and delivers them
to the remote queue manager.

A message channel agent is called a caller MCA if it initiated the communication or,
otherwise, is called a responder MCA. A caller MCA may be associated with a
sender, server (fully qualified), or requester channel. A responder MCA, may be
associated with any type of message channel.

 Transmission queues
A transmission queue is a special type of local queue used to store messages
temporarily before they are transmitted by the MCA to the remote queue manager.
In a distributed-queuing environment, you need to define one transmission queue
for each sending MCA.

You specify the name of the transmission queue in a remote queue definition, (see
“Remote queue definitions” on page 16). If you do not specify the name, the
queue manager looks for a transmission queue with the same name as the remote
queue manager.

You can specify the name of a default transmission queue for the queue manager.
This is used if you do not specify the name of the transmission queue, and a
transmission queue with the same name as the remote queue manager does not
exist.

Channel initiators and listeners
A channel initiator acts as a trigger monitor for sender MCAs, because a
transmission queue may be defined as a triggered queue. When a message
arrives on a transmission queue that satisfies the triggering criteria for that queue, a
message is sent to the initiation queue, triggering the channel initiator to start the
appropriate sender MCA. You can also start server MCAs in this way if you
specified the connection name of the partner in the channel definition. This means
that channels can be started automatically, based upon messages arriving on the
appropriate transmission queue.

You need a channel listener program to start receiving (responder) MCAs.
Responder MCAs are started in response to a startup request from the sending
MCA; the channel listener detects incoming network requests and starts the
associated channel.

 Chapter 1. Concepts of intercommunication 11

 Distributed queuing components

Figure 9 shows how channel initiators and channel listeners are used.

MCA MCA

Transmission
Queue

Channel

QM2

Initiation
Queue

CHANNEL
INITIATOR

QM1

CHANNEL
LISTENER

START

SESSION
REQUEST

Figure 9. Channel initiators and listeners

The implementation of channel initiators is platform specific.

� On OS/390 without CICS, there is one channel initiator for each queue
manager and it runs as a separate address space. It monitors the
system-defined queue SYSTEM.CHANNEL.INITQ, which is the initiation queue
for all the transmission queues.

� On OS/390, if you are using CICS for distributed queuing, there is no channel
initiator. To implement triggering, use the CICS trigger monitor transaction,
CKTI, to monitor the initiation queue.

� MQSeries for Windows does not support triggering and does not have channel
initiators.

� On OS/400 you cannot start more than three channel initiators.

� On other platforms, you can start as many channel initiators as you like,
specifying a name for the initiation queue for each one. Normally you need
only one initiator. V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT allows you to start three, by default, but you can change this
value.

12 MQSeries Intercommunication

 Distributed queuing components

The channel initiator is also required for other functions, discussed later in this
book.

The implementation of channel listeners is platform specific.

� Use the channel listener programs provided by MQSeries if you are using
native OS/390 communications for distributed queuing, MQSeries for Digital
OpenVMS, MQSeries for Tandem NonStop Kernel, or MQSeries for Windows,

� If you are using CICS for distributed queuing on OS/390, you do not need a
channel listener because CICS provides this function.

� On OS/400, use the channel listener program provided by MQSeries if you are
using TCP/IP. If you are using SNA, you do not need a listener program. SNA
starts the channel by invoking the receiver program on the remote system.

� On OS/2 and Windows NT, you can use either the channel listener program
provided by MQSeries, or the facilities provided by the ‘operating system’ (for
example, Attach manager for LU 6.2 communications on OS/2). If performance
is important in your environment and if the environment is stable, you can
choose to run the MQSeries listener as a trusted application as described in
“Running channels and listeners as trusted applications” on page 134. See
“Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

| � On UNIX systems, use the channel listener program provided by MQSeries or
the facilities provided by the ‘operating system’ (for example, inetd for TCP/IP
communications).

 Channel-exit programs
If you want to do some additional processing (for example, encryption or data
compression) you can write your own channel-exit programs, or sometimes use
SupportPacs. The Transaction Processing SupportPacs library for MQSeries is
available on the Internet at URL:

 http://www.software.ibm.com/mqseries/txppacs/txpsumm.html

 Chapter 1. Concepts of intercommunication 13

http://www.software.ibm.com/mqseries/txppacs/txpsumm.html

 Distributed queuing components

MQSeries calls channel-exit programs at defined places in the processing carried
out by the MCA. There are five types of channel exit:

Security exit
Used for security checking.

Message exit
Used for operations on the message, for example, encryption prior to
transmission.

Send and receive exits
Used for operations on split messages, for example, data compression and
decompression.

Message-retry exit
Used when there is a problem putting the message to the destination

Channel auto-definition exit
Used to modify the supplied default definition for an automatically defined
receiver or server-connection channel.

| Transport-retry exit
| Used to suspend data being sent on a channel when communication is not
| possible.

The sequence of processing is as follows:

1. The security exits are called after the initial data negotiation between both ends
of the channel. These must end successfully for the startup phase to complete
and to allow messages to be transferred.

2. The message exit is called by the sending MCA, and then the send exit is
called for each part of the message that is transmitted to the receiving MCA.

3. The receiving MCA calls the receive exit when it receives each part of the
message, and then calls the message exit when the whole message has been
received.

This is illustrated in Figure 10 on page 15.

14 MQSeries Intercommunication

 Dead-letter queues

Sequence in which channel exit programs are called

QM1

MCA MCA

Transmission
Queue

Application
Queues

QM2

Message Flow

Channel

SECURITY SECURITY

MESSAGEMESSAGE

SEND RECEIVE

MESSAGE
RETRY

Figure 10. Sequence in which channel exit programs are called

The message-retry exit is used to determine how many times the receiving MCA
will attempt to put a message to the destination queue before taking alternative
action. This exit program is described in “MQ_CHANNEL_EXIT - Channel exit” on
page 532. It is not supported on MQSeries for Windows.

For more information about channel exits, see Chapter 35, “Channel-exit programs”
on page 491.

 Dead-letter queues
The dead-letter queue (or undelivered-message queue) is the queue to which
messages are sent if they cannot be routed to their correct destination. Messages
are put on this queue when they cannot be put on the destination queue for some
reason (for example, because the queue does not exist, or because it is full).
Dead-letter queues are also used at the sending end of a channel, for
data-conversion errors.

We recommend that you define a dead-letter queue for each queue manager. If
you do not, and the MCA is unable to put a message, it is left on the transmission
queue and the channel is stopped.

| Also, if fast, nonpersistent messages (see “Fast, nonpersistent messages” on
| page 26) cannot be delivered and no DLQ exists on the target system, these
| messages are discarded.

However, using dead-letter queues can affect the sequence in which messages are
delivered, and so you may choose not to use them.

Dead-letter queues are not supported on MQSeries for Windows.

 Chapter 1. Concepts of intercommunication 15

 Remote queue definitions � Getting to remote queue manager

Remote queue definitions
Whereas applications can retrieve messages only from local queues, they can put
messages on local queues or remote queues. Therefore, as well as a definition for
each of its local queues, a queue manager may have remote queue definitions.
These are definitions for queues that are owned by another queue manager. The
advantage of remote queue definitions is that they enable an application to put a
message to a remote queue without having to specify the name of the remote
queue or the remote queue manager, or the name of the transmission queue. This
gives you location independence.

There are other uses for remote queue definitions, which will be described later.

How to get to the remote queue manager
You may not always have one channel between each source and target queue
manager. Consider these alternative possibilities.

 Multi-hopping
If there is no direct communication link between the source queue manager and the
target queue manager, it is possible to pass through one or more intermediate
queue managers on the way to the target queue manager. This is known as a
multi-hop.

You need to define channels between all the queue managers, and transmission
queues on the intermediate queue managers. This is shown in Figure 11.

Transmission
Queue

Application
Queue

Message Flow
MCA MCA

Message Flow
MCA MCA

Message Flow
MCA MCA

Message Flow
MCA MCA

Transmission
Queue

Transmission
Queue

Application
Queue

Transmission
Queue

QM2

ChannelsChannels

QM1 QM3

Figure 11. Passing through intermediate queue managers

16 MQSeries Intercommunication

 Getting to remote queue manager

 Sharing channels
As an application designer, you have the choice of 1) forcing your applications to
specify the remote queue manager name along with the queue name, or 2) creating
a remote queue definition for each remote queue to hold the remote queue
manager name, the queue name, and the name of the transmission queue. Either
way, all messages from all applications addressing queues at the same remote
location have their messages sent through the same transmission queue. This is
shown in Figure 12.

QM1

Message Flow
MCA MCA

Transmission
Queue

Channel

Dead Letter Queue

QM2

Application
Queues

Remote queue
definitions

Figure 12. Sharing a transmission queue

Figure 12 illustrates that messages from multiple applications to multiple remote
queues can use the same channel.

Using different channels
If you have messages of different types to send between two queue managers, you
can define more than one channel between the two. There are times when you
need alternative channels, perhaps for security purposes, or to trade off delivery
speed against sheer bulk of message traffic.

To set up a second channel you need to define another channel and another
transmission queue, and create a remote queue definition specifying the location
and the transmission queue name. Your applications can then use either channel
but the messages will still be delivered to the same target queues. This is shown
in Figure 13 on page 18.

 Chapter 1. Concepts of intercommunication 17

 Getting to remote queue manager

QM1

Message Flow
MCA MCA

Transmission
Queue

Channels

Message Flow
MCA MCA

QM2

Transmission
Queue

Application
Queue

Application
Queue

Figure 13. Using multiple channels

When you use remote queue definitions to specify a transmission queue, your
applications must not specify the location (that is, the destination queue manager)
themselves. If they do, the queue manager will not make use of the remote queue
definitions. Remote queue definitions make the location of queues and the
transmission queue transparent to applications. Applications can put messages to
a logical queue without knowing where the queue is located and you can alter the
physical queue without having to change your applications.

| Using clustering
| Every queue manager within a cluster defines a cluster-receiver channel and when
| another queue manager wants to send a message to that queue manager, it
| defines the corresponding cluster-sender channel automatically. For example, if
| there is more that one instance of a queue in a cluster, the cluster-sender channel
| could be defined to any of the queue managers that host the queue. MQSeries
| uses a workload management algorithm that uses a round-robin routine to select
| the best queue manager to route a message to. For more information about this,
| see Chapter 5, “Using clusters for workload management” in the MQSeries Queue
| Manager Clusters book.

18 MQSeries Intercommunication

 Making applications communicate � Sending messages

Chapter 2. Making your applications communicate

This chapter provides more detailed information about intercommunication between
MQSeries products. Before reading this chapter it is helpful to have an
understanding of channels, queues, and the other concepts introduced in
Chapter 1, “Concepts of intercommunication” on page 3.

This chapter covers the following topics:

� “How to send a message to another queue manager”
� “Triggering channels” on page 23
� “Safety of messages” on page 25

How to send a message to another queue manager
This section describes the simplest way to send a message from one queue
manager to another.

Before you do this you need to do the following:

1. Check that your chosen communication protocol is available.
2. Start the queue managers.
3. Start the channel initiators.
4. Start the listeners.

On MQSeries for Windows, instead of steps 2, 3, and 4, you start a connection,
which includes a queue manager, channels, and a listener. See the MQSeries for
Windows User’s Guide for more information.

You also need to have the correct MQSeries security authorization (except on
MQSeries for Windows) to create the objects required.

To send messages from one queue manager to another:

� Define the following objects on the source queue manager:

 – Sender channel
 – Remote queue

– Initiation queue (required on OS/390, otherwise optional)
 – Transmission queue

– Dead-letter queue (recommended)
– Process (required on OS/390, otherwise optional)

� Define the following objects on the target queue manager:

 – Receiver channel
 – Target queue

– Dead-letter queue (recommended)

 Copyright IBM Corp. 1993,1999 19

 Sending messages

You can use several different methods to define these objects, depending on your
MQSeries platform:

OS/390 or MVS/ESA
If you are using native OS/390 communications, you can use the Operation
and Control panels or the MQSeries commands described in the MQSeries
Command Reference book. If you are using CICS for distributed queuing,
you must use the supplied CICS application CKMC for channels.

OS/400
You can use the panel interface, the control language (CL) commands
described in the MQSeries for AS/400 Administration Guide, Chapter 2, “The
MQSeries commands” described in the MQSeries Command Reference book,
or the programmable command format (PCF) commands described in Part 2,
“Programmable Command Formats” in the MQSeries Programmable System
Management book.

MQSeries for Windows
You can use MQSC commands, PCF commands, or the MQSeries properties
dialog. Not all MQSC and PCF commands are supported; see the MQSeries
for Windows User’s Guide.

Note: On MQSeries for Windows there is no initiation queue, dead-letter
queue, or process.

| OS/2, Windows NT, UNIX systems, and Digital OpenVMS
You can use Chapter 2, “The MQSeries commands” described in the
MQSeries Command Reference book, or the PCF commands described in
Part 2, “Programmable Command Formats” in the MQSeries Programmable

| System Management book. On Windows NT only, you can also use the
| graphical user interfaces, the MQSeries explorer and the MQSeries Web
| Administration.

Tandem NSK
| You can use MQSC commands, PCF commands, or the Message Queue

Management facility. See the MQSeries for Tandem NonStop Kernel System
Management Guide for more information about the control commands and the
Message Queue Management facility.

| VSE/ESA
| You can use the panel interface as described in the MQSeries for VSE/ESA
| System Management Guide.

The different methods are described in more detail in the platform-specific parts of
this book.

Defining the channels
To send messages from one queue manager to another, you need to define two
channels; one on the source queue manager and one on the target queue
manager.

20 MQSeries Intercommunication

 Sending messages

On the source queue manager
Define a channel with a channel type of SENDER. You need to specify the
following:

� The name of the transmission queue to be used (the XMITQ attribute).

� The connection name of the partner system (the CONNAME attribute).

� The name of the communication protocol you are using (the TRPTYPE
attribute). For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT, MQSeries for AS/400 V4R2M1, and MQSeries
for Windows, you do not have to specify this. You can leave it to pick up

| the value from your default channel definition. On MQSeries for Windows
| the protocol must be TCP or UDP. On MQSeries for VSE/ESA, the
| protocol must be TCP or LU 6.2; you can choose T or L accordingly on
| the Maintain Channel Definition menu.

Details of all the channel attributes are given in Chapter 6, “Channel
attributes” on page 85.

On the target queue manager
Define a channel with a channel type of RECEIVER, and the same name as
the sender channel.

Specify the name of the communication protocol you are using (the TRPTYPE
attribute). For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, MQSeries for AS/400 V4R2M1, and MQSeries for
Windows, you do not have to specify this. You can leave it to pick up the
value from your default channel definition. On MQSeries for Windows the
protocol must be TCP. If you are using CICS to define a channel, you cannot

| specify TRPTYPE. Instead you should accept the defaults provided. On
| MQSeries for VSE/ESA, you can choose T (TCP) or U (UDP) on the Maintain
| Channel Definition menu.

Note that other than on MQSeries for Windows, receiver channel definitions
can be generic. This means that if you have several queue managers
communicating with the same receiver, the sending channels can all specify
the same name for the receiver, and one receiver definition will apply to them
all.

When you have defined the channel, you can test it using the PING CHANNEL
command. This command (which is not supported on MQSeries for Windows)
sends a special message from the sender channel to the receiver channel and
checks that it is returned.

 Chapter 2. Making your applications communicate 21

 Sending messages

Defining the queues
To send messages from one queue manager to another, you need to define up to
six queues; four on the source queue manager and two on the target queue
manager.

On the source queue manager

� Remote queue definition

In this definition you specify the following:

Remote queue manager name
This is the name of the target queue manager.

Remote queue name
This is the name of the target queue on the target queue manager.

Transmission queue name
This is the name of the transmission queue. You do not have to
specify this. If you do not, a transmission queue with the same
name as the target queue manager is used, or if this does not exist,
the default transmission queue is used. It is a good idea to give the
transmission queue the same name as the target queue manager so
that the queue is found by default.

� Initiation queue definition

This is not supported on MQSeries for Windows, is required on OS/390,
and is optional on other platforms. On OS/390 you must use the initiation
queue called SYSTEM.CHANNEL.INITQ and you are recommended to do
so on other platforms also.

� Transmission queue definition

This is a local queue with the USAGE attribute set to XMITQ. If you are
using the MQSeries for AS/400 V4R2M1 native interface, the USAGE
attribute is *TMQ.

� Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)

You should choose to define a dead-letter queue to which undelivered
messages can be written.

On OS/390 you should also define a process if you want your channels to be
triggered automatically (see “Triggering channels” on page 23).

On the target queue manager

� Local queue definition

This is the target queue. The name of this queue must be the same as
that specified in the remote queue name field of the remote queue
definition on the source queue manager.

� Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)

You should choose to define a dead-letter queue to which undelivered
messages can be written.

22 MQSeries Intercommunication

 Triggering channels

Sending the messages
When you put messages on the remote queue defined at the source queue
manager, they are stored on the transmission queue until the channel is started.
When the channel has been started, the messages are sent to the target queue on
the remote queue manager.

Starting the channel
Start the channel on the sending queue manager using the START CHANNEL
command. When you start the sending channel, the receiving channel is started
automatically (by the listener) and the messages are sent to the target queue. Both
ends of the message channel must be running for messages to be transferred.

Because the two ends of the channel are on different queue managers, they could
have been defined with different attributes. To resolve any differences, there is an
initial data negotiation between the two ends when the channel starts. In general,
the two ends of the channel agree to operate with the attributes needing the fewer
resources, thus enabling larger systems to accommodate the lesser resources of
smaller systems at the other end of the message channel.

The sending MCA splits large messages before sending them across the channel.
They are reassembled at the remote queue manager. This is transparent to the
user.

 Triggering channels
This explanation is intended as an overview of triggering concepts. You can find a
complete description in Chapter 14, “Starting MQSeries applications using triggers”
in the MQSeries Application Programming Guide.

For platform-specific information see the following:

� For OS/2, Windows NT, UNIX systems, Digital OpenVMS, and Tandem NSK,
“Triggering channels” on page 129

� For OS/390 without CICS, “Defining MQSeries objects” on page 341
� For OS/390 using CICS, “How to trigger channels” on page 359
� For OS/400, “Triggering channels” on page 435

Triggering is not supported on MQSeries for Windows.

 Chapter 2. Making your applications communicate 23

 Triggering channels

Application

Program

4. Queue server started

Transmission queue

Initiation queue

1.

puts
message
on queue

Queue manager Application

Channel
initiator
(Long
running)

5.

message
retrieved

Local or
MCA

Local program
startedby
trigger monitor

or
MCA startedby
channel initiator2. trigger message

3.
trigger
message
retrieved

Figure 14. The concepts of triggering

The objects required for triggering are shown in Figure 14. It shows the following
sequence of events:

1. The local queue manager places a message from an application or from a
message channel agent (MCA) on the transmission queue.

2. When the triggering conditions are fulfilled, the local queue manager places a
trigger message on the initiation queue.

3. The long-running channel initiator program monitors the initiation queue, and
retrieves messages as they appear.

4. The trigger monitor processes the trigger messages according to information
contained in them. This information may include the channel name, in which
case a special type of trigger monitor called a channel initiator starts the
corresponding MCA.

5. The local application or the MCA, having been triggered, retrieves the
messages from the transmission queue.

24 MQSeries Intercommunication

 Safety of messages

To set up this scenario, you need to:

� Create the transmission queue with the name of the initiation queue (that is,
SYSTEM.CHANNEL.INITQ) in the corresponding attribute.

� Ensure that the initiation queue (SYSTEM.CHANNEL.INITQ) exists.

� Ensure that the channel initiator program is available and running. The trigger
monitor program must be provided with the name of the initiation queue in its
start command. On OS/390 without CICS, the name of the initiation queue is
fixed, so is not used on the start command.

� Create the process definition for the triggering, if it does not exist, and ensure
that its UserData field contains the name of the channel it serves. For V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and

| MQSeries for AS/400 V4R2M1, the process definition is optional (it is not
| supported on MQSeries for VSE/ESA). Instead, you can specify the channel

name in the TriggerData attribute of the transmission queue. V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT allow the
channel name to be specified as blank, in which case the first available channel
definition with this transmission queue is used.

� Ensure that the transmission queue definition contains the name of the process
definition to serve it, (if applicable), the initiation queue name, and the triggering
characteristics you feel are most suitable. The trigger control attribute allows
triggering to be enabled, or not, as necessary.

Notes:

1. An initiation queue and trigger process can be used to trigger any number of
channels.

2. Any number of initiation queues and trigger processes can be defined.

3. A trigger type of FIRST is recommended, to avoid flooding the system with
channel starts.

Safety of messages
In addition to the usual recovery features of MQSeries, distributed queue
management ensures that messages are delivered properly by using a syncpoint
procedure coordinated between the two ends of the message channel. If this
procedure detects an error, it closes the channel to allow you to investigate the
problem, and keeps the messages safely in the transmission queue until the
channel is restarted.

The syncpoint procedure has an added benefit in that it attempts to recover an
in-doubt situation when the channel starts up. (In-doubt is the status of a unit of
recovery for which a syncpoint has been requested but the outcome of the request
is not yet known.) Also associated with this facility are the two functions:

1. Resolve with commit or backout
2. Reset the sequence number

The use of these functions occurs only in exceptional circumstances because the
channel recovers automatically in most cases.

 Chapter 2. Making your applications communicate 25

 Safety of messages

Fast, nonpersistent messages
In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
MQSeries for OS/390 without CICS, MQSeries for Windows V2.1, and MQSeries
for AS/400 V4R2M1, the nonpersistent message speed (NPMSPEED) channel
attribute can be used to specify that any nonpersistent messages on the channel
are to be delivered quickly. For more information about this attribute, see
“Nonpersistent message speed (NPMSPEED)” on page 98. If a channel
terminates while fast, nonpersistent messages are in transit, the messages may be
lost and it is up to the application to arrange for their recovery if required. Similarly,
if the MQPUT command fails for any reason, the messages will be lost.

Every effort is made to deliver fast, nonpersistent messages safely. Unless there is
a problem with the message, such as a data-conversion problem or a
message-size problem, the message is delivered. The safety of an individual
message is not affected by sequence-number problems or problems with other
messages in the same batch.

In MQSeries for Digital OpenVMS fast messages are defined differently. To enable
fast messages on a channel, of type sender, server, receiver, or requester, set the
following definitions at both ends of the channel after the CHLTYPE:

DESCR(‘>>> description’) +

Specifying >>> as the first characters in the channel description defines the channel
as fast for nonpersistent messages.

Note: If the other end of the channel does not support the option, the channel
runs at normal speed.

 Undelivered messages
For information about what happens when a message cannot be delivered, see
“What happens when a message cannot be delivered?” on page 78.

26 MQSeries Intercommunication

 More about intercommunication � What are aliases?

Chapter 3. More about intercommunication

This chapter mentions three aliases:

� Remote queue definition
� Queue manager alias definition
� Reply-to queue alias definition

These are all based on the remote queue definition object introduced in “Remote
queue definitions” on page 16.

This discussion does not apply to alias queues. These are described in in “Alias
queues” in the MQSeries Application Programming Guide.

This chapter also discusses “Networks” on page 32.

 Addressing information
In a single-queue-manager environment, the address of a destination queue is
established when an application opens a queue for putting messages to. Because
the destination queue is on the same queue manager, there is no need for any
addressing information.

In a distributed environment the queue manager needs to know not only the
destination queue name, but also the location of that queue (that is, the queue
manager name), and the route to that remote location (that is, the transmission
queue). When an application puts messages that are destined for a remote queue
manager, the local queue manager adds a transmission header to them before
placing them on the transmission queue. The transmission header contains the
name of the destination queue and queue manager, that is, the addressing
information. The receiving channel removes the transmission header and uses the
information in it to locate the destination queue.

You can avoid the need for your applications to specify the name of the destination
queue manager if you use a remote queue definition. This definition specifies the
name of the remote queue, the name of the remote queue manager to which
messages are destined, and the name of the transmission queue used to transport
the messages.

What are aliases?
Aliases are used to provide a quality of service for messages. The queue manager
alias enables a system administrator to alter the name of a target queue manager
without causing you to have to change your applications. It also enables the
system administrator to alter the route to a destination queue manager, or to set up
a route that involves passing through a number of other queue managers
(multi-hopping). The reply-to queue alias provides a quality of service for replies.

Queue manager aliases and reply-to queue aliases are created using a
remote-queue definition that has a blank RNAME. These definitions do not define
real queues; they are used by the queue manager to resolve physical queue
names, queue manager names, and transmission queues.

 Copyright IBM Corp. 1993,1999 27

 Queue manager alias definitions

Alias definitions are characterized by having a blank RNAME.

Queue name resolution
Queue name resolution occurs at every queue manager each time a queue is
opened. Its purpose is to identify the target queue, the target queue manager
(which may be local), and the route to that queue manager (which may be null).
The resolved name has three parts: the queue manager name, the queue name,
and, if the queue manager is remote, the transmission queue.

When a remote queue definition exists, no alias definitions are referenced. The
queue name supplied by the application is resolved to the name of the destination
queue, the remote queue manager, and the transmission queue specified in the
remote queue definition. For more detailed information about queue name
resolution, see Appendix C, “Queue name resolution” on page 629.

If there is no remote queue definition and a queue manager name is specified, or
resolved by the name service, the queue manager looks to see if there is a queue
manager alias definition that matches the supplied queue manager name. If there
is, the information in it is used to resolve the queue manager name to the name of
the destination queue manager. The queue manager alias definition can also be
used to determine the transmission queue to the destination queue manager.

If the resolved queue name is not a local queue, both the queue manager name
and the queue name are included in the transmission header of each message put
by the application to the transmission queue.

The transmission queue used usually has the same name as the resolved queue
manager, although this may be changed by a remote queue definition or a queue
manager alias definition. If you have not defined a transmission queue with the
name of the resolved queue manager and there is no transmission queue defined
by the remote queue definitions or queue manager alias definitions, but you have
defined a default transmission queue, the default transmission queue is used.

Note: Names of queue managers running on OS/390 are limited to four
characters.

Queue manager alias definitions
Queue manager alias definitions apply when an application that opens a queue to
put a message, specifies the queue name and the queue manager name.

Queue manager alias definitions have three uses:

� When sending messages, remapping the queue manager name
� When sending messages, altering or specifying the transmission queue
� When receiving messages, determining whether the local queue manager is the

intended destination for those messages

28 MQSeries Intercommunication

 Queue manager alias definitions

Outbound messages - remapping the queue manager name
Queue manager alias definitions can be used to remap the queue manager name
specified in an MQOPEN call. For example, an MQOPEN call specifies a queue
name of THISQ and a queue manager name of YOURQM. At the local queue
manager there is a queue manager alias definition like this:

DEFINE QREMOTE (YOURQM) RNAME() RQMNAME(REALQM)

This shows that the real queue manager to be used, when an application puts
messages to queue manager YOURQM, is REALQM. If the local queue manager
is REALQM, it puts the messages to the queue THISQ, which is a local queue. If
the local queue manager is not called REALQM, it routes the message to a
transmission queue called REALQM. The queue manager changes the
transmission header to say REALQM instead of YOURQM.

Outbound messages - altering or specifying the transmission queue
Figure 15 shows a scenario where messages arrive at queue manager ‘QM1’ with
transmission headers showing queue names at queue manager ‘QM3’. In this
scenario, ‘QM3’ is reachable by multi-hopping through ‘QM2’.

QM1 QM2

Queue

QueueQueue 'QM2' 'QM3'

'QM3'

Local system Adjacent system Remote
system

to
QM3

Adjacent
system

Channel in A

Channel in B Channel out 1 Channel out 2

Figure 15. Queue manager alias

All messages for ‘QM3’ are captured at ‘QM1’ with a queue manager alias. The
queue manager alias is named ‘QM3’ and contains the definition ‘QM3 via
transmission queue QM2’. The definition looks like this:

| DEFINE QREMOTE (QM3) RNAME() RQMNAME(QM3) XMITQ(QM2)

The queue manager puts the messages on transmission queue ‘QM2’ but does not
make any alteration to the transmission queue header because the name of the
destination queue manager, ‘QM3’, does not alter.

All messages arriving at ‘QM1’ and showing a transmission header containing a
queue name at ‘QM2’ are also put on the ‘QM2’ transmission queue. In this way,
messages with different destinations are collected onto a common transmission
queue to an appropriate adjacent system, for onward transmission to their
destinations.

 Chapter 3. More about intercommunication 29

 Reply-to queue alias definitions

Inbound messages - determining the destination
A receiving MCA opens the queue referenced in the transmission header. If a
queue manager alias definition exists with the same name as the queue manager
referenced, then the queue manager name received in the transmission header is
replaced with the RQMNAME from that definition.

This has two uses:

� Directing messages to another queue manager
� Altering the queue manager name to be the same as the local queue manager

Reply-to queue alias definitions
When an application needs to reply to a message it may look at the data in
message descriptor of the message it received to find out the name of the queue to
which it should reply. It is up to the sending application to suggest where replies
should be sent and to attach this information to its messages. This has to be
coordinated as part of your application design.

What is a reply-to queue alias definition?
A reply-to queue alias definition specifies alternative names for the reply information
in the message descriptor. The advantage of this is that you can alter the name of
a queue or queue manager without having to alter your applications. Queue name
resolution takes place at the sending end, before the message is put to a queue.

Note: This is an unusual use of queue-name resolution. It is the only situation in
which name resolution takes place at a time when a queue is not being opened.

Normally an application specifies a reply-to queue and leaves the reply-to queue
manager name blank. The queue manager fills in its own name at put time. This
works well except when you want alternate channels to be used for replies. In this
situation, the queue manager names specified in transmission-queue headers do
not match “real” queue manager names but are re-specified using queue manager
alias definitions. In order to return replies along similar alternate routes, it is
necessary to map reply-to queue data as well, using reply-to queue alias
definitions.

30 MQSeries Intercommunication

 Reply-to queue alias definitions

Application

Inquiring

Queue manager 'QM1' Queue manager 'QM2'

Queue Queue

Queue 'Answer'

'QM3_relief''QM3_relief'

Local system

Queue 'Inquiry'

Remote systemAdjacent system

Queue 'Reply_to'

QueueQueue 'QM1_relief''QM1_relief'

Channel_out_1 Channel_out_2

Channel_in_2Channel_in_1

Figure 16. Reply-to queue alias used for changing reply location

In the example in Figure 16:

1. The application puts a message using the MQPUT call and specifying the
following in the message descriptor:

ReplyToQ=‘Reply_to’

ReplyToQMgr=‘’

Note that ReplyToQMgr must be blank in order for the reply-to queue alias to
be used.

2. You create a reply-to queue alias definition called ‘Reply_to’, which contains
the name ‘Answer’, and the queue manager name ‘QM1_relief’.

DEFINE QREMOTE ('Reply_to') RNAME ('Answer')

 RQMNAME ('QM1_relief')

3. The messages are sent with a message descriptor showing
ReplyToQ=‘Answer’ and ReplyToQMgr=‘QM1_relief’.

4. The application specification must include the information that replies are to be
found in queue ‘Answer’ rather than ‘Reply_to’.

To prepare for the replies you have to create the parallel return channel. This
involves defining:

� At QM2, the transmission queue named ‘QM1_relief’

DEFINE QLOCAL ('QM1_relief') USAGE(XMITQ)

� At QM1, the queue manager alias queue ‘QM1_relief’

DEFINE QREMOTE ('QM1_relief') RNAME() RQMNAME(QM1)

This queue manager alias queue terminates the chain of parallel return
channels and captures the messages for QM1.

If you think you might want to do this at sometime in the future, arrange for your
applications to use the alias name from the start. For now this is a normal queue
alias to the reply-to queue, but later it can be changed to a queue manager alias.

 Chapter 3. More about intercommunication 31

 Networks

Reply-to queue name
Care is needed with naming reply-to queues. The reason that an application puts a
reply-to queue name in the message is that it can specify the queue to which its
replies will be sent. But when you create a reply-to queue alias definition with this
name, you cannot have the actual reply-to queue (that is, a local queue definition)
with the same name. Therefore, the reply-to queue alias definition must contain a
new queue name as well as the queue manager name, and the application
specification must include the information that its replies will be found in this other
queue.

The applications now have to retrieve the messages from a different queue from
the one they named as the reply-to queue when they put the original message.

 Networks
So far this book has covered creating channels between your system and any other
system with which you need to have communications, and creating multi-hop
channels to systems where you have no direct connections. The message channel
connections described in the scenarios are shown as a network diagram in
Figure 17 on page 33.

Channel and transmission queue names
You can give transmission queues any name you like, but to avoid confusion, you
can give them the same names as the destination queue manager names, or
queue manager alias names, as appropriate, to associate them with the route they
use. This gives a clear overview of parallel routes that you create through
intermediate (multi-hopped) queue managers.

This is not quite so clear-cut for channel names. The channel names in Figure 17
for QM2, for example, must be different for incoming and outgoing channels. All
channel names may still contain their transmission queue names, but they must be
qualified to make them unique.

For example, at QM2, there is a QM3 channel coming from QM1, and a QM3
channel going to QM3. To make the names unique, the first one may be named
‘QM3_from_QM1’, and the second may be named ‘QM3_from_QM2’. In this way,
the channel names show the transmission queue name in the first part of the name,
and the direction and adjacent queue manager name in the second part of the
name.

A table of suggested channel names for Figure 17 is given in Table 1.

32 MQSeries Intercommunication

 Networks

Q M 2

Q M 2 f a s t

Q M 1

Q M 1 f a s t

Q M 1 r e l i e f

Q M 3

Q M 3 r e l i e f

Q M 1

Q M 1 r e l i e f

Q M 3

Q M 3 r e l i e f

' Q M 1 ' ' Q M 2 ' ' Q M 3 '

Figure 17. Network diagram showing all channels

Notes:

1. On MQSeries for OS/390, queue manager names are limited to 4 characters.

2. You are strongly recommended to name all the channels in your network
uniquely. As shown in Table 1, including the source and target queue
manager names in the channel name is a good way to do this.

Table 1. Example of channel names

Route name Queue managers
hosting channel

Transmission queue name Suggested channel name

QM1 QM1 & QM2 QM1 (at QM2) QM1.from.QM2

QM1 QM2 & QM3 QM1 (at QM3) QM1.from.QM3

QM1_fast QM1 & QM2 QM1_fast (at QM2) QM1_fast.from.QM2

QM1_relief QM1 & QM2 QM1_relief (at QM2) QM1_relief.from.QM2

QM1_relief QM2 & QM3 QM1_relief (at QM3) QM1_relief.from.QM3

QM2 QM1 & QM2 QM2 (at QM1) QM2.from.QM1

QM2_fast QM1 & QM2 QM2_fast (at QM1) QM2_fast.from.QM1

QM3 QM1 & QM2 QM3 (at QM1) QM3.from.QM1

QM3 QM2 & QM3 QM3 (at QM2) QM3.from.QM2

QM3_relief QM1 & QM2 QM3_relief (at QM1) QM3_relief.from.QM1

QM3_relief QM2 & QM3 QM3_relief (at QM2) QM3_relief.from.QM2

 Network planner
This chapter has discussed application designer, systems administrator, and
channel planner functions. Creating a network assumes that there is another,
higher level function of network planner whose plans are implemented by the other
members of the team.

 Chapter 3. More about intercommunication 33

 Networks

If an application is used widely, it is more economical to think in terms of local
access sites for the concentration of message traffic, using wide-band links
between the local access sites, as shown in Figure 18.

In this example there are two main systems and a number of satellite systems (The
actual configuration would depend on business considerations.) There are two
concentrator queue managers located at convenient centers. Each
QM-concentrator has message channels to the local queue managers:

� QM-concentrator 1 has message channels to each of the three local queue
managers, QM1, QM2, and QM3. The applications using these queue
managers can communicate with each other through the QM-concentrators.

� QM-concentrator 2 has message channels to each of the three local queue
managers, QM4, QM5, and QM6. The applications using these queue
managers can communicate with each other through the QM-concentrators.

� The QM-concentrators have message channels between themselves thus
allowing any application at a queue manager to exchange messages with any
other application at another queue manager.

' Q M -

C o n c e n t r a t o r

1 '

' Q M 1 ' ' Q M 3 '

' Q M -

C o n c e n t r a t o r

2 '

' Q M 4 ' ' Q M 6 '

' Q M 2 '

' Q M 5 '

Figure 18. Network diagram showing QM-concentrators

34 MQSeries Intercommunication

Part 2. How intercommunication works

This part of the book gives more details about how intercommunication works. The
description in this part is general, and is not restricted to a particular platform or
system.

Chapter 4. MQSeries distributed-messaging techniques 39
Message flow control . 39

Queue names in transmission header . 40
How to create queue manager and reply-to aliases 40

Putting messages on remote queues . 42
More about name resolution . 43

Choosing the transmission queue . 43
Receiving messages . 44

Receiving alias queue manager names . 45
Passing messages through your system . 45

Method 1: Using the incoming location name 46
Method 2: Using an alias for the queue manager 46
Method 3: Selecting a transmission queue 46
Using these methods . 46

Separating message flows . 47
Concentrating messages to diverse locations 49
Diverting message flows to another destination 50
Sending messages to a distribution list . 51
Reply-to queue . 52

Reply-to queue alias example . 54
How the example works . 56
How the queue manager makes use of the reply-to queue alias 56
Reply-to queue alias walk-through . 56

Networking considerations . 58
Return routing . 59
Managing queue name translations . 59
Message sequence numbering . 61

Sequential retrieval of messages . 61
Sequence of retrieval of fast, nonpersistent messages 62

Loopback testing . 62

 Copyright IBM Corp. 1993,1999 35

Chapter 5. DQM implementation . 63
Functions of DQM . 63
Message sending and receiving . 64

Channel parameters . 65
Channel status and sequence numbers . 65

Channel control function . 66
Preparing channels . 66
Channel states . 68
Stopping and quiescing channels (not MQSeries for Windows) 73
Stopping and quiescing channels (MQSeries for Windows) 75
Restarting stopped channels . 75
In-doubt channels . 76
Problem determination . 77

What happens when a message cannot be delivered? 78
Initialization and configuration files . 80

OS/390 without CICS . 80
OS/390 using CICS . 80
OS/400 . 80

| Windows NT . 80
OS/2, Digital OpenVMS, Tandem NSK, and UNIX systems 81

Data conversion . 82
Writing your own message channel agents . 82

Chapter 6. Channel attributes . 85
Channel attributes in alphabetical order . 85

| Alter date (ALTDATE) . 86
| Alter time (ALTTIME) . 86

Auto start (AUTOSTART) . 86
Batch interval (BATCHINT) . 87
Batch size (BATCHSZ) . 87
Channel name (CHANNEL) . 88
Channel type (CHLTYPE) . 89
CICS profile name . 89

| Cluster (CLUSTER) . 89
| Cluster namelist (CLUSNL) . 90

Connection name (CONNAME) . 90
Convert message (CONVERT) . 91
Description (DESCR) . 92
Disconnect interval (DISCINT) . 92
Heartbeat interval (HBINT) . 93
Long retry count (LONGRTY) . 93
Long retry interval (LONGTMR) . 94
LU 6.2 mode name (MODENAME) . 94
LU 6.2 transaction program name (TPNAME) 94
Maximum message length (MAXMSGL) . 95
Maximum transmission size . 96
Message channel agent name (MCANAME) 96
Message channel agent type (MCATYPE) 96
Message channel agent user identifier (MCAUSER) 96
Message exit name (MSGEXIT) . 97
Message exit user data (MSGDATA) . 97
Message-retry exit name (MREXIT) . 97
Message-retry exit user data (MRDATA) . 97
Message retry count (MRRTY) . 97

36 MQSeries Intercommunication

Message retry interval (MRTMR) . 98
| Network-connection priority (NETPRTY) . 98

Nonpersistent message speed (NPMSPEED) 98
Password (PASSWORD) . 99
PUT authority (PUTAUT) . 99
Queue manager name (QMNAME) . 100
Receive exit name (RCVEXIT) . 100
Receive exit user data (RCVDATA) . 101
Security exit name (SCYEXIT) . 101
Security exit user data (SCYDATA) . 101
Send exit name (SENDEXIT) . 101
Send exit user data (SENDDATA) . 102
Sequence number wrap (SEQWRAP) . 102
Sequential delivery . 102
Short retry count (SHORTRTY) . 102
Short retry interval (SHORTTMR) . 103
Target system identifier . 103
Transaction identifier . 103
Transmission queue name (XMITQ) . 103
Transport type (TRPTYPE) . 104
User ID (USERID) . 104

Chapter 7. Example configuration chapters in this book 105
Network infrastructure . 106
Communications software . 106
How to use the communication examples . 107

IT responsibilities . 108

 Part 2. How intercommunication works 37

38 MQSeries Intercommunication

 Distributed-messaging techniques � Message flow control

Chapter 4. MQSeries distributed-messaging techniques

This chapter describes techniques that are of use when planning channels. It
introduces the concept of message flow control and explains how this is arranged
in distributed queue management (DQM). It gives more detailed information about
the concepts introduced in the preceding chapters and starts to show how you
might use distributed queue management. This chapter covers the following topics:

� “Message flow control”
� “Putting messages on remote queues” on page 42
� “Choosing the transmission queue” on page 43
� “Receiving messages” on page 44
� “Passing messages through your system” on page 45
� “Separating message flows” on page 47
� “Concentrating messages to diverse locations” on page 49
� “Diverting message flows to another destination” on page 50
� “Sending messages to a distribution list” on page 51
� “Reply-to queue” on page 52
� “Networking considerations” on page 58
� “Return routing” on page 59
� “Managing queue name translations” on page 59
� “Message sequence numbering” on page 61
� “Loopback testing” on page 62

Message flow control
Message flow control is a task that involves the setting up and maintenance of
message routes between queue managers. This is very important for routes that
multi-hop through many queue managers.

You control message flow using a number of techniques that were introduced in
| Chapter 2, “Making your applications communicate” on page 19. If your queue
| manager is in a cluster, message flow is controlled using different techniques as
| described in “Components of a cluster” in the MQSeries Queue Manager Clusters
| book.

This chapter describes how you use your system’s queues, alias queue definitions,
and message channels to achieve message flow control.

You make use of the following objects:

 � Transmission queues
 � Message channels
� Remote queue definition
� Queue manager alias definition
� Reply-to queue alias definition

The queue manager and queue objects are described in Chapter 6, “Managing
queue managers using control commands” in the MQSeries System Administration
book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows
NT, or in the MQSeries System Management Guide for the platform you are using;
see “MQSeries publications” on page xx. Message channels are described in
“Message channels” on page 8.

 Copyright IBM Corp. 1993,1999 39

 Message flow control

The following techniques use these objects to create message flows in your
system:

� Putting messages to remote queues
� Routing via particular transmission queues

 � Receiving messages
� Passing messages through your system
� Separating message flows
� Switching a message flow to another destination
� Resolving the reply-to queue name to an alias name

 Note

All the concepts described in this chapter are relevant for all nodes in a
network, and include sending and receiving ends of message channels. For
this reason, only one node is illustrated in most examples, except where the
example requires explicit cooperation by the administrator at the other end of a
message channel.

Before proceeding to the individual techniques it is useful to recap on the concepts
of name resolution and the three ways of using remote queue definitions. See
Chapter 3, “More about intercommunication” on page 27.

Queue names in transmission header
The queue name used by the application, the logical queue name, is resolved by
the queue manager to the destination queue name, that is, the physical queue
name. This destination queue name travels with the message in a separate data
area, the transmission header, until the destination queue has been reached after
which the transmission header is stripped off.

You will be changing the queue manager part of this queue name when you create
parallel classes of service. Remember to return the queue manager name to the
original name when the end of the class of service diversion has been reached.

How to create queue manager and reply-to aliases
As discussed above, the remote queue definition object is used in three different
ways. Table 2 on page 41 explains how to define each of the three ways:

� Using a remote queue definition to redefine a local queue name.

The application provides only the queue name when opening a queue, and this
queue name is the name of the remote queue definition.

The remote queue definition contains the names of the target queue and queue
manager, and optionally, the definition can contain the name of the
transmission queue to be used. If no transmission queue name is provided,
the queue manager uses the new queue manager name for the transmission
queue name. If a transmission queue of this name is not defined, but a default
transmission queue is defined, the default transmission queue is used.

� Using a remote queue definition to redefine a queue manager name.

40 MQSeries Intercommunication

 Message flow control

The application, or channel program, provides a queue name together with the
remote queue manager name when opening the queue.

If you have provided a remote queue definition with the same name as the
queue manager name, and you have left the queue name in the definition
blank, then the queue manager will substitute the queue manager name in the
open call with the queue manager name in the definition.

In addition, the definition can contain the name of the transmission queue to be
used. If no transmission queue name is provided, the queue manager takes
the new queue manager name for the transmission queue name. If a
transmission queue of this name is not defined, but a default transmission
queue is defined, the default transmission queue is used.

� Using a remote queue definition to redefine a reply-to queue name.

Each time an application puts a message to a queue, it may provide the name
of a reply-to queue for answer messages but with the queue manager name
blank.

If you provide a remote queue definition with the same name as the reply-to
queue then the local queue manager replaces the reply-to queue name with the
queue name from your definition.

You may provide a queue manager name in the definition, but not a
transmission queue name.

For a formal description, see Appendix C, “Queue name resolution” on page 629.

Table 2. Three ways of using the remote queue definition object

Usage Queue
manager name

Queue name Transmission
queue name

1. Remote queue definition (on OPEN call)

Supplied in the call blank or local
QM

(*) required -

Supplied in the definition required required optional

2. Queue manager alias (on OPEN call)

Supplied in the call (*) required and
not local QM

required -

Supplied in the definition required blank optional

3. Reply-to queue alias (on PUT call)

Supplied in the call blank (*) required -

Supplied in the definition optional optional blank

Note: (*) means that this name is the name of the definition object

 Chapter 4. MQSeries distributed-messaging techniques 41

 Messages on remote queues

Putting messages on remote queues
| In a distributed-queuing environment, a transmission queue and channel are the

focal point for all messages to a location whether the messages originate from
applications in your local system, or arrive through channels from an adjacent
system. This is shown in Figure 19 where an application is placing messages on a
logical queue named ‘QA_norm’. The name resolution uses the remote queue
definition ‘QA_norm’ to select the transmission queue ‘QMB’, and adds a
transmission header to the messages stating ‘QA_norm at QMB’.

Messages arriving from the adjacent system on ‘Channel_back’ have a
transmission header with the physical queue name ‘QA_norm at QMB’, for
example. These messages are placed unchanged on transmission queue QMB.

The channel moves the messages to an adjacent queue manager.

Q u e u e ' Q A n o r m '

A p p l i c a t i o n ' Q M A '

C h a n n e l b a c k

L o c a l s y s t e m

Q u e u e

Q A n o r m a t Q M B

Q A n o r m

Q A n o r m a t Q M B v i a Q M B

C h a n n e l o u t

C h a n n e l t o a d j a c e n t s y s t e m

' Q M B '

A d j a c e n t

s y s t e m

Figure 19. A remote queue definition is used to resolve a queue name to a transmission
queue to an adjacent queue manager. Note: The dashed outline represents a remote queue
definition. This is not a real queue, but a name alias that is controlled as though it were a
real queue.

Your part in this scenario is to:

� Define the message channel from the adjacent system

� Define the message channel to the adjacent system

� Create the transmission queue ‘QMB’

� Define the remote queue object ‘QA_norm’ to resolve the queue name used by
applications to the desired destination queue name, destination queue manager
name, and transmission queue name

| In a clustering environment, you only need to define a cluster-receiver channel at
| the local queue manager. You do not need to define a transmission queue or a
| remote queue object. For information about this, see “Components of a cluster” in
| the MQSeries Queue Manager Clusters book.

42 MQSeries Intercommunication

 Choosing the transmission queue

More about name resolution
The effect of the remote queue definition is to define a physical destination queue
name and queue manager name; these names are put in the transmission headers
of messages.

Incoming messages from an adjacent system have already had this type of name
resolution carried out by the original queue manager, and have the transmission
header showing the physical destination queue name and queue manager name.
These messages are unaffected by remote queue definitions.

Choosing the transmission queue

Q u e u e ' Q A n o r m '

A p p l i c a t i o n ' Q M A '

L o c a l s y s t e m

Q u e u e

Q A n o r m

C h a n n e l o u t

C h a n n e l t o a d j a c e n t s y s t e m

' T X I '

A d j a c e n t

s y s t e m

Q A n o r m a t

Q M B p r i o r i t y v i a T X I

Figure 20. The remote queue definition allows a different transmission queue to be used

| In a distributed-queuing environment, when you need to change a message flow
from one channel to another, use the same system configuration as shown in
Figure 19 on page 42. Figure 20 shows how you use the remote queue definition
to send messages over a different transmission queue, and therefore over a
different channel, to the same adjacent queue manager.

In Figure 20, you provide:

� The remote queue object ‘QA_norm’ to choose:

– Queue ‘QA_norm’ at the remote queue manager
– Transmission queue ‘TX1’
– Queue manager ‘QMB_priority’

� The transmission queue ‘TX1’. Specify this in the definition of the channel to
the adjacent system

Messages are placed on transmission queue ‘TX1’ with a transmission header
containing ‘QA_norm at QMB_priority’, and are sent over the channel to the
adjacent system.

 Chapter 4. MQSeries distributed-messaging techniques 43

 Receiving messages

The channel_back has been left out of this illustration because it would need a
queue manager alias; this is discussed in the following example.

| In a clustering environment, you do not need to define a transmission queue or a
| remote queue definition. For more information about this, see “Components of a
| cluster” in the MQSeries Queue Manager Clusters book.

 Receiving messages

Q u e u e ' Q A n o r m '

A p p l i c a t i o n ' Q M B '

C h a n n e l b a c k

L o c a l s y s t e m

Q A n o r m a t
Q M B p r i o r i t y

Q A n o r m

Q A n o r m a t Q M B

Q M B p r i o r i t y t o Q M B

A d j a c e n t
s y s t e m

C h a n n e l b a c k Q u e u e ' Q M B p r i o r i t y '

Figure 21. Receiving messages directly, and resolving alias queue manager name

As well as arranging for messages to be sent, you also arrange for messages to be
received from adjacent queue managers. Received messages contain the physical
name of the destination queue manager and queue in the transmission header.
They are treated exactly the same as messages from a local application that
specifies both queue manager name and queue name. Because of this, you need
to ensure that messages entering your system do not have an unintentional name
resolution carried out. See Figure 21 for this scenario.

For this scenario, you prepare:

� Message channels to receive messages from adjacent queue managers

� A queue manager alias definition to resolve an incoming message flow,
‘QMB_priority’, to the local queue manager name, ‘QMB’

� The local queue, ‘QA_norm’, if it does not already exist

44 MQSeries Intercommunication

 Passing messages through system

Receiving alias queue manager names
The use of the queue manager alias definition in this illustration has not selected a
different destination queue manager. Messages passing through this local queue
manager and addressed to ‘QMB_priority’ are intended for queue manager ‘QMB’.
The alias queue manager name is used to create the separate message flow.

Passing messages through your system

Q u e u e ' T X 1 '

L o c a l s y s t e m

Q u e u e

C h a n n e l o u t

' Q M D n o r m '

Q u e u e C h a n n e l o u t' Q M C '

Q u e u e ' Q M D f a s t '

Q u e u e

C h a n n e l o u t

' Q M D P R I O R I T Y '

A d j a c e n t
s y s t e m

A d j a c e n t
s y s t e m

' Q M B '

C h a n n e l i n

C h a n n e l i n

C h a n n e l i n

Figure 22. Three methods of passing messages through your system

Following on from the technique shown in Figure 21 on page 44, where you saw
how an alias flow is captured, Figure 22 illustrates the ways networks are built up
by bringing together the techniques we have discussed.

The scenario shows a channel delivering three messages with different
destinations:

1. ‘QMB at QMC’
2. ‘QMB at QMD_norm’
3. ‘QMB at QMD_PRIORITY’

You need to pass the first message flow through your system unchanged; the
second message flow through a different transmission queue and channel, while
reverting the messages from the alias queue manager name ‘QMD_norm’ to the
physical location ‘QMD’; and the third message flow simply chooses a different
transmission queue without any other change.

 Chapter 4. MQSeries distributed-messaging techniques 45

 Passing messages through system

| In a clustering environment, all messages are passed through the cluster
| transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE. This is illustrated in
| Figure 4 on page 7.

| The following methods describe techniques applicable to a distributed-queuing
| environment:

Method 1: Using the incoming location name
When you need to receive messages with a transmission header containing
another location name, the simplest preparation is to have a transmission queue
with that name, ‘QMC’ in this example, as a part of a channel to an adjacent queue
manager. The messages are delivered unchanged.

Method 2: Using an alias for the queue manager
The second method is to use the queue manager alias object definition, but specify
a new location name, ‘QMD’, as well as a particular transmission queue, ‘TX1’.
This action:

� Terminates the alias message flow set up by the queue manager name alias
‘QMD_norm’. That is the named class of service ‘QMD_norm’.

� Changes the transmission headers on these messages from ‘QMD_norm’ to
‘QMD’.

Method 3: Selecting a transmission queue
The third method is to have a queue manager alias object defined with the same
name as the destination location, ‘QMD_PRIORITY’, and use the definition to select
a particular transmission queue, ‘QMD_fast’, and therefore another channel. The
transmission headers on these messages remain unchanged.

Using these methods
For these scenarios, you prepare the:

� Input channel definitions

� Output channel definitions

 � Transmission queues:

 – QMC
 – TX1
 – QMD_fast

� Queue manager alias definitions:

– QMD_norm with ‘QMD_norm to QMD via TX1’
– QMD_PRIORITY with ‘QMD_PRIORITY to QMD_PRIORITY via QMD_fast’

 Note

None of the message flows shown in the example changes the destination
queue. The queue manager name aliases simply provide separation of
message flows.

46 MQSeries Intercommunication

 Separating message flows

Separating message flows
In a distributed-queuing environment, the need to separate messages to the same
queue manager into different message flows can arise for a number of reasons.
For example:

� You may need to provide a separate flow for very large, large, medium, and
| small messages. This also applies in a clustering environment and, in this
| case, you may create clusters that overlap. There are a number of reasons
| you might do this, for example:

| – To allow different organizations to have their own administration.

| – To allow independent applications to be administered separately.

| – To create a class of service. For example you could have a cluster called
| STAFF that is a subset of the cluster called STUDENTS. When you put a
| message to a queue advertised in the STAFF cluster, a restricted channel
| is used. When you put a message to a queue advertised in the
| STUDENTS cluster, either a general channel or a restricted channel may
| be used.

| – To create test and production environments.

| � It may be necessary to route incoming messages via different paths from the
| path of the locally generated messages.

| � Your installation may require to schedule the movement of messages at certain
| times (for example, overnight) and the messages then need to be stored in
| reserved queues until scheduled.

Q u e u e ' Q M C s m a l l '

A p p l i c a t i o n

' Q M B '

C h a n n e l b a c k

L o c a l s y s t e m

Q u e u e

Q B a t Q M C s m a l l

Q B l a r g e

C h a n n e l o u t' T X s m a l l '

A d j a c e n t
s y s t e m

A d j a c e n t
s y s t e m

Q u e u e ' Q B l a r g e '

Q u e u e C h a n n e l o u t' T X l a r g e '

Q u e u e ' Q M C l a r g e '

Q u e u e C h a n n e l o u t' T X e x t e r n a l '

C h a n n e l b a c k
Q B a t Q M C l a r g e

Q u e u e ' Q B s m a l l '
' Q B s m a l l '

Figure 23. Separating messages flows

 Chapter 4. MQSeries distributed-messaging techniques 47

 Separating message flows

In the example shown in Figure 23, the two incoming flows are to alias queue
manager names ‘QMC_small’ and ‘QMC_large’. You provide these flows with a
queue manager alias definition to capture these flows for the local queue manager.
You have an application addressing two remote queues and you need these
message flows to be kept separate. You provide two remote queue definitions that
specify the same location, ‘QMC’, but specify different transmission queues. This
keeps the flows separate, and nothing extra is needed at the far end as they have
the same destination queue manager name in the transmission headers. You
provide:

� The incoming channel definitions
� The two remote queue definitions QB_small and QB_large
� The two queue manager alias definitions QMC_small and QMC_large
� The three sending channel definitions
� Three transmission queues: TX_small, TX_large, and TX_external

Coordination with adjacent systems

When you use a queue manager alias to create a separate message flow, you
need to coordinate this activity with the system administrator at the remote end
of the message channel to ensure that the corresponding queue manager alias
is available there.

48 MQSeries Intercommunication

 Concentrating messages

Concentrating messages to diverse locations

Queue 'QME'

Application

'QME'

Channel back

Local system

Queue

QB at QME
Channel back

Channel out

Channel out

Channel out

'QMD'

Adjacent
system

QB at QMD

QB at QME

Adjacent
system

Queue

Queue 'QA'

'QMC'

'QMB'

Queue

Queue 'QB'

'QA '

'TX1'Queue

Local queue

QA

QB

Figure 24. Combining message flows on to a channel

Figure 24 illustrates a distributed-queuing technique for concentrating messages
that are destined for various locations on to one channel. Two possible uses would
be:

� Concentrating message traffic through a gateway
� Using wide bandwidth highways between nodes

In this example, messages from different sources, local and adjacent, and having
different destination queues and queue managers, are flowed via transmission
queue ‘TX1’ to queue manager QMC. Queue manager QMC delivers the
messages according to the destinations, one set to a transmission queue ‘QMD’ for
onward transmission to queue manager QMD, another set to a transmission queue
‘QME’ for onward transmission to queue manager QME, while other messages are
put on the local queue ‘QA’.

 Chapter 4. MQSeries distributed-messaging techniques 49

 Diverting message flows

You provide:

 � Channel definitions
� Transmission queue TX1
� Remote queue definitions:

– QA with ‘QA at QMC via TX1’
– QB with ‘QB at QMD via TX1’

� Queue manager alias definition:
– QME with ‘QME via TX1’

Your colleague controlling QMC provides:

� Receiving channel definition with the same channel name
� Transmission queue QMD with associated sending channel definition
� Transmission queue QME with associated sending channel definition

Diverting message flows to another destination

Adjacent
system

Adjacent systemLocal system Adjacent system

Queue 'QMD'

QB at QMC

'QMA'

Channel back

Queue

'QMB'

Channel Channel 'QB '

'QMD'

'QMB'

Queue 'QMC'

Queue

Local queue

Figure 25. Diverting message streams to another destination

Figure 25 illustrates how you can redefine the destination of certain messages.
Incoming messages to QMA are destined for ‘QB at QMC’. They would normally
arrive at QMA and be placed on a transmission queue called QMC which would
have been part of a channel to QMC. QMA must divert the messages to QMD, but
is able to reach QMD only over QMB. This method is useful when you need to
move a service from one location to another, and allow subscribers to continue to
send messages on a temporary basis until they have adjusted to the new address.

The method of rerouting incoming messages destined for a certain queue manager
to a different queue manager uses:

� A queue manager alias to change the destination queue manager to another
queue manager, and to select a transmission queue to the adjacent system

� A transmission queue to serve the adjacent queue manager

� A transmission queue at the adjacent queue manager for onward routing to the
destination queue manager

50 MQSeries Intercommunication

 Distribution lists

You provide:

 � Channel_back definition
� Queue manager alias object definition QMC with QB at QMD via QMB

 � Channel_out definition
� The associated transmission queue QMB

Your colleague who controls QMB provides:

� The corresponding channel_back definition
� The transmission queue, QMD
� The associated channel definition to QMD

| You can use aliases within a clustering environment. For information about this,
| see “Using aliases and remote-queue definitions with clusters” in the MQSeries
| Queue Manager Clusters book.

Sending messages to a distribution list
| In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,

an application can send a message to several destinations with a single MQPUT
| call. This applies in both a distributed-queuing environment and a clustering
| environment. You have to define the destinations in a distribution list, as described

in “Distribution lists” in the MQSeries Application Programming Guide.

Not all queue managers support distribution lists. When an MCA establishes a
connection with a partner, it determines whether or not the partner supports
distribution lists and sets a flag on the transmission queue accordingly. If an
application tries to send a message that is destined for a distribution list but the
partner does not support distribution lists, the sending MCA intercepts the message
and puts it onto the transmission queue once for each intended destination.

A receiving MCA ensures that messages sent to a distribution list are safely
received at all the intended destinations. If any destinations fail, the MCA
establishes which ones have failed so that it can generate exception reports for
them and can try to resend the messages to them.

 Chapter 4. MQSeries distributed-messaging techniques 51

 Reply-to queue

 Reply-to queue

Queue

'QMA class1'

Application QMB

'E '

Local system

QA at QMB
reply-to
QR QA at QMB

QMA Application

Adjacent system

'QR'

Queue

Queue 'QA '

'F '

'QMB'Queue

Queue

Queue 'QRR'

'QMA class1'
QRR at
QMA class1

Figure 26. Reply-to queue name substitution during PUT call

A complete remote queue processing loop using a reply-to queue is shown in
| Figure 26. This applies in both a distributed-queuing environment and a clustering
| environment. The details are as shown in Table 6 on page 60.

The application opens QA at QMB and puts messages on that queue. The
messages are given a reply-to queue name of QR, without the queue manager
name being specified. Queue manager QMA finds the reply-to queue object QR
and extracts from it the alias name of QRR and the queue manager name
QMA_class1. These names are put into the reply-to fields of the messages.

Reply messages from applications at QMB are addressed to QRR at QMA_class1.
The queue manager alias name definition QMA_class1 is used by the queue
manager to flow the messages to itself, and to queue QRR.

This scenario depicts the way you give applications the facility to choose a class of
service for reply messages, the class being implemented by the transmission queue
QMA_class1 at QMB, together with the queue manager alias definition,
QMA_class1 at QMA. In this way, you can change an application’s reply-to queue
so that the flows are segregated without involving the application. That is, the
application always chooses QR for this particular class of service, and you have the
opportunity to change the class of service with the reply-to queue definition QR.

52 MQSeries Intercommunication

 Reply-to queue

You create:

� Reply-to queue definition QR
� Transmission queue object QMB

 � Channel_out definition
 � Channel_back definition
� Queue manager alias definition QMA_class1
� Local queue object QRR, if it does not exist

Your colleague at the adjacent system creates the:

� Receiving channel definition
� Transmission queue object QMA_class1
� Associated sending channel

Your application programs use:

� Reply-to queue name QR in put calls
� Queue name QRR in get calls

In this way, you may change the class of service as necessary, without involving
the application, by changing the reply-to alias ‘QR’, together with the transmission
queue ‘QMA_class1’ and queue manager alias ‘QMA_class1’.

If no reply-to alias object is found when the message is put on the queue, the local
queue manager name is inserted in the blank reply-to queue manager name field,
and the reply-to queue name remains unchanged.

Name resolution restriction

Because the name resolution has been carried out for the reply-to queue at
‘QMA’ when the original message was put, no further name resolution is
allowed at ‘QMB’, that is, the message is put with the physical name of the
reply-to queue by the replying application.

Note that the applications must be aware of the naming convention that the name
they use for the reply-to queue is different from the name of the actual queue
where the return messages are to be found.

For example, when two classes of service are provided for the use of applications
with reply-to queue alias names of ‘C1_alias’, and ‘C2_alias’, the applications use
these names as reply-to queue names in the message put calls, but the
applications will actually expect messages to appear in queues ‘C1’ and ‘C2’,
respectively.

However, an application is able to make an inquiry call on the reply-to alias queue
to check for itself the name of the real queue it must use to get the reply
messages.

 Chapter 4. MQSeries distributed-messaging techniques 53

 Reply-to queue

Reply-to queue alias example
This example illustrates the use of a reply-to alias to select a different route
(transmission queue) for returned messages. The use of this facility requires the
reply-to queue name to be changed in cooperation with the applications.

As shown in Figure 27, the return route must be available for the reply messages,
including the transmission queue, channel, and queue manager alias.

Q u e u e ' A n s w e r a l i a s '

Q u e u e ' Q M 2 '

Q u e u e

C h a n n e l o u t

' I n q u i r y '

Q u e u e

Q u e u e ' A n s w e r '

' Q M 1 '

Q u e u e ' I n q u i r y '

Q u e u e ' Q M 1 r e l i e f '

' Q M 2 '

C h a n n e l b a c k' Q M 1 r e l i e f '

Q = ' A n s w e r '
Q M = ' Q M 1 r e l i e f '

Figure 27. Reply-to queue alias example

This example is for requester applications at ‘QM1’ that send messages to server
applications at ‘QM2’. The servers’ messages are to be returned through an
alternative channel using transmission queue ‘QM1_relief’ (the default return
channel would be served with a transmission queue ‘QM1’).

The reply-to queue alias is a particular use of the remote queue definition named
‘Answer_alias’. Applications at QM1 include this name, ‘Answer_alias’, in the
reply-to field of all messages that they put on queue ‘Inquiry’.

Reply-to queue definition ‘Answer_alias’ is defined as ‘Answer at QM1_relief’.
Applications at QM1 expect their replies to appear in the local queue named
‘Answer’.

Server applications at QM2 use the reply-to field of received messages to obtain
the queue and queue manager names for the reply messages to the requester at
QM1.

54 MQSeries Intercommunication

 Reply-to queue

Definitions used in this example at QM1
The system supervisor at QM1 must ensure that the reply-to queue ‘Answer’ is
created along with the other objects. The name of the queue manager alias,
marked with a ‘*’, must agree with the queue manager name in the reply-to queue
alias definition, also marked with an ‘*’.

Object Definition
Local transmission queue QM2
Remote queue definition Object name Inquiry

Remote queue manager
name

QM2

Remote queue name Inquiry
Transmission queue name QM2 (DEFAULT)

Queue manager alias Object name QM1_relief *
Queue manager name QM1
Queue name (blank)

Reply-to queue alias Object name Answer_alias
Remote queue manager
name

QM1_relief *

Remote queue name Answer

Definitions used in this example at QM2
The system supervisor at QM2 must ensure that the local queue exists for the
incoming messages, and that the correctly named transmission queue is available
for the reply messages.

Object Definition
Local queue Inquiry
Transmission queue QM1_relief

Put definition at QM1
Applications fill the reply-to fields with the reply-to queue alias name, and leave the
queue manager name field blank.

Field Content
Queue name Inquiry
Queue manager name (blank)
Reply-to queue name Answer_alias
Reply-to queue manager (blank)

Put definition at QM2
Applications at QM2 retrieve the reply-to queue name and queue manager name
from the original message and use them when putting the reply message on the
reply-to queue.

Field Content
Queue name Answer
Queue manager name QM1_relief

 Chapter 4. MQSeries distributed-messaging techniques 55

 Reply-to queue

How the example works
In this example, requester applications at QM1 always use ‘Answer_alias’ as their
reply-to queue in the relevant field of the put call, and they always retrieve their
messages from the queue named ‘Answer’.

The reply-to queue alias definitions are available for use by the QM1 system
supervisor to change the name of the reply-to queue ‘Answer’, and of the return
route ‘QM1_relief’.

Changing the queue name ‘Answer’ is normally not useful because the QM1
applications are expecting their answers in this queue. However, the QM1
supervisor is able to change the return route (class of service), as necessary.

How the queue manager makes use of the reply-to queue alias
Queue manager QM1 retrieves the definitions from the reply-to queue alias when
the reply-to queue name, included in the put call by the application, is the same as
the reply-to queue alias, and the queue manager part is blank.

The queue manager replaces the reply-to queue name in the put call with the
queue name from the definition. It replaces the blank queue manager name in the
put call with the queue manager name from the definition.

These names are carried with the message in the message descriptor.

Table 3. Reply-to queue alias

Field name Put call Transmission header

Queue name Answer_alias Answer

Queue manager name (blank) QM1_relief

Reply-to queue alias walk-through
To complete this example, let us take a walk through the process, from an
application putting a message on a remote queue at queue manager ‘QM1’,
through to the same application removing the reply message from the alias reply-to
queue.

56 MQSeries Intercommunication

 Reply-to queue

1. The application opens a queue named ‘Inquiry’, and puts messages to it. The
application sets the reply-to fields of the message descriptor to:

2. Queue manager ‘QM1’ responds to the blank queue manager name by
checking for a remote queue definition with the name ‘Answer_alias’. If none is
found, the queue manager places its own name, ‘QM1’, in the reply-to queue
manager field of the message descriptor.

3. If the queue manager finds a remote queue definition with the name
‘Answer_alias’, it extracts the queue name and queue manager names from the
definition (queue name=‘Answer’ and queue manager name= ‘QM1_relief’) and
puts them into the reply-to fields of the message descriptor.

4. The queue manager ‘QM1’ uses the remote queue definition ‘Inquiry’ to
determine that the intended destination queue is at queue manager ‘QM2’, and
the message is placed on the transmission queue ‘QM2’. ‘QM2’ is the default
transmission queue name for messages destined for queues at queue manager
‘QM2’.

5. When queue manager ‘QM1’ puts the message on the transmission queue, it
adds a transmission header to the message. This header contains the name of
the destination queue, ‘Inquiry’, and the destination queue manager, ‘QM2’.

6. The message arrives at queue manager ‘QM2’, and is placed on the ‘Inquiry’
local queue.

7. An application gets the message from this queue and processes the message.
The application prepares a reply message, and puts this reply message on the
reply-to queue name from the message descriptor of the original message.
This is:

8. Queue manager ‘QM2’ carries out the put command, and finding that the queue
manager name, ‘QM1_relief’, is a remote queue manager, it places the
message on the transmission queue with the same name, ‘QM1_relief’. The
message is given a transmission header containing the name of the destination
queue, ‘Answer’, and the destination queue manager, ‘QM1_relief’.

9. The message is transferred to queue manager ‘QM1’ where the queue
manager, recognizing that the queue manager name ‘QM1_relief’ is an alias,
extracts from the alias definition ‘QM1_relief’ the physical queue manager name
‘QM1’.

10. Queue manager ‘QM1’ then puts the message on the queue name contained in
the transmission header, ‘Answer’.

11. The application extracts its reply message from the queue ‘Answer’.

Reply-to queue name Answer_alias
Reply-to queue manager name (blank)

Reply-to queue name Answer
Reply-to queue manager name QM1_relief

 Chapter 4. MQSeries distributed-messaging techniques 57

 Networking considerations

 Networking considerations
| In a distributed-queuing environment, because message destinations are addressed

with just a queue name and a queue manager name, the following rules apply:

1. Where the queue manager name is given, and the name is different from the
local queue manager’s name:

� A transmission queue must be available with the same name, and this
transmission queue must be part of a message channel moving messages
to another queue manager, or

� A queue manager alias definition must exist to resolve the queue manager
name to the same, or another queue manager name, and optional
transmission queue, or

� If the transmission queue name cannot be resolved, and a default
transmission queue has been defined, the default transmission queue is
used.

2. Where only the queue name is supplied, a queue of any type but with the same
name must be available on the local queue manager. This queue may be a
remote queue definition which resolves to: a transmission queue to an
adjacent queue manager, a queue manager name, and an optional
transmission queue.

| To see how this works in a clustering environment, see “Components of a cluster”
| in the MQSeries Queue Manager Clusters book.

Consider the scenario of a message channel moving messages from one queue
manager to another in a distributed-queuing environment.

The messages being moved have originated from any other queue manager in the
network, and some messages may arrive that have an unknown queue manager
name as destination. This can occur when a queue manager name has changed
or has been removed from the system, for example.

The channel program recognizes this situation when it cannot find a transmission
queue for these messages, and places the messages on your undelivered-message
(dead-letter) queue. It is your responsibility to look for these messages and
arrange for them to be forwarded to the correct destination, or to return them to the
originator, where this can be ascertained.

Exception reports are generated in these circumstances, if report messages were
requested in the original message.

Name resolution convention

It is strongly recommended that name resolution that changes the identity of the
destination queue, (that is, logical to physical name changing), should only
occur once, and only at the originating queue manager.

Subsequent use of the various alias possibilities should be used only when
separating and combining message flows.

58 MQSeries Intercommunication

 Return routing � Managing queue name translations

 Return routing
Messages may contain a return address in the form of the name of a queue and

| queue manager. This applies in both a distributed-queuing environment and a
| clustering environment. This address is normally specified by the application that

creates the message, but may be modified by any application that subsequently
handles the message, including user exit applications.

Irrespective of the source of this address, any application handling the message
may choose to use this address for returning answer, status, or report messages to
the originating application.

The way these response messages is routed is not different from the way the
original message is routed. You need to be aware that the message flows you
create to other queue managers will need corresponding return flows.

Physical name conflicts

The destination reply-to queue name has been resolved to a physical queue
name at the original queue manager, and must not be resolved again at the
responding queue manager.

This is a likely possibility for name conflict problems that can only be prevented
by a network-wide agreement on physical and logical queue names.

Managing queue name translations
This description is mainly provided for application designers and channel planners
concerned with an individual system that has message channels to adjacent
systems. It takes a local view of channel planning and control.

When you create a queue manager alias definition or a remote queue definition, the
name resolution is carried out for every message carrying that name, regardless of
the source of the message. To oversee this situation, which may involve large
numbers of queues in a queue manager network, you keep tables of:

� The names of source queues and of source queue managers with respect to
resolved queue names, resolved queue manager names, and resolved
transmission queue names, with method of resolution

� The names of source queues with respect to:

– Resolved destination queue names
– Resolved destination queue manager names

 – Transmission queues
– Message channel names
– Adjacent system names
– Reply-to queue names

Note: The use of the term source in this context refers to the queue name or the
queue manager name provided by the application, or a channel program when
opening a queue for putting messages.

An example of each of these tables is shown in Table 4, Table 5, and Table 6.

 Chapter 4. MQSeries distributed-messaging techniques 59

 Managing queue name translations

The names in these tables are derived from the examples in this chapter, and this
table is not intended as a practical example of queue name resolution in one node.

Table 4. Queue name resolution at queue manager QMA

Source
queue
specified
when queue
is opened

Source queue manager
specified when queue is
opened

Resolved
queue name

Resolved queue
manager name

Resolved
transmission queue
name

Resolution type

QA_norm - QA_norm QMB QMB Remote queue

(any) QMB - - QMB (none)

QA_norm - QA_norm QMB TX1 Remote queue

QB QMC QB QMD QMB Queue manager alias

Table 5. Queue name resolution at queue manager QMB

Source
queue
specified
when queue
is opened

Source queue manager
specified when queue is
opened

Resolved
queue name

Resolved queue
manager name

Resolved
transmission queue
name

Resolution type

QA_norm - QA_norm QMB - (none)

QA_norm QMB QA_norm QMB - (none)

QA_norm QMB_PRIORITY QA_norm QMB - Queue manager alias

(any) QMC (any) QMC QMC (none)

(any) QMD_norm (any) QMD_norm TX1 Queue manager alias

(any) QMD_PRIORITY (any) QMD_PRIORITY QMD_fast Queue manager alias

(any) QMC_small (any) QMC_small TX_small Queue manager alias

(any) QMC_large (any) QMC_large TX_external Queue manager alias

QB_small QMC QB_small QMC TX_small Remote queue

QB_large QMC QB_large QMC TX_large Remote queue

(any) QME (any) QME TX1 Queue manager alias

QA QMC QA QMC TX1 Remote queue

QB QMD QB QMD TX1 Remote queue

Table 6. Reply-to queue name translation at queue manager QMA

Application design Reply-to alias definition

Local QMGR Queue name for messages Reply-to queue alias name Redefined to

QMA QRR QR QRR at QMA_class1

60 MQSeries Intercommunication

 Message sequence numbering

Message sequence numbering
The message sequence numbering function is useful in some environments,
especially when messages are to be guaranteed to be delivered, delivered without
duplication, and stored in the same order as they were taken from the transmission
queue. Each message sent using message sequencing is tagged with an individual
sequence number, which is increased by one for each message sent. The
sequence number is assigned by the sending channel. In some implementations,
this sequence number is then regarded as a permanent attribute of the message,
and is retained by the receiving channel; in other implementations, it is removed by
the receiving channel.

Cooperating channels must be capable of:

� Respecting the sequential delivery attribute in their channel definition record

� Identifying or assigning a sequence number for each message sent or received

� Recording the sequence number assigned to the last message committed, on
hardened media for use in recovery

� Recording the sequence numbers such that they can be read by status
commands for problem resolution

� Detecting out-of-sequence conditions, such as duplicate numbers or gaps, and
returning an appropriate error indication

Sequence numbering is incompatible with the use of multiple channels to serve one
transmission queue.

The sequence number of the last committed message or LUWID is recorded at the
receiving end of a channel. This number is used at the sending end when
sequential delivery of messages has been selected. It is also used during
resequencing, on startup and restarts, to ensure that both ends of the link agree on
which messages have been transferred successfully.

The number stored at the sending end is incremented by one before being used;
this means that the current sequence number is the number of the last message
sent, and the numbering is independent of the instance of the MCA.

Sequential retrieval of messages
If an application puts a sequence of messages to the same destination queue,
those messages can be retrieved in sequence by a single application with a
sequence of get operations, if, for local queuing, the following conditions are met:

� All of the put requests were done from the same application

� All of the put requests were either from the same unit of work, or all the put
requests were made outside of a unit of work

� The application getting the message does not deliberately change the order of
retrieval, for example by specifying a particular MsgId or CorrelId or by using
message priorities

� Only one application is doing get operations to retrieve the messages from the
destination queue, unless the applications doing the get operations ensure, for
example, by specifying a CorrelId, that a single application always gets all of
the messages in each sequence put by a sending application

 Chapter 4. MQSeries distributed-messaging techniques 61

 Loopback testing

� Only one channel is serving the transmission queue

� The messages are not nonpersistent messages on a fast channel

Note: Messages from other tasks and units of work may be interspersed with the
sequence, even where the sequence was put from within a single unit of work.

The order is preserved for remote queuing, but only if the configuration is such that
there can be only one path for the messages in the sequence, from the application
making the put request, through its queue manager, through intercommunication, to
the destination queue manager and the target queue.

Note: Messages that are destined for remote queues can also become out of
sequence if one or more of them is put to a dead-letter queue (for example, if a
queue is temporarily full).

If there is a possibility that some messages may be sent via a different path, for
example because of reconfiguration, the order at the destination cannot be
guaranteed.

Sequence of retrieval of fast, nonpersistent messages
| In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
| Solaris, Windows V2.1, and Windows NT, nonpersistent messages on a fast

channel may overtake persistent messages on the same channel and so arrive out
of sequence. The receiving MCA puts the nonpersistent messages on the
destination queue immediately and makes them visible. Persistent messages are
not made visible until the next syncpoint.

 Loopback testing
Loopback testing is a technique on non-OS/390 platforms that allows you to test a
communications link without actually linking to another machine. You set up a
connection between two queue managers as though they are on separate
machines, but you test the connection by looping back to another process on the
same machine. This means that you can test your communications code without
requiring an active network.

The way you do this depends on which products and protocols you are using. For
example the command to allow TCP/IP loopback testing on OS/2 without a
network, is:

ifconfig lo ipaddress

On Windows NT, you can use the “loopback” adapter.

Refer to the documentation for the products you are using for more information.

62 MQSeries Intercommunication

 Implementation � Functions of DQM

 Chapter 5. DQM implementation

This chapter describes the implementation of the concepts introduced in Chapter 2,
“Making your applications communicate” on page 19.

Distributed queue management (DQM):

� Enables you to define and control communication channels between queue
managers

� Provides you with a message channel service to move messages from a type
of local queue, known as a transmission queue, to communication links on a
local system, and from communication links to local queues at a destination
queue manager

� Provides you with facilities for monitoring the operation of channels and
diagnosing problems, using panels, commands, and programs

This chapter discusses:

� “Functions of DQM”
� “Message sending and receiving” on page 64
� “Channel control function” on page 66
� “What happens when a message cannot be delivered?” on page 78
� “Initialization and configuration files” on page 80
� “Data conversion” on page 82
� “Writing your own message channel agents” on page 82

Functions of DQM
Distributed queue management has these functions:

� Message sending and receiving
 � Channel control
 � Initialization file
 � Data conversion
 � Channel exits

Channel definitions associate channel names with transmission queues,
communication link identifiers, and channel attributes. These are kept in a channel
definition file (CDF), implemented in different ways on different platforms. Message
sending and receiving is controlled by programs known as message channel agents
(MCAs), which use the channel definitions to start up and control communication.

The MCAs in turn are controlled by DQM itself. The structure is platform
dependent, but typically includes listeners and trigger monitors, together with
operator commands and panels.

A message channel is a one-way pipe for moving messages from one queue
manager to another. Thus a message channel has two end-points, represented by
a pair of MCAs. Each end-point has a definition of its end of the message channel.
For example, one end would define a sender, the other end a receiver.

 Copyright IBM Corp. 1993,1999 63

 Message sending and receiving

For details of how to define channels, see:

� Chapter 8, “Monitoring and controlling channels on distributed platforms” on
page 115

� Chapter 22, “Monitoring and controlling channels on OS/390” on page 319

� Chapter 25, “Monitoring and controlling channels in OS/390 with CICS” on
page 351

� Chapter 29, “Monitoring and controlling channels in MQSeries for AS/400” on
page 417

For information about channel exits, see Chapter 35, “Channel-exit programs” on
page 491.

Message sending and receiving
Figure 28 shows the relationships between entities when messages are
transmitted, and shows the flow of control.

Commands

Channel
Initiator

Listener

Message
Channel

Agent
(MCA)

Message
Channel

Agent
(MCA)

User
Exits

User
Exits

Queue

Queue

Queue

Operator

Channel Control
Function

Communications
Network

Transmission

Initiation

Local

File Channel definitions

Synchronization
Information

Status

Commands

Status

SENDING RECEIVING

TO ADJACENT QUEUE MANAGER

Messages

MessagesMessages

Tr igger
message

Status Commands

Messages

Messages

Queue Local

Queue Local

Figure 28. Distributed queue management model

64 MQSeries Intercommunication

 Message sending and receiving

Notes:

1. There is one MCA per channel, depending on the platform. There may be one
or more channel control functions for a given queue manager.

2. The implementation of MCAs and channel control functions is highly platform
dependent; they may be programs or processes or threads, and they may be a
single entity or many comprising several independent or linked parts.

3. All components marked with a star can use the MQI.

 Channel parameters
An MCA receives its parameters in one of several ways:

� If started by a command, the channel name is passed in a data area. The
MCA then reads the channel definition directly to obtain its attributes.

� For sender, and in some cases server channels, the MCA can be started
automatically by the queue manager trigger. The channel name is retrieved
from the trigger process definition, where applicable, and is passed to the MCA.
The remaining processing is the same as that described above.

� If started remotely by a sender, server, requester, or client-connection, the
channel name is passed in the initial data from the partner message channel
agent. The MCA reads the channel definition directly to obtain its attributes.

Certain attributes not defined in the channel definition are also negotiable:

Split messages If one end does not support this, split messages will not
be sent.

Conversion capability If one end cannot perform the necessary code page
conversion or numeric encoding conversion when
needed, the other end must handle it. If neither end
supports it, when needed, the channel cannot start.

Distribution list support If one end does not support distribution lists, the partner
MCA sets a flag in its transmission queue so that it will
know to intercept messages intended for multiple
destinations.

Channel status and sequence numbers
Message channel agent programs keep records of the current sequence number
and logical unit of work number for each channel, and of the general status of the
channel. Some platforms allow you to display this status information to help you
control channels.

 Chapter 5. DQM implementation 65

 Channel control function

Channel control function
The channel control function provides facilities for you to define, monitor, and
control channels. Commands are issued through panels, programs, or from a
command line to the channel control function. The panel interface also displays
channel status and channel definition data.

Note: For the channel control function on MQSeries for OS/2 Warp, Windows NT,
Windows V2.1, UNIX systems, Digital OpenVMS, and Tandem NSK, you can use
Programmable Command Formats or those MQSeries commands (MQSC) and
control commands that are detailed in Chapter 8, “Monitoring and controlling
channels on distributed platforms” on page 115.

The commands fall into the following groups:

 � Channel administration
 � Channel control
� Channel status monitoring

Channel administration commands deal with the definitions of the channels. They
enable you to:

� Create a channel definition
� Copy a channel definition
� Alter a channel definition
� Delete a channel definition

Channel control commands manage the operation of the channels. They enable
you to:

� Start a channel
� Stop a channel
� Re-synchronize with partner (in some implementations)
� Reset message sequence numbers
� Resolve an in-doubt batch of messages
� Ping; send a test communication across the channel (not on MQSeries for

Windows)

Channel monitoring displays the state of channels, for example:

� Current channel settings
� Whether the channel is active or inactive
� Whether the channel terminated in a synchronized state

 Preparing channels
Before trying to start a message channel or MQI channel, you must make sure that
all the attributes of the local and remote channel definitions are correct and
compatible. Chapter 6, “Channel attributes” on page 85 describes the channel
definitions and attributes.

Although you set up explicit channel definitions, the channel negotiations carried
out when a channel starts up may override one or other of the values defined. This
is quite normal, and transparent, and has been arranged like this so that otherwise
incompatible definitions can work together.

66 MQSeries Intercommunication

 Channel control function

Auto-definition of channels
| In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and
| OS/390 (cluster-receiver and cluster-sender channels only), if there is no

appropriate channel definition, then for a receiver or server-connection channel that
has auto-definition enabled, a definition is created automatically. The definition is
created using:

1. The appropriate model channel definition, SYSTEM.AUTO.RECEIVER or
SYSTEM.AUTO.SVRCONN. The model channel definitions for auto-definition
are the same as the system defaults, SYSTEM.DEF.RECEIVER and
SYSTEM.DEF.SVRCONN, except for the description field, which is
“Auto-defined by” followed by 49 blanks. The systems administrator can
choose to change any part of the supplied model channel definitions.

2. Information from the partner system. The partner’s values are used for the
channel name and the sequence number wrap value.

3. A channel exit program, which you can use to alter the values created by the
auto-definition. See “Channel auto-definition exit program” on page 502.

The description is then checked to determine whether it has been altered by an
auto-definition exit or because the model definition has been changed. If the first
44 characters are still “Auto-defined by” followed by 29 blanks, the queue manager
name is added. If the final 20 characters are still all blanks the local time and date
are added.

Once the definition has been created and stored the channel start proceeds as
though the definition had always existed. The batch size, transmission size, and
message size are negotiated with the partner.

Defining other objects
Before a message channel can be started, both ends must be defined (or enabled
for auto-definition) at their respective queue managers. The transmission queue it
is to serve must be defined to the queue manager at the sending end, and the
communication link must be defined and available. In addition, it may be necessary
for you to prepare other MQSeries objects, such as remote queue definitions,
queue manager alias definitions, and reply-to queue alias definitions, so as to
implement the scenarios described in Chapter 2, “Making your applications
communicate” on page 19.

For information about MQI channels, see Chapter 8, “Using channels” in the
MQSeries Clients book.

 Chapter 5. DQM implementation 67

 Channel control function

Starting a channel (not MQSeries for Windows)
A channel can be caused to start transmitting messages in one of four ways. It can
be:

� Started by an operator (not receiver or server-connection channels).

� Triggered from the transmission queue (sender, and possibly server channels
only). You will need to prepare the necessary objects for triggering channels.

� Started from an application program (not receiver or server-connection
channels).

� Started remotely from the network by a sender, requester, server, or
client-connection channel. Receiver, and possibly server and requester
channel transmissions, are started this way; so are server-connection channels.
The channels themselves must already be started (that is, enabled).

Note: Because a channel is ‘started’ it is not necessarily transmitting messages,
but, rather, it is ‘enabled’ to start transmitting when one of the four events described
above occurs. The enabling and disabling of a channel is achieved using the
START and STOP operator commands.

Starting a channel on MQSeries for Windows
On MQSeries for Windows you start channels in the following ways:

� Using the start connection function of the MQSeries for Windows properties
dialog. This function starts the components defined for the connection. The
components are a queue manager, and optionally, a channel group. The
channel group can contain the listener and up to eight channels. See the
MQSeries for Windows User’s Guide.

� Using the START CHANNEL MQSC command or, in Version 2.1, the START
CHANNEL PCF command. This command starts just the specified channel.
The queue manager must already be running.

 Channel states
Figure 29 shows the hierarchy of all possible channel states, and Figure 30 on
page 69 shows the links between them. These apply to all types of message

| channel. On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris,
| and Windows NT, these states apply also to server-connection channels.

Current

Stopped Starting Retrying Active

Requesting Running Paused

Inactive

Channel

StoppingBindingInitializing

Figure 29. Channel states

68 MQSeries Intercommunication

 Channel control function

Current and active
The channel is “current” if it is in any state other than inactive. A current channel is
“active” unless it is in RETRYING, STOPPED, or STARTING state.

Check limits if

retrying

Transferring or ready

to transfer

Waiting until time

for next attempt

Status

OK

Error or STOP request or

disconnect interval expires

Disconnect interval expires

One attempt to

establish session fails

STOP command,

non-retryable error

or retry l imit reached

BINDING

RUNNING

STOPPING

RETRYING

STOPPED

Disabled

Establishing session and

initial data exchange

REQUESTING

Retryable error, one

attempt failed, retry

count not exhausted

Waiting for

message-retry

interval

PAUSED

STARTING

START command

TRIGGER

REMOTE INITIATION

CHANNEL INITIATOR

or

or

or

INITIALIZING

Start

channel

INACTIVE

Figure 30. Flows between channel states

 Chapter 5. DQM implementation 69

 Channel control function

Notes:

1. When a channel is in one of the six states highlighted in Figure 30 on page
69 (INITIALIZING, BINDING, REQUESTING, RUNNING, PAUSED, or
STOPPING), it is consuming resource and a process or thread is running; the
channel is active. (INITIALIZING occurs only on V5.1 of MQSeries for AIX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and V2.1 of MQSeries for
OS/390 without CICS. PAUSED does not occur on OS/390.)

2. When a channel is in STOPPED state, the session may be active because the
next state is not yet known.

Specifying the maximum number of current channels: You can specify the
maximum number of channels that can be current at one time. This is the number
of channels that have entries in the channel status table, including channels that
are retrying and channels that are disabled (that is, stopped). Specify this in the

| channel initiator parameter module for OS/390, the queue manager initialization file
| for OS/400, the queue manager configuration file for OS/2, Tandem NSK, and
| UNIX systems, or the registry for Windows NT. For more information about the
| values you set using the initialization or the configuration file see Appendix D,

“Configuration file stanzas for distributed queuing” on page 635. For more
information about specifying the maximum number of channels, see “Queue
manager configuration files, qm.ini” in the MQSeries System Administration book for
V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the
.MQSeries for AS/400 Administration Guide, or the MQSeries System Management
Guide for your platform.

Notes:

| 1. On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
| Windows NT, server-connection channels are included in this number.

2. A channel must be current before it can become active. If a channel is started,
but cannot become current, the start fails.

3. If you are using CICS for distributed queuing on OS/390, you cannot specify
the maximum number of channels.

4. MQSeries for Windows does not support the qm.ini file. The maximum number
of current channels and the maximum number of active channels is eight.

Specifying the maximum number of active channels: You can also specify the
maximum number of active channels (except on MQSeries for OS/390 using CICS
and MQSeries for Windows). You can do this to prevent your system being
overloaded by a large number of starting channels. If you use this method, you
should set the disconnect interval attribute to a low value to allow waiting channels
to start as soon as other channels terminate.

Each time a channel that is retrying attempts to establish connection with its
partner, it must become an active channel. If the attempt fails, it remains a current
channel that is not active, until it is time for the next attempt. The number of times
that a channel will retry, and how often, is determined by the retry count and retry
interval channel attributes. There are short and long values for both these
attributes. See Chapter 6, “Channel attributes” on page 85 for more information.

70 MQSeries Intercommunication

 Channel control function

When a channel has to become an active channel (because a START command
has been issued, or because it has been triggered, or because it is time for another
retry attempt), but is unable to do so because the number of active channels is
already at the maximum value, the channel waits until one of the active slots is
freed by another channel instance ceasing to be active. If, however, a channel is
starting because it is being initiated remotely, and there are no active slots
available for it at that time, the remote initiation is rejected.

Whenever a channel, other than a requester channel, is attempting to become
active, it goes into the STARTING state. This is true even if there is an active slot
immediately available, although in this case it will only be in STARTING state for a
very short time. However, if the channel has to wait for an active slot, it is in
STARTING state while it is waiting.

Requester channels do not go into STARTING state. If a requester channel cannot
start because the number of active channels is already at the limit, the channel
abends.

Whenever a channel, other than a requester channel, is unable to get an active
slot, and so waits for one, a message is written to the log or the OS/390 console,
and an event is generated. When a slot is subsequently freed and the channel is
able to acquire it, another message and event are generated. Neither of these
events and messages are generated if the channel is able to acquire a slot
straightaway.

If a STOP CHANNEL command is issued while the channel is waiting to become
active, the channel goes to STOPPED state. A Channel-Stopped event is raised
as usual.

| On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
| Windows NT, server-connection channels are included in the maximum number of

active channels.

For more information about specifying the maximum number of active channels,
see “Queue manager configuration files, qm.ini” in the MQSeries System
Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, the MQSeries for AS/400 Administration Guide, the MQSeries for
Windows User’s Guide, or the MQSeries System Management Guide for your
platform.

 Channel errors
Errors on channels cause the channel to stop further transmissions. If the channel
is a sender or server, it goes to RETRY state because it is possible that the
problem may clear itself. If it cannot go to RETRY state, the channel goes to
STOPPED state. For sending channels, the associated transmission queue is set
to GET(DISABLED) and triggering is turned off. (A STOP command takes the side
that issued it to STOPPED state; only expiry of the disconnect interval will make it
end normally and become inactive.) Channels that are in STOPPED state need
operator intervention before they will restart (see “Restarting stopped channels” on
page 75).

 Chapter 5. DQM implementation 71

 Channel control function

Note: For Digital OpenVMS, OS/2 Warp, OS/400, UNIX systems, Tandem NSK,
and Windows NT, in order for retry to be attempted a channel initiator must be
running. On platforms other than V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT, the channel initiator must be monitoring the initiation
queue specified in the transmission queue that the channel is using. MQSeries for
Windows does not have a channel initiator; restarts are controlled by the MQSeries
properties daemon task running in the background.

“Long retry count (LONGRTY)” on page 93 describes how retrying works. If the
error clears, the channel restarts automatically, and the transmission queue is
reenabled. If the retry limit is reached without the error clearing, the channel goes
to STOPPED state. A stopped channel must be restarted manually by the
operator. If the error is still present, it does not retry again. When it does start
successfully, the transmission queue is reenabled.

| On MQSeries for AIX, HP-UX, OS/2 Warp, OS/390 without CICS, Sun Solaris, and
| Windows NT, if the channel initiator or queue manager stops while a channel is in

RETRYING or STOPPED status, the channel status is remembered when the
channel initiator or queue manager is restarted.

On MQSeries for OS/2 Warp, Windows NT, OS/400, Tandem NSK, and UNIX
systems, if a channel is unable to put a message to the target queue because that
queue is full or put inhibited, the channel can retry the operation a number of times
(specified in the message-retry count attribute) at a given time interval (specified in
the message-retry interval attribute). Alternatively, you can write your own
message-retry exit that determines which circumstances cause a retry, and the
number of attempts made. The channel goes to PAUSED state while waiting for
the message-retry interval to finish.

See Chapter 6, “Channel attributes” on page 85 for information about the channel
attributes, and Chapter 35, “Channel-exit programs” on page 491 for information
about the message-retry exit.

Checking that the other end of the channel is still available
In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, and Windows NT, you can use the heartbeat-interval channel attribute to
specify that flows are to be passed from the sending MCA when there are no
messages on the transmission queue. This is described in “Heartbeat interval
(HBINT)” on page 93.

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, VSE/ESA, and Windows NT, if you are using TCP as your transport
protocol, you can use the SO_KEEPALIVE option on the TCP/IP socket. If you
specify this option, TCP periodically checks that the other end of the connection is
still available, and if it is not, the channel is terminated.

| In MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, if you are
| using TCP as your transport protocol, the receiving end of innactive connections
| can also be closed if no data is received for a period of time. This period of time is
| determined according to the HBINT (heartbeat interval) value.

72 MQSeries Intercommunication

 Channel control function

| The timeout value is set as follows:

| 1. For an intial number of flows, before any negotiation has taken place, the
| timeout is twice the HBINT value from the channel definition.

| 2. When the channels have negotiated a HBINT value, the timeout is set to twice
| this value.

| Notes:

| 1. If either of the above values is zero, then there is no timeout.

| 2. For connections that do not support heartbeats, the HBINT value is negotiated
| to zero in step 2 and hence there is no timeout, so we must use TCP/IP
| KEEPALIVE.

| 3. For client connections, heartbeats are only flowed from the server when the
| client issues an MQGET call with wait; none are flowed during other MQI calls.
| Therefore, you are not recommended to set the heartbeat interval too small for
| client channels. For example, if the heartbeat is set to ten seconds, an
| MQCMIT call will fail (with MQRC_CONNECTION_BROKEN) if it takes longer
| than twenty seconds to commit because no data will have been flowed during
| this time. This can happen with large units of work. However, it should not
| happen if appropriate values are chosen for the heartbeat interval because only
| MQGET with wait should take significant periods of time.

| 4. Aborting the connection after twice the heartbeat interval is valid because we
| expect flows (data or heartbeat) at least every heartbeat interval. If the
| heartbeat interval is set too small, however, problems can occur, especially if
| channel exits are in use. For example, if the HBINT value is one second, and
| a send or receive exit is used, the receiving end will only wait for two seconds
| before aborting the channel. This may not be long enough if the sending MCA
| spends a long time in the send exit, perhaps encrypting the message.

| If you have unreliable channels that are suffering from TCP errors, use of
| SO_KEEPALIVE will mean that your channels are more likely to recover.

You can specify time intervals to control the behavior of the SO_KEEPALIVE
option. When you change the time interval, only TCP/IP channels started after the
change are affected. The value that you choose for the time interval should be less
than the value of the disconnect interval for the channel.

For more information about using the SO_KEEPALIVE option on OS/390, see the
MQSeries for OS/390 System Management Guide. For other platforms, see the
chapter about setting up communications for your platform in this manual.

Stopping and quiescing channels (not MQSeries for Windows)
Message channels are designed to be long-running connections between queue
managers with orderly termination controlled only by the disconnect interval channel
attribute. This mechanism works well unless the operator needs to terminate the
channel before the disconnect time interval expires. This can occur in the following
situations:

 � System quiesce
 � Resource conservation
� Unilateral action at one end of a channel

 Chapter 5. DQM implementation 73

 Channel control function

In this case, an operator command is provided to allow you to stop the channel.
The command provided varies by platform, as follows:

For OS/390 without CICS:
The STOP CHANNEL MQSC command or the Stop a channel panel

For OS/390 using CICS:
The Stop option on the Message Channel List panel

For OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems:
The STOP CHANNEL MQSC or PCF command

For OS/400:
The END command on the WRKMQMCHL panel

| For VSE/ESA:
| The CLOSE command from the MQMMSC panel or MQCL transaction closes
| (rather than stops) the channel.

For all of these commands there is a FORCE and a QUIESCE option. The FORCE
option attempts to stop the channel immediately and may require the channel to
resynchronize when it restarts because the channel may be left in doubt. The
QUIESCE option attempts to end the current batch of messages and then terminate
the channel. Note that both of these options leave the channel in a STOPPED
state, requiring operator intervention to restart it.

Stopping the channel at the sending end is quite effective but does require operator
intervention to restart. At the receiving end of the channel, things are much more
difficult because the MCA is waiting for data from the sending side, and there is no
way to initiate an orderly termination of the channel from the receiving side; the
stop command is pending until the MCA returns from its wait for data.

Consequently there are three recommended ways of using channels, depending
upon the operational characteristics required:

� If you want your channels to be long running, you should note that there can be
orderly termination only from the sending end. When channels are interrupted,
that is, stopped, operator intervention (a START CHANNEL command) is
required in order to restart them.

� If you want your channels to be active only when there are messages for them
to transmit, you should set the disconnect interval to a fairly low value. Note
that the default setting is quite high and so is not recommended for channels
where this level of control is required. Because it is difficult to interrupt the
receiving channel, the most economical option is to have the channel
automatically disconnect and reconnect as the workload demands. For most
channels, the appropriate setting of the disconnect interval can be established
heuristically.

74 MQSeries Intercommunication

 Channel control function

| � For MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
| Solaris, and Windows NT, you can use the heartbeat-interval attribute to cause

the sending MCA to send a heartbeat flow to the receiving MCA during periods
in which it has no messages to send. This releases the receiving MCA from its
wait state and gives it an opportunity to quiesce the channel without waiting for
the disconnect interval to expire. Give the heartbeat interval a lower value than
the value of the disconnect interval.

Notes:

1. It is particularly advisable to set the disconnect interval to a low value, or to
use heartbeats, for server channels.1

2. On OS/390, without CICS, and on V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and MQSeries for AS/400 V4R2M1,
server-connection channels can also be stopped like receiver channels.

Stopping and quiescing channels (MQSeries for Windows)
On MQSeries for Windows you can stop or quiesce channels in the following ways:

� Using the stop connection function of the MQSeries for Windows properties
dialog. This function stops the queue manager and any channels. Channels
are forced to stop if necessary and may go into in-doubt status if a batch of
messages is currently in transit. Any fast, nonpersistent messages that are in
transit are lost.

� Using the STOP CHANNEL MQSC command or, in Version 2.1, the STOP
CHANNEL PCF command. You can specify a FORCE or QUIESCE option on
this command. Using this command stops just the specified channel and
leaves the queue manager running.

Restarting stopped channels
When a channel goes into STOPPED state (either because you have stopped the
channel manually using one of the methods given in “Stopping and quiescing
channels (not MQSeries for Windows)” on page 73, or because of a channel error)
you have to restart the channel manually.

To do this, issue one of the following commands:

For MQSeries for OS/390 without CICS:
The START CHANNEL MQSC command or the Start a channel panel

For MQSeries for OS/390 using CICS:
The Start option on the Message Channel List panel

For MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK,
and UNIX systems:

The START CHANNEL MQSC or PCF command

1 This is to allow for the case where the requester channel ends abnormally (for example, because the channel was canceled) when
there are no messages for the server channel to send. In this case, the server does not detect that the requester has ended (it
will only do this the next time it tries to send a message to the requester). While the server is still running, it holds the
transmission queue open for exclusive input in order to get any more messages that may arrive on the queue. If an attempt is
made to restart the channel from the requester, the start request receives an error because the server still has the transmission
queue open for exclusive input. It is necessary to stop the server channel, and then restart the channel from the requester again.

 Chapter 5. DQM implementation 75

 Channel control function

For MQSeries for AS/400:
The START command on the WRKMQMCHL panel, the STRMQMCHL
command, or the START CHANNEL MQSC or PCF command

For MQSeries for Windows:
The START CHANNEL MQSC command, in Version 2.1 the START
CHANNEL PCF command, or the start connection function of the MQSeries
properties dialog.

| For MQSeries for VSE/ESA:
| The OPEN command from the MQMMSC panel or MQCL transaction opens
| (rather than restarts) the channel.

For sender or server channels, when the channel entered the STOPPED state, the
associated transmission queue was set to GET(DISABLED) and triggering was set
off. When the start request is received, these attributes are reset automatically.
On V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for OS/390 without CICS, if the channel initiator or queue manager
stops while a channel is in RETRYING or STOPPED status, the channel status is
remembered when the channel initiator or queue manager is restarted. On other
platforms (apart from MQSeries for Windows), if the channel initiator or queue
manager is restarted the status is lost and you have to alter the queue attributes
manually to reenable triggering of the channel.

Note: If you are using CICS for distributed queuing on OS/390, these queue
attributes are not reset automatically; you always have to alter them manually when
you restart a channel.

 In-doubt channels
Observe the distinction between a channel being in doubt, which means that it is in
doubt with its partner channel about which messages have been sent and received,
and the queue manager being in doubt about which messages should be
committed to a queue.

Normally, all resolution of in-doubt situations on channels is handled automatically.
Even if communication is lost, leaving the channel in doubt with a batch of
messages at the sender whose receipt status is unknown, the situation will be
resolved when communications are reestablished. Sequence number and LUWID
records are kept for this purpose. (In fact, channels are only in doubt for the short
period at the end of a batch while LUWID information is exchanged, and no more
than one batch of messages can be in doubt for each channel.)

In exceptional circumstances it is possible to manually resynchronize the channel.
(In this case, the term manual may refer to operators or to programs that contain
MQSeries system management commands.) The manual resynchronization
process works as follows. MQSC commands are used in this description; you can
use the PCF equivalents instead.

76 MQSeries Intercommunication

 Channel control function

1. On platforms other than MQSeries for Windows, use the DISPLAY CHSTATUS
command to find the last-committed logical unit of work ID (LUWID) for each
side of the channel. Do this using the following commands:

� For the in-doubt side of the channel:

DISPLAY CHSTATUS(name) SAVED CURLUWID

You can use the CONNAME and XMITQ parameters to further identify the
channel.

� For the receiving side of the channel:

DISPLAY CHSTATUS(name) SAVED LSTLUWID

You can use the CONNAME parameter to further identify the channel.

The commands are different because only one side (the sending side) of the
channel can be in doubt. The receiving side is never in doubt.

On MQSeries for Windows, the DISPLAY CHSTATUS command is not
supported. Instead, use the Status button on the Components tab of the
MQSeries for Windows properties dialog.

2. If you find that the two LUWIDs are the same, the receiving side has committed
the unit of work that the sender considers to be in doubt. Therefore, the
sending side can remove the in-doubt messages from the transmission queue
and reenable it. This is done with the following channel RESOLVE command:

| RESOLVE CHANNEL(name) ACTION(COMMIT)

3. If you find that the two LUWIDs are different, the receiving side has not
committed the unit of work that the sender considers to be in doubt. On some
platforms you can find out how many messages are in doubt by displaying the
saved channel status. The sending side needs to retain the in-doubt messages
on the transmission queue and resend them. This is done with the following
channel RESOLVE command:

| RESOLVE CHANNEL(name) ACTION(BACKOUT)

Once this process is complete the channel will no longer be in doubt. This means
that, if required, the transmission queue can be used by another channel.

 Problem determination
There are two distinct aspects to problem determination:

� Problems discovered when a command is being submitted
� Problems discovered during operation of the channels

 Command validation
Commands and panel data must be free from errors before they are accepted for
processing. Any errors found by the validation are immediately notified to the user
by error messages.

Problem diagnosis begins with the interpretation of these error messages and
taking the recommended corrective action.

 Chapter 5. DQM implementation 77

 Undelivered messages

 Processing problems
Problems found during normal operation of the channels are notified to the system
console or the system log or, for MQSeries for Windows, the channel log. Problem
diagnosis begins with the collection of all relevant information from the log, and
continues with analysis to identify the problem.

Confirmation and error messages are returned to the terminal that initiated the
commands, when possible.

Messages and codes
Where provided, the Messages and Codes manual of the particular platform can
help with the primary diagnosis of the problem.

What happens when a message cannot be delivered?
Figure 31 shows the processing that occurs when an MCA is unable to put a
message to the destination queue. (Note that the options shown do not apply on
all platforms.)

MQPUT

DLQ Handler

MCA MCA
Transient Failure

Retry Exit

Application
Queue

Transmission
Queue

Transmission
Queue

Message Flow

Dead Letter
Queue

2 3

1

QM2QM1 Channels

RTS

Figure 31. What happens when a message cannot be delivered

78 MQSeries Intercommunication

 Undelivered messages

As shown in the figure, the MCA can do several things with a message that it
cannot deliver. The action taken is determined by options specified when the
channel is defined and on the MQPUT options for the message.

1. Message-retry
If the MCA is unable to put a message to the target queue for a reason that
could be transitory (for example, because the queue is full), the MCA has the
option to wait and retry the operation later. You can determine if the MCA
waits, for how long, and how many times it retries.

� You can specify a message-retry time and interval for MQPUT errors
when you define your channel. If the message cannot be put to the
destination queue because the queue is full, or is inhibited for puts, the
MCA retries the operation the number of times specified, at the time
interval specified.

� You can write your own message-retry exit. The exit enables you to
specify under what conditions you want the MCA to retry the MQPUT or
MQOPEN operation. Specify the name of the exit when you define the
channel.

Message-retry is not available on MQSeries for OS/390, MQSeries for
Windows, or MQSeries for VSE/ESA.

2. Return-to-sender
If message-retry was unsuccessful, or a different type of error was
encountered, the MCA can send the message back to the originator.

To enable this, you need to specify the following options in the message
descriptor when you put the message to the original queue:

� The MQRO_EXCEPTION_WITH_FULL_DATA report option
� The MQRO_DISCARD_MSG report option
� The name of the reply-to queue and reply-to queue manager

If the MCA is unable to put the message to the destination queue, it
generates an exception report containing the original message, and puts it on
a transmission queue to be sent to the reply-to queue specified in the original
message. (If the reply-to queue is on the same queue manager as the MCA,
the message is put directly to that queue, not to a transmission queue.)

Return-to-sender is not available on OS/390 or VSE/ESA.

 Chapter 5. DQM implementation 79

 Initialization and configuration files

3. Dead-letter queue
If a message cannot be delivered or returned, it is put on to the dead-letter
queue. You can use the DLQ handler to process the message. This is
described in Chapter 12, “The MQSeries dead-letter queue handler” in the
MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX,

| OS/2 Warp, Sun Solaris, and Windows NT, the MQSeries for AS/400
| Administration Guide for OS/400, or in the MQSeries System Management
| Guide for your platform. (The DLQ handler is not supported on OS/390.)

If the dead-letter queue is not available, the sending MCA leaves the
message on the transmission queue, and the channel stops. On a fast
channel, nonpersistent messages that cannot be written to a dead-letter
queue are lost.

Dead-letter queues are not supported on MQSeries for Windows.

Initialization and configuration files
The handling of channel initialization data depends on your MQSeries platform.

OS/390 without CICS
In MQSeries for OS/390 without CICS, initialization and configuration information is
in the channel initiator parameter module CSQXPARM. You can also put
commands in the CSQINPX initialization input data set, which is processed every
time you start the channel initiator if you specify the optional DD statement
CSQINPX in the channel initiator started task procedure. See the MQSeries for
OS/390 System Management Guide for information about both of these.

OS/390 using CICS
In MQSeries for OS/390 using CICS there is no channel initiator.

 OS/400
In MQSeries for AS/400, MCA programs can use parameters defined in an
initialization file.

The initialization file is an editable physical file that you create, called QMINI in
QMQMDATA. There are five parameters that you can specify:

� The maximum number of channels allowed
� The maximum number of channels that can be active at any one time
� The maximum number of channel initiators allowed
� The TCP/IP listener port number
� Whether TCP/IP KeepAlive is to be used

The format of QMINI is shown in Appendix D, “Configuration file stanzas for
distributed queuing” on page 635.

| Windows NT
| On MQSeries for Windows NT, the registry file holds basic configuration information
| about the MQSeries installation. That is, information relevant to all of the queue
| managers on the MQSeries system and also information relating to individual
| queue managers.

80 MQSeries Intercommunication

 Initialization and configuration files

OS/2, Digital OpenVMS, Tandem NSK, and UNIX systems
On MQSeries for OS/2 Warp, MQSeries for Digital OpenVMS, MQSeries for
Tandem NonStop Kernel, and MQSeries on UNIX systems, there are configuration
files to hold basic configuration information about the MQSeries installation.

There are two configuration files: one applies to the machine, the other applies to
an individual queue manager.

MQSeries configuration file
This holds information relevant to all of the queue managers on the MQSeries
system. The file is called MQSINI on Tandem NSK and mqs.ini on other platforms.
It is fully described in Chapter 11, “Configuring MQSeries” in the MQSeries System
Administration book for MQSeries for AIX, MQSeries for HP-UX, MQSeries for
OS/2 Warp, and MQSeries for Sun Solaris, or in the MQSeries System
Management Guide for your platform.

Queue manager configuration file
The queue manager configuration file holds configuration information relating to one

| particular queue manager. The file is called QMINI on Tandem NSK, and qm.ini on
| other platforms.

It is created during queue manager creation and may hold configuration information
relevant to any aspect of the queue manager. Information held in the file includes
details of how the configuration of the log differs from the default in MQSeries
configuration file.

The queue manager configuration file is held in the root of the directory tree
| occupied by the queue manager. On MQSeries for Windows NT, the qm.ini file is
| held in the registry. For example, for the DefaultPath attributes, the queue

manager configuration files for a queue manager called QMNAME would be:

For OS/2:

c:\mqm\qmgrs\QMNAME\qm.ini

For UNIX systems:

/var/mqm/qmgrs/QMNAME/qm.ini

For Digital OVMS:

mqs_root:[mqm.qmgrs.QMNAME]qm.ini

For Tandem NSK:

The file is held in the subvolume of the queue manager. For example, the path
and name for a configuration file for a queue manager called QMNAME could be
$VOLUME.QMNAMED.QMINI.

 Chapter 5. DQM implementation 81

 Data conversion � Writing message channel agents

An example of a qm.ini file follows. It specifies that the TCP/IP listener is to listen
on port 2500, the maximum number of current channels is to be 200 and the
maximum number of active channels is to be 100.

 TCP:

 Port=25ðð

 CHANNELS:

 MaxChannels=2ðð

 MaxActiveChannels=1ðð

For more information about qm.ini files see Appendix D, “Configuration file stanzas
for distributed queuing” on page 635. For more information about QMINI files see
the MQSeries System Management Guide for your platform.

| For VSE/ESA:

| There is no qm.ini file on VSE/ESA. Instead, use the Configuration main menu on
| the MQMMCFG panel to configure the queue manager.

 Data conversion
An MQSeries message consists of two parts:

� Control information in a message descriptor
 � Application data

Either of the two parts may require data conversion when sent between queues on
different queue managers. For information about data conversion, see “Application
data conversion” in the MQSeries Application Programming Guide.

Writing your own message channel agents
MQSeries products other than MQSeries for Windows allow you to write your own
message channel agent (MCA) programs or to install one from an independent
software vendor. You might want to do this to make an MQSeries product
interoperate over your own, proprietary communications protocol or to send
messages over a protocol that MQSeries does not support. (You cannot write your
own MCA to interoperate with an MQSeries-supplied MCA at the other end.)

82 MQSeries Intercommunication

 Writing message channel agents

If you decide to use an MCA that was not supplied by MQSeries, you need to
consider the following.

Message sending and receiving
You need to write a sending application that gets messages from
wherever your application puts them, for example from a
transmission queue (see “MQXQH - Transmission queue header”
in the MQSeries Application Programming Reference book), and
sends them out on a protocol with which you want to
communicate. You also need to write a receiving application that
takes messages from this protocol and puts them onto destination
queues. The sending and receiving applications use the message
queue interface (MQI) calls, not any special interfaces.

You need to ensure that messages are delivered once and once
only. Syncpoint coordination can be used to help with this.

Channel control function
You need to provide your own administration functions to control
channels. You cannot use MQSeries channel administration
functions either for configuring (for example, the DEFINE
CHANNEL command) or monitoring (for example, DISPLAY
CHSTATUS) your channels.

Initialization file
You need to provide your own initialization file, if you require one.

Application data conversion
You will probably want to allow for data conversion for messages
you send to a different system. If so, use the
MQGMO_CONVERT option on the MQGET call when retrieving
messages from wherever your application puts them, for example
the transmission queue.

User exits
Consider whether you need user exits. If so, you can use the
same interface definitions that MQSeries uses.

Triggering
If your application puts messages to a transmission queue, you
can set up the transmission queue attributes so that your sending
MCA is triggered when messages arrive on the queue.

Channel initiator
You may need to provide your own channel initiator.

 Chapter 5. DQM implementation 83

 Writing message channel agents

84 MQSeries Intercommunication

 Channel attributes

 Chapter 6. Channel attributes

Product-sensitive programming interface

The previous chapters have introduced the basic concepts of the product, the
business perspective basis of its design, its implementation, and the control
features.

This chapter describes the channel attributes held in the channel definitions.

You choose the attributes of a channel to be optimal for a given set of
circumstances for each channel. However, when the channel is running, the actual
values may have changed during startup negotiations. See “Preparing channels”
on page 66.

Many attributes have default values, and you can use these for most channels.
However, in those circumstances where the defaults are not optimal, refer to this
chapter for guidance in selecting the correct values.

Note: In MQSeries for AS/400, most parameters can be specified as \SYSDFTCHL,
which means that the value is taken from the system default channel in your
system.

Channel attributes in alphabetical order
MQSeries for some platforms may not implement all the attributes shown in the list.
Exceptions and platform differences are mentioned in the individual attribute
descriptions, where relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.
(Attributes that apply only to MQSeries for OS/390 with CICS do not have MQSC
keywords.)

The attributes are arranged in alphabetical order, as follows:

Attribute See page...

Auto start (AUTOSTART) 86
| Alter date (ALTDATE)| 86
| Alter time (ALTTIME)| 86

Batch interval (BATCHINT) 87
Batch size (BATCHSZ) 87
Channel name (CHANNEL) 88
Channel type (CHLTYPE) 89
CICS profile name 89

| Cluster (CLUSTER)| 89
| Cluster namelist (CLUSNL)| 90

Connection name (CONNAME) 90
Convert message (CONVERT) 91
Description (DESCR) 92
Disconnect interval (DISCINT) 92
Heartbeat interval (HBINT) 93
Long retry count (LONGRTY) 93
Long retry interval (LONGTMR) 94

 Copyright IBM Corp. 1993,1999 85

 Alter date (ALTDATE) � Auto start (AUTOSTART)

Attribute See page...

LU 6.2 mode name (MODENAME) 94
LU 6.2 transaction program name (TPNAME) 94
Maximum message length (MAXMSGL) 95
Maximum transmission size 96
Message channel agent name (MCANAME) 96
Message channel agent type (MCATYPE) 96
Message channel agent user identifier (MCAUSER) 96
Message exit name (MSGEXIT) 97
Message exit user data (MSGDATA) 97
Message-retry exit name (MREXIT) 97
Message-retry exit user data (MRDATA) 97
Message retry count (MRRTY) 97
Message retry interval (MRTMR) 98
Nonpersistent message speed (NPMSPEED) 98

| Network-connection priority (NETPRTY)| 98
Password (PASSWORD) 99
PUT authority (PUTAUT) 99
Queue manager name (QMNAME) 100
Receive exit name (RCVEXIT) 100
Receive exit user data (RCVDATA) 101
Security exit name (SCYEXIT) 101
Security exit user data (SCYDATA) 101
Send exit name (SENDEXIT) 101
Send exit user data (SENDDATA) 102
Sequence number wrap (SEQWRAP) 102
Sequential delivery 102
Short retry count (SHORTRTY) 102
Short retry interval (SHORTTMR) 103
Target system identifier 103
Transmission queue name (XMITQ) 103
Transport type (TRPTYPE) 104
User ID (USERID) 104

| Alter date (ALTDATE)
| This is the date on which the definition was last altered, in the form yyyy-mm-dd.

| This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
| Windows NT only.

| Alter time (ALTTIME)
| This is the time at which the definition was last altered, in the form hh:mm:ss.

| This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
| Windows NT only.

Auto start (AUTOSTART)
In MQSeries for Tandem NonStop Kernel there is no SNA listener process. Each
channel initiated from a remote system must have its own, unique TP name on
which it can listen. Such channels must be defined to MQSC with the attribute
AUTOSTART(ENABLED) to ensure that there is an LU 6.2 responder process
listening on this TP name whenever the queue manager is started.

86 MQSeries Intercommunication

 Batch interval (BATCHINT) � Batch size (BATCHSZ)

SNA channels defined AUTOSTART(DISABLED) do not listen for incoming SNA
requests. LU 6.2 responder processes are not started for such channels.

Batch interval (BATCHINT)
In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for OS/390 without CICS, you can specify a period of time, in
milliseconds, during which the channel will keep a batch open even if there are no
messages on the transmission queue. You can specify any number of
milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when the number of
messages specified in BATCHSZ has been sent or when the transmission queue
becomes empty. On lightly loaded channels, where the transmission queue
frequently becomes empty the effective batch size may be much smaller than
BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by
reducing the number of short batches. Be aware, however, that you may slow
down the response time, because batches will last longer and messages will
remain uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following
conditions is met:

� The number of messages specified in BATCHSZ have been sent.

� There are no more messages on the transmission queue and a time interval of
BATCHINT has elapsed while waiting for messages (since the first message of
the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for
messages. It does not include the time spent retrieving messages that are already
available on the transmission queue, or the time spent transferring messages.

| This attribute applies only to sender, cluster-sender, server, and cluster-receiver
| channels.

Batch size (BATCHSZ)
The batch size is the maximum number of messages to be sent before a syncpoint
is taken. The batch size does not affect the way the channel transfers messages;
messages are always transferred individually, but are committed or backed out as a
batch.

To improve performance, you can set a batch size to define the maximum number
of messages to be transferred between two syncpoints. The actual batch size to
be used is negotiated when a channel starts up, whereby the lower of the two
channel definitions is taken. On some implementations, the batch size is calculated
from the lowest of the two channel definitions and the two queue manager
MAXUMSGS/MAXSMSGS values. The actual size of a batch can be less than this;
for example, a batch will complete when there are no messages left on the
transmission queue.

Syncpoint procedure needs a unique logical unit of work identifier to be exchanged
across the link every time a syncpoint is taken, to coordinate batch commit
procedures.

 Chapter 6. Channel attributes 87

 Channel name (CHANNEL)

If the synchronized batch commit procedure is interrupted, an in-doubt situation
may arise. In-doubt situations are resolved automatically when a message channel
starts up. If this resolution is not successful, manual intervention may be
necessary, making use of the RESOLVE command.

Some considerations when choosing the number for batch size:

� If the number is too large, the amount of queue space taken up on both ends
of the link becomes excessive. Messages take up queue space when they are
not committed, and cannot be removed from queues until they are committed.

� If there is likely to be a steady flow of messages, you can improve the
performance of a channel by increasing the batch size. However, this has the
negative effect of increasing restart times, and very large batches may also
affect performance.

� If message flow characteristics indicate that messages arrive intermittently, a
batch size of 1 with a relatively large disconnect time interval may provide a
better performance.

� The number must be in the range 1 through 9999. For data integrity reasons,
channels connecting to any of the platforms that this book applies to should
specify a batch size greater than 1.

For OS/390 using CICS it must also be at least 3 less than the value set by the
DEFINE MAXSMSGS command.

� Even though nonpersistent messages on a fast channel do not wait for a
syncpoint, they do contribute to the batch-size count.

Channel name (CHANNEL)
Specifies the name of the channel definition. The name can contain up to 20
characters, although as both ends of a message channel must have the same
name, and other implementations may have restrictions on the size, the actual
number of characters may have to be smaller.

Where possible, channel names should be unique to one channel between any two
queue managers in a network of interconnected queue managers.

The name must contain characters from the following list:

Notes:

1. Embedded blanks are not allowed, and leading blanks are ignored.

2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)
Numerics (0-9)
Period (.)
Forward slash (/)
Underscore (_)
Percentage sign (%)

88 MQSeries Intercommunication

 Channel type (CHLTYPE) � Cluster (CLUSTER)

Channel type (CHLTYPE)
Specifies the type of the channel being defined. The possible channel types are:

Message channel types:

 � Sender
� Server (not MQSeries for VSE/ESA)

| � Cluster-sender (MQSeries for OS/390 without CICS, MQSeries for AIX
| V5.1, MQSeries for HP-UX V5.1, MQSeries for OS/2 Warp V5.1, MQSeries
| for Sun Solaris V5.1, and MQSeries for Windows NT V5.1 only)

 � Receiver
� Requester (not MQSeries for VSE/ESA)

| � Cluster-receiver (MQSeries for OS/390 without CICS, MQSeries for AIX
| V5.1, MQSeries for HP-UX V5.1, MQSeries for OS/2 Warp V5.1, MQSeries
| for Sun Solaris V5.1, and MQSeries for Windows NT V5.1 only)

MQI channel types:

� Client-connection (MQSeries for OS/2 Warp, Windows NT, UNIX systems,
| VSE/ESA, DOS, Windows 3.1, Windows 95, and Windows 98 only)

Note: Client-connection channels can also be defined on OS/390 for use
on other platforms.

� Server-connection (not MQSeries for OS/390 using CICS)

The two ends of a channel must have the same name and have compatible types:

� Sender with receiver
� Requester with server
� Requester with sender (for Call_back)
� Server with receiver (server is used as a sender)
� Client-connection with server-connection

| � Cluster-sender with cluster-receiver

CICS profile name
This is for OS/390 using CICS only, to give extra definition for the session
characteristics of the connection when CICS performs a communication session
allocation, for example to select a particular COS.

The name must be known to CICS and be one to eight alphanumeric characters
long.

| Cluster (CLUSTER)
| The name of the cluster to which the channel belongs. The maximum length is 48
| characters conforming to the rules for naming MQSeries objects.

| This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
| one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of
| the values is nonblank, the other must be blank.

| This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
| Sun Solaris, and Windows NT only.

 Chapter 6. Channel attributes 89

 Cluster namelist (CLUSNL) � Connection name (CONNAME)

| Cluster namelist (CLUSNL)
| The name of the namelist that specifies a list of clusters to which the channel
| belongs.

| This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
| one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of
| the values is nonblank, the other must be blank.

| This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
| Sun Solaris, and Windows NT only.

Connection name (CONNAME)
This is the communications connection identifier. It specifies the particular
communications link to be used by this channel.

This attribute is required for sender channels, requester channels, and
client-connection channels. It does not apply to receiver or server-connection
channel types.

It is optional for server channels, except on OS/390 using CICS where it is required
in the channel definition, but is ignored unless the server is initiating the
conversation.

For OS/390 using CICS this attribute names the CICS communication connection
identifier for the session to be used for this channel. The name is one to four
alphanumeric characters long.

Otherwise, the name is up to 48 characters for OS/390, 264 characters for other
platforms, and:

If the transport type is TCP
| This is either the hostname or the network address of the remote machine.
| For example, (MACH1.ABC.COM) or (19.22.11.162). It may include the port
| number, for example (MACHINE(123)).

| If the transport type is UDP
| For AIX and Windows 2.0 only, UDP is an alternative to TCP. As with
| TCP/IP, it is either the hostname or the network address of the remote
| machine.

If the transport type is LU 6.2
For OS/400, Windows NT, and UNIX systems give the CPI-C side information
object name as described in the section in this book about setting up
communication for your platform.

For OS/2, give the fully-qualified name of the partner LU. This is described in
Chapter 10, “Setting up communication for OS/2 and Windows NT” on
page 137.

90 MQSeries Intercommunication

 Convert message (CONVERT)

| On OS/390 there are two forms in which to specify the value:

| Logical unit name
| The logical unit information for the queue manager, comprising the
| logical unit name, TP name, and optional mode name. This can be
| specified in one of 3 forms:

| Form Example
| luname IGY12355

| luname/TPname IGY12345/APING

| luname/TPname/modename IGY12345/APINGD/#INTER

| For the first form, the TP name and mode name must be specified for
| the TPNAME and MODENAME attributes; otherwise these attributes
| must be blank.

| Note: For client-connection channels, only the first form is allowed.

| Symbolic name
| The symbolic destination name for the logical unit information for the
| queue manager, as defined in the side information data set. The
| TPNAME and MODENAME attributes must be blank.

| Note: For cluster-receiver channels, the side information is on the other
| queue managers in the cluster. Alternatively, in this case it can
| be a name that a channel auto-definition exit can resolve into the
| appropriate logical unit information for the local queue manager.

For Digital OpenVMS, specify the Gateway Node name, the Access Name to
the channel program, and the TPNAME used to invoke the remote program.
For example: CONNAME('SNAGWY.VMSREQUESTER(HOSTVR)').

