MQSeries®

Intercommunication

SC33-1872-02

MQSeries®

Intercommunication

SC33-1872-02

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix E, “Notices”

on page

Third edition (January 1999)

This edition applies to the following products:

e MQSeries for AIX® V5.1

* MQSeries for AS/400® V4R2M1

* MQSeries for AT&T GIS UNIX® V2.2
¢ MQSeries for Digital OpenVMS V2.2

e MQSeries for HP-UX V5.1

e MQSeries for 0S/390® V2.1

¢ MQSeries for OS/2® Warp V5.1

e MQSeries for SINIX and DC/OSx V2.2
¢ MQSeries for Sun Solaris V5.1

e MQSeries for Tandem NonStop Kernel V2.2
e MQSeries for VSE/ESA™ V2.1

* MQSeries for Windows® V2.0

* MQSeries for Windows V2.1

¢ MQSeries for Windows NT® V5.1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

S0O21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993,1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

About this book XVii
Who this book is for Xvil
What you need to know to understand this book xviil
How to use thisbook Xviil]
Appearance of text in thisbook [xix
Terms used in this bOOK [xix
MQSeries publications
MQSeries cross-platform publications 0L XX
MQSeries platform-specific publications XXiil]
MQSeries Level 1 product publications
Softcopy books XXV
MQSeries information available on the Internet [xxvil
Related publications [xxvid
Programming Dxxwviil
OS/390 . . . Dxwid
CICS . [xxviil
OS/A00® Dxvil]
Digital XXVii
SNA xxvii:
SINIX o XXViil]

Summary of changes XXi
Changes for this edition | Xxix|
MQSeries for OS/390 V2.1 [xxix|
MQSeries V5.1
MQSeries for VSE/ESA V2.1o
MQSeries for AS/400 VAR2M1 [xxxiv|
Changes for the second edition [xxxiv]
Part 1. Introduction,]
Chapter 1. Concepts of intercommunication
What is intercommunication?
Distributed queuing components
Dead-letter queues
Remote queue definitions
How to get to the remote queue manager
Chapter 2. Making your applications communicate
How to send a message to another queue manager
Triggering channels
Safety of messages
Chapter 3. More about intercommunication
Addressing information
What are aliases?
Queue manager alias definitions L
Reply-to queue alias definitions
Networks

© Copyright IBM Corp. 1993,1999 ili

Contents

Part 2. How intercommunication works

Chapter 4. MQSeries distributed-messaging techniques 39
Message flow control 39]
Putting messages on remote queues [42]
Choosing the transmission queue 43]
Receiving messages [44]
Passing messages through your system El
Separating message flows [47]
Concentrating messages to diverse locations 49|
Diverting message flows to another destination
Sending messages to a distribution list 000000 51
Reply-to queue 52]
Networking considerations 58]
REtUMN TOULING . . .« o o o o o e 59]
Managing queue name translations 59
Message sequence numbering E
Loopback testing 62]

63]

63

66

78

80|

82]

Chapter 5. DQM implementation,
Functions of DOM
Message sending and receiving
Channel control function
What happens when a message cannot be delivered?
Initialization and configuration files L
Data conversion
Writing your own message channel agents

Chapter 6. Channel attributes 85]
Channel attributes in alphabetical order 85

Chapter 7. Example configuration chapters in this book 105
Network infrastructure 106
communications SOftware [106
How to use the communication examples 11207

Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem

NSK, and UNIX systems 109
Chapter 8. Monitoring and controlling channels on distributed platforms
.. 115
The DQM channel control function (115
Functions available 116
Getting started 119
Channel attributes and channel types 123
Chapter 9. Preparing MQSeries for distributed platforms 129
Transmission queues and triggering oL 129
Channel programs 13i|
Other things to consider 131
What next? [135]

iv MQSeries Intercommunication

Contents

Chapter 10. Setting up communication for OS/2 and Windows NT o

Deciding on a connection
Defining a TCP connection
Defining an LU 6.2 connection ‘

Defining a NetBIOS connection ‘

Defining an SPX connection

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp .
Configuration parameters for an LU 6.2 connection

Establishing an LU 6.2 connection ‘

Establishing a TCP connection ‘

Establishing a NetBIOS connection
Establishing an SPX connection
MQSeries for OS/2 Warp configuration

Chapter 12. Example configuration - IBM MQSeries for Windows NT .

Configuration parameters for an LU 6.2 connection
Establishing an LU 6.2 connection
Establishing a TCP connection
Establishing a NetBIOS connection
Establishing an SPX connection ‘
MQSeries for Windows NT configuration

Chapter 13. Setting up communication in UNIX systems

Deciding on a connection ‘
Defining a TCP connection
Defining an LU 6.2 connection

Chapter 14. Example configuration - IBM MQSeries for AIX

Configuration parameters for an LU 6.2 connection

Establishing a session using SNA Server for AIXV5

Establishing a TCP connection ‘

Establishing a UDP connection ‘

MQSeries for AIX configuration

©

Chapter 15. Example configuration - IBM MQSeries for HP-UX 225
Configuration parameters for an LU 6.2 connection [225
Establishing a session using HP SNAplus2 1230|
Establishing a TCP connection [236]
MQSeries for HP-UX configuration 237,

Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX
Version 2.2 . . . 243
Configuration parameters for an LU 6.2 connection 243
Establishing a connection using AT&T GIS SNA Server [247]
Establishing a TCP connection 251
MQSeries for AT&T GIS UNIX configuration
Chapter 17. Example configuration - IBM MQSeries for Sun Solaris .. |257|
Configuration parameters for an LU 6.2 connection [257
Establishing a connection using SunLink Version 9.1 [262
Establishing a TCP connection |268
MQSeries for Sun Solaris configuration 268
Contents V

Contents

Chapter 18. Setting up communication in Digital OpenVMS systems

Deciding on a connection
Defining a TCP connection
Defining an LU 6.2 connection
Defining a DECnet Phase IV connection
Defining a DECnet Phase V connection

Chapter 19. Setting up communication in Tandem NSK
Deciding on a connection

SNA channels ‘
TCP channels, |

Communications examples

Chapter 20. Message channel planning example for distributed platforms

What the example shows [301
Running the example 1305
Chapter 21. Example SINIX and DC/OSx configuration files 307
Configuration file on bight 308
Configuration file on forties 1309
Working configuration files for Pyramid DC/OSx [310
Part 4. DQM in MQSeries for OS/390 315
Chapter 22. Monitoring and controlling channels on OS/3%0 1319
The DQM channel control function [319
Using the panels and the commands 320
Managing your channels 322]
Chapter 23. Preparing MQSeries for 0S/390 [337
Setting up communication 337
Defining DQM requirements to MQSeries 341
Defining MQSeries objects 341
Channel operation considerations 343
0S/390 Automatic Restart Management (ARM) 343
Chapter 24. Message channel planning example for 0OS/390 345
What the example shows 345
Running the example 349
Chapter 25. Monitoring and controlling channels in OS/390 with CICS (351
The DQM channel control function [351
The Message Channel List panel [353
The channel definition panels [372
Channel settings panel fields o oo 1374
Chapter 26. Preparing MQSeries for 0S/390 when using CICS 381
Setting up CICS communication for MQSeries for OS/390 381
Defining DQM requirements to MQSeries 1384
Defining MQSeries objects 384
Channel operation considerations 385

Vi MQSeries Intercommunication

Contents

Chapter 27. Message channel planning example for OS/390 using CICS 387
Chapter 28. Example configuration - IBM MQSeries for OS/390 1395]
Configuration parameters for an LU 6.2 connection [395
Establishing an LU 6.2 connection [401
Establishing an LU 6.2 connection using CICS 1402|
Establishing a TCP connection [403]
MQSeries for OS/390 configuration 404
Part 5. DQM in MQSeries for AS/400 415
Chapter 29. Monitoring and controlling channels in MQSeries for AS/400
.. 417
The DQM channel control function 417
Operator commands 1418
Getting started [a20]
Creating objects 420
Creating a channel 420
Selecting a channel 1423
Browsing a channel [423
Renaming a channel 425
Work with channel status 425
Work-with-channel choices, 427
Panel choices 1428
Chapter 30. Preparing MQSeries for AS/400 1433
Creating a transmission queue [433
Triggering channels 1435]
Channel programs [a37]
Channel states on OS/400 1438
Other things to consider [439
Chapter 31. Setting up communication for MQSeries for AS/400
Deciding on a connection [441
Defining a TCP connection [441
Defining an LU 6.2 connection 443
Chapter 32. Example configuration - IBM MQSeries for AS/400
Configuration parameters for an LU 6.2 connection [451
Establishing an LU 6.2 connection [456]
Establishing a TCP connection 1458|
MQSeries for AS/400 configuration [459
Chapter 33. Message channel planning example for 0OS/400 465
What the example shows 1465|
Running the example [470]

Contents Vil

Contents

Part 6. DQM in MQSeries for VSE/ESA
Chapter 34. Example configuration - MQSeries for VSE/ESA 1473
Configuration parameters for an LU 6.2 connection [473
Establishing an LU 6.2 connection 1477|
Establishing a TCP connection [478
MQSeries for VSE/ESA configuration 478

Part 7. Further intercommunication considerations 487
Chapter 35. Channel-exit programs [491]
What are channel-exit programs? [491
Writing and compiling channel-exit programs 504
Supplied channel-exit programs using DCE security services [521
Chapter 36. Channel-exit calls and data structures 529
Data definition files 530
MQ_CHANNEL_EXIT - Channel exit 532
MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit 1539
MOXWAIT - Walit oo [543
MQ_TRANSPORT_EXIT - Transport retry exit 1545
MQCD - Channel data structure [547]
MQCXP - Channel exit parameter structure 1585
MQTXP - Transport-exit data structure @
MQXWD - Exit wait descriptor structure 1605
Chapter 37. Problem determination in DQM 607
Error message from channel control 607
Ping . . . 608
Dead-letter queue considerations L 608
Validation checks
In-doubt relationship [609]
Channel startup negotiation errors oL [609
When a channel refusestorun 1609
Retrying the link [612
Data structures 612
User exit problems 1613
Disaster recovery 613
Channel switching 613]
Connection SWIitching [614]
Client problems 614
Error logs 615]

Viii MQSeries Intercommunication

Contents

Part 8. Appendixes

Appendix A. Channel planning form
How to use the form

Appendix B. Constants for channels and exits
List of constants

Appendix C. Queue name resolution
What is queue name resolution?

Appendix D. Configuration file stanzas for distributed queuing
Appendix E. Notices

Programming interface information
Trademarks

Part 9. Glossary and index
Glossary of terms and abbreviations

Index

Contents

iX

Contents

X MQSeries Intercommunication

Figures

©CeNoO~LONE

PR REPRRERRRRR
©o N~ WDNREO

20.

21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.

37.
38.
39.
40.
41.
42.
43.
44,
45.
46.

© Copyright IBM Corp. 1993,1999

Figures

Overview of the components of distributed queuing
Sending MesSsages
Sending messages in both directionso
A cluster of queue managers
A sender-receiver channel
A cluster-sender channel
A requester-server channel oL
A requester-sender channel
Channel initiators and listeners
Sequence in which channel exit programs are called
Passing through intermediate queue managers
Sharing a transmission queue
Using multiple channels
The concepts of triggering
Queue manager alias
Reply-to queue alias used for changing reply location
Network diagram showing all channels
Network diagram showing QM-concentrators
A remote queue definition is used to resolve a queue name to a
transmission queue to an adjacent queue manager
The remote queue definition allows a different transmission queue to be
used . ..
Receiving messages directly, and resolving alias queue manager name
Three methods of passing messages through your system
Separating messages flows
Combining message flows on to a channel
Diverting message streams to another destination
Reply-to queue name substitution during PUT call
Reply-to queue alias example
Distributed queue management model
Channel states
Flows between channel states
What happens when a message cannot be delivered
MQSeries channel to be set up in the example configuration chapters in
thisbook
Local LU window
Mode window
CPI-C side information file for SunLink Version9.0
The message channel example for OS/2, Windows NT, and UNIX
SYSIEMS . . .
The operations and controls initial panel
Listing channels
Starting a system functiono
Stopping a function control
Starting a channel
Testinga channel
Resetting channel sequence numbers
Resolving in-doubt messages
Stopping a channel
Listing channel connections

Xi

Figures

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

Displaying channel connections - first panel
Displaying channel connections - second panel
Listing cluster channels
The message channel example for MQSeries for OS/390
Sample configuration of channel control and MCA
The Message Channel List panel
The Message Channel List panel pull-down menus
The Channel pull-down menu
Sender/server Stop action window
Requester/receiver Stop action window
The Reset Channel Sequence Number action window
The Resolve Channel action window
An example of a sender channel Display Channel Status window

An example of a receiver channel Display Channel Status window :
The Ping action window
The Exit confirmation secondary window
The Copy action window
The Create action window
Example of default values during Create for a channel
The Delete action window
The Find a Channel action window
The Include search criteria action window
The Help pull-kdown menu
The Help choice pull-down menu
The sender channel settings panel
The sender channel settings panel - screen2
The receiver channel settings panel
The receiver channel settings panel - screen2
The server channel settings panel
The server channel settings panel - screen2
The requester channel settings panel
The requester channel settings panel - screen2
CICS LU 6.2 connection definition,
Connecting two queue managers in MQSeries for OS/390 using CICS
Sender settings (1)
Sender settings (2)
Connection definition (1)
Connection definition (2)
Connection definition (1)
Connection definition (2)
Receiver channel settings (1)
Receiver channel settings (2)
Channel Initiator APPL definiton
Channel Initiator initialization parameters
Channel Initiator initialization parameters
Message queue manager commands
Create channel (1)
Create channel (2)
Create channel (3)
Create channel (4)
Work with channels
Display a TCP/IP channel (1)
Display a TCP/IP channel (2)

100. Display a TCP/IP channel (3)

Xii MQSeries Intercommunication

101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.

126.

127.
128.
129.
130.
131.
132.
133.
134.
135.
136.

137.
138.
139.
140.

141.
142.
143.

Figures

Channel status (1) 426
Channel status (2) 426
Channel status (3) 427
Create aqueue (1) 433
Create aqueue (2) 434
Create aqueue (3) 434
Create aqueue (4) 435
Create process (1) 436
Create process (2) 437
LU 6.2 communication setup panel - initiatingend 445
LU 6.2 communication setup panel - initiatedend 448
The message channel example for MQSeries for AS/400 465
Channel configuration panel 485
Security exitloop 493
Example of a send exit at the sender end of message channel 493
Example of a receive exit at the receiver end of message channel . .. 494
Sender-initiated exchange with agreement 495
Sender-initiated exchange with no agreement 496
Receiver-initiated exchange with agreement 497
Receiver-initiated exchange with no agreement 497
Sample source code for a channel exiton OS/2 509
Sample DEF file for a channel exiton OS/2 509
Sample make file for a channel exiton OS/2 510
Sample source code for a channel exit on Windows 3.1 510
Sample source code for a channel exit on Windows NT, Windows 95, or
Windows 98 511
Sample DEF file for Windows NT, Windows 95, Windows 98, or

Windows 512
Sample source code for a channel exit on Windows 513
Sample source code for a channel exiton AIX 514
Sample compiler and loader commands for channel exits on AIX . .. 514
Sample export file for AIX 514
Sample make file for AIX 515
Sample source code for a channel exit on Digital OVMS 515
Sample source code for a channel exit on HP-UX 517
Sample compiler and loader commands for channel exits on HP-UX . 517
Sample source code for a channel exit on AT&T GIS UNIX 518
Sample compiler and loader commands for channel exits on AT&T GIS

UNIX e 518
Sample source code for a channel exit on Sun Solaris 519
Sample compiler and loader commands for channel exits on Sun Solaris 519
Sample source code for a channel exit on SINIX and DC/OSx 519
Sample compiler and loader commands for channel exits on SINIX and
DC/OSX 520
Security exit flows 522
Name resolution 629
gm.ini stanzas for distributed queuing 636

Figures Xiii

Figures

Xiv MQSeries Intercommunication

Tables

Noog,rwhpE

10.

11.
12.

13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.

41.
42.

© Copyright IBM Corp. 1993,1999

Tables

Example of channelnames 33
Three ways of using the remote queue definition object 41
Reply-to queue alias 56
Queue name resolution at queue manager QMA 60
Queue name resolution at queue manager QMB 60
Reply-to queue name translation at queue manager QMA 60
Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem
NSK, and UNIX systems 116
Channel attributes for the channel types in OS/2, Windows NT, Digital
OpenVMS, Tandem NSK, and UNIX systems 123
Channel programs for OS/2 and Windows NT 131
Channel programs for UNIX systems, Digital OpenVMS, and Tandem
NSK 131
Default outstanding connection requests on OS/2 and Windows NT . . 139
Settings on the local OS/2 or Windows NT system for a remote queue
manager platform 141
Default outstanding connection requests on OS/2 and Windows NT . . 148
Configuration worksheet for Communications Manager/2 152
Configuration worksheet for MQSeries for OS/2 Warp 171
Configuration worksheet for IBM Communications Server for Windows
NT 178
Configuration worksheet for MQSeries for Windows NT 192
Default outstanding connection requests 201
Settings on the local UNIX system for a remote queue manager platform 203
Configuration worksheet for SNA Server for AIX 208
Configuration worksheet for MQSeries for AIX 220
Configuration worksheet for HP SNAplus2 226
Configuration worksheet for MQSeries for HP-UX 238
Configuration worksheet for AT&T GIS SNA Services 244
Configuration worksheet for MQSeries for AT&T GIS UNIX 252
Configuration worksheet for SunLink Version 9.1 258
Configuration worksheet for MQSeries for Sun Solaris 269
Channeltasks 322
Settings on the local OS/390 system for a remote queue manager
platform 340
Program and transaction names 352
Message Channel List menu-bar choices 354
Menu-bar choices on channel panels 372
Channel attribute fields per channel type 374
Settings for LU 6.2 TP name on the local OS/390 system for a remote
queue manager platform 375
Configuration worksheet for OS/390 using LU 6.2 396
Configuration worksheet for MQSeries for OS/390 404
Channel attribute fields per message channel type 429
Program and transaction names 437
Channel states on OS/400 438
Settings on the local OS/400 system for a remote queue manager
platform 444
Configuration worksheet for SNA on an AS/400 system 452
Configuration worksheet for MQSeries for AS/400 460
XV

Tables

XVi

43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.

Configuration worksheet for VSE/ESA using APPC 474
Configuration worksheet for MQSeries for VSE/ESA 479
Channel exits available for each channeltype 492
Identifying APl calls 500
Fieldsin MQCD e 547
Fields in MQCXP 585
Fields in MQTXP 601
Fields in MQXWD 605
Channel planning form 621
Channel planning form 622
Queue name resolution 632

MQSeries Intercommunication

About this book

About this book

This book describes intercommunication between MQSeries products. It introduces
the concepts of intercommunication; transmission queues, message channel agent
programs, and communication links, that are brought together to form message
channels. It describes how geographically separated queue managers are linked
together by message channels to form a network of queue managers. It discusses
the distributed queue management (DQM) facility of IBM MQSeries, which provides
the services that enable applications to communicate via queue managers.

DQM provides communications that conform to the MQSeries Message Channel
Protocol. Each MQSeries product has its own implementation of this specification,
and this book is concerned with these implementations.

Who this book is for

This book is for anyone needing a description of DQM. In addition, the following
readers are specifically addressed:

¢ Network planners responsible for designing the overall queue manager
network.

e Local channel planners responsible for implementing the network plan on one
node.

e Application programmers responsible for designing applications that include
processes, queues, and channels, perhaps without the assistance of a systems
administrator.

e Systems administrators responsible for monitoring the local system, controlling
exception situations, and implementing some of the planning details.

e System programmers with responsibility for designing and programming the
user exits.

What you need to know to understand this book

To use and control DQM you need to have a good knowledge of MQSeries in
general. You also need to understand the MQSeries products for the specific
platforms you will be using, and the communications protocols that will be used on
those platforms.

© Copyright IBM Corp. 1993,1999 XVii

About this book

How to use this book
This book has the following parts:

Part 1, “Introduction” on page 1 [] Introduces the concepts of MQSeries
intercommunication.

Part 2, “How intercommunication works” on page 35 [_]Describes the functions
performed by the distributed queue management (DQM) facilities. Read this
part to understand DQM'’s role in the context of MQSeries.

Part 3, “DQM in MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems” on page 149 _|Is specific to MQSeries
products on distributed platforms. It helps you to install and customize DQM
on these platforms. It explains how to establish message channels to other
systems and how to manage and control them.

Part 4, “DQM in MQSeries for 0S/390” on page 315 __|Is specific to MQSeries for
0S/390. It helps you to install and customize DQM. It explains how to
establish message channels to other systems and how to manage and
control them.

Part 5, “DQM in MQSeries for AS/400” on page 415 __]Is specific to MQSeries for
AS/400. It helps you to install and customize DQM. It explains how to
establish message channels to other systems and how to manage and
control them.

Part 6, “DQM in MQSeries for VSE/ESA” on page 471] Is specific to MQSeries
for VSE/ESA. It contains an example of how to set up communication to
other systems.

Part 7, “Further intercommunication considerations” on page 487 [__]Tells you
about channel exit programs, which are an optional feature of DQM that
allow you to add your own facilities to distributed queuing. It gives some
guidance on the problems you may experience, how to recognize these
problems, and what to do about them.

Part 8, “Appendixes” on page 617 __|Contains extra information that is pertinent to
DQM:

Appendix A, “Channel planning form”
Read this appendix for an explanation of one suggested method of
planning and maintaining DQM objects and channels.

Appendix B, “Constants for channels and exits”
This gives the values of named constants that apply to the channels
and exits in the MQI that are discussed in this book.

Appendix C, “Queue name resolution”
This is a detailed description of name resolution by queue managers.
You need to understand this process in order to take full advantage of
DQM.

Appendix D, “Configuration file stanzas for distributed queuing”
This gives information about the configuration file stanzas that relate
to distributed queuing.

XVviii MQSeries Intercommunication

About this book

Appearance of text in this book
This book uses the following type styles:

CompCode Example of the name of a parameter of a call

Terms used in this book
In the body of this book, the following shortened names are used:

CiICs® The CICS/Enterprise Systems Architecture (CICS Transaction

Server for 0S/390) product. (Note that, unlike other MQSeries
books, this book does not use the term generically to include other
CICS products such as CICS for VSE/ESA.)

0S/2 0OS/2 Warp

The term “UNIX systems” is used to denote the following UNIX operating systems:

AlIX

AT&T GIS UNIX
HP-UX

SINIX and DC/OSx
Sun Solaris

The term “MQSeries Version 5 products” applies to the following MQSeries
products:

IBM MQSeries for AlIX Version 5

IBM MQSeries for HP-UX Version 5

IBM MQSeries for OS/2 Warp Version 5
IBM MQSeries for Sun Solaris Version 5
IBM MQSeries for Windows NT Version 5

Throughout this book, the name mgmtop has been used to represent the name of
the base directory where MQSeries is installed on UNIX systems.

For AlX, the name of the actual directory is /usr/mgm
For other UNIX systems, the name of the actual directory is /opt/mgm

0S/390 In general, function described in this book as supported by

MQSeries for OS/390 is also supported by MQSeries for MVS/ESA
(see “Changes for this edition” on page [xxix).

About this book ~ XiX

MQSeries publications

MQSeries publications

This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications

Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4AR2M1

e MQSeries for AT&T GIS UNIX V2.2

e MQSeries for Digital OpenVMS V2.2

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for 0S/390 V2.1

e MQSeries for SINIX and DC/OSx V2.2
¢ MQSeries for Sun Solaris V5.1

e MQSeries for Tandem NonStop Kernel V2.2
e MQSeries for VSE/ESA V2.1

e MQSeries for Windows V2.0

e MQSeries for Windows V2.1

e MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure

The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing

MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide

The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication

The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

XX MQSeries Intercommunication

MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration

The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries Command Reference

The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management

The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1
e MQSeries for Windows V2.0

e MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide

The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference

The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary

The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

About this book XXi

MQSeries publications

XXii

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4R2M1
e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
¢ MQSeries for 0OS/390 V2.1

e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

e AIX

e HP-UX

e 0S/2

e Sun Solaris

e Windows NT

¢ Windows 3.1

¢ Windows 95 and Windows 98

MQSeries Using Java ™

MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries Java is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference

The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a
programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries Intercommunication

MQSeries publications

MQSeries Queue Manager Clusters

MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a nhumber of examples of
tasks you can perform to set up and maintain clusters of queue managers.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications

Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AlX Version 5 Release 1 Quick Beginnings, GC33-1867
MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869
MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868

About this book XXili

MQSeries publications

XXV

MQSeries for 0S/390

MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3
MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934
MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries for Sun Solaris
MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870
MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387

MQSeries LotusScript™ Extension, SC34-5404

MQSeries Intercommunication

MQSeries publications

MQSeries Level 1 product publications

Softcopy books

For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’'s Guide, SC33-1379

Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

BookManager ® format

The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection Kkit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for Sun Solaris V5.1

e MQSeries for Windows NT V5.1 (compiled HTML)
e MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

http://www.software.ibm.com/ts/mgseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

http://www.adobe.com/

About this book XXV

http://www.software.ibm.com/ts/mqseries/
http://www.adobe.com/

MQSeries on the Internet

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1
e MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

http://www.software.ibm.com/ts/mgseries/

PostScript format

The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available on the Internet

XXVi

—— MQSeries Web site

The MQSeries product family Web site is at:

http://www.software.ibm.com/ts/mgseries/

By following links from this Web site you can:
¢ Obtain latest information about the MQSeries product family.
¢ Access the MQSeries books in HTML and PDF formats.
e Download MQSeries SupportPacs.

MQSeries Intercommunication

http://www.software.ibm.com/ts/mqseries/
http://www.software.ibm.com/ts/mqseries/

Related publications

Related publications

Programming

0S/390

CICS

0S/400®

Digital

SNA

This section lists related documentation mentioned in this book.

0S/390 C/C++ Programming Guide, SC09-2362

0S/390 OpenEdition® Planning, SC28-1890

CICS Family: Interproduct Communication, SC33-0824
CICS/400 Intercommunication, SC33-1388

CICS Intercommunication Guide, SC33-1695

CICS Resource Definition Guide, SC33-1684

0S/400 Communication Configuration, SC41-3401
0S/400 Communication Management, SC41-3406
0S5/400 Work Management, SC41-3306

0S/400 APPC Communications Programming, SC41-3443

Digital DECnet SNA Gateway Guide to IBM Parameters
Digital DECnet for OpenVMS Networking Manual

Microsoft® SNA Server APPC Programmers Guide
Microsoft SNA Server CPI-C Programmers Guide
OpenNet LU 6.2, System Administrator’s Guide
OpenNet SNA Engine, System Administrator’s Guide

About this book XXVil

Related publications

SINIX

Transit SINIX Version 3.2 Administration of Transit

You may also find the following International Technical Support Organization “Red
Books” useful:
APPC Security: MVS/ESA, CICS/ESA®, and 0OS/2, GG24-3960

Examples of Using MQSeries on S/390, RS/6000®, AS/400, and PS/2,
GG24-4326

Multiplatform APPC Configuration Guide, GG24-4485

You can find a list of all the red books available at URL
http://www.almaden.ibm.com/redbooks/

Request these books through your IBM representative.

XXViii MQSeries Intercommunication

http://www.almaden.ibm.com/redbooks/

Summary of changes

Summary of changes

Throughout the book, changes to the previous edition are marked with vertical bars
in the left-hand margin.

Changes for this edition

This edition of MQSeries Intercommunication applies to these new versions and
releases of MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4AR2M1
e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
¢ MQSeries for 0OS/390 V2.1

e MQSeries for Sun Solaris V5.1
e MQSeries for VSE/ESA V2.1

e MQSeries for Windows NT V5.1

Major new function supplied with each of these MQSeries products is summarized
here.

MQSeries for OS/390 V2.1

MQSeries for OS/390 V2.1 is a new product for the OS/390 platform that offers
functional enhancements over MQSeries for MVS/ESA V1.2. Those functional
enhancements specific to MQSeries for OS/390 are summarized here. As a
general rule, other function described in this book as supported by MQSeries for
0S/390 is also supported by MQSeries for MVS/ESA V1.2.

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they host
available to every other queue manager. Any queue manager can send a
message to any other queue manager in the same cluster without the need for
explicit channel definitions, remote queue definitions, or transmission queues for
each destination. The main benefits of MQSeries clusters are:

¢ Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

© Copyright IBM Corp. 1993,1999 XXIiX

Summary of changes

MQSeries V5.1

Clusters are supported by these MQSeries products:

e MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

¢ MQSeries for OS/2 Warp V5.1
* MQSeries for 0S/390 V2.1

e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1

See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
description of this function.

0S/390 Automatic Restart Manager (ARM)
If an MQSeries queue manager or channel initiator fails, the OS/390 Automatic
Restart Manager (ARM) can restart it automatically on the same OS/390 image.
If the OS/390 image itself fails, ARM can restart that image’s subsystems and
applications automatically on another OS/390 image in the sysplex, provided that
the LU 6.2 communication protocol is being used. By removing the need for
operator intervention, OS/390 ARM improves the availability of your MQSeries
subsystems.

0S/390 Resource Recovery Services (RRS)
MQSeries Batch and TSO applications can participate in two-phase commit
protocols with other RRS-enabled products, such as DB2®, coordinated by the
0S/390 RRS facility.

MQSeries Workflow
MQSeries Workflow allows applications on various network clients to perform
business functions through System/390® by driving one or more CICS, IMS™, or
MQSeries applications. This is achieved through format, rule, and table
definition, rather than through application programming.

Support for C ++
MQSeries for OS/390 V2.1 applications can be written in C++,

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

The MQSeries Version 5 Release 1 products are:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

XXX MQSeries Intercommunication

Summary of changes

The following new function is provided in all of the V5.1 products:

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they host
available to every other queue manager. Any queue manager can send a
message to any other queue manager in the same cluster without the need for
explicit channel definitions, remote queue definitions, or transmission queues for
each destination. The main benefits of MQSeries clusters are:

¢ Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

Clusters are supported by these MQSeries products:

e MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
description of this function.

MQSeries Administration Interface (MQAI)
The MQSeries Administration Interface is an MQSeries programming interface
that simplifies manipulation of MQSeries PCF messages for administrative tasks.
It is described in a new book, MQSeries Administration Interface Programming
Guide and Reference, SC34-5390.