For Tandem NonStop Kernel, the value depends on whether SNAX or ICE is
used; see Chapter 19, “Setting up communication in Tandem NSK” on
page 285.

If the transmission protocol is NetBIOS
This is the NetBIOS name defined on the remote machine.

If the transmission protocol is SPX
This is an SPX-style address consisting of a 4-byte network address, a 6-byte
node address and a 2-byte socket number. Enter these in hexadecimal, with
the network and node addresses separated by a fullstop and the socket
number in brackets. For example:

CONNAME('ðaðbðcðd.8ð4abcde23a1(5e86)')

If the socket number is omitted, the default MQSeries SPX socket number is
used. The default is X'5E86'.

Note: The definition of transmission protocol is contained in “Transport type
(TRPTYPE)” on page 104.

Convert message (CONVERT)
Application message data is usually converted by the receiving application.
However, if the remote queue manager is on a platform that does not support data
conversion, use this channel attribute to specify that the message should be
converted into the format required by the receiving system before transmission.

 Chapter 6. Channel attributes 91

 Description (DESCR) � Disconnect interval (DISCINT)

| This attribute applies only to sender, cluster-sender, server, and cluster-receiver
| channels and does not apply to MQSeries for OS/390 with CICS or MQSeries for

Windows.

The possible values are ‘yes’ and ‘no’. If you specify ‘yes’, the application data in
the message is converted before sending if you have specified one of the
appropriate built-in format names (see “Application data conversion” in the
MQSeries Application Programming Guide). If you specify ‘no’, the application data
in the message is not converted before sending.

 Description (DESCR)
This contains up to 64 bytes of text that describes the channel definition.

Note: The maximum number of characters is reduced if the system is using a
double byte character set (DBCS).

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager to ensure that the text is translated
correctly if it is sent to another queue manager.

Disconnect interval (DISCINT)
| This is a time-out attribute, specified in seconds, for the server, cluster-sender,
| sender, and cluster-receiver channels. The interval is measured from the point at

which a batch ends, that is when the batch size is reached or when the batch
interval expires and the transmission queue becomes empty. If no messages arrive
on the transmission queue during the specified time interval, the channel closes
down. (The time is approximate.)

The close-down exchange of control data between the two ends of the channel
includes an indication of the reason for closing. This ensures that the
corresponding end of the channel remains available to start up again.

| On all platforms except OS/390 with CICS, you can specify any number of seconds
| from zero through 999 999 where a value of zero means no disconnect; wait
| indefinitely.

In OS/390 using CICS, you can specify any number of seconds from zero through
9999 where a value of zero means disconnect as soon as the transmission queue
is empty.

Note: Performance is affected by the value specified for the disconnect interval.

A very low value (a few seconds) may cause excessive overhead in
constantly starting up the channel. A very large value (more than an hour)
could mean that system resources are unnecessarily held up. For V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
MQSeries for OS/390 without CICS, and MQSeries for AS/400 V4R2M1,
you can also specify a heartbeat interval, so that when there are no
messages on the transmission queue, the sending MCA will send a
heartbeat flow to the receiving MCA, thus giving the receiving MCA an
opportunity to quiesce the channel without waiting for the disconnect interval
to expire. For these two values to work together effectively, the heartbeat
interval value should be significantly lower than the disconnect interval
value.

92 MQSeries Intercommunication

 Heartbeat interval (HBINT) � Long retry count (LONGRTY)

A value for the disconnect interval of a few minutes is a reasonable value to
use. Change this value only if you understand the implications for
performance, and you need a different value for the requirements of the
traffic flowing down your channels.

For more information, see “Stopping and quiescing channels (not MQSeries
for Windows)” on page 73.

Heartbeat interval (HBINT)
This attribute applies to V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, MQSeries for OS/390 without CICS, and MQSeries for AS/400
V4R2M1. You can specify the approximate time between heartbeat flows that are
to be passed from a sending MCA when there are no messages on the
transmission queue. Heartbeat flows unblock the receiving MCA, which is waiting
for messages to arrive or for the disconnect interval to expire. When the receiving
MCA is unblocked it can disconnect the channel without waiting for the disconnect
interval to expire. Heartbeat flows also free any storage buffers that have been
allocated for large messages and close any queues that have been left open at the
receiving end of the channel.

The value is in seconds and must be in the range 0 through 999 999. A value of
zero means that no heartbeat flows are to be sent. The default value is 300. To
be most useful, the value should be significantly less than the disconnect interval
value.

| This attribute is valid for sender, cluster-sender, server, receiver, cluster-receiver,
| and requester channels. Other than on OS/390 and OS/400, it also applies to

server-connection and client-connection channels. On these channels, heartbeats
flow when a server MCA has issued an MQGET command with the WAIT option on
behalf of a client application.

Long retry count (LONGRTY)
Specify the maximum number of times that the channel is to try allocating a session
to its partner. If the initial allocation attempt fails, the short retry count number is
decremented and the channel retries the remaining number of times. If it still fails,
it retries a long retry count number of times with an interval of long retry
interval between each try. If it is still unsuccessful, the channel closes down.
The channel must subsequently be restarted with a command (it is not started
automatically by the channel initiator).

(Retry is not attempted if the cause of failure is such that a retry is not likely to be
successful.)

If the channel initiator or queue manager stops while the channel is retrying, the
short retry count and long retry count are reset when the channel initiator or queue
manager is restarted.

| The long retry count attribute is valid only for channel types of sender,
| cluster-sender, server, and cluster-receiver. It is also valid for requester channels

on OS/390 if you are using CICS. It may be set from zero through 999 999 999.
On OS/390 using CICS, it may be set from zero through 999, and the long and
short retries have the same count.

 Chapter 6. Channel attributes 93

 Long retry interval (LONGTMR) � LU 6.2 transaction program name (TPNAME)

Note: For OS/2, OS/400, UNIX systems, and Windows NT, in order for retry to be
attempted a channel initiator must be running. The channel initiator must be
monitoring the initiation queue specified in the transmission queue that the channel
is using.

Long retry interval (LONGTMR)
The approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the long retry mode.

The interval between retries may be extended if the channel has to wait to become
active.

The channel tries to connect long retry count number of times at this long
interval, after trying the short retry count number of times at the short retry
interval.

| This is valid only for channel types of sender, cluster-sender, server, and
| cluster-receiver. It is also valid for requester channels on OS/390 if you are using

CICS. It may be set from zero through 999 999. On OS/390 using CICS, it may
be set from zero through 999.

LU 6.2 mode name (MODENAME)
This is for use with LU 6.2 connections (OS/2, Tandem NSK, and OS/390 only). It
gives extra definition for the session characteristics of the connection when a
communication session allocation is performed. It is not valid for receiver or
server-connection channels.

The name must be one to eight alphanumeric characters long.

| On Tandem NSK, this should be set to the SNA mode name.

| The name can also be nonblank for client connection channels to be used with
| OS/2 Warp.

| On other platforms, if specified this should be set to the SNA mode name unless
| the CONNAME contains a side-object name, in which case it should be set to
| blanks. The actual name is then taken from the CPI-C Communications Side
| Object, or APPC side information data set.

LU 6.2 transaction program name (TPNAME)
This is for OS/2, Tandem NSK, VSE/ESA, and OS/390 only. It is the name, or
generic name, of the transaction program (MCA) to be run at the far end of the link.
This name may be required by sender channels and requester channels, but is
optional for server channels except on OS/390 using CICS where it is required in
the channel definition, but is ignored unless the server is initiating the conversation.

On platforms other then Tandem NSK, the name can be up to 64 characters long.
See Chapter 19, “Setting up communication in Tandem NSK” on page 285 for
more information about that platform.

94 MQSeries Intercommunication

 Maximum message length (MAXMSGL)

If the remote system is MQSeries for OS/390 using CICS, the transaction is:

� CKRC when you are defining a sender channel, or a server channel that acts
as a sender

� CKSV when you are defining a requester

� CKRC when you are defining a sender for Call_back

| On other platforms, this should be set to the SNA transaction program name,
| unless the CONNAME contains a side-object name in which case it should be set
| to blanks. The actual name is taken instead from the CPI-C Communications Side
| Object, or the APPC side information data set.

This information is set in a different way on other platforms; see the section in this
book about setting up communication for your platform.

Maximum message length (MAXMSGL)
Specifies the maximum length of a message that can be transmitted on the
channel.

On AIX, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and VSE/ESA, specify a
value greater than or equal to zero, and less than or equal to the maximum
message length for the queue manager. See the MAXMSGL parameter of the
“ALTER QMGR” command in the MQSeries Command Reference book for more
information. On other platforms, specify a value greater than or equal to zero, and
less than or equal to 4 194 304 bytes.

Because various implementations of MQSeries systems exist on different platforms,
the size available for message processing may be limited in some applications.
This number must reflect a size that your system can handle without stress. When
a channel starts up, the lower of the two numbers at each end of the channel is
taken.

Notes:

1. If splitting of messages is not supported at either end of a channel, the
maximum message size cannot be greater than the negotiated maximum
transmission size.

2. The IBM MQSeries products that this edition of the book applies to all support
message splitting. Other MQSeries products do not support message splitting.

3. For a comparison of the functions available, including the different maximum
message lengths available see “MQSeries product functional comparison” in
the MQSeries Planning Guide and Appendix I, “MQSeries platforms - functional
comparisons” in the MQSeries Application Programming Guide.

4. You may use a maximum message size of 0 which will be taken to mean that
the size is to be set to the local queue manager maximum value.

 Chapter 6. Channel attributes 95

 Maximum transmission size � MCA user identifier (MCAUSER)

Maximum transmission size
If you are using CICS for distributed queuing on OS/390, you can specify the
maximum transmission size, in bytes, that your channel is allowed to use when
transmitting a message, or part of a message. When a channel starts up, this
value is negotiated between the sending and receiving channels and the lower of
the two values is agreed. The maximum size is 32 000 bytes on TCP/IP, but the

| maximum usable size is 32 000 bytes less the message descriptor. On VSE/ESA,
| the maximum size is 64 000 bytes on SNA.

Use this facility to ensure that system resources are not exceeded by your
channels. Set this value in conjunction with the maximum message size,
remembering to allow for message descriptors. An error situation may be created if
the message size is allowed to exceed the transmission size, and message splitting
is not supported.

Notes:

1. If channel startup negotiation results in a size less than the minimum required
for the local channel program, no messages can be transferred.

2. The IBM MQSeries products that this edition of the book applies to all support
message splitting. Other MQSeries products do not support message splitting.

Message channel agent name (MCANAME)
This attribute is reserved and should not be used.

Message channel agent type (MCATYPE)
| For MQSeries for OS/2, Windows NT, AIX, HP-UX, Sun Solaris, and SINIX and
| DC/OSx, the MCA type may be specified as a ‘process’ or a ‘thread’. If ‘process’ is

specified, the MCA runs as a separate process. If ‘thread’ is specified, the MCA
runs as a separate thread.

This attribute is used when the channel is started to determine how the channel is
run. If ‘thread’ is specified then the channel initiator should be running.

| This parameter is valid for channel types of sender, cluster-sender (on V5.1 of
| MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT only), server,
| requester, or cluster-receiver.

Message channel agent user identifier (MCAUSER)
This is not valid for OS/390 using CICS; it is not valid for channels of
client-connection type.

This attribute is the user identifier (a string) to be used by the MCA for authorization
to access MQSeries resources, including (if PUT authority is DEF) authorization to
put the message to the destination queue for receiver or requester channels.

| On MQSeries for Windows NT, the user identifier may be domain-qualified by using
| the format, user@domain, where the domain must be either the Windows NT domain
| of the local system or a trusted domain.

If this attribute is blank, the MCA uses its default user identifier.

96 MQSeries Intercommunication

 Message exit name (MSGEXIT) � Message retry count (MRRTY)

Message exit name (MSGEXIT)
Specifies the name of the user exit program to be run by the channel message exit.
In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1 this can be a list of names of programs that are
to be run in succession. Leave blank, if no channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 100.

The message exit is not supported on client-connection or server-connection
channels.

Message exit user data (MSGDATA)
Specifies user data that is passed to the channel message exits.

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1, you can run a sequence of message exits.
The limitations on the user data length and an example of how to specify
MSGDATA for more than one exit are as shown for RCVDATA. See “Receive exit
user data (RCVDATA)” on page 101.

On other platforms the maximum length of the string is 32 characters.

Message-retry exit name (MREXIT)
Specifies the name of the user exit program to be run by the message-retry user
exit. Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 100.

| This parameter is only valid for receiver, cluster-receiver, and requester channels.
It is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message-retry exit user data (MRDATA)
This is passed to the channel message-retry exit when it is called.

| This parameter is only valid for receiver, cluster-receiver, and requester channels.
It is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message retry count (MRRTY)
This is the number of times the channel will retry before it decides it cannot deliver
the message.

This attribute controls the action of the MCA only if the message-retry exit name is
blank. If the exit name is not blank, the value of MRRTY is passed to the exit for
the exit’s use, but the number of retries performed (if any) is controlled by the exit,
and not by this attribute.

 Chapter 6. Channel attributes 97

 Message retry interval (MRTMR) � Nonpersistent message speed (NPMSPEED)

The value must be in the range 0 to 999 999 999. A value of zero means that no
retries will be performed.

| This parameter is only valid for receiver, cluster-receiver, and requester channels.
| It is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message retry interval (MRTMR)
This is the minimum interval of time that must pass before the channel can retry the
MQPUT operation. This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is
blank. If the exit name is not blank, the value of MRTMR is passed to the exit for
the exit’s use, but the retry interval is controlled by the exit, and not by this
attribute.

The value must be in the range 0 to 999 999 999. A value of zero means that the
retry will be performed as soon as possible (provided that the value of MRRTY is
greater than zero).

| This parameter is only valid for receiver, cluster-receiver, and requester channels.
| It is not supported on MQSeries for OS/390 or MQSeries for Windows.

| Network-connection priority (NETPRTY)
| The priority for the network connection. Distributed queuing will choose the path
| with the highest priority if there are multiple paths available. The value must be in
| the range 0 through 9; 0 is the lowest priority.

| This parameter is valid only for cluster-receiver channels.

| This parameter is valid only on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
| Sun Solaris, and Windows NT.

Nonpersistent message speed (NPMSPEED)
For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
MQSeries for OS/390 without CICS, MQSeries for Windows V2.1, and MQSeries
for AS/400 V4R2M1, you can specify the speed at which nonpersistent messages
are to be sent. You can specify either ‘normal’ or ‘fast’. The default is ‘fast’, which
means that nonpersistent messages on a channel need not wait for a syncpoint
before being made available for retrieval. The advantage of this is that
nonpersistent messages become available for retrieval far more quickly. The
disadvantage is that because they do not wait for a syncpoint, messages may be
lost if there is a transmission failure or if the channel stops when the messages are
in transit. See “Fast, nonpersistent messages” on page 26.

| This attribute is valid for sender, cluster-sender, server, receiver, cluster-receiver,
| and requester channels.

98 MQSeries Intercommunication

 Password (PASSWORD) � PUT authority (PUTAUT)

 Password (PASSWORD)
You can specify a password of maximum length 12 characters, although only the
first 10 characters are used.

The password may be used by the MCA when attempting to initiate a secure LU
6.2 session with a remote MCA. It is valid for channel types of sender, server,
requester, or client-connection.

This does not apply to MQSeries for OS/390 except for client-connection channels,
and does not apply to MQSeries for Windows.

PUT authority (PUTAUT)
| Use this field to choose the type of security processing to be carried out by the
| MCA when executing 1) an MQPUT command to the destination queue (for
| message channels) ,or 2) an MQI call (for MQI channels). (PUT security is not

supported on MQSeries for Windows.)

You can choose one of the following:

Process security, also called default authority (DEF)
Default user ID is used.

On OS/390, this might involve using both the user ID received from the
network and that derived from MCAUSER.

On other platforms, with Process security, you choose to have the queue
security based on the user ID that the process is running under. The user
ID is that of the process, or user, running the MCA at the sending end of
the message channel.

The queues are opened with this user ID, and the open option
MQOO_SET_ALL_CONTEXT.

Context security (CTX)
Alternate user ID is used from the context information associated with a
message.

| On OS/390, this may involve also using either the user ID received from
| the network, or the user ID derived from MCAUSER, or both.

The UserIdentifier in the message descriptor is moved into the
AlternateUserId field in the object descriptor. The queue is opened with
the open options MQOO_SET_ALL_CONTEXT and
MQOO_ALTERNATE_USER_AUTHORITY.

| Only Message Channel Agent security (ONLYMCA)
| This is supported on OS/390 only and is the same as process security but
| any user ID received from the network is not used.
| Alternate Message Channel Agent security (ALTMCA)
| This is supported on OS/390 only and is the same as context security but
| any user ID received from the network is not used.

This parameter is only valid for receiver, requester, cluster-receiver, and
server-connection channels. Context security and alternate message channel
agent security are not supported on server-connection channels.

 Chapter 6. Channel attributes 99

 Queue manager name (QMNAME) � Receive exit name (RCVEXIT)

Further details about context fields and open options can be found in “Using the
options of the MQOPEN call” in the MQSeries Application Programming Guide.
Further details about security can be found in Chapter 10, “Protecting MQSeries
objects” in the MQSeries System Administration book for V5.1 of MQSeries for AIX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the MQSeries for Windows
User’s Guide, or in the MQSeries System Management Guide or MQSeries
Administration Guide for your platform.

Queue manager name (QMNAME)
This applies to a channel of client-connection type only. It is the name of the
queue manager or queue manager group to which an MQSeries client application
can request connection.

Receive exit name (RCVEXIT)
Specifies the name of the user exit program to be run by the channel receive user
exit. In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows
NT, and MQSeries for AS/400 V4R2M1 this can be a list of names of programs that
are to be run in succession. Leave blank, if no channel receive user exit is in
effect.

The format and maximum length of this attribute depend on the platform:

� On OS/390 it is a load module name, maximum length 8 characters, except for
client-connection channels where the maximum length is 128 characters.

� On OS/400 it is of the form:

progname libname

where progname occupies the first 10 characters, and libname the second 10
characters (both blank-padded to the right if necessary). The maximum length
of the string is 20 characters.

� On OS/2 and Windows it is of the form:

dllname(functionname)

where dllname is specified without the suffix “.DLL”. The maximum length of
the string is 40 characters.

� On UNIX systems, Digital OpenVMS, and Tandem NSK it is of the form:

libraryname(functionname)

The maximum length of the string is 40 characters.

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1 you can specify a list of receive, send, or
message exit program names. The names should be separated by a comma, a
space, or both. For example:

RCVEXIT(exit1 exit2)

MSGEXIT(exit1,exit2)

SENDEXIT(exit1, exit2)

100 MQSeries Intercommunication

 Receive exit user data (RCVDATA) � Send exit name (SENDEXIT)

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
the total length of the string of exit names and strings of user data for a particular
type of exit is limited to 500 characters. In MQSeries for AS/400 you can list up to
10 exit names.

Receive exit user data (RCVDATA)
Specifies user data that is passed to the receive exit.

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1, you can run a sequence of receive exits. The
string of user data for a series of exits should be separated by a comma, spaces,
or both. For example:

RCVDATA(exit1_data exit2_data)

MSGDATA(exit1_data,exit2_data)

SENDDATA(exit1_data, exit2_data)

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
the length of the string of exit names and strings of user data is limited to 500
characters. In MQSeries for AS/400 you can specify up to 10 exit names and the
length of user data for each is limited to 32 characters.

On other platforms the maximum length of the string is 32 characters.

Security exit name (SCYEXIT)
Specifies the name of the exit program to be run by the channel security exit.
Leave blank if no channel security exit is in effect.

The format and maximum length of the name depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 100.

Security exit user data (SCYDATA)
Specifies user data that is passed to the security exit. The maximum length is 32
characters.

Send exit name (SENDEXIT)
Specifies the name of the exit program to be run by the channel send exit. In V5.1
of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and
MQSeries for AS/400 V4R2M1 this can be a list of names of programs that are to
be run in sequence. Leave blank if no channel send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for
“Receive exit name (RCVEXIT)” on page 100.

 Chapter 6. Channel attributes 101

 Send exit user data (SENDDATA) � Short retry count (SHORTRTY)

Send exit user data (SENDDATA)
Specifies user data that is passed to the send exit.

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1, you can run a sequence of send exits. The
limitations on the user data length and an example of how to specify SENDDATA
for more than one exit, are as shown for RCVDATA. See “Receive exit user data
(RCVDATA)” on page 101.

On other platforms the maximum length of the string is 32 characters.

Sequence number wrap (SEQWRAP)
This is the highest number the message sequence number reaches before it
restarts at 1. In OS/390 using CICS, this number is of interest only when
sequential delivery of messages is selected. It is not valid for channel types of
client-connection or server-connection.

The value of the number should be high enough to avoid a number being reissued
while it is still being used by an earlier message. The two ends of a channel must
have the same sequence number wrap value when a channel starts up; otherwise,
an error occurs.

The value may be set from 100 through 999 999 999 (1 through 9 999 999 for
OS/390 using CICS).

 Sequential delivery
This applies only to OS/390 using CICS. Set this to ‘YES’ when using sequential
numbering of messages. If one side of the channel requests this facility, it must be
accepted by the other side.

There could be a performance penalty associated with the use of this option.

For other platforms, the MCA always uses message sequence numbering.

Short retry count (SHORTRTY)
Specify the maximum number of times that the channel is to try allocating a session
to its partner. If the initial allocation attempt fails, the short retry count is
decremented and the channel retries the remaining number of times with an
interval, defined in the short retry interval attribute, between each attempt. If it
still fails, it retries long retry count number of times with an interval of long retry
interval between each attempt. If it is still unsuccessful, the channel terminates.

(Retry is not attempted if the cause of failure is such that a retry is not likely to be
successful.)

If the channel initiator or queue manager stops while the channel is retrying, the
short retry count and long retry count are reset when the channel initiator or queue
manager is restarted.

102 MQSeries Intercommunication

 Short retry interval (SHORTTMR) � Transmission queue name (XMITQ)

| The short retry count attribute is valid only for channel types of sender,
| cluster-sender, server, and cluster-receiver. It is also valid for requester channels

on OS/390 if you are using CICS. It may be set from zero through 999 999 999 (1
through 999 for OS/390 using CICS, and the long and short retries have the same
count).

Note: For MQSeries for OS/2 Warp, OS/400, UNIX systems, and Windows NT, in
order for retry to be attempted a channel initiator must be running. The channel
initiator must be monitoring the initiation queue specified in the transmission queue
that the channel in using.

Short retry interval (SHORTTMR)
Specify the approximate interval in seconds that the channel is to wait before
retrying to establish connection, during the short retry mode.

The interval between retries may be extended if the channel has to wait to become
active.

| This attribute is valid only for channel types of sender, cluster-sender, server, and
| cluster-receiver. It is also valid for requester channels on OS/390 if you are using

CICS. It may be set from zero through 999 999. (0 through 999 for OS/390 using
CICS).

Target system identifier
This is for OS/390 using CICS only. It identifies the particular CICS system where
the sending or requesting channel transaction is to run.

The default is blank, which means the CICS system where you are logged on. The
name may be one through four alphanumeric characters.

 Transaction identifier
This only applies to OS/390 using CICS.

The name of the local CICS transaction that you want to start. If you do not specify
a value, the name of the supplied transaction for the channel type is used.

Transmission queue name (XMITQ)
The name of the transmission queue from which messages are retrieved. This is
required for channels of type sender or server, it is not valid for other channel
types.

Provide the name of the transmission queue to be associated with this sender or
server channel, that corresponds to the queue manager at the far side of the
channel. The transmission queue may be given the same name as the queue
manager at the remote end.

 Chapter 6. Channel attributes 103

 Transport type Transmission protocol (TRPTYPE) � User ID (USERID)

Transport type (TRPTYPE)
This does not apply to OS/390 using CICS.

The possible values are:

LU62 LU 6.2

TCP TCP/IP (1)

| UDP| UDP (2)

NETBIOS NetBIOS (3)

SPX SPX (3)

Notes:

1. MQSeries for Windows Version 2.1 supports TCP only.

| 2. UDP is supported on MQSeries for AIX and MQSeries for Windows Version 2.0 only.

3. For use on OS/2 and Windows NT. Can also be used on OS/390 for defining
client-connection channels for use on OS/2 and Windows NT.

User ID (USERID)
| On V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
| you can specify a task user identifier of 20 characters. On other platforms, you can

specify a task user identifier of maximum length 12 characters, although only the
first 10 characters are used.

The user ID may be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA. It is valid for channel types of sender, server,
requester, or client-connection.

This does not apply to MQSeries for OS/390 except for client-connection channels
and does not apply to MQSeries for Windows.

End of Product-sensitive programming interface

104 MQSeries Intercommunication

 Example configurations

Chapter 7. Example configuration chapters in this book

Throughout the following parts of the book, there is a series of chapters containing
examples of how to configure the various platforms to communicate with each
other. These chapters describe tasks performed to establish a working MQSeries
network. The tasks were to establish MQSeries sender and receiver channels to
enable bi-directional message flow between the platforms over all supported
protocols.

Figure 32 is a conceptual representation of a single channel and the MQSeries
objects associated with it.

T r a n s m i s s i o n

q u e u e

S e n d e r

c h a n n e l

L o c a l

q u e u e

R e m o t e

q u e u e

M Q P U T M Q G E T

A p p l 1 A p p l 2

Q u e u e m a n a g e r 1 Q u e u e m a n a g e r 2

Figure 32. MQSeries channel to be set up in the example configuration chapters in this
book

This is a simple example, intended to introduce only the basic elements of the
MQSeries network. It does not demonstrate the use of triggering which is
described in “Triggering channels” on page 23.

The objects in this network are:

� A remote queue
� A transmission queue
� A local queue
� A sender channel

Appl1 and Appl2 are both application programs; Appl1 is putting messages and
Appl2 is receiving them.

Appl1 puts messages to a remote queue. The definition for this remote queue
specifies the name of a target queue manager, a local queue on that queue
manager, and a transmission queue on this the local queue manager.

When the queue manager receives the request from Appl1 to put a message to the
remote queue, it looks at the queue definition and sees that the destination is
remote. It therefore puts the message straight onto the transmission queue
specified in the definition. The message remains on the transmission queue until
the channel becomes available, which may happen immediately.

 Copyright IBM Corp. 1993,1999 105

 Network infrastructure � Communications software

A sender channel has in its definition a reference to one, and one only,
transmission queue. When a channel is started, and at other times during its
normal operation, it will look at this transmission queue and send any messages on
it to the target system. The message has in its transmission header details of the
destination queue and queue manager.

The intercommunication examples in the following chapters describe in detail the
creation of each of the objects described above, for a variety of platform
combinations.

On the target queue manager, definitions are required for the local queue and the
receiver side of the channel. These objects operate independently of each other
and so can be created in any sequence.

On the local queue manager, definitions are required for the remote queue, the
transmission queue, and the sender side of the channel. Since both the remote
queue definition and the channel definition refer to the transmission queue name, it
is advisable to create the transmission queue first.

 Network infrastructure
The configuration examples assume that all the systems are connected to a Token
Ring network with the exception of OS/390 and VSE/ESA, which communicate via
a 3745 (or equivalent) that is attached to the Token Ring, and Sun Solaris, which is
on an adjacent local area network (LAN) also attached to the 3745.

It is also assumed that, for SNA, all the required definitions in VTAM and network
control program (NCP) are in place and activated for the LAN-attached platforms to
communicate over the wide area network (WAN).

Similarly, for TCP, it is assumed that nameserver function is available, either via a
domain nameserver or via locally held tables (for example a host file).

 Communications software
Working configurations are given for the following network software products:

 � SNA

– Communications Manager/2 Version 1.11
– Communications Server for Windows NT, Version 5.0
– AIX SNA Server, V5.0

 – Hewlett-Packard SNAplus2
– AT&T GIS SNA Services Version 2.06 or later
– OS/400 Version 4 Release 2
– SunLink Peer-to-Peer Version 9.1

| – OS/390 Version 2 Release 4
– CICS/VSE Version 2 Release 1

106 MQSeries Intercommunication

 Using communication examples

 � TCP

– TCP for OS/2 Version 2
– Microsoft Windows NT Version 4 or later
– AIX Version 4 Release 1.4
– HP-UX Version 10.2 or later
– AT&T GIS UNIX Release 2.03.01
– Sun Solaris Release 2.4
– OS/400 Version 4 Release 2

| – TCP for OS/390

 � NetBIOS

 � SPX

 � UDP

How to use the communication examples
The information in the example-configuration chapters describes the tasks that were
carried out on a single platform, to set up communication to another of the
platforms, and then describes the MQSeries tasks to establish a working channel to
that platform. Wherever possible, the intention is to make the information as
generic as possible. Thus, to connect any two MQSeries queue managers on
different platforms, you should need to refer to only the relevant two chapters. Any
deviations or special cases are highlighted as such. Of course, you can also
connect two queue managers running on the same platform (on different machines
or on the same machine). In this case, all the information can be derived from the
one chapter.

| The examples only cover how to set up communications where clustering is not
| being used. For information about setting up communications while using
| clustering, see “Establishing communication in a cluster” in the MQSeries Queue
| Manager Clusters book. The communications’ configuration values given here still
| apply.

Each chapter contains a worksheet in which you can find the parameters used in
the example configurations. There is a short description of each parameter and
some guidance on where to find the equivalent values in your system. When you
have a set of values of your own, record these in the spaces on the worksheet. As
you proceed through the chapter, you will find cross-references to these values as
you need them.

Notes:

| 1. Example queue manager names usually reflect the platform that the queue
| manager runs on, but MVS is used for both OS/390 and MVS/ESA, which are
| essentially the same.

2. The sequence number wrap value for sender definitions defaults to
999999999 for Version 2 MQSeries products but to 999999 for Version 1
products and MQSeries for VSE/ESA.

3. For connections to MQSeries for OS/390 the examples, in general, cover only
connection without using CICS. See Chapter 26, “Preparing MQSeries for
OS/390 when using CICS” on page 381 for information about connecting using
CICS.

 Chapter 7. Example configuration chapters in this book 107

 Using communication examples

 IT responsibilities
Because the IT infrastructure can vary greatly between organizations, it is difficult to
indicate who, within an organization, controls and maintains the information
required to complete each parameter value. To understand the terminology used in
the following chapters, consider the following guidelines as a starting point.

� System administrator is used to describe the person (or group of people) who
installs and configures the software for a specific platform.

� Network administrator is used to describe the person who controls LAN
connectivity, LAN address assignments, network naming conventions, and so
on. This person may be in a separate group or may be part of the system
administration group.

In most OS/390 installations, there is a group responsible for updating the
ACF/VTAM, ACF/NCP, and TCP/IP software to support the network
configuration. The people in this group should be the main source of
information needed when connecting any MQSeries platform to MQSeries for
OS/390. They may also influence or mandate network naming conventions on
LANs and you should verify their span of control before creating your
definitions.

� A specific type of administrator, for example CICS administrator is indicated in
cases where we can more clearly describe the responsibilities of the person.

The example-configuration chapters do not attempt to indicate who is responsible
for and able to set each parameter. In general, several different people may be
involved.

108 MQSeries Intercommunication

Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital
OpenVMS, Tandem NSK, and UNIX systems

This part of the book describes the MQSeries distributed queue management
function for MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem
NSK, and UNIX systems. The information given may not all apply to MQSeries for
Windows. You should refer to the MQSeries for Windows User’s Guide for
information about that product.

Chapter 8. Monitoring and controlling channels on distributed platforms
 . 115

The DQM channel control function . 115
Functions available . 116
Getting started . 119

Creating objects . 119
Creating default objects . 119
Creating a channel . 120
Displaying a channel . 121
Displaying channel status . 121
Starting a channel . 122
Renaming a channel . 122

Channel attributes and channel types . 123
Channel functions . 124

Chapter 9. Preparing MQSeries for distributed platforms 129
Transmission queues and triggering . 129

Creating a transmission queue . 129
Triggering channels . 129

Channel programs . 131
Other things to consider . 131

Undelivered-message queue . 131
Queues in use . 132
Multiple message channels per transmission queue 132
Security of MQSeries objects . 132
System extensions and user-exit programs 133
Running channels and listeners as trusted applications 134

What next? . 135

 Copyright IBM Corp. 1993,1999 109

Chapter 10. Setting up communication for OS/2 and Windows NT . . . 137
Deciding on a connection . 137
Defining a TCP connection . 137

Sending end . 137
Receiving on TCP . 138

Defining an LU 6.2 connection . 140
Sending end for OS/2 . 141
Sending end for Windows NT . 142
Receiving on LU 6.2 . 142

Defining a NetBIOS connection . 143
Defining the MQSeries local NetBIOS name 144
Establishing the queue manager NetBIOS session, command, and name limits

 . 145
Establishing the LAN adapter number . 145
Initiating the connection . 146
Target listener . 146

Defining an SPX connection . 147
Sending end . 147
Receiving on SPX . 148
IPX/SPX parameters . 149

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp . . . 151
Configuration parameters for an LU 6.2 connection 151

Configuration worksheet . 152
Explanation of terms . 154

Establishing an LU 6.2 connection . 156
Defining local node characteristics . 156
Connecting to a peer system . 160
Connecting to a host system . 162
Verifying the configuration . 164
What next? . 165

Establishing a TCP connection . 165
What next? . 166

Establishing a NetBIOS connection . 167
Establishing an SPX connection . 167

IPX/SPX parameters . 168
SPX addressing . 168
Using the SPX KEEPALIVE option . 169
Receiving on SPX . 169

MQSeries for OS/2 Warp configuration . 170
Basic configuration . 170
Channel configuration . 171
Running channels as processes or threads 175

110 MQSeries Intercommunication

Chapter 12. Example configuration - IBM MQSeries for Windows NT . . 177
Configuration parameters for an LU 6.2 connection 177

Configuration worksheet . 178
Explanation of terms . 181

Establishing an LU 6.2 connection . 182
Configuring the local node . 182
Adding a connection . 183
Adding a partner . 185
Adding a CPI-C entry . 185
Configuring an invokable TP . 186
What next? . 187

Establishing a TCP connection . 188
What next? . 188

Establishing a NetBIOS connection . 188
Establishing an SPX connection . 189

IPX/SPX parameters . 189
SPX addressing . 190
Receiving on SPX . 190

MQSeries for Windows NT configuration . 191
| Default configuration . 191

Basic configuration . 191
Channel configuration . 192
Automatic startup . 196
Running channels as processes or threads 196

Chapter 13. Setting up communication in UNIX systems 199
Deciding on a connection . 199
Defining a TCP connection . 200

Sending end . 200
Receiving on TCP . 200

Defining an LU 6.2 connection . 203
Sending end . 203
Receiving on LU 6.2 . 204

Chapter 14. Example configuration - IBM MQSeries for AIX 207
Configuration parameters for an LU 6.2 connection 207

Configuration worksheet . 207
Explanation of terms . 211

| Establishing a session using SNA Server for AIX V5 213
| Configuring your node . 213
| Configuring connectivity to the network . 213
| Defining a local LU . 215
| Defining a transaction program . 215

Establishing a TCP connection . 218
What next? . 218

| Establishing a UDP connection . 218
| What next? . 218

MQSeries for AIX configuration . 219
Basic configuration . 219
Channel configuration . 220

 Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems 111

Chapter 15. Example configuration - IBM MQSeries for HP-UX 225
Configuration parameters for an LU 6.2 connection 225

Configuration worksheet . 225
Explanation of terms . 228

Establishing a session using HP SNAplus2 . 230
SNAplus2 configuration . 230
APPC configuration . 232
HP-UX operation . 236
What next? . 236

Establishing a TCP connection . 236
What next? . 237

MQSeries for HP-UX configuration . 237
Basic configuration . 237
Channel configuration . 238

Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX
Version 2.2 . 243

Configuration parameters for an LU 6.2 connection 243
Configuration worksheet . 243
Explanation of terms . 246

Establishing a connection using AT&T GIS SNA Server 247
Defining local node characteristics . 248
Connecting to a partner node . 249
Configuring a remote node . 249
What next? . 250

Establishing a TCP connection . 251
What next? . 251

MQSeries for AT&T GIS UNIX configuration 251
Basic configuration . 252
Channel configuration . 252

Chapter 17. Example configuration - IBM MQSeries for Sun Solaris . . . 257
Configuration parameters for an LU 6.2 connection 257

Configuration worksheet . 257
Explanation of terms . 261

| Establishing a connection using SunLink Version 9.1 262
| SunLink 9.1 base configuration . 262
| Configuring a PU 2.1 server . 262
| Adding a LAN connection . 263
| Configuring a connection to a remote PU . 264
| Configuring an independent LU . 265
| Configuring a partner LU . 265
| Configuring the session mode . 266
| Configuring a transaction program . 267
| CPI-C side information . 267
| What next? . 267

Establishing a TCP connection . 268
What next? . 268

MQSeries for Sun Solaris configuration . 268
Basic configuration . 269
Channel configuration . 269

112 MQSeries Intercommunication

Chapter 18. Setting up communication in Digital OpenVMS systems . . 273
Deciding on a connection . 273
Defining a TCP connection . 273

Sending end . 273
Receiving channels using Digital TCP/IP services (UCX) for OpenVMS . . 274
Receiving channels using Cisco MultiNet for OpenVMS 275
Receiving channels using Attachmate PathWay for OpenVMS 276
Receiving channels using Process Software Corporation TCPware 276

Defining an LU 6.2 connection . 277
SNA configuration . 277
Specifying SNA configuration parameters to MQSeries 279
Sample MQSeries configuration . 281
Problem solving . 282

Defining a DECnet Phase IV connection . 282
Sending end . 282
Receiving on DECnet Phase IV . 283

Defining a DECnet Phase V connection . 284

Chapter 19. Setting up communication in Tandem NSK 285
Deciding on a connection . 285
SNA channels . 285

LU 6.2 responder processes . 287
TCP channels . 287
Communications examples . 288

SNAX communications example . 288
ICE communications example . 296
TCP/IP communications example . 299

Chapter 20. Message channel planning example for distributed platforms
 . 301

What the example shows . 301
Queue manager QM1 example . 303
Queue manager QM2 example . 304

Running the example . 305
Expanding this example . 305

Chapter 21. Example SINIX and DC/OSx configuration files 307
Configuration file on bight . 308
Configuration file on forties . 309
Working configuration files for Pyramid DC/OSx 310

Output of dbd command . 310

 Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems 113

114 MQSeries Intercommunication

 Channels on distributed platforms � Channel control function

Chapter 8. Monitoring and controlling channels on
distributed platforms

For DQM you need to create, monitor, and control the channels to remote queue
managers. You can use the following types of command to do this:

The MQSeries commands (MQSC)
You can use the MQSC as single commands in an MQSC session in OS/2,
Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems. To issue
more complicated, or multiple, commands the MQSC can be built into a file that
you then run from the command line. For full details see Chapter 1, “Using
MQSeries Commands” in the MQSeries Command Reference book. This
chapter gives some simple examples of using MQSC for distributed queuing.

Control commands
You can also issue control commands at the command line for some of these
functions. Reference material for these commands is contained in Chapter 17,
“MQSeries control commands” in the MQSeries System Administration book for
V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
or in the MQSeries System Management Guide for your platform.

Programmable command format commands
See Part 2, “Programmable Command Formats” in the MQSeries
Programmable System Management book for information about using these
commands.

Message Queue Management facility
On Tandem NSK, you can use the Message Management facility. See the
MQSeries for Tandem NonStop Kernel System Management Guide for
information about this facility.

| IBM MQSeries Explorer
| On Windows NT, you can use an MMC snap-in called the MQSeries Explorer.
| This provides a graphical administration interface to perform administrative tasks
| as an alternative to using control commands or MQSC commands.

Each queue manager has a DQM component for controlling interconnections to
compatible remote queue managers.

For a list of the functions available to you when setting up and controlling message
channels, using the two types of commands, see Table 7 on page 116.

The DQM channel control function
The channel control function provides the interface and function for administration
and control of message channels between systems.

It consists of commands, programs, a file for the channel definitions, and a storage
area for synchronization information. The following is a brief description of the
components.

 Copyright IBM Corp. 1993,1999 115

 Functions available

� The channel commands are a subset of the MQSeries Commands (MQSC).

� You use MQSC and the control commands to:

– Create, copy, display, change, and delete channel definitions

– Start and stop channels, ping, reset channel sequence numbers, and
resolve in-doubt messages when links cannot be re-established

– Display status information about channels

� The channel definition file (CDF), amqrfcda.dat:

– Is indexed on channel name
– Holds channel definitions

� A storage area holds sequence numbers and logical unit of work (LUW)
identifiers. These are used for channel synchronization purposes.

 Functions available
Table 7 shows the full list of MQSeries functions that you may need when setting
up and controlling channels. The channel functions are explained in this chapter.

For more details of the control commands that you issue at the command line, see
Chapter 17, “MQSeries control commands” in the MQSeries System Administration
book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows
NT, or the MQSeries System Management Guide for your platform.

The MQSC commands are fully described in Chapter 2, “The MQSeries
commands” in the MQSeries Command Reference book.

Table 7 (Page 1 of 3). Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
systems

Function Control
commands

MQSC MQSeries
Explorer
equivalent?

MQSeries
Service
snap-in
equivalent?

Queue manager functions

Change queue manager ALTER QMGR Yes No

Create queue manager crtmqm Yes Yes

Delete queue manager dltmqm Yes Yes

Display queue manager DISPLAY
QMGR

Yes No

End queue manager endmqm Yes Yes

Ping queue manager PING QMGR No No

Start queue manager strmqm Yes Yes

Add a queue manager to Windows
NT Service Control Manager

No Yes

Command server functions

Display command server dspmqcsv No Yes

End command server endmqcsv No Yes

116 MQSeries Intercommunication

 Functions available

Table 7 (Page 2 of 3). Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
systems

Function Control
commands

MQSC MQSeries
Explorer
equivalent?

MQSeries
Service
snap-in
equivalent?

Start command server strmqcsv No Yes

Queue functions

Change queue ALTER
QALIAS
ALTER
QLOCAL
ALTER
QMODEL
ALTER
QREMOTE

Yes No

Clear queue CLEAR
QLOCAL
CLEAR
QUEUE

Yes No

Create queue DEFINE
QALIAS
DEFINE
QLOCAL
DEFINE
QMODEL
DEFINE
QREMOTE

Yes No

Delete queue DELETE
QALIAS
DELETE
QLOCAL
DELETE
QMODEL
DELETE
QREMOTE

Yes No

Display queue DISPLAY
QUEUE

Yes No

Process functions

Change process ALTER
PROCESS

Yes No

Create process DEFINE
PROCESS

Yes No

Delete process DELETE
PROCESS

Yes No

Display process DISPLAY
PROCESS

Yes No

Channel functions

Change channel ALTER
CHANNEL

Yes No

 Chapter 8. Monitoring and controlling channels on distributed platforms 117

 Functions available

Table 7 (Page 3 of 3). Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
systems

Function Control
commands

MQSC MQSeries
Explorer
equivalent?

MQSeries
Service
snap-in
equivalent?

Create channel DEFINE
CHANNEL

Yes No

Delete channel DELETE
CHANNEL

Yes No

Display channel DISPLAY
CHANNEL

Yes No

Display channel status DISPLAY
CHSTATUS

Yes No

End channel STOP
CHANNEL

Yes Yes

Ping channel PING
CHANNEL

Yes No

Reset channel RESET
CHANNEL

Yes No

Resolve channel RESOLVE
CHANNEL

Yes No

Run channel runmqchl START
CHANNEL

Yes Yes

Run channel initiator runmqchi START CHINIT No Yes

| Run listener| runmqlsr (not
| AT&T GIS
| UNIX)

| START
| LISTENER
| No| Yes

| End listener| endmqlsr
| (OS/2,
| Windows NT,
| AIX, HP-UX,
| Sun Solaris,
| and SINIX and
| DC/OSx only)

| No| Yes

118 MQSeries Intercommunication

 Getting started

 Getting started
| Use the MQSeries commands (MQSC) or the MQSeries Explorer on Windows NT
| to:

1. Define message channels and associated objects
2. Monitor and control message channels

The objects you may need to define are:

 � Transmission queues
� Remote queue definitions
� Queue manager alias definitions
� Reply-to queue alias definitions
� Reply-to local queues
� Processes for triggering (MCAs)
� Message channel definitions

Channels must be completely defined, and their associated objects must exist and
be available for use, before a channel can be started. This chapter shows you how
to do this.

In addition, the particular communication link for each channel must be defined and
available before a channel can be run. For a description of how LU 6.2, TCP/IP,
NetBIOS, SPX, and DECnet links are defined, see the particular communication
guide for your installation. See also the example configuration chapters in this
book.

 Creating objects
Use MQSC to create the queue and alias objects: transmission queues, remote
queue definitions, queue manager alias definitions, reply-to queue alias definitions,
and reply-to local queues.

Also create the definitions of processes for triggering (MCAs) in a similar way.

For an example showing how to create all the required objects see Chapter 20,
“Message channel planning example for distributed platforms” on page 301.

Creating default objects
In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
default objects are created automatically when a queue manager is created. These
objects are queues, channels, a process definition, and administration queues.
They correspond to the objects that are created when you run the amqscoma.tst
sample command file on earlier releases of these products and on other MQSeries
products.

 Chapter 8. Monitoring and controlling channels on distributed platforms 119

 Getting started

How are default objects created?
When you use the CRTMQM command to create a queue manager, the command
also initiates a program to create a set of default objects.

1. Each default object is created in turn. The program keeps a count of how
many objects are successfully defined, how many already existed and were
replaced, and how many unsuccessful attempts there were.

2. The program displays the results to you and if any errors occurred, directs you
to the appropriate error log for details.

When the program has finished running, you can use the STRMQM command to
start the queue manager.

See Chapter 17, “MQSeries control commands” on page 279 in the MQSeries
System Administration book for information about the CRTMQM and STRMQM
commands.

Changing the default objects
Once the default objects have been created, you can replace them at any time by
running the STRMQM command with the -c option. When you specify the -c
option, the queue manager is started temporarily while the objects are created and
is then shut down again. You must use the STRMQM command again, without the
-c option, if you want to start the queue manager.

If you wish to make any changes to the default objects, you can create your own
version of the old amqscoma.tst file and edit it.

Creating a channel
To create a new channel you have to create two channel definitions, one at each
end of the connection. You create the first channel definition at the first queue
manager. Then you create the second channel definition at the second queue
manager, on the other end of the link.

Both ends must be defined using the same channel name. The two ends must
have compatible channel types, for example: Sender and Receiver.

To create a channel definition for one end of the link use the MQSC command
DEFINE CHANNEL. Include the name of the channel, the channel type for this end
of the connection, a description (if required), the name of the transmission queue (if
required), and the transmission protocol. Also include any other attributes that you
want to be different from the system default values for the required channel type,
using the information you have gathered previously.

You are provided with help in deciding on the values of the channel attributes in
Chapter 6, “Channel attributes” on page 85.

Note: You are very strongly recommended to name all the channels in your
network uniquely. Including the source and target queue manager names in the
channel name is a good way to do this.

120 MQSeries Intercommunication

 Getting started

Create channel example
DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) +

DESCR('Sender channel to QM2') +

CONNAME(QM2) TRPTYPE(TCP) XMITQ(QM2) CONVERT(YES)

In all the examples of MQSC the command is shown as it would appear in a file of
commands, and as it would be typed in OS/2, Windows NT, UNIX systems, Digital
OpenVMS, or Tandem NSK. The two methods look identical, except that to issue a
command interactively, you must first start an MQSC session. Type runmqsc, for
the default queue manager, or runmqsc qmname where QMNAME is the name of the
required queue manager. Then type any number of commands, as shown in the
examples.

For portability, you should restrict the line length of your commands to 72
characters. Use a concatenation character as shown to continue over more than
one line. On Tandem NSK use Ctrl-y to end the input at the command line, or
enter exit or quit. On OS/2, Windows NT, or Digital OpenVMS use Ctrl-z. On
UNIX systems, use Ctrl-d. Alternatively, on V5.1 of MQSeries for AIX, HP-UX,
OS/2 Warp, Sun Solaris, and Windows NT, use the end command.

Displaying a channel
Use the MQSC command DISPLAY CHANNEL, specifying the channel name, the
channel type (optional), and the attributes you want to see, or specifying that all
attributes are to be displayed. In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT the ALL parameter of the DISPLAY CHANNEL
command is assumed by default if no specific attributes are requested and the
channel name specified is not generic.

The attributes are described in Chapter 6, “Channel attributes” on page 85.

Display channel examples
DISPLAY CHANNEL(QM1.TO.QM2) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.\) TRPTYPE,CONVERT

DISPLAY CHANNEL(\) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.QMR34) ALL

Displaying channel status
Use the MQSC command DISPLAY CHSTATUS, specifying the channel name and
whether you want the current status of channels or the status of saved information.

Display channel status examples
DISPLAY CHSTATUS(\) CURRENT

DISPLAY CHSTATUS(QM1.TO.\) SAVED

Note that the saved status does not apply until at least one batch of messages has
been transmitted on the channel. In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT status is also saved when a channel is stopped
(using the STOP CHL command) and when the queue manager is ended.

 Chapter 8. Monitoring and controlling channels on distributed platforms 121

 Getting started

Starting a channel
For applications to be able to exchange messages you must start a listener
program for inbound connections (or, in the case of UNIX systems, create a listener
attachment). In OS/2, Windows NT, and Tandem NSK, use the runmqlsr command
to start the MQSeries listener process. Any inbound requests for channel

| attachment start MCAs as threads of this listener process. In Digital OpenVMS,
| each receiver or server channel requires a listener process that then starts a
| channel process.

runmqlsr -t tcp -m QM2

For outbound connections you must start the channel in one of the following three
ways:

1. Use the MQSC command START CHANNEL, specifying the channel name, to
start the channel as a process or a thread, depending on the MCATYPE
parameter. (If channels are started as threads, they are threads of a channel
initiator, which must have been started previously using the runmqchi
command.)

START CHANNEL(QM1.TO.QM2)

2. Use the control command runmqchl to start the channel as a process.

runmqchl -c QM1.TO.QM2 -m QM1

3. Use the channel initiator to trigger the channel.

Renaming a channel
To rename a message channel, use MQSC to carry out the following steps:

1. Use STOP CHANNEL to stop the channel.

2. Use DEFINE CHANNEL to create a duplicate channel definition with the new
name.

3. Use DISPLAY CHANNEL to check that it has been created correctly.

4. Use DELETE CHANNEL to delete the original channel definition.

If you decide to rename a message channel, remember that a channel has two
channel definitions, one at each end. Make sure you rename the channel at both
ends at the same time.

122 MQSeries Intercommunication

 Channel attributes and types

Channel attributes and channel types
The channel attributes that are required for each type of channel are shown in
Table 8. The channel attributes are described in detail in Chapter 6, “Channel
attributes” on page 85.

Table 8 (Page 1 of 2). Channel attributes for the channel types in OS/2, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems

Attribute field SDR SVR RCVR RQSTR CLNT-
CONN

SVR-
CONN

CLUS-
SDR

CLUS-
RCVR

Batch interval O O O O

Batch size √ √ √ √ √ √

Channel name √ √ √ √ √ √ √ √

| Cluster| O| O

| Cluster namelist| O| O

Channel type √ √ √ √ √ √ √ √

Connection name √ O O √ √ √

Convert message √ √ √ √

Description O O O O O O O O

Disconnect interval √ √ √ √

Heartbeat interval O O O O O O O O

Long retry count √ √ √ √

Long retry interval √ √ √ √

LU 6.2 Transaction
program name

O O O O O O

Maximum message
length

√ √ √ √ √ √

Message channel
agent type

√ √ √ √ √ √

Message channel
agent user

O O O O O O O O

Message exit name O O O O O O

Message exit user
data

O O O O O O

Message-retry exit
name

O O O O

Message-retry exit
user data

O O O O

Message retry count O O O O

Message retry
interval

O O O O

Mode name O O O O O O

| Network-connection
| priority
| O| O

Nonpersistent
message speed

O O O O O O

Password O O O O O

PUT authority √ √ √

Queue manager
name

O

 Chapter 8. Monitoring and controlling channels on distributed platforms 123

 Channel functions

Table 8 (Page 2 of 2). Channel attributes for the channel types in OS/2, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems

Attribute field SDR SVR RCVR RQSTR CLNT-
CONN

SVR-
CONN

CLUS-
SDR

CLUS-
RCVR

Receive exit O O O O O O O O

Receive exit user
data

O O O O O O O O

Security exit O O O O O O O O

Security exit user
data

O O O O O O O O

Send exit O O O O O O O

Send exit user data O O O O O O O O

Sequence number
wrap

√ √ √ √ √ √

Short retry interval √ √ √ √

Short retry count √ √ √ √

Transport type √ O O √ √ √

Transmission queue √ √

User ID O O O O O

Note: √ = Required attribute, O = Optional attribute

 Channel functions
The channel functions available are shown in Table 7 on page 116. Here some
more detail is given about the channel functions.

 Create
You can create a new channel definition using the default values supplied by
MQSeries, specifying the name of the channel, the type of channel you are
creating, the communication method to be used, the transmission queue name and
the connection name.

The channel name must be the same at both ends of the channel, and unique
within the network. However, you should restrict the characters used to those that
are valid for MQSeries object names.

 Change
Use the MQSC command ALTER CHANNEL to change an existing channel
definition, except for the channel name, or channel type.

 Delete
Use the MQSC command DELETE CHANNEL to delete a named channel.

 Display
Use the MQSC command DISPLAY CHANNEL to display the current definition for
the channel.

124 MQSeries Intercommunication

 Channel functions

 Display Status
The MQSC command DISPLAY CHSTATUS displays the status of a channel
whether the channel is active or inactive. It applies to all message channels. It
does not apply to MQI channels other than server-connection channels on V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT. See
“Displaying channel status” on page 121.

Information displayed includes:

 � Channel name
� Communication connection name
� In-doubt status of channel (where appropriate)
� Last sequence number
� Transmission queue name (where appropriate)
� The in-doubt identifier (where appropriate)
� The last committed sequence number
� Logical unit of work identifier

 � Process ID
� Thread ID (OS/2 and Windows NT only)

 Ping
Use the MQSC command PING CHANNEL to exchange a fixed data message with
the remote end. This gives some confidence to the system supervisor that the link
is available and functioning.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related communication link, and the network setup. It can
only be used if the channel is not currently active.

It is available from sender and server channels only. The corresponding channel is
started at the far side of the link, and performs the startup parameter negotiation.
Errors are notified normally.

The result of the message exchange is presented as Ping complete or an error
message.

Ping with LU 6.2: When Ping is invoked, by default no USERID or password
flows to the receiving end. If USERID and password are required, they can be
created at the initiating end in the channel definition. If a password is entered into
the channel definition, it is encrypted by MQSeries before being saved. It is then
decrypted before flowing across the conversation.

 Start
Use the MQSC command START CHANNEL for sender, server, and requester
channels. It should not be necessary where a channel has been set up with queue
manager triggering.

Also use the START CHANNEL command for receiver channels that have a
disabled status, and on V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, for server-connection channels that have a disabled status.
Starting a receiver or server-connection channel that is in disabled status resets the
channel and allows it to be started from the remote channel.

 Chapter 8. Monitoring and controlling channels on distributed platforms 125

 Channel functions

When started, the sending MCA reads the channel definition file and opens the
transmission queue. A channel start-up sequence is executed, which remotely
starts the corresponding MCA of the receiver or server channel. When they have
been started, the sender and server processes await messages arriving on the
transmission queue and transmit them as they arrive.

When you use triggering or run channels as threads, you will need to start the
channel initiator to monitor the initiation queue. Use the runmqchi command for
this.

However, TCP and LU 6.2 do provide other capabilities:

� For TCP on OS/2, Digital OpenVMS, and UNIX systems, inetd (or an equivalent
TCP/IP service on OpenVMS) can be configured to start a channel. This will
be started as a separate process.

� For LU 6.2 in OS/2, using Communications Manager/2 it is possible to
configure the Attach Manager to start a channel. This will be started as a
separate process.

� For LU 6.2 in UNIX systems, configure your SNA product to start the LU 6.2
responder process.

� For LU 6.2 in Windows NT, using SNA Server you can use TpStart (a utility
provided with SNA Server) to start a channel. This will be started as a
separate process.

� For LU 6.2 in Digital OpenVMS systems, use the runmqlsr command to start
the LU 6.2 responder process.

� For LU 6.2 in Tandem NSK, use the runmqsc or runmqchl command to start
the LU 6.2 responder process.

Use of the Start option always causes the channel to re-synchronize, where
necessary.

For the start to succeed:

� Channel definitions, local and remote, must exist. If there is no appropriate
channel definition for a receiver or server-connection channel, a default one is
created automatically if the channel is auto-defined. See “Channel
auto-definition exit program” on page 502.

� Transmission queue must exist, and have no other channels using it.

� MCAs, local and remote, must exist.

� Communication link must be available.

� Queue managers must be running, local and remote.

� Message channel must not be already running.

126 MQSeries Intercommunication

 Channel functions

A message is returned to the screen confirming that the request to start a channel
has been accepted. For confirmation that the start command has succeeded,
check the error log, or use DISPLAY CHSTATUS. The error logs are:

OS/2 and Windows NT
\mqm\qmgrs\qmname\errors\AMQERRð1.LOG (for each queue manager called
qmname)

\mqm\qmgrs\@SYSTEM\errors\AMQERRð1.LOG (for general errors)

Note: On Windows NT, you still also get a message in the Windows NT
application event log.

Digital OpenVMS
MQS_ROOT:[MQM.QMGRS.QMNAME.ERRORS]AMQERRð1.LOG (for each queue manager
called qmname)

MQS_ROOT:[MQM.QMGRS.$SYSTEM.ERRORS]AMQERRð1.LOG (for general errors)

Tandem NSK
The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.

� If the queue manager name is known and the queue manager is available:

 <QMVOL>.<SUBVOL>L.MQERRLG1

� If the queue manager is not available:

 <MQSVOL>.ZMQSSYS.MQERRLG1

UNIX systems
/var/mqm/qmgrs/qmname/errors/AMQERRð1.LOG (for each queue manager called
qmname)

/var/mqm/qmgrs/@SYSTEM/errors/AMQERRð1.LOG (for general errors)

 Stop
Use the MQSC command STOP CHANNEL to request the channel to stop activity.
Any channel type is disabled by this command. The channel will not start a new
batch of messages until the operator starts the channel again. (For information
about restarting stopped channels, see “Restarting stopped channels” on page 75.)

You can select the type of stop you require:

Stop quiesce example

STOP CHANNEL(QM1.TO.QM2) MODE(QUIESCE)

This command requests the channel to close down in an orderly way. The current
batch of messages is completed and the syncpoint procedure is carried out with the
other end of the channel.

Note: If the channel is idle this command will not terminate a receiving channel.

 Chapter 8. Monitoring and controlling channels on distributed platforms 127

 Channel functions

Stop force example

STOP CHANNEL(QM1.TO.QM2) MODE(FORCE)

Normally, this option should not be used. It terminates the channel process or
thread. The channel does not complete processing the current batch of messages,
and can, therefore, leave the channel in doubt. In general, it is recommended that
operators use the quiesce stop option.

 Reset
Use the MQSC command RESET CHANNEL to change the message sequence
number. This command is available for any message channel, but not for MQI
channels (client-connection or server-connection). The first message starts the new
sequence the next time the channel is started.

If the command is issued on a sender or server channel, it informs the other side of
the change when the channel is restarted.

 Resolve
Use the MQSC command RESOLVE CHANNEL when messages are held in-doubt
by a sender or server, for example because one end of the link has terminated, and
there is no prospect of it recovering. The RESOLVE CHANNEL command accepts
one of two parameters: BACKOUT or COMMIT. Backout restores messages to
the transmission queue, while Commit discards them.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the in-doubt
messages. It then issues, as requested, either:

� BACKOUT to restore the messages to the transmission queue; or
� COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:

� The channel must be inactive
� The channel must be in doubt
� The channel type must be sender or server
� A local channel definition must exist
� The local queue manager must be running

128 MQSeries Intercommunication

 Preparing MQSeries on distributed platforms � Transmission queues and triggering

Chapter 9. Preparing MQSeries for distributed platforms

This chapter describes the MQSeries preparations required before DQM can be
used in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems.
It discusses the following topics:

� “Transmission queues and triggering”
� “Channel programs” on page 131
� “Other things to consider” on page 131

Transmission queues and triggering
Before a channel (other than a requester channel) can be started, the transmission
queue must be defined as described in this chapter, and must be included in the
message channel definition.

In addition, where needed, the triggering arrangement must be prepared with the
definition of the necessary processes and queues.

Creating a transmission queue
Define a local queue with the USAGE attribute set to XMITQ for each sending
message channel. If you want to make use of a specific transmission queue in
your remote queue definitions, create a remote queue as shown below.

To create a transmission queue, use the MQSeries Commands (MQSC), as shown
in the following examples:

Create transmission queue example

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') USAGE(XMITQ)

Create remote queue example

DEFINE QREMOTE(PAYROLL) DESCR('Remote queue for QM2') +

XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

The recommended name for the transmission queue is the queue manager name
on the remote system, as shown in the examples above.

 Triggering channels
An overview of triggering is given in “Triggering channels” on page 23, while it is
described in depth in Chapter 14, “Starting MQSeries applications using triggers” in
the MQSeries Application Programming Guide. This description provides you with
information specific to MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems.

You can create a process definition in MQSeries, defining processes to be
triggered. Use the MQSC command DEFINE PROCESS to create a process
definition naming the process to be triggered when messages arrive on a
transmission queue. The USERDATA attribute of the process definition should
contain the name of the channel being served by the transmission queue.

 Copyright IBM Corp. 1993,1999 129

 Transmission queues and triggering

Alternatively, for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can eliminate the need for a process definition by specifying the
channel name in the TRIGGERDATA attribute of the transmission queue.

If you do not specify a channel name, the channel initiator searches the channel
definition files until it finds a channel that is associated with the named transmission
queue.

Example definitions for triggering
Define the local queue (Q3), specifying that trigger messages are to be written to
the default initiation queue SYSTEM.CHANNEL.INITQ, to trigger the application
(process P1) that starts channel (QM3.TO.QM4):

DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(P1) USAGE (XMITQ)

Define the application (process P1) to be started:

DEFINE PROCESS(P1) USERDATA(QM3.TO.QM4)

Examples for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT
Define the local queue (Q3), specifying that trigger messages are to be written to
the initiation queue (IQ) to trigger the application that starts channel
(QM3.TO.QM4):

DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) USAGE (XMITQ)

Starting the channel initiator
Triggering is implemented using the channel initiator process. This process is
started with the run channel initiator command, runmqchi , or with the MQSC
command START CHINIT. For example, to use the runmqchi command to start
the default initiation queue for the default queue manager, enter:

runmqchi

Whichever command you use, specify the name of the initiation queue on the
command, unless you are using the default initiation queue. For example, to use
the runmqchi command to start queue IQ for the default queue manager, enter:

runmqchi -q IQ

To use the START CHINIT command, enter:

START CHINIT INITQ(IQ)

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
the number of channel initiators that you can start is limited. The default limit is 3.

| You can change this using MAXINITIATORS in the qm.ini file for AIX, HP-UX, OS/2
| Warp, and Sun Solaris, and in the registry for Windows NT.

See Chapter 17, “MQSeries control commands” in the MQSeries System
Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, or the MQSeries System Management Guide for your platform,
for details of the run channel initiator command, and the other control commands.

130 MQSeries Intercommunication

 Channel programs � Other things to consider

 Channel programs
There are different types of channel programs (MCAs) available for use at the
channels. The names are shown in the following tables.

RUNMQLSR (Run MQSeries listener), ENDMQLSR (End MQSeries listener), and
RUNMQCHL (Run MQSeries channel) are control commands that you can enter at
the command line. AMQCRS6A and AMQCRSTA are programs that, if you are
using SNA, you define as transaction programs, or, if you are using TCP, you
define in the INETD.LST file for OS/2 or Windows NT or the inetd.conf file for UNIX
systems. Examples of the use of these channel programs are given in the
following chapters.

Table 9. Channel programs for OS/2 and Windows NT

Program name Direction of connection Communication

RUNMQLSR Inbound Any

ENDMQLSR Any

AMQCRS6A Inbound LU 6.2

AMQCRSTA Inbound TCP

RUNMQCHL Outbound Any

RUNMQCHI Outbound Any

Table 10. Channel programs for UNIX systems, Digital OpenVMS, and Tandem NSK

Program name Direction of connection Communication

amqcrs6a Inbound LU 6.2

amqcrsta Inbound TCP
and DECnet for Digital
OpenVMS

| runmqchl| Outbound| TCP for UNIX systems

| runmqlsr| Inbound| LU 6.2 for Digital
| OpenVMS and Tandem
| NSK and TCP for UNIX
| systems

runmqchi Outbound Any

Other things to consider
Here are some other topics that you should consider when preparing MQSeries for
distributed queue management.

 Undelivered-message queue
A DLQ handler is provided with MQSeries for OS/2 Warp and Windows NT, and
with MQSeries on UNIX systems, Digital OpenVMS, and Tandem NSK. See
Chapter 12, “The MQSeries dead-letter queue handler” in the MQSeries System
Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, or the MQSeries System Management Guide for your platform,
for information about this.

 Chapter 9. Preparing MQSeries for distributed platforms 131

 Other things to consider

Queues in use
MCAs for receiver channels may keep the destination queues open even when
messages are not being transmitted; this results in the queues appearing to be “in
use.”

Multiple message channels per transmission queue
It is possible to define more than one channel per transmission queue, but only one
of these channels can be active at any one time. This is recommended for the
provision of alternative routes between queue managers for traffic balancing and
link failure corrective action.

Security of MQSeries objects
This section deals with remote messaging aspects of security.

You need to provide users with authority to make use of the MQSeries facilities,
and this is organized according to actions to be taken with respect to objects and
definitions. For example:

� Queue managers can be started and stopped by authorized users

� Applications need to connect to the queue manager, and have authority to
make use of queues

� Message channels need to be created and controlled by authorized users

� Objects are kept in libraries, and access to these libraries may be restricted

The message channel agent at a remote site needs to check that the message
being delivered originated from a user with authority to do so at this remote site. In
addition, as MCAs can be started remotely, it may be necessary to verify that the
remote processes trying to start your MCAs are authorized to do so. There are
three possible ways for you to deal with this:

1. Specify PUTAUT=CTX in the channel definition to indicate that messages must
contain acceptable context authority, otherwise they will be discarded.

2. Implement user exit security checking to ensure that the corresponding
message channel is authorized. The security of the installation hosting the
corresponding channel ensures that all users are properly authorized, so that
you do not need to check individual messages.

3. Implement user exit message processing to ensure that individual messages
are vetted for authorization.

On UNIX systems, Digital OpenVMS, and Tandem NSK
Administration users must be part of the mqm group on your system (including root)
if this ID is going to use MQSeries administration commands. In Digital OpenVMS,
the user must hold the mqm identifier.

You should always run amqcrsta as the “mqm” user ID.

User IDs on UNIX systems and Digital OpenVMS: In Digital OpenVMS, all user
IDs are displayed in uppercase. The queue manager converts all uppercase or
mixed case user identifiers into lowercase, before inserting them into the context
part of a message, or checking their authorization. All authorizations should
therefore be based only on lowercase identifiers.

132 MQSeries Intercommunication

 Other things to consider

On Windows NT
Administration users must be part of both the mqm group and the administrators
group on your Windows NT system if this ID is going to use MQSeries
administration commands.

User IDs on Windows NT systems: On Windows NT, if there is no message exit
installed, the queue manager converts any uppercase or mixed case user identifiers
into lowercase, before inserting them into the context part of a message, or
checking their authorization. All authorizations should therefore be based only on
lowercase identifiers.

User IDs across systems
Platforms other than Windows NT and UNIX systems use uppercase characters for
user IDs. To allow Windows NT and UNIX systems to use lowercase user IDs, the
following conversions are carried out by the message channel agent (MCA) on
these platforms:

At the sending end
The alpha characters in all user IDs are converted to uppercase, if there is
no message exit installed .

At the receiving end
The alpha characters in all user IDs are converted to lowercase, if there is
no message exit installed .

Note that the automatic conversions are not carried out if you provide a message
exit on UNIX systems and Windows NT for any other reason.

User IDs on OS/2
The user identifier service enables queue managers running under OS/2 to obtain a
user-defined user ID. This is described in Chapter 14, “User identifier service” in
the MQSeries Programmable System Management book.

System extensions and user-exit programs
A facility is provided in the channel definition to allow extra programs to be run at
defined times during the processing of messages. These programs are not
supplied with MQSeries, but may be provided by each installation according to local
requirements.

In order to run, these user-exit programs must have predefined names and be
available on call to the channel programs. The names of the user-exit programs
are included in the message channel definitions.

There is a defined control block interface for handing over control to these
programs, and for handling the return of control from these programs.

The precise places where these programs are called, and details of control blocks
and names, are to be found in Part 7, “Further intercommunication considerations”
on page 487.

 Chapter 9. Preparing MQSeries for distributed platforms 133

 Other things to consider

Running channels and listeners as trusted applications
If performance is an important consideration in your environment and your
environment is stable, you can choose to run your channels and listeners as
trusted, that is, using the fastpath binding. There are two factors that influence
whether or not channels and listeners run as trusted.

� The environment variable MQ_CONNECT_TYPE=FASTPATH or
MQ_CONNECT_TYPE=STANDARD. This is case sensitive. If you specify a
value that is not valid it is ignored.

| � MQIBindType in the Channels stanza of the qm.ini or registry file. You can set
this to FASTPATH or STANDARD and it is not case sensitive. The default is
STANDARD.

You can use MQIBindType in association with the environment variable to achieve
the desired affect as follows:

In summary, there are only two ways of actually making channels and listeners run
as trusted:

| 1. By specifying MQIBindType=FASTPATH in qm.ini or registry and not specifying
| the environment variable.

| 2. By specifying MQIBindType=FASTPATH in qm.ini or registry and setting the
environment variable to FASTPATH.

You are recommended to run channels and listeners as trusted only in a stable
environment in which you are not, for example, testing applications or user exits
that may abend or need to be cancelled. An errant application could compromise
the integrity of your queue manager. However, if your environment is stable and if
performance is an important issue, you may choose to run channels and listeners
as trusted.

Note: If you are using MQSeries for Digital OpenVMS the option on the
MQ_CONNECT_TYPE is FAST, not FASTPATH.

MQIBindType Environment variable Result

STANDARD UNDEFINED STANDARD

FASTPATH UNDEFINED FASTPATH

STANDARD STANDARD STANDARD

FASTPATH STANDARD STANDARD

STANDARD FASTPATH STANDARD

FASTPATH FASTPATH FASTPATH

134 MQSeries Intercommunication

 What next

 What next?
When you have made the preparations described in this chapter you are ready to
set up communications. Proceed to one of the following chapters, depending on
what platform you are using:

� Chapter 10, “Setting up communication for OS/2 and Windows NT” on
page 137

� Chapter 13, “Setting up communication in UNIX systems” on page 199

� Chapter 18, “Setting up communication in Digital OpenVMS systems” on
page 273

� Chapter 19, “Setting up communication in Tandem NSK” on page 285

 Chapter 9. Preparing MQSeries for distributed platforms 135

 What next

136 MQSeries Intercommunication

 Communications for OS/2 and Windows NT � Defining a TCP connection

Chapter 10. Setting up communication for OS/2 and
Windows NT

DQM is a remote queuing facility for MQSeries. It provides channel control
programs for the queue manager which form the interface to communication links,
controllable by the system operator. The channel definitions held by distributed
queue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this. You may also find it helpful to refer to Chapter 11, “Example configuration -
IBM MQSeries for OS/2 Warp” on page 151 or Chapter 12, “Example configuration
- IBM MQSeries for Windows NT” on page 177.

For UNIX systems see Chapter 13, “Setting up communication in UNIX systems”
on page 199. For Digital OpenVMS, see Chapter 18, “Setting up communication
in Digital OpenVMS systems” on page 273.

Deciding on a connection
There are four forms of communication for MQSeries for OS/2 Warp and
Windows NT:

 � TCP
 � LU 6.2
 � NetBIOS
 � SPX

Each channel definition must specify only one protocol as the Transmission
protocol (Transport Type) attribute. One or more protocols may be used by a
queue manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See Chapter 5, “Configuring communication links” in the
MQSeries Clients book.

Defining a TCP connection
The channel definition at the sending end specifies the address of the target. A
listener program must be run at the receiving end.

 Sending end
Specify the host name, or the TCP address of the target machine, in the
Connection name field of the channel definition. The port to connect to will default
to 1414. Port number 1414 is assigned by the Internet Assigned Numbers
Authority to MQSeries.

 Copyright IBM Corp. 1993,1999 137

 Defining a TCP connection

To use a port number other than the default, change the connection name field
thus:

Connection Name OS2ROG3(1822)

where 1822 is the port required. (This must be the port that the listener at the
receiving end is listening on.)

| You can change the default port number by specifying it in the queue manager
| configuration file (qm.ini) for MQSeries for OS/2 Warp and the registry for
| MQSeries for Windows NT:

TCP:

 Port=1822

For more information about the values you set using qm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page 635.

Receiving on TCP
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use either the TCP/IP listener (INETD) (not for Windows NT) or the
MQSeries listener.

Using the TCP/IP listener
To use INETD to start channels on OS/2, two files must be configured:

1. Add a line in the TCPIP\ETC\SERVICES file:

MQSeries 1414/tcp

where 1414 is the port number required for MQSeries. You can change this
but it must match the port number specified at the sending end.

2. Add a line to the TCPIP\ETC\INETD.LST file:

MQSeries tcp C:\MQM\BIN\AMQCRSTA [-m QMName]

The last part in square brackets is optional and is not required for the default
queue manager. If your MQSeries for OS/2 Warp is installed on a different
drive, replace the C: above with the correct drive letter.

It is possible to have more than one queue manager on the machine. You must
add a line to each of the two files, as above, for each of the queue managers. For
example:

MQSeries2 1822/tcp

Now stop, and then start the inetd program, before continuing.

138 MQSeries Intercommunication

 Defining a TCP connection

| Using the TCP listener backlog option
| When receiving on TCP, a maximum number of outstanding connection requests is
| set. This can be considered a backlog of requests waiting on the TCP port for the
| listener to accept the request. The default listener backlog values are shown in
| Table 11.

| If the backlog reaches the values shown in Table 11, the TCP/IP connection is
| rejected and the channel will not be able to start.

| For MCA channels, this results in the channel going into a RETRY state and
| retrying the connection at a later time.

| For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
| reason code from MQCONN and should retry the connection at a later time.

| However, to avoid this error, you can add an entry in the qm.ini file or in the
| registry for Windows NT:

| TCP:

| ListenerBacklog = n

| This overrides the default maximum number of outstanding requests (see Table 11)
| for the TCP/IP listener.

| Note: Some operating systems support a larger value than the default. If
| necessary, this can be used to avoid reaching the connection limit.

| To run the listener with the backlog option switched on, use the RUNMQLSR -B

| command. For information about the RUNMQLSR command, see “runmqlsr (Run
| listener)” in the MQSeries System Administration book.

| Table 11. Default outstanding connection requests on OS/2 and Windows NT

| Platform| Default listener backlog value

| OS/2 Warp| 10

| Windows NT Server| 100

| Windows NT Workstation| 5

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the port number is not required if you are using the
default (1414).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 134.
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

 Chapter 10. Setting up communication for OS/2 and Windows NT 139

 Defining an LU 6.2 connection

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 72) you need to add the
following entry to your queue manager configuration file (qm.ini):

TCP:

 KeepAlive=yes

If you are using OS/2, you must then issue the following command:

 inetcfg keepalive=value

where value is the time interval in minutes.

On Windows NT, the TCP configuration registry value for KeepAliveTime controls
the interval that elapses before the connection will be checked. The default is two

| hours. For information about changing this value, see the Microsoft article TCP/IP
| and NBT Configuration Parameters for Windows NT 3.5 (PSS ID number
| Q120642).

Defining an LU 6.2 connection
SNA must be configured so that an LU 6.2 conversation can be established
between the two machines. Then proceed as follows.

See the Multiplatform APPC Configuration Guide for OS/2 examples, and the
following table for information.

140 MQSeries Intercommunication

 Defining an LU 6.2 connection

| If you have more than one queue manager on the same machine, ensure that the
| TPnames in the channel definitions are unique.

Table 12. Settings on the local OS/2 or Windows NT system for a remote queue
manager platform

Remote
platform

TPNAME TPPATH

OS/390 or
MVS/ESA
without CICS

The same as in the
corresponding side information
on the remote queue manager.

-

OS/390 or
MVS/ESA
using CICS

CKRC (sender)
CKSV (requester)
CKRC (server)

-

OS/400 The same as the compare value
in the routing entry on the
OS/400 system.

-

OS/2 As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file.

<drive>:\mqm\bin\amqcrs6a

UNIX systems The same as in the
corresponding side information
on the remote queue manager.

mqmtop/bin/amqcrs6a

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup
on Windows NT.

<drive>:\mqm\bin\amqcrs6a

Sending end for OS/2
Establish a valid session between the two machines. The local LU that MQSeries
uses is decided in the following order:

1. Specify the LU that will be used. In the queue manager configuration file
(qm.ini), under the LU 6.2 section add the line:

LOCALLU = Your_LU_Name

For more information about the values you set using qm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page 635.

2. Specify the environment variable:

APPNLLU = Your_LU_Name

3. If this has not been specified, your default LU will be used.

When you define an MQSeries channel that will use the LU 6.2 connection, the
Connection name (CONNAME) channel attribute specifies the fully-qualified name
of the partner LU. as defined in the local Communications Manager/2 profile.

SECURITY PROGRAM is always used when MQSeries attempts to establish an
SNA session.

 Chapter 10. Setting up communication for OS/2 and Windows NT 141

 Defining an LU 6.2 connection

Sending end for Windows NT
Create a CPI-C side object (symbolic destination) from the administration
application of the LU 6.2 product you are using, and enter this name in the
Connection name field in the channel definition. Also create an LU 6.2 link to the
partner.

In the CPI-C side object enter the partner LU Name at the receiving machine, the
TP Name and the Mode Name. For example:

Partner LU Name OS2ROG2

Partner TP Name recv

Mode Name #INTER

Receiving on LU 6.2
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel. You start this listener
program with the RUNMQLSR command, giving the TpName to listen on.
Alternatively, you can use Attach Manager in Communications Manager/2 for OS/2,
or TpStart under SNA Server for Windows NT.

Using the RUNMQLSR command
Example of the command to start the listener:

RUNMQLSR -t LU62 -n RECV [-m QMNAME]

where RECV is the TpName that is specified at the other (sending) end as the
“TpName to start on the remote side”. The last part in square brackets is optional
and is not required for the default queue manager.

It is possible to have more than one queue manager running on one machine. You
must assign a different TpName to each queue manager, and then start a listener
program for each one. For example:

RUNMQLSR -t LU62 -m QM1 -n TpName1

RUNMQLSR -t LU62 -m QM2 -n TpName2

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 134.
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

142 MQSeries Intercommunication

 Defining a NetBIOS connection

Using Communications Manager/2 on OS/2
If you are going to use Attach Manager in Communications Manager/2 to start the
listener program, you must specify the Program parameter string or parm_string in
addition to the TPNAME and TPPATH.

You can do this using the panel configuration in Communications Manager/2 or,
alternatively, you can edit your NDF file directly (see the heading “Define
Transaction Programs” in the Multiplatform APPC Configuration Guide).

Panel configuration: These are the entries required on the TP definition panel:

Transaction Program (TP) name : AMQCRS6A

OS/2 program path and file name: c:\mqm\bin\amqcrs6a.exe

Program parameter string : -n AMQCRS6A

NDF file configuration: Your node definitions file (.ndf) must contain a define_tp
command. The following example shows what must be included:

define_tp

 tp_name(AMQCRS6A)

 filespec(c:\mqm\bin\amqcrs6a.exe)

parm_string(-n AMQCRS6A -m QM1)

Using Microsoft SNA Server on Windows NT
You can use TpSetup (from the SNA Server SDK) to define an invokable TP that
then drives amqcrs6a.exe, or you can set various registry values manually. The
parameters that should be passed to amqcrs6a.exe are:

-m QM -n TpName

where QM is the Queue Manager name and TpName is the TP Name. See the
Microsoft SNA Server APPC Programmers Guide or the Microsoft SNA Server
CPI-C Programmers Guide for more information.

Defining a NetBIOS connection
MQSeries uses three types of NetBIOS resource when establishing a NetBIOS
connection to another MQSeries product: sessions, commands, and names. Each
of these resources has a limit, which is established either by default or by choice
during the installation of NetBIOS.

Each running channel, regardless of type, uses one NetBIOS session and one
NetBIOS command. The IBM NetBIOS implementation allows multiple processes
to use the same local NetBIOS name. Therefore, only one NetBIOS name needs
to be available for use by MQSeries. Other vendors’ implementations, for example
Novell’s NetBIOS emulation, require a different local name per process. Verify your
requirements from the documentation for the NetBIOS product you are using.

In all cases, ensure that sufficient resources of each type are already available, or
increase the maximums specified in the configuration. Any changes to the values
will require a system restart.

 Chapter 10. Setting up communication for OS/2 and Windows NT 143

 Defining a NetBIOS connection

During system startup, the NetBIOS device driver displays the number of sessions,
commands, and names available for use by applications. These resources are
available to any NetBIOS-based application that is running on the same system.
Therefore, it is possible for other applications to consume these resources before
MQSeries needs to acquire them. Your LAN network administrator should be able
to clarify this for you.

Defining the MQSeries local NetBIOS name
The local NetBIOS name used by MQSeries channel processes can be specified in
three ways. In order of precedence they are:

1. The value specified in the -l parameter of the RUNMQLSR command, for
example:

RUNMQLSR -t NETBIOS -l my_station

2. The MQNAME environment variable whose value is established by the
command:

 SET MQNAME=my_station

You can set the MQNAME value for each process. Alternatively, you may set it
at a system level — in the CONFIG.SYS file on OS/2 or in the Windows NT
registry.

If you are using a NetBIOS implementation that requires unique names, you
must issue a SET MQNAME command in each window in which an MQSeries
process is started. The MQNAME value is arbitrary but it must be unique for
each process.

| 3. The NETBIOS stanza in the queue manager configuration file qm.ini or in the
| Windows NT registry. For example:

 NETBIOS:

 LocalName=my_station

Notes:

1. Due to the variations in implementation of the NetBIOS products supported,
you are advised to make each NetBIOS name unique in the network. If you do
not, unpredictable results may occur. If you have problems establishing a
NetBIOS channel and there are error messages in the queue-manager error log
showing a NetBIOS return code of X'15', review your use of NetBIOS names.

2. On Windows NT you cannot use your machine name as the NetBIOS name
because Windows NT already uses it.

3. Sender channel initiation requires that a NetBIOS name be specified either via
| the MQNAME environment variable or the LocalName in the qm.ini file or in the
| Windows NT registry.

144 MQSeries Intercommunication

 Defining a NetBIOS connection

Establishing the queue manager NetBIOS session, command, and
name limits

The queue manager limits for NetBIOS sessions, commands, and names can be
specified in two ways. In order of precedence they are:

1. The values specified in the RUNMQLSR command:

 -s Sessions
 -e Names
 -o Commands

If the -m operand is not specified in the command, the values will apply only to
the default queue manager.

| 2. The NETBIOS stanza in the queue manager configuration file qm.ini or in the
| Windows NT registry. For example:

 NETBIOS:

 NumSess=Qmgr_max_sess
 NumCmds=Qmgr_max_cmds
 NumNames=Qmgr_max_names

Establishing the LAN adapter number
For channels to work successfully across NetBIOS, the adapter support at each
end must be compatible. MQSeries allows you to control the choice of adapter
number (lana) by using the AdapterNum value in the NETBIOS stanza of your

| qm.ini file or the Windows NT registry and by specifying the -a parameter on the
runmqlsr command.

The default LAN adapter number used by MQSeries for NetBIOS connections is 0.
Verify the adapter number being used on your system as follows:

On OS/2 the adapter number used by NetBIOS on your system can be viewed in
the PROTOCOL.INI file or the LANTRAN.LOG file found in the \IBMCOM directory.

On Windows NT view the information displayed in the NetBIOS Interface pop-up
window. This is accessible by selecting the Network option, which is one of many
options displayed when opening the Control icon from the Main Window. Windows
NT can assign multiple ‘logical’ adapter numbers to one physical LAN adapter. The
installation default for ‘logical’ adapter number 0 is NetBIOS running over a TCP
network, not a Token-Ring network. This is not necessary for MQSeries. You
should select logical adapter number 1, which is native NetBIOS. MQSeries for
Windows NT uses the ‘logical’ adapter number for communication.

Specify the correct value in the NETBIOS stanza of the queue manager
| configuration file, qm.ini, or the Windows NT registry:

 NETBIOS:

 AdapterNum=n

where n is the correct LAN adapter number for this system.

 Chapter 10. Setting up communication for OS/2 and Windows NT 145

 Defining a NetBIOS connection

Initiating the connection
To initiate the connection, follow these steps at the sending end:

1. Define the NetBIOS station name using the MQNAME or LocalName value as
described above.

2. Verify the LAN adapter number being used on your system and specify the
correct file using the AdapterNum as described above.

3. In the ConnectionName field of the channel definition, specify the NetBIOS
name being used by the target listener program. On Windows NT, NetBIOS
channels must be run as threads. Do this by specifying MCATYPE(THREAD)
in the channel definition.

DEFINE CHANNEL (chname) CHLTYPE(SDR) +

 TRPTYPE(NETBIOS) +

 CONNAME(your_station) +

 XMITQ(xmitq) +

 MCATYPE(THREAD) +

 REPLACE

 Target listener
At the receiving end, follow these steps:

1. Define the NetBIOS station name using the MQNAME or LocalName value as
described above.

2. Verify the LAN adapter number being used on your system and specify the
correct file using the AdapterNum as described above.

3. Define the receiver channel:

DEFINE CHANNEL (chname) CHLTYPE(RCVR) +

 TRPTYPE(NETBIOS) +

 REPLACE

4. Start the MQSeries listener program to establish the station and make it
contactable. For example:

RUNMQLSR -t NETBIOS -l your_station [-m qmgr]

This command establishes your_station as a NetBIOS station waiting to be
contacted. The NetBIOS station name must be unique throughout your
NetBIOS network.

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 134.
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

146 MQSeries Intercommunication

 Defining an SPX connection

Defining an SPX connection
The channel definition at the sending end specifies the address of the target. A
listener program must be run at the receiving end.

 Sending end
If the target machine is remote, specify the SPX address of the target machine in
the Connection name field of the channel definition.

The SPX address is specified in the following form:

 network.node(socket)

where:

network Is the 4-byte network address of the network on which the remote
machine resides,

node Is the 6-byte node address, which is the LAN address of the LAN
adapter in the remote machine

socket Is the 2-byte socket number on which the remote machine will
listen.

If the local and remote machines are on the same network then the network
address need not be specified. If the remote end is listening on the default socket
(5E86) then the socket need not be specified.

An example of a fully specified SPX address specified in the CONNAME parameter
of an MQSC command is:

 CONNAME('ððððððð1.ð8ðð5A7161E5(5E87)')

In the default case, where the machines are both on the same network, this
becomes:

 CONNAME(ð8ðð5A7161E5)

The default socket number may be changed by specifying it in the queue manager
| configuration file (qm.ini) or the Windows NT registry:

SPX:

 Socket=5E87

| For more information about the values you set using qm.ini or the Windows NT
| registry, see Appendix D, “Configuration file stanzas for distributed queuing” on

page 635.

Using the SPX KEEPALIVE option (OS/2 only)
If you want to use the KEEPALIVE option (as discussed in “Checking that the other
end of the channel is still available” on page 72) you need to add the following
entry to your queue manager configuration file (qm.ini):

SPX:

 KeepAlive=yes

You can use the timeouts described in “IPX/SPX parameters” on page 149 to
adjust the behavior of KEEPALIVE.

 Chapter 10. Setting up communication for OS/2 and Windows NT 147

 Defining an SPX connection

Receiving on SPX
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use the MQSeries listener.

| Using the TCP listener backlog option
| When receiving on TCP/IP, a maximum number of outstanding connection requests
| is set. This can be considered a backlog of requests waiting on the TCP/IP port for
| the listener to accept the request. The default listener backlog values are shown in
| Table 13.

| If the backlog reaches the values in Table 13, the reason code,
| MQRC_Q_MGR_NOT_AVAILABLE is received when trying to connect to the queue
| manager using MQCONN or MQCONNX. If this happens, it is possible to try to
| connect again.

| However, to avoid this error, you can add an entry in the qm.ini file or in the
| registry for Windows NT:

| TCP:

| ListenerBacklog = n

| This overrides the default maximum number of outstanding requests (see Table 13)
| for the TCP/IP listener.

| Note: Some operating systems support a larger value than the default. If
| necessary, this can be used to avoid reaching the connection limit.

| To run the listener with the backlog option switched on, use the RUNMQLSR -B

| command. For information about the RUNMQLSR command, see “runmqlsr (Run
| listener)” in the MQSeries System Administration book.

| Table 13. Default outstanding connection requests on OS/2 and Windows NT

| Platform| Default listener backlog value

| OS/2 Warp| 10

| Windows NT Server| 100

| Windows NT Workstation| 5

148 MQSeries Intercommunication

 Defining an SPX connection

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t spx [-m QMNAME] [-x 5E87]

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the socket number is not required if you are using the
default (5E86).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page 134.
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

 IPX/SPX parameters
In most cases the default settings for the IPX/SPX parameters will suit your needs.
However, you may need to modify some of them in your environment to tune its
use for MQSeries. The actual parameters and the method of changing them varies
according to the platform and provider of SPX communications support. The
following sections describe some of these parameters, particularly those that may
influence the operation of MQSeries channels and client connections.

 OS/2
Please refer to the Novell Client for OS/2 documentation for full details of the use
and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

 IPX

sockets (range = 9 - 128, default 64)
This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

 SPX

sessions (default 16)
This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or client
connections you need to run.

 Chapter 10. Setting up communication for OS/2 and Windows NT 149

 Defining an SPX connection

retry count (default = 12)
This controls the number of times an SPX session will resend
unacknowledged packets. MQSeries does not override this value.

verify timeout, listen timeout, and abort timeout (milliseconds)
These timeouts adjust the ‘Keepalive’ behavior. If an SPX sending end does
not receive anything within the ‘verify timeout’ period, it sends a packet to the
receiving end. It then waits for the duration of the ‘listen timeout’ for a
response. If it still does not receive a response, it sends another packet and
expects a response within the ‘abort timeout’ period.

DOS and Windows 3.1 client
Please refer to the Novell Client for DOS and MS Windows documentation for full
details of the use and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

 IPX

sockets (default = 20)
This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

retry count
This controls the number of times unacknowledged packets will be resent.
MQSeries does not override this value.

 SPX

connections (default 15)
This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or client
connections you need to run.

 Windows NT
Please refer to the Microsoft documentation for full details of the use and setting of
the NWLink IPX and SPX parameters. The IPX/SPX parameters are in the
following paths in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

| Windows 95 and Windows 98
Please refer to the Microsoft documentation for full details of the use and setting of
the IPX and SPX parameters. You access them by selecting Network option in the
control panel, then double-clicking on IPX/SPX Compatible Transport .

150 MQSeries Intercommunication

 MQSeries for OS/2 Warp � OS/2 and LU 6.2

Chapter 11. Example configuration - IBM MQSeries for OS/2
Warp

This chapter gives an example of how to set up communication links from
MQSeries for OS/2 Warp to MQSeries products on the following platforms:

 � Windows NT
 � AIX
 � HP-UX
� AT&T GIS UNIX2

 � Sun Solaris
 � OS/400
� OS/390 or MVS/ESA without CICS

 � VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it guides
you through the following tasks:

� “Establishing an LU 6.2 connection” on page 156
� “Establishing a TCP connection” on page 165
� “Establishing a NetBIOS connection” on page 167
� “Establishing an SPX connection” on page 167

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for OS/2 Warp configuration” on
page 170.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 14 on page 152 presents a worksheet listing all the parameters needed to
set up communication from OS/2 to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

This chapter shows how to use the values on the worksheet for:

� “Defining local node characteristics” on page 156
� “Connecting to a peer system” on page 160
� “Connecting to a host system” on page 162
� “Verifying the configuration” on page 164

2 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 151

 OS/2 and LU 6.2

 Configuration worksheet
Use the following worksheet to record the values you will use for this configuration.
Where numbers appear in the Reference column they indicate that the value must
match that in the appropriate worksheet elsewhere in this book. The examples that
follow in this chapter refer back to the values in the ID column of this table. The
entries in the Parameter Name column are explained in “Explanation of terms” on
page 154.

Table 14 (Page 1 of 3). Configuration worksheet for Communications Manager/2

ID Parameter Name Reference Example Used User Value

Definition for local node

.1/ Configuration name EXAMPLE

.2/ Network ID NETID

.3/ Local node name OS2PU

.4/ Local node ID (hex) 05D 12345

.5/ Local node alias name OS2PU

.6/ LU name (local) OS2LU

.7/ Alias (for local LU name) OS2QMGR

.8/ Local transaction program (TP) name MQSERIES

.9/ OS/2 program path and file name c:\mqm\bin\amqcrs6a.exe

.1ð/ LAN adapter address 10005AFC5D83

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 178, as indicated.

.11/ Link name WINNT

.12/ LAN destination address (hex) .9/ 08005AA5FAB9

.13/ Partner network ID .2/ NETID

.14/ Partner node name .3/ WINNTCP

.15/ LU name .5/ WINNTLU

.16/ Alias (for remote LU name) NTQMGR

.17/ Mode .17/ #INTER

.18/ Remote transaction program name .7/ MQSERIES

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 208, as indicated.

.11/ Link name RS6000

.12/ LAN destination address (hex) .8/ 123456789012

.13/ Partner network ID .1/ NETID

.14/ Partner node name .2/ AIXPU

.15/ LU name .4/ AIXLU

.16/ Alias (for remote LU name) AIXQMGR

.17/ Mode .17/ #INTER

.18/ Remote transaction program name .6/ MQSERIES

152 MQSeries Intercommunication

 OS/2 and LU 6.2

Table 14 (Page 2 of 3). Configuration worksheet for Communications Manager/2

ID Parameter Name Reference Example Used User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page 226, as indicated.

.11/ Link name HPUX

.12/ LAN destination address (hex) .8/ 100090DC2C7C

.13/ Partner network ID .4/ NETID

.14/ Partner node name .2/ HPUXPU

.15/ LU name .5/ HPUXLU

.16/ Alias (for remote LU name) HPUXQMGR

.17/ Mode .6/ #INTER

.18/ Remote transaction program name .7/ MQSERIES

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in Table 24 on page 244, as indicated.

.11/ Link name GIS

.12/ LAN destination address (hex) .8/ 10007038E86B

.13/ Partner network ID .2/ NETID

.14/ Partner node name .3/ GISPU

.15/ LU name .4/ GISLU

.16/ Alias (for remote LU name) GISQMGR

.17/ Mode .15/ #INTER

.18/ Remote transaction program name .5/ MQSERIES

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page 258, as indicated.

.11/ Link name SOLARIS

.12/ LAN destination address (hex) .5/ 08002071CC8A

.13/ Partner network ID .2/ NETID

.14/ Partner node name .3/ SOLARPU

.15/ LU name .7/ SOLARLU

.16/ Alias (for remote LU name) SOLQMGR

.17/ Mode .17/ #INTER

.18/ Remote transaction program name .8/ MQSERIES

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.11/ Link name AS400

.12/ LAN destination address (hex) .4/ 10005A5962EF

.13/ Partner network ID .1/ NETID

.14/ Partner node name .2/ AS400PU

.15/ LU name .3/ AS400LU

.16/ Alias (for remote LU name) AS4QMGR

.17/ Mode .17/ #INTER

.18/ Remote transaction program name .8/ MQSERIES

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 153

 OS/2 and LU 6.2

Table 14 (Page 3 of 3). Configuration worksheet for Communications Manager/2

ID Parameter Name Reference Example Used User Value

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page 396, as indicated.

.11/ Link name HOST0001

.12/ LAN destination address (hex) .8/ 400074511092

.13/ Partner network ID .2/ NETID

.14/ Partner node name .3/ MVSPU

.15/ LU name .4/ MVSLU

.16/ Alias (for remote LU name) MVSQMGR

.17/ Mode .1ð/ #INTER

.18/ Remote transaction program name .7/ MQSERIES

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.11/ Link name HOST0001

.12/ LAN destination address (hex) .5/ 400074511092

.13/ Partner network ID .1/ NETID

.14/ Partner node name .2/ VSEPU

.15/ LU name .3/ VSELU

.16/ Alias (for remote LU name) VSEQMGR

.17/ Mode #INTER

.18/ Remote transaction program name .4/ MQ01 MQ01

Explanation of terms
.1/ Configuration name

This is the name of the OS/2 file that will hold the configuration.

If you are adding to or modifying an existing configuration it will be the name
previously specified.

If you are creating a new configuration then you can specify any 8-character
name that obeys the normal rules for file naming.

.2/ Network ID
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network ID works
with the local node name to uniquely identify a system. Your network
administrator will tell you the value.

.3/ Local node name
This is the unique Control Point name for this workstation. Your network
administrator will assign this to you.

.4/ Local node ID (hex)
This is a unique identifier for this workstation. On other platforms it is often
referred to as the exchange ID (XID). Your network administrator will assign
this to you.

154 MQSeries Intercommunication

 OS/2 and LU 6.2

.5/ Local node alias name
This is the name by which your local node will be known within this
workstation. This value is not used elsewhere, but it is recommended that it
be the same as .3/, the local node name.

.6/ LU name (local)
An LU manages the exchange of data between systems. The local LU name
is the name of the LU on your system. Your network administrator will assign
this to you.

.7/ Alias (for local LU name)
The name by which your local LU will be known to your applications. You
choose this name yourself. It can be 1-8 characters long. This value is used
during MQSeries configuration, when entries are added to the qm.ini file.

.8/ Local transaction program (TP) name
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. The TP name is also
used during MQSeries configuration, when entries are added to the qm.ini file.
For simplicity, wherever possible use a transaction program name of
MQSERIES, or in the case of a connection to VSE/ESA, where the length is
limited to 4 bytes, use MQTP.

See Table 12 on page 141 for more information.

.9/ OS/2 program path and file name
This is the path and name of the actual program to be run when a
conversation has been initiated with this workstation. The example shown on
the worksheet assumes that MQSeries is installed in the default directory,
c:\mqm. The configuration pairs this name with the symbolic name .8/.

.1ð/ LAN adapter address
This is the address of your token-ring card. When using the default address,
the exact value can be found in the LANTRAN.LOG file found in the
\IBMCOM directory.

For example:

Adapter ð is using node address 1ððð5AFC5D83

.11/ Link name
This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only inside Communications Manager/2 setup and
is specified by you. It can be 1-8 characters in length.

.16/ Alias (for remote LU name)
This is a value known only on this workstation and is used to represent the
fully qualified partner LU name. You supply the value.

.17/ Mode
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each point in the network
between the local and partner LUs. Your network administrator will assign
this to you.

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 155

 Using Communications Manager/2

Establishing an LU 6.2 connection
This section describes how to establish an LU 6.2 connection using
Communications Manager/2 Version 1.11. You may use any of the supported LU
6.2 products for this platform. The panels would look different from those shown
but most of their content would be similar.

Defining local node characteristics
To set up the local node you need to perform
these tasks:

1. Configure a DLC.
2. Configure the local node.
3. Add a local LU.
4. Add a transaction program definition.
5. Configure a mode.

To define the local node characteristics:

1. Start the Communications Manager/2
Installation and Setup program by typing
CMSETUP on an OS/2 command line, and
pressing Enter.

2. Press OK to continue.

3. Press Setup to create or modify a
configuration.

4. Specify a name (up to 8-characters) for a new
configuration file .1/, or select the one that
you wish to update. The following examples
guide you through the creation of a new
configuration file. Treat them as a guide if
you are modifying an existing configuration.

 5. Press Yes.

 6. Press Yes.

156 MQSeries Intercommunication

 Using Communications Manager/2

In this example we set up connections using
APPC over Token-ring. The following screen
appears in two stages. When you first see it,
highlight the line:

APPC APIs through Token-ring

The complete screen appears as shown
below.

 7. Press Configure... .

Configuring a DLC

1. Complete the values for Network ID (.2/) and
Local node name (.3/).

2. Select End node - no network node server .

3. Click on Advanced .

4. Select DLC - Token-ring or other LAN types
and press Configure... .

5. Enter the value for C&SM LAN ID . This
should be the same value as the Network ID
entered earlier (.2/).

6. Leave the remaining default values and press
OK.

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 157

 Using Communications Manager/2

Configuring the local node

1. Select SNA local node characteristics and
press Configure... .

2. Complete the value for Local node ID (hex)
(.4/) using the values in your configuration
worksheet.

 3. Press Options...

4. Complete the value for Local node alias
name (.5/) and press OK.

 5. Press OK.

6. Select SNA features and press Configure... .

Adding a local LU

1. Select Local LUs and press Create... .

158 MQSeries Intercommunication

 Using Communications Manager/2

2. Complete the fields LU name (.6/) and Alias
(.7/).

 3. Press OK.

Adding a transaction program
definition

1. Select Transaction program definitions and
press Create... .

2. Complete the values for Transaction
program (TP) name (.8/) and OS/2 program
path and file name (.9/). If you are going to
use Attach Manager to start the listener

program, specify the Program parameter
string , for example -m OS2 -n MQSERIES.

 3. Press Continue... .

4. Specify that the program is to be run in the
Background and that it is to be Non-queued,
Attach Manager started .

 5. Press OK.

Configuring a mode

1. Select Modes and #INTER and press
Change... .

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 159

 Using Communications Manager/2

2. Ensure that the default values match those
shown above and press Cancel .

3. Press Close to close the SNA Features List
window.

Local configuration is complete.

The following sections describe how to create
connections to other nodes.

Connecting to a peer system

To set up a connection to a peer system the steps
are:

1. Adding a peer connection
2. Defining a partner LU

Start from the Communications Manager Profile
List panel.

Select SNA connections and press Configure... .

Adding a peer connection

1. Select To peer node and press Create... .

160 MQSeries Intercommunication

 Using Communications Manager/2

2. Select Token-ring or other LAN types and
press Continue... .

3. Specify a Link name (.11/) and check
Activate at startup .

4. Complete the fields LAN destination address
(hex) (.12/), Partner network ID (.13/), and
Partner node name (.14/).

5. Press Define Partner LUs... .

Defining a partner LU

1. Complete the fields Network ID (.13/), LU
name (.15/), and Alias (.16/).

 2. Press Add .

 3. Press OK.

 4. Press OK.

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 161

 Using Communications Manager/2

 5. Press Close .

If you have connections to make to other
platforms repeat this section as appropriate.

If you have made all the connections you require
proceed to “Verifying the configuration” on
page 164 to complete Communications
Manager/2 configuration.

Connecting to a host system

To set up a connection to a host system, for
example OS/390 or VSE/ESA, the steps are:

1. Adding a host connection
2. Defining a partner LU

Start from the Communications Manager Profile
List panel.

Select SNA connections and press Configure... .

Adding a host connection

1. Select To host and press Create... .

2. Select Token-ring or other LAN types and
press Continue... .

162 MQSeries Intercommunication

 Using Communications Manager/2

3. Specify a Link name (.11/) and check
Activate at startup .

4. Complete the fields LAN destination address
(hex) (.12/), Partner network ID (.13/), and
Partner node name (.14/).

5. Press Define Partner LUs... .

Defining a partner LU

1. Complete the fields Network ID (.13/), LU
name (.15/), and Alias (.16/).

 2. Press Add

 3. Press OK.

 4. Press OK.

 5. Press Close .

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 163

 Using Communications Manager/2

If you have connections to make to other
platforms, proceed to the appropriate section.

If you have made all the connections you require
proceed to “Verifying the configuration” to
complete Communications Manager/2
configuration.

Verifying the configuration

1. Press Close to close the Communications
Manager Profile List panel.

 2. Press Close .

 3. Press Yes.

 4. Press OK.

 5. Press Close .

164 MQSeries Intercommunication

 OS/2 and TCP

 What next?

The LU 6.2 connection is now established. You
are ready to complete the configuration. Go to
“MQSeries for OS/2 Warp configuration” on
page 170.

Establishing a TCP connection
1. From your desktop, open the TCP Icon View.

The icons you see may vary from those
shown above, depending on how you have
installed the product.

2. Start the TCP Configuration program.

3. On the Network page, ensure that the IP
Address and Subnet Mask fields have been
completed.

4. Select the Autostart tab.

5. Ensure that inetd is selected.

6. Select the Hostnames tab.

7. Ensure that This machine’s hostname ,
Local domain name , and Nameserver
address have been completed.

8. Close the configuration notebook.

Note: You may see a panel warning that the
inetd superserver has been selected without
selecting servers. Press No to indicate that
you do not wish to correct this.

9. Press Save to save the changes made.

10. Verify that the \MPTN\ETC\SERVICES file,
which is located on the drive where you
installed IBM Multi-Protocol Transport
Services (MPTS), contains the following line:

MQSeries 1414/tcp # MQSeries Chan'l Listener

If this line is not present, add it.

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 165

 OS/2 and TCP

11. Verify that the file \MPTN\ETC\INETD.LST,
located on the same drive contains the
following line:

MQSeries tcp c:\mqm\bin\amqcrsta [-m QMName]

If this line is not present, add it. Note that this
assumes you have installed MQSeries on the
default drive and in the default directories.

12. (Re)start the inetd superserver, either by
rebooting OS/2 or by stopping any existing

inetd superserver and then entering start

inetd on the command line.

 What next?

The TCP connection is now established. You are
ready to complete the configuration. Go to
“MQSeries for OS/2 Warp configuration” on
page 170.

166 MQSeries Intercommunication

 OS/2 and NetBIOS � OS/2 and SPX

Establishing a NetBIOS connection
A NetBIOS connection is initiated from a queue manager that uses the
ConnectionName parameter on its channel definition to connect to a target listener.
To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the
| MQSeries channel processes, in the queue manager configuration file qm.ini or
| in the registry for Windows NT. For example, the NETBIOS stanza in qm.ini at

the sending end might look like this:

NETBIOS:

 LocalName=O2NETB1

and at the receiving end:

NETBIOS:

 LocalName=O2NETB2

2. At each end of the channel, look at the LANTRAN.LOG file in the \IBMCOM
directory to see what LAN adapter number is used by NetBIOS on your system.
If it is not 0, which MQSeries uses by default, specify the correct value in the

| NETBIOS stanza of the qm.ini file or of the registry for Windows NT. For
example:

NETBIOS:

 AdapterNum=1

3. At the sending end, define a channel specifying the NetBIOS name being used
at the other end of the channel. For example:

DEFINE CHANNEL (OS2.WINNT.NET) CHLTYPE(SDR) +

 TRPTYPE(NETBIOS) +

 CONNAME(O2NETB2) +

 XMITQ(WINNT) +

 REPLACE

4. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (OS2.WINNT.NET) CHLTYPE(RCVR) +

 TRPTYPE(NETBIOS) +

 REPLACE

5. At the receiving end, start the MQSeries listener:

runmqlsr -t netbios

Optionally you may specify values for the queue manager name, NetBIOS local
name, number of sessions, number of names, and number of commands. See
“Defining a NetBIOS connection” on page 143 for more information about
setting up NetBIOS connections.

Establishing an SPX connection
This section discusses the following topics:

 � IPX/SPX parameters
 � SPX addressing
� Using the SPX KEEPALIVE option
� Receiving on SPX

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 167

 OS/2 and SPX

 IPX/SPX parameters
In most cases the default settings for the IPX/SPX parameters will suit your needs.
However, you may need to modify some of them in your environment to tune its
use for MQSeries. The actual parameters and the method of changing them varies
according to the platform and provider of SPX communications support. The
following sections describe some of these parameters, particularly those that may
influence the operation of MQSeries channels and client connections.

Please refer to the Novell Client for OS/2 documentation for full details of the use
and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

 IPX
sockets (range = 9 - 128, default 64)

This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

 SPX
sessions (default 16)

This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or client
connections you need to run.

retry count (default = 12)
This controls the number of times an SPX session will resend
unacknowledged packets. MQSeries does not override this value.

verify timeout, listen timeout, and abort timeout (milliseconds)
These timeouts adjust the ‘Keepalive’ behavior. If an SPX sending end does
not receive anything within the ‘verify timeout’ period, it sends a packet to the
receiving end. It then waits for the duration of the ‘listen timeout’ for a
response. If it still does not receive a response, it sends another packet and
expects a response within the ‘abort timeout’ period.

 SPX addressing
MQSeries uses the SPX address of each machine to establish connectivity. The
SPX address is specified in the following form:

 network.node(socket)

where

network Is the 4-byte network address of the network on which the remote
machine resides,

node Is the 6-byte node address, which is the LAN address of the LAN
adapter in the remote machine

socket Is the 2-byte socket number on which the remote machine will
listen.

168 MQSeries Intercommunication

 OS/2 and SPX

The default socket number used by MQSeries is 5E86. You can change the
default socket number by specifying it in the queue manager configuration file

| qm.ini or the Windows NT registry. If you have taken the default options for
installation, the qm.ini file for queue manager OS2 is found in c:\mqm\qmgs\os2.
The lines in qm.ini might read:

SPX:

 SOCKET=n

For more information about values you can set in qm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page 635.

The SPX address is later specified in the CONNAME parameter of the sender
channel definition. If the MQSeries systems being connected reside on the same
network, the network address need not be specified. Similarly, if the remote
system is listening on the default socket number (5E86), it need not be specified.
A fully qualified SPX address in the CONNAME parameter would be:

 CONNAME('network.node(socket)')

but if the systems reside on the same network and the default socket number is
used, the parameter would be:

 CONNAME(node)

A detailed example of the channel configuration parameters is given in “MQSeries
for OS/2 Warp configuration” on page 170.

Using the SPX KEEPALIVE option
If you want to use the KEEPALIVE option you need to add the following entry to

| your queue manager configuration file (qm.ini) or the Windows NT registry:

SPX:

 KeepAlive=yes

You can use the timeout parameters described above to adjust the behavior of
KEEPALIVE.

Receiving on SPX
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use the MQSeries listener.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t spx

Optionally you may specify the queue manager name or the socket number if you
are not using the defaults.

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 169

 OS/2 configuration

MQSeries for OS/2 Warp configuration
Notes:

1. You can use the sample program AMQSBCG to display, to the stdout spool,
the contents and headers of all the messages in a queue. For example:

AMQSBCG q_name qmgr_name

displays the contents of the queue q_name defined in queue manager
qmgr_name.

2. The MQSeries command used to start the TCP listener is:

runmqlsr -t tcp

The listener enables receiver channels to start automatically in response to a
start request from an inbound sender channel.

3. You can start any channel from the command prompt using the command

runmqchl -c channel.name

4. Error logs can be found in the directories \mqm\qmgrs\qmgrname\errors,
\mqm\qmgrs\@system\errors, and \mqm\errors. In all cases, the most recent
messages are at the end of amqerr01.log.

5. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

 Basic configuration
1. Create the queue manager from the OS/2 command line using the command:

crtmqm -u dlqname -q os2

where:

os2 Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlqname Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects, and sets
the DEADQ attribute of the queue manager.

2. For SNA channels add an LU 6.2 stanza to the queue manager’s qm.ini file:

LU62:

 TPName=MQSERIES .8/
 LocalLU=OS2QMGR .7/

If you have taken the default options for installation, the qm.ini file for queue
manager os2 is found in c:\mqm\qmgrs\os2.

3. Start the queue manager from the OS/2 command line using the command:

strmqm os2

where os2 is the name given to the queue manager when it was created.

170 MQSeries Intercommunication

 OS/2 configuration

 Channel configuration
The following sections detail the configuration to be performed on the OS/2 queue
manager to implement the channel described in Figure 32 on page 105. In each
case the MQSC command is shown.

Examples are given for connecting MQSeries for OS/2 Warp and MQSeries for
Windows NT. If you wish connect to another MQSeries product use the
appropriate set of values from the table in place of those for Windows NT.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 15 (Page 1 of 3). Configuration worksheet for MQSeries for OS/2 Warp

Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name OS2

.B/ Local queue name OS2.LOCALQ

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 192, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender (SNA) channel name OS2.WINNT.SNA

.H/ Sender (TCP/IP) channel name OS2.WINNT.TCP

.I/ Receiver (SNA) channel name .G/ WINNT.OS2.SNA

.J/ Receiver (TCP/IP) channel name .H/ WINNT.OS2.TCP

.K/ Sender (NetBIOS) channel name OS2.WINNT.NET

.L/ Sender (SPX) channel name OS2.WINNT.SPX

.M/ Receiver (NetBIOS) channel name .K/ WINNT.OS2.NET

.N/ Receiver (SPX) channel name .L/ WINNT.OS2.SPX

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 220, as indicated.

.C/ Remote queue manager name .A/ AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender (SNA) channel name OS2.AIX.SNA

.H/ Sender (TCP/IP) channel name OS2.AIX.TCP

.I/ Receiver (SNA) channel name .G/ AIX.OS2.SNA

.J/ Receiver (TCP) channel name .H/ AIX.OS2.TCP

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 171

 OS/2 configuration

Table 15 (Page 2 of 3). Configuration worksheet for MQSeries for OS/2 Warp

Parameter Name Reference Example Used User Value

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page 238, as indicated.

.C/ Remote queue manager name .A/ HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender (SNA) channel name OS2.HPUX.SNA

.H/ Sender (TCP) channel name OS2.HPUX.TCP

.I/ Receiver (SNA) channel name .G/ HPUX.OS2.SNA

.J/ Receiver (TCP) channel name .H/ HPUX.OS2.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 25 on page 252, as indicated.

.C/ Remote queue manager name .A/ GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender (SNA) channel name OS2.GIS.SNA

.H/ Sender (TCP) channel name OS2.GIS.TCP

.I/ Receiver (SNA) channel name .G/ GIS.OS2.SNA

.J/ Receiver (TCP) channel name .H/ GIS.OS2.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page 269, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender (SNA) channel name OS2.SOLARIS.SNA

.H/ Sender (TCP/IP) channel name OS2.SOLARIS.TCP

.I/ Receiver (SNA) channel name .G/ SOLARIS.OS2.SNA

.J/ Receiver (TCP/IP) channel name .H/ SOLARIS.OS2.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender (SNA) channel name OS2.AS400.SNA

.H/ Sender (TCP/IP) channel name OS2.AS400.TCP

.I/ Receiver (SNA) channel name .G/ AS400.OS2.SNA

.J/ Receiver (TCP) channel name .H/ AS400.OS2.TCP

172 MQSeries Intercommunication

 OS/2 configuration

Table 15 (Page 3 of 3). Configuration worksheet for MQSeries for OS/2 Warp

Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 36 on page 404, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender (SNA) channel name OS2.MVS.SNA

.H/ Sender (TCP) channel name OS2.MVS.TCP

.I/ Receiver (SNA) channel name .G/ MVS.OS2.SNA

.J/ Receiver (TCP) channel name .H/ MVS.OS2.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name OS2.VSE.SNA

.I/ Receiver channel name .G/ VSE.OS2.SNA

MQSeries for OS/2 Warp sender-channel definitions using SNA
def ql (WINNT) .F/
 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + .D/
 rname(WINNT.LOCALQ) + .E/
 rqmname(WINNT) + .C/
 xmitq(WINNT) + .F/
 replace

def chl (OS2.WINNT.SNA) chltype(sdr) + .G/
 trptype(lu62) +

 conname('NETID.WINNTLU') + .13/..15/
 xmitq(WINNT) + .F/
 modename('#INTER') + .17/
 tpname('MQSERIES') + .18/
 replace

MQSeries for OS/2 Warp receiver-channel definitions using SNA
def ql (OS2.LOCALQ) replace .B/

def chl (WINNT.OS2.SNA) chltype(rcvr) + .I/
 trptype(lu62) +

 replace

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 173

 OS/2 configuration

MQSeries for OS/2 Warp sender-channel definitions using TCP
def ql (WINNT) + .F/
 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + .D/
 rname(WINNT.LOCALQ) + .E/
 rqmname(WINNT) + .C/
 xmitq(WINNT) + .F/
 replace

def chl (OS2.WINNT.TCP) chltype(sdr) + .H/
 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(WINNT) + .F/
 replace

MQSeries for OS/2 Warp receiver-channel definitions using
TCP/IP
def ql (OS2.LOCALQ) replace .B/

def chl (WINNT.OS2.TCP) chltype(rcvr) + .J/
 trptype(tcp) +

 replace

MQSeries for OS/2 Warp sender-channel definitions using
NetBIOS
def ql (WINNT) + .F/
 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + .D/
 rname(WINNT.LOCALQ) + .E/
 rqmname(WINNT) + .C/
 xmitq(WINNT) + .F/
 replace

def chl (OS2.WINNT.NET) chltype(sdr) + .K/
 trptype(netbios) +

conname(remote NetBIOS name) +
 xmitq(WINNT) + .F/
 replace

MQSeries for OS/2 Warp receiver-channel definitions using
NetBIOS
def ql (OS2.LOCALQ) replace .B/

def chl (WINNT.OS2.NET) chltype(rcvr) + .M/
 trptype(netbios) +

 replace

174 MQSeries Intercommunication

 OS/2 configuration

MQSeries for OS/2 Warp sender-channel definitions using
IPX/SPX
def ql (WINNT) + .F/
 usage(xmitq) +

 replace

def qr (WINNT.REMOTEQ) + .D/
 rname(WINNT.LOCALQ) + .E/
 rqmname(WINNT) + .C/
 xmitq(WINNT) + .F/
 replace

def chl (OS2.WINNT.SPX) chltype(sdr) + .L/
 trptype(spx) +

 conname('network.node(socket)') +

 xmitq(WINNT) + .F/
 replace

MQSeries for OS/2 Warp receiver-channel definitions using
IPX/SPX
def ql (OS2.LOCALQ) replace .B/

def chl (WINNT.OS2.SPX) chltype(rcvr) + .N/
 trptype(spx) +

 replace

Running channels as processes or threads
MQSeries for OS/2 Warp provides the flexibility to run sender channels as OS/2
processes or OS/2 threads. This is specified in the MCATYPE parameter on the
sender channel definition. Each installation should select the type appropriate for
their application and configuration. Factors affecting this choice are discussed
below.

Most installations will select to run their sender channels as threads, because the
virtual and real memory required to support a large number of concurrent channel
connections will be reduced. When the MQSeries listener process (started via the
RUNMQLSR command) exhausts the available private memory needed, an
additional listener process will need to be started to support more channel
connections. When each channel runs as a process, additional processes are
automatically started, avoiding the out-of-memory condition.

If all channels are run as threads under one MQSeries listener, a failure of the
listener for any reason will cause all channel connections to be temporarily lost.
This can be prevented by balancing the threaded channel connections across two
or more listener processes, thus enabling other connections to keep running. If
each sender channel is run as a separate process, the failure of the listener for that
process will affect only that specific channel connection.

A NetBIOS connection needs a separate process for the Message Channel Agent.
Therefore, before you can issue a START CHANNEL command, you must start the
channel initiator, or you may start a channel using the RUNMQCHL command.

 Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp 175

 OS/2 configuration

176 MQSeries Intercommunication

 MQSeries for Windows NT � Windows NT and LU 6.2

Chapter 12. Example configuration - IBM MQSeries for
Windows NT

This chapter gives an example of how to set up communication links from
MQSeries for Windows NT to MQSeries products on the following platforms:

 � OS/2
 � AIX
 � HP-UX
� AT&T GIS UNIX3

 � Sun Solaris
 � OS/400
� OS/390 or MVS/ESA without CICS

 � VSE/ESA

This chapter first describes the parameters needed for an LU 6.2 connection, then
it guides you through the following tasks:

� “Establishing an LU 6.2 connection” on page 182
� “Establishing a TCP connection” on page 188
� “Establishing a NetBIOS connection” on page 188
� “Establishing an SPX connection” on page 189

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for Windows NT configuration” on
page 191.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 16 on page 178 presents a worksheet listing all the parameters needed to
set up communication from Windows NT to one of the other MQSeries platforms.
The worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

The steps required to set up an LU 6.2 connection are described, with numbered
cross references to the parameters on the worksheet. These steps are:

� “Configuring the local node” on page 182
� “Adding a connection” on page 183
� “Adding a partner” on page 185
� “Adding a CPI-C entry” on page 185
� “Configuring an invokable TP” on page 186

3 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 177

 Windows NT and LU 6.2

 Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 181.

Table 16 (Page 1 of 3). Configuration worksheet for IBM Communications Server for Windows NT

ID Parameter Name Reference Example Used User Value

Definition for local node

.1/ Configuration name NTCONFIG

.2/ Network Name NETID

.3/ Control Point Name WINNTCP

.4/ Local Node ID (hex) 05D 30F65

.5/ LU Name (local) WINNTLU

.6/ LU Alias (local) NTQMGR

.7/ TP Name MQSERIES

.8/ Command line c:\mqm\bin\amqcrs6a.exe

.9/ LAN adapter address 08005AA5FAB9

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 152, as indicated.

.1ð/ Connection OS2

.11/ Remote Network Address .1ð/ 10005AFC5D83

.12/ Network Name .2/ NETID

.13/ Control Point Name .3/ OS2PU

.14/ Remote Node ID .4/ 05D 12345

.15/ LU Alias (remote) OS2QMGR

.16/ LU Name .6/ OS2LU

.17/ Mode .17/ #INTER

.18/ CPI-C Name OS2CPIC

.19/ Partner TP Name .8/ MQSERIES

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 208, as indicated.

.1ð/ Connection AIX

.11/ Remote Network Address .8/ 123456789012

.12/ Network Name .1/ NETID

.13/ Control Point Name .2/ AIXPU

.14/ Remote Node ID .3/ 071 23456

.15/ LU Alias (remote) AIXQMGR

.16/ LU Name .4/ AIXLU

.17/ Mode .14/ #INTER

.18/ CPI-C Name AIXCPIC

.19/ Partner TP Name .6/ MQSERIES

178 MQSeries Intercommunication

 Windows NT and LU 6.2

Table 16 (Page 2 of 3). Configuration worksheet for IBM Communications Server for Windows NT

ID Parameter Name Reference Example Used User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page 226, as indicated.

.1ð/ Connection HPUX

.11/ Remote Network Address .8/ 100090DC2C7C

.12/ Network Name .4/ NETID

.13/ Control Point Name .2/ HPUXPU

.14/ Remote Node ID .3/ 05D 54321

.15/ LU Alias (remote) HPUXQMGR

.16/ LU Name .5/ HPUXLU

.17/ Mode .15/ #INTER

.18/ CPI-C Name HPUXCPIC

.19/ Partner TP Name .7/ MQSERIES

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in Table 24 on page 244, as indicated.

.1ð/ Connection GIS

.11/ Remote Network Address .8/ 10007038E86B

.12/ Network Name .2/ NETID

.13/ Control Point Name .3/ GISPU

.14/ Remote Node ID .9/ 03E 00018

.15/ LU Alias (remote) GISQMGR

.16/ LU Name .4/ GISLU

.17/ Mode .15/ #INTER

.18/ CPI-C Name GISCPIC

.19/ Partner TP Name .5/ MQSERIES

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page 258, as indicated.

.1ð/ Connection SOLARIS

.11/ Remote Network Address .5/ 08002071CC8A

.12/ Network Name .2/ NETID

.13/ Control Point Name .3/ SOLARPU

.14/ Remote Node ID .6/ 05D 310D6

.15/ LU Alias (remote) SOLARQMGR

.16/ LU Name .7/ SOLARLU

.17/ Mode .17/ #INTER

.18/ CPI-C Name SOLCPIC

.19/ Partner TP Name .8/ MQSERIES

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 179

 Windows NT and LU 6.2

Table 16 (Page 3 of 3). Configuration worksheet for IBM Communications Server for Windows NT

ID Parameter Name Reference Example Used User Value

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.1ð/ Connection AS400

.11/ Remote Network Address .4/ 10005A5962EF

.12/ Network Name .1/ NETID

.13/ Control Point Name .2/ AS400PU

.14/ Remote Node ID

.15/ LU Alias (remote) AS400QMGR

.16/ LU Name .3/ AS400LU

.17/ Mode .17/ #INTER

.18/ CPI-C Name AS4CPIC

.19/ Partner TP Name .8/ MQSERIES

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page 396, as indicated.

.1ð/ Connection MVS

.11/ Remote Network Address .8/ 400074511092

.12/ Network Name .2/ NETID

.13/ Control Point Name .3/ MVSPU

.14/ Remote Node ID

.15/ LU Alias (remote) MVSQMGR

.16/ LU Name .4/ MVSLU

.17/ Mode .1ð/ #INTER

.18/ CPI-C Name MVSCPIC

.19/ Partner TP Name .7/ MQSERIES

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.1ð/ Connection MVS

.11/ Remote Network Address .5/ 400074511092

.12/ Network Name .1/ NETID

.13/ Control Point Name .2/ VSEPU

.14/ Remote Node ID

.15/ LU Alias (remote) VSEQMGR

.16/ LU Name .3/ VSELU

.17/ Mode #INTER

.18/ CPI-C Name VSECPIC

.19/ Partner TP Name .4/ MQ01 MQ01

180 MQSeries Intercommunication

 Windows NT and LU 6.2

Explanation of terms
.1/ Configuration Name

This is the name of the file in which the Communications Server configuration
is saved.

.2/ Network Name
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network name
works with the Control Point Name to uniquely identify a system. Your
network administrator will tell you the value.

.3/ Control Point Name
In Advanced Peer-to-Peer Networking (APPN), a control point is
responsible for managing a node and its resources. A control point is also a
logical unit (LU). The Control Point Name is the name of the LU and is
assigned to your system by the network administrator.

.4/ Local Node ID (hex)
Some SNA products require partner systems to specify a node identifier that
uniquely identifies their workstation. The two systems exchange this node
identifier in a message unit called the exchange identifier (XID). Your network
administrator will assign this ID for you.

.5/ LU Name (local)
A logical unit (LU) is software that serves as an interface or translator
between a transaction program and the network. An LU manages the
exchange of data between transaction programs. The local LU Name is the
name of the LU on your workstation. Your network administrator will assign
this to you.

.6/ LU Alias (local)
The name by which your local LU will be known to your applications. You
choose this name yourself. It can be 1-8 characters long.

.7/ TP Name
MQSeries applications trying to converse with your workstation specify a
symbolic name for the program that is to start running. This will have been
defined on the channel definition at the sender. For simplicity, wherever
possible use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See Table 12 on page 141 for more information.

.8/ Command line
This is the path and name of the actual program to be run when a
conversation has been initiated with your workstation. The example shown on
the worksheet assumes that MQSeries is installed in the default directory,
c:\mqm. The configuration pairs this name with the symbolic name .7/ when
you use TPSETUP (which is part of the SNA Server software developers kit).

.9/ LAN adapter address
This is the address of your token-ring card. To discover this type net config
server at a command prompt. The address appears in the output. For
example:

Server is active on ð8ðð5AA5FAB9

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 181

 Using IBM Communications Server

.1ð/ Connection
This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only within SNA Server administration and is
specified by you.

.15/ LU Alias (remote)
This is a value known only in this server and is used to represent the fully
qualified partner LU name. You supply the value.

.17/ Mode
This is the name given to the set of parameters that control the APPC
conversation. An entry with this name and a similar set of parameters must
be defined at each partner system. Your network administrator will tell you
this name.