Support for Windows 98 clients
A Windows 98 client can connect to any MQSeries V5.1 server.

Message queue size
A message queue can be up to 2 GB.

Controlled, synchronous shutdown of a queue manager
A new option has been added to the endmgm command to allow controlled,
synchronous shutdown of a queue manager.

Java support
The MQSeries Client for Java and MQSeries Bindings for Java are provided with
all MQSeries V5.1 products. The client, bindings, and common files have been
packaged into .jar files for ease of installation.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

Conversion of the EBCDIC new-line character
You can control the conversion of EBCDIC new-line characters to ensure that
data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
unaltered by the ASCII conversion.

Client connections via MQCONNX
A client application can specify the definition of the client-connection channel at
run time in the MQCNO structure of the MQCONNX call.

Summary of changes XXXi

Summary of changes

XXX

Additional new function in MQSeries for AIX V5.1
e The UDP transport protocol is supported.
¢ Sybase databases can participate in global units of work.
e Multithreaded channels are supported.

Additional new function in MQSeries for HP-UX V5.1
e MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
e Multithreaded channels are supported.
e Both HP-UX kernel threads and DCE threads are supported.

Additional new function in MQSeries for OS/2 Warp V5.1
OS/2 high memory support is provided.

Additional new function in MQSeries for Sun Solaris V5.1
e MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris
7.

» Sybase databases can participate in global units of work.

e Multithreaded channels are supported.

Additional new function in MQSeries for Windows NT V5.1
MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
NT. New function in this release includes:

¢ Close integration with Microsoft Windows NT Version 4.0, including exploitation
of extra function provided by additional Microsoft offerings. The main highlights
are:

— Graphical tools and applications for managing, controlling, and exploring
MQSeries:

- MQSeries Explorer—a snap-in for the Microsoft management console
(MMC) that allows you to query, change, and create the local, remote,
and cluster objects across an MQSeries network.

- MQSeries Services—an MMC snap-in that controls the operation of
MQSeries components, either locally or remotely within the Windows
NT domain. It monitors the operation of MQSeries servers and
provides extensive error detection and recovery functions.

- MQSeries API Exerciser—a graphical application for exploring the
messaging and queuing programming functions that MQSeries
provides. It can also be used in conjunction with the MQSeries
Explorer to gain a deeper understanding of the effects of MQSeries
operations on objects and messages.

- MQSeries Postcard—a sample application that can be used to verify an
MQSeries installation, for either local or remote messaging.

— Support for the following features of Windows NT has been added:

- Windows NT performance monitor—used to access and display
MQSeries information, such as the current depth of a queue and the
rate at which message data is put onto and taken off queues.

- ActiveDirectory—programmable access to MQSeries objects is
available through the Active Directory Service Interfaces (ADSI).

MQSeries Intercommunication

Summary of changes

- Windows NT user IDs—previous MQSeries restrictions on the validity of
Windows NT user IDs have been removed. All valid Windows NT user
IDs are now valid identifiers for MQSeries operations. MQSeries uses
the associated Windows NT Security Identifier (SID) and the Security
Account Manager (SAM). The SID allows the MQSeries Object
Authority Manager (OAM) to identify the specific user for an
authorization request.

- Windows NT registry—now used to hold all configuration and related
data. The contents of any configuration (.INI) files from previous
MQSeries installations of MQSeries for Windows NT products are
migrated into the registry; the .INI files are then deleted.

- A set of Component Object Model (COM) classes, which allow ActiveX
applications to access the MQSeries Message Queue Interface (MQI)
and the MQSeries Administration Interface (MQAI).

— An online Quick Tour of the product concepts and functions.

— An online Information Center that gives you quick access to task help
information, reference information, and Web-based online books and home
pages.

— Simplified installation of MQSeries for Windows NT, with default options
and automatic configuration.

Support for web-based administration of an MQSeries network, which provides
a simplified way of using the MQSC commands and scripts and allows you to
create powerful macros for standard administration tasks.

Support for MQSeries LotusScript Extension (MQLSX), which allows Lotus
Notes applications that are written in LotusScript to communicate with
applications that run in non-Notes environments.

Support for Microsoft Visual Basic for Windows Version 5.0.

Performance improvements over the MQSeries for Windows NT Version 5.0
product.

Information and examples on how MQSeries applications can interface with and
exploit the lightweight directory access protocol (LDAP) directories.

Support for Sybase patrticipation in global units of work.

Summary of changes XXXili

Summary of changes

MQSeries for VSE/ESA V2.1

MQSeries for VSE/ESA joins the MQSeries Level 2 products. New function in
Version 2 Release 1 of MQSeries for VSE/ESA includes:

Transmission Control Protocol/Internet Protocol (TCP/IP) is supported.

MQSeries clients can connect to the MQSeries for VSE/ESA server via the
TCP/IP protocol. (Note, however, that there is no MQSeries for VSE/ESA
client.)

Messages may be up to 4 MB in size.

A user-selected, coded character set ID (CCSID) can be specified for all
messages written locally.

Messages sent to remote, non-VSE/ESA systems can be flagged as
nonpersistent.

Confirmation-on-delivery (COD) and confirmation-on-arrival (COA) messages
are supported.

A message priority, in the range 0 through 9, can be specified on MQPUT and
MQPUTL1 calls.

Automated reorganization of queue storage is supported.
Messages can be sent and received in batches of a user-specified size.

Support has been added for the C and PL/I application-programming
languages. Copy books, macros, and include files are provided for each
language.

Messages can be retrieved from queues by message identifier (MsgID) and
correlation identifier (Correlld).

Message Channel Agents (MCAs) record more diagnostic information in the
SYSTEM.LOG when communications failures occur.

MQSeries for AS/400 V4R2M1
New function in MQSeries for AS/400 VAR2ML1 includes:

Support for the MQSeries dead-letter queue handler
Improvements to installation and migration procedures

Changes for the second edition
Changes for edition number SC33-1872-01 include:

Addition of support for MQSeries for AS/400 V4R2.
Addition of support for MQSeries for Tandem NonStop Kernel V2.2.

Addition of an example LU 6.2 configuration using IBM Communications Server
for Windows NT.

Minor technical and editorial improvements throughout the book.

XXXV MQSeries Intercommunication

Part 1. Introduction

This part of the book introduces MQSeries intercommunication. The description in
this part is general, and is not restricted to a particular platform or system.

Note: Some references are made to individual MQSeries products. Details are
given only for the products that this edition of the book applies to (see the edition
notice for information about which MQSeries products these are).

Chapter 1. Concepts of intercommunication
What is intercommunication? L
How does distributed queuing work?
Distributed queuing components
Message channels
Message channel agents
TransmisSion QUEUES o oo
Channel initiators and listeners
Channel-exit programs
Dead-letter queues
Remote queue definitions
How to get to the remote queue manager
Multi-hopping
Sharing channels
Using different channels
Using clustering

Chapter 2. Making your applications communicate 19
How to send a message to another queue manager El
Defining the channels 20]
Defining the queues 22]
Sending the messages 23
25

26]

Starting the channel
Triggering channels
Safety of messages

Fast, nonpersistent messages

Undelivered messages

Chapter 3. More about intercommunication 27]
Addressing information 27]
What are aliases?
Queue name resolution 28]
Queue manager alias definitons L 2§
Outbound messages - remapping the queue manager name
Outbound messages - altering or specifying the transmission queue
Inbound messages - determining the destination 30]
Reply-to queue alias definitions, 30
What is a reply-to queue alias definition? 30]
Reply-to queue name 321
Networks 32]
Channel and transmission queue names 32]
Network planner 33]

© Copyright IBM Corp. 1993,1999 1

2 MQSeries Intercommunication

Concepts of intercommunication e What is intercommunication?

Chapter 1. Concepts of intercommunication

This chapter introduces the concepts of intercommunication in MQSeries.

* The basic concepts of intercommunication are explained in “What is
intercommunication?”

* The objects that you need for intercommunication are described in “Distributed
gueuing components” on page
This chapter goes on to introduce:

 “Dead-letter queues” on page
» “Remote queue definitions” on page
 “How to get to the remote queue manager” on page

What is intercommunication?

In MQSeries, intercommunication means sending messages from one queue
manager that are received by another queue manager. The receiving queue
manager could be on the same machine or another; nearby or on the other side of
the world. It could be running on the same platform as the local queue manager,
or could be on any of the platforms supported by MQSeries. MQSeries handles
communication in a distributed environment such as this using Distributed Queue
Management (DQM).

The local queue manager is sometimes called the source queue manager and the
remote queue manager is sometimes called the target queue manager or the
partner queue manager.

How does distributed queuing work?
Figure 1 on page [4]shows an overview of the components of distributed queuing.

© Copyright IBM Corp. 1993,1999

What is intercommunication?

MQOPEN

QM1 QM2
Message
UEUE
< Store
DEFNS
QUEUE
Message DEFNS
Store

Transport Service

Figure 1. Overview of the components of distributed queuing

1. An application uses the MQOPEN call to open a queue so that it can put
messages on it.

2. A queue manager has a definition for each of its queues, specifying information
such as the maximum number of messages allowed on the queue.

3. If the messages are destined for a queue on a remote system, the local queue
manager holds them in a message store until it is ready to forward them to the
remote queue manager. This can be transparent to the application.

4. Each queue manager contains communications software called the moving
service component; through this, the queue manager can communicate with
other queue managers.

5. The transport service is independent of the queue manager and can be any
one of the following (depending on the platform):

e Systems Network Architecture Advanced Program-to Program
Communication (SNA APPC)

e Transmission Control Protocol/Internet Protocol (TCP/IP)

¢ Network Basic Input/Output System (NetBIOS)

e Sequenced Packet Exchange (SPX)

e User-Datagram Protocol (UDP)

4 MQSeries Intercommunication

What is intercommunication?

What do we call the components?
1. MQSeries applications put messages onto a local queue, that is, a queue on
the same queue manager.

2. A queue manager has a definition for each of its queues. It may also have
definitions for queues that are owned by other queue managers. These are
called remote queue definitions.

3. If the messages are destined for a remote queue manager, the local queue
manager stores them on a transmission queue until it is ready to send them to
the remote queue manager. A transmission queue is a special type of local
gueue on which messages are stored until they can be successfully transmitted
and stored at the remote queue manager.

4. The software that handles the sending and receiving of messages is called the
Message Channel Agent (MCA).

5. Messages are transmitted between queue managers on a channel. A channel
is a one-way communication link between two queue managers. It can carry
messages destined for any number of queues at the remote queue manager.

Components needed to send a message
If a message is to be sent to a remote queue manager, the local queue manager
needs definitions for a transmission queue and a channel.

Each end of a channel has a separate definition, defining it, for example, as the
sending end or the receiving end. A simple channel consists of a sender channel
definition at the local queue manager and a receiver channel definition at the
remote queue manager. These two definitions must have the same name, and
together constitute one channel.

There is also a message channel agent (MCA) at each end of a channel.

Each queue manager should have a dead-letter queue. Messages are put on this
gueue if, for some reason, they cannot be delivered to their destination.

Figure 2 shows the relationship between queue managers, transmission queues,
channels, and MCAs.

QM1 Qm2

Dead Letter Queue Dead Letter Queue

o Message Flow U
Appncanonf; MCA > MCA _/

1 — g

Transmission \U

Queue

Channel Application
Queues

Figure 2. Sending messages

Chapter 1. Concepts of intercommunication 5

What is intercommunication?

Components needed to return a message

If your application requires messages to be returned from the remote queue
manager, you need to define another channel, to run in the opposite direction
between the queue managers, as shown in Figure 3.

QM1 JQMZ

\
‘ |
Transmission ! | Application
Queue ‘ | Queue

Message Flow i

|
Application ! | Transmission
|

Queue o | Queue
| |

Figure 3. Sending messages in both directions

Cluster components

An alternative to the traditional MQSeries network is the use of clusters. Clusters
are supported on MQSeries for AlIX V5.1, MQSeries for HP-UX V5.1, MQSeries for
0OS/2 Warp V5.1, MQSeries for OS/390, MQSeries for Sun Solaris V5.1, and
MQSeries for Windows NT V5.1 only.

A cluster is a network of queue managers that are logically associated in some
way. You can group queue managers in a cluster so that queue managers can
make the queues that they host available to every other queue manager in the
cluster. Assuming you have the necessary network infrastructure in place, any
gueue manager can send a message to any other queue manager in the same
cluster without the need for explicit channel definitions, remote-queue definitions, or
transmission queues for each destination. Every queue manager in a cluster has a
single transmission queue that transmits messages to any other queue manager in
the cluster. Each queue manager needs to define only one cluster-receiver
channel and one cluster-sender channel.

6 MQSeries Intercommunication

What is intercommunication?

Figure 4 shows the components of a cluster called CLUSTER:
¢ CLUSTER contains three queue managers, QM1, QM2, and QM3.

e QM1 and QM2 host repositories of information about the queue managers and
gueues in the cluster.

¢ QM2 and QM3 host some cluster queues, that is, queues that are accessible to
any other queue manager in the cluster.

e Each queue manager has a cluster-receiver channel called TO.gmgr on which
it can receive messages.

e Each queue manager also has a cluster-sender channel on which it can send
information to one of the repository queue managers.

e QM1 and QM3 send to the repository at QM2 and QM2 sends to the repository
at QM1.

CLUSTER \

Figure 4. A cluster of queue managers

As with distributed queuing, you use the MQPUT call to put a message to a queue
at any queue manager. You use the MQGET call to retrieve messages from a
local queue.

For further information about clusters, see the MQSeries Queue Manager Clusters
book.

Chapter 1. Concepts of intercommunication 7

Distributed queuing components

Distributed queuing components
This section describes the components of distributed queuing. These are:

e Message channels

* Message channel agents

e Transmission queues

e Channel initiators and listeners
¢ Channel-exit programs

Message channels

Message channels are the channels that carry messages from one queue manager
to another.

Do not confuse message channels with MQI channels. There are two types of MQI
channel, server-connection and client-connection. These are discussed in
Chapter 8, “Using channels” in the MQSeries Clients book.

The definition of each end of a message channel can be one of the following types:

e Sender

e Receiver

e Server

e Requester

¢ Cluster sender
e Cluster receiver

A message channel is defined using one of these types defined at one end, and a
compatible type at the other end. Possible combinations are:

e Sender-receiver

e Requester-server

* Requester-sender (callback)

e Server-receiver

e Cluster sender-cluster receiver

Sender-receiver channels

A sender in one system starts the channel so that it can send messages to the
other system. The sender requests the receiver at the other end of the channel to
start. The sender sends messages from its transmission queue to the receiver.
The receiver puts the messages on the destination queue.

8 MQSeries Intercommunication

Distributed queuing components

1 [—

Transmission ,

\
|
Queue ‘

QM1 QM2
Session Initiation
SENDER > RECEIVER
T T T T T T T T T T T T T T |
! Message Flow i
I | MCA MCA /
|

Application
Queues

Figure 5. A sender-receiver channel

Server-receiver channel

This is similar to sender-receiver but applies only to fully qualified servers, that is

server channels that have the connection name of the partner specified in the

channel definition. Channel startup must be initiated at the server end of the link.

The illustration of this is similar to the illustration in Figure 5.

Cluster-sender channels

In a cluster, each queue manager has a cluster-sender channel on which it can

send cluster information to one of the repository queue managers. Queue

managers can also send messages to other queue managers on cluster-sender

channels.

QM1

SYSTEM.
CLUSTER. ALA(
TRANSMIT.
QUEUE

Message
Flow

v

Application
Queues

Figure 6. A cluster-sender channel

Requester-server channel

A requester in one system starts the channel so that it can receive messages from

the other system. The requester requests the server at the other end of the
channel to start. The server sends messages to the requester from the
transmission queue defined in its channel definition.

Chapter 1. Concepts of intercommunication

9

Distributed queuing components

A server channel can also initiate the communication and send messages to a
requester, but this applies only to fully qualified servers, that is server channels that
have the connection name of the partner specified in the channel definition. A fully

qualified server may either be started by a requester, or may initiate a
communication with a requester.

QM1

SERVER

<

QM2

Session Initiation

_ REQUESTER

MCA

Message Flow

v

MCA

U

1[—

Transmission

Queue

gl
\U

Channel

Application

Queues

Figure 7. A requester-server channel

Requester-sender channel

The requester starts the channel and the sender terminates the call. The sender
then restarts the communication according to information in its channel definition
(this is known as callback). It sends messages from the transmission queue to the
requester.

QM2
Session Initiation

Callback REQUESTER

I
I |
I Message Flow |
! MCA » MCA |
| |
I

Transmission |
Application
Queues

Queue

Figure 8. A requester-sender channel

Cluster-receiver channels

In a cluster, each queue manager has a cluster-receiver channel on which it can
receive messages and information about the cluster. The illustration of this is
similar to the illustration in Figure 6 on page [9]

10 MQSeries Intercommunication

Distributed queuing components

Message channel agents

A message channel agent (MCA) is a program that controls the sending and
receiving of messages. There is one message channel agent at each end of a
channel. One MCA takes messages from the transmission queue and puts them
on the communication link. The other MCA receives messages and delivers them
to the remote queue manager.

A message channel agent is called a caller MCA if it initiated the communication or,
otherwise, is called a responder MCA. A caller MCA may be associated with a
sender, server (fully qualified), or requester channel. A responder MCA, may be
associated with any type of message channel.

Transmission queues

A transmission queue is a special type of local queue used to store messages
temporarily before they are transmitted by the MCA to the remote queue manager.
In a distributed-queuing environment, you need to define one transmission queue
for each sending MCA.

You specify the name of the transmission queue in a remote queue definition, (see
“Remote queue definitions” on page [16). If you do not specify the name, the
gueue manager looks for a transmission queue with the same name as the remote
gueue manager.

You can specify the name of a default transmission queue for the queue manager.
This is used if you do not specify the name of the transmission queue, and a
transmission queue with the same name as the remote queue manager does not
exist.

Channel initiators and listeners

A channel initiator acts as a trigger monitor for sender MCAs, because a
transmission queue may be defined as a triggered queue. When a message
arrives on a transmission queue that satisfies the triggering criteria for that queue, a
message is sent to the initiation queue, triggering the channel initiator to start the
appropriate sender MCA. You can also start server MCAs in this way if you
specified the connection name of the partner in the channel definition. This means
that channels can be started automatically, based upon messages arriving on the
appropriate transmission queue.

You need a channel listener program to start receiving (responder) MCAs.
Responder MCAs are started in response to a startup request from the sending
MCA,; the channel listener detects incoming network requests and starts the
associated channel.

Chapter 1. Concepts of intercommunication 11

Distributed queuing components

Figure 9 shows how channel initiators and channel listeners are used.

SESSION
REQUEST
> CHANNEL
LISTENER QM2
QM1
J START
A v |
I MCA MCA |
= i
' I
Transmission : i
Queue . i
W Channel
—>
Initiation CHANNEL
Queue INITIATOR

Figure 9. Channel initiators and listeners

The implementation of channel initiators is platform specific.

On 0S/390 without CICS, there is one channel initiator for each queue
manager and it runs as a separate address space. It monitors the
system-defined queue SYSTEM.CHANNEL.INITQ, which is the initiation queue
for all the transmission queues.

On 0S/390, if you are using CICS for distributed queuing, there is no channel
initiator. To implement triggering, use the CICS trigger monitor transaction,
CKTI, to monitor the initiation queue.

MQSeries for Windows does not support triggering and does not have channel
initiators.

On 0S/400 you cannot start more than three channel initiators.

On other platforms, you can start as many channel initiators as you like,
specifying a name for the initiation queue for each one. Normally you need
only one initiator. V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT allows you to start three, by default, but you can change this
value.

12 MQSeries Intercommunication

Distributed queuing components

The channel initiator is also required for other functions, discussed later in this
book.

The implementation of channel listeners is platform specific.

* Use the channel listener programs provided by MQSeries if you are using
native OS/390 communications for distributed queuing, MQSeries for Digital
OpenVMS, MQSeries for Tandem NonStop Kernel, or MQSeries for Windows,

e |f you are using CICS for distributed queuing on OS/390, you do not need a
channel listener because CICS provides this function.

¢ On 0S/400, use the channel listener program provided by MQSeries if you are
using TCP/IP. If you are using SNA, you do not need a listener program. SNA
starts the channel by invoking the receiver program on the remote system.

¢ On 0S/2 and Windows NT, you can use either the channel listener program
provided by MQSeries, or the facilities provided by the ‘operating system’ (for
example, Attach manager for LU 6.2 communications on OS/2). If performance
is important in your environment and if the environment is stable, you can
choose to run the MQSeries listener as a trusted application as described in
“Running channels and listeners as trusted applications” on page See
“Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

e On UNIX systems, use the channel listener program provided by MQSeries or
the facilities provided by the ‘operating system’ (for example, inetd for TCP/IP
communications).

Channel-exit programs
If you want to do some additional processing (for example, encryption or data
compression) you can write your own channel-exit programs, or sometimes use
SupportPacs. The Transaction Processing SupportPacs library for MQSeries is
available on the Internet at URL:

http://www.software.ibm.com/mgseries/txppacs/txpsumm.html

Chapter 1. Concepts of intercommunication 13

http://www.software.ibm.com/mqseries/txppacs/txpsumm.html

Distributed queuing components

MQSeries calls channel-exit programs at defined places in the processing carried
out by the MCA. There are five types of channel exit:

Security exit
Used for security checking.

Message exit
Used for operations on the message, for example, encryption prior to
transmission.

Send and receive exits
Used for operations on split messages, for example, data compression and
decompression.

Message-retry exit
Used when there is a problem putting the message to the destination

Channel auto-definition exit
Used to modify the supplied default definition for an automatically defined
receiver or server-connection channel.

Transport-retry exit
Used to suspend data being sent on a channel when communication is not
possible.

The sequence of processing is as follows:

1. The security exits are called after the initial data negotiation between both ends
of the channel. These must end successfully for the startup phase to complete
and to allow messages to be transferred.

2. The message exit is called by the sending MCA, and then the send exit is
called for each part of the message that is transmitted to the receiving MCA.

3. The receiving MCA calls the receive exit when it receives each part of the
message, and then calls the message exit when the whole message has been
received.

This is illustrated in Figure 10 on page

14 MQSeries Intercommunication

Dead-letter queues

Sequence in which channel exit programs are called

QM1 QM2

ju]
MCA MCA _/

1[—- U
Transmission || | A U

Queue v v
SECURITY » SECURITY Application
Queues
+ MESSAGE MESSAEE]

l l

Vseno » RECEIVE
i
l Message Flow }[MESSAGE
RETRY

Channel

Figure 10. Sequence in which channel exit programs are called

The message-retry exit is used to determine how many times the receiving MCA
will attempt to put a message to the destination queue before taking alternative
action. This exit program is described in “MQ_CHANNEL_EXIT - Channel exit” on
page It is not supported on MQSeries for Windows.

For more information about channel exits, see Chapter 35, “Channel-exit programs”

on page [491.

Dead-letter queues

The dead-letter queue (or undelivered-message queue) is the queue to which
messages are sent if they cannot be routed to their correct destination. Messages
are put on this queue when they cannot be put on the destination queue for some
reason (for example, because the queue does not exist, or because it is full).
Dead-letter queues are also used at the sending end of a channel, for
data-conversion errors.

We recommend that you define a dead-letter queue for each queue manager. If
you do not, and the MCA is unable to put a message, it is left on the transmission
gueue and the channel is stopped.

Also, if fast, nonpersistent messages (see “Fast, nonpersistent messages” on
page cannot be delivered and no DLQ exists on the target system, these
messages are discarded.

However, using dead-letter queues can affect the sequence in which messages are
delivered, and so you may choose not to use them.

Dead-letter queues are not supported on MQSeries for Windows.

Chapter 1. Concepts of intercommunication 15

Remote queue definitions e Getting to remote queue manager

Remote queue definitions

Whereas applications can retrieve messages only from local queues, they can put
messages on local queues or remote queues. Therefore, as well as a definition for
each of its local queues, a queue manager may have remote queue definitions.
These are definitions for queues that are owned by another queue manager. The
advantage of remote queue definitions is that they enable an application to put a
message to a remote queue without having to specify the name of the remote
gueue or the remote queue manager, or the name of the transmission queue. This
gives you location independence.

There are other uses for remote queue definitions, which will be described later.

How to get to the remote queue manager

You may not always have one channel between each source and target queue
manager. Consider these alternative possibilities.

Multi-hopping
If there is no direct communication link between the source queue manager and the
target queue manager, it is possible to pass through one or more intermediate
queue managers on the way to the target queue manager. This is known as a
multi-hop.

You need to define channels between all the queue managers, and transmission
gueues on the intermediate queue managers. This is shown in Figure 11.

QM1 T \] Qm2 \] QM3 N

! Message Flow ! Message Flow
I |mca » | MCA ’r\‘ I'|mca » | MCA
= Ny]
i | i
Transmission ! | Transmission | Application
Queue | j Queue | i Queue

! i i
| ‘ ‘
‘/F MCA | ¢ MCA '/—J‘\ MCA | ¢ MCA :

‘ ‘
Application ! I Transmission , I Transmission
Queue [1 Queue [] Queue

Figure 11. Passing through intermediate queue managers

16 MQSeries Intercommunication

Getting to remote queue manager

Sharing channels

As an application designer, you have the choice of 1) forcing your applications to
specify the remote queue manager name along with the queue name, or 2) creating
a remote queue definition for each remote queue to hold the remote queue
manager name, the queue name, and the name of the transmission queue. Either
way, all messages from all applications addressing queues at the same remote
location have their messages sent through the same transmission queue. This is
shown in Figure 12.

QM1 QM2

Dead Letter Queue

Remote queue
definitions

Message Flow
MCA > MCA _/
. — >
i Transmission \

Queue

Channel Application
Queues

Figure 12. Sharing a transmission queue

Figure 12 illustrates that messages from multiple applications to multiple remote
gueues can use the same channel.

Using different channels

If you have messages of different types to send between two queue managers, you
can define more than one channel between the two. There are times when you
need alternative channels, perhaps for security purposes, or to trade off delivery
speed against sheer bulk of message traffic.

To set up a second channel you need to define another channel and another
transmission queue, and create a remote queue definition specifying the location
and the transmission queue name. Your applications can then use either channel
but the messages will still be delivered to the same target queues. This is shown
in Figure 13 on page

Chapter 1. Concepts of intercommunication 17

Getting to remote queue manager

QM1 Qm2
Message Flow
MCA > MCA |—
1 i
./"
Transmission /,/’/ Application
Queue / Queue
/
Channels //’
Message Flow L
MCA > MCA
e \
Transmission Application
Queue Queue

Figure 13. Using multiple channels

When you use remote queue definitions to specify a transmission queue, your
applications must not specify the location (that is, the destination queue manager)
themselves. If they do, the queue manager will not make use of the remote queue
definitions. Remote queue definitions make the location of queues and the
transmission queue transparent to applications. Applications can put messages to
a logical queue without knowing where the queue is located and you can alter the
physical queue without having to change your applications.

| Using clustering

| Every queue manager within a cluster defines a cluster-receiver channel and when
| another queue manager wants to send a message to that queue manager, it

| defines the corresponding cluster-sender channel automatically. For example, if

| there is more that one instance of a queue in a cluster, the cluster-sender channel
| could be defined to any of the queue managers that host the queue. MQSeries

| uses a workload management algorithm that uses a round-robin routine to select

| the best queue manager to route a message to. For more information about this,

| see Chapter 5, “Using clusters for workload management” in the MQSeries Queue
| Manager Clusters book.

18 MQSeries Intercommunication

Making applications communicate ¢ Sending messages

Chapter 2. Making your applications communicate

This chapter provides more detailed information about intercommunication between
MQSeries products. Before reading this chapter it is helpful to have an
understanding of channels, queues, and the other concepts introduced in

Chapter 1, “Concepts of intercommunication” on page

This chapter covers the following topics:

e “How to send a message to another queue manager”
« “Triggering channels” on page
» “Safety of messages” on page

How to send a message to another queue manager

This section describes the simplest way to send a message from one queue
manager to another.

Before you do this you need to do the following:

1. Check that your chosen communication protocol is available.
2. Start the queue managers.

3. Start the channel initiators.

4. Start the listeners.

On MQSeries for Windows, instead of steps 2, 3, and 4, you start a connection,
which includes a queue manager, channels, and a listener. See the MQSeries for
Windows User’s Guide for more information.

You also need to have the correct MQSeries security authorization (except on
MQSeries for Windows) to create the objects required.

To send messages from one queue manager to another:
» Define the following objects on the source queue manager:

— Sender channel

— Remote queue

— Initiation queue (required on OS/390, otherwise optional)
— Transmission queue

— Dead-letter queue (recommended)

— Process (required on OS/390, otherwise optional)

¢ Define the following objects on the target queue manager:

— Receiver channel
— Target queue
— Dead-letter queue (recommended)

© Copyright IBM Corp. 1993,1999 19

Sending messages

You can use several different methods to define these objects, depending on your
MQSeries platform:

0S/390 or MVS/ESA
If you are using native OS/390 communications, you can use the Operation
and Control panels or the MQSeries commands described in the MQSeries
Command Reference book. If you are using CICS for distributed queuing,
you must use the supplied CICS application CKMC for channels.

0S/400
You can use the panel interface, the control language (CL) commands
described in the MQSeries for AS/400 Administration Guide, Chapter 2, “The
MQSeries commands” described in the MQSeries Command Reference book,
or the programmable command format (PCF) commands described in Part 2,
“Programmable Command Formats” in the MQSeries Programmable System
Management book.

MQSeries for Windows
You can use MQSC commands, PCF commands, or the MQSeries properties
dialog. Not all MQSC and PCF commands are supported; see the MQSeries
for Windows User’s Guide.

Note: On MQSeries for Windows there is no initiation queue, dead-letter
queue, or process.

0S/2, Windows NT, UNIX systems, and Digital OpenVMS
You can use Chapter 2, “The MQSeries commands” described in the
MQSeries Command Reference book, or the PCF commands described in
Part 2, “Programmable Command Formats” in the MQSeries Programmable
System Management book. On Windows NT only, you can also use the
graphical user interfaces, the MQSeries explorer and the MQSeries Web
Administration.

Tandem NSK
You can use MQSC commands, PCF commands, or the Message Queue
Management facility. See the MQSeries for Tandem NonStop Kernel System
Management Guide for more information about the control commands and the
Message Queue Management facility.

VSE/ESA
You can use the panel interface as described in the MQSeries for VSE/ESA
System Management Guide.

The different methods are described in more detail in the platform-specific parts of
this book.