.18/ CPI-C Name
This is the name given to a locally held definition of a partner application.
You supply the name and it must be unique within this server. The name is
specified in the CONNAME attribute of the MQSeries sender channel
definition.

Establishing an LU 6.2 connection
This section describes how to establish an LU 6.2 connection using IBM
Communications Server for Windows NT, Version 5.0. You may use any of the
supported LU 6.2 products for this platform. The panels of other products will not
be identical to those shown here, but most of their content will be similar.

Configuring the local node
To configure the local node, follow these steps:

1. From the Scenarios pull-down of the
Communications Server SNA Node
Configuration window, select the CPI-C,
APPC or 5250 Emulation scenario.

The CPI-C, APPC or 5250 Emulation scenario
window is displayed.

2. Click on Configure Node , then click on New.
The Define the Node property sheet is
displayed.

182 MQSeries Intercommunication

 Using IBM Communications Server

3. In the Fully qualified CP name field on the
Basic page, enter the unique ID of the
network to which you are connected (.2/) and
the control point name (.3/). Click on OK to
continue.

4. From the SNA Node Configuration window,
click on Configure Local LU 6.2 , then click
on New. The Define a Local LU 6.2 window
is displayed.

5. In the Local LU name field on the Basic
page, enter the name of the LU on your
workstation (.5/). In the Local LU alias field,
enter the name by which your local LU will be
known to your applications (.6/). Click on OK
to continue.

Adding a connection

To add a connection, follow these steps:

1. From the SNA Node Configuration window,
select Configure Devices , select LAN as the
DLC type, then click on New. The Define a
LAN Device property sheet is displayed.

2. If you have the LLC2 protocol installed with
Communications Server for Windows NT, the
Adapter number list box lists the available
LAN adapters. See the help file INLLC40.HLP
(Windows NT 4.0) or INLLC35.HLP (Windows
NT 3.51) in the Communications Server
installation directory for LLC2 installation
instructions.

3. The default values displayed on the Define a
LAN Device Basic page may be accepted.
Click on OK to continue.

4. From the SNA Node Configuration window,
select Configure Connections , select LAN
as the DLC type, then click on New. The
Define a LAN Connection property sheet is
displayed.

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 183

 Using IBM Communications Server

5. In the Destination address field on the Basic
page, enter the LAN address of the system to
which you are connecting (.11/). Select the
Advanced page.

6. In the Block ID field on the Advanced page,
enter the local node ID (hex) (.4/). Select the
Security page.

7. In the Adjacent CP name field on the
Security page, enter the network name and
control point name of the remote node (.12/
and .13/). In the Adjacent CP type field,
enter APPN Node. You do not need to
complete the Adjacent node ID field for a
peer-to-peer connection. Click on OK to
continue. Take note of the default link name
used to identify this new definition (for
example, LINK0000).

184 MQSeries Intercommunication

 Using IBM Communications Server

Adding a partner

To add a partner LU definition, follow these steps:

1. From the SNA Node Configuration window,
select Configure Partner LU 6.2 , then click
on New. The Define a Partner LU 6.2
property sheet is displayed.

2. In the Partner LU name field on the Basic
page, enter the network name (.12/) and LU
name of the remote system (.16/). In the
Partner LU alias field, enter the remote LU
alias (.15/). In the Fully qualified CP name
fields, enter the network name and control
point name of the remote system (.12/ and
.13/). Click on OK to continue.

Adding a CPI-C entry

To add a CPI-C Side information entry, follow
these steps:

1. From the SNA Node Configuration window,
select Configure CPI-C Side Information ,
then click on New. The Define a CPI-C Side
Information property sheet is displayed.

2. In the Symbolic destination name field of
the Basic page, enter the CPI-C name (.18/).
In the Mode name field, enter the mode value
(.17/). Enter either a fully qualified partner
LU name (.12/..16/) or a partner LU alias
(.15/) depending on what you choose in the
CPI-C Side Information property sheet. In the
TP name field, enter the partner TP name
(.19/). Click on OK to continue.

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 185

 Using IBM Communications Server

Configuring an invokable TP

To add a Transaction Program (TP) definition,
follow these steps:

1. From the SNA Node Configuration window,
select Configure Transaction Programs ,
then click on New. The Define a Transaction
Program property sheet is displayed.

2. In the TP name field on the Basic page, enter
the transaction program name (.7/). In the
Complete pathname field, enter the actual
path and name of the the program that will be
run when a conversation is initiated with your
workstation (.8/). When you are happy with
the settings, click on OK to continue.

| 3. In order to be able to stop the MQSeries
| Transaction Program, you need to start it in
| one of the following ways:

| a. Check Service TP on the Basic page.
| This starts the TP programs at Windows
| NT startup and will run the programs
| under the system user ID.

| b. Check Dynamically loaded on the
| Advanced page. This dynamically loads
| and starts the programs as and when
| incoming SNA conversation requests
| arrive. It will run the programs under the
| same user ID as the rest of MQSeries.

| Note: To use dynamic loading, it is
| necessary to vary the user ID under which
| the MQSeries SNA Transaction program
| runs. To do this, set the Attach Manager
| to run under the desired user context by
| modifying the startup parameters within
| the Control Panel in the Services applet
| for the AppnNode service.

| c. Issue the MQSeries command, runmqlsr,
| to run the channel listener process.

186 MQSeries Intercommunication

 Using IBM Communications Server

Communications Server has a tuning parameter
called the Receive_Allocate timeout parameter
that is set in the Transaction Program. The
default value of this parameter is 3600 and this
indicates that the listener will only remain active
for 3600 seconds, that is, 1 hour. You can make
your listener run for longer than this by increasing
the value of the Receive_Allocate timeout
parameter. You can also make it run ‘forever’ by
specifying zero.

 What next?

The SNA configuration task is complete. From the
File pull-down, select Save and specify a file
name under which to save your SNA configuration
information, for example, NTCONFIG (.1/). When
prompted, select this configuration as the default.

From the SNA Node Operations application, start
the node by clicking the Start node button on the

toolbar. Specify the file name of the configuration
you just saved. (It should appear in the file-name
box by default, because you identified it as your
default configuration.) When the node startup is
complete, ensure that your link to the remote node
has been established by selecting the
Connections button on the toolbar, then find the
link name you configured (for example,
LINK0000). The link should be active if the
remote node is active waiting for the link to be
established.

A complementary SNA setup process is required
on the node to which you are connecting before
you can attempt MQSeries server-to-server
message transmissions.

The LU 6.2 connection is now established. You
are ready to complete the configuration. Go to
“MQSeries for Windows NT configuration” on
page 191.

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 187

 Windows NT and TCP � Windows NT and NetBIOS

Establishing a TCP connection
The TCP stack that is shipped with Windows NT does not include an inet daemon
or equivalent.

The MQSeries command used to start a TCP listener is:

runmqlsr -t tcp

The listener must be started explicitly before any channels are started.

 What next?
When the TCP/IP connection is established, you are ready to complete the
configuration. Go to “MQSeries for Windows NT configuration” on page 191.

Establishing a NetBIOS connection
A NetBIOS connection is initiated from a queue manager that uses the
ConnectionName parameter on its channel definition to connect to a target listener.
To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the
| MQSeries channel processes, in the Windows NT registry or in the queue
| manager configuration file qm.ini. For example, the NETBIOS stanza in the
| Windows NT registry at the sending end might look like this:

NETBIOS:

 LocalName=WNTNETB1

and at the receiving end:

NETBIOS:

 LocalName=WNTNETB2

Each MQSeries process must use a different local NetBIOS name. Do not use
your machine name as the NetBIOS name because Windows NT already uses
it.

2. At each end of the channel, verify the LAN adapter number being used on your
system. The MQSeries for Windows NT default for logical adapter number 0 is
NetBIOS running over a TCP/IP network. To use native NetBIOS you need to
select logical adapter number 1. See “Establishing the LAN adapter number”
on page 145.

| Specify the correct LAN adapter number in the NETBIOS stanza of the the
| Windows NT registry. For example:

NETBIOS:

 AdapterNum=1

3. So that sender channel initiation will work, specify the local NetBIOS name via
the MQNAME environment variable:

 SET MQNAME=WNTNETB1I

This name must be unique.

188 MQSeries Intercommunication

 Windows NT and SPX

4. At the sending end, define a channel specifying the NetBIOS name being used
at the other end of the channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(SDR) +

 TRPTYPE(NETBIOS) +

 CONNAME(WNTNETB2) +

 XMITQ(OS2) +

 MCATYPE(THREAD) +

 REPLACE

You must specify the option MCATYPE(THREAD) because, on Windows NT, sender
channels must be run as threads.

5. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(RCVR) +

 TRPTYPE(NETBIOS) +

 REPLACE

6. Start the channel initiator because each new channel is started as a thread
rather than as a new process.

runmqchi

7. At the receiving end, start the MQSeries listener:

runmqlsr -t netbios

Optionally you may specify values for the queue manager name, NetBIOS local
name, number of sessions, number of names, and number of commands. See
“Defining a NetBIOS connection” on page 143 for more information about
setting up NetBIOS connections.

Establishing an SPX connection
This section discusses the following topics:

 � IPX/SPX parameters
 � SPX addressing
� Receiving on SPX

 IPX/SPX parameters
Please refer to the Microsoft documentation for full details of the use and setting of
the NWLink IPX and SPX parameters. The IPX/SPX parameters are in the
following paths in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 189

 Windows NT and SPX

 SPX addressing
MQSeries uses the SPX address of each machine to establish connectivity. The
SPX address is specified in the following form:

 network.node(socket)

where

network Is the 4-byte network address of the network on which the remote
machine resides,

node Is the 6-byte node address, which is the LAN address of the LAN
adapter in the remote machine

socket Is the 2-byte socket number on which the remote machine will
listen.

The default socket number used by MQSeries is 5E86. You can change the
| default socket number by specifying it in the the Windows NT registry or in the

queue manager configuration file qm.ini. If you have taken the default options for
installation, the qm.ini file for queue manager OS2 is found in c:\mqm\qmgs\os2.
The lines in the Windows NT registry might read:

SPX:

 SOCKET=n

For more information about values you can set in qm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page 635.

The SPX address is later specified in the CONNAME parameter of the sender
channel definition. If the MQSeries systems being connected reside on the same
network, the network address need not be specified. Similarly, if the remote
system is listening on the default socket number (5E86), it need not be specified.
A fully qualified SPX address in the CONNAME parameter would be:

 CONNAME('network.node(socket)')

but if the systems reside on the same network and the default socket number is
used, the parameter would be:

 CONNAME(node)

A detailed example of the channel configuration parameters is given in “MQSeries
for Windows NT configuration” on page 191.

Receiving on SPX
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use the MQSeries listener.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t spx

Optionally you may specify the queue manager name or the socket number if you
are not using the defaults.

190 MQSeries Intercommunication

 Windows NT configuration

MQSeries for Windows NT configuration
Notes:

1. You can use the sample program, AMQSBCG, to display the contents and
headers of all the messages in a queue. For example:

AMQSBCG q_name qmgr_name

displays the contents of the queue q_name defined in queue manager
qmgr_name.

| Alternatively, you can use the message browser in the MQSeries Explorer.

2. The MQSeries command used to start the TCP/IP listener is:

runmqlsr -t tcp

The listener enables receiver channels to start automatically in response to a
start request from an inbound sender channel.

3. You can start any channel from the command prompt using the command

runmqchl -c channel.name

4. Error logs can be found in the directories \mqm\qmgrs\qmgrname\errors and
\mqm\qmgrs\@system\errors. In both cases, the most recent messages are at
the end of amqerr01.log.

5. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

| Default configuration
| You can create a default configuration by using either the First Steps application or
| the MQSeries Postcard application to guide you through the process. For
| information about this, see “Windows NT Default Configuration objects” in the
| MQSeries System Administration book.

 Basic configuration
| You can create and start a queue manager from the MQSeries Explorer or from the
| command prompt.

If you choose the command prompt:

1. Create the queue manager using the command:

crtmqm -u dlqname -q winnt

where:

winnt Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.

2. Start the queue manager using the command:

strmqm winnt

where winnt is the name given to the queue manager when it was created.

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 191

 Windows NT configuration

 Channel configuration
The following sections detail the configuration to be performed on the Windows NT
queue manager to implement the channel described in Figure 32 on page 105.

In each case the MQSC command is shown. Either start runmqsc from a
command prompt and enter each command in turn, or build the commands into a
command file.

Examples are given for connecting MQSeries for Windows NT and MQSeries for
OS/2 Warp. If you wish to connect to another MQSeries product use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 17 (Page 1 of 3). Configuration worksheet for MQSeries for Windows NT

Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name WINNT

.B/ Local queue name WINNT.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 171, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender (SNA) channel name WINNT.OS2.SNA

.H/ Sender (TCP/IP) channel name WINNT.OS2.TCP

.I/ Receiver (SNA) channel name .G/ OS2.WINNT.SNA

.J/ Receiver (TCP) channel name .H/ OS2.WINNT.TCP

.K/ Sender (NetBIOS) channel name WINNT.OS2.NET

.L/ Sender (SPX) channel name WINNT.OS2.SPX

.M/ Receiver (NetBIOS) channel name .K/ OS2.WINNT.NET

.N/ Receiver (SPX) channel name .L/ OS2.WINNT.SPX

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 220, as indicated.

.C/ Remote queue manager name .A/ AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender (SNA) channel name WINNT.AIX.SNA

.H/ Sender (TCP) channel name WINNT.AIX.TCP

.I/ Receiver (SNA) channel name .G/ AIX.WINNT.SNA

.J/ Receiver (TCP) channel name .H/ AIX.WINNT.TCP

192 MQSeries Intercommunication

 Windows NT configuration

Table 17 (Page 2 of 3). Configuration worksheet for MQSeries for Windows NT

Parameter Name Reference Example Used User Value

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page 238, as indicated.

.C/ Remote queue manager name .A/ HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender (SNA) channel name WINNT.HPUX.SNA

.H/ Sender (TCP) channel name WINNT.HPUX.TCP

.I/ Receiver (SNA) channel name .G/ HPUX.WINNT.SNA

.J/ Receiver (TCP/IP) channel name .H/ HPUX.WINNT.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 25 on page 252, as indicated.

.C/ Remote queue manager name .A/ GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender (SNA) channel name WINNT.GIS.SNA

.H/ Sender (TCP/IP) channel name WINNT.GIS.TCP

.I/ Receiver (SNA) channel name .G/ GIS.WINNT.SNA

.J/ Receiver (TCP/IP) channel name .H/ GIS.WINNT.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page 269, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender (SNA) channel name WINNT.SOLARIS.SNA

.H/ Sender (TCP) channel name WINNT.SOLARIS.TCP

.I/ Receiver (SNA) channel name .G/ SOLARIS.WINNT.SNA

.J/ Receiver (TCP) channel name .H/ SOLARIS.WINNT.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender (SNA) channel name WINNT.AS400.SNA

.H/ Sender (TCP) channel name WINNT.AS400.TCP

.I/ Receiver (SNA) channel name .G/ AS400.WINNT.SNA

.J/ Receiver (TCP) channel name .H/ AS400.WINNT.TCP

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 193

 Windows NT configuration

Table 17 (Page 3 of 3). Configuration worksheet for MQSeries for Windows NT

Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 36 on page 404, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender (SNA) channel name WINNT.MVS.SNA

.H/ Sender (TCP) channel name WINNT.MVS.TCP

.I/ Receiver (SNA) channel name .G/ MVS.WINNT.SNA

.J/ Receiver (TCP/IP) channel name .H/ MVS.WINNT.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name WINNT.VSE.SNA

.I/ Receiver channel name .G/ VSE.WINNT.SNA

MQSeries for Windows NT sender-channel definitions using SNA
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (WINNT.OS2.SNA) chltype(sdr) + .G/
 trptype(lu62) +

 conname(OS2CPIC) + .18/
 xmitq(OS2) + .F/
 replace

MQSeries for Windows NT receiver-channel definitions using
SNA
def ql (WINNT.LOCALQ) replace .B/

def chl (OS2.WINNT.SNA) chltype(rcvr) + .I/
 trptype(lu62) +

 replace

194 MQSeries Intercommunication

 Windows NT configuration

MQSeries for Windows NT sender-channel definitions using
TCP/IP
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (WINNT.OS2.TCP) chltype(sdr) + .H/
 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(OS2) + .F/
 replace

MQSeries for Windows NT receiver-channel definitions using
TCP
def ql (WINNT.LOCALQ) replace .B/

def chl (OS2.WINNT.TCP) chltype(rcvr) + .J/
 trptype(tcp) +

 replace

MQSeries for Windows NT sender-channel definitions using
NetBIOS
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (WINNT.OS2.NET) chltype(sdr) + .K/
 trptype(netbios) +

 conname(remote_system_NetBIOS_name) +

 xmitq(OS2) + .F/
 replace

MQSeries for Windows NT receiver-channel definitions using
NetBIOS
def ql (WINNT.LOCALQ) replace .B/

def chl (OS2.WINNT.NET) chltype(rcvr) + .M/
 trptype(tcp) +

 replace

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 195

 Windows NT configuration

MQSeries for Windows NT sender-channel definitions using SPX
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (WINNT.OS2.SPX) chltype(sdr) + .L/
 trptype(spx) +

 conname('network.node(socket)') +

 xmitq(OS2) + .F/
 replace

MQSeries for Windows NT receiver-channel definitions using
SPX
def ql (WINNT.LOCALQ) replace .B/

def chl (OS2.WINNT.SPX) chltype(rcvr) + .N/
 trptype(tcp) +

 replace

 Automatic startup
MQSeries for Windows NT allows you to automate the startup of a queue manager

| and its channel initiator, channels, listeners, and command servers. Use the IBM
| MQSeries Services snap-in to define the services for the queue manager. When
| you have successfully completed testing of your communications setup, set the
| relevant services to automatic within the snap-in. This file can be read by the

supplied MQSeries service when the system is started.

For more information about this, see “Starting a queue manager automatically” in
the MQSeries System Administration book.

Running channels as processes or threads
MQSeries for Windows NT provides the flexibility to run sender channels as
Windows NT processes or Windows NT threads. This is specified in the
MCATYPE parameter on the sender channel definition. Each installation should
select the type appropriate for their application and configuration. Factors affecting
this choice are discussed below.

Most installations will select to run their sender channels as threads, because the
virtual and real memory required to support a large number of concurrent channel
connections will be reduced. When the MQSeries listener process (started via the
RUNMQLSR command) exhausts the available private memory needed, an
additional listener process will need to be started to support more channel
connections. When each channel runs as a process, additional processes are
automatically started, avoiding the out-of-memory condition.

196 MQSeries Intercommunication

 Windows NT configuration

If all channels are run as threads under one MQSeries listener, a failure of the
listener for any reason will cause all channel connections to be temporarily lost.
This can be prevented by balancing the threaded channel connections across two
or more listener processes, thus enabling other connections to keep running. If
each sender channel is run as a separate process, the failure of the listener for that
process will affect only that specific channel connection.

A NetBIOS connection needs a separate process for the Message Channel Agent.
Therefore, before you can issue a START CHANNEL command, you must start the
channel initiator, or you may start a channel using the RUNMQCHL command.

 Chapter 12. Example configuration - IBM MQSeries for Windows NT 197

 Windows NT configuration

198 MQSeries Intercommunication

 Communications in UNIX systems � Deciding on a connection

Chapter 13. Setting up communication in UNIX systems

DQM is a remote queuing facility for MQSeries. It provides channel control
programs for the queue manager which form the interface to communication links,
controllable by the system operator. The channel definitions held by distributed
queue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this. You may also find it helpful to refer to the following chapters:

� Chapter 14, “Example configuration - IBM MQSeries for AIX” on page 207

� Chapter 15, “Example configuration - IBM MQSeries for HP-UX” on page 225

� Chapter 16, “Example configuration - IBM MQSeries for AT&T GIS UNIX
Version 2.2” on page 243

� Chapter 17, “Example configuration - IBM MQSeries for Sun Solaris” on
page 257

For OS/2 and Windows NT, see Chapter 10, “Setting up communication for OS/2
and Windows NT” on page 137. For Digital OpenVMS, see Chapter 18, “Setting
up communication in Digital OpenVMS systems” on page 273. For Tandem NSK,
see Chapter 19, “Setting up communication in Tandem NSK” on page 285.

Deciding on a connection
There are three forms of communication for MQSeries on UNIX systems:

 � TCP
 � LU 6.2

| � UDP (AIX only)

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See Chapter 5, “Configuring communication links” in the
MQSeries Clients book.

 Copyright IBM Corp. 1993,1999 199

 Defining a TCP connection

Defining a TCP connection
The channel definition at the sending end specifies the address of the target. The
inetd daemon is configured for the connection at the receiving end.

 Sending end
Specify the host name, or the TCP address of the target machine, in the
Connection Name field of the channel definition. The port to connect to will default
to 1414. Port number 1414 is assigned by the Internet Assigned Numbers
Authority to MQSeries.

To use a port number other than the default, change the connection name field
thus:

Connection Name REMHOST(1822)

where REMHOST is the hostname of the remote machine and 1822 is the port number
required. (This must be the port that the listener at the receiving end is listening
on.)

Alternatively you can change the port number by specifying it in the queue manager
configuration file (qm.ini):

TCP:

 Port=1822

For more information about the values you set using QM.INI, see Appendix D,
“Configuration file stanzas for distributed queuing” on page 635.

Receiving on TCP
You should use either the TCP/IP listener (INETD) or the MQSeries listener.

Using the TCP/IP listener
To use INETD to start channels on UNIX, two files must be configured:

1. Add a line in the /etc/services file:

MQSeries 1414/tcp

where 1414 is the port number required by MQSeries.

| Note: To edit the /etc/services file, you must be logged in as a superuser or
| root. You can change this, but it must match the port number specified at the

sending end.

2. Add a line in the inetd.conf file to call the program amqcrsta:

MQSeries stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta

[-m Queue_Man_Name]

200 MQSeries Intercommunication

 Defining a TCP connection

The updates are active after inetd has reread the configuration files. To do this,
issue the following commands from the root user ID:

 � On AIX:

inetimp

refresh -s inetd

 � On HP-UX:

inetd -c

� On other UNIX systems:

kill -1 <process number>

It is possible to have more than one queue manager on the server machine. You
must add a line to each of the two files, as above, for each of the queue managers.
For example:

MQSeries1 1414/tcp

MQSeries2 1822/tcp

MQSeries2 stream tcp nowait mqm /mqmtop/bin/amqcrsta amqcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number
of outstanding connection requests queued at a single TCP port. For information
about the number of outstanding connection requests, see “Using the TCP listener
backlog option.”

| Using the TCP listener backlog option
| When receiving on TCP, a maximum number of outstanding connection requests is
| set. This can be considered a backlog of requests waiting on the TCP port for the
| listener to accept the request. The default listener backlog values are shown in
| Table 18.

| If the backlog reaches the values shown in Table 18, the TCP/IP connection is
| rejected and the channel will not be able to start.

| For MCA channels, this results in the channel going into a RETRY state and
| retrying the connection at a later time.

| For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
| reason code from MQCONN and should retry the connection at a later time.

| Table 18. Default outstanding connection requests

| Platform| Default listener backlog value

| AIX V4.2 or later| 100

| AIX V4.1| 10

| HP-UX| 20

| Sun Solaris| 100

| All others| 5

 Chapter 13. Setting up communication in UNIX systems 201

 Defining a TCP connection

| However, to avoid this error, you can add an entry in the qm.ini file:

| TCP:

| ListenerBacklog = n

| This overrides the default maximum number of outstanding requests (see Table 18
| on page 201) for the TCP/IP listener.

| Note: Some operating systems support a larger value than the default. If
| necessary, this can be used to avoid reaching the connection limit.

| To run the listener with the backlog option switched on, use the RUNMQLSR -B

| command. For information about the RUNMQLSR command, see “runmqlsr (Run
| listener)” in the MQSeries System Administration book.

| Using the MQSeries listener
| To run the listener supplied with MQSeries, which starts new channels as threads,
| use the runmqlsr command. For example:

| runmqlsr -t tcp [-m QMNAME] [-p 1822]

| The square brackets indicate optional parameters; QMNAME is not required for the
| default queue manager, and the port number is not required if you are using the
| default (1414).

| For the best performance, run the MQSeries listener as a trusted application as
| described in “Running channels and listeners as trusted applications” on page 134.
| See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
| Application Programming Guide for information about trusted applications.

| You can stop all MQSeries listeners running on a queue manager that is inactive,
| using the command:

| endmqlsr [-m QMNAME]

| If you do not specify a queue manager name, the default queue manager is
| assumed.

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 72) you must the add the

| following entry to your queue manager configuration file (QM.INI) or the Windows
| NT registry:

TCP:

 KeepAlive=yes

On some UNIX systems, you can define how long TCP waits before checking that
the connection is still available, and how frequently it retries the connection if the
first check fails. This is either a kernel tunable parameter, or can be entered at the
command line. See the documentation for your UNIX system for more information.

On MQSeries for SINIX and DC/OSx you can set the TCP keepalive parameters by
using the idtune and idbuild commands to modify the TCP_KEEPCNT and
TCP_KEEPINT values for the kernel configuration. The default configuration is to
retry 7 times at 7200 second (2 hourly) intervals.

202 MQSeries Intercommunication

 Defining an LU 6.2 connection

Defining an LU 6.2 connection
SNA must be configured so that an LU 6.2 conversation can be established
between the two machines.

See the Multiplatform APPC Configuration Guide and the following table for
information.

| If you have more than one queue manager on the same machine, ensure that the
| TPnames in the channel definitions are unique.

Table 19. Settings on the local UNIX system for a remote queue manager platform

Remote
platform

TPNAME TPPATH

OS/390 or
MVS/ESA
without CICS

The same as the corresponding
TPName in the side information
on the remote queue manager.

-

OS/390 or
MVS/ESA
using CICS

CKRC (sender)
CKSV (requester)
CKRC (server)

-

OS/400 The same as the compare value
in the routing entry on the
OS/400 system.

-

OS/2 As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file.

<drive>:\mqm\bin\amqcrs6a

UNIX systems The same as the corresponding
TPName in the side information
on the remote queue manager.

mqmtop/bin/amqcrs6a

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup
on Windows NT.

<drive>:\mqm\bin\amqcrs6a

 Sending end
� On UNIX systems other than SINIX, and DC/OSx, create a CPI-C side object

(symbolic destination) and enter this name in the Connection name field in the
channel definition. Also create an LU 6.2 link to the partner.

In the CPI-C side object enter the partner LU name at the receiving machine,
the transaction program name and the mode name. For example:

Partner LU Name REMHOST

Remote TP Name recv

Service Transaction Program no

Mode Name #INTER

On HP-UX, use the APPCLLU environment variable to name the local LU that
the sender should use. On Sun Solaris, set the APPC_LOCAL_LU
environment variable to be the local LU name.

 Chapter 13. Setting up communication in UNIX systems 203

 Defining an LU 6.2 connection

SECURITY PROGRAM is used, where supported by CPI-C, when MQSeries
attempts to establish an SNA session.

� On SINIX, create an XSYMDEST entry in SNA configuration file (the TRANSIT
KOGS file), for example:

XSYMDEST sendMPð1,

 RLU = forties,

 MODE = MODE1,

 TP = recvMPð1,

 TP-TYP = USER,

 SEC-TYP = NONE

See the MQSeries for SINIX and DC/OSx System Management Guide for more
information about the TRANSIT KOGS file.

� On DC/OSx, create an entry in the /etc/opt/lu62/cpic_cfg file, for example:

sendMPð1 <local LU name> <remote LU name> <mode name> <remote TP name>

Receiving on LU 6.2
� On UNIX systems other than SINIX, and DC/OSx, create a listening attachment

at the receiving end, an LU 6.2 logical connection profile, and a TPN profile.

In the TPN profile, enter the full path to the executable and the Transaction
Program name:

Full path to TPN executable mqmtop/bin/amqcrs6a

Transaction Program name recv

User ID ð

On systems where you can set the User ID, you should specify a user who is a
member of the mqm group. On HP-UX, set the APPCTPN (transaction name)
and APPCLLU (local LU name) environment variables (you can use the
configuration panels for the invoked transaction program). On Sun Solaris, set
the APPC_LOCAL_LU environment variable to be the local LU name.

On Sun Solaris, amqcrs6a requires the option -n tp_name, where tp_name is
the TP name on the receiving end of the SNA connection. It is the value of the
tp_path variable in the SunLink configuration file.

You may need to use a queue manager other than the default queue manager.
If so, define a command file that calls:

amqcrs6a -m Queue_Man_Name

then call the command file. On AIX, this only applies up to version 3.2.5; for
later versions, use the TPN profile parameters as follows:

 Use Command Line Parameters ? yes

 Command Line Parameters -m Queue_Man_Name

204 MQSeries Intercommunication

 Defining an LU 6.2 connection

� On SINIX, create an XTP entry in the SNA configuration file (the TRANSIT
KOGS file), for example:

 XTP recvMPð1,

 UID = abcdefgh,

 TYP = USER,

 PATH = /home/abcdefgh/recvMPð1.sh,

 SECURE = NO

Where /home/abcdefgh/recvMP01.sh is a file that contains:

#!/bin/sh

#

script to start the receiving side for the qmgr MPð1

#

exec /opt/mqm/bin/amqcrs6a -m <queue manager>

See the MQSeries for SINIX and DC/OSx System Management Guide for more
information about the TRANSIT KOGS file.

� On DC/OSx, add a Transaction Program entry to the SNA configuration file,
including the following information:

TRANSACTION PROGRAM

transaction programname (ebcdic): recvMPð4

transaction program execute name:

 'home/abcdefgh/recvMPð4.sh

tp is enabled

tp supports basic conversations

tp supports mapped conversations

tp supports confirm synchronization

tp supports no synchronization

no verification is required

number of pip fields required: ð

privilege mask (hex): ð

 (no privileges)

 Chapter 13. Setting up communication in UNIX systems 205

 Defining an LU 6.2 connection

206 MQSeries Intercommunication

 MQSeries for AIX � AIX and LU 6.2

Chapter 14. Example configuration - IBM MQSeries for AIX

This chapter gives an example of how to set up communication links from
MQSeries for AIX to MQSeries products on the following platforms:

 � OS/2
 � Windows NT
 � HP-UX
� AT&T GIS UNIX4

 � Sun Solaris
 � OS/400
� OS/390 or MVS/ESA without CICS

 � VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it
describes:

� “Establishing a TCP connection” on page 218
| � “Establishing a UDP connection” on page 218

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for AIX configuration” on
page 219.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 20 on page 208 presents a worksheet listing all the parameters needed to
set up communication from AIX to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

 Configuration worksheet
Use the following worksheet to record the values you will use for this configuration.
Where numbers appear in the Reference column they indicate that the value must
match that in the appropriate worksheet elsewhere in this book. The examples that
follow in this chapter refer back to the values in the ID column of this table. The
entries in the Parameter Name column are explained in “Explanation of terms” on
page 211.

4 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 207

 AIX and LU 6.2

Table 20 (Page 1 of 3). Configuration worksheet for SNA Server for AIX

ID Parameter Name Reference Example User Value

Parameters for local node

.1/ Network name NETID

.2/ Control Point name AIXPU

.3/ Node ID 07123456

.4/ Local LU name AIXLU

.5/ Local LU alias AIXQMGR

.6/ TP Name MQSERIES

.7/ Full path to TP executable usr/lpp/mqm/bin/amqcrs6a

.8/ Token-ring adapter address 123456789012

.9/ Mode name #INTER

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 152, as indicated.

.1ð/ Network name .2/ NETID

.11/ Remote LU name .6/ OS2LU

.12/ Remote Transaction Program name .8/ MQSERIES

.13/ LU 6.2 CPI-C Side Information profile
name

OS2CPIC

.14/ Mode name .17/ #INTER

.15/ LAN destination address .1ð/ 10005AFC5D83

.16/ Token-Ring Link Station profile name OS2PRO

.17/ CP name of adjacent node .3/ OS2PU

.18/ LU 6.2 partner location profile name OS2LOCPRO

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 178, as indicated.

.1ð/ Network name .2/ NETID

.11/ Remote LU name .5/ WINNTLU

.12/ Remote Transaction Program name .7/ MQSERIES

.13/ LU 6.2 CPI-C Side Information profile
name

NTCPIC

.14/ Mode name .17/ #INTER

.15/ LAN destination address .9/ 08005AA5FAB9

.16/ Token-Ring Link Station profile name NTPRO

.17/ CP name of adjacent node .3/ WINNTCP

.18/ LU 6.2 partner LU profile name NTLUPRO

208 MQSeries Intercommunication

 AIX and LU 6.2

Table 20 (Page 2 of 3). Configuration worksheet for SNA Server for AIX

ID Parameter Name Reference Example User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page 226, as indicated.

.1ð/ Network name .4/ NETID

.11/ Remote LU name .5/ HPUXLU

.12/ Remote Transaction Program name .7/ MQSERIES

.13/ LU 6.2 CPI-C Side Information profile
name

HPUXCPIC

.14/ Mode name .6/ #INTER

.15/ LAN destination address .8/ 100090DC2C7C

.16/ Token-Ring Link Station profile name HPUXPRO

.17/ CP name of adjacent node .2/ HPUXPU

.18/ LU 6.2 partner LU profile name HPUXLUPRO

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in Table 24 on page 244, as indicated.

.1ð/ Network name .2/ NETID

.11/ Remote LU name .4/ GISLU

.12/ Remote Transaction Program name .5/ MQSERIES

.13/ LU 6.2 CPI-C Side Information profile
name

GISCPIC

.14/ Mode name .7/ #INTER

.15/ LAN destination address .8/ 10007038E86B

.16/ Token-Ring Link Station profile name GISPRO

.17/ CP name of adjacent node .3/ GISPU

.18/ LU 6.2 partner LU profile name GISLUPRO

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page 258, as indicated.

.1ð/ Network name .2/ NETID

.11/ Remote LU name .7/ SOLARLU

.12/ Remote Transaction Program name .8/ MQSERIES

.17/ LU 6.2 CPI-C Side Information profile
name

SOLCPIC

.14/ Mode name .17/ #INTER

.5/ LAN destination address .5/ 08002071CC8A

.16/ Token-Ring Link Station profile name SOLPRO

.17/ CP name of adjacent node .3/ SOLARPU

.18/ LU 6.2 partner LU profile name SOLLUPRO

 Chapter 14. Example configuration - IBM MQSeries for AIX 209

 AIX and LU 6.2

Table 20 (Page 3 of 3). Configuration worksheet for SNA Server for AIX

ID Parameter Name Reference Example User Value

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.1ð/ Network name .1/ NETID

.11/ Remote LU name .3/ AS400LU

.12/ Remote Transaction Program name .8/ MQSERIES

.13/ LU 6.2 CPI-C Side Information profile
name

AS4CPIC

.14/ Mode name .17/ #INTER

.15/ LAN destination address .4/ 10005A5962EF

.16/ Token-Ring Link Station profile name AS4PRO

.17/ CP name of adjacent node .2/ AS400PU

.18/ LU 6.2 partner LU profile name AS4LUPRO

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page 396, as indicated.

.1ð/ Network name .2/ NETID

.11/ Remote LU name .3/ MVSLU

.12/ Remote Transaction Program name .7/ MQSERIES

.13/ LU 6.2 CPI-C Side Information profile
name

MVSCPIC

.14/ Mode name .1ð/ #INTER

.15/ LAN destination address .8/ 400074511092

.16/ Token-Ring Link Station profile name MVSPRO

.17/ CP name of adjacent node .3/ MVSPU

.18/ LU 6.2 partner LU profile name MVSLUPRO

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.1ð/ Network name .1/ NETID

.11/ Remote LU name .3/ VSELU

.12/ Remote Transaction Program name .4/ MQ01

.13/ LU 6.2 CPI-C Side Information profile
name

VSECPIC

.14/ Mode name #INTER

.15/ LAN destination address .5/ 400074511092

.16/ Token-Ring Link Station profile name VSEPRO

.17/ CP name of adjacent node .2/ VSEPU

.18/ LU 6.2 partner LU profile name VSELUPRO

210 MQSeries Intercommunication

 AIX and LU 6.2

Explanation of terms
.1/Network name

This is the unique ID of the network to which you are connected. Your
network administrator will tell you this value.

.2/ Control Point name
This is a unique control point name for this workstation. Your network
administrator will assign this to you.

.3/ XID node ID
This is a unique identifier for this workstation. On other platforms it is often
referred to as the exchange ID (XID). Your network administrator will assign
this to you.

.4/ Local LU name
A logical unit (LU) manages the exchange of data between systems. The
local LU name is the name of the LU on your system. Your network
administrator will assign this to you.

.5/ Local LU alias
The local LU alias is the name by which your local LU is known to your
applications. You can choose this name yourself. It need be unique only on
this machine.

.6/ TP Name
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. It is recommended that
when AIX is the receiver a Transaction Program Name of MQSERIES is
used, or in the case of a connection to VSE/ESA, where the length is limited
to 4 bytes, use MQTP.

See Table 19 on page 203 for more information.

.7/ Full path to TP executable
This is the path and name of a shell script file that invokes the actual program
to be run when a conversation is initiated with this workstation. You can
choose the path and name of the script file. The contents of the file are
illustrated in “MQSeries for AIX TPN setup” on page 223.

.8/ Token-ring adapter address
This is the 12-character hex address of the token-ring card. It can be found
by entering the AIX command:

lsfg -v -l tokn

where n is the number assigned to the token-ring adapter you are using. The
Network Address field of the Token-Ring section indicates the adapter’s
address.

.9/ Mode name
This is the name of a configuration profile used by SNA Server for AIX. The
profile contains the set of parameters that control the APPC conversation.
The mode name specified in the profile will be assigned to you by your
network administrator. You supply the name to be used for the profile.

.13/ LU 6.2 CPI-C Side Information profile name
This is a name given to the Side Information profile defining a partner node.
You supply the name. It needs to be unique only on this machine. You will
later use the name in the MQSeries sender channel definition.

 Chapter 14. Example configuration - IBM MQSeries for AIX 211

 AIX and LU 6.2

.16/ Token-Ring Link Station profile name
This is the name of a configuration profile used by SNA Server for AIX. You
supply the name to be used for the profile. The link station profile associates
the link station with the SNA DLC profile, which has been used to define the
hardware adapter and link characteristics, and the node control point.

.17/ CP name of adjacent node
This is the unique control point name of the partner system which which you
are establishing communication. Your network administrator will assign this to
you.

.18/ LU 6.2 partner LU profile name
This is the name of a configuration profile used by SNA Server for AIX. You
supply the name to be used for the profile. It needs to be unique only on this
machine. The profile defines parameters for establishing a session with a
specific partner LU. In some scenarios, this profile may not be required but it
is shown here to reduce the likelihood of error. See the SNA Server for AIX
Configuration Reference manual for details.

212 MQSeries Intercommunication

 Using SNA Server for AIX

| Establishing a session using SNA Server for AIX V5
| Verify the level of SNA software you have installed by entering the AIX command:

| lslpp -h sna.rte

| The level displayed in the response needs to be at least Version 5.0.

| To update the SNA configuration profile, you need root authority. (Without root
| authority you can display options and appear to modify them, but cannot actually
| make any changes.) You can make configuration changes when SNA is either
| active or inactive.

| The configuration scenario that follows was accomplished using the graphical
| interface.

| Note: The setup used is APPN using independent LUs.

| If you are an experienced user of AIX, you may choose to circumvent the panels
| and use the command-line interface. Refer to the SNA Server for AIX
| Configuration Reference manual to see the commands that correspond to the
| panels illustrated.

| Throughout the following example, only the panels for profiles that must be added
| or updated are shown.

| Configuring your node

| This configuration uses a token ring setup. To
| define the end node to connect to the network
| node (assuming that a network node already
| exists), you need to:

| 1. Click on Services from the main menu on the
| main window.
| 2. Select Configuration node parameters ...
| from the drop-down list.

| A windows entitled Node parameters
| appears:

| 3. Click on End node for APPN support .
| 4. In the SNA addressing box, enter a name
| and alias for the Control point. The Control
| point name consists of a Network name (.1/)
| and a Control point name (.2/).
| 5. Enter the Node ID (.3/) of your local machine.
| 6. Click on OK.

| You have now configured your node to connect to
| the network node.

| Configuring connectivity to the
| network
| 1. Defining your port:

| a. From the main menu of the main window,
| click on Services , Connectivity , and New
| port ...

| A window entitled Add to machine name
| screen appears.

| b. Select the default card for connecting to
| the network (Token ring card).

| c. Click on OK.

 Chapter 14. Example configuration - IBM MQSeries for AIX 213

 Using SNA Server for AIX

| A window entitled Token ring SAP
| appears:

| d. Enter a port name in the SNA port name
| box, for example, MQPORT.

| e. Check Initially Active .

| f. Click on OK.

| 2. Defining your connection to the network node:

| a. From the main menu on the main window,
| click on Services , Connectivity , and New
| link station ...

| b. Click on OK to link your station to the
| chosen port (MQPORT).

| A window entitled Token ring link station
| appears:

| c. Enter a name for your link station (.4/),
| for example, NETNODE.

| d. Enter the port name to which you want to
| connect the link station. In this case, the
| port name would be MQPORT.

| e. Check Any in the LU traffic box.

| f. Define where the remote node is by
| entering the control point on the network
| node in the Independent LU traffic box.
| The control point consists of a Network
| name (.1ð/) and a CP name of adjacent
| node (.17/).

| Note: The network node does not have
| to be on the remote system that you are
| connecting to.

| g. Ensure the Remote node type is
| Network node .

| h. In the Contact information , enter the
| MAC address (.15/) of the token ring
| card on the network node.

| Note: The network node does not have
| to be on the remote system that you are
| connecting to.

| i. Click on Advanced

214 MQSeries Intercommunication

 Using SNA Server for AIX

| A window entitled Token ring parameters
| appears:

| j. Check Remote node is network node
| server .

| k. Click on OK.

| The Token ring link station window
| remains on the screen.

| l. Click on OK on the Token ring link
| station window.

| Defining a local LU

| To define a local LU:

| 1. From the main menu on the main window,
| click on Services , APPC, and New
| independent local LU

| A window entitled Local LU appears:

| Figure 33. Local LU window

| 2. Enter an LU name (.4/) and alias (.5/).

| 3. Click on OK.

| You have now set up a basic SNA system.

| To define the mode controlling the SNA session
| limits:

| 1. From the main menu in the main window, click
| on Services , APPC, and Modes

| A Modes window appears.

| 2. Select the New ... button.

| A window entitled Mode appears:

| Figure 34. Mode window

| 3. Enter a Name (.9/) for your mode.

| 4. When you are happy with the session limits,
| click on OK.

| The Modes window remains on the screen.

| 5. Click on Done in the Modes window.

| Defining a transaction program

| This section describes how to define a transaction
| program. To do this, use the command line rather
| than the graphical interface.

 Chapter 14. Example configuration - IBM MQSeries for AIX 215

 Using SNA Server for AIX

| 1. Defining a transation program for the receiver
| end of the channel:

| a. Name your transaction program (.6/):

| snaadmin define_tp, tp_name=MQSERIES

| where MQSERIES can be any name that
| matches the name used on the CPI-C
| side information at the sender end of the
| channel.

| b. Define the program your transaction
| program (MQSERIES) relates to, that is, the
| receiving MQSeries channel:

| snaadmin define_tp_load_info,

| tp_name=MQSERIES, userid=mqm, group=mqm,

| style=COMPATIBLE, path=/usr/lpp/mqm/bin/

| amqcrs6a, arguments=-m AIX -n MQSERIES

| where AIX and MQSERIES can be upper or
| lower case but must be the same
| throughout.

| c. View the definition you have just created
| through the graphical interface:

| 1) From the main window, click on
| Services , APPC, and Transaction
| programs ...

| A window entitled TP invocation
| appears for you to view your
| configuration:

| 2) Verify the Application TP (.6/).

| 3) Verify the Full path to TP executable
| (.7/).

| 2. Defining the CPI-C side information for the
| sender channel:

| You can define the CPI-C side information for
| the sender channel using the graphical
| interface:

| a. From the main menu on the main window,
| click on Services , APPC, and CPI-C

| A CPI-C destination names window
| appears.

| b. Click on the New ... button.

| A window entitled CPI-C destination
| appears:

| This window lets you define the LU that
| you want to connect to and the transaction
| program you want to start:

| c. Enter a Name, (.13/). You must specify
| this name in the CONNAME parameter of
| the channel.

216 MQSeries Intercommunication

 Using SNA Server for AIX

| d. Check Specify local LU alias and enter
| the LU alias value (.5/).

| e. In the Partner LU and mode box, check
| Use PLU full name and enter the name
| of the remote machine to which you are
| connecting. This consists of a Network
| name (.1ð/) and a Remote LU name
| (.11/).

| f. Enter the Mode (.14/).

| To start the transaction program on the
| remote machine:

| a. Check Application TP in the Partner TP
| box.

| b. Enter the name of the transaction program
| (.12/).

| c. Click on OK.

 Chapter 14. Example configuration - IBM MQSeries for AIX 217

 AIX and TCP � AIX and UDP

Establishing a TCP connection
1. Edit the file /etc/services.

| Note: To edit the /etc/services file, you must be logged in as a superuser or
| root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add
it as shown:

MQSeries stream tcp nowait root /usr/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

3. Enter the command refresh -s inetd.

 What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for AIX configuration” on page 219.

| Establishing a UDP connection
| 1. Edit the file /etc/services.

| Note: To edit the /etc/services file, you must be logged in as a superuser or
| root. If you do not have the following line in that file, add it as shown:

| MQSeries 1414/tcp # MQSeries channel listener

| If you change 1414, for example, if you have more than one queue manager
| running, be sure to make the corresponding change below (-p 1414).

| 2. Ensure a listener is started by issuing the following MQSC command:

| runmqlsr -m QMgrName -t UDP -p 1414

| Notes:

| a. You cannot start a listener channel on AIX using the START LISTENER
| MQSC command.

| b. Using the runmqlsr command implies that you must not add entries to the
| /etc/services and /etc/inetd.conf file for UDP on MQSeries for AIX.

| What next?
| The connection is now established. You are ready to complete the configuration.
| Go to “MQSeries for AIX configuration” on page 219.

218 MQSeries Intercommunication

 AIX configuration

MQSeries for AIX configuration
Notes:

1. Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

2. If installation fails as a result of insufficient space in the file system you can
increase the size as follows, using the command smit C sna. (Use df to
display the current status of the file system. This will indicate the logical
volume that is full.)

-- Physical and Logical Storage

-- File Systems

-- Add / Change / Show / Delete File Systems

-- Journaled File Systems

-- Change/Show Characteristics of a Journaled File System

3. Start any channel using the command:

runmqchl -c channel.name

4. Sample programs are installed in /usr/mqm/samp.

5. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

6. You can start an AIX trace of the MQSeries components using the command:

trace -a -j3ðD,3ðE -o trace.file

You can stop AIX trace by entering:

trcstop

Format the trace report using the command:

trcrpt -t /usr/mqm/samp/amqtrc.fmt trace.file > trace.report

7. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

 Basic configuration
1. Create the queue manager from the AIX command line using the command:

crtmqm -u dlqname -q aix

where:

aix Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.

2. Start the queue manager from the AIX command line using the command:

strmqm aix

where aix is the name given to the queue manager when it was created.

 Chapter 14. Example configuration - IBM MQSeries for AIX 219

 AIX configuration

3. Start runmqsc from the AIX command line and use it to create the
undeliverable message queue by entering the command:

def ql (dlqname)

where dlqname is the name given to the undeliverable message queue when
the queue manager was created.

 Channel configuration
The following section details the configuration to be performed on the AIX queue
manager to implement the channel described in Figure 32 on page 105.

In each case the MQSC command is shown. Either start runmqsc from an AIX
command line and enter each command in turn, or build the commands into a
command file.

Examples are given for connecting MQSeries for AIX and MQSeries for OS/2 Warp.
If you wish to connect to another MQSeries product use the appropriate set of
values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 21 (Page 1 of 3). Configuration worksheet for MQSeries for AIX

ID Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name AIX

.B/ Local queue name AIX.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 171, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender (SNA) channel name AIX.OS2.SNA

.H/ Sender (TCP/IP) channel name AIX.OS2.TCP

.I/ Receiver (SNA) channel name .G/ OS2.AIX.SNA

.J/ Receiver (TCP/IP) channel name .H/ OS2.AIX.TCP

220 MQSeries Intercommunication

 AIX configuration

Table 21 (Page 2 of 3). Configuration worksheet for MQSeries for AIX

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 192, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender (SNA) channel name AIX.WINNT.SNA

.H/ Sender (TCP/IP) channel name AIX.WINNT.TCP

.I/ Receiver (SNA) channel name .G/ WINNT.AIX.SNA

.J/ Receiver (TCP) channel name .H/ WINNT.AIX.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page 238, as indicated.

.C/ Remote queue manager name .A/ HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender (SNA) channel name AIX.HPUX.SNA

.H/ Sender (TCP) channel name AIX.HPUX.TCP

.I/ Receiver (SNA) channel name .G/ HPUX.AIX.SNA

.J/ Receiver (TCP) channel name .H/ HPUX.AIX.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 25 on page 252, as indicated.

.C/ Remote queue manager name .A/ GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender (SNA) channel name AIX.GIS.SNA

.H/ Sender (TCP) channel name AIX.GIS.TCP

.I/ Receiver (SNA) channel name .G/ GIS.AIX.SNA

.J/ Receiver (TCP/IP) channel name .H/ GIS.AIX.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page 269, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender (SNA) channel name AIX.SOLARIS.SNA

.H/ Sender (TCP/IP) channel name AIX.SOLARIS.TCP

.I/ Receiver (SNA) channel name .G/ SOLARIS.AIX.SNA

.J/ Receiver (TCP/IP) channel name .H/ SOLARIS.AIX.TCP

 Chapter 14. Example configuration - IBM MQSeries for AIX 221

 AIX configuration

Table 21 (Page 3 of 3). Configuration worksheet for MQSeries for AIX

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender (SNA) channel name AIX.AS400.SNA

.H/ Sender (TCP) channel name AIX.AS400.TCP

.I/ Receiver (SNA) channel name .G/ AS400.AIX.SNA

.J/ Receiver (TCP) channel name .H/ AS400.AIX.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 36 on page 404, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender (SNA) channel name AIX.MVS.SNA

.H/ Sender (TCP) channel name AIX.MVS.TCP

.I/ Receiver (SNA) channel name .G/ MVS.AIX.SNA

.J/ Receiver (TCP) channel name .H/ MVS.AIX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name AIX.VSE.SNA

.I/ Receiver channel name .G/ VSE.AIX.SNA

222 MQSeries Intercommunication

 AIX configuration

MQSeries for AIX sender-channel definitions using SNA
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (AIX.OS2.SNA) chltype(sdr) + .G/
 trptype(lu62) +

 conname('OS2CPIC') + .17/
 xmitq(OS2) + .F/
 replace

MQSeries for AIX receiver-channel definitions using SNA
def ql (AIX.LOCALQ) replace .B/

def chl (OS2.AIX.SNA) chltype(rcvr) + .I/
 trptype(lu62) +

 replace

MQSeries for AIX TPN setup
During the AIX SNA Server configuration process, an LU 6.2 TPN profile was
created, which contained the full path to a TP executable. In the example the file
was called u/interops/AIX.crs6a. You can choose a name, but you are
recommended to include the name of your queue manager in it. The contents of
the executable file must be:

#!/bin/sh

/opt/mqm/bin/amqcrs6a -m aix

where aix is the queue manager name (.A/). After creating this file, enable it for
execution by running the command:

chmod 755 /u/interops/AIX.crs6a

| As an alternative to creating an executable file, you can specify the path on the
| Add LU 6.2 TPN Profile panel, using command line parameters.

| Specifying a path in one of these two ways ensures that SNA receiver channels
activate correctly when a sender channel initiates a conversation.

 Chapter 14. Example configuration - IBM MQSeries for AIX 223

 AIX configuration

MQSeries for AIX sender-channel definitions using TCP
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (AIX.OS2.TCP) chltype(sdr) + .H/
 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(OS2) + .F/
 replace

MQSeries for AIX receiver-channel definitions using TCP
def ql (AIX.LOCALQ) replace .B/

def chl (OS2.AIX.TCP) chltype(rcvr) + .J/
 trptype(tcp) +

 replace

| MQSeries for AIX sender-channel definitions using UDP
| def ql (OS2) + .F/
| usage(xmitq) +

| replace

|

| def qr (OS2.REMOTEQ) + .D/
| rname(OS2.LOCALQ) + .E/
| rqmname(OS2) + .C/
| xmitq(OS2) + .F/
| replace

|

| def chl (AIX.OS2.UDP) chltype(sdr) + .H/
| trptype(udp) +

| conname(remote_udpip_hostname) +

| xmitq(OS2) + .F/
| replace

| MQSeries for AIX receiver-channel definitions using UDP
| def ql (AIX.LOCALQ) replace .B/
|

| def chl (OS2.AIX.UDP) chltype(rcvr) + .J/
| trptype(udp) +

| replace

224 MQSeries Intercommunication

 MQSeries for HP-UX � HP-UX and LU 6.2

Chapter 15. Example configuration - IBM MQSeries for HP-UX

This chapter gives an example of how to set up communication links from
MQSeries for HP-UX to MQSeries products on the following platforms:

 � OS/2
 � Windows NT
 � AIX
� AT&T GIS UNIX5

 � Sun Solaris
 � OS/400
� OS/390 or MVS/ESA without CICS

 � VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it
describes:

� “Establishing a session using HP SNAplus2” on page 230
� “Establishing a TCP connection” on page 236

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for HP-UX configuration” on
page 237.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 22 on page 226 presents a worksheet listing all the parameters needed to
set up communication from HP-UX to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

 Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 228.

5 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 225

 HP-UX and LU 6.2

Table 22 (Page 1 of 3). Configuration worksheet for HP SNAplus2

ID Parameter Name Reference Example User Value

Parameters for local node

.1/ Configuration file name sna_node.cfg

.2/ Control point name HPUXPU

.3/ Node ID to send 05D 54321

.4/ Network name NETID

.5/ Local APPC LU HPUXLU

.6/ APPC mode #INTER

.7/ Invokable TP MQSERIES

.8/ Token-Ring adapter address 100090DC2C7C

.9/ Port name MQPORT

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 152, as indicated.

.1ð/ Connection name OS2CONN

.11/ Network name .2/ NETID

.12/ CP name .3/ OS2PU

.13/ Remote LU .6/ OS2LU

.14/ Application TP .8/ MQSERIES

.15/ Mode name .17/ #INTER

.16/ CPI-C symbolic destination name OS2CPIC

.17/ Remote network address .1ð/ 10005AFC5D83

.18/ Node ID to receive .4/ 05D 12345

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 178, as indicated.

.1ð/ Link station name NTCONN

.11/ Network name .2/ NETID

.12/ CP name .3/ WINNTCP

.13/ Remote LU .5/ WINNTLU

.14/ Application TP .7/ MQSERIES

.15/ Mode name .17/ #INTER

.16/ CPI-C symbolic destination name NTCPIC

.17/ Remote network address .9/ 08005AA5FAB9

.18/ Node ID to receive .4/ 05D 30F65

226 MQSeries Intercommunication

 HP-UX and LU 6.2

Table 22 (Page 2 of 3). Configuration worksheet for HP SNAplus2

ID Parameter Name Reference Example User Value

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 208, as indicated.

.1ð/ Link station name AIXCONN

.11/ Network name .1/ NETID

.12/ CP name .2/ AIXPU

.13/ Remote LU .4/ AIXLU

.14/ Application TP .6/ MQSERIES

.15/ Mode name .14/ #INTER

.16/ CPI-C symbolic destination name AIXCPIC

.17/ Remote network address .8/ 123456789012

.18/ Node ID to receive .3/ 071 23456

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the table Table 24 on page 244, as indicated.

.1ð/ Link station name GISCONN

.11/ Network name .2/ NETID

.12/ CP name .3/ GISPU

.13/ Remote LU GISLU

.14/ Application TP .5/ MQSERIES

.15/ Mode name .7/ #INTER

.16/ CPI-C symbolic destination name GISCPIC

.17/ Remote network address .8/ 10007038E86B

.18/ Node ID to receive .9/ 03E 00018

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page 258, as indicated.

.1ð/ Link station name SOLCONN

.11/ Network name .2/ NETID

.12/ CP name .3/ SOLARPU

.13/ Remote LU .7/ SOLARLU

.14/ Application TP .8/ MQSERIES

.15/ Mode name .17/ #INTER

.16/ CPI-C symbolic destination name SOLCPIC

.17/ Remote network address .5/ 08002071CC8A

.18/ node ID to receive .6/ 05D 310D6

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 227

 HP-UX and LU 6.2

Table 22 (Page 3 of 3). Configuration worksheet for HP SNAplus2

ID Parameter Name Reference Example User Value

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.1ð/ Link station name AS4CONN

.11/ Network name .1/ NETID

.12/ CP name .2/ AS400PU

.13/ Remote LU .3/ AS400LU

.14/ Application TP .8/ MQSERIES

.15/ Mode name .17/ #INTER

.16/ CPI-C symbolic destination name AS4CPIC

.17/ Remote network address .4/ 10005A5962EF

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page 396, as indicated.

.1ð/ Link station name MVSCONN

.11/ Network name .2/ NETID

.12/ CP name .3/ MVSPU

.13/ Remote LU .4/ MVSLU

.14/ Application TP .7/ MQSERIES

.15/ Mode name .1ð/ #INTER

.16/ CPI-C symbolic destination name MVSCPIC

.17/ Remote network address .8/ 400074511092

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.1ð/ Link station name VSECONN

.11/ Network name .1/ NETID

.12/ CP name .2/ VSEPU

.13/ Remote LU .3/ VSELU

.14/ Application TP .4/ MQ01 MQ01

.15/ Mode name #INTER

.16/ CPI-C symbolic destination name VSECPIC

.17/ Remote network address .5/ 400074511092

Explanation of terms
.1/ Configuration file name

This is the unique name of the SNAplus2 configuration file. The default for
this name is sna_node.cfg.

Although it is possible to edit this file it is strongly recommended that
configuration is done using xsnapadmin.

.2/ Control point name
This is the unique Control point name for this workstation. In the SNA
network, the Control point is an addressable location (PU type 2.1). Your
network administrator will assign this to you.

228 MQSeries Intercommunication

 HP-UX and LU 6.2

.3/ Node ID to send
This is the unique ID of this workstation. On other platforms this is often
referred to as the Exchange ID or XID. Your network administrator will assign
this ID for you.

.4/ Network name
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network name
works with the Control point name to uniquely identify a system. Your
network administrator will tell you the value.

.5/ Local APPC LU
An LU manages the exchange of data between transactions. The local APPC
LU name is the name of the LU on your system. Your network administrator
will assign this to you.

.6/ APPC mode
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each partner system. Your
network administrator will assign this to you.

.7/ Invokable TP
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. For simplicity, wherever
possible use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See Table 19 on page 203 for more information.

.8/ Token-ring adapter address
Use the HP-UX System Administration Manager (SAM) to discover the
adapter address for this workstation. You need root authority to use SAM.
From the initial menu, select Networking and Communications , then select
Network Interface cards followed by LAN 0 (or whichever LAN you are
using). The adapter address is displayed under the heading Station Address
(hex). The card name represents the appropriate card type. If you do not
have root level authority, your HP-UX system administrator can tell you the
value.

.9/ Port name
This is a meaningful symbolic name that is used to associate the definitions
with a network interface (in this case, a Token-Ring adapter). A separate Port
must be defined for each physical device attached to the workstation.

.1ð/ Link station name
This is a meaningful symbolic name by which the connection to a peer or host
node is known. It defines a logical path to the remote system. Its name is
used only inside SNAplus2 and is specified by you. The connection must be
associated with an existing Link and owned by one local node. You must
define one connection for each partner or host system.

.16/ CPI-C symbolic destination name
This is a name given to the definition of a partner node. You choose the
name. It need be unique only on this machine. Later you can use this name
in the MQSeries sender channel definition.

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 229

 Using HP SNAplus2

.18/ Node ID to receive
This is the unique ID of the partner workstation with which you will be
communicating. On other platforms this is often referred to as the Exchange
ID or XID. For a connection to a host system any values except ððð FFFFF

and FFF FFFFF may be specified. Your network administrator will assign this
ID for you.

Establishing a session using HP SNAplus2
The following information guides you through the tasks you must perform to create
the SNA infrastructure that MQSeries requires. This example creates the
definitions for a partner node and LU on OS/2.

Use snap start followed by xsnapadmin to enter the HP SNAplus2 configuration
panels. You need root authority to use xsnapadmin .

 SNAplus2 configuration
SNAplus2 configuration involves the following steps:

1. Defining a local node
2. Adding a Token Ring Port
3. Defining a local LU

The SNAplus2 main menu, from which you will start, is shown below:

230 MQSeries Intercommunication

 Using HP SNAplus2

Defining a local node

1. From the SNAplus2 main menu, select the
Services pull-down:

2. Select Configure node parameters... . The
following panel is displayed:

3. Complete the Control point name with the
values Network name (.4/) and Control
point name (.2/).

4. Enter the Control point name (.2/) in the
Control point alias field.

5. Enter the Node ID (.3/).

6. Select End node .

 7. Press OK.

A default independent local LU is defined.

Adding a Token Ring Port

1. From the main SNAplus2 menu, select the
Connectivity and dependent LUs panel.

2. Press Add . The following panel is displayed:

3. Select a Token Ring Card port and press OK.
The following panel is displayed:

4. Enter the SNA port name (.9/).

5. Enter a Description and press OK to take the
default values.

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 231

 Using HP SNAplus2

Defining a local LU

1. From the main SNAplus2 menu, select the
Independent local LUs panel.

2. Press Add . The following panel is displayed:

3. Enter the LU name (.5/) and press OK.

 APPC configuration

APPC configuration involves the following steps:

1. Defining a remote node
2. Defining a partner LU
3. Defining a link station
4. Defining a mode
5. Adding CPI-C information
6. Adding a TP definition

Defining a remote node

1. From the main SNAplus2 menu, select the
Remote systems panel.

2. Press Add . The following panel is displayed:

3. Select Define remote node and press OK.
The following panel is displayed:

4. Enter the Node’s SNA network name (.11/)
and a Description .

 5. Press OK.

6. A default partner LU with the same name is
generated and a message is displayed.

 7. Press OK.

Defining a partner LU

1. From the main SNAplus2 menu, select the
remote node in the Remote systems panel.

2. Press Add . The following panel is displayed:

3. Select Define partner LU on node node

name.

 4. Press OK.

232 MQSeries Intercommunication

 Using HP SNAplus2

The following panel is displayed:

5. Enter the partner LU name (.13/) and press
OK.

Defining a link station

1. From the main SNAplus2 menu, select the
Connectivity and dependent LUs panel.

2. Select the MQPORT port.

3. Press Add . The following panel is displayed:

4. Select Add link station to port MQPORT .

5. Press OK. The following panel is displayed:

6. Enter the Name of the link station (.1ð/).

7. Set the value of Activation to “On demand”.

8. Select Independent only .

9. Press Remote node... and select the value of
the remote node (.12/).

10. Press OK.

11. Set the value of Remote node type to “End
or LEN node”.

12. Enter the value for MAC address (.17/) and
press Advanced... . The following panel is
displayed:

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 233

 Using HP SNAplus2

13. Select Reactivate link station after failure .

14. Press OK to exit the Advanced... panel.

15. Press OK again.

Defining a mode

1. From the SNAplus2 main menu, select the
Services pull-down: The following panel is
displayed:

2. Select APPC. The following panel is
displayed:

 3. Select Modes... .

The following panel is displayed:

4. Press Add . The following panel is displayed:

5. Enter the Name to be given to the mode
(.15/).

6. Set the values of Initial session limit to 8,
Min con. winner sessions to 4, and
Auto-activated sessions to 0.

 7. Press OK.

 8. Press Done .

234 MQSeries Intercommunication

 Using HP SNAplus2

Adding CPI-C information

1. From the SNAplus2 main menu, select the
Services pull-down:

2. Select APPC. The following panel is
displayed:

3. Select CPI-C.... The following panel is
displayed:

4. Press Add . The following panel is displayed:

5. Enter the Name (.16/). Select Application
TP and enter the value (.14/). Select Use
PLU alias and enter the name (.13/). Enter
the Mode name (.15/).

 6. Press OK.

Adding a TP definition: Invokable TP
definitions are kept in the file /etc/opt/sna/sna_tps.
This should be edited to add a TP definition. Add
the following lines:

 [MQSERIES]

PATH = /users/interops/HPUX.crs6a

TYPE = NON-QUEUED

 USERID = mqm

ENV = APPCLLU=HPUXLU

ENV = APPCTPN=MQSERIES

See “MQSeries for HP-UX invokable TP setup” on
page 241 for more information about TP
definitions.

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 235

 HP-UX and TCP

 HP-UX operation
The SNAplus2 control daemon is started with the snap start command.
Depending on the options selected at installation, it may already be running.

The xsnapadmin utility controls SNAplus2 resources.

Logging and tracing are controlled from here. Log and trace files can be found in
the /var/opt/sna directory. The logging files sna.aud and sna.err can be read using
a standard editor such as vi.

In order to read the trace files sna1.trc and sna2.trc they must first be formatted
by running the command snaptrcfmt -f sna1.trc -o sna1 which produces a
sna1.dmp file which can be read using a normal editor.

The configuration file itself is editable but this is not a recommended method of
configuring SNAplus2.

The APPCLU environment variables must be set before starting a sender channel
from the HP-UX system. The command can be either entered interactively or
added to the logon profile. Depending on the level of BOURNE shell or KORN
shell program being used, the command will be:

export APPCLLU=HPUXLU .5/ newer level

or

APPCLLU=HPUXLU .5/ older level

export

 What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for HP-UX configuration” on page 237.

Establishing a TCP connection
1. Edit the file /etc/services.

| Note: To edit the /etc/services file, you must be logged in as a superuser or
| root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add
it as shown:

MQSeries stream tcp nowait root /opt/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

236 MQSeries Intercommunication

 HP-UX configuration

 What next?
The connection is now established. You are ready to complete the configuration.
Go to “MQSeries for HP-UX configuration.”

MQSeries for HP-UX configuration
Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Notes:

1. Sample programs are installed in /opt/mqm/samp.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

 Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q hpux

where:

hpux Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlqname Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects. It sets
the DEADQ attribute of the queue manager but does not create the
undeliverable message queue.

2. Start the queue manager from the UNIX prompt using the command:

strmqm hpux

where hpux is the name given to the queue manager when it was created.

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 237

 HP-UX configuration

 Channel configuration
The following section details the configuration to be performed on the HP-UX queue
manager to implement the channel described in Figure 32 on page 105.

In each case the MQSC command is shown. Either start runmqsc from a UNIX
prompt and enter each command in turn, or build the commands into a command
file.

Examples are given for connecting MQSeries for HP-UX and MQSeries for OS/2
Warp. If you wish connect to another MQSeries product use the appropriate set of
values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 23 (Page 1 of 3). Configuration worksheet for MQSeries for HP-UX

ID Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name HPUX

.B/ Local queue name HPUX.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 171, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender (SNA) channel name HPUX.OS2.SNA

.H/ Sender (TCP/IP) channel name HPUX.OS2.TCP

.I/ Receiver (SNA) channel name .G/ OS2.HPUX.SNA

.J/ Receiver (TCP/IP) channel name .H/ OS2.HPUX.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 192, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender (SNA) channel name HPUX.WINNT.SNA

.H/ Sender (TCP/IP) channel name HPUX.WINNT.TCP

.I/ Receiver (SNA) channel name .G/ WINNT.HPUX.SNA

.J/ Receiver (TCP) channel name .H/ WINNT.HPUX.TCP

238 MQSeries Intercommunication

 HP-UX configuration

Table 23 (Page 2 of 3). Configuration worksheet for MQSeries for HP-UX

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 220, as indicated.

.C/ Remote queue manager name .A/ AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender (SNA) channel name HPUX.AIX.SNA

.H/ Sender (TCP) channel name HPUX.AIX.TCP

.I/ Receiver (SNA) channel name .G/ AIX.HPUX.SNA

.J/ Receiver (TCP) channel name .H/ AIX.HPUX.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 25 on page 252, as indicated.

.C/ Remote queue manager name .A/ GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender (SNA) channel name HPUX.GIS.SNA

.H/ Sender (TCP) channel name HPUX.GIS.TCP

.I/ Receiver (SNA) channel name .G/ GIS.HPUX.SNA

.J/ Receiver (TCP) channel name .H/ GIS.HPUX.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page 269, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender (SNA) channel name HPUX.SOLARIS.SNA

.H/ Sender (TCP/IP) channel name HPUX.SOLARIS.TCP

.I/ Receiver (SNA) channel name .G/ SOLARIS.HPUX.SNA

.J/ Receiver (TCP/IP) channel name .H/ SOLARIS.HPUX.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender (SNA) channel name HPUX.AS400.SNA

.H/ Sender (TCP/IP) channel name HPUX.AS400.TCP

.I/ Receiver (SNA) channel name .G/ AS400.HPUX.SNA

.J/ Receiver (TCP) channel name .H/ AS400.HPUX.TCP

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 239

 HP-UX configuration

Table 23 (Page 3 of 3). Configuration worksheet for MQSeries for HP-UX

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 36 on page 404, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender (SNA) channel name HPUX.MVS.SNA

.H/ Sender (TCP) channel name HPUX.MVS.TCP

.I/ Receiver (SNA) channel name .G/ MVS.HPUX.SNA

.J/ Receiver (TCP) channel name .H/ MVS.HPUX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name HPUX.VSE.SNA

.I/ Receiver channel name .G/ VSE.HPUX.SNA

MQSeries for HP-UX sender-channel definitions using SNA
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (HPUX.OS2.SNA) chltype(sdr) + .G/
 trptype(lu62) +

 conname('OS2CPIC') + .16/
 xmitq(OS2) + .F/
 replace

MQSeries for HP-UX receiver-channel definitions using SNA
def ql (HPUX.LOCALQ) replace .B/

def chl (OS2.HPUX.SNA) chltype(rcvr) + .I/
 trptype(lu62) +

 replace

240 MQSeries Intercommunication

 HP-UX configuration

MQSeries for HP-UX invokable TP setup
During the HP SNAplus2 configuration process, you created an invokable TP
definition, which points to an executable file. In the example, the file was called
/users/interops/HPUX.crs6a. You can choose what you call this file, but you are
recommended to include the name of your queue manager in the name. The
contents of the executable file must be:

#!/bin/sh

/opt/mqm/bin/amqcrs6a -m hpux

where hpux is the name of your queue manager .A/.

This ensures that SNA receiver channels activate correctly when a sender channel
initiates a conversation.

MQSeries for HP-UX sender-channel definitions using TCP
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (HPUX.OS2.TCP) chltype(sdr) + .H/
 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(OS2) + .F/
 replace

MQSeries for HP-UX receiver-channel definitions using TCP/IP
def ql (HPUX.LOCALQ) replace .B/

def chl (OS2.HPUX.TCP) chltype(rcvr) + .J/
 trptype(tcp) +

 replace

 Chapter 15. Example configuration - IBM MQSeries for HP-UX 241

 HP-UX configuration

242 MQSeries Intercommunication

 MQSeries for AT&T GIS UNIX � AT&T GIS UNIX and LU 6.2

Chapter 16. Example configuration - IBM MQSeries for AT&T
GIS UNIX Version 2.2

This chapter gives an example of how to set up communication links from
MQSeries for AT&T GIS UNIX to MQSeries products on the following platforms:

 � OS/2
 � Windows NT
 � AIX
 � HP-UX
 � Sun Solaris
 � OS/400
� OS/390 or MVS/ESA without CICS

 � VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it
describes:

� “Establishing a connection using AT&T GIS SNA Server” on page 247
� “Establishing a TCP connection” on page 251

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “Channel configuration” on page 252.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 24 on page 244 presents a worksheet listing all the parameters needed to
set up communication from AT&T GIS UNIX6 to one of the other MQSeries
platforms. The worksheet shows examples of the parameters, which have been
tested in a working environment, and leaves space for you to fill in your own
values. An explanation of the parameter names follows the worksheet. Use the
worksheet in this chapter in conjunction with the worksheet in the chapter for the
platform to which you are connecting.

 Configuration worksheet
Use the following worksheet to record the values you will use for this configuration.
Where numbers appear in the Reference column they indicate that the value must
match that in the appropriate worksheet elsewhere in this book. The examples that
follow in this chapter refer back to the values in the ID column of this table. The
entries in the Parameter Name column are explained in “Explanation of terms” on
page 246.

6 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 243

 AT&T GIS UNIX and LU 6.2

Table 24 (Page 1 of 3). Configuration worksheet for AT&T GIS SNA Services

ID Parameter Name Reference Example User Value

Parameters for local node

.1/ Configuration 010

.2/ Network name NETID

.3/ Control Point name GISPU

.4/ Local LU name GISLU

.5/ LU 6.2 Transaction Program name MQSERIES

.6/ Local PU name GISPU

.7/ Mode name #INTER

.8/ Token-Ring adapter address 10007038E86B

.9/ Local XID 03E 00018

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 152, as indicated.

.1ð/ Remote Node name .3/ OS2PU

.11/ Network name .2/ NETID

.12/ Remote LU name .6/ OS2LU

.13/ Remote Transaction Program name .8/ MQSERIES

.14/ LU 6.2 CPI-C side information symbolic
destination

OS2CPIC

.15/ Mode name .17/ #INTER

.16/ LAN destination address .1ð/ 10005AFC5D83

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 178, as indicated.

.1ð/ Remote Node name .3/ WINNTCP

.11/ Network name .2/ NETID

.12/ Remote LU name .5/ WINNTLU

.13/ Remote Transaction Program name .7/ MQSERIES

.14/ LU 6.2 CPI-C side information symbolic
destination

NTCPIC

.15/ Mode name .17/ #INTER

.16/ LAN destination address .9/ 08005AA5FAB9

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 208, as indicated.

.1ð/ Remote Node name .2/ AIXPU

.11/ Network name .1/ NETID

.12/ Remote LU name .4/ AIXLU

.13/ Remote Transaction Program name .6/ MQSERIES

.14/ LU 6.2 CPI-C side information symbolic
destination

AIXCPIC

.15/ Mode name .14/ #INTER

.16/ LAN destination address .8/ 123456789012

244 MQSeries Intercommunication

 AT&T GIS UNIX and LU 6.2

Table 24 (Page 2 of 3). Configuration worksheet for AT&T GIS SNA Services

ID Parameter Name Reference Example User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page 226, as indicated.

.1ð/ Remote Node name .2/ HPUXPU

.11/ Network name .4/ NETID

.12/ Remote LU name .5/ HPUXLU

.13/ Remote Transaction Program name .7/ MQSERIES

.14/ LU 6.2 CPI-C side information symbolic
destination

HPUXCPIC

.15/ Mode name .6/ #INTER

.16/ LAN destination address .8/ 100090DC2C7C

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page 258, as indicated.

.1ð/ Remote Node name .3/ SOLARPU

.11/ Network name .2/ NETID

.12/ Remote LU name .7/ SOLARLU

.13/ Remote Transaction Program name .8/ MQSERIES

.14/ LU 6.2 CPI-C side information symbolic
destination

SOLCPIC

.15/ Mode name .17/ #INTER

.16/ LAN destination address .5/ 08002071CC8A

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.1ð/ Remote Node name .2/ AS400PU

.11/ Network name .1/ NETID

.12/ Remote LU name .3/ AS400LU

.13/ Remote Transaction Program name .8/ MQSERIES

.14/ LU 6.2 CPI-C side information symbolic
destination

AS4CPIC

.15/ Mode name .17/ #INTER

.16/ LAN destination address .4/ 10005A5962EF

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page 396, as indicated.

.1ð/ Remote Node name .3/ MVSPU

.11/ Network name .2/ NETID

.12/ Remote LU name .4/ MVSLU

.13/ Remote Transaction Program name .7/ MQSERIES

.14/ LU 6.2 CPI-C side information symbolic
destination

MVSCPIC

.15/ Mode name .1ð/ #INTER

.16/ LAN destination address .8/ 400074511092

 Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 245

 AT&T GIS UNIX and LU 6.2

Table 24 (Page 3 of 3). Configuration worksheet for AT&T GIS SNA Services

ID Parameter Name Reference Example User Value

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.1ð/ Remote Node name .2/ VSEPU

.11/ Network name .1/ NETID

.12/ Remote LU name .3/ VSELU

.13/ Remote Transaction Program name .4/ MQ01

.14/ LU 6.2 CPI-C side information symbolic
destination

VSECPIC

.15/ Mode name #INTER

.16/ LAN destination address .5/ 400074511092

Explanation of terms
.1/ Configuration

This is the unique ID of the SNA Server configuration you are creating or
modifying. Valid values are between 0 and 255.

.2/ Network name
This is the unique ID of the network to which you are connected. Your
network administrator will tell you this value.

.3/ Control Point name
This is a unique Control Point name for this workstation. Your network
administrator will assign this to you.

.4/ Local LU name
A logical unit (LU) manages the exchange of data between systems. The
local LU name is the name of the LU on your system. Your network
administrator will assign this to you.

.5/ LU 6.2 Transaction Program name
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. Wherever possible we
use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See Table 19 on page 203 for more information.

.6/ Local PU name
This is a unique PU name for this workstation. Your network administrator
will assign this to you.

.7/ Mode name
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each partner system. Your
network administrator will assign this to you.

.8/ Token-ring adapter address
The is the 12-character hex address of the token-ring card.

246 MQSeries Intercommunication

 Using AT&T GIS SNA Server

.1ð/ Remote Node name
This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only inside SNA Server setup and is specified by
you.

.14/ LU 6.2 CPI-C Side Information Symbolic Destination
This is a name given to the definition of a partner node. You supply the
name. It need be unique only on this machine. You will later use the name
in the MQSeries sender channel definition.

Establishing a connection using AT&T GIS SNA Server
The following information guides you through the tasks you must perform to create
the SNA infrastructure that MQSeries requires. This example creates the
definitions for a new partner node and LU on OS/2.

Use snamgr to enter the AT&T GIS SNA Server configuration panels. You need
root authority to use snamgr .

Throughout the following example, only the panels containing information that must
be added or updated are shown. Preceding each panel is a list of the sequence of
panels that you must invoke to proceed from the initial menu to the relevant
customization panel.

Note: SNA Server works better in an Xterm session than it does in an ASCII
session such as TELNET.

 Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 247

 Using AT&T GIS SNA Server

Defining local node characteristics
Setting up the local node involves the following
steps:

1. Configuring the SNA subsystem
2. Defining a mode
3. Defining a local Transaction Program

Configuring the SNA subsystem:
Proceed through these panels:

1 SNA Manager

 2 Configuration

3 SNA Subsystem Configuration

4 SNA Subsystem Configuration Creation

à ð
5 Create a Configuration

 Enter a unique configuration identifier (ð-255) ð1ð

Enter the configuration identifier (.1/).

à ð
6 Parameter File Configuration

Will LU 6.2 be used? Y

Enter Y.

à ð
1 SNA Configuration of the Local Node

 Node Parameters:

Node ID of Local Node ðð

PU Resource Name (optional) GISPU

Network Identifier (optional) NETID

Control Point (CP) Name (optional) GISPU

 Local LU 6.2 Parameters:

LU 6.2 Logical Unit Name GISLU

Max Number of LU 6.2 Sessions ð1ðð

Enter the values for Node ID of Local Node , PU
Resource Name (.6/), Network Identifier (.2/),
CP Name (.3/), LU 6.2 Logical Unit Name (.4/),
and Max Number of LU 6.2 Sessions .

Defining a mode: Proceed through these
panels:

2 Local Configuration

Select Define a mode .

à ð
3 Conversation Mode Definition

 Mode Name #INTER

 Maximum Number of Sessions ðð8

 Number of Locally Controlled Sessions ðð4

 Honor Pending Conversation Requests Before

an Existing Session is Terminated? N

 Number of Automatically Established Sessions ðð4

 Code Set to be Used During Transmission of TP Data E

Enter the values for Mode Name (.7/), Maximum
Number of Sessions , and Number of Locally
Controlled Sessions .

à ð
4 Conversation Mode Definition for Max RU

Send Max RU Size Upper Bound ð384ð

Send Max RU Size Lower Bound ðð128

Receive Max RU Size Upper Bound ð384ð

Receive Max RU Size Lower Bound ðð128

Defining a local Transaction Program
2 Local Configuration

Select Define a RECEIVE_ALLOCATE local TP .

à ð
3 Receive_Allocate Transaction Program Definition

TP name MQSERIES_______________________

TP start type A (M = Manual, A = Automatic)

receive_allocate timer (seconds) -1__ (ð - 9999, -1)

Incoming allocate timer (seconds) -1__ (ð - 9999, -1)

Max number of auto-started TP instances 1_ (1 - 99)

Enter the values for TP name (.5/), and set the
TP start type to A.

Note: Before this will work you need to associate
the TP name with an executable program. You do
this outside snamgr by creating a symbolic link
entry in the directory /usr/lbin either before or after
you configure SNA Server. Enter the following
commands:

cd /usr/lbin

ln -s /opt/mqm/bin/amqcrs6a MQSeries .5/

248 MQSeries Intercommunication

 Using AT&T GIS SNA Server

Connecting to a partner node

To connect to a partner node you need to:

1. Configure a remote node
2. Define a partner LU
3. Add a CPI-C Side Entry

Configuring a remote node

Proceed through these panels:

2 Local Configuration

Select End Local Configuration .

1 Remote Node Definition

Select Peer Node Definition .

à ð
2 Remote Node Configuration

Remote Node Name OS2PU

Type of Link Connection TR

SNA Logical Connection ID ðð

Link to Backup (Optional) ____

Enter the values for Remote Node Name (.1ð/),
Type of Link Connection , and SNA Logical
Connection ID .

à ð
3 SNA/TR Configuration for Connection ð1

Token Ring Adapter ID ð1

Maximum Send BTU Length 1ð33

Local XID ð3Eððð18

Data link role of local system NEG_

Remote DLSAP ð4

Remote MAC Address 1ððð5AFC5D83

Route Discovery Command T

Broadcast Timer 1_

Enter the values for Token Ring Adapter ID ,
Local XID (.9/), and Remote MAC address
(.16/).

à ð
4 Configuration of TR Adapter ð1 for Connection ð1

Local DLSAP ð4

Adapter Type ild_

Defining a partner LU: Proceed through
these panels:

à ð
1 LU 6.2 Logical Unit Definition

To complete the definition of Remote

Peer Node, OS2, you need to

define at least one Remote LU 6.2

 Logical Unit.

Press CONT to Continue.

à ð
2 Partner LU 6.2 Definition

Locally Known Name OS2LU

Network Identifier NETID

Network Name (LUNAME) OS2LU

Uninterpreted Name OS2LU

Session Capability P

Enter the values for Locally Known Name (.12/),
Network Identifier (.11/), Network Name
(LUNAME) (.12/), and Uninterpreted Name
(.12/),

à ð
3 Automatic Activation

Auto Activate at Start of Day? N

à ð
4 LU 6.2 Partner Definition

Do you want to define another

remote LU 6.2 Logical Unit in

the remote node, OS2? N

Adding a CPI-C Side Entry: Proceed
through these panels:

1 SNA MANAGER

 2 Configuration

3 CPI-C Side Information

à ð
4 Add a CPI-C Side Information File

Enter the CPI-C Side Information File Name OS2CPIC

(This name is the Symbolic Destination Name used by

 the CPI-C program to reference side information.)

Enter the name of the CPI-C Side Information
File (.14/).

 Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 249

 Using AT&T GIS SNA Server

à ð
5 Add CPI-C Side Information

Symbolic destination name: OS2CPIC

Partner LU name OS2LU

Mode name #INTER

TP name MQSERIES

Conversation security type NONE___

Security user ID __________

Security password __________

Enter the values for Partner LU name (.12/),
Mode name (.15/), and TP name (.13/).

 What next?

The LU 6.2 connection is now established. You
are ready to complete the configuration. Go to
“MQSeries for AT&T GIS UNIX configuration” on
page 251.

250 MQSeries Intercommunication

 AT&T GIS UNIX and TCP � AT&T GIS UNIX configuration

Establishing a TCP connection
1. Edit the file /etc/services.

| Note: To edit the /etc/services file, you must be logged in as a superuser or
| root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /usr/etc/inetd.conf. If you do not have the following line in that file,
add it as shown:

MQSeries stream tcp nowait root /opt/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

The command kill -1 can be unreliable. If it doesn’t work, use the command
kill -9 and then restart /usr/etc/inetd manually.

 What next?
The LU 6.2 connection is now established. You are ready to complete the
configuration. Go to “MQSeries for AT&T GIS UNIX configuration.”

MQSeries for AT&T GIS UNIX configuration
Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Notes:

1. Sample programs are installed in /opt/mqm/samp.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

 Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 251

 AT&T GIS UNIX configuration

 Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q gis

where:

gis Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlqname Specifies the name of the undeliverable message queue

2. Start the queue manager from the UNIX prompt using the command:

strmqm gis

where gis is the name given to the queue manager when it was created.

3. Before creating your own objects you must first create the system default
objects. These are a number of definitions for required objects and templates
on which user definitions will be modelled.

Create the default objects from the UNIX prompt using the command:

runmqsc gis < /opt/mqm/samp/amqscoma.tst > defobj.out

where gis is the name of the queue manager. Display the file defobj.out and
ensure that all objects were created successfully. There is a report at the end
of the file.

 Channel configuration
The following section details the configuration to be performed on the AT&T GIS
UNIX queue manager to implement the channel described in Figure 32 on
page 105.

In each case the MQSC command is shown. Either start runmqsc from a UNIX
prompt and enter each command in turn, or build a command file of the same
format as amqscoma.tst and use it as before to create the objects.

Examples are given for connecting MQSeries for AT&T GIS UNIX and MQSeries
for OS/2 Warp. If you wish to connect to another MQSeries product use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 25 (Page 1 of 3). Configuration worksheet for MQSeries for AT&T GIS UNIX

ID Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name GIS

.B/ Local queue name GIS.LOCALQ

252 MQSeries Intercommunication

 AT&T GIS UNIX configuration

Table 25 (Page 2 of 3). Configuration worksheet for MQSeries for AT&T GIS UNIX

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 171, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender (SNA) channel name GIS.OS2.SNA

.H/ Sender (TCP/IP) channel name GIS.OS2.TCP

.I/ Receiver (SNA) channel name .G/ OS2.GIS.SNA

.J/ Receiver (TCP/IP) channel name .H/ OS2.GIS.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 192, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender (SNA) channel name GIS.WINNT.SNA

.H/ Sender (TCP/IP) channel name GIS.WINNT.TCP

.I/ Receiver (SNA) channel name .G/ WINNT.GIS.SNA

.J/ Receiver (TCP) channel name .H/ WINNT.GIS.TCP

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 220, as indicated.

.C/ Remote queue manager name .A/ AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender (SNA) channel name GIS.AIX.SNA

.H/ Sender (TCP) channel name GIS.AIX.TCP

.I/ Receiver (SNA) channel name .G/ AIX.GIS.SNA

.J/ Receiver (TCP) channel name .H/ AIX.GIS.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page 238, as indicated.

.C/ Remote queue manager name .A/ HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender (SNA) channel name GIS.HPUX.SNA

.H/ Sender (TCP) channel name GIS.HPUX.TCP

.I/ Receiver (SNA) channel name .G/ HPUX.GIS.SNA

.J/ Receiver (TCP) channel name .H/ HPUX.GIS.TCP

 Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 253

 AT&T GIS UNIX configuration

Table 25 (Page 3 of 3). Configuration worksheet for MQSeries for AT&T GIS UNIX

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page 269, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender (SNA) channel name GIS.SOLARIS.SNA

.H/ Sender (TCP/IP) channel name GIS.SOLARIS.TCP

.I/ Receiver (SNA) channel name .G/ SOLARIS.GIS.SNA

.J/ Receiver (TCP/IP) channel name .H/ SOLARIS.GIS.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender (SNA) channel name GIS.AS400.SNA

.H/ Sender (TCP/IP) channel name GIS.AS400.TCP

.I/ Receiver (SNA) channel name .G/ AS400.GIS.SNA

.J/ Receiver (TCP) channel name .H/ AS400.GIS.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 36 on page 404, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender (SNA) channel name GIS.MVS.SNA

.H/ Sender (TCP) channel name GIS.MVS.TCP

.I/ Receiver (SNA) channel name .G/ MVS.GIS.SNA

.J/ Receiver (TCP) channel name .H/ MVS.GIS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name GIS.VSE.SNA

.I/ Receiver channel name .G/ VSE.GIS.SNA

254 MQSeries Intercommunication

 AT&T GIS UNIX configuration

MQSeries for AT&T GIS UNIX sender-channel definitions using
SNA
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (GIS.OS2.SNA) chltype(sdr) + .G/
 trptype(lu62) +

 conname('OS2CPIC') + .14/
 xmitq(OS2) + .F/
 replace

MQSeries for AT&T GIS UNIX receiver-channel definitions using
SNA
def ql (GIS.LOCALQ) replace .B/

def chl (OS2.GIS.SNA) chltype(rcvr) + .I/
 trptype(lu62) +

 replace

MQSeries for AT&T GIS UNIX sender-channel definitions using
TCP
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (GIS.OS2.TCP) chltype(sdr) + .H/
 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(OS2) + .F/
 replace

MQSeries for AT&T GIS UNIX receiver-channel definitions using
TCP/IP
def ql (GIS.LOCALQ) replace .B/

def chl (OS2.GIS.TCP) chltype(rcvr) + .J/
 trptype(tcp) +

 replace

 Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2 255

 AT&T GIS UNIX configuration

256 MQSeries Intercommunication

 MQSeries for Sun Solaris � Sun Solaris and LU 6.2

Chapter 17. Example configuration - IBM MQSeries for Sun
Solaris

This chapter gives an example of how to set up communication links from
MQSeries for Sun Solaris to MQSeries products on the following platforms:

 � OS/2
 � Windows NT
 � AIX
 � HP-UX
� AT&T GIS UNIX7

 � OS/400
� OS/390 or MVS/ESA without CICS

 � VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it
describes:

� “Establishing a connection using SunLink Version 9.1” on page 262
� “Establishing a TCP connection” on page 268

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for Sun Solaris configuration” on
page 268.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 26 on page 258 presents a worksheet listing all the parameters needed to
set up communication from Sun Solaris to one of the other MQSeries platforms.
The worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

 Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 261.

7 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 257

 Sun Solaris and LU 6.2

Table 26 (Page 1 of 3). Configuration worksheet for SunLink Version 9.1

ID Parameter Name Reference Example User Value

Parameters for local node

| .1/| PU 2.1 server name| SOLSERV

.2/ Network name NETID

.3/ CP name SOLARPU

| .4/| Line name| MQLINE

.5/ Local MAC address 08002071CC8A

.6/ Local terminal ID 05D 310D6

.7/ Local LU name SOLARLU

.8/ TP name MQSERIES

.9/ Command Path home/interops/crs6a

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page 152, as indicated.

.1ð/ Unique session name OS2SESS

.11/ Network name .2/ NETID

| .12/| DLC name| OS2QMGR

| .13/| Remote CP name| OS2PU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .6/ OS2LU

.16/ TP name .8/ MQSERIES

.17/ Mode name .17/ #INTER

.18/ CPI-C file name /home/mqstart/OS2CPIC

.19/ Remote MAC address .1ð/ 10005AFC5D83

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page 178, as indicated.

.1ð/ Unique session name WINNTSESS

.11/ Network name .2/ NETID

| .12/| DLC name| NTQMGR

| .13/| Remote CP name| WINNTPU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .6/ WINNTLU

.16/ TP name .8/ MQSERIES

.17/ Mode name .17/ #INTER

.18/ CPI-C file name /home/mqstart/NTCPIC

.19/ Remote MAC address .1ð/ 10005AFC5D83

258 MQSeries Intercommunication

 Sun Solaris and LU 6.2

Table 26 (Page 2 of 3). Configuration worksheet for SunLink Version 9.1

ID Parameter Name Reference Example User Value

Connection to an AIX system

The values in this section of the table must match those used in Table 20 on page 208, as indicated.

.1ð/ Unique session name AIXSESS

.11/ Network name .1/ NETID

| .12/| DLC name| AIXQMGR

| .13/| Remote CP name| .2/| AIXPU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .4/ AIXLU

.16/ TP name .6/ MQSERIES

.17/ Mode name .14/ #INTER

.18/ CPI-C file name /home/mqstart/AIXCPIC

.19/ Remote MAC address .15/ 10005AFC5D83

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page 226, as indicated.

.1ð/ Unique session name HPUXSESS

.11/ Network name .2/ NETID

| .12/| DLC name| HPUXQMGR

| .13/| Remote CP name| HPUXPU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .6/ HPUXLU

.16/ TP name .8/ MQSERIES

.17/ Mode name .17/ #INTER

.18/ CPI-C file name /home/mqstart/HPCPIC

.19/ Remote MAC address .1ð/ 10005AFC5D83

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the Table 24 on page 244, as indicated.

.1ð/ Unique session name GISSESS

.11/ Network name .2/ NETID

| .12/| DLC name| GISQMGR

| .13/| Remote CP name| GISPU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .6/ GISLU

.16/ TP name .8/ MQSERIES

.17/ Mode name .17/ #INTER

.18/ CPI-C file name /home/mqstart/ATTCPIC

.19/ Remote MAC address .1ð/ 10005AFC5D83

 Chapter 17. Example configuration - IBM MQSeries for Sun Solaris 259

 Sun Solaris and LU 6.2

Table 26 (Page 3 of 3). Configuration worksheet for SunLink Version 9.1

ID Parameter Name Reference Example User Value

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.1ð/ Unique session name AS400SESS

.11/ Network name .2/ NETID

| .12/| DLC name| ASQMGR

| .13/| Remote CP name| AS400PU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .6/ AS400LU

.16/ TP name .8/ MQSERIES

.17/ Mode name .17/ #INTER

.18/ CPI-C file name /home/mqstart/400CPIC

.19/ Remote MAC address .1ð/ 10005AFC5D83

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page 396, as indicated.

.1ð/ Unique session name MVSSESS

.11/ Network name .2/ NETID

| .12/| DLC name| MVSQMGR

| .13/| Remote CP name| MVSPU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .6/ MVSLU

.16/ TP name .8/ MQSERIES

.17/ Mode name .17/ #INTER

.18/ CPI-C file name /home/mqstart/MVSCPIC

.19/ Remote MAC address .1ð/ 10005AFC5D83

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.1ð/ Unique session name VSESESS

.11/ Network name .2/ NETID

| .12/| DLC name| VSEQMGR

| .13/| Remote CP name| VSEPU

| .14/| Local LSAP| x‘04’, x‘08’, x‘0C’, ...

.15/ Partner LU .6/ VSELU

.16/ TP name .8/ MQSERIES

.17/ Mode name .17/ #INTER

.18/ CPI-C file name /home/mqstart/VSECPIC

.19/ Remote MAC address .1ð/ 10005AFC5D83

260 MQSeries Intercommunication

 Sun Solaris and LU 6.2

Explanation of terms
| .1/ PU2.1 server name
| This is the name of the PU2.1 server for the local control point.

.2/ Network name
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network name
works with the Control Point name to uniquely identify a system. Your
network administrator will tell you the value.

.3/ CP name
This is the unique Control Point name for this workstation. Your network
administrator will assign this to you.

| .4/ Line name
| This is the name that identifies the connection to the LAN.

| .5/ Local MAC address
This is the network address of the token-ring card. The address to be
specified is found in the ether value displayed in response to the
ifconfig trð command issued at a root level of authority. (Tr0 is the name
of the machine’s token-ring interface.) If you do not have the necessary level
of authority, your Sun Solaris system administrator can tell you the value.

| .6/ Local terminal ID
This is the unique ID of this workstation. On other platforms this is often
referred to as the Exchange ID or XID. Your network administrator will assign
this ID for you.

.7/ Local LU name
An LU manages the exchange of data between transactions. The local LU
name is the name of the LU on your system. Your network administrator will
assign this to you.

.8/ TP name
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. For simplicity, wherever
possible use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQ01.

See Table 19 on page 203 for more information.

.9/ TP path
| This is the path and name of the script file that invokes the MQSeries
| program to run.

.1ð/ Unique session name
| This is the unique name of the Partner LU/Mode definition.

| .12/ DLC name
| This is the name of the link to the remote system.

| .13/ Remote CP name
| This is the name of the control point on the remote system.

.18/ CPI-C file name
This is the full path and name of the file which holds CPI-C side information
for a partner system. There must be a separate CPI-C file for each partner.

 Chapter 17. Example configuration - IBM MQSeries for Sun Solaris 261

 Using SunLink

For increased flexibility, include the full path and file name in the MQSeries
sender channel definition.

| Establishing a connection using SunLink Version 9.1
| This section describes how to establish a connection using SunLink Version 9.1
| The topics discussed are:

| � SunLink 9.0 base configuration
| � Invokable TPs
| � CPI-C side information

| SunLink 9.1 base configuration

| To start the SunLink 9.1 graphical interface:

| 1. Enter sungmi at the command line.

| It is assumed that the domain, manager
| systems, and default system were defined
| during installation.

| 2. On the main screen, highlight Config1 in the
| resource tree and select File and Open .

| A window entitled Connect to domain
| appears:

| 3. Enter required details to connect to the
| required domain.

| Configuring a PU 2.1 server
| 1. Double click on Systems in the resource tree
| to display a list of systems.

| 2. Double click on System name in the resource
| tree to open its subordinate entries.

| 3. Using the right mouse button, highlight PU2.1
| Servers in the resource tree and select New
| and PU2.1 Server from the pop-up menu.

| A window entitled Create PU2.1 Server
| appears:

| 4. Enter the PU2.1 Name (.1/).

| 5. Enter the CP Name. This consists of the
| Network Name (.2/)and the CP Name (.3/).

| 6. Click on Advanced ÝÝ.

262 MQSeries Intercommunication

 Using SunLink

| The advanced window appears:

| 7. Enter the SunOp Service and LU6.2 Service

| 8. Click on OK when you are happy with the
| settings.

| Adding a LAN connection
| 1. Double click on PU2.1 Servers in the
| resource tree to display the name of the
| PU2.1 server.

| 2. Using the right mouse button, highlight the
| server name in the resource tree and select
| New and LAN Connection from the pop-up
| menu.

| A window entitled Create LAN Connection
| appears:

| 3. Enter a Line Name (.4/) and Local MAC
| Address (.5/).

| 4. Click on Advanced ÝÝ

 Chapter 17. Example configuration - IBM MQSeries for Sun Solaris 263

 Using SunLink

| The advanced window appears:

| 5. Check the LAN Speed is correct.

| 6. Click on OK when you are happy with the
| settings.

| Configuring a connection to a
| remote PU
| 1. Double click the PU2.1 server name in the
| resource tree to open its suborditnate entries.

| 2. Double click on LAN Connections .

| 3. Using the right mouse button, highlight the
| LAN connection name in the resource tree
| and select New and DLC from the pop-up
| menu.

| A window entitled Create DLC appears:

| 4. Enter the DLC Name (.12/) and Remote
| MAC Address (.19/).

| 5. Click on Advanced ÝÝ.

| A window entitled Create DLC (advanced)
| appears:

| 6. Enter the Local LSAP for this DLC (.14/),
| Local Terminal ID (.6/), and Remote CP
| Name (.13/).

| 7. When you are happy with the settings, click
| on OK.

264 MQSeries Intercommunication

 Using SunLink

| Configuring an independent LU
| 1. Double click on Systems in the resource tree
| to display a list of systems.

| 2. Double click on the system name to open its
| subordinate entries.

| 3. Double click on PU2.1 Servers to display a
| list of servers.

| 4. Double click on the PU2.1 server name to
| open its subordinate entries.

| 5. From the main window, select Edit , New, and
| Independent LU to display the Create
| Independent LU window:

| 6. Enter the Local LU Name (.7/).

| 7. Click on Advanced ÝÝ.

| An advanced Create Independent LU window
| appears:

| 8. Enter the Network Qual Name . This consists
| of the Network Name (.2/) and the Local LU
| (.7/).

| 9. Click on OK

| Configuring a partner LU
| 1. Double click on the PU2.1 server name in the
| resource tree to open its subordinate entries.

| 2. From the main window, select Edit , New, and
| Partner LU to display the Create Partner LU
| window.

 Chapter 17. Example configuration - IBM MQSeries for Sun Solaris 265

 Using SunLink

| 3. Enter the Partner LU (.15/) and the Local LU
| Name (.7/).

| 4. Click on Advanced ÝÝ.

| The advanced Create Partner LU window
| appears:

| 5. Choose a Local LU from the drop-down list.

| 6. Click on OK.

| Configuring the session mode
| 1. Double click on the PU2.1 server name to
| open its subordinate entries.

| 2. Double click on Partner LU in the resource
| tree to display a list of partner LUs.

| 3. Click on the partner LU to select it.

| 4. From the main window, select Edit , New, and
| Mode to display the Create Mode window:

| 5. Enter the Mode Name (.17/) and DLC Name
| (.12/).

| 6. Click on Advanced ÝÝ.

| The advanced Create Mode window appears:

| 7. Enter the Unique Session Name (.1ð/).

| 8. When you are happy with the settings, click
| on OK.

266 MQSeries Intercommunication

 Using SunLink

| Configuring a transaction
| program
| 1. Double click on the PU2.1 server name to
| open its subordinate entries.

| 2. Click on Transaction Programs in the
| resource tree to select it.

| 3. From the main window, select Edit , New, and
| Transaction Program to display the Create
| Transaction Program window:

| 4. Enter the TP Name (.8/) and Local LU (.7/).

| 5. Enter a path to the invokable TP in the
| Command Path (.9/) field:

| 6. Click on Advanced ÝÝ.

| The advanced Create Transaction Program
| window appears:

| 7. When you are happy with the settings, click
| on OK.

| Invokable TP path In order to set required
| environment variables a script file should be
| defined for each invokable TP containing the
| following:

| #!/bin/ksh

| export APPC_GATEWAY=zinfandel

| export APPC_LOCAL_LU=SOLARLU

| /opt/mqm/bin/amqcrs6a -m SOLARIS -n MQSERIES

| CPI-C side information

| In common with most other platforms, MQSeries
| for Sun Solaris uses CPI-C side information files
| (.18/) to hold information about its partner
| systems. In SunLink 9.0, these are ASCII files
| (one per partner).

| PTNR_LU_NAME = OS2LU .15/
| MODE_NAME = #INTER .17/
| TP_NAME = MQSERIES .16/
| SECURITY = NONE

| Figure 35. CPI-C side information file for SunLink
| Version 9.0

| The location of the file must be specified either
| explicitly in the conname parameter of the sender
| channel definition or in the search path. It is
| better to specify it fully in the conname parameter
| because the value of the PATH environment
| variable can vary from user to user.

| What next?

| The connection is now established. You are
| ready to complete the configuration. Go to
| “MQSeries for Sun Solaris configuration” on
| page 268.

 Chapter 17. Example configuration - IBM MQSeries for Sun Solaris 267

 Sun Solaris and TCP � Sun Solaris configuration

Establishing a TCP connection
To establish a TCP connection, follow these steps.

1. Edit the file /etc/services.

| Note: To edit the /etc/services file, you must be logged in as a superuser or
| root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add
it as shown:

MQSeries stream tcp nowait mqm /opt/mqm/bin/amqcrsta amqcrsta

[-m queue.manager.name]

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

 What next?
The TCP/IP connection is now established. You are ready to complete the
configuration. Go to “MQSeries for Sun Solaris configuration.”

MQSeries for Sun Solaris configuration
Before beginning the installation process ensure that you have first created the
mqm user and group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Notes:

1. Sample programs are installed in /opt/mqm/samp.

2. Error logs are stored in /var/mqm/qmgrs/qmgrname/errors.

3. When you are using the command interpreter runmqsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

268 MQSeries Intercommunication

 Sun Solaris configuration

 Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q solaris

where:

solaris Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlqname Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.

2. Start the queue manager from the UNIX prompt using the command:

strmqm solaris

where solaris is the name given to the queue manager when it was created.

 Channel configuration
The following section details the configuration to be performed on the Sun Solaris
queue manager to implement the channel described in Figure 32 on page 105.

The MQSC command to create each object is shown. Either start runmqsc from a
UNIX prompt and enter each command in turn, or build the commands into a
command file.

Examples are given for connecting MQSeries for Sun Solaris and MQSeries for
OS/2 Warp. If you wish to connect to another MQSeries product use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 27 (Page 1 of 3). Configuration worksheet for MQSeries for Sun Solaris

ID Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name SOLARIS

.B/ Local queue name SOLARIS.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 171, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender (SNA) channel name SOLARIS.OS2.SNA

.H/ Sender (TCP/IP) channel name SOLARIS.OS2.TCP

.I/ Receiver (SNA) channel name .G/ OS2.SOLARIS.SNA

.J/ Receiver (TCP/IP) channel name .H/ OS2.SOLARIS.TCP

 Chapter 17. Example configuration - IBM MQSeries for Sun Solaris 269

 Sun Solaris configuration

Table 27 (Page 2 of 3). Configuration worksheet for MQSeries for Sun Solaris

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 192, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender (SNA) channel name SOLARIS.WINNT.SNA

.H/ Sender (TCP/IP) channel name SOLARIS.WINNT.TCP

.I/ Receiver (SNA) channel name .G/ WINNT.SOLARIS.SNA

.J/ Receiver (TCP) channel name .H/ WINNT.SOLARIS.TCP

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 220, as indicated.

.C/ Remote queue manager name .A/ AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender (SNA) channel name SOLARIS.AIX.SNA

.H/ Sender (TCP) channel name SOLARIS.AIX.TCP

.I/ Receiver (SNA) channel name .G/ AIX.SOLARIS.SNA

.J/ Receiver (TCP) channel name .H/ AIX.SOLARIS.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page 238, as indicated.

.C/ Remote queue manager name .A/ HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender (SNA) channel name SOLARIS.HPUX.SNA

.H/ Sender (TCP) channel name SOLARIS.HPUX.TCP

.I/ Receiver (SNA) channel name .G/ HPUX.SOLARIS.SNA

.J/ Receiver (TCP/IP) channel name .H/ HPUX.SOLARIS.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 25 on page 252, as indicated.

.C/ Remote queue manager name .A/ GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender (SNA) channel name SOLARIS.GIS.SNA

.H/ Sender (TCP/IP) channel name SOLARIS.GIS.TCP

.I/ Receiver (SNA) channel name .G/ GIS.SOLARIS.SNA

.J/ Receiver (TCP/IP) channel name .H/ GIS.SOLARIS.TCP

270 MQSeries Intercommunication

 Sun Solaris configuration

Table 27 (Page 3 of 3). Configuration worksheet for MQSeries for Sun Solaris

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender (SNA) channel name SOLARIS.AS400.SNA

.H/ Sender (TCP) channel name SOLARIS.AS400.TCP

.I/ Receiver (SNA) channel name .G/ AS400.SOLARIS.SNA

.J/ Receiver (TCP) channel name .H/ AS400.SOLARIS.TCP

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 36 on page 404, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender (SNA) channel name SOLARIS.MVS.SNA

.H/ Sender (TCP) channel name SOLARIS.MVS.TCP

.I/ Receiver (SNA) channel name .G/ MVS.SOLARIS.SNA

.J/ Receiver (TCP) channel name .H/ MVS.SOLARIS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name SOLARIS.VSE.SNA

.I/ Receiver channel name .G/ VSE.SOLARIS.SNA

 Chapter 17. Example configuration - IBM MQSeries for Sun Solaris 271

 Sun Solaris configuration

MQSeries for Sun Solaris sender-channel definitions using SNA
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (SOLARIS.OS2.SNA) chltype(sdr) + .G/
 trptype(lu62) +

 conname('/home/mqstart/OS2CPIC') + .14/
 xmitq(OS2) + .F/
 replace

MQSeries for Sun Solaris receiver-channel definitions using SNA
def ql (SOLARIS.LOCALQ) replace .B/

def chl (OS2.SOLARIS.SNA) chltype(rcvr) + .I/
 trptype(lu62) +

 replace

MQSeries for Sun Solaris sender-channel definitions using TCP
def ql (OS2) + .F/
 usage(xmitq) +

 replace

def qr (OS2.REMOTEQ) + .D/
 rname(OS2.LOCALQ) + .E/
 rqmname(OS2) + .C/
 xmitq(OS2) + .F/
 replace

def chl (SOLARIS.OS2.TCP) chltype(sdr) + .H/
 trptype(tcp) +

 conname(remote_tcpip_hostname) +

 xmitq(OS2) + .F/
 replace

MQSeries for Sun Solaris receiver-channel definitions using
TCP/IP
def ql (SOLARIS.LOCALQ) replace .B/

def chl (OS2.SOLARIS.TCP) chltype(rcvr) + .J/
 trptype(tcp) +

 replace

272 MQSeries Intercommunication

 Communications in Digital OpenVMS systems � Defining a TCP connection

Chapter 18. Setting up communication in Digital OpenVMS
systems

Distributed queue management (DQM) is a remote queuing facility for MQSeries. It
provides channel control programs for the queue manager that form the interface to
communication links, controllable by the system operator. The channel definitions
held by distributed queue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this.

For OS/2 and Windows NT, see Chapter 10, “Setting up communication for OS/2
and Windows NT” on page 137. For UNIX systems, see Chapter 13, “Setting up
communication in UNIX systems” on page 199. For Tandem NSK, see
Chapter 19, “Setting up communication in Tandem NSK” on page 285.

Deciding on a connection
There are four forms of communication for MQSeries on Digital OpenVMS systems:

 � TCP
 � LU 6.2
� DECnet Phase IV
� DECnet Phase V

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See the MQSeries Clients book.

Defining a TCP connection
The channel definition at the sending end specifies the address of the target. The
TCP service is configured for the connection at the receiving end.

 Sending end
Specify the host name, or the TCP address of the target machine, in the
Connection Name field of the channel definition. Port number 1414 is assigned by
the Internet Assigned Numbers Authority to MQSeries.

 Copyright IBM Corp. 1993,1999 273

 Defining a TCP connection

To use a port number other than the default, change the connection name field
thus:

Connection Name REMHOST(1822)

where REMHOST is the hostname of the remote machine and 1822 is the port number
required. (This must be the port that the listener at the receiving end is listening
on.)

Alternatively you can change the default sending port number by specifying it in the
queue manager configuration file (qm.ini):

TCP:

 Port=1822

For more information about the values you set using qm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page 635.

Receiving channels using Digital TCP/IP services (UCX) for OpenVMS
To use Digital TCP/IP Services (UCX) for OpenVMS, you must configure a UCX
service as follows:

1. Create a file consisting of one line and containing the DCL command to start
the TCP/IP receiver program, amqcrsta.exe:

$ mcr amqcrsta [-m Queue_Man_Name]

Place this file in the SYS$MANAGER directory. In this example the name of
the file is MQRECV.COM.

Notes:

a. If you have multiple queue managers you must make a new file and UCX
service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

2. Create a UCX service to start the receiving channel program automatically:

$ UCX

UCX> set service MQSeries/port=1414/protocol=TCP/user_name=MQM -

UCX> /process=MQSERIES/file=SYS$MANAGER:MQRECV.COM/limit=6

UCX> enable service MQSeries

UCX> exit

If a receiving channel does not start when the sending end starts, it is probably
due to the permissions on the file being incorrect.

3. To enable the service upon every system IPL (reboot), issue the command

$ UCX SET CONFIGURATION ENABLE SERVICE MQSERIES

274 MQSeries Intercommunication

 Defining a TCP connection

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 72) you must the add the

| following entry to your queue manager configuration file (qm.ini) or the Windows NT
| registry:

TCP:

 KeepAlive=yes

Receiving channels using Cisco MultiNet for OpenVMS
To use Cisco MultiNet for OpenVMS, you must configure a Multinet service as
follows:

1. Create a file consisting of one line and containing the DCL command to start
the TCP receiver program, amqcrsta.exe:

$ mcr amqcrsta.exe [-m Queue_Man_Name]

Place this file in the SYS$MANAGER directory.

Notes:

a. If you have multiple queue managers you must make a new file and
MultiNet service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

2. Create a MultiNet service to start the receiving channel program automatically:

$ multinet configure/server

MultiNet Server Configuration Utility 3.5 (1ð1)

[Reading in configuration from MULTINET:SERVICES.MASTER_SERVER]

SERVER-CONFIG> add MQSeries

[Adding new configuration entry for service “MQSERIES”]

Protocol: [TCP]

TCP Port number: 1414

Program to run: sys$manager:mqrecv.com

[Added service MQSERIES to configuration]

[Selected service is now MQSERIES]

SERVER-CONFIG> set flags UCX_SERVER

 MQSERIES flags set to <UCX_SERVER>]

SERVER-CONFIG> set username MQM

[Username for service MQSERIES set to MQM]

SERVER-CONFIG> exit

[Writing configuration to MULTINET_COMMON_ROOT:SERVICES.MASTER_SERVER]

$

The service is enabled automatically after the next system IPL (reboot). To enable
the service immediately, issue the command

'MULTINET CONFIGURE /SERVER RESTART'.

 Chapter 18. Setting up communication in Digital OpenVMS systems 275

 Defining a TCP connection

Receiving channels using Attachmate PathWay for OpenVMS
To use Attachmate PathWay for OpenVMS to start channels, you must configure a
PathWay service as follows:

1. Create a file consisting of one line and containing the DCL command to start
the TCP/IP receiver program, amqcrsta.exe:

$ mcr amqcrsta [-m Queue_Manager_Name]

Place this file in the SYS$MANAGER directory. In this example the name
mqrecv.com is used.

2. Create an Attachmate service to start the receiving channel program
automatically.

You do this by adding the following lines to the file
TWG$COMMON:[NETDIST.ETC]SERVERS.DAT.

 # MQSeries

 service-name MQSeries

 program SYS$MANAGER:MQRECV.COM

 socket-type SOCK_STREAM

socket-options SO_ACCEPTCONN | SO_KEEPALIVE

socket-address AF_INET , 1414

 working-set 512

 priority 4

 INIT TCP_Init

 LISTEN TCP_Listen

 CONNECTED TCP_Connected

 SERVICE Run_Program

 username MQM

 device-type UCX

Receiving channels using Process Software Corporation TCPware
To use Process Software Corporation TCPware, you must configure a TCPware
service as follows:

1. Create a file consisting of one line and containing the DCL command to start
the TCP receiver program amqcrsta.exe:

$ mcr amqcrsta (-m Queue_Manager_Name)

Place this file in the SYS$MANAGER directory. In this example the name of
the file is MQRECV.COM.

Notes:

a. If you have multiple queue managers you must make a new file and
TCPware service for each queue manager.

b. Ensure that the protection on the file and its parent directory allow it to be
executable, that is, the protection is /PROT=W:RE.

2. Create a TCPware service to start the receiving channel program automatically:

a. Edit the TCPWARE:SERVICES. file and add an entry for the service you
want to use:

MQSeries 1414/tcp # MQSeries port

276 MQSeries Intercommunication

 Defining an LU 6.2 connection

b. Edit the TCPWARE:SERVERS.COM file and add an entry for the service
defined in the previous step:

 $! SERVERS.COM

 $!

$ RUN TCPWARE:NETCU

ADD SERVICE MQSeries BG_TCP -

 /INPUT=SYS$MANAGER:MQRECV.COM -

 /LIMIT=6 -

 /OPTION=KEEPALIVE -

 /USERNAME=MQM

 EXIT

3. The service is enabled automatically after the next system IPL. To enable the
service immediately issue the command:

 @TCPWARE:SERVERS.COM

Defining an LU 6.2 connection
MQSeries for Digital OpenVMS uses the DECnet SNA APPC/LU 6.2 Programming
Interface. This interface requires access through DECnet to a suitably configured
SNA Gateway, for example, the SNA Gateway-ST, or SNA Gateway-CT.

 SNA configuration
To enable MQSeries to work with DECnet APPC/LU 6.2 you must complete your
Gateway SNA configuration first. The Digital SNA configuration must be in
agreement with the Host SNA configuration.

Notes:

1. When configuring your host system, be aware that the DECnet SNA Gateway
supports PU 2.0 and not node type 2.1. This means that the LUs on the
Digital SNA node must be dependent LUs. They reside on the Digital SNA
node and so must be defined and configured there. However, because they
are dependent LUs, they have to be activated by VTAM, by means of an
ACTLU command, and so they also need to be defined to VTAM as dependent
LUs.

2. Ensure that the SNA libraries are installed as shared images upon each system
IPL by running the command @SYS$STARTUP:SNALU62$STARTUP.COM in the system
startup procedure.

To configure your SNA Gateway, set up the SNAGATEWAY_<node>_SNA.COM file,

where <node> is replaced with the node name of your DECnet SNA gateway.

Do this by responding to the configuration prompts in the Gateway installation
procedure, or by directly editing the file.

The SNA Gateway installation procedure creates the file in the directory
SYS$COMMON:[SNA$CSV].

The configuration information in this file is downloaded to the Gateway when you
run the NCP LOAD NODE command.

 Chapter 18. Setting up communication in Digital OpenVMS systems 277

 Defining an LU 6.2 connection

Notes:

1. Online changes to the current Gateway configuration can be made using the
utility SNANCP.

2. SNA resources can be monitored using the SNAP utility.

A sample SNA Gateway Configuration file follows:

$!+-+

$! Start of file: SYS$COMMON:[SNA$CSV]SNAGATEWAY_SNAGWY_SNA.COM

$! DECnet SNA Gateway-ST SNA configuration file

$! Created: 23-FEB-1996 19:1ð:43.68 by SNACST$CONFIGURE V1.2

$! Host node: CREAMP User$ CHO

$!+-+

$ v = f$verify(1)

$ RUN SYS$SYSTEM:SNANCP

SET LINE SYN-ð - // Line definition

DUPLEX FULL -

PROTOCOL SDLC POINT -

SIGNALLING NORMAL -

CLOCK EXTERNAL -

MODEM TYPE NORMAL -

RECEIVE BUFFERS 34 -

LOGGING INFORMATIONAL -

BUFFER SIZE 265

SET CIRCUIT SDLC-ð - // Circuit definition

LINE SYN-ð -

DUPLEX FULL -

RESPONSE MODE NORMAL -

STATION ADDRESS C1 -

LOGGING INFORMATIONAL -

STATION ID ð714ðð2A // XID

SET PU SNA-ð CIRCUIT SDLC-ð -

LU LIST 1-32 -

SEGMENT SIZE 265 - // must equal MAXDATA on Host PU definition

 LOGGING WARNING

SET CIRCUIT SDLC-ð STATE ON

SET LINE SYN-ð STATE ON

SET SERVER SNA-ACCESS -

LOGGING WARNING -

NOTE “Gateway Access Server” -

 STATE ON

SET ACCESS NAME VTAMSDR PU SNA-ð LU 2 APPL MVSLU LOGON LU62SS

SET ACCESS NAME VTAMRCVR PU SNA-ð LU 3 APPL MVSLU LOGON LU62SS

$ EXIT $STATUS + (ð \ 'f$verify(v)')

$!+-+

$! End of file: SYS$COMMON:[SNA$CSV]SNAGATEWAY_SNAGWY_SNA.COM

$!+-+

Defining access names
You should set up a separate Access name for each MQSeries channel. This
ensures that the VMS system and the remote system agree on the LU used for the
channel.

Note: If you use a single access name, with a range of LUs specified, the
Gateway selects the LUs in a circular order. Therefore the LU selected by the
Gateway may not correspond with the LU used by the Host channel, because the
Host associates a specific LU with a channel.

278 MQSeries Intercommunication

 Defining an LU 6.2 connection

The access name is used only to communicate between the DECnet SNA APPC
program and the Gateway. It has no network meaning.

Notes:

1. The LUs are single session. You must define a separate LU for each channel
if they are to run simultaneously.

2. You are advised to use names that associate the access name to the
corresponding channel, but you can choose any name.

3. The APPL in the ACCESS name definition must match the remote (in this
case MVSLU) APPL in VTAM.

4. The LU number must correspond to the LOCADDR in the LU definition
statement in VTAM.

| Here is an example VTAM line and LU definitions:

| IYA8Lðð7 LINE ADDRESS=(ðð7,FULL),

| ISTATUS=ACTIVE

| IYA8P3ð7 PU ADDR=C2,

| ISTATUS=ACTIVE,

| IRETRY=NO,

| MAXDATA=521,

| MAXOUT=7,

| PASSLIM=7,

| PUTYPE=2

| IYA83ð71 LU LOCADDR=2,PACING=1,DLOGMOD=LU62CP1

| IYA83ð72 LU LOCADDR=3

5. The LOGON must specify the logmode entry on the VTAM host that specifies
parameters acceptable to the SNA Gateway.

| Here is an example of a single session logmode entry:

| LU62SS MODEENT LOGMODE=LU62SS,

| TYPE=ð, ONLY TYPE RECOGNIZED

| FMPROF=X’13’, SNA

| TSPROF=X’ð7’, SNA

| PRIPROT=X’Bð’, PRIMARY PROTOCOL

| SECPROT=X’Bð’, SECONDARY PROTOCOL

| COMPROT=X’5ðB1’, COMMON PROTOCOL

| SSNDPAC=X’ðð’,

| SRCVPAC=X’ðð’,

| RUSIZES=X’8989’, RUSIZES IN-4ð96 OUT-4ð96

| PSNDPAC=X’ðð’,

| PSERVIC=X’ð6ð2ðððððððððððððððð2Cðð’,

The DECnet SNA Gateway Guide to IBM Parameters details the parameters
expected by the Gateway.

Specifying SNA configuration parameters to MQSeries
MQSeries obtains knowledge of the SNA resources by passing the Gateway Node
name and the Access name to the channel program.

 Chapter 18. Setting up communication in Digital OpenVMS systems 279

 Defining an LU 6.2 connection

Passing parameters to sender and requester channel pairs
For sender and requester channel pairs specify the Gateway Node and Access
Name in the CONNAME string in the channel definition.

The CONNAME also includes the TPNAME that is used by the SNA Allocate verb
to invoke the remote program.

The format of the CONNAME is: CONNAME('GatewayNode.AccessName(TpName)').

For example: CONNAME('SNAGWY.VTAMSDR(MQSERIES)'),

where SNAGWY is the Gateway node, VTAMSDR is the access name, and MQSeries is
the TPNAME.

Note: Do not use the TPNAME field in the channel definition.

Running senders and requesters
Senders, requesters, and fully qualified servers can be explicitly run by performing
a START CHANNEL command in runmqsc.

Senders and requesters on Digital OpenVMS initiate a session by issuing an
INIT-SELF to request a BIND from the host. In issuing the Allocate verb, the
MQSeries channel program takes the LU name and the Mode Name from the
Access Name.

MQSeries then allocates a conversation using the specified TPNAME.

Passing parameters to servers and receivers
For servers and receivers, specify the Gateway Node, Access Name, and TPNAME
as command line parameters to the runmqlsr command.

Running servers and receivers
Servers and receivers are started by running the runmqlsr command.

$ RUNMQLSR -m QMname -n TPname -g GatewayNode(AccessName)

Note: Each server and receiver channel requires its own listener process.

You can include these commands in the MQSeries startup file,
SYS$STARTUP:MQS_STARTUP.

Receivers and servers issue the ACTIVATE_SESSION request to the Gateway in
passive mode. In passive mode the channel program waits for a BIND from the
remote system, which puts the LU into the active-listening state, waiting for a bind
from the host.

You can check the LU status using SNANCP to make sure that you are in
active-listening state on the correct LU. If a BIND from the host arrives specifying
the LU that is in active-listening state, the session will be established. After
establishing the session, the host attempts to allocate a conversation.

The TPNAME used by the host sender/requester channel must be the same name
as that specified on the command line in order to establish the conversation.

| Note: RUNMQLSR recycles when a remote channel disconnects. There is a finite
| period of time before the listener is ready to accept further binds from the host.

280 MQSeries Intercommunication

 Defining an LU 6.2 connection

Ending the SNA Listener process
To find the batch job number for the SNA listener process, type: $ show queue /

all

To end the SNA Listener process type:

$ delete /entry=<jobnumber>

where <jobnumber> is the job number of the listener batch job.

Sample MQSeries configuration
\

\ channel configuration for saturn.queue.manager for LU6.2

\

def ql('HOST_SENDER_TQ') usage(xmitq)

def chl('HOST.TO.VMS') chltype(rcvr) trptype(lu62) +

 seqwrap(999999999)

def chl('VMS.TO.HOST') chltype(sdr) trptype(lu62) +

 conname('SNAGWY.VTAMSDR(MQSERIES)') +

 xmitq('HOST_SENDER_TQ') seqwrap(999999999)

In this example two channels, a sender and a receiver, have been set up.

On the remote system you need to configure the corresponding channels.
Channels that talk to each other must have the same name.

� The OpenVMS sender, VMS.TO.HOST, talks to a receiver called
VMS.TO.HOST on the host system.

� The OpenVMS receiver, HOST.TO.VMS talks to a sender HOST.TO.VMS on
the host system.

The commands to start each channel are:

// Start sender channel to host system

$ runmqchl -m “saturn.queue.manager” -c “VMS.TO.HOST”

// Set up listener to lesten for incoming SNA requests.

$ runmqlsr -m “saturn.queue.manager” -n “TPNAME” -g SNAGWY(VTAMRCVR)

| Note: The TPNAME must match the outbound TPNAME on the MVS sender channel
| side. This is specified in the MVS side information, for example:

| SIDELETE

| DESTNAME(ID1)

| SIADD

| DESTNAME(ID1)

| MODENAME(LU62SS)

| TPNAME(MQSERIES)

| PARTNER_LU(IYA83ð72)

 Chapter 18. Setting up communication in Digital OpenVMS systems 281

 DECnet Phase IV connections

 Problem solving
Error PUNOTAVA - PU has not been activated

This error indicates a lack of connectivity between the two machines. Make sure
your line and circuit are set to state ON. Use SNATRACE at the circuit level to
verify that the Digital OpenVMS machine is polling. If no response is received for
the poll, check that the PU on the host is enabled. If the line will not go to the ON
STATE check your physical line. If the trace shows the host responding to the poll,
but the PU still does not become active, check your setting of the STATION ID.

Failure to allocate conversation

This error is returned by a sender or requester to indicate that allocate failed. Run
trace to verify that the session can be established. Verify that the Digital OpenVMS
machine sends the INIT-SELF (010681). If there is no response to the INIT-SELF
make sure that the host MQSeries channel is started. If the BIND from the host is
rejected by the Digital OpenVMS machine analyze the Digital bind response. Use
the DECnet SNA Gateway Guide to IBM Parameters to see what is set incorrectly
in the mode. If a session is established and the conversation allocate request is
rejected verify that the TPNAMEs are configured the same on both systems.

For receivers and servers verify that a BIND is sent by the host. If not, enable the
Host MQSeries channel. If the BIND is rejected check the reason for rejection.
Make sure that the Digital OpenVMS listener LU is the LU with which the host is
trying to establish a session.

MQSeries connection failure

After establishing a conversation the two MQSeries channels engage in a protocol
to establish an MQSeries channel connection. If this fails, the reason for failure
should be indicated in the error logs on the two systems. Check both logs and
correct the indicated problem. For example the connection fails if one system has
a SEQWRAP value of 999999999 and the other 999999. In the SNATRACE you
will see that the allocate succeeded and that MQ is trying to establish a channel
connection. At this point the MQSeries logs are the best aid in resolving problems.

Defining a DECnet Phase IV connection
The channel definition at the sending end specifies the address of the target. The
DECnet network object is configured for the connection at the receiving end.

 Sending end
Specify the DECnet node name and the DECNET object name in the Connection
Name field of the channel definition. You need a different DECnet object for each
separate queue manager that is defined. For example, to specify DECnet object
MQSERIES on node FOONT enter the following when defining the channel:

CONNAME('FOONT(MQSERIES)')

282 MQSeries Intercommunication

 DECnet Phase IV connections

Receiving on DECnet Phase IV
To use DECnet Phase IV to start channels, you must configure a DECnet object as
follows:

1. Create a file consisting of one line and containing the DCL command to start
the DECnet receiver program, amqcrsta.exe:

$ mcr amqcrsta [-m Queue_Man_Name] -t DECnet

Place this file in the SYS$MANAGER directory. In this example the file is
named MQRECVDECNET.COM.

Notes:

a. If you have multiple queue managers you must make a new file and
DECnet object for each queue manager.

b. If a receiving channel does not start when the sending end starts, it is
probably due to the permissions on this file being incorrect.

2. Create a DECnet object to start the receiving channel program automatically.
You must supply the correct password for MQSeries.

$ MCR NCP

NCP> define object MQSERIES

Object number (ð-255): ð

File name (filename):sys$manager:mqrecvdecnet.com

Privileges (List of VMS privileges):

Outgoing connect privileges (List of VMS privileges):

User ID (1-39 characters): mqm

Password (1-39 characters): mqseries

Account (1-39 characters):

Proxy access (INCOMING, OUTGOING, BOTH, NONE, REQUIRED):

NCP> set known objects all

NCP> exit

Note: You could use proxy user identifiers rather than actual user identifiers.
This will prevent any unauthorized access to the database. Information on how
to set up proxy identifiers is given in the Digital DECnet for OpenVMS
Networking Manual.

3. Ensure that all known objects are set when DECnet is started.

 Chapter 18. Setting up communication in Digital OpenVMS systems 283

 DECnet Phase V connections

Defining a DECnet Phase V connection
Set up the MQSeries configuration for channel objects:

1. Start the NCL configuration interface by issuing the following command:

$ MC NCL

 NCL>

2. Create a session control application entity by issuing the following commands:

NCL> create session control application MQSERIES
NCL> set sess con app MQSERIES address {name=MQSERIES}

NCL> set sess con app MQSERIES image name -

 _ SYS$MANAGER:MQRECVDECNET.COM

NCL> set sess con app MQSERIES user name “MQM”

NCL> set sess con app MQSERIES node synonym true

NCL> show sess con app MQSERIES all [characteristics]

Note: User-defined values are in uppercase .

3. Create the command file as for DECnet PhaseIV.

4. The log file for the object is net$server.log in the sys$login directory for the
application-specified user name.

5. To enable the session control application upon every system IPL (reboot), add
the preceding NCL commands to the file
SYS$MANAGER:NET$APPLICATION_LOCAL.NCL.

284 MQSeries Intercommunication

 Communications in Tandem NSK � SNA channels

Chapter 19. Setting up communication in Tandem NSK

Distributed queue management (DQM) is a remote queuing facility for MQSeries. It
provides channel control programs for the queue manager that form the interface to
communication links, controllable by the system operator. The channel definitions
held by distributed queue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this.

For OS/2 and Windows NT, see Chapter 10, “Setting up communication for OS/2
and Windows NT” on page 137. For UNIX systems, see Chapter 13, “Setting up
communication in UNIX systems” on page 199. For Digital OpenVMS, see
Chapter 18, “Setting up communication in Digital OpenVMS systems” on page 273.

Deciding on a connection
There are two forms of communication for MQSeries for Tandem NonStop Kernel:

 � TCP
 � LU 6.2

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

When connecting to MQSeries clients, it may be useful to have alternative channels
using different transmission protocols. See Chapter 5, “Configuring communication
links” in the MQSeries Clients book for more information. (There is no MQSeries
for Tandem NonStop Kernel client.)

 SNA channels
The following channel attributes are necessary for SNA channels in MQSeries for
Tandem NonStop Kernel V2.2:

CONNAME
The value of CONNAME depends on whether SNAX or ICE is used as the
communications protocol:

If SNAX is used:

CONNAME('$PPPP.LOCALLU.REMOTELU')
Applies to sender, requester, and fully-qualified server channels, where:

$PPPP Is the process name of the SNAX/APC process.
LOCALLU Is the name of the Local LU.
REMOTELU Is the name of the partner LU on the remote machine.

For example:

CONNAME('$BPð1.IYAHTð8ð.IYCNVMð3')

 Copyright IBM Corp. 1993,1999 285

 SNA channels

CONNAME('$PPPP.LOCALLU')
Applies to receiver and non fully-qualified server channels, where:

$PPPP Is the process name of the SNAX/APC process.
LOCALLU Is the name of the Local LU. This value can be an asterisk

(*), indicating any name.

For example:

CONNAME('$BPð1.IYAHTð8ð')

If ICE is used:

CONNAME('$PPPP.#OPEN.LOCALLU.REMOTELU')
Applies to sender, requester, and fully-qualified server channels, where:

$PPPP Is the process name of the ICE process.
#OPEN Is the ICE open name.
LOCALLU Is the name of the Local LU.
REMOTELU Is the name of the partner LU on the remote machine.

For example:

CONNAME('$ICE.#IYAHTðC.IYAHTðCð.IYCNVMð3')

CONNAME('$PPPP.#OPEN.LOCALLU')
Applies to receiver and non fully-qualified server channels, where:

$PPPP Is the process name of the SNAX/APC process.
#OPEN Is the ICE open name.
LOCALLU Is the name of the Local LU. This value can be an asterisk

(*), indicating any name.

For example:

CONNAME('$ICE.#IYAHTðC.IYAHTðCð')

MODENAME
Is the SNA mode name. For example, MODENAME(LU62PS).

TPNAME('LOCALTP[.REMOTETP]')
Is the Transaction Process (TP) name.

LOCALTP Is the local name of the TP.
REMOTETP Is the name of the TP on the remote machine. This value is

optional. If it is not specified, and the channel is one that
initiates a conversation (that is, a sender, requester, or
fully-qualified server channel) the LOCALTP name is used.

Both the LOCALTP and REMOTETP values can be up to 16 characters in
length.

Notes:

1. If SNAX is being used to facilitate SNA communications, the values in the
| LOCALTP field in the TPNAME must match TPs defined to SNAX. You
| are recommended to use uppercase when defining an LU name.

2. If ICE is being used, TPNAMEs do not need to be defined to ICE; they
need only be present in the MQSeries channel definitions.

286 MQSeries Intercommunication

 TCP channels

LU 6.2 responder processes
There is no SNA listener process in MQSeries for Tandem NonStop Kernel. Each
channel initiated from a remote system (receiver, server, or requester that has a
fully-qualified server on the remote system or a requester that has a sender on the
remote system) must have its own, unique TP name on which it can listen. This
TP name is specified as the LOCALTP value.

Such channels must be defined to MQSC with the attribute
AUTOSTART(ENABLED) to ensure that there is an LU 6.2 responder process
listening on this TP name whenever the queue manager is started. This LU 6.2
responder process (MQLU6RES) services incoming SNA requests for its particular
TP. If the channel is newly defined, or has been recently altered, an LU 6.2
responder process can be started for that channel by issuing either the MQSC
command START CHANNEL (using runmqsc) or the runmqchl control command
from the TACL prompt.

SNA channels defined AUTOSTART(DISABLED) do not listen for incoming SNA
requests. LU 6.2 responder processes are not started for such channels. A
message is logged to MQERRLG1 whenever an LU 6.2 responder process is
started.

 TCP channels
For information about using a nondefault TCP process for communications via TCP,
and information about the TCP ports a queue manager listens on, see the
MQSeries for Tandem NonStop Kernel System Management Guide.

 Chapter 19. Setting up communication in Tandem NSK 287

 Communications examples

 Communications examples
This section provides communications setup examples for SNA (SNAX and ICE)
and TCP.

SNAX communications example
This section provides:

� An example SCF configuration file for the SNA line
� Some example SYSGEN parameters to support the line
� An example SCF configuration file for the SNA process definition
� Some example MQSC channel definitions

SCF SNA line configuration file
Here is an example SCF configuration file:

 ==

 == SCF configuration file for defining SNA LINE, PUs, and LUs to VTAM

 == Line is called $SNAð2 and SYSGEN'd into the Tandem system

 ==

 ALLOW ALL

 ASSUME LINE $SNAð2

 ABORT, SUB LU

 ABORT, SUB PU

 ABORT

 DELETE, SUB LU

 DELETE, SUB PU

 DELETE

288 MQSeries Intercommunication

 Communications examples

 ==

 == ADD $SNAð2 LINE DEFINITION

 ==

 ADD LINE $SNAð2, STATION SECONDARY, MAXPUS 5, MAXLUS 1ð24, RECSIZE 2ð48, &

CHARACTERSET ASCII, MAXLOCALLUS 256, &

PUIDBLK %Hð5D, PUIDNUM %H312FB

 ==

 == ADD REMOTE PU OBJECT, LOCAL IS IMPLICITLY DEFINED AS #ZNT21

 ==

 ADD PU #PU2, ADDRESS 1, MAXLUS 16, RECSIZE 2ð46, TYPE (13,21), &

TRRMTADDR ð44ððð45121ð88, DYNAMIC ON, &

ASSOCIATESUBDEV $CHAMB.#p2, &

TRSSAP %Hð4, &

CPNAME IYAQCDRM, SNANETID GBIBMIYA

 ==

 == ADD LOCAL LU OBJECT

 ==

 ADD LU #ZNTLU1, TYPE (14,21), RECSIZE 1ð24, &

CHARACTERSET ASCII, PUNAME #ZNT21, SNANAME IYAHTð8ð

 ==

 == ADD PARTNER LU OBJECTS

 ==

 == spinach (HP)

 ADD LU #PU2LU1, TYPE(14,21), PUNAME #PU2, SNANAME IYABTðFð

 == stingray (AIX)

 ADD LU #PU2LU2, TYPE(14,21), PUNAME #PU2, SNANAME IYA3T995

 == coopðð7 (OS/2)

 ADD LU #PU2LU3, TYPE(14,21), PUNAME #PU2, SNANAME IYAFT17ð

 == MVS CICS

 ADD LU #PU2LU4, TYPE(14,21), PUNAME #PU2, SNANAME IYCMVMð3

 == MVS Non-CICS

 ADD LU #PU2LU5, TYPE(14,21), PUNAME #PU2, SNANAME IYCNVMð3

 == finnr1ðð (NT)

 ADD LU #PU2LU6, TYPE(14,21), PUNAME #PU2, SNANAME IYAFTð8ð

 == winas18 (AS4ðð)

 Chapter 19. Setting up communication in Tandem NSK 289

 Communications examples

 ADD LU #PU2LU7, TYPE(14,21), PUNAME #PU2, SNANAME IYAFT11ð

 == MQ-Portugese (OS/2)

 ADD LU #PU2LU8, TYPE(14,21), PUNAME #PU2, SNANAME IYAHTð9ð

 == VSE

 ADD LU #PU2LU1ð, TYPE(14,21), PUNAME #PU2, SNANAME IYZMZSI2

 == START UP TOKEN RING ASSOCIATE SUB DEVICE $CHAMB.#P2

 == then start the line, pu's, and lu's

 START LINE $CHAMB, SUB ALL

 START

 START, SUB PU

 STATUS

 STATUS, SUB PU

 STATUS, SUB LU

 SYSGEN parameters
The following are CONFTEXT file entries for a SYSGEN to support the SNA and
token ring lines:

 !\\

 ! LAN MACRO

 !\\

 ! This macro is used for all 361x LAN controllers

 ! REQUIRES T9375 SOFTWARE PACKAGE

 C3613^MLAM = MLAM

 TYPE 56, SUBTYPE ð,

 PROGRAM C9376Pðð,

 INTERRUPT IOP^INTERRUPT^HANDLER,

 MAXREQUESTSIZE 32ððð,

 RSIZE 32ððð,

 BURSTSIZE 16,

 LINEBUFFERSIZE 32,

 STARTDOWN #;

 !\\

! SNAX macro for Token ring lines

 !\\

TOKEN^RING^SNAX^MACRO = SNATS

 TYPE 58,

 SUBTYPE 4,

 RSIZE 1ð24,

 SUBTYPE 4,

FRAMESIZE 1ð36 # ;

290 MQSeries Intercommunication

 Communications examples

 !\\

 ! SNAX MANAGER

 !\\

 SSCP^MACRO = SNASVM

 TYPE 13, SUBTYPE 5,

 RSIZE 256 #;

 !\\

 ! LAN CONTROLLER

 !\\

 LAN1 3616 ð,1 %13ð ;

 !\\\\\\\\\\\ Service manager

 SNAX 6999 ð,1 %37ð ;

!\\\\\\\\\\\ SNAX/Token Ring Pseudocontroller

 RING 6997 ð,1 %36ð ;

!\\\\\\\\\\\ Token Ring Line

$CHAMB LAN1.ð, LAN1.1 C3613^MLAM, NAME #LAN1;

!\\\\\\\\\\\ Configure the SSCP

$SSCP SNAX.ð, SNAX.1 SSCP^MACRO;

!\\\\\\\\\\\ Sna lines for Dummy Controller over Token Ring

$SNAð1 RING.ð, RING.1 TOKEN^RING^SNAX^MACRO;

$SNAð2 RING.2, RING.3 TOKEN^RING^SNAX^MACRO;

SNAX/APC process configuration
The following definitions configure the example APC process (process name
$BP01) via SCF for the SNA line.

Note: The pathway process $BP01 is created using the Tandem utility APCRUN.

 ==

 == SCF Configuration file for SNAX/APC Lus

 ==

 ALLOW ERRORS

 ASSUME PROCESS $BPð1

 ABORT SESSION \

 ABORT TPN \

 ABORT PTNR-MODE \

 ABORT PTNR-LU \

 ABORT LU \

 DELETE TPN \

 DELETE PTNR-MODE \

 DELETE PTNR-LU \

 DELETE LU \

 Chapter 19. Setting up communication in Tandem NSK 291

 Communications examples

 ==

 == ADD LOCAL LU

 ==

 ADD LU IYAHTð8ð, SNANAME GBIBMIYA.IYAHTð8ð, SNAXFILENAME $SNAð2.#ZNTLU1, &

MAXSESSION 256, AUTOSTART YES

 == TPnames for MQSeries

 ADD TPN IYAHTð8ð.INTCRS6A

 ADD TPN IYAHTð8ð.DUMMY, GENERALTPREADY yes, SESSIONCONTROL yes, &

REMOTEATTACHTIMER -1, REMOTEATTACH queue

 === Spinach (HP) Partner LU

 ADD PTNR-LU IYAHTð8ð.IYABTðFð, SNANAME GBIBMIYA.IYABTðFð, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYABTðFð.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ADD TPN IYAHTð8ð.MHð1SDRCSDR

 ADD TPN IYAHTð8ð.MHð1RQSDSDR

 ADD TPN IYAHTð8ð.MHð1RQSVSVR

 ADD TPN IYAHTð8ð.MHð1SDRCRCVR

 ADD TPN IYAHTð8ð.MHð1RQSVRQSTR

 ADD TPN IYAHTð8ð.MHð1RQSDRQSTR

 ==

 == Winas18 (AS4ðð) Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYAFT11ð, SNANAME GBIBMIYA.IYAFT11ð, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYAFT11ð.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ADD TPN IYAHTð8ð.M4ð1SDRCSDR

 ADD TPN IYAHTð8ð.M4ð1RQSDSDR

 ADD TPN IYAHTð8ð.M4ð1RQSVSVR

 ADD TPN IYAHTð8ð.M4ð1SDRCRCVR

 ADD TPN IYAHTð8ð.M4ð1RQSVRQSTR

 ADD TPN IYAHTð8ð.M4ð1RQSDRQSTR

292 MQSeries Intercommunication

 Communications examples

 ==

 == Stingray (AIX) Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYA3T995, SNANAME GBIBMIYA.IYA3T995, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYA3T995.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ADD TPN IYAHTð8ð.MAð2SDRCSDR

 ADD TPN IYAHTð8ð.MAð2RQSDSDR

 ADD TPN IYAHTð8ð.MAð2RQSVSVR

 ADD TPN IYAHTð8ð.MAð2SDRCRCVR

 ADD TPN IYAHTð8ð.MAð2RQSVRQSTR

 ADD TPN IYAHTð8ð.MAð2RQSDRQSTR

 ==

 == coopðð7 (OS/2) Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYAFT17ð, SNANAME GBIBMIYA.IYAFT17ð, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYAFT17ð.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ADD TPN IYAHTð8ð.MOð2SDRCSDR

 ADD TPN IYAHTð8ð.MOð2RQSDSDR

 ADD TPN IYAHTð8ð.MOð2RQSVSVR

 ADD TPN IYAHTð8ð.MOð2SDRCRCVR

 ADD TPN IYAHTð8ð.MOð2RQSVRQSTR

 ADD TPN IYAHTð8ð.MOð2RQSDRQSTR

 ==

 == MQ-Portugese (OS/2) Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYAHTð9ð, SNANAME GBIBMIYA.IYAHTð9ð, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYAHTð9ð.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 Chapter 19. Setting up communication in Tandem NSK 293

 Communications examples

 ==

 == finnr1ðð (NT) Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYAFTð8ð, SNANAME GBIBMIYA.IYAFTð8ð, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYAFTð8ð.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ADD TPN IYAHTð8ð.MWð1SDRCSDR

 ADD TPN IYAHTð8ð.MWð1RQSDSDR

 ADD TPN IYAHTð8ð.MWð1RQSVSVR

 ADD TPN IYAHTð8ð.MWð1SDRCRCVR

 ADD TPN IYAHTð8ð.MWð1RQSVRQSTR

 ADD TPN IYAHTð8ð.MWð1RQSDRQSTR

 ==

 == MVS CICS Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYCMVMð3, SNANAME GBIBMIYA.IYCMVMð3, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYCMVMð3.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ADD TPN IYAHTð8ð.VMð3SDRCSDR

 ADD TPN IYAHTð8ð.VMð3RQSDSDR

 ADD TPN IYAHTð8ð.VMð3RQSVSVR

 ADD TPN IYAHTð8ð.VMð3SDRCRCVR

 ADD TPN IYAHTð8ð.VMð3RQSVRQSTR

 ADD TPN IYAHTð8ð.VMð3RQSDRQSTR

294 MQSeries Intercommunication

 Communications examples

 ==

 == MVS Non CICS Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYCNVMð3, SNANAME GBIBMIYA.IYCNVMð3, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYCNVMð3.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ADD TPN IYAHTð8ð.VMð3NCMSDRCSDR

 ADD TPN IYAHTð8ð.VMð3NCMRQSDSDR

 ADD TPN IYAHTð8ð.VMð3NCMRQSVSVR

 ADD TPN IYAHTð8ð.VMð3NCMSDRCRCVR

 ADD TPN IYAHTð8ð.VMð3NCMRQSVRQSTR

 ADD TPN IYAHTð8ð.VMð3NCMRQSDRQSTR

 ==

 == VSE Partner LU

 ==

 ADD PTNR-LU IYAHTð8ð.IYZMZSI2, SNANAME GBIBMIYA.IYZMZSI2, &

PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

 ADD PTNR-MODE IYAHTð8ð.IYZMZSI2.LU62PS, MODENAME LU62PS, &

DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &

DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &

DEFAULTMAXINRUSIZE 1ð24, DEFAULTMAXOUTRUSIZE 1ð24, &

 SENDWINDOW 4

 ==

 == Start the LUs

 ==

 START LU IYAHTð8ð, SUB ALL

 START TPN \

 Channel definitions
Here are some example MQSeries channel definitions that support the SNAX
configuration:

� A sender channel to MQSeries on OS/390 (not using CICS):

DEFINE CHANNEL(MTð1.VMð3.SDRC.ððð2) CHLTYPE(SDR) +

 TRPTYPE(LU62) +

SEQWRAP(9999999) MAXMSGL(2ð48) +

 XMITQ('VMð3NCM.TQ.SDRC.ððð1') +

 CONNAME('$BPð1.IYAHTð8ð.IYCNVMð3') +

 MODENAME('LU62PS') TPNAME(DUMMY)

� A receiver channel from MQSeries on OS/390:

DEFINE CHANNEL(VMð3.MTð1.SDRC.ððð2) CHLTYPE(RCVR) +

TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VMð3NCM') +

 SEQWRAP(9999999) +

MAXMSGL(2ð48) AUTOSTART(ENABLED) +

 CONNAME('$BPð1.IYAHTð8ð') TPNAME(VMð3NCMSDRCRCVR)

 Chapter 19. Setting up communication in Tandem NSK 295

 Communications examples

� A server channel to MQSeries on OS/390 which is capable of initiating a
conversation, or being initiated by a remote requester channel:

DEFINE CHANNEL(MTð1.VMð3.RQSV.ððð2) CHLTYPE(SVR) +

 TRPTYPE(LU62) +

SEQWRAP(9999999) MAXMSGL(2ð48) +

 XMITQ('VMð3NCM.TQ.RQSV.ððð1') +

 CONNAME('$BPð1.IYAHTð8ð.IYCNVMð3') +

MODENAME('LU62PS') TPNAME(VMð3NCMRQSVSVR.DUMMY) +

 AUTOSTART(ENABLED)

where DUMMY is the TPNAME the MVS queue manager is listening on.

ICE communications example
There are two stages in configuring ICE for MQSeries:

1. The ICE process itself must be configured.

2. Line ($ICE01, in the following example) and SNA information must be input to
the ICE process.

Configuring the ICE process
Here is an example ICE process configuration. This configuration is located by
default in a file called GOICE:

 ?tacl macro

 clear all

 param backupcpu 1

 param cinittimer 12ð

 param collector $ð

 param config icectl

 param idblk ð5d

 param idnum 312FF

 param cpname IYAHRððC

 param datapages 64

 param dynamicrlu yes

 param genesis $gen

 param maxrcv 4ð96

 param loglevel info

 param netname GBIBMIYA

 param password xxxxxxxxxxxxxxxxxxxx

 param retrys1 5

 param secuserid super.super

 param startup %1%

 param timer1 2ð

 param timer2 3ðð

 param usstable default

 run $system.ice.ice/name $ICE,nowait,cpu ð,pri 18ð,highpin off/

Note: The password param has been replaced by xxxxxxxxxxxxxxxxxxxx.

296 MQSeries Intercommunication

 Communications examples

Defining the line and APC information
Once the ICE process has been started with this configuration, the following
information is input to the ICE process using the Node Operator Facility (NOF**).
This example defines a line called $ICE01 running on the token ring port
$CHAMB.#ICE:

 ==

 == ICE definitions for PU IYAHRððC.

 == Local LU for this PU is IYAHTðCð.

 ==

 ALLOW ERRORS

 OPEN $ICE

 ABORT LINE $ICEð1, SUB ALL

 DELETE LINE $ICEð1, SUB ALL

 ==

 == ADD TOKEN RING LINE

 ==

 ADD LINE $ICEð1, TNDM $CHAMB.#ICE, &

IDBLK %Hð5D, &

PROTOCOL TOKENRING, WRITEBUFFERSIZE 8192

 ==

 == ADD PU OBJECT

 ==

 ADD PU IYAHRððC, LINE $ICEð1, MULTIROUTE YES, &

DMAC 4ððð45121ð88, DSAP %Hð4, &

NETNAME GBIBMIYA, IDNUM %H312FF, IDBLK %Hð5D, &

RCPNAME GBIBMIYA.IYAQCDRM, SSAP %Hð8

 ==

 == Add Local APPL Object

 ==

 DELETE APPL IYAHTðCð

 ADD APPL IYAHTðCð, ALIAS IYAHTðCð, LLU IYAHTðCð, PROTOCOL CPIC, &

 OPENNAME #IYAHTðC

 ==

 == Add Mode LU62PS

 ==

 DELETE MODE LU62PS

 ADD MODE LU62PS, MAXSESS 8, MINCONWIN 4, MINCONLOS 3

 ==

 == Add Partner LU Objects

 ==

 Chapter 19. Setting up communication in Tandem NSK 297

 Communications examples

 == spinach (HP)

 ABORT RLU IYABTðFð

 DELETE RLU IYABTðFð

 ADD RLU IYABTðFð, MODE LU62PS, PARSESS YES

 == stingray (AIX)

 ABORT RLU IYA3T995

 DELETE RLU IYA3T995

 ADD RLU IYA3T995, MODE LU62PS, PARSESS YES

 == coopðð7 (OS/2)

 ABORT RLU IYAFT17ð

 DELETE RLU IYAFT17ð

 ADD RLU IYAFT17ð, MODE LU62PS, PARSESS YES

 == MVS CICS

 ABORT RLU IYCMVMð3

 DELETE RLU IYCMVMð3

 ADD RLU IYCMVMð3, MODE LU62PS, PARSESS YES

 == MVS Non-CICS

 ABORT RLU IYCNVMð3

 DELETE RLU IYCNVMð3

 ADD RLU IYCNVMð3, MODE LU62PS, PARSESS YES

 == finnr1ðð (NT)

 ABORT RLU IYAFTð8ð

 DELETE RLU IYAFTð8ð

 ADD RLU IYAFTð8ð, MODE LU62PS, PARSESS YES

 == winas18 (AS4ðð)

 ABORT RLU IYAFT11ð

 DELETE RLU IYAFT11ð

 ADD RLU IYAFT11ð, MODE LU62PS, PARSESS YES

 ABORT RLU IYAHTð8ð

 DELETE RLU IYAHTð8ð

 ADD RLU IYAHTð8ð, MODE LU62PS, PARSESS YES

 ==

 == START UP ICE LINE $ICEð1 AND SUB DEVICE

 ==

 START LINE $ICEð1, SUB ALL

Note: In order for this configuration to work, the port #ICE must have been
defined to the token ring line. For example, these commands could be
entered into SCF:

add port $chamb.#ice, type tr8ð25, address %Hð8

start port $chamb.#ice

where $chamb is a token-ring controller, and the SAP of the port is %08.

298 MQSeries Intercommunication

 Communications examples

Channel definitions for ICE
Here are some MQSeries channel definitions that would support this ICE
configuration:

� A sender channel to MQSeries on OS/390 (not using CICS):

DEFINE CHANNEL(MTð1.VMð3.SDRC.ICE) CHLTYPE(SDR) +

 TRPTYPE(LU62) +

SEQWRAP(9999999) MAXMSGL(2ð48) +

 XMITQ('VMð3NCM.TQ.SDRC.ICE') +

 CONNAME('$ICE.#IYAHTðC.IYAHTðCð.IYCNVMð3') +

 MODENAME('LU62PS') TPNAME(DUMMY)

� A receiver channel from MQSeries on OS/390:

DEFINE CHANNEL(VMð3.MTð1.SDRC.ICE) CHLTYPE(RCVR) +

TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VMð3NCM') +

 SEQWRAP(9999999) +

MAXMSGL(2ð48) AUTOSTART(ENABLED) +

 CONNAME('$ICE.#IYAHTðC.IYAHTðCð') TPNAME(VMð3NCMSDRCRCVR)

� A server channel to MQSeries on OS/390 that is capable of initiating a
conversation, or being initiated by a remote requester channel:

DEFINE CHANNEL(MTð1.VMð3.RQSV.ICE) CHLTYPE(SVR) +

 TRPTYPE(LU62) +

SEQWRAP(9999999) MAXMSGL(2ð48) +

 XMITQ('VMð3NCM.TQ.RQSV.ICE') +

 CONNAME('$ICE.#IYAHTðC.IYAHTðCð.IYCNVMð3') +

MODENAME('LU62PS') TPNAME(VMð3NCMRQSVSVR.DUMMY) +

 AUTOSTART(ENABLED)

where DUMMY is the TPNAME the MVS queue manager is listening on.

TCP/IP communications example
This example shows how to establish communications with a remote MQSeries
system over TCP/IP.

TCPConfig stanza in QMINI
The QMINI file must contain an appropriate TCPConfig stanza. For example:

 TCPConfig:

 TCPPort=1414

 TCPNumListenerPorts=1

 TCPListenerPort=1996

 TCPKeepAlive=1

The TCPPort value is the default outbound port for channels without a port value in
the CONNAME field. TCPListenerPort identifies the port on which the TCP
listener will listen.

Defining a TCP sender channel
A TCP sender channel must be defined. In this example, the queue manager is
MH01 on a host called SPINACH:

DEFINE CHANNEL(MTð1_MHð1_SDRC_ððð1) CHLTYPE(SDR) +

 TRPTYPE(TCP) +

SEQWRAP(9999999) MAXMSGL(41943ð4) +

 XMITQ('MHð1_TQ_SDRC_ððð1') +

 CONNAME('SPINACH.HURSLEY.IBM.COM(2ððð)')

 Chapter 19. Setting up communication in Tandem NSK 299

 Communications examples

This channel would try to attach to a TCP/IP port number 2000 on the host
SPINACH.

The following example shows a TCP/IP sender channel definition for a queue
manager MH01 on the host SPINACH using the default outbound TCP/IP port:

DEFINE CHANNEL(MTð1_MHð1_SDRC_ððð1) CHLTYPE(SDR) +

 TRPTYPE(TCP) +

SEQWRAP(9999999) MAXMSGL(41943ð4) +

 XMITQ('MHð1_TQ_SDRC_ððð1') +

 CONNAME('SPINACH.HURSLEY.IBM.COM')

No port number is specified in the CONNAME. Therefore, the value specified on
the TCPPort entry in the QMINI file (1414) is used.

Defining a TCP receiver channel
An example TCP receiver channel:

DEFINE CHANNEL(MHð1_MTð1_SDRC_ððð1) CHLTYPE(RCVR) +

 TRPTYPE(TCP)

A TCP receiver channel requires no CONNAME value, but a TCP listener must be
running. There are two ways of starting a TCP listener. Either:

1. Go into the queue manager’s pathway using pathcom, and enter:

 start server mqs-tcplisðð

or

2. From the TACL prompt, enter

 runmqlsr -m QMgrName

| Note: If problems are encountered with the TACL from which the runmqlsr is
| running, the listener will be unable to access its home terminal and out file.
| runmqlsr is useful for testing, but you are recommended to use the listener from
| within the queue manager’s pathway as shown in step 1.

A TCP/IP listener, which will listen on the port defined in the QMINI file (in this
example, 1996), is started.

Note: This port number can be overridden by the -p Port flag on runmqlsr .

Defining a TCP/IP sender channel on the remote system
The sender channel definition on the remote system to connect to this receiver
channel could look like:

DEFINE CHANNEL(MHð1_MTð1_SDRC_ððð1) CHLTYPE(SDR) +

 TRPTYPE(TCP) +

 XMITQ('MTð1_TQ_SDRC_ððð1') +

 CONNAME('TANDEM.ISC.UK.IBM.COM(1996)')

300 MQSeries Intercommunication

 Planning example for distributed platforms

Chapter 20. Message channel planning example for
distributed platforms

This chapter provides a detailed example of how to connect two queue managers
together so that messages can be sent between them. The example illustrates the
preparations needed to allow an application using queue manager QM1 to put
messages on a queue at queue manager QM2. An application running on QM2
can retrieve these messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that
channels are to be triggered to start when the first message arrives on the
transmission queue they are servicing. You must start the channel initiator in order
for triggering to work.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue
is already defined by MQSeries. You can use a different initiation queue, but you
will have to define it yourself and specify the name of the queue when you start the
channel initiator.

What the example shows
The example shows the MQSeries commands (MQSC) that you can use.

In all the examples, the MQSC commands are shown as they would appear in a file
of commands, and as they would be typed at the command line. The two methods
look identical, but, to issue a command at the command line, you must first type
runmqsc, for the default queue manager, or runmqsc qmname where qmname is the
name of the required queue manager. Then type any number of commands, as
shown in the examples.

An alternative method is to create a file containing these commands. Any errors in
the commands are then easy to correct. If you called your file mqsc.in then to run
it on queue manager QMNAME use:

runmqsc QMNAME < mqsc.in > mqsc.out

You could verify the commands in your file before running it using:

runmqsc -v QMNAME < mqsc.in > mqsc.out

For portability, you should restrict the line length of your commands to 72
characters. Use a concatenation character to continue over more than one line.
On Tandem NSK use Ctrl-y to end the input at the command line, or enter the exit
or quit command. On OS/2, Windows NT, or Digital OpenVMS use Ctrl-z. On
UNIX systems use Ctrl-d. Alternatively, on V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, use the end command.

Figure 36 on page 302 shows the example scenario.

 Copyright IBM Corp. 1993,1999 301

 Planning example for distributed platforms

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Application Application

message

message

message

Query

Queue manager 'QM1' Queue manager 'QM2'

Channel

Payroll

processing

Payroll

query

Query

Reply

message

Reply

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue local 'PAYROLL'QM1.TO.QM2

QM2.TO.QM1

Figure 36. The message channel example for OS/2, Windows NT, and UNIX systems

The example involves a payroll query application connected to queue manager
QM1 that sends payroll query messages to a payroll processing application running
on queue manager QM2. The payroll query application needs the replies to its
queries sent back to QM1. The payroll query messages are sent from QM1 to
QM2 on a sender-receiver channel called QM1.TO.QM2, and the reply messages
are sent back from QM2 to QM1 on another sender-receiver channel called
QM2.TO.QM1. Both of these channels are triggered to start as soon as they have
a message to send to the other queue manager.

The payroll query application puts a query message to the remote queue
“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the
local queue “PAYROLL” on QM2. In addition, the payroll query application
specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”
on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this
case, local queue “PAYROLL.REPLY” on QM1.

In the example definitions for TCP/IP, QM1 has a host address of 9.20.9.31 and is
listening on port 1411, and QM2 has a host address of 9.20.9.32 and is listening on
port 1412. The example assumes that these are already defined on your system
and available for use.

The object definitions that need to be created on QM1 are:

� Remote queue definition, PAYROLL.QUERY

� Transmission queue definition, QM2 (default=remote queue manager name)

� Process definition, QM1.TO.QM2.PROCESS (not needed for V5.1 of MQSeries
for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT)

� Sender channel definition, QM1.TO.QM2

� Receiver channel definition, QM2.TO.QM1

� Reply-to queue definition, PAYROLL.REPLY

302 MQSeries Intercommunication

 Planning example for distributed platforms

The object definitions that need to be created on QM2 are:

� Local queue definition, PAYROLL

� Transmission queue definition, QM1 (default=remote queue manager name)

� Process definition, QM2.TO.QM1.PROCESS (not needed for V5.1 of MQSeries
for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT)

� Sender channel definition, QM2.TO.QM1

� Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender
channel definitions.

You can see a diagram of the arrangement in Figure 36 on page 302.

Queue manager QM1 example
The following object definitions allow applications connected to queue manager
QM1 to send request messages to a queue called PAYROLL on QM2, and to
receive replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE
attributes. The other attributes supplied are the minimum required to make the
example work. The attributes that are not supplied take the default values for
queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +

PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of
directing messages to the transmission queue, QM2, so that they can be sent to
queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.TO.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger message is
sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets
the message from the initiation queue and starts the channel identified in the
named process.

Process definition

DEFINE PROCESS(QM1.TO.QM2.PROCESS) DESCR('Process for starting channel') +

REPLACE APPLTYPE(OS2) USERDATA(QM1.TO.QM2)

The channel initiator uses this process information to start channel QM1.TO.QM2.
(This sample definition uses OS2 as the application type).

Note: For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT the need for a process definition can be eliminated by specifying the
channel name in the TRIGGERDATA attribute of the transmission queue.

 Chapter 20. Message channel planning example for distributed platforms 303

 Planning example for distributed platforms

Sender channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +

CONNAME('9.2ð.9.32(1412)')

Receiver channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED). This ensures that reply
messages can be put to the queue. If the replies cannot be put to the reply-to
queue, they are sent to the dead-letter queue on QM1 or, if this queue is not
available, remain on transmission queue QM1 on queue manager QM2. The
queue has been defined as GET(ENABLED) to allow the reply messages to be
retrieved.

Queue manager QM2 example
The following object definitions allow applications connected to queue manager
QM2 to retrieve request messages from a local queue called PAYROLL, and to put
replies to these request messages to a queue called PAYROLL.REPLY on queue
manager QM1.

You do not need to provide a remote queue definition to enable the replies to be
returned to QM1. The message descriptor of the message retrieved from local
queue PAYROLL contains both the reply-to queue and the reply-to queue manager
names. Therefore, as long as QM2 can resolve the reply-to queue manager name
to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue
manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE
attributes and are the minimum required to make the example work. The attributes
that are not supplied take the default values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same
reason as the reply-to queue definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger message is
sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets
the message from the initiation queue and starts the channel identified in the
named process.

304 MQSeries Intercommunication

 Planning example for distributed platforms

Process definition

DEFINE PROCESS(QM2.TO.QM1.PROCESS) DESCR('Process for starting channel') +

REPLACE APPLTYPE(OS2) USERDATA(QM2.TO.QM1)

The channel initiator uses this process information to start channel QM2.TO.QM1.
(This sample definition uses OS2 as the application type.)

Note: For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT the need for a process definition can be eliminated by specifying the
channel name in the TRIGGERDATA attribute of the transmission queue.

Sender channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +

CONNAME('9.2ð.9.31(1411)')

Receiver channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR('Receiver channel from QM1')

Running the example
Once these definitions have been created, you need to:

� Start the channel initiator on each queue manager.

� Start the INETD daemon for each queue manager. On OS/2, Windows NT,
and Tandem NSK, you can use the MQSeries listener in place of INETD.

For information about starting the channel initiator and listener, see Chapter 10,
“Setting up communication for OS/2 and Windows NT” on page 137 and
Chapter 13, “Setting up communication in UNIX systems” on page 199.

Note: On OS/2 and Windows NT, you can also run the channel as a thread; see
“DEFINE CHANNEL” in the MQSeries Command Reference book for information
about how to define a channel as a threaded channel.

Expanding this example
This simple example could be expanded with:

� The use of LU 6.2 communications for interconnection with CICS systems, and
transaction processing.

� Adding more queue, process, and channel definitions to allow other
applications to send messages between the two queue managers.

� Adding user-exit programs on the channels to allow for link encryption, security
checking, or additional message processing.

� Using queue-manager aliases and reply-to queue aliases to understand more
about how these can be used in the organization of your queue manager
network.

 Chapter 20. Message channel planning example for distributed platforms 305

 Planning example for distributed platforms

306 MQSeries Intercommunication

 SINIX and DC/OSx configuration

Chapter 21. Example SINIX and DC/OSx configuration files

This chapter contains working examples of SNA LU 6.2 configuration files for SINIX
and DC/OSx.

Notes:

1. The TCP/IP names for the SINIX machines involved are forties, which is an
RM400, and bight, which is an RM200.

2. The name of the queue manager on forties is MP01, and the name of the
queue manager on bight is MP02.

3. Both machines are running the SINIX-N operating system.

4. The LU names have a resemblance to the TCP/IP names.

5. The XIDs have been arbitrarily chosen to reflect the RM model numbers.

6. The machine rameses is a DC/OSx MIS-2ES/2 machine using the DC/OSx
operating system. The configuration for rameses is different because the
operating system SNA software on DC/OSx is different.

7. The name of the queue manager on rameses is MP04.

The preceding information can be summarized as follows:

You should use these examples as a basis for your system. You need to generate
configuration files that are appropriate to your SNA network.

For a further description on the contents of KOGS files and Transit (SINIX LU6.2)
setup, see the Transit SINIX Version 3.2 Administration of Transit manual.

The KOGS files can be found in the directory /opt/lib/transit/KOGS.

“Working configuration files for Pyramid DC/OSx” on page 310 shows example
working configuration files from the DC/OSx machine rameses. The file is
/etc/opt/lu62/cpic_cfg. For further information on the format of this file see the
Pyramid Technology publications OpenNet LU 6.2, System Administrator’s Guide,
and OpenNet SNA Engine, System Administrator’s Guide.

“Output of dbd command” on page 310 is the output of the dbd command on
cfg.ncpram, which is a binary configuration file created by the cm command.

Machine name Machine model Operating system Queue manager

forties RM400 SINIX-N MP01

bight RM200 SINIX-N MP02

rameses MIS-2ES/2 DC/OSx MP04

 Copyright IBM Corp. 1993,1999 307

 SINIX and DC/OSx configuration

Configuration file on bight

\ Transit config file for bight (RM2ðð).

\ Versionen und Korrekturstaende

\ TRANSIT-SERVER V 3.3 confnuc.h K1

\ SNA_Kgen K1

 XLINK lforties,

 ACT = AUTO,

 TYP = LAN,

 XID = ððððð4ðð,

 CPNAME = CP.FORTIES,

 CONFSTR = /opt/lib/llc2/conf.str,

 DEVICE = trð,

 SSAP = ð4

 XPU pbight,

 TYP = PEER,

 CONNECT = AUTO,

\ DISCNT = AUTO,

 LINK = lforties,

 NVSCONNECT = PARTNER,

 MAXDATA = 1ð33,

 XID = ððððð2ðð,

 CPNAME = CP.BIGHT,

 ROLE = NEG,

 PAUSE = 3,

 RETRIES = 1ð,

 DMAC = ðððFð1626436,

 DSAP = ð4,

 RWINDOW = 7

 XLU forties,

 TYP = 6,

 PUCONNECT = APHSTART,

 CTYP = PUBLIC,

 SESS-LMT = 13ð,

 SESS-CTR = IND,

 NETNAME = SNI.FORTIES,

PAIR = bight MODE1

 XRLU bight,

 NETNAME = SNI.BIGHT,

 PU = pbight

 XMODE MODE1,

 SESS-MAX = 13,

 SESS-LOS = 6,

 SESS-WIN = 7,

 SESS-AUTO = 7,

 SRU-MAX = 87,

 RRU-MAX = 87,

 PAC-SEND = ð,

 PAC-RCV = ð

 XSYMDEST sendMPð2,

 RLU = bight,

 MODE = MODE1,

 TP = recvMPð2,

 TP-TYP = USER,

 SEC-TYP = NONE

 XTP recvMPð1,

 UID = guenther,

 TYP = USER,

 PATH = /home/guenther/recvMPð1.sh,

 SECURE = NO

 XEND

308 MQSeries Intercommunication

 SINIX and DC/OSx configuration

Configuration file on forties
\ Transit config file for forties (RM 4ðð).

\ Versionen und Korrekturstaende

\ TRANSIT-SERVER V 3.3 confnuc.h K1

\ SNA_Kgen K1

 XLINK lbight,

 ACT = AUTO,

 TYP = LAN,

 XID = ððððð2ðð,

 CPNAME = CP.BIGHT,

 CONFSTR = /opt/lib/llc2/conf.str,

 DEVICE = trð,

 SSAP = ð4

 XPU pforties,

 TYP = PEER,

 CONNECT = AUTO,

 DISCNT = AUTO,

 LINK = lbight,

 NVSCONNECT = PARTNER,

 MAXDATA = 1ð33,

 XID = ððððð4ðð,

 CPNAME = CP.FORTIES,

 ROLE = NEG,

 PAUSE = 3,

 RETRIES = 1ð,

 DMAC = ðððð6f1ð6935,

 DSAP = ð4,

 RWINDOW = 7

 XLU bight,

 TYP = 6,

 PUCONNECT = APHSTART,

 CTYP = PUBLIC,

 SESS-LMT = 15,

 SESS-CTR = IND,

 NETNAME = SNI.BIGHT,

PAIR = forties MODE1

 XRLU forties,

 NETNAME = SNI.FORTIES,

 PU = pforties

 XMODE MODE1,

 SESS-MAX = 13,

 SESS-LOS = 7,

 SESS-WIN = 6,

 SESS-AUTO = 6,

 SRU-MAX = 87,

 RRU-MAX = 87,

 PAC-SEND = ð,

 PAC-RCV = ð

 XSYMDEST sendMPð1,

 RLU = forties,

 MODE = MODE1,

 TP = recvMPð1,

 TP-TYP = USER,

 SEC-TYP = NONE

 XTP recvMPð2,

 UID = guenther,

 TYP = USER,

 PATH = /home/guenther/recvMPð2.sh,

 SECURE = NO

 XEND

 Chapter 21. Example SINIX and DC/OSx configuration files 309

 SINIX and DC/OSx configuration

Working configuration files for Pyramid DC/OSx
#

This is the side information file for CPI-C.

#

The default file name is /etc/opt/lu62/cpic_cfg, use set environmental

variable CPIC_CFG to change the default.

#

#

The lines starting with # are for comments; no blank lines are allowed.

The format of each line is "1 2 3 4 5 6 7 8 9" all in one line.

1 - symbolic destination name

2 - local LU name (locally known name)

3 - remote LU name (locally known name)

4 - mode name

5 - remote TP name

6 - trace flag (1 if you want the trace on, ð otherwise)

7 - security type (ð for none, 2 for program)

8 - user id (omit if security type is ð)

9 - password (omit if security type is ð)

#

The following are some examples:

#

#sendMPð2 LRAMESES BIGHT MODE1 recvMPð2 1 ð

sendMPð2 IYAFT1Fð IYAFTððð LU62PS recvMPð2 1 ð

sendMPð3 IYAFT1Fð IYAFTð1ð LU62PS recvMPð3 1 ð

sendMPð1 IYAFT1Fð IYAET12ð LU62PS recvMPð1 1 ð

sdEHð1rc IYAFT1Fð IYABTðFð LU62PS MPð4RCV 1 ð

sdEHð1sv IYAFT1Fð IYABTðFð LU62PS MPð4SVR 1 ð

sendM4ð1 IYAFT1Fð IYAFT11ð LU62PS INTCRS6A 1 ð

sendvmð2 IYAFT1Fð IYCNVMð2 LU62PS DUMMY 1 ð

sndvm2rc IYAFT1Fð IYCMVMð2 LU62PS CKRC 1 ð

sndvm2sd IYAFT1Fð IYCMVMð2 LU62PS CKSD 1 ð

sndvm2sv IYAFT1Fð IYCMVMð2 LU62PS CKSV 1 ð

Output of dbd command
\\\\ COMMUNICATIONS MANAGER DATABASE \\\\

Database version number 8ð

SNA CONTROLLER

controller name: SNA

controller execute name:

'startsna62 -c 24'

62 MANAGER

62 manager name: LU62MGR

62 manager execute name:

 'lu62mgr'

LOCAL PU

local pu name: IYAFT1Fð

controller name: SNA

non-specific type pu

unsolicited recfms is NOT supported

xid format (ð/3): 3

LOCAL LU

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

locally known local lu name: IYAFT1Fð

local pu name: IYAFT1Fð

lu number at the pu: 1

lu6.2 type lu

62 manager name: LU62MGR

lu session limit: 1ðð

share limit: 2

send window size: 7

LU configuration options:

310 MQSeries Intercommunication

 SINIX and DC/OSx configuration

is NOT the default lu

will NOT terminate on disconnect

printer can NOT be used in system mode

independent LU on BF connections

REMOTE PU

remote pu name: CPPG

REMOTE LU

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 fð fð fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFTððð

locally known remote lu name: IYAFTððð

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

uniterpreted remote lu name (hex): c9 e8 c1 c6 e3 fð fð fð

uniterpreted remote lu name (ebcdic): IYAFTððð

remote pu name: CPPG

session initiation requests are initiate or queue

parallel sessions supported

no security information accepted

lu-lu verification NOT required

lu-lu password not displayed for security reasons

REMOTE LU

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 fð f1 fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFTð1ð

locally known remote lu name: IYAFTð1ð

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

uniterpreted remote lu name (hex): c9 e8 c1 c6 e3 fð f1 fð

uniterpreted remote lu name (ebcdic): IYAFTð1ð

remote pu name: CPPG

session initiation requests are initiate or queue

parallel sessions supported

no security information accepted

lu-lu verification NOT required

lu-lu password not displayed for security reasons

REMOTE LU

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c5 e3 f1 f2 fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAET12ð

locally known remote lu name: IYAET12ð

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

uniterpreted remote lu name (hex): c9 e8 c1 c5 e3 f1 f2 fð

uniterpreted remote lu name (ebcdic): IYAET12ð

remote pu name: CPPG

session initiation requests are initiate or queue

parallel sessions supported

no security information accepted

lu-lu verification NOT required

lu-lu password not displayed for security reasons

MODE

mode name (hex): e2 d5 c1 e2 e5 c3 d4 c7

mode name (ebcdic): SNASVCMG

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 fð fð fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFTððð

line class name: leased

send pacing window: 7

receive pacing window: 7

lower bound max RU size, send: 128

upper bound max RU size, send: 896

lower bound max RU size, receive: 128

upper bound max RU size, receive: 896

synchronization level of none or confirm

either lu may attempt to reinitiate the session

cryptography not supported

contention-winner automatic initiation limit: 1

 Chapter 21. Example SINIX and DC/OSx configuration files 311

 SINIX and DC/OSx configuration

MODE

mode name (hex): d3 e4 f6 f2 d7 e2

mode name (ebcdic): LU62PS

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 fð fð fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFTððð

line class name: leased

send pacing window: 7

receive pacing window: 7

lower bound max RU size, send: 128

upper bound max RU size, send: 896

lower bound max RU size, receive: 128

upper bound max RU size, receive: 896

synchronization level of none or confirm

either lu may attempt to reinitiate the session

cryptography not supported

contention-winner automatic initiation limit: 5

MODE

mode name (hex): e2 d5 c1 e2 e5 c3 d4 c7

mode name (ebcdic): SNASVCMG

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 fð f1 fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFTð1ð

line class name: leased

send pacing window: 7

receive pacing window: 7

lower bound max RU size, send: 128

upper bound max RU size, send: 896

lower bound max RU size, receive: 128

upper bound max RU size, receive: 896

synchronization level of none or confirm

either lu may attempt to reinitiate the session

cryptography not supported

contention-winner automatic initiation limit: 1

MODE

mode name (hex): d3 e4 f6 f2 d7 e2

mode name (ebcdic): LU62PS

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 fð f1 fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAFTð1ð

line class name: leased

send pacing window: 7

receive pacing window: 7

lower bound max RU size, send: 128

upper bound max RU size, send: 896

lower bound max RU size, receive: 128

upper bound max RU size, receive: 896

synchronization level of none or confirm

either lu may attempt to reinitiate the session

cryptography not supported

contention-winner automatic initiation limit: 5

MODE

mode name (hex): e2 d5 c1 e2 e5 c3 d4 c7

mode name (ebcdic): SNASVCMG

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c5 e3 f1 f2 fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAET12ð

line class name: leased

send pacing window: 7

receive pacing window: 7

lower bound max RU size, send: 128

upper bound max RU size, send: 896

lower bound max RU size, receive: 128

upper bound max RU size, receive: 896

synchronization level of none or confirm

312 MQSeries Intercommunication

 SINIX and DC/OSx configuration

either lu may attempt to reinitiate the session

cryptography not supported

contention-winner automatic initiation limit: 1

MODE

mode name (hex): d3 e4 f6 f2 d7 e2

mode name (ebcdic): LU62PS

fully qualified local lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c6 e3 f1 c6 fð

fully qualified local lu name (ebcdic): GBIBMIYA.IYAFT1Fð

fully qualified remote lu name (hex): c7 c2 c9 c2 d4 c9 e8 c1 4b c9 e8 c1 c5 e3 f1 f2 fð

fully qualified remote lu name (ebcdic): GBIBMIYA.IYAET12ð

line class name: leased

send pacing window: 7

receive pacing window: 7

lower bound max RU size, send: 128

upper bound max RU size, send: 896

lower bound max RU size, receive: 128

upper bound max RU size, receive: 896

synchronization level of none or confirm

either lu may attempt to reinitiate the session

cryptography not supported

contention-winner automatic initiation limit: 5

TRANSACTION PROGRAM

transaction program name (hex): 99 85 83 a5 d4 d7 fð f4

transaction program name (ebcdic): recvMPð4

transaction program execute name:

 '/home/guenther/recvMPð4.sh'

tp is enabled

tp supports basic conversations

tp supports mapped conversations

tp supports confirm synchronization

tp supports no synchronization

no verification is required

number of pip fields required: ð

privilege mask (hex): ð

 (no privileges)

TRANSACTION PROGRAM

transaction program name (hex): ð6 f1

transaction program name (ebcdic): ?1

transaction program execute name:

 'ð6f1'

tp is enabled

tp supports basic conversations

tp supports confirm synchronization

tp supports no synchronization

no verification is required

number of pip fields required: ð

privilege mask (hex): 82

(cnos - allocate_service_tp privileges)

TOKEN RING COMMUNICATIONS MEDIA

line name: LINEð

line number: ð

controller name: SNA

line class: leased

LOCAL LINK STATION

link station name: LYAFT1Fð

pu name: IYAFT1Fð

line name: LINEð

 secondary station

LSAP address (in hex): ð4

i-field size: 1ð33

Acknowledgement delay window size : 7

Acknowledgement delay timeout in tenth of seconds : 3

Retry count : 2ð

Retry timeout in seconds : 3

send xid block number: ð 5d

send xid id number: 3 ðf 5c

send xid control vector:

 Chapter 21. Example SINIX and DC/OSx configuration files 313

 SINIX and DC/OSx configuration

REMOTE LINK STATION

link station name: LCPPG

pu name: CPPG

line name: LINEð

 primary station

MAC address: 4ð ðð 45 12 1ð 88

LSAP address (in hex): ð4

i-field size: 1ð33

Remote station type : BF

send xid block number:

send xid id number:

send xid control vector:

314 MQSeries Intercommunication

Part 4. DQM in MQSeries for OS/390

This part of the book describes the MQSeries distributed queue management
function for MQSeries for OS/390 using native OS/390 communication protocols
(SNA LU 6.2 and TCP/IP). You can also use CICS ISC for distributed queuing.

Note: You can use distributed queuing both with CICS and without CICS
simultaneously on the same MQSeries instance, but they will have no knowledge of
each other, or of each other’s channels. It is up to you to ensure that they have
distinct sets of channel names. Most of the information here applies equally to
MQSeries for MVS/ESA.

Chapter 22. Monitoring and controlling channels on OS/390 319
The DQM channel control function . 319
Using the panels and the commands . 320

Using the initial panel . 320
Managing your channels . 322

Defining a channel . 322
Altering a channel definition . 323
Displaying a channel definition . 323
Displaying information about DQM . 324
Deleting a channel definition . 324
Starting a channel initiator . 325
Stopping a channel initiator . 326
Starting a channel listener . 327
Stopping a channel listener . 327
Starting a channel . 328
Testing a channel . 329
Resetting message sequence numbers for a channel 330
Resolving in-doubt messages on a channel 331
Stopping a channel . 332
Displaying channel status . 333

| Displaying cluster channels . 335

Chapter 23. Preparing MQSeries for OS/390 337
Setting up communication . 337

TCP setup . 337
APPC/MVS setup . 339

Defining DQM requirements to MQSeries . 341
Defining MQSeries objects . 341

Synchronization queue . 342
Channel command queues . 342

Channel operation considerations . 343
| OS/390 Automatic Restart Management (ARM) 343

Chapter 24. Message channel planning example for OS/390 345
What the example shows . 345

Queue manager QM1 example . 346
Queue manager QM2 example . 348

Running the example . 349
Expanding this example . 349

 Copyright IBM Corp. 1993,1999 315

Chapter 25. Monitoring and controlling channels in OS/390 with CICS . 351
The DQM channel control function . 351

CICS regions . 352
Starting DQM panels . 352

The Message Channel List panel . 353
Keyboard functions . 353
Selecting a channel . 354
Working with channels . 354
Creating a channel . 356
Altering a channel . 356
Browsing a channel . 357
Renaming a channel . 357
Selected menu-bar choice . 357
Edit menu-bar choice . 367
View menu-bar choice . 371
Help menu-bar choice . 372

The channel definition panels . 372
Channel menu-bar choice . 373
Help menu-bar choice . 373

Channel settings panel fields . 374
Details of sender channel settings panel . 376
Details of receiver channel settings panel 377
Details of server channel settings panel . 378
Details of requester channel settings panel 379

Chapter 26. Preparing MQSeries for OS/390 when using CICS 381
Setting up CICS communication for MQSeries for OS/390 381

Connecting CICS systems . 381
Defining an LU 6.2 connection . 382
Installing the connection . 383
Communications between CICS systems attached to one queue manager . 383

Defining DQM requirements to MQSeries . 384
Defining MQSeries objects . 384

Multiple message channels per transmission queue 384
Channel operation considerations . 385

Chapter 27. Message channel planning example for OS/390 using CICS . 387

316 MQSeries Intercommunication

Chapter 28. Example configuration - IBM MQSeries for OS/390 395
Configuration parameters for an LU 6.2 connection 395

Configuration worksheet . 396
Explanation of terms . 399

Establishing an LU 6.2 connection . 401
Defining yourself to the network . 401
Defining a connection to a partner . 402
What next? . 402

Establishing an LU 6.2 connection using CICS 402
Defining a connection . 402
Defining the sessions . 403
Installing the new group definition . 403
What next? . 403

Establishing a TCP connection . 403
What next? . 403

MQSeries for OS/390 configuration . 404
Channel configuration . 404
Defining a local queue . 410
Defining a remote queue . 411
Defining a sender channel when not using CICS 412
Defining a receiver channel when not using CICS 412
Defining a sender channel using CICS . 413
Defining a receiver channel using CICS . 414

 Part 4. DQM in MQSeries for OS/390 317

318 MQSeries Intercommunication

 Channels on OS/390 � Channel control function

Chapter 22. Monitoring and controlling channels on OS/390

Use the DQM commands and panels to create, monitor, and control the channels
to remote queue managers. Each OS/390 queue manager has a DQM program
(the channel initiator) for controlling interconnections to compatible remote queue
managers using native OS/390 facilities.

The implementation of these panels and commands on OS/390 is integrated into
the operations and control panels and the MQSC commands. No differentiation is
made in the organization of these two sets of panels and commands.

If you are using CICS for DQM, see Chapter 25, “Monitoring and controlling
channels in OS/390 with CICS” on page 351. Most of the information here applies
equally to MQSeries for MVS/ESA.

The DQM channel control function
The channel control function provides the administration and control of message
channels between MQSeries for OS/390 and compatible systems. See Figure 28
on page 64 for a conceptual picture.

The channel control function consists of panels, commands and programs, a
synchronization queue, channel command queues, and the channel definitions.
The following is a brief description of the components of the channel control
function.

� The channel definitions are held as objects in page set zero, like other
MQSeries objects in OS/390.

� You use the operations and control panels or MQSC commands to:

– Create, copy, display, alter, and delete channel definitions

– Start and stop channel initiators and listeners

– Start, stop, and ping channels, reset channel sequence numbers, and
resolve in-doubt messages when links cannot be re-established

– Display status information about channels

– Display information about DQM

In particular, you can use the CSQINPX initialization input data set to issue
your MQSC commands. This can be processed every time you start the
channel initiator. See the MQSeries for OS/390 System Management Guide for
information about this.

� There is a queue (SYSTEM.CHANNEL.SYNCQ) used for channel
re-synchronization purposes. You should define this with INDXTYPE(MSGID)
for performance reasons.

� Channel command queues (SYSTEM.CHANNEL.INITQ and
SYSTEM.CHANNEL.REPLY.INFO) are used to hold commands for channel
initiators, channels, and listeners, and replies from them.

� The channel control function program runs in its own address space, separate
from the queue manager, and comprises the channel initiator, listeners, MCAs,
trigger monitor, and command handler.

 Copyright IBM Corp. 1993,1999 319

 Using panels and commands

Using the panels and the commands
You can use either the MQSC commands or the operations and control panels to
manage DQM. For information about the syntax of the MQSC commands, see
Chapter 2, “The MQSeries commands” in the MQSeries Command Reference
book.

Using the initial panel
For an introduction to invoking the operations and control panels, using the function
keys, and getting help, see the MQSeries for OS/390 System Management Guide.

Note: To use the operations and control panels, you must have the correct
security authorization; see the MQSeries for OS/390 System Management Guide
for information. Figure 37 shows the panel that is displayed when you start a
panel session.

| à| ð
| IBM MQSeries for OS/39ð - Main Menu

| Complete fields. Then press Enter.

| Action 1 1. Display 5. Perform

| 2. Define 6. Start

| 3. Alter 7. Stop

| 4. Delete

| Object type CHANNEL +

| Name \

| Like __

| Connect to queue

| manager : MQ25

| Target queue manager : MQ25

| Response wait time . : 1ð seconds

| (C) Copyright IBM Corporation 1993,1999. All rights reserved.

| Command ===> __

| F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap

| F1ð=Messages F12=Cancel

| á| ñ

| Figure 37. The operations and controls initial panel

From this panel you can:

� Select the action you want to perform by typing in the appropriate number in
the Action field.

� Specify the object type that you want to work with. Press F4 for a list of object
types if you are not sure what they are.

� Display a list of objects of the type specified. Type in an asterisk (*) in the
Name field and press Enter to display a list of objects (of the type specified)
that have already been defined on this subsystem. You can then select one or
more objects to work with in sequence. Figure 38 on page 321 shows a list of
channels produced in this way.

� Define an object with the same attributes as an existing object. See “Defining
a channel” on page 322.

� Choose the local queue manager you want, and whether you want the
commands issued on that queue manager or on some remote queue manager.

320 MQSeries Intercommunication

 Using panels and commands

� Choose the wait time for responses to be received.

| à| ð
| List Channels Row 1 of 8

| Type action codes. Then press Enter.

| 1=Display 2=Define like 3=Alter 4=Delete 5=Perform

| 6=Start 7=Stop

| Name Type Status

| _ SYSTEM.DEF.CLNTCONN CHLCLNTCONN

| _ SYSTEM.DEF.CLUSRCVR CHLCLUSRCVR

| _ SYSTEM.DEF.CLUSSDR CHLCLUSSDR

| _ SYSTEM.DEF.RECEIVER CHLRECEIVER

| _ SYSTEM.DEF.REQUESTER CHLREQUESTER

| _ SYSTEM.DEF.SENDER CHLSENDER

| _ SYSTEM.DEF.SERVER CHLSERVER

| _ SYSTEM.DEF.SVRCONN CHLSVRCONN

| \\\\\\\\ End of list \\\\\\\\

| Command ===> __

| F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd

| F9=Swap F1ð=Messages F11=Status F12=Cancel

| á| ñ

| Figure 38. Listing channels

 Chapter 22. Monitoring and controlling channels on OS/390 321

 Managing channels � Defining a channel

Managing your channels
Table 28 lists the tasks that you can perform to manage your channels, channel
initiators, and listeners. It also gives the name of the relevant MQSC command,
and points to the page where each task is discussed.

Table 28. Channel tasks

Task to be performed MQSC command See page

Define a channel DEFINE CHANNEL 322

Alter a channel definition ALTER CHANNEL 323

Display a channel definition DISPLAY CHANNEL 323

Delete a channel definition DELETE CHANNEL 324

Start a channel initiator START CHINIT 325

Stop a channel initiator STOP CHINIT 326

Display channel initiator information DISPLAY DQM 324

Start a channel listener START LISTENER 327

Stop a channel listener STOP LISTENER 327

Start a channel START CHANNEL 328

Test a channel PING CHANNEL 329

Reset message sequence numbers for a
channel

RESET CHANNEL 330

Resolve in-doubt messages on a channel RESOLVE CHANNEL 331

Stop a channel STOP CHANNEL 332

Display channel status DISPLAY CHSTATUS 333

| Display cluster channels| DISPLAY CLUSQMGR| 335

Defining a channel
To define a channel using the MQSC commands, use DEFINE CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

You are presented with some panels to complete with information about the
attributes you want for the channel you are defining. These panels are shown on
page 412.

Note: If you entered CHANNEL in the object type field, you are presented with
the Select a Valid Channel Type panel first.

If you want to define a channel with the same attributes as an existing channel, put
the name of the channel you want to copy in the Like field on the initial panel. The
subsequent panels will already contain these attribute values, but you can change
any that you want to before pressing Enter.

Field Value
Action 2 (Define)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.DEFINE

322 MQSeries Intercommunication

 Altering a channel definition � Displaying a channel definition

If you have not used the Like field, the panels will contain the system default
attribute values. Change any that you want to, and then press Enter to create the
channel definition.

For information about the channel attributes, see Chapter 6, “Channel attributes” on
page 85.

Notes:

1. If you are using distributed queuing with CICS as well, don’t use any of the
same channel names.

2. You are strongly recommended to name all the channels in your network
uniquely. As shown in Table 1 on page 33, including the source and target
queue manager names in the channel name is a good way to do this.

Altering a channel definition
To alter a channel definition using the MQSC commands, use ALTER CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

You are presented with some panels containing information about the current
attributes of the channel. Change any of the unprotected fields that you want by
overtyping the new value, and then press Enter to change the channel definition.

For information about the channel attributes, see Chapter 6, “Channel attributes” on
page 85.

Field Value
Action 3 (Alter)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.ALTER

Displaying a channel definition
To display a channel definition using the MQSC commands, use DISPLAY
CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

You are presented with some panels displaying information about the current
attributes of the channel.

For information about the channel attributes, see Chapter 6, “Channel attributes” on
page 85. For information about channel status, press F11 (Connects). See
“Displaying channel status” on page 333 for information about this.

Field Value
Action 1 (Display)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.DISPLAY

 Chapter 22. Monitoring and controlling channels on OS/390 323

 Displaying information about DQM � Deleting a channel definition

Displaying information about DQM
To display information about the channel initiator using the MQSC commands, use
DISPLAY DQM.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

You are presented with another panel. Select control type 1 on this panel.

Notes:

1. Displaying distributed queuing information may take some time if you have lots
of channels.

2. Channel status is not available for client-connection channels.

Field Value
Action 1 (Display)

| Object type| SYSTEM
Name Blank

Deleting a channel definition
To delete a channel definition using the MQSC commands, use DELETE
CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

You are presented with some panels containing information about the current
attributes of the channel. If required, you can scroll through these panels to verify
that you are deleting the correct channel definition. Press Enter to delete the
channel definition; you will be asked to confirm that you want to delete the channel
definition by pressing Enter again.

Note: The channel initiator has to be running before a channel definition can be
deleted (except for client-connection channels).

For information about the channel attributes, see Chapter 6, “Channel attributes” on
page 85.

Field Value
Action 4 (Delete)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.DELETE

324 MQSeries Intercommunication

 Starting a channel initiator

Starting a channel initiator
To start a channel initiator using the MQSC commands, use START CHINIT.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

The Start a System Function panel is displayed:

Field Value
Action 6 (Start)

| Object type| SYSTEM
Name Blank

| à| ð
| Start a System Function

| Select function type, complete fields, then press Enter to start system

| function.

| Function type _ 1. Channel initiator

| 2. Channel listener for LU 6.2

| 3. Channel listener for TCP

| Channel initiator

| Parameter module name . . ________

| JCL substitution __

| __

| Listener for LU6.2

| LU name _________________

| Listener for TCP

| Port number 1414

| Command ===> __

| F1=Help F2=Split F3=Exit F9=Swap F1ð=Messages F12=Cancel

| á| ñ

| Figure 39. Starting a system function

Select function type 1 (channel initiator), and press Enter. The channel initiator
parameter module name defaults to CSQXPARM. If you want to use a different
parameter module, enter the name on the panel.

| Note: If you are using Interlink TCP, this must be started before you start the
| channel initiator. If you are using IBM TCP, you can start the channel initiator first
| but, unless you are using OE sockets, you will need to restart the channel initiator
| after you have started TCP, in order to establish communication. If you are using
| LU 6.2, this can be started before or after the channel initiator.

 Chapter 22. Monitoring and controlling channels on OS/390 325

 Stopping a channel initiator

Stopping a channel initiator
To stop a channel initiator using the MQSC commands, use STOP CHINIT.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

The Stop a System Function panel is displayed:

Field Value
Action 7 (Stop)

| Object type| SYSTEM
Name Blank

| à| ð
| Stop a System Function

| Select function type, then press Enter to stop system function.

| Function type _ 1. Channel initiator

| 2. Channel listener for LU 6.2

| 3. Channel listener for TCP

| Command ===> __

| F1=Help F2=Split F3=Exit F9=Swap F1ð=Messages F12=Cancel

| á| ñ

| Figure 40. Stopping a function control

Select function type 1 (channel initiator) and press Enter.

The channel initiator will wait for all running channels to stop in quiesce mode
before it stops.

Note: If some of the channels are receiver or requester channels that are running
but not active, a stop request issued to either the receiver’s or sender’s channel
initiator will cause it to stop immediately.

However, if messages are flowing, the channel initiator waits for the current batch
of messages to complete before it stops.

326 MQSeries Intercommunication

 Starting a channel listener � Stopping a channel listener

Starting a channel listener
To start a channel listener using the MQSC commands, use START LISTENER.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

The Start a System Function panel is displayed (see Figure 39 on page 325).

Select function type 2 or 3 (channel listener for LU 6.2 or TCP respectively),
complete any other fields required (LU name or port number respectively), and
press Enter.

Field Value
Action 6 (Start)

| Object type| SYSTEM
Name Blank

Stopping a channel listener
To stop a channel listener using the MQSC commands, use STOP LISTENER.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

The Stop a System Function panel is displayed (see Figure 40 on page 326).

Select control type 2 or 3 (channel listener for LU 6.2 or TCP respectively) and
press Enter.

Field Value
Action 7 (Stop)

| Object type| SYSTEM
Name Blank

 Chapter 22. Monitoring and controlling channels on OS/390 327

 Starting a channel

Starting a channel
To start a channel using the MQSC commands, use START CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

The Start a Channel panel is displayed:

Field Value
Action 6 (Start)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.USE

| à| ð
| Start a Channel

| Press Enter to confirm that the channel is to be started.

| Channel name : CHANNEL.TO.USE

| Channel type : CHLSENDER

| Description : Description of CHANNEL.TO.USE

| Command ===> __

| F1=Help F2=Split F3=Exit F9=Swap F1ð=Messages F12=Cancel

| á| ñ

| Figure 41. Starting a channel

Press Enter to start the channel.

328 MQSeries Intercommunication

 Testing a channel

Testing a channel
To test a channel using the MQSC commands, use PING CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

| The Perform a Channel Function panel is displayed:

Field Value
| Action| 5 (Perform)

Object type CHLSENDER, CHLSERVER, or CHANNEL
Name CHANNEL.TO.USE

| à| ð
| Perform a Channel Function

| Select function type, complete fields, then press Enter.

| Function type _ 1. Reset sequence number

| 2. Ping

| 3. Resolve with commit

| 4. Resolve with backout

| Channel name : CHANNEL.TO.USE

| Channel type : CHLSENDER

| Description : Description of CHANNEL.TO.USE

| Reset

| Sequence number 1 1 - 999999999

| Ping

| Data length 16 16 - 32768

| Command ===> __

| F1=Help F2=Split F3=Exit F9=Swap F1ð=Messages F12=Cancel

| á| ñ

| Figure 42. Testing a channel

The data length is initially set to 16. Change this if you want, select function type 2
(ping), and press Enter.

 Chapter 22. Monitoring and controlling channels on OS/390 329

 Resetting message sequence numbers

Resetting message sequence numbers for a channel
To reset channel sequence numbers using the MQSC commands, use RESET
CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

| The Perform a Channel Function panel is displayed:

Field Value
| Action| 5 (Perform)

Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.USE

| à| ð
| Perform a Channel Function

| Select function type, complete fields, then press Enter.

| Function type _ 1. Reset sequence number

| 2. Ping

| 3. Resolve with commit

| 4. Resolve with backout

| Channel name : CHANNEL.TO.USE

| Channel type : CHLSENDER

| Description : Description of CHANNEL.TO.USE

| Reset

| Sequence number 1 1 - 999999999

| Ping

| Data length 16 16 - 32768

| Command ===> __

| F1=Help F2=Split F3=Exit F9=Swap F1ð=Messages F12=Cancel

| á| ñ

| Figure 43. Resetting channel sequence numbers

The sequence number field is initially set to one. Change this if you want, select
Function type 1 (reset), and press Enter.

330 MQSeries Intercommunication

 Resolving in-doubt messages

Resolving in-doubt messages on a channel
To resolve in-doubt messages on a channel using the MQSC commands, use
RESOLVE CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

| The Perform a Channel Function panel is displayed:

Field Value
| Action| 9 (Perform)

Object type CHLSENDER, CHLSERVER, or CHANNEL
Name CHANNEL.TO.USE

| à| ð
| Perform a Channel Function

| Select function type, complete fields, then press Enter.

| Function type _ 1. Reset sequence number

| 2. Ping

| 3. Resolve with commit

| 4. Resolve with backout

| Channel name : CHANNEL.TO.USE

| Channel type : CHLSENDER

| Description : Description of CHANNEL.TO.USE

| Reset

| Sequence number 1 1 - 999999999

| Ping

| Data length 16 16 - 32768

| Command ===> __

| F1=Help F2=Split F3=Exit F9=Swap F1ð=Messages F12=Cancel

| á| ñ

| Figure 44. Resolving in-doubt messages

Select Function type 3 or 4 (resolve with commit or backout), and press Enter.
(See “In-doubt channels” on page 76 for more information.)

 Chapter 22. Monitoring and controlling channels on OS/390 331

 Stopping a channel

Stopping a channel
To stop a channel using the MQSC commands, use STOP CHANNEL.

Using the operations and control panels, starting from the initial panel, complete
these fields and press Enter:

The Stop a Channel panel is displayed:

Field Value
Action 7 (Stop)
Object type CHLtype (for example CHLSENDER) or CHANNEL
Name CHANNEL.TO.USE

| à| ð
| Stop a Channel

| Select stop mode, then press Enter to stop channel.

| Channel name : CHANNEL.TO.USE

| Channel type : CHLSENDER

| Description : Description of CHANNEL.TO.USE

| Stop mode 1 1. Quiesce

| 2. Force

| Command ===> __

| F1=Help F2=Split F3=Exit F9=Swap F1ð=Messages F12=Cancel

| á| ñ

| Figure 45. Stopping a channel

Choose the stop mode that you require:

Quiesce The channel will stop when the current message is completed and the
batch will then be ended, even if the batch size value has not been
reached and there are messages already waiting on the transmission
queue. No new batches will be started. This is the default.

Force The channel will stop immediately. If a batch of messages is in
progress, an ‘in-doubt’ situation may result.

Press Enter to stop the channel.

See “Stopping and quiescing channels (not MQSeries for Windows)” on page 73
for more information. For information about restarting stopped channels, see
“Restarting stopped channels” on page 75.

332 MQSeries Intercommunication

 Displaying channel status

Displaying channel status
To display the status of a channel or a set of channels using the MQSC
commands, use DISPLAY CHSTATUS.

Note: Displaying channel status information may take some time if you have lots
of channels.

Using the operations and control panels on the List Channel panel (see Figure 38
on page 321), a summary of the channel status is shown for each channel as
follows:

where nnn is the number of active connections, and status is one of the following:

To display more information about the channel status, press the Status key (F11)
on the List Channel or the Display, Alter, or Delete channel panels to display the
List Channels - Current Status panel (see Figure 46).

INACTIVE No connections are active
status One connection is active
nnn status More than one connection is current and all current connections have

the same status
nnn CURRENT More than one connection is current and the current connections do not

all have the same status
Blank MQSeries is unable to determine how many connections are active (for

example, because the channel initiator is not running)

INIT INITIALIZING
BIND BINDING
START STARTING
RUN RUNNING
STOP STOPPING or STOPPED
RETRY RETRYING
REQST REQUESTING

| à| ð
| List Channels - Current Status Row 1 of 16

| Use '/' to select one or more connections, then press Enter to display current

| connection status.

| Channel name Connection name State

| Type Messages Last message time Start time Retry/Stop

| _ RMAð.CIRCUIT.ACL.F RMA1 STOP

| _ CHLSENDER 557735 1997-ð3-24 ð9.51.11 1997-ð3-21 1ð.22.36

| _ RMAð.CIRCUIT.ACL.N RMA1

| _ CHLSENDER 378675 1997-ð3-24 ð9.51.1ð 1997-ð3-21 1ð.23.ð9

| _ RMAð.CIRCUIT.CL.F RMA2

| _ CHLSENDER 45544 1997-ð3-24 ð9.51.ð8 1997-ð3-24 ð1.12.51

| _ RMAð.CIRCUIT.CL.N RMA2

| _ CHLSENDER 4556ð 1997-ð3-24 ð9.51.11 1997-ð3-24 ð1.13.55

| _ RMA1.CIRCUIT.CL.F RMA1

| _ CHLRECEIVER 36ð757 1997-ð3-24 ð9.51.11 1997-ð3-21 1ð.24.12

| _ RMA1.CIRCUIT.CL.N RMA1

| _ CHLRECEIVER 3ð287ð 1997-ð3-24 ð9.51.ð9 1997-ð3-21 1ð.23.4ð

| \\\\\\\\ End of list \\\\\\\\

|

| Command ===>

| F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd

| F9=Swap F1ð=Messages F11=Saved F12=Cancel

| á| ñ

| Figure 46. Listing channel connections

 Chapter 22. Monitoring and controlling channels on OS/390 333

 Displaying channel status

The values for status are as follows:

See “Channel states” on page 68 for more information about these.

You can press F11 to see a similar list of channel connections with saved status;
press F11 to get back to the current list.

Use a slash (/) to select a connection and press Enter. Note that the saved status
does not apply until at least one batch of messages has been transmitted on the
channel. The Display Channel Connection Current Status panels are displayed:

INIT INITIALIZING
BIND BINDING
START STARTING
RUN RUNNING
STOP STOPPING or STOPPED
RETRY RETRYING
REQST REQUESTING
DOUBT STOPPED and INDOUBT(YES)

| à| ð
| Display Channel Connection Current Status

| More: +

| Channel name : CSQ1.TO.CSQ2

| Channel type : CHLSENDER

| Connection name : CSQ2

| Transmission queue : CSQ1.TO.CSQ2.XMITQ

| Status : RUN

| Last sequence number . . . : 6

| Last LUW ID : F2F6F1F2F2F6F2F8

| Indoubt : NO

| Current messages : ð

| Current sequence number . : 6

| Current LUW ID : F2F6F1F3F3F9FðF1

| Command ===> ___

| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

| F1ð=Messages F12=Cancel

| á| ñ

| Figure 47. Displaying channel connections - first panel

334 MQSeries Intercommunication

 Displaying cluster channels

| à| ð
| Display Channel Connection Current Status

| Press F7 to see previous fields.

| More: -

| Channel start time : 1998-ð8-1ð 14.33.26

| Last message/call time . . :

| Batches completed : ð

| Messages/calls : ð

| Bytes sent : ð

| Bytes received : ð

| Transmissions sent : ð

| Transmissions received . . : ð

| Short retry attempts left . : 1ð

| Long retry attempts left . : 999999999

| Stop request outstanding . : N Y=Yes,N=No

| Maximum message length . . : 41943ð4

| Batch size : 5ð

| Heartbeat interval : 3ðð seconds

| Nonpersistent messages . . : F F=Fast,N=Normal

| Command ===> __

| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

| F1ð=Messages F12=Cancel

| á| ñ

| Figure 48. Displaying channel connections - second panel

| Displaying cluster channels
| To display all the cluster channels that have been defined (explicitly or using
| auto-definition), use the MQSC command, DISPLAY CLUSQMGR.

| Using the operations and control panels, starting from the initial panel, complete
| these fields and press Enter:

| You are presented with a panel like figure 49, in which the information for each
| cluster channel occupies three lines, and includes its channel, cluster, and queue
| manager names. For cluster-sender channels, the overall state is shown.

| Field| Value
| Action| 1 (Display)
| Object type| CLUSCHL
| Name| *

 Chapter 22. Monitoring and controlling channels on OS/390 335

 Displaying cluster channels

| à| ð
| List Cluster-queue-manager Channels Row 1 of 9

| Type action codes. Then press Enter.

| 1=Display 5=Perform 6=Start 7=Stop

| Channel name Connection name State

| Type Cluster name Suspended

| Queue manager name

| _ TO.MQ9ð.T HURSLEY.MACH9ð.COM(159ð)

| _ CHLCLUSRCVR VJHð1T N

| _ MQ9ð

| _ TO.MQ95.T HURSLEY.MACH95.COM(1595) RUN

| _ CHLCLUSSDRA VJHð1T N

| _ MQ95

| _ TO.MQ96.T HURSLEY.MACH96.COM(1596) RUN

| _ CHLCLUSSDRB VJHð1T N

| _ MQ96

| \\\\\\\\ End of list \\\\\\\\

| Command ===> __

| F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd

| F9=Swap F1ð=Messages F11=Status F12=Cancel

| á| ñ

| Figure 49. Listing cluster channels

| To display full information about one or more channels, type Action code 1 against
| their names and press Enter. Use Action codes 5, 6, or 7 to perform functions
| (such as ping, resolve, and reset), and start or stop a cluster channel.

| To display more information about the channel status, press the Status key (F11).

336 MQSeries Intercommunication

 Preparation on OS/390 � Setting up communication

Chapter 23. Preparing MQSeries for OS/390

This chapter describes the MQSeries for OS/390 preparations you need to make
before you can start to use distributed queuing. (If you want to use CICS ISC for
distributed queuing, see Chapter 26, “Preparing MQSeries for OS/390 when using
CICS” on page 381.) Most of the information here applies equally to MQSeries for
MVS/ESA.

To enable distributed queuing, you must perform the following three tasks:

� Customize the distributed queuing facility and define the MQSeries objects
required; this is described in the MQSeries for OS/390 System Management
Guide.

� Define access security; this is described in the MQSeries for OS/390 System
Management Guide.

� Set up your communications; this is described in this chapter.

Setting up communication
When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This section explains how to do
this.

There are two forms of communication protocol that can be used:

 � TCP
� LU 6.2 through APPC/MVS

 TCP setup
The TCP address space name must be specified in the TCP system parameters
data set, tcpip.TCPIP.DATA. In the data set, a “TCPIPJOBNAME TCPIP_proc”
statement must be included.

The channel initiator address space must have authority to read the data set. The
following techniques can be used to access your TCPIP.DATA data set, depending
on which TCP/IP product and interface you are using:

| � Environment variable, RESOLVER_CONFIG

| � HFS file, /etc/resolv.conf

� //SYSTCPD DD statement

| � //SYSTCPDD DD statement

 � jobname/userid.TCPIP.DATA

 � SYS1.TCPPARMS(TCPDATA)

 � zapname.TCPIP.DATA

You must also be careful to specify the high-level qualifier for TCP/IP correctly.

 Copyright IBM Corp. 1993,1999 337

 Setting up communication

For more information, see the following:

| � TCP/IP OpenEdition: Planning and Release Guide, SC31-8303
| � OS/390 OpenEdition Planning, SC28-1890
| � Your TCPaccess documentation

Each TCP channel when started will use TCP resources; you may need to adjust
the following parameters in your PROFILE.TCPIP configuration data set:

ACBPOOLSIZE
Add one per started TCP channel, plus one

CCBPOOLSIZE
Add one per started TCP channel, plus one per DQM dispatcher, plus one

DATABUFFERPOOLSIZE
Add two per started TCP channel, plus one

| MAXFILEPROC
| Controls how many channels each dispatcher in the channel initiator can
| handle.

| This parameter is specified in the BPXPRMxx member of SYSI.PARMLIB. If
| you are using OpenEdition sockets, ensure that you specify a value large
| enough for your needs.

Connecting to TCP/IP
The connection name (CONNAME) field in the channel definition should be set to
either the TCP network address of the target, in dotted decimal form (for example
9.20.9.30) or the host name (for example MVSHUR1). If the connection name is a
host name, a TCP name server is required to convert the host name into a TCP
host address. (This is a function of TCP, not MQSeries.)

On the initiating end of a connection (sender, requester, and server channel types)
it is possible to provide an optional port number for the connection, for example:

Connection name 9.2ð.9.3ð(1555)

In this case the initiating end will attempt to connect to a receiving program
listening on port 1555.

Receiving on TCP
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel. You start this listener
program with the START LISTENER command, or using the operations and control
panels.

By default, the TCP Listener program uses port 1414.

| Using the TCP listener backlog option
| When receiving on TCP/IP, a maximum number of outstanding connection requests
| is set. This can be considered a backlog of requests waiting on the TCP/IP port for
| the listener to accept the request.

338 MQSeries Intercommunication

 Setting up communication

| The default listener backlog value on OS/390 is 255. If the backlog reaches this
| values, the TCP/IP connection is rejected and the channel will not be able to start.

| For MCA channels, this results in the channel going into a RETRY state and
| retrying the connection at a later time.

| For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
| reason code from MQCONN and should retry the connection at a later time.

| However, to avoid this error, you can add an entry in the qm.ini file:

| TCP:

| ListenerBacklog = n

| This overrides the default maximum number of outstanding requests (255) for the
| TCP/IP listener.

| Note: Some operating systems support a larger value than the default. If
| necessary, this can be used to avoid reaching the connection limit.

| To run the listener with the backlog option switched on, use the RUNMQLSR -B

| command. For information about the RUNMQLSR command, see “runmqlsr (Run
| listener)” in the MQSeries System Administration book.

 APPC/MVS setup
Each instance of the channel initiator must have the name of the LU that it is to use
defined to APPC/MVS, in the APPCPMxx member of SYS1.PARMLIB, as in the
following example:

LUADD ACBNAME(luname) NOSCHED TPDATA(CSQ.APPCTP)

luname is the name of the logical unit to be used. NOSCHED is required; TPDATA is
not used. No additions are necessary to the ASCHPMxx member, or to the
APPC/MVS TP profile data set.

 Chapter 23. Preparing MQSeries for OS/390 339

 Setting up communication

The side information data set must be extended to define the connections used by
DQM. See the supplied sample CSQ4SIDE for details of how to do this using the
APPC utility program ATBSDFMU. For details of the TPNAME values to use, see
the Multiplatform APPC Configuration Guide (“Red Book”) and the following table
for information:

| If you have more than one queue manager on the same machine, ensure that the
| TPnames in the channel definitions are unique.

See the Multiplatform APPC Configuration Guide also for information about the
VTAM definitions that may be required.

In an environment where the queue manager is communicating via APPC with a
queue manager on the same or another OS/390 system, ensure that either the
VTAM definition for the communicating LU specifies SECACPT(ALREADYV), or
that there is a RACFAPPCLU profile for the connection between LUs, which
specifies CONVSEC(ALREADYV).

The OS/390 command VARY ACTIVE must be issued against both base and
listener LUs before attempting to start either inbound or outbound communications.

Table 29. Settings on the local OS/390 system for a remote queue manager platform

Remote
platform

TPNAME

OS/390 or
MVS/ESA

The same as TPNAME in the corresponding side information on the
remote queue manager.

OS/390 or
MVS/ESA
using CICS

CKRC (sender)
CKSV (requester)
CKRC (server)

OS/400 The same as the compare value in the routing entry on the OS/400
system.

OS/2 As specified in the OS/2 Run Listener command, or defaulted from
the OS/2 queue manager configuration file.

Digital OVMS As specified in the Digital OVMS Run Listener command.

Tandem NSK The same as the TPNAME specified in the receiver-channel definition.

Other UNIX
systems

The same as TPNAME in the corresponding side information on the
remote queue manager.

Windows NT As specified in the Windows NT Run Listener command, or the
invokable Transaction Program that was defined using TpSetup on
Windows NT.

Connecting to APPC/MVS (LU 6.2)
The connection name (CONNAME) field in the channel definition should be set to
the symbolic destination name, as specified in the side information data set for
APPC/MVS.

340 MQSeries Intercommunication

 Defining DQM requirements � Defining MQSeries objects

The LU name to use (defined to APPC/MVS as described above) must also be
specified in the channel initiator parameters. It must be set to the same LU that will
be used for receiving by the listener.

The channel initiator uses the “SECURITY(SAME)” APPC/MVS option, so it is the
user ID of the channel initiator address space that is used for outbound
transmissions, and will be presented to the receiver.

Receiving on LU 6.2
Receiving MCAs are started in response to a startup request from the sending
channel. To do this, a listener program has to be started to detect incoming
network requests and start the associated channel. The listener program is an
APPC/MVS server. You start it with the START LISTENER command, or using the
operations and control panels. You must specify the LU name to use by means of
a symbolic destination name defined in the side information data set. The local LU
so identified must be the same as that used for outbound transmissions, as set in
the channel initiator parameters.

Defining DQM requirements to MQSeries
In order to define your distributed-queuing requirements, you have to:

� Define the channel initiator procedures and data sets
� Define the channel definitions
� Define the queues and other objects
� Define access security

See the MQSeries for OS/390 System Management Guide for information about
these tasks.

Defining MQSeries objects
Use one of the MQSeries command input methods to define MQSeries objects.
Refer to Chapter 22, “Monitoring and controlling channels on OS/390” on page 319
for information about defining objects.

You define:

� A local queue with the usage of XMITQ for each sending message channel.

� Remote queue definitions.

A remote queue object has three distinct uses, depending upon the way the
name and content are specified:

– Remote queue definition
– Queue manager alias definition
– Reply-to queue alias definition

This is shown in Table 2 on page 41.

 Chapter 23. Preparing MQSeries for OS/390 341

 Defining MQSeries objects

� A process specifying the trigger data for a channel that is triggered by
messages appearing on the transmission queue. The transmission queue must
name SYSTEM.CHANNEL.INITQ as the initiation queue.

– The process definition parameter, USERDATA, must contain the name of
the channel to be started by this process

– The application identifier (APPLICID) must be CSQX START
– The application type (APPLTYPE) must be set to MVS

For example:

DEFINE QLOCAL(MYXMITQ) USAGE(XMITQ) TRIGGER(YES) +

 INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(MYPROCESS)

DEFINE PROCESS(MYPROCESS) APPLTYPE(MVS) APPLICID('CSQX START') +

 USERDATA(MYCHANNEL)

DEFINE CHL(MYCHANNEL) CHLTYPE(SDR) TRTYPE(TCP) +

 XMITQ(MYXMITQ) CONNAME('9.2ð.9.3ð(1555)')

Note: The trigger monitor program is actually the channel initiator itself; no
separate program needs to be started.

| The supplied sample CSQ4INYD gives additional examples of the necessary
| definitions.

 Synchronization queue
DQM requires a queue for use with sequence numbers and logical units of work
identifiers (LUWID). You must ensure that a queue is available with the name
SYSTEM.CHANNEL.SYNCQ (see the MQSeries for OS/390 System Management
Guide).

Make sure that you define this queue using INDXTYPE(MSGID). This will improve
the speed at which it can be accessed.

Channel command queues
You need to ensure that channel command queues exist for your system with the
names SYSTEM.CHANNEL.INITQ and SYSTEM.CHANNEL.REPLY.INFO.

If the channel initiator detects a problem with the SYSTEM.CHANNEL.INITQ, it will
be unable to continue normally until the problem is corrected. The problem could
be one of the following:

� The queue is full
� The queue is not enabled for put
� The page set that the queue is on is full
� The channel initiator does not have the correct security authorization to the

queue

If the definition of the queue is changed to GET(DISABLED) while the channel
initiator is running, it will not be able to get messages from the queue, and will
terminate.

342 MQSeries Intercommunication

 Channel operation considerations � Automatic Restart Management

Channel operation considerations
1. Because the channel initiator uses a number of asynchronously operating

dispatchers, the order in which operator messages appear on the log may be
out of chronological sequence.

2. MCAs for receiver channels may keep the destination queues open even when
messages are not being transmitted; this results in the queues appearing to be
‘in use’.

3. If you change security access for a user ID, the change may not take effect
immediately. See the MQSeries for OS/390 System Management Guide for
more information.

| 4. If TCP is stopped for some reason and then restarted, the MQSeries for
| OS/390 TCP listener waiting on a TCP port is stopped.

| If you are using the OpenEdition sockets interface, (for example, if you are
| using the IUCV interface or the Interlink SNSTCPAccess interface,) the channel
| initiator must be stopped and manually restarted when TCP returns. Then, the
| listener must also be manually restarted to resume communications.

| If you are using the OpenEdition sockets interface, automatic channel
| reconnect allows the channel initiator to detect that TCP/IP is not available and
| to automatically restart the TCP/IP listener when TCP/IP returns. This
| alleviates the need for operations staff to notice the problem with TCP/IP and
| manually restart the listener. While the listener is out of action, the channel
| initiator can also be used to retry the listener at the interval specified by
| LSTRTMR in the channel initiator parameter module. These attempts can
| continue until TCP/IP returns and the listener successfully restarts
| automatically. For information about LSTRTMR, see the MQSeries for OS/390
| System Management Guide.

| 5. If APPC is stopped, the listener is also stopped. Again, in this case, the
| listener automatically retries at the LSTRTMR interval so that, if APPC restarts,
| the listener can restart too.

| OS/390 Automatic Restart Management (ARM)
| Automatic restart management (ARM) is an OS/390 recovery function that can
| improve the availability of specific batch jobs or started tasks (for example,
| subsystems), and therefore result in a faster resumption of productive work.

| To use ARM, you must set up your queue managers and channel intitiators in a
| particular way to make them restart automatically. For information about this, see
| the MQSeries for OS/390 System Management Guide.

 Chapter 23. Preparing MQSeries for OS/390 343

 Automatic Restart Management

344 MQSeries Intercommunication

 Planning example for OS/390

Chapter 24. Message channel planning example for OS/390

This chapter provides a detailed example of how to connect two OS/390 or
MVS/ESA queue managers together so that messages can be sent between them.
The example illustrates the preparations needed to allow an application using
queue manager QM1 to put messages on a queue at queue manager QM2. An
application running on QM2 can retrieve these messages, and send responses to a
reply queue on QM1.

The example illustrates the use of both TCP/IP and LU 6.2 connections. The
example assumes that channels are to be triggered to start when the first message
arrives on the transmission queue they are servicing.

What the example shows
The example shows the MQSeries commands (MQSC) that you can use in
MQSeries for OS/390 for DQM.

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Application Application

message

message

message

Query

Queue manager 'QM1' Queue manager 'QM2'

Channel

Payroll

processing

Payroll

query

Query

Reply

message

Reply

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue local 'PAYROLL'QM1.TO.QM2

QM2.TO.QM1

Figure 50. The message channel example for MQSeries for OS/390

It involves a payroll query application connected to queue manager QM1 that sends
payroll query messages to a payroll processing application running on queue
manager QM2. The payroll query application needs the replies to its queries sent
back to QM1. The payroll query messages are sent from QM1 to QM2 on a
sender-receiver channel called QM1.TO.QM2, and the reply messages are sent
back from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1.
Both of these channels are triggered to start as soon as they have a message to
send to the other queue manager.

 Copyright IBM Corp. 1993,1999 345

 Planning example for OS/390

The payroll query application puts a query message to the remote queue
“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the
local queue “PAYROLL” on QM2. In addition, the payroll query application
specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”
on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this
case, local queue “PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on OS/390. In the example
definitions for TCP/IP, QM1 has a host address of 9.20.9.31 and is listening on port
1411, and QM2 has a host address of 9.20.9.32 and is listening on port 1412. In
the definitions for LU 6.2, QM1 is listening on a symbolic luname called LUNAME1
and QM2 is listening on a symbolic luname called LUNAME2. The example
assumes that these are already defined on your OS/390 system and available for
use.

The object definitions that need to be created on QM1 are:

� Remote queue definition, PAYROLL.QUERY
� Transmission queue definition, QM2 (default=remote queue manager name)
� Process definition, QM1.TO.QM2.PROCESS
� Sender channel definition, QM1.TO.QM2
� Receiver channel definition, QM2.TO.QM1
� Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

� Local queue definition, PAYROLL
� Transmission queue definition, QM1 (default=remote queue manager name)
� Process definition, QM2.TO.QM1.PROCESS
� Sender channel definition, QM2.TO.QM1
� Receiver channel definition, QM1.TO.QM2

The example assumes that all the SYSTEM.COMMAND.* and
SYSTEM.CHANNEL.* queues required to run DQM have been defined as shown in
the supplied sample definitions, CSQ4INSG and CSQ4INSX.

The connection details are supplied in the CONNAME attribute of the sender
channel definitions.

You can see a diagram of the arrangement in Figure 50 on page 345.

Queue manager QM1 example
The following object definitions allow applications connected to queue manager
QM1 to send request messages to a queue called PAYROLL on QM2, and to
receive replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE
attributes. The other attributes supplied are the minimum required to make the
example work. The attributes that are not supplied take the default values for
queue manager QM1.

Run the following commands on queue manager QM1.

346 MQSeries Intercommunication

 Planning example for OS/390

Remote queue definition
DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +

PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of
directing messages to the transmission queue, QM2, so that they can be sent to
queue manager QM2.

Transmission queue definition
DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.TO.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger message is
sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets
the message from the initiation queue and starts the channel identified in the
named process. The channel initiator can only get trigger messages from the
SYSTEM.CHANNEL.INITQ queue, so you should not use any other queue as the
initiation queue.

 Process definition
DEFINE PROCESS(QM1.TO.QM2.PROCESS) DESCR('Process for starting channel') +

REPLACE APPLTYPE(MVS) APPLICID('CSQX START') USERDATA(QM1.TO.QM2)

The channel initiator uses this process information to start channel QM1.TO.QM2.

Sender channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +

CONNAME('9.2ð.9.32(1412)')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(LU62) +

REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +

CONNAME('LUNAME2')

Receiver channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR('Receiver channel from QM2')

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(LU62) +

REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition
DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR('Reply queue for replies to query messages sent to QM2')

 Chapter 24. Message channel planning example for OS/390 347

 Planning example for OS/390

The reply-to queue is defined as PUT(ENABLED). This ensures that reply
messages can be put to the queue. If the replies cannot be put to the reply-to
queue, they are sent to the dead-letter queue on QM1 or, if this queue is not
available, remain on transmission queue QM1 on queue manager QM2. The
queue has been defined as GET(ENABLED) to allow the reply messages to be
retrieved.

Queue manager QM2 example
The following object definitions allow applications connected to queue manager
QM2 to retrieve request messages from a local queue called PAYROLL, and to put
replies to these request messages to a queue called PAYROLL.REPLY on queue
manager QM1.

You do not need to provide a remote queue definition to enable the replies to be
returned to QM1. The message descriptor of the message retrieved from local
queue PAYROLL contains both the reply-to queue and the reply-to queue manager
names. Therefore, as long as QM2 can resolve the reply-to queue manager name
to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue
manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE
attributes and are the minimum required to make the example work. The attributes
that are not supplied take the default values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition
DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +

DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same
reason as the reply-to queue definition on queue manager QM1.

Transmission queue definition
DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +

USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +

INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger message is
sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets
the message from the initiation queue and starts the channel identified in the
named process. The channel initiator can only get trigger messages from
SYSTEM.CHANNEL.INITQ so you should not use any other queue as the initiation
queue.

 Process definition
DEFINE PROCESS(QM2.TO.QM1.PROCESS) DESCR('Process for starting channel') +

REPLACE APPLTYPE(MVS) APPLICID('CSQX START') USERDATA(QM2.TO.QM1)

The channel initiator uses this process information to start channel QM2.TO.QM1.

348 MQSeries Intercommunication

 Planning example for OS/390

Sender channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +

CONNAME('9.2ð.9.31(1411)')

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(LU62) +

REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +

CONNAME('LUNAME1')

Receiver channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR('Receiver channel from QM1')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(LU62) +

REPLACE DESCR('Receiver channel from QM1')

Running the example
When you have created the required objects, you must:

� Start the channel initiator for both queue managers
� Start the listener for both queue managers

The applications can then send messages to each other. Because the channels
are triggered to start by the arrival of the first message on each transmission
queue, you do not need to issue the START CHANNEL MQSC command.

For details about starting a channel initiator see “Starting a channel initiator” on
page 325, and for details about starting a listener see “Starting a channel listener”
on page 327.

Expanding this example
This example can be expanded by:

� Adding more queue, process, and channel definitions to allow other
applications to send messages between the two queue managers.

� Adding user exit programs on the channels to allow for link encryption, security
checking, or additional message processing.

� Using queue manager aliases and reply-to queue aliases to understand more
about how these can be used in the organization of your queue manager
network.

 Chapter 24. Message channel planning example for OS/390 349

 Planning example for OS/390

350 MQSeries Intercommunication

 Channels in OS/390 with CICS � Channel control function

Chapter 25. Monitoring and controlling channels in OS/390
with CICS

You monitor and control the channels to remote queue managers from the
distributed queue management (DQM) panels. Each OS/390 queue manager has a
set of DQM CICS transactions for controlling interconnections to compatible remote
queue managers using CICS intersystem communication (ISC) facilities.

The DQM channel control function
The channel control function provides the administration and control of message
channels using CICS between MQSeries for OS/390 and compatible systems. See
Figure 28 on page 64 for a conceptual picture.

The channel control function consists of CICS panels and programs, a sequence
number queue, a channel command queue, and a VSAM file for the channel
definitions. The following is a brief description of the components of the channel
control function.

� The channel definition file (CDF):

– Is a VSAM file

– Is indexed on channel name

– Holds channel definitions

– Must be available to the CICS regions in which the channel control program
runs, and where the message channel agent (MCA) programs run

� You use channel definition panels to:

– Create, copy, display, alter, find, and delete channel definitions

– Start channels, reset channel sequence numbers, stop channels, ping
channels, resync channels, and resolve in-doubt messages when links
cannot be re-established

– Display status information about channels

The panels are CICS basic-mapping support maps.

� Sequence numbers and logical unit of work IDs (LUWIDs) are stored in the
sequence number queue, SYSTEM.CHANNEL.SEQNO, and are used for
channel re-synchronization purposes.

� A channel command queue, SYSTEM.CHANNEL.COMMAND, is used to hold
certain commands for channels.

� The programs are a series of CICS transactions, which include transactions for
the MCAs. There are different MCAs available for each type of channel. The
names are contained in the following table. Other transactions provide channel
control, command handling, and trigger monitoring.

 Copyright IBM Corp. 1993,1999 351

 Channel control function

� A transient data queue CKMQ for error messages.

Table 30. Program and transaction names

Program name Channel type CICS transaction ID

CSQKMSGS Sender CKSG

CSQKMSGR Receiver CKRC

CSQKMSGQ Requester CKRQ

CSQKMSGV Server CKSV

 CICS regions
Figure 51 shows a configuration of two CICS regions, connected to a single queue
manager. The regions have multi-region operation (MRO) links to one another, for
function shipping of EXEC CICS START commands from the channel control
program.

R e m o t e

s y s t e m

q u e u e

m a n a g e r

t r a n s m i s s i o nQ u e u e

C I C S - B

C I C S / M R O

C o n n e c t i o n

C I C S - C

C h a n n e l

c o n t r o l

p r o g r a m

C h a n n e l

d e f i n i t i o n

f i l e
M e s s a g e

c h a n n e l

a g e n t

p r o g r a m

C o m m u n i c a t i o n

l i n k . L U 6 . 2

Figure 51. Sample configuration of channel control and MCA. MRO is used for an EXEC
CICS START of the MCA, and for an EXEC CICS READ of the channel definition file by the
MCA. Communication with the remote queue manager is through CICS ISC, not MRO.

Starting DQM panels
You invoke DQM panels with the CKMC CICS transaction. On invocation, DQM
presents you with the main Message Channel List panel. All activity with the other
panels follows from selections made on this panel.

352 MQSeries Intercommunication

 Message Channel List panel

The Message Channel List panel
The main panel is called the Message Channel List panel; for an example of it, see
Figure 52. It has a menu bar with choices you can pull down to reveal the various
options you can select for these choices. The work area of the panel is used to
present a selection column, and three other columns showing the:

� Full name of each channel
� Type of channel
� CICS system identifier

à ð
Selected Edit View Help

--

MCSELB IBM MQSeries for OS/39ð - Message Channel List VICY14

Select a channel name. Then select an action.

 More: +

 Channel name Type Sysid

 VC13.TO.VC14.REQSER REQUESTER VR14

 VC13.2.VC14.JAC3 RECEIVER VR14

VC13.2.VC14.MROSER REQUESTER VR14

 VC13.2.VC14.REQSEND REQUESTER VR14

 VC13.2.VC14.SENDER SENDER VR14

 VICY13.TO.VICY14 RECEIVER VR14

 VICY13.TO.VICY14.CB REQUESTER VR14

 VICY13.TO.VICY14.NS RECEIVER VR14

 VICY13.TO.VICY14.NSR RECEIVER VR14

 VICY13.TO.VICY14.NS2 RECEIVER VR14

 VICY13.TO.VICY14.SER REQUESTER VR14

 VICY13.TO.VICY14.SVR REQUESTER VR14

(C) Copyright IBM Corporation 1993, 1999. All rights reserved.

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F1ð=Menu Bar

F12=Cancel

á ñ

Figure 52. The Message Channel List panel

 Keyboard functions
The following sections describe the function, Enter, and Clear keys, as well as what
happens if you press any unassigned keys associated with this panel.

 Function keys
The function keys control the use of the panel. They are listed below, together with
their purpose.

Note: Function keys 13 to 24 have the same functions as functions keys 1 to 12,
respectively.

F1 Call help panels
F3 Exit from the panel and the program
F5 Refresh the screen fields with current data
F6 Find a particular channel name
F7 Scroll the panel backward to display more channels
F8 Scroll the panel forward to display more channels
F10 Move the cursor to the menu bar
F12 Cancel pull-down menus or secondary windows, if any, otherwise as F3

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 353

 Message Channel List panel

 Enter key
Pressing the Enter key while the cursor is on a menu-bar choice results in the
pull-down menu for that choice appearing.

Pressing the Enter key while the cursor is not on a menu-bar choice and a channel
selection has been made selects the default option, Display Settings.

Pressing the Enter key while the cursor is not on a menu-bar choice and no
channel selection has been made results in the panel being redisplayed.

 Clear key
If you find while typing that what you have typed is not correct, press the Clear key
on your terminal to revert all the input fields to their previous state.

For individual fields, use the ‘Erase EOF’, or ‘Ctrl Delete’, depending upon the type
of terminal you are using.

Unassigned keys and unavailable choices
If you press a function key, or an attention key that has not been assigned an
action, a warning message is displayed that states that the key is invalid.

Selecting a channel
To select a channel, begin at the Message Channel List panel:

1. Move the cursor to the left of the required channel name.

2. Type a slash (/) character.

3. Press F10 to move the cursor to the menu bar, or press the Enter key to
browse the channel settings.

If you try to select more than one channel, only the first one you select is valid.

Working with channels
When a channel has been selected, function key F10 moves the cursor to the
menu bar (see Table 31). The menu-bar choices are:

Selecting each of these choices causes its pull-down menu to be displayed (see
Figure 53 on page 355).

When you select an option that requires further information, such as a channel
name, an action window appears with an entry field for the data.

In general, any incorrect input from the keyboard results in a warning message
being issued.

Table 31. Message Channel List menu-bar choices

Selected Edit View Help

354 MQSeries Intercommunication

 Message Channel List panel

à ð
Selected Edit View Help

 +--------------------------+--

 | 1. Start |r OS/39ð - Message Channel List VICY14

 | 2. Stop... |

 | 3. Resync |select an action.

 | 4. Reset... | More: - +

| 5. Resolve... |e Sysid

 | 6. Display Status |UESTER VR14

 | 7. Display Settings |EIVER VR14

 | 8. Ping... |UESTER VR14

 | 9. Exit F3 |UESTER VR14

 +--------------------------+DER VR14

à ð
Selected Edit View Help

 ------------------ +--------------------------+-------------------------------

 MCSELB IBM M | 1. Copy... | Channel List VICY14

 | 2. Create... |

 Select a channel n | 3. Alter |

| 4. Delete... | More: - +

 Channel name | 5. Find... F6 |

 VC13.TO.VC14.SEQ +--------------------------+

 VC13.2.VC14.JAC3 RECEIVER VR14

VC13.2.VC14.MROSER REQUESTER VR14

 VC13.2.VC14.REQSEND REQUESTER VR14

 VC13.2.VC14.SENDER SENDER VR14

à ð
Selected Edit View Help

 --------------------------------- +------------------------+------------------

 MCSELB IBM MQSeries for MVS | 1. Include all | VICY14

 | 2. Include... |

 Select a channel name. Then selec | 3. Refresh now F5 |

+------------------------+ More: - +

 Channel name Type Sysid

 VC13.TO.VC14.SEQSER REQUESTER VR14

 VC13.2.VC14.JAC3 RECEIVER VR14

VC13.2.VC14.MROSER REQUESTER VR14

 VC13.2.VC14.REQSEND REQUESTER VR14

 VC13.2.VC14.SENDER SENDER VR14

à ð
Selected Edit View Help

 --- +---------------------------+-

 MCSELB IBM MQSeries for OS/39ð - Message | 1. Using help |

| 2. General help |

 Select a channel name. Then select an action. | 3. Keys help |

 | 4. Tutorial |

Channel name Type Sysid | 5. Product Info |

VC13.TO.VC14.SEQSER REQUESTER VR14 +---------------------------+

 VC13.2.VC14.JAC3 RECEIVER VR14

VC13.2.VC14.MROSER REQUESTER VR14

 VC13.2.VC14.REQSEND REQUESTER VR14

 VC13.2.VC14.SENDER SENDER VR14

Figure 53. The Message Channel List panel pull-down menus

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 355

 Message Channel List panel

Creating a channel
To create a new channel, begin at the Message Channel List panel:

1. Press function key F10 and move the cursor to the Edit choice on the menu
bar.

2. Press the Enter key to display the Edit pull-down menu, and select the Create
option.

3. Press the Enter key to display the Create action window.

4. Type the name of the channel in the field provided.

5. Select the channel type for this end of the link.

6. Press the Enter key.

Notes:

1. If you are using distributed queuing without CICS as well, don’t use any of the
same channel names.

2. You are recommended to name all the channels in your network uniquely. As
shown in Table 1 on page 33, including the source and target queue manager
names in the channel name is a good way to do this.

You are presented with the appropriate Settings panel for the type of channel you
have chosen. Fill in the fields with the information you have gathered previously,
and select the Save option from the Channel pull-down menu.

You are provided with help in deciding on the content of the various fields in the
descriptions of the channel definition panels in the following sections of this
chapter.

Altering a channel
To alter an existing channel, begin at the Message Channel List panel:

1. Select a channel.

2. Press function key F10 and move the cursor to the Edit choice on the menu
bar.

3. Press the Enter key to display the Edit pull-down menu, and select the Alter
option.

You are presented with the appropriate Settings panel for the channel you have
chosen. Alter the fields with the information you have gathered previously, and
select the Save option from the Channel pull-down menu.

You are provided with help in deciding on the content of the various fields in the
descriptions of the channel definition panels in the following sections of this
chapter, and in the contextual help panels.

356 MQSeries Intercommunication

 Message Channel List panel

Browsing a channel
To browse the settings of a channel, begin at the Message Channel List panel:

1. Select a channel.
2. Press the Enter key.

If you try to select more than one channel, only the first one you select is valid.

This results in the respective Settings panel being displayed with details of the
current settings for the channel, but with the fields protected against user input.

If the Channel pull-down menu is selected from the menu bar, the Save option is
unavailable and this is indicated by an asterisk (*) in place of the first letter, as
shown in Figure 54.

à ð
 Channel Help

 +------------------+--

 | 1. \ave |13.2.VC14.SENDER - Settings VICY14

 | 2. Exit F3 |

 +------------------+

 More: +

 Channel type : SENDER

 Target system id :

 Transmission queue name . : JACK

 Batch size : ððð1

 Sequence number wrap . . : ð999999

Figure 54. The Channel pull-down menu

Renaming a channel
To rename a message channel, begin at the Message Channel List panel:

1. Ensure that the channel is inactive.
2. Select the channel.
3. Use Copy to create a duplicate with the new name.
4. Use Delete to delete the original channel.

If you decide to rename a message channel, ensure that both ends of the channel
are renamed at the same time.

Selected menu-bar choice
The options available in the Selected pull-down menu are:

Menu option Description

Start Starts the selected channel.

Stop Requests the channel to close down, immediately, or
controlled.

Resync Requests the channel to re-synchronize with the remote end,
and then close. No messages are sent.

Reset Requests the channel to reset the sequence numbers on this
end of the link. The numbers must be equal at both ends for
the channel to start.

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 357

 Message Channel List panel

Resolve Requests the channel to resolve in doubt messages without
establishing connection to the other end.

Display Status Displays the current status of the channel.

Display Settings Displays the current settings for the channel.

Ping Exchanges a data message with the remote end.

Exit Exits from the program.

 Start
The Start option is available for sender and requester channels, and moreover
should not be necessary where a sender channel has been set up with queue
manager triggering. For the method of setting up triggering, see “How to trigger
channels” on page 359.

When a server channel has been fully defined as a sender, then the same applies
as for sender channels.

When you choose the Start option, an EXEC CICS START call is issued to the
MCA, which reads the channel definition file and opens the transmission queue. A
channel startup sequence is executed which remotely starts the corresponding
MCA of the receiver or server channel. When they are running, the sender and
server processes await messages arriving on the transmission queue and transmit
them as they arrive.

Using the Start option always causes re-synchronization where necessary.

For the start to succeed:

� Channel definitions, local and remote must exist.

� The associated transmission queue must exist and it must be enabled for
GETs. If sequential numbering is required, then no other process can have the
transmission queue open for input.

� CICS transactions, local (and remote if it is OS/390 using CICS) must exist.

� CICS communication must be running.

� The queue managers must be running, local and remote.

� Channel must be inactive.

� Sequence number queue must exist on the receiving system (if it is OS/390
using CICS).

It is not necessary that:

� Messages be available
� Remote queue definitions be used
� Remote destination queues be available

A message is returned to the panel confirming that the request to start a channel
has been accepted. For confirmation that the start command has succeeded,
check the system console for the CICS system hosting the MCA, or the transient
data queue.

358 MQSeries Intercommunication

 Message Channel List panel

The sender, server and requester channel transactions can be started automatically
by CICS, if necessary. This is achieved by arranging for the MCA CICS transaction
to be started by the CICS system in the required way. This is similar to the
triggering startup in that the MCA is passed the required information in a trigger
message. For example, it can be customized to start at a certain time every day,
or at regular intervals. When started, it retrieves its channel definition and
responds accordingly.

How to trigger channels: If triggering is to be used to start a channel when
messages arrive on the associated transmission queue, use MQSeries for OS/390
operations and control panels or MQSC commands to set it up in accordance with
the details on triggering in Chapter 14, “Starting MQSeries applications using
triggers” in the MQSeries Application Programming Guide, after having collected all
the planning data.

Trigger control is exercised by means of the trigger control parameter in the
transmission queue definition. You need to set up the transmission queue for the
channel, specifying TRIGGER, define an initiation queue, and define a process. For
example:

DEFINE QLOCAL(MYXMITQ) USAGE(XMITQ) TRIGGER INITQ(MYINITQ) +

 TRIGTYPE(FIRST) PROCESS(MYPROCESS)

 DEFINE QLOCAL(MYINITQ)

DEFINE PROCESS(MYPROCESS) APPLTYPE(CICS) APPLICID(CKSG) +

 USERDATA(MYCHANNEL)

On the process definition:

APPLICID Names the application that is to be triggered. If you have a fully
defined server channel (see “Message channels” on page 8), this
ID should be CKSG rather than CKSV. CKSV should be used
only for requester-server channels that are to be initiated only by
the requester.

APPLTYPE Specifies that this is a CICS application.

USERDATA Specifies the name of the sender channel to be started.

Following the definitions, the long-running trigger process, CKTI, must be started to
monitor the initiation queue:

CKQC STARTCKTI MYINITQ

CKTI waits for trigger messages from the initiation queue, and starts an instance of
CKSG for the sender channel in response to the trigger messages. If the channel
experiences problems, the trigger control parameter on the transmission queue
definition is set to NOTRIGGER by the MCA, and the transmission queue is set to
GET(DISABLED). After diagnosis and correction and before you can restart
triggering, you must reset the TRIGGER parameter, for example with the MQSeries
for OS/390 operations and control panels, and must reset the transmission queue
to GET(ENABLED).

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 359

 Message Channel List panel

 Stop
Use the Stop option to request the channel to stop activity.

The Stop option presents an action window to allow you to confirm your intention to
stop the channel, for all four types of channel. For sender and server channels
only, you can select the type of stop you require: IMMEDIATE, or QUIESCE. See
Figure 55 and Figure 56 on page 361.

à ð
Selected Edit View Help

 +--------------------------+--

 | 2 1. Start |r OS/39ð - Message Channel List VICYð3

 | 2. Stop... |

 | 3. Resy +--+

 | 4. Rese | VC13.2.VC14 - Stop | More:

 | 5. Reso | |

 | 6. Disp | Select one. Then press Enter. |

 | 7. Disp | |

 | 8. Ping | Channel type . . . : SENDER |

 | 9. Exit | |

 +---------- | _ 1. Stop (quiesce) |

BREN.VRð4 | 2. Stop (immediate) |

 CRIS.VRð1 | |

CRIS.VRð1 | F1=Help F12=Cancel |

 CRIS.VRð3 +--+

 CRIS.VRð3.TO.VRð4 SENDER

 TEST.REQUESTER REQUESTER

 TEST.SERVER SERVER

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 55. Sender/server Stop action window

Stop immediate: This choice forces the channel to close down immediately, if
necessary, without completing the current batch of messages, but an attempt is
made to syncpoint with the other end of the channel.

Stop immediate is implemented by setting the channel’s transmission queue to GET
DISABLED. This means that if multiple channels are active against a transmission
queue, issuing a stop immediate against one of the channels causes all channels to
be stopped. You need to reset this queue to GET ENABLED using the MQSeries
for OS/390 operations and control panels or MQSC commands before you attempt
to restart the channels.

For more information, see the “Stopping and quiescing channels (not MQSeries for
Windows)” on page 73.

360 MQSeries Intercommunication

 Message Channel List panel

à ð
Selected Edit View Help

 +--------------------------+--

 | 2 1. Start |r OS/39ð - Message Channel List VICYð3

 | 2. Stop... |

 | 3. Resy +--+

 | 4. Rese | VC13.2.VC14 - Stop | More:

 | 5. Reso | |

 | 6. Disp | Select one. Then press Enter. |

 | 7. Disp | |

 | 8. Ping | Channel type . . . : RECEIVER |

 | 9. Exit | |

 +---------- | _ 1. Stop (quiesce) |

BREN.VRð4 | 2. \top (immediate) |

 CRIS.VRð1 | |

CRIS.VRð1 | F1=Help F12=Cancel |

 CRIS.VRð3 +--+

 CRIS.VRð3.TO.VRð4 SENDER

 TEST.REQUESTER REQUESTER

 TEST.SERVER SERVER

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 56. Requester/receiver Stop action window

Stop quiesce: This choice requests the channel to close down in an orderly way;
the current batch of messages is completed, and the syncpoint procedure is carried
out with the other end of the channel.

For more information, see “Stopping and quiescing channels (not MQSeries for
Windows)” on page 73. For information about restarting stopped channels, see
“Restarting stopped channels” on page 75.

 Resync
A message channel is synchronized when there are no in-doubt messages. That
is, the sending channel and the receiving channel are agreed on the current unit of
work number. The Resync option is valid for sender and server channels, but
server channels must be fully defined. The option allows the operator to request
the channel to re-synchronize with the remote end by resolving any in-doubt
messages.

There is no panel associated with this option.

It is to be used only where the channel is currently inactive and in-doubt messages
exist. The channel starts up, resolves the in-doubt messages, and then terminates.
It is not intended that the channel should send messages after the resolution has
been completed.

If the re-synchronization of a channel is not successful, you may need to examine
the content of the system sequence number queue, using the Display Status
option from the Selected pull-down menu on the Message Channel List panel.
Compare the sequence numbers, or LUWIDs, at the sending and receiving ends of
the channel in order to ascertain what needs to be done to restore synchronization.

It may be necessary to reset sequence numbers, or resolve in-doubt message
status, if a channel remains out of synchronization.

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 361

 Message Channel List panel

If a channel terminates abnormally, the sender may be left in doubt as to whether
the receiver has received and committed one message, or a batch of messages.
When the channel is restarted, the channel program automatically re-synchronizes
before sending any new messages.

However, there are times when you may want to re-synchronize the in-doubt
messages, but not send any new ones. For example:

� You may want to reset sequence numbers before sending the next batch of
messages.

� You may want to close out a batch, but hold the remaining messages for later
transmission.

The channel program started by this option establishes a session with a partner. It
then exchanges the re-synchronization flows. Then, instead of starting new
message traffic, it sends a disconnect flow. The result is that the channel
terminates normally, without any in-doubt messages. It is ready to be restarted or
reset, as required.

For the re-synchronization to succeed:

� Channel definitions, local and remote must exist
� Transmission queue is available and usable
� CICS transactions, local (and remote if using OS/390 with CICS) must exist
� CICS communication must be running
� Queue managers must be running, local and remote
� Sequence number queue must exist on the receiving system (if using OS/390

with CICS)
� The channel must be inactive

A message is returned to the panel indicating whether the request to
re-synchronize a channel has succeeded. If the Resync process was not
successful, check the system console, or transient data queue (TDQ), for the CICS
system hosting the MCA for error messages.

 Reset
Use the Reset option to request the channel to reset the sequence number. For a
view of the Reset Channel Sequence Number action window, see Figure 57 on
page 363. The change must be made separately on each end of the link, with
care, and can be done only on inactive channels that have no in-doubt units of
work outstanding.

The current sequence number is retrieved and changed to the value requested by
the user.

For the reset to succeed:

� The channel sequence number record must exist
� The channel must be inactive
� The channel must not be in doubt
� The channel definition, local, must exist
� CICS transactions, local, must exist
� The CICS system hosting the MCA must be connected to the queue manager

362 MQSeries Intercommunication

 Message Channel List panel

Notes:

1. To be effective, the sequence number must be reset in both the sender and the
receiver channel definitions. The starting sequence number is not negotiated
when a channel starts up, nor is there a default provided. Both ends of a
channel definition must have the same sequence number value.

2. In MQSeries for OS/390 using CICS, DQM saves the last sequence number
sent, which means that to start the next message with sequence number 100,
for example, you need to reset the sequence number to 99.

3. If you delete the channel definition at the partner end of the channel (by
deleting and recreating the partner queue manager), you must reset the
channel sequence number to 0 at the OS/390 end and to 1 at the partner end.

à ð
Selected Edit View Help

 +--------------------------+--

 | 4 1. Start |r OS/39ð - Message Channel List VICY14

 | 2. Stop... |

 | 3. Resy +--+

 | 4. Rese | Reset Channel Sequence Number |More: +

 | 5. Reso | |

 | 6. Disp | Type new sequence number. Then press Enter. |

 | 7. Disp | |

 | 8. Ping | Channel name . . . : VC13.2.VC14.SENDER |

 | 9. Exit | Channel type . . . : SENDER |

 +---------- | |

VC13.2.VC | Sequence number . . . _______ |

 VC13.2.VC | |

VC13.2.VC | F1=Help F12=Cancel |

 / VC13.2.VC +--+

 VC14.2.VC13 SENDER VR14

Figure 57. The Reset Channel Sequence Number action window

 Resolve
Use the Resolve option to request a channel to commit or back out in-doubt
messages. This may be used when the other end of the link has terminated, and
there is no prospect of it returning. Any outstanding units of work need to be
resolved with either backout or commit. Backout restores messages to the
transmission queue, while Commit discards them.

The Resolve option is needed when the Resync option is not available, or not
effective, and messages are held in doubt by a sender or server. The option
accepts one of two parameters: Backout or Commit. See Figure 58 on page 364.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the in-doubt
messages. It then issues, as requested, either:

� Backout to restore the messages to the transmission queue; or
� Commit to delete the messages from the transmission queue

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 363

 Message Channel List panel

For the resolution to succeed:

� The channel must be inactive
� The channel must be in doubt
� The channel type must be sender or server
� The channel definition, local, must exist
� CICS transactions, local, must exist
� Queue manager must be running, local
� The CICS system hosting the MCA must be connected to the queue manager

See “In-doubt channels” on page 76 for more information.

à ð
Selected Edit View Help

 +--------------------------+--

 | 5 1. Start |r OS/39ð - Message Channel List VICY14

 | 2. Stop... |

 | 3. Resy +--+

 | 4. Rese | Resolve Channel |More: - +

 | 5. Reso | |

 | 6. Disp | Select one. Then press Enter. |

 | 7. Disp | |

 | 8. Ping | Channel name . . . : VC14.2.VC13 |

 | 9. Exit | Channel type . . . : SENDER |

 +---------- | |

 / VC14.2.VC | _ 1. Backout (Restore messages to queue) |

VICY13.TO | 2. Commit (Delete messages from queue) |

 VICY13.TO | |

VICY13.TO | F1=Help F12=Cancel |

 VICY13.TO +--+

 VICY13.TO.VICY14.NS2 RECEIVER VR14

Figure 58. The Resolve Channel action window

 Display status
Use the Display Status option to display the current status of the channel. The
following information is displayed:

� Whether the channel is active or inactive

� The in-doubt status of sender and server channels

� The sequence number last sent, if sequence numbering is in effect

� The last LUWID number, if available. Available means:

– Always available for receiver and requester channels
– Available for sender and server channels when:

- Sequence numbering is in effect
- No sequence numbering in effect, but the channel is in doubt

That is, the LUWID number is not available for sender and server channels
when sequence numbering is not in effect and the channel is not in doubt

For an example of sender and server status panels, see Figure 59 on page 365,
and for an example of receiver and requester status panels, see Figure 60 on
page 365.

‘Not available’ status is acceptable when:

� Shown for a sequence number, if the channel is active
� Shown for an LUWID when the channel is not in doubt

364 MQSeries Intercommunication

 Message Channel List panel

Otherwise, if a ‘Not available’ status is shown in any of the fields, this indicates that
an error has occurred, and you should refer to the console log to find the error
messages associated with this problem.

à ð
Selected Edit View Help

 +--------------------------+--

 | 6 1. Start |r OS/39ð - Message Channel List VICY13

 | 2. Stop... |

 | 3. Resy +--+

 | 4. Rese | Display Channel Status | More: - +

 | 5. Reso | |

 | 6. Disp | Channel name . . . : VICY13.TO.VICY14 |

 | 7. Disp | Channel type . . . : SENDER |

 | 8. Ping | |

 | 9. Exit | Status : Inactive |

 +---------- | Indoubt status . . : Not in-doubt |

VICY13.TO | Sequence Number |

VICY13.TO | Last sent : ððð1ð46 |

VICY13.TO | Last LUWID : A81D75ðð42ECADð5 |

 VICY13.TO | |

VICY13.TO | F1=Help F12=Cancel |

 VICY13.TO.+--+

 VICY13.TO.VICY15 SERVER VR13

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 59. An example of a sender channel Display Channel Status window. The server
channel Display Channel Status panel looks the same, except that the Channel type field is
changed to SERVER.

à ð
Selected Edit View Help

 +--------------------------+--

 | 6 1. Start |r OS/39ð - Message Channel List VICY13

 | 2. Stop... |

 | 3. Resy +--+

 | 4. Rese | Display Channel Status | More: - +

 | 5. Reso | |

 | 6. Disp | Channel name . . . : VC14.2.VC13 |

 | 7. Disp | Channel type . . . : RECEIVER |

 | 8. Ping | |

 | 9. Exit | Status : Inactive |

 +---------- | Sequence Number |

VICY13.TO | Last sent : Not in effect |

VICY13.TO | Last LUWID : A81D75ðð42ECADð5 |

 VICY13.TO | |

VICY13.TO | F1=Help F12=Cancel |

 VICY13.TO +--+

 VICY13.TO.VICY14 REQUESTER VR13

 VICY13.TO.VICY15 SERVER VR13

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 60. An example of a receiver channel Display Channel Status window. The
requester channel Display Channel Status window looks the same, except that the Channel
type field is changed to REQUESTER.