Defining the channels

To send messages from one queue manager to another, you need to define two
channels; one on the source queue manager and one on the target queue
manager.

20 MQSeries Intercommunication

Sending messages

On the source queue manager
Define a channel with a channel type of SENDER. You need to specify the
following:

e The name of the transmission queue to be used (the XMITQ attribute).
e The connection name of the partner system (the CONNAME attribute).

¢ The name of the communication protocol you are using (the TRPTYPE
attribute). For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT, MQSeries for AS/400 V4R2M1, and MQSeries
for Windows, you do not have to specify this. You can leave it to pick up
the value from your default channel definition. On MQSeries for Windows
the protocol must be TCP or UDP. On MQSeries for VSE/ESA, the
protocol must be TCP or LU 6.2; you can choose T or L accordingly on
the Maintain Channel Definition menu.

Details of all the channel attributes are given in Chapter 6, “Channel
attributes” on page

On the target queue manager
Define a channel with a channel type of RECEIVER, and the same name as
the sender channel.

Specify the name of the communication protocol you are using (the TRPTYPE
attribute). For V5.1 of MQSeries for AlIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, MQSeries for AS/400 V4R2M1, and MQSeries for
Windows, you do not have to specify this. You can leave it to pick up the
value from your default channel definition. On MQSeries for Windows the
protocol must be TCP. If you are using CICS to define a channel, you cannot
specify TRPTYPE. Instead you should accept the defaults provided. On
MQSeries for VSE/ESA, you can choose T (TCP) or U (UDP) on the Maintain
Channel Definition menu.

Note that other than on MQSeries for Windows, receiver channel definitions
can be generic. This means that if you have several queue managers
communicating with the same receiver, the sending channels can all specify
the same name for the receiver, and one receiver definition will apply to them
all.

When you have defined the channel, you can test it using the PING CHANNEL
command. This command (which is not supported on MQSeries for Windows)
sends a special message from the sender channel to the receiver channel and
checks that it is returned.

Chapter 2. Making your applications communicate 21

Sending messages

Defining the queues

To send messages from one queue manager to another, you need to define up to
six queues; four on the source queue manager and two on the target queue
manager.

On the source queue manager

¢ Remote queue definition
In this definition you specify the following:

Remote queue manager name
This is the name of the target queue manager.

Remote queue name
This is the name of the target queue on the target queue manager.

Transmission queue name
This is the name of the transmission queue. You do not have to
specify this. If you do not, a transmission queue with the same
name as the target queue manager is used, or if this does not exist,
the default transmission queue is used. It is a good idea to give the
transmission queue the same name as the target queue manager so
that the queue is found by default.

e [nitiation queue definition

This is not supported on MQSeries for Windows, is required on 0OS/390,
and is optional on other platforms. On OS/390 you must use the initiation
queue called SYSTEM.CHANNEL.INITQ and you are recommended to do
so on other platforms also.

e Transmission queue definition

This is a local queue with the USAGE attribute set to XMITQ. If you are
using the MQSeries for AS/400 V4R2M1 native interface, the USAGE
attribute is *TMQ.

e Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)

You should choose to define a dead-letter queue to which undelivered
messages can be written.

On 0S/390 you should also define a process if you want your channels to be
triggered automatically (see “Triggering channels” on page [23).

On the target queue manager

22 MQSeries Intercommunication

e Local queue definition

This is the target queue. The name of this queue must be the same as
that specified in the remote queue name field of the remote queue
definition on the source queue manager.

¢ Dead-letter queue definition—recommended (not applicable to MQSeries
for Windows)

You should choose to define a dead-letter queue to which undelivered
messages can be written.

Triggering channels

Sending the messages

When you put messages on the remote queue defined at the source queue
manager, they are stored on the transmission queue until the channel is started.
When the channel has been started, the messages are sent to the target queue on
the remote queue manager.

Starting the channel

Start the channel on the sending queue manager using the START CHANNEL
command. When you start the sending channel, the receiving channel is started
automatically (by the listener) and the messages are sent to the target queue. Both
ends of the message channel must be running for messages to be transferred.

Because the two ends of the channel are on different queue managers, they could
have been defined with different attributes. To resolve any differences, there is an
initial data negotiation between the two ends when the channel starts. In general,
the two ends of the channel agree to operate with the attributes needing the fewer
resources, thus enabling larger systems to accommodate the lesser resources of
smaller systems at the other end of the message channel.

The sending MCA splits large messages before sending them across the channel.
They are reassembled at the remote queue manager. This is transparent to the
user.

Triggering channels

This explanation is intended as an overview of triggering concepts. You can find a
complete description in Chapter 14, “Starting MQSeries applications using triggers”
in the MQSeries Application Programming Guide.

For platform-specific information see the following:

e For OS/2, Windows NT, UNIX systems, Digital OpenVMS, and Tandem NSK,
“Triggering channels” on page

 For 0S/390 without CICS, “Defining MQSeries objects” on page

 For 0S/390 using CICS, “How to trigger channels” on page

 For 0S/400, “Triggering channels” on page

Triggering is not supported on MQSeries for Windows.

Chapter 2. Making your applications communicate 23

Triggering channels

Application Queue manager Application

Local program

Local or 1. T e 5. st_arted by _
MCA ransmissionqueue trigger monitor
puts message or
message l retrieved MCA started by
onqueue 2.trigger message channelinitiator

A
Initiation queue

3.
trigger Program
message
retrieved
Channel
initiator
(Long 4.Queue server started
running)

Figure 14. The concepts of triggering

The objects required for triggering are shown in Figure 14. It shows the following
sequence of events:

1.

The local queue manager places a message from an application or from a
message channel agent (MCA) on the transmission queue.

. When the triggering conditions are fulfilled, the local queue manager places a

trigger message on the initiation queue.

. The long-running channel initiator program monitors the initiation queue, and

retrieves messages as they appear.

. The trigger monitor processes the trigger messages according to information

contained in them. This information may include the channel name, in which
case a special type of trigger monitor called a channel initiator starts the
corresponding MCA.

. The local application or the MCA, having been triggered, retrieves the

messages from the transmission queue.

24 MQSeries Intercommunication

Safety of messages

To set up this scenario, you need to:

e Create the transmission queue with the name of the initiation queue (that is,
SYSTEM.CHANNEL.INITQ) in the corresponding attribute.

e Ensure that the initiation queue (SYSTEM.CHANNEL.INITQ) exists.

e Ensure that the channel initiator program is available and running. The trigger
monitor program must be provided with the name of the initiation queue in its
start command. On 0S/390 without CICS, the name of the initiation queue is
fixed, so is not used on the start command.

e Create the process definition for the triggering, if it does not exist, and ensure
that its UserData field contains the name of the channel it serves. For V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and
MQSeries for AS/400 V4AR2M1, the process definition is optional (it is not
supported on MQSeries for VSE/ESA). Instead, you can specify the channel
name in the TriggerData attribute of the transmission queue. V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT allow the
channel name to be specified as blank, in which case the first available channel
definition with this transmission queue is used.

e Ensure that the transmission queue definition contains the name of the process
definition to serve it, (if applicable), the initiation queue name, and the triggering
characteristics you feel are most suitable. The trigger control attribute allows
triggering to be enabled, or not, as necessary.

Notes:

1. An initiation queue and trigger process can be used to trigger any number of
channels.

2. Any number of initiation queues and trigger processes can be defined.

3. A trigger type of FIRST is recommended, to avoid flooding the system with
channel starts.

Safety of messages

In addition to the usual recovery features of MQSeries, distributed queue
management ensures that messages are delivered properly by using a syncpoint
procedure coordinated between the two ends of the message channel. If this
procedure detects an error, it closes the channel to allow you to investigate the
problem, and keeps the messages safely in the transmission queue until the
channel is restarted.

The syncpoint procedure has an added benefit in that it attempts to recover an
in-doubt situation when the channel starts up. (In-doubt is the status of a unit of
recovery for which a syncpoint has been requested but the outcome of the request
is not yet known.) Also associated with this facility are the two functions:

1. Resolve with commit or backout
2. Reset the sequence number

The use of these functions occurs only in exceptional circumstances because the
channel recovers automatically in most cases.

Chapter 2. Making your applications communicate 25

Safety of messages

Fast, nonpersistent messages

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
MQSeries for 0S/390 without CICS, MQSeries for Windows V2.1, and MQSeries
for AS/400 VAR2M1, the nonpersistent message speed (NPMSPEED) channel
attribute can be used to specify that any nonpersistent messages on the channel
are to be delivered quickly. For more information about this attribute, see
“Nonpersistent message speed (NPMSPEED)” on page If a channel
terminates while fast, nonpersistent messages are in transit, the messages may be
lost and it is up to the application to arrange for their recovery if required. Similarly,
if the MQPUT command fails for any reason, the messages will be lost.

Every effort is made to deliver fast, nonpersistent messages safely. Unless there is
a problem with the message, such as a data-conversion problem or a
message-size problem, the message is delivered. The safety of an individual
message is not affected by sequence-number problems or problems with other
messages in the same batch.

In MQSeries for Digital OpenVMS fast messages are defined differently. To enable
fast messages on a channel, of type sender, server, receiver, or requester, set the
following definitions at both ends of the channel after the CHLTYPE:

DESCR(*>>> description®) +
Specifying >>> as the first characters in the channel description defines the channel
as fast for nonpersistent messages.

Note: If the other end of the channel does not support the option, the channel
runs at normal speed.

Undelivered messages

For information about what happens when a message cannot be delivered, see
“What happens when a message cannot be delivered?” on page

26 MQSeries Intercommunication

More about intercommunication e« What are aliases?

Chapter 3. More about intercommunication

This chapter mentions three aliases:

* Remote queue definition
¢ Queue manager alias definition
¢ Reply-to queue alias definition

These are all based on the remote queue definition object introduced in “Remote
queue definitions” on page

This discussion does not apply to alias queues. These are described in in “Alias
gueues” in the MQSeries Application Programming Guide.

This chapter also discusses “Networks” on page

Addressing information

In a single-queue-manager environment, the address of a destination queue is
established when an application opens a queue for putting messages to. Because
the destination queue is on the same queue manager, there is no need for any
addressing information.

In a distributed environment the queue manager needs to know not only the
destination queue name, but also the location of that queue (that is, the queue
manager name), and the route to that remote location (that is, the transmission
gueue). When an application puts messages that are destined for a remote queue
manager, the local queue manager adds a transmission header to them before
placing them on the transmission queue. The transmission header contains the
name of the destination queue and queue manager, that is, the addressing
information. The receiving channel removes the transmission header and uses the
information in it to locate the destination queue.

You can avoid the need for your applications to specify the name of the destination
gueue manager if you use a remote queue definition. This definition specifies the
name of the remote queue, the name of the remote queue manager to which
messages are destined, and the name of the transmission queue used to transport
the messages.

What are aliases?

Aliases are used to provide a quality of service for messages. The queue manager
alias enables a system administrator to alter the name of a target queue manager
without causing you to have to change your applications. It also enables the
system administrator to alter the route to a destination queue manager, or to set up
a route that involves passing through a number of other queue managers
(multi-hopping). The reply-to queue alias provides a quality of service for replies.

Queue manager aliases and reply-to queue aliases are created using a
remote-queue definition that has a blank RNAME. These definitions do not define
real queues; they are used by the queue manager to resolve physical queue
names, queue manager names, and transmission queues.

© Copyright IBM Corp. 1993,1999 27

Queue manager alias definitions

Alias definitions are characterized by having a blank RNAME.

Queue name resolution

Queue name resolution occurs at every queue manager each time a queue is
opened. Its purpose is to identify the target queue, the target queue manager
(which may be local), and the route to that queue manager (which may be null).
The resolved name has three parts: the queue manager name, the queue name,
and, if the queue manager is remote, the transmission queue.

When a remote queue definition exists, no alias definitions are referenced. The
gueue name supplied by the application is resolved to the name of the destination
gueue, the remote queue manager, and the transmission queue specified in the
remote queue definition. For more detailed information about queue name
resolution, see Appendix C, “Queue name resolution” on page

If there is no remote queue definition and a queue manager name is specified, or
resolved by the name service, the queue manager looks to see if there is a queue
manager alias definition that matches the supplied queue manager name. |If there
is, the information in it is used to resolve the queue manager name to the name of
the destination queue manager. The queue manager alias definition can also be
used to determine the transmission queue to the destination queue manager.

If the resolved queue name is not a local queue, both the queue manager name
and the queue name are included in the transmission header of each message put
by the application to the transmission queue.

The transmission queue used usually has the same name as the resolved queue
manager, although this may be changed by a remote queue definition or a queue
manager alias definition. If you have not defined a transmission queue with the
name of the resolved queue manager and there is no transmission queue defined
by the remote queue definitions or queue manager alias definitions, but you have
defined a default transmission queue, the default transmission queue is used.

Note: Names of queue managers running on OS/390 are limited to four
characters.

Queue manager alias definitions
Queue manager alias definitions apply when an application that opens a queue to
put a message, specifies the queue name and the queue manager name.
Queue manager alias definitions have three uses:

¢ When sending messages, remapping the queue manager name

¢ When sending messages, altering or specifying the transmission queue

¢ When receiving messages, determining whether the local queue manager is the
intended destination for those messages

28 MQSeries Intercommunication

Queue manager alias definitions

Outbound messages - remapping the queue manager name

Queue manager alias definitions can be used to remap the queue manager name
specified in an MQOPEN call. For example, an MQOPEN call specifies a queue
name of THISQ and a queue manager name of YOURQM. At the local queue
manager there is a queue manager alias definition like this:

DEFINE QREMOTE (YOURQM) RNAME() RQMNAME (REALQM)

This shows that the real queue manager to be used, when an application puts
messages to queue manager YOURQM, is REALQM. If the local queue manager
is REALQM, it puts the messages to the queue THISQ, which is a local queue. If
the local queue manager is not called REALQM, it routes the message to a
transmission queue called REALQM. The queue manager changes the
transmission header to say REALQM instead of YOURQM.

Outbound messages - altering or specifying the transmission queue

Figure 15 shows a scenario where messages arrive at queue manager ‘QM1’ with
transmission headers showing queue names at queue manager ‘QM3’. In this
scenario, ‘QM3’ is reachable by multi-hopping through ‘QM2’.

—

Channel_in A

T
i
i
i

—>

Channel.in B

Adjacent
system

I I
| |
QM1 { QM2 1
i i
i i
| |
== ===== [| |
i Queue | 'QM3 i i
| A ' '
I I
i i
i i
1 | |
Queue ‘ '‘QM2' -+ Channel out 1 ﬁ’ Queue '‘QM3’ —» Channel_out 2 —»t
o

! ! QM3
I I
i i
| |
I I

Local system 1 Adjacent system * Remote
system

Figure 15. Queue manager alias

All messages for ‘QM3’ are captured at ‘QM1’ with a queue manager alias. The
gueue manager alias is named ‘QM3’ and contains the definition ‘QM3 via
transmission queue QM2’. The definition looks like this:

DEFINE QREMOTE (QM3) RNAME() RQMNAME(QM3) XMITQ(QM2)

The queue manager puts the messages on transmission queue ‘QM2’ but does not
make any alteration to the transmission queue header because the name of the
destination queue manager, ‘QM3’, does not alter.

All messages arriving at ‘QM1’ and showing a transmission header containing a
gueue name at ‘QM2’ are also put on the ‘QM2’ transmission queue. In this way,
messages with different destinations are collected onto a common transmission
gueue to an appropriate adjacent system, for onward transmission to their
destinations.

Chapter 3. More about intercommunication 29

Reply-to queue alias definitions

Inbound messages - determining the destination

A receiving MCA opens the queue referenced in the transmission header. If a
gueue manager alias definition exists with the same name as the queue manager
referenced, then the queue manager name received in the transmission header is
replaced with the RQMNAME from that definition.

This has two uses:

¢ Directing messages to another queue manager
e Altering the queue manager name to be the same as the local queue manager

Reply-to queue alias definitions

When an application needs to reply to a message it may look at the data in
message descriptor of the message it received to find out the name of the queue to
which it should reply. It is up to the sending application to suggest where replies
should be sent and to attach this information to its messages. This has to be
coordinated as part of your application design.

What is a reply-to queue alias definition?

A reply-to queue alias definition specifies alternative names for the reply information
in the message descriptor. The advantage of this is that you can alter the name of
a queue or queue manager without having to alter your applications. Queue name

resolution takes place at the sending end, before the message is put to a queue.

Note: This is an unusual use of queue-name resolution. It is the only situation in
which name resolution takes place at a time when a queue is not being opened.

Normally an application specifies a reply-to queue and leaves the reply-to queue
manager name blank. The queue manager fills in its own name at put time. This
works well except when you want alternate channels to be used for replies. In this
situation, the queue manager names specified in transmission-queue headers do
not match “real” queue manager names but are re-specified using qgueue manager
alias definitions. In order to return replies along similar alternate routes, it is
necessary to map reply-to queue data as well, using reply-to queue alias
definitions.

30 MQSeries Intercommunication

Reply-to queue alias definitions

Queue manager'QM1" Queue manager'QM2'
Applicati AN R
ppiication » Queue : 'Inquiry'
B I
’ Queue ‘ 'QM3 _relief — Channel_out_1 *ﬁ Queue ‘ 'QM3 _relief —— Channel_out_2 —»

Inquiring

,,,,, L S
! Queue ! 'QM1_relief <—{ Channel_in_1 e{ Queue ‘ 'QM1_relief <«— Channel_in_2 <—
Local system Adjacentsystem Remote system

Figure 16. Reply-to queue alias used for changing reply location

In the example in Figure 16:

1. The application puts a message using the MQPUT call and specifying the
following in the message descriptor:

ReplyToQ=“Reply_to’
ReplyToQMgr=°"’

Note that ReplyToQMgr must be blank in order for the reply-to queue alias to
be used.

2. You create a reply-to queue alias definition called ‘Reply_to’, which contains
the name ‘Answer’, and the queue manager name ‘QM1_relief'.

DEFINE QREMOTE ('Reply to') RNAME ('Answer')
RQMNAME ('QM1_relief')

3. The messages are sent with a message descriptor showing
ReplyToQ="'Answer’ and ReplyToQMgr="QM1_relief.

4. The application specification must include the information that replies are to be
found in queue ‘Answer’ rather than ‘Reply_to'.
To prepare for the replies you have to create the parallel return channel. This
involves defining:
e At QM2, the transmission queue named ‘QM1_relief
DEFINE QLOCAL ('QM1 relief') USAGE(XMITQ)
e At QM1, the queue manager alias queue ‘QM1_relief’
DEFINE QREMOTE ('QM1_relief') RNAME() RQMNAME(QM1)
This queue manager alias queue terminates the chain of parallel return
channels and captures the messages for QM1.

If you think you might want to do this at sometime in the future, arrange for your
applications to use the alias name from the start. For now this is a normal queue
alias to the reply-to queue, but later it can be changed to a queue manager alias.

Chapter 3. More about intercommunication 31

Networks

Reply-to queue name

Care is needed with naming reply-to queues. The reason that an application puts a
reply-to queue name in the message is that it can specify the queue to which its
replies will be sent. But when you create a reply-to queue alias definition with this
name, you cannot have the actual reply-to queue (that is, a local queue definition)
with the same name. Therefore, the reply-to queue alias definition must contain a
new queue name as well as the queue manager name, and the application
specification must include the information that its replies will be found in this other
queue.

The applications now have to retrieve the messages from a different queue from
the one they named as the reply-to queue when they put the original message.

Networks

So far this book has covered creating channels between your system and any other
system with which you need to have communications, and creating multi-hop
channels to systems where you have no direct connections. The message channel
connections described in the scenarios are shown as a network diagram in

Figure 17 on page

Channel and transmission queue names

You can give transmission queues any name you like, but to avoid confusion, you
can give them the same names as the destination queue manager names, or
gueue manager alias names, as appropriate, to associate them with the route they
use. This gives a clear overview of parallel routes that you create through
intermediate (multi-hopped) queue managers.

This is not quite so clear-cut for channel names. The channel names in Figure 17
for QM2, for example, must be different for incoming and outgoing channels. All
channel names may still contain their transmission queue names, but they must be
qualified to make them unique.

For example, at QM2, there is a QM3 channel coming from QM1, and a QM3
channel going to QM3. To make the names unique, the first one may be named
‘QM3_from_QMZ’, and the second may be named ‘QM3_from_QM2’. In this way,
the channel names show the transmission queue name in the first part of the name,
and the direction and adjacent queue manager name in the second part of the
name.

A table of suggested channel names for Figure 17 is given in Table 1.

32 MQSeries Intercommunication

Network planner

Networks

oMt

QM2
QM2 fast
QM2 QM3
QM1 QM1
QM1 fast
QM1 relief QM1 relief
QM3 QM3
QM3_relief QM3_relief

Figure 17. Network diagram showing all channels

Table 1. Example of channel names

Route name Queue managers Transmission queue name Suggested channel name
hosting channel

QM1 QM1 & QM2 QM1 (at QM2) QM1.from.QM2

QM1 QM2 & QM3 QM1 (at QM3) QM1.from.QM3

QM1_fast QM1 & QM2 QM1_fast (at QM2) QM1_fast.from.QM2

QM1_relief QM1 & QM2 QM1_relief (at QM2) QM1_relief.from.QM2

QM1_relief QM2 & QM3 QM1_relief (at QM3) QM1_relief.from.QM3

QM2 QM1 & QM2 QM2 (at QM1) QM2.from.QM1

QM2_fast QM1 & QM2 QM2_fast (at QM1) QM2_fast.from.QM1

QM3 QM1 & QM2 QM3 (at QM1) QM3.from.QM1

QM3 QM2 & QM3 QM3 (at QM2) QM3.from.QM2

QM3_relief QM1 & QM2 QM3_relief (at QM1) QM3_relief.from.QM1

QM3_relief QM2 & QM3 QM3_relief (at QM2) QM3_relief.from.QM2
Notes:

1. On MQSeries for 0S/390, queue manager names are limited to 4 characters.

2. You are strongly recommended to name all the channels in your network
uniquely. As shown in Table 1, including the source and target queue
manager names in the channel name is a good way to do this.

This chapter has discussed application designer, systems administrator, and

channel planner functions. Creating a network assumes that there is another,
higher level function of network planner whose plans are implemented by the other
members of the team.

Chapter 3. More about intercommunication

33

Networks

If an application is used widely, it is more economical to think in terms of local
access sites for the concentration of message traffic, using wide-band links
between the local access sites, as shown in Figure 18.

In this example there are two main systems and a number of satellite systems (The
actual configuration would depend on business considerations.) There are two
concentrator queue managers located at convenient centers. Each
QM-concentrator has message channels to the local queue managers:

* QM-concentrator 1 has message channels to each of the three local queue
managers, QM1, QM2, and QM3. The applications using these queue
managers can communicate with each other through the QM-concentrators.

¢ QM-concentrator 2 has message channels to each of the three local queue
managers, QM4, QM5, and QM6. The applications using these queue
managers can communicate with each other through the QM-concentrators.

¢ The QM-concentrators have message channels between themselves thus
allowing any application at a queue manager to exchange messages with any
other application at another queue manager.

Q™ -

QM 1" Concentrator QM 3"
1
oM -

'‘Q M 4" Concentrator 'Q M 6"
2
QMs

Figure 18. Network diagram showing QM-concentrators

34 MQSeries Intercommunication

Part 2. How intercommunication works

This part of the book gives more details about how intercommunication works. The
description in this part is general, and is not restricted to a particular platform or
system.
Chapter 4. MQSeries distributed-messaging techniqgues
Message flow control
Queue names in transmission header L.
How to create queue manager and reply-to aliases
Putting messages on remote queues
More about name resolution
Choosing the transmission queue
Receiving messages

Receiving alias queue manager names
Passing messages through your system

Method 1: Using the incoming location name

Method 2: Using an alias for the queue manager
Method 3: Selecting a transmission queue
Using these methods

0]
22
3
23
|
45]
[45]
46]
46]
46|
Separating message flows [47]
[49]
50
51
52]
54
56|
56]
56|
58]
59
61
61
62]

Concentrating messages to diverse locations
Diverting message flows to another destination
Sending messages to a distribution list
Reply-to queue
Reply-to queue alias example
How the example works
How the queue manager makes use of the reply-to queue alias
Reply-to queue alias walk-through
Networking considerations
Return routing
Managing queue name translations
Message sequence numbering
Sequential retrieval of messages
Sequence of retrieval of fast, nonpersistent messages
Loopback testing

© Copyright IBM Corp. 1993,1999 35

Chapter 5. DQM implementation
Functions of DOM
Message sending and receiving
Channel parameters
Channel status and sequence numbers
Channel control function

Preparing channels

Channel states
Stopping and quiescing channels (not MQSeries for Windows)
Stopping and quiescing channels (MQSeries for Windows)
Restarting stopped channels
In-doubt channels
Problem determination
What happens when a message cannot be delivered?
Initialization and configuration files

0S/390 without CICS

0S/390 using CICS

OS/400 . .
Windows NT
0S/2, Digital OpenVMS, Tandem NSK, and UNIX systems

Data conversion
Writing your own message channel agents

63
63

64]

65]

65]

66]

66]

75

75

76|

77]

78]

801

80]

80

80]

80|

82]

82]

Chapter 6. Channel attributes
Channel attributes in alphabetical order 85
Alter date (ALTDATE) 6]
Alter time (ALTTIME) 86|
Auto start (AUTOSTART) 6]
Batch interval (BATCHINT) 87]
Batch size (BATCHSZ) 87]
Channel name (CHANNEL)
Channel type (CHLTYPE) 89
CICS profile name 89
Cluster (CLUSTER) 89]
Cluster namelist (CLUSNL) 90]
Connection name (CONNAME) 90]
Convert message (CONVERT) i 91
Description (DESCR) 92]
Disconnect interval (DISCINT) i 92]
Heartbeat interval (HBINT) 93
Long retry count (LONGRTY) 93]
Long retry interval (LONGTMR)
LU 6.2 mode name (MODENAME) oo v it 94]
LU 6.2 transaction program name (TPNAME) 94]
Maximum message length (MAXMSGL) 95
Maximum transmission size 96]
Message channel agent name (MCANAME) 96|
Message channel agent type (MCATYPE) 96|
Message channel agent user identifier MCAUSER) 96|
Message exit name (MSGEXIT) 97]
Message exit user data (MSGDATA) 97]
Message-retry exit name (MREXIT) E
Message-retry exit user data (MRDATA)
Message retry count (MRRTY)

36 MQSeries Intercommunication

Message retry interval (MRTMR)
Network-connection priority (NETPRTY)
Nonpersistent message speed (NPMSPEED)
Password (PASSWORD)
PUT authority (PUTAUT) e,

Queue manager name (QMNAME) L :
Receive exit name (RCVEXIT)

Receive exit user data (RCVDATA)
Security exit name (SCYEXIT)o
Security exit user data (SCYDATA)
Send exit name (SENDEXIT),
Send exit user data (SENDDATA),
Sequence number wrap (SEQWRAP)o

Sequential delivery [102
Short retry count (SHORTRTY)

Short retry interval (SHORTTMR)
Target system identifier
Transaction identifier
Transmission queue name (XMITQ)
Transport type (TRPTYPE)
User ID (USERID)

Chapter 7. Example configuration chapters in this book ‘
Network infrastructure ‘
Communications software
How to use the communication examples

IT responsibilities

Part 2. How intercommunication works

37

38 MQSeries Intercommunication

Distributed-messaging techniques ¢ Message flow control

Chapter 4. MQSeries distributed-messaging techniques

This chapter describes techniques that are of use when planning channels. It
introduces the concept of message flow control and explains how this is arranged
in distributed queue management (DQM). It gives more detailed information about
the concepts introduced in the preceding chapters and starts to show how you
might use distributed queue management. This chapter covers the following topics:

* “Message flow control”

e “Putting messages on remote queues” on page

e “Choosing the transmission queue” on page

* “Receiving messages” on page

» “Passing messages through your system” on page

e “Separating message flows” on page

e “Concentrating messages to diverse locations” on page
» “Diverting message flows to another destination” on page
e “Sending messages to a distribution list” on page

¢ “Reply-to queue” on page

e “Networking considerations” on page

* “Return routing” on page

* “Managing queue name translations” on page

* “Message sequence numbering” on page

e “Loopback testing” on page

Message flow control

Message flow control is a task that involves the setting up and maintenance of
message routes between queue managers. This is very important for routes that
multi-hop through many queue managers.

You control message flow using a number of techniques that were introduced in
Chapter 2, “Making your applications communicate” on page If your queue
manager is in a cluster, message flow is controlled using different techniques as
described in “Components of a cluster” in the MQSeries Queue Manager Clusters
book.

This chapter describes how you use your system'’s queues, alias queue definitions,
and message channels to achieve message flow control.

You make use of the following objects:

e Transmission queues

* Message channels

¢ Remote queue definition

¢ Queue manager alias definition
* Reply-to queue alias definition

The queue manager and queue objects are described in Chapter 6, “Managing
gueue managers using control commands” in the MQSeries System Administration
book for V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows
NT, or in the MQSeries System Management Guide for the platform you are using;
see “MQSeries publications” on page Message channels are described in
“Message channels” on page

© Copyright IBM Corp. 1993,1999 39

Message flow control

The following techniques use these objects to create message flows in your
system:

e Putting messages to remote queues

* Routing via particular transmission queues

¢ Receiving messages

¢ Passing messages through your system

e Separating message flows

* Switching a message flow to another destination

¢ Resolving the reply-to queue name to an alias name

Note

All the concepts described in this chapter are relevant for all nodes in a
network, and include sending and receiving ends of message channels. For
this reason, only one node is illustrated in most examples, except where the
example requires explicit cooperation by the administrator at the other end of a
message channel.

Before proceeding to the individual techniques it is useful to recap on the concepts
of name resolution and the three ways of using remote queue definitions. See
Chapter 3, “More about intercommunication” on page

Queue names in transmission header

The queue name used by the application, the logical queue name, is resolved by
the queue manager to the destination queue name, that is, the physical queue
name. This destination queue name travels with the message in a separate data
area, the transmission header, until the destination queue has been reached after
which the transmission header is stripped off.

You will be changing the queue manager part of this queue name when you create
parallel classes of service. Remember to return the queue manager name to the
original name when the end of the class of service diversion has been reached.

How to create queue manager and reply-to aliases

As discussed above, the remote queue definition object is used in three different
ways. Table 2 on page explains how to define each of the three ways:

¢ Using a remote queue definition to redefine a local queue name.