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 365

 Message Channel List panel

 Display settings
Use the Display Settings option to display the current definitions for the channel.
This choice displays the appropriate panel for the type of channel with the fields
displaying the current values of the parameters, and protected against user input:

� Sender: see Figure 71 on page 376
� Receiver: see Figure 73 on page 377
� Server: see Figure 75 on page 378
� Requester: see Figure 77 on page 379

Protected input is shown with colon characters (:) at the end of field descriptions,
and the Save option is not available on the Channel pull-down menu.

You can select this choice from the Message Channel List panel by choosing a
channel and pressing Enter, without using the menu bar, ensuring that the cursor is
not on the menu bar.

 Ping
Use the Ping option to exchange a data message with the remote end. This gives
you some confidence that the link is available and functioning. It can be issued
from sender and server channels only, but server channels must be fully defined.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related CICS communication link, the network setup, and
the queue managers at both ends.

The corresponding channel is started at the far side of the link, and performs the
startup parameter negotiation.

If an error occurs, an error message is displayed on the panel, and additional
messages may be written to the console, or the CICS transient data queue.

The Ping panel offers you the opportunity to enter a message of up to 20
characters to be exchanged across the link. If you do not make use of this, a
default message is used.

The result of the message exchange is presented in the Ping panel for you, and
this is the returned message text, together with the time the message was sent,
and the time the reply was received.

Installations may supply their own applications to exchange particular information,
such as system identifiers. Figure 61 on page 367 shows a view of the Ping
action window.

366 MQSeries Intercommunication

 Message Channel List panel

à ð
Selected Edit View Help

 +--------------------------+--

 | 1. Start |r OS/39ð - Message Channel List VICY14

 | 2. Stop... |

 | 3. Resy +--+

 | 4. Rese | VC14.2.VC13 - Ping | More: - +

 | 5. Reso | |

 | 6. Disp | Type ping data. Then press Enter. |

 | 7. Disp | |

 | 8. Ping | Ping data TESTING PING |

 | 9. Exit | |

 +---------- | Time sent : 11:29:37 |

 / VC14.2.VC | Time received . . . : 11:29:37 |

 VICY13.TO | |

VICY13.TO | F1=Help F12=Cancel |

 VICY13.TO +--+

 VICY13.TO.VICY14.NSR RECEIVER VR14

Figure 61. The Ping action window

 Exit
Use the Exit option to exit the current function: channel settings, help, or message
channel list.

A secondary window appears when you try to exit a channel settings panel without
first saving any changed definitions. This is a safe exit to prevent inadvertent loss
of data. The secondary window is shown in Figure 62.

à ð
 Channel Help

 +------------------+--

 | 1. Save |13.2.VC14.SENDER - Settings VICY14

 | 2. Exit F3 |

 +---------- +--+

| VC13.2.VC14.SENDER - Exit | More: +

 Channel typ | |

| Channel type . . . : SENDER |

 Target syst | |

 Transmissio | The updated channel definition has |

 Batch size | not been saved. |

 Sequence nu | |

 Max message | 2 1. Save and exit. |

 Max transmi | 2. Exit without saving. |

 Disconnect | |

 Transaction | F1=Help F12=Cancel |

 Connection +--+

 CICS profile name

Figure 62. The Exit confirmation secondary window

Edit menu-bar choice
The options available in the Edit pull-down menu are:

 � Copy
 � Create
 � Alter
 � Delete
 � Find

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 367

 Message Channel List panel

In any of the action windows and settings panels associated with Edit, you can type
the channel name in uppercase or lowercase, but it may be converted to uppercase
when you press the Enter key, depending upon your Typeterm definition.

 Copy
Use the Copy option to copy an existing channel. The Copy action window (see
Figure 63) enables you to define the new channel name. You can use the
characters shown in “Create” in the name.

Press the Enter key on the Copy action window to display the channel settings
panel with details of current system values. You can change any of the new
channel settings. You save the new channel definition by selecting Channel from
the menu bar, and selecting the Save option from the pull-down menu.

à ð
Selected Edit View Help

 ------------------ +--------------------------+-------------------------------

 MCSELB IBM M | 1 1. Copy... | Channel List VICY14

 | 2. Create... |

 Select a ch +--+

| VC13.2.VC14.SENDER - Copy |More: - +

Channel n | |

VC13.TO.V | Type name of new channel. Then press Enter. |

 VC13.2.VC | |

VC13.2.VC | Channel type . . . : SENDER |

 VC13.2.VC | |

 / VC13.2.VC | Channel name ____________________ |

 VC14.2.VC | |

VICY13.TO | F1=Help F12=Cancel |

 VICY13.TO +--+

 VICY13.TO.VICY14.NS RECEIVER VR14

Figure 63. The Copy action window

 Create
Use the Create option to create a new channel definition from a screen of fields
filled with default values supplied by MQSeries for OS/390. Figure 64 on
page 369 shows you where to type the name of the channel, and how to select the
type of channel you are creating.

When you press the Enter key, the appropriate channel settings panel is displayed.
Type information in all the necessary fields in this panel and then save the
definition by selecting Channel from the menu bar, and selecting the Save option
from the pull-down menu.

The channel name must be the same at both ends of the channel, and unique
within the network. You can use the following characters in the name:

Uppercase A-Z
Lowercase a-z
Numerics 0-9
Period '.'
Forward slash '/'
Underscore '_'
Percentage sign '%'

368 MQSeries Intercommunication

 Message Channel List panel

à ð
Selected Edit View Help

 ------------------ +--------------------------+-------------------------------

 MCSELB IBM M | 2 1. Copy... | Channel List VICY14

 | 2. Create... |

 Select a ch +--+

| Create |More: - +

Channel n | |

VC13.TO.V | Type name of channel. Select channel type. |

VC13.2.VC | Then press Enter. |

 VC13.2.VC | |

VC13.2.VC | Channel name ____________________ |

 / VC13.2.VC | |

VC14.2.VC | Channel type _ 1. Sender |

 VICY13.TO | 2. Server |

 VICY13.TO | 3. Receiver |

 VICY13.TO | 4. Requester |

 VICY13.TO | |

VICY13.TO | F1=Help F12=Cancel |

 VICY13.TO +--+

Figure 64. The Create action window

All panels have default values supplied for some fields. You can change the values
when you are creating or copying channels. For examples of the channel definition
panels showing the default values, see Figure 65.

Press the Enter key on the Create action window to display the channel settings
panel with details of default values.

You can create your own set of channel default values by setting up dummy
channels with the required defaults for each channel type, and copying them each
time you want to create new channel definitions.

à ð
 Channel Help

 --

 MCATTB1 TEST.CHANNEL - Settings VICY13

 More: +

 Channel type SENDER

 Target system id ____

 Transmission queue name . . ___

 Batch size ððð1

 Sequence number wrap . . . ð999999

 Max message size ðð32ððð

 Max transmission 32ððð

 Disconnect interval ððð1

 Transaction id CKSG

 Connection name ____

 CICS profile name ________

 LU 6.2 TP name ________________________________

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 65. Example of default values during Create for a channel. The values supplied
cannot be customized.

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 369

 Message Channel List panel

 Alter
Use the Alter option to change an existing channel definition, except for the
channel name. Simply type over the fields to be changed in the channel definition
panel, and then save the updated definition by selecting Channel from the menu
bar, and selecting the Save option from the pull-down menu.

 Delete
Use the Delete option to delete the selected channel. For the secondary window
requesting confirmation of your intention, see Figure 66.

à ð
Selected Edit View Help

 ------------------ +--------------------------+-------------------------------

 MCSELB IBM M | 4 1. Copy... | Channel List VICY14

 | 2. Create... |

 Select a ch +--+

| VC13.2.VC14.SENDER - Delete |More: - +

Channel n | |

VC13.TO.V | The channel definition will be deleted. |

 VC13.2.VC | |

VC13.2.VC | Channel type . . . : SENDER |

 VC13.2.VC | |

 / VC13.2.VC | _ 1. Keep channel |

VC14.2.VC | 2. Delete channel |

 VICY13.TO | |

VICY13.TO | F1=Help F12=Cancel |

 VICY13.TO +--+

 VICY13.TO.VICY14.NSR RECEIVER VR14

Figure 66. The Delete action window

 Find
Use the Find option to locate a particular channel name from the list of available
channels. If the name of the channel you want is found, it is placed at the top of
the list on the Message Channel List panel. The Find a Channel action window is
shown in Figure 67.

à ð
Selected Edit View Help

 ------------------ +--------------------------+-------------------------------

 MCSELB IBM M | 5 1. Copy... | Channel List VICY14

 | 2. Create... |

 Select a ch +--+

| Find a Channel | More: - +

Channel n | |

VC13.TO.V | Type name of channel. Then press Enter. |

 VC13.2.VC | |

VC13.2.VC | Channel name . . . ____________________ |

 VC13.2.VC | |

 / VC13.2.VC | |

VC14.2.VC | F1=Help F12=Cancel |

 VICY13.TO +--+

 VICY13.TO.VICY14.CB REQUESTER VR14

Figure 67. The Find a Channel action window

You can partially define the channel name using a terminating asterisk, for
example, channel.lon*. This results in the first channel name to be found with
these initial letters being placed at the top of the list.

370 MQSeries Intercommunication

 Message Channel List panel

View menu-bar choice
The options available in the View pull-down menu change the current view of the
list shown on the Message Channel List panel; see Figure 68.

Menu option Description

Include all All channels are included in the list.

Include... Select the channels to be included in the list, by means of an
action window.

You can partially define the channel name using a
terminating asterisk, for example, channel.lon*. This results
in channel names found with these initial letters being
included in the list.

Also in the action window is a field to allow you to specify a
channel type, or all types of channel.

Refresh now F5 Updates the panel with fresh data from the system.

à ð
Selected Edit View Help

 --------------------------------- +------------------------+------------------

 MCSELB IBM MQSeries for MVS | 2 1. Include all | VICY13

 | 2. Include... |

 Select a ch +--+

| Include search criteria |More: +

Channel n | |

TEST.CHAN | Type name of channel (use \ for generic.) |

VC13.TO.V | Select channel type. Then press Enter |

 VC13.2.VC | |

VC13.2.VC | Channel name vi\ |

 VC13.2.VC | |

VC13.2.VC | Channel type 5 1. Sender |

 VC13.2.VC | 2. Server |

 VC13.2.VC | 3. Receiver |

 VICY13.TO | 4. Requester |

VICY13.TO | 5. All channel types |

 VICY13.TO | |

VICY13.TO | F1=Help F12=Cancel |

 +--+

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 68. The Include search criteria action window

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 371

 Channel definition panels

Help menu-bar choice
The Help pull-down menu is shown in Figure 69.

à ð
Selected Edit View Help

 --- +---------------------------+-

 MCSELB IBM MQSeries for OS/39ð - Message | _ 1. Using help |

| 2. General help |

 Select a channel name. Then select an action. | 3. Keys help |

 | 4. Tutorial |

Channel name Type Sysid | 5. Product Info |

VC13.TO.VC14.SEQSER REQUESTER VR14 +---------------------------+

 VC13.2.VC14.JAC3 RECEIVER VR14

Figure 69. The Help pull-down menu

The channel definition panels
The four channel Settings panels for defining channels (one for each of sender,
receiver, server, and requester) have a menu bar with choices you can pull down to
reveal various options you can select for these choices. See Table 32.

The menu-bar choices are:

The work area of the panels is used to present the fields of attributes or settings for
the channel.

The function keys control the use of the panels to:

� Call help panels
� Move the cursor to the menu bar
� Refresh the panel
� Cancel a pull-down menu or a secondary window
� Exit from the panel
� Scroll forward and backward through settings

The method of using the panels is:

� For new channels, fill in the data fields, then select Channel from the menu
bar, and select the Save option from the pull-down menu.

Note: Default values supplied by MQSeries for OS/390 are presented in some
fields. The defaults cannot be changed, but the values presented can be
changed.

� For existing channels, type over the data presented in the fields with new data.
Then select Channel from the menu bar, and select the Save option from the
pull-down menu.

Table 32. Menu-bar choices on channel panels

Channel Help

372 MQSeries Intercommunication

 Channel definition panels

Channel menu-bar choice
The Channel menu-bar choice enables you to save any changes you have made
to channel definitions, and to return to the Message Channel List panel.

 Saving changes
If there are no errors, selecting the Save option from the Channel pull-down menu
saves any changes you have made to channel definitions. You are returned to the
Message Channel List panel.

If there are errors, you are returned to the Settings panel with an error message,
and all fields containing errors are highlighted. The cursor is positioned on the first
field in error. The changes are not saved.

Exit from the panel
Selecting the Save option from the Channel pull-down menu saves the changes
you have made and returns you to the Message Channel List panel.

Selecting the Exit option from the Channel pull-down menu, or pressing F3 or F12,
returns you to the Message Channel List panel.

However, if you have not saved the changes you made, a secondary window
requesting confirmation of your intention to exit without saving the data is
presented; see Figure 62 on page 367. If you want to save the changes you have
made, select Save and exit . If you have had second thoughts about the changes
you have made, select Exit without saving .

Help menu-bar choice
The Help pull-down menu is shown in Figure 70.

à ð

 Channel Help

 --------------+---------------------+-----------------------------------

MCATTB1 | _ 1. Using help | - Settings CICSð1

| 2. General help |

| 3. Keys help |

 | 4. Tutorial |

Channel type | 5. Product Info |

Transmission q| |___________________________________

Batch size . +---------------------+

Figure 70. The Help choice pull-down menu

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 373

 Channel settings panel fields

Channel settings panel fields
The fields in these panels define the attributes of the channels. The channel
settings panel fields that you can change are shown in Table 33. You can find
details for each field in Chapter 6, “Channel attributes” on page 85.

A “√” signifies that the field is available for use with the indicated type of channel,
while an “O” means that these fields are only needed for server channels when
they are to be used as sender channels.

Table 33. Channel attribute fields per channel type

Attribute field Sender Server Receiver Requester

Batch size √ √ √ √

CICS profile name √ O √

Connection name √ O √

Disconnect interval √ √

LU62 TP name (see Note) √ O √

Maximum message size √ √ √ √

Maximum transmission size √ √ √ √

Message exit √ √ √ √

PUT authority √ √

Retry count √ O √

Retry fast interval √ O √

Retry slow interval √ O √

Receive exit √ √ √ √

Sequence number wrap √ √ √ √

Sequential delivery √ √ √ √

Security exit √ √ √ √

Send exit √ √ √ √

Target system identifier √ √ √ √

Transmission queue name √ √

Transaction identifier √ O √

Note: See also the Multiplatform APPC Configuration Guide (“Red Book”) and
Table 34 on page 375 for information.

374 MQSeries Intercommunication

 Channel settings panel fields

| If you have more than one queue manager on the same machine, ensure that the
| TPnames in the channel definitions are unique. To modify a TPname, use
| CSQ4SIDE or CKMC.

Table 34. Settings for LU 6.2 TP name on the local OS/390 system for a remote queue
manager platform

Remote
platform

Sender/server Requester

OS/390 using
CICS

CKRC CKSV1

OS/390
without CICS
and UNIX
systems

As specified in the side
information on remote queue
manager system

As specified in the side
information on remote queue
manager system

OS/2 As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file

As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file

OS/400 The same as the compare value
in the routing entry on the
OS/400 system

The same as the compare value
in the routing entry on the
OS/400 system

Digital OVMS As specified in the Digital OVMS
Run Listener command

As specified in the Digital OVMS
Run Listener command

Tandem NSK The same as the TPNAME
specified in the receiver-channel
definition

The same as the TPNAME
specified in the receiver-channel
definition

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup
on Windows NT

As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup
on Windows NT

Note: 1 If you have a fully defined server channel, (see “Message channels” on
page 8), its definition should specify a transaction ID of CKSG.

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 375

 Channel settings panel fields

Details of sender channel settings panel
This section provides details of the sender channel settings panel, as shown in
Figures 71 and 72.

à ð
 Channel Help

 --

 MCATTB1 HURSLEY.TO.SYDNEY - Settings VICY14

 More: +

 Channel type : SENDER

 Target system id :

 Transmission queue name . : TX1

 Batch size : ððð1

 Sequence number wrap . . : ð999999

 Max message size : ðð32ððð

 Max transmission : 32ððð

 Disconnect interval . . . : ððð1

 Transaction id : CKSG

 Connection name : HtoH

 CICS profile name :

 LU 6.2 TP name : CKRC

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 71. The sender channel settings panel

à ð
 Channel Help

 --

 MCATTC1 HURSLEY.TO.SYDNEY - Settings VICY14

 More: -

 Channel type : SENDER

 Sequential delivery . . . : ð (ð=No or 1=Yes)

 Retry

Count : ðð5

Fast interval : ðð5

Slow interval : ð3ð

 Exit routines

Security :

Message :

Send :

 Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 72. The sender channel settings panel - screen 2

376 MQSeries Intercommunication

 Channel settings panel fields

Details of receiver channel settings panel
This section provides details of the receiver channel settings panels, as shown in
Figures 73 and 74.

à ð
 Channel Help

 --

 MCATTB3 VICY13.TO.VICY14 - Settings VICY14

 More: +

 Channel type : RECEIVER

 Target system id :

 Batch size : ð1ðð

 Sequence number wrap . . : ðð9992ð

 Max message size : ðð32ððð

 Max transmission : 32ððð

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 73. The receiver channel settings panel

à ð
 Channel Help

 --

 MCATTC3 VICY13.TO.VICY14 - Settings VICY14

 Type information. Then select an action.

 More: -

 Channel type : RECEIVER

 Sequential delivery . . . : 1 (ð=No or 1=Yes)

 Put authority : 1 (1=Process or 2=Context)

 Exit routines

Security :

Message :

Send :

Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 74. The receiver channel settings panel - screen 2

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 377

 Channel settings panel fields

Details of server channel settings panel
This section provides details of the server channel settings panels, as shown in
Figures 75 and 76.

à ð
 Channel Help

 --

 MCATTB1 HURSLEY.TO.SYDNEY - Settings VICY14

 More: +

 Channel type : SERVER

 Target system id :

 Transmission queue name . : TX1

 Batch size : ððð1

 Sequence number wrap . . : ð999999

 Max message size : ðð32ððð

 Max transmission : 32ððð

 Disconnect interval . . . : ððð1

 Transaction id :

 Connection name :

 CICS profile name :

 LU 6.2 TP name :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 75. The server channel settings panel

à ð
 Channel Help

 --

 MCATTC1 HURSLEY.TO.SYDNEY - Settings VICY14

 More: -

 Channel type : SERVER

 Sequential delivery . . . : ð (ð=No or 1=Yes)

 Retry

Count : ðð5

Fast interval : ðð5

Slow interval : ð3ð

 Exit routines

Security :

Message :

Send :

 Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 76. The server channel settings panel - screen 2

378 MQSeries Intercommunication

 Channel settings panel fields

Details of requester channel settings panel
This section provides details of each field in the requester channel settings panels,
as shown in Figures 77 and 78.

à ð
 Channel Help

 --

 MCATTB4 VICY13.TO.VICY14.CB - Settings VICY14

 More: +

 Channel type : REQUESTER

 Target system id :

 Batch size : ððð1

 Sequence number wrap . . : ð999999

 Max message size : ðð32ððð

 Max transmission : 32ððð

 Transaction id : CKRQ

 Connection name : VC13

 CICS profile name : LU6PROF

 LU 6.2 TP name : CKSV

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 77. The requester channel settings panel

à ð
 Channel Help

 --

 MCATTC4 VICY13.TO.VICY14.CB - Settings VICY14

 More: -

 Channel type : REQUESTER

 Sequential delivery . . . : ð (ð=No or 1=Yes)

 Put authority : 1 (1=Process or 2=Context)

 Retry

Count : ðð5

Fast interval : ðð5

Slow interval : ð3ð

 Exit routines

Security :

Message :

Send :

Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 78. The requester channel settings panel - screen 2

 Chapter 25. Monitoring and controlling channels in OS/390 with CICS 379

 Channel settings panel fields

380 MQSeries Intercommunication

 Preparation on OS/390 using CICS � CICS communication

Chapter 26. Preparing MQSeries for OS/390 when using CICS

This chapter describes the MQSeries for OS/390 and CICS preparations you need
to make before you can start to use CICS for distributed queuing.

To enable distributed queuing, you must perform the following three tasks:

� Customize the distributed queuing facility and define the MQSeries objects
required; this is described in the MQSeries for OS/390 System Management
Guide.

� Define access security; this is described in the MQSeries for OS/390 System
Management Guide.

� Set up your communications; this is described in this chapter.

Setting up CICS communication for MQSeries for OS/390
Distributed queue management (DQM) provides channel control programs which
form the interface to CICS communication links, controllable by the system
operator. The channel definitions held by DQM use these CICS connections.

When a channel is started, it tries to use the CICS connection specified in the
channel definition. For this to succeed, it is necessary for the CICS connection to
be defined and available. This section explains how to do this.

If more than one CICS system is associated with any one MQSeries for OS/390,
and each CICS system is running some DQM functions, you need to define
connections between the CICS systems. This chapter also explains how to do this.

Connecting CICS systems
Part of the installation of DQM requires the definition and installation of CICS
logical unit type 6.2 (LU 6.2) connections that provide the physical link between the
CICS systems serving the local queue manager, and the systems serving the
remote queue managers. To set up these connections, use the CICS
Intercommunication Guide.

One OS/390 system can be host to a number of CICS systems at the same time,
and each CICS system is able to connect to one queue manager at any one time.

You provide communication links so that queue managers may use these links,
through CICS intersystem communication (ISC) to reach other queue managers on
OS/390 systems (using CICS or not), and on other non-OS/390 systems, provided
they are using the standard queue manager intercommunication protocol, MQSeries
Message Channel Protocol.

 Copyright IBM Corp. 1993,1999 381

 CICS communication

Communication between queue managers
There are two forms of communication between CICS systems:

� Intersystem communication (ISC): communication between a CICS system and
other systems in a data communication network that support the logical unit
type 6.1 or logical unit type 6.2 protocols of IBM Systems Network Architecture
(SNA).

� Multiregion operation (MRO): communication between CICS systems running in
different address spaces of the same OS/390 system.

Only ISC LU 6.2 protocols are used for connecting two queue managers over a
DQM channel, even where they both reside in the same OS/390 system.

Note: CICS for MVS/ESA Version 4 Release 1.0 or higher is required for
MQSeries distributed queue management.

 Intersystem communication
The connection type must be ISC LU 6.2, but can be defined as one of the
following:

� LU 6.2 single-session terminal
� LU 6.2 single-session connection
� LU 6.2 parallel-session connection

Before deciding the type of connection to be defined, you should consider the
following points:

� The number of channels to be defined between the two systems
� The maximum number of channels that are to be active at any one time
� How often the connection is used
� The number of channels per transmission queue
� The number of channels that can be active per connection

Note: Multiple channels can be active on the same connection.

To define an LU 6.2 link between the two CICS systems, you should refer to the
following books:

| � CICS Intercommunication Guide, SC33-1695.
| � CICS Resource Definition Guide, SC33-1684.

paying particular attention to the sections discussing communication resources.

Defining an LU 6.2 connection
When you decide which type of LU 6.2 connection is to be established between the
local and remote CICS systems, the process of definition can take place.

Only one ISC connection can be active between any two CICS systems at the
same time. However, a single CICS system can have connections to multiple
remote CICS systems at the same time.

The sender and requester channel definitions require the provision of the LU 6.2
connection name and, optionally, the CICS profile name to be used.

382 MQSeries Intercommunication

 CICS communication

The relationship between CICS profiles and connections is shown in Figure 79.
The uppercase fields are the names of the CEDA transaction entry, and the
lowercase values are fields within those definitions that are relevant to the example.

P R O F I L E = M Y P R O F
m o d e n a m e = C I C S I S C 0

C O N N E C T I O N = C O N 1
n e t n a m e = l u n a m e

S E S S I O N = S E S 1
c o n n e c t i o n = C O N 1
m o d e n a m e = C I C S I S C 0

Figure 79. CICS LU 6.2 connection definition

If a sender channel is defined with the following characteristics, it causes a session
to be allocated using a SES1 session on connection CON1:

 � CHANNEL=MY.CHANNEL
 � CONNECTION NAME=CON1
� CICS PROFILE NAME=MYPROF

If no CICS profile name is specified in the channel definition, DQM does not specify
a profile when allocating a session.

Installing the connection
When you have defined the connection definitions on your CICS system definitions
(CSDs), these can be installed using the CICS CEDA INSTALL command.

If you want to install these connections as part of the CICS initialization process,
you can add the group that contains the connection definitions to the CICS startup
list that is specified in the GRPLIST= parameter. You then need to cold start your
CICS system for the entries to become effective.

Communications between CICS systems attached to one queue
manager

DQM functions may be shared between more than one CICS system. When these
CICS systems are connected to, or associated with, the same queue manager,
then these CICS systems need to be set up correctly so that function shipping of
EXEC CICS commands and program invocation occur correctly.

Connection names for function shipping
Although CICS does not require that a connection name is the same as the
DFHSIT SYSIDNT name of the target CICS system, DQM requires that they are
the same.

The type of connection can be either MRO or ISC.

 Chapter 26. Preparing MQSeries for OS/390 when using CICS 383

 Defining DQM requirements � Defining MQSeries objects

Defining DQM requirements to MQSeries
In order to define your distributed-queuing requirements, you need to:

� Define MQSeries programs and data sets as CICS resources
� Define the channel definitions
� Define the CKMQ transient data queue
� Define MQSeries queues triggers and processes
� Define CICS resources used by distributed queuing
� Define access security

See the MQSeries for OS/390 System Management Guide for information about
these tasks.

Defining MQSeries objects
Use the MQSeries for OS/390 operations and control panels, or one of the other
MQSeries for OS/390 command input methods, to define MQSeries for OS/390
objects. Refer to Chapter 2, “The MQSeries commands” in the MQSeries
Command Reference book for details of defining objects.

You define:

� A local queue with the usage of (XMITQ) for each sending message channel.

� Remote queue definitions.

A remote queue object has three distinct uses, depending upon the way the
name and content are specified:

– Remote queue definition
– Queue manager alias definition
– Reply-to queue alias definition

This is shown in Table 2 on page 41.

� A process naming the MCA sender transaction, CKSG, as the application to be
triggered by messages appearing on the transmission queue. The process
definition parameter, USERDATA, must contain the name of the channel to be
started by this process. See “How to trigger channels” on page 359.

The supplied sample CSQ4DISQ gives examples of the necessary definitions.

Multiple message channels per transmission queue
It is possible to define more than one channel per transmission queue, but only one
of these channels needs to be active at any one time. The provision of multiple
channels is recommended to provide alternative routes between queue managers
for traffic balancing and link failure recovery.

You may start more than one channel to serve a transmission queue to increase
message throughput, but when doing so, ensure that the queue has a SHARE
attribute, and that there is not a need for sequential delivery of messages.

384 MQSeries Intercommunication

 Channel operation considerations

Channel operation considerations
Channels are designed to be active only when there is work for them to process.
This mechanism allows for conservation of limited system resources such as active
transactions and LU 6.2 sessions while at the same time delivering messages in a
timely fashion determined by the application. The mechanisms which are used to
determine when a channel is started and stopped are triggering and the disconnect
interval respectively.

This mechanism works well unless the operator wishes to terminate a channel
before the disconnect time interval expires. This can occur in the following
situations:

 � System quiesce
 � Resource conservation
� Unilateral action at one end of a channel

In these cases it is necessary to stop the channel using the STOP option from the
Message Channel List panel of the CKMC transaction. For information about what
happens when a channel is stopped in this way, and how to restart the channel,
see “Stopping and quiescing channels (not MQSeries for Windows)” on page 73.

 Chapter 26. Preparing MQSeries for OS/390 when using CICS 385

 Channel operation considerations

386 MQSeries Intercommunication

 Planning example for OS/390 using CICS

Chapter 27. Message channel planning example for OS/390
using CICS

This chapter provides a detailed example of how to connect queue managers
together to send messages from one to the other. The example gives you a
step-by-step implementation of a unidirectional interconnection of two queue
managers.

Figure 80 illustrates the interaction between all the system components used for
transferring messages between queue managers.

Queue manager 'QM1' Queue manager 'QM2'

Queue transmission 'QM2'

Queue local 'Init_queue'

Queue local 'QM1_payroll'

Payroll
process

Payroll
reporter

Application Application

CKTI

Trigger
monitor

Queue remote 'Payrollr'

QM1.2.QM2.CHANNEL

Figure 80. Connecting two queue managers in MQSeries for OS/390 using CICS

In the following list, the numbered items refer to the boxed index numbers in the
figure.

1. The “Payroll reporter” application connects to queue manager “QM1,” opens a
queue called “Payrollr,” and places messages on the queue.

2. The attributes of Payrollr in queue manager QM1 are:

From this information, the local queue manager QM1 determines that
messages for this queue have to be transmitted to a remote queue manager
QM2.

For QM1, QM2 is just a transmission queue on which messages have to be
placed. A transmission queue is a local queue with its usage parameter set to
XMITQ.

QUEUE Payrollr
TYPE QREMOTE
DESCR PAYROLL QUEUE ON QM2 QUEUE MANAGER
PUT ENABLED
DEFPRTY 0
DEFPSIST YES
RNAME QM1_payroll
RQMNAME QM2

 Copyright IBM Corp. 1993,1999 387

 Planning example for OS/390 using CICS

3. The attributes of the transmission queue, QM2, in queue manager QM1 are:

Messages that the application puts to Payrollr are actually placed on the
transmission queue QM2.

4. In this example, assume that the payroll message is the first message to be
placed on the empty transmission queue, and because of the triggering
attributes of the transmission queue, the queue manager determines that a
trigger message is to be issued.

The transmission queue definition refers to an initiation queue called
Init_queue, and the queue manager places a trigger message on this queue.
The transmission queue definition also refers to the trigger process definition,
and information from this definition is included in the trigger message.

QUEUE QM2
TYPE LOCAL
DESCR QUEUE MANAGER QM2 TRANSMISSION QUEUE
PUT ENABLED
DEFPRTY 0
DEFPSIST YES
OPPROCS 0
IPPROCS 0
CURDEPTH 0
MAXDEPTH 100000
PROCESS QM2.PROCESS
TRIGGER
MAXMSGL 4194304
BOTHRESH 0
BOQNAME
STGCLASS DEFAULT
INITQ Init_queue
USAGE XMITQ
SHARE
DEFSOPT EXCL
MSGDLVSQ FIFO
RETINTVL 0
TRIGTYPE FIRST
TRIGDPTH 1
TRIGMPRI 0
TRIGGERDATA 0
DEFTYPE PREDEFINED
NOHARDENBO
GET ENABLED

388 MQSeries Intercommunication

 Planning example for OS/390 using CICS

The definition of the process in queue manager QM1 is:

The result of this trigger processing is that a trigger message is placed on the
initiation queue, Init_queue.

5. If you experience trigger messages failing to appear when expected, refer to
Chapter 14, “Starting MQSeries applications using triggers” in the MQSeries
Application Programming Guide.

6. The CKTI transaction is a long-running task that monitors the initiation queue,
Init_queue. CKTI processes the trigger message, an MQTM structure, to find
that it must start CKSG. CKSG is the CICS name of the sender channel MCA
transaction.

7. CKTI starts CKSG, passing the MQTM structure. The CKSG transaction starts
processing, receives the MQTM structure, and extracts the name of the
channel.

8. The channel name is used by CKSG to get the channel definition from the
channel definition file on QM1. The DQM display settings panel of the channel
in QM1.2.QM2.CHANNEL, is:

PROCESS QM2.PROCESS
DESCR PROCESS DEFINITION - TO TRIGGER CHANNEL

QM1.2.QM2.CHANNEL
APPLTYPE CICS
APPLICID CKSG
USERDATA QM1.2.QM2.CHANNEL
ENVRDATA environment information

à ð
 Channel Help

 --

 MCATTB1 QM1.2.QM2.CHANNEL - Settings CICSTQM2

 More: +

 Channel type : SENDER

 Target system id :

 Transmission queue name . : QM2

 Batch size : ð1ðð

 Sequence number wrap . . : 9999999

 Max message size : ðð31ððð

 Max transmission : 32ððð

 Disconnect interval . . . : ðð15

 Transaction id : CKSG

 Connection name : QM2C

 CICS profile name :

 LU 6.2 TP name : CKRC

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 81. Sender settings (1)

 Chapter 27. Message channel planning example for OS/390 using CICS 389

 Planning example for OS/390 using CICS

à ð
 Channel Help

 --

 MCATTC1 QM1.2.QM2.CHANNEL - Settings CICSTQM2

 More: -

 Channel type : SENDER

 Sequential delivery . . . : ð (ð=No or 1=Yes)

 Retry

Count : ðð5

Fast interval : ðð5

Slow interval : ð3ð

 Exit routines

Security :

Message :

Send :

 Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 82. Sender settings (2)

The channel definition shows that CKSG must allocate a session on the CICS
QM2C connection and invoke the CKRC transaction at the destination CICS
system.

9. The QM2C connection definition provides a communications link to the CICS
system at the remote installation. The definition is as follows:

à ð

 OBJECT CHARACTERISTICS

 CEDA View

 Connection : QM2C

 Group : QM2CCONN

 DEscription : LU 6.2 PARALLEL CONNECTION TO CICSTQM1

 CONNECTION IDENTIFIERS

 Netname : CICSTQM1

 INDsys :

 REMOTE ATTRIBUTES

 REMOTESystem :

 REMOTEName :

 CONNECTION PROPERTIES

ACcessmethod : Vtam Vtam | IRc | INdirect | Xm

Protocol : Appc Appc | Lu61

SInglesess : No No | Yes

DAtastream : User User | 327ð | SCs | STrfield | Lms

RECordformat : U U | Vb

 OPERATIONAL PROPERTIES

 + AUtoconnect : Yes No | Yes | All

 APPLID=CICSTQM2

 PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á ñ

Figure 83. Connection definition (1)

390 MQSeries Intercommunication

 Planning example for OS/390 using CICS

à ð

 OBJECT CHARACTERISTICS

 CEDA VIew

 + INService : Yes Yes | No

 SECURITY

 SEcurityname :

ATtachsec : Local Local | Identify | Verify | Persistent

 | Mixidpe

BINDPassword : PASSWORD NOT SPECIFIED

BINDSecurity : No No | Yes

 APPLID=CICSTQM2

 PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á ñ

Figure 84. Connection definition (2)

10. The connection definition on the remote installation CICS system is called
QM1C, and is defined as follows:

à ð

 OBJECT CHARACTERISTICS

 CEDA View

 Connection : QM1C

 Group : QM1CCONN

 DEscription : LU 6.2 PARALLEL CONNECTION TO CICSTQM2

 CONNECTION IDENTIFIERS

 Netname : CICSTQM2

 INDsys :

 REMOTE ATTRIBUTES

 REMOTESystem :

 REMOTEName :

 CONNECTION PROPERTIES

ACcessmethod : Vtam Vtam | IRc | INdirect | Xm

Protocol : Appc Appc | Lu61

SInglesess : No No | Yes

DAtastream : User User | 327ð | SCs | STrfield | Lms

RECordformat : U U | Vb

 OPERATIONAL PROPERTIES

 + AUtoconnect : Yes No | Yes | All

 APPLID=CICSTQM1

 PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á ñ

Figure 85. Connection definition (1)

 Chapter 27. Message channel planning example for OS/390 using CICS 391

 Planning example for OS/390 using CICS

à ð

 OBJECT CHARACTERISTICS

 CEDA VIew

 + INService : Yes Yes | No

 SECURITY

 SEcurityname :

ATtachsec : Local Local | Identify | Verify | Persistent

 | Mixidpe

BINDPassword : PASSWORD NOT SPECIFIED

BINDSecurity : No No | Yes

 APPLID=CICSTQM1

 PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á ñ

Figure 86. Connection definition (2)

11. CKRC is started by CICS on the remote system, and is passed the channel
name during the initial data flows.

12. The transaction CKRC reads the definition for the receiver channel
QM1.2.QM2.CHANNEL from the channel definition file, which contains:

à ð
 Channel Help

 --

 MCATTB3 QM1.2.QM2.CHANNEL - Settings CICSTQM1

 More: +

 Channel type : RECEIVER

 Target system id :

 Batch size : ð1ðð

 Sequence number wrap . . : 9999999

 Max message size : ðð31ððð

 Max transmission : 32ððð

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 87. Receiver channel settings (1)

392 MQSeries Intercommunication

 Planning example for OS/390 using CICS

à ð
 Channel Help

 --

 MCATTC3 QM1.2.QM2.CHANNEL- Settings CICSTQM1

 More: -

 Channel type : RECEIVER

 Sequential delivery . . . : ð (ð=No or 1=Yes)

 Put authority : 1 (1=Process or 2=Context)

 Exit routines

Security :

Message :

Send :

Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

 F12=Cancel

á ñ

Figure 88. Receiver channel settings (2)

13. Once the message channel has completed the startup negotiation, the sender
channel passes messages to the receiver channel. The receiver channel takes
the name of the queue manager, queue name and message descriptor from
the transmission header, and issues an MQPUT1 call to put the message on
the local queue, QM1_payroll.

When the batch limit of 100 is reached, or when the transmission queue is
empty, the sender and receiver channels issue a syncpoint to commit the
changes through the queue managers.

14. The commit action by the QM2 queue manager makes the messages available
to the “Payroll process” application.

 Chapter 27. Message channel planning example for OS/390 using CICS 393

 Planning example for OS/390 using CICS

394 MQSeries Intercommunication

 MQSeries for OS/390 � OS/390 and LU 6.2

Chapter 28. Example configuration - IBM MQSeries for
OS/390

This chapter gives an example of how to set up communication links from
MQSeries for OS/390 or MVS/ESA to MQSeries products on the following
platforms:

 � OS/2
 � Windows NT
 � AIX
 � HP-UX
� AT&T GIS UNIX8

 � Sun Solaris
 � OS/400
 � VSE/ESA

(You can of course connect any of the following:

OS/390 to OS/390
OS/390 to MVS/ESA
MVS/ESA to MVS/ESA

with or without CICS.)

First it describes the parameters needed for an LU 6.2 connection, then it
describes:

� “Establishing an LU 6.2 connection” on page 401
� “Establishing an LU 6.2 connection using CICS” on page 402
� “Establishing a TCP connection” on page 403

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for OS/390 configuration” on
page 404.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 35 on page 396 presents a worksheet listing all the parameters needed to
set up communication from OS/390 to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

8 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 395

 OS/390 and LU 6.2

The steps required to set up an LU 6.2 connection are described in “Establishing
an LU 6.2 connection” on page 401 and “Establishing an LU 6.2 connection using
CICS” on page 402, with numbered cross references to the parameters on the
worksheet.

 Configuration worksheet
Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 399.

Table 35 (Page 1 of 4). Configuration worksheet for OS/390 using LU 6.2

ID Parameter Name Reference Example Used User Value

Definition for local node

.1/ Command prefix +cpf

.2/ Network ID NETID

.3/ Node name MVSPU

.4/ Local LU name MVSLU

.5/ Symbolic destination M1

.6/ Modename #INTER

.7/ Local Transaction Program name MQSERIES

.8/ LAN destination address 400074511092

Connection to an OS/2 system without using CICS

The values in this section of the table must match those used in Table 14 on page 152, as indicated.

.9/ Symbolic destination M2

.1ð/ Modename .17/ #INTER

.11/ Remote Transaction Program name .8/ MQSERIES

.12/ Partner LU name .6/ OS2LU

Connection to an OS/2 system using CICS

The values in this section of the table must match those used in Table 14 on page 152, as indicated.

.13/ Connection name OS2

.14/ Group name EXAMPLE

.15/ Session name OS2SESS

.16/ Netname .6/ OS2LU

Connection to a Windows NT system without using CICS

The values in this section of the table must match those used in Table 16 on page 178, as indicated.

.9/ Symbolic destination M3

.1ð/ Modename .17/ #INTER

.11/ Remote Transaction Program name .7/ MQSERIES

.12/ Partner LU name .5/ WINNTLU

.17/ Remote node ID .4/ 05D 30F65

396 MQSeries Intercommunication

 OS/390 and LU 6.2

Table 35 (Page 2 of 4). Configuration worksheet for OS/390 using LU 6.2

ID Parameter Name Reference Example Used User Value

Connection to a Windows NT system using CICS

The values in this section of the table must match those used in Table 16 on page 178, as indicated.

.13/ Connection name WNT

.14/ Group name EXAMPLE

.15/ Session name WNTSESS

.16/ Netname .6/ WINNTLU

Connection to an AIX system without using CICS

The values in this section of the table must match those used in Table 20 on page 208, as indicated.

.9/ Symbolic Destination M4

.1ð/ Modename .14/ #INTER

.11/ Remote Transaction Program name .6/ MQSERIES

.12/ Partner LU name .4/ AIXLU

Connection to an AIX system using CICS

The values in this section of the table must match those used in Table 20 on page 208, as indicated.

.13/ Connection name AIX

.14/ Group name EXAMPLE

.15/ Session name AIXSESS

.16/ Netname .4/ AIXLU

Connection to an HP-UX system without using CICS

The values in this section of the table must match those used in Table 22 on page 226, as indicated.

.9/ Symbolic Destination M5

.1ð/ Modename .6/ #INTER

.11/ Remote Transaction Program name .7/ MQSERIES

.12/ Partner LU name .5/ HPUXLU

Connection to an HP-UX system using CICS

The values in this section of the table must match those used in Table 22 on page 226, as indicated.

.13/ Connection name HPUX

.14/ Group name EXAMPLE

.15/ Session name HPUXSESS

.16/ Netname .5/ HPUXLU

Connection to an AT&T GIS UNIX system without using CICS

The values in this section of the table must match those used in Table 24 on page 244, as indicated.

.9/ Symbolic Destination M6

.1ð/ Modename .15/ #INTER

.11/ Remote Transaction Program name .5/ MQSERIES

.12/ Partner LU name .4/ GISLU

 Chapter 28. Example configuration - IBM MQSeries for OS/390 397

 OS/390 and LU 6.2

Table 35 (Page 3 of 4). Configuration worksheet for OS/390 using LU 6.2

ID Parameter Name Reference Example Used User Value

Connection to an AT&T GIS UNIX system using CICS

The values in this section of the table must match those used in Table 24 on page 244, as indicated.

.13/ Connection name GIS

.14/ Group name EXAMPLE

.15/ Session name GISSESS

.16/ Netname .4/ GISLU

Connection to a Sun Solaris system without using CICS

The values in this section of the table must match those used in Table 26 on page 258, as indicated.

.9/ Symbolic destination M7

.1ð/ Modename .17/ #INTER

.11/ Remote Transaction Program name .8/ MQSERIES

.12/ Partner LU name .7/ SOLARLU

Connection to a Sun Solaris system using CICS

The values in this section of the table must match those used in Table 26 on page 258, as indicated.

.13/ Connection name SOL

.14/ Group name EXAMPLE

.15/ Session name SOLSESS

.16/ Netname .7/ SOLARLU

Connection to an AS/400 system without using CICS

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.9/ Symbolic Destination M8

.1ð/ Modename .17/ #INTER

.11/ Remote Transaction Program name .8/ MQSERIES

.12/ Partner LU name .3/ AS400LU

Connection to an AS/400 system using CICS

The values in this section of the table must match those used in Table 41 on page 452, as indicated.

.13/ Connection name AS4

.14/ Group name EXAMPLE

.15/ Session name AS4SESS

.16/ Netname .3/ AS400LU

Connection to a VSE/ESA system without using CICS

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.9/ Symbolic destination M9

.1ð/ Modename #INTER

.11/ Remote Transaction Program name .4/ MQ01

.12/ Partner LU name .3/ VSELU

398 MQSeries Intercommunication

 OS/390 and LU 6.2

Table 35 (Page 4 of 4). Configuration worksheet for OS/390 using LU 6.2

ID Parameter Name Reference Example Used User Value

Connection to a VSE/ESA system using CICS

The values in this section of the table must match those used in Table 43 on page 474, as indicated.

.13/ Connection name VSE

.14/ Group name EXAMPLE

.15/ Session name VSESESS

.16/ Netname .3/ VSELU

Explanation of terms
.1/ Command prefix

This is the unique command prefix of your MQSeries for OS/390
queue-manager subsystem. The OS/390 systems programmer defines this at
installation time, in SYS1.PARMLIB(IEFSSNss), and will be able to tell you
the value.

.2/ Network ID
The VTAM startup procedure in your installation is partly customized by the
ATCSTRxx member of the data set referenced by the DDNAME VTAMLST.
The Network ID is the value specified for the NETID parameter in this
member. For Network ID you must specify the name of the NETID that owns
the MQSeries communications subsystem (MQSeries channel initiator or
CICS for OS/390 as the case may be). Your network administrator will tell
you the value.

.3/ Node name
VTAM, being a low-entry network node, does not have a Control Point name
for Advanced Peer-to-Peer Networking (APPN) use. It does however have a
system services control point name (SSCPNAME). For node name, you must
specify the name of the SSCP that owns the MQSeries communications
subsystem (MQSeries channel initiator or CICS for OS/390 as the case may
be). This is defined in the same ATCSTRxx member as the Network ID.
Your network administrator will tell you the value.

.4/ Local LU name
A logical unit (LU) is software that serves as an interface or translator
between a transaction program and the network. It manages the exchange of
data between transaction programs. The local LU name is the unique VTAM
APPLID of this MQSeries subsystem. Your network administrator will tell you
this value.

.5/ .9/ Symbolic destination
This is the name you give to the CPI-C side information profile. You need a
side information entry for each LU 6.2 listener.

.6/ .1ð/ Modename
This is the name given to the set of parameters that control the LU 6.2
conversation. An entry with this name and similar attributes must be defined
at each end of the session. In VTAM, this corresponds to a mode table entry.
You network administrator will assign this to you.

 Chapter 28. Example configuration - IBM MQSeries for OS/390 399

 OS/390 and LU 6.2

.7/ .11/ Transaction Program name
MQSeries applications trying to converse with this queue manager will specify
a symbolic name for the program to be run at the receiving end. This will
have been specified in the TPNAME attribute on the channel definition at the
sender. For simplicity, wherever possible use a transaction program name of
MQSERIES, or in the case of a connection to VSE/ESA, where the length is
limited to 4 bytes, use MQTP.

See Table 29 on page 340 for more information. If the receiving end is
OS/390 using CICS, special values are required.

.8/ LAN destination address
This is the LAN destination address that your partner nodes will use to
communicate with this host. When you are using a 3745 network controller, it
will be the value specified in the LOCADD parameter for the line definition to
which your partner is physically connected. If your partner nodes use other
devices such as 317X or 6611 devices, the address will have been set during
the customization of those devices. Your network administrator will tell you
this value.

.12/ Partner LU name
This is the LU name of the MQSeries queue manager on the system with
which you are setting up communication. This value is specified in the side
information entry for the remote partner.

.13/ Connection name
(CICS only) This is a 4-character name by which each connection will be
individually known in CICS RDO.

.14/ Group name
(CICS only) You choose your own 8-character name for this value. Your
system may already have a group defined for connections to partner nodes.
Your CICS administrator will give you a value to use.

.15/ Session name
(CICS only) This is an 8-character name by which each group of sessions will
be individually known. For clarity we use the connection name, concatenated
with ‘SESS’.

.16/ Netname
(CICS only) This is the LU name of the MQSeries queue manager on the
system with which you are setting up communication.

.17/ Remote node ID
For a connection to Windows NT, this is the ID of the local node on the
Windows NT system with which you are setting up communication.

400 MQSeries Intercommunication

 LU 6.2 without CICS

Establishing an LU 6.2 connection
To establish an LU 6.2 connection, there are two
steps:

1. Define yourself to the network.
2. Define a connection to the partner.

Defining yourself to the network
1. SYS1.PARMLIB(APPCPMxx) contains the

startup parameters for APPC. You must add
a line to this file to define the local LU name
you intend to use for the MQSeries LU 6.2
listener. The line you add should take the
form

 LUADD ACBNAME(mvslu)
 NOSCHED

 TPDATA(csq.appctp)

Specify values for ACBNAME(.4/) and TPDATA.

The NOSCHED parameter tells APPC that our
new LU will not be using the LU 6.2 scheduler
(ASCH), but has one of its own. TPDATA
refers to the Transaction Program data set in
which LU 6.2 stores information about
transaction programs. Again, MQSeries will
not use this, but it is required by the syntax of
the LUADD command.

2. Start the APPC subsystem with the command:

START APPC,SUB=MSTR,APPC=xx

where xx is the suffix of the PARMLIB
member in which you added the LU in step 1.

Note: If APPC is already running, it can be
refreshed with the command:

SET APPC=xx

The effect of this is cumulative, that is, APPC
will not lose its knowledge of objects already
defined to it in this or another PARMLIB
member.

3. Add the new LU to a suitable VTAM major
node definition. These are typically in
SYS1.VTAMLST. The APPL definition will
look similar to the sample shown in Figure 89.

MVSLU APPL ACBNAME=MVSLU, .4/
 APPC=YES,

 AUTOSES=ð,

 DDRAINL=NALLOW,

 DLOGMOD=#INTER, .6/
 DMINWNL=1ð,

 DMINWNR=1ð,

 DRESPL=NALLOW,

 DSESLIM=6ð,

 LMDENT=19,

 MODETAB=MTCICS,

 PARSESS=YES,

 VERIFY=NONE,

 SECACPT=ALREADYV,

 SRBEXIT=YES

Figure 89. Channel Initiator APPL definition

4. Activate the major node. This can be done
with the command:

V,NET,ACT,majornode

5. Add an entry defining your LU to the CPI-C
side information data set. Use the APPC
utility program ATBSDFMU to do this.
Sample JCL is in
thlqual.SCSQPROC(CSQ4SIDE) (where
thlqual is the target library high-level qualifier
for MQSeries data sets in your installation.)

The entry you add will look like this:

 SIADD

 DESTNAME(M1) .5/
 MODENAME(#INTER) .6/
 TPNAME(MQSERIES) .7/
 PARTNER_LU(MVSLU) .4/

6. Create the channel-initiator parameter module
for your queue manager. Sample JCL to do
this is in thlqual.SCSQPROC(CSQ4XPRM).
You must specify the local LU (.4/) assigned
to your queue manager in the LUNAME=
parameter of the CSQ6CHIP macro.

 Chapter 28. Example configuration - IBM MQSeries for OS/390 401

 LU 6.2 with CICS

//SYSIN DD \

 CSQ6CHIP ADAPS=8, X

 ACTCHL=2ðð, X

 CURRCHL=2ðð, X

 DISPS=5, X

 LUNAME=MVSLU, X

 LU62CHL=2ðð, X

 TCPCHL=2ðð, X

 TCPKEEP=NO, X

 TCPNAME=TCPIP, X

 TCPTYPE=OESOCKET, X

 TRAXSTR=YES, X

 TRAXTBL=2

 END

/\

Figure 90. Channel Initiator initialization parameters

7. Modify the job to assemble and link-edit the
tailored version of the initiator macro to
produce a new load module.

8. Submit the job and verify that it completes
successfully.

9. Put the new initialization-parameters module
in an APF-authorized user library. Include this
library in the STEPLIB concatenation for the
channel initiator’s started-task procedure,
ensuring that it precedes the library
thlqual.SCSQAUTH.

Defining a connection to a
partner
Note: This example is for a connection to an
OS/2 system but the task is the same for other
platforms.

Add an entry to the CPI-C side information data
set to define the connection. Sample JCL to do
this is in thlqual.SCSQPROC(CSQ4SIDE).

The entry you add will look like this:

 SIADD

 DESTNAME(M2) .9/
 MODENAME(#INTER) .1ð/
 TPNAME(MQSERIES) .11/
 PARTNER_LU(OS2LU) .12/

 What next?

The connection is now established. You are
ready to complete the configuration. Go to
“MQSeries for OS/390 configuration” on
page 404.

Establishing an LU 6.2
connection using CICS
Note: This example is for a connection to an
OS/2 system. The steps are the same whatever
platform you are using; change the values as
appropriate.

Defining a connection
1. At a CICS command line type:

CEDA DEF CONN(connection name) .13/
GROUP(group name) .14/

For example:

CEDA DEF CONN(OS2) GROUP(EXAMPLE)

2. Press Enter to define the connection to CICS.

A panel is displayed, as shown below.

à ð
DEF CONN(OS2) GROUP(EXAMPLE)

OVERTYPE TO MODIFY CICS RELEASE = ð52ð

 CEDA DEFine

 Connection : OS2

 Group : EXAMPLE

 DEscription ==>

 CONNECTION IDENTIFIERS

 Netname ==> OS2LU

 INDsys ==>

 REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 CONNECTION PROPERTIES

ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm

Protocol ==> Appc Appc | Lu61

SInglesess ==> No No | Yes

DAtastream ==> User User | 327ð | SCs | STrfield | Lms

RECordformat ==> U U | Vb

 OPERATIONAL PROPERTIES

+ AUtoconnect ==> No No | Yes | All

I New group EXAMPLE created.

 APPLID=MVSLU

DEFINE SUCCESSFUL TIME: 16.49.3ð DATE: 95.ð65

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á

ñ

3. On this panel, change the Netname field in
the CONNECTION IDENTIFIERS section to
be the LU name (.16/) of the target system.
In the CONNECTION PROPERTIES section
set the ACcessmethod field to Vtam and the
Protocol to Appc.

4. Press Enter to make the change.

402 MQSeries Intercommunication

 OS/390 and TCP

Defining the sessions
1. At a CICS command line type:

CEDA DEF SESS(session name) .15/
GROUP(group name) .14/

For example:

CEDA DEF SESS(OS2SESS) GROUP(EXAMPLE)

2. Press Enter to define the group of sessions
for the connection.

A panel is displayed, as shown below.

à ð
DEF SESS(OS2SESS) GROUP(EXAMPLE)

OVERTYPE TO MODIFY CICS RELEASE = ð52ð

 CEDA DEFine

 Sessions ==> OS2SESS

 Group ==> EXAMPLE

 DEscription ==>

 SESSION IDENTIFIERS

 Connection ==> OS2

 SESSName ==>

 NETnameq ==>

 MOdename ==> #INTER

 SESSION PROPERTIES

Protocol ==> Appc Appc | Lu61

MAximum ==> ðð8 , ðð4 ð-999

 RECEIVEPfx ==>

 RECEIVECount ==> 1-999

 SENDPfx ==>

 SENDCount ==> 1-999

 SENDSize ==> ð4ð96 1-3ð72ð

+ RECEIVESize ==> ð4ð96 1-3ð72ð

S CONNECTION MUST BE SPECIFIED.

 APPLID=MVSLU

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á

ñ

3. On this panel, in the SESSION IDENTIFIERS
section, specify the Connection name (.13/) in
the Connection field and set the MOdename
to #INTER. In the SESSION PROPERTIES
section set the Protocol to Appc and the
MAximum field to ðð8 , ðð4.

4. Press Enter to make the change.

Installing the new group
definition

To install the new group definition, type:

CEDA INS GROUP(group name) .14/

at a CICS command line, and press Enter.

Note: If this connection group is already in use,
severe errors will be reported. If this occurs you
must take the existing connections out of service,
retry the group installation, and then set the

connections in service again using the following
commands:

1. CEMT I CONN
2. CEMT S CONN(\) OUTS
3. CEDA INS GROUP(Group name)
4. CEMT S CONN(\) INS

 What next?

The connection is now established. You are
ready to complete the configuration. Go to
“MQSeries for OS/390 configuration” on
page 404.

Establishing a TCP connection

Edit the channel initiator initialization parameters.
Sample JCL to do this is in
thlqual.SCSQPROC(CSQ4XPRM). You must
add the name of the TCP address space to the
TCPNAME= parameter.

//SYSIN DD \

 CSQ6CHIP ADAPS=8, X

 ACTCHL=2ðð, X

 CURRCHL=2ðð, X

 DISPS=5, X

 LUNAME=MVSLU, X

 LU62CHL=2ðð, X

 TCPCHL=2ðð, X

 TCPKEEP=NO, X

 TCPNAME=TCPIP, X

 TCPTYPE=OESOCKET, X

 TRAXSTR=YES, X

 TRAXTBL=2

 END

/\

Figure 91. Channel Initiator initialization parameters

 What next?

The TCP connection is now established. You are
ready to complete the configuration. Go to
“MQSeries for OS/390 configuration” on
page 404.

 Chapter 28. Example configuration - IBM MQSeries for OS/390 403

 OS/390 configuration

MQSeries for OS/390 configuration
If you are not using CICS:

1. Start the channel initiator using the command:

+cpf START CHINIT PARM(xparms) .1/

where xparms is the name of the channel-initiator parameter module that you
created.

2. Start an LU 6.2 listener using the command:

+cpf START LSTR LUNAME(M1) TRPTYPE(LU62)

The LUNAME of M1 refers to the symbolic name you gave your LU (.5/). You
must specify TRPTYPE(LU62), otherwise the listener will assume you want
TCP.

3. Start a TCP listener using the command:

+cpf START LSTR

If you wish to use a port other than 1414 (the default MQSeries port), use the
command:

+cpf START LSTR PORT(1555)

MQSeries channels will not initialize successfully if the channel negotiation detects
that the message sequence number is different at each end. You may need to
reset this manually.

Note that the OS/390 product with CICS uses the message sequence number of
the message it last sent, while all other platforms use the sequence number of the
next message to be sent. This means you must reset the message sequence
number to 0 at the OS/390 (with CICS) end of a channel and to 1 everywhere else.

 Channel configuration
The following sections detail the configuration to be performed on the OS/390
queue manager to implement the channel described in Figure 32 on page 105.

Examples are given for connecting MQSeries for OS/390 and MQSeries for OS/2
Warp. If you wish to connect to another MQSeries product use the appropriate set
of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 36 (Page 1 of 4). Configuration worksheet for MQSeries for OS/390

ID Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name MVS

.B/ Local queue name MVS.LOCALQ

404 MQSeries Intercommunication

 OS/390 configuration

Table 36 (Page 2 of 4). Configuration worksheet for MQSeries for OS/390

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 171, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender (LU 6.2) channel name MVS.OS2.SNA

.H/ Sender (TCP) channel name MVS.OS2.TCP

.I/ Receiver (LU 6.2) channel name .G/ OS2.MVS.SNA

.J/ Receiver (TCP) channel name .H/ OS2.MVS.TCP

.K/ Sender (LU 6.2 using CICS) channel
name

MVS.OS2.CICS

.L/ Receiver (LU 6.2 using CICS) channel
name

OS2.MVS.CICS

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 192, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender (LU 6.2) channel name MVS.WINNT.SNA

.H/ Sender (TCP) channel name MVS.WINNT.TCP

.I/ Receiver (LU 6.2) channel name .G/ WINNT.MVS.SNA

.J/ Receiver (TCP/IP) channel name .H/ WINNT.MVS.TCP

.K/ Sender (LU 6.2 using CICS) channel
name

MVS.WINNT.CICS

.L/ Receiver (LU 6.2 using CICS) channel
name

WINNT.MVS.CICS

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 220, as indicated.

.C/ Remote queue manager name AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender (LU 6.2) channel name MVS.AIX.SNA

.H/ Sender (TCP/IP) channel name MVS.AIX.TCP

.I/ Receiver (LU 6.2) channel name .G/ AIX.MVS.SNA

.J/ Receiver (TCP/IP) channel name .H/ AIX.MVS.TCP

.K/ Sender (LU 6.2 using CICS) channel
name

MVS.AIX.CICS

.L/ Receiver (LU 6.2 using CICS) channel
name

AIX.MVS.CICS

 Chapter 28. Example configuration - IBM MQSeries for OS/390 405

 OS/390 configuration

Table 36 (Page 3 of 4). Configuration worksheet for MQSeries for OS/390

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page 238, as indicated.

.C/ Remote queue manager name HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender (LU 6.2) channel name MVS.HPUX.SNA

.H/ Sender (TCP) channel name MVS.HPUX.TCP

.I/ Receiver (LU 6.2) channel name .G/ HPUX.MVS.SNA

.J/ Receiver (TCP) channel name .H/ HPUX.MVS.TCP

.K/ Sender (LU 6.2 using CICS) channel
name

MVS.HPUX.CICS

.L/ Receiver (LU 6.2 using CICS) channel
name

HPUX.MVS.CICS

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 25 on page 252, as indicated.

.C/ Remote queue manager name GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender (LU 6.2) channel name MVS.GIS.SNA

.H/ Sender (TCP) channel name MVS.GIS.TCP

.I/ Receiver (LU 6.2) channel name .G/ GIS.MVS.SNA

.J/ Receiver (TCP) channel name .H/ GIS.MVS.TCP

.K/ Sender (LU 6.2 using CICS) channel
name

MVS.GIS.CICS

.L/ Receiver (LU 6.2 using CICS) channel
name

GIS.MVS.CICS

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page 269, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender (LU 6.2) channel name MVS.SOLARIS.SNA

.H/ Sender (TCP) channel name MVS.SOLARIS.TCP

.I/ Receiver (LU 6.2) channel name .G/ SOLARIS.MVS.SNA

.J/ Receiver (TCP/IP) channel name .H/ SOLARIS.MVS.TCP

406 MQSeries Intercommunication

 OS/390 configuration

Table 36 (Page 4 of 4). Configuration worksheet for MQSeries for OS/390

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page 460, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender (LU 6.2) channel name MVS.AS400.SNA

.H/ Sender (TCP/IP) channel name MVS.AS400.TCP

.I/ Receiver (LU 6.2) channel name .G/ AS400.MVS.SNA

.J/ Receiver (TCP/IP) channel name .H/ AS400.MVS.TCP

.K/ Sender (LU 6.2 using CICS) channel
name

MVS.AS400.CICS

.L/ Receiver (LU 6.2 using CICS) channel
name

AS400.MVS.CICS

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name MVS.VSE.SNA

.I/ Receiver channel name .G/ VSE.MVS.SNA

MQSeries for OS/390 sender-channel definitions using non-CICS
LU 6.2
 Local Queue

Object type : QLOCAL

 Name : OS2 .F/
 Usage : X (XmitQ)

 Remote Queue

Object type : QREMOTE

 Name : OS2.REMOTEQ .D/
Name on remote system : OS2.LOCALQ .E/

Remote system name : OS2 .C/
Transmission queue : OS2 .F/

 Sender Channel

Channel name : MVS.OS2.SNA .G/
Transport type : L (LU6.2)

Transmission queue name : OS2 .F/
Connection name : M2 .9/

 Chapter 28. Example configuration - IBM MQSeries for OS/390 407

 OS/390 configuration

MQSeries for OS/390 receiver-channel definitions using
non-CICS LU 6.2
 Local Queue

Object type : QLOCAL

 Name : MVS.LOCALQ .B/
 Usage : N (Normal)

 Receiver Channel

Channel name : OS2.MVS.SNA .I/

MQSeries for OS/390 sender-channel definitions using TCP
 Local Queue

Object type : QLOCAL

 Name : OS2 .F/
 Usage : X (XmitQ)

 Remote Queue

Object type : QREMOTE

 Name : OS2.REMOTEQ .D/
Name on remote system : OS2.LOCALQ .E/

Remote system name : OS2 .C/
Transmission queue : OS2 .F/

 Sender Channel

Channel name : MVS.OS2.TCP .H/
Transport type : T (TCP)

Transmission queue name : OS2 .F/
Connection name : os2.tcpip.hostname

MQSeries for OS/390 receiver-channel definitions using TCP
 Local Queue

Object type : QLOCAL

 Name : MVS.LOCALQ .B/
 Usage : N (Normal)

 Receiver Channel

Channel name : OS2.MVS.TCP .J/

408 MQSeries Intercommunication

 OS/390 configuration

MQSeries for OS/390 sender-channel definitions using CICS
 Local Queue

Object type : QLOCAL

 Name : OS2 .F/
 Usage : X (XmitQ)

 Remote Queue

Object type : QREMOTE

 Name : OS2.REMOTEQ .D/
Name on remote system : OS2.LOCALQ .E/

Remote system name : OS2 .C/
Transmission queue : OS2 .F/

 Sender Channel

Channel name : MVS.OS2.CICS .K/
Channel type : 1 (Sender)

Target system id : <blank>

Transmission queue name : OS2 .F/
Transaction id : CKSG

Connection name : OS2 .13/
LU62 TP name : MQSERIES

MQSeries for OS/390 receiver-channel definitions using CICS
 Local Queue

Object type : QLOCAL

 Name : MVS.LOCALQ .B/
 Usage : N (Normal)

 Receiver Channel

Channel name : OS2.MVS.CICS .L/
Channel type : 3 (Receiver)

Target system id : <blank>

 Chapter 28. Example configuration - IBM MQSeries for OS/390 409

 OS/390 configuration

Defining a local queue
1. From ISPF, access the MQSeries main menu.

| à| ð| IBM MQSeries for OS/39ð - Main Menu

| Complete fields. Then press Enter.

| Action 1 1. Display 5. Perform| 2. Define 6. Start| 3. Alter 7. Stop| 4. Delete

| Object type QLOCAL +| Name MVS.LOCALQ| Like __

| Connect to queue| manager : MQ25| Target queue manager : MQ25| Response wait time . : 1ð seconds

| (C) Copyright IBM Corporation 1993,1999. All rights reserved.

| Command ===> __| F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

2. Specify an Action of 2, enter an Object type
of QLOCAL, and specify a Name for the queue.

 3. Press Enter.

The first Define a Local Queue panel is
displayed. There are several panels in all.

4. Use F7 and F8 to move backwards and
forwards through the panels of attributes and
set each attribute as required.

Specifically, you should check the values for
Usage and Trigger type .

à ð
Define a Local Queue

 Complete fields, then press F8 for further fields, or Enter to define queue.

 More: +

 Queue name MVS.LOCALQ

 Description ________________________________

 Put enabled Y Y=Yes,N=No

 Get enabled Y Y=Yes,N=No

 Usage N N=Normal,X=XmitQ

 Storage class DEFAULT

 Command ===> __

F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

 F1ð=Messages F12=Cancel

á

ñ

| à| ð| Define a Local Queue

| Press F7 or F8 to see other fields, or Enter to define queue.

| More: - +

| Default persistence N Y=Yes,N=No| Default priority ð ð - 9| Message delivery sequence . . P P=Priority,F=FIFO| Permit shared access N Y=Yes,N=No| Default share option E E=Exclusive,S=Shared| Index type N N=None,M=MsgId,C=CorrelId,T=MsgToken| Maximum queue depth 999999999 ð - 999999999| Maximum message length . . . 41943ð4 ð - 41943ð4| Retention interval 999999999 ð - 999999999 hours

| Cluster name __| Cluster namelist name __| Default bind O O=Open,N=Notfixed

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

à ð
Define a Local Queue

 Press F7 or F8 to see other fields, or Enter to define queue.

 More: - +

 Trigger Definition

 Trigger type F F=First,E=Every,D=Depth,N=None

Trigger set N Y=Yes,N=No

Trigger message priority . ð ð - 9

Trigger depth 1 1 - 999999999

Trigger data ________________________________

Process name __

Initiation queue __

 Command ===> __

F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

 F1ð=Messages F12=Cancel

á

ñ

à ð
Define a Local Queue

 Press F7 or F8 to see other fields, or Enter to define queue.

 More: - +

 Event Control

Queue full E E=Enabled,D=Disabled

Upper queue depth D E=Enabled,D=Disabled

Threshold 8ð ð - 1ðð %

Lower queue depth D E=Enabled,D=Disabled

Threshold 4ð ð - 1ðð %

Service interval N H=High,O=OK,N=None

Interval 999999999 ð - 999999999 milliseconds

 Command ===> __

F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

 F1ð=Messages F12=Cancel

á

ñ

410 MQSeries Intercommunication

 OS/390 configuration

à ð
Define a Local Queue

 Press F7 to see previous fields, or Enter to define queue.

 More: -

 Backout Reporting

Backout threshold ð ð=No backout reporting

Harden backout counter . . N Y=Yes,N=No

Backout requeue name . . . __

 Command ===> __

F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

 F1ð=Messages F12=Cancel

á

ñ

Defining a remote queue
1. From ISPF, access the MQSeries main menu.

2. Specify an Action of 2, enter an Object type
of QREMOTE, and specify a Name for the queue.

3. Press Enter. The Define a Remote Queue
panels are displayed.

| à| ð| Define a Remote Queue

| Complete fields, then press F8 for further fields, or Enter to define queue.

| More: +

| Queue name OS2.REMOTEQ| Description ________________________________| ________________________________

| Put enabled Y Y=Yes,N=No| Default persistence N Y=Yes,N=No| Default priority ð ð - 9| Remote name __| Remote queue manager __| Transmission queue __

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

| à| ð| Define a Remote Queue

| Press F7 to see previous fields, or Enter to define queue.

| More: -

| Cluster name __| Cluster namelist name __| Default bind O O=Open,N=Notfixed

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

4. Set each parameter as required. Specifically,
you should set the values for Remote name ,
Remote queue manager , and Transmission
queue .

 Chapter 28. Example configuration - IBM MQSeries for OS/390 411

 OS/390 configuration

Defining a sender channel when
not using CICS

1. From ISPF, access the MQSeries main menu.

2. Specify an Action of 2, enter an Object type
of CHLSENDER, and specify a Name for the
channel.

 3. Press Enter.

The first Define a Sender Channel panel is
displayed. There are three panels in all.

4. Complete the parameter fields as indicated.
In particular, specify the fields Transport
type , Connection name (.9/), and
Transmission queue name .

| à| ð| Define a Sender Channel

| Complete fields, then press F8 for further fields, or Enter to define channel.

| More: +

| Channel name MVS.OS2.SNA| Description ________________________________| ________________________________

| Transport type L L=LU6.2,T=TCP| Connection name __| Transmission queue __| LU6.2 mode name __| LU6.2 TP name __

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

| à| ð| Define a Sender Channel

| Press F7 or F8 to see other fields, or Enter to define channel.

| More: - +

| MCA user ID ____________

| Nonpersistent messages . . . F F=Fast,N=Normal| Maximum message length . . . 41943ð4 ð - 41943ð4| Batch size 5ð 1 - 9999| Sequence number wrap 999999999 1ðð - 999999999| Heartbeat interval 3ðð ð - 999999 seconds

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

à ð
Define a Sender Channel

 Press F7 or F8 to see other fields, or Enter to define channel.

 More: - +

 Disconnect interval 6ððð ð - 999999 seconds

 Batch interval ð ð - 999999999 milliseconds

 Short retry interval 6ð ð - 999999999 seconds

 Short retry count 1ð ð - 999999999

 Long retry interval 12ðð ð - 999999999 seconds

 Long retry count 999999999 ð - 999999999

 Conversion by sender N Y=Yes,N=No

 Command ===> __

F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

 F1ð=Messages F12=Cancel

á

ñ

| à| ð| Define a Sender Channel

| Press F7 to see previous fields, or Enter to define channel.

| More: -

| Security exit name ________| User data ________________________________

| Send exit name ________| User data ________________________________

| Receive exit name ________| User data ________________________________

| Message exit name ________| User data ________________________________

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

Defining a receiver channel when
not using CICS

1. From ISPF, access the MQSeries main menu.

2. Specify an Action of 2, an Object type of
CHLRECEIVER, and specify a Name for the
channel.

 3. Press Enter.

The first Define a Receiver Channel panel is
displayed. There are two panels in all. Set
the parameter values as indicated.

412 MQSeries Intercommunication

 OS/390 configuration

| à| ð| Define a Receiver Channel

| Complete fields, then press F8 for further fields, or Enter to define channel.

| More: +

| Channel name OS2.MVS.SNA| Description ________________________________| ________________________________

| Put authority D D=Default,C=Context,M=MCAuser

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

| à| ð| Define a Receiver Channel

| Press F7 or F8 to see other fields, or Enter to define channel.

| More: - +

| MCA user ID ____________

| Nonpersistent messages . . . F F=Fast,N=Normal| Maximum message length . . . 41943ð4 ð - 41943ð4| Batch size 5ð 1 - 9999| Sequence number wrap 999999999 1ðð - 999999999| Heartbeat interval 3ðð ð - 999999 seconds

| Command ===> __| F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap| F1ð=Messages F12=Cancel

| á|
ñ

à ð
Define a Receiver Channel

 Press F7 to see previous fields, or Enter to define channel.

 More: -

 Security exit name ________

User data ________________________________

 Send exit name ________

User data ________________________________

 Receive exit name ________

User data ________________________________

 Message exit name ________

User data ________________________________

 Command ===> __

F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap

 F1ð=Messages F12=Cancel

á

ñ

Defining a sender channel using
CICS

1. Run the CICS transaction CKMC. Select Edit
and then Create . A pop-up window appears.

2. Specify a Channel name and a Channel
type .

 3. Press Enter.

The Settings panel, which spans two screens,
is displayed.

4. Complete the parameter fields as indicated.
In particular, specify the Transmission queue
name , Connection name , and LU62 TP
name . Allow the other fields to default.

à ð
 Channel Help

--

MCATTB1 MVS.OS2.CICS - Settings MVSLU

 More: +

Channel type : SENDER

Target system id :

Transmission queue name . : OS2

Batch size : ððð1

Sequence number wrap . . : ð999999999

Max message size : ðð32ððð

Max transmission : 32ððð

Disconnect interval . . . : ððð1

Transaction id : CKSG

Connection name : <CICS connection to target, defined in CEDA>

CICS profile name :

LU62 TP name : MQSERIES

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

F12=Cancel

á

ñ

à ð
 Channel Help

--

MCATTC1 MVS.OS2.CICS - Settings MVSLU

 More: -

Channel type : SENDER

Sequential delivery . . . : ð (ð=No or 1=Yes)

Retry

Count : ðð5

Fast interval : ðð5

Slow interval : ð3ð

Exit routines

 Security :

Message :

 Send :

Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

F12=Cancel

á

ñ

 Chapter 28. Example configuration - IBM MQSeries for OS/390 413

 OS/390 configuration

Defining a receiver channel using
CICS

1. Run the CICS transaction CKMC. Select Edit
and then Create . A pop-up window appears.

à ð
Selected Edit View Help

--

MCSELB IBM MQSeries for OS/39ð Message Channel List MVSLU

Select a channel name. Then select an action.

 More:

 Channel name Type Sysid

 MVS.OS2.CICS SENDER HUR1

(C) Copyright IBM Corporation 1993, 1999. All rights reserved.

F1=Help F3=Exit F5=Refresh now F6=Find F7=Bkwd F8=Fwd F1ð=Menu Bar

F12=Cancel

á

ñ

2. Specify a Channel name and a Channel
type .

 3. Press Enter.

The Settings panel, which spans two screens,
is displayed.

4. Set the parameter values as indicated. In
particular, if translation is required, set the
Message field of the Exit routines section.

à ð
 Channel Help

--

MCATTB3 OS2.MVS.CICS - Settings MVSLU

 More:

Channel type : RECEIVER

Target system id :

Batch size : ððð1

Sequence number wrap . . : ð999999999

Max message size : ðð32ððð

Max transmission : 32ððð

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

F12=Cancel

á

ñ

à ð
 Channel Help

--

MCATTC3 OS2.MVS.CICS - Settings MVSLU

 More: -

Channel type : RECEIVER

Sequential delivery . . . : ð (ð=No or 1=Yes)

Put authority : 1 (1=Process or 2=Context)

Exit routines

 Security :

Message :

 Send :

Receive :

F1=Help F3=Exit F5=Refresh now F7=Bkwd F8=Fwd F1ð=Menu Bar

F12=Cancel

á

ñ

414 MQSeries Intercommunication

Part 5. DQM in MQSeries for AS/400

This part of the book describes the MQSeries distributed queue management
function for MQSeries for AS/400.

Chapter 29. Monitoring and controlling channels in MQSeries for AS/400
 . 417

The DQM channel control function . 417
Operator commands . 418
Getting started . 420
Creating objects . 420
Creating a channel . 420
Selecting a channel . 423
Browsing a channel . 423
Renaming a channel . 425
Work with channel status . 425
Work-with-channel choices . 427
Panel choices . 428

F6=Create . 428
2=Change . 429
3=Copy . 429
4=Delete . 430
5=Display . 430
8=Work with Status . 430
13=Ping . 430
14=Start . 431
15=End . 432
16=Reset . 432
17=Resolve . 432

Chapter 30. Preparing MQSeries for AS/400 433
Creating a transmission queue . 433
Triggering channels . 435
Channel programs . 437
Channel states on OS/400 . 438
Other things to consider . 439

Undelivered-message queue . 439
Queues in use . 439
Maximum number of channels . 439
Multiple message channels per transmission queue 439
Security of MQSeries for AS/400 objects . 439
System extensions and user-exit programs 440

Chapter 31. Setting up communication for MQSeries for AS/400 441
Deciding on a connection . 441
Defining a TCP connection . 441

Receiving on TCP . 442
Defining an LU 6.2 connection . 443

Initiating end (Sending) . 444
Initiated end (Receiver) . 448

 Copyright IBM Corp. 1993,1999 415

Chapter 32. Example configuration - IBM MQSeries for AS/400 451
Configuration parameters for an LU 6.2 connection 451

Configuration worksheet . 451
Explanation of terms . 454

Establishing an LU 6.2 connection . 456
Local node configuration . 456
Connection to partner node . 456
What next? . 458

Establishing a TCP connection . 458
Adding a TCP/IP interface . 458
Adding a TCP/IP loopback interface . 458
Adding a default route . 459
What next? . 459

MQSeries for AS/400 configuration . 459
Basic configuration . 459
Channel configuration . 459
Defining a queue . 464
Defining a channel . 464

Chapter 33. Message channel planning example for OS/400 465
What the example shows . 465

Queue manager QM1 example . 466
Queue manager QM2 example . 468

Running the example . 470
Expanding this example . 470

416 MQSeries Intercommunication

 Channels in MQSeries for AS/400 � Channel control function

Chapter 29. Monitoring and controlling channels in MQSeries
for AS/400

Use the DQM commands and panels to create, monitor, and control the channels
to remote queue managers. Each queue manager has a DQM program for
controlling interconnections to compatible remote queue managers. See Figure 92
on page 418 for a list of the commands you need when setting up and controlling
message channels.

The DQM channel control function
The channel control function provides the interface and function for administration
and control of message channels between MQSeries for AS/400 and compatible
systems. See Figure 28 on page 64 for a conceptual picture.

The channel control function consists of MQSeries for AS/400 panels, commands,
programs, a sequence number file, and a file for the channel definitions. The
following is a brief description of the components of the channel control function:

� The channel definition file (CDF):

– Is indexed on channel name
– Holds channel definitions

� The channel commands are a subset of the MQSeries for AS/400 set of
commands.

Use the command GO CMDMQM to display the full set of MQSeries for AS/400
commands.

� You use channel definition panels, or commands to:

– Create, copy, display, change, and delete channel definitions

– Start and stop channels, ping, reset channel sequence numbers, and
resolve in-doubt messages when links cannot be re-established

– Display status information about channels

� Sequence numbers and logical unit of work (LUW) identifiers are stored in the
synchronization file, and are used for channel synchronization purposes.

 Copyright IBM Corp. 1993,1999 417

 Operator commands

 Operator commands
Figure 92 shows the full list of MQSeries for AS/400 commands that you may need
when setting up and controlling channels. In general, issuing a command results in
the appropriate panel being displayed. Reference material for commands is
contained in the MQSeries for AS/400 Administration Guide.

Queue manager commands

Command server commands

Queue commands

Process commands

Authority commands

Figure 92 (Part 1 of 2). Message queue manager commands

CHGMQM Change queue manager
CCTMQM Connect queue manager
CRTMQM Create queue manager
DLTMQM Delete queue manager
DSCMQM Disconnect queue manager
DSPMQM Display queue manager
ENDMQM End queue manager
STRMQM Start queue manager

DSPMQMCSVR Display command server
ENDMQMCSVR End command server
STRMQMCSVR Start command server

CHGMQMQ Change queue
CLRMQMQ Clear queue
CPYMQMQ Copy queue
CRTMQMQ Create queue
DLTMQMQ Delete queue
DSPMQMQ Display queue
WRKMQMMSG Work with queue messages
WRKMQMQ Work with queues

CHGMQMPRC Change process
CPYMQMPRC Copy process
CRTMQMPRC Create process
DLTMQMPRC Delete process
DSPMQMPRC Display process
WRKMQMPRC Work with processes

DSPMQMAUT Display object authority
GRTMQMAUT Grant object authority
RVKMQMAUT Revoke object authority

418 MQSeries Intercommunication

 Operator commands

Channel commands

Trace commands

Administrator command

Name command

Media recovery commands

MQSeries commands

Data conversion exit command

Figure 92 (Part 2 of 2). Message queue manager commands

CHGMQMCHL Change channel
CPYMQMCHL Copy channel
CRTMQMCHL Create channel
DLTMQMCHL Delete channel
DSPMQMCHL Display channel
ENDMQMCHL End channel
PNGMQMCHL Ping channel
RSTMQMCHL Reset channel
RSVMQMCHL Resolve channel
STRMQMCHL Start channel
STRMQMCHLI Start channel initiator
STRMQMLSR Start listener
WRKMQMCHL Work with channels
WRKMQMCHST Work with channel status

ENDMQMSRV End Service
STRMQMSRV Start Service
TRCMQM Trace

STRMQMADM Start Administrator

DSPMQMOBJN Display MQSeries object names

RCDMQMIMG Record MQSeries object image
RCRMQMOBJ Recreate MQSeries object

STRMQMMQSC Start MQSeries Commands

CVTMQMDTA Convert MQM data type

 Chapter 29. Monitoring and controlling channels in MQSeries for AS/400 419

 Getting started � Creating a channel

 Getting started
Use these commands and panels to:

1. Define message channels and associated objects
2. Monitor and control message channels

The objects you need to define with the panels are:

 � Transmission queues
� Remote queue definitions
� Queue manager alias definitions
� Reply-to queue alias definitions
� Reply-to local queues
� Processes for triggering (MCAs)
� Message channel definitions

See Chapter 2, “Making your applications communicate” on page 19 for more
discussion on the concepts involved in the use of these objects.

Channels must be completely defined, and their associated objects must exist and
be available for use, before a channel can be started. This chapter shows you how
to do this.

In addition, the particular communication link for each channel must be defined and
available before a channel can be run. For a description of how LU 6.2 and
TCP/IP links are defined, see the particular communication guide for your
installation as listed in “Related publications” on page xxvii.

 Creating objects
Use the CRTMQMQ command to create the queue and alias objects, such as:
transmission queues, remote queue definitions, queue manager alias definitions,
reply-to queue alias definitions, and reply-to local queues.

Creating a channel
To create a new channel:

1. Use F6 from the Work with MQM Channels panel (the second panel that
displays channel details).

Alternatively, use the CRTMQMCHL command from the command line.

Either way, this displays the Create Channel panel. Type:

� The name of the channel in the field provided
� The channel type for this end of the link

 2. Press Enter.

Note: You are strongly recommended to name all the channels in your network
uniquely. As shown in Table 1 on page 33, including the source and target queue
manager names in the channel name is a good way to do this.

Your entries are validated and errors are reported immediately. Correct any errors
and continue.

420 MQSeries Intercommunication

 Creating a channel

You are presented with the appropriate channel settings panel for the type of
channel you have chosen. Fill in the fields with the information you have gathered
previously. See Appendix A, “Channel planning form” on page 619 for an example
of how you might want to gather information. Press Enter to create the channel.

You are provided with help in deciding on the content of the various fields in the
descriptions of the channel definition panels in the help panels, and in Chapter 6,
“Channel attributes” on page 85.

à ð
Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name > CHANNAME________________

Channel type > \SDR__ \RCVR, \SDR, \SVR, \RQSTR...

Replace \NO_ \NO, \YES

Transport type \TCP____ \LU62, \TCP, \SYSDFTCHL

Text 'description' > 'Example Channel Definition'_______________

Connection name \SYSDFTCHL_________________________________

__

__

__

__

__

__

Transmission queue 'TRANSMISSION_QUEUE_NAME'__________________

Message channel agent \NONE______ \SYSDFTCHL, \NONE

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

á ñ

Figure 93. Create channel (1)

à ð
Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Message channel agent user ID . \NONE_______ Character value, \NONE...

Batch size 5ð_________ 1-9999, \SYSDFTCHL

Disconnect interval 6ððð_______ ð-999999, \SYSDFTCHL

Short retry interval 6ð_________ ð-999999999, \SYSDFTCHL

Short retry count 1ð_________ ð-999999999, \SYSDFTCHL

Long retry interval 12ðð_______ ð-999999999, \SYSDFTCHL

Long retry count 999999999__ ð-999999999, \SYSDFTCHL

Security exit \NONE_____ Name, \SYSDFTCHL, \NONE

 Library __________ Name, ' '

Security exit user data ________________________________

Send exit \NONE______ Name, \SYSDFTCHL, \NONE

 Library ___________ Name, ' '

+ for more values __________

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

á ñ

Figure 94. Create channel (2)

 Chapter 29. Monitoring and controlling channels in MQSeries for AS/400 421

 Creating a channel

à ð
Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Send exit user data ________________________________

+ for more values ________________________________

Receive exit \NONE_____ Name, \SYSDFTCHL, \NONE

 Library __________ Name, ' '

+ for more values __________

Receive exit user data ________________________________

+ for more values ________________________________

Message exit \NONE_____ Name, \SYSDFTCHL, \NONE

 Library __________ Name, ' '

+ for more values __________

Message exit user data ________________________________

+ for more values _____________________________

Sequence number wrap 999999999__ 1ðð-999999999, \SYSDFTCHL

Maximum message length 41943ð4____ ð-41943ð4, \SYSDFTCHL

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

á ñ

Figure 95. Create channel (3)

à ð
Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Convert message \NO_______ \YES, \NO, \SYSDFTCHL

Heartbeat interval 3ðð________ ð-999999999, \SYSDFTCHL

Nonpersistent Message Speed . . \FAST_____ \FAST, \NORMAL, \SYSDFTCHL

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

á ñ

Figure 96. Create channel (4)

422 MQSeries Intercommunication

 Selecting a channel � Browsing a channel

Selecting a channel
To select a channel, use the WRKMQMCHL command to begin at the Work with
Channels panel:

1. Move the cursor to the option field at the left of the required channel name.
2. Type an option number.
3. Press Enter to activate your choice.

If you select more than one channel, the options are activated in sequence.

à ð
Work with MQM Channels

 Type options, press Enter.

 2=Change 3=Copy 4=Delete 5=Display 8=Work with Status 13=Ping

 14=Start 15=End 16=Reset 17=Resolve

 Opt Name Type Transport Status

 CHLNIC \RCVR \TCP INACTIVE

CORSAIR.TO.MUSTANG \SDR \LU62 INACTIVE

FV.CHANNEL.MC.DJE1 \RCVR \TCP INACTIVE

 FV.CHANNEL.MC.DJE2 \SDR \TCP INACTIVE

 FV.CHANNEL.MC.DJE3 \RQSTR \TCP INACTIVE

 FV.CHANNEL.MC.DJE4 \SVR \TCP INACTIVE

 FV.CHANNEL.PETER \RCVR \TCP INACTIVE

 FV.CHANNEL.PETER.LU \RCVR \LU62 INACTIVE

FV.CHANNEL.PETER.LU1 \SDR \LU62 INACTIVE

FV.CHANNEL.PETER1 \SDR \TCP INACTIVE

 FV.CHANNEL.PETER2 \RCVR \TCP INACTIVE

 More...

 Parameters or command

 ===>

F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel

 F21=Print

á ñ

Figure 97. Work with channels

Browsing a channel
To browse the settings of a channel, use the WRKMQMCHL command to begin at
the Display Channel panel:

1. Move the cursor to the left of the required channel name.
2. Type option 5 (Display).
3. Press Enter to activate your choice.

If you select more than one channel, they are presented in sequence.

Alternatively, you can use the DSPMQMCHL command from the command line.

This results in the respective Display Channel panel being displayed with details of
the current settings for the channel. The fields are described in Chapter 6,
“Channel attributes” on page 85.

 Chapter 29. Monitoring and controlling channels in MQSeries for AS/400 423

 Browsing a channel

à ð
Display MQM Channel

 Channel name : ST.JST.2TO1

 Channel type : \SDR

 Transport type : \TCP

 Text 'description' : John's sender to WINSDOA1

 Connection name : MUSTANG

 Transmission queue : WINSDOA1

 Message channel agent :

Library :

 Message channel agent user ID : \NONE

 Batch size : 5ð

 Disconnect interval : 6ððð

F3=Exit F12=Cancel F21=Print

á ñ

Figure 98. Display a TCP/IP channel (1)

à ð
Display MQM Channel

 Short retry interval : 6ð

 Short retry count : 1ð

 Long retry interval : 6ððð

 Long retry count : 1ð

 Security exit :

Library :

 Security exit user data . . . :

 Send exit :

Library :

 Send exit user data :

 Receive exit :

Library :

 Receive exit user data :

 Message exit :

Library :

 Message exit user data :

 More...

F3=Exit F12=Cancel F21=Print

á ñ

Figure 99. Display a TCP/IP channel (2)

424 MQSeries Intercommunication

 Renaming a channel � Work with channel status

à ð
Display MQM Channel

 Sequence number wrap : 999999999

 Maximum message length : 1ðððð

 Convert message : \NO

 Heartbeat interval 3ðð

 Nonpersistent message speed . . \FAST

 Bottom

F3=Exit F12=Cancel F21=Print

á ñ

Figure 100. Display a TCP/IP channel (3)

Renaming a channel
To rename a message channel, begin at the Work with Channels panel:

1. End the channel.
2. Use option 3 (Copy) to create a duplicate with the new name.
3. Use option 5 (Display) to check that it has been created correctly.
4. Use option 4 (Delete) to delete the original channel.

If you decide to rename a message channel, ensure that both channel ends are
renamed at the same time.

Work with channel status
Use the WRKMQMCHST command to bring up the first of three screens showing
the status of your channels. You can view the three status screens in sequence
when you select Change-view (F11).

Alternatively, selecting option 8 (Work with Status) from the Work with MQM
Channels panel also brings up the first status panel.

Work with channel status applies to all message channels. It does not apply to
MQI channels other than server-connection channels on MQSeries for AS/400
V4R2M1.

Note: The Work with Channel Status screens only show channels that are active
after messages have been sent through the channel and the sequence number has
been incremented.

 Chapter 29. Monitoring and controlling channels in MQSeries for AS/400 425

 Work with channel status

à ð
MQSeries Work with Channel Status

 Type options, press Enter.

 5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

 Opt Name Connection Indoubt Last Seq

 CARTS_CORSAIR_CHAN GBIBMIYA.WINSDOA1 NO 1

 CHLNIC 9.2ð.2.213 NO 3

 FV.CHANNEL.PETER2 9.2ð.2.213 NO 6225

JST.1.2 9.2ð.2.2ð1 NO 28

 MP_MUST_TO_CORS 9.2ð.2.213 NO 1ðð

 MUSTANG.TO.CORSAIR GBIBMIYA.WINSDOA1 NO 1ð

 MP_CORS_TO_MUST 9.2ð.2.213 NO 1ð1

JST.2.3 9.5.7.126 NO 32

 PF_WINSDOA1_LU62 GBIBMIYA.IYA8ðð2ð NO 54

 PF_WINSDOA1_LU62 GBIBMIYA.WINSDOA1 NO 5ðð

 ST.JCW.EXIT.2TO1.CHL 9.2ð.2.213 NO 216

 Bottom

 Parameters or command

 ===>

F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view

 F12=Cancel F21=Print

á ñ

Figure 101. Channel status (1)

Change the view with F11.

à ð
MQSeries Work with Channel Status

 Type options, press Enter.

 5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

 Opt Transmission Queue LUWID

 7516E58A4ðCðððEC

 7515A36CðD8ðð157

 7515E79ðAC8ðð1CA

 7516FF22848ðððð9

 75147C6629Cððð9D

 7516DDE5778ðððA8

 FV_MKP_TRANS_QUEUE 75147B61A44ðððFA

 JST.3 7517ð185Dðððð133

 PF.WINSDOA1 7516DA3955Cððð97

 PF.WINSDOA1 7516DE2396CðððBC

 ST.JCW.EXIT.2TO1.XMIT.QUEUE 7516C512914ððð16

 Bottom

 Parameters or command

 ===>

F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view

 F12=Cancel F21=Print

á ñ

Figure 102. Channel status (2)

426 MQSeries Intercommunication

 Work-with-channel choices

à ð
MQSeries Work with Channel Status

 Type options, press Enter.

 5=Display 13=Ping 14=Start 15=End 16=Reset 17=Resolve

 Indoubt Indoubt Indoubt

 Opt Msgs Seq LUWID

 ð ð ðððððððððððððððð

 ð ð ðððððððððððððððð

 ð ð ðððððððððððððððð

 ð ð ðððððððððððððððð

 ð ð ðððððððððððððððð

 ð ð ðððððððððððððððð

 ð 1ð1 75147B61A44ðððFA

 ð 32 7517ð185Dðððð133

 ð 54 7516DA3955Cððð97

 ð 5ðð 7516DE2396CðððBC

 ð 216 7516C512914ððð16

 Bottom

 Parameters or command

 ===>

F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F11=Change view

 F12=Cancel F21=Print

á ñ

Figure 103. Channel status (3)

The options available in the Work with Channel Status panel are:

Menu option Description
5=Display Displays the channel settings.
13=Ping Initiates a Ping action, where appropriate.
14=Start Starts the channel.
15=End Stops the channel.
16=Reset Resets the channel sequence number.
17=Resolve Resolves an in-doubt channel situation, manually.
F11=Change view Cycles around the three status panels.

 Work-with-channel choices
The Work with Channels panel is reached with the command WRKMQMCHL, and it
allows you to monitor the status of all channels listed, and to issue commands
against selected channels.

 Chapter 29. Monitoring and controlling channels in MQSeries for AS/400 427

 Panel choices

The options available in the Work with Channel panel are:

Menu option Description
F6=Create Creates a channel.
2=Change Changes the attributes of a channel.
3=Copy Copies the attributes of a channel to a new channel.
4=Delete Deletes a channel.
5=Display Displays the current settings for the channel.
8=Work with status Displays the channel status panels.
13=Ping Runs the Ping facility to test the connection to the adjacent system

by exchanging a fixed data message with the remote end.
14=Start Starts the selected channel, or resets a disabled receiver channel.
15=End Requests the channel to close down.
16=Reset Requests the channel to reset the sequence numbers on this end

of the link. The numbers must be equal at both ends for the
channel to start.

17=Resolve Requests the channel to resolve in-doubt messages without
establishing connection to the other end.

 Panel choices
The following choices are provided in the Work with MQM channels panel and the
Work with Channel Status panel.

 F6=Create
Use the Create option, or enter the CRTMQMCHL command from the command
line, to obtain the Create Channel panel.

With this panel, you create a new channel definition from a screen of fields filled
with default values supplied by MQSeries for AS/400. Type the name of the
channel, select the type of channel you are creating, and the communication
method to be used.

When you press Enter, the panel is displayed. Type information in all the required
fields in this panel, and the three pages making up the complete panel, and then
save the definition by pressing Enter.

The channel name must be the same at both ends of the channel, and unique
within the network. However, you should restrict the characters used to those that
are valid for MQSeries for AS/400 object names; see Chapter 6, “Channel
attributes” on page 85.

All panels have default values supplied by MQSeries for AS/400 for some fields.
You can customize these values, or you can change them when you are creating or
copying channels. To customize the values, see the MQSeries for AS/400
Administration Guide.

You can create your own set of channel default values by setting up dummy
channels with the required defaults for each channel type, and copying them each
time you want to create new channel definitions.

Table 37 on page 429 shows the channel attributes that are required for each type
of channel. See Chapter 6, “Channel attributes” on page 85 for details about the
fields.

428 MQSeries Intercommunication

 Panel choices

Note: √ = Required attribute, O = Optional attribute

Table 37. Channel attribute fields per message channel type

Attribute field Sender Server Receiver Requester

Batch size √ √ √ √

Channel name √ √ √ √

Channel type √ √ √ √

Connection name √ O √

Context √ √

Disconnect interval √ √

Heartbeat interval O O O O

Long retry wait interval √ √

Long retry count √ √

Maximum message length √ √ √ √

Message channel agent name O

Message exit user data O O O O

Message retry exit count O O

Message retry exit data O O

Message retry exit interval O O

Message retry exit name O O

Nonpersistent message speed O O O O

Receive exit O O O O

Receive exit user data O O O O

Security exit O O O O

Security exit user data O O O O

Send exit O O O O

Send exit user data O O O O

Sequence number wrap √ √ √ √

Short retry wait interval √ √

Short retry count √ √

Transport type √ √ √ √

Transmission queue √ √

Message exit O O O O

 2=Change
Use the Change option, or the CHGMQMCHL command, to change an existing
channel definition, except for the channel name. Simply type over the fields to be
changed in the channel definition panel, and then save the updated definition by
pressing Enter.

 3=Copy
Use the Copy option, or the CPYMQMCHL command, to copy an existing channel.
The Copy panel enables you to define the new channel name. However, you
should restrict the characters used to those that are valid for MQSeries for AS/400
object names; see the MQSeries for AS/400 Administration Guide.

 Chapter 29. Monitoring and controlling channels in MQSeries for AS/400 429

 Panel choices

Press Enter on the Copy panel to display the details of current settings. You can
change any of the new channel settings. Save the new channel definition by
pressing Enter.

 4=Delete
Use the Delete option to delete the selected channel. A panel is displayed to
confirm or cancel your request.

 5=Display
Use the Display option to display the current definitions for the channel. This
choice displays the panel with the fields showing the current values of the
parameters, and protected against user input.

8=Work with Status
The status column tells you whether the channel is active or inactive, and is
displayed continuously in the Work with MQM Channels panel. Use option 8 (Work
with Status) to see more status information displayed. Alternatively, this can be
displayed from the command line with the WRKMQMCHST command. See “Work
with channel status” on page 425.

 � Channel name
� Communication connection name
� In-doubt status of channel (where appropriate)
� Last sequence number
� Transmission queue name (where appropriate)
� The in-doubt identifier (where appropriate)
� The last committed sequence number
� Logical unit of work identifier

 13=Ping
Use the Ping option to exchange a fixed data message with the remote end. This
gives some confidence to the system supervisor that the link is available and
functioning.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related communication link, and the network setup.

It is available from sender and server channels, only. The corresponding channel
is started at the far side of the link, and performs the start up parameter
negotiation. Errors are notified normally.

The result of the message exchange is presented in the Ping panel for you, and is
the returned message text, together with the time the message was sent, and the
time the reply was received.

Ping with LU 6.2
When Ping is invoked in MQSeries for AS/400, it is run with the USERID of the
user requesting the function, whereas the normal way that a channel program is
run is for the QMQM USERID to be taken for channel programs. The USERID
flows to the receiving side and it must be valid on the receiving end for the LU 6.2
conversation to be allocated.

430 MQSeries Intercommunication

 Panel choices

 14=Start
The Start option is available for sender, server, and requester channels. It should
not be necessary where a channel has been set up with queue manager triggering.

The Start option is also used for receiver channels that have a DISABLED status.
Starting a receiver channel that is in DISABLED state resets the channel and
allows it to be started from the remote channel.

When started, the sending MCA reads the channel definition file and opens the
transmission queue. A channel start-up sequence is executed, which remotely
starts the corresponding MCA of the receiver or server channel. When they have
been started, the sender and server processes await messages arriving on the
transmission queue and transmit them as they arrive.

When you use triggering, you will need to start the continuously running trigger
process to monitor the initiation queue. The STRMQMCHLI command can be used
for this.

At the far end of a channel, the receiving process may be started in response to a
channel startup from the sending end. The method of doing this is different for LU
6.2 and TCP/IP connected channels:

� LU 6.2 connected channels do not require any explicit action at the receiving
end of a channel.

� TCP connected channels require a listener process to be running continuously.
This process awaits channel startup requests from the remote end of the link
and starts the process defined in the channel definitions for that connection.

When the remote machine is a AS/400, you can use the STRMQMLSR
command for this.

Use of the Start option always causes the channel to re-synchronize, where
necessary.

For the start to succeed:

� Channel definitions, local and remote must exist. If there is no appropriate
channel definition for a receiver or server-connection channel, a default one is
created automatically if the channel is auto-defined. See “Channel
auto-definition exit program” on page 502.

� The transmission queue must exist, be enabled for GETs, and have no other
channels using it.

� MCAs, local and remote, must exist.

� The communication link must be available.

� The queue managers must be running, local and remote.

� The message channel must be inactive.

To transfer messages, remote queues and remote queue definitions must exist.

A message is returned to the panel confirming that the request to start a channel
has been accepted. For confirmation that the Start process has succeeded, check
the system log, or press F5 (refresh the screen).

 Chapter 29. Monitoring and controlling channels in MQSeries for AS/400 431

 Panel choices

 15=End
Use the End option to request the channel to stop activity. The channel will not
send any more messages until the operator starts the channel again. (For
information about restarting stopped channels, see “Restarting stopped channels”
on page 75.)

You can select the type of stop you require if you press F4 before Enter. You can
choose IMMEDIATE, or CONTROLLED.

 Stop immediate
Normally, this option should not be used. It terminates the channel process. The
channel does not complete processing the current batch of messages, and cannot,
therefore, leave the channel in doubt. In general, it is recommended that the
operators use the controlled stop option.

 Stop controlled
This choice requests the channel to close down in an orderly way; the current batch
of messages is completed, and the syncpoint procedure is carried out with the
other end of the channel.

 16=Reset
The Reset option changes the message sequence number. Use it with care, and
only after you have used the Resolve option to resolve any in-doubt situations.
This option is available only at the sender or server channel. The first message
starts the new sequence the next time the channel is started.

 17=Resolve
Use the Resolve option when messages are held in-doubt by a sender or server,
for example because one end of the link has terminated, and there is no prospect
of it recovering. The Resolve option accepts one of two parameters: BACKOUT or
COMMIT. Backout restores messages to the transmission queue, while Commit
discards them.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the in-doubt
messages. It then issues, as requested, either:

� BACKOUT to restore the messages to the transmission queue; or
� COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:

� The channel must be inactive
� The channel must be in doubt
� The channel type must be sender or server
� The channel definition, local, must exist
� The queue manager must be running, local

432 MQSeries Intercommunication

 Preparing MQSeries for AS/400 � Creating a transmission queue

Chapter 30. Preparing MQSeries for AS/400

This chapter describes the MQSeries for AS/400 preparations required before DQM
can be used. Communication preparations are described in Chapter 31, “Setting
up communication for MQSeries for AS/400” on page 441.

Before a channel can be started, the transmission queue must be defined as
described in this chapter, and must be included in the message channel definition.

In addition, where needed, the triggering arrangement must be prepared with the
definition of the necessary processes and queues.

Creating a transmission queue
You define a local queue with the Usage field attribute set to *TMQ, for each
sending message channel.

If you want to make use of remote queue definitions, use the same command to
create a queue of type *RMT, and Usage of *NORMAL.

To create a transmission queue, use the CRTMQMQ command from the command
line to present you with the first queue creation panel; see Figure 104.

à ð
Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Queue name

 Queue type ____ \ALS, \LCL, \MDL, \RMT

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 +

á ñ

Figure 104. Create a queue (1)

Type the name of the queue and specify the type of queue that you wish to create:
Local, Remote, or Alias. For a transmission queue, specify Local (\LCL) on this
panel and press Enter.

 Copyright IBM Corp. 1993,1999 433

 Creating a transmission queue

You are presented with the second page of the Create MQM Queue panel; see
Figure 105.

à ð
Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Queue name > HURS.2.HURS.PRIORIT

 Queue type > \LCL \ALS, \LCL, \MDL, \RMT

 Replace \NO \NO, \YES

 Text 'description' ' '

 Put enabled \YES \SYSDFTQ, \NO, \YES

 Default message priority ð ð-9, \SYSDFTQ

 Default message persistence . . \NO \SYSDFTQ, \NO, \YES

 Process name ' '

 Triggering enabled \NO \SYSDFTQ, \NO, \YES

 Get enabled \YES \SYSDFTQ, \NO, \YES

 Sharing enabled \YES \SYSDFTQ, \NO, \YES

 Default share option \YES \SYSDFTQ, \NO, \YES

 Message delivery sequence . . . \PTY \SYSDFTQ, \PTY, \FIFO

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

Figure 105. Create a queue (2)

Change any of the default values shown. Press page down to scroll to the next
screen; see Figure 106.

à ð
Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Harden backout count \NO \SYSDFTQ, \NO, \YES

 Trigger type \FIRST \SYSDFTQ, \FIRST, \ALL...

 Trigger depth 1 1-999999999, \SYSDFTQ

 Trigger message priority ð ð-9, \SYSDFTQ

 Trigger data ' '

 Retention interval 999999999 ð-999999999, \SYSDFTQ

 Maximum queue depth 5ððð 1-24ððð, \SYSDFTQ

 Maximum message length 41943ð4 ð-41943ð4, \SYSDFTQ

 Backout threshold ð ð-999999999, \SYSDFTQ

 Backout requeue queue ' '

 Initiation queue ' '

 Usage \TMQ \SYSDFTQ, \NORMAL, \TMQ

 Queue depth high threshold . . . 8ð ð-1ðð, \SYSDFTQ

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

Figure 106. Create a queue (3)

Type \TMQ, for transmission queue, in the Usage field of this panel, and change any
of the default values shown in the other fields.

434 MQSeries Intercommunication

 Triggering channels

à ð
Create MQM Queue (CRTMQMQ)

 Type choices, press Enter.

 Queue depth low threshold . . . 2ð ð-1ðð, \SYSDFTQ

 Queue full events enabled . . . \YES \SYSDFTQ, \NO, \YES

 Queue high events enabled . . . \YES \SYSDFTQ, \NO, \YES

 Queue low events enabled \YES \SYSDFTQ, \NO, \YES

 Service interval 999999999 ð-999999999, \SYSDFTQ

 Service interval events \NONE \SYSDFTQ, \HIGH, \OK, \NONE

 Distribution list support . . . \NO \SYSDFTQ, \NO, \YES

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

Figure 107. Create a queue (4)

When you are satisfied that the fields contain the correct data, press Enter to
create the queue.

 Triggering channels
An overview of triggering is given in “Triggering channels” on page 23, while it is
described in depth in Chapter 14, “Starting MQSeries applications using triggers” in
the MQSeries Application Programming Guide. This section provides you with
information specific to MQSeries for AS/400.

Triggering in MQSeries for AS/400 is implemented with the channel initiator process
that is started with the STRMQMCHLI command that specifies the name of the
initiation queue. For example:

 STRMQMCHLI QNAME(MYINITQ)

You need to set up the transmission queue for the channel specifying TRIGGER
and specifying the channel name in the TRIGDATA field: For example:

DEFINE QLOCAL(MYXMITQ) USAGE(XMITQ) TRIGGER INITQ(MYINITQ) +

 PROCESS(MYPROCESS) TRIGDATA(HURS.TO.HURS.NORMAL)

Then define an initiation queue.

DEFINE QLOCAL(MYINITQ)

In releases prior to V4R2 you need a process statement. You need to set up the
transmission queue for the channel with TRIGGER enabled and define an initiation
queue. For example:

DEFINE QLOCAL(MYXMITQ) USAGE(XMITQ) TRIGGER INITQ(MYINITQ) +

 PROCESS(MYPROCESS)

DEFINE QLOCAL(MYINITQ)

 Chapter 30. Preparing MQSeries for AS/400 435

 Triggering channels

Then you need to define a process in MQSeries for AS/400 naming the MCA
sender program, as the program to be triggered when messages arrive on the
transmission queue.

Use the CRTMQMPRC command to do this. Type CRTMQMPRC on the command
line to display the Create Process panel. Alternatively, select F6 (Create) from the
Work with MQM Process panel. See Figure 108 for the first page of the Create
Process panel. The MQSeries for AS/400 Administration Guide contains details of
defining processes to be triggered.

à ð
Create MQM Process (CRTMQMPRC)

 Type choices, press Enter.

 Process name > ASQTRIG

 Replace \NO \NO, \YES

 Text 'description' > 'Triggers hursley.to.hursley.normal '

 Application type \OS4ðð 65536-999999999, \OS4ðð...

 Application identifier > 'AMQRMCLA

 User data > 'HURS.TO.HURS.NORMAL '

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

Figure 108. Create process (1)

1. Type the name of the process definition in the field provided.

2. Enter a description in the Text 'description' field.

3. Set Application type to *OS400.

4. Set Application identifier to AMQRMCLA.

5. Set User data to the channel name so as to associate this definition with the
transmission queue belonging to the channel.

6. Page down to show the second page (see Figure 109 on page 437) and insert
any environment data.

436 MQSeries Intercommunication

 Channel programs

à ð
Create MQM Process (CRTMQMPRC)

 Type choices, press Enter.

 Environment data ' '

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

Figure 109. Create process (2)

 Channel programs
There are different types of channel programs (MCAs) available for use at the
channels. The names are contained in the following table.

Table 38. Program and transaction names

Program name Direction of connection Communication

AMQCCCLA Inbound TCP

AMQCRS6A Inbound LU 6.2

AMQRMCLA Outbound Any

 Chapter 30. Preparing MQSeries for AS/400 437

Channel states on OS/400
Channel states are displayed on the Work with Channels panel (described in
Figure 97 on page 423). There are some differences between the names of
channel states on different versions of MQSeries for AS/400. In the following table,
the state names shown for V4R2 correspond to the channel states described in
Figure 30 on page 69. As shown in the table, some of these states have different
names, or do not exist for earlier versions.

Table 39. Channel states on OS/400

State name
(V3R6)

State name
(V3R2,
V3R7, V4R2)

Meaning

- STARTING Channel is ready to begin negotiation with target
MCA

BINDING BINDING Establishing a session and initial data exchange

REQUESTING REQUESTING Requester channel initiating a connection

READY RUNNING Transferring or ready to transfer

PAUSED PAUSED Waiting for message-retry interval

CLOSING STOPPING Establishing whether to retry or stop

RETRYING RETRYING Waiting until next retry attempt

DISABLED STOPPED Channel stopped because of an error or because an
end-channel command is issued

STOPPED INACTIVE Channel ended processing normally or channel never
started

- ñNone No state (for server-connection channels only)

Note: The state ñNone applies only to V3R2 and V3R7.

438 MQSeries Intercommunication

 Other things to consider

Other things to consider
Here are some other topics that you should consider when preparing MQSeries for
distributed queue management.

 Undelivered-message queue
It is advisable that you have an application available to process the messages
arriving on the undelivered-message queue (also known as the dead-letter queue

| or DLQ). The program could be triggered, or run at regular intervals. For more
| details, see the MQSeries for AS/400 Administration Guide and Chapter 14,
| “Starting MQSeries applications using triggers” in the MQSeries Application
| Programming Guide.

Queues in use
MCAs for receiver channels may keep the destination queues open even when
messages are not being transmitted; this results in the queues appearing to be “in
use.”

Maximum number of channels
You can specify the maximum number of channels allowed in your system and the
maximum number that can be active at one time. You do this in the QMINI file in
library QMQMDATA. See Appendix D, “Configuration file stanzas for distributed
queuing” on page 635.

Multiple message channels per transmission queue
It is possible to define more than one channel per transmission queue, but only one
of these channels can be active at any one time. This is recommended for the
provision of alternative routes between queue managers for traffic balancing and
link failure corrective action.

Security of MQSeries for AS/400 objects
This section deals with remote messaging aspects of security.

MQSeries for AS/400 uses the object access control, and user identification and
authorization facilities of OS/400. For more information, see the MQSeries for
AS/400 Administration Guide.

You need to provide users with authority to make use of the MQSeries for AS/400
facilities, and this is organized according to actions to be taken with respect to
objects and definitions. For example:

� Queue managers can be started and stopped by authorized users

� Applications need to connect to the queue manager, and have authority to
make use of queues

� Message channels need to be created and controlled by authorized users

� Objects are kept in libraries, and access to these libraries may be restricted

 Chapter 30. Preparing MQSeries for AS/400 439

 Other things to consider

The message channel agent at a remote site needs to check that the message
being delivered has derived from a user with authority to do so at this remote site.
In addition, as MCAs can be started remotely, it may be necessary to verify that the
remote processes trying to start your MCAs are authorized to do so. There are
three possible ways for you to deal with this:

1. Decree in the channel definition that messages must contain acceptable
context authority, otherwise they will be discarded.

2. Implement user exit security checking to ensure that the corresponding
message channel is authorized. The security of the installation hosting the
corresponding channel ensures that all users are properly authorized, so that
you do not need to check individual messages.

3. Implement user exit message processing to ensure that individual messages
are vetted for authorization.

Here are some facts about the way MQSeries for AS/400 operates security:

� Users are identified and authenticated by OS/400

� Queue manager services invoked by applications are run with the authority of
the queue manager user profile, but in the user’s process

� Queue manager services invoked by user commands are run with the authority
of the queue manager user profile

System extensions and user-exit programs
A facility is provided in the channel definition to allow extra programs to be run at
defined times during the processing of messages. These programs are not
supplied with MQSeries for AS/400, but may be provided by each installation
according to local requirements.

In order to run, such programs must have predefined names and be available on
call to the channel programs. The names of the exit programs are included in the
message channel definitions.

There is a defined control block interface for handing over control to these
programs, and for handling the return of control from these programs.

The precise places where these programs are called, and details of control blocks
and names, are to be found in Part 7, “Further intercommunication considerations”
on page 487.

440 MQSeries Intercommunication

 Communications in MQSeries for AS/400 � Defining a TCP connection

Chapter 31. Setting up communication for MQSeries for
AS/400

DQM is a remote queuing facility for MQSeries for AS/400. It provides channel
control programs for the MQSeries for AS/400 queue manager which form the
interface to communication links, controllable by the system operator. The channel
definitions held by distributed queue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this.

Deciding on a connection
There are two forms of communication between MQSeries for AS/400 systems:

 � AS/400 TCP

For TCP, a host address may be used, and these connections are set up as
described in the OS/400 Communication Configuration Reference.

In the TCP environment, each distributed service is allocated a unique TCP
host address which may be used by remote machines to access the service.
All queue managers will use such a number to communicate with each other
via TCP.

� AS400 SNA (LU 6.2)

This form of communication requires the definition of an AS400 SNA logical
unit type 6.2 (LU 6.2) that provides the physical link between the AS400
serving the local queue manager and the system serving the remote queue
manager. Refer to the OS/400 Communication Configuration Reference for
details on configuring communications in OS/400.

Defining a TCP connection
The channel definition contains a field, CONNECTION NAME, that contains either
the TCP network address of the target, in dotted decimal form (for example
9.20.9.30) or the host name (for example AS4HUR1). If the CONNECTION NAME
is a host name, a name server or the AS/400 host table is used to convert the host
name into a TCP/IP host address.

On the initiating end of a connection (sender, requester, and server channel types)
it is possible to provide an optional port number for the connection, for example:

Connection name 9.2ð.9.3ð (1555)

In this case the initiating end will attempt to connect to a receiving program at port
1555.

 Copyright IBM Corp. 1993,1999 441

 Defining a TCP connection

Receiving on TCP
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel. You start this listener
program with the STRMQMLSR command.

By default, the MQSeries for AS/400 TCP listener program uses port 1414.

It is possible to change this configuration to a user-defined value:

1. Create a physical file called QMINI in library QMQMDATA.

2. Using an editor insert the following lines (in this example, the listener is
required to use TCP port 2500):

 TCP:

 Port=25ðð

This new value is read only when the TCP listener is started. If you have a listener
already running this change will not be seen by that program. To use the new
value, stop the listener and issue the STRMQMLSR command again.

Using the TCP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page 72) you must add the following
entry to your queue manager configuration file (QMINI in library QMQMDATA):

TCP:

 KeepAlive=yes

You must then issue the following command:

CFGTCP

Select option 3 (Change TCP Attributes). You can now specify a time interval in
minutes. You can specify a value in the range 1 through 40320 minutes; the
default is 120.

| Using the TCP listener backlog option
| When receiving on TCP, a maximum number of outstanding connection requests is
| set. This can be considered a backlog of requests waiting on the TCP port for the
| listener to accept the request.

| The default listener backlog value on AS/400 is 255. If the backlog reaches this
| value, the TCP connection is rejected and the channel will not be able to start.

| For MCA channels, this results in the channel going into a RETRY state and
| retrying the connection at a later time.

| For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
| reason code from MQCONN and should retry the connection at a later time.

| However, to avoid this error, you can add an entry in the qm.ini file:

| TCP:

| ListenerBacklog = n

442 MQSeries Intercommunication

 Defining an LU 6.2 connection

| This overrides the default maximum number of outstanding requests (255) for the
| TCP listener.

| Note: Some operating systems support a larger value than the default. If
| necessary, this can be used to avoid reaching the connection limit.

| To run the listener with the backlog option switched on, use the RUNMQLSR -B

| command. For information about the RUNMQLSR command, see “runmqlsr (Run
| listener)” in the MQSeries System Administration book.

Defining an LU 6.2 connection
A communications side information (CSI) object is required to define the LU 6.2
communications details for the sending end of a message channel. It is referred to
in the CONNECTION NAME field of the Sender or Server channel definition for LU
6.2 connections. Further information on the communications side object is
available in the AS/400 APPC Communications Programmer’s Guide.

The initiated end of the link must have a routing entry definition to complement this
CSI object. Further information on managing work requests from remote LU 6.2
systems is available in the AS/400 Programming: Work Management Guide.

See the Multiplatform APPC Configuration Guide and the following table for
information.

 Chapter 31. Setting up communication for MQSeries for AS/400 443

 Defining an LU 6.2 connection

| If you have more than one queue manager on the same machine, ensure that the
| TPnames in the channel definitions are unique.

Table 40. Settings on the local OS/400 system for a remote queue manager platform

Remote
platform

TPNAME TPPATH

OS/390
without CICS

The same as in the
corresponding side information
on the remote queue manager.

-

OS/390 using
CICS

CKRC (sender)
CKSV (requester)
CKRC (server)

-

OS/400 The same as the compare value
in the routing entry on the
OS/400 system.

-

OS/2 As specified in the OS/2 Run
Listener command, or defaulted
from the OS/2 queue manager
configuration file.

<drive>:\mqm\bin\amqcrs6a

Digital OVMS As specified in the Digital OVMS
Run Listener command.

-

Tandem NSK The same as the TPNAME
specified in the receiver-channel
definition.

-

Other UNIX
systems

The same as in the
corresponding side information
on the remote queue manager.

mqmtop/bin/amqcrs6a

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup
on Windows NT.

<drive>:\mqm\bin\amqcrs6a

Initiating end (Sending)
Use the CRTMQMCHL command to define a channel of transport type *LU62.
Define the name of the CSI object that this channel will use in the CONNECTION
NAME field. (See “Creating a channel” on page 420 for details of how to do this.)

Use the OS/400 commands (for example, CRTCSI) to define the end of the link
that initiates communication sessions.

The initiating end panel is shown in Figure 110 on page 445. You press F10 from
the first panel displayed to obtain the complete panel as shown.

444 MQSeries Intercommunication

 Defining an LU 6.2 connection

à ð
Create Comm Side Information (CRTCSI)

 Type choices, press Enter.

 Side information > WINSDOA1 Name

Library > QSYS Name, \CURLIB

 Remote location > WINSDOA1 Name

 Transaction program > MQSERIES

 Text 'description' \BLANK

 Additional Parameters

 Device \LOC Name, \LOC

 Local location \LOC Name, \LOC, \NETATR

 Mode JSTMOD92 Name, \NETATR

 Remote network identifier . . . \LOC Name, \LOC, \NETATR, \NONE

 Authority \LIBCRTAUT Name, \LIBCRTAUT, \CHANGE...

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

Figure 110. LU 6.2 communication setup panel - initiating end

Complete the initiating end fields as follows:

Side information
Give this definition a name that will be used to store the side information
object to be created, for example, WINSDOA1.

Note: For LU 6.2, the link between the message channel definition and the
communication connection is the Connection name field of the message
channel definition at the sending end. This field contains the name of the CSI
object.

Library
The name of the library where this definition will be stored.

The CSI object must be available in a library accessible to the program
serving the message channel, for example, QSYS, QMQM, and QGPL.

If the name is incorrect, missing, or cannot be found then an error will occur
on channel start up.

Remote location
Specifies the remote location name with which your program communicates.

In short, this required parameter contains the logical unit name of the partner
at the remote system, as defined in the device description that is used for the
communication link between the two systems.

The Remote location name can be found by issuing the command
DSPNETA on the remote system and seeing the default local location name.

Transaction program
Specifies the name (up to 64 characters) of the transaction program on the
remote system to be started. It may be a transaction process name, a
program name, the channel name, or a character string that matches the
Compare value in the routing entry.

This is a required parameter.

 Chapter 31. Setting up communication for MQSeries for AS/400 445

 Defining an LU 6.2 connection

Note: To specify SNA service transaction program names, enter the
hexadecimal representation of the service transaction program name. For
example, to specify a service transaction program name whose hexadecimal
representation is 21F0F0F1, you would enter X'21F0F0F1'.

More information on SNA service transaction program names is in the SNA
Transaction Programmer’s Reference manual for LU Type 6.2.

If the receiving end is another AS/400 system, the Transaction program
name is used to match the CSI object at the sending end with the routing
entry at the receiving end. See also the Comparison data: compare value
parameter in the Add Routing Entry panel.

Text description
A description (up to 50 characters) to remind you of the intended use of this
connection.

Device
Specifies the name of the device description used for the remote system.
The possible values are:

*LOC
The device is determined by the system.

Device-name
Specify the name of the device that is associated with the remote
location.

Local location
Specifies the local location name. The possible values are:

*LOC
The local location name is determined by the system.

*NETATR
The LCLLOCNAME value specified in the system network attributes is
used.

Local-location-name
Specify the name of your location. Specify the local location if you want
to indicate a specific location name for the remote location. The location
name can be found by using the DSPNETA command.

Mode
Specifies the mode used to control the session. This name is the same as
the Common Programming Interface (CPI)- Communications Mode_Name.
The possible values are:

*NETATR
The mode in the network attributes is used.

BLANK
Eight blank characters are used.

Mode-name
Specify a mode name for the remote location.

Note: Because the mode determines the transmission priority of the
communications session, it may be useful to define different modes
depending on the priority of the messages being sent; for example
MQMODE_HI, MQMODE_MED, and MQMODE_LOW. (You can have more
than one CSI pointing to the same location.)

446 MQSeries Intercommunication

 Defining an LU 6.2 connection

Remote network identifier
Specifies the remote network identifier used with the remote location. The
possible values are:

*LOC
The remote network ID for the remote location is used.

*NETATR
The remote network identifier specified in the network attributes is used.

*NONE
The remote network has no name.

Remote-network-id
Specify a remote network ID. Use the DSPNETA command at the
remote location to find the name of this network ID. It is the ‘local
network ID’ at the remote location.

Authority
Specifies the authority you are giving to users who do not have specific
authority to the object, who are not on an authorization list, and whose group
profile has no specific authority to the object. The possible values are:

*LIBCRTAUT
Public authority for the object is taken from the CRTAUT parameter of
the specified library. This value is determined at create time. If the
CRTAUT value for the library changes after the object is created, the
new value does not affect existing objects.

*CHANGE
Change authority allows the user to perform basic functions on the
object, however, the user cannot change the object. Change authority
provides object operational authority and all data authority.

*ALL
The user can perform all operations except those limited to the owner or
controlled by authorization list management authority. The user can
control the object’s existence and specify the security for the object,
change the object, and perform basic functions on the object. The user
can change ownership of the object.

*USE
Use authority provides object operational authority and read authority.

*EXCLUDE
Exclude authority prevents the user from accessing the object.

Authorization-list
Specify the name of the authorization list whose authority is used for the
side information.

 Chapter 31. Setting up communication for MQSeries for AS/400 447

 Defining an LU 6.2 connection

Initiated end (Receiver)
Use the CRTMQMCHL command to define the receiving end of the message
channel link with transport type *LU62. Leave the CONNECTION NAME field blank
and ensure that the corresponding details match the sending end of the channel.
(See “Creating a channel” on page 420 for details of how to do this.)

To enable the initiating end to start the receiving channel, add a routing entry to a
subsystem at the initiated end. The subsystem must be the one that allocates the
APPC device used in the LU 6.2 sessions and, therefore, it must have a valid
communications entry for that device. The routing entry calls the program that
starts the receiving end of the message channel.

Use the OS/400 commands (for example, ADDRTGE) to define the end of the link
that is initiated by a communication session.

The initiated end panel is shown in Figure 111.

à ð
Add Routing Entry (ADDRTGE)

 Type choices, press Enter.

 Subsystem description QSNADS Name

Library \LIBL Name, \LIBL, \CURLIB

 Routing entry sequence number . 1 1-9999

 Comparison data:

Compare value MQSERIES

Starting position 37 1-8ð

 Program to call AMQCRC6A Name, \RTGDTA

Library QMQM Name, \LIBL, \CURLIB

 Class \SBSD Name, \SBSD

Library \LIBL Name, \LIBL, \CURLIB

 Maximum active routing steps . . \NOMAX ð-1ððð, \NOMAX

 Storage pool identifier 1 1-1ð

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

Figure 111. LU 6.2 communication setup panel - initiated end

Subsystem description
The name of your subsystem where this definition resides. Use the OS/400
WRKSBSD command to view and update the appropriate subsystem
description for the routing entry.

Routing entry sequence number
A unique number in your subsystem to identify this communication definition.
You can use values in the range 1 to 9999.

Comparison data: Compare value
A text string to compare with that received when the session is started by a
Transaction program parameter, as shown in Figure 110 on page 445. The
character string is derived from the Transaction program field of the sender
CSI.

448 MQSeries Intercommunication

 Defining an LU 6.2 connection

Comparison data: Starting position
The character position in the string where the comparison is to start.

Note: The starting position field is the character position in the string for
comparison, and this is always 37.

Program to call
The name of the program that runs the inbound message program to be
called to start the session.

Note: AMQCRC6A is a program supplied with MQSeries for AS/400 that
sets up the environment and then calls AMQCRS6A.

Class
The name and library of the class used for the steps started through this
routing entry. The class defines the attributes of the routing step’s running
environment and specifies the job priority. An appropriate class entry must be
specified. Use, for example, the WRKCLS command to display existing
classes or to create a new class. Further information on managing work
requests from remote LU 6.2 systems is available in the AS/400
Programming: Work Management Guide.

 Chapter 31. Setting up communication for MQSeries for AS/400 449

 Defining an LU 6.2 connection

450 MQSeries Intercommunication

 MQSeries for AS/400 � OS/400 and LU 6.2

Chapter 32. Example configuration - IBM MQSeries for
AS/400

This chapter gives an example of how to set up communication links from
MQSeries for AS/400 to MQSeries products on the following platforms:

 � OS/2
 � Windows NT
 � AIX
 � HP-UX
� AT&T GIS UNIX9

 � Sun Solaris
� OS/390 or MVS/ESA without CICS

 � VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it
describes:

� “Establishing an LU 6.2 connection” on page 456
� “Establishing a TCP connection” on page 458

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for AS/400 configuration” on
page 459.

See Chapter 7, “Example configuration chapters in this book” on page 105 for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection
Table 41 on page 452 presents a worksheet listing all the parameters needed to
set up communication from OS/400 to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

 Configuration worksheet
Use the following worksheet to record the values you will use for this configuration.
Where numbers appear in the Reference column they indicate that the value must
match that in the appropriate worksheet elsewhere in this book. The examples that
follow in this chapter refer back to the values in the ID column of this table. The
entries in the Parameter Name column are explained in “Explanation of terms” on
page 454.

9 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 451

 OS/400 and LU 6.2

Table 41 (Page 1 of 3). Configuration worksheet for SNA on an AS/400 system

ID Parameter Name Reference Example Used User Value

Definition for local node

.1/ Local network ID NETID

.2/ Local control point name AS400PU

.3/ LU name AS400LU

.4/ LAN destination address 10005A5962EF

.5/ Subsystem description QCMN

.6/ Line description TOKENRINGL

.7/ Resource name LIN041

.8/ Local Transaction Program name MQSERIES

Connection to an OS/2 system

The values in this section must match those used in Table 14 on page 152, as indicated.

.9/ Network ID .2/ NETID

.1ð/ Control point name .3/ OS2PU

.11/ LU name .6/ OS2LU

.12/ Controller description OS2PU

.13/ Device OS2LU

.14/ Side information OS2CPIC

.15/ Transaction Program .8/ MQSERIES

.16/ LAN adapter address .1ð/ 10005AFC5D83

.17/ Mode .17/ #INTER

Connection to a Windows NT system

The values in this section must match those used in Table 16 on page 178, as indicated.

.9/ Network ID .2/ NETID

.1ð/ Control point name .3/ WINNTCP

.11/ LU name .5/ WINNTLU

.12/ Controller description WINNTCP

.13/ Device WINNTLU

.14/ Side information NTCPIC

.15/ Transaction Program .7/ MQSERIES

.16/ LAN adapter address .9/ 08005AA5FAB9

.17/ Mode .17/ #INTER

452 MQSeries Intercommunication

 OS/400 and LU 6.2

Table 41 (Page 2 of 3). Configuration worksheet for SNA on an AS/400 system

ID Parameter Name Reference Example Used User Value

Connection to an AIX system

The values in this section must match those used in Table 20 on page 208, as indicated.

.9/ Network ID .1/ NETID

.1ð/ Control point name .2/ AIXPU

.11/ LU name .4/ AIXLU

.12/ Controller description AIXPU

.13/ Device AIXLU

.14/ Side information AIXCPIC

.15/ Transaction Program .6/ MQSERIES

.16/ LAN adapter address .8/ 123456789012

.17/ Mode .14/ #INTER

Connection to an HP-UX system

The values in this section must match those used in Table 22 on page 226, as indicated.

.9/ Network ID .4/ NETID

.1ð/ Control point name .2/ HPUXPU

.11/ LU name .5/ HPUXLU

.12/ Controller description HPUXPU

.13/ Device HPUXLU

.14/ Side information HPUXCPIC

.15/ Transaction Program .7/ MQSERIES

.16/ LAN adapter address .8/ 100090DC2C7C

.17/ Mode .15/ #INTER

Connection to an AT&T GIS UNIX system

The values in this section must match those used in Table 24 on page 244, as indicated.

.9/ Network ID .2/ NETID

.1ð/ Control point name .3/ GISPU

.11/ LU name .4/ GISLU

.12/ Controller description GISPU

.13/ Device GISLU

.14/ Side information GISCPIC

.15/ Transaction Program .5/ MQSERIES

.16/ LAN adapter address .8/ 10007038E86B

.17/ Mode .15/ #INTER

 Chapter 32. Example configuration - IBM MQSeries for AS/400 453

 OS/400 and LU 6.2

Table 41 (Page 3 of 3). Configuration worksheet for SNA on an AS/400 system

ID Parameter Name Reference Example Used User Value

Connection to a Sun Solaris system

The values in this section must match those used in Table 26 on page 258, as indicated.

.9/ Network ID .2/ NETID

.1ð/ Control point name .3/ SOLARPU

.11/ LU name .7/ SOLARLU

.12/ Controller description SOLARPU

.13/ Device SOLARLU

.14/ Side information SOLCPIC

.15/ Transaction Program .8/ MQSERIES

.16/ LAN adapter address .5/ 08002071CC8A

.17/ Mode .17/ #INTER

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section must match those used in Table 35 on page 396, as indicated.

.9/ Network ID .2/ NETID

.1ð/ Control point name .3/ MVSPU

.11/ LU name .4/ MVSLU

.12/ Controller description MVSPU

.13/ Device MVSLU

.14/ Side information MVSCPIC

.15/ Transaction Program .7/ MQSERIES

.16/ LAN adapter address .8/ 400074511092

.17/ Mode .6/ #INTER

Connection to a VSE/ESA system

The values in this section must match those used in Table 43 on page 474, as indicated.

.9/ Network ID .1/ NETID

.1ð/ Control point name .2/ VSEPU

.11/ LU name .3/ VSELU

.12/ Controller description VSEPU

.13/ Device VSELU

.14/ Side information VSECPIC

.15/ Transaction Program .4/ MQ01 MQ01

.16/ LAN adapter address .5/ 400074511092

.17/ Mode #INTER

Explanation of terms
.1/ .2/ .3/

See “How to find network attributes” on page 455 for the details of how to
find the configured values.

.4/ LAN destination address
The hardware address of the AS/400 system token-ring adapter. You can
find the value using the command DSPLIND Line description (.6/).

454 MQSeries Intercommunication

 OS/400 and LU 6.2

.5/ Subsystem description
This is the name of any OS/400 subsystem that will be active while using the
queue manager. The name QCMN has been used because this is the
OS/400 communications subsystem.

.6/ Line description
If this has been specified it is indicated in the Description field of the resource
Resource name. See “How to find the value of Resource name” on page 456
for details. If the value is not specified you will need to create a line
description.

.7/ Resource name
See “How to find the value of Resource name” on page 456 for details of how
to find the configured value.

.8/ Local Transaction Program name
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. For simplicity, wherever
possible use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See Table 40 on page 444 for more information.

.12/ Controller description
This is an alias for the Control Point name (or Node name) of the partner
system. For convenience we have used the actual name of the partner in this
example.

.13/ Device
This is an alias for the LU of the partner system. For convenience we have
used the LU name of the partner in this example.

.14/ Side information
This is the name given to the CPI-C side information profile. You specify your
own 8-character name for this.

How to find network attributes: The
local node has been partially configured as part of
the OS/400 installation. To display the current
network attributes enter the command DSPNETA.

If you need to change these values use the
command CHGNETA. An IPL may be required to
apply your changes.

à ð
Display Network Attributes

 System: AS4ððPU

 Current system name : AS4ððPU

Pending system name :

 Local network ID : NETID

 Local control point name : AS4ððPU

 Default local location : AS4ððLU

 Default mode : BLANK

 APPN node type : \ENDNODE

 Data compression : \NONE

 Intermediate data compression : \NONE

 Maximum number of intermediate sessions : 2ðð

 Route addition resistance : 128

 Server network ID/control point name : NETID NETCP

 More...

 Press Enter to continue.

 F3=Exit F12=Cancel

á

ñ

Check that the values for Local network ID (.1/),
Local control point name (.2/), and Default
local location (.3/), correspond to the values on
your worksheet.

 Chapter 32. Example configuration - IBM MQSeries for AS/400 455

 OS/400 and LU 6.2

How to find the value of Resource
name: Type WRKHDWRSC TYPE(\CMN) and press
Enter. The Work with Communication Resources
panel is displayed. The value for Resource name
is found as the Token-Ring Port. It is LIN041 in
this example.

à ð
Work with Communication Resources

 System: AS4ððPU

Type options, press Enter.

2=Edit 4=Remove 5=Work with configuration description

7=Add configuration description ...

 Configuration

Opt Resource Description Type Description

 CCð2 2636 Comm Processor

 LINð4 2636 LAN Adapter

 LINð41 TOKENRINGL 2636 Token-Ring Port

 Bottom

F3=Exit F5=Refresh F6=Print F11=Display resource addresses/statuses

F12=Cancel F23=More options

á

ñ

Establishing an LU 6.2
connection

This section describes how to establish an LU 6.2
connection.

Local node configuration

To configure the local node, you need to:

1. Create a line description
2. Add a routing entry

Creating a line description

1. If the line description has not already been
created use the command CRTLINTRN.

2. Specify values for Line description (.6/) and
Resource name (.7/).

à ð
Create Line Desc (Token-Ring) (CRTLINTRN)

 Type choices, press Enter.

 Line description TOKENRINGL Name

 Resource name LINð41 Name, \NWID

 NWI type \FR \FR, \ATM

 Online at IPL \YES \YES, \NO

 Vary on wait \NOWAIT \NOWAIT, 15-18ð (1 second)

 Maximum controllers 4ð 1-256

 Attached NWI \NONE Name, \NONE

 Bottom

F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

 Parameter LIND required. +

á

ñ

Adding a routing entry

1. Type the command ADDRTGE and press
Enter.

à ð
Add Routing Entry (ADDRTGE)

 Type choices, press Enter.

 Subsystem description QCMN Name

Library \LIBL Name, \LIBL, \CURLIB

 Routing entry sequence number . 1 1-9999

 Comparison data:

Compare value 'MQSERIES'

Starting position 37 1-8ð

 Program to call AMQCRC6A Name, \RTGDTA

Library QMQM Name, \LIBL, \CURLIB

 Class \SBSD Name, \SBSD

Library \LIBL Name, \LIBL, \CURLIB

 Maximum active routing steps . . \NOMAX ð-1ððð, \NOMAX

 Storage pool identifier 1 1-1ð

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Parameter SBSD required. +

á

ñ

2. Specify your value for Subsystem
description (.5/), and the values shown here
for Routing entry sequence number ,
Compare value (.8/), Starting position ,
Program to call , and the Library containing
the program to call.

3. Type the command STRSBS subsystem
description (.5/) and press Enter.

Connection to partner node

This example is for a connection to an OS/2
system, but the steps are the same for other
nodes. The steps are:

1. Create a controller description.
2. Create a device description.
3. Create CPI-C side information.
4. Add a communications entry for APPC.
5. Add a configuration list entry.

456 MQSeries Intercommunication

 OS/400 and LU 6.2

Creating a controller description

1. At a command line type CRTCTLAPPC and press
Enter.

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description OS2PU Name

Link type \LAN \FAX, \FR, \IDLC,

\LAN...

Online at IPL \NO \YES, \NO

 Bottom

F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

F13=How to use this display F24=More keys

Parameter CTLD required. +

á

ñ

2. Specify a value for Controller description
(.12/), set Link type to \LAN, and set Online
at IPL to \NO.

3. Press Enter twice, followed by F10.

à ð
Create Ctl Desc (APPC) (CRTCTLAPPC)

 Type choices, press Enter.

 Controller description > OS2PU Name

 Link type > \LAN \FAX, \FR, \IDLC, \LAN...

 Online at IPL > \NO \YES, \NO

 APPN-capable \YES \YES, \NO

 Switched line list TOKENRINGL Name

+ for more values

 Maximum frame size \LINKTYPE 265-16393, 256, 265, 512...

 Remote network identifier . . . NETID Name, \NETATR, \NONE, \ANY

 Remote control point OS2PU Name, \ANY

 Exchange identifier ðððððððð-FFFFFFFF

 Initial connection \DIAL \DIAL, \ANS

 Dial initiation \LINKTYPE \LINKTYPE, \IMMED, \DELAY

 LAN remote adapter address . . . 1ððð5AFC5D83 ððððððððððð1-FFFFFFFFFFFF

 APPN CP session support \YES \YES, \NO

 APPN node type \ENDNODE \ENDNODE, \LENNODE...

 APPN transmission group number 1 1-2ð, \CALC

 More...

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

4. Specify values for Switched line list (.6/),
Remote network identifier (.9/), Remote
control point (.1ð/), and LAN remote
adapter address (.16/).

 5. Press Enter.

Creating a device description

1. Type the command CRTDEVAPPC and press
Enter.

à ð
Create Device Desc (APPC) (CRTDEVAPPC)

 Type choices, press Enter.

 Device description OS2LU Name

 Remote location OS2LU Name

 Online at IPL \YES \YES, \NO

 Local location AS4ððLU Name, \NETATR

 Remote network identifier . . . NETID Name, \NETATR, \NONE

 Attached controller OS2PU Name

 Mode \NETATR Name, \NETATR

+ for more values

 Message queue QSYSOPR Name, QSYSOPR

Library \LIBL Name, \LIBL, \CURLIB

 APPN-capable \YES \YES, \NO

 Single session:

Single session capable \NO \NO, \YES

Number of conversations . . . 1-512

 Bottom

F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

 Parameter DEVD required. +

á

ñ

2. Specify values for Device description (.13/),
Remote location (.11/), Local location
(.3/), Remote network identifier (.9/), and
Attached controller (.12/).

Note: You can avoid having to create controller
and device descriptions manually by taking
advantage of OS/400’s auto-configuration service.
Consult the OS/400 documentation for details.

Creating CPI-C side information

1. Type CRTCSI and press F10.

à ð
Create Comm Side Information (CRTCSI)

 Type choices, press Enter.

 Side information OS2CPIC Name

Library \CURLIB Name, \CURLIB

 Remote location OS2LU Name

 Transaction program MQSERIES

 Text 'description' \BLANK

 Additional Parameters

 Device \LOC Name, \LOC

 Local location AS4ððLU Name, \LOC, \NETATR

 Mode #INTER Name, \NETATR

 Remote network identifier . . . NETID Name, \LOC, \NETATR, \NONE

 Authority \LIBCRTAUT Name, \LIBCRTAUT, \CHANGE...

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Parameter CSI required.

á

ñ

2. Specify values for Side information (.14/),
Remote location (.11/), Transaction
program (.15/), Local location (.3/), Mode ,
and Remote network identifier (.9/).

 3. Press Enter.

 Chapter 32. Example configuration - IBM MQSeries for AS/400 457

 OS/400 and TCP

Adding a communications entry for
APPC

1. At a command line type ADDCMNE and press
Enter.

à ð
Add Communications Entry (ADDCMNE)

 Type choices, press Enter.

 Subsystem description QCMN Name

Library \LIBL Name, \LIBL, \CURLIB

 Device OS2LU Name, generic\, \ALL...

 Remote location Name

 Job description \USRPRF Name, \USRPRF, \SBSD

Library Name, \LIBL, \CURLIB

 Default user profile \NONE Name, \NONE, \SYS

 Mode \ANY Name, \ANY

 Maximum active jobs \NOMAX ð-1ððð, \NOMAX

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Parameter SBSD required.

á

ñ

2. Specify values for Subsystem description
(.5/) and Device (.13/), and press Enter.

Adding a configuration list entry

1. Type ADDCFGLE \APPNRMT and press F4.

à ð
Add Configuration List Entries (ADDCFGLE)

 Type choices, press Enter.

 Configuration list type > \APPNRMT \APPNLCL, \APPNRMT...

 APPN remote location entry:

Remote location name OS2LU Name, generic\, \ANY

Remote network identifier . . NETID Name, \NETATR, \NONE

Local location name AS4ððLU Name, \NETATR

Remote control point OS2PU Name, \NONE

Control point net ID NETID Name, \NETATR, \NONE

Location password \NONE

Secure location \NO \YES, \NO

Single session \NO \YES, \NO

Locally controlled session . . \NO \YES, \NO

Pre-established session . . . \NO \YES, \NO

Entry 'description' \BLANK

Number of conversations . . . 1ð 1-512

+ for more values

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

2. Specify values for Remote location name
(.11/), Remote network identifier (.9/),
Local location name (.3/), Remote control
point (.1ð/), and Control point net ID (.9/).

 3. Press Enter.

 What next?

The LU 6.2 connection is now established. You
are ready to complete the configuration. Go to
“MQSeries for AS/400 configuration” on page 459.

Establishing a TCP connection

If TCP is already configured there are no extra
configuration tasks. The following panels guide
you through the steps that may be required if
TCP/IP is not configured.

Adding a TCP/IP interface
1. At a command line type ADDTCPIFC and press

Enter.

à ð
Add TCP/IP Interface (ADDTCPIFC)

 Type choices, press Enter.

 Internet address 19.22.11.55

 Line description TOKENRINGL Name, \LOOPBACK

 Subnet mask 255.255.ð.ð

 Type of service \NORMAL \MINDELAY, \MAXTHRPUT..

 Maximum transmission unit . . . \LIND 576-16388, \LIND

 Autostart \YES \YES, \NO

 PVC logical channel identifier ðð1-FFF

+ for more values

 X.25 idle circuit timeout . . . 6ð 1-6ðð

 X.25 maximum virtual circuits . 64 ð-64

 X.25 DDN interface \NO \YES, \NO

 TRLAN bit sequencing \MSB \MSB, \LSB

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

2. Specify this machine’s Internet address and
Line description , and a Subnet mask .

 3. Press Enter.

Adding a TCP/IP loopback
interface

1. At a command line type ADDTCPIFC and press
Enter.

à ð
Add TCP Interface (ADDTCPIFC)

 Type choices, press Enter.

 Internet address 127.ð.ð.1

 Line description \LOOPBACK Name, \LOOPBACK

 Subnet mask 255.ð.ð.ð

 Type of service \NORMAL \MINDELAY, \MAXTHRPUT..

 Maximum transmission unit . . . \LIND 576-16388, \LIND

 Autostart \YES \YES, \NO

 PVC logical channel identifier ðð1-FFF

+ for more values

 X.25 idle circuit timeout . . . 6ð 1-6ðð

 X.25 maximum virtual circuits . 64 ð-64

 X.25 DDN interface \NO \YES, \NO

 TRLAN bit sequencing \MSB \MSB, \LSB

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

458 MQSeries Intercommunication

 OS/400 configuration

2. Specify the values for Internet address , Line
description , and Subnet mask .

Adding a default route
1. At a command line type ADDTCPRTE and press

Enter.

à ð
Add TCP Route (ADDTCPRTE)

Type choices, press Enter.

Route destination \DFTROUTE

Subnet mask \NONE

Type of service \NORMAL \MINDELAY, \MAXTHRPUT.

Next hop 19.2.3.4

Maximum transmission unit . . . 576 576-16388, \IFC

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

 Command prompting ended when user pressed F12.

á

ñ

2. Fill in with values appropriate to your network
and press Enter to create a default route
entry.

 What next?

The TCP connection is now established. You are
ready to complete the configuration. Go to
“MQSeries for AS/400 configuration.”

MQSeries for AS/400
configuration

Before beginning the installation, ensure that the
MQSeries program libraries are available. To do
this enter the command ADDLIBLE QMQM.

Start the TCP channel listener using the command
STRMQMLSR.

Start any sender channel using the command
STRMQMCHL CHLNAME(channel_name).

Use the WRKMQMQ command to display the
MQSeries configuration menu.

Note: AMQ* errors are placed in the log relating
to the job that found the error. Use the
WRKACTJOB command to display the list of jobs.
Under the subsystem name QSYSWRK, locate

the job and enter 5 against it to work with that job.
MQSeries logs are prefixed ‘AMQ’.

 Basic configuration
1. First you need to create a queue manager.

To do this, type CRTMQM and press Enter.

à ð
Create Message Queue Manager (CRTMQM)

 Type choices, press Enter.

 Message Queue Manager name . . .

 Text 'description' \BLANK

 Trigger interval 999999999 ð-999999999

 Undelivered message queue . . . \NONE

 Default transmission queue . . . \NONE

 Maximum handle limit 256 1-999999999

 Maximum uncommitted messages . . 1ððð 1-1ðððð

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

2. In the Message Queue Manager name field,
type AS4ðð. In the Undelivered message
queue field, type DEAD.LETTER.QUEUE.

 3. Press Enter.

4. Now start the queue manager by entering
STRMQM MQMNAME(AS4ðð).

5. Run the sample program AMQSDEF4 to
create the default objects. Type CALL
QMQM/AMQSDEF4 and press Enter.

6. Create the undelivered message queue using
the following parameters. (For details and an
example refer to “Defining a queue” on
page 464.)

 Local Queue

Queue name : DEAD.LETTER.QUEUE

Queue type : \LCL

 Channel configuration

This section details the configuration to be
performed on the OS/400 queue manager to
implement the channel described in Figure 32 on
page 105.

Examples are given for connecting MQSeries for
AS/400 and MQSeries for OS/2 Warp. If you wish
connect to another MQSeries product, use the
appropriate values from the table in place of those
for OS/2.

 Chapter 32. Example configuration - IBM MQSeries for AS/400 459

 OS/400 configuration

Notes:

1. The words in bold are user-specified and
reflect the names of MQSeries objects used
throughout these examples. If you change the
names used here, ensure that you also
change the other references made to these
objects throughout this book. All others are
keywords and should be entered as shown.

2. The MQSeries channel ping command
(PNGMQMCHL) runs interactively, whereas
starting a channel causes a batch job to be

submitted. If a channel ping completes
successfully but the channel will not start, this
indicates that the network and MQSeries
definitions are probably correct, but that the
OS/400 environment for the batch job is not.
For example, make sure that QSYS2 is
included in the system portion of the library list
and not just your personal library list.

For details and examples of how to create the
objects listed refer to “Defining a queue” on
page 464 and “Defining a channel” on page 464.

Table 42 (Page 1 of 3). Configuration worksheet for MQSeries for AS/400

ID Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name AS400

.B/ Local queue name AS400.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page 171, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender (SNA) channel name AS400.OS2.SNA

.H/ Sender (TCP) channel name AS400.OS2.TCP

.I/ Receiver (SNA) channel name .G/ OS2.AS400.SNA

.J/ Receiver (TCP) channel name .H/ OS2.AS400.TCP

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page 192, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender (SNA) channel name AS400.WINNT.SNA

.H/ Sender (TCP/IP) channel name AS400.WINNT.TCP

.I/ Receiver (SNA) channel name .G/ WINNT.AS400.SNA

.J/ Receiver (TCP/IP) channel name .H/ WINNT.AS400.TCP

460 MQSeries Intercommunication

 OS/400 configuration

Table 42 (Page 2 of 3). Configuration worksheet for MQSeries for AS/400

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page 220, as indicated.

.C/ Remote queue manager name AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender (SNA) channel name AS400.AIX.SNA

.H/ Sender (TCP/IP) channel name AS400.AIX.TCP

.I/ Receiver (SNA) channel name .G/ AIX.AS400.SNA

.J/ Receiver (TCP) channel name .H/ AIX.AS400.TCP

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page 238, as indicated.

.C/ Remote queue manager name HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender (SNA) channel name AS400.HPUX.SNA

.H/ Sender (TCP) channel name AS400.HPUX.TCP

.I/ Receiver (SNA) channel name .G/ HPUX.AS400.SNA

.J/ Receiver (TCP) channel name .H/ HPUX.AS400.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 25 on page 252, as indicated.

.C/ Remote queue manager name GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender (SNA) channel name AS400.GIS.SNA

.H/ Sender (TCP) channel name AS400.GIS.TCP

.I/ Receiver (SNA) channel name .G/ GIS.AS400.SNA

.J/ Receiver (TCP/IP) channel name .H/ GIS.AS400.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page 269, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender (SNA) channel name AS400.SOLARIS.SNA

.H/ Sender (TCP/IP) channel name AS400.SOLARIS.TCP

.I/ Receiver (SNA) channel name .G/ SOLARIS.AS400.SNA

.J/ Receiver (TCP/IP) channel name .H/ SOLARIS.AS400.TCP

 Chapter 32. Example configuration - IBM MQSeries for AS/400 461

 OS/400 configuration

Table 42 (Page 3 of 3). Configuration worksheet for MQSeries for AS/400

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for OS/390 without CICS

The values in this section of the table must match those used in Table 36 on page 404, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender (SNA) channel name AS400.MVS.SNA

.H/ Sender (TCP) channel name AS400.MVS.TCP

.I/ Receiver (SNA) channel name .G/ MVS.AS400.SNA

.J/ Receiver (TCP) channel name .H/ MVS.AS400.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page 479, as indicated.

.C/ Remote queue manager name VSE

.D/ Remote queue name VSE.REMOTEQ

.E/ Queue name at remote system .B/ VSE.LOCALQ

.F/ Transmission queue name VSE

.G/ Sender channel name AS400.VSE.SNA

.I/ Receiver channel name .G/ VSE.AS400.SNA

MQSeries for AS/400 sender-channel definitions using SNA
 Local Queue

Queue name : OS2 .F/
Queue type : \LCL

 Usage : \TMQ

 Remote Queue

Queue name : OS2.REMOTEQ .D/
Queue type : \RMT

Remote queue : OS2.LOCALQ .E/
Remote Queue Manager : OS2 .C/
Transmission queue : OS2 .F/

 Sender Channel

Channel Name : AS4ðð.OS2.SNA .G/
Channel Type : \SDR

Transport type : \LU62

Connection name : OS2CPIC .14/
Transmission queue : OS2 .F/

462 MQSeries Intercommunication

 OS/400 configuration

MQSeries for AS/400 receiver-channel definitions using SNA
 Local Queue

Queue name : AS4ðð.LOCALQ .B/
Queue type : \LCL

 Receiver Channel

Channel Name : OS2.AS4ðð.SNA .I/
Channel Type : \RCVR

Transport type : \LU62

MQSeries for AS/400 sender-channel definitions using TCP
 Local Queue

Queue name : OS2 .F/
Queue type : \LCL

 Usage : \TMQ

 Remote Queue

Queue name : OS2.REMOTEQ .D/
Queue type : \RMT

Remote queue : OS2.LOCALQ .E/
Remote Queue Manager : OS2 .C/
Transmission queue : OS2 .F/

 Sender Channel

Channel Name : AS4ðð.OS2.TCP .H/
Channel Type : \SDR

Transport type : \TCP

Connection name : os2.tcpip.hostname
Transmission queue : OS2 .F/

MQSeries for AS/400 receiver-channel definitions using TCP
 Local Queue

Queue name : AS4ðð.LOCALQ .B/
Queue type : \LCL

 Receiver Channel

Channel Name : OS2.AS4ðð.TCP .J/
Channel Type : \RCVR

Transport type : \TCP

 Chapter 32. Example configuration - IBM MQSeries for AS/400 463

 OS/400 configuration

Defining a queue
Type CRTMQMQ on the command line.

à ð
Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name

Queue type \ALS, \LCL, \RMT

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Parameter QNAME required.

á

ñ

Fill in the two fields of this panel and press Enter.
This causes another panel to appear, with entry
fields for the other parameters you have. Defaults
can be taken for all other queue attributes.

Defining a channel

Type CRTMQMCHL on the command line.

à ð
Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name

Channel type \RCVR, \SDR, \SVR, \RQSTR

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

F24=More keys

Parameter CHLNAME required.

á

ñ

Fill in the two fields of this panel and press Enter.
Another panel is displayed on which you can
specify the values for the other parameters given
earlier. Defaults can be taken for all other
channel attributes.

464 MQSeries Intercommunication

 Planning example for OS/400

Chapter 33. Message channel planning example for OS/400

This chapter provides a detailed example of how to connect two OS/400 queue
managers together so that messages can be sent between them. The example
illustrates the preparations needed to allow an application using queue manager
QM1 to put messages on a queue at queue manager QM2. An application running
on QM2 can retrieve these messages, and send responses to a reply queue on
QM1.

The example illustrates the use of TCP/IP connections. The example assumes that
channels are to be triggered to start when the first message arrives on the
transmission queue they are servicing. You must start the channel initiator in order
for triggering to work. To do this, use the STRMQMCHLI command.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue
is already defined by MQSeries. You can use a different initiation queue, but you
will have to define it yourself and specify the name of the queue when you start the
channel initiator.

What the example shows
The example uses the MQSeries for AS/400 command language.

Queue transmission 'QM2'

'SYSTEM.CHANNEL.INITQ'

'SYSTEM.CHANNEL.INITQ'

Queue transmission 'QM1'

Application Application

message

message

message

Query

Queue manager 'QM1' Queue manager 'QM2'

Channel

Payroll

processing

Payroll

query

Query

Reply

message

Reply

Queue remote 'PAYROLL.QUERY'

Queue local 'PAYROLL.REPLY'

Queue local 'PAYROLL'QM1.TO.QM2

QM2.TO.QM1

Figure 112. The message channel example for MQSeries for AS/400

It involves a payroll query application connected to queue manager QM1 that sends
payroll query messages to a payroll processing application running on queue
manager QM2. The payroll query application needs the replies to its queries sent
back to QM1. The payroll query messages are sent from QM1 to QM2 on a
sender-receiver channel called QM1.TO.QM2, and the reply messages are sent
back from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1.
Both of these channels are triggered to start as soon as they have a message to
send to the other queue manager.

 Copyright IBM Corp. 1993,1999 465

 Planning example for OS/400

The payroll query application puts a query message to the remote queue
“PAYROLL.QUERY” defined on QM1. This remote queue definition resolves to the
local queue “PAYROLL” on QM2. In addition, the payroll query application
specifies that the reply to the query is sent to the local queue “PAYROLL.REPLY”
on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this
case, local queue “PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on OS/400. In the example
definitions, QM1 has a host address of 9.20.9.31 and is listening on port 1411, and
QM2 has a host address of 9.20.9.32 and is listening on port 1412. The example
assumes that these are already defined on your OS/400 system, and are available
for use.

The object definitions that need to be created on QM1 are:

� Remote queue definition, PAYROLL.QUERY
� Transmission queue definition, QM2 (default=remote queue manager name)
� Process definition, QM1.TO.QM2.PROCESS (not needed for MQSeries for

AS/400 V4R2M1)
� Sender channel definition, QM1.TO.QM2
� Receiver channel definition, QM2.TO.QM1
� Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

� Local queue definition, PAYROLL
� Transmission queue definition, QM1 (default=remote queue manager name)
� Process definition, QM2.TO.QM1.PROCESS (not needed for MQSeries for

AS/400 V4R2M1)
� Sender channel definition, QM2.TO.QM1
� Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender
channel definitions.

You can see a diagram of the arrangement in Figure 112 on page 465.

Queue manager QM1 example
The following object definitions allow applications connected to queue manager
QM1 to send request messages to a queue called PAYROLL on QM2, and to
receive replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the TEXT attributes. The other
attributes supplied are the minimum required to make the example work. The
attributes that are not supplied take the default values for queue manager QM1.

466 MQSeries Intercommunication

 Planning example for OS/400

Run the following commands on queue manager QM1:

Remote queue definition
The CRTMQMQ command with the following attributes:

Note: The remote queue definition is not a physical queue, but a means of
directing messages to the transmission queue, QM2, so that they can be sent to
queue manager QM2.

Transmission queue definition
The CRTMQMQ command with the following attributes:

When the first message is put on this transmission queue, a trigger message is
sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets
the message from the initiation queue and starts the channel identified in the
named process.

Process definition
The CRTMQMPRC command with the following attributes:

The channel initiator uses this process information to start channel QM1.TO.QM2.

Note: For MQSeries for AS/400 V4R2M1 the need for a process definition can be
eliminated by specifying the channel name in the TRIGDATA attribute of the
transmission queue.

QNAME ‘PAYROLL.QUERY’
QTYPE *RMT
TEXT ‘Remote queue for QM2’
PUTENBL *YES
TMQNAME ‘QM2’ (default = remote queue manager name)
RMTQNAME ‘PAYROLL’
RMTMQMNAME ‘QM2’

QNAME QM2
QTYPE *LCL
TEXT ‘Transmission queue to QM2’
USAGE *TMQ
PUTENBL *YES
GETENBL *YES
TRGENBL *YES
TRGTYPE *FIRST
INITQNAME SYSTEM.CHANNEL.INITQ
PRCNAME QM1.TO.QM2.PROCESS

PRCNAME QM1.TO.QM2.PROCESS
TEXT ‘Process for starting channel’
APPTYPE *OS400
APPID ‘AMQRMCLA’
USRDATA QM1.TO.QM2

 Chapter 33. Message channel planning example for OS/400 467

 Planning example for OS/400

Sender channel definition
The CRTMQMCHL command with the following attributes:

Receiver channel definition
The CRTMQMCHL command with the following attributes:

Reply-to queue definition
The CRTMQMQ command with the following attributes:

The reply-to queue is defined as PUT(ENABLED). This ensures that reply
messages can be put to the queue. If the replies cannot be put to the reply-to
queue, they are sent to the dead-letter queue on QM1 or, if this queue is not
available, remain on transmission queue QM1 on queue manager QM2. The
queue has been defined as GET(ENABLED) to allow the reply messages to be
retrieved.

CHLNAME QM1.TO.QM2
CHLTYPE *SDR
TRPTYPE *TCP
TEXT ‘Sender channel to QM2’
TMQNAME QM2
CONNAME ‘9.20.9.32(1412)’

CHLNAME QM2.TO.QM1
CHLTYPE *RCVR
TRPTYPE *TCP
TEXT ‘Receiver channel from QM2’

QNAME PAYROLL.REPLY
QTYPE *LCL
TEXT ‘Reply queue for replies to query messages sent to QM2’
PUTENBL *YES
GETENBL *YES

Queue manager QM2 example
The following object definitions allow applications connected to queue manager
QM2 to retrieve request messages from a local queue called PAYROLL, and to put
replies to these request messages to a queue called PAYROLL.REPLY on queue
manager QM1.

You do not need to provide a remote queue definition to enable the replies to be
returned to QM1. The message descriptor of the message retrieved from local
queue PAYROLL contains both the reply-to queue and the reply-to queue manager
names. Therefore, as long as QM2 can resolve the reply-to queue manager name
to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue
manager QM2 simply requires a transmission queue of the same name.

All the object definitions have been provided with the TEXT attribute and are the
minimum required to make the example work. The attributes that are not supplied
take the default values for queue manager QM2.

468 MQSeries Intercommunication

 Planning example for OS/400

Run the following commands on queue manager QM2:

Local queue definition
The CRTMQMQ command with the following attributes:

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same
reason as the reply-to queue definition on queue manager QM1.

Transmission queue definition
The CRTMQMQ command with the following attributes:

When the first message is put on this transmission queue, a trigger message is
sent to the initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets
the message from the initiation queue and starts the channel identified in the
named process.

Process definition
The CRTMQMPRC command with the following attributes:

The channel initiator uses this process information to start channel QM2.TO.QM1.

Note: For MQSeries for AS/400 V4R2M1 the need for a process definition can be
eliminated by specifying the channel name in the TRIGDATA attribute of the
transmission queue.

Sender channel definition
The CRTMQMCHL command with the following attributes:

QNAME PAYROLL
QTYPE *LCL
TEXT ‘Local queue for QM1 payroll details’
PUTENBL *YES
GETENBL *YES

QNAME QM1
QTYPE *LCL
TEXT ‘Transmission queue to QM1’
USAGE *TMQ
PUTENBL *YES
GETENBL *YES
TRGENBL *YES
TRGTYPE *FIRST
INITQNAME SYSTEM.CHANNEL.INITQ
PRCNAME QM2.TO.QM1.PROCESS

PRCNAME QM2.TO.QM1.PROCESS
TEXT ‘Process for starting channel’
APPTYPE *OS400
APPID ‘AMQRMCLA’
USRDATA QM2.TO.QM1

CHLNAME QM2.TO.QM1
CHLTYPE *SDR
TRPTYPE *TCP
TEXT ‘Sender channel to QM1’
TMQNAME QM1
CONNAME ‘9.20.9.31(1411)’

 Chapter 33. Message channel planning example for OS/400 469

 Planning example for OS/400

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM1.TO.QM2
CHLTYPE *RCVR
TRPTYPE *TCP
TEXT ‘Receiver channel from QM1’

Running the example
When you have created the required objects, you must:

� Start the channel initiator for both queue managers
� Start the listener for both queue managers

The applications can then send messages to each other. The channels are
triggered to start by the first message arriving on each transmission queue, so you
do not need to issue the STRMQMCHL command.

For details about starting a channel initiator and a listener see Chapter 29,
“Monitoring and controlling channels in MQSeries for AS/400” on page 417.

Expanding this example
This example can be expanded by:

� Adding more queue, process, and channel definitions to allow other
applications to send messages between the two queue managers.

� Adding user exit programs on the channels to allow for link encryption, security
checking, or additional message processing.

� Using queue manager aliases and reply-to queue aliases to understand more
about how these can be used in the organization of your queue manager
network.

For a version of this example that uses MQSC commands, see Chapter 24,
“Message channel planning example for OS/390” on page 345.

470 MQSeries Intercommunication

Part 6. DQM in MQSeries for VSE/ESA

This part of the book describes an example configuration for MQSeries for
VSE/ESA.

Chapter 34. Example configuration - MQSeries for VSE/ESA 473
Configuration parameters for an LU 6.2 connection 473

Configuration worksheet . 473
Explanation of terms . 476

Establishing an LU 6.2 connection . 477
Defining a connection . 477
Defining a session . 477
Installing the new group definition . 477
What next? . 477

| Establishing a TCP connection . 478
MQSeries for VSE/ESA configuration . 478

Configuring channels . 478
| Defining a local queue . 482
| Defining a remote queue . 483
| Defining a SNA LU 6.2 sender channel . 483
| Defining a SNA LU6.2 receiver channel . 484
| Defining a TCP/IP sender channel . 484
| Defining a TCP receiver channel . 485

 Copyright IBM Corp. 1993,1999 471

472 MQSeries Intercommunication

 MQSeries for VSE/ESA � VSE/ESA and LU 6.2

Chapter 34. Example configuration - MQSeries for VSE/ESA

This chapter gives an example of how to set up communication links from
MQSeries for VSE/ESA to MQSeries products on the following platforms:

 � OS/2
 � Windows NT
 � AIX
 � HP-UX
� AT&T GIS UNIX10

 � Sun Solaris
 � OS/400
� OS/390 or MVS/ESA without CICS

It describes the parameters needed for an LU 6.2 and TCP connection. Once the
connection is established, you need to define some channels to complete the
configuration. This is described in “MQSeries for VSE/ESA configuration” on
page 478.

Configuration parameters for an LU 6.2 connection
Table 43 on page 474 presents a worksheet listing all the parameters needed to
set up communication from VSE/ESA to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

 Configuration worksheet
Use the following worksheet to record the values you will use for this configuration.
Where numbers appear in the Reference column they indicate that the value must
match that in the appropriate worksheet elsewhere in this book. The examples that
follow in this chapter refer back to the values in the ID column of this table. The
entries in the Parameter Name column are explained in “Explanation of terms” on
page 476.

10 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993,1999 473

 VSE/ESA and LU 6.2

Table 43 (Page 1 of 2). Configuration worksheet for VSE/ESA using APPC

ID Parameter Name Reference Example Used User Value

Definition for local node

.1/ Network ID NETID

.2/ Node name VSEPU

.3/ Local LU name VSELU

.4/ Local Transaction Program name MQ01 MQ01

.5/ LAN destination address 400074511092

Connection to an OS/2 system

The values in this section of the table must match those used in the table for OS/2, as indicated.

.6/ Connection name OS2

.7/ Group name EXAMPLE

.8/ Session name OS2SESS

.9/ Netname .6/ OS2LU

Connection to a Windows NT system

The values in this section of the table must match those used in the table for Windows NT, as indicated.

.6/ Connection name WNT

.7/ Group name EXAMPLE

.8/ Session name WNTSESS

.9/ Netname .5/ WINNTLU

Connection to an AIX system

The values in this section of the table must match those used in the table for AIX, as indicated.

.6/ Connection name AIX

.7/ Group name EXAMPLE

.8/ Session name AIXSESS

.9/ Netname .4/ AIXLU

Connection to an HP-UX system

The values in this section of the table must match those used in the table for HP-UX, as indicated.

.6/ Connection name HPUX

.7/ Group name EXAMPLE

.8/ Session name HPUXSESS

.9/ Netname .5/ HPUXLU

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the table for GIS UNIX, as indicated.

.6/ Connection name GIS

.7/ Group name EXAMPLE

.8/ Session name GISSESS

.9/ Netname .4/ GISLU

474 MQSeries Intercommunication

 VSE/ESA and LU 6.2

Table 43 (Page 2 of 2). Configuration worksheet for VSE/ESA using APPC

ID Parameter Name Reference Example Used User Value

Connection to a Sun Solaris system

The values in this section of the table must match those used in the table for Sun Solaris, as indicated.

.6/ Connection name SOL

.7/ Group name EXAMPLE

.8/ Session name SOLSESS

.9/ Netname .7/ SOLARLU

Connection to an AS/400 system

The values in this section of the table must match those used in the table for AS/400, as indicated.

.6/ Connection name AS4

.7/ Group name EXAMPLE

.8/ Session name AS4SESS

.9/ Netname .3/ AS400LU

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in the table for OS/390, as indicated.

.6/ Connection name MVS

.7/ Group name EXAMPLE

.8/ Session name MVSSESS

.9/ Netname .4/ MVSLU

 Chapter 34. Example configuration - MQSeries for VSE/ESA 475

 VSE/ESA and LU 6.2

Explanation of terms
.1/ Network ID

This is the unique ID of the network to which you are connected. Your
system administrator will tell you this value.

.2/ Node name
This is the name of the SSCP which owns the CICS/VSE region.

.3/ Local LU name
This is the unique VTAM APPLID of this CICS/VSE region.

.4/ Transaction Program name
MQSeries applications trying to converse with this queue manager will specify
a transaction name for the program to be run at the receiving end. This will
have been defined on the channel definition at the sender. MQSeries for
VSE/ESA uses a name of MQ01.

.5/ LAN destination address
This is the LAN destination address that your partner nodes will use to
communicate with this host. It is usually the address of the 3745 on the same
LAN as the partner node.

.6/ Connection name
This is a 4-character name by which each connection will be individually
known in CICS RDO.

.7/ Group name
You choose your own 8-character name for this value. Your system may
already have a group defined for connections to partner nodes. Your system
administrator will give you a value to use.

.8/ Session name
This is an 8-character name by which each session will be individually known.
For clarity we use the connection name, concatenated with 'SESS'.

.9/ Netname
This is the LU name of the MQSeries queue manager on the system with
which you are setting up communication.

476 MQSeries Intercommunication

 Establishing a connection

Establishing an LU 6.2 connection
This example is for a connection to an OS/2
system. The steps are the same whatever
platform you are using; change the values as
appropriate.

Defining a connection
1. At a CICS command line type CEDA DEF

CONN(connection name) .6/ GROUP(group
name) .7/. For example:

CEDA DEF CONN(OS2) GROUP(EXAMPLE)

2. Press Enter to define a connection to CICS.

à ð
DEF CONN(OS2) GROUP(EXAMPLE)

OVERTYPE TO MODIFY

 CEDA DEFine

 Connection : OS2

 Group : EXAMPLE

 DEscription ==>

 CONNECTION IDENTIFIERS

 Netname ==> OS2LU

 INDsys ==>

 REMOTE ATTRIBUTES

 REMOTESystem ==>

 REMOTEName ==>

 CONNECTION PROPERTIES

ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm

Protocol ==> Appc Appc | Lu61

SInglesess ==> No No | Yes

DAtastream ==> User User | 327ð | SCs | STrfield | Lms

RECordformat ==> U U | Vb

 OPERATIONAL PROPERTIES

+ AUtoconnect ==> Yes No | Yes | All

I New group EXAMPLE created.

DEFINE SUCCESSFUL TIME: 16.49.3ð DATE: 96.ð54

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á

ñ

3. On the panel change the Netname field in the
CONNECTION IDENTIFIERS section to be
the LU name (.9/) of the target system.

4. In the CONNECTION PROPERTIES section
set the ACcessmethod field to Vtam and the
Protocol to Appc.

5. Press Enter to make the change.

Defining a session
1. At a CICS command line type CEDA DEF

SESS(session name) .8/ GROUP(group name)
.7/. For example:

CEDA DEF SESS(OS2SESS) GROUP(EXAMPLE)

2. Press Enter to define a session for the
connection.

à ð
DEF SESS(OS2SESS) GROUP(EXAMPLE)

OVERTYPE TO MODIFY

 CEDA DEFine

 Sessions ==> OS2SESS

 Group ==> EXAMPLE

 DEscription ==>

 SESSION IDENTIFIERS

 Connection ==> OS2

 SESSName ==>

 NETnameq ==>

 MOdename ==> #INTER

 SESSION PROPERTIES

Protocol ==> Appc Appc | Lu61

MAximum ==> ðð8 , ðð4 ð-999

 RECEIVEPfx ==>

 RECEIVECount ==> 1-999

 SENDPfx ==>

 SENDCount ==> 1-999

 SENDSize ==> ð4ð96 1-3ð72ð

+ RECEIVESize ==> ð4ð96 1-3ð72ð

S CONNECTION MUST BE SPECIFIED.

 TIME: 14.23.19 DATE: 96.ð54

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 1ð SB 11 SF 12 CNCL

á

ñ

3. In the SESSION IDENTIFIERS section of the
panel specify the Connection name (.6/) in
the Connection field and set the MOdename
to #INTER.

4. In the SESSION PROPERTIES section set
the Protocol to Appc and the MAximum field
to ðð8 , ðð4.

Installing the new group
definition

1. At a CICS command line type CEDA INS

GROUP(group name) .7/.

2. Press Enter to install the new group definition.

Note: If this connection group is already in
use you may get severe errors reported. If
this happens, take the existing connections
out of service, retry the above group
installation, and then set the connections in
service using the following commands:

a. CEMT I CONN
b. CEMT S CONN(\) OUTS
c. CEDA INS GROUP(group name)
d. CEMT S CONN(\) INS

 What next?

The LU 6.2 connection is now established. You
are ready to complete the configuration. Go to
“MQSeries for VSE/ESA configuration” on
page 478.

 Chapter 34. Example configuration - MQSeries for VSE/ESA 477

 TCP connection � VSE/ESA configuration

| Establishing a TCP connection
| TCP connections do not require the configuration of additional profiles as does the
| LU 6.2 protocol. Instead, MQSeries for VSE/ESA processes the MQSeries listener
| program during MQSeries startup.

| The MQSeries listener program waits for remote TCP connection requests. As
| these are received, the listener starts the receiver MCA to process the remote
| connection. When the remote connection is received from a client program, the
| receiver MCA starts the MQSeries server program.

| Note: There is one MQSeries server process for each client connection.

| Provided that the MQSeries listener is active and TCP is active in a VSE partition,
| TCP connections can be established.

MQSeries for VSE/ESA configuration
Configuring MQSeries for VSE/ESA involves the following tasks:

 � Configuring channels
� Defining a local queue
� Defining a remote queue
� Defining a sender channel
� Defining a receiver channel

 Configuring channels
Examples are given for connecting MQSeries for VSE/ESA and MQSeries for OS/2
Warp. If you wish connect to another MQSeries platform use the appropriate set of
values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Refer to the sections “Defining a local queue” on page 482 and “Defining a remote
queue” on page 483 for details of how to create queue definitions, and “Defining a
SNA LU 6.2 sender channel” on page 483 and “Defining a SNA LU6.2 receiver
channel” on page 484 for details of how to create channels.

478 MQSeries Intercommunication

 VSE/ESA configuration

Table 44 (Page 1 of 2). Configuration worksheet for MQSeries for VSE/ESA

ID Parameter Name Reference Example Used User Value

Definition for local node

.A/ Queue Manager Name VSEP

.B/ Local queue name VSE.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in the worksheet table for OS/2, as indicated.

.C/ Remote queue manager name .A/ OS2

.D/ Remote queue name OS2.REMOTEQ

.E/ Queue name at remote system .B/ OS2.LOCALQ

.F/ Transmission queue name OS2

.G/ Sender channel name VSE.OS2.SNA

.I/ Receiver channel name .G/ OS2.VSE.SNA

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in the worksheet table for Windows NT, as indicated.

.C/ Remote queue manager name .A/ WINNT

.D/ Remote queue name WINNT.REMOTEQ

.E/ Queue name at remote system .B/ WINNT.LOCALQ

.F/ Transmission queue name WINNT

.G/ Sender channel name VSE.WINNT.SNA

.I/ Receiver channel name .G/ WINNT.VSE.SNA

Connection to MQSeries for AIX

The values in this section of the table must match those used in the worksheet table for AIX, as indicated.

.C/ Remote queue manager name AIX

.D/ Remote queue name AIX.REMOTEQ

.E/ Queue name at remote system .B/ AIX.LOCALQ

.F/ Transmission queue name AIX

.G/ Sender channel name VSE.AIX.SNA

.I/ Receiver channel name .G/ AIX.VSE.SNA

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in the worksheet table for HP-UX, as indicated.

.C/ Remote queue manager name HPUX

.D/ Remote queue name HPUX.REMOTEQ

.E/ Queue name at remote system .B/ HPUX.LOCALQ

.F/ Transmission queue name HPUX

.G/ Sender channel name VSE.HPUX.SNA

.I/ Receiver channel name .G/ HPUX.VSE.SNA

 Chapter 34. Example configuration - MQSeries for VSE/ESA 479

 VSE/ESA configuration

Table 44 (Page 2 of 2). Configuration worksheet for MQSeries for VSE/ESA

ID Parameter Name Reference Example Used User Value

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in the worksheet table for GIS UNIX, as indicated.

.C/ Remote queue manager name GIS

.D/ Remote queue name GIS.REMOTEQ

.E/ Queue name at remote system .B/ GIS.LOCALQ

.F/ Transmission queue name GIS

.G/ Sender channel name VSE.GIS.SNA

.I/ Receiver channel name .G/ GIS.VSE.SNA

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in the worksheet table for Sun Solaris, as indicated.

.C/ Remote queue manager name SOLARIS

.D/ Remote queue name SOLARIS.REMOTEQ

.E/ Queue name at remote system .B/ SOLARIS.LOCALQ

.F/ Transmission queue name SOLARIS

.G/ Sender channel name VSE.SOLARIS.SNA

.I/ Receiver channel name .G/ SOLARIS.VSE.SNA

Connection to MQSeries for AS/400

The values in this section of the table must match those used in the worksheet table for AS/400, as indicated.

.C/ Remote queue manager name AS400

.D/ Remote queue name AS400.REMOTEQ

.E/ Queue name at remote system .B/ AS400.LOCALQ

.F/ Transmission queue name AS400

.G/ Sender channel name VSE.AS400.SNA

.I/ Receiver channel name .G/ AS400.VSE.SNA

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in the worksheet table for OS/390, as indicated.

.C/ Remote queue manager name MVS

.D/ Remote queue name MVS.REMOTEQ

.E/ Queue name at remote system .B/ MVS.LOCALQ

.F/ Transmission queue name MVS

.G/ Sender channel name VSE.MVS.SNA

.I/ Receiver channel name .G/ MVS.VSE.SNA

| For TCP, the sender channel name .G/ and the receiver channel name .I/, in the
| preceding table, can be VSE.sys.tcp and sys.VSE.TCP respectively.

| In both cases sys represents the remote system name, for example, OS2.
| Therefore, in this case, .G/ becomes VSE.OS2.TCP and .I/ becomes OS2.VSE.TCP.

480 MQSeries Intercommunication

 VSE/ESA configuration

MQSeries for VSE/ESA sender-channel definitions
 Local Queue

Object Type : L

Object Name : OS2 .F/
 Usage Mode: T (Transmission)

 Remote Queue

Object Type : R

Object Name : OS2.REMOTEQ .D/
Remote QUEUE Name : OS2.LOCALQ .E/

 Remote QM Name : OS2 .C/
Transmission Name : OS2 .F/

 Sender Channel

Channel name : VSE.OS2.SNA .G/
Channel type : S (Sender)

Transmission queue name : OS2 .F/
Remote Task ID : MQTP

Connection name : OS2 .6/

MQSeries for VSE/ESA receiver-channel definitions
 Local Queue

Object type : QLOCAL

Object Name : VSE.LOCALQ .B/
Usage Mode : N (Normal)

 Receiver Channel

Channel name : OS2.VSE.SNA .I/
Channel type : R (Receiver)

 Chapter 34. Example configuration - MQSeries for VSE/ESA 481

 VSE/ESA configuration

| Defining a local queue
| 1. Run the MQSeries master terminal transaction
| MQMT.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:5ð:25 \\\ Master Terminal Main Menu \\\ VSE1| MQMMTP Aðð4| SYSTEM IS ACTIVE

| 1. Configuration

| 2. Operations

| 3. Monitoring

| 4. Browse Queue Records

| Option:

| Function completed - please enter a new request.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| CLEAR/PF3 = Exit ENTER=Select

| á|
ñ

| 2. Select option 1 to configure.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:52:21 \\\ Configuration Main Menu \\\ VSE1| MQMMCFG Aðð4| SYSTEM IS ACTIVE

| Maintenance Options :| 1. Global System Definition| 2. Queue Definitions| 3. Channel Definitions

| Display Options :| 4. Global System Definition| 5. Queue Definitions| 6. Channel Definitions

| Option:

| Please enter one of the options listed.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| ENTER = Process PF2 = Main Menu PF3 = Quit

| á|
ñ

| 3. Select option 2 to work with queue definitions.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:55:12 Queue Main Options VSE1| MQMMQUE Aðð4| SYSTEM IS ACTIVE

| Default Q Manager : VSEP

| Object Type: L L=Local Q, R=Remote Q, AQ=Alias Queue,| AM=Alias Manager,| AR=Alias Reply Q

| Object Name: VSE.LOCALQ

| ENTER NEEDED INFORMATION.

| PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update| PF9 = List PF11= Reorg. PF12= Delete

| á|
ñ

| 4. Select an Object type of L and specify the
| name of the queue.

| 5. Press PF5.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:56:1ð Queue Definition Record VSE1| MQMMQUE QM - VSEP Aðð4

| LOCAL QUEUE DEFINITION

| Object Name. : VSE.LOCALQ| Description line 1 :| Description line 2 :

| Put Enabled : Y Y=Yes, N=No| Get Enabled : Y Y=Yes, N=No

| Default Inbound status . . : A Outbound .. : A A=Active,I=Inactive

| Dual Update Queue:

| Automatic Reorganize (Y/N) : N

| Record being added - Press ADD key again.

| PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update| PF9 = List PF1ð= Queue PF11= Reorg. PF12= Delete

| á|
ñ

| 6. Press PF5 again.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:57:26 Queue Extended Definition VSE1| MQMMQUE QM - VSEP Aðð4| Object Name. : VSE.LOCALQ| Physical Queue Information| Usage Mode : N N=Normal, T=Transmission| Share Mode : Y Y=Yes, N=No| Physical File Name : \\ FILE NOT DEFINED| Maximum Values| Maximum Q Depth. : ð1ðððððð Global Lock Entries . : ðððð1ððð| Maximum Message Length . . : ð1ðððððð Local Lock Entries. . : ðððð1ððð| Maximum Concurrent Accesses: ððððð1ðð Checkpoint Threshold : 1ððð

| Trigger Information| Trigger Enable : N Y=yes, N=No| Trigger Type : F=First, E=Every| Maximum Trigger Starts . . : ððð1| Allow Restart of Trigger : N Y=Yes, N=No| Trans ID : Term ID:| Program ID : Channel Name:

| \\\\\ File not found \\\\\| PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update| PF9 = List PF1ð= Queue PF11= Reorg. PF12= Delete

| á|
ñ

| 7. Specify the name of a CICS file to store
| messages for this queue.

| 8. If you are creating a transmission queue,
| specify a Usage Mode of T, a Program ID of
| MQPSEND, and a Channel Name <.G/>.

| For a normal queue specify a Usage Mode of
| N.

| 9. Press PF5 again.

482 MQSeries Intercommunication

 VSE/ESA configuration

| Defining a remote queue
| 1. Run the MQSeries master terminal transaction
| MQMT.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:5ð:25 \\\ Master Terminal Main Menu \\\ VSE1| MQMMTP Aðð4| SYSTEM IS ACTIVE

| 1. Configuration

| 2. Operations

| 3. Monitoring

| 4. Browse Queue Records

| Option:

| Function completed - please enter a new request.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| CLEAR/PF3 = Exit ENTER=Select

| á|
ñ

| 2. Select option 1 to configure.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:52:21 \\\ Configuration Main Menu \\\ VSE1| MQMMCFG Aðð4| SYSTEM IS ACTIVE

| Maintenance Options :| 1. Global System Definition| 2. Queue Definitions| 3. Channel Definitions

| Display Options :| 4. Global System Definition| 5. Queue Definitions| 6. Channel Definitions

| Option:

| Please enter one of the options listed.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| ENTER = Process PF2 = Main Menu PF3 = Quit

| á|
ñ

| 3. Select option 2 to work with queue definitions.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:59:3ð Queue Main Options VSE1| MQMMQUE Aðð4| SYSTEM IS ACTIVE

| Default Q Manager : VSEP

| Object Type: R L=Local Q, R=Remote Q, AQ=Alias Queue,| AM=Alias Manager,| AR=Alias Reply Q

| Object Name: OS2.REMOTEQ

| ENTER NEEDED INFORMATION.

| PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update| PF9 = List PF11= Reorg. PF12= Delete

| á|
ñ

| 4. Select an Object type of R and specify the
| name of the queue.

| 5. Press PF5.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 2ð:ðð:25 Queue Definition Record VSE1| MQMMQUE QM - VSEP Aðð4

| REMOTE QUEUE DEFINITION

| Object Name. : OS2.REMOTEQ| Description line 1 :| Description line 2 :

| Put Enabled : Y Y=Yes, N=No| Get Enabled : Y Y=Yes, N=No

| Remote Queue Name: OS2.LOCALQ| Remote QM Name.: OS2| Transmission Q Name: OS2

| Record being added - Press ADD key again.

| PF2=Main Config PF3 = Quit PF4/ENTER = Read PF5 = Add PF6 = Update| PF9 = List PF1ð= Queue PF11= Reorg. PF12= Delete

| á|
ñ

| 6. Specify a remote queue name, remote queue
| manager name, and transmission queue
| name.

| 7. Press PF5.

| Defining a SNA LU 6.2 sender
| channel
| 1. Run the MQSeries master terminal transaction
| MQMT.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:5ð:25 \\\ Master Terminal Main Menu \\\ VSE1| MQMMTP Aðð4| SYSTEM IS ACTIVE

| 1. Configuration

| 2. Operations

| 3. Monitoring

| 4. Browse Queue Records

| Option:

| Function completed - please enter a new request.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| CLEAR/PF3 = Exit ENTER=Select

| á|
ñ

| 2. Select option 1 to configure.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:52:21 \\\ Configuration Main Menu \\\ VSE1| MQMMCFG Aðð4| SYSTEM IS ACTIVE

| Maintenance Options :| 1. Global System Definition| 2. Queue Definitions| 3. Channel Definitions

| Display Options :| 4. Global System Definition| 5. Queue Definitions| 6. Channel Definitions

| Option:

| Please enter one of the options listed.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| ENTER = Process PF2 = Main Menu PF3 = Quit

| á|
ñ

 Chapter 34. Example configuration - MQSeries for VSE/ESA 483

 VSE/ESA configuration

| 3. Select option 3 to work with channel
| definitions.

| à| ð| 1ð/ð8/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZRð2| 14:ð5:2ð Channel Record DISPLAY SYSA| MQMMCHN Last Check Point Last Update 19981ðð6 SFCA| MSN ðððððððð Time 11:28:28 Interv ðððððð Create Date 1998ð616| Name : RBð1.DCð1.SDRC.5ðð6| Protocol : L (L/T) Port : ðððð Type : R (S/R/C)| Partner : MAð2

| Allocation Retries Get Retries| Number of Retries: ðððððððð Number of Retries : ðððððððð| Delay Time - fast: ðððððððð Delay Time : ððððððð5| Delay Time - slow: ðððððððð

| Max Messages per Batch : ððððð1 Max Transmission Size : ð32ðð| Message Sequence Wrap : 999999 Max Message Size : ðð1ð24ð

| Mess Seq Req(Y/N): Y Convers Cap (Y/N): Y Split Msg(Y/N): N

| Transmission Queue Name :| TP Name:| Checkpoint Values: Frequency: ðððð Time Span: ðððð| Enable(Y/N) Y Dead Letter Store(Y/N) Y| Channel record displayed.| PF2 =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete

| á|
ñ

| 4. Complete the parameter fields as indicated,
| specifically the fields Name<.G/>, Type ,
| Partner , Transmission Queue Name <.F/>,
| and TP Name.

| All other parameters can be entered as
| shown.

| Note that the default value for sequence
| number wrap is 999999, whereas for Version
| 2 MQSeries products, this value defaults to
| 999999999.

| 5. Press PF5.

| Defining a SNA LU6.2 receiver
| channel
| 1. Run the MQSeries master terminal transaction
| MQMT.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:5ð:25 \\\ Master Terminal Main Menu \\\ VSE1| MQMMTP Aðð4| SYSTEM IS ACTIVE

| 1. Configuration

| 2. Operations

| 3. Monitoring

| 4. Browse Queue Records

| Option:

| Function completed - please enter a new request.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| CLEAR/PF3 = Exit ENTER=Select

| á|
ñ

| 2. Select option 1 to configure.

| à| ð| ð8/18/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| 19:52:21 \\\ Configuration Main Menu \\\ VSE1| MQMMCFG Aðð4| SYSTEM IS ACTIVE

| Maintenance Options :| 1. Global System Definition| 2. Queue Definitions| 3. Channel Definitions

| Display Options :| 4. Global System Definition| 5. Queue Definitions| 6. Channel Definitions

| Option:

| Please enter one of the options listed.| 5686-Að6 (C) Copyright IBM Corp. 1999 All Rights Reserved.| ENTER = Process PF2 = Main Menu PF3 = Quit

| á|
ñ

| 3. Select option 3 to work with channel
| definitions.

| à| ð| ð8/19/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| ð7:29:ð3 Channel Record DISPLAY MCHN| MQMMCHN Last Check Point Last Update 1998ð8ð5 Aðð4| MSN ððððð149 Time 17:52:32 Interv ðððððð Create Date 1998ð528| Name : OS2.VSE.SNA| Protocol : L (L/T) Port : ðððð Type : R (S/R/C)| Partner :

| Allocation Retries Get Retries| Number of Retries: ðððððððð Number of Retries : ðððððððð| Delay Time - fast: ðððððððð Delay Time : ðððððððð| Delay Time - slow: ðððððððð

| Max Messages per Batch : ððððð1 Max Transmission Size : ð32ððð| Message Sequence Wrap : 999999 Max Message Size : ðð8192

| Mess Seq Req(Y/N): Y Convers Cap (Y/N): Y Split Msg(Y/N): N

| Transmission Queue Name :| TP Name:| Checkpoint Values: Frequency: ðððð Time Span: ðððð| Enable(Y/N) Y Dead Letter Store(Y/N) Y| Channel record displayed.| PF2 =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete

| á|
ñ

| 4. Complete the parameter fields as indicated,
| specifically the field Channel name <.L/>.

| All other parameters can be entered as
| shown.

| 5. Press PF5.

| Defining a TCP/IP sender channel

| To define a TCP/IP sender channel, carry out the
| following procedure:

| 1. Run the MQSeries master terminal transaction
| MQMT.

| 2. Select option 1 to configure.

| 3. Select option 3 to work with channel
| definitions. The screen shown in Figure 113
| on page 485 is displayed:

484 MQSeries Intercommunication

 VSE/ESA configuration

| à| ð| ð7/16/1998 IBM MQSeries for VSE/ESA Version 2.1.ð IYBPZSð1| ð8:ð3:53 Channel Record DISPLAY MCHN| MQMMCHN Last Check Point Last Update ðððððððð Aðð5| MSN ððððððð2 Time ð7:1ð:22 Interv ðððððð Create Date 1998ð528| Name : SDð1_TCP_VSEP| Protocol : T (L/T) Port : 1414 Type : S (S/R/C)| Partner :

| Allocation Retries Get Retries| Number of Retries: ðððððððð Number of Retries : ðððððððð| Delay Time - fast: ðððððððð Delay Time : ðððððððð| Delay Time - slow: ðððððððð

| Max Messages per Batch : ððððð1 Max Transmission Size : ð32ððð| Message Sequence Wrap : 999999 Max Message Size : ðð8192

| Mess Seq Req(Y/N): Y Convers Cap (Y/N): Y Split Mssg(Y/N): N

| Transmission Queue Name :| TP Name:| Checkpoint Values: Frequency: ðððð Time Span: ðððð| Enable(Y/N) Y Dead Letter Store(Y/N) N| Channel record displayed.| PF2 =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete

| á|
ñ

| Figure 113. Channel configuration panel

| 4. Complete the parameter fields as follows:

| � Channel name – .G/ on the configuration
| worksheet.

| � Partner – should contain the IP address of
| the remote host, for example, 1.20.33.444.

| � Port – the port number must match the
| port number configured for the remote
| host. This is configured in the global
| system definition of the remote host. The
| default port number for MQSeries for
| VSE/ESA is 1414.

| � Transmission queue name – .F/ on the
| configuration worksheet.

| � Protocol – enter T for TCP.

| � Channel type – enter S for sender.

| Notes:

| a. The TP Name is not used by TCP
| channels.

| b. Ensure that the parameter field values
| match the values of the receiver channel
| definition of the same name on the remote
| host.

| 5. Press PF5 (Add) to add the new channel
| definition.

| Defining a TCP receiver channel

| To define a TCP receiver channel, carry out the
| following procedure:

| 1. Run the MQSeries master terminal transaction
| MQMT.

| 2. Select option 1 to configure.

| 3. Select option 3 to work with channel
| definitions. The screen shown in Figure 113
| is displayed.

| 4. Complete the parameter fields as follows:

| � Channel name – .G/ on the configuration
| worksheet.

| � Protocol – enter T for TCP.

| � Channel type – enter R for receiver.

| Notes:

| a. The Partner and Port are not required for
| a TCP receiver channel.

| b. The TP Name is not used by TCP
| channels.

| c. Ensure that the parameter field values
| match the values of the sender channel
| definition of the same name on the remote
| host.

| 5. Press PF5 (Add) to add the new channel
| definition.

 Chapter 34. Example configuration - MQSeries for VSE/ESA 485

 VSE/ESA configuration

486 MQSeries Intercommunication

Part 7. Further intercommunication considerations

This part of the book is about creating installation-specific user-exit programs, and
solving problems with your MQSeries system. The description is not
platform-specific. Where some details apply only to certain platforms, this is made
clear. Most of the OS/390 information here applies equally to MVS/ESA.

Chapter 35. Channel-exit programs . 491
What are channel-exit programs? . 491

Processing overview . 492
Channel security exit programs . 494
Channel send and receive exit programs . 498
Channel message exit programs . 500
Channel message retry exit program . 502
Channel auto-definition exit program . 502

| Transport-retry exit program . 503
Writing and compiling channel-exit programs 504

MQSeries for OS/390 without CICS . 506
MQSeries for OS/390 using CICS . 508
MQSeries for AS/400 . 508
MQSeries for OS/2 Warp . 508
Windows 3.1 client . 510

| MQSeries for Windows NT server, MQSeries client for Windows NT, and
| MQSeries client for Windows 95 and Windows 98
| 511

MQSeries for Windows . 513
MQSeries for AIX . 513
MQSeries for Digital OpenVMS . 515
MQSeries for HP-UX . 517
MQSeries for AT&T GIS UNIX . 518
MQSeries for Sun Solaris . 518
MQSeries for SINIX and DC/OSx . 519
MQSeries for Tandem NonStop Kernel . 520

Supplied channel-exit programs using DCE security services 521
What do the DCE channel-exit programs do? 521
How do the DCE channel-exit programs work? 523
How to use the DCE channel-exit programs 525

 Copyright IBM Corp. 1993,1999 487

Chapter 36. Channel-exit calls and data structures 529
Data definition files . 530
MQ_CHANNEL_EXIT - Channel exit . 532

C invocation . 536
COBOL invocation . 536
PL/I invocation . 536
ILE RPG invocation . 537
OPM RPG invocation . 537
System/390 assembler invocation . 538

MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit 539
C invocation . 541
COBOL invocation . 541
ILE RPG invocation . 541
OPM RPG invocation . 541
System/390 assembler invocation . 542

MQXWAIT - Wait . 543
C invocation . 544
System/390 assembler invocation . 544

| MQ_TRANSPORT_EXIT - Transport retry exit 545
C invocation . 546

MQCD - Channel data structure . 547
Fields . 549
C declaration . 572
COBOL declaration . 574
PL/I declaration . 576
ILE RPG declaration . 578
OPM RPG declaration . 580
System/390 assembler declaration . 582

MQCXP - Channel exit parameter structure . 585
Fields . 586
C declaration . 597
COBOL declaration . 597
PL/I declaration . 598
ILE RPG declaration . 598
OPM RPG declaration . 599
System/390 assembler declaration . 600

MQTXP - Transport-exit data structure . 601
| Fields . 601

C declaration . 604
MQXWD - Exit wait descriptor structure . 605

Fields . 605
C declaration . 606
System/390 assembler declaration . 606

488 MQSeries Intercommunication

Chapter 37. Problem determination in DQM 607
Error message from channel control . 607
Ping . 608
Dead-letter queue considerations . 608
Validation checks . 609
In-doubt relationship . 609
Channel startup negotiation errors . 609
When a channel refuses to run . 609

Triggered channels . 611
Conversion failure . 611
Network problems . 611
Dial-up problems . 612

Retrying the link . 612
Retry considerations . 612

Data structures . 612
User exit problems . 613
Disaster recovery . 613
Channel switching . 613
Connection switching . 614
Client problems . 614

Terminating clients . 614
Error logs . 615

Error logs for OS/2 and Windows NT . 615
Error logs on UNIX systems . 615

| Error logs on DOS, Windows 3.1, and Windows 95 and Windows 98 clients
| . 616

Error logs on OS/390 . 616
Error logs on MQSeries for Windows . 616

| Error logs on MQSeries for VSE/ESA . 616

 Part 7. Further intercommunication considerations 489

490 MQSeries Intercommunication

 Channel-exit programs

 Chapter 35. Channel-exit programs

Product-sensitive programming interface

This chapter discusses MQSeries channel-exit programs. The following topics are
covered:

� “What are channel-exit programs?”
� “Writing and compiling channel-exit programs” on page 504
� “Supplied channel-exit programs using DCE security services” on page 521

Message channel agents (MCAs) can also call data-conversion exits; these are
discussed in Chapter 11, “Writing data-conversion exits” in the MQSeries
Application Programming Guide.

| Note: Channel exit programs are not supported on DOS or VSE/ESA.

What are channel-exit programs?
Channel-exit programs are called at defined places in the processing carried out by
MCA programs.

Some of these user-exit programs work in complementary pairs. For example, if a
user-exit program is called by the sending MCA to encrypt the messages for
transmission, the complementary process must be functioning at the receiving end
to reverse the process.

The different types of channel-exit program are described below. Table 45 on
page 492 shows the types of channel exit that are available for each channel type.

 Copyright IBM Corp. 1993,1999 491

 Channel-exit programs

Table 45. Channel exits available for each channel type

Channel
Type

Message
exit

Message-
retry exit

Receive
exit

Security
exit

Send exit Auto-
definition

exit

Transport-
retry exit

Sender
channel

√ √ √ √ √

Server
channel

√ √ √ √ √

| Cluster-
| sender
| channel

| √| √| √| √| √

Receiver
channel

√ √ √ √ √ √ √

Requester
channel

√ √ √ √ √ √

| Cluster-
| receiver
| channel

| √| √| √| √| √| √

Client-
connection
channel

√ √ √

Server-
connection
channel

√ √ √ √

Notes:

1. The message-retry exit does not apply to MQSeries for OS/390 or MQSeries for Windows.

| 2. The auto-definition exit applies to V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and
| MQSeries for AS/400 V4R2M1 and MQSeries for OS/390 (cluster-sender channels only).

| 3. The transport-retry exit applies to MQSeries for AIX V5.1 and MQSeries for Windows V2.0 only.

If you are going to run channel exits on a client, you cannot use the MQSERVER
environment variable. Instead, create and reference a client channel definition
table as described in “Client channel definition table” in the MQSeries Clients book.

 Processing overview
On startup, the MCAs exchange a startup dialog to synchronize processing. Then
they switch to a data exchange that includes the security exits; these must end
successfully for the startup phase to complete and to allow messages to be
transferred.

492 MQSeries Intercommunication

 Channel-exit programs

The security check phase is a loop, as shown in Figure 114.

S e n d e r -

S e r v e r

C o m m s

l i n k

R e c e i v e r -

R e q u e s t e r

S e c u r i t yS e c u r i t y

E x i t E x i tM C A M C A

L o c a l s y s t e m A d j a c e n t s y s t e m

Figure 114. Security exit loop

During the message transfer phase, the sending MCA gets messages from a
transmission queue, calls the message exit, calls the send exit, and then sends the
message to the receiving MCA, as shown in Figure 115.

A p p l i c a t i o n

M C A

C o m m s
l i n k

E x i t

E x i t

Q u e u e t r a n s m i s s i o n

S e n d

M e s s a g e
(g e t)

Figure 115. Example of a send exit at the sender end of message channel

 Chapter 35. Channel-exit programs 493

 Channel-exit programs

A p p l i c a t i o n

M C A

C o m m s

l i n k

E x i t

R e c e i v e

E x i t

M e s s a g e

(p u t)

Q u e u e L o c a l

Figure 116. Example of a receive exit at the receiver end of message channel

The receiving MCA receives a message from the communications link, calls the
receive exit, calls the message exit, and then puts the message on the local queue,
as shown in Figure 116. (The receive exit can be called more than once before
the message exit is called.)

Channel security exit programs
You can use security exit programs to verify that the partner at the other end of a
channel is genuine.

Channel security exit programs are called at the following places in an MCA’s
processing cycle:

� At MCA initiation and termination.

� Immediately after the initial data negotiation is finished on channel startup. The
receiver or server end of the channel may initiate a security message exchange
with the remote end by providing a message to be delivered to the security exit
at the remote end. It may also decline to do so. The exit program is
re-invoked to process any security message received from the remote end.

� Immediately after the initial data negotiation is finished on channel startup. The
sender or requester end of the channel processes a security message received
from the remote end, or initiates a security exchange when the remote end
cannot. The exit program is re-invoked to process all subsequent security
messages that may be received.

494 MQSeries Intercommunication

 Channel-exit programs

A requester channel never gets called with MQXCC_INIT_SEC. The channel
notifies the server that it has a security exit program, and the server then has the
opportunity to initiate a security exit. If it does not have one, it sends a null security
flow to allow the requester to call its exit program.

| Note: You are recommended to avoid sending zero-length security messages.

| V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT and
| the MQSeries client for Windows 95 and Windows 98 supply a security exit

program that uses the DCE security services. See “Supplied channel-exit programs
using DCE security services” on page 521.

Examples of the data exchanged by security exit programs are shown in figures
117 through 120.

S e n d e r e x i tR e c e i v e r e x i t

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T S E C

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R S E C M S G

R e s p o n d s w i t h M Q X C C S E N D S E C M S G

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T S E C

R e s p o n d s w i t h M Q X C C S E N D S E C M S G

I n v o k e d w i t h M Q X R S E C M S G

R e s p o n d s w i t h M Q X C C O K

M e s s a g e t r a n s f e r b e g i n s

Figure 117. Sender-initiated exchange with agreement

 Chapter 35. Channel-exit programs 495

 Channel-exit programs

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T S E C

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R S E C M S G

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R T E R M

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T S E C

R e s p o n d s w i t h M Q X C C S E N D S E C M S G

I n v o k e d w i t h M Q X R S E C M S G

R e s p o n d s w i t h M Q X C C S U P P R E S S F U N C T I O N

I n v o k e d w i t h M Q X R T E R M

R e s p o n d s w i t h M Q X C C O K

S e n d e r e x i tR e c e i v e r e x i t

C h a n n e l c l o s e s

Figure 118. Sender-initiated exchange with no agreement

496 MQSeries Intercommunication

 Channel-exit programs

S e n d e r e x i tR e c e i v e r e x i t

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T S E C

R e s p o n d s w i t h M Q X C C S E N D S E C M S G

I n v o k e d w i t h M Q X R S E C M S G

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R T E R M

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R S E C M S G

R e s p o n d s w i t h M Q X C C S E N D S E C M S G

I n v o k e d w i t h M Q X R T E R M

R e s p o n d s w i t h M Q X C C O K

M e s s a g e t r a n s f e r b e g i n s

Figure 119. Receiver-initiated exchange with agreement

R e c e i v e r e x i t

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T S E C

R e s p o n d s w i t h M Q X C C S E N D S E C M S G

I n v o k e d w i t h M Q X R S E C M S G

R e s p o n d s w i t h M Q X C C S U P R E S S F U N C T I O N

S e n d e r e x i t

I n v o k e d w i t h M Q X R I N I T

R e s p o n d s w i t h M Q X C C O K

I n v o k e d w i t h M Q X R I N I T S E C

R e s p o n d s w i t h M Q X C C O K

C h a n n e l c l o s e s

Figure 120. Receiver-initiated exchange with no agreement

The channel security exit program is passed an agent buffer containing the security
data, excluding any transmission headers, generated by the security exit. This may
be any suitable data so that either end of the channel is able to perform security
validation.

 Chapter 35. Channel-exit programs 497

 Channel-exit programs

The security exit program at both the sending and receiving end of the message
channel may return one of four response codes to any call:

� Security exchange ended with no errors
� Suppress the channel and close down
� Send a security message to the corresponding security exit at the remote end
� Send a security message and demand a reply (this does not apply on OS/390

when using CICS)

Notes:

1. The channel security exits usually work in pairs. When you define the
appropriate channels, make sure that compatible exit programs are named for
both ends of the channel.

2. In OS/400, security exit programs have the ability to adopt QMQM authority
and hence should not propagate this authority unnecessarily.

Channel send and receive exit programs
You can use the send and receive exits to perform tasks such as data compression
and decompression. In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT, and MQSeries for AS/400 V4R2M1, and with MQSeries
clients, you can specify a list of send and receive exit programs to be run in
succession.

Channel send and receive exit programs are called at the following places in an
MCA’s processing cycle:

� The send and receive exit programs are called for initialization at MCA initiation
and for termination at MCA termination.

� The send exit program is invoked at either end of the channel, immediately
before a transmission is sent over the link.

� The receive exit program is invoked at either end of the channel, immediately
after a transmission has been taken from the link.

| Note: For MQSeries for OS/390 using CICS, only the security exit is called at
| MCA initiation; other exits are called with the ExitReason parameter set to
| MQXR-INIT when the first message is sent across the channel.

There may be many transmissions for one message transfer, and there could be
many iterations of the send and receive exit programs before a message reaches
the message exit at the receiving end.

The channel send and receive exit programs are passed an agent buffer containing
the transmission data as sent or received from the communications link. For send
exit programs, the first eight bytes of the buffer are reserved for use by the MCA,
and must not be changed. If the program returns a different buffer, then these first
eight bytes must exist in the new buffer. The format of data presented to the exit
programs is not defined.

A good response code must be returned by send and receive exit programs. Any
other response will cause an MCA abnormal end (abend).

Note: Do not issue an MQGET, MQPUT, or MQPUT1 call within syncpoint from a
send or receive exit.

498 MQSeries Intercommunication

 Channel-exit programs

| V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT and
| the MQSeries client for Windows 95 and Windows 98 supply send and receive exit

programs that use the DCE encryption security services. See “Supplied
channel-exit programs using DCE security services” on page 521.

Notes:

1. Send and receive exits usually work in pairs. For example a send exit may
compress the data and a receive exit decompress it, or a send exit may
encrypt the data and a receive exit decrypt it. When you define the appropriate
channels, make sure that compatible exit programs are named for both ends of
the channel.

2. Channel send and receive exits may be called for message segments other
than for application data, for example, status messages. They are not called
during the startup dialog, nor the security check phase.

3. Although message channels send messages in one direction only,
channel-control data flows in both directions, and these exits are available in
both directions, also. However, some of the initial channel startup data flows
are exempt from processing by any of the exits.

4. There are circumstances in which send and receive exits could be invoked out
of sequence; for example if you are running a series of exit programs or if you
are also running security exits. Then, when the receive exit is first called upon
to process data, it may receive data that has not passed through the
corresponding send exit. If the receive exit were just to perform the operation,
for example decompression, without first checking that it was really required,
the results would not be what was expected.

You should code your send and receive exits in such a way that the receive
exit can check that the data it is receiving has been processed by the
corresponding send exit. The recommended way to do this is to code your exit
programs so that:

� The send exit sets the value of the ninth byte of data to 0 and shifts all the
data along one byte, before performing the operation. (The first eight bytes
are reserved for use by the MCA.)

� If the receive exit receives data that has a 0 in byte 9, it knows that the
data has come from the send exit. It removes the 0, performs the
complementary operation, and shifts the resulting data back by one byte.

� If the receive exit receives data that has something other than 0 in byte 9, it
assumes that the send exit has not run, and sends the data back to the
caller unchanged.

| 5. In the case of MQI channels for clients, byte 10 of message data identifies the
| API call in use when the send or receive exit is called. This is useful for
| identifying which channel flows include user data and may require processing
| such as encryption or digital signing.

| Table 46 on page 500 shows the data that appears in byte 10 of the channel
| flow when an API call is being processed.

| Note: These are not the only values of this byte. There are other reserved
| values.

 Chapter 35. Channel-exit programs 499

 Channel-exit programs

| Table 46. Identifying API calls

| API call| Value of byte 10

| MQCONN request (1, 2)| X'81'

| MQCONN reply (1, 2)| X'91'

| MQDISC request (1)| X'82'

| MQDISC reply (1)| X'92'

| MQOPEN request (3)| X'83'

| MQOPEN reply (3)| X'93'

| MQCLOSE request| X'84'

| MQCLOSE reply| X'94'

| MQGET request (4)| X'85'

| MQGET reply (4)| X'95'

| MQPUT request (4)| X'86'

| MQPUT reply (4)| X'96'

| MQPUT1 request (4)| X'87'

| MQPUT1 reply (4)| X'97'

| MQSET request| X'88'

| MQSET reply| X'98'

| MQINQ request| X'89'

| MQINQ reply| X'99'

| MQCMIT request| X'8A'

| MQCMIT reply| X'9A'

| MQBACK request| X'8B'

| MQBACK reply| X'9B'

| Notes:

| 1. The connection between the client and server is initiated by the client application
| using MQCONN. Therefore, for this command in particular, there will be several
| other network flows. This also applies to MQDISC that terminates the network
| connection.

| 2. MQCONNX is treated in the same way as MQCONN for the purposes of the
| client-server connection.

| 3. If a large distribution list is opened, there may be more than one network flow per
| MQOPEN call in order to pass all of the required data to the SVRCONN MCA.

| 4. If the message data exceeds the transmission segment size, there may be a large
| number of network flows per single API call.

Channel message exit programs
You can use the channel message exit for the following:

� Encryption on the link
� Validation of incoming user IDs
� Substitution of user IDs according to local policy
� Message data conversion

 � Journaling
� Reference message handling

500 MQSeries Intercommunication

 Channel-exit programs

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1, you can specify a list of message exit
programs to be run in succession.

Channel message exit programs are called at the following places in an MCA’s
processing cycle:

� At MCA initiation and termination
� Immediately after a sending MCA has issued an MQGET call
� Before a receiving MCA issues an MQPUT call

The message exit is passed an agent buffer containing the transmission queue
header, MQXQH, and the application message text as retrieved from the queue.
(The format of MQXQH is given in “MQXQH - Transmission queue header” in the
MQSeries Application Programming Reference book.) If you use reference
messages, that is messages that contain only a header which points to some other
object that is to be sent, the message exit recognizes the header, MQRMH. It
identifies the object, retrieves it in whatever way is appropriate appends it to the
header, and passes it to the MCA for transmission to the receiving MCA. At the
receiving MCA, another message exit recognizes that this is a reference message,
extracts the object, and passes the header on to the destination queue. See
“Reference messages” in the MQSeries Application Programming Guide for more
information about reference messages and some sample message exits that handle
them.

Message exits can return the following responses:

� Send the message (GET exit). The message may have been changed by the
exit. (This returns MQXCC_OK.)

� Put the message on the queue (PUT exit). The message may have been
changed by the exit. (This returns MQXCC_OK.)

� Do not process the message. The message is placed on the dead-letter queue
(undelivered message queue) by the MCA.

� Close the channel.

� Bad return code, which causes the MCA to abend.

Notes:

1. Message exits are called just once for every complete message transferred,
even when the message is split into parts.

2. In UNIX systems, if you provide a message exit for any reason the automatic
conversion of user IDs to lowercase characters does not operate. See “User
IDs on UNIX systems and Digital OpenVMS” on page 132.

| 3. An exit runs in the same thread as the MCA itself. It also runs inside the same
| unit of work (UOW) as the MCA because it uses the same connection handle.
| Therefore, any calls made under syncpoint are committed or backed out by the
| channel at the end of the batch. For example, one channel message exit
| program can send notification messages to another and these messages will
| only be committed to the queue when the batch containing the original
| message is committed.

| Therefore, it is possible to issue syncpoint MQI calls from a channel message
| exit program.

 Chapter 35. Channel-exit programs 501

 Channel-exit programs

V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
supplies a message exit program that uses the DCE security services. See
“Supplied channel-exit programs using DCE security services” on page 521.

Channel message retry exit program
The channel message-retry exit is called when an attempt to open the target queue
is unsuccessful. You can use the exit to determine under which circumstances to
retry, how many times to retry, and how frequently. (This exit is not available on
MQSeries for OS/390 or MQSeries for Windows.)

This exit is also called at the receiving end of the channel at MCA initiation and
termination.

The channel message-retry exit is passed an agent buffer containing the
transmission queue header, MQXQH, and the application message text as retrieved
from the queue. The format of MQXQH is given in “MQXQH - Transmission queue
header” in the MQSeries Application Programming Reference book.

The exit is invoked for all reason codes; the exit determines for which reason codes
it wants the MCA to retry, for how many times, and at what intervals. (The value of
the message-retry count set when the channel was defined is passed to the exit in
the MQCD, but the exit can ignore this.)

The MsgRetryCount field in MQCXP is incremented by the MCA each time the exit
is invoked, and the exit returns either MQXCC_OK with the wait time contained in
the MsgRetryInterval field of MQCXP, or MQXCC_SUPPRESS_FUNCTION.
Retries continue indefinitely until the exit returns MQXCC_SUPPRESS_FUNCTION
in the ExitResponse field of MQCXP. See the MQCXP structure on page 585 for
information about the action taken by the MCA for these completion codes.

If all the retries are unsuccessful, the message is written to the dead-letter queue.

If you do not define a message-retry exit for a channel and a failure occurs that is
likely to be temporary, for example MQRC_Q_FULL, the MCA uses the
message-retry count and message-retry intervals set when the channel was
defined. If the failure is of a more permanent nature and you have not defined an
exit program to handle it, the message is written to the dead-letter queue.

Channel auto-definition exit program
The channel auto-definition exit can be called when a request is received to start a
receiver or server-connection channel but no channel definition exists. The exit
applies to V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, and MQSeries for AS/400 V4R2M1. You can use it to modify the
supplied default definition for an automatically defined receiver or server-connection
channel, SYSTEM.AUTO.RECEIVER or SYSTEM.AUTO.SVRCON. See
“Auto-definition of channels” on page 67 for a description of how channel
definitions can be created automatically.

502 MQSeries Intercommunication

 Channel-exit programs

| The channel auto-definition exit can also be called when a request is received to
| start a cluster-sender channel. It can be called for cluster-sender and
| cluster-receiver channels to allow definition modification for this instance of the
| channel. In this case, the exit applies to MQSeries for OS/390 as well as V5.1 of
| MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and
| MQSeries for AS/400 V4R2M1. For more information about this, see
| “Auto-definition of remote queues and channels” in the MQSeries Queue Manager
| Clusters book.

As with other channel exits, the parameter list is:

MQCHANNELAUTODEFEXIT (ChannelExitParms, ChannelDefinition)

ChannelExitParms are described in “PL/I declaration” on page 598.
ChannelDefinition is described in “MQCD - Channel data structure” on page 547.

MQCD contains the values that are used in the default channel definition if they are
not altered by the exit. The exit may modify only a subset of the fields; see
“MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit” on page 539.
However, attempting to change other fields does not cause an error.

The channel auto-definition exit returns a response of either MQXCC_OK or
MQXCC-SUPPRESS_FUNCTION. If neither of these is returned, the MCA
continues processing as though MQXCC-SUPPRESS_FUNCTION were returned.
That is, the auto-definition is abandoned, no new channel definition is created and
the channel cannot start.

| Transport-retry exit program
| The transport-retry exit applies to MQSeries for AIX V5.1 and MQSeries for
| Windows V2.0. It allows you to write a C-language retry exit. The exit allows your
| application to suspend data being sent on a channel when communication is not
| possible (for example, when a mobile user is traveling through a tunnel or is
| temporarily out of range of a transmitter).

| The transport-retry exit can be associated with a monitor program that can assess
| whether the IP connection is available for sending data. The exit has to be built
| into an AIX library (in the same way as any other MQSeries library).

| The exit is normally called before a datagram is about to be sent but is also called
| to provide other useful signals.

| The retry exit is called under five different conditions:

| � When the MQSeries channel is first initialized; the ExitReason variable is set to
| a value of MQXR_INIT.

| � When the MQSeries channel is shut down; the ExitReason variable is set to a
| value of MQXR_TERM.

| � Before each datagram is sent; the ExitReason variable is set to a value of
| MQXR_RETRY.

 Chapter 35. Channel-exit programs 503

 Channel-exit programs

| � When the end of a batch of messages occurs; the ExitReason variable is set to
| a value of MQXR_END_BATCH.

| � When an information datagram is received from the remote end of the link; the
| ExitReason variable is set to a value of MQXR_ACK_RECEIVED.

| If you want to postpone sending a datagram in response to an ExitReason of
| MQXR_RETRY, you need to block returning from the exit until it is safe to send the
| datagram. In all other cases, the return from the exit should be immediate.

| There are three possible return codes that can be set when returning from the exit:

| � MQXCC_OK — this is the normal response.

| � MQXCC_CLOSE_CHANNEL — in response to an ExitReason of
| MQXR_RETRY, this will cause the channel to be closed.

| � MQXCC_REQUEST_ACK — in response to an ExitReason of MQXR_RETRY,
| this will cause the datagram about to be sent to be modified so that it requests
| the remote end of the link to send an information datagram back to indicate
| that the node can be reached. If this datagram arrives the exit will be invoked
| again with an ExitReason of MQXR_ACK_RECEIVED. You can set this return
| code on or off by using the PSEUDO_ACK parameter in the qm.ini file.

| Note: If the datagram fails to arrive at the remote node, for any reason, you
| must repeat the request on the next datagram that is sent.

| The transport-retry exit name can be defined by the user, who can also change the
| name of the library that contains the exit. You configure the retry exit by editing the
| qm.ini file. A qm.ini file exists on both MQSeries for AIX V5.1 and MQSeries for
| Windows V2.0. For more information about editing these files, see “Changing
| configuration information” in the MQSeries System Administration book.

Writing and compiling channel-exit programs
Channel exits must be named in the channel definition. You can do this when you
first define the channels, or you can add the information later using, for example,
the MQSC command ALTER CHANNEL. You can also give the channel exit
names in the MQCD channel data structure. The format of the exit name depends
on your MQSeries platform; see “MQCD - Channel data structure” on page 547 or
“ALTER CHANNEL” in the MQSeries Command Reference book for information.

If the channel definition does not contain a user-exit program name, the user exit is
not called.

The channel auto-definition exit is the property of the queue manager, not the
individual channel. In order for this exit to be called, it must be named in the queue
manager definition. To alter a queue manager definition, use the MQSC command
ALTER QMGR.

User exits and channel-exit programs are able to make use of all MQI calls, except
| as noted in the sections that follow. To get the connection handle, an MQCONN
| must be issued, even though a warning, MQRC_ALREADY_CONNECTED, is
| returned because the channel itself is connected to the queue manager.

504 MQSeries Intercommunication

 Channel-exit programs

For exits on client-connection channels, the queue manager to which the exit tries
to connect, depends on how the exit was linked. If the exit was linked with
MQM.LIB and you do not specify a queue manager name on the MQCONN call,
the exit will try to connect to the default queue manager on your system. If the exit
was linked with MQM.LIB and you specify the name of the queue manager that
was passed to the exit through the QMgrName field of MQCD, the exit tries to
connect to that queue manager. If the exit was linked with MQIC.LIB or any other
library, the MQCONN call will fail whether you specify a queue manager name or
not.

| Note: You are recommended to avoid issuing the following MQI calls in
| channel-exit programs:

| � MQCMIT
| � MQBACK
| � MQBEGIN

| An exit runs in the same thread as the MCA itself and uses the same connection
| handle. So, it runs inside the same UOW as the MCA and any calls made under
| syncpoint are committed or backed out by the channel at the end of the batch.

| Therefore, a channel message exit could send notification messages that will only
| be committed to that queue when the batch containing the original message is
| committed. So, it is possible to issue syncpoint MQI calls from a channel message
| exit.

| Channel-exit programs should not modify the Channel data structure (MQCD).
| They can actually change the BatchSize parameter and a security exit can set the
| MCAUserIdentifier parameter, but ChannelType and ChannelName must not be
| changed.

| Also, for programs written in C, non-reentrant C library function should not be used
| in a channel-exit program.

All exits are called with a channel exit parameter structure (MQCXP), a channel
definition structure (MQCD), a prepared data buffer, data length parameter, and
buffer length parameter. The buffer length must not be exceeded:

� For message exits, you should allow for the largest message required to be
sent across the channel, plus the length of the MQXQH structure.

� For send and receive exits, the largest buffer you should allow for is as follows:

LU 6.2:

TCP:

UDP:

OS/2 64 KB
Others 32 KB

AS/400 16 KB
Others 32 KB

32 KB

 Chapter 35. Channel-exit programs 505

 Channel-exit programs

NetBIOS:

SPX:

Note: Receive exits on sender channels and sender exits on receiver
channels use 2 KB buffers for TCP.

� For security exits, the distributed queuing facility allocates a buffer of 4000
bytes.

� On OS/390 using CICS, all exits use the maximum transmission length for the
channel, defined in the channel definition.

It is permissible for the exit to return an alternate buffer, together with the relevant
parameters. See “MQ_CHANNEL_EXIT - Channel exit” on page 532 for call
details.

Note: Before using a channel-exit program for the first time on V5.1 of MQSeries
for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, you should relink it
with threaded libraries to make it thread-safe.

DOS 4 KB
Others 64 KB

64 KB

MQSeries for OS/390 without CICS
The exits are invoked as if by an OS/390 LINK, in:

� Non-authorized problem program state
� Primary address space control mode

 � Non-cross-memory mode
� Non-access register mode
� 31-bit addressing mode

The link-edited modules must be placed in the data set specified by the CSQXLIB
DD statement of the channel initiator address space procedure; the names of the
load modules are specified as the exit names in the channel definition.

When writing channel exits for OS/390 without CICS, the following rules apply:

� Exits must be written in assembler or C; if C is used, it must conform to the C
systems programming environment for system exits, described in the OS/390
C/C++ Programming Guide.

� Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD
statement. Providing CSQXLIB has DISP=SHR, exits can be updated while the
channel initiator is running, with the new version used when the channel is
restarted.

� Exits must be reentrant, and capable of running anywhere in virtual storage.

� Exits must reset the environment, on return, to that at entry.

� Exits must free any storage obtained, or ensure that it will be freed by a
subsequent exit invocation.

506 MQSeries Intercommunication

 Channel-exit programs

| For storage that is to persist between invocations, use the OS/390 STORAGE
| service; there is no suitable service in C.

� All MQI calls except MQCMIT/CSQBCMT and MQBACK/CSQBBAK are
allowed. They must be contained between MQCONN (with a blank queue
manager name) and MQDISC, although not necessarily in the same exit
invocation. If these calls are used, the exit must be link-edited with the stub
CSQXSTUB.

The exception to this rule is that security channel exits may issue commit and
backout MQI calls. To do this, code the verbs CSQXCMT and CSQXBAK in
place of MQCMIT/CSQBCMT and MQBACK/CSQBBAK.

� Exits should not use any system services that could cause a wait, because this
would severely impact the handling of some or all of the other channels. In
general, therefore, SVCs, PCs, and I/O should be avoided. Instead, the
MQXWAIT call should be used.

Exits should not issue ESTAEs or SPIEs, apart from in any subtasks they
attach.

� The MQXWAIT call (see “MQXWAIT - Wait” on page 543) provides a wait
service that allows waiting for I/O and other events; if this service is used, exits
must not use the linkage stack.

For I/O and other facilities that do not provide non-blocking facilities or an ECB
to wait on, a separate subtask should be ATTACHed, and its completion waited
for by MQXWAIT; because of the overhead that this technique incurs, it is
recommended that this be used only by the security exit.

Note that there are no absolute restrictions on what you can do in an exit.
However, because many channels are run under a single TCB typically, if you do
something in an exit that causes a wait and you do not use MQXWAIT, it will cause
all these channels to wait. This will not give any functional problems, but might
have an adverse effect on performance. Most SVCs involve waits, so you should
avoid them, except for the following:

| � GETMAIN/FREEMAIN/STORAGE
 � LOAD/DELETE

You should not use ESTAEs and ESPIEs because their error handling might
interfere with the error handling performed by MQSeries. This means that
MQSeries might not be able to recover from an error, or that your exit program
might not receive all the error information.

Note that the MQDISC MQI call will not cause an implicit commit to occur within the
exit program. A commit of the channel process is performed only when the
channel protocol dictates.

The following exit samples are provided with MQSeries for OS/390:

CSQ4BAX0
This sample is written in assembler, and illustrates the use of MQXWAIT.

CSQ4BCX1 and CSQ4BCX2
These samples are written in C and illustrate how to access the parameters.

 Chapter 35. Channel-exit programs 507

 Channel-exit programs

MQSeries for OS/390 using CICS
In CICS, the exits are invoked with EXEC CICS LINK with the parameters passed
by pointers (addresses) in the CICS communication area (COMMAREA). The exit
programs, named in the channel definitions, reside in a library in the DFHRPL
concatenation. They must be defined in the CICS system definition file CSD, and
must be enabled.

User-exit programs can also make use of CICS API calls, but you should not issue
syncpoints because the results could influence units of work declared by the MCA.

Do not update any resources controlled by a resource manager other than
MQSeries for OS/390, including those controlled by CICS Transaction Server for
OS/390.

Any non-MQSeries for OS/390 resources updated by an exit are committed, or
backed out, at the next syncpoint issued by the channel program. If a sender is
unable to synchronize with its partner, these CICS Transaction Server for OS/390
resources are backed out even though MQSeries for OS/390 resources are held
in-doubt until the next opportunity to re-synchronize.

MQSeries for AS/400
In OS/400, the exit is a program object. The exit program names and their libraries
are named in the channel definition. Exits that are returning a pointer to their own
buffer space, should ensure that the object pointed to exists beyond the life of the
user-exit program. In other words, the pointer cannot be the address of a variable
on the program stack, nor of a variable in the program heap. Instead, the pointer
must be obtained from the system. An example of this would be a user space

| created in the user exit. To ensure that any data area allocated by the channel-exit
| program is still available for the MCA when the program ends, the channel exit
| must run in a named activation group. This can be achieved by setting the
| ACTGRP parameter in the CRTPGM statement to a user defined value. You
| should not use the named group QMQM, or the parameter values *CALLER or
| *NEW. If the program is created in this way, the channel-exit program can issue
| malloc calls to reserve memory and pass a pointer to this memory back to the
| MCA.

| You will need to issue a RCLACTGRP *ELIGIBLE command periodically to reclaim
| any storage.

MQSeries for OS/2 Warp
The exit is a DLL. To ensure that it can be loaded when required, specify the full
path name in the DEFINE CHANNEL command, or if you are using Version 5.1,
enter the path name in the ExitPath stanza of the QM.INI file. The value in the
ExitPath stanza of the QM.INI file defaults to c:\mqm\exits. You can change this
value in QM.INI or you can override it by specifying a full path name on the
DEFINE CHANNEL command.

508 MQSeries Intercommunication

 Channel-exit programs

Define a dummy MQStart() routine in the exit and specify MQStart as the entry point
in the shared library. Figure 121 shows how to set up entry to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point - for consistency only \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 121. Sample source code for a channel exit on OS/2

Figure 122 shows a sample definition file that gives the entry point to the exit
program.

LIBRARY csqos2it INITINSTANCE TERMINSTANCE

PROTMODE

DESCRIPTION 'channel exit '

CODE SHARED LOADONCALL

DATA NONSHARED MULTIPLE

HEAPSIZE 4ð96

STACKSIZE 8192

EXPORTS

 csqos2it;

Figure 122. Sample DEF file for a channel exit on OS/2

Use a make file like the one shown in Figure 123 on page 510 to compile and link
your program to create the DLL.

 Chapter 35. Channel-exit programs 509

 Channel-exit programs

MAKE FILE TO CREATE AN MQSERIES EXIT

Make File Creation run in directory:

D:\EXIT;

.SUFFIXES:

.SUFFIXES: .c .cpp .cxx

CSQOS2IT.DLL: \

 csqos2it.OBJ \

 MAKEOS2

 ICC.EXE @<<

 /Fe"CSQOS2IT.DLL" mqm.lib csqos2it.def

csqos2it.OBJ

<<

IMPLIB CSQOS2IT.LIB CSQOS2IT.DLL

{.}.c.obj:

ICC.EXE /Ge- /G5 /C .\$\.c

{.}.cpp.obj:

ICC.EXE /Ge- /G5 /C .\$\.cpp

{.}.cxx.obj:

ICC.EXE /Ge- /G5 /C .\$\.cxx

!include MAKEOS2.DEP

Figure 123. Sample make file for a channel exit on OS/2

Windows 3.1 client
The exit is a DLL that must be placed in a directory pointed to by LIBPATH to
ensure it can be loaded when required. Define a dummy MQStart() routine in the
exit and specify MQStart as the entry point in the shared library. Figure 124 shows
how to set up an entry to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point - for consistency only \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 124. Sample source code for a channel exit on Windows 3.1

510 MQSeries Intercommunication

 Channel-exit programs

| MQSeries for Windows NT server, MQSeries client for Windows NT,
| and MQSeries client for Windows 95 and Windows 98

The exit is a DLL.

| � On MQSeries for Windows NT server, use the Control Service Manager User
| Interface snap-in within the Microsoft Management Console (MMC) in order to
| ensure that the DLL can be loaded when required. Specify the full path name
| on the DEFINE CHANNEL command or enter the path name in the ExitPath of
| the registry entry.

| If the exit is on a Windows NT client, specify the path name in the
| ClientExitPath stanza of the registry file.

| The default exit path is c:\WINNT\Profiles\All Users\Application
| Data\MQSeries\EXITS. You can change this value or you can override it by
| specifying a full path name on the DEFINE CHANNEL command.

| � On MQSeries client for Windows 95 and Windows 98, specify the path name in
| the ExitPath stanza of the MQS.INI file You can change this value or you can

override it by specifying a full path name on the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry point
in the library. Figure 125 shows how to set up an entry to your program:

| #include <cmqc.h>
| #include <cmqxc.h>

| void MQStart() {;} /\ dummy entry point - for consistency only \/

| void MQENTRY ChannelExit (PMQCXP pChannelExitParms,

| PMQCD pChannelDefinition,

| PMQLONG pDataLength,

| PMQLONG pAgentBufferLength,

| PMQVOID pAgentBuffer,

| PMQLONG pExitBufferLength,

| PMQPTR pExitBufferAddr)

| {

| ... Insert code here

| }

| Figure 125. Sample source code for a channel exit on Windows NT, Windows 95, or
| Windows 98

 Chapter 35. Channel-exit programs 511

 Channel-exit programs

| In order to access the fields pointed to by pChannelExitParms and
| pChannelDefinition you need to insert the following lines in your exit program:
| .| .| .

| /\ Variable definitions \/
| .| .| .

| PMQCXP pParms;

| PMQCD pChDef;
| .| .| .

| /\ Code \/
| .| .| .

| pParms = (PMQCXP)pChannelExitParms;

| pChDef = (PMQCD)pChannelDefinition;

| The pointers pParms and pChDef can then be dereferenced to access individual
| fields.

| When writing channel exits for these products using Visual C++, you should do the
| following:

| � Add MQMVX.LIB to project as a source file11.

| � Change the box labelled “Use Run-Time Library” from “Multithreaded” to
| “Multithreaded using DLL” in the project settings under C/C++ code generation.

| � Do not change the box labelled “Entry-Point Symbol.” This box can be found in
| the project settings, under the Link tab, when you select Category and then
| Output.

� Write your own .DEF file; an example of this is shown in Figure 126.

 LIBRARY exit

 PROTMODE

 DESCRIPTION 'Provides Retry and Channel exits'

 CODE SHARED LOADONCALL

 DATA NONSHARED MULTIPLE

 HEAPSIZE 4ð96

 STACKSIZE 8192

 EXPORTS Retry

| Figure 126. Sample DEF file for Windows NT, Windows 95, Windows 98, or Windows

| 11 MQMVX.LIB is used for data conversion and is not available on client products.

512 MQSeries Intercommunication

 Channel-exit programs

MQSeries for Windows
The exit is a DLL. To ensure that it can be loaded when required, specify the full
path name on the DEFINE CHANNEL command. Figure 127 shows how to set up
an entry to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 127. Sample source code for a channel exit on Windows

When writing channel exits for MQSeries for Windows using Visual C++, you should
do the following:

� Change the box labelled “Use Run-Time Library” from “Multithreaded” to
“Multithreaded using DLL” in the project settings under C/C++ code generation.

| � Do not change the box labelled “Entry-Point Symbol.” This box can be found in
| the project settings, under the Link tab, when you select Category and then
| Output.

� Write your own .DEF file; an example of this is shown in Figure 126 on
page 512.

MQSeries for AIX
| Note: Before you use an existing user exit for the first time on MQSeries for AIX
| V5.1, you must recompile it to enable it to take advantage of thread-safe system

calls. If your user exits use thread-unsafe system calls, you will need to modify
them before using them on this platform.

The exit is a dynamically loaded object. To ensure that it can be loaded when
| required, specify the full path name in the DEFINE CHANNEL command or enter
| the path name in the ExitPath stanza of the QM.INI file. If the exit is on an AIX

client, specify the path name in the ClientExitPath stanza of the MQS.INI file. The
value in the ExitPath stanza of the QM.INI file or the ClientExitPath stanza of the
MQS.INI file defaults to /var/mqm/exits. You can change this value or you can
override it by specifying a full path name on the DEFINE CHANNEL command.

 Chapter 35. Channel-exit programs 513

 Channel-exit programs

Define a dummy MQStart() routine in the exit and specify MQStart as the entry point
in the module. Figure 128 shows how to set up an entry to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point - for consistency only \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 128. Sample source code for a channel exit on AIX

Figure 129 shows the compiler and loader commands for channel-exit programs on
AIX.

| $ cc -c exit.c

| $ ld -o exit exit.o -bE:exit.exp -H512 -T512 -e MQStart -bM:SRE

| $ cp exit /usr/xmp/lib # (or wherever you require)

Figure 129. Sample compiler and loader commands for channel exits on AIX

Figure 131 on page 515 shows a sample make file that can be used to build an
MQSeries exit program, and Figure 130 shows a sample export file for this make
file.

#!

csqaixit

MQStart

Figure 130. Sample export file for AIX

514 MQSeries Intercommunication

 Channel-exit programs

MAKE FILE TO BUILD AN MQSERIES EXIT ON AIX

MQIDIR = /usr/mqm

MQILIBDIR = $(MQIDIR)/lib

MQIINCDIR = $(MQIDIR)/inc

LIBEXIT = -lmqm

CFLAGS = -g -bloadmap:muck

ALL : CSQAIXIT

csqaixit: csqaixit.o

 xlc -L $(MQILIBDIR) $(LIBEXIT) csqaixit.o -o csqaixit \

-bE:csqaixit.exp -H512 -T512 -e MQStart -bM:SRE

csqaixit.o : csqaixit.c

 xlc -c csqaixit.c \

 -I $(MQIINCDIR)

Figure 131. Sample make file for AIX

MQSeries for Digital OpenVMS
The user exit is a dynamically loaded shareable image whose name is taken from
the format of the message. The object’s name must be in uppercase, for example
MYFORMAT. The shareable image must be placed in sys$share or a location defined
by a logical name at executive level for it to be loaded.

User exits must be installed as known images. Figure 132 shows how to set up an
entry to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 132. Sample source code for a channel exit on Digital OVMS

 Chapter 35. Channel-exit programs 515

 Channel-exit programs

In the example, MQSTART is the initialization routine entry point for the
MYFORMAT shareable image. The names of the routines that are called by the
exit must be made universal.

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE exitname.C

$ LINK /SHARE=SYS$SHARE:[SYSLIB]MYFORMAT exitname.OBJ,MYFORMAT/OPTIONS

The contents of MYFORMAT.OPT vary depending on what platform you are
working on:

On AXP:

 SYS$SHARE:MQM/SHAREABLE

 SYMBOL_VECTOR=(MQSTART=PROCEDURE)

On VAX:

 SYS$SHARE:MQM/SHAREABLE

 UNIVERSAL=MQSTART

If you are using threaded applications linked with the pthread library, you must also
build a second copy of the exit with the thread options and libraries:

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE exitname.C

$ LINK /SHARE=SYS$SHARE:MYFORMAT exitname.OBJ,MYFORMAT/OPTIONS

Again, the contents of MYFORMAT.OPT vary depending on what platform you are
working on:

On AXP:

 SYS$SHARE:MQM_R/SHAREABLE

 SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE

 SYMBOL_VECTOR’-(MQSTART=PROCEDURE)

On VAX:

 SYS$SHARE:MQM_R/SHAREABLE

 SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE

 UNIVERSAL=MQSTART

516 MQSeries Intercommunication

 Channel-exit programs

MQSeries for HP-UX
| Note: Before you use an existing user exit for the first time on MQSeries for
| HP-UX V5.1, you must recompile it to enable it to take advantage of thread-safe

system calls. If your user exits use thread-unsafe system calls, you will need to
modify them before using them on this platform.

The exit is a dynamically loaded object. To ensure that it can be loaded when
| required, specify the full path name in the DEFINE CHANNEL command or enter
| the path name in the ExitPath stanza of the QM.INI file. If the exit is on an HP-UX

client, specify the path name in the ClientExitPath stanza of the MQS.INI file. The
value in the ExitPath stanza of the QM.INI file or the ClientExitPath stanza of the
MQS.INI file defaults to /var/mqm/exits. You can change this value or you can
override it by specifying a full path name on the DEFINE CHANNEL command.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry point
in the module. Figure 133 shows how to set up an entry to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point - for consistency only \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 133. Sample source code for a channel exit on HP-UX

Figure 134 shows the compiler and loader commands for channel-exit programs on
HP-UX.

$ cc -c +z exit.c

$ ld -o exit exit.o +b : -c exit.exp +I MQStart

$ cp exit /usr/xmp/lib # (or wherever you require)

Figure 134. Sample compiler and loader commands for channel exits on HP-UX

 Chapter 35. Channel-exit programs 517

 Channel-exit programs

MQSeries for AT&T GIS UNIX
The exit is a dynamically loaded object. Specify the full path name in the DEFINE
CHANNEL command. Define a dummy MQStart() routine in the exit and specify
MQStart as the entry point in the module. Figure 135 shows how to set up an entry
to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 135. Sample source code for a channel exit on AT&T GIS UNIX

Figure 136 shows the compiler and loader commands for channel-exit programs on
AT&T GIS UNIX12.

$ cc -c PIC exit.c

$ ld -o exit -G exit.o

$ cp exit /usr/xmp/lib # (or wherever you require)

Figure 136. Sample compiler and loader commands for channel exits on AT&T GIS UNIX

MQSeries for Sun Solaris
| Note: Before you use an existing user exit for the first time on MQSeries for Sun
| Solaris V5.1, you must recompile it to enable it to take advantage of thread-safe

system calls. If your user exits use thread-unsafe system calls, you will need to
modify them before using them on this platform. If you have DCE installed, your
channel exits must be threaded with DCE threading. If you do not have DCE
installed, your channel exits must be threaded with Posix V10 threading.

The exit is a dynamically loaded object. To ensure that it can be loaded when
| required, specify the full path name in the DEFINE CHANNEL command or enter
| the path name in the ExitPath stanza of the QM.INI file. If the exit is on a Sun

Solaris client, specify the path name in the ClientExitPath stanza of the MQS.INI
file. The value in the ExitPath stanza of the QM.INI file or the ClientExitPath stanza
of the MQS.INI file defaults to /var/mqm/exits. You can change this value or you
can override it by specifying a full path name on the DEFINE CHANNEL command.

12 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

518 MQSeries Intercommunication

 Channel-exit programs

Define a dummy MQStart() routine in the exit and specify MQStart as the entry point
in the module. Figure 137 on page 519 shows how to set up an entry to your
program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 137. Sample source code for a channel exit on Sun Solaris

Figure 138 shows the compiler and loader commands for channel-exit programs on
Sun Solaris.

$ cc -c -KPIC exit.c

$ ld -G exit.o -o exit

$ cp exit /usr/xmp/lib # (or wherever you require)

Figure 138. Sample compiler and loader commands for channel exits on Sun Solaris

MQSeries for SINIX and DC/OSx
The exit is a dynamically loaded object. Specify the full path name in the DEFINE
CHANNEL command. Define a dummy MQStart() routine in the exit and specify
MQStart as the entry point in the module. Figure 139 shows how to set up an entry
to your program:

#include <cmqc.h>
#include <cmqxc.h>

void MQStart() {;} /\ dummy entry point \/

void MQENTRY ChannelExit (PMQVOID pChannelExitParms,

 PMQVOID pChannelDefinition,

 PMQLONG pDataLength,

 PMQLONG pAgentBufferLength,

 PMQVOID pAgentBuffer,

 PMQLONG pExitBufferLength,

 PMQPTR pExitBufferAddr)

{

... Insert code here

}

Figure 139. Sample source code for a channel exit on SINIX and DC/OSx

 Chapter 35. Channel-exit programs 519

 Channel-exit programs

Figure 140 on page 520 shows the compiler and loader commands for
channel-exit programs on SINIX and DC/OSx.

$ cc -Kpic exit.c -G -o exit -lmqm -lmqmcs

$ cp exit /opt/mqm/lib # (or wherever you require)

Figure 140. Sample compiler and loader commands for channel exits on SINIX and DC/OSx

For DC/OSx, version cd087 and later, append the following to the cc line:

-liconv -lresolv

For earlier versions of DC/OSx, append the following to the cc line:

-liconv

MQSeries for Tandem NonStop Kernel
MQSeries for Tandem NonStop Kernel supports a single, statically bound
channel-exit program, whose entry point is MQCHANNELEXIT(). MQSeries for
Tandem NonStop Kernel provides a stub function for this exit that acts as a
placeholder for user-supplied exit code. In the supplied stub function, the
ExitResponse field in MQCXP (channel exit parameter structure) is set to
MQXCC_CLOSE_CHANNEL, which causes the MCA to close the channel. No
other fields in MQCXP are modified.

You replace the supplied stub function in the MCA executable images with your
own user exit code using the Tandem BIND utility BEXITE. Only the Tandem
Common Runtime Environment (CRE) interface for the WIDE memory model is
supported.

In MQSeries for Tandem NonStop Kernel, there is a single entry point for all
channel exits. In other MQSeries Version 2 products, there are entry points
specific to each channel type and function. It is possible to use channel-exit
programs written for other MQSeries Version 2 products by calling those programs
from MQCHANNELEXIT(). To determine the type of exit being called, examine the
ExitId field of MQCXP, then extract the associated exit-program name from the
MsgExit, MsgRetryExit, ReceiveExit, SendExit, or SecurityExit field of MQCD.

The channel attributes that define the names of user exits are:

� Security exit name (SCYEXIT)
� Message-retry exit name (MREXIT)
� Message exit name (MSGEXIT)
� Send exit name (SENDEXIT)
� Receive exit name (RCVEXIT)

If these channel attributes are left blank, the channel user exit is not invoked. If
any of the channel attributes is nonblank, the MQCHANNELEXIT() user exit
program is invoked for the corresponding function.

520 MQSeries Intercommunication

 Channel-exit programs

Note that the text-string value of the channel attribute is not used to determine the
name of the user exit program, since only a single entry point,
MQCHANNELEXIT(), is supported in MQSeries for Tandem NonStop Kernel.
However, the values of these channel attributes are passed to MQCHANNELEXIT()
in the MQCD (channel data) structure. The function of the channel exit (that is,
whether the exit corresponds to a Message, Message-retry, Receive, Security or

| Send Exit) is passed to MQCHANNELEXIT() in the ExitId field of the MQCXP
(Channel Exit Parameters) structure.

MQSeries for Tandem NonStop Kernel does not support the following channel
attributes:

� CICS Profile Name
 � Sequential delivery
� Target system identifier

 � Transaction identifier
� Maximum transmission size

Supplied channel-exit programs using DCE security services
V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
supply channel-exit programs for the security exit, the message exit, and the send

| and receive exits. The MQSeries client for Windows 95 and Windows 98 supplies
channel-exit programs for the security exit and the send and receive exits. These
programs take advantage of the Distributed Computing Environment (DCE) security

| services and encryption facilities. Before using the supplied exit programs from an
| MQSeries client for Windows 95 and Windows 98, see the note under “How to use

the DCE channel-exit programs” on page 525.

The programs are supplied in source and object format. You can use the objects
as they stand, or can use the source as the basis for creating your own user-exit
programs. You should bear in mind that whereas the objects are supplied as
working programs, the source code does not include any provision for tracing or
error handling. If you chose to modify and use the source code, you should add
you own tracing and error-handling routines.

The object has two entry points:

DCE_SEC_SCY_CHANNELEXIT
For the security exit, which can be used to access authentication services.

DCE_SEC_SRM_CHANNELEXIT
For the send, receive, and message exits, which can be used to access data
encryption services.

What do the DCE channel-exit programs do?
The supplied channel-exit programs address the Distributed Computing
Environment (DCE) considerations for security in the areas of data encryption, and
of authentication of a partner system when establishing a session.

 Chapter 35. Channel-exit programs 521

 Channel-exit programs

For a particular channel, each exit program has an associated DCE principal
(similar to a user ID). A connection between two exit programs is an association
between the two principals.

A secure connection between two security exit programs, one for the sending MCA
and one for the receiving MCA, is established after the underlying session has
been established. The sequence of operations is as follows:

1. Each program is associated with a particular principal, for example due to an
explicit DCE Login.

2. The program that initiates the secure connection, that is the first program to get
control after the MCA session has been established, is known as the Context
Initiator. The context initiator requests a secure connection with the named
partner from the DCE security server and receives a token. The token (called
token1 in Figure 141) is sent, using the already established underlying session,
to the partner program.

3. The partner program (known as the Context Acceptor) passes token1 to the
DCE security server, which verifies that the Context Initiator is authentic. For
mutual authentication, as implemented by the supplied security exit, the DCE
security server also generates a second token (called token2 in Figure 141),
which the Context Acceptor returns to the Context Initiator using the underlying
session.

4. The Context Initiator uses token2 to verify that the Context Acceptor is
authentic.

At this stage, if both applications are satisfied with the authenticity of the
partner’s token, then the secure (authenticated) connection is established.

5. The token exchange described above establishes a Security Context for each
security exit program. This context enables the subsequent send, receive, and
message exits to encrypt and decrypt data passed on the connection.

DCE Security provides an API to ‘seal’ and ‘unseal’ data and hence to
selectively protect specified elements of a datastream. The supplied message,
send, and receive exits encrypt and decrypt messages using these DCE
Security API calls.

NODE name1 Flow NODE name2

gss_acquire_cred(name1)
gss_init_sec_context

(name2) ->token1
INIT_SEC(token1)

ACC_SEC(token2)

gss_init_sec_context
(name2)

Above two flows can be repeated, if required by GSS.
When satisfied, proceed to other data transfer.

gss_accept_sec_context
(token1) ->token2

Figure 141. Security exit flows

522 MQSeries Intercommunication

 Channel-exit programs

Clearly the encryption algorithm used by the send exit must match the decryption
algorithm used by the receive exit. The supplied send, receive, and message exits
use the gss_seal() and gss_unseal() calls to encrypt and decrypt data. The
qop_req parameter on the gss_seal() call is set to GSS_C_QOP_DEFAULT. The
encryption provided by DCE depends on the DCE product installed. The supplied
encrypting exits work correctly only when used with US-domestic DCE products
supporting DES encryption. See Chapter 49, “MQSeries at a glance” in the
MQSeries Planning Guide for information about which DCE products are supported.

The send, receive, and message exits are all used for encryption. The difference is
that the message exit encrypts only the content of the message, whereas the send
and receive exits also encrypt the message headers. Therefore, the message exit
offers slightly better performance but at the expense of unencrypted header data.

How do the DCE channel-exit programs work?
The supplied code implements a security exit and message, send, and receive
exits. Note that the message exit does not encrypt the MQSeries header. The
security exit provides mutual (two-way) authentication. The message, send, and
receive exits provide encryption facilities based on a key managed by the security
context set up by the security exit. Therefore, the message, send, and receive
exits will not work unless the security exit has been called previously.

The code interfaces to DCE through the DCE GSS API provided as part of OSF
DCE 1.1. This API provides a superset of the standard GSS API calls as specified
in Internet RFCs 1508 and 1509. Some DCE-specific GSS calls have been added
to the API by OSF.

The principal of an MQSeries system that has a queue manager is the queue
manager name.

An MQSeries client does not have a queue manager. The principal used for a
client is as follows:

| � On Sun Solaris, AIX, HP-UX, Windows NT, Windows 95, and Windows 98
clients:

– If the login user ID of the user who started the MQSeries client application
can be obtained and is defined as a principal to DCE, this user ID is used.

– If the login user ID of the user who started the MQSeries client application
cannot be obtained or is not defined to DCE, and a DCE default login
context exists, the DCE default credential is used.

Note: When a principal logs in to DCE, a default login context is
established. In this case the principal used in association with the DCE
default credential is that of the principal logged in to DCE.

– If the login user ID of the user who started the MQSeries client application
cannot be obtained or is not defined to DCE, and no DCE default login
context exists, there is no principal name available and the security exit
rejects the attempt to start the channel.

 Chapter 35. Channel-exit programs 523

 Channel-exit programs

� On OS/2 clients, user IDs cannot be used as principals.

– If a principal has logged in to DCE, the name of this logged in principal is
used.

– If a principal has not logged in to DCE, and a DCE default login context
exists, the DCE default credential is used.

– If a principal has not logged in to DCE, and no DCE default login context
exists, there is no principal name available and the security exit rejects the
attempt to start the channel.

It is important that queue manager names or user IDs that are to be used as DCE
principals are syntactically acceptable to DCE; see your DCE documentation for
information about valid DCE principal names. If the name is to be used only within
the local cell directory, the only mismatch between the allowable characters in a
queue manager name and the allowable characters in a principal name is that a
principal name cannot contain a ‘/’. If there is any likelihood that the name will also
need to be reflected in a global directory, you are recommended to restrict principal
names to alphanumeric characters. As with any DCE principal, when you create it
you must define it to the DCE security server and must also put an entry for it in
the relevant keytable file. Therefore, when you delete a queue manager that is
also a DCE principal you must remember to delete both its entries.

Remote queue manager names are transferred across a channel at channel
initialization. When the security exit is called, if the remote MQSeries system is not
a client, the remote queue manager name (which is also the remote principal) is
passed to the security exit in the MQSeries MQCXP parameter list. The initiator
exit uses the name provided. If the channel is being established between an
MQSeries client and an MQSeries server, the client always initiates the first security
flow. In all cases, the initiator exit’s remote principal name is a queue manager
name.

The flows shown in Figure 141 on page 522 occur to establish the security
context. As a part of these flows the initiator’s principal is transferred to the
acceptor.

It is possible to establish multiple security contexts between the same pair of
principals, and hence to allow parallel channels to use the security exit.

You can set up restricted channels. The system administrator supplies a value in
the Channel Security Exit User Data when defining this end of the channel. The
presence of this value causes the security exit to check the remote principal name.
If this check shows a mismatch the channel is not established. Note that the
remote principals (queue manager names and default DCE principals) may be
longer than the 32 characters allowed in the Channel Security Exit User Data. Only
the first 32 characters of the remote principal are considered significant.

If the MCA forms part of an MQSeries server system connected to a client, the
security exchange will have caused the client principal to flow to the server. If the
value is valid with regard to the optional restricted-channel check and the
MCAUserIdentifier variable is not already defined, the client principal is copied into
the server’s MCAUserIdentifier variable. Note that client principals may be longer
than the 12-character MCAUserIdentifier. Only the first 12 characters of such a
remote principal are copied.

524 MQSeries Intercommunication

 Channel-exit programs

Thus the first 12 characters of the MQSeries client’s DCE principal name can
become the user identifier to be used by the server’s MCA for authorization for that
client to access MQSeries resources. The server system must be set up
appropriately to allow this to work.

How to use the DCE channel-exit programs
Do not run the supplied DCE message exit in combination with the supplied DCE
send and receive exits on the same channel.

To use the supplied channel-exit programs you need to install DCE and define
some channels. For installation information, see the Quick Beginnings book for
your platform:

� “Chapter 2. Planning to Install the MQSeries for AIX Server” in the MQSeries
for AIX V5.1 Quick Beginnings book.

� “Chapter 2. Planning to Install the MQSeries for HP-UX Server” in the
MQSeries for HP-UX V5.1 Quick Beginnings book.

� “Chapter 2. Planning to Install the MQSeries for Sun Solaris Server” in the
MQSeries for Sun Solaris V5.1 Quick Beginnings book.

� “Chapter 2. Planning to Install MQSeries for OS/2 Warp” in the MQSeries for
OS/2 Warp V5.1 Quick Beginnings book.

� Chapter 3, “Planning to install MQSeries for Windows NT” in the MQSeries for
Windows NT V5.1 Quick Beginnings book.

Note: Using IBM DCE for Windows 95 V1, you cannot use the supplied DCE
security exit from a Windows 95 client connected to an MQSeries for HP-UX server
or an MQSeries for Sun Solaris server. Nor can you use the supplied send and
receive exits from a Windows 95 client when using IBM DCE for Windows 95 V1.

Setup for DCE
The supplied channel-exit programs are intended for use between systems
operating within a single DCE cell. The setup of a DCE cell is described in the
documentation provided with the DCE packages for the platforms incorporated in
the cell. The exit programs operate the same way whether they are running on a
system with a DCE security client installed or with a DCE security server installed.

Once the DCE cell has been configured, it is necessary to define the principals that
the exit is going to use to DCE. DCE setup samples are provided on all the
supported platforms. The samples are primarily intended for setting up DCE for the
DCE Names installable component. They also contain comments indicating how
they can be modified to set up the DCE security principals instead of, or as well as,
the Names principal.

Each DCE security principal has its own keytable. On UNIX systems that support
| DCE security, the keytable is a file within the directory /var/mqm/dce/keytabs. On
| OS/2, Windows NT, Windows 95, and Windows 98 it is a file within the directory

\MQM\DCE\KEYTABS, where MQM is the name of your work path.

When the supplied channel-exit programs are called for a particular principal, they
look in a keytable file that has the same name as the principal itself. Therefore, the
keytable file for a particular principal must have the same name as that principal.

 Chapter 35. Channel-exit programs 525

 Channel-exit programs

The use of separate keytables for each principal is recommended in the OSF DCE
literature. On systems that support file access controls (UNIX systems and
Windows NT) keytable access should be limited to:

� Superuser/administrator: no restriction

� Other user IDs:

– read only access, given only to the user IDs under which the processes
that call the security exits run, and only to the relevant keytables.

In the case of queue manager MQSeries systems, the processes that interface to
the security exits at the sending end of the channel are runmqchl (and runmqchi on
OS/2 and Windows NT). amqcrsta, amqcrs6a or runmqlsr interface to the security
exits at the receiving end of the channel. On most systems these all run under the
mqm user ID; in this case, non-supervisor/administrator access to the keytables
relating to queue manager principals should be restricted to read access for the
mqm user ID.

On client systems the user ID under which the security exit is called is the user ID
under which the client application runs (often the login user ID of the user of the
client system). Again, non-supervisor/administrator access to the relevant keytable
should be restricted to read access by that user ID only.