The application provides only the queue name when opening a queue, and this
gueue name is the name of the remote queue definition.

The remote queue definition contains the names of the target queue and queue
manager, and optionally, the definition can contain the name of the
transmission queue to be used. If no transmission queue name is provided,
the queue manager uses the new queue manager name for the transmission
gueue name. If a transmission queue of this name is not defined, but a default
transmission queue is defined, the default transmission queue is used.

e Using a remote queue definition to redefine a queue manager name.

40 MQsSeries Intercommunication

Message flow control

The application, or channel program, provides a queue name together with the
remote queue manager name when opening the queue.

If you have provided a remote queue definition with the same name as the
gueue manager name, and you have left the queue name in the definition
blank, then the queue manager will substitute the queue manager name in the
open call with the queue manager name in the definition.

In addition, the definition can contain the name of the transmission queue to be
used. If no transmission queue name is provided, the queue manager takes
the new queue manager name for the transmission queue name. If a
transmission queue of this name is not defined, but a default transmission
gueue is defined, the default transmission queue is used.

Using a remote queue definition to redefine a reply-to queue name.

Each time an application puts a message to a queue, it may provide the name
of a reply-to queue for answer messages but with the queue manager name
blank.

If you provide a remote queue definition with the same name as the reply-to
gueue then the local queue manager replaces the reply-to queue name with the

gueue name from your definition.

You may provide a queue manager name in the definition, but not a

transmission queue name.

Table 2. Three ways of using the remote queue definition object
Usage Queue Queue name Transmission
manager name queue name
1. Remote queue definition (on OPEN call)
Supplied in the call blank or local (*) required -
QM
Supplied in the definition required required optional
2. Queue manager alias (on OPEN call)
Supplied in the call (*) required and required -
not local QM
Supplied in the definition required blank optional
3. Reply-to queue alias (on PUT call)
Supplied in the call blank (*) required -
Supplied in the definition optional optional blank
Note: (*) means that this name is the name of the definition object

For a formal description, see Appendix C, “Queue name resolution” on page

Chapter 4. MQSeries distributed-messaging techniques

41

Messages on remote queues

Putting messages on remote queues

In a distributed-queuing environment, a transmission queue and channel are the
focal point for all messages to a location whether the messages originate from
applications in your local system, or arrive through channels from an adjacent
system. This is shown in Figure 19 where an application is placing messages on a
logical queue named ‘QA_norm’. The name resolution uses the remote queue
definition ‘QA_norm’ to select the transmission queue ‘QMB’, and adds a
transmission header to the messages stating ‘QA_norm at QMB'.

Messages arriving from the adjacent system on ‘Channel_back’ have a
transmission header with the physical queue name ‘QA_norm at QMB’, for
example. These messages are placed unchanged on transmission queue QMB.

The channel moves the messages to an adjacent queue manager.

Adjacent Local system

system

Application QMA"

QA _norm |m T b

|
'
|
'
|
'
|
'
|
'
| QA norm atQMB via QMB
'
|
'
|
'
|
'
|
'
|

Channelback ﬁJQueue ‘ ‘QMB"’ Channelout [—
QAnorm atQMB

Channelto adjacent system

T
|
'
|
'
|
'
|
'
|
'
|
'
|
'

Figure 19. A remote queue definition is used to resolve a queue name to a transmission
queue to an adjacent queue manager. Note: The dashed outline represents a remote queue
definition. This is not a real queue, but a name alias that is controlled as though it were a
real queue.

Your part in this scenario is to:
» Define the message channel from the adjacent system
¢ Define the message channel to the adjacent system

e Create the transmission queue ‘QMB’

» Define the remote queue object ‘QA_norm’ to resolve the queue name used by
applications to the desired destination queue name, destination queue manager
name, and transmission queue name

In a clustering environment, you only need to define a cluster-receiver channel at
the local queue manager. You do not need to define a transmission queue or a
remote queue object. For information about this, see “Components of a cluster” in
the MQSeries Queue Manager Clusters book.

42 MQSeries Intercommunication

Choosing the transmission queue

More about name resolution

The effect of the remote queue definition is to define a physical destination queue
name and gqueue manager name; these names are put in the transmission headers
of messages.

Incoming messages from an adjacent system have already had this type of name
resolution carried out by the original queue manager, and have the transmission
header showing the physical destination queue name and queue manager name.
These messages are unaffected by remote queue definitions.

Choosing the transmission queue

Adjacent Local system

system

Application QMA

QA norm at
QM B _priority via TX1

’Queue ‘ X Channelout —»

Channelto adjacent system

Figure 20. The remote queue definition allows a different transmission queue to be used

In a distributed-queuing environment, when you need to change a message flow
from one channel to another, use the same system configuration as shown in
Figure 19 on page Figure 20 shows how you use the remote queue definition
to send messages over a different transmission queue, and therefore over a
different channel, to the same adjacent queue manager.

In Figure 20, you provide:

¢ The remote queue object ‘QA_norm’ to choose:

— Queue ‘QA _norm’ at the remote queue manager
— Transmission queue ‘TX1’
— Queue manager ‘QMB_priority’
¢ The transmission queue ‘TX1'. Specify this in the definition of the channel to
the adjacent system

Messages are placed on transmission queue ‘TX1' with a transmission header
containing ‘QA_norm at QMB_ priority’, and are sent over the channel to the
adjacent system.

Chapter 4. MQSeries distributed-messaging techniques 43

Receiving messages

The channel_back has been left out of this illustration because it would need a
gueue manager alias; this is discussed in the following example.

In a clustering environment, you do not need to define a transmission queue or a
remote queue definition. For more information about this, see “Components of a
cluster” in the MQSeries Queue Manager Clusters book.

Receiving messages

Adjacent
system

Local system

\
|
1 Application ‘QMB'
i
i
|
1 QAnnorm
1 Queve ‘QAnorm’
\
i
i
|
—p Channelback
‘ QAnorm at QMB
i
i
- ‘r 777777777 ‘T ,,,,,,,,,,,,,,,
—»fChannelback > Queue | 'QMB _priority’
‘ QAnnorm at - B et e
i QMB _priority QMB _priority to QMB
i

Figure 21. Receiving messages directly, and resolving alias queue manager name

As well as arranging for messages to be sent, you also arrange for messages to be
received from adjacent queue managers. Received messages contain the physical
name of the destination queue manager and queue in the transmission header.
They are treated exactly the same as messages from a local application that
specifies both queue manager name and queue name. Because of this, you need
to ensure that messages entering your system do not have an unintentional name
resolution carried out. See Figure 21 for this scenario.

For this scenario, you prepare:

e Message channels to receive messages from adjacent queue managers

* A gqueue manager alias definition to resolve an incoming message flow,
‘QMB_priority’, to the local queue manager name, ‘QMB’

e The local queue, ‘QA_norm’, if it does not already exist

44 MQsSeries Intercommunication

Passing messages through system

Receiving alias queue manager names
The use of the queue manager alias definition in this illustration has not selected a
different destination queue manager. Messages passing through this local queue
manager and addressed to ‘QMB_priority’ are intended for queue manager ‘QMB’.
The alias queue manager name is used to create the separate message flow.

Passing messages through your system

Adjacent
system

Localsystem Adjacent

system

NEE

I I

!
i i
i i
! !
i i
! !
i i
! !
! !
1 1

Channelin Queue QMcC’ Channelout
T
|

. |
Channelin ———% Queue
|

T
i
i
‘QMD_norm' :
i
i

[
i
|
| Queue X1 Channelout
\
i
i

Channelin

|

Queue

|
i
|
'QMDPRIORITY! i
|
|

i
i
1 Queue ‘QMD _fast Channelout
i

Figure 22. Three methods of passing messages through your system

Following on from the technique shown in Figure 21 on page where you saw
how an alias flow is captured, Figure 22 illustrates the ways networks are built up
by bringing together the techniques we have discussed.

The scenario shows a channel delivering three messages with different
destinations:

1. ‘QMB at QMC’
2. ‘QMB at QMD_norm’
3. '‘QMB at QMD_PRIORITY’

You need to pass the first message flow through your system unchanged; the
second message flow through a different transmission queue and channel, while
reverting the messages from the alias queue manager name ‘QMD_norm’ to the
physical location ‘QMD’; and the third message flow simply chooses a different
transmission queue without any other change.

Chapter 4. MQSeries distributed-messaging techniques 45

Passing messages through system

In a clustering environment, all messages are passed through the cluster
transmission queue, SYSTEM.CLUSTER. TRANSMIT.QUEUE. This is illustrated in
Figure 4 on page

The following methods describe techniques applicable to a distributed-queuing
environment:

Method 1: Using the incoming location name

When you need to receive messages with a transmission header containing
another location name, the simplest preparation is to have a transmission queue
with that name, ‘QMC’ in this example, as a part of a channel to an adjacent queue
manager. The messages are delivered unchanged.

Method 2: Using an alias for the queue manager

The second method is to use the queue manager alias object definition, but specify
a new location name, ‘QMD’, as well as a particular transmission queue, ‘TX1".
This action:

e Terminates the alias message flow set up by the queue manager name alias
‘QMD_norm’. That is the named class of service ‘QMD_norm’.

e Changes the transmission headers on these messages from ‘QMD_norm’ to
‘QMD".

Method 3: Selecting a transmission queue

The third method is to have a queue manager alias object defined with the same
name as the destination location, ‘QMD_PRIORITY’, and use the definition to select
a particular transmission queue, ‘QMD_fast’, and therefore another channel. The
transmission headers on these messages remain unchanged.

Using these methods
For these scenarios, you prepare the:

* Input channel definitions
e Output channel definitions
e Transmission queues:

- QMC
- TX1
— QMD_fast
¢ Queue manager alias definitions:

— QMD_norm with ‘QMD_norm to QMD via TX1’
— QMD_PRIORITY with ‘QMD_PRIORITY to QMD_PRIORITY via QMD_fast’

Note

None of the message flows shown in the example changes the destination
queue. The queue manager name aliases simply provide separation of
message flows.

46 MQSeries Intercommunication

Separating message flows

Separating message flows

In a distributed-queuing environment, the need to separate messages to the same
gueue manager into different message flows can arise for a number of reasons.
For example:

* You may need to provide a separate flow for very large, large, medium, and
small messages. This also applies in a clustering environment and, in this
case, you may create clusters that overlap. There are a number of reasons
you might do this, for example:

— To allow different organizations to have their own administration.
— To allow independent applications to be administered separately.

— To create a class of service. For example you could have a cluster called
STAFF that is a subset of the cluster called STUDENTS. When you put a
message to a queue advertised in the STAFF cluster, a restricted channel
is used. When you put a message to a queue advertised in the
STUDENTS cluster, either a general channel or a restricted channel may
be used.

— To create test and production environments.

e It may be necessary to route incoming messages via different paths from the
path of the locally generated messages.

e Your installation may require to schedule the movement of messages at certain
times (for example, overnight) and the messages then need to be stored in
reserved queues until scheduled.

Adjacent | Localsystem | Adjacent
system i [osystem
i ome i
! !
: 0B atQ M C_small - e !
—{ Channelback » Queue | 'QMC_small' \
e A |
j l i
|] |
i Application 0B small P . |
' » Queue 'QB_small '
1 lt 777777 L 1
i l i
| ‘ H
} ’Queue ‘ TX_small' Channelout —»
| T
| |
i B_large ImTmT T qTTTT T i
1 Q’%} Queve | 'QB_large’ :
' L A '
i l i
i H
i ’Oueue ‘ ‘TX_large’ Channelout —»
| .
! !
QB atQMC_large == B it |
—» Channelback » Queue | 'QMC_large’ I
j B R !
1 ! i
|
i ’Queue ‘ 'TX external' Channelout —»
i \
i i
i i

Figure 23. Separating messages flows

Chapter 4. MQSeries distributed-messaging techniques 47

Separating message flows

In the example shown in Figure 23, the two incoming flows are to alias queue
manager names ‘QMC_small’ and ‘QOMC _large’. You provide these flows with a
gueue manager alias definition to capture these flows for the local queue manager.
You have an application addressing two remote queues and you need these
message flows to be kept separate. You provide two remote queue definitions that
specify the same location, ‘QMC’, but specify different transmission queues. This
keeps the flows separate, and nothing extra is needed at the far end as they have
the same destination queue manager name in the transmission headers. You
provide:

¢ The incoming channel definitions

e The two remote queue definitions QB_small and QB_large

e The two queue manager alias definitions QMC_small and QMC_large
e The three sending channel definitions

e Three transmission queues: TX small, TX large, and TX_ external

— Coordination with adjacent systems

When you use a queue manager alias to create a separate message flow, you
need to coordinate this activity with the system administrator at the remote end
of the message channel to ensure that the corresponding queue manager alias
is available there.

48 MQSeries Intercommunication

Concentrating messages

Concentrating messages to diverse locations

Adjacent ! Local system | Adjacent
system | | system
! \
| 'QMB’ \
} |
|
QB at QME _’ |
——» Channel_back 1 Queue '‘QME’ |
. |
i Application I
' |
\ QA N i
' Queue '‘QA' .
| | |
! i
i '
' QB J |
| Queue '‘QB’ i
| i i : i
! ¢ i
1 Channel_out % Queue TX1' \
' |
! i
‘ i
,, i
i
i
|
‘Qmc! !
|
Local queue \
|
Queue 'QA' i
|
Channel_back ﬁj Queue | 'QMD’ Channel_out —» QB at QMD
!
Queue '‘QME’ Channel_out —» QB at QME
i

Figure 24. Combining message flows on to a channel

Figure 24 illustrates a distributed-queuing technique for concentrating messages
that are destined for various locations on to one channel. Two possible uses would
be:

e Concentrating message traffic through a gateway
e Using wide bandwidth highways between nodes

In this example, messages from different sources, local and adjacent, and having
different destination queues and queue managers, are flowed via transmission
gueue ‘TX1' to queue manager QMC. Queue manager QMC delivers the
messages according to the destinations, one set to a transmission queue ‘QMD’ for
onward transmission to queue manager QMD, another set to a transmission queue
‘QME’ for onward transmission to queue manager QME, while other messages are
put on the local queue ‘QA'.

Chapter 4. MQSeries distributed-messaging techniques 49

Diverting message flows

You provide:

e Channel definitions

e Transmission queue TX1

e Remote queue definitions:
— QA with ‘QA at QMC via TX1’
— QB with ‘QB at QMD via TX1’

e Queue manager alias definition:
— QME with ‘QME via TX1’

Your colleague controlling QMC provides:

» Receiving channel definition with the same channel name
e Transmission queue QMD with associated sending channel definition
¢ Transmission queue QME with associated sending channel definition

Diverting message flows to another destination

Adjacent i Local system i Adjacent system i Adjacent system i
system i i i i

1 'QMA’ } '‘QMB' } 'QMD’ 1

I I I I

| | | |
””””””””” I I I

| | |
QB at QMC | I i i Local queue i
I ’—‘—‘ I

’ Queue‘ '‘QMB’ %Wﬁ Queue‘ '‘QMD’ — Channel +Queue ‘ '‘QB’ ‘

‘ \ i

I

i

i

Figure 25. Diverting message streams to another destination

Figure 25 illustrates how you can redefine the destination of certain messages.
Incoming messages to QMA are destined for ‘QB at QMC’. They would normally
arrive at QMA and be placed on a transmission queue called QMC which would
have been part of a channel to QMC. QMA must divert the messages to QMD, but
is able to reach QMD only over QMB. This method is useful when you need to
move a service from one location to another, and allow subscribers to continue to
send messages on a temporary basis until they have adjusted to the new address.

The method of rerouting incoming messages destined for a certain queue manager
to a different queue manager uses:

¢ A queue manager alias to change the destination queue manager to another
gueue manager, and to select a transmission queue to the adjacent system

¢ A transmission queue to serve the adjacent queue manager

e A transmission queue at the adjacent queue manager for onward routing to the
destination queue manager

50 MQSeries Intercommunication

Distribution lists

You provide:

¢ Channel_back definition

e Queue manager alias object definition QMC with QB at QMD via QMB
e Channel_out definition

e The associated transmission queue QMB

Your colleague who controls QMB provides:

e The corresponding channel_back definition
e The transmission queue, QMD
e The associated channel definition to QMD

You can use aliases within a clustering environment. For information about this,
see “Using aliases and remote-queue definitions with clusters” in the MQSeries
Queue Manager Clusters book.

Sending messages to a distribution list

In MQSeries for AlX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
an application can send a message to several destinations with a single MQPUT
call. This applies in both a distributed-queuing environment and a clustering
environment. You have to define the destinations in a distribution list, as described
in “Distribution lists” in the MQSeries Application Programming Guide.

Not all queue managers support distribution lists. When an MCA establishes a
connection with a partner, it determines whether or not the partner supports
distribution lists and sets a flag on the transmission queue accordingly. If an
application tries to send a message that is destined for a distribution list but the
partner does not support distribution lists, the sending MCA intercepts the message
and puts it onto the transmission queue once for each intended destination.

A receiving MCA ensures that messages sent to a distribution list are safely
received at all the intended destinations. If any destinations fail, the MCA
establishes which ones have failed so that it can generate exception reports for
them and can try to resend the messages to them.

Chapter 4. MQSeries distributed-messaging techniques 51

Reply-to queue

Reply-to queue

Local system | Adjacent system
i
Application QMA : QMB Application
i
| Tttt T T T T T 1
'E' | Queue | 'QR | 'F*
QAatQmB| T E— |
reply-to i
QR . QAatQMB | | | —
> Queue ‘ QMB ‘ > Queue ‘ QA
!
| L ! [
| Queue | 'QMAClassl' = | ‘ Queue ‘ 'QMA classl' =
i R dommmm QRR at !
l QMA class1!
\
{Queue ‘ 'QRR’ 1
\
i
i
i

Figure 26. Reply-to queue name substitution during PUT call

A complete remote queue processing loop using a reply-to queue is shown in
Figure 26. This applies in both a distributed-queuing environment and a clustering
environment. The details are as shown in Table 6 on page

The application opens QA at QMB and puts messages on that queue. The
messages are given a reply-to queue name of QR, without the queue manager
name being specified. Queue manager QMA finds the reply-to queue object QR
and extracts from it the alias name of QRR and the queue manager name

QMA classl. These names are put into the reply-to fields of the messages.

Reply messages from applications at QMB are addressed to QRR at QMA_classl.
The queue manager alias name definition QMA_classl is used by the queue
manager to flow the messages to itself, and to queue QRR.

This scenario depicts the way you give applications the facility to choose a class of
service for reply messages, the class being implemented by the transmission queue
QMA _classl at QMB, together with the queue manager alias definition,

QMA _classl at QMA. In this way, you can change an application’s reply-to queue
so that the flows are segregated without involving the application. That is, the
application always chooses QR for this particular class of service, and you have the
opportunity to change the class of service with the reply-to queue definition QR.

52 MQSeries Intercommunication

Reply-to queue

You create:

¢ Reply-to queue definition QR

e Transmission queue object QMB

e Channel_out definition

e Channel_back definition

¢ Queue manager alias definition QMA_classl
» Local queue object QRR, if it does not exist

Your colleague at the adjacent system creates the:

* Receiving channel definition
e Transmission queue object QMA_classl
e Associated sending channel

Your application programs use:

¢ Reply-to queue name QR in put calls
¢ Queue name QRR in get calls

In this way, you may change the class of service as necessary, without involving
the application, by changing the reply-to alias ‘QR’, together with the transmission
gueue ‘QMA _classl’ and queue manager alias ‘QMA_classl'.

If no reply-to alias object is found when the message is put on the queue, the local
gueue manager name is inserted in the blank reply-to queue manager name field,
and the reply-to queue name remains unchanged.

— Name resolution restriction

Because the name resolution has been carried out for the reply-to queue at
‘QMA’ when the original message was put, no further name resolution is
allowed at ‘QMB’, that is, the message is put with the physical name of the
reply-to queue by the replying application.

Note that the applications must be aware of the naming convention that the name
they use for the reply-to queue is different from the name of the actual queue
where the return messages are to be found.

For example, when two classes of service are provided for the use of applications
with reply-to queue alias names of ‘C1_alias’, and ‘C2_alias’, the applications use
these names as reply-to queue names in the message put calls, but the
applications will actually expect messages to appear in queues ‘C1' and ‘C2’,
respectively.

However, an application is able to make an inquiry call on the reply-to alias queue

to check for itself the name of the real queue it must use to get the reply
messages.

Chapter 4. MQSeries distributed-messaging techniques 53

Reply-to queue

Reply-to queue alias example

This example illustrates the use of a reply-to alias to select a different route
(transmission queue) for returned messages. The use of this facility requires the
reply-to queue name to be changed in cooperation with the applications.

As shown in Figure 27, the return route must be available for the reply messages,
including the transmission queue, channel, and queue manager alias.

QoML oM2!
oo [
| Queue 1 ‘Inguiry’
e Ji ,,,,,,
P T
Queue oM Channelout 1 Queue 1 'Ingquiry’
e e
A R o |
| Queue 1 'Answer_alias
] e
Q="Answer
QM="QM1_relief
Queue ‘Answer
P Queue ! QMI1_relief' «———Channelback «—— Queuve QM1_relief
] e

Figure 27. Reply-to queue alias example

This example is for requester applications at ‘QM1’ that send messages to server
applications at ‘QM2’. The servers’ messages are to be returned through an
alternative channel using transmission queue ‘QM1_relief' (the default return
channel would be served with a transmission queue ‘QM1).

The reply-to queue alias is a particular use of the remote queue definition named
‘Answer_alias’. Applications at QM1 include this name, ‘Answer_alias’, in the
reply-to field of all messages that they put on queue ‘Inquiry’.

Reply-to queue definition ‘Answer_alias’ is defined as ‘Answer at QM1_relief’.
Applications at QM1 expect their replies to appear in the local queue named
‘Answer’.

Server applications at QM2 use the reply-to field of received messages to obtain
the queue and queue manager names for the reply messages to the requester at
QM1.

54 MQseries Intercommunication

Definitions used in this example at QM1
The system supervisor at QM1 must ensure that the reply-to queue ‘Answer’ is
created along with the other objects. The name of the queue manager alias,
marked with a ', must agree with the queue manager name in the reply-to queue
alias definition, also marked with an .

Object

Local transmission queue

Remote queue definition

Queue manager alias

Reply-to queue alias

Definition

QM2

Object name

Remote queue manager
name

Remote queue name
Transmission queue hame
Object name

Queue manager name
Queue name

Object name

Remote queue manager
name

Remote queue name

Definitions used in this example at QM2
The system supervisor at QM2 must ensure that the local queue exists for the
incoming messages, and that the correctly named transmission queue is available

for the reply messages.

Object
Local queue
Transmission queue

Put definition at QM1

Definition
Inquiry
QM1 _relief

Reply-to queue

Inquiry
QM2

Inquiry

QM2 (DEFAULT)
QM1_relief *
QM1

(blank)
Answer_alias
QM1_relief *

Answer

Applications fill the reply-to fields with the reply-to queue alias name, and leave the
gueue manager name field blank.

Field

Queue name

Queue manager name
Reply-to queue name
Reply-to queue manager

Put definition at QM2

Content
Inquiry
(blank)
Answer_alias
(blank)

Applications at QM2 retrieve the reply-to queue name and queue manager name
from the original message and use them when putting the reply message on the

reply-to queue.

Field
Queue name
Queue manager name

Content
Answer
QM1 _relief

Chapter 4. MQSeries distributed-messaging techniques

55

Reply-to queue

How the example works

In this example, requester applications at QM1 always use ‘Answer_alias’ as their
reply-to queue in the relevant field of the put call, and they always retrieve their
messages from the queue named ‘Answer’.

The reply-to queue alias definitions are available for use by the QM1 system
supervisor to change the name of the reply-to queue ‘Answer’, and of the return
route ‘QM1_relief’.

Changing the queue name ‘Answer’ is normally not useful because the QM1
applications are expecting their answers in this queue. However, the QM1
supervisor is able to change the return route (class of service), as necessary.

How the queue manager makes use of the reply-to queue alias

Queue manager QM1 retrieves the definitions from the reply-to queue alias when
the reply-to queue name, included in the put call by the application, is the same as
the reply-to queue alias, and the queue manager part is blank.

The queue manager replaces the reply-to queue name in the put call with the
gueue name from the definition. It replaces the blank queue manager name in the
put call with the queue manager name from the definition.

These names are carried with the message in the message descriptor.

Table 3. Reply-to queue alias

Field name Put call Transmission header
Queue name Answer_alias Answer
Queue manager name (blank) QM1_relief

Reply-to queue alias walk-through

To complete this example, let us take a walk through the process, from an
application putting a message on a remote queue at queue manager ‘QM1’,
through to the same application removing the reply message from the alias reply-to
gueue.

56 MQSeries Intercommunication

1.

Reply-to queue

The application opens a queue named ‘Inquiry’, and puts messages to it. The
application sets the reply-to fields of the message descriptor to:

Reply-to queue name Answer_alias
Reply-to queue manager hame (blank)

2.

Queue manager ‘QML1’ responds to the blank queue manager name by
checking for a remote queue definition with the name ‘Answer_alias’. If none is
found, the queue manager places its own name, ‘QM1’, in the reply-to queue
manager field of the message descriptor.

. If the queue manager finds a remote queue definition with the name

‘Answer_alias’, it extracts the queue name and queue manager names from the
definition (queue name="'Answer’ and queue manager name= ‘QM1_relief’) and
puts them into the reply-to fields of the message descriptor.

. The queue manager ‘QM1’ uses the remote queue definition ‘Inquiry’ to

determine that the intended destination queue is at queue manager ‘QM2’, and
the message is placed on the transmission queue ‘QM2’. ‘QMZ2’ is the default
transmission queue name for messages destined for queues at queue manager
‘QM2'.

. When queue manager ‘QM1’ puts the message on the transmission queue, it

adds a transmission header to the message. This header contains the name of
the destination queue, ‘Inquiry’, and the destination queue manager, ‘QM2’.

. The message arrives at queue manager ‘QM2’, and is placed on the ‘Inquiry’

local queue.

. An application gets the message from this queue and processes the message.

The application prepares a reply message, and puts this reply message on the
reply-to queue name from the message descriptor of the original message.
This is:

Reply-to queue name Answer
Reply-to queue manager name QM1 _relief
8. Queue manager ‘QM2’ carries out the put command, and finding that the queue

10.

11.

manager name, ‘QM1_relief’, is a remote queue manager, it places the
message on the transmission queue with the same name, ‘QM1_relief. The
message is given a transmission header containing the name of the destination
gueue, ‘Answer’, and the destination queue manager, ‘QM1_relief’.

. The message is transferred to queue manager ‘QM1’ where the queue

manager, recognizing that the queue manager name ‘QM1_relief' is an alias,
extracts from the alias definition ‘QM1_relief’ the physical queue manager name
‘QM1.

Queue manager ‘QM1’ then puts the message on the queue name contained in
the transmission header, ‘Answer’.

The application extracts its reply message from the queue ‘Answer’.

Chapter 4. MQSeries distributed-messaging techniques 57

Networking considerations

Networking considerations

In a distributed-queuing environment, because message destinations are addressed
with just a queue name and a queue manager name, the following rules apply:

1. Where the queue manager name is given, and the name is different from the
local queue manager’s name:

e A transmission queue must be available with the same name, and this
transmission queue must be part of a message channel moving messages
to another queue manager, or

e A gueue manager alias definition must exist to resolve the queue manager
name to the same, or another queue manager name, and optional
transmission queue, or

 If the transmission queue name cannot be resolved, and a default
transmission queue has been defined, the default transmission queue is
used.

2. Where only the queue name is supplied, a queue of any type but with the same
name must be available on the local queue manager. This queue may be a
remote queue definition which resolves to: a transmission queue to an
adjacent queue manager, a queue manager hame, and an optional
transmission queue.

To see how this works in a clustering environment, see “Components of a cluster”
in the MQSeries Queue Manager Clusters book.

Consider the scenario of a message channel moving messages from one queue
manager to another in a distributed-queuing environment.

The messages being moved have originated from any other queue manager in the
network, and some messages may arrive that have an unknown queue manager
name as destination. This can occur when a queue manager name has changed
or has been removed from the system, for example.

The channel program recognizes this situation when it cannot find a transmission
gueue for these messages, and places the messages on your undelivered-message
(dead-letter) queue. It is your responsibility to look for these messages and
arrange for them to be forwarded to the correct destination, or to return them to the
originator, where this can be ascertained.

Exception reports are generated in these circumstances, if report messages were
requested in the original message.

— Name resolution convention

It is strongly recommended that name resolution that changes the identity of the
destination queue, (that is, logical to physical name changing), should only
occur once, and only at the originating queue manager.

Subsequent use of the various alias possibilities should be used only when
separating and combining message flows.

58 MQseries Intercommunication

Return routing ¢ Managing queue name translations

Return routing

Messages may contain a return address in the form of the name of a queue and
gueue manager. This applies in both a distributed-queuing environment and a
clustering environment. This address is normally specified by the application that
creates the message, but may be modified by any application that subsequently
handles the message, including user exit applications.

Irrespective of the source of this address, any application handling the message
may choose to use this address for returning answer, status, or report messages to
the originating application.

The way these response messages is routed is not different from the way the
original message is routed. You need to be aware that the message flows you
create to other queue managers will need corresponding return flows.

— Physical name conflicts

The destination reply-to queue name has been resolved to a physical queue
name at the original queue manager, and must not be resolved again at the
responding queue manager.

This is a likely possibility for name conflict problems that can only be prevented
by a network-wide agreement on physical and logical queue names.

Managing queue name translations

This description is mainly provided for application designers and channel planners
concerned with an individual system that has message channels to adjacent
systems. It takes a local view of channel planning and control.

When you create a queue manager alias definition or a remote queue definition, the
name resolution is carried out for every message carrying that name, regardless of
the source of the message. To oversee this situation, which may involve large
numbers of queues in a queue manager network, you keep tables of:

e The names of source queues and of source queue managers with respect to
resolved queue names, resolved queue manager names, and resolved
transmission queue names, with method of resolution

e The names of source queues with respect to:

— Resolved destination queue names

— Resolved destination queue manager hames
— Transmission queues

— Message channel names

— Adjacent system names

— Reply-to queue names

Note: The use of the term source in this context refers to the queue name or the
gueue manager hame provided by the application, or a channel program when
opening a queue for putting messages.

An example of each of these tables is shown in Table 4, Table 5, and Table 6.

Chapter 4. MQSeries distributed-messaging techniques 59

Managing queue name translations

The names in these tables are derived from the examples in this chapter, and this
table is not intended as a practical example of queue name resolution in one node.