The supplied exit code
The supplied exit code is in two formats: object and source.

| Object: The object is called amqrdsc0 on UNIX systems and amqrdsc0.DLL on
| OS/2, Windows NT, Windows 95, and Windows 98. It is installed as a standard

part of the MQSeries product for your platform and is loaded as a standard user
exit. If you wish to run the supplied security channel exit to make use of
authentication services then in your definition of the channel, specify:

SCYEXIT('<path>amqrdscð(DCE_SEC_SCY_CHANNELEXIT)')

If you also wish to use the message exit to support data encryption, then in your
definition of the channel, specify:

MSGEXIT('<path>amqrdscð(DCE_SEC_SRM_CHANNELEXIT)')

Or you can use the send and receive exits to support data encryption by specifying
the following in your definition of the channel:

SENDEXIT('<path>amqrdscð(DCE_SEC_SRM_CHANNELEXIT)')
RCVEXIT('<path>amqrdscð(DCE_SEC_SRM_CHANNELEXIT)')

<path> is the path to the directory containing the exit.

See page 506 through page 520 for information about how to call user exits on the
platform you are using.

526 MQSeries Intercommunication

 Channel-exit programs

Source: The exit source file is called amqsdsc0.c. It can be found in
| <mqmtop>/samp on UNIX systems and in <bootdrive>:\mqm\tools\c\samples on
| OS/2, Windows NT, Windows 95, and Windows 98. If you choose to modify the

source versions, rather than running the objects as they stand, you will need to
recompile the modified source. It is compiled and linked in the same way as any
other channel exit for the platform concerned, except that DCE headers need to be
accessed at compile time, and the DCE libraries, together with any recommended
associated libraries, need to be accessed at link time. Refer to the documentation
for the DCE product for the platform you are using, to find out about the DCE and
associated libraries.

OS/2

icc /DIBMOS2 /DINTEL8ðx86 /Fe amqsdscð.dll /I \

c:\mqclient\tools\c\include /I \

c:\ibmcppw\include /I c:\opt\dcelocal\include\dce \

/W3 /Sa /Ge- /Gm+ amqsdscð.c amqsdscð.def dceos2.lib

Using the following definition file:

LIBRARY AMQSDSCð

PROTMODE

DESCRIPTION 'DCE Security Exit'

CODE SHARED LOADONCALL

DATA NONSHARED MULTIPLE

HEAPSIZE 4ð96

STACKSIZE 8192

EXPORTS

 DCE_SEC_SCY_CHANNELEXIT

 DCE_SEC_SRM_CHANNELEXIT

Sun Solaris

cc -I/opt/dce/share/include/dce \

-I/opt/mqm/inc -KPIC -c amqsdscð.c

followed by:

ld -G -L/opt/dce/share/usr/lib -ldce amqsdscð.o -o srm

HP-UX

cc -D_HPUX_SOURCE -Dhpux -DICOL -D_REENTRANT \

-Dsigaction=cma_sigaction +ESlit +DA1.ð -c +z \

amqsdscð.c -I /opt/mqm/include -I /opt/dce/include/dce \

-Aa && ld -o amqsdscð amqsdscð.o -z +b : -b +I MQStart \

-ldce -lmqm_r -lndbm -lM -lc_r

 Chapter 35. Channel-exit programs 527

 Channel-exit programs

| Windows 95, Windows 98, and Windows NT

c:\msdevstd\bin\cl /DAMQ_PC /VERBOSE /LD /MT \

/Ic:\msdevstd\include /ID:\MQCLIENT\TOOLS\C\INCLUDE \

/IC:\OPT\DIGITAL\DCE\INCLUDE\DCE amqsdscð.c \

-link /DLL /EXPORT:DCE_SEC_SCY_CHANNELEXIT \

/EXPORT:DCE_SEC_SRM_CHANNELEXIT /STACK:8192 libdce.lib \

 advapi32.lib libcmt.lib

AIX

| xlC_r -c /usr/mqm/samp/amqsdscð.c -I/usr/include/dce

| ld -e MQStart -bnoquiet -o amqsdscð amqsdscð.o \

| -L/usr/lib/dce -T512 -H512 -ldce -bE:amqsdscð.exp \

| -lpthreads -lc_r -liconv -ls

Using DCE channel exits with the runmqlsr listener program
On MQSeries for Windows NT, the exit dll name must be amqrdscð.dll or
amqsdscð.dll.

528 MQSeries Intercommunication

 Calls and structures

Chapter 36. Channel-exit calls and data structures

This chapter provides reference information about the special MQSeries calls and
data structures used when writing channel exit programs. You can write MQSeries
user exits in the following programming languages:

| � C (not MQSeries for OS/390 without CICS)
| � COBOL (MQSeries for OS/400 and MQSeries for OS/390 using CICS)
| � PL/I (MQSeries for OS/390 using CICS)
| � RPG (for MQSeries for AS/400)
| � System/390 assembler (for MQSeries for OS/390)

You cannot write MQSeries user exits in TAL.

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a numeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required. For further information about the conventions used in
these descriptions, see Chapter 3, “Call descriptions” in the MQSeries Application
Programming Reference book.

The calls are:

� “MQ_CHANNEL_EXIT - Channel exit” on page 532
� “MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit” on page 539
� “MQXWAIT - Wait” on page 543

| � “MQ_TRANSPORT_EXIT - Transport retry exit” on page 545

The data structures are:

� “MQCD - Channel data structure” on page 547
� “MQCXP - Channel exit parameter structure” on page 585

| � “MQTXP - Transport-exit data structure” on page 601
� “MQXWD - Exit wait descriptor structure” on page 605

Note: Channel exit programs are not supported on DOS or VSE/ESA.

 Copyright IBM Corp. 1993,1999 529

 Calls and structures

Data definition files
The data definition files supplied with the products for each programming language
are:

Main API definition

System extensions (MQX)

Channel data (MQCD)

Channel exit (MQCXP)

Dead-letter header (MQDLH)

Exit parameter (MQXP)

Transmission header (MQXQH)

Where the file for the C or PL/I language is not included in the above, it has been
included in separate common files containing all C or PL/I data. For message
queuing applications the file names for C and PL/I are:

C CMQC
COBOL CMQV
PL/I CMQP
RPG CMQR
ASM370 CMQA

C CMQXC
COBOL CMQXV
PL/I CMQXP
RPG CMQXR
ASM370 CMQXA

COBOL CMQCDL, CMQCDV
RPG CMQCDR
ASM370 CMQCDA

COBOL CMQCXPL, CMQCXPV
RPG CMQCXPR
ASM370 CMQCXPA

COBOL CMQDLHL, CMQDLHV
RPG CMQDLHR
ASM370 CMQDLHA

COBOL CMQXPL, CMQXPV
RPG CMQXPR
ASM370 CMQXPA

COBOL CMQXQHL, CMQXQHV
RPG CMQXQHR
ASM370 CMQXQHA

C CMQC
PL/I CMQP

530 MQSeries Intercommunication

 Calls and structures

For systems programs the file names for C and PL/I are:

For a list of the complete set of header files for the product, see Appendix G,
“MQSeries data definition files” in the MQSeries Application Programming Guide,
or, for MQSeries for Windows, see the MQSeries for Windows User’s Guide.

C CMQXC
PL/I CMQXP

 Chapter 36. Channel-exit calls and data structures 531

 MQ_CHANNEL_EXIT - Channel exit

MQ_CHANNEL_EXIT - Channel exit
This call definition is provided solely to describe the parameters that are passed to
each of the channel exits called by the Message Channel Agent. No entry point
called MQ_CHANNEL_EXIT is actually provided by the queue manager; the name
MQ_CHANNEL_EXIT is of no special significance since the names of the channel
exits are provided in the channel definition MQCD.

This definition is part of the MQSeries Security Enabling Interface (SEI), which is
one of the MQSeries framework interfaces.

There are five types of channel exit:

� Channel security exit
� Channel message exit
� Channel send exit
� Channel receive exit
� Channel message-retry exit

The parameters are similar for each type of exit, and the description given here
applies to all of them, except where specifically noted.

MQ_CHANNEL_EXIT (ChannelExitParms, ChannelDefinition, DataLength,
AgentBufferLength, AgentBuffer, ExitBufferLength,
ExitBufferAddr)

 Parameters
ChannelExitParms (MQCXP) – input/output

Channel exit parameter block.

This structure contains additional information relating to the invocation of
the exit. The exit sets information in this structure to indicate how the
MCA should proceed.

ChannelDefinition (MQCD) – input/output
Channel definition.

This structure contains parameters set by the administrator to control the
behavior of the channel.

DataLength (MQLONG) – input/output
Length of data.

When the exit is invoked, this contains the length of data in the
AgentBuffer parameter. The exit must set this to the length of the data in
either the AgentBuffer or the ExitBufferAddr (as determined by the
ExitResponse2 field in the ChannelExitParms parameter) that is to proceed.

532 MQSeries Intercommunication

 MQ_CHANNEL_EXIT - Channel exit

The data depends on the type of exit:

� For a channel security exit, when the exit is invoked this contains the
length of any security message in the AgentBuffer field, if ExitReason
is MQXR_SEC_MSG. It is zero if there is no message. The exit must
set this field to the length of any security message to be sent to its
partner if it sets ExitResponse to MQXCC_SEND_SEC_MSG or
MQXCC_SEND_AND_REQUEST_SEC_MSG. The message data is
in either AgentBuffer or ExitBufferAddr.

The content of security messages is the sole responsibility of the
security exits.

� For a channel message exit, when the exit is invoked this contains the
length of the message (including the transmission queue header). The
exit must set this field to the length of the message in either
AgentBuffer or ExitBufferAddr that is to proceed.

� For a channel send or channel receive exit, when the exit is invoked
this contains the length of the transmission. The exit must set this
field to the length of the transmission in either AgentBuffer or
ExitBufferAddr that is to proceed.

If a security exit sends a message, and there is no security exit at the
other end of the channel, or the other end sets an ExitResponse of
MQXCC_OK, the initiating exit is re-invoked with MQXR_SEC_MSG and a
null response (DataLength=0).

AgentBufferLength (MQLONG) – input
Length of agent buffer.

This can be greater than DataLength on invocation.

For channel message, send, and receive exits, any unused space on
invocation can be used by the exit to expand the data in place. If this is
done, the DataLength parameter must be set appropriately by the exit.

In the C programming language, this parameter is passed by address.

AgentBuffer (MQBYTE×AgentBufferLength) – input/output
Agent buffer.

The contents of this depend upon the exit type:

� For a channel security exit, on invocation of the exit it contains a
security message if ExitReason is MQXR_SEC_MSG. If the exit
wishes to send a security message back, it can either use this buffer
or its own buffer (ExitBufferAddr).

� For a channel message exit, on invocation of the exit this contains:

– The transmission queue header (MQXQH), which includes the
message descriptor (which itself contains the context information
for the message), immediately followed by

– The message data

 Chapter 36. Channel-exit calls and data structures 533

 MQ_CHANNEL_EXIT - Channel exit

If the message is to proceed, the exit can do one of the following:

– Leave the contents of the buffer untouched
– Modify the contents in place (returning the new length of the data

in DataLength; this must not be greater then AgentBufferLength)
– Copy the contents to the ExitBufferAddr, making any required

changes

Any changes that the exit makes to the transmission queue header
are not checked; however, erroneous modifications may mean that the
message cannot be put at the destination.

� For a channel send or receive exit, on invocation of the exit this
contains the transmission data. The exit can do one of the following:

– Leave the contents of the buffer untouched
– Modify the contents in place (returning the new length of the data

in DataLength; this must not be greater then AgentBufferLength)
– Copy the contents to the ExitBufferAddr, making any required

changes

Note that the first 8 bytes of the data must not be changed by the exit.

ExitBufferLength (MQLONG) – input/output
Length of exit buffer.

On the first invocation of the exit, this is set to zero. Thereafter whatever
value is passed back by the exit, on each invocation, is presented to the
exit next time it is invoked. The value is not used by the MCA (except in
MQSeries for OS/390 using CICS for distributed queue management,
where a check is made that DataLength does not exceed
ExitBufferLength, if the exit is returning data in ExitBufferAddr).

Note: This parameter should not be used by exits written in programming
languages which do not support the pointer data type.

ExitBufferAddr (MQPTR) – input/output
Address of exit buffer.

This is a pointer to the address of a buffer of storage managed by the exit,
where it can choose to return message or transmission data (depending
upon the type of exit) to the agent if the agent’s buffer is or may not be
large enough, or if it is more convenient for the exit to do so.

On the first invocation of the exit, the address passed to the exit is null.
Thereafter whatever address is passed back by the exit, on each
invocation, is presented to the exit the next time it is invoked.

Note: This parameter should not be used by exits written in programming
languages that do not support the pointer data type.

534 MQSeries Intercommunication

 MQ_CHANNEL_EXIT - Channel exit

 Usage notes
1. The function performed by the channel exit is defined by the provider of the

exit. The exit, however, must conform to the rules defined here and in the
associated control block, the MQCXP.

2. The ChannelDefinition parameter passed to the channel exit may be one of
several versions. See the Version field in the MQCD structure for more
information.

3. If the channel exit receives an MQCD structure with the Version field set to a
value greater than MQCD_VERSION_1, the exit should use the
ConnectionName field in MQCD, in preference to the ShortConnectionName field.

4. In general, channel exits are allowed to change the length of message data.
This may arise as a result of the exit adding data to the message, or removing
data from the message, or compressing or encrypting the message. However,
special restrictions apply if the message is a segment that contains only part of
a logical message. In particular, there must be no net change in the length of
the message as a result of the actions of complementary sending and receiving
exits.

For example, it is permissible for a sending exit to shorten the message by
compressing it, but the complementary receiving exit must restore the original
length of the message by decompressing it, so that there is no net change in
the length of the message.

This restriction arises because changing the length of a segment would cause
the offsets of later segments in the message to be incorrect, and this would
inhibit the queue manager’s ability to recognize that the segments formed a
complete logical message.

 Chapter 36. Channel-exit calls and data structures 535

 MQ_CHANNEL_EXIT - Channel exit

 C invocation
exitname (&ChannelExitParms, &ChannelDefinition,

&DataLength, &AgentBufferLength, AgentBuffer,

 &ExitBufferLength, &ExitBufferAddr);

Declare the parameters as follows:

MQCXP ChannelExitParms; /\ Channel exit parameter block \/

MQCD ChannelDefinition; /\ Channel definition \/

MQLONG DataLength; /\ Length of data \/

MQLONG AgentBufferLength; /\ Length of agent buffer \/

MQBYTE AgentBuffer[n]; /\ Agent buffer \/

MQLONG ExitBufferLength; /\ Length of exit buffer \/

MQPTR ExitBufferAddr; /\ Address of exit buffer \/

 COBOL invocation
CALL 'exitname' USING CHANNELEXITPARMS, CHANNELDEFINITION,

DATALENGTH, AGENTBUFFERLENGTH, AGENTBUFFER,

 EXITBUFFERLENGTH, EXITBUFFERADDR.

Declare the parameters as follows:

\\ Channel exit parameter block

 ð1 CHANNELEXITPARMS.

 COPY CMQCXPV.

\\ Channel definition

 ð1 CHANNELDEFINITION.

 COPY CMQCDV.

\\ Length of data

 ð1 DATALENGTH PIC S9(9) BINARY.

\\ Length of agent buffer

ð1 AGENTBUFFERLENGTH PIC S9(9) BINARY.

\\ Agent buffer

 ð1 AGENTBUFFER PIC X(n).

\\ Length of exit buffer

 ð1 EXITBUFFERLENGTH PIC S9(9) BINARY.

\\ Address of exit buffer

 ð1 EXITBUFFERADDR POINTER.

 PL/I invocation
call exitname (ChannelExitParms, ChannelDefinition, DataLength,

AgentBufferLength, AgentBuffer, ExitBufferLength,

 ExitBufferAddr);

Declare the parameters as follows:

dcl ChannelExitParms like MQCXP; /\ Channel exit parameter

 block \/

dcl ChannelDefinition like MQCD; /\ Channel definition \/

dcl DataLength fixed bin(31); /\ Length of data \/

dcl AgentBufferLength fixed bin(31); /\ Length of agent buffer \/

dcl AgentBuffer char(n); /\ Agent buffer \/

dcl ExitBufferLength fixed bin(31); /\ Length of exit buffer \/

dcl ExitBufferAddr pointer; /\ Address of exit buffer \/

536 MQSeries Intercommunication

 MQ_CHANNEL_EXIT - Channel exit

ILE RPG invocation
 C\..1....:....2....:....3....:....4....:....5....:....6....:....7..

C CALLP exitname(MQCXP : MQCD : DATLEN :

C ABUFL : ABUF : EBUFL :

 C EBUF)

The prototype definition for the call is:

 D\..1....:....2....:....3....:....4....:....5....:....6....:....7..

 Dexitname PR EXTPROC('exitname')

D\ Channel exit parameter block

 D MQCXP 156A

D\ Channel definition

 D MQCD 1ð72A

D\ Length of data

 D DATLEN 1ðI ð

D\ Length of agent buffer

 D ABUFL 1ðI ð

D\ Agent buffer

 D ABUF \ VALUE

D\ Length of exit buffer

 D EBUFL 1ðI ð

D\ Address of exit buffer

 D EBUF \

OPM RPG invocation
 C\..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALL 'exitname'

C\ Channel exit parameter block

 C PARM MQCXP

C\ Channel definition

 C PARM MQCD

C\ Length of data

 C PARM DATLEN 9ð

C\ Length of agent buffer

 C PARM ABUFL 9ð

C\ Agent buffer

 C PARM ABUF n

C\ Length of exit buffer

 C PARM EBUFL 9ð

C\ Address of exit buffer

 C PARM EBUF 16

Declare the structure parameters as follows:

 I\..1....:....2....:....3....:....4....:....5....:....6....:....7..

I\ Channel exit parameter block

 IMQCXP DS

 I/COPY CMQCXPR

I\ Channel definition

 IMQCD DS

 I/COPY CMQCDR

 Chapter 36. Channel-exit calls and data structures 537

 MQ_CHANNEL_EXIT - Channel exit

System/390 assembler invocation
 CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION,DATALENGTH, X

 AGENTBUFFERLENGTH,AGENTBUFFER,EXITBUFFERLENGTH, X

 EXITBUFFERADDR)

Declare the parameters as follows:

CHANNELEXITPARMS CMQCXPA Channel exit parameter block

CHANNELDEFINITION CMQCDA Channel definition

DATALENGTH DS F Length of data

AGENTBUFFERLENGTH DS F Length of agent buffer

AGENTBUFFER DS CL(n) Agent buffer

EXITBUFFERLENGTH DS F Length of exit buffer

EXITBUFFERADDR DS F Address of exit buffer

538 MQSeries Intercommunication

 MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit

MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit
This call definition is provided solely to describe the parameters that are passed to
the channel auto-definition exit called by the Message Channel Agent. No entry
point called MQ_CHANNEL_AUTO_DEF_EXIT is actually provided by the queue
manager; the name MQ_CHANNEL_AUTO_DEF_EXIT is of no special significance
because the names of the auto-definition exits are provided in the queue manager.

The MQ_CHANNEL_AUTO_DEF_EXIT call definition is part of the MQSeries
Security Enabling Interface (SEI), which is one of the MQSeries framework
interfaces.

| This exit is supported in the following environments: AIX, HP-UX, OS/390, OS/2,
| OS/400, Sun Solaris, Windows NT.

MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

 Parameters
ChannelExitParms (MQCXP) – input/output

Channel exit parameter block.

This structure contains additional information relating to the invocation of
the exit. The exit sets information in this structure to indicate how the
MCA should proceed.

ChannelDefinition (MQCD) – input/output
Channel definition.

This structure contains parameters set by the administrator to control the
behavior of channels which are created automatically. The exit sets
information in this structure to modify the default behavior set by the
administrator.

| The MQCD fields listed below must not be altered by the exit:

| ChannelName
| ChannelType
| StrucLength
| Version

| If other fields are changed, the value set by the exit must be valid. If the
| value is not valid, an error message is written to the error log file or
| displayed on the console (as appropriate to the environment).

 Chapter 36. Channel-exit calls and data structures 539

 MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit

 Usage notes
1. The function performed by the channel exit is defined by the provider of the

exit. The exit, however, must conform to the rules defined here and in the
associated control block, the MQCXP.

2. The ChannelExitParms parameter passed to the channel auto-definition exit is
| an MQCXP structure. The version of MQCXP passed depends on the
| environment in which the exit is running; see the description of the Version field
| in “MQCXP - Channel exit parameter structure” on page 585 for details.

3. The ChannelDefinition parameter passed to the channel auto-definition exit is
| an MQCD structure. The version of MQCD passed depends on the
| environment in which the exit is running; see the description of the Version field
| in “MQCD - Channel data structure” on page 547 for details.

540 MQSeries Intercommunication

 MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit

 C invocation
exitname (&ChannelExitParms, &ChannelDefinition);

Declare the parameters as follows:

MQCXP ChannelExitParms; /\ Channel exit parameter block \/

MQCD ChannelDefinition; /\ Channel definition \/

 COBOL invocation
CALL 'exitname' USING CHANNELEXITPARMS, CHANNELDEFINITION.

Declare the parameters as follows:

\\ Channel exit parameter block

 ð1 CHANNELEXITPARMS.

 COPY CMQCXPV.

\\ Channel definition

 ð1 CHANNELDEFINITION.

 COPY CMQCDV.

ILE RPG invocation
 C\..1....:....2....:....3....:....4....:....5....:....6....:....7..

C CALLP exitname(MQCXP : MQCD)

The prototype definition for the call is:

 D\..1....:....2....:....3....:....4....:....5....:....6....:....7..

 Dexitname PR EXTPROC('exitname')

D\ Channel exit parameter block

 D MQCXP 156A

D\ Channel definition

 D MQCD 1ð72A

OPM RPG invocation
 C\..1....:....2....:....3....:....4....:....5....:....6....:....7..

 C CALL 'exitname'

C\ Channel exit parameter block

 C PARM MQCXP

C\ Channel definition

 C PARM MQCD

Declare the structure parameters as follows:

 I\..1....:....2....:....3....:....4....:....5....:....6....:....7..

I\ Channel exit parameter block

 IMQCXP DS

 I/COPY CMQCXPR

I\ Channel definition

 IMQCD DS

 I/COPY CMQCDR

 Chapter 36. Channel-exit calls and data structures 541

 MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit

System/390 assembler invocation
 CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION)

Declare the parameters as follows:

CHANNELEXITPARMS CMQCXPA Channel exit parameter block

CHANNELDEFINITION CMQCDA Channel definition

542 MQSeries Intercommunication

 MQXWAIT - Wait

MQXWAIT - Wait
The MQXWAIT call waits for an event to occur. It can be used only from a channel
exit on OS/390 when not using CICS.

MQXWAIT (Hconn, WaitDesc, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN call issued in the same or
earlier invocation of the exit.

WaitDesc (MQXWD) – input/output
Wait descriptor.

This describes the event to wait for. See “MQXWD - Exit wait descriptor
structure” on page 605 for details of the fields in this structure.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_XWAIT_CANCELED
(2107, X'83B') MQXWAIT call canceled.

MQRC_XWAIT_ERROR
(2108, X'83C') Invocation of MQXWAIT call not valid.

For more information on these reason codes, see the Application
Programming Reference Manual for your platform.

 Chapter 36. Channel-exit calls and data structures 543

 MQXWAIT - Wait

 C invocation
MQXWAIT (Hconn, &WaitDesc, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/

MQXWD WaitDesc; /\ Wait descriptor \/

MQLONG CompCode; /\ Completion code \/

MQLONG Reason; /\ Reason code qualifying CompCode \/

System/390 assembler invocation
 CALL MQXWAIT,(HCONN,WAITDESC,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

WAITDESC CMQXWDA Wait descriptor

COMPCODE DS F Completion code

REASON DS F Reason code qualifying CompCode

544 MQSeries Intercommunication

 MQ_TRANSPORT_EXIT - Transport retry exit

| MQ_TRANSPORT_EXIT - Transport retry exit
| This call definition is provided solely to describe the parameters that are passed to
| the transport retry exit called by the message channel agent (MCA). No entry point
| called MQ_TRANSPORT_EXIT is actually provided by the MCA; the name
| MQ_TRANSPORT_EXIT is of no special significance because the name of the
| transport retry exit is provided by the queue-manager’s configuration file.

| This exit is supported in the following environments: AIX and 16-bit Windows.

| MQ_TRANSPORT_EXIT (ExitParms, DestAddressLength, DestAddress)

| Parameters
| ExitParms (MQTXP) – input/output
| Exit parameter block.

| This structure contains information relating to the invocation of the exit.
| The exit sets information in this structure to indicate how processing
| should continue.

| DestAddressLength (MQLONG) – input
| Length in bytes of destination IP address.

| This is the length of the destination IP address DestAddress. The value is
| always greater than zero.

| DestAddress (MQCHAR×DestAddressLength) – input
| Destination IP address.

| This is the IP address of the destination. Its length is given by the
| DestAddressLength parameter.

| Usage notes
| 1. The function performed by the exit is defined by the provider of the exit. The
| exit, however, must conform to the rules defined in the associated control block
| MQTXP.

| 2. The transport retry exit allows a channel to be paused based on criteria that
| are external to MQSeries.

| If configured, the exit is called before each attempt to resend a failing data
| packet. When called, the exit can wait based on some external criterion, and
| not return control to the MCA until the exit decides that the resend of the data
| packet is likely to succeed. If the exit decides that transmission should be
| discontinued, the exit can instruct the MCA to close the channel.

 Chapter 36. Channel-exit calls and data structures 545

 MQ_TRANSPORT_EXIT - Transport retry exit

 C invocation
| exitname (&ExitParms, DestAddressLength, DestAddress);

| Declare the parameters as follows:

| MQTXP ExitParms; /\ Exit parameter block \/

| MQLONG DestAddressLength; /\ Length in bytes of destination IP

| address \/

| MQCHAR DestAddress[n]; /\ Destination IP address \/

546 MQSeries Intercommunication

 MQCD

MQCD - Channel data structure
The following table summarizes the fields in the structure.

Table 47 (Page 1 of 2). Fields in MQCD

Field Description Page

ChannelName Channel definition name 549

Version Structure version number 549

ChannelType Channel type 550

TransportType Transport type 551

Desc Channel description 552

QMgrName Queue manager name 552

XmitQName Transmission queue name 552

ShortConnectionName First 20 bytes of connection name 552

MCAName Reserved 552

ModeName LU 6.2 mode name 553

TpName LU 6.2 transaction program name 553

BatchSize Batch size 553

DiscInterval Disconnect interval 553

ShortRetryCount Short retry count 553

ShortRetryInterval Short retry wait interval 554

LongRetryCount Long retry count 554

LongRetryInterval Long retry wait interval 554

SecurityExit Channel security exit name 554

MsgExit Channel message exit name 554

SendExit Channel send exit name 555

ReceiveExit Channel receive exit name 555

SeqNumberWrap Highest allowable message sequence number 555

MaxMsgLength Maximum message length 556

PutAuthority Put authority 556

DataConversion Data conversion 556

SecurityUserData Channel security exit user data 556

MsgUserData Channel message exit user data 557

SendUserData Channel send exit user data 557

ReceiveUserData Channel receive exit user data 557

UserIdentifier User identifier 558

Password Password 558

MCAUserIdentifier First 12 bytes of MCA user identifier 558

MCAType Message channel agent type 559

ConnectionName Connection name 559

RemoteUserIdentifier First 12 bytes of user identifier from partner 560

 Chapter 36. Channel-exit calls and data structures 547

 MQCD

The MQCD structure contains the parameters which control execution of a channel.
It is passed to each channel exit that is called from a Message Channel Agent
(MCA). See MQ_CHANNEL_EXIT.

The meaning of the name in the SecurityExit, MsgExit, SendExit, ReceiveExit,
and MsgRetryExit fields depends on the environment in which the MCA is running.
Except where noted below, the name is left-justified within the field, with no
embedded blanks; the name is padded with blanks to the length of the field. In the
descriptions that follow, square brackets ([]) denote optional information.

Table 47 (Page 2 of 2). Fields in MQCD

Field Description Page

RemotePassword Password from partner 560

MsgRetryExit Channel message retry exit name 561

MsgRetryUserData Channel message retry exit user data 562

MsgRetryCount Number of times MCA will try to put the
message after the first attempt has failed

562

MsgRetryInterval Minimum interval in milliseconds after which the
open or put operation will be retried

563

HeartbeatInterval Time in seconds between heartbeat flows 563

BatchInterval Batch duration 564

NonPersistentMsgSpeed Speed at which nonpersistent messages are
sent

564

StrucLength Length of MQCD structure 565

ExitNameLength Length of exit name 565

ExitDataLength Length of exit user data 566

MsgExitsDefined Number of message exits defined 566

SendExitsDefined Number of send exits defined 566

ReceiveExitsDefined Number of receive exits defined 566

MsgExitPtr Address of first MsgExit field 566

MsgUserDataPtr Address of first MsgUserData field 567

SendExitPtr Address of first SendExit field 567

SendUserDataPtr Address of first SendUserData field 567

ReceiveExitPtr Address of first ReceiveExit field 568

ReceiveUserDataPtr Address of first ReceiveUserData field 568

| ClusterPtr| Address of first cluster record| 569

| ClustersDefined| Number of cluster records| 569

| NetworkPriority| Network priority| 569

| LongMCAUserIdLength| Length of long MCA user identifier| 569

| LongRemoteUserIdLength| Length of long remote user identifier| 570

| LongMCAUserIdPtr| Address of long MCA user identifier| 570

| LongRemoteUserIdPtr| Address of long remote user identifier| 570

| MCASecurityId| MCA security identifier| 570

| RemoteSecurityId| Remote security identifier| 571

548 MQSeries Intercommunication

 MQCD

Environment Format of exit name

UNIX systems The name of a dynamically-loadable module or library, suffixed
with the name of a function residing in that library. The function
name must be enclosed in parentheses. The library name can
optionally be prefixed with a directory path:

[path]library(function)

The name is limited to a maximum of 128 characters.

OS/390 not using CICS for distributed queuing
The name of a load module that is valid for specification on the
EP parameter of the LINK or LOAD macro. The name is limited
to a maximum of 8 characters.

OS/390 using CICS for distributed queuing
A 4-character transaction identifier.

OS/2, Windows 3.1, Windows NT, and DOS, and MQSeries for Windows
The name of a dynamic-link library, suffixed with the name of a
function residing in that library. The function name must be
enclosed in parentheses. The library name can optionally be
prefixed with a directory path and drive:

[d:][path]library(function)

The name is limited to a maximum of 128 characters.

OS/400 A 10-byte program name followed by a 10-byte library name. If
the names are less than 10 bytes long, each name is padded
with blanks to make it 10 bytes. The library name can be \LIBL
except when calling a channel auto-definition exit, in which case a
fully qualified name is required.

 Fields
ChannelName (MQCHAR20)

Channel definition name.

There must be a channel definition of the same name at the remote
machine to be able to communicate.

The name must use only the characters:

 � Uppercase A–Z
 � Lowercase a–z
 � Numerics 0–9
 � Period (.)
� Forward slash (/)

 � Underscore (_)
� Percent sign (%)

and be padded to the right with blanks. Leading or embedded blanks are
not allowed.

The length of this field is given by MQ_CHANNEL_NAME_LENGTH.

Version (MQLONG)
Structure version number.

 Chapter 36. Channel-exit calls and data structures 549

 MQCD

The value is one of the following:

MQCD_VERSION_1
Version-1 channel definition structure.

MQCD_VERSION_2
Version-2 channel definition structure.

MQCD_VERSION_3
Version-3 channel definition structure.

MQCD_VERSION_4
Version-4 channel definition structure.

| MQCD_VERSION_5
| Version-5 channel definition structure.

| MQCD_VERSION_6
| Version-6 channel definition structure.

Fields that exist only in the earlier versions of the structure are identified
as such in the field descriptions that follow. The following constant
specifies the version number of the current version:

MQCD_CURRENT_VERSION
Current version of channel definition structure.

The version of MQCD passed to a channel exit depends on the
environment:

MQCD version Environments

MQCD_VERSION_1 OS/400

MQCD_VERSION_2 OS/390 using CICS

(On OS/390 when using CICS for distributed
queuing, note that although an
MQCD_VERSION_2 structure is passed, Version
is set to MQCD_VERSION_1)

MQCD_VERSION_3 Digital OpenVMS, OS/2, OS/400, Tandem NSK,
UNIX systems, Windows 3.1, Windows NT, and
MQSeries for Windows

MQCD_VERSION_4 Version 5 of AIX, HP-UX, OS/2, Sun Solaris, and
Windows NT, and OS/390 without CICS

| MQCD_VERSION_5 Version 2.1 of OS/390 without CICS

| MQCD_VERSION_6 Version 5.1 of DOS client, AIX, HP-UX, OS/2, Sun
| Solaris, Windows client, and Windows NT

Note: When a new version of the MQCD structure is introduced, the
layout of the existing part is not changed. The exit should
therefore check that the version number is equal to or greater than
the lowest version which contains the fields that the exit needs to
use.

ChannelType (MQLONG)
Channel type.

550 MQSeries Intercommunication

 MQCD

It is one of the following:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_CLNTCONN
Client connection.

MQCHT_SVRCONN
Server-connection (for use by clients).

| MQCHT_CLUSSDR
| Cluster sender.
| MQCHT_CLUSRCVR
| Cluster receiver.

TransportType (MQLONG)
Transport type.

Transmission protocol to be used.

Note that the value will not have been checked if the channel was initiated
from the other end.

The value is one of the following:

MQXPT_LU62
LU 6.2 transport protocol.

This value is not supported on 32-bit Windows.

MQXPT_TCP
TCP/IP transport protocol.

This is the only value supported on 32-bit Windows.

MQXPT_NETBIOS
NetBIOS transport protocol.

This value is supported in the following environments: OS/2, 32-bit
Windows, Windows NT.

MQXPT_SPX
SPX transport protocol.

This value is supported in the following environments: OS/2,
Windows NT, Windows client, DOS client.

MQXPT_DECNET
DECnet transport protocol.

This value is supported in the following environment: Digital
OpenVMS.

| MQXPT_UDP
| UDP transport protocol.

| This value is supported in the following environments: AIX and 16-bit
| Windows.

 Chapter 36. Channel-exit calls and data structures 551

 MQCD

Desc (MQCHAR64)
Channel description.

This is a field that may be used for descriptive commentary. The content
of the field is of no significance to Message Channel Agents. However, it
should contain only characters that can be displayed. It cannot contain
any null characters; if necessary, it is padded to the right with blanks. In a
DBCS installation, the field can contain DBCS characters (subject to a
maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field is sent
to another queue manager.

The length of this field is given by MQ_CHANNEL_DESC_LENGTH.

QMgrName (MQCHAR48)
Queue-manager name.

For channels with a ChannelType other than MQCHT_CLNTCONN, this is
the name of the queue manager that an exit can connect to, which on
OS/2, UNIX systems, and Windows NT, is always nonblank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCHAR48)
Transmission queue name.

The name of the transmission queue from which messages are retrieved.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER or MQCHT_SERVER.

The length of this field is given by MQ_Q_NAME_LENGTH.

ShortConnectionName (MQCHAR20)
First 20 bytes of connection name.

If the Version field is MQCD_VERSION_1, ShortConnectionName contains
the full connection name.

If the Version field is MQCD_VERSION_2 or greater,
ShortConnectionName contains the first 20 characters of the connection
name. The full connection name is given by the ConnectionName field;
ShortConnectionName and the first 20 characters of ConnectionName are
identical.

See ConnectionName for details of the contents of this field.

Note: The name of this field was changed for MQCD_VERSION_2 and
subsequent versions of MQCD; the field was previously called
ConnectionName.

The length of this field is given by MQ_SHORT_CONN_NAME_LENGTH.

MCAName (MQCHAR20)
Reserved.

This is a reserved field; its value is blank.

The length of this field is given by MQ_MCA_NAME_LENGTH.

552 MQSeries Intercommunication

 MQCD

ModeName (MQCHAR8)
LU 6.2 Mode name.

This field is relevant only if the transmission protocol (TransportType) is
MQXPT_LU62, and the ChannelType is not MQCHT_SVRCONN or
MQCHT_RECEIVER.

On OS/400, OS/390 without CICS, UNIX systems, and MQSeries for
Windows, this field is always blank. The information is contained in the
communications Side Object instead.

The length of this field is given by MQ_MODE_NAME_LENGTH.

TpName (MQCHAR64)
LU 6.2 transaction program name.

This field is relevant only if the transmission protocol (TransportType) is
MQXPT_LU62, and the ChannelType is not MQCHT_SVRCONN or
MQCHT_RECEIVER.

On OS/400, OS/390 without CICS, UNIX systems, and MQSeries for
Windows, this field is always blank. The information is contained in the
communications Side Object instead.

The length of this field is given by MQ_TP_NAME_LENGTH.

BatchSize (MQLONG)
Batch size.

The maximum number of messages that can be sent through a channel
before synchronizing the channel.

This field is not relevant for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

DiscInterval (MQLONG)
Disconnect interval.

The maximum time in seconds for which the channel waits for a message
to arrive on the transmission queue, before terminating the channel. A
value of zero causes the MCA to wait indefinitely.

This field is relevant only for channels with a ChannelType of
| MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
| MQCHT_CLUSRCVR.

ShortRetryCount (MQLONG)
Short retry count.

This is the maximum number of attempts that are made to connect to the
remote machine, at intervals specified by ShortRetryInterval, before the
(normally longer) LongRetryCount and LongRetryInterval are used.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS
distributed queuing), MQCHT_SENDER, MQCHT_SERVER,

| MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

 Chapter 36. Channel-exit calls and data structures 553

 MQCD

ShortRetryInterval (MQLONG)
Short retry wait interval.

This is the maximum number of seconds to wait before reattempting
connection to the remote machine. Note that the interval between retries
may be extended if the channel has to wait to become active.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS
distributed queuing), MQCHT_SENDER, MQCHT_SERVER,

| MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

LongRetryCount (MQLONG)
Long retry count.

This count is used after the count specified by ShortRetryCount has been
exhausted. It specifies the maximum number of further attempts that are
made to connect to the remote machine, at intervals specified by
LongRetryInterval, before logging an error to the operator.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS
distributed queuing), MQCHT_SENDER, MQCHT_SERVER,

| MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

LongRetryInterval (MQLONG)
Long retry wait interval.

This is the maximum number of seconds to wait before reattempting
connection to the remote machine. Note that the interval between retries
may be extended if the channel has to wait to become active.

This field is relevant only for channels with a ChannelType of
MQCHT_REQUESTER (only for MQSeries for OS/390 using CICS
distributed queuing), MQCHT_SENDER, MQCHT_SERVER,

| MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

SecurityExit (MQCHARn)
Channel security exit name.

If this name is nonblank, the exit is called at the following times:

� Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity
to instigate security flows to validate connection authorization.

� Upon receipt of a response to a security message flow.

Any security message flows received from the remote processor on
the remote machine are given to the exit.

� At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of
this field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

MsgExit (MQCHARn)
Channel message exit name.

554 MQSeries Intercommunication

 MQCD

If this name is nonblank, the exit is called at the following times:

� Immediately after a message has been retrieved from the transmission
queue (sender or server), or immediately before a message is put to a
destination queue (receiver or requester).

The exit is given the entire application message and transmission
queue header for modification.

� At initialization and termination of the channel.

This field is not relevant for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN; a message exit is never
invoked for such channels.

See above in the introduction to MQCD for a description of the content of
this field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

SendExit (MQCHARn)
Channel send exit name.

If this name is nonblank, the exit is called at the following times:

� Immediately before data is sent out on the network.

The exit is given the complete transmission buffer before it is
transmitted. The contents of the buffer can be modified as required.

� At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of
this field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

ReceiveExit (MQCHARn)
Channel receive exit name.

If this name is nonblank, the exit is called at the following times:

� Immediately before the received network data is processed.

The exit is given the complete transmission buffer as received. The
contents of the buffer can be modified as required.

� At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of
this field in various environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment specific.

SeqNumberWrap (MQLONG)
Highest allowable message sequence number.

When this value is reached, sequence numbers wrap to start again at 1.

This value is non-negotiable and must match in both the local and remote
channel definitions.

 Chapter 36. Channel-exit calls and data structures 555

 MQCD

This field is not relevant for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

MaxMsgLength (MQLONG)
Maximum message length.

Specifies the maximum message length that can be transmitted on the
channel. This is compared with the value for the remote channel and the
actual maximum is the lower of the two values.

PutAuthority (MQLONG)
Put authority.

Specifies whether the user identifier in the context information associated
with a message should be used to establish authority to put the message
to the destination queue.

This field is relevant only for channels with a ChannelType of
| MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

and is not supported on MQSeries for Windows. It is one of the following:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

| MQPA_ONLY_MCA
| Only the MCA user identifier is used.

| MQPA_ALTERNATE_OR_MCA
| Alternate user identifier or MCA user identifier is used.

DataConversion (MQLONG)
Data conversion.

This specifies whether the sending message channel agent should attempt
conversion of the application message data if the receiving message
channel agent is unable to perform this conversion. This applies only to
messages that are not segments of logical messages; the MCA never
attempts to convert messages which are segments.

DataConversion is not supported on MQSeries for Windows.

This field is relevant only for channels with a ChannelType of
| MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
| MQCHT_CLUSRCVR. It is one of the following:

MQCDC_SENDER_CONVERSION
Conversion by sender.

This value is not supported on 32-bit Windows.

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

SecurityUserData (MQCHAR32)
Channel security exit user data.

This is passed to the channel security exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

556 MQSeries Intercommunication

 MQCD

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to
the contents of this field by an exit of any type are preserved by the MCA,
and made visible to subsequent invocations of exits (regardless of type)
for this MCA instance. Such changes have no effect on the channel
definition used by other MCA instances. Any characters (including binary
data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCHAR32)
Channel message exit user data.

This is passed to the channel message exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to
the contents of this field by an exit of any type are preserved by the MCA,
and made visible to subsequent invocations of exits (regardless of type)
for this MCA instance. Such changes have no effect on the channel
definition used by other MCA instances. Any characters (including binary
data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

SendUserData (MQCHAR32)
Channel send exit user data.

This is passed to the channel send exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to
the contents of this field by an exit of any type are preserved by the MCA,
and made visible to subsequent invocations of exits (regardless of type)
for this MCA instance. Such changes have no effect on the channel
definition used by other MCA instances. Any characters (including binary
data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

ReceiveUserData (MQCHAR32)
Channel receive exit user data.

This is passed to the channel receive exit in the ExitData field of the
ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to
the contents of this field by an exit of any type are preserved by the MCA,
and made visible to subsequent invocations of exits (regardless of type)
for this MCA instance. Such changes have no effect on the channel
definition used by other MCA instances. Any characters (including binary
data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_2.

 Chapter 36. Channel-exit calls and data structures 557

 MQCD

UserIdentifier (MQCHAR12)
User identifier.

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent.

This field can be nonblank only on OS/2, UNIX systems, and Windows NT,
and is relevant only for channels with a ChannelType of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN. On
OS/390 this field is not relevant.

The length of this field is given by MQ_USER_ID_LENGTH, however only
the first 10 characters are used.

This field is not present in MQSeries for Windows or when Version is less
than MQCD_VERSION_2.

Password (MQCHAR12)
Password.

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent.

This field can be nonblank only on OS/2, UNIX systems, and Windows NT,
and is relevant only for channels with a ChannelType of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN. On
OS/390 this field is not relevant.

The length of this field is given by MQ_PASSWORD_LENGTH, however
only the first 10 characters are used.

This field is not present if Version is less than MQCD_VERSION_2.

MCAUserIdentifier (MQCHAR12)
First 12 bytes of MCA user identifier.

| There are two fields that contain the MCA user identifier:

| � MCAUserIdentifier contains the first 12 bytes of the MCA user
| identifier, and is padded with blanks if the identifier is shorter than 12
| bytes. MCAUserIdentifier can be completely blank.

| � LongMCAUserIdPtr points to the full MCA user identifier, which can be
| longer than 12 bytes. Its length is given by LongMCAUserIdLength.
| The full identifier contains no trailing blanks, and is not null-terminated.
| If the identifier is completely blank, LongMCAUserIdLength is zero, and
| the value of LongMCAUserIdPtr is undefined.

| Note: LongMCAUserIdPtr is not present if Version is less than
| MQCD_VERSION_6.

If the MCA user identifier is nonblank, it specifies the user identifier to be
used by the message channel agent for authorization to access MQSeries
resources, including (if PutAuthority is MQPA_DEFAULT) authorization to
put the message to the destination queue for receiver or requester
channels.

If the MCA user identifier is blank, the message channel agent uses its
default user identifier.

558 MQSeries Intercommunication

 MQCD

The MCA user identifier can be set by a security exit to indicate the user
| identifier that the message channel agent should use. The exit can
| change either MCAUserIdentifier, or the string pointed at by
| LongMCAUserIdPtr. If both are changed but differ from each other, the
| MCA uses LongMCAUserIdPtr in preference to MCAUserIdentifier. If the
| exit changes the length of the string addressed by LongMCAUserIdPtr,
| LongMCAUserIdLength must be set correspondingly. If the exit wishes to
| increase the length of the identifier, the exit must allocate storage of the
| required length, set that storage to the required identifier, and place the
| address of that storage in LongMCAUserIdPtr. The exit is responsible for
| freeing that storage when the exit is later invoked with the MQXR_TERM
| reason.

For channels with a ChannelType of MQCHT_SVRCONN, if
MCAUserIdentifier in the channel definition is blank, any user identifier
transferred from the client is copied into it. This user identifier (after any
modification by the security exit at the server) is the one which the client
application is assumed to be running under.

The MCA user identifier is not relevant for channels with a ChannelType of
MQCHT_CLNTCONN.

This is an input/output field to the exit. The length of this field is given by
MQ_USER_ID_LENGTH. This field is not present on MQSeries for
Windows or when Version is less than MQCD_VERSION_2.

MCAType (MQLONG)
Message channel agent type.

This is the type of the message channel agent program.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER, MQCHT_SERVER or MQCHT_REQUESTER.

The value is one of the following:

MQMCAT_PROCESS
Process.

The message channel agent runs as a separate process.

MQMCAT_THREAD
Thread (OS/2 and Windows NT only).

The message channel agent runs as a separate thread.

This value is supported in the following environments: OS/2,
Windows NT.

This field is not present on MQSeries for Windows or when Version is
less than MQCD_VERSION_2.

ConnectionName (MQCHAR264)
Connection name.

This is the full connection name of the partner. The type of name
depends on the transmission protocol (TransportType) to be used:

� For MQXPT_LU62, it is the fully-qualified name of the partner Logical
Unit.

� For MQXPT_NETBIOS, it is the NetBIOS name defined on the remote
machine.

 Chapter 36. Channel-exit calls and data structures 559

 MQCD

� For MQXPT_TCP, it is either the host name, or the network address of
the remote machine.

� For MQXPT_SPX, it is an SPX-style address comprising a 4-byte
network address, a 6-byte node address, and a 2-byte socket number.

This field is not relevant for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_RECEIVER.

The length of this field is given by MQ_CONN_NAME_LENGTH. This field
is not present if Version is less than MQCD_VERSION_2.

RemoteUserIdentifier (MQCHAR12)
First 12 bytes of user identifier from partner.

| There are two fields that contain the remote user identifier:

| � RemoteUserIdentifier contains the first 12 bytes of the remote user
| identifier, and is padded with blanks if the identifier is shorter than 12
| bytes. RemoteUserIdentifier can be completely blank.

| � LongRemoteUserIdPtr points to the full remote user identifier, which
| can be longer than 12 bytes. Its length is given by
| LongRemoteUserIdLength. The full identifier contains no trailing blanks,
| and is not null-terminated. If the identifier is completely blank,
| LongRemoteUserIdLength is zero, and the value of
| LongRemoteUserIdPtr is undefined.

| LongRemoteUserIdPtr is not present if Version is less than
| MQCD_VERSION_6.

The remote user identifier is relevant only for channels with a ChannelType
of MQCHT_CLNTCONN or MQCHT_SVRCONN.

� For a security exit on an MQCHT_CLNTCONN channel, this is a user
identifier which has been obtained from the environment (from an
environment variable on OS/2, Windows 3.1 and Windows NT, or from
the system on UNIX platforms.) The exit can choose to send it to the
security exit at the server.

� For a security exit on an MQCHT_SVRCONN channel, this field may
contain a user identifier which has been obtained from the
environment at the client, if there is no client security exit. The exit
may validate this user ID (possibly in conjunction with the password in
RemotePassword) and update the value in MCAUserIdentifier.

If there is a security exit at the client, then this information can be
obtained in a security flow from the client.

The length of this field is given by MQ_USER_ID_LENGTH. This field is
not present if Version is less than MQCD_VERSION_2.

RemotePassword (MQCHAR12)
Password from partner.

560 MQSeries Intercommunication

 MQCD

This field contains valid information only if ChannelType is
MQCHT_CLNTCONN or MQCHT_SVRCONN.

� For a security exit at an MQCHT_CLNTCONN channel, this is a
password which has been obtained from the environment from an
environment variable on OS/2 and Windows. The exit can choose to
send it to the security exit at the server.

� For a security exit at an MQCHT_SVRCONN channel, this field may
contain a password which has been obtained from the environment at
the client, if there is no client security exit. The exit may use this to
validate the user identifier in RemoteUserIdentifier.

If there is a security exit at the client, then this information can be
obtained in a security flow from the client.

The length of this field is given by MQ_PASSWORD_LENGTH. This field
is not present if Version is less than MQCD_VERSION_2.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_3.

MsgRetryExit (MQCHARn)
Channel message retry exit name.

The message retry exit is an exit that is invoked by the MCA when the
MCA receives a completion code of MQCC_FAILED from an MQOPEN or
MQPUT call. The purpose of the exit is to specify a time interval for which
the MCA should wait before retrying the MQOPEN or MQPUT operation.
Alternatively, the exit can decide that the operation should not be retried.

The exit is invoked for all reason codes that have a completion code of
MQCC_FAILED — it is up to the exit to decide which reason codes it
wants the MCA to retry, for how many attempts, and at what time
intervals.

When the exit decides that the operation should not be retried any more,
the MCA performs its normal failure processing; this includes generating
an exception report message (if specified by the sender), and either
placing the original message on the dead-letter queue or discarding the
message (according to whether the sender specified
MQRO_DEAD_LETTER_Q or MQRO_DISCARD_MSG, respectively).
Note that failures involving the dead-letter queue (for example, dead-letter
queue full) do not cause the message-retry exit to be invoked.

If the exit name is nonblank, the exit is called at the following times:

� Immediately before performing the wait prior to retrying a message
� At initialization and termination of the channel.

See above in the introduction to MQCD for a description of the content of
this field in various environments.

This field is relevant only for channels with a ChannelType of
| MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

 Chapter 36. Channel-exit calls and data structures 561

 MQCD

Notes:

1. The value of this constant is environment specific.

2. On OS/390 this field is not relevant.

This field is not present on MQSeries for Windows or when Version is
less than MQCD_VERSION_3.

MsgRetryUserData (MQCHAR32)
Channel message retry exit user data.

This is passed to the channel message-retry exit in the ExitData field of
the ChannelExitParms parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition.
However, during the lifetime of this MCA instance, any changes made to
the contents of this field by an exit of any type are preserved by the MCA,
and made visible to subsequent invocations of exits (regardless of type)
for this MCA instance. Such changes have no effect on the channel
definition used by other MCA instances. Any characters (including binary
data) can be used.

This field is relevant only for channels with a ChannelType of
| MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This field
is not present on MQSeries for Windows or when Version is less than
MQCD_VERSION_3.

On OS/390 this field is always blank.

MsgRetryCount (MQLONG)
Number of times MCA will try to put the message, after the first attempt
has failed.

This indicates the number of times that the MCA will retry the open or put
operation, if the first MQOPEN or MQPUT fails with completion code
MQCC_FAILED. The effect of this attribute depends on whether
MsgRetryExit is blank or nonblank:

� If MsgRetryExit is blank, the MsgRetryCount attribute controls whether
the MCA attempts retries. If the attribute value is zero, no retries are
attempted. If the attribute value is greater than zero, the retries are
attempted at intervals given by the MsgRetryInterval attribute.

Retries are attempted only for the following reason codes:

 MQRC_PAGESET_FULL
 MQRC_PUT_INHIBITED
 MQRC_Q_FULL

For other reason codes, the MCA proceeds immediately to its normal
failure processing, without retrying the failing message.

� If MsgRetryExit is nonblank, the MsgRetryCount attribute has no effect
on the MCA; instead it is the message-retry exit which determines how
many times the retry is attempted, and at what intervals; the exit is
invoked even if the MsgRetryCount attribute is zero.

562 MQSeries Intercommunication

 MQCD

The MsgRetryCount attribute is made available to the exit in the MQCD
structure, but the exit it not required to honor it — retries continue
indefinitely until the exit returns MQXCC_SUPPRESS_FUNCTION in
the ExitResponse field of MQCXP.

This field is relevant only for channels with a ChannelType of
| MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

This field is not present on MQSeries for Windows or when Version is
less than MQCD_VERSION_3.

On OS/390 this field is always zero.

MsgRetryInterval (MQLONG)
Minimum interval in milliseconds after which the open or put operation will
be retried.

The effect of this attribute depends on whether MsgRetryExit is blank or
nonblank:

� If MsgRetryExit is blank, the MsgRetryInterval attribute specifies the
minimum period of time that the MCA will wait before retrying a
message, if the first MQOPEN or MQPUT fails with completion code
MQCC_FAILED. A value of zero means that the retry will be
performed as soon as possible after the previous attempt. Retries are
performed only if MsgRetryCount is greater than zero.

This attribute is also used as the wait time if the message-retry exit
returns an invalid value in the MsgRetryInterval field in MQCXP.

� If MsgRetryExit is not blank, the MsgRetryInterval attribute has no
effect on the MCA; instead it is the message-retry exit which
determines how long the MCA should wait. The MsgRetryInterval
attribute is made available to the exit in the MQCD structure, but the
exit it not required to honor it.

The value is in the range 0 through 999 999 999.

This field is relevant only for channels with a ChannelType of
| MQCHT_REQUESTER, MQCHT_RECEIVER, or MQCHT_CLUSRCVR.

This field is not present on MQSeries for Windows or when Version is
less than MQCD_VERSION_3.

On OS/390 this field is always zero.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_4.

HeartbeatInterval (MQLONG)
Time in seconds between heartbeat flows.

The interpretation of this field depends on the channel type, as follows:

� For a channel type of MQCHT_SENDER, MQCHT_SERVER,
| MQCHT_RECEIVER MQCHT_REQUESTER, MQCHT_CLUSSDR, or
| MQCHT_CLUSRCVR, this is the time in seconds between heartbeat

flows passed from the sending MCA when there are no messages on
the transmission queue. This gives the receiving MCA the opportunity
to quiesce the channel. To be useful, HeartbeatInterval should be
significantly less than DiscInterval.

 Chapter 36. Channel-exit calls and data structures 563

 MQCD

This type of heartbeat is supported in the following environments: AIX,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows NT.

� For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN,
this is the time in seconds between heartbeat flows passed from the
server MCA when that MCA has issued an MQGET call with the
MQGMO_WAIT option on behalf of a client application. This allows
the server MCA to handle situations where the client connection fails
during an MQGET with MQGMO_WAIT.

This type of heartbeat is supported in the following environments: AIX,
HP-UX, OS/2, Sun Solaris, Windows NT.

The value is in the range 0 through 999 999. A value of 0 means that no
heartbeat exchange occurs. The value that is actually used is the larger of
the values specified at the sending side and receiving side.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

BatchInterval (MQLONG)
Batch duration.

This is the approximate time in milliseconds that a channel will keep a
batch open, if fewer than BatchSize messages have been transmitted in
the current batch.

If BatchInterval is greater than zero, the batch is terminated by whichever
of the following occurs first:

� BatchSize messages have been sent, or
� BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the
following occurs first:

� BatchSize messages have been sent, or
� the transmission queue becomes empty.

BatchInterval must be in the range zero through 999 999 999.

This field is relevant only for channels with a ChannelType of
| MQCHT_SENDER, MQCHT_SERVER, MQCHT_CLUSSDR, or
| MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present when Version is
less than MQCD_VERSION_4.

NonPersistentMsgSpeed (MQLONG)
Speed at which nonpersistent messages are sent.

This specifies the speed at which nonpersistent messages travel through
the channel.

This field is relevant only for channels with a ChannelType of
MQCHT_SENDER, MQCHT_SERVER, MQCHT_RECEIVER,

| MQCHT_REQUESTER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

564 MQSeries Intercommunication

 MQCD

The value is one of the following:

MQNPMS_NORMAL
Normal speed.

If a channel is defined to be MQNPMS_NORMAL, nonpersistent
messages travel through the channel at normal speed. This has the
advantage that these messages will not be lost if there is a channel
failure. Also, persistent and nonpersistent messages on the same
transmission queue maintain their order relative to each other.

MQNPMS_FAST
Fast speed.

If a channel is defined to be MQNPMS_FAST, nonpersistent
messages travel through the channel at fast speed. This improves
the throughput of the channel, but means that nonpersistent
messages will be lost if there is a channel failure. Also, it is possible
for nonpersistent messages to jump ahead of persistent messages
waiting on the same transmission queue, that is, the order of
nonpersistent messages is not maintained relative to persistent
messages. However the order of nonpersistent messages relative to
each other is maintained. Similarly, the order of persistent messages
relative to each other is maintained.

StrucLength (MQLONG)
Length of MQCD structure.

This is the length in bytes of the MQCD structure. The length does not
include any of the strings addressed by pointer fields contained within the
structure. The value is one of the following:

MQCD_LENGTH_4
Length of version-4 channel definition structure.

| MQCD_LENGTH_5
| Length of version-5 channel definition structure.

| MQCD_LENGTH_6
| Length of version-6 channel definition structure.

The following constant specifies the length of the current version:

MQCD_CURRENT_LENGTH
Length of current version of channel definition structure.

Note: These constants have values that are environment specific.

The field is not present if Version is less than MQCD_VERSION_4.

ExitNameLength (MQLONG)
Length of exit name.

This is the length in bytes of each of the names in the lists of exit names
addressed by the MsgExitPtr, SendExitPtr, and ReceiveExitPtr fields.
This length is not necessarily the same as MQ_EXIT_NAME_LENGTH.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

 Chapter 36. Channel-exit calls and data structures 565

 MQCD

ExitDataLength (MQLONG)
Length of exit user data.

This is the length in bytes of each of the user data items in the lists of exit
user data items addressed by the MsgUserDataPtr, SendUserDataPtr, and
ReceiveUserDataPtr fields. This length is not necessarily the same as
MQ_EXIT_DATA_LENGTH.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

MsgExitsDefined (MQLONG)
Number of message exits defined.

This is the number of channel message exits in the chain. On OS/390 it is
always zero. On other platforms it is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

SendExitsDefined (MQLONG)
Number of send exits defined.

This is the number of channel send exits in the chain. On OS/390 it is
always zero. On other platforms it is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

ReceiveExitsDefined (MQLONG)
Number of receive exits defined.

This is the number of channel receive exits in the chain. On OS/390 it is
always zero. On other platforms it is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

MsgExitPtr (MQPTR)
Address of first MsgExit field.

If MsgExitsDefined is greater than zero, this is the address of the list of
names of each channel message exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with
blanks. There are MsgExitsDefined fields adjoining one another – one for
each exit.

Any changes made to these names by an exit are preserved, although the
message channel exit takes no explicit action – it does not change which
exits are invoked.

If MsgExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the
pointer data type, this field is declared as a byte string of the appropriate
length.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

566 MQSeries Intercommunication

 MQCD

MsgUserDataPtr (MQPTR)
Address of first MsgUserData field.

If MsgExitsDefined is greater than zero, this is the address of the list of
user data items for each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the
right with blanks. There are MsgExitsDefined fields adjoining one another
– one for each exit. If the number of user data items defined is less than
the number of exit names, undefined user data items are set to blanks.
Conversely, if the number of user data items defined is greater than the
number of exit names, the excess user data items are ignored and not
presented to the exit.

Any changes made to these names by an exit are preserved. This allows
one exit to pass information to another exit. No validation is carried out on
any changes so, for example, binary data can be written to these fields if
required.

If MsgExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the
pointer data type, this field is declared as a byte string of the appropriate
length.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

SendExitPtr (MQPTR)
Address of first SendExit field.

If SendExitsDefined is greater than zero, this is the address of the list of
names of each channel send exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with
blanks. There are SendExitsDefined fields adjoining one another – one for
each exit.

Any changes made to these names by an exit are preserved, although the
message send exit takes no explicit action – it does not change which
exits are invoked.

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the
pointer data type, this field is declared as a byte string of the appropriate
length.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

SendUserDataPtr (MQPTR)
Address of first SendUserData field.

If SendExitsDefined is greater than zero, this is the address of the list of
user data items for each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the
right with blanks. There are MsgExitsDefined fields adjoining one another
– one for each exit.

 Chapter 36. Channel-exit calls and data structures 567

 MQCD

If the number of user data items defined is less than the number of exit
names, undefined user data items are set to blanks. Conversely, if the
number of user data items defined is greater than the number of exit
names, the excess user data items are ignored and not presented to the
exit.

Any changes made to these names by an exit are preserved. This allows
one exit to pass information to another exit. No validation is carried out on
any changes so, for example, binary data can be written to these fields if
required.

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the
pointer data type, this field is declared as a byte string of the appropriate
length.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

ReceiveExitPtr (MQPTR)
Address of first ReceiveExit field.

If ReceiveExitsDefined is greater than zero, this is the address of the list
of names of each channel receive exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with
blanks. There are ReceiveExitsDefined fields adjoining one another – one
for each exit.

Any changes made to these names by an exit are preserved, although the
message channel exit takes no explicit action – it does not change which
exits are invoked.

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the
pointer data type, this field is declared as a byte string of the appropriate
length.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

ReceiveUserDataPtr (MQPTR)
Address of first ReceiveUserData field.

If ReceiveExitsDefined is greater than zero, this is the address of the list
of user data item for each channel receive exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the
right with blanks. There are ReceiveExitsDefined fields adjoining one
another – one for each exit. If the number of user data items defined is
less than the number of exit names, undefined user data items are set to
blanks. Conversely, if the number of user data items defined is greater
than the number of exit names, the excess user data items are ignored
and not presented to the exit."

Any changes made to these names by an exit are preserved. This allows
one exit to pass information to another exit. No validation is carried out on
any changes so, for example, binary data can be written to these fields if
required.

568 MQSeries Intercommunication

 MQCD

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the
pointer data type, this field is declared as a byte string of the appropriate
length.

This is an input field to the exit. The field is not present if Version is less
than MQCD_VERSION_4.

The following fields in this structure are not present if Version is less than
MQCD_VERSION_5.

| ClusterPtr (MQPTR)
| Address of first cluster record.

| If ClustersDefined is greater than zero, this is the address of the first
| cluster record (MQWCR structure) in a chain of cluster records. Each
| cluster record identifies a cluster to which the channel belongs.

| This field is relevant only for channels with a ChannelType of
| MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

| This is an input field to the exit. The field is not present if Version is less
| than MQCD_VERSION_5.

| ClustersDefined (MQLONG)
| Number of cluster records.

| This is the number of cluster records (MQWCR structures) pointed to by
| ClusterPtr. It is zero or greater.

| This field is relevant only for channels with a ChannelType of
| MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

| This is an input field to the exit. The field is not present if Version is less
| than MQCD_VERSION_5.

| NetworkPriority (MQLONG)
| Network priority.

| This is the priority of the network connection for this channel. When
| multiple paths to a particular destination are available, the path with the
| highest priority is chosen. The value is in the range 0 through 9; 0 is the
| lowest priority.

| This field is relevant only for channels with a ChannelType of
| MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

| This is an input field to the exit. The field is not present if Version is less
| than MQCD_VERSION_5.

| The following fields in this structure are not present if Version is less than
| MQCD_VERSION_6.

| LongMCAUserIdLength (MQLONG)
| Length of long MCA user identifier.

| This is the length in bytes of the full MCA user identifier pointed to by
| LongMCAUserIdPtr.

 Chapter 36. Channel-exit calls and data structures 569

 MQCD

| This field is not relevant for channels with a ChannelType of
| MQCHT_CLNTCONN.

| This is an input/output field to the exit. The field is not present if Version
| is less than MQCD_VERSION_6.

| LongRemoteUserIdLength (MQLONG)
| Length of long remote user identifier.

| This is the length in bytes of the full remote user identifier pointed to by
| LongRemoteUserIdPtr.

| This field is relevant only for channels with a ChannelType of
| MQCHT_CLNTCONN or MQCHT_SVRCONN.

| This is an input field to the exit. The field is not present if Version is less
| than MQCD_VERSION_6.

| LongMCAUserIdPtr (MQPTR)
| Address of long MCA user identifier.

| If LongMCAUserIdLength is greater than zero, this is the address of the full
| MCA user identifier. The length of the full identifier is given by
| LongMCAUserIdLength. The first 12 bytes of the MCA user identifier are
| also contained in the field MCAUserIdentifier.

| See the description of the MCAUserIdentifier field for details of the MCA
| user identifier.

| This field is not relevant for channels with a ChannelType of
| MQCHT_CLNTCONN.

| This is an input/output field to the exit. The field is not present if Version
| is less than MQCD_VERSION_6.

| LongRemoteUserIdPtr (MQPTR)
| Address of long remote user identifier.

| If LongRemoteUserIdLength is greater than zero, this is the address of the
| full remote user identifier. The length of the full identifier is given by
| LongRemoteUserIdLength. The first 12 bytes of the remote user identifier
| are also contained in the field RemoteUserIdentifier.

| See the description of the RemoteUserIdentifier field for details of the
| remote user identifier.

| This field is relevant only for channels with a ChannelType of
| MQCHT_CLNTCONN or MQCHT_SVRCONN.

| This is an input field to the exit. The field is not present if Version is less
| than MQCD_VERSION_6.

| MCASecurityId (MQBYTE40)
| MCA security identifier.

| This is the security identifier for the MCA.

| This field is not relevant for channels with a ChannelType of
| MQCHT_CLNTCONN.

570 MQSeries Intercommunication

 MQCD

| The following special value indicates that there is no security identifier:

| MQSID_NONE
| No security identifier specified.

| The value is binary zero for the length of the field.

| For the C programming language, the constant
| MQSID_NONE_ARRAY is also defined; this has the same value as
| MQSID_NONE, but is an array of characters instead of a string.

| This is an input/output field to the exit. The length of this field is given by
| MQ_SECURITY_ID_LENGTH. This field is not present if Version is less
| than MQCD_VERSION_6.

| RemoteSecurityId (MQBYTE40)
| Remote security identifier.

| This is the security identifier for the remote user.

| This field is relevant only for channels with a ChannelType of
| MQCHT_CLNTCONN or MQCHT_SVRCONN.

| The following special value indicates that there is no security identifier:

| MQSID_NONE
| No security identifier specified.

| The value is binary zero for the length of the field.

| For the C programming language, the constant
| MQSID_NONE_ARRAY is also defined; this has the same value as
| MQSID_NONE, but is an array of characters instead of a string.

| This is an input field to the exit. The length of this field is given by
| MQ_SECURITY_ID_LENGTH. This field is not present if Version is less
| than MQCD_VERSION_6.

 Chapter 36. Channel-exit calls and data structures 571

 MQCD

 C declaration
typedef struct tagMQCD {

MQCHAR ChannelName[2ð]; /\ Channel definition

 name \/

MQLONG Version; /\ Structure version number \/

MQLONG ChannelType; /\ Channel type \/

MQLONG TransportType; /\ Transport type \/

 MQCHAR Desc[64]; /\ Channel

 description \/

 MQCHAR QMgrName[48]; /\ Queue-manager

 name \/

MQCHAR XmitQName[48]; /\ Transmission queue

 name \/

MQCHAR ShortConnectionName[2ð]; /\ First 2ð bytes of

connection name \/

MQCHAR MCAName[2ð]; /\ Reserved \/

MQCHAR ModeName[8]; /\ LU 6.2 Mode name \/

MQCHAR TpName[64]; /\ LU 6.2 transaction

program name \/

MQLONG BatchSize; /\ Batch size \/

MQLONG DiscInterval; /\ Disconnect interval \/

MQLONG ShortRetryCount; /\ Short retry count \/

MQLONG ShortRetryInterval; /\ Short retry wait interval \/

MQLONG LongRetryCount; /\ Long retry count \/

MQLONG LongRetryInterval; /\ Long retry wait interval \/

MQCHAR SecurityExit[n]; /\ Channel security

exit name \/

MQCHAR MsgExit[n]; /\ Channel message exit

 name \/

MQCHAR SendExit[n]; /\ Channel send exit

 name \/

MQCHAR ReceiveExit[n]; /\ Channel receive exit

 name \/

MQLONG SeqNumberWrap; /\ Highest allowable message

sequence number \/

MQLONG MaxMsgLength; /\ Maximum message length \/

MQLONG PutAuthority; /\ Put authority \/

MQLONG DataConversion; /\ Data conversion \/

MQCHAR SecurityUserData[32]; /\ Channel security

exit user data \/

MQCHAR MsgUserData[32]; /\ Channel message exit

user data \/

MQCHAR SendUserData[32]; /\ Channel send exit

user data \/

MQCHAR ReceiveUserData[32]; /\ Channel receive exit

user data \/

MQCHAR UserIdentifier[12]; /\ User identifier \/

MQCHAR Password[12]; /\ Password \/

MQCHAR MCAUserIdentifier[12]; /\ First 12 bytes of

MCA user identifier \/

MQLONG MCAType; /\ Message channel agent type \/

MQCHAR ConnectionName[264]; /\ Connection name \/

MQCHAR RemoteUserIdentifier[12]; /\ First 12 bytes of

user identifier from

 partner \/

MQCHAR RemotePassword[12]; /\ Password from

 partner \/

572 MQSeries Intercommunication

 MQCD

MQCHAR MsgRetryExit[n]; /\ Channel message

retry exit name \/

MQCHAR MsgRetryUserData[32]; /\ Channel message

retry exit user data \/

MQLONG MsgRetryCount; /\ Number of times MCA will try

to put the message, after the

first attempt has failed \/

MQLONG MsgRetryInterval; /\ Minimum interval in millisec-

onds after which the open or

put operation will be

 retried \/

MQLONG HeartbeatInterval; /\ Time in seconds between

heartbeat flows \/

MQLONG BatchInterval; /\ Batch duration \/

MQLONG NonPersistentMsgSpeed; /\ Speed at which nonpersistent

messages are sent \/

MQLONG StrucLength; /\ Length of MQCD structure \/

MQLONG ExitNameLength; /\ Length of exit name \/

MQLONG ExitDataLength; /\ Length of exit user data \/

MQLONG MsgExitsDefined; /\ Number of message exits

 defined \/

MQLONG SendExitsDefined; /\ Number of send exits

 defined \/

MQLONG ReceiveExitsDefined; /\ Number of receive exits

 defined \/

MQPTR MsgExitPtr; /\ Address of first MsgExit

 field \/

MQPTR MsgUserDataPtr; /\ Address of first MsgUserData

 field \/

MQPTR SendExitPtr; /\ Address of first SendExit

 field \/

MQPTR SendUserDataPtr; /\ Address of first SendUserData

 field \/

MQPTR ReceiveExitPtr; /\ Address of first ReceiveExit

 field \/

MQPTR ReceiveUserDataPtr; /\ Address of first

ReceiveUserData field \/

| MQPTR ClusterPtr; /\ Address of first cluster

| record \/

| MQLONG ClustersDefined; /\ Number of cluster records \/

| MQLONG NetworkPriority; /\ Network priority \/

| MQLONG LongMCAUserIdLength; /\ Length of long MCA user iden-

| tifier \/

| MQLONG LongRemoteUserIdLength; /\ Length of long remote user

| identifier \/

| MQPTR LongMCAUserIdPtr; /\ Address of long MCA user iden-

| tifier \/

| MQPTR LongRemoteUserIdPtr; /\ Address of long remote user

| identifier \/

| MQBYTE4ð MCASecurityId; /\ MCA security identifier \/

| MQBYTE4ð RemoteSecurityId; /\ Remote security identifier \/

 } MQCD;

 Chapter 36. Channel-exit calls and data structures 573

 MQCD

 COBOL declaration
\\ MQCD structure

 1ð MQCD.

\\ Channel definition name

 15 MQCD-CHANNELNAME PIC X(2ð).

\\ Structure version number

15 MQCD-VERSION PIC S9(9) BINARY.

\\ Channel type

15 MQCD-CHANNELTYPE PIC S9(9) BINARY.

\\ Transport type

15 MQCD-TRANSPORTTYPE PIC S9(9) BINARY.

\\ Channel description

 15 MQCD-DESC PIC X(64).

\\ Queue-manager name

 15 MQCD-QMGRNAME PIC X(48).

\\ Transmission queue name

 15 MQCD-XMITQNAME PIC X(48).

\\ First 2ð bytes of connection name

 15 MQCD-SHORTCONNECTIONNAME PIC X(2ð).

\\ Reserved

 15 MQCD-MCANAME PIC X(2ð).

\\ LU 6.2 Mode name

 15 MQCD-MODENAME PIC X(8).

\\ LU 6.2 transaction program name

 15 MQCD-TPNAME PIC X(64).

\\ Batch size

15 MQCD-BATCHSIZE PIC S9(9) BINARY.

\\ Disconnect interval

15 MQCD-DISCINTERVAL PIC S9(9) BINARY.

\\ Short retry count

15 MQCD-SHORTRETRYCOUNT PIC S9(9) BINARY.

\\ Short retry wait interval

15 MQCD-SHORTRETRYINTERVAL PIC S9(9) BINARY.

\\ Long retry count

15 MQCD-LONGRETRYCOUNT PIC S9(9) BINARY.

\\ Long retry wait interval

15 MQCD-LONGRETRYINTERVAL PIC S9(9) BINARY.

\\ Channel security exit name

 15 MQCD-SECURITYEXIT PIC X(n).

\\ Channel message exit name

 15 MQCD-MSGEXIT PIC X(n).

\\ Channel send exit name

 15 MQCD-SENDEXIT PIC X(n).

\\ Channel receive exit name

 15 MQCD-RECEIVEEXIT PIC X(n).

\\ Highest allowable message sequence number

15 MQCD-SEQNUMBERWRAP PIC S9(9) BINARY.

\\ Maximum message length

15 MQCD-MAXMSGLENGTH PIC S9(9) BINARY.

\\ Put authority

15 MQCD-PUTAUTHORITY PIC S9(9) BINARY.

\\ Data conversion

15 MQCD-DATACONVERSION PIC S9(9) BINARY.

\\ Channel security exit user data

 15 MQCD-SECURITYUSERDATA PIC X(32).

\\ Channel message exit user data

574 MQSeries Intercommunication

 MQCD

 15 MQCD-MSGUSERDATA PIC X(32).

\\ Channel send exit user data

 15 MQCD-SENDUSERDATA PIC X(32).

\\ Channel receive exit user data

 15 MQCD-RECEIVEUSERDATA PIC X(32).

\\ User identifier

 15 MQCD-USERIDENTIFIER PIC X(12).

\\ Password

 15 MQCD-PASSWORD PIC X(12).

\\ First 12 bytes of MCA user identifier

 15 MQCD-MCAUSERIDENTIFIER PIC X(12).

\\ Message channel agent type

15 MQCD-MCATYPE PIC S9(9) BINARY.

\\ Connection name

 15 MQCD-CONNECTIONNAME PIC X(264).

\\ First 12 bytes of user identifier from partner

 15 MQCD-REMOTEUSERIDENTIFIER PIC X(12).

\\ Password from partner

 15 MQCD-REMOTEPASSWORD PIC X(12).

\\ Channel message retry exit name

 15 MQCD-MSGRETRYEXIT PIC X(n).

\\ Channel message retry exit user data

 15 MQCD-MSGRETRYUSERDATA PIC X(32).

\\ Number of times MCA will try to put the message, after the

\\ first attempt has failed

15 MQCD-MSGRETRYCOUNT PIC S9(9) BINARY.

\\ Minimum interval in milliseconds after which the open or put

\\ operation will be retried

15 MQCD-MSGRETRYINTERVAL PIC S9(9) BINARY.

\\ Time in seconds between heartbeat flows

15 MQCD-HEARTBEATINTERVAL PIC S9(9) BINARY.

\\ Batch duration

15 MQCD-BATCHINTERVAL PIC S9(9) BINARY.

\\ Speed at which nonpersistent messages are sent

15 MQCD-NONPERSISTENTMSGSPEED PIC S9(9) BINARY.

\\ Length of MQCD structure

15 MQCD-STRUCLENGTH PIC S9(9) BINARY.

\\ Length of exit name

15 MQCD-EXITNAMELENGTH PIC S9(9) BINARY.

\\ Length of exit user data

15 MQCD-EXITDATALENGTH PIC S9(9) BINARY.

\\ Number of message exits defined

15 MQCD-MSGEXITSDEFINED PIC S9(9) BINARY.

\\ Number of send exits defined

15 MQCD-SENDEXITSDEFINED PIC S9(9) BINARY.

\\ Number of receive exits defined

15 MQCD-RECEIVEEXITSDEFINED PIC S9(9) BINARY.

\\ Address of first MsgExit field

 15 MQCD-MSGEXITPTR POINTER.

\\ Address of first MsgUserData field

 15 MQCD-MSGUSERDATAPTR POINTER.

\\ Address of first SendExit field

 15 MQCD-SENDEXITPTR POINTER.

\\ Address of first SendUserData field

 15 MQCD-SENDUSERDATAPTR POINTER.

\\ Address of first ReceiveExit field

 15 MQCD-RECEIVEEXITPTR POINTER.

\\ Address of first ReceiveUserData field

 Chapter 36. Channel-exit calls and data structures 575

 MQCD

 15 MQCD-RECEIVEUSERDATAPTR POINTER.

| \\ Address of first cluster record

| 15 MQCD-CLUSTERPTR POINTER.

| \\ Number of cluster records

| 15 MQCD-CLUSTERSDEFINED PIC S9(9) BINARY.

| \\ Network priority

| 15 MQCD-NETWORKPRIORITY PIC S9(9) BINARY.

| \\ Length of long MCA user identifier

| 15 MQCD-LONGMCAUSERIDLENGTH PIC S9(9) BINARY.

| \\ Length of long remote user identifier

| 15 MQCD-LONGREMOTEUSERIDLENGTH PIC S9(9) BINARY.

| \\ Address of long MCA user identifier

| 15 MQCD-LONGMCAUSERIDPTR POINTER.

| \\ Address of long remote user identifier

| 15 MQCD-LONGREMOTEUSERIDPTR POINTER.

| \\ MCA security identifier

| 15 MQCD-MCASECURITYID PIC X(4ð).

| \\ Remote security identifier

| 15 MQCD-REMOTESECURITYID PIC X(4ð).

 PL/I declaration
dcl

 1 MQCD based,

3 ChannelName char(2ð), /\ Channel definition name \/

3 Version fixed bin(31), /\ Structure version number \/

3 ChannelType fixed bin(31), /\ Channel type \/

3 TransportType fixed bin(31), /\ Transport type \/

3 Desc char(64), /\ Channel description \/

3 QMgrName char(48), /\ Queue-manager name \/

3 XmitQName char(48), /\ Transmission queue name \/

3 ShortConnectionName char(2ð), /\ First 2ð bytes of con-

nection name \/

3 MCAName char(2ð), /\ Reserved \/

3 ModeName char(8), /\ LU 6.2 Mode name \/

3 TpName char(64), /\ LU 6.2 transaction program

 name \/

3 BatchSize fixed bin(31), /\ Batch size \/

3 DiscInterval fixed bin(31), /\ Disconnect interval \/

3 ShortRetryCount fixed bin(31), /\ Short retry count \/

3 ShortRetryInterval fixed bin(31), /\ Short retry wait

 interval \/

3 LongRetryCount fixed bin(31), /\ Long retry count \/

3 LongRetryInterval fixed bin(31), /\ Long retry wait interval \/

3 SecurityExit char(n), /\ Channel security exit

 name \/

3 MsgExit char(n), /\ Channel message exit

 name \/

3 SendExit char(n), /\ Channel send exit name \/

3 ReceiveExit char(n), /\ Channel receive exit

 name \/

3 SeqNumberWrap fixed bin(31), /\ Highest allowable message

sequence number \/

3 MaxMsgLength fixed bin(31), /\ Maximum message length \/

3 PutAuthority fixed bin(31), /\ Put authority \/

3 DataConversion fixed bin(31), /\ Data conversion \/

3 SecurityUserData char(32), /\ Channel security exit user

 data \/

576 MQSeries Intercommunication

 MQCD

3 MsgUserData char(32), /\ Channel message exit user

 data \/

3 SendUserData char(32), /\ Channel send exit user

 data \/

3 ReceiveUserData char(32), /\ Channel receive exit user

 data \/

3 UserIdentifier char(12), /\ User identifier \/

3 Password char(12), /\ Password \/

3 MCAUserIdentifier char(12), /\ First 12 bytes of MCA user

 identifier \/

3 MCAType fixed bin(31), /\ Message channel agent

 type \/

3 ConnectionName char(264), /\ Connection name \/

3 RemoteUserIdentifier char(12), /\ First 12 bytes of user

identifier from partner \/

3 RemotePassword char(12), /\ Password from partner \/

3 MsgRetryExit char(n), /\ Channel message retry exit

 name \/

3 MsgRetryUserData char(32), /\ Channel message retry exit

user data \/

3 MsgRetryCount fixed bin(31), /\ Number of times MCA will

try to put the message,

after the first attempt has

 failed \/

3 MsgRetryInterval fixed bin(31), /\ Minimum interval in milli-

seconds after which the

open or put operation will

be retried \/

3 HeartbeatInterval fixed bin(31), /\ Time in seconds between

heartbeat flows \/

3 BatchInterval fixed bin(31), /\ Batch duration \/

3 NonPersistentMsgSpeed fixed bin(31), /\ Speed at which nonper-

sistent messages are

 sent \/

3 StrucLength fixed bin(31), /\ Length of MQCD structure \/

3 ExitNameLength fixed bin(31), /\ Length of exit name \/

3 ExitDataLength fixed bin(31), /\ Length of exit user data \/

3 MsgExitsDefined fixed bin(31), /\ Number of message exits

 defined \/

3 SendExitsDefined fixed bin(31), /\ Number of send exits

 defined \/

3 ReceiveExitsDefined fixed bin(31), /\ Number of receive exits

 defined \/

3 MsgExitPtr pointer, /\ Address of first MsgExit

 field \/

3 MsgUserDataPtr pointer, /\ Address of first

MsgUserData field \/

3 SendExitPtr pointer, /\ Address of first SendExit

 field \/

3 SendUserDataPtr pointer, /\ Address of first

SendUserData field \/

3 ReceiveExitPtr pointer, /\ Address of first

ReceiveExit field \/

3 ReceiveUserDataPtr pointer, /\ Address of first

ReceiveUserData field \/

| 3 ClusterPtr pointer, /\ Address of first cluster

| record \/

| 3 ClustersDefined fixed bin(31), /\ Number of cluster

 Chapter 36. Channel-exit calls and data structures 577

 MQCD

| records \/

| 3 NetworkPriority fixed bin(31), /\ Network priority \/

| 3 LongMCAUserIdLength fixed bin(31), /\ Length of long MCA user

| identifier \/

| 3 LongRemoteUserIdLength fixed bin(31), /\ Length of long remote user

| identifier \/

| 3 LongMCAUserIdPtr pointer, /\ Address of long MCA user

| identifier \/

| 3 LongRemoteUserIdPtr pointer, /\ Address of long remote user

| identifier \/

| 3 MCASecurityId char(4ð), /\ MCA security identifier \/

| 3 RemoteSecurityId char(4ð); /\ Remote security

| identifier \/

ILE RPG declaration
 D\..1....:....2....:....3....:....4....:....5....:....6....:....7..

D\ MQCD Structure

 D\

D\ Channel definition name

 D CDCHN 1 2ð

D\ Structure version number

 D CDVER 21 24I ð

D\ Channel type

 D CDCHT 25 28I ð

D\ Transport type

 D CDTRT 29 32I ð

D\ Channel description

 D CDDES 33 96

D\ Queue-manager name

 D CDQM 97 144

D\ Transmission queue name

 D CDXQ 145 192

D\ First 2ð characters of connection name

 D CDSCN 193 212

 D\ Reserved

 D CDMCA 213 232

D\ LU 6.2 Mode name

 D CDMOD 233 24ð

D\ LU 6.2 transaction program name

 D CDTP 241 3ð4

D\ Batch size

 D CDBS 3ð5 3ð8I ð

D\ Disconnect interval

 D CDDI 3ð9 312I ð

D\ Short retry count

 D CDSRC 313 316I ð

D\ Short retry wait interval

 D CDSRI 317 32ðI ð

D\ Long retry count

 D CDLRC 321 324I ð

D\ Long retry wait interval

 D CDLRI 325 328I ð

D\ Channel security exit name

 D CDSCX 329 348

D\ Channel message exit name

 D CDMSX 349 368

D\ Channel send exit name

578 MQSeries Intercommunication

 MQCD

 D CDSNX 369 388

D\ Channel receive exit name

 D CDRCX 389 4ð8

D\ Highest allowable message sequence number

 D CDSNW 4ð9 412I ð

D\ Maximum message length

 D CDMML 413 416I ð

D\ Put authority

 D CDPA 417 42ðI ð

D\ Data conversion

 D CDDC 421 424I ð

D\ Channel security exit user data

 D CDSCD 425 456

D\ Channel message exit user data

 D CDMSD 457 488

D\ Channel send exit user data

 D CDSND 489 52ð

D\ Channel receive exit user data

 D CDRCD 521 552

D\ User identifier

 D CDUID 553 564

 D\ Password

 D CDPW 565 576

D\ Message channel agent user identifier

 D CDAUI 577 588

D\ Message channel agent type

 D CDCAT 589 592I ð

D\ Connection name (characters 1 through 256)

 D CDCON 593 848

D\ Connection name (characters 257 through 264)

 D CDCN2 849 856

D\ User identifier from partner

 D CDRUI 857 868

D\ Password from partner

 D CDRPW 869 88ð

D\ Channel message retry exit name

 D CDMRX 881 9ðð

D\ Channel message retry exit user data

 D CDMRD 9ð1 932

D\ Number of times MCA will try to put the message, after the first

D\ attempt has failed

 D CDMRC 933 936I ð

D\ Minimum interval in milliseconds after which the open or put

D\ operation will be retried

 D CDMRI 937 94ðI ð

D\ Time in seconds between heartbeat flows

 D CDHBI 941 944I ð

D\ Batch duration

 D CDBI 945 948I ð

D\ Speed at which nonpersistent messages are sent

 D CDNPM 949 952I ð

D\ Length of MQCD structure

 D CDLEN 953 956I ð

D\ Length of exit name

 D CDXNL 957 96ðI ð

D\ Length of exit user data

 D CDXDL 961 964I ð

D\ Number of message exits defined

 Chapter 36. Channel-exit calls and data structures 579

 MQCD

 D CDMXD 965 968I ð

D\ Number of send exits defined

 D CDSXD 969 972I ð

D\ Number of receive exits defined

 D CDRXD 973 976I ð

D\ Address of first MsgExit field

 D CDMXP 977 992\

D\ Address of first MsgUserData field

 D CDMUP 993 1ðð8\

D\ Address of first SendExit field

 D CDSXP 1ðð9 1ð24\

D\ Address of first SendUserData field

 D CDSUP 1ð25 1ð4ð\

D\ Address of first ReceiveExit field

 D CDRXP 1ð41 1ð56\

D\ Address of first ReceiveUserData field

 D CDRUP 1ð57 1ð72\

OPM RPG declaration
 I\..1....:....2....:....3....:....4....:....5....:....6....:....7..

I\ MQCD Structure

 I\

I\ Channel definition name

 I 1 2ð CDCHN

I\ Structure version number

I B 21 24ðCDVER

I\ Channel type

I B 25 28ðCDCHT

I\ Transport type

I B 29 32ðCDTRT

I\ Channel description

 I 33 96 CDDES

I\ Queue-manager name

I 97 144 CDQM

I\ Transmission queue name

I 145 192 CDXQ

I\ First 2ð characters of connection name

I 193 212 CDSCN

 I\ Reserved

I 213 232 CDMCA

I\ LU 6.2 Mode name

I 233 24ð CDMOD

I\ LU 6.2 transaction program name

I 241 3ð4 CDTP

I\ Batch size

I B 3ð5 3ð8ðCDBS

I\ Disconnect interval

I B 3ð9 312ðCDDI

I\ Short retry count

I B 313 316ðCDSRC

I\ Short retry wait interval

I B 317 32ððCDSRI

I\ Long retry count

I B 321 324ðCDLRC

I\ Long retry wait interval

I B 325 328ðCDLRI

I\ Channel security exit name

580 MQSeries Intercommunication

 MQCD

I 329 348 CDSCX

I\ Channel message exit name

I 349 368 CDMSX

I\ Channel send exit name

I 369 388 CDSNX

I\ Channel receive exit name

I 389 4ð8 CDRCX

I\ Highest allowable message sequence number

I B 4ð9 412ðCDSNW

I\ Maximum message length

I B 413 416ðCDMML

I\ Put authority

I B 417 42ððCDPA

I\ Data conversion

I B 421 424ðCDDC

I\ Channel security exit user data

I 425 456 CDSCD

I\ Channel message exit user data

I 457 488 CDMSD

I\ Channel send exit user data

I 489 52ð CDSND

I\ Channel receive exit user data

I 521 552 CDRCD

I\ User identifier

I 553 564 CDUID

 I\ Password

I 565 576 CDPW

I\ Message channel agent user identifier

I 577 588 CDAUI

I\ Message channel agent type

I B 589 592ðCDCAT

I\ Connection name (characters 1 through 256)

I 593 848 CDCON

I\ Connection name (characters 257 through 264)

I 849 856 CDCN2

I\ User identifier from partner

I 857 868 CDRUI

I\ Password from partner

I 869 88ð CDRPW

I\ Channel message retry exit name

I 881 9ðð CDMRX

I\ Channel message retry exit user data

I 9ð1 932 CDMRD

I\ Number of times MCA will try to put the message, after the first

I\ attempt has failed

I B 933 936ðCDMRC

I\ Minimum interval in milliseconds after which the open or put

I\ operation will be retried

I B 937 94ððCDMRI

I\ Time in seconds between heartbeat flows

I B 941 944ðCDHBI

I\ Batch duration

I B 945 948ðCDBI

I\ Speed at which nonpersistent messages are sent

I B 949 952ðCDNPM

I\ Length of MQCD structure

I B 953 956ðCDLEN

I\ Length of exit name

 Chapter 36. Channel-exit calls and data structures 581

 MQCD

I B 957 96ððCDXNL

I\ Length of exit user data

I B 961 964ðCDXDL

I\ Number of message exits defined

I B 965 968ðCDMXD

I\ Number of send exits defined

I B 969 972ðCDSXD

I\ Number of receive exits defined

I B 973 976ðCDRXD

I\ Address of first MsgExit field

I 977 992 CDMXP

I\ Address of first MsgUserData field

 I 9931ðð8 CDMUP

I\ Address of first SendExit field

 I 1ðð91ð24 CDSXP

I\ Address of first SendUserData field

 I 1ð251ð4ð CDSUP

I\ Address of first ReceiveExit field

 I 1ð411ð56 CDRXP

I\ Address of first ReceiveUserData field

 I 1ð571ð72 CDRUP

System/390 assembler declaration
MQCD DSECT

MQCD_CHANNELNAME DS CL2ð Channel definition name

MQCD_VERSION DS F Structure version number

MQCD_CHANNELTYPE DS F Channel type

MQCD_TRANSPORTTYPE DS F Transport type

MQCD_DESC DS CL64 Channel description

MQCD_QMGRNAME DS CL48 Queue-manager name

MQCD_XMITQNAME DS CL48 Transmission queue name

MQCD_SHORTCONNECTIONNAME DS CL2ð First 2ð bytes of connection

\ name

MQCD_MCANAME DS CL2ð Reserved

MQCD_MODENAME DS CL8 LU 6.2 Mode name

MQCD_TPNAME DS CL64 LU 6.2 transaction program

\ name

MQCD_BATCHSIZE DS F Batch size

MQCD_DISCINTERVAL DS F Disconnect interval

MQCD_SHORTRETRYCOUNT DS F Short retry count

MQCD_SHORTRETRYINTERVAL DS F Short retry wait interval

MQCD_LONGRETRYCOUNT DS F Long retry count

MQCD_LONGRETRYINTERVAL DS F Long retry wait interval

MQCD_SECURITYEXIT DS CLn Channel security exit name

MQCD_MSGEXIT DS CLn Channel message exit name

MQCD_SENDEXIT DS CLn Channel send exit name

MQCD_RECEIVEEXIT DS CLn Channel receive exit name

MQCD_SEQNUMBERWRAP DS F Highest allowable message

\ sequence number

MQCD_MAXMSGLENGTH DS F Maximum message length

MQCD_PUTAUTHORITY DS F Put authority

MQCD_DATACONVERSION DS F Data conversion

MQCD_SECURITYUSERDATA DS CL32 Channel security exit user

\ data

MQCD_MSGUSERDATA DS CL32 Channel message exit user

\ data

MQCD_SENDUSERDATA DS CL32 Channel send exit user data

582 MQSeries Intercommunication

 MQCD

MQCD_RECEIVEUSERDATA DS CL32 Channel receive exit user

\ data

MQCD_USERIDENTIFIER DS CL12 User identifier

MQCD_PASSWORD DS CL12 Password

MQCD_MCAUSERIDENTIFIER DS CL12 First 12 bytes of MCA user

\ identifier

MQCD_MCATYPE DS F Message channel agent type

MQCD_CONNECTIONNAME DS CL264 Connection name

MQCD_REMOTEUSERIDENTIFIER DS CL12 First 12 bytes of user

\ identifier from partner

MQCD_REMOTEPASSWORD DS CL12 Password from partner

MQCD_MSGRETRYEXIT DS CLn Channel message retry exit

\ name

MQCD_MSGRETRYUSERDATA DS CL32 Channel message retry exit

\ user data

MQCD_MSGRETRYCOUNT DS F Number of times MCA will try

\ to put the message, after

\ the first attempt has failed

MQCD_MSGRETRYINTERVAL DS F Minimum interval in

\ milliseconds after which the

\ open or put operation will

\ be retried

MQCD_HEARTBEATINTERVAL DS F Time in seconds between

\ heartbeat flows

MQCD_BATCHINTERVAL DS F Batch duration

MQCD_NONPERSISTENTMSGSPEED DS F Speed at which nonpersistent

\ messages are sent

MQCD_STRUCLENGTH DS F Length of MQCD structure

MQCD_EXITNAMELENGTH DS F Length of exit name

MQCD_EXITDATALENGTH DS F Length of exit user data

MQCD_MSGEXITSDEFINED DS F Number of message exits

\ defined

MQCD_SENDEXITSDEFINED DS F Number of send exits defined

MQCD_RECEIVEEXITSDEFINED DS F Number of receive exits

\ defined

MQCD_MSGEXITPTR DS F Address of first MsgExit

\ field

MQCD_MSGUSERDATAPTR DS F Address of first MsgUserData

\ field

MQCD_SENDEXITPTR DS F Address of first SendExit

\ field

MQCD_SENDUSERDATAPTR DS F Address of first

\ SendUserData field

MQCD_RECEIVEEXITPTR DS F Address of first ReceiveExit

\ field

MQCD_RECEIVEUSERDATAPTR DS F Address of first

\ ReceiveUserData field

| MQCD_CLUSTERPTR DS F Address of first cluster

| \ record

| MQCD_CLUSTERSDEFINED DS F Number of cluster records

| MQCD_NETWORKPRIORITY DS F Network priority

| MQCD_LONGMCAUSERIDLENGTH DS F Length of long MCA user

| \ identifier

| MQCD_LONGREMOTEUSERIDLENGTH DS F Length of long remote user

| \ identifier

| MQCD_LONGMCAUSERIDPTR DS F Address of long MCA user

| \ identifier

| MQCD_LONGREMOTEUSERIDPTR DS F Address of long remote user

 Chapter 36. Channel-exit calls and data structures 583

 MQCD

| \ identifier

| MQCD_MCASECURITYID DS XL4ð MCA security identifier

| MQCD_REMOTESECURITYID DS XL4ð Remote security identifier

MQCD_LENGTH EQU \-MQCD Length of structure

 ORG MQCD

MQCD_AREA DS CL(MQCD_LENGTH)

584 MQSeries Intercommunication

 MQCXP

MQCXP - Channel exit parameter structure
The following table summarizes the fields in the structure.

The MQCXP structure is passed to each type of exit called by a Message Channel
Agent (MCA). See MQ_CHANNEL_EXIT.

The fields described as “input to the exit” in the descriptions that follow are ignored
by the MCA when the exit returns control to the MCA. The exit should not expect
that any input fields that it changes in the channel exit parameter block will be
preserved for its next invocation. Changes made to input/output fields (for
example, the ExitUserArea field), are preserved for invocations of that instance of
the exit only. Such changes cannot be used to pass data between different exits
defined on the same channel, or between the same exit defined on different
channels.

Table 48. Fields in MQCXP

Field Description Page

StrucId Structure identifier 586

Version Structure version number 586

ExitId Type of exit 587

ExitReason Reason for invoking exit 587

ExitResponse Response from exit 589

ExitResponse2 Secondary response from exit 591

Feedback Feedback code 592

MaxSegmentLength Maximum segment length 593

ExitUserArea Exit user area 593

ExitData Exit data 594

MsgRetryCount Number of times the message has been retried 594

MsgRetryInterval Minimum interval in milliseconds after which the
put operation should be retried

594

MsgRetryReason Reason code from previous attempt to put the
message

594

HeaderLength Length of header 595

PartnerName Partner name 595

FAPLevel Negotiated Formats and Protocols level 595

CapabilityFlags Capability flags 595

ExitNumber Exit number 596

 Chapter 36. Channel-exit calls and data structures 585

 MQCXP

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQCXP_STRUC_ID
Identifier for channel exit parameter structure.

For the C programming language, the constant
MQCXP_STRUC_ID_ARRAY is also defined; this has the same
value as MQCXP_STRUC_ID, but is an array of characters instead
of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is one of the following:

MQCXP_VERSION_1
Version-1 channel exit parameter structure.

MQCXP_VERSION_2
Version-2 channel exit parameter structure.

MQCXP_VERSION_3
Version-3 channel exit parameter structure.

| MQCXP_VERSION_4
| Version-4 channel exit parameter structure.

Fields that exist only in the earlier versions of the structure are identified
as such in the field descriptions that follow. The following constant
specifies the version number of the current version:

MQCXP_CURRENT_VERSION
Current version of channel exit parameter structure.

The version of MQCXP passed to a channel exit depends on the
environment:

MQCXP version Environments
MQCXP_VERSION_1 OS/390 using CICS
MQCXP_VERSION_2 MQSeries for Digital OpenVMS, MQSeries for

Tandem NSK, MQSeries for Windows
MQCXP_VERSION_3 OS/400, UNIX systems not listed elsewhere,

Windows 3.1
| MQCXP_VERSION_4 AIX, HP-UX, OS/390 without CICS, OS/2, Sun
| Solaris, Windows NT

Note: When a new version of the MQCXP structure is introduced, the
layout of the existing part is not changed. The exit should
therefore check that the version number is equal to or greater than
the lowest version which contains the fields that the exit needs to
use.

This is an input field to the exit.

586 MQSeries Intercommunication

 MQCXP

ExitId (MQLONG)
Type of exit.

This indicates the type of exit being called, and is set on entry to the exit
routine. Possible values are:

MQXT_CHANNEL_SEC_EXIT
Channel security exit.

MQXT_CHANNEL_MSG_EXIT
Channel message exit.

MQXT_CHANNEL_SEND_EXIT
Channel send exit.

MQXT_CHANNEL_RCV_EXIT
Channel receive exit.

MQXT_CHANNEL_MSG_RETRY_EXIT
Channel message-retry exit.

This type of exit is not supported on OS/390, 16-bit Windows, and
32-bit Windows.

MQXT_CHANNEL_AUTO_DEF_EXIT
Channel auto-definition exit.

| On OS/390, this type of exit is supported only for channels of type
| MQCHT_CLUSSDR and MQCHT_CLUSRCVR.

On 16-bit Windows and 32-bit Windows, this type of exit is not
supported.

This is an input field to the exit.

ExitReason (MQLONG)
Reason for invoking exit.

This indicates the reason why the exit is being called, and is set on entry
to the exit routine. It is not used by the auto-definition exit. Possible
values are:

MQXR_INIT
Exit initialization.

This indicates that the exit is being invoked for the first time. It
allows the exit to acquire and initialize any resources that it may
need (for example: main storage).

MQXR_TERM
Exit termination.

This indicates that the exit is about to be terminated. The exit should
free any resources that it may have acquired since it was initialized
(for example: main storage).

MQXR_MSG
Process a message.

This occurs for channel message exits only.

 Chapter 36. Channel-exit calls and data structures 587

 MQCXP

MQXR_XMIT
Process a transmission.

This occurs for channel send and receive exits only.

MQXR_SEC_MSG
Security message received.

This occurs for channel security exits only.

MQXR_INIT_SEC
Initiate security exchange.

This occurs for channel security exits only.

The receiver’s security exit is always invoked with this reason
immediately after being invoked with MQXR_INIT, to give it the
opportunity to initiate a security exchange. If it declines the
opportunity, the sender’s security exit is invoked with
MQXR_INIT_SEC.

If the receiver’s security exit does initiate a security exchange,
however, the sender’s security exit is never invoked with
MQXR_INIT_SEC; instead it is invoked with MQXR_SEC_MSG to
process the receiver’s message. (In either case it is first invoked
with MQXR_INIT.)

Unless one of the security exits requests termination of the channel
(by setting ExitResponse to MQXCC_SUPPRESS_FUNCTION or
MQXCC_CLOSE_CHANNEL), the security exchange must complete
at the side that initiated the exchange. Therefore, if a security exit is
invoked with MQXR_INIT_SEC and it does initiate an exchange, the
next time the exit is invoked it will be with MQXR_SEC_MSG. This
happens regardless of whether it has a security message to process
(because the partner set an ExitResponse
MQXCC_SEND_SEC_MSG or
MQXCC_SEND_AND_REQUEST_SEC_MSG), or not (because the
partner set an ExitResponse of MQXCC_OK or because there is no
security exit at the partner). If there is no security message to
process, the security exit at the initiating end will be re-invoked with
a DataLength of zero.

MQXR_RETRY
Retry a message.

This occurs for message-retry exits only.

On OS/390, this is not supported.

| MQXR_AUTO_CLUSSDR
| Automatic definition of a cluster-sender channel.

| This occurs for channel auto-definition exits only.

| MQXR_AUTO_RECEIVER
| Automatic definition of a receiver channel.

| This occurs for channel auto-definition exits only.

588 MQSeries Intercommunication

 MQCXP

| MQXR_AUTO_SVRCONN
| Automatic definition of a server-connection channel.

| This occurs for channel auto-definition exits only.

| MQXR_AUTO_CLUSRCVR
| Automatic definition of a cluster-receiver channel.

| This occurs for channel auto-definition exits only.

Notes:

1. If you have more than one exit defined for a channel, they will each be
invoked with MQXR_INIT when the MCA is initialized, and will each be
invoked with MQXR_TERM when the MCA is terminated.

| 2. For the channel auto-definition exit, ExitReason is not set if Version is
| less than MQCXP_VERSION_4. The value MQXR_AUTO_SVRCONN
| is implied in this case.

This is an input field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to communicate with the MCA. It must be one of
the following:

MQXCC_OK
Continue normally.

� For the channel security exit, this indicates that message transfer
should now proceed normally.

� For the channel message retry exit, this indicates that the MCA
should wait for the time interval returned by the exit in the
MsgRetryInterval field in MQCXP, and then retry the message.

The ExitResponse2 field may contain additional information.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

� For the channel security exit, this indicates that the channel
should be terminated.

� For the channel message exit, this indicates that the message is
not to proceed any further towards its destination. Instead the
MCA generates an exception report message (if one was
requested by the sender of the original message), and places the
original message on the dead-letter queue (if the sender
specified MQRO_DEAD_LETTER_Q), or discards it (if the
sender specified MQRO_DISCARD_MSG).

If the sender specified MQRO_DEAD_LETTER_Q, but the put to
the dead-letter queue fails, or there is no dead-letter queue, the
original message is left on the transmission queue and the report
message is not generated. The original message is also left on
the transmission queue if the report message cannot be
generated successfully.

 Chapter 36. Channel-exit calls and data structures 589

 MQCXP

The Feedback field in the MQDLH structure at the start of the
message on the dead-letter queue indicates why the message
was put on the dead-letter queue; this feedback code is also
used in the message descriptor of the exception report message
(if one was requested by the sender).

� For the channel message retry exit, this indicates that the MCA
should not wait and retry the message; instead, the MCA
continues immediately with its normal failure processing (the
message is placed on the dead-letter queue or discarded, as
specified by the sender of the message).

� For the channel auto-definition exit, either MQXCC_OK or
MQXCC_SUPPRESS_FUNCTION must be specified. If neither
of these is specified, MQXCC_SUPPRESS_FUNCTION is
assumed by default and the auto-definition is abandoned.

This response is not supported for the channel send and receive
exits.

MQXCC_SEND_SEC_MSG
Send security message.

This value can be set only by a channel security exit. It indicates
that the exit has provided a security message which should be
transmitted to the partner.

MQXCC_SEND_AND_REQUEST_SEC_MSG
Send security message that requires a reply.

This value can be set only by a channel security exit. It indicates

� that the exit has provided a security message which should be
transmitted to the partner, and

� that the exit requires a response from the partner. If no
response is received, the channel must be terminated, because
the exit has not yet decided whether communications can
proceed.

This is not valid on OS/390 if you are using CICS for distributed
queuing.

MQXCC_SUPPRESS_EXIT
Suppress exit.

� This value can be set by all types of channel exit other than a
security exit or an auto-definition exit. It suppresses any further
invocation of that exit (as if its name had been blank in the
channel definition), until termination of the MCA, when the exit is
again invoked with an ExitReason of MQXR_TERM.

590 MQSeries Intercommunication

 MQCXP

� If a message retry exit returns this value, message retries for
subsequent messages are controlled by the MsgRetryCount and
MsgRetryInterval channel attributes as normal. For the current
message, the MCA performs the number of outstanding retries,
at intervals given by the MsgRetryInterval channel attribute, but
only if the reason code is one that the MCA would normally retry
(see the MsgRetryCount field described in “MQCD - Channel data
structure” on page 547). The number of outstanding retries is
the value of the MsgRetryCount attribute, less the number of
times the exit returned MQXCC_OK for the current message; if
this number is negative, no further retries are performed by the
MCA for the current message.

This is not valid on OS/390 if you are using CICS for distributed
queuing.

MQXCC_CLOSE_CHANNEL
Close channel.

This value can be set by any type of channel exit except an
auto-definition exit. It causes the message channel agent (MCA) to
close the channel.

This is not valid on OS/390 if you are using CICS for distributed
queuing.

This is an input/output field from the exit.

ExitResponse2 (MQLONG)
Secondary response from exit.

This is set to zero on entry to the exit routine. It can be set by the exit to
provide further information to the MCA. It is not used by the
auto-definition exit.

The exit can set one or more of the following. If more than one is
required, the values are added together. Combinations that are not valid
are noted; other combinations are allowed.

MQXR2_PUT_WITH_DEF_ACTION
Put with default action.

This is set by the receiver’s channel message exit. It indicates that
the message is to be put with the MCA’s default action, that is either
the MCA’s default user ID, or the context UserIdentifier in the
MQMD (message descriptor) of the message.

The value of this constant is zero, which corresponds to the initial
value set when the exit is invoked. The constant is provided for
documentation purposes.

MQXR2_PUT_WITH_DEF_USERID
Put with default user identifier.

This can only be set by the receiver’s channel message exit. It
indicates that the message is to be put with the MCA’s default user
identifier.

 Chapter 36. Channel-exit calls and data structures 591

 MQCXP

MQXR2_PUT_WITH_MSG_USERID
Put with message’s user identifier.

This can only be set by the receiver’s channel message exit. It
indicates that the message is to be put with the context
UserIdentifier in the MQMD (message descriptor) of the message
(this may have been modified by the exit).

Only one of MQXR2_PUT_WITH_DEF_ACTION,
MQXR2_PUT_WITH_DEF_USERID, and
MQXR2_PUT_WITH_MSG_USERID should be set.

MQXR2_USE_AGENT_BUFFER
Use agent buffer.

This indicates that any data to be passed on is in AgentBuffer, not
ExitBufferAddr.

The value of this constant is zero, which corresponds to the initial
value set when the exit is invoked. The constant is provided for
documentation purposes.

MQXR2_USE_EXIT_BUFFER
Use exit buffer.

This indicates that any data to be passed on is in ExitBufferAddr,
not AgentBuffer.

Only one of MQXR2_USE_AGENT_BUFFER and
MQXR2_USE_EXIT_BUFFER should be set.

MQXR2_DEFAULT_CONTINUATION
Exit continuation criteria.

Continuation with the next exit in the chain depends on the response
from the last exit invoked:

� If MQXCC_SUPPRESS_FUNCTION or
MQXCC_CLOSE_CHANNEL are returned, no further exits in the
chain are called.

� Otherwise, the next exit in the chain is invoked.

On OS/390, this is not supported.

MQXR2_CONTINUE_CHAIN
Continue with the next exit.

On OS/390, this is not supported.

MQXR2_SUPPRESS_CHAIN
No further exits are invoked.

On OS/390, this is not supported.

This is an input/output field from the exit.

Feedback (MQLONG)
Feedback code.

592 MQSeries Intercommunication

 MQCXP

This is set to zero on entry to the exit routine.

If a channel message exit sets the ExitResponse field to
MQXCC_SUPPRESS_FUNCTION, the Feedback field specifies the
feedback code that identifies why the message was put on the dead-letter
(undelivered-message) queue, and is also used to send an exception
report if one has been requested. If the Feedback field is zero in this case,
the following feedback code is used:

MQFB_STOPPED_BY_MSG_EXIT
Message stopped by channel message exit.

The value returned in this field by channel security, send, receive, and
message-retry exits is not used by the MCA.

The value returned in this field by auto-definition exits is not used if
ExitResponse is MQXCC_OK, but otherwise is used for the
AuxErrorDataInt1 parameter in the event message.

This is an input/output field from the exit.

MaxSegmentLength (MQLONG)
Maximum segment length.

This is the maximum length in bytes that can be sent in a single
transmission. It is not used by the auto-definition exit. It is of interest to a
channel send exit, because this exit must ensure that it does not increase
the size of a transmission segment to a value greater than
MaxSegmentLength. The length includes the initial 8 bytes that the exit
must not change. The value is negotiated between the message channel

| agents when the channel is initiated. See “Writing and compiling
| channel-exit programs” on page 504 for more information about segment
| lengths.

The value in this field is not meaningful if ExitReason is MQXR_INIT.

This is an input field to the exit.

ExitUserArea (MQBYTE16)
Exit user area.

This is a field that is available for the exit to use. (It is not used by the
auto-definition exit.) It is initialized to binary zero before the first invocation
of the exit (which has an ExitReason set to MQXR_INIT), and thereafter
any changes made to this field by the exit are preserved across
invocations of the exit.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQXUA_NONE_ARRAY is also defined; this has the same value as
MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH.
This is an input/output field to the exit.

 Chapter 36. Channel-exit calls and data structures 593

 MQCXP

ExitData (MQCHAR32)
Exit data.

This is set on entry to the exit routine to information that the MCA took
from the channel definition. If no such information is available, this field is
all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This is an input field to the exit.

MsgRetryCount (MQLONG)
Number of times the message has been retried.

The first time the exit is invoked for a particular message, this field has the
value zero (no retries yet attempted). On each subsequent invocation of
the exit for that message, the value is incremented by one by the MCA.
On OS/390 the value is always zero.

This is an input field to the exit. The value in this field is not meaningful if
ExitReason is MQXR_INIT. The field is not present if Version is less than
MQCXP_VERSION_2.

MsgRetryInterval (MQLONG)
Minimum interval in milliseconds after which the put operation should be
retried.

The first time the exit is invoked for a particular message, this field
contains the value of the MsgRetryInterval channel attribute. The exit can
leave the value unchanged, or modify it to specify a different time interval
in milliseconds. If the exit returns MQXCC_OK in ExitResponse, the MCA
will wait for at least this time interval before retrying the MQOPEN or
MQPUT operation. The time interval specified must be zero or greater.

The second and subsequent times the exit is invoked for that message,
this field contains the value returned by the previous invocation of the exit.

If the value returned in the MsgRetryInterval field is less than zero or
greater than 999 999 999, and ExitResponse is MQXCC_OK, the MCA
ignores the MsgRetryInterval field in MQCXP and waits instead for the
interval specified by the MsgRetryInterval channel attribute. On OS/390
the value of this field is always zero.

This is an input/output field to the exit. The value in this field is not
meaningful if ExitReason is MQXR_INIT. The field is not present if
Version is less than MQCXP_VERSION_2.

MsgRetryReason (MQLONG)
Reason code from previous attempt to put the message.

This is the reason code from the previous attempt to put the message; it is
one of the MQRC_ñ values. On OS/390 the value of this field is always
zero.

This is an input field to the exit. The value in this field is not meaningful if
ExitReason is MQXR_INIT. The field is not present if Version is less than
MQCXP_VERSION_2.

594 MQSeries Intercommunication

 MQCXP

HeaderLength (MQLONG)
Length of header information.

| This field is relevant only for a message exit. The value is the length of
| the routing header structures at the start of the message data; these are
| the MQXQH structure, and (for a distribution-list message) the MQDH
| structure and arrays of MQOR and MQPMR records that follow the
| MQXQH structure.

The message exit can examine this header information, and modify it if
necessary, but the data that the exit returns must still be in the correct
format. The exit must not, for example, encrypt or compress the header
data at the sending end, even if the message exit at the receiving end
makes compensating changes.

If the message exit modifies the header information in such a way as to
change its length (for example, by adding another destination to a
distribution-list message), it must change the value of HeaderLength
correspondingly before returning.

This is an input/output field to the exit. The value in this field is not
meaningful if ExitReason is MQXR_INIT. The field is not present if
Version is less than MQCXP_VERSION_3.

PartnerName (MQCHAR48)
Partner Name.

The name of the partner, as follows:

� For SVRCONN channels, it is the logged-on user ID at the client.

� For all other types of channel, it is the queue-manager name of the
partner.

When the exit is initialized this field is blank because the queue manager
does not know the name of the partner until after initial negotiation has
taken place.

This is an input field to the exit. The field is not present if Version is less
than MQCXP_VERSION_3.

FAPLevel (MQLONG)
Negotiated Formats and Protocols level.

This is an input field to the exit. The field is not present if Version is less
than MQCXP_VERSION_3.

CapabilityFlags (MQLONG)
Capability flags.

The following are defined:

MQCF_NONE
No flags.

MQCF_DIST_LISTS
Distribution lists supported.

This is an input field to the exit. The field is not present if Version is less
than MQCXP_VERSION_3.

 Chapter 36. Channel-exit calls and data structures 595

 MQCXP

ExitNumber (MQLONG)
Exit number.

The ordinal number of the exit, within the type defined in ExitId. For
example, if the exit being invoked is the third message exit defined, this
field contains the value 3. If the exit type is one for which a list of exits
cannot be defined (for example, a security exit), this field has the value 1.

This is an input field to the exit. The field is not present if Version is less
than MQCXP_VERSION_3.

596 MQSeries Intercommunication

 MQCXP

 C declaration
typedef struct tagMQCXP {

MQCHAR4 StrucId; /\ Structure identifier \/

MQLONG Version; /\ Structure version number \/

MQLONG ExitId; /\ Type of exit \/

MQLONG ExitReason; /\ Reason for invoking exit \/

MQLONG ExitResponse; /\ Response from exit \/

MQLONG ExitResponse2; /\ Secondary response from exit \/

MQLONG Feedback; /\ Feedback code \/

MQLONG MaxSegmentLength; /\ Maximum segment length \/

 MQBYTE16 ExitUserArea; /\ Exit user area \/

 MQCHAR32 ExitData; /\ Exit data \/

MQLONG MsgRetryCount; /\ Number of times the message has been

 retried \/

MQLONG MsgRetryInterval; /\ Minimum interval in milliseconds after

which the put operation should be

 retried \/

MQLONG MsgRetryReason; /\ Reason code from previous attempt to

put the message \/

MQLONG HeaderLength; /\ Length of header information \/

 MQCHAR48 PartnerName; /\ Partner Name \/

MQLONG FAPLevel; /\ Negotiated Formats and Protocols

 level \/

MQLONG CapabilityFlags; /\ Capability flags \/

MQLONG ExitNumber; /\ Exit number \/

 } MQCXP;

 COBOL declaration
\\ MQCXP structure

 1ð MQCXP.

\\ Structure identifier

 15 MQCXP-STRUCID PIC X(4).

\\ Structure version number

15 MQCXP-VERSION PIC S9(9) BINARY.

\\ Type of exit

15 MQCXP-EXITID PIC S9(9) BINARY.

\\ Reason for invoking exit

15 MQCXP-EXITREASON PIC S9(9) BINARY.

\\ Response from exit

15 MQCXP-EXITRESPONSE PIC S9(9) BINARY.

\\ Secondary response from exit

15 MQCXP-EXITRESPONSE2 PIC S9(9) BINARY.

\\ Feedback code

15 MQCXP-FEEDBACK PIC S9(9) BINARY.

\\ Maximum segment length

15 MQCXP-MAXSEGMENTLENGTH PIC S9(9) BINARY.

\\ Exit user area

 15 MQCXP-EXITUSERAREA PIC X(16).

\\ Exit data

 15 MQCXP-EXITDATA PIC X(32).

\\ Number of times the message has been retried

15 MQCXP-MSGRETRYCOUNT PIC S9(9) BINARY.

\\ Minimum interval in milliseconds after which the put

\\ operation should be retried

15 MQCXP-MSGRETRYINTERVAL PIC S9(9) BINARY.

\\ Reason code from previous attempt to put the message

 Chapter 36. Channel-exit calls and data structures 597

 MQCXP

15 MQCXP-MSGRETRYREASON PIC S9(9) BINARY.

\\ Length of header information

15 MQCXP-HEADERLENGTH PIC S9(9) BINARY.

\\ Partner Name

 15 MQCXP-PARTNERNAME PIC X(48).

\\ Negotiated Formats and Protocols level

15 MQCXP-FAPLEVEL PIC S9(9) BINARY.

\\ Capability flags

15 MQCXP-CAPABILITYFLAGS PIC S9(9) BINARY.

\\ Exit number

15 MQCXP-EXITNUMBER PIC S9(9) BINARY.

 PL/I declaration
dcl

 1 MQCXP based,

3 StrucId char(4), /\ Structure identifier \/

3 Version fixed bin(31), /\ Structure version number \/

3 ExitId fixed bin(31), /\ Type of exit \/

3 ExitReason fixed bin(31), /\ Reason for invoking exit \/

3 ExitResponse fixed bin(31), /\ Response from exit \/

3 ExitResponse2 fixed bin(31), /\ Secondary response from exit \/

3 Feedback fixed bin(31), /\ Feedback code \/

3 MaxSegmentLength fixed bin(31), /\ Maximum segment length \/

3 ExitUserArea char(16), /\ Exit user area \/

3 ExitData char(32), /\ Exit data \/

3 MsgRetryCount fixed bin(31), /\ Number of times the message has

been retried \/

3 MsgRetryInterval fixed bin(31), /\ Minimum interval in milliseconds

after which the put operation

should be retried \/

3 MsgRetryReason fixed bin(31), /\ Reason code from previous attempt

to put the message \/

3 HeaderLength fixed bin(31), /\ Length of header information \/

3 PartnerName char(48), /\ Partner Name \/

3 FAPLevel fixed bin(31), /\ Negotiated Formats and Protocols

 level \/

3 CapabilityFlags fixed bin(31), /\ Capability flags \/

3 ExitNumber fixed bin(31); /\ Exit number \/

ILE RPG declaration
 D\..1....:....2....:....3....:....4....:....5....:....6....:....7..

D\ MQCXP Structure

 D\

D\ Structure identifier

 D CXSID 1 4

D\ Structure version number

 D CXVER 5 8I ð

D\ Type of exit

 D CXXID 9 12I ð

D\ Reason for invoking exit

 D CXREA 13 16I ð

D\ Response from exit

 D CXRES 17 2ðI ð

D\ Secondary response from exit

 D CXRE2 21 24I ð

D\ Feedback code

598 MQSeries Intercommunication

 MQCXP

 D CXFB 25 28I ð

D\ Maximum segment length

 D CXMSL 29 32I ð

D\ Exit user area

 D CXUA 33 48

D\ Exit data

 D CXDAT 49 8ð

D\ Number of times the message has been retried

 D CXMRC 81 84I ð

D\ Minimum interval in milliseconds after which the put operation

D\ should be retried

 D CXMRI 85 88I ð

D\ Reason code from previous attempt to put the message

 D CXMRR 89 92I ð

D\ Length of header information

 D CXHDL 93 96I ð

D\ Partner Name

 D CXPNM 97 144

D\ Negotiated Formats and Protocols level

 D CXFAP 145 148I ð

D\ Capability flags

 D CXCAP 149 152I ð

D\ Exit number

 D CXEXN 153 156I ð

OPM RPG declaration
 I\..1....:....2....:....3....:....4....:....5....:....6....:....7..

I\ MQCXP Structure

 I\

I\ Structure identifier

 I 1 4 CXSID

I\ Structure version number

I B 5 8ðCXVER

I\ Type of exit

 I B 9 12ðCXXID

I\ Reason for invoking exit

I B 13 16ðCXREA

I\ Response from exit

I B 17 2ððCXRES

I\ Secondary response from exit

I B 21 24ðCXRE2

I\ Feedback code

I B 25 28ðCXFB

I\ Maximum segment length

I B 29 32ðCXMSL

I\ Exit user area

 I 33 48 CXUA

I\ Exit data

 I 49 8ð CXDAT

I\ Number of times the message has been retried

I B 81 84ðCXMRC

I\ Minimum interval in milliseconds after which the put operation

I\ should be retried

I B 85 88ðCXMRI

I\ Reason code from previous attempt to put the message

I B 89 92ðCXMRR

I\ Length of header information

 Chapter 36. Channel-exit calls and data structures 599

 MQCXP

I B 93 96ðCXHDL

I\ Partner Name

I 97 144 CXPNM

I\ Negotiated Formats and Protocols level

I B 145 148ðCXFAP

I\ Capability flags

I B 149 152ðCXCAP

I\ Exit number

I B 153 156ðCXEXN

System/390 assembler declaration
MQCXP DSECT

MQCXP_STRUCID DS CL4 Structure identifier

MQCXP_VERSION DS F Structure version number

MQCXP_EXITID DS F Type of exit

MQCXP_EXITREASON DS F Reason for invoking exit

MQCXP_EXITRESPONSE DS F Response from exit

MQCXP_EXITRESPONSE2 DS F Secondary response from exit

MQCXP_FEEDBACK DS F Feedback code

MQCXP_MAXSEGMENTLENGTH DS F Maximum segment length

MQCXP_EXITUSERAREA DS XL16 Exit user area

MQCXP_EXITDATA DS CL32 Exit data

MQCXP_MSGRETRYCOUNT DS F Number of times the message

\ has been retried

MQCXP_MSGRETRYINTERVAL DS F Minimum interval in

\ milliseconds after which the

\ put operation should be

\ retried

MQCXP_MSGRETRYREASON DS F Reason code from previous

\ attempt to put the message

MQCXP_HEADERLENGTH DS F Length of header information

MQCXP_PARTNERNAME DS CL48 Partner Name

MQCXP_FAPLEVEL DS F Negotiated Formats and

\ Protocols level

MQCXP_CAPABILITYFLAGS DS F Capability flags

MQCXP_EXITNUMBER DS F Exit number

MQCXP_LENGTH EQU \-MQCXP Length of structure

 ORG MQCXP

MQCXP_AREA DS CL(MQCXP_LENGTH)

600 MQSeries Intercommunication

 MQTXP � MQTXP – Version field

MQTXP - Transport-exit data structure
| The following table summarizes the fields in the structure.

| The MQTXP structure describes the information that is passed to the transport retry
| exit.

| This structure is supported in the following environments: AIX and 16-bit Windows.

| Table 49. Fields in MQTXP

| Field| Description| Page

| StrucId| Structure identifier| 601

| Version| Structure version number| 601

| ExitReason| Reason for invoking exit| 602

| ExitUserArea| Exit user area| 602

| TransportType| Transport type| 603

| RetryCount| Number of times data has been retried| 603

| DataLength| Length of data to be sent| 603

| SessionId| Session identifier| 603

| GroupId| Group identifier| 603

| DataId| Data identifier| 603

| ExitResponse| Response from exit| 603

| Fields
| StrucId (MQCHAR4)
| Structure identifier.

| The value is:

| MQTXP_STRUC_ID
| Identifier for transport retry exit parameter structure.

| For the C programming language, the constant
| MQTXP_STRUC_ID_ARRAY is also defined; this has the same
| value as MQTXP_STRUC_ID, but is an array of characters instead
| of a string.

| This is an input field to the exit.

| Version (MQLONG)
| Structure version number.

| The value is:

| MQTXP_VERSION_1
| Version-1 transport retry exit parameter structure.

| The following constant specifies the version number of the current version:

| MQTXP_CURRENT_VERSION
| Current version of transport retry exit parameter structure.

| This is an input field to the exit.

 Chapter 36. Channel-exit calls and data structures 601

 MQTXP – Reserved field � MQTXP – ExitUserArea field

| Reserved (MQLONG)
| Reserved.

| This is a reserved field. The value is zero.

| ExitReason (MQLONG)
| Reason for invoking exit.

| This indicates the reason why the exit is being called. Possible values
| are:

| MQXR_INIT
| Exit initialization.

| This indicates that the exit is being invoked for the first time. It
| allows the exit to acquire and initialize any resources that it may
| need (for example: main storage).

| MQXR_TERM
| Exit termination.

| This indicates that the exit is about to be terminated. The exit should
| free any resources that it may have acquired since it was initialized
| (for example: main storage).

| MQXR_RETRY
| Retry a message.

| This occurs for message-retry exits only.

| On OS/390, this is not supported.

| MQXR_END_BATCH
| Called from MCA when batch completed.

| MQXR_ACK_RECEIVED
| Called from MCA when an acknowledgement has been received.

| This is an input field to the exit.

| ExitUserArea (MQBYTE16)
| Exit user area.

| This is a field that is available for the exit to use. It is initialized to
| MQXUA_NONE (binary zero) before the first invocation of the exit, and
| thereafter any changes made to this field by the exit are preserved across
| invocations of the exit. The first invocation of the exit has ExitReason set
| to MQXR_INIT.

| The following value is defined:

| MQXUA_NONE
| No user information.

| The value is binary zero for the length of the field.

| For the C programming language, the constant
| MQXUA_NONE_ARRAY is also defined; this has the same value as
| MQXUA_NONE, but is an array of characters instead of a string.

| The length of this field is given by MQ_EXIT_USER_AREA_LENGTH.
| This is an input/output field to the exit.