Table 4. Queue name resolution at queue manager QMA

Source Source queue manager Resolved Resolved queue Resolved Resolution type
queue specified when queue is queue name manager name transmission queue

specified opened name

when queue

is opened

QA_norm - QA_norm QMB QMB Remote queue

(any) QMB - - QMB (none)

QA_norm - QA_norm QMB ™>1 Remote queue

QB QMC QB QMD QMB Queue manager alias
Table 5. Queue name resolution at queue manager QMB

Source Source queue manager Resolved Resolved queue Resolved Resolution type
queue specified when queue is queue name manager name transmission queue

specified opened name

when queue

is opened

QA_norm - QA_norm QMB - (none)

QA_norm QMB QA _norm QMB - (none)

QA_norm QMB_PRIORITY QA_norm QMB - Queue manager alias
(any) QmMC (any) QMC QMC (none)

(any) QMD_norm (any) QMD_norm TX1 Queue manager alias
(any) QMD_PRIORITY (any) QMD_PRIORITY QMD_fast Queue manager alias
(any) QMC_small (any) QMC_small TX_small Queue manager alias
(any) QMC_large (any) QMC_large TX_external Queue manager alias
QB_small QMmC QB_small QmMC TX_small Remote queue
QB_large QMC QB_large QMC TX_large Remote queue

(any) QME (any) QME X1 Queue manager alias
QA QMC QA QMC ™>1 Remote queue

QB QMD QB QMD TX1 Remote queue

Table 6. Reply-to queue name translation at queue manager QMA

Application design

Reply-to alias definition

Local QMGR

QMA

Queue name for messages

QRR

OR

Reply-to queue alias name

Redefined to

QRR at QMA_class1

60 MQSeries Intercommunication

Message sequence numbering

Message sequence numbering

The message sequence numbering function is useful in some environments,
especially when messages are to be guaranteed to be delivered, delivered without
duplication, and stored in the same order as they were taken from the transmission
gueue. Each message sent using message sequencing is tagged with an individual
sequence number, which is increased by one for each message sent. The
sequence number is assigned by the sending channel. In some implementations,
this sequence number is then regarded as a permanent attribute of the message,
and is retained by the receiving channel; in other implementations, it is removed by
the receiving channel.

Cooperating channels must be capable of:
* Respecting the sequential delivery attribute in their channel definition record
¢ |dentifying or assigning a sequence number for each message sent or received

¢ Recording the sequence number assigned to the last message committed, on
hardened media for use in recovery

¢ Recording the sequence numbers such that they can be read by status
commands for problem resolution

¢ Detecting out-of-sequence conditions, such as duplicate numbers or gaps, and
returning an appropriate error indication

Sequence numbering is incompatible with the use of multiple channels to serve one
transmission queue.

The sequence number of the last committed message or LUWID is recorded at the
receiving end of a channel. This number is used at the sending end when
sequential delivery of messages has been selected. It is also used during
resequencing, on startup and restarts, to ensure that both ends of the link agree on
which messages have been transferred successfully.

The number stored at the sending end is incremented by one before being used;
this means that the current sequence number is the number of the last message
sent, and the numbering is independent of the instance of the MCA.

Sequential retrieval of messages

If an application puts a sequence of messages to the same destination queue,
those messages can be retrieved in sequence by a single application with a
sequence of get operations, if, for local queuing, the following conditions are met:

¢ All of the put requests were done from the same application

e All of the put requests were either from the same unit of work, or all the put
requests were made outside of a unit of work

e The application getting the message does not deliberately change the order of
retrieval, for example by specifying a particular MsgId or Correlld or by using
message priorities

¢ Only one application is doing get operations to retrieve the messages from the
destination queue, unless the applications doing the get operations ensure, for
example, by specifying a Correlld, that a single application always gets all of
the messages in each sequence put by a sending application

Chapter 4. MQSeries distributed-messaging techniques 61

Loopback testing

e Only one channel is serving the transmission queue
e The messages are not nonpersistent messages on a fast channel

Note: Messages from other tasks and units of work may be interspersed with the
sequence, even where the sequence was put from within a single unit of work.

The order is preserved for remote queuing, but only if the configuration is such that
there can be only one path for the messages in the sequence, from the application
making the put request, through its queue manager, through intercommunication, to
the destination queue manager and the target queue.

Note: Messages that are destined for remote queues can also become out of
sequence if one or more of them is put to a dead-letter queue (for example, if a
gqueue is temporarily full).

If there is a possibility that some messages may be sent via a different path, for
example because of reconfiguration, the order at the destination cannot be
guaranteed.

Sequence of retrieval of fast, nonpersistent messages

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, Windows V2.1, and Windows NT, nonpersistent messages on a fast
channel may overtake persistent messages on the same channel and so arrive out
of sequence. The receiving MCA puts the nonpersistent messages on the
destination queue immediately and makes them visible. Persistent messages are
not made visible until the next syncpoint.

Loopback testing

Loopback testing is a technique on non-OS/390 platforms that allows you to test a
communications link without actually linking to another machine. You set up a
connection between two queue managers as though they are on separate
machines, but you test the connection by looping back to another process on the
same machine. This means that you can test your communications code without
requiring an active network.

The way you do this depends on which products and protocols you are using. For
example the command to allow TCP/IP loopback testing on OS/2 without a
network, is:

ifconfig lo ipaddress
On Windows NT, you can use the “loopback” adapter.

Refer to the documentation for the products you are using for more information.

62 MQSeries Intercommunication

Implementation e Functions of DQM

Chapter 5. DQM implementation

This chapter describes the implementation of the concepts introduced in Chapter 2,
“Making your applications communicate” on page

Distributed queue management (DQM):

e Enables you to define and control communication channels between queue
managers

¢ Provides you with a message channel service to move messages from a type
of local queue, known as a transmission queue, to communication links on a
local system, and from communication links to local queues at a destination
gqueue manager

e Provides you with facilities for monitoring the operation of channels and
diagnosing problems, using panels, commands, and programs

This chapter discusses:

e “Functions of DQM”

e “Message sending and receiving” on page

e “Channel control function” on page

* “What happens when a message cannot be delivered?” on page
¢ ‘“Initialization and configuration files” on page

e “Data conversion” on page

e “Writing your own message channel agents” on page

Functions of DQM
Distributed queue management has these functions:

¢ Message sending and receiving
e Channel control

¢ Initialization file

e Data conversion

¢ Channel exits

Channel definitions associate channel names with transmission queues,
communication link identifiers, and channel attributes. These are kept in a channel
definition file (CDF), implemented in different ways on different platforms. Message
sending and receiving is controlled by programs known as message channel agents
(MCASs), which use the channel definitions to start up and control communication.

The MCAs in turn are controlled by DQM itself. The structure is platform
dependent, but typically includes listeners and trigger monitors, together with
operator commands and panels.

A message channel is a one-way pipe for moving messages from one queue
manager to another. Thus a message channel has two end-points, represented by
a pair of MCAs. Each end-point has a definition of its end of the message channel.
For example, one end would define a sender, the other end a receiver.

© Copyright IBM Corp. 1993,1999 63

Message sending and receiving

For details of how to define channels, see:

e Chapter 8, “Monitoring and controlling channels on distributed platforms” on

page

e Chapter 22, “Monitoring and controlling channels on OS/390” on page

e Chapter 25, “Monitoring and controlling channels in 0S/390 with CICS” on

page

e Chapter 29, “Monitoring and controlling channels in MQSeries for AS/400” on

page

For information about channel exits, see Chapter 35, “Channel-exit programs” on

page [491].

Message sending and receiving

Figure 28 shows the relationships between entities when messages are
transmitted, and shows the flow of control.

Queue | Transmission

Trigger L———{Queue| Initiation

message

i i
|
|
|
|
|
|
|
|
|
|
|
|
|

Communications

Messages

Network

Queue| Local

Queue| Local

Queue| Local

l Messages T

TO ADJACENT QUEUE MANAGER

Messages

o Operator
Synchronization
Inf i : .
nformation ’ File ‘Channel definitions
4 Status Commands
v
User Message Message User
Exits Channel Commands Channel Control Commands Channel Exits
Agent Function Agent
* (MCA) < (MCA) *
Status Status
. S R S— Sk *
Channel } } Listener
SENDING Initiator | ‘ RECEIVING
| |
Messages Messages

Figure 28. Distributed queue management model

64 MQSeries Intercommunication

Message sending and receiving

Notes:

1.

3.

There is one MCA per channel, depending on the platform. There may be one
or more channel control functions for a given queue manager.

. The implementation of MCAs and channel control functions is highly platform

dependent; they may be programs or processes or threads, and they may be a
single entity or many comprising several independent or linked parts.

All components marked with a star can use the MQI.

Channel parameters
An MCA receives its parameters in one of several ways:

If started by a command, the channel name is passed in a data area. The
MCA then reads the channel definition directly to obtain its attributes.

For sender, and in some cases server channels, the MCA can be started
automatically by the queue manager trigger. The channel name is retrieved
from the trigger process definition, where applicable, and is passed to the MCA.
The remaining processing is the same as that described above.

If started remotely by a sender, server, requester, or client-connection, the
channel name is passed in the initial data from the partner message channel
agent. The MCA reads the channel definition directly to obtain its attributes.

Certain attributes not defined in the channel definition are also negotiable:

Split messages If one end does not support this, split messages will not
be sent.
Conversion capability If one end cannot perform the necessary code page

conversion or numeric encoding conversion when
needed, the other end must handle it. If neither end
supports it, when needed, the channel cannot start.

Distribution list support If one end does not support distribution lists, the partner

MCA sets a flag in its transmission queue so that it will
know to intercept messages intended for multiple
destinations.

Channel status and sequence numbers
Message channel agent programs keep records of the current sequence number
and logical unit of work number for each channel, and of the general status of the
channel. Some platforms allow you to display this status information to help you
control channels.

Chapter 5. DQM implementation 65

Channel control function

Channel control function

The channel control function provides facilities for you to define, monitor, and
control channels. Commands are issued through panels, programs, or from a
command line to the channel control function. The panel interface also displays
channel status and channel definition data.

Note: For the channel control function on MQSeries for OS/2 Warp, Windows NT,
Windows V2.1, UNIX systems, Digital OpenVMS, and Tandem NSK, you can use
Programmable Command Formats or those MQSeries commands (MQSC) and
control commands that are detailed in Chapter 8, “Monitoring and controlling
channels on distributed platforms” on page

The commands fall into the following groups:

e Channel administration
¢ Channel control
e Channel status monitoring

Channel administration commands deal with the definitions of the channels. They
enable you to:

e Create a channel definition
e Copy a channel definition
e Alter a channel definition
¢ Delete a channel definition

Channel control commands manage the operation of the channels. They enable
you to:

e Start a channel

e Stop a channel

e Re-synchronize with partner (in some implementations)

e Reset message sequence numbers

¢ Resolve an in-doubt batch of messages

¢ Ping; send a test communication across the channel (not on MQSeries for
Windows)

Channel monitoring displays the state of channels, for example:

e Current channel settings
* Whether the channel is active or inactive
e Whether the channel terminated in a synchronized state

Preparing channels

Before trying to start a message channel or MQI channel, you must make sure that
all the attributes of the local and remote channel definitions are correct and
compatible. Chapter 6, “Channel attributes” on page [85] describes the channel
definitions and attributes.

Although you set up explicit channel definitions, the channel negotiations carried
out when a channel starts up may override one or other of the values defined. This
is quite normal, and transparent, and has been arranged like this so that otherwise
incompatible definitions can work together.

66 MQSeries Intercommunication

Channel control function

Auto-definition of channels

In MQSeries for AlX, AS/400, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and
0S/390 (cluster-receiver and cluster-sender channels only), if there is no
appropriate channel definition, then for a receiver or server-connection channel that
has auto-definition enabled, a definition is created automatically. The definition is
created using:

1. The appropriate model channel definition, SYSTEM.AUTO.RECEIVER or
SYSTEM.AUTO.SVRCONN. The model channel definitions for auto-definition
are the same as the system defaults, SYSTEM.DEF.RECEIVER and
SYSTEM.DEF.SVRCONN, except for the description field, which is
“Auto-defined by” followed by 49 blanks. The systems administrator can
choose to change any part of the supplied model channel definitions.

2. Information from the partner system. The partner’s values are used for the
channel name and the sequence number wrap value.

3. A channel exit program, which you can use to alter the values created by the
auto-definition. See “Channel auto-definition exit program” on page

The description is then checked to determine whether it has been altered by an
auto-definition exit or because the model definition has been changed. If the first
44 characters are still “Auto-defined by” followed by 29 blanks, the queue manager
name is added. If the final 20 characters are still all blanks the local time and date
are added.

Once the definition has been created and stored the channel start proceeds as
though the definition had always existed. The batch size, transmission size, and
message size are negotiated with the partner.

Defining other objects

Before a message channel can be started, both ends must be defined (or enabled
for auto-definition) at their respective queue managers. The transmission queue it
is to serve must be defined to the queue manager at the sending end, and the
communication link must be defined and available. In addition, it may be necessary
for you to prepare other MQSeries objects, such as remote queue definitions,
gueue manager alias definitions, and reply-to queue alias definitions, so as to
implement the scenarios described in Chapter 2, “Making your applications
communicate” on page

For information about MQI channels, see Chapter 8, “Using channels” in the
MQSeries Clients book.

Chapter 5. DQM implementation 67

Channel control function

Channel states

Starting a channel (not MQSeries for Windows)
A channel can be caused to start transmitting messages in one of four ways. It can
be:

e Started by an operator (not receiver or server-connection channels).

e Triggered from the transmission queue (sender, and possibly server channels
only). You will need to prepare the necessary objects for triggering channels.

e Started from an application program (not receiver or server-connection
channels).

e Started remotely from the network by a sender, requester, server, or
client-connection channel. Receiver, and possibly server and requester
channel transmissions, are started this way; so are server-connection channels.
The channels themselves must already be started (that is, enabled).

Note: Because a channel is ‘started’ it is not necessarily transmitting messages,
but, rather, it is ‘enabled’ to start transmitting when one of the four events described
above occurs. The enabling and disabling of a channel is achieved using the
START and STOP operator commands.

Starting a channel on MQSeries for Windows
On MQSeries for Windows you start channels in the following ways:

» Using the start connection function of the MQSeries for Windows properties
dialog. This function starts the components defined for the connection. The
components are a queue manager, and optionally, a channel group. The
channel group can contain the listener and up to eight channels. See the
MQSeries for Windows User’s Guide.

e Using the START CHANNEL MQSC command or, in Version 2.1, the START
CHANNEL PCF command. This command starts just the specified channel.
The queue manager must already be running.

Figure 29 shows the hierarchy of all possible channel states, and Figure 30 on
page [69] shows the links between them. These apply to all types of message
channel. On MQSeries for AlX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris,
and Windows NT, these states apply also to server-connection channels.

Channel

[

U

Inactive

H

Current

U

Stopped

Starting Retrying Active

|

Initializing

H H H H H

Binding Requesting Running Paused Stopping

Figure 29. Channel states

68 MQSeries Intercommunication

Channel control function

Current and active
The channel is “current” if it is in any state other than inactive. A current channel is

“active” unless it is in RETRYING, STOPPED, or STARTING state.

Strart

channel

v

START command
or
TRIGGER

or

REMOTE INITIATION

or
STOPPED

CHANNEL INITIATOR

Disabled

STARTING

RETRYING

Waiting until time

for next attempt One attempt to

establish session fails

BINDING

Establishing session and

initial data exchange

Waiting for

message-retry

interval

Transferring or ready

to transfer

Error or STOP request or
disconnect interval expires
Retryable error, one
attempt railed, retry
count not exhausted
STOPPING
Check limits if

retrying

STOP command, - A P
Disconnect interval expires
non-retryable error

or retry limit reached

Figure 30. Flows between channel states

Chapter 5. DQM implementation 69

Channel control function

Notes:

1. When a channel is in one of the six states highlighted in Figure 30 on page
[69](INITIALIZING, BINDING, REQUESTING, RUNNING, PAUSED, or
STOPPING), it is consuming resource and a process or thread is running; the
channel is active. (INITIALIZING occurs only on V5.1 of MQSeries for AlX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and V2.1 of MQSeries for
0S/390 without CICS. PAUSED does not occur on OS/390.)

2. When a channel is in STOPPED state, the session may be active because the
next state is not yet known.

Specifying the maximum number of current channels: You can specify the
maximum number of channels that can be current at one time. This is the number
of channels that have entries in the channel status table, including channels that
are retrying and channels that are disabled (that is, stopped). Specify this in the
channel initiator parameter module for OS/390, the queue manager initialization file
for OS/400, the queue manager configuration file for OS/2, Tandem NSK, and
UNIX systems, or the registry for Windows NT. For more information about the
values you set using the initialization or the configuration file see Appendix D,
“Configuration file stanzas for distributed queuing” on page For more
information about specifying the maximum number of channels, see “Queue
manager configuration files, gm.ini” in the MQSeries System Administration book for
V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the
.MQSeries for AS/400 Administration Guide, or the MQSeries System Management
Guide for your platform.

Notes:

1. On MQSeries for AlX, AS/400, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
Windows NT, server-connection channels are included in this number.

2. A channel must be current before it can become active. If a channel is started,
but cannot become current, the start fails.

3. If you are using CICS for distributed queuing on OS/390, you cannot specify
the maximum number of channels.

4. MQSeries for Windows does not support the gm.ini file. The maximum number
of current channels and the maximum number of active channels is eight.

Specifying the maximum number of active channels: You can also specify the
maximum number of active channels (except on MQSeries for OS/390 using CICS
and MQSeries for Windows). You can do this to prevent your system being
overloaded by a large number of starting channels. If you use this method, you
should set the disconnect interval attribute to a low value to allow waiting channels
to start as soon as other channels terminate.

Each time a channel that is retrying attempts to establish connection with its
partner, it must become an active channel. If the attempt fails, it remains a current
channel that is not active, until it is time for the next attempt. The number of times
that a channel will retry, and how often, is determined by the retry count and retry
interval channel attributes. There are short and long values for both these
attributes. See Chapter 6, “Channel attributes” on page [85]for more information.

70 MQSeries Intercommunication

Channel control function

When a channel has to become an active channel (because a START command
has been issued, or because it has been triggered, or because it is time for another
retry attempt), but is unable to do so because the number of active channels is
already at the maximum value, the channel waits until one of the active slots is
freed by another channel instance ceasing to be active. If, however, a channel is
starting because it is being initiated remotely, and there are no active slots
available for it at that time, the remote initiation is rejected.

Whenever a channel, other than a requester channel, is attempting to become
active, it goes into the STARTING state. This is true even if there is an active slot
immediately available, although in this case it will only be in STARTING state for a
very short time. However, if the channel has to wait for an active slot, it is in
STARTING state while it is waiting.

Requester channels do not go into STARTING state. If a requester channel cannot
start because the number of active channels is already at the limit, the channel
abends.

Whenever a channel, other than a requester channel, is unable to get an active
slot, and so waits for one, a message is written to the log or the OS/390 console,
and an event is generated. When a slot is subsequently freed and the channel is
able to acquire it, another message and event are generated. Neither of these
events and messages are generated if the channel is able to acquire a slot
straightaway.

If a STOP CHANNEL command is issued while the channel is waiting to become
active, the channel goes to STOPPED state. A Channel-Stopped event is raised
as usual.

On MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, 0S/390, Sun Solaris, and
Windows NT, server-connection channels are included in the maximum number of
active channels.

For more information about specifying the maximum number of active channels,
see “Queue manager configuration files, gm.ini” in the MQSeries System
Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, the MQSeries for AS/400 Administration Guide, the MQSeries for
Windows User’s Guide, or the MQSeries System Management Guide for your
platform.

Channel errors

Errors on channels cause the channel to stop further transmissions. If the channel
is a sender or server, it goes to RETRY state because it is possible that the
problem may clear itself. If it cannot go to RETRY state, the channel goes to
STOPPED state. For sending channels, the associated transmission queue is set
to GET(DISABLED) and triggering is turned off. (A STOP command takes the side
that issued it to STOPPED state; only expiry of the disconnect interval will make it
end normally and become inactive.) Channels that are in STOPPED state need
operator intervention before they will restart (see “Restarting stopped channels” on

page [75).

Chapter 5. DQM implementation 71

Channel control function

Note: For Digital OpenVMS, OS/2 Warp, OS/400, UNIX systems, Tandem NSK,
and Windows NT, in order for retry to be attempted a channel initiator must be
running. On platforms other than V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT, the channel initiator must be monitoring the initiation
gueue specified in the transmission queue that the channel is using. MQSeries for
Windows does not have a channel initiator; restarts are controlled by the MQSeries
properties daemon task running in the background.

“Long retry count (LONGRTY)” on page [93]describes how retrying works. If the
error clears, the channel restarts automatically, and the transmission queue is
reenabled. If the retry limit is reached without the error clearing, the channel goes
to STOPPED state. A stopped channel must be restarted manually by the
operator. If the error is still present, it does not retry again. When it does start
successfully, the transmission queue is reenabled.

On MQSeries for AIX, HP-UX, 0OS/2 Warp, 0OS/390 without CICS, Sun Solaris, and
Windows NT, if the channel initiator or queue manager stops while a channel is in
RETRYING or STOPPED status, the channel status is remembered when the
channel initiator or queue manager is restarted.

On MQSeries for OS/2 Warp, Windows NT, OS/400, Tandem NSK, and UNIX
systems, if a channel is unable to put a message to the target queue because that
queue is full or put inhibited, the channel can retry the operation a number of times
(specified in the message-retry count attribute) at a given time interval (specified in
the message-retry interval attribute). Alternatively, you can write your own
message-retry exit that determines which circumstances cause a retry, and the
number of attempts made. The channel goes to PAUSED state while waiting for
the message-retry interval to finish.

See Chapter 6, “Channel attributes” on page for information about the channel
attributes, and Chapter 35, “Channel-exit programs” on page for information
about the message-retry exit.

Checking that the other end of the channel is still available

In MQSeries for AlX, AS/400, HP-UX, OS/2 Warp, OS/390 without CICS, Sun
Solaris, and Windows NT, you can use the heartbeat-interval channel attribute to
specify that flows are to be passed from the sending MCA when there are no
messages on the transmission queue. This is described in “Heartbeat interval
(HBINT)” on page

In MQSeries for AlX, AS/400, HP-UX, OS/2 Warp, 0S/390 without CICS, Sun
Solaris, VSE/ESA, and Windows NT, if you are using TCP as your transport
protocol, you can use the SO_KEEPALIVE option on the TCP/IP socket. If you
specify this option, TCP periodically checks that the other end of the connection is
still available, and if it is not, the channel is terminated.

In MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, if you are
using TCP as your transport protocol, the receiving end of innactive connections
can also be closed if no data is received for a period of time. This period of time is
determined according to the HBINT (heartbeat interval) value.

72 MQSeries Intercommunication

Channel control function

The timeout value is set as follows:

1. For an intial number of flows, before any negotiation has taken place, the
timeout is twice the HBINT value from the channel definition.

2. When the channels have negotiated a HBINT value, the timeout is set to twice
this value.

Notes:
1. If either of the above values is zero, then there is no timeout.

2. For connections that do not support heartbeats, the HBINT value is negotiated
to zero in step 2 and hence there is no timeout, so we must use TCP/IP
KEEPALIVE.

3. For client connections, heartbeats are only flowed from the server when the
client issues an MQGET call with wait; none are flowed during other MQI calls.
Therefore, you are not recommended to set the heartbeat interval too small for
client channels. For example, if the heartbeat is set to ten seconds, an
MQCMIT call will fail (with MQRC_CONNECTION_BROKEN) if it takes longer
than twenty seconds to commit because no data will have been flowed during
this time. This can happen with large units of work. However, it should not
happen if appropriate values are chosen for the heartbeat interval because only
MQGET with wait should take significant periods of time.

4. Aborting the connection after twice the heartbeat interval is valid because we
expect flows (data or heartbeat) at least every heartbeat interval. If the
heartbeat interval is set too small, however, problems can occur, especially if
channel exits are in use. For example, if the HBINT value is one second, and
a send or receive exit is used, the receiving end will only wait for two seconds
before aborting the channel. This may not be long enough if the sending MCA
spends a long time in the send exit, perhaps encrypting the message.

If you have unreliable channels that are suffering from TCP errors, use of
SO_KEEPALIVE will mean that your channels are more likely to recover.

You can specify time intervals to control the behavior of the SO_KEEPALIVE
option. When you change the time interval, only TCP/IP channels started after the
change are affected. The value that you choose for the time interval should be less
than the value of the disconnect interval for the channel.

For more information about using the SO_KEEPALIVE option on 0S/390, see the
MQSeries for 0S/390 System Management Guide. For other platforms, see the
chapter about setting up communications for your platform in this manual.

Stopping and quiescing channels (not MQSeries for Windows)

Message channels are designed to be long-running connections between queue
managers with orderly termination controlled only by the disconnect interval channel
attribute. This mechanism works well unless the operator needs to terminate the
channel before the disconnect time interval expires. This can occur in the following
situations:

e System quiesce
e Resource conservation
¢ Unilateral action at one end of a channel

Chapter 5. DQM implementation 73

Channel control function

In this case, an operator command is provided to allow you to stop the channel.
The command provided varies by platform, as follows:

For OS/390 without CICS:
The STOP CHANNEL MQSC command or the Stop a channel panel

For OS/390 using CICS:
The Stop option on the Message Channel List panel

For OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems:
The STOP CHANNEL MQSC or PCF command

For OS/400:
The END command on the WRKMQMCHL panel

For VSE/ESA:
The CLOSE command from the MQMMSC panel or MQCL transaction closes
(rather than stops) the channel.

For all of these commands there is a FORCE and a QUIESCE option. The FORCE
option attempts to stop the channel immediately and may require the channel to
resynchronize when it restarts because the channel may be left in doubt. The
QUIESCE option attempts to end the current batch of messages and then terminate
the channel. Note that both of these options leave the channel in a STOPPED
state, requiring operator intervention to restart it.

Stopping the channel at the sending end is quite effective but does require operator
intervention to restart. At the receiving end of the channel, things are much more
difficult because the MCA is waiting for data from the sending side, and there is no
way to initiate an orderly termination of the channel from the receiving side; the
stop command is pending until the MCA returns from its wait for data.

Consequently there are three recommended ways of using channels, depending
upon the operational characteristics required:

¢ |f you want your channels to be long running, you should note that there can be
orderly termination only from the sending end. When channels are interrupted,
that is, stopped, operator intervention (a START CHANNEL command) is
required in order to restart them.

 If you want your channels to be active only when there are messages for them
to transmit, you should set the disconnect interval to a fairly low value. Note
that the default setting is quite high and so is not recommended for channels
where this level of control is required. Because it is difficult to interrupt the
receiving channel, the most economical option is to have the channel
automatically disconnect and reconnect as the workload demands. For most
channels, the appropriate setting of the disconnect interval can be established
heuristically.

74 MQSeries Intercommunication

Channel control function

e For MQSeries for AlX, AS/400, HP-UX, OS/2 Warp, 0S/390 without CICS, Sun
Solaris, and Windows NT, you can use the heartbeat-interval attribute to cause
the sending MCA to send a heartbeat flow to the receiving MCA during periods
in which it has no messages to send. This releases the receiving MCA from its
wait state and gives it an opportunity to quiesce the channel without waiting for
the disconnect interval to expire. Give the heartbeat interval a lower value than
the value of the disconnect interval.

Notes:

1. It is particularly advisable to set the disconnect interval to a low value, or to
use heartbeats, for server channels.?

2. On 0S/390, without CICS, and on V5.1 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and MQSeries for AS/400 V4R2M1,
server-connection channels can also be stopped like receiver channels.

Stopping and quiescing channels (MQSeries for Windows)
On MQSeries for Windows you can stop or quiesce channels in the following ways:

* Using the stop connection function of the MQSeries for Windows properties
dialog. This function stops the queue manager and any channels. Channels
are forced to stop if necessary and may go into in-doubt status if a batch of
messages is currently in transit. Any fast, nonpersistent messages that are in
transit are lost.

e Using the STOP CHANNEL MQSC command or, in Version 2.1, the STOP
CHANNEL PCF command. You can specify a FORCE or QUIESCE option on
this command. Using this command stops just the specified channel and
leaves the queue manager running.

Restarting stopped channels
When a channel goes into STOPPED state (either because you have stopped the
channel manually using one of the methods given in “Stopping and quiescing
channels (not MQSeries for Windows)” on page or because of a channel error)
you have to restart the channel manually.

To do this, issue one of the following commands:

For MQSeries for 0S/390 without CICS:
The START CHANNEL MQSC command or the Start a channel panel

For MQSeries for 0S/390 using CICS:
The Start option on the Message Channel List panel

For MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK,
and UNIX systems:
The START CHANNEL MQSC or PCF command

1 This is to allow for the case where the requester channel ends abnormally (for example, because the channel was canceled) when
there are no messages for the server channel to send. In this case, the server does not detect that the requester has ended (it
will only do this the next time it tries to send a message to the requester). While the server is still running, it holds the
transmission queue open for exclusive input in order to get any more messages that may arrive on the queue. If an attempt is
made to restart the channel from the requester, the start request receives an error because the server still has the transmission
queue open for exclusive input. It is necessary to stop the server channel, and then restart the channel from the requester again.

Chapter 5. DQM implementation 75

Channel control function

For MQSeries for AS/400:
The START command on the WRKMQMCHL panel, the STRMQMCHL
command, or the START CHANNEL MQSC or PCF command

For MQSeries for Windows:
The START CHANNEL MQSC command, in Version 2.1 the START
CHANNEL PCF command, or the start connection function of the MQSeries
properties dialog.

For MQSeries for VSE/ESA:
The OPEN command from the MQMMSC panel or MQCL transaction opens
(rather than restarts) the channel.

For sender or server channels, when the channel entered the STOPPED state, the
associated transmission queue was set to GET(DISABLED) and triggering was set
off. When the start request is received, these attributes are reset automatically.
On V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for OS/390 without CICS, if the channel initiator or queue manager
stops while a channel is in RETRYING or STOPPED status, the channel status is
remembered when the channel initiator or queue manager is restarted. On other
platforms (apart from MQSeries for Windows), if the channel initiator or queue
manager is restarted the status is lost and you have to alter the queue attributes
manually to reenable triggering of the channel.

Note: If you are using CICS for distributed queuing on OS/390, these queue
attributes are not reset automatically; you always have to alter them manually when
you restart a channel.