602 MQSeries Intercommunication

 MQTXP – TransportType field � MQTXP – ExitResponse field

| TransportType (MQLONG)
| Transport type.

| This is the type of transport being used. The value is:

| MQXPT_UDP
| UDP transport protocol.

| This is an input field to the exit.

| RetryCount (MQLONG)
| Number of times data has been retried.

| This is the number of previous attempts that have been made to send the
| current data. It is zero on first invocation of the exit for the current data.

| This is an input field to the exit.

| DataLength (MQLONG)
| Length of data to be sent.

| This is always greater than zero. For MQXPT_UDP, it is one complete
| encoded datagram.

| This is an input field to the exit.

| SessionId (MQLONG)
| Session identifier.

| This is the identifier of the session of channel. For MQXPT_UDP, it is the
| UdpHandle.

| This is an input field to the exit.

| GroupId (MQLONG)
| Group identifier.

| This is the identifier of the group, bunch, or message to which the data
| belongs. For MQXPT_UDP, it identifies the bunch.

| This is an input field to the exit.

| DataId (MQLONG)
| Data identifier.

| For MQXPT_UDP, this is the datagram identifier.

| This is an input field to the exit.

| ExitResponse (MQLONG)
| Response from exit.

| This is set by the exit to indicate how processing should continue. It must
| be one of the following:

| MQXCC_OK
| Continue normally.

| This indicates that processing should continue normally.

 Chapter 36. Channel-exit calls and data structures 603

 MQTXP – Feedback field

| MQXCC_REQUEST_ACK
| Request acknowledgement.

| This indicates that processing should continue normally, but that the
| datagram about to be sent should request that an acknowledgement
| be returned by the receiver of the datagram.

| MQXCC_CLOSE_CHANNEL
| Close channel.

| This indicates that processing should be discontinued and the
| channel closed.

| If any other value is returned by the exit, processing continues as if
| MQXCC_CLOSE_CHANNEL had been specified.

| This is an output field from the exit.

| Feedback (MQLONG)
| Reserved.

| This is a reserved field. The value is zero.

 C declaration
| typedef struct tagMQTXP {

| MQCHAR4 StrucId; /\ Structure identifier \/

| MQLONG Version; /\ Structure version number \/

| MQLONG Reserved; /\ Reserved \/

| MQLONG ExitReason; /\ Reason for invoking exit \/

| MQBYTE16 ExitUserArea; /\ Exit user area \/

| MQLONG TransportType; /\ Transport type \/

| MQLONG RetryCount; /\ Number of times data has been retried \/

| MQLONG DataLength; /\ Length of data to be sent \/

| MQLONG SessionId; /\ Session identifier \/

| MQLONG GroupId; /\ Group identifier \/

| MQLONG DataId; /\ Data identifier \/

| MQLONG ExitResponse; /\ Response from exit \/

| MQLONG Feedback; /\ Reserved \/

| } MQTXP;

604 MQSeries Intercommunication

 MQXWD

MQXWD - Exit wait descriptor structure
The following table summarizes the fields in the structure.

The MQXWD structure is an input/output parameter on the MQXWAIT call.

Table 50. Fields in MQXWD

Field Description Page

StrucId Structure identifier 605

Version Structure version number 605

ECB Event control block to wait on 606

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQXWD_STRUC_ID
Identifier for exit wait descriptor structure.

For the C programming language, the constant
MQXWD_STRUC_ID_ARRAY is also defined; this has the same
value as MQXWD_STRUC_ID, but is an array of characters instead
of a string.

The initial value of this field is MQXWD_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQXWD_VERSION_1
Version number for exit wait descriptor structure.

The initial value of this field is MQXWD_VERSION_1.

Reserved1 (MQLONG)
Reserved.

This is a reserved field; its value must be zero.

This is an input field.

Reserved2 (MQLONG)
Reserved.

This is a reserved field; its value must be zero.

This is an input field.

Reserved3 (MQLONG)
Reserved.

This is a reserved field; its value must be zero.

This is an input field.

 Chapter 36. Channel-exit calls and data structures 605

 MQXWD

ECB (MQLONG)
Event control block to wait on.

This is the event control block (ECB) to wait on. It should be set to zero
before the MQXWAIT call is issued; on successful completion it will
contain the post code.

This is an input/output field.

 C declaration
typedef struct tagMQXWD {

 MQCHAR4 StrucId; /\ Structure identifier \/

MQLONG Version; /\ Structure version number \/

MQLONG Reserved1; /\ Reserved \/

MQLONG Reserved2; /\ Reserved \/

MQLONG Reserved3; /\ Reserved \/

MQLONG ECB; /\ Event control block to wait on \/

 } MQXWD;

System/390 assembler declaration
MQXWD DSECT

MQXWD_STRUCID DS CL4 Structure identifier

MQXWD_VERSION DS F Structure version number

MQXWD_RESERVED1 DS F Reserved

MQXWD_RESERVED2 DS F Reserved

MQXWD_RESERVED3 DS F Reserved

MQXWD_ECB DS F Event control block to wait

\ on

MQXWD_LENGTH EQU \-MQXWD Length of structure

 ORG MQXWD

MQXWD_AREA DS CL(MQXWD_LENGTH)

End of Product-sensitive programming interface

606 MQSeries Intercommunication

 Problem determination � Channel control error

Chapter 37. Problem determination in DQM

This chapter explains the various aspects of problem determination and suggests
methods of resolving problems. Some of the problems mentioned in this chapter
are platform and installation specific. Where this is the case, it is made clear in the
text.

Problem determination for the following scenarios is discussed:

� Error message from channel control
 � Ping
 � DLQ considerations
 � Validation checks
 � In-doubt relationship
� Channel startup negotiation errors
� When a channel refuses to run
� Retrying the link

 � Data structures
� User exit problems

 � Disaster recovery
 � Channel switching
 � Connection switching
 � Client problems
 � Error logs

Error message from channel control
Problems found during normal operation of the channels are reported to the system
console and to the system log. In MQSeries for OS/390 using CICS, they are
reported to the CICS Transient Data Queue CKMQ, if that is defined and available.
In MQSeries for Windows they are reported to the channel log. Problem diagnosis
starts with the collection of all relevant information from the log, and analysis of this
information to identify the problem.

However, this could be difficult in a network where the problem may arise at an
intermediate system that is staging some of your messages. An error situation,
such as transmission queue full, followed by the dead-letter queue filling up, would
result in your channel to that site closing down.

In this example, the error message you receive in your error log will indicate a
problem originating from the remote site, but may not be able to tell you any details
about the error at that site.

You need to contact your counterpart at the remote site to obtain details of the
problem, and to receive notification of that channel becoming available again.

 Copyright IBM Corp. 1993,1999 607

 Ping � Dead-letter queue considerations

 Ping
Ping, which is not supported on MQSeries for Windows, is useful in determining
whether the communication link and the two message channel agents that make up
a message channel are functioning across all interfaces.

Ping makes no use of transmission queues, but it does invoke some user exit
programs. If any error conditions are encountered, error messages are issued.

To use ping, you can issue the MQSC command PING CHANNEL (you cannot do
this if you are using CICS for distributed queuing on OS/390). On OS/390 and
OS/400, you can also use the panel interface to select this option.

On UNIX platforms, OS/2, Windows NT, and OS/400, you can also use the MQSC
command PING QMGR to test whether the queue manager is responsive to
commands. See “PING QMGR” in the MQSeries Command Reference book for
more information about this.

Dead-letter queue considerations
In some MQSeries products the dead-letter queue is referred to as an
undelivered-message queue. There are no dead-letter queues in MQSeries for
Windows.

If a channel ceases to run for any reason, applications will probably continue to
place messages on transmission queues, creating a potential overflow situation.
Applications can monitor transmission queues to find the number of messages
waiting to be sent, but this would not be a normal function for them to carry out.

When this occurs in a message-originating node, and the local transmission queue
is full, the application’s PUT fails.

When this occurs in a staging or destination node, there are three ways that the
MCA copes with the situation:

1. By calling the message-retry exit, if one is defined.

2. By directing all overflow messages to a dead-letter queue (DLQ), returning an
exception report to applications that requested these reports.

Note: In distributed queue management, if the message is too big for the
DLQ, the DLQ is full, or the DLQ is not available, the channel stops and the
message remains on the transmission queue. Ensure your DLQ is defined,
available, and sized for the largest messages you handle.

3. By closing down the channel, if neither of the previous options succeeded.

| 4. By returning the undelivered messages back to the sending end and returning
| a full report to the reply-to queue (MQRC_EXCEPTION_WITH_FULL_DATA
| and MQRO_DISCARD_MSG).

608 MQSeries Intercommunication

 Validation checks � Channel refuses to run

If an MCA is unable to put a message on the DLQ:

� The channel stops

� Appropriate error messages are issued at the system consoles at both ends of
the message channel

� The unit of work is backed out, and the messages reappear on the
transmission queue at the sending channel end of the channel

� Triggering is disabled for the transmission queue

 Validation checks
A number of validation checks are made when creating, altering, and deleting
channels, and where appropriate, an error message returned.

Errors may occur when:

� A duplicate channel name is chosen when creating a channel
� Unacceptable data is entered in the channel parameter fields
� The channel to be altered is in doubt, or does not exist

 In-doubt relationship
If a channel is in doubt, it is usually resolved automatically on restart, so the system
operator does not need to resolve a channel manually in normal circumstances.
See “In-doubt channels” on page 76 for information about this.

Channel startup negotiation errors
During channel startup, the starting end has to state its position and agree channel
running parameters with the corresponding channel. It may happen that the two
ends cannot agree on the parameters, in which case the channel closes down with
error messages being issued to the appropriate error logs.

When a channel refuses to run
If a channel refuses to run:

� Check that DQM and the channels have been set up correctly. This is a likely
problem source if the channel has never run. Reasons could be:

– A mismatch of names between sending and receiving channels (remember
that uppercase and lowercase letters are significant)

– Incorrect channel types specified

– The sequence number queue (if applicable) is not available, or is damaged

– The dead-letter queue is not available

– The sequence number wrap value is different on the two channel definitions

– A queue manager, CICS system, or communication link is not available

– Following a restart, the wrong queue manager may have been attached to
CICS

 Chapter 37. Problem determination in DQM 609

 Channel refuses to run

– A receiver channel might be in STOPPED state

– The connection might not be defined correctly

– There might be a problem with the communications software (for example,
is TCP running?)

– In OS/390 using CICS, check that the DFHSIT SYSIDNT name of the
target CICS system matches the connection name that you have specified
for that system

� It is possible that an in-doubt situation exists, if the automatic synchronization
on startup has failed for some reason. This is indicated by messages on the
system console, and the status panel may be used to show channels that are
in doubt.

The possible responses to this situation are:

– Issue a Resolve channel request with Backout or Commit.

You need to check with your remote link supervisor to establish the number
of the last message or unit of work committed. Check this against the last
number at your end of the link. If the remote end has committed a number,
and that number is not yet committed at your end of the link, then issue a
RESOLVE COMMIT command.

In all other cases, issue a RESOLVE BACKOUT command.

The effect of these commands is that backed out messages reappear on
the transmission queue and are sent again, while committed messages are
discarded.

If in doubt yourself, perhaps backing out with the probability of duplicating a
sent message would be the safer decision.

– Issue a RESET command.

This command is for use when sequential numbering is in effect, and
should be used with care. Its purpose is to reset the sequence number of
messages and you should use it only after using the RESOLVE command
to resolve any in-doubt situations.

� On MQSeries for AS/400, OS/2, Windows NT, UNIX systems, and OS/390
without CICS, there is no need for the administrator to choose a particular
sequence number to ensure that the sequence numbers are put back in step.
When a sender channel starts up after being reset, it informs the receiver that it
has been reset and supplies the new sequence number that is to be used by
both the sender and receiver.

Note: If the sender is MQSeries for OS/390 using CICS, the sequence
number should be reset to the same number as any receiving queue
managers.

� If the status of a receiver end of the channel is STOPPED, it can be reset by
starting the receiver end.

Note: This does not start the channel, it merely resets the status. The
channel must still be started from the sender end.

610 MQSeries Intercommunication

 Channel refuses to run

 Triggered channels
If a triggered channel refuses to run, the possibility of in-doubt messages should be
investigated as described above.

Another possibility is that the trigger control parameter on the transmission queue
has been set to NOTRIGGER by the channel. This happens when:

� There is a channel error

� The channel was stopped because of a request from the receiver

� The channel was stopped because of a problem on the sender that requires
manual intervention

After diagnosing and fixing the problem, you must reset the trigger control
parameter to TRIGGER.

An example of a situation where a triggered channel fails to start is as follows:

1. A transmission queue is defined with a trigger type of FIRST.

2. A message arrives on the transmission queue, and a trigger message is
produced.

3. The channel is started, but stops immediately because the communications to
the remote system are not available.

4. The remote system is made available.

5. Another message arrives on the transmission queue.

| 6. On MQSeriesfor OS/390, if the queue manager is stopped using
| MODE(FORCE) during channel initiator shutdown, it may be necessary to
| manually restart some channels after channel initiator restart.

Because the second message does not cause the queue depth to go from zero to
one, no trigger message is produced (unless the channel is in RETRY state). If
this happens, the channel must be started manually.

 Conversion failure
Another reason for the channel refusing to run could be that neither end is able to
carry out necessary conversion of message descriptor data between ASCII and
EBCDIC, and integer formats. In this instance, communication is not possible.

 Network problems
When using LU 6.2, make sure that your definitions are consistent throughout the
network. For example, if you have increased the RU sizes in your CICS
Transaction Server for OS/390 or Communications Manager definitions, but you
have a controller with a small MAXDATA value in its definition, the session may fail
if you attempt to send large messages across the network. A symptom of this may
be that channel negotiation takes place successfully, but the link fails when
message transfer occurs.

| When using TCP, if your channels are unreliable and your connections breaking,
| use the SO_KEEPALIVE option, as discussed in “Checking that the other end of
| the channel is still available” on page 72.

 Chapter 37. Problem determination in DQM 611

 Retrying the link � Data structures

 Dial-up problems
MQSeries supports connection over dial-up lines but you should be aware that with
TCP, some protocol providers assign a new IP address each time you dial in. This
can cause channel synchronization problems because the channel cannot
recognize the new IP addresses and so cannot ensure the authenticity of the
partner. If you encounter this problem, you need to use a security exit program to
override the connection name for the session.

This problem does not occur when a V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT product is communicating with another
product at the same level, because the queue manager name is used for
synchronization instead of the IP address.

Retrying the link
An error scenario may occur that is difficult to recognize. For example, the link and
channel may be functioning perfectly, but some occurrence at the receiving end
causes the receiver to stop. Another unforeseen situation could be that the
receiver system has run out of storage and is unable to complete a transaction.

You need to be aware that such situations can arise, often characterized by a
system that appears to be busy but is not actually moving messages. You need to
work with your counterpart at the far end of the link to help detect the problem and
correct it.

 Retry considerations
If a link failure occurs during normal operation, a sender or server channel program
will itself start another instance, provided that:

1. Initial data negotiation and security exchanges are complete
2. The retry count in the channel definition is greater than zero

Note: For OS/2, OS/400, UNIX systems, and Windows NT, in order for a retry to
be attempted a channel initiator must be running. In platforms other than V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, this channel
initiator must be monitoring the initiation queue specified in the transmission queue
that the channel in using. There is no channel initiator in MQSeries for Windows.

 Data structures
Data structures are needed for reference when checking logs and trace entries
during problem diagnosis. Details can be found in Chapter 36, “Channel-exit calls
and data structures” on page 529 and in Chapter 2, “Data type descriptions -
structures” in the MQSeries Application Programming Reference book.

612 MQSeries Intercommunication

 User exit problems � Channel switching

User exit problems
The interaction between the channel programs and the user-exit programs has
some error-checking routines, but this facility can only work successfully when the
user exits obey the rules described in Part 7, “Further intercommunication
considerations” on page 487. When errors occur, the most likely outcome will be
that the channel stops and the channel program issues an error message, together
with any return codes from the user exit. Any errors detected on the user exit side
of the interface can be determined by scanning the messages created by the user
exit itself.

You might need to use a trace facility of your host system to identify the problem.

 Disaster recovery
Disaster recovery planning is the responsibility of individual installations, and the
functions performed may include the provision of regular system ‘snapshot’ dumps
that are stored safely off-site. These dumps would be available for regenerating
the system, should some disaster overtake it. If this occurs, you need to know
what to expect of the messages, and the following description is intended to start
you thinking about it.

First a recap on system restart. If a system fails for any reason, it may have a
system log that allows the applications running at the time of failure to be
regenerated by replaying the system software from a syncpoint forward to the
instant of failure. If this occurs without error, the worst that can happen is that
message channel syncpoints to the adjacent system may fail on startup, and that
the last batches of messages for the various channels will be sent again.
Persistent messages will be recovered and sent again, nonpersistent messages
may be lost.

If the system has no system log for recovery, or if the system recovery fails, or
where the disaster recovery procedure is invoked, the channels and transmission
queues may be recovered to an earlier state, and the messages held on local
queues at the sending and receiving end of channels may be inconsistent.

Messages may have been lost that were put on local queues. The consequence of
this happening depends on the particular MQSeries implementation, and the
channel attributes. For example, where strict message sequencing is in force, the
receiving channel detects a sequence number gap, and the channel closes down
for manual intervention. Recovery then depends upon application design, as in the
worst case the sending application may need to restart from an earlier message
sequence number.

 Channel switching
A possible solution to the problem of a channel ceasing to run would be to have
two message channels defined for the same transmission queue, but with different
communication links. One message channel would be preferred, the other would
be a replacement for use when the preferred channel is unavailable.

If triggering is required for these message channels, the associated process
definitions must exist for each sender channel end.

 Chapter 37. Problem determination in DQM 613

 Connection switching � Client problems

To switch message channels:

� If the channel is triggered, set the transmission queue attribute NOTRIGGER.

� Ensure the current channel is inactive.

� Resolve any in-doubt messages on the current channel.

� If the channel is triggered, change the process attribute in the transmission
queue to name the process associated with the replacement channel.

In this context, some implementations allow a channel to have a blank process
object definition, in which case you may omit this step as the queue manager
will find and start the appropriate process object.

� Restart the channel, or if the channel was triggered, set the transmission queue
attribute TRIGGER.

 Connection switching
Another solution would be to switch communication connections from the
transmission queues.

To do this:

� If the sender channel is triggered, set the transmission queue attribute
NOTRIGGER.

� Ensure the channel is inactive.

� Resolve any in-doubt messages on the channel.

� Change the connection and profile fields to connect to the replacement
communication link.

� Ensure that the corresponding channel at the remote end has been defined.

� Restart the channel, or if the sender channel was triggered, set the
transmission queue attribute TRIGGER.

 Client problems
A client application may receive an unexpected error return code, for example:

� Queue manager not available
� Queue manager name error

 � Connection broken

Look in the client error log for a message explaining the cause of the failure. There
may also be errors logged at the server, depending on the nature of the failure.

 Terminating clients
Even though a client has terminated, it is still possible for its surrogate process to
be holding its queues open. Normally this will only be for a short time until the
communications layer notifies that the partner has gone.

614 MQSeries Intercommunication

 Error logs

 Error logs
MQSeries error messages are placed in different error logs depending on the
platform. There are error logs for:

� OS/2 and Windows NT
 � UNIX systems

| � VSE/ESA
| � DOS, Windows 3.1, Windows 95, and Windows 98 clients

 � OS/390
� MQSeries for Windows

Error logs for OS/2 and Windows NT
MQSeries for OS/2 Warp and Windows NT use a number of error logs to capture
messages concerning the operation of MQSeries itself, any queue managers that
you start, and error data coming from the channels that are in use.

The location the error logs are stored in depends on whether the queue manager
name is known and whether the error is associated with a client.

� If the queue manager name is known and the queue manager is available:

C:\MQM\QMGRS\QMgrName\ERRORS\AMQERRð1.LOG

� If the queue manager is not available:

C:\MQM\QMGRS\@SYSTEM\ERRORS\AMQERRð1.LOG

� If an error has occurred with a client application:

C:\MQM\ERRORS\AMQERRð1.LOG

| Note: The above examples assume that you have installed MQSeries on the C:
| drive and in the MQM directory. On Windows NT, the default data path is
| C:\WINNT\Profiles\All Users\Application Data\MQSeries\.

On Windows NT, you should also examine the Windows NT application event log
for relevant messages.

Error logs on UNIX systems
MQSeries on UNIX systems uses a number of error logs to capture messages
concerning the operation of MQSeries itself, any queue managers that you start,
and error data coming from the channels that are in use. The location the error
logs are stored in depends on whether the queue manager name is known and
whether the error is associated with a client.

� If the queue manager name is known and the queue manager is available:

/var/mqm/qmgrs/QMgrName/errors/AMQERRð1.LOG

� If the queue manager is not available:

/var/mqm/qmgrs/@SYSTEM/errors/AMQERRð1.LOG

� If an error has occurred with a client application:

/var/mqm/errors/AMQERRð1.LOG

 Chapter 37. Problem determination in DQM 615

 Error logs

| Error logs on DOS, Windows 3.1, and Windows 95 and Windows 98
| clients

MQSeries clients use two error logs, stored in a location set by the environment
variable MQDATA (the default is the root drive of the client).

 � Error messages:

AMQERRð1.LOG

 � FFDC messages:

AMQERRð1.FDC

These files are not readable. See “Error messages with MQSeries clients” in the
MQSeries Clients book for information about formatting the information.

Error logs on OS/390
If you are not using CICS, error messages are written to:

� The OS/390 system console
� The channel-initiator joblog

If you are using the OS/390 message processing facility to suppress messages, the
console messages may be suppressed. See the MQSeries for OS/390 System
Management Guide for more information.

If you are using CICS, error messages are written to the OS/390 system console or
the CKMQ extrapartition transient data queue. See the MQSeries for OS/390
System Management Guide for more information.

Error logs on MQSeries for Windows
Error logs are written to a file called channel.log in the directory of the running
queue manager. You can view the log using the Channel Logs sub-tab of the
Services tab of the MQSeries for Windows properties dialog.

| Error logs on MQSeries for VSE/ESA
| All MQSeries-generated error messages are written to SYSTEM.LOG.

616 MQSeries Intercommunication

 Part 8. Appendixes

Appendix A. Channel planning form . 619
How to use the form . 619

Appendix B. Constants for channels and exits 623
List of constants . 623

MQCD_ñ (Channel definition structure length) 623
MQCD_ñ (Channel definition structure version) 623
MQCF_ñ (Channel capability flags) . 624
MQCDC_ñ (Channel data conversion) . 624
MQCHT_ñ (Channel type) . 624
MQCXP_ñ (Channel-exit parameter structure identifier) 624
MQCXP_ñ (Channel-exit parameter structure version) 624
MQMCAT_ñ (MCA type) . 625
MQNPMS_ñ (Nonpersistent message speed) 625
MQPA_ñ (Put authority) . 625
MQQT_ñ (Queue type) . 625

| MQSID_ñ (Security identifier) . 625
| MQSIDT_ñ (Security identifier type) . 626
| MQTXP_ñ (Transport retry exit structure identifier) 626
| MQTXP_ñ (Transport retry exit version) . 626

MQXCC_ñ (Exit response) . 626
MQXPT_ñ (Transmission protocol type) . 626
MQXR_ñ (Exit reason) . 627
MQXR2_ñ (Secondary exit response) . 627
MQXT_ñ (Exit identifier) . 627
MQXUA_ñ (Exit user area) . 627

Appendix C. Queue name resolution . 629
What is queue name resolution? . 630

How queue name resolution works . 631

Appendix D. Configuration file stanzas for distributed queuing 635

Appendix E. Notices . 639
Programming interface information . 640
Trademarks . 642

 Copyright IBM Corp. 1993,1999 617

618 MQSeries Intercommunication

 Channel planning form

Appendix A. Channel planning form

The form shown in Table 51 on page 621 is supplied for you to create and
maintain a list of all message channels for each queue manager in your system.
Do not fill in the form in this book. Instead, photocopy it as many times as required
to hold the definitions of all the channels in your system. The filled-in form, see
Table 52 on page 622, is included to illustrate how the two examples in
Chapter 27, “Message channel planning example for OS/390 using CICS” on
page 387 and Chapter 33, “Message channel planning example for OS/400” on
page 465 could be shown.

How to use the form
The channel planning form allows you to keep an overview of the channels and
associated objects in your system. It will help to prevent you from making errors
when changing your channel configuration.

One of the more obvious errors is to allocate items more than once:

Communications connections identifiers
Allocate only once. It may be possible to share connections between
channels when using LU 6.2.

Channel names
Allocate only once.

Transmission queues
Allocate to only one channel. It is possible to allocate to more than one
channel for standby purposes, but ensure that only one is active, unless the
host environment is MQSeries for OS/390, and there is no sequential delivery
of messages selected.

Remote queue definition
The name must be unique.

Queue manager alias name
The name must be unique.

Reply-to queue name
The name must be unique.

Reply-to queue alias name
The name must be unique.

Adjacent channel system name
The name must be unique.

 Copyright IBM Corp. 1993,1999 619

 Channel planning form

One method of completing the form would be to allocate, systematically, in this
order:

� Channels to adjacent systems

� Transmission queues to channels

� Remote queue definitions to queue names and queue manager names, and to
transmission queues

� Reply-to queue aliases to reply-to queue names and route names

� Queue manager aliases to remote queue managers and transmission queues

Proceed as follows:

1. Start with one adjacent system, define the first outward channel to that system,
and give it a name.

2. Fill in the channel name on the form with the channel type, transmission queue
name, adjacent system name, and remote queue manager name.

3. For each class-of-service, logically-named connection, fill in the logical queue
manager name to list the queue manager name resolutions using this channel.

4. Allocate a communication connection and fill in the name and profile, where
applicable.

5. Record the names of all the queues that your applications are going to use on
this channel, using the columns provided on the form. This is necessary where
remote queue definitions are used, so that the name resolutions are listed.

6. Do not forget to include the reply-to alias queue names in this list.

7. Move to the next channel and continue until all outward channels have been
completed for this adjacent system.

8. When this has been completed, repeat from the beginning for incoming
channels from this adjacent system.

9. Move on to the next adjacent system, and repeat.

10. Check the complete list for unwanted multiple assignments of names, objects
and connections.

When the list is complete and checked out, use it as an aid in creating the objects,
and defining the channels listed.

620 MQSeries Intercommunication

 Channel planning form

P
hy

si
ca

l
qu

eu
e

na
m

e

P
hy

si
ca

l
qu

eu
e

m
an

ag
er

na
m

e

Lo
gi

ca
l

qu
eu

e
na

m
e

Lo
gi

ca
l

qu
eu

e
m

an
ag

er
na

m
e

A
dj

ac
en

t
sy

st
em

na
m

e

P
ro

fil
e,

or
 m

od
e,

na
m

e

C
on

ne
ct

io
n

na
m

e
T

ra
ns

m
is

si
on

qu
eu

e
na

m
e

C
IC

S
sy

st
em

 I
D

(w
he

re
ne

ed
ed

)

C
ha

nn
el

ty
pe

T
ab

le
 5

1.
 C

ha
nn

el
pl

an
ni

ng
fo

rm
.

S
ys

te
m

 n
am

e:
Q

ue
ue

 m
an

ag
er

 n
am

e:
P

ag
e

no
:

C
ha

nn
el

 n
am

e

 Appendix A. Channel planning form 621

 Channel planning form

P
hy

si
ca

l
qu

eu
e

na
m

e

P
ay

ro
ll

P
ay

ro
ll

(n
on

e)

P
hy

si
ca

l
qu

eu
e

m
an

ag
er

na
m

e

Q
M

2

Q
M

2

(n
on

e)

Lo
gi

ca
l

qu
eu

e
na

m
e

P
ay

ro
llr

P
ay

ro
ll

(n
on

e)

Lo
gi

ca
l

qu
eu

e
m

an
ag

er
na

m
e

Q
M

2

Q
M

2

(n
on

e)

A
dj

ac
en

t
sy

st
em

na
m

e

Q
M

2

Q
M

2

Q
M

2

P
ro

fil
e,

or
 m

od
e,

na
m

e

(n
on

e)

(n
on

e)

(n
on

e)

C
on

ne
ct

io
n

na
m

e

Q
M

2C

Q
M

2D

(n
on

e)

T
ra

ns
m

is
si

on
qu

eu
e

na
m

e

Q
M

2

Q
M

2

(n
on

e)

C
IC

S
sy

st
em

 I
D

(w
he

re
ne

ed
ed

)

(d
ef

au
lt)

(n
on

e)

(n
on

e)

C
ha

nn
el

ty
pe

S
E

N
D

E
R

S
E

N
D

E
R

R
E

C
E

IV
E

R

T
ab

le
 5

2.
 C

ha
nn

el
pl

an
ni

ng
fo

rm
.

S
ys

te
m

 n
am

e:
 Q

M
2

Q
ue

ue
 m

an
ag

er
 n

am
e:

 Q
M

2
P

ag
e

no
:

1

C
ha

nn
el

 n
am

e

Q
M

1.
T

.Q
M

2.
C

H
A

N
N

E
L

Q
M

1.
to

.Q
M

2

Q
M

2.
to

.Q
M

1

622 MQSeries Intercommunication

 Constants

Appendix B. Constants for channels and exits

This appendix specifies the values of the named constants that apply to channels
and exits in the Message Queue Interface.

The constants are grouped according to the parameter or field to which they relate.
All of the names of the constants in a group begin with a common prefix of the form
“MQxxxx_”, where xxxx represents a string of 0 through 4 characters that indicates
the nature of the values defined in that group. The constants are ordered
alphabetically by the prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each
“h” denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol “␣”.

| 5. If the value is shown as (variable), it indicates that the value of the constant
| depends on the environment in which the application is running.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.

MQCD_ñ (Channel definition structure length)
See the StrucLength field described in “MQCD - Channel data structure” on
page 547.

MQCD_LENGTH_4 (variable)

MQCD_CURRENT_LENGTH (variable)

| MQCD_LENGTH_6| (variable)

| MQCD_LENGTH_5| (variable)

MQCD_ñ (Channel definition structure version)
See the Version field described in “MQCD - Channel data structure” on page 547.

MQCD_VERSION_1 1 X'ððððððð1'

MQCD_VERSION_2 2 X'ððððððð2'

MQCD_VERSION_3 3 X'ððððððð3'

MQCD_VERSION_4 4 X'ððððððð4'

| MQCD_VERSION_5| 5| X'ððððððð5'

| MQCD_VERSION_6| 6| X'ððððððð6'

MQCD_CURRENT_VERSION 6 X'ððððððð6'

 Copyright IBM Corp. 1993,1999 623

 Constants

MQCF_ñ (Channel capability flags)
See the CapabilityFlags field described in “PL/I declaration” on page 598.

MQCF_NONE ð X'ðððððððð'

MQCF_DIST_LISTS 1 X'ððððððð1'

MQCDC_ñ (Channel data conversion)
See the DataConversion field described in “MQCD - Channel data structure” on
page 547.

MQCDC_NO_SENDER_CONVERSION ð X'ðððððððð'

MQCDC_SENDER_CONVERSION 1 X'ððððððð1'

MQCHT_ñ (Channel type)
See the ChannelType field described in “MQCD - Channel data structure” on
page 547.

MQCHT_SENDER 1 X'ððððððð1'

MQCHT_SERVER 2 X'ððððððð2'

MQCHT_RECEIVER 3 X'ððððððð3'

MQCHT_REQUESTER 4 X'ððððððð4'

MQCHT_ALL 5 X'ððððððð5'

MQCHT_CLNTCONN 6 X'ððððððð6'

MQCHT_SVRCONN 7 X'ððððððð7'

| MQCHT_CLUSRCVR| 8| X'ððððððð8'

| MQCHT_CLUSSDR| 9| X'ððððððð9'

MQCXP_ñ (Channel-exit parameter structure identifier)
See the StrucId field described in “PL/I declaration” on page 598.

For the C programming language, the following is also defined:

MQCXP_STRUC_ID 'CXP␣'

MQCXP_STRUC_ID_ARRAY 'C','X','P','␣'

MQCXP_ñ (Channel-exit parameter structure version)
See the Version field described in “PL/I declaration” on page 598.

MQCXP_VERSION_1 1 X'ððððððð1'

MQCXP_VERSION_2 2 X'ððððððð2'

MQCXP_VERSION_3 3 X'ððððððð3'

| MQCXP_VERSION_4| 4| X'ððððððð4'

MQCXP_CURRENT_VERSION 4 X'ððððððð4'

624 MQSeries Intercommunication

 Constants

MQMCAT_ñ (MCA type)
See the MCAType field described in “MQCD - Channel data structure” on page 547.

MQMCAT_PROCESS 1 X'ððððððð1'

MQMCAT_THREAD 2 X'ððððððð2'

MQNPMS_ñ (Nonpersistent message speed)
See the NonPersistentMsgSpeed field described in “MQCD - Channel data structure”
on page 547.

MQNPMS_NORMAL 1 X'ððððððð1'

MQNPMS_FAST 2 X'ððððððð2'

MQPA_ñ (Put authority)
See the PutAuthority field described in “MQCD - Channel data structure” on
page 547.

MQPA_DEFAULT 1 X'ððððððð1'

MQPA_CONTEXT 2 X'ððððððð2'

| MQPA_ONLY_MCA| 3| X'ððððððð3'

| MQPA_ALTERNATE_OR_MCA| 4| X'ððððððð4'

MQQT_ñ (Queue type)

Extended queue types:

MQQT_LOCAL 1 X'ððððððð1'

MQQT_MODEL 2 X'ððððððð2'

MQQT_ALIAS 3 X'ððððððð3'

MQQT_REMOTE 6 X'ððððððð6'

| MQQT_CLUSTER| 7| X'ððððððð7'

MQQT_ALL 1ðð1 X'ððððð3E9'

| MQSID_ñ (Security identifier)
| See the MCASecurityId and RemoteSecurityId fields described in “MQCD - Channel
| data structure” on page 547.

| For the C programming language, the following is also defined:

| MQSID_NONE| X'ðð...ðð' (4ð nulls)

| MQSID_NONE_ARRAY| '\ð','\ð',...'\ð','\ð'

 Appendix B. Constants for channels and exits 625

 Constants

| MQSIDT_ñ (Security identifier type)
| See the MCASecurityId and RemoteSecurityId fields described in “MQCD - Channel
| data structure” on page 547.

| MQSIDT_NONE| X'ðð'

| MQSIDT_NT_SECURITY_ID| X'ð1'

| MQTXP_ñ (Transport retry exit structure identifier)
| See the StrucId field described in “MQTXP - Transport-exit data structure” on
| page 601.

| For the C programming language, the following is also defined:

| MQTXP_STRUC_ID| 'TXP␣'

| MQTXP_STRUC_ID_ARRAY| 'T','X','P','␣'

| MQTXP_ñ (Transport retry exit version)
| See the Version field described in “MQTXP - Transport-exit data structure” on
| page 601.

| MQTXP_VERSION_1| 1| X'ððððððð1'

| MQTXP_CURRENT_VERSION| 1| X'ððððððð1'

MQXCC_ñ (Exit response)
See the ExitResponse field described in “PL/I declaration” on page 598.

| MQXCC_REQUEST_ACK| -7| X'FFFFFFF9'

MQXCC_CLOSE_CHANNEL -6 X'FFFFFFFA'

MQXCC_SUPPRESS_EXIT -5 X'FFFFFFFB'

MQXCC_SEND_SEC_MSG -4 X'FFFFFFFC'

MQXCC_SEND_AND_REQUEST_SEC_MSG -3 X'FFFFFFFD'

MQXCC_SUPPRESS_FUNCTION -1 X'FFFFFFFF'

MQXCC_OK ð X'ðððððððð'

MQXPT_ñ (Transmission protocol type)
See the TransportType field described in “MQCD - Channel data structure” on
page 547.

| MQXPT_LOCAL| ð| X'ðððððððð'

MQXPT_LU62 1 X'ððððððð1'

MQXPT_TCP 2 X'ððððððð2'

MQXPT_NETBIOS 3 X'ððððððð3'

MQXPT_SPX 4 X'ððððððð4'

MQXPT_DECNET 5 X'ððððððð5'

| MQXPT_UDP| 6| X'ððððððð6'

626 MQSeries Intercommunication

 Constants

MQXR_ñ (Exit reason)
See the ExitReason field described in “PL/I declaration” on page 598.

MQXR_INIT 11 X'ðððððððB'

MQXR_TERM 12 X'ðððððððC'

MQXR_MSG 13 X'ðððððððD'

MQXR_XMIT 14 X'ðððððððE'

MQXR_SEC_MSG 15 X'ðððððððF'

MQXR_INIT_SEC 16 X'ðððððð1ð'

MQXR_RETRY 17 X'ðððððð11'

| MQXR_AUTO_CLUSSDR| 18| X'ðððððð12'

| MQXR_AUTO_RECEIVER| 19| X'ðððððð13'

| MQXR_END_BATCH| 25| X'ðððððð19'

| MQXR_ACK_RECEIVED| 26| X'ðððððð1A'

| MQXR_AUTO_SVRCONN| 27| X'ðððððð1B'

| MQXR_AUTO_CLUSRCVR| 28| X'ðððððð1C'

MQXR2_ñ (Secondary exit response)
See the ExitResponse2 field described in “PL/I declaration” on page 598.

MQXR2_PUT_WITH_DEF_ACTION ð X'ðððððððð'

MQXR2_USE_AGENT_BUFFER ð X'ðððððððð'

MQXR2_DEFAULT_CONTINUATION ð X'ðððððððð'

MQXR2_PUT_WITH_DEF_USERID 1 X'ððððððð1'

MQXR2_PUT_WITH_MSG_USERID 2 X'ððððððð2'

MQXR2_USE_EXIT_BUFFER 4 X'ððððððð4'

MQXR2_CONTINUE_CHAIN 8 X'ððððððð8'

MQXR2_SUPPRESS_CHAIN 16 X'ðððððð1ð'

MQXT_ñ (Exit identifier)
See the ExitId field described in “PL/I declaration” on page 598.

MQXT_CHANNEL_SEC_EXIT 11 X'ðððððððB'

MQXT_CHANNEL_MSG_EXIT 12 X'ðððððððC'

MQXT_CHANNEL_SEND_EXIT 13 X'ðððððððD'

MQXT_CHANNEL_RCV_EXIT 14 X'ðððððððE'

MQXT_CHANNEL_MSG_RETRY_EXIT 15 X'ðððððððF'

MQXT_CHANNEL_AUTO_DEF_EXIT 16 X'ðððððð1ð'

MQXUA_ñ (Exit user area)
See the ExitUserArea field described in “PL/I declaration” on page 598.

For the C programming language, the following is also defined:

MQXUA_NONE X'ðð...ðð' (16 nulls)

MQXUA_NONE_ARRAY '\ð','\ð',...'\ð','\ð'

 Appendix B. Constants for channels and exits 627

 Constants

628 MQSeries Intercommunication

 Queue name resolution

Appendix C. Queue name resolution

This appendix describes queue name resolution as performed by queue managers
at both sending and receiving ends of a channel.

In larger networks, the use of queue managers has a number of advantages over
other forms of communication. These advantages derive from the name resolution
function in DQM and the main benefits are:

� Applications do not need to make routing decisions
� Applications do not need to know the network structure
� Network links are created by systems administrators
� Network structure is controlled by network planners
� Multiple channels can be used between nodes to partition traffic

File Channel definition Channel definitionFile

Network ReceivingSending

MCA MCA

Queue transmission Queue 'Target '

Channel

Queue Manager Queue Manager

ApplicationApplication

Putting
application

Getting
application

Queue name
resolution

process

Queue name
resolution

process

Machine A Machine B

MQPUT call MQGET call

MQPUT
call

MQGET
call

Figure 142. Name resolution

Referring to Figure 142, the basic mechanism for putting messages on a remote
queue, as far as the application is concerned, is the same as for putting messages
on a local queue:

� The application putting the message issues MQOPEN and MQPUT calls to put
messages on the target queue.

� The application getting the messages issues MQOPEN and MQGET calls to
get the messages from the target queue.

If both applications are connected to the same queue manager then no inter-queue
manager communication is required, and the target queue is described as local to
both applications.

 Copyright IBM Corp. 1993,1999 629

 Queue name resolution

However, if the applications are connected to different queue managers, two MCAs
and their associated network connection are involved in the transfer, as shown in
the figure. In this case, the target queue is considered to be a remote queue to the
putting application.

The sequence of events is as follows:

1. The putting application issues MQOPEN and MQPUT calls to put messages to
the target queue.

2. During the MQOPEN call, the name resolution function detects that the target
queue is not local, and decides which transmission queue is appropriate.
Thereafter, on the MQPUT calls associated with the MQOPEN call, all
messages are placed on this transmission queue.

3. The sending MCA gets the messages from the transmission queue and passes
them to the receiving MCA at the remote computer.

4. The receiving MCA puts the messages on the target queue, or queues.

5. The getting application issues MQOPEN and MQGET calls to get the
messages from the target queue.

Note: Only step 1 and step 5 involve application code; steps 2 through 4 are
performed by the local queue managers and the MCA programs. The putting
application is unaware of the location of the target queue, which could be in the
same processor, or in another processor on another continent.

The combination of sending MCA, the network connection, and the receiving MCA,
is called a message channel, and is inherently a unidirectional device. Normally, it
is necessary to move messages in both directions, and two channels are set up for
this, one in each direction.

What is queue name resolution?
Queue name resolution is vital to DQM. It removes the need for applications to be
concerned with the physical location of queues, and insulates them against the
details of networks. A systems administrator can move queues from one queue
manager to another, and change the routing between queue managers without
applications needing to know anything about it.

In order to uncouple from the application design the exact path over which the data
travels, it is necessary to introduce a level of indirection between the name used by
the application when it refers to the target queue, and the naming of the channel
over which the flow occurs. This indirection is achieved using the queue name
resolution mechanism.

In essence, when an application refers to a queue name, the name is mapped by
the resolution mechanism either to a transmission queue or to a local queue that is
not a transmission queue. In the case of mapping to a transmission queue, a
second name resolution is needed at the destination, and the received message is
placed on the target queue as intended by the application designer. The
application remains unaware of the transmission queue and channel used for
moving the message.

630 MQSeries Intercommunication

 Queue name resolution

Note: The definition of the queue and channel is a system management
responsibility and can be changed by an operator or a system management utility,
without the need to change applications.

An important requirement for the system management of message flows is that
alternative paths should be provided between queue managers. For example,
business requirements might dictate that different classes of service should be sent
over different channels to the same destination. This is a system management
decision and the queue name resolution mechanism provides a very flexible way to
achieve it. The next section describes in detail how this is done, but the basic idea
is to use queue name resolution at the sending queue manager to map the queue
name supplied by the application to the appropriate transmission queue for the type
of traffic involved. Similarly at the receiving end, queue name resolution maps the
name in the message descriptor to a local (not a transmission) queue or again to
an appropriate transmission queue.

Not only is it possible for the forward path from one queue manager to another to
be partitioned into different types of traffic, but the return message that is sent to
the reply-to queue definition in the outbound message can also use the same traffic
partitioning. Queue name resolution satisfies this requirement and the application
designer need not be involved in these traffic partitioning decisions.

How queue name resolution works
Before an application or an MCA can put messages on a queue it must open the
queue. It is while processing the MQOPEN call that the queue manager refers to
the queue definitions to carry out the name resolution. The result of a successful
MQOPEN call is that an object handle is passed to the application to identify the
resolved queue for use on subsequent MQPUT calls.

As shown in Figure 142 on page 629, the putting application must open a queue
before putting messages to it, and at this time the queue manager mapping
function looks up the definition of the queue to determine whether the queue is
local or remote. In this example, the target queue is remote.

Similarly, the queue manager mapping function at the receiving end is invoked
when the MCA opens the target queue, using the local queue definitions.

The point that the mapping is carried out at both the sending and receiving queue
managers is an important aspect of the way name resolution works. This allows
the queue name supplied by the putting application to be mapped to a local queue
or a transmission queue at the sending queue manager, and again remapped to a
local queue or a transmission queue at the receiving queue manager.

Reply messages from receiving applications or MCAs have the name resolution
carried out in exactly the same way, allowing return routing over specific paths by
means of queue definitions at all the queue managers on route.

 Appendix C. Queue name resolution 631

 Queue name resolution

Specifically, the name resolution takes the following form:

[InQMName,]InQName=>OutQMName,OutQName[,OutXmitQName]

The input queue manager name, InQMName, is optional, and the resultant
OutXmitQName may or may not be required, as discussed below.

It is convenient to think of queue definitions as a table, although in fact, they are
created separately. Table 53 has two ‘input parameters’:

� InQMName, the input queue manager name
� InQName, the input queue name

The table is entered with these inputs and either a resolved output of OutQMName,
OutQName, OutXmitQName is produced, or an alias name is produced with which
to re-enter the table.

Table 53. Queue name resolution

Input values Resolve to

InQMName InQName OutQMName OutQName OutXmitQName

Blank or local queue manager Local queue Local queue
manager

InQName n/a

Blank or local queue manager Model queue Local queue
manager

Generated name n/a

Blank or local queue manager Alias queue Note 1

Blank or local queue manager Local definition of
a remote queue

RemoteQMName RemoteQName XmitQName, if not blank;
otherwise RemoteQMName

InQMName is the name of a local
transmission queue

InQName is not
resolved

InQMName InQName InQMName

InQMName is the name of a queue
manager alias. RemoteQMName = local
queue manager name

InQName is not
resolved

Note 2

InQMName is the name of a queue
manager alias. RemoteQMName does
not equal local queue manager name

InQName is not
resolved

RemoteQMName InQName XmitQName, if not blank;
otherwise RemoteQMName

InQMName is not the name of any local
object (Note 3)

InQName is not
resolved

InQMName InQName Default XmitQName.

Notes:

1. Re-enter table with InQMName = local queue manager, InQName = BaseQName (not another alias, nor a model queue)
2. Re-enter table with InQMName = local queue manager, and the same InQName (not a model queue)
3. Does not apply on OS/390 using CICS

Notes:

1. The check against InQMName is done before the check against InQName.

2. BaseQName is the queue name resolved from the alias queue definition.

3. RemoteQName is the name of the queue at the remote location as resolved
from the local definition of the remote queue.

4. RemoteQMName is the name of the remote queue manager from the local
definition of the remote queue or queue manager alias.

5. XmitQName is the name of the transmission queue from the local definition of
the remote queue or queue manager alias.

632 MQSeries Intercommunication

 Queue name resolution

Queue manager alias

Rows six and seven in the table show a remote queue definition holding a
queue manager alias name.

If the InQMName is either blank or the name of the local queue manager, then the
first four rows of the table are used for cases where the InQName is a local queue,
model queue, alias queue, or local definition of a remote queue.

Note: It is not possible to have an alias pointing to a second alias.

If the InQMName is the name of a local transmission queue, the mapping resolves
to that transmission queue. This is the case where the transmission queue has the
same name as the receiving queue manager.

Finally, the last two rows of the table apply where the InQMName is the name of a
queue manager alias. If the RemoteQMName of the definition is the same as the
name of the local queue manager, the table is re-entered with InQMName now set
to the name of the local queue manager. This allows incoming messages to be
routed to this queue manager using an alias to the queue manager.

If the RemoteQMName of the definition is not the same as the name of the local
queue manager, the queue manager alias definition provides the resolved queue
manager name, and optionally, also the name of the transmission queue to use.
The queue name remains the same. This allows outgoing messages sent to a
particular queue manager to be directed to a transmission queue that does not
have the same name as that of the remote queue manager. It also allows the
queue manager name to be changed.

Given the above queue name resolution mechanism, a message can be transferred
from a queue manager on one machine to another queue manager on an adjacent
machine; that is, having a direct message channel connection between the two
machines. The queue name that flows with the message across the link is a fully
qualified QMName.QName combination.

 Appendix C. Queue name resolution 633

 Queue name resolution

634 MQSeries Intercommunication

 Configuration file stanzas

Appendix D. Configuration file stanzas for distributed
queuing

This appendix shows the stanzas in the queue manager configuration file that relate
to distributed queuing. It applies to:

� The queue manager configuration file for MQSeries for OS/2 Warp, called
qm.ini

� The queue manager configuration file for MQSeries on UNIX systems, called
qm.ini

� The queue manager initialization file for MQSeries for AS/400, called QMINI in
library QMQMDATA.

Notes:

1. The stanzas in the QMINI file for Tandem NSK are different and are described
in the MQSeries for Tandem NonStop Kernel System Management Guide.

| 2. MQSeries for Windows NT V5.1 uses the registry. Use the MQSeries Services
| snap-in within the Microsoft Management Console (MMC) to make equivalent
| changes to the configuration information.

The stanzas that relate to distributed queuing are:

 � CHANNELS
 � TCP
 � LU62
 � NETBIOS
 � SPX
 � EXITPATH

Figure 143 on page 636 shows the values that you can set using these stanzas.
When you are defining one of these stanzas, you do not need to start each item on
a new line. You can use either a semicolon (;) or a hash character (#) to indicate a
comment.

 Copyright IBM Corp. 1993,1999 635

 Configuration file stanzas

CHANNELS:

MAXCHANNELS=n ; Maximum number of channels allowed, the

; default value is 1ðð

 MAXACTIVECHANNELS=n ; Maximum number of channels allowed to be active at

; any time, the default is the value of MaxChannels

MAXINITIATORS=n ; Maximum number of initiators allowed, the

; default value is 3 (see note 1)

MQIBINDTYPE=type ; Whether the binding for applications is to be

; “fastpath” or “standard”.

The default is “standard”. (see note 2)

| ADOPTNEWMCA=chltype ; Stops previous process if channel fails to start.

| ; The default is “NO”.

| ADOPTNEWMCATIMEOUT=n ; Specifies the amount of time that the new

| ; process should wait for the old process to end.

| ; The default is 6ð.

| ADOPTNEWMCACHECK=; Specifies the type checking required.

| typecheck ; For FAP1, FAP2, and FAP3, “NAME” and

| ; “ADDRESS” is the default.

| ; For FAP4 and later, “NAME”,

| ; “ADDRESS”, and “QM” is the

| ; default.

TCP: ; TCP entries

PORT=n ; Port number, the default is 1414

| LIBRARY1=DLLName1 ; Name of TCP Sockets DLL (OS/2 only)

LIBRARY2=DLLName2 ; Same as above if code is in two libraries (OS/2 only)

KEEPALIVE=Yes ; Switch TCP/IP KeepAlive on

| LU62: ; LU 6.2 entries (OS/2 only)

TPNAME=name ; TP Name to start on remote side

LIBRARY1=DLLName1 ; Name of APPC DLL (see note 3)

LIBRARY2=DLLName2 ; Same as above if code is in two libraries (see note 3)

LOCALLU=name ; LU to use on local system (OS/2 only)

| NETBIOS: ; NetBIOS entries (OS/2 only)

LOCALNAME=name ; The name this machine will be known as on the LAN

ADAPTERNUM=n ; LAN adapter number, the default is adapter ð

NUMSESS=n ; Number of sessions to allocate, the default is 1

NUMCMDS=n ; Number of commands to allocate, the default is 1

NUMNAMES=n ; Number of names to allocate, the default is 1

LIBRARY1=DLLName1 ; Name of NetBIOS DLL

LIBRARY2=DLLName2 ; Same as above if code is in two libraries (OS/2 only)

| SPX: ; SPX entries (OS/2 only)

SOCKET=n ; The socket number, the default is 5E86

BOARDNUM=ð ; LAN adapter number, the default is adapter ð (OS/2 only)

KEEPALIVE=Yes ; Switch on “watchdog” to monitor sessions (OS/2 only)

LIBRARY1=DLLName1 ; Name of SPX DLL

LIBRARY2=DLLName2 ; Same as above if code is in two libraries (OS/2 only)

EXITPATH: ; Location of user exits (MQSeries for AIX,

| ; HP-UX, OS/2 Warp, and Sun Solaris only)

EXITPATHS= ; String of directory paths

Figure 143. qm.ini stanzas for distributed queuing

| Notes:

| 1. MAXINITIATORS applies only to MQSeries for AIX, MQSeries for HP-UX,
| MQSeries for OS/2 Warp, and MQSeries for Sun Solaris.

| 2. MQIBINDTYPE applies only to MQSeries for AIX, MQSeries for HP-UX,
| MQSeries for OS/2 Warp, and MQSeries for Sun Solaris.

3. The default values for LIBRARY1 and LIBRARY2 are as follows:

| TCP SO32DLL and TCP32DLL (OS/2)
| LU 6.2 APPC and ACSSVC (OS/2)
| NetBIOS ACSNETB (OS/2)
| SPX IPXCALLS.DLL and SPXCALLS.DLL (OS/2)

636 MQSeries Intercommunication

 Configuration file stanzas

For more information about the qm.ini file and the other stanzas in it, refer to
Chapter 11, “Configuring MQSeries” in the MQSeries System Administration book.

 Appendix D. Configuration file stanzas for distributed queuing 637

 Configuration file stanzas

638 MQSeries Intercommunication

 Notices

 Appendix E. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

| IBM Director of Licensing
| IBM Corporation
| North Castle Drive
| Armonk, NY 10504-1785
| U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web sites
are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

 Copyright IBM Corp. 1993,1999 639

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM
for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
This book is intended to help you set up and control message channels between
queue managers.

640 MQSeries Intercommunication

 Notices

This book also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and Associated
Guidance Information provided by:

MQSeries for AIX V5.1,
MQSeries for AS/400 V4R2M1,
MQSeries for AT&T GIS UNIX V2.2,
MQSeries for Digital OpenVMS V2.2,
MQSeries for HP-UX V5.1,
MQSeries for OS/390 V2.1,
MQSeries for OS/2 Warp V5.1,
MQSeries for SINIX and DC/OSx V2.2,
MQSeries for Sun Solaris V5.1,
MQSeries for Tandem NonStop Kernel V2.2,
MQSeries for VSE/ESA V2.1,
MQSeries for Windows V2.0,
MQSeries for Windows V2.1,
MQSeries for Windows NT V5.1.

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-use programming interface

General-use Programming Interface and Associated Guidance Information...

End of General-use programming interface

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
these products. Use of such interfaces creates dependencies on the detailed
design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-sensitive programming interface

 Appendix E. Notices 641

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service marks
of others.

Advanced Peer-to-Peer
Networking

ACF/VTAM AIX

APPN AS/400 BookManager
CICS CICS/ESA CICS/VSE
CICS/400 DB2 FFST
First Failure Support
Technology

IBM IBMLink

IMS MQ MQSeries
MVS/ESA OpenEdition OS/2
OS/390 OS/400 RACF
RS/6000 System/390 VSE/ESA
VTAM

642 MQSeries Intercommunication

Part 9. Glossary and index

 Copyright IBM Corp. 1993,1999 643

644 MQSeries Intercommunication

 abend reason code � authorization checks

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
abend reason code . A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for OS/390.
A complete list of MQSeries for OS/390 abend reason
codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log . See recovery log.

adapter . An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space . The area of virtual storage available
for a particular job.

address space identifier (ASID) . A unique,
system-assigned identifier for an address space.

administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

| Advanced Program-to-Program Communication
| (APPC). The general facility characterizing the LU 6.2
| architecture and its various implementations in products.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alert monitor . In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

allied address space . See ally.

ally . An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR . Authorized program analysis report.

APC. Advanced Program Communication.

| APPC. Advanced Program-to-Program
| Communication.

application environment . The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log . In Windows NT, a log that records
significant application events.

application queue . A queue used by an application.

archive log . See recovery log.

| ARM. Automatic Restart Management

ASID. Address space identifier.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

| authorization checks . Security checks that are
| performed when a user tries to issue administration
| commands against an object, for example to open a
| queue or connect to a queue manager.

 Copyright IBM Corp. 1993,1999 645

 authorization file � CI

authorization file . In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

| Automatic Restart Management (ARM) . An OS/390
| recovery function that can improve the availability of
| specific batch jobs or started tasks, and therefore result
| in faster resumption of productive work.

B
backout . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

basic mapping support (BMS) . An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS) . A VSAM data set that
contains:

� An inventory of all active and archived log data sets
known to MQSeries for OS/390

� A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

BSDS. Bootstrap data set.

buffer pool . An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

channel exit program . A user-written program that
can be entered from one of a defined number of places
during channel operation.

channel initiator . A component of MQSeries
distributed queuing, which monitors the initiation queue
to see when triggering criteria have been met and then
starts the sender channel.

channel listener . A component of MQSeries
distributed queuing, which monitors the network for a
startup request and then starts the receiving channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

646 MQSeries Intercommunication

 circular logging � control command

circular logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

| CLUSRCVR. Cluster-receiver channel definition.

| CLUSSDR. Cluster-sender channel definition.

| cluster . A network of queue managers that are
| logically associated in some way.

| cluster-receiver channel (CLUSRCVR) . A channel on
| which a cluster queue manager can receive messages
| from other queue managers in the cluster and cluster
| information from the repository queue managers.

| cluster-sender channel (CLUSSDR) . A channel on
| which a cluster queue manager can send messages to
| other queue managers in the cluster and cluster
| information to the repository queue managers.

| cluster transmission queue . A transmission queue
| that transmits all messages from a queue manager to
| any other queue manager that is in the same cluster.
| The queue is called
| SYSTEM.CLUSTER.TRANSMIT.QUEUE.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF) . In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . An operation that applies all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

Common Run-Time Environment (CRE) . A set of
services that enable system and application
programmers to write mixed-language programs. These
shared, run-time services can be used by C, COBOL85,
FORTRAN, Pascal, and TAL programs.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information related
to, for example, logs, communications, or installable
services. Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

 Glossary of terms and abbreviations 647

 control interval (CI) � deferred connection

control interval (CI) . A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL) . In MQSeries for AS/400, a
language that can be used to issue commands, either
at the command line or by writing a CL program.

controlled shutdown . See quiesced shutdown.

CPF. Command prefix.

CRE. Common Run-Time Environment.

D
DAE. Dump analysis and elimination.

daemon . In UNIX systems, a program that runs
unattended to perform a standard service. Some
daemons are triggered automatically to perform their
tasks; others operate periodically.

data conversion interface (DCI) . The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCE. Distributed Computing Environment.

DCE principal . A user ID that uses the distributed
computing environment.

DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection . A pending event that is
activated when a CICS subsystem tries to connect to
MQSeries for OS/390 before MQSeries for OS/390 has
been started.

648 MQSeries Intercommunication

 distributed application � Formats and Protocols (FAP)

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM) . In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging . A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode . See dual logging.

dump analysis and elimination (DAE) . An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue . A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
environment . See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log . See application log.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer . A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE) . An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for processing,
diagnosing an abend, or specifying a retry address.

external security manager (ESM) . A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FAP. Formats and Protocols.

FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

forced shutdown . A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Formats and Protocols (FAP) . The MQSeries FAPs
define how queue managers communicate with one
another, and also how MQSeries clients communicate
with server queue managers.

 Glossary of terms and abbreviations 649

 Framework � instrumentation event

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)
� MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR) . An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC) . An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF) . An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace . An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle . See connection handle and object handle.

| hardened message . A message that is written to
| auxiliary (disk) storage so that the message will not be
| lost in the event of a system failure. See also
| persistent message.

heartbeat flow . A pulse that is passed from a sending
MCA to a receiving MCA when there are no messages
to send. The pulse unblocks the receiving MCA, which
otherwise, would remain in a wait state until a message
arrived or the disconnect interval expired.

heartbeat interval . The time, in seconds, that is to
elapse between heartbeat flows.

I
ICE. Intersystem Communications Environment is a
family of Tandem-based software products that enables
you to access a variety of applications on Tandem
computers.

immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

| in-doubt unit of recovery . In MQSeries, the status of
| a unit of recovery for which a syncpoint has been
| requested but not yet confirmed.

.ini file . See configuration file.

initialization file . In MQSeries for AS/400, a file that
contains two parameters; the TCP/IP listener port
number and the maximum number of channels that can
be current at a time. The file is called QMINI.

initialization input data sets . Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

installable services . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

650 MQSeries Intercommunication

 Interactive Problem Control System (IPCS) � MCI

Interactive Problem Control System (IPCS) . A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF) . An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

| Internet Protocol (IP) . A protocol used to route data
| from its source to its destination in an Internet
| environment. This is the base layer, on which other
| protocol layers, such as TCP and UDP are built.

Intersystem communication . In CICS,
communication between separate systems by means of
SNA networking facilities or by means of the
application-to-application facilities of an SNA access
method.

| IP. Internet Protocol.

IPCS. Interactive Problem Control System.

ISC. Intersystem communication.

ISPF. Interactive System Productivity Facility.

L
linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence
of files. New files are added to the sequence as
necessary. The space in which the data is written is
not reused until the queue manager is restarted.
Contrast with circular logging.

listener . In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition . An MQSeries object belonging to a
local queue manager.

local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale . On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and

| deliver messages, to enable them to recover in the
| event of failure.

log control file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file . In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW) . See unit of work.

luname . The name of the logical unit on your
workstation, that is the name of the software that
interfaces between your applications and the network.

LUWID. Logical unit of work identifier.

LU 6.2. A type of logical unit (LU) that supports
general communication between programs in a
distributed processing environment.

M
machine check interrupt . An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

 Glossary of terms and abbreviations 651

 media image � MQSeries client

media image . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises

| two message channel agents (a sender at one end and
| a receiver at the other end) and a communication link.

Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a

| communication link to a destination queue. See also
| message queue interface.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message flow control . A distributed queue
management task that involves setting up and
maintaining message routes between queue managers.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved, and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queue management . The Message Queue
Management (MQM) facility in MQSeries for Tandem
NSK V2.2 uses PCF command formats and control
commands. MQM runs as a PATHWAY SCOBOL
requester under the Terminal Control Process (TCP)
and uses an MQM SERVERCLASS server, which
invokes the C language API to perform PCF
commands. There is a separate instance of MQM for
each queue manager configured on a system, since
each queue manager is controlled under its own
PATHWAY configuration. Consequently, an MQM is
limited to the management of the queue manager to
which it belongs.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message-retry . An option available to an MCA that is
unable to deliver a message. The MCA can wait for a
predefined amount of time and then try to send the
message again.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

| MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

| MQSeries Administration Interface (MQAI) . A
| programming interface to MQSeries.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

652 MQSeries Intercommunication

 MQSeries commands (MQSC) � performance event

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

MQSeries server . An MQSeries server is a queue
manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues,
exist only on the queue manager system, that is, on the
MQI server machine. A server can support normal local
MQI applications as well.

multi-hop . To pass through one or more intermediate
queue managers when there is no direct communication
link between a source queue manager and the target
queue manager.

N
| namelist . An MQSeries object that contains a list of
| names, for example, queue names.

name service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

name transformation . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system being
used. Externally, the queue manager name remains
unchanged.

| NetBIOS . Network Basic Input/Output System. An
| operating system interface for application programs
| used on IBM personal computers that are attached to
| the IBM Token-Ring Network.

New Technology File System (NTFS) . A Windows
NT recoverable file system that provides security for
files.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character . The character that is represented by
X'00'.

O
OAM. Object authority manager.

| object . In MQSeries, an object is a queue manager, a
| queue, a process definition, a channel, a namelist, or a
| storage class (OS/390 only).

object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading . In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

output log-buffer . In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
page set . A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event indicating
that a limit condition has occurred.

 Glossary of terms and abbreviations 653

 performance trace � receiver channel

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

point of recovery . In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries
for OS/390 page sets and the corresponding log data
sets required to recover these page sets. These
backup copies provide a potential restart point in the
event of page set loss (for example, page set I/O error).

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal . In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

program temporary fix (PTF) . A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,
programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

654 MQSeries Intercommunication

 recovery log � SDWA

recovery log . In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the
active log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM) . A program
that handles all normal and abnormal termination of
tasks by passing control to a recovery routine
associated with the terminating function.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA) . The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply
message and request message.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used to request
a reply from another program. Contrast with reply
message and report message.

RESLEVEL . In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource . Any facility of the computing system or
operating system required by a job or task. In
MQSeries for OS/390, examples of resources are buffer
pools, page sets, log data sets, queues, and messages.

resource manager . An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

return-to-sender . An option available to an MCA that
is unable to deliver a message. The MCA can send the
message back to the originator.

rollback . Synonym for back out.

RTM. Recovery termination manager.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

 Glossary of terms and abbreviations 655

 security enabling interface (SEI) � supervisor call (SVC)

security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event . An event related to the service
interval.

session ID . In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be used
by a message channel agent when moving messages
from a transmission queue to a link.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling . In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating system
to notify a program when an expected message arrives
on a queue.

single logging . A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout . A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

SNA. Systems Network Architecture.

source queue manager . See local queue manager.

| SPX. Sequenced Packet Exchange transmission
| protocol.

stanza . A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries
on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

star-connected communications network . A network
in which all nodes are connected to a central node.

storage class . In MQSeries for OS/390, a storage
class defines the page set that is to hold the messages
for a particular queue. The storage class is specified
when the queue is defined.

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem . In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC) . An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

656 MQSeries Intercommunication

 SVC � Transmission Control Protocol (TCP)

SVC. Supervisor call.

switch profile . In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a refresh
security command is issued. Each switch profile that
MQSeries detects turns off checking for the specified
resource.

symptom string . Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF) . An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA) . Data
recorded in a SYS1.LOGREC entry, which describes a
program or hardware error.

system initialization table (SIT) . A table containing
parameters used by CICS on start up.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
TACL . Tandem Advanced Command Language.

target library high-level qualifier (thlqual) . High-level
qualifier for OS/390 target data set names.

target queue manager . See remote queue manager.

task control block (TCB) . An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching . The overlapping of I/O operations and
processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

| TCP. Transmission Control Protocol.

| TCP/IP. Transmission Control Protocol/Internet
| Protocol.

temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

termination notification . A pending event that is
activated when a CICS subsystem successfully
connects to MQSeries for OS/390.

thlqual . Target library high-level qualifier.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

trace . In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid . See transaction identifier.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

| Transmission Control Protocol (TCP) . Part of the
| TCP/IP protocol suite. A host-to-host protocol between
| hosts in packet-switched communications networks.
| TCP provides connection-oriented data stream delivery.
| Delivery is reliable and orderly.

 Glossary of terms and abbreviations 657

 Transmission Control Protocol/Internet Protocol (TCP/IP) � utility

| Transmission Control Protocol/Internet Protocol
| (TCP/IP). A suite of communication protocols that
| support peer-to-peer connectivity functions for both local
| and wide area networks.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
| UDP. User Datagram Protocol.

UIS. User identifier service.

undelivered-message queue . See dead-letter queue.

undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be
made to an MQSeries object. The undo part describes
how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

| User Datagram Protocol (UDP) . Part of the TCP/IP
| protocol suite. A packet-level protocol built directly on
| the Internet Protocol layer. UDP is a connectionless
| and less reliable alternative to TCP. It is used for
| application-to-application programs between TCP/IP
| host systems.

user identifier service (UIS) . In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

658 MQSeries Intercommunication

 Index

 Index

A
active channels, maximum number 70
add routing entry 448
addressing information 27
addrtge 448
administration, channel 66
AgentBuffer parameter 533
AgentBufferLength parameter 533
AIX

See MQSeries for AIX
aliases 27

creating 27
queue manager 27
remote queue definition 27
reply-to queue 27

ALTDATE attribute 86
alter channel

OS/390 323
OS/390 using CICS 356

Alter option 370
alternate channels 17
ALTTIME attribute 86
AMQCCCLA channel program 437
AMQCRCTA channel program 437
AMQCRS6A channel program 131
AMQCRSTA channel program 131
AMQRMCLA channel program 437
APC pathway definition, example 291
APPC/MVS, defining a connection 340
appearance of text in this book xix
applications, trusted 13, 134
ARM (Automatic Restart Management) 343
assured delivery 25
AT&T GIS SNA Server 247
AT&T GIS UNIX

See MQSeries for AT&T GIS UNIX
Attachmate PathWay 276
attributes

ALTDATE 86
alter date 86
alter time 86
ALTTIME 86
auto start 86
AUTOSTART 86
batch interval 87
batch size 87
BATCHINT 87
BATCHSZ 87
CHANNEL 88
channel description 92
channel name 88

attributes (continued)
channel type 89
CHLTYPE 89
CLUSNL 90
CLUSTER 89
cluster name 89
cluster namelist 90
communication connection identifier 90
CONNAME 90
connection name 90
CONVERT 91
convert message 91
DESCR 92
DISCINT 92
disconnect interval 92
HBINT 93
heartbeat interval 93
long retry count 93
long retry interval 94
LONGRTY 93
LONGTMR 94
LU 6.2 mode name 94
LU 6.2 TP name 94
maximum message length 95
maximum transmission size 96
MAXMSGL 95
MCA name 96
MCA type 96
MCA user 96
MCANAME 96
MCATYPE 96
MCAUSER 96
message exit name 97
message exit user data 97
message retry count 97
message retry interval 98
message-retry exit name 97
message-retry exit user data 97
mode name 94
MODENAME 94
MRDATA 97
MREXIT 97
MRRTY 97
MRTMR 98
MSGDATA 97
MSGEXIT 97
NETPRTY 98
network-connection priority 98
nonpersistent message speed 98
NPMSPEED 98
password 99
profile name, CICS 89

 Copyright IBM Corp. 1993,1999 659

 Index

attributes (continued)
PUT authority 99
PUTAUT 99
QMNAME 100
queue manager name 100
RCVDATA 101
RCVEXIT 100
receive exit name 100
receive exit user data 101
SCYDATA 101
SCYEXIT 101
security exit name 101
security exit user data 101
send exit name 101
send exit user data 102
SENDDATA 102
SENDEXIT 101
sequence number wrap 102
sequential delivery 102
SEQWRAP 102
short retry count 102
short retry interval 103
SHORTRTY 102
SHORTTMR 103
target system identifier 103
TPNAME 94
transaction identifier 103
transmission protocol 104
transmission queue name 103
transport type 104
TRPTYPE 104
user ID 104
USERID 104
XMITQ 103

authority, PUT 99
auto-definition exit program 502
auto-definition of channels 67
automatic channel reconnect for TCP/IP 343
Automatic Restart Management (ARM) 343
AUTOSTART attribute 86

B
back out in-doubt messages

Digital OpenVMS 128
OS/2 128
OS/400 432
Tandem NSK 128
UNIX systems 128
Windows NT 128

batch interval 87
batch size 87
BATCHINT attribute 87
BatchInterval field 564
BatchSize field 553

BATCHSZ attribute 87
bibliography xx
bind type 134
BINDING channel state 69
binding, fastpath 134
BookManager xxv
browsing a channel 357, 423

C
caller, responder 11
calls

detailed description
MQ_CHANNEL_AUTO_DEF_EXIT 539
MQ_CHANNEL_EXIT 532
MQ_TRANSPORT_EXIT 545
MQXWAIT 543

CapabilityFlags field 595
CDF

See channel definition file
CEDA CICS transaction 383
change definition, channel 124, 429
Change option 429
channel

administration 66
alter

OS/390 323
OS/390 using CICS 370

altering 356
attributes 123
auto-definition 67
auto-definition exit program 502
browsing 357, 423
change definition 124, 429
channel control function

Digital OpenVMS 115
OS/2 115
OS/400 417
Tandem NSK 115
UNIX systems 115
Windows NT 115

characteristics
Digital OpenVMS 131
OS/2 131
OS/390 using CICS 351
OS/400 437
Tandem NSK 131
UNIX systems 131
Windows NT 131

client-connection 8
cluster-receiver 10
cluster-sender 9
command queue

OS/390 342
configuration 478
constants 623

660 MQSeries Intercommunication

 Index

channel (continued)
control commands 66
copy definition 368, 429
create definition

Digital OpenVMS 124
OS/2 124
OS/390 using CICS 368
OS/400 428
Tandem NSK 124
UNIX Systems 124
Windows NT 124

creating 120, 356, 420
creating your own defaults 369, 428
default values supplied by MQSeries for

AS/400 428
default values supplied by OS/390 using CICS 369,

372
define

OS/390 322
OS/390 using CICS 372

definition, what is it? 63
delete 124, 430

OS/390 324
OS/390 using CICS 370

description 92
Digital OpenVMS

resolve 128
display

Digital OpenVMS 124
OS/2 124
OS/400 430
Tandem NSK 124
UNIX systems 124
Windows NT 124

display settings
OS/390 using CICS 366

display status
Digital OpenVMS 125
OS/2 125
OS/390 using CICS 364
OS/400 430
Tandem NSK 125
UNIX systems 125
Windows NT 125

display, OS/390 323
displaying 121, 430
displaying settings

Digital OpenVMS 125
OS/2 125
OS/390 using CICS 364
OS/400 430
Tandem NSK 125
UNIX Systems 125
Windows NT 125

displaying status 430
Digital OpenVMS 125
OS/2 125

channel (continued)
displaying status (continued)

OS/390 using CICS 364
OS/400 430
Tandem NSK 125
UNIX Systems 125
Windows NT 125

enabling 68
error 71

restarting after 75
exit current function 367
fastpath binding 134
find 370
in doubt 76
in-doubt channels 76
initial data negotiation 67
initiator

AIX, OS/2, HP-UX, Sun Solaris, and Windows
NT 130

OS/390 325
overview 11

listener
overview 11
start, OS/390 327
start, OS/400 431
stop, OS/390 327
STRMQMLSR command 431
trusted 13

menu-bar choice 373
monitoring 66
MQI 8
OS/2

resolve 128
OS/400

resolve 432
ping

Digital OpenVMS 125
OS/2 125
OS/390 329
OS/390 using CICS 366
OS/400 430
Tandem NSK 125
UNIX systems 125
Windows NT 125

planning form 619
preparing 66
program types

Digital OpenVMS 131
MQSeries for AS/400 437
OS/2 131
Tandem NSK 131
UNIX systems 131
Windows NT 131

programs 437
AMQCCLA 437
AMQCRCTA 437
AMQCRS6A 131, 437

 Index 661

 Index

channel (continued)
programs (continued)

AMQCRSTA 131
AMQRMCLA 437
OS/390 using CICS 351

pull-down menu 373
quiescing 73
receiver 8
receiving parameters 65
refuses to run 609
renaming

Digital OpenVMS 122
OS/2 122
OS/390 using CICS 357
OS/400 425
Tandem NSK 122
UNIX Systems 122
Windows NT 122

requester 8
requester-sender 10
requester-server 9
Reset

Digital OpenVMS 128
OS/2 128
OS/390 330
OS/390 using CICS 362
OS/400 432
Tandem NSK 128
UNIX systems 128
Windows NT 128

resolving
Digital OpenVMS 128
OS/2 128
OS/390 331
OS/390 using CICS 363
OS/400 432
Tandem NSK 128
UNIX Systems 128
Windows NT 128

restart 68
restarting when stopped 75
resync, OS/390 using CICS 361
run 122
segregating messages 17
selecting 423
selecting OS/390 using CICS 354
sender-receiver 8
sequence numbers 65
server-connection 8
server-receiver 9
sharing 17
start 68

Digital OpenVMS 122, 125
OS/2 122, 125
OS/390 328
OS/390 using CICS 358
OS/400 431

channel (continued)
start (continued)

Tandem NSK 122, 125
UNIX Systems 122, 125
Windows NT 122, 125

startup negotiation errors 609
startup, data negotiation 67, 492, 494
state 68, 69
status 65
stopping 73, 432

Digital OpenVMS 127
OS/2 127
OS/390 332
OS/390 using CICS 360, 385
OS/400 432
Tandem NSK 127
UNIX systems 127
Windows NT 127

switching 613
synchronizing 361, 492
Tandem NSK

resolve 128
test

OS/390 329
transport-retry exit program 503
triggering 23, 359

OS/2 129
 OS/390 341
OS/390 using CICS 359
Tandem NSK 129
UNIX systems 129
Windows NT 129

trusted 134
types 89, 123, 131, 352
using alternate channels 17
working with OS/390 using CICS 354

CHANNEL attribute 88
channel attributes 520

See also ?
See also attributes

channel auto-definition exit
introduction 13

channel configuration
MQSeries for AIX 220
MQSeries for AS/400 459
MQSeries for AT&T GIS UNIX 252
MQSeries for HP-UX 238
MQSeries for OS/2 Warp 171
MQSeries for OS/390 404
MQSeries for Sun Solaris 269
MQSeries for Windows NT 192

channel control error messages 607
channel control function 66

Digital OpenVMS 115
OS/2 115
OS/390 319

662 MQSeries Intercommunication

 Index

channel control function (continued)
OS/390 using CICS 351
OS/400 417
Tandem NSK 115
UNIX systems 115
Windows NT 115

channel definition file
Digital OpenVMS 116
OS/2 116
OS/390 using CICS 351
OS/400 417
Tandem NSK 116
UNIX systems 116
Windows NT 116

channel description 92
channel exit

MQCXP structure 585
MQTXP structure 601
MQXWD structure 605

channel exits
auto-definition 502
message 500
message-retry 502
receive 498
security 494
send 498
transport-retry 503

channel functions
Digital OpenVMS 124
OS/2 124
Tandem NSK 124
UNIX systems 124
Windows NT 124

channel initiator
display, OS/390 324
overview 11
retries 71, 93
runmqchi command, MQSeries for OS/2 Warp 126
runmqchi command, MQSeries for Windows

NT 126
runmqchi command, MQSeries on UNIX

systems 126
runmqchi command, Tandem NSK 126
running the MCA as a thread 96
start, OS/2, Windows NT, Digital OpenVMS, Tandem

NSK, and UNIX systems 130
start, OS/390 325
start, OS/400 431
stop, OS/390 326
STRMQMCHLI command 431

channel listener
overview 11
start, OS/390 327
start, OS/400 431
stop, OS/390 327
STRMQMLSR command 431

channel listener (continued)
trusted 13

channel name attribute 88
channel planning example

Digital OpenVMS 301
OS/2 301
OS/390 345
OS/400 465
UNIX systems 301
Windows NT 301

channel planning form, how to use 619
channel programs

Digital OpenVMS 131
MQSeries for AS/400 437
OS/2 131
OS/390 using CICS 351
Tandem NSK 131
UNIX systems 131
Windows NT 131

channel refuses to run 609
channel settings panel

OS/390 using CICS 374
channel startup negotiation errors 609
channel states

BINDING 68
INACTIVE 71
OS/400 438

channel status
display, Digital OpenVMS 125
display, OS/2 125
display, OS/390 333
display, OS/390 using CICS 364
display, OS/400 430
display, Tandem NSK 125
display, UNIX systems 125
display, Windows NT 125

channel type attribute 89
channel-exit programs 491—528

channel definition structure, MQCD 505
data buffer 505
introduction 13
MQSeries for AIX 513
MQSeries for AS/400 508
MQSeries for AT&T GIS UNIX 518
MQSeries for Digital OpenVMS 515
MQSeries for HP-UX 517
MQSeries for OS/2 Warp 508
MQSeries for OS/390 using CICS 508
MQSeries for OS/390 without CICS 506
MQSeries for SINIX and DC/OSx 519
MQSeries for Sun Solaris 518
MQSeries for Tandem NonStop Kernel 520
MQSeries for Windows 513
MQSeries for Windows NT 511
parameter structure, MQCXP 505
supplied programs, DCE 521

 Index 663

 Index

channel-exit programs (continued)
Windows 3.1 client 510
Windows 95 and Windows 98 client 511
Windows NT client 511
writing and compiling 504

ChannelDefinition parameter 532, 539
ChannelExitParms parameter 532, 539
ChannelName field 549
CHANNELS stanza
channels, alternate to 17
ChannelType field 551
CHLTYPE attribute 89
CICS

CEDA INSTALL command 383
installing communication connection 383
profile name 89
regions 352
transaction

CEDA 383
CKMC 352
CKSG 384

Cisco MultiNet for Digital OpenVMS 275
CKMC CICS transaction 352
CKSG CICS transaction 384
class of routing entry 449
class of service 52
client-connection channel 8
clients

problem determination 614
CLUSNL attribute 90
CLUSTER attribute 89
cluster channels, OS/390 335
cluster components 6
cluster name attribute 89
cluster namelist attribute 90
cluster-receiver 10
cluster-receiver channel 8
cluster-sender 9
cluster-sender channel 8
clusters

choosing transmission queue 43
components 6
concentrating messages 49
distribution lists 51
message flow 39
networking considerations 58
passing messages 45
putting messages 42
reply-to queue 52
return routing 59
separating message flows 47
using 18

command queue channel, OS/390 342
command validation 77
commit in-doubt messages

Digital OpenVMS 128

commit in-doubt messages (continued)
OS/2 128
OS/400 432
Tandem NSK 128
UNIX systems 128
Windows NT 128

committed messages
Digital OpenVMS 128
OS/2 128
OS/400 432
Tandem NSK 128
UNIX systems 128
Windows NT 128

communication
between CICS systems attached to one queue

manager 383
between queue managers 382
intersystem (ISC) 382

communications examples
ICE 296
SNAX 288
TCP/IP 299

Communications Manager/2 141, 142, 143
Communications Server for Windows NT 182
communications setup, Tandem NSK 288
communications side object

OS/390 340
OS/400 443, 444

communications software, example configurations
CompCode parameter

MQXWAIT call 543
components of distributed-queuing environment 8—15

channel initiator 11
channel listener 11
message channel 8
transmission queue 11

components, cluster 6
compression of data 498
concentrating messages 49
concentrators 34
concepts of intercommunication 3—18, 25
configuration

MQSeries for AIX 219
MQSeries for AS/400 459
MQSeries for AT&T GIS UNIX 251
MQSeries for HP-UX 237
MQSeries for OS/2 Warp 170
MQSeries for OS/390 404
MQSeries for Sun Solaris 268
MQSeries for VSE/ESA 478
MQSeries for Windows NT 191

configuration file 80
Digital OpenVMS 81
OS/2 81
SINIX and DC/OSx 307
Tandem NSK 81

664 MQSeries Intercommunication

 Index

configuration file (continued)
UNIX systems 81

configuration worksheet 473
configuring the UDP transport-retry exit 504
CONNAME attribute 90
connection

APPC/MVS
OS/390 337

deciding upon
OS/390 337
OS/400 441

DECnet Phase IV 282
DECnet Phase V 284
defining APPC/MVS (LU 6.2) 340
defining LU 6.2

Digital OpenVMS 277
OS/2 140
OS/400 443
UNIX systems 203
Windows NT 140

installing 383
LU 6.2

Digital OpenVMS 273
OS/2 137
OS/390 337
OS/390 using CICS 382
OS/400 441
Tandem NSK 285
UNIX systems 199
Windows NT 137

NetBIOS
OS/2 137
Windows NT 137

SPX
OS/2 137
Windows NT 137

switching 614
TCP

Digital OpenVMS 273
OS/2 137
OS/390 337
OS/400 441
Tandem NSK 285
UNIX systems 199
Windows NT 137

UDP
UNIX systems 199

connection name 90
for function shipping 383

ConnectionName field
MQCD structure 559

constants 623
constants, values of 623—627

channel capability flags (MQCF_ñ) 624
channel data conversion (MQCDC_ñ) 624
channel definition structure length (MQCD_ñ) 623

constants, values of (continued)
channel definition structure version (MQCD_ñ) 623
channel type (MQCHT_ñ) 624
channel-exit parameter structure identifier

(MQCXP_ñ) 624
channel-exit parameter structure version

(MQCXP_ñ) 624
exit identifier (MQXT_ñ) 627
exit reason (MQXR_ñ) 627
exit response (MQXCC_ñ) 626
exit user area (MQXUA_ñ) 627
MCA type (MQMCAT_ñ) 625
nonpersistent message speed (MQNPMS_ñ) 625
put authority (MQPA_ñ) 625
queue type (MQQT_ñ) 625
secondary exit response (MQXR2_ñ) 627
security identifier (MQSID_ñ) 625
security identifier type (MQSIDT_ñ) 626
transmission protocol type (MQXPT_ñ) 626
transport retry exit structure identifier

(MQTXP_ñ) 626
transport retry exit version (MQTXP_ñ) 626

context security 99
control commands, channel 66
conversion failure, problem determination 611
conversion of data 65
CONVERT attribute 91
convert message 91
coordination with adjacent systems 48
Copy option 368, 429
Create option 368, 428
creating

channel
Digital OpenVMS 120
OS/2 120
OS/390 using CICS 356
OS/400 420
Tandem NSK 120
UNIX systems 120
Windows NT 120

defaults 369, 428
objects

Digital OpenVMS 119
OS/2 119
OS/400 420
Tandem NSK 119
UNIX systems 119
Windows NT 119

queues 129, 433
transmission queue 129, 433

creating a channel
OS/390 using CICS 356

CRTCSI command 444
CRTMQM command 120
CSI object

See communications side object

 Index 665

 Index

current channels
specifying maximum number 70

D
data

compression 498
conversion 500
decompression 498
encryption 500
negotiation 23, 67

data conversion 82
data types, detailed description

structure
MQCD 547
MQCXP 585
MQTXP 601
MQXWD 605

DataConversion field 556
DataId

field
MQTXP structure 603

DataLength
field

MQTXP structure 603
DataLength parameter

MQ_CHANNEL_EXIT call 532
DCE

supplied exit programs 521
dead-letter queue 15, 58

Digital OpenVMS 131
MQSeries for AS/400 439
OS/2 131
overview 15
problem determination 608
processing 608
Tandem NSK 131
UNIX systems 131
Windows NT 131

DECnet Phase IV 273
DECnet Phase IV connection 282
DECnet phase V connection 284
decompression of data 498
default channel values

OS/390 using CICS 369, 372
OS/400 428

default object creation 119
define channel

OS/390 322
defining

an LU 6.2 connection
Digital OpenVMS 277
OS/2 140
OS/400 443
UNIX systems 203
Windows NT 140

defining (continued)
APPC/MVS (LU 6.2) connection

OS/390 340
objects 384

OS/390 341
OS/390 322
OS/390 using CICS 372
queues 384

OS/390 341
definition file

Digital OpenVMS 116
OS/2 116
OS/390 using CICS 351
OS/400 417
Tandem NSK 116
UNIX systems 116
Windows NT 116

delete channel
distributed platforms 124
OS/390 324
OS/390 using CICS 370
OS/400 430

delivery, messages 25
Desc field 552
DESCR attribute 92
description, channel 92
DestAddress parameter 545
DestAddressLength parameter 545
destination queue 46
dial-up support 612
Digital OpenVMS

See MQSeries for Digital OpenVMS
Digital TCP/IP services for OpenVMS 274
disabled receiver channels 125, 431
disaster recovery 613
DISCINT attribute 92
DiscInterval field 553
disconnect interval 92
display

option 430
OS/390, DQM 324
settings 366
status 364

display channel
Digital OpenVMS 121
OS/2 121
OS/390 323
OS/400 430
Tandem NSK 121
UNIX systems 121
Windows NT 121

display channel initiator
OS/390 324

Display channel status
Digital OpenVMS 121
OS/2 121

666 MQSeries Intercommunication

 Index

Display channel status (continued)
OS/390 333
Tandem NSK 121
UNIX systems 121
Windows NT 121

display DQM 324
display settings 366
display status 364
distributed queue management in MQSeries for

AS/400 433
distributed queuing

components 8—15
functions 63

distributed queuing in OS/390 using CICS 381
distribution lists 51, 65
diverting message flows 50
DLQ

See dead-letter queue
DQM

display, OS/390 324
DQM panels

OS/390 using CICS 352

E
ECB field 606
edit

alter
OS/390 using CICS 370

change
Digital OpenVMS 124
OS/2 124
OS/400 429
Tandem NSK 124
UNIX systems 124
Windows NT 124

copy
OS/390 using CICS 368
OS/400 429

create
Digital OpenVMS 124
OS/2 124
OS/390 using CICS 368
OS/400 428
Tandem NSK 124
UNIX systems 124
Windows NT 124

delete
Digital OpenVMS 124
OS/2 124
OS/390 using CICS 370
OS/400 430
Tandem NSK 124
UNIX systems 124
Windows NT 124

find
OS/390 using CICS 370

edit (continued)
menu-bar choice

OS/390 using CICS 367
pull-down menu 367

enabling a channel to transmit messages 68
encryption of messages 491
end 127
End option 432
ending a channel 127, 432
ending SNA Listener process 281
ENDMQLSR command 131
error

at remote sites 607
channel 71
logs 126, 615
message from channel control 607
recovery 607

example
channel planning

Digital OpenVMS 301
OS/2 301
OS/390 345
OS/400 465
UNIX systems 301
Windows NT 301

communications setup
Tandem NSK 288

configuration file
SINIX and DC/OSx 307

configurations 106
flow control 39
local queue definition

Digital OpenVMS 304
OS/2 304
OS/390 348
OS/400 469
Tandem NSK 304
UNIX systems 304
Windows NT 304

process definition
Digital OpenVMS 303, 305
OS/2 303, 305
OS/390 347, 348
OS/400 467, 469
Tandem NSK 303, 305
UNIX systems 303, 305
Windows NT 303, 305

receiver channel definition
Digital OpenVMS 304, 305
OS/2 304, 305
OS/390 347, 349
OS/400 468, 470
Tandem NSK 304, 305
UNIX systems 304, 305
Windows NT 304, 305

remote queue definition
Digital OpenVMS 303

 Index 667

 Index

example (continued)
remote queue definition (continued)

OS/2 303
OS/390 347
OS/400 467
Tandem NSK 303
UNIX systems 303
Windows NT 303

reply-to queue definition
Digital OpenVMS 304
OS/2 304
OS/390 347
OS/400 468
Tandem NSK 304
UNIX systems 304
Windows NT 304

running
Digital OpenVMS 305
OS/2 305
OS/390 349
OS/400 470
Tandem NSK 305
UNIX systems 305
Windows NT 305

sender channel definition
Digital OpenVMS 304, 305
OS/2 304, 305
OS/390 347, 349
OS/400 468, 469
Tandem NSK 304, 305
UNIX systems 304, 305
Windows NT 304, 305

transmission queue definition
Digital OpenVMS 303, 304
OS/2 303, 304
OS/390 347, 348
OS/400 467, 469
Tandem NSK 303, 304
UNIX systems 303, 304
Windows NT 303, 304

example configurations
MQSeries for AIX 207—224
MQSeries for AS/400 451—464
MQSeries for AT&T GIS UNIX 243—255
MQSeries for HP-UX 225—241
MQSeries for OS/2 Warp 151—175
MQSeries for OS/390 395—414
MQSeries for Sun Solaris 257—272
MQSeries for Windows NT 177—197

exit 367
exit wait descriptor structure 605
ExitBufferAddr parameter 534
ExitBufferLength parameter 534
ExitData field 594
ExitDataLength field 566

ExitId field 587
ExitNameLength field 565
ExitNumber field 596
ExitParms parameter 545
EXITPATH

stanza of qm.ini file 635
ExitReason field 587

MQTXP structure 602
ExitResponse

field
MQTXP structure 603

ExitResponse field 589
ExitResponse2 field 591
exits

constants 623
ExitUserArea

field
MQTXP structure 602

ExitUserArea field 593

F
FAPLevel field 595
fast, nonpersistent messages 26

sequence of retrieval 62
specifying 98

Feedback
field

MQTXP structure 604
Feedback field 593
fields

details of receiver channel panel 377
details of requester channel settings panel 379
details of sender channel settings 376
details of server channel settings panel 378

find option 370
flow control 39
function keys

OS/390 using CICS 353
function shipping 383
functions available

Digital OpenVMS 116
OS/2 116
Tandem NSK 116
UNIX systems 116
Windows NT 116

G
glossary 645
GroupId

field
MQTXP structure 603

668 MQSeries Intercommunication

 Index

H
HBINT attribute 93
Hconn parameter

MQXWAIT call 543
HeaderLength field 595
heartbeat interval 93
help

OS/390 using CICS 372
pull-down menus 372, 373

help menu-bar choice 372, 373
how to use

channel planning form 619
this book xviii

HP-UX
See MQSeries for HP-UX

HTML (Hypertext Markup Language) xxv
Hypertext Markup Language (HTML) xxv

I
IBM Communications Server for Windows NT 182
ICE communications example 296
in-doubt 87
in-doubt channels, manual resynchronization 76
in-doubt message on channel, resolve on OS/390 331
in-doubt messages, commit or back out

Digital OpenVMS 128
OS/2 128
OS/400 432
Tandem NSK 128
UNIX systems 128
Windows NT 128

INACTIVE channel state 69, 71
ini file 81
initial data negotiation 23, 67
initialization data set, OS/390 without CICS 80
initialization file 80

example 80
MQSeries for AS/400 80

initiator for channel
AIX, OS/2, HP-UX, Sun Solaris, and Windows

NT 130
OS/390 325

installing
CICS communication connection 383

integrity of delivery 25
intercommunication

concepts 3—18, 25
example 473
example configuration 105

intercommunication example 473—485
interfaces

Interlink SNSTCPAccess 343
IUCV 343

Interlink SNSTCPAccess interface 343
intersystem communication (ISC) 382
ISC (intersystem communication) 382
IUCV interface 343

J
journaling 500

K
KEEPALIVE 72

OS/2 147, 169
keyboard functions

function keys
OS/390 using CICS 353

OS/390 using CICS
clear key 354
enter key 354
unassigned keys and unavailable choices 354

L
links, wide-band 34
list cluster channels, OS/390 335
listener, trusted 11, 13, 134
listening on LU 6.2

OS/2 142
OS/390 341
UNIX systems 204
Windows NT 142

listening on NetBIOS
OS/2 146
Windows NT 146

listening on SPX
OS/2 148, 169
Windows NT 148, 190

listening on TCP
OS/390 338
OS/400 442

listening on TCP/IP
Digital OpenVMS 274
OS/2 138
UNIX systems 200
Windows NT 138

local queue definition
example

Digital OpenVMS 304
OS/2 304
OS/390 348
OS/400 469
Tandem NSK 304
UNIX systems 304
Windows NT 304

local queue manager 3

 Index 669

 Index

location name 46
log

error 127, 615
file, @SYSTEM 615

logs for errors 126
long retry count attribute 93
long retry interval attribute 94
LongRetryCount field 554
LongRetryInterval field 554
LONGRTY attribute 93
LONGTMR attribute 94
loopback testing 62
LU 6.2

mode name 94
responder processes 287
settings

OS/2 140
OS/400 443
UNIX systems 203
Windows NT 140

TP name 94
LU 6.2 connection

MQSeries for AIX 207
MQSeries for AS/400 451
MQSeries for AT&T GIS UNIX 243
MQSeries for Digital OpenVMS 273
MQSeries for HP-UX 225
MQSeries for OS/2 Warp 151
MQSeries for OS/390 395
MQSeries for OS/390 with CICS 381, 402
MQSeries for OS/390 without CICS 401
MQSeries for Sun Solaris 257
MQSeries for Tandem NSK 285
MQSeries for VSE/ESA 473
MQSeries for Windows NT 177
setting up

OS/2 137
OS/390 340
OS/390 using CICS 382
OS/400 441
UNIX systems 199
Windows NT 137

LU62
stanza of qm.ini file 635

M
maximum

active channels 70
current channels 70
message length 95
transmission size 96

MAXMSGL attribute 95
MaxMsgLength

field, MQCD structure 556

MaxSegmentLength field 593
MCA

See also message channel agent (MCA)
name 96
type 96
user 96
user-written 82

MCANAME attribute 96
MCAName field 552
MCATYPE attribute 96
MCAType field 559
MCAUSER attribute 96
MCAUserIdentifier field

MQCD structure 558
message

committed
Digital OpenVMS 128
OS/2 128
OS/400 432
Tandem NSK 128
UNIX systems 128
Windows NT 128

concentrating 49
converting 91
diverting flows 50
encryption 491
error 607
for distribution list 51
passing through system 45
putting on remote queue 42
queue name translations 59
receiving 44
return routing 59
return to sender 79
routing 43
sending and receiving 64
separating flows 47
sequence numbering 61
sequential retrieval 61
splitting 65
undeliverable 78

message channel
cluster-receiver 8, 10
cluster-sender 8, 9
receiver 8
requester 8
requester-sender 10
requester-server 9
sender 8
sender-receiver 8
server 8
server-receiver 9

message channel agent
initiation 494, 498
termination 494, 498
user-written 82

670 MQSeries Intercommunication

 Index

message channel agent (MCA) 11, 63
message channel agent security 99
message channels

list panel 353
OS/390 using CICS 353

message exit 13
message exit name 97
message exit program 500

overview 493
message exit user data 97
message flow control 39

networking considerations 58
message retry 79
message-retry exit

introduction 13
name 97
retry count 97
retry interval 98
user data 97

message-retry exit program 502
messages

assured delivery 25
back out in-doubt messages 128

OS/400 432
commit in-doubt messages 128

OS/400 432
resolve in-doubt messages 128

OS/400 432
sending 19

messages and codes 78
mode name 94
MODENAME attribute 94
ModeName field 553
monitoring and controlling channels 351

Digital OpenVMS systems 115
OS/2 115
OS/390 319
OS/390 using CICS 351
OS/400 417
Tandem NSK 115
UNIX systems 115
Windows NT 115

monitoring channels 66
moving service component 4
MQ_CHANNEL_AUTO_DEF_EXIT call 539
MQ_CHANNEL_EXIT call 532
MQ_TRANSPORT_EXIT call 545
MQCD structure 547
MQCD, channel definition structure 505
MQCXP structure 585
MQCXP_ñ values 586
MQCXP, channel exit parameter structure 505
MQFB_ñ values 593
MQI channels 8
MQIBindType 134

mqmtop, definition of xix
MQRMH, reference-message header 501
mqs.ini 81
MQSeries for AIX

channel configuration 220
channel-exit programs 513
configuration 219
intercommunication example 207—224
LU 6.2 connection 207
TCP connection 218
UDP connection 218

MQSeries for AS/400
channel configuration 459
channel-exit programs 508
configuration 459
intercommunication example 451—464
LU 6.2 connection 451

MQSeries for AT&T GIS UNIX
channel configuration 252
channel-exit programs 518
configuration 251
intercommunication example 243—255
LU 6.2 connection 243
TCP connection 251

MQSeries for Digital OpenVMS
channel-exit programs 515
problem solving 282
setting up communication 273
SNA configuration 277

MQSeries for HP-UX
channel configuration 238
channel-exit programs 517
configuration 237
intercommunication example 225—241
LU 6.2 connection 225
TCP connection 236

MQSeries for OS/2 Warp
channel configuration 171
channel-exit programs 508
configuration 170
intercommunication example 151—175
LU 6.2 connection 151
NetBIOS connection 167
SPX connection 167
TCP connection 165

MQSeries for OS/390
channel configuration 404
configuration 404
intercommunication example 395—414
LU 6.2 connection 395
TCP connection 403

MQSeries for OS/390 using CICS
channel-exit programs 508

MQSeries for OS/390 without CICS
channel-exit programs 506

 Index 671

 Index

MQSeries for SINIX and DC/OSx
channel-exit programs 519

MQSeries for Sun Solaris
channel configuration 269
channel-exit programs 518
configuration 268
intercommunication example 257—272
LU 6.2 connection 257
TCP connection 268

MQSeries for Tandem NonStop Kernel
channel-exit programs 520
setting up communication 285

MQSeries for VSE/ESA
channel configuration 478
configuration 478
configuration worksheet 473
LU 6.2 connection 473

MQSeries for Windows 109
channel-exit programs 513

MQSeries for Windows NT
channel configuration 192
channel-exit programs 511
configuration 191
intercommunication example 177—197
LU 6.2 connection 177
NetBIOS connection 188
SPX connection 189
TCP connection 188

MQSeries publications xx
MQSINI 81
MQTXP structure 601
MQTXP_ñ values 601
MQXCC_ñ values 589, 603
MQXQH, transmission header 501, 502
MQXR_ñ values 587, 602
MQXR2_ñ values 591
MQXT_ñ values 587
MQXUA_ñ values 593, 602
MQXWAIT call 543
MQXWD structure 605
MQXWD_ñ values 605
MRDATA attribute 97
MREXIT attribute 97
MRO (multiregion operation) 382
MRRTY attribute 97
MRTMR attribute 98
MSGDATA attribute 97
MSGEXIT attribute 97
MsgExit field 555
MsgExitPtr field 566
MsgExitsDefined field 566
MsgRetryCount field 562, 594
MsgRetryExit field 561
MsgRetryInterval field 563, 594
MsgRetryReason field 594

MsgRetryUserData field 562
MsgUserData field 557
MsgUserDataPtr field 567
multi-hopping 16
multi-region operation (MRO) 382
multiple message channels per transmission queue

Digital OpenVMS 132
OS/2 132
OS/390 using CICS 384
OS/400 439
Tandem NSK 132
UNIX systems 132
Windows NT 132

multiple queue managers 142

N
name resolution

conflicts 59
convention 58
description 629
introduction 28
location 46
queue name translations 59
restriction 53

NCR UNIX
See MQSeries for AT&T GIS UNIX

NDF file configuration 143
negotiations on startup 67, 609
NetBIOS 4, 143

stanza of qm.ini file 635
NetBIOS connection

MQSeries for OS/2 Warp 167
MQSeries for Windows NT 188
OS/2 137
Windows NT 137

NetBIOS products, in example configurations 106
NetBIOS, example configurations 106
network infrastructure, example configurations 106
network planner 33
network-connection priority 98
networking 45
networking considerations 58
networks 32
node centric 40
nonpersistent message speed 98
NonPersistentMsgSpeed field 564

O
objects

creating
Digital OpenVMS 119
OS/2 119
OS/400 420
Tandem NSK 119
UNIX systems 119

672 MQSeries Intercommunication

 Index

objects (continued)
creating (continued)

Windows NT 119
creating default 119
defining 384

OS/390 341
security 132, 439

operator commands
OS/400 418

options
alter 370
change 429
copy 368, 429
create 368, 428
display 430
display settings 366
display status 364, 430
end 432
exit 367, 373
find 370
ping 366, 430
reset 362, 432
resolve 128, 363

OS/400 432
resync 361
save 373
start 358, 431
stop 360

OS/390 using CICS 360
OS/2

See MQSeries for OS/2 Warp
OS/390

See MQSeries for OS/390
OS/390 connections

connecting systems 381
LU 6.2 381

OS/400
See MQSeries for AS/400

P
panel data, validation 77
panels

altering channel
message channel list 356

browsing a channel
OS/400 423

browsing channel
message channel list 357

channel start
OS/400 431

creating a channel
message channel list 356
OS/400 420

display
channel status 364
OS/400 430

panels (continued)
display channel status 430
display settings

message channel list 366
display status

message channel list 364
edit menu-bar options

message channel list 367
ending channel

OS/400 432
exit

message channel list 367
exit from 373
help menu-bar choice, message channel list 372
OS/390 using CICS

Enter key, message channel list 354
keyboard functions, message channel list 353
message channel list 353
working with channels, 354

OS/390 using CICS, message channel list 354
unavailable choices, message channel list 354

OS/400
resolve 432
work with status 430

ping
message channel list 366
OS/400 430

receiver channel settings 377
reset

message channel list 362
OS/400 432

resolve
message channel list 363

resync
message channel list 361

selected menu-bar choice
message channel list 357

selecting a channel
OS/400 423

starting channel
message channel list 358

stopping channel
message channel list 360

using, OS/390 320
view menu-bar choice

message channel list 371
Work with channel status

OS/400 425
work-with-channel choices

OS/400 427
parameters, receiving 65
PartnerName field

MQCXP structure 595
password 99
Password field 558

 Index 673

 Index

PAUSED channel state 69, 72
PDF (Portable Document Format) xxv
ping 366, 430

Digital OpenVMS 125
OS/2 125
problem determination 608
Tandem NSK 125
UNIX systems 125
Windows NT 125

ping channel
OS/390 329

ping with LU 6.2 125, 430
planning

message channel planning example
OS/390 using CICS 387

planning form 619
port

in qm.ini file 635
MQSeries for AIX 213
MQSeries for Digital OpenVMS 273
MQSeries for HP-UX 231
MQSeries for OS/2 137
MQSeries for OS/390 325, 404
MQSeries for VSE/ESA 484
MQSeries for Windows NT 137
Tandem NSK 299

Portable Document Format (PDF) xxv
PostScript format xxvi
preparation

getting started
Digital OpenVMS 119
OS/2 119
OS/400 420
Tandem NSK 119
UNIX systems 119
Windows NT 119

preparing channels 66
preparing MQSeries for AS/400 433
problem determination 607

channel refuses to run 609
channel startup negotiation errors 609
channel switching 613
clients 614
connection switching 614
conversion failure 611
data structures 612
dead-letter queue 608
error messages 607
retrying the link 612
scenarios 607
transmission queue overflow 608
triggered channels 611
undelivered-message queue 608
user-exit programs 613
using the PING command 608
validation checks 609

process definition
example

Digital OpenVMS 305
OS/2 305
OS/390 348
OS/400 469
Tandem NSK 305
UNIX systems 305
Windows NT 305

process definition example
Digital OpenVMS 303
OS/2 303
OS/390 347
OS/400 467
Tandem NSK 303
UNIX systems 303
Windows NT 303

process definition for triggering
Digital OpenVMS 129
OS/2 129
OS/390 341
OS/390 using CICS 359, 384
OS/400 435
Tandem NSK 129
UNIX systems 129
Windows NT 129

process security 99
processing problems 78
profile name, CICS 89
programs

AMQCCCLA 437
AMQCRCTA 437
AMQCRS6A 131
AMQCRSTA 131
AMQRMCLA 437
RUNMQCHI 131
RUNMQCHL 131
RUNMQLSR 131

publications
MQSeries xx
related xxvii

pull-down menus
channel 373
edit 367
help (channel definition panels) 373
help (message channel list panel) 372
selected 357
view 371

PUT authority 99
PUTAUT attribute 99
PutAuthority field 556
putting messages 42, 51

on remote queues 42
to distribution lists 51

674 MQSeries Intercommunication

 Index

Q
qm.ini 81

stanzas used for distributed queuing 635
QMgrName

field, MQCD structure 552
QMINI 81

example 80
QMINI file

stanzas used for distributed queuing 635
QMNAME attribute 100
queue

destination 46
reply-to 52

queue manager
alias 27, 40

receiving 45
alias definition 28
commands 418
interconnection procedure

example 387
multiple 138
name 100

alias 46
types 3

queue manager alias 27, 40
introduction 28

queue name
resolution 629

how it works 631
what is it? 630

translations 59
queue name resolution

See name resolution
queues

create a transmission queue 129, 433
defining 384

OS/390 341
quiescing channels 73

R
RCVDATA attribute 101
RCVEXIT attribute 100
Reason parameter

MQXWAIT call 543
receive exit 13

name 100
program 498
user data 101

ReceiveExit field 555
ReceiveExitPtr field 568
ReceiveExitsDefined field 566
receiver

channel 8
channel definition example

Digital OpenVMS 304

receiver (continued)
channel definition example (continued)

OS/2 304
OS/390 347
OS/400 468
Tandem NSK 304
UNIX systems 304
Windows NT 304

channel panel
details 377

panel settings
OS/390 using CICS 377

receiver channel definition
example

Digital OpenVMS 305
OS/2 305
OS/390 349
OS/400 470
Tandem NSK 305
UNIX systems 305
Windows NT 305

overview 5
ReceiveUserData field 557
ReceiveUserDataPtr field 568
receiving messages 44, 64
receiving on DECnet Phase IV 283
receiving on LU 6.2

OS/2 142
OS/390 341
Tandem NSK 287
UNIX systems 204
Windows NT 142

receiving on SPX
OS/2 148, 169
Windows NT 148, 190

receiving on TCP
OS/390 338
OS/400 442
Tandem NSK 300

receiving on TCP/IP
Digital OpenVMS 274
OS/2 138
UNIX systems 200
Windows NT 138

reference-message header 501
message exit program 501

registry 80, 81, 140, 144, 150, 189, 511
remote queue definition 40

example
Digital OpenVMS 303
OS/2 303
OS/390 347
OS/400 467
Tandem NSK 303
UNIX systems 303
Windows NT 303

 Index 675

 Index

remote queue definition (continued)
introduction 17, 27
what it is 16

remote queue manager 3
RemotePassword field

MQCD structure 561
RemoteUserIdentifier field

MQCD structure 560
renaming a channel

Digital OpenVMS 122
OS/2 122
OS/390 using CICS 357
OS/400 425
Tandem NSK 122
UNIX systems 122
Windows NT 122

reply-to alias 40
reply-to queue 52

alias example 54
alias walk-through 56
aliases 27
preparing for 31
specifying 30

reply-to queue alias 27, 30
reply-to queue definition

example
Digital OpenVMS 304
OS/2 304
OS/390 347
OS/400 468
Tandem NSK 304
UNIX systems 304
Windows NT 304

requester channel 8
requester channel settings panel

details 379
REQUESTING channel state 69
Reserved

field
MQTXP structure 602

Reserved1 field 605
Reserved2 field 605
Reserved3 field 605
reset 128, 362, 432
RESET CHANNEL command 610
reset channel sequence numbers

OS/390 330
resolve 363
RESOLVE CHANNEL command 610
resolve in-doubt message on channel

OS/390 331
resolve in-doubt messages 128

OS/400 432
resolve option 128

OS/400 432

restarting
channels 68

restarting stopped channels 75
resync 361
RETRY channel state 69, 71
retry considerations 612
RetryCount

field
MQTXP structure 603

retrying the link
problem determination 612

return routing 59
return to sender 79
reusing exit programs 520
routing entry

add 448
class 449

routing entry class 449
routing messages 43
run channel 122
run channel initiator 130
runmqchi command 131

AIX, OS/2, HP-UX, Sun Solaris, and Windows
NT 130

RUNMQCHL command 131
RUNMQLSR command 131

S
save option 373
scenarios, problem determination 607
SCF configuration file, example 288
SCYDATA attribute 101
SCYEXIT attribute 101
security

context 99
exit program 494
exit user data 101
levels for exit programs 133
message channel agent 99
objects

Digital OpenVMS 132
MQSeries for AS/400 439
OS/2 132
Tandem NSK 132
UNIX systems 132
Windows NT 132

process 99
security exit 13
security exit name 101
security exit program

overview 492
SecurityExit field 554
SecurityUserData field 556
segregating messages 17

676 MQSeries Intercommunication

 Index

selected menu-bar choice 357
selecting a channel 423

OS/390 using CICS 354
send

exit 13
exit name 101
exit program 498
message 63

send exit user data 102
SENDDATA attribute 102
sender channel 8
sender channel definition

example
Digital OpenVMS 304, 305
OS/2 304, 305
OS/390 347, 349
OS/400 468, 469
Tandem NSK 304, 305
UNIX systems 304, 305
Windows NT 304, 305

overview 5
sender channel settings

details 376
SENDEXIT attribute 101
SendExit field 555
SendExitPtr field 567
SendExitsDefined field 566
sending messages 19, 64
sending on DECnet Phase IV 282
sending on SPX

OS/2 147
Windows NT 147

sending on TCP 200
Digital OpenVMS 273
OS/2 137
Windows NT 137

SendUserData field 557
SendUserDataPtr field 567
SeqNumberWrap field 555
sequence number queue

See synchronization queue
sequence number wrap 102
sequence numbering 61
sequence numbers 65

reset, OS/390 330
sequential delivery 102
sequential retrieval of messages 61
SEQWRAP attribute 102
server channel 8
server channel settings panel

details 378
server-connection channel 8
service, class of 52
SessionId

field
MQTXP structure 603

setting up CICS communication for OS/390 381
setting up communication

Digital OpenVMS systems 273
OS/2 137
OS/400 441
Tandem NSK 285
UNIX systems 199
Windows NT 137

sharing channels 17
short retry

count 102
interval 103

ShortConnectionName field 552
ShortRetryCount field 553
ShortRetryInterval field 554
SHORTRTY attribute 102
SHORTTMR attribute 103
side object

OS/400 444
SINIX and DC/OSx configuration files 307
SNA 4

configuration
Digital OpenVMS 277

listener process, ending 281
SNA products, in example configurations 106
SNA Server 141
SNA Server for AIX V5 213
SNAplus2 230
SNAX communications examples 288
SO_KEEPALIVE

Digital OpenVMS 275
OS/2 140
OS/400 442
UNIX systems 202, 275
Windows NT 140

softcopy books xxv
source queue manager 3
splitting messages 65
SPX 4

example configurations 106
stanza of qm.ini file 635

SPX connection
MQSeries for OS/2 Warp 167
MQSeries for Windows NT 189
OS/2 137
Windows NT 137

SPX KEEPALIVE
OS/2 147, 169

SPX products, in example configurations 106
stanza file 81
start channel

Digital OpenVMS 122
OS/2 122
OS/390 328
Tandem NSK 122
UNIX systems 122

 Index 677

 Index

start channel (continued)
Windows NT 122

start channel initiator
OS/390 325

start channel listener
OS/390 327

start option 358, 431
starting

channel 68
DQM panels

OS/390 using CICS 352
STARTING channel state 69
startup dialog 492
state, channel 68
status

display channel 121
work with channel 425

status panels 364, 430
status, channel 65
stop channel

OS/390 332
OS/390 using CICS 385

stop channel initiator
OS/390 326

stop channel listener
OS/390 327

stop controlled 432
stop force 128
stop immediate 360, 432
stop quiesce 127, 361
STOPPED channel state 69, 71
stopped channels, restarting 75
stopping a channel 73, 127, 360
STOPPING channel state 69
STRMQM command 120
StrucId field

MQCXP structure 586
MQTXP structure 601
MQXWD structure 605

StrucLength field 565
Sun Solaris

See MQSeries for Sun Solaris
SunLink Version 9.1 262
switching channels 613
synchronization queue

OS/390 342
synchronizing channels 361, 492
syncpoint

introduction 87
system extension 133, 440
system extensions

user-exit programs
Digital OpenVMS 133
MQSeries for AS/400 440
OS/2 133
Tandem NSK 133
UNIX systems 133

system extensions (continued)
user-exit programs (continued)

Windows NT 133
system identifier, target 103
SYSTEM.CHANNEL.INITQ queue

Digital OpenVMS 301
OS/2 301
OS/390 319, 342
OS/400 465
UNIX systems 301
Windows NT 301

SYSTEM.CHANNEL.REPLY.INFO queue 319, 342
SYSTEM.CHANNEL.SYNCQ 342

T
Tandem NonStop Kernel

See MQSeries for Tandem NonStop Kernel
target queue manager 3
target system identifier 103
TCP

example configurations 106
stanza of qm.ini file 635
stanza of QMINI file 635

TCP channels
Tandem NSK 287

TCP connection
listener backlog 139, 201, 338
MQSeries for AIX 218
MQSeries for AT&T GIS UNIX 251
MQSeries for Digital OpenVMS 273
MQSeries for HP-UX 236
MQSeries for OS/2 Warp 165
MQSeries for Sun Solaris 268
MQSeries for Tandem NSK 285
MQSeries for VSE/ESA 478
MQSeries for Windows NT 188
setting up

OS/2 137
OS/390 337
UNIX systems 199
Windows NT 137

TCP listener backlog option 139, 148, 201, 338
TCP OpenEdition MVS sockets 343
TCP products, in example configurations 106
TCP/IP 4
TCP/IP communications example 299
TCP/IP connection

listener backlog 148, 442
MQSeries for AS/400 458
MQSeries for OS/390 403

TCP/IP KEEPALIVE 72
Digital OpenVMS 275
OS/2 140
OS/400 442
UNIX systems 202, 275

678 MQSeries Intercommunication

 Index

TCP/IP KEEPALIVE (continued)
Windows NT 140

TCP/IP listener backlog option 442
TCPware 276
terminology used in this book 645
terms used in this book xix
test channel

OS/390 329
testing connections

lookback testing 62
text in this book, appearance xix
time-out 92
TPNAME and TPPATH

OS/2 140
OS/400 443
UNIX systems 203
Windows NT 140

TPNAME attribute 94
TpName field 553
transaction

identifier, CICS 103
program name 94

transactions
CEDA 383
CKMC 352
CKSG 384

transmission header 28, 501, 502
message exit program 501
message-retry exit program 502
queue name 40

transmission protocol 104
transmission queue

definition of 11
example definition

Digital OpenVMS 303
OS/2 303
OS/390 347
OS/400 467
Tandem NSK 303
UNIX systems 303
Windows NT 303

multiple message channels
Digital OpenVMS 132
MQSeries for AS/400 439
OS/2 132
OS/390 using CICS 384
Tandem NSK 132
UNIX systems 132
Windows NT 132

overflow 608
selecting 46
sharing 17

transmission queue definition
example

Digital OpenVMS 304
OS/2 304
OS/390 348

transmission queue definition (continued)
example (continued)

OS/400 469
Tandem NSK 304
UNIX systems 304
Windows NT 304

transmission queue name 103
transport type 104

supported 4
transport-retry exit

introduction 13
transport-retry exit program 503
TransportType

field
MQTXP structure 603

TransportType field 551
triggered channels, problem determination 611
triggering

channels 23
Digital OpenVMS 129
MQSeries for AS/400 435
OS/2 129
OS/390 341
OS/390 using CICS 359
Tandem NSK 129
UNIX systems 129
Windows NT 129

MCAs
OS/390 using CICS 384

TRPTYPE attribute 104
trusted applications 13, 134
type, bind 134
types of channel 89

U
UCD products, in example configurations 106
UDP

example configurations 106
UDP connection

MQSeries for AIX 218
setting up

UNIX systems 199
UDP transport-retry exit, configuring 503
undeliverable message 78
undelivered message queue

See dead-letter queue
undelivered-message queue 58

Digital OpenVMS 131
MQSeries for AS/400 439
OS/2 131
Tandem NSK 131
UNIX systems 131
Windows NT 131

user exit
data definition files 530

 Index 679

 Index

user exit (continued)
MQCXP structure 585
MQTXP structure 601
MQXWD structure 605

user ID 104, 133
user identifier service 133
user-exit

programs 613
user-exit programs 491—528

problem determination 613
security levels 133
system extension

Digital OpenVMS 133
OS/2 133
OS/400 440
Tandem NSK 133
UNIX systems 133
Windows NT 133

writing and compiling 504
user-written MCAs 82
USERDATA parameter 359, 384, 435

OS/390 341
USERID attribute 104
UserIdentifier field

MQCD structure 558

V
validation

checks 609
command 77
of user IDs 500
panel data 77

values supplied by MQSeries for AS/400 428
values supplied by OS/390 using CICS 369, 372
Version field

MQCD structure 550
MQCXP structure 586
MQTXP structure 601
MQXWD structure 605

view
activities

OS/390 using CICS 371
menu-bar choice 371

VSAM 351

W
WaitDesc parameter

MQXWAIT call 543
WAITING channel state 69
what you need to know to understand this book xvii
who this book is for xvii
wide-band links 34
Windows 3.1 client, channel-exit programs 510

Windows 95 and Windows 98 client, channel-exit
programs 511

Windows Help xxvi
Windows NT

See MQSeries for Windows NT
work with channel status 425
work with status 430
work-with-channel choices 427
worksheet

MQSeries for AIX configuration 207
MQSeries for AS/400 configuration 451
MQSeries for AT&T GIS UNIX configuration 243
MQSeries for HP-UX configuration 225
MQSeries for OS/2 Warp configuration 152
MQSeries for OS/390 configuration 396
MQSeries for Sun Solaris configuration 257
MQSeries for Windows NT configuration 178

writing your own message channel agents 82
WRKCLS command 449
WRKSBSD command 448

X
XMITQ attribute 103
XmitQName

field, MQCD structure 552

680 MQSeries Intercommunication

Sending your comments to IBM
MQSeries 

Intercommunication

SC33-1872-02

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries 

Intercommunication

SC33-1872-02
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries 

MQSeries Intercommunication SC33-1872-02

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1872-ð2

	Back to MQSeries for AIX Version 5.1 Library
	Search MQSeries for AIX Version 5.1 Library...
	--
	Contents
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Appearance of text in this book
	Terms used in this book

	MQSeries publications
	MQSeries cross-platform publications
	MQSeries platform-specific publications
	MQSeries Level 1 product publications
	Softcopy books

	MQSeries information available on the Internet
	Related publications
	Programming
	OS/390
	CICS
	OS/400J
	Digital
	SNA
	SINIX

	Summary of changes
	Changes for this edition
	MQSeries for OS/390 V2.1
	MQSeries V5.1
	MQSeries for VSE/ESA V2.1
	MQSeries for AS/400 V4R2M1

	Changes for the second edition

	Part 1. Introduction
	Chapter 1. Concepts of intercommunication
	What is intercommunication?
	Distributed queuing components
	Dead-letter queues
	Remote queue definitions
	How to get to the remote queue manager

	Chapter 2. Making your applications communicate
	How to send a message to another queue manager
	Triggering channels
	Safety of messages

	Chapter 3. More about intercommunication
	Addressing information
	What are aliases?
	Queue manager alias definitions
	Reply-to queue alias definitions
	Networks

	Part 2. How intercommunication works
	Chapter 4. MQSeries distributed-messaging techniques
	Message flow control
	Putting messages on remote queues
	Choosing the transmission queue
	Receiving messages
	Passing messages through your system
	Separating message flows
	Concentrating messages to diverse locations
	Diverting message flows to another destination
	Sending messages to a distribution list
	Reply-to queue
	Networking considerations
	Return routing
	Managing queue name translations
	Message sequence numbering
	Loopback testing

	Chapter 5. DQM implementation
	Functions of DQM
	Message sending and receiving
	Channel control function
	What happens when a message cannot be delivered?
	Initialization and configuration files
	Data conversion
	Writing your own message channel agents

	Chapter 6. Channel attributes
	Channel attributes in alphabetical order

	Chapter 7. Example configuration chapters in this book
	Network infrastructure
	Communications software
	How to use the communication examples

	Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems
	Chapter 8. Monitoring and controlling channels on distributed platforms
	The DQM channel control function
	Functions available
	Getting started
	Channel attributes and channel types

	Chapter 9. Preparing MQSeries for distributed platforms
	Transmission queues and triggering
	Channel programs
	Other things to consider
	What next?

	Chapter 10. Setting up communication for OS/2 and Windows NT
	Deciding on a connection
	Defining a TCP connection
	Defining an LU 6.2 connection
	Defining a NetBIOS connection
	Defining an SPX connection

	Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp
	Configuration parameters for an LU 6.2 connection
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	Establishing a NetBIOS connection
	Establishing an SPX connection
	MQSeries for OS/2 Warp configuration

	Chapter 12. Example configuration - IBM MQSeries for Windows NT
	Configuration parameters for an LU 6.2 connection
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	Establishing a NetBIOS connection
	Establishing an SPX connection
	MQSeries for Windows NT configuration

	Chapter 13. Setting up communication in UNIX systems
	Deciding on a connection
	Defining a TCP connection
	Defining an LU 6.2 connection

	Chapter 14. Example configuration - IBM MQSeries for AIX
	Configuration parameters for an LU 6.2 connection
	Establishing a session using SNA Server for AIX V5
	Establishing a TCP connection
	Establishing a UDP connection
	MQSeries for AIX configuration

	Chapter 15. Example configuration - IBM MQSeries for HP-UX
	Configuration parameters for an LU 6.2 connection
	Establishing a session using HP SNAplus2
	Establishing a TCP connection
	MQSeries for HP-UX configuration

	Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX Version 2.2
	Configuration parameters for an LU 6.2 connection
	Establishing a connection using AT&T GIS SNA Server
	Establishing a TCP connection
	MQSeries for AT&T GIS UNIX configuration

	Chapter 17. Example configuration - IBM MQSeries for Sun Solaris
	Configuration parameters for an LU 6.2 connection
	Establishing a connection using SunLink Version 9.1
	Establishing a TCP connection
	MQSeries for Sun Solaris configuration

	Chapter 18. Setting up communication in Digital OpenVMS systems
	Deciding on a connection
	Defining a TCP connection
	Defining an LU 6.2 connection
	Defining a DECnet Phase IV connection
	Defining a DECnet Phase V connection

	Chapter 19. Setting up communication in Tandem NSK
	Deciding on a connection
	SNA channels
	TCP channels
	Communications examples

	Chapter 20. Message channel planning example for distributed platforms
	What the example shows
	Running the example

	Chapter 21. Example SINIX and DC/OSx configuration files
	Configuration file on bight
	Configuration file on forties
	Working configuration files for Pyramid DC/OSx

	Part 4. DQM in MQSeries for OS/390
	Chapter 22. Monitoring and controlling channels on OS/390
	The DQM channel control function
	Using the panels and the commands
	Managing your channels

	Chapter 23. Preparing MQSeries for OS/390
	Setting up communication
	Defining DQM requirements to MQSeries
	Defining MQSeries objects
	Channel operation considerations
	OS/390 Automatic Restart Management (ARM)

	Chapter 24. Message channel planning example for OS/390
	What the example shows
	Running the example

	Chapter 25. Monitoring and controlling channels in OS/390 with CICS
	The DQM channel control function
	The Message Channel List panel
	The channel definition panels
	Channel settings panel fields

	Chapter 26. Preparing MQSeries for OS/390 when using CICS
	Setting up CICS communication for MQSeries for OS/390
	Defining DQM requirements to MQSeries
	Defining MQSeries objects
	Channel operation considerations

	Chapter 27. Message channel planning example for OS/390 using CICS
	Chapter 28. Example configuration - IBM MQSeries for OS/390
	Configuration parameters for an LU 6.2 connection
	Establishing an LU 6.2 connection
	Establishing an LU 6.2 connection using CICS
	Establishing a TCP connection
	MQSeries for OS/390 configuration

	Part 5. DQM in MQSeries for AS/400
	Chapter 29. Monitoring and controlling channels in MQSeries for AS/400
	The DQM channel control function
	Operator commands
	Getting started
	Creating objects
	Creating a channel
	Selecting a channel
	Browsing a channel
	Renaming a channel
	Work with channel status
	Work-with-channel choices
	Panel choices

	Chapter 30. Preparing MQSeries for AS/400
	Creating a transmission queue
	Triggering channels
	Channel programs
	Channel states on OS/400
	Other things to consider

	Chapter 31. Setting up communication for MQSeries for AS/400
	Deciding on a connection
	Defining a TCP connection
	Defining an LU 6.2 connection

	Chapter 32. Example configuration - IBM MQSeries for AS/400
	Configuration parameters for an LU 6.2 connection
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	MQSeries for AS/400 configuration

	Chapter 33. Message channel planning example for OS/400
	What the example shows
	Running the example

	Part 6. DQM in MQSeries for VSE/ESA
	Chapter 34. Example configuration - MQSeries for VSE/ESA
	Configuration parameters for an LU 6.2 connection
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	MQSeries for VSE/ESA configuration

	Part 7. Further intercommunication considerations
	Chapter 35. Channel-exit programs
	What are channel-exit programs?
	Writing and compiling channel-exit programs
	Supplied channel-exit programs using DCE security services

	Chapter 36. Channel-exit calls and data structures
	Data definition files
	MQ_CHANNEL_EXIT - Channel exit
	MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit
	MQXWAIT - Wait
	MQ_TRANSPORT_EXIT - Transport retry exit
	MQCD - Channel data structure
	MQCXP - Channel exit parameter structure
	MQTXP - Transport-exit data structure
	MQXWD - Exit wait descriptor structure

	Chapter 37. Problem determination in DQM
	Error message from channel control
	Ping
	Dead-letter queue considerations
	Validation checks
	In-doubt relationship
	Channel startup negotiation errors
	When a channel refuses to run
	Retrying the link
	Data structures
	User exit problems
	Disaster recovery
	Channel switching
	Connection switching
	Client problems
	Error logs

	Part 8. Appendixes
	Appendix A. Channel planning form
	How to use the form

	Appendix B. Constants for channels and exits
	List of constants

	Appendix C. Queue name resolution
	What is queue name resolution?

	Appendix D. Configuration file stanzas for distributed queuing
	Appendix E. Notices
	Programming interface information
	Trademarks

	Part 9. Glossary and index
	Glossary of terms and abbreviations
	Index