In-doubt channels
Observe the distinction between a channel being in doubt, which means that it is in
doubt with its partner channel about which messages have been sent and received,
and the queue manager being in doubt about which messages should be
committed to a queue.

Normally, all resolution of in-doubt situations on channels is handled automatically.
Even if communication is lost, leaving the channel in doubt with a batch of
messages at the sender whose receipt status is unknown, the situation will be
resolved when communications are reestablished. Sequence number and LUWID
records are kept for this purpose. (In fact, channels are only in doubt for the short
period at the end of a batch while LUWID information is exchanged, and no more
than one batch of messages can be in doubt for each channel.)

In exceptional circumstances it is possible to manually resynchronize the channel.
(In this case, the term manual may refer to operators or to programs that contain
MQSeries system management commands.) The manual resynchronization
process works as follows. MQSC commands are used in this description; you can
use the PCF equivalents instead.

76 MQSeries Intercommunication

Channel control function

1. On platforms other than MQSeries for Windows, use the DISPLAY CHSTATUS
command to find the last-committed logical unit of work ID (LUWID) for each
side of the channel. Do this using the following commands:

¢ For the in-doubt side of the channel:
DISPLAY CHSTATUS (name) SAVED CURLUWID

You can use the CONNAME and XMITQ parameters to further identify the
channel.

e For the receiving side of the channel:
DISPLAY CHSTATUS(name) SAVED LSTLUWID
You can use the CONNAME parameter to further identify the channel.

The commands are different because only one side (the sending side) of the
channel can be in doubt. The receiving side is never in doubt.

On MQSeries for Windows, the DISPLAY CHSTATUS command is not
supported. Instead, use the Status button on the Components tab of the
MQSeries for Windows properties dialog.

2. If you find that the two LUWIDs are the same, the receiving side has committed
the unit of work that the sender considers to be in doubt. Therefore, the
sending side can remove the in-doubt messages from the transmission queue
and reenable it. This is done with the following channel RESOLVE command:

RESOLVE CHANNEL (name) ACTION(COMMIT)

3. If you find that the two LUWIDs are different, the receiving side has not
committed the unit of work that the sender considers to be in doubt. On some
platforms you can find out how many messages are in doubt by displaying the
saved channel status. The sending side needs to retain the in-doubt messages
on the transmission queue and resend them. This is done with the following
channel RESOLVE command:

RESOLVE CHANNEL (name) ACTION(BACKOUT)

Once this process is complete the channel will no longer be in doubt. This means
that, if required, the transmission queue can be used by another channel.

Problem determination
There are two distinct aspects to problem determination:

¢ Problems discovered when a command is being submitted
* Problems discovered during operation of the channels

Command validation

Commands and panel data must be free from errors before they are accepted for
processing. Any errors found by the validation are immediately notified to the user
by error messages.

Problem diagnosis begins with the interpretation of these error messages and
taking the recommended corrective action.

Chapter 5. DQM implementation 77

Undelivered messages

Processing problems

Problems found during normal operation of the channels are notified to the system
console or the system log or, for MQSeries for Windows, the channel log. Problem
diagnosis begins with the collection of all relevant information from the log, and
continues with analysis to identify the problem.

Confirmation and error messages are returned to the terminal that initiated the
commands, when possible.

Messages and codes
Where provided, the Messages and Codes manual of the particular platform can
help with the primary diagnosis of the problem.

What happens when a message cannot be delivered?

Figure 31 shows the processing that occurs when an MCA is unable to put a
message to the destination queue. (Note that the options shown do not apply on
all platforms.)

Queue

4 l QM1 1 Channels f oM2 I
\ l Message Flow Transient Failure
U MCA MCA Retry Exit
Transmission | ___

N
RTS Application
Queue

2 3
Transmission
Queue Dead Letter

Queue /
|

DLQ Handler

Figure 31. What happens when a message cannot be delivered

78 MQSeries Intercommunication

Undelivered messages

As shown in the figure, the MCA can do several things with a message that it
cannot deliver. The action taken is determined by options specified when the
channel is defined and on the MQPUT options for the message.

1. Message-retry
If the MCA is unable to put a message to the target queue for a reason that
could be transitory (for example, because the queue is full), the MCA has the
option to wait and retry the operation later. You can determine if the MCA
waits, for how long, and how many times it retries.

* You can specify a message-retry time and interval for MQPUT errors
when you define your channel. If the message cannot be put to the
destination queue because the queue is full, or is inhibited for puts, the
MCA retries the operation the number of times specified, at the time
interval specified.

e You can write your own message-retry exit. The exit enables you to
specify under what conditions you want the MCA to retry the MQPUT or
MQOPEN operation. Specify the name of the exit when you define the
channel.

Message-retry is not available on MQSeries for 0S/390, MQSeries for
Windows, or MQSeries for VSE/ESA.

2. Return-to-sender
If message-retry was unsuccessful, or a different type of error was
encountered, the MCA can send the message back to the originator.

To enable this, you need to specify the following options in the message
descriptor when you put the message to the original queue:

e The MQRO_EXCEPTION_WITH_FULL_DATA report option
¢ The MQRO_DISCARD_MSG report option
e The name of the reply-to queue and reply-to queue manager

If the MCA is unable to put the message to the destination queue, it
generates an exception report containing the original message, and puts it on
a transmission queue to be sent to the reply-to queue specified in the original
message. (If the reply-to queue is on the same queue manager as the MCA,
the message is put directly to that queue, not to a transmission queue.)

Return-to-sender is not available on OS/390 or VSE/ESA.

Chapter 5. DQM implementation 79

Initialization and configuration files

3. Dead-letter queue
If a message cannot be delivered or returned, it is put on to the dead-letter
queue. You can use the DLQ handler to process the message. This is
described in Chapter 12, “The MQSeries dead-letter queue handler” in the
MQSeries System Administration book for V5.1 of MQSeries for AIX, HP-UX,
0OS/2 Warp, Sun Solaris, and Windows NT, the MQSeries for AS/400

| Administration Guide for OS/400, or in the MQSeries System Management

| Guide for your platform. (The DLQ handler is not supported on 0S/390.)

If the dead-letter queue is not available, the sending MCA leaves the
message on the transmission queue, and the channel stops. On a fast
channel, nonpersistent messages that cannot be written to a dead-letter
queue are lost.

Dead-letter queues are not supported on MQSeries for Windows.

Initialization and configuration files

The handling of channel initialization data depends on your MQSeries platform.

0S/390 without CICS

In MQSeries for OS/390 without CICS, initialization and configuration information is
in the channel initiator parameter module CSQXPARM. You can also put
commands in the CSQINPX initialization input data set, which is processed every
time you start the channel initiator if you specify the optional DD statement
CSQINPX in the channel initiator started task procedure. See the MQSeries for
0S/390 System Management Guide for information about both of these.

0S/390 using CICS
In MQSeries for OS/390 using CICS there is no channel initiator.

0S/400

In MQSeries for AS/400, MCA programs can use parameters defined in an
initialization file.

The initialization file is an editable physical file that you create, called QMINI in
QMQMDATA. There are five parameters that you can specify:

e The maximum number of channels allowed

e The maximum number of channels that can be active at any one time
e The maximum number of channel initiators allowed

The TCP/IP listener port number

* Whether TCP/IP KeepAlive is to be used

The format of QMINI is shown in Appendix D, “Configuration file stanzas for
distributed queuing” on page

| Windows NT

| On MQsSeries for Windows NT, the registry file holds basic configuration information
| about the MQSeries installation. That is, information relevant to all of the queue

| managers on the MQSeries system and also information relating to individual

| gueue managers.

80 MQSeries Intercommunication

Initialization and configuration files

0OS/2, Digital OpenVMS, Tandem NSK, and UNIX systems

On MQSeries for OS/2 Warp, MQSeries for Digital OpenVMS, MQSeries for
Tandem NonStop Kernel, and MQSeries on UNIX systems, there are configuration
files to hold basic configuration information about the MQSeries installation.

There are two configuration files: one applies to the machine, the other applies to
an individual queue manager.

MQSeries configuration file

This holds information relevant to all of the queue managers on the MQSeries
system. The file is called MQSINI on Tandem NSK and mgs.ini on other platforms.
It is fully described in Chapter 11, “Configuring MQSeries” in the MQSeries System
Administration book for MQSeries for AlX, MQSeries for HP-UX, MQSeries for
0S/2 Warp, and MQSeries for Sun Solaris, or in the MQSeries System
Management Guide for your platform.

Queue manager configuration file

The queue manager configuration file holds configuration information relating to one
particular queue manager. The file is called QMINI on Tandem NSK, and gm.ini on
other platforms.

It is created during queue manager creation and may hold configuration information
relevant to any aspect of the queue manager. Information held in the file includes
details of how the configuration of the log differs from the default in MQSeries
configuration file.

The queue manager configuration file is held in the root of the directory tree
occupied by the queue manager. On MQSeries for Windows NT, the gm.ini file is
held in the registry. For example, for the DefaultPath attributes, the queue
manager configuration files for a queue manager called QMNAME would be:

For OS/2:
c:\mgm\gmgrs\QMNAME\gm. ini

For UNIX systems:
/var/mgm/gmgrs/QMNAME/gm. ini

For Digital OVMS:
mgs_root: [mgm.gmgrs.QMNAME] gm. ini

For Tandem NSK:
The file is held in the subvolume of the queue manager. For example, the path

and name for a configuration file for a queue manager called QMNAME could be
$VOLUME.QMNAMED.QMINI.

Chapter 5. DQM implementation 81

Data conversion

» Writing message channel agents

An example of a gm.ini file follows. It specifies that the TCP/IP listener is to listen
on port 2500, the maximum number of current channels is to be 200 and the
maximum number of active channels is to be 100.

TCP:
Port=2500

CHANNELS:
MaxChannels=200
MaxActiveChannels=100

For more information about gm.ini files see Appendix D, “Configuration file stanzas
for distributed queuing” on page For more information about QMINI files see
the MQSeries System Management Guide for your platform.

For VSE/ESA:

There is no gm.ini file on VSE/ESA. Instead, use the Configuration main menu on
the MQMMCEFG panel to configure the queue manager.

Data conversion

An MQSeries message consists of two parts:

e Control information in a message descriptor
e Application data

Either of the two parts may require data conversion when sent between queues on
different queue managers. For information about data conversion, see “Application
data conversion” in the MQSeries Application Programming Guide.

Writing your own message channel agents

MQSeries products other than MQSeries for Windows allow you to write your own
message channel agent (MCA) programs or to install one from an independent
software vendor. You might want to do this to make an MQSeries product
interoperate over your own, proprietary communications protocol or to send
messages over a protocol that MQSeries does not support. (You cannot write your
own MCA to interoperate with an MQSeries-supplied MCA at the other end.)

82 MQSeries Intercommunication

Writing message channel agents

If you decide to use an MCA that was not supplied by MQSeries, you need to
consider the following.

Message sending and receiving

You need to write a sending application that gets messages from
wherever your application puts them, for example from a
transmission queue (see “MQXQH - Transmission queue header”
in the MQSeries Application Programming Reference book), and
sends them out on a protocol with which you want to
communicate. You also need to write a receiving application that
takes messages from this protocol and puts them onto destination
queues. The sending and receiving applications use the message
queue interface (MQI) calls, not any special interfaces.

You need to ensure that messages are delivered once and once
only. Syncpoint coordination can be used to help with this.

Channel control function

Initialization file

You need to provide your own administration functions to control
channels. You cannot use MQSeries channel administration
functions either for configuring (for example, the DEFINE
CHANNEL command) or monitoring (for example, DISPLAY
CHSTATUS) your channels.

You need to provide your own initialization file, if you require one.

Application data conversion

User exits

Triggering

Channel initiator

You will probably want to allow for data conversion for messages
you send to a different system. If so, use the
MQGMO_CONVERT option on the MQGET call when retrieving
messages from wherever your application puts them, for example
the transmission queue.

Consider whether you need user exits. If so, you can use the
same interface definitions that MQSeries uses.

If your application puts messages to a transmission queue, you
can set up the transmission queue attributes so that your sending
MCA is triggered when messages arrive on the queue.

You may need to provide your own channel initiator.

Chapter 5. DQM implementation 83

Writing message channel agents

84 MQSeries Intercommunication

Channel attributes

Chapter 6. Channel attributes

| Product-sensitive programming interface |

The previous chapters have introduced the basic concepts of the product, the
business perspective basis of its design, its implementation, and the control
features.

This chapter describes the channel attributes held in the channel definitions.

You choose the attributes of a channel to be optimal for a given set of
circumstances for each channel. However, when the channel is running, the actual
values may have changed during startup negotiations. See “Preparing channels”

on page

Many attributes have default values, and you can use these for most channels.
However, in those circumstances where the defaults are not optimal, refer to this
chapter for guidance in selecting the correct values.

Note: In MQSeries for AS/400, most parameters can be specified as *SYSDFTCHL,
which means that the value is taken from the system default channel in your
system.

Channel attributes in alphabetical order

MQSeries for some platforms may not implement all the attributes shown in the list.
Exceptions and platform differences are mentioned in the individual attribute
descriptions, where relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.
(Attributes that apply only to MQSeries for OS/390 with CICS do not have MQSC
keywords.)

The attributes are arranged in alphabetical order, as follows:

Attribute See page...

Auto start (AUTOSTART)

Alter date (ALTDATE)

Alter time (ALTTIME)

Batch interval (BATCHINT)
Batch size (BATCHSZ)
Channel name (CHANNEL)
Channel type (CHLTYPE)
CICS profile name

Cluster (CLUSTER)

Cluster namelist (CLUSNL)
Connection name (CONNAME)
Convert message (CONVERT)
Description (DESCR)
Disconnect interval (DISCINT)
Heartbeat interval (HBINT)
Long retry count (LONGRTY)
Long retry interval (LONGTMR)

of<]fo][<][c]©][<][<][co][oo][oo] [] eo][co] (o oo
EEEEEEEEEREEREEEE

© Copyright IBM Corp. 1993,1999 85

Alter date (ALTDATE) e Auto start (AUTOSTART)

Receive exit name (RCVEXIT)
Receive exit user data (RCVDATA)
Security exit name (SCYEXIT)
Security exit user data (SCYDATA)
Send exit name (SENDEXIT)

Send exit user data (SENDDATA) 102
Sequence number wrap (SEQWRAP) 102
Sequential delivery 102
Short retry count (SHORTRTY) 102
Short retry interval (SHORTTMR) [103]
Target system identifier 103
Transmission queue name (XMITQ) 103
Transport type (TRPTYPE) [104]
User ID (USERID) 104

Attribute See page...
LU 6.2 mode name (MODENAME)
LU 6.2 transaction program name (TPNAME) [94]
Maximum message length (MAXMSGL) %
Maximum transmission size 96
Message channel agent name (MCANAME) [96]
Message channel agent type (MCATYPE) [96]
Message channel agent user identifier (MCAUSER) 96
Message exit name (MSGEXIT) 97
Message exit user data (MSGDATA) [97]
Message-retry exit name (MREXIT) 97
Message-retry exit user data (MRDATA) 97
Message retry count (MRRTY) [97]
Message retry interval (MRTMR) 98
Nonpersistent message speed (NPMSPEED) 98
Network-connection priority (NETPRTY)

Password (PASSWORD)

PUT authority (PUTAUT)

Queue manager name (QMNAME)

= ISR E R R
EEEEEEEEE

| Alter date (ALTDATE)

| This is the date on which the definition was last altered, in the form yyyy-mm-dd.

| This parameter is supported on AlX, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
| Windows NT only.

| Alter time (ALTTIME)

| This is the time at which the definition was last altered, in the form hh:mm:ss.

| This parameter is supported on AlX, HP-UX, OS/2 Warp, OS/390, Sun Solaris, and
| Windows NT only.

Auto start (AUTOSTART)

In MQSeries for Tandem NonStop Kernel there is no SNA listener process. Each
channel initiated from a remote system must have its own, unique TP name on
which it can listen. Such channels must be defined to MQSC with the attribute
AUTOSTART(ENABLED) to ensure that there is an LU 6.2 responder process
listening on this TP name whenever the queue manager is started.

86 MQSeries Intercommunication

Batch interval (BATCHINT) e Batch size (BATCHSZ)

SNA channels defined AUTOSTART(DISABLED) do not listen for incoming SNA
requests. LU 6.2 responder processes are not started for such channels.

Batch interval (BATCHINT)

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for OS/390 without CICS, you can specify a period of time, in
milliseconds, during which the channel will keep a batch open even if there are no
messages on the transmission queue. You can specify any number of
milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when the number of
messages specified in BATCHSZ has been sent or when the transmission queue
becomes empty. On lightly loaded channels, where the transmission queue
frequently becomes empty the effective batch size may be much smaller than
BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by
reducing the number of short batches. Be aware, however, that you may slow
down the response time, because batches will last longer and messages will
remain uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following
conditions is met:

e The number of messages specified in BATCHSZ have been sent.

e There are no more messages on the transmission queue and a time interval of
BATCHINT has elapsed while waiting for messages (since the first message of
the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for
messages. It does not include the time spent retrieving messages that are already
available on the transmission queue, or the time spent transferring messages.

This attribute applies only to sender, cluster-sender, server, and cluster-receiver
channels.

Batch size (BATCHSZ)

The batch size is the maximum number of messages to be sent before a syncpoint
is taken. The batch size does not affect the way the channel transfers messages;
messages are always transferred individually, but are committed or backed out as a
batch.

To improve performance, you can set a batch size to define the maximum number
of messages to be transferred between two syncpoints. The actual batch size to
be used is negotiated when a channel starts up, whereby the lower of the two
channel definitions is taken. On some implementations, the batch size is calculated
from the lowest of the two channel definitions and the two queue manager
MAXUMSGS/MAXSMSGS values. The actual size of a batch can be less than this;
for example, a batch will complete when there are no messages left on the
transmission queue.

Syncpoint procedure needs a unique logical unit of work identifier to be exchanged

across the link every time a syncpoint is taken, to coordinate batch commit
procedures.

Chapter 6. Channel attributes 87

Channel name (CHANNEL)

If the synchronized batch commit procedure is interrupted, an in-doubt situation
may arise. In-doubt situations are resolved automatically when a message channel
starts up. If this resolution is not successful, manual intervention may be
necessary, making use of the RESOLVE command.

Some considerations when choosing the number for batch size:

e |f the number is too large, the amount of queue space taken up on both ends
of the link becomes excessive. Messages take up queue space when they are
not committed, and cannot be removed from queues until they are committed.

» |If there is likely to be a steady flow of messages, you can improve the
performance of a channel by increasing the batch size. However, this has the
negative effect of increasing restart times, and very large batches may also
affect performance.

¢ |If message flow characteristics indicate that messages arrive intermittently, a
batch size of 1 with a relatively large disconnect time interval may provide a
better performance.

¢ The number must be in the range 1 through 9999. For data integrity reasons,
channels connecting to any of the platforms that this book applies to should
specify a batch size greater than 1.

For OS/390 using CICS it must also be at least 3 less than the value set by the
DEFINE MAXSMSGS command.

e Even though nonpersistent messages on a fast channel do not wait for a
syncpoint, they do contribute to the batch-size count.

Channel name (CHANNEL)
Specifies the name of the channel definition. The name can contain up to 20
characters, although as both ends of a message channel must have the same
name, and other implementations may have restrictions on the size, the actual
number of characters may have to be smaller.

Where possible, channel nhames should be unique to one channel between any two
gueue managers in a network of interconnected queue managers.

The name must contain characters from the following list:

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)
Numerics (0-9)

Period ()

Forward slash)

Underscore Q)

Percentage sign (%)

Notes:

1. Embedded blanks are not allowed, and leading blanks are ignored.

2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

88 MQseries Intercommunication

Channel type (CHLTYPE) e Cluster (CLUSTER)

Channel type (CHLTYPE)

Specifies the type of the channel being defined. The possible channel types are:
Message channel types:

e Sender

e Server (not MQSeries for VSE/ESA)
| ¢ Cluster-sender (MQSeries for OS/390 without CICS, MQSeries for AIX
| V5.1, MQSeries for HP-UX V5.1, MQSeries for OS/2 Warp V5.1, MQSeries
| for Sun Solaris V5.1, and MQSeries for Windows NT V5.1 only)

e Receiver

¢ Requester (not MQSeries for VSE/ESA)
| e Cluster-receiver (MQSeries for OS/390 without CICS, MQSeries for AlX
| V5.1, MQSeries for HP-UX V5.1, MQSeries for OS/2 Warp V5.1, MQSeries
| for Sun Solaris V5.1, and MQSeries for Windows NT V5.1 only)

MQI channel types:

¢ Client-connection (MQSeries for OS/2 Warp, Windows NT, UNIX systems,
VSE/ESA, DOS, Windows 3.1, Windows 95, and Windows 98 only)

Note: Client-connection channels can also be defined on OS/390 for use
on other platforms.

e Server-connection (not MQSeries for 0S/390 using CICS)

The two ends of a channel must have the same name and have compatible types:

e Sender with receiver
¢ Requester with server
¢ Requester with sender (for Call_back)
e Server with receiver (server is used as a sender)
¢ Client-connection with server-connection
| ¢ Cluster-sender with cluster-receiver

CICS profile name

This is for OS/390 using CICS only, to give extra definition for the session
characteristics of the connection when CICS performs a communication session
allocation, for example to select a particular COS.

The name must be known to CICS and be one to eight alphanumeric characters
long.

| Cluster (CLUSTER)

| The name of the cluster to which the channel belongs. The maximum length is 48
| characters conforming to the rules for naming MQSeries objects.

| This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
| one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of
| the values is nonblank, the other must be blank.

| This parameter is supported on AIX, HP-UX, OS/2 Warp, OS/390 without CICS,
| Sun Solaris, and Windows NT only.

Chapter 6. Channel attributes 89

Cluster namelist (CLUSNL) e Connection name (CONNAME)

| Cluster namelist (CLUSNL)

| The name of the namelist that specifies a list of clusters to which the channel
| belongs.

| This parameter is valid only for cluster-sender and cluster-receiver channels. Up to
| one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of
| the values is nonblank, the other must be blank.

| This parameter is supported on AlX, HP-UX, OS/2 Warp, OS/390 without CICS,
| Sun Solaris, and Windows NT only.

Connection name (CONNAME)

This is the communications connection identifier. It specifies the particular
communications link to be used by this channel.

This attribute is required for sender channels, requester channels, and
client-connection channels. It does not apply to receiver or server-connection
channel types.

It is optional for server channels, except on OS/390 using CICS where it is required
in the channel definition, but is ignored unless the server is initiating the
conversation.

For OS/390 using CICS this attribute names the CICS communication connection
identifier for the session to be used for this channel. The name is one to four
alphanumeric characters long.

Otherwise, the name is up to 48 characters for OS/390, 264 characters for other
platforms, and:

If the transport type is TCP
This is either the hostname or the network address of the remote machine.
For example, (MACH1.ABC.COM) or (19.22.11.162). It may include the port
number, for example (MACHINE(123)).

If the transport type is UDP
For AIX and Windows 2.0 only, UDP is an alternative to TCP. As with
TCP/IP, it is either the hosthame or the network address of the remote
machine.

If the transport type is LU 6.2
For OS/400, Windows NT, and UNIX systems give the CPI-C side information
object name as described in the section in this book about setting up
communication for your platform.

For OS/2, give the fully-qualified name of the partner LU. This is described in
Chapter 10, “Setting up communication for OS/2 and Windows NT” on
page

90 MQSeries Intercommunication

If the

If the

Note:

Convert message (CONVERT)

On 0S/390 there are two forms in which to specify the value:

Logical unit name
The logical unit information for the queue manager, comprising the
logical unit name, TP name, and optional mode name. This can be
specified in one of 3 forms:

Form Example
luname IGY12355
luname/TPname IGY12345/APING

luname/TPname/modename IGY12345/APINGD/#INTER

For the first form, the TP name and mode name must be specified for
the TPNAME and MODENAME attributes; otherwise these attributes
must be blank.

Note: For client-connection channels, only the first form is allowed.

Symbolic name
The symbolic destination name for the logical unit information for the
queue manager, as defined in the side information data set. The
TPNAME and MODENAME attributes must be blank.

Note: For cluster-receiver channels, the side information is on the other
queue managers in the cluster. Alternatively, in this case it can
be a name that a channel auto-definition exit can resolve into the
appropriate logical unit information for the local queue manager.

For Digital OpenVMS, specify the Gateway Node name, the Access Name to
the channel program, and the TPNAME used to invoke the remote program.
For example: CONNAME (' SNAGWY . VMSREQUESTER (HOSTVR) ').

For Tandem NonStop Kernel, the value depends on whether SNAX or ICE is
used; see Chapter 19, “Setting up communication in Tandem NSK” on

page

transmission protocol is NetBIOS
This is the NetBIOS name defined on the remote machine.

transmission protocol is SPX

This is an SPX-style address consisting of a 4-byte network address, a 6-byte
node address and a 2-byte socket number. Enter these in hexadecimal, with
the network and node addresses separated by a fullstop and the socket
number in brackets. For example:

CONNAME ('0a0b0c0Od.804abcde23al(5e86) ')

If the socket number is omitted, the default MQSeries SPX socket number is
used. The default is X'5E86".

The definition of transmission protocol is contained in “Transport type

(TRPTYPE)” on page

Convert message (CONVERT)

Application message data is usually converted by the receiving application.
However, if the remote queue manager is on a platform that does not support data
conversion, use this channel attribute to specify that the message should be
converted into the format required by the receiving system before transmission.

Chapter 6. Channel attributes 91

Description (DESCR) e Disconnect interval (DISCINT)

This attribute applies only to sender, cluster-sender, server, and cluster-receiver
channels and does not apply to MQSeries for 0OS/390 with CICS or MQSeries for
Windows.

The possible values are ‘yes’ and ‘no’. If you specify ‘yes’, the application data in
the message is converted before sending if you have specified one of the
appropriate built-in format names (see “Application data conversion” in the
MQSeries Application Programming Guide). If you specify ‘no’, the application data
in the message is not converted before sending.

Description (DESCR)

This contains up to 64 bytes of text that describes the channel definition.

Note: The maximum number of characters is reduced if the system is using a
double byte character set (DBCS).

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager to ensure that the text is translated
correctly if it is sent to another queue manager.

Disconnect interval (DISCINT)

This is a time-out attribute, specified in seconds, for the server, cluster-sender,
sender, and cluster-receiver channels. The interval is measured from the point at
which a batch ends, that is when the batch size is reached or when the batch
interval expires and the transmission queue becomes empty. If no messages arrive
on the transmission queue during the specified time interval, the channel closes
down. (The time is approximate.)

The close-down exchange of control data between the two ends of the channel
includes an indication of the reason for closing. This ensures that the
corresponding end of the channel remains available to start up again.

On all platforms except OS/390 with CICS, you can specify any number of seconds
from zero through 999 999 where a value of zero means no disconnect; wait
indefinitely.

In OS/390 using CICS, you can specify any number of seconds from zero through
9999 where a value of zero means disconnect as soon as the transmission queue
is empty.

Note: Performance is affected by the value specified for the disconnect interval.

A very low value (a few seconds) may cause excessive overhead in
constantly starting up the channel. A very large value (more than an hour)
could mean that system resources are unnecessarily held up. For V5.1 of
MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
MQSeries for OS/390 without CICS, and MQSeries for AS/400 V4AR2M1,
you can also specify a heartbeat interval, so that when there are no
messages on the transmission queue, the sending MCA will send a
heartbeat flow to the receiving MCA, thus giving the receiving MCA an
opportunity to quiesce the channel without waiting for the disconnect interval
to expire. For these two values to work together effectively, the heartbeat
interval value should be significantly lower than the disconnect interval
value.

92 MQSeries Intercommunication

Heartbeat interval (HBINT) e Long retry count (LONGRTY)

A value for the disconnect interval of a few minutes is a reasonable value to
use. Change this value only if you understand the implications for
performance, and you need a different value for the requirements of the
traffic flowing down your channels.

For more information, see “Stopping and quiescing channels (not MQSeries
for Windows)” on page

Heartbeat interval (HBINT)

This attribute applies to V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, MQSeries for OS/390 without CICS, and MQSeries for AS/400
V4R2M1. You can specify the approximate time between heartbeat flows that are
to be passed from a sending MCA when there are no messages on the
transmission queue. Heartbeat flows unblock the receiving MCA, which is waiting
for messages to arrive or for the disconnect interval to expire. When the receiving
MCA is unblocked it can disconnect the channel without waiting for the disconnect
interval to expire. Heartbeat flows also free any storage buffers that have been
allocated for large messages and close any queues that have been left open at the
receiving end of the channel.

The value is in seconds and must be in the range 0 through 999 999. A value of
zero means that no heartbeat flows are to be sent. The default value is 300. To
be most useful, the value should be significantly less than the disconnect interval
value.

This attribute is valid for sender, cluster-sender, server, receiver, cluster-receiver,
and requester channels. Other than on OS/390 and OS/400, it also applies to
server-connection and client-connection channels. On these channels, heartbeats
flow when a server MCA has issued an MQGET command with the WAIT option on
behalf of a client application.

Long retry count (LONGRTY)

Specify the maximum number of times that the channel is to try allocating a session
to its partner. If the initial allocation attempt fails, the short retry count number is
decremented and the channel retries the remaining number of times. If it still fails,
it retries a long retry count number of times with an interval of long retry
interval between each try. If it is still unsuccessful, the channel closes down.

The channel must subsequently be restarted with a command (it is not started
automatically by the channel initiator).

(Retry is not attempted if the cause of failure is such that a retry is not likely to be
successful.)

If the channel initiator or queue manager stops while the channel is retrying, the
short retry count and long retry count are reset when the channel initiator or queue
manager is restarted.

The long retry count attribute is valid only for channel types of sender,
cluster-sender, server, and cluster-receiver. It is also valid for requester channels
on OS/390 if you are using CICS. It may be set from zero through 999 999 999.
On 0S/390 using CICS, it may be set from zero through 999, and the long and
short retries have the same count.

Chapter 6. Channel attributes 93

Long retry interval (LONGTMR) e LU 6.2 transaction program name (TPNAME)

Note: For OS/2, 0S/400, UNIX systems, and Windows NT, in order for retry to be
attempted a channel initiator must be running. The channel initiator must be
monitoring the initiation queue specified in the transmission queue that the channel
is using.

Long retry interval (LONGTMR)

The approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the long retry mode.

The interval between retries may be extended if the channel has to wait to become
active.

The channel tries to connect long retry count number of times at this long
interval, after trying the short retry count number of times at the short retry
interval.

This is valid only for channel types of sender, cluster-sender, server, and
cluster-receiver. It is also valid for requester channels on OS/390 if you are using
CICS. It may be set from zero through 999 999. On 0S/390 using CICS, it may
be set from zero through 999.

LU 6.2 mode name (MODENAME)

This is for use with LU 6.2 connections (0S/2, Tandem NSK, and OS/390 only). It
gives extra definition for the session characteristics of the connection when a
communication session allocation is performed. It is not valid for receiver or
server-connection channels.

The name must be one to eight alphanumeric characters long.
On Tandem NSK, this should be set to the SNA mode name.

The name can also be nonblank for client connection channels to be used with
0S/2 Warp.

On other platforms, if specified this should be set to the SNA mode name unless
the CONNAME contains a side-object name, in which case it should be set to
blanks. The actual name is then taken from the CPI-C Communications Side
Object, or APPC side information data set.

LU 6.2 transaction program name (TPNAME)
This is for OS/2, Tandem NSK, VSE/ESA, and OS/390 only. It is the name, or
generic name, of the transaction program (MCA) to be run at the far end of the link.
This name may be required by sender channels and requester channels, but is
optional for server channels except on OS/390 using CICS where it is required in
the channel definition, but is ignored unless the server is initiating the conversation.

On platforms other then Tandem NSK, the name can be up to 64 characters long.

See Chapter 19, “Setting up communication in Tandem NSK” on page for
more information about that platform.

94 MQSeries Intercommunication

Maximum message length (MAXMSGL)

If the remote system is MQSeries for OS/390 using CICS, the transaction is:

¢ CKRC when you are defining a sender channel, or a server channel that acts
as a sender

¢ CKSV when you are defining a requester

e CKRC when you are defining a sender for Call_back
On other platforms, this should be set to the SNA transaction program name,
unless the CONNAME contains a side-object name in which case it should be set

to blanks. The actual name is taken instead from the CPI-C Communications Side
Object, or the APPC side information data set.

This information is set in a different way on other platforms; see the section in this
book about setting up communication for your platform.

Maximum message length (MAXMSGL)

Specifies the maximum length of a message that can be transmitted on the
channel.

On AlX, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and VSE/ESA, specify a
value greater than or equal to zero, and less than or equal to the maximum
message length for the queue manager. See the MAXMSGL parameter of the
“ALTER QMGR” command in the MQSeries Command Reference book for more
information. On other platforms, specify a value greater than or equal to zero, and
less than or equal to 4 194 304 bytes.

Because various implementations of MQSeries systems exist on different platforms,
the size available for message processing may be limited in some applications.
This number must reflect a size that your system can handle without stress. When
a channel starts up, the lower of the two numbers at each end of the channel is
taken.

Notes:

1. If splitting of messages is not supported at either end of a channel, the
maximum message size cannot be greater than the negotiated maximum
transmission size.

2. The IBM MQSeries products that this edition of the book applies to all support
message splitting. Other MQSeries products do not support message splitting.

3. For a comparison of the functions available, including the different maximum
message lengths available see “MQSeries product functional comparison” in
the MQSeries Planning Guide and Appendix |, “MQSeries platforms - functional
comparisons” in the MQSeries Application Programming Guide.

4. You may use a maximum message size of 0 which will be taken to mean that
the size is to be set to the local queue manager maximum value.

Chapter 6. Channel attributes 95

Maximum transmission size ¢ MCA user identifier (MCAUSER)

Maximum transmission size
If you are using CICS for distributed queuing on OS/390, you can specify the
maximum transmission size, in bytes, that your channel is allowed to use when
transmitting a message, or part of a message. When a channel starts up, this
value is negotiated between the sending and receiving channels and the lower of
the two values is agreed. The maximum size is 32 000 bytes on TCP/IP, but the
maximum usable size is 32 000 bytes less the message descriptor. On VSE/ESA,
the maximum size is 64 000 bytes on SNA.

Use this facility to ensure that system resources are not exceeded by your
channels. Set this value in conjunction with the maximum message size,
remembering to allow for message descriptors. An error situation may be created if
the message size is allowed to exceed the transmission size, and message splitting
is not supported.

Notes:

1. If channel startup negotiation results in a size less than the minimum required
for the local channel program, no messages can be transferred.

2. The IBM MQSeries products that this edition of the book applies to all support
message splitting. Other MQSeries products do not support message splitting.

Message channel agent name (MCANAME)

This attribute is reserved and should not be used.

Message channel agent type (MCATYPE)

For MQSeries for OS/2, Windows NT, AlX, HP-UX, Sun Solaris, and SINIX and
DC/OSx, the MCA type may be specified as a ‘process’ or a ‘thread’. If ‘process’ is
specified, the MCA runs as a separate process. If ‘thread’ is specified, the MCA
runs as a separate thread.

This attribute is used when the channel is started to determine how the channel is
run. If ‘thread’ is specified then the channel initiator should be running.

This parameter is valid for channel types of sender, cluster-sender (on V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT only), server,
requester, or cluster-receiver.

Message channel agent user identifier (MCAUSER)

This is not valid for OS/390 using CICS,; it is not valid for channels of
client-connection type.

This attribute is the user identifier (a string) to be used by the MCA for authorization
to access MQSeries resources, including (if PUT authority is DEF) authorization to
put the message to the destination queue for receiver or requester channels.

On MQSeries for Windows NT, the user identifier may be domain-qualified by using
the format, user@domain, where the domain must be either the Windows NT domain
of the local system or a trusted domain.

If this attribute is blank, the MCA uses its default user identifier.

96 MQSeries Intercommunication

Message exit name (MSGEXIT) e Message retry count (MRRTY)

Message exit name (MSGEXIT)

Specifies the name of the user exit program to be run by the channel message exit.
In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1 this can be a list of names of programs that are
to be run in succession. Leave blank, if no channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for
“Receive exit name (RCVEXIT)” on page

The message exit is not supported on client-connection or server-connection
channels.

Message exit user data (MSGDATA)

Specifies user data that is passed to the channel message exits.

In V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4AR2M1, you can run a sequence of message exits.
The limitations on the user data length and an example of how to specify
MSGDATA for more than one exit are as shown for RCVDATA. See “Receive exit
user data (RCVDATA)” on page [101].

On other platforms the maximum length of the string is 32 characters.

Message-retry exit name (MREXIT)

Specifies the name of the user exit program to be run by the message-retry user
exit. Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for
“Receive exit name (RCVEXIT)” on page

This parameter is only valid for receiver, cluster-receiver, and requester channels.
It is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message-retry exit user data (MRDATA)

This is passed to the channel message-retry exit when it is called.

This parameter is only valid for receiver, cluster-receiver, and requester channels.
It is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message retry count (MRRTY)
This is the number of times the channel will retry before it decides it cannot deliver
the message.

This attribute controls the action of the MCA only if the message-retry exit name is
blank. If the exit name is not blank, the value of MRRTY is passed to the exit for
the exit's use, but the number of retries performed (if any) is controlled by the exit,
and not by this attribute.

Chapter 6. Channel attributes 97

Message retry interval (MRTMR) ¢ Nonpersistent message speed (NPMSPEED)

The value must be in the range 0 to 999 999 999. A value of zero means that no
retries will be performed.

This parameter is only valid for receiver, cluster-receiver, and requester channels.
It is not supported on MQSeries for OS/390 or MQSeries for Windows.

Message retry interval (MRTMR)

This is the minimum interval of time that must pass before the channel can retry the
MQPUT operation. This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is
blank. If the exit name is not blank, the value of MRTMR is passed to the exit for
the exit’'s use, but the retry interval is controlled by the exit, and not by this
attribute.

The value must be in the range 0 to 999 999 999. A value of zero means that the
retry will be performed as soon as possible (provided that the value of MRRTY is
greater than zero).

This parameter is only valid for receiver, cluster-receiver, and requester channels.
It is not supported on MQSeries for OS/390 or MQSeries for Windows.

Network-connection priority (NETPRTY)
The priority for the network connection. Distributed queuing will choose the path
with the highest priority if there are multiple paths available. The value must be in
the range O through 9; O is the lowest priority.

This parameter is valid only for cluster-receiver channels.

This parameter is valid only on AlX, HP-UX, OS/2 Warp, OS/390 without CICS,
Sun Solaris, and Windows NT.

Nonpersistent message speed (NPMSPEED)

For V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
MQSeries for 0S/390 without CICS, MQSeries for Windows V2.1, and MQSeries
for AS/400 VAR2M1, you can specify the speed at which nonpersistent messages
are to be sent. You can specify either ‘normal’ or ‘fast’. The default is ‘fast’, which
means that nonpersistent messages on a channel need not wait for a syncpoint
before being made available for retrieval. The advantage of this is that
nonpersistent messages become available for retrieval far more quickly. The
disadvantage is that because they do not wait for a syncpoint, messages may be
lost if there is a transmission failure or if the channel stops when the messages are
in transit. See “Fast, nonpersistent messages” on page

This attribute is valid for sender, cluster-sender, server, receiver, cluster-receiver,
and requester channels.

98 MQSeries Intercommunication

Password (PASSWORD) e PUT authority (PUTAUT)

Password (PASSWORD)

You can specify a password of maximum length 12 characters, although only the
first 10 characters are used.

The password may be used by the MCA when attempting to initiate a secure LU
6.2 session with a remote MCA. It is valid for channel types of sender, server,
requester, or client-connection.

This does not apply to MQSeries for OS/390 except for client-connection channels,
and does not apply to MQSeries for Windows.

PUT authority (PUTAUT)

Use this field to choose the type of security processing to be carried out by the
MCA when executing 1) an MQPUT command to the destination queue (for
message channels) ,or 2) an MQI call (for MQI channels). (PUT security is not
supported on MQSeries for Windows.)

You can choose one of the following:

Process security, also called default authority (DEF)
Default user ID is used.

On 0S/390, this might involve using both the user ID received from the
network and that derived from MCAUSER.

On other platforms, with Process security, you choose to have the queue
security based on the user ID that the process is running under. The user
ID is that of the process, or user, running the MCA at the sending end of
the message channel.

The queues are opened with this user ID, and the open option
MQOO_SET ALL_CONTEXT.

Context security (CTX)
Alternate user ID is used from the context information associated with a
message.

On 0S/390, this may involve also using either the user ID received from
the network, or the user ID derived from MCAUSER, or both.

The UserIdentifier in the message descriptor is moved into the
AlternatelUserlId field in the object descriptor. The queue is opened with
the open options MQOO_SET_ALL_CONTEXT and
MQOO_ALTERNATE_USER_AUTHORITY.

Only Message Channel Agent security (ONLYMCA)
This is supported on OS/390 only and is the same as process security but
any user ID received from the network is not used.

Alternate Message Channel Agent security (ALTMCA)
This is supported on OS/390 only and is the same as context security but
any user ID received from the network is not used.

This parameter is only valid for receiver, requester, cluster-receiver, and

server-connection channels. Context security and alternate message channel
agent security are not supported on server-connection channels.

Chapter 6. Channel attributes 99

Queue manager name (QMNAME) e Receive exit name (RCVEXIT)

Further details about context fields and open options can be found in “Using the
options of the MQOPEN call” in the MQSeries Application Programming Guide.
Further details about security can be found in Chapter 10, “Protecting MQSeries
objects” in the MQSeries System Administration book for V5.1 of MQSeries for AlX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, the MQSeries for Windows
User’s Guide, or in the MQSeries System Management Guide or MQSeries
Administration Guide for your platform.

Queue manager name (QMNAME)

This applies to a channel of client-connection type only. It is the name of the
gueue manager or queue manager group to which an MQSeries client application
can request connection.

Receive exit name (RCVEXIT)

Specifies the name of the user exit program to be run by the channel receive user
exit. In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows
NT, and MQSeries for AS/400 V4R2ML1 this can be a list of names of programs that
are to be run in succession. Leave blank, if no channel receive user exit is in
effect.

The format and maximum length of this attribute depend on the platform:

e On 0OS/390 it is a load module name, maximum length 8 characters, except for
client-connection channels where the maximum length is 128 characters.

e On 0S/400 it is of the form:
progname libname

where progname occupies the first 10 characters, and libname the second 10
characters (both blank-padded to the right if necessary). The maximum length
of the string is 20 characters.

e On OS/2 and Windows it is of the form:
dllname (functionname)

where dllname is specified without the suffix “.DLL”. The maximum length of
the string is 40 characters.

e On UNIX systems, Digital OpenVMS, and Tandem NSK it is of the form:
Libraryname (functionname)

The maximum length of the string is 40 characters.

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4R2M1 you can specify a list of receive, send, or
message exit program names. The names should be separated by a comma, a
space, or both. For example:

RCVEXIT (exitl exit2)
MSGEXIT(exitl,exit2)
SENDEXIT(exitl, exit2)

100 MQSeries Intercommunication

Receive exit user data (RCVDATA) e Send exit name (SENDEXIT)

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
the total length of the string of exit names and strings of user data for a particular
type of exit is limited to 500 characters. In MQSeries for AS/400 you can list up to
10 exit names.

Receive exit user data (RCVDATA)

Specifies user data that is passed to the receive exit.

In V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 VAR2M1, you can run a sequence of receive exits. The
string of user data for a series of exits should be separated by a comma, spaces,
or both. For example:

RCVDATA(exitl data exit2 data)
MSGDATA(exitl data,exit2_data)
SENDDATA(exitl data, exit2_data)

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
the length of the string of exit names and strings of user data is limited to 500
characters. In MQSeries for AS/400 you can specify up to 10 exit names and the
length of user data for each is limited to 32 characters.

On other platforms the maximum length of the string is 32 characters.

Security exit name (SCYEXIT)

Specifies the name of the exit program to be run by the channel security exit.
Leave blank if no channel security exit is in effect.

The format and maximum length of the name depend on the platform, as for
“Receive exit name (RCVEXIT)” on page

Security exit user data (SCYDATA)

Specifies user data that is passed to the security exit. The maximum length is 32
characters.

Send exit name (SENDEXIT)
Specifies the name of the exit program to be run by the channel send exit. In V5.1
of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, and
MQSeries for AS/400 V4R2M1 this can be a list of names of programs that are to
be run in sequence. Leave blank if no channel send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for
“Receive exit name (RCVEXIT)” on page

Chapter 6. Channel attributes 101

Send exit user data (SENDDATA) e Short retry count (SHORTRTY)

Send exit user data (SENDDATA)

Specifies user data that is passed to the send exit.

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
and MQSeries for AS/400 V4AR2M1, you can run a sequence of send exits. The
limitations on the user data length and an example of how to specify SENDDATA
for more than one exit, are as shown for RCVDATA. See “Receive exit user data
(RCVDATA)” on page [101]

On other platforms the maximum length of the string is 32 characters.

Sequence number wrap (SEQWRAP)

This is the highest number the message sequence number reaches before it
restarts at 1. In OS/390 using CICS, this number is of interest only when
sequential delivery of messages is selected. It is not valid for channel types of
client-connection or server-connection.

The value of the number should be high enough to avoid a number being reissued
while it is still being used by an earlier message. The two ends of a channel must
have the same sequence number wrap value when a channel starts up; otherwise,
an error occurs.

The value may be set from 100 through 999 999 999 (1 through 9 999 999 for
0S/390 using CICS).

Sequential delivery

This applies only to OS/390 using CICS. Set this to ‘YES’ when using sequential
numbering of messages. If one side of the channel requests this facility, it must be
accepted by the other side.

There could be a performance penalty associated with the use of this option.

For other platforms, the MCA always uses message sequence numbering.

Short retry count (SHORTRTY)

Specify the maximum number of times that the channel is to try allocating a session
to its partner. If the initial allocation attempt fails, the short retry count is
decremented and the channel retries the remaining number of times with an
interval, defined in the short retry interval attribute, between each attempt. If it
still fails, it retries long retry count number of times with an interval of long retry
interval between each attempt. If it is still unsuccessful, the channel terminates.

(Retry is not attempted if the cause of failure is such that a retry is not likely to be
successful.)

If the channel initiator or queue manager stops while the channel is retrying, the

short retry count and long retry count are reset when the channel initiator or queue
manager is restarted.

102 MQSeries Intercommunication

Short retry interval (SHORTTMR) e Transmission queue name (XMITQ)

The short retry count attribute is valid only for channel types of sender,
cluster-sender, server, and cluster-receiver. It is also valid for requester channels
on OS/390 if you are using CICS. It may be set from zero through 999 999 999 (1
through 999 for OS/390 using CICS, and the long and short retries have the same
count).

Note: For MQSeries for OS/2 Warp, 0S/400, UNIX systems, and Windows NT, in
order for retry to be attempted a channel initiator must be running. The channel
initiator must be monitoring the initiation queue specified in the transmission queue
that the channel in using.

Short retry interval (SHORTTMR)

Specify the approximate interval in seconds that the channel is to wait before
retrying to establish connection, during the short retry mode.

The interval between retries may be extended if the channel has to wait to become
active.

This attribute is valid only for channel types of sender, cluster-sender, server, and
cluster-receiver. It is also valid for requester channels on OS/390 if you are using
CICS. It may be set from zero through 999 999. (0 through 999 for OS/390 using
CICS).

Target system identifier

This is for OS/390 using CICS only. It identifies the particular CICS system where
the sending or requesting channel transaction is to run.

The default is blank, which means the CICS system where you are logged on. The
name may be one through four alphanumeric characters.

Transaction identifier
This only applies to OS/390 using CICS.

The name of the local CICS transaction that you want to start. If you do not specify
a value, the name of the supplied transaction for the channel type is used.

Transmission queue name (XMITQ)
The name of the transmission queue from which messages are retrieved. This is
required for channels of type sender or server, it is not valid for other channel
types.

Provide the name of the transmission queue to be associated with this sender or
server channel, that corresponds to the queue manager at the far side of the
channel. The transmission queue may be given the same name as the queue
manager at the remote end.

Chapter 6. Channel attributes 103

Transport type Transmission protocol (TRPTYPE) e User ID (USERID)

Transport type (TRPTYPE)
This does not apply to OS/390 using CICS.

The possible values are:

LU62 LU 6.2

TCP TCP/IP (1)
UDP UDP (2)
NETBIOS NetBIOS (3)
SPX SPX (3)
Notes:

1. MQSeries for Windows Version 2.1 supports TCP only.
2. UDP is supported on MQSeries for AIX and MQSeries for Windows Version 2.0 only.

3. For use on 0S/2 and Windows NT. Can also be used on OS/390 for defining
client-connection channels for use on OS/2 and Windows NT.

User ID (USERID)

On V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
you can specify a task user identifier of 20 characters. On other platforms, you can
specify a task user identifier of maximum length 12 characters, although only the
first 10 characters are used.

The user ID may be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA. It is valid for channel types of sender, server,
requester, or client-connection.

This does not apply to MQSeries for OS/390 except for client-connection channels
and does not apply to MQSeries for Windows.

| End of Product-sensitive programming interface

104 MQSeries Intercommunication

Example configurations

Chapter 7. Example configuration chapters in this book

Throughout the following parts of the book, there is a series of chapters containing
examples of how to configure the various platforms to communicate with each
other. These chapters describe tasks performed to establish a working MQSeries
network. The tasks were to establish MQSeries sender and receiver channels to
enable bi-directional message flow between the platforms over all supported
protocols.

Figure 32 is a conceptual representation of a single channel and the MQSeries
objects associated with it.

MQPUT A MQGET

Applt Appl2
Sender
HH l channel ‘

Remote
queue [|

i) L

Transmission Local

queue queue

Queue manager 1 Queue manager 2

Figure 32. MQSeries channel to be set up in the example configuration chapters in this
book

This is a simple example, intended to introduce only the basic elements of the
MQSeries network. It does not demonstrate the use of triggering which is
described in “Triggering channels” on page

The objects in this network are:

e A remote queue

e A transmission queue
e A local queue

e A sender channel

Appll and Appl2 are both application programs; Appll is putting messages and
Appl2 is receiving them.

Appll puts messages to a remote queue. The definition for this remote queue
specifies the name of a target queue manager, a local queue on that queue
manager, and a transmission queue on this the local queue manager.

When the queue manager receives the request from Appll to put a message to the
remote queue, it looks at the queue definition and sees that the destination is
remote. It therefore puts the message straight onto the transmission queue
specified in the definition. The message remains on the transmission queue until
the channel becomes available, which may happen immediately.

© Copyright IBM Corp. 1993,1999 105

Network infrastructure ¢ Communications software

A sender channel has in its definition a reference to one, and one only,
transmission queue. When a channel is started, and at other times during its
normal operation, it will look at this transmission queue and send any messages on
it to the target system. The message has in its transmission header details of the
destination queue and queue manager.

The intercommunication examples in the following chapters describe in detail the
creation of each of the objects described above, for a variety of platform
combinations.

On the target queue manager, definitions are required for the local queue and the
receiver side of the channel. These objects operate independently of each other
and so can be created in any sequence.

On the local queue manager, definitions are required for the remote queue, the
transmission queue, and the sender side of the channel. Since both the remote
gueue definition and the channel definition refer to the transmission queue name, it
is advisable to create the transmission queue first.

Network infrastructure

The configuration examples assume that all the systems are connected to a Token
Ring network with the exception of OS/390 and VSE/ESA, which communicate via

a 3745 (or equivalent) that is attached to the Token Ring, and Sun Solaris, which is
on an adjacent local area network (LAN) also attached to the 3745.

It is also assumed that, for SNA, all the required definitions in VTAM™ and network
control program (NCP) are in place and activated for the LAN-attached platforms to
communicate over the wide area network (WAN).

Similarly, for TCP, it is assumed that nameserver function is available, either via a
domain nameserver or via locally held tables (for example a host file).

Communications software
Working configurations are given for the following network software products:
¢ SNA

— Communications Manager/2 Version 1.11

— Communications Server for Windows NT, Version 5.0
— AIX SNA Server, V5.0

— Hewlett-Packard SNAplus2

— AT&T GIS SNA Services Version 2.06 or later

— 0S/400 Version 4 Release 2

— SunLink Peer-to-Peer Version 9.1

— 0S/390 Version 2 Release 4

— CICS/VSE® Version 2 Release 1

106 MQSeries Intercommunication

Using communication examples

.« TCP

— TCP for OS/2 Version 2

— Microsoft Windows NT Version 4 or later
— AIX Version 4 Release 1.4

— HP-UX Version 10.2 or later

— AT&T GIS UNIX Release 2.03.01

— Sun Solaris Release 2.4

— 0S/400 Version 4 Release 2

— TCP for OS/390

* NetBIOS
e SPX
 UDP

How to use the communication examples

The information in the example-configuration chapters describes the tasks that were
carried out on a single platform, to set up communication to another of the
platforms, and then describes the MQSeries tasks to establish a working channel to
that platform. Wherever possible, the intention is to make the information as
generic as possible. Thus, to connect any two MQSeries queue managers on
different platforms, you should need to refer to only the relevant two chapters. Any
deviations or special cases are highlighted as such. Of course, you can also
connect two queue managers running on the same platform (on different machines
or on the same machine). In this case, all the information can be derived from the
one chapter.

The examples only cover how to set up communications where clustering is not
being used. For information about setting up communications while using
clustering, see “Establishing communication in a cluster” in the MQSeries Queue
Manager Clusters book. The communications’ configuration values given here still

apply.

Each chapter contains a worksheet in which you can find the parameters used in
the example configurations. There is a short description of each parameter and
some guidance on where to find the equivalent values in your system. When you
have a set of values of your own, record these in the spaces on the worksheet. As
you proceed through the chapter, you will find cross-references to these values as
you need them.

Notes:

1. Example queue manager names usually reflect the platform that the queue
manager runs on, but MVS is used for both 0OS/390 and MVS/ESA, which are
essentially the same.

2. The sequence number wrap value for sender definitions defaults to
999999999 for Version 2 MQSeries products but to 999999 for Version 1
products and MQSeries for VSE/ESA.

3. For connections to MQSeries for OS/390 the examples, in general, cover only
connection without using CICS. See Chapter 26, “Preparing MQSeries for
0S/390 when using CICS” on page for information about connecting using
CICs.

Chapter 7. Example configuration chapters in this book 107

Using communication examples

IT responsibilities
Because the IT infrastructure can vary greatly between organizations, it is difficult to
indicate who, within an organization, controls and maintains the information
required to complete each parameter value. To understand the terminology used in
the following chapters, consider the following guidelines as a starting point.

e System administrator is used to describe the person (or group of people) who
installs and configures the software for a specific platform.

* Network administrator is used to describe the person who controls LAN
connectivity, LAN address assignments, network naming conventions, and so
on. This person may be in a separate group or may be part of the system
administration group.

In most OS/390 installations, there is a group responsible for updating the
ACF/NTAM®, ACF/NCP, and TCP/IP software to support the network
configuration. The people in this group should be the main source of
information needed when connecting any MQSeries platform to MQSeries for
0S/390. They may also influence or mandate network naming conventions on
LANs and you should verify their span of control before creating your
definitions.

» A specific type of administrator, for example CICS administrator is indicated in
cases where we can more clearly describe the responsibilities of the person.

The example-configuration chapters do not attempt to indicate who is responsible
for and able to set each parameter. In general, several different people may be
involved.

108 MQSeries Intercommunication

Part 3. DQM in MQSeries for OS/2 Warp, Windows NT, Digital
OpenVMS, Tandem NSK, and UNIX systems

This part of the book describes the MQSeries distributed queue management
function for MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS, Tandem
NSK, and UNIX systems. The information given may not all apply to MQSeries for
Windows. You should refer to the MQSeries for Windows User’s Guide for
information about that product.

Chapter 8. Monitoring and controlling channels on distributed platforms

.. 115

The DQM channel control function 115
Functions available 116|
Getting started 119]
Creating objects 119]
Creating default objects [119
Creating achannel [120
Displaying a channel, 121
Displaying channel status 121
Starting a channel [122
Renaming a channel 122
Channel attributes and channel types 123
Channel functions 124
Chapter 9. Preparing MQSeries for distributed platforms 129
Transmission queues and triggering o 129
Creating a transmission queue, [129
Triggering channels 129
Channel programs 131
Other things to consider 131
Undelivered-message queue [131
QueUES INUSE 132
Multiple message channels per transmission queue 132
Security of MQSeries objectso 132
System extensions and user-exit programs [133
Running channels and listeners as trusted applications 134
What next? 135

© Copyright IBM Corp. 1993,1999 109

Chapter 10. Setting up communication for OS/2 and Windows NT .. 137

Deciding on a connection 137
Defining a TCP connection 137
Sendingend 137
Receivingon TCP [138
Defining an LU 6.2 connection [z40
Sending end for OS/2 143
Sending end for Windows NT 142
Receivingon LU 6.2 142
Defining a NetBIOS connection 143
Defining the MQSeries local NetBIOS name [124]
Establishing the queue manager NetBIOS session, command, and name limits
.. 145
Establishing the LAN adapter number [145|
Initiating the connection L [146
Target listener 146]
Defining an SPX connection 147
Sendingend 147
Receiving on SPX 148
IPX/ISPX parameters 149
Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp .. .]151
Configuration parameters for an LU 6.2 connection 151
Configuration worksheet 1152
Explanation of terms 1154
Establishing an LU 6.2 connection [156]
Defining local node characteristics 156]
Connecting to a peer system [160]
Connecting to a host system [162]
Verifying the configuration 164
What next? 165
Establishing a TCP connection [165
What Next? [166
Establishing a NetBIOS connection 1167
Establishing an SPX connection 1671
IPX/SPX parameters 168
SPX addressing [168]
Using the SPX KEEPALIVE option 1169
Receiving on SPX . . . o o [169
MQSeries for OS/2 Warp configuration 170
Basic configuration 170]
Channel configuration
Running channels as processes or threads 175

110 MQSeries Intercommunication

Chapter 12. Example configuration - IBM MQSeries for Windows NT 177

Configuration parameters for an LU 6.2 connection 177
Configuration worksheet [178
Explanation of terms 181

Establishing an LU 6.2 connection [182
Configuring the local node 1182
Adding a connection [183]
Adding a partner 185
Adding a CPI-C entry 185
Configuring an invokable TP [186
What Next?, [187

Establishing a TCP connection 188
What next? 188

Establishing a NetBIOS connection [188|

Establishing an SPX connection [189
IPXISPX parameterso 189]
SPX addressing 190]
Receiving on SPX 190

MQSeries for Windows NT configuration
Default configuration,
Basic configuration 197
Channel configuration [192
Automatic startup [196
Running channels as processes or threads 1196

Chapter 13. Setting up communication in UNIX systems 199

Deciding on a connection 199]

Defining a TCP connection [200]
Sendingend 200]
Receivingon TCP 200

Defining an LU 6.2 connection 203
Sendingend 203
Receivingon LU 6.2 204

Chapter 14. Example configuration - IBM MQSeries for AIX 207,

Configuration parameters for an LU 6.2 connection [207]
Configuration worksheet 207]
Explanation of terms 211

Establishing a session using SNA Server for AIXV5 [213
Configuring your node 213}
Configuring connectivity to the network 213
Defining alocal LU 215
Defining a transaction program 215

Establishing a TCP connection [218]
What next? 218

Establishing a UDP connection, 218
What next? 218

MQSeries for AIX configuration [219
Basic configuration [1219]
Channel configuration [220]

Part 3. DQM in MQSeries for 0S/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems 111

Chapter 15. Example configuration - IBM MQSeries for HP-UX
Configuration parameters for an LU 6.2 connection
Configuration worksheet

Explanation of terms ‘
Establishing a session using HP SNAplus2 ‘
SNAplus2 configuration ‘
APPC configuration ‘

HP-UX operation
What next?
Establishing a TCP connection
What next?
MQSeries for HP-UX configuration
Basic configuration
Channel configuration

Chapter 16. Example configuration - IBM MQSeries for AT&T GIS UNIX

VEISION 2.2 . . o [243]
Configuration parameters for an LU 6.2 connection [243
Configuration worksheet 243|
Explanation of terms 246
Establishing a connection using AT&T GIS SNA Server 1247
Defining local node characteristics (248
Connecting to a parther node 249
Configuring aremote node 249
What next? [250]
Establishing a TCP connection 251
What Next? [251]
MQSeries for AT&T GIS UNIX configuration
Basic configuration 252
Channel configuration 252
Chapter 17. Example configuration - IBM MQSeries for Sun Solaris [257
Configuration parameters for an LU 6.2 connection 1257
Configuration worksheet 257
Explanation of terms
Establishing a connection using SunLink Version9.12 1262]
SunLink 9.1 base configuration 262
Configuring a PU 2.1 server 1262
Adding @ LAN CONNECHON o o o [263
Configuring a connectionto aremote PU 264]
Configuring an independent LU 0oL 265
Configuring a partner LU 265
Configuring the session mode [266
Configuring a transaction program 1267
CPI-C side information 267
What next? 267
Establishing a TCP connection [268]
What Next? . . . o 268]
MQSeries for Sun Solaris configuration [268]
Basic configuration 269]
Channel configuration 269

112 MQSeries Intercommunication

Chapter 18. Setting up communication in Digital OpenVMS systems . [273
Deciding on a connection 273
Defining a TCP connection 273
Sendingend ... 273
Receiving channels using Digital TCP/IP services (UCX) for OpenVMS . .[274
Receiving channels using Cisco MultiNet for OpenVMS 1275
Receiving channels using Attachmate PathWay for OpenvMS [276]
Receiving channels using Process Software Corporation TCPware 276
Defining an LU 6.2 connection 277,
SNA configuration 277
Specifying SNA configuration parameters to MQSeries 279
Sample MQSeries configuration
Problem solving 282
Defining a DECnet Phase IV connection [282]
Sending end [282]
Receiving on DECnet Phase IV [283]
Defining a DECnet Phase V connection 284
Chapter 19. Setting up communication in Tandem NSK 285
Deciding on a connection 285
SNA channels 285
LU 6.2 responder processes 287
TCP channels 287]
Communications examples 288|
SNAX communications exampleo 1288
ICE communications example [296]
TCP/IP communications example [299]

Chapter 20. Message channel planning example for distributed platforms

..

What the example shows
Queue manager QM1 example 1303
Queue manager QM2 example [304
Running the example 305
Expanding this example [303
Chapter 21. Example SINIX and DC/OSx configuration files 307,
Configuration file on bight o 1308
Configuration file on forties [309
Working configuration files for Pyramid DC/OSx 310}
Output of dbd command 310

Part 3. DQM in MQSeries for 0S/2 Warp, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems 113

114 MQSeries Intercommunication

Channels on distributed platforms ¢ Channel control function

Chapter 8. Monitoring and controlling channels on
distributed platforms

For DQM you need to create, monitor, and control the channels to remote queue
managers. You can use the following types of command to do this:

The MQSeries commands (MQSC)
You can use the MQSC as single commands in an MQSC session in 0OS/2,
Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems. To issue
more complicated, or multiple, commands the MQSC can be built into a file that
you then run from the command line. For full details see Chapter 1, “Using
MQSeries Commands” in the MQSeries Command Reference book. This
chapter gives some simple examples of using MQSC for distributed queuing.

Control commands
You can also issue control commands at the command line for some of these
functions. Reference material for these commands is contained in Chapter 17,
“MQSeries control commands” in the MQSeries System Administration book for
V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
or in the MQSeries System Management Guide for your platform.

Programmable command format commands
See Part 2, “Programmable Command Formats” in the MQSeries
Programmable System Management book for information about using these
commands.

Message Queue Management facility
On Tandem NSK, you can use the Message Management facility. See the
MQSeries for Tandem NonStop Kernel System Management Guide for
information about this facility.

IBM MQSeries Explorer
On Windows NT, you can use an MMC snap-in called the MQSeries Explorer.
This provides a graphical administration interface to perform administrative tasks
as an alternative to using control commands or MQSC commands.

Each queue manager has a DQM component for controlling interconnections to
compatible remote queue managers.

For a list of the functions available to you when setting up and controlling message
channels, using the two types of commands, see Table 7 on page

The DQM channel control function
The channel control function provides the interface and function for administration
and control of message channels between systems.

It consists of commands, programs, a file for the channel definitions, and a storage
area for synchronization information. The following is a brief description of the
components.

© Copyright IBM Corp. 1993,1999 115

Functions available

e The channel commands are a subset of the MQSeries Commands (MQSC).

¢ You use MQSC and the control commands to:

— Create, copy, display, change, and delete channel definitions

— Start and stop channels, ping, reset channel sequence numbers, and
resolve in-doubt messages when links cannot be re-established

— Display status information about channels

e The channel definition file (CDF), amqrfcda.dat:

— Is indexed on channel name
— Holds channel definitions

e A storage area holds sequence numbers and logical unit of work (LUW)
identifiers. These are used for channel synchronization purposes.

Functions available

Table 7 shows the full list of MQSeries functions that you may need when setting
up and controlling channels. The channel functions are explained in this chapter.

For more details of the control commands that you issue at the command line, see
Chapter 17, “MQSeries control commands” in the MQSeries System Administration
book for V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp, Sun Solaris, and Windows

NT, or the MQSeries System Management Guide for your platform.

The MQSC commands are fully described in Chapter 2, “The MQSeries
commands” in the MQSeries Command Reference book.

Table 7 (Page 1 of 3). Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX

systems
Function Control MQSC MQSeries MQSeries
commands Explorer Service
equivalent? shap-in
equivalent?
Queue manager functions
Change queue manager ALTER QMGR Yes No
Create queue manager crtmgm Yes Yes
Delete queue manager ditmgm Yes Yes
Display queue manager DISPLAY Yes No
QMGR
End queue manager endmgm Yes Yes
Ping queue manager PING QMGR No No
Start queue manager strmgm Yes Yes
Add a queue manager to Windows No Yes
NT Service Control Manager
Command server functions
Display command server dspmqcsv No Yes
End command server endmaqcsv No Yes

116 MQsSeries Intercommunication

Functions available

Table 7 (Page 2 of 3). Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
systems

Function Control MQSC MQSeries MQSeries
commands Explorer Service
equivalent? shap-in
equivalent?
Start command server strmgcsv No Yes

Queue functions

Change queue ALTER Yes No
QALIAS
ALTER
QLOCAL
ALTER
QMODEL
ALTER
QREMOTE

Clear queue CLEAR Yes No
QLOCAL
CLEAR
QUEUE

Create queue DEFINE Yes No
QALIAS
DEFINE
QLOCAL
DEFINE
QMODEL
DEFINE
QREMOTE

Delete queue DELETE Yes No
QALIAS
DELETE
QLOCAL
DELETE
QMODEL
DELETE
QREMOTE

Display queue DISPLAY Yes No
QUEUE

Process functions

Change process ALTER Yes No
PROCESS

Create process DEFINE Yes No
PROCESS

Delete process DELETE Yes No
PROCESS

Display process DISPLAY Yes No
PROCESS

Channel functions

Change channel ALTER Yes No
CHANNEL

Chapter 8. Monitoring and controlling channels on distributed platforms 117

Functions available

Table 7 (Page 3 of 3). Functions available in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX

systems
Function Control MQSC MQSeries MQSeries
commands Explorer Service
equivalent? shap-in
equivalent?
Create channel DEFINE Yes No
CHANNEL
Delete channel DELETE Yes No
CHANNEL
Display channel DISPLAY Yes No
CHANNEL
Display channel status DISPLAY Yes No
CHSTATUS
End channel STOP Yes Yes
CHANNEL
Ping channel PING Yes No
CHANNEL
Reset channel RESET Yes No
CHANNEL
Resolve channel RESOLVE Yes No
CHANNEL
Run channel runmgchl START Yes Yes
CHANNEL
Run channel initiator runmgqchi START CHINIT No Yes
Run listener runmglsr (not START No Yes
AT&T GIS LISTENER
UNIX)
End listener endmglsr No Yes
(0s/2,
Windows NT,
AIX, HP-UX,
Sun Solaris,
and SINIX and

DC/OSx only)

118 MQsSeries Intercommunication

Getting started

Getting started

Use the MQSeries commands (MQSC) or the MQSeries Explorer on Windows NT
to:

1. Define message channels and associated objects
2. Monitor and control message channels

The objects you may need to define are:

e Transmission queues

¢ Remote queue definitions

¢ Queue manager alias definitions
e Reply-to queue alias definitions

* Reply-to local queues

e Processes for triggering (MCAS)
e Message channel definitions

Channels must be completely defined, and their associated objects must exist and
be available for use, before a channel can be started. This chapter shows you how
to do this.

In addition, the particular communication link for each channel must be defined and
available before a channel can be run. For a description of how LU 6.2, TCP/IP,
NetBIOS, SPX, and DECnet links are defined, see the particular communication
guide for your installation. See also the example configuration chapters in this
book.

Creating objects
Use MQSC to create the queue and alias objects: transmission queues, remote
gueue definitions, queue manager alias definitions, reply-to queue alias definitions,
and reply-to local queues.

Also create the definitions of processes for triggering (MCAS) in a similar way.

For an example showing how to create all the required objects see Chapter 20,
“Message channel planning example for distributed platforms” on page [301.

Creating default objects
In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT,
default objects are created automatically when a queue manager is created. These
objects are queues, channels, a process definition, and administration queues.
They correspond to the objects that are created when you run the amgscoma.tst
sample command file on earlier releases of these products and on other MQSeries
products.

Chapter 8. Monitoring and controlling channels on distributed platforms 119

Getting started

How are default objects created?
When you use the CRTMQM command to create a queue manager, the command
also initiates a program to create a set of default objects.

1. Each default object is created in turn. The program keeps a count of how
many objects are successfully defined, how many already existed and were
replaced, and how many unsuccessful attempts there were.

2. The program displays the results to you and if any errors occurred, directs you
to the appropriate error log for details.

When the program has finished running, you can use the STRMQM command to
start the queue manager.

See Chapter 17, “MQSeries control commands” on page in the MQSeries
System Administration book for information about the CRTMQM and STRMQM
commands.

Changing the default objects

Once the default objects have been created, you can replace them at any time by
running the STRMQM command with the -c option. When you specify the -c
option, the queue manager is started temporarily while the objects are created and
is then shut down again. You must use the STRMQM command again, without the
-c option, if you want to start the queue manager.

If you wish to make any changes to the default objects, you can create your own
version of the old amqgscoma.tst file and edit it.

Creating a channel

To create a new channel you have to create two channel definitions, one at each
end of the connection. You create the first channel definition at the first queue
manager. Then you create the second channel definition at the second queue
manager, on the other end of the link.

Both ends must be defined using the same channel name. The two ends must
have compatible channel types, for example: Sender and Receiver.

To create a channel definition for one end of the link use the MQSC command
DEFINE CHANNEL. Include the name of the channel, the channel type for this end
of the connection, a description (if required), the name of the transmission queue (if
required), and the transmission protocol. Also include any other attributes that you
want to be different from the system default values for the required channel type,
using the information you have gathered previously.

You are provided with help in deciding on the values of the channel attributes in
Chapter 6, “Channel attributes” on page

Note: You are very strongly recommended to name all the channels in your
network uniquely. Including the source and target queue manager names in the
channel name is a good way to do this.

120 MQSeries Intercommunication

Getting started

Create channel example

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(SDR) +
DESCR('Sender channel to QM2') +

CONNAME (QM2) TRPTYPE(TCP) XMITQ(QM2) CONVERT(YES)

In all the examples of MQSC the command is shown as it would appear in a file of
commands, and as it would be typed in OS/2, Windows NT, UNIX systems, Digital
OpenVMS, or Tandem NSK. The two methods look identical, except that to issue a
command interactively, you must first start an MQSC session. Type runmgsc, for
the default queue manager, or runmgsc gmname where QMNAME is the name of the
required queue manager. Then type any number of commands, as shown in the
examples.

For portability, you should restrict the line length of your commands to 72
characters. Use a concatenation character as shown to continue over more than
one line. On Tandem NSK use Ctrl-y to end the input at the command line, or
enter exit or quit. On OS/2, Windows NT, or Digital OpenVMS use Ctrl-z. On
UNIX systems, use Ctrl-d. Alternatively, on V5.1 of MQSeries for AIX, HP-UX,
0OS/2 Warp, Sun Solaris, and Windows NT, use the end command.

Displaying a channel
Use the MQSC command DISPLAY CHANNEL, specifying the channel name, the
channel type (optional), and the attributes you want to see, or specifying that all
attributes are to be displayed. In V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT the ALL parameter of the DISPLAY CHANNEL
command is assumed by default if no specific attributes are requested and the
channel name specified is not generic.

The attributes are described in Chapter 6, “Channel attributes” on page

Display channel examples
DISPLAY CHANNEL(QM1.T0.QM2) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.*) TRPTYPE,CONVERT
DISPLAY CHANNEL(*) TRPTYPE,CONVERT

DISPLAY CHANNEL(QM1.TO.QMR34) ALL

Displaying channel status

Use the MQSC command DISPLAY CHSTATUS, specifying the channel name and
whether you want the current status of channels or the status of saved information.

Display channel status examples
DISPLAY CHSTATUS(*) CURRENT

DISPLAY CHSTATUS(QML.TO.*) SAVED

Note that the saved status does not apply until at least one batch of messages has
been transmitted on the channel. In V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp,
Sun Solaris, and Windows NT status is also saved when a channel is stopped
(using the STOP CHL command) and when the queue manager is ended.

Chapter 8. Monitoring and controlling channels on distributed platforms 121

Getting started

Starting a channel

For applications to be able to exchange messages you must start a listener
program for inbound connections (or, in the case of UNIX systems, create a listener
attachment). In OS/2, Windows NT, and Tandem NSK, use the runmglsr command
to start the MQSeries listener process. Any inbound requests for channel
attachment start MCAs as threads of this listener process. In Digital OpenVMS,
each receiver or server channel requires a listener process that then starts a
channel process.

runmglsr -t tcp -m QM2

For outbound connections you must start the channel in one of the following three
ways:

1. Use the MQSC command START CHANNEL, specifying the channel name, to
start the channel as a process or a thread, depending on the MCATYPE
parameter. (If channels are started as threads, they are threads of a channel
initiator, which must have been started previously using the runmqchi
command.)

START CHANNEL(QM1.70.QM2)
2. Use the control command runmgchl to start the channel as a process.
runmgchl -c QM1.70.QM2 -m QM1

3. Use the channel initiator to trigger the channel.

Renaming a channel

To rename a message channel, use MQSC to carry out the following steps:
1. Use STOP CHANNEL to stop the channel.

2. Use DEFINE CHANNEL to create a duplicate channel definition with the new
name.

3. Use DISPLAY CHANNEL to check that it has been created correctly.
4. Use DELETE CHANNEL to delete the original channel definition.
If you decide to rename a message channel, remember that a channel has two

channel definitions, one at each end. Make sure you rename the channel at both
ends at the same time.

122 MQSeries Intercommunication

Channel attributes and types

Channel attributes and channel types

The channel attributes that are required for each type of channel are shown in
Table 8. The channel attributes are described in detail in Chapter 6, “Channel

attributes” on page

Table 8 (Page 1 of 2). Channel attributes for the channel types in OS/2, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems

Attribute field SDR SVR RCVR RQSTR CLNT- SVR- CLUS- CLUS-
CONN CONN SDR RCVR

Batch interval (0] (0] (0] (0]

Batch size v v v v v v

Channel name v v v v v v v v

Cluster (0] (0]

Cluster namelist (0] O

Channel type v v v v v v v v

Connection name v 0 v v v

Convert message v v v v

Description (0] (0] (0] (0] (0] (0] (0] (0]

Disconnect interval v v v v

Heartbeat interval (0] (0] (0] (0] (0] (0] (0] O

Long retry count v v v v

Long retry interval v v v v

LU 6.2 Transaction (0] (0] (0] (0] (0] (0]

program name

Maximum message v v v v v v

length

Message channel v v v v v v

agent type

Message channel (0] (0] (0] (0] (0] (0] (0] (0]

agent user

Message exit name (0] (0] (0] (0] (0] o

Message exit user (0] (0] (0] (0] (0] (0]

data

Message-retry exit (0] (0] (0] (0]

name

Message-retry exit (0] (0] (0] O

user data

Message retry count (0] (0] (0] (0]

Message retry (0] (0] (0] (0]

interval

Mode name (0] (0] (0] (0] (0] (0]

Network-connection (0] (0]

priority

Nonpersistent (0] (0] (0] (0] (0] o

message speed

Password (0] (0] (0] (0] (0]

PUT authority v v v

Queue manager (0]

name

Chapter 8. Monitoring and controlling channels on distributed platforms 123

Channel functions

Table 8 (Page 2 of 2). Channel attributes for the channel types in OS/2, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems

Attribute field SDR SVR RCVR RQSTR CLNT- SVR- CLUS- CLUS-
CONN CONN SDR RCVR

Receive exit 0] 0] 0] 0] 0] 0] 0] 0]

Receive exit user O O O O O O O O

data

Security exit (0] (0] (0] (0] (0] (0] (0] (0]

Security exit user (0] (0] (0] (0] (0] (0] (0] (0]

data

Send exit 0] 0] 0] 0] 0] 0] @)

Send exit user data O O O O

Sequence number v v v v v v

wrap

Short retry interval v v v v

Short retry count v v v v

Transport type v)) v v v

Transmission queue v v

User ID (0] (0] (0] (0] (0]

Note: v = Required attribute, O = Optional attribute

Channel functions

The channel functions available are shown in Table 7 on page Here some
more detail is given about the channel functions.

Create

You can create a new channel definition using the default values supplied by
MQSeries, specifying the name of the channel, the type of channel you are
creating, the communication method to be used, the transmission queue name and
the connection name.

The channel name must be the same at both ends of the channel, and unique
within the network. However, you should restrict the characters used to those that
are valid for MQSeries object names.

Change
Use the MQSC command ALTER CHANNEL to change an existing channel
definition, except for the channel name, or channel type.

Delete
Use the MQSC command DELETE CHANNEL to delete a named channel.

Display
Use the MQSC command DISPLAY CHANNEL to display the current definition for
the channel.

124 MQSeries Intercommunication

Channel functions

Display Status

The MQSC command DISPLAY CHSTATUS displays the status of a channel
whether the channel is active or inactive. It applies to all message channels. It
does not apply to MQI channels other than server-connection channels on V5.1 of
MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT. See
“Displaying channel status” on page [121].

Information displayed includes:

e Channel name

e Communication connection name

* In-doubt status of channel (where appropriate)
e Last sequence number

e Transmission queue name (where appropriate)
¢ The in-doubt identifier (where appropriate)

e The last committed sequence number

e Logical unit of work identifier

e Process ID

e Thread ID (OS/2 and Windows NT only)

Ping

Use the MQSC command PING CHANNEL to exchange a fixed data message with
the remote end. This gives some confidence to the system supervisor that the link
is available and functioning.

Ping does not involve the use of transmission queues and target queues. It uses
channel definitions, the related communication link, and the network setup. It can
only be used if the channel is not currently active.

It is available from sender and server channels only. The corresponding channel is
started at the far side of the link, and performs the startup parameter negotiation.
Errors are notified normally.

The result of the message exchange is presented as Ping complete or an error
message.

Ping with LU 6.2: When Ping is invoked, by default no USERID or password
flows to the receiving end. If USERID and password are required, they can be
created at the initiating end in the channel definition. If a password is entered into
the channel definition, it is encrypted by MQSeries before being saved. It is then
decrypted before flowing across the conversation.

Start

Use the MQSC command START CHANNEL for sender, server, and requester
channels. It should not be necessary where a channel has been set up with queue
manager triggering.

Also use the START CHANNEL command for receiver channels that have a
disabled status, and on V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, for server-connection channels that have a disabled status.
Starting a receiver or server-connection channel that is in disabled status resets the
channel and allows it to be started from the remote channel.

Chapter 8. Monitoring and controlling channels on distributed platforms 125

Channel functions

When started, the sending MCA reads the channel definition file and opens the
transmission queue. A channel start-up sequence is executed, which remotely
starts the corresponding MCA of the receiver or server channel. When they have
been started, the sender and server processes await messages arriving on the
transmission queue and transmit them as they arrive.

When you use triggering or run channels as threads, you will need to start the
channel initiator to monitor the initiation queue. Use the runmqchi command for
this.

However, TCP and LU 6.2 do provide other capabilities:

e For TCP on OS/2, Digital OpenVMS, and UNIX systems, inetd (or an equivalent
TCP/IP service on OpenVMS) can be configured to start a channel. This will
be started as a separate process.

e For LU 6.2 in OS/2, using Communications Manager/2 it is possible to
configure the Attach Manager to start a channel. This will be started as a
separate process.

e For LU 6.2 in UNIX systems, configure your SNA product to start the LU 6.2
responder process.

e For LU 6.2 in Windows NT, using SNA Server you can use TpStart (a utility
provided with SNA Server) to start a channel. This will be started as a
separate process.

e For LU 6.2 in Digital OpenVMS systems, use the runmglsr command to start
the LU 6.2 responder process.

e For LU 6.2 in Tandem NSK, use the runmgsc or runmgchl command to start
the LU 6.2 responder process.

Use of the Start option always causes the channel to re-synchronize, where
necessary.
For the start to succeed:

e Channel definitions, local and remote, must exist. If there is no appropriate
channel definition for a receiver or server-connection channel, a default one is
created automatically if the channel is auto-defined. See “Channel
auto-definition exit program” on page

e Transmission queue must exist, and have no other channels using it.
e MCAs, local and remote, must exist.

e Communication link must be available.

* Queue managers must be running, local and remote.

e Message channel must not be already running.

126 MQSeries Intercommunication

Channel functions

A message is returned to the screen confirming that the request to start a channel
has been accepted. For confirmation that the start command has succeeded,
check the error log, or use DISPLAY CHSTATUS. The error logs are:

0S/2 and Windows NT
\mgm\gmgrs\gmname\errors\AMQERRO1.LOG (for each queue manager called
gmname)

\mgm\gmgrs\@SYSTEM\errors\AMQERRO1.LOG (for general errors)

Note: On Windows NT, you still also get a message in the Windows NT
application event log.

Digital OpenVMS
MQS_ROOT: [MQM.QMGRS . QMNAME . ERRORS] AMQERRO1.LOG (for each queue manager
called gmname)

MQS_ROOT: [MQM.QMGRS.$SYSTEM. ERRORS]AMQERRO1.LOG (for general errors)

Tandem NSK
The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.

¢ |f the queue manager name is known and the queue manager is available:
<QMVOL>.<SUBVOL>L.MQERRLG1

¢ |f the queue manager is not available:
<MQSVOL>.ZMQSSYS .MQERRLG1

UNIX systems
/var/mgm/qmgrs/gmname/errors/AMQERROL.LOG (for each queue manager called
gmname)

/var/mgm/qmgrs/@SYSTEM/errors/AMQERROL.LOG (for general errors)

Stop

Use the MQSC command STOP CHANNEL to request the channel to stop activity.
Any channel type is disabled by this command. The channel will not start a new
batch of messages until the operator starts the channel again. (For information
about restarting stopped channels, see “Restarting stopped channels” on page [75])

You can select the type of stop you require:

Stop quiesce example
STOP CHANNEL(QM1.T0.QM2) MODE(QUIESCE)

This command requests the channel to close down in an orderly way. The current
batch of messages is completed and the syncpoint procedure is carried out with the
other end of the channel.

Note: If the channel is idle this command will not terminate a receiving channel.

Chapter 8. Monitoring and controlling channels on distributed platforms 127

Channel functions

Stop force example
STOP CHANNEL(QM1.T0.QM2) MODE (FORCE)

Normally, this option should not be used. It terminates the channel process or
thread. The channel does not complete processing the current batch of messages,
and can, therefore, leave the channel in doubt. In general, it is recommended that
operators use the quiesce stop option.

Reset

Use the MQSC command RESET CHANNEL to change the message sequence
number. This command is available for any message channel, but not for MQI
channels (client-connection or server-connection). The first message starts the new
sequence the next time the channel is started.

If the command is issued on a sender or server channel, it informs the other side of
the change when the channel is restarted.

Resolve

Use the MQSC command RESOLVE CHANNEL when messages are held in-doubt
by a sender or server, for example because one end of the link has terminated, and
there is no prospect of it recovering. The RESOLVE CHANNEL command accepts
one of two parameters: BACKOUT or COMMIT. Backout restores messages to
the transmission queue, while Commit discards them.

The channel program does not try to establish a session with a partner. Instead, it
determines the logical unit of work identifier (LUWID) which represents the in-doubt
messages. It then issues, as requested, either:

e BACKOUT to restore the messages to the transmission queue; or
e COMMIT to delete the messages from the transmission queue.

For the resolution to succeed:

e The channel must be inactive

e The channel must be in doubt

e The channel type must be sender or server
¢ A local channel definition must exist

The local queue manager must be running

128 MQSeries Intercommunication

Preparing MQSeries on distributed platforms e Transmission queues and triggering

Chapter 9. Preparing MQSeries for distributed platforms

This chapter describes the MQSeries preparations required before DQM can be
used in OS/2, Windows NT, Digital OpenVMS, Tandem NSK, and UNIX systems.
It discusses the following topics:

e “Transmission queues and triggering”
 “Channel programs” on page
« “Other things to consider” on page

Transmission queues and triggering

Before a channel (other than a requester channel) can be started, the transmission
gueue must be defined as described in this chapter, and must be included in the
message channel definition.

In addition, where needed, the triggering arrangement must be prepared with the
definition of the necessary processes and queues.

Creating a transmission queue
Define a local queue with the USAGE attribute set to XMITQ for each sending
message channel. If you want to make use of a specific transmission queue in
your remote queue definitions, create a remote queue as shown below.

To create a transmission queue, use the MQSeries Commands (MQSC), as shown
in the following examples:

Create transmission queue example
DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') USAGE(XMITQ)

Create remote queue example

DEFINE QREMOTE(PAYROLL) DESCR('Remote queue for QM2') +
XMITQ(QM2) RNAME (PAYROLL) RQMNAME (QM2)

The recommended name for the transmission queue is the queue manager name
on the remote system, as shown in the examples above.

Triggering channels
An overview of triggering is given in “Triggering channels” on page while it is
described in depth in Chapter 14, “Starting MQSeries applications using triggers” in
the MQSeries Application Programming Guide. This description provides you with
information specific to MQSeries for OS/2 Warp, Windows NT, Digital OpenVMS,
Tandem NSK, and UNIX systems.

You can create a process definition in MQSeries, defining processes to be
triggered. Use the MQSC command DEFINE PROCESS to create a process
definition naming the process to be triggered when messages arrive on a
transmission queue. The USERDATA attribute of the process definition should
contain the name of the channel being served by the transmission queue.

© Copyright IBM Corp. 1993,1999 129

Transmission queues and triggering

Alternatively, for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, you can eliminate the need for a process definition by specifying the
channel name in the TRIGGERDATA attribute of the transmission queue.

If you do not specify a channel name, the channel initiator searches the channel
definition files until it finds a channel that is associated with the named transmission
queue.

Example definitions for triggering

Define the local queue (Q3), specifying that trigger messages are to be written to
the default initiation queue SYSTEM.CHANNEL.INITQ, to trigger the application
(process P1) that starts channel (QM3.TO.QM4):

DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(P1) USAGE (XMITQ)

Define the application (process P1) to be started:
DEFINE PROCESS(P1) USERDATA(QM3.T0.QM4)

Examples for V5.1 of MQSeries for AlX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT

Define the local queue (Q3), specifying that trigger messages are to be written to
the initiation queue (IQ) to trigger the application that starts channel
(QM3.TO.QM4):

DEFINE QLOCAL(QM4) TRIGGER INITQ(SYSTEM.CHANNEL.INITQ) USAGE (XMITQ)

Starting the channel initiator

Triggering is implemented using the channel initiator process. This process is
started with the run channel initiator command, runmqchi , or with the MQSC
command START CHINIT. For example, to use the runmgchi command to start
the default initiation queue for the default queue manager, enter:

runmqchi

Whichever command you use, specify the name of the initiation queue on the
command, unless you are using the default initiation queue. For example, to use
the runmgchi command to start queue 1Q for the default queue manager, enter:

runmqchi -q IQ

To use the START CHINIT command, enter:
START CHINIT INITQ(IQ)

In V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT
the number of channel initiators that you can start is limited. The default limit is 3.
You can change this using MAXINITIATORS in the gm.ini file for AIX, HP-UX, OS/2
Warp, and Sun Solaris, and in the registry for Windows NT.

See Chapter 17, “MQSeries control commands” in the MQSeries System
Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, or the MQSeries System Management Guide for your platform,
for details of the run channel initiator command, and the other control commands.

130 MQSeries Intercommunication

Channel programs e Other things to consider

Channel programs

There are different types of channel programs (MCASs) available for use at the
channels. The names are shown in the following tables.

Table 9. Channel programs for OS/2 and Windows NT

Program name Direction of connection Communication
RUNMQLSR Inbound Any
ENDMQLSR Any
AMQCRS6A Inbound LU 6.2
AMQCRSTA Inbound TCP
RUNMQCHL Outbound Any
RUNMQCHI Outbound Any

Table 10. Channel programs for UNIX systems, Digital OpenVMS, and Tandem NSK

Program name Direction of connection Communication

amqgcrs6a Inbound LU 6.2

amqcrsta Inbound TCP
and DECnet for Digital
OpenVMS

runmqchl Outbound TCP for UNIX systems

runmglsr Inbound LU 6.2 for Digital
OpenVMS and Tandem
NSK and TCP for UNIX
systems

runmgchi Outbound Any

RUNMQLSR (Run MQSeries listener), ENDMQLSR (End MQSeries listener), and
RUNMQCHL (Run MQSeries channel) are control commands that you can enter at
the command line. AMQCRS6A and AMQCRSTA are programs that, if you are
using SNA, you define as transaction programs, or, if you are using TCP, you

define in the INETD.LST file for OS/2 or Windows NT or the inetd.conf file for UNIX
systems. Examples of the use of these channel programs are given in the
following chapters.

Other things to consider

Here are some other topics that you should consider when preparing MQSeries for
distributed queue management.

Undelivered-message queue
A DLQ handler is provided with MQSeries for OS/2 Warp and Windows NT, and
with MQSeries on UNIX systems, Digital OpenVMS, and Tandem NSK. See
Chapter 12, “The MQSeries dead-letter queue handler” in the MQSeries System
Administration book for V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris,
and Windows NT, or the MQSeries System Management Guide for your platform,
for information about this.

Chapter 9. Preparing MQSeries for distributed platforms 131

Other things to consider

Queues in use

MCAs for receiver channels may keep the destination queues open even when
messages are not being transmitted; this results in the queues appearing to be “in
use.”

Multiple message channels per transmission queue

It is possible to define more than one channel per transmission queue, but only one
of these channels can be active at any one time. This is recommended for the
provision of alternative routes between queue managers for traffic balancing and
link failure corrective action.

Security of MQSeries objects

This section deals with remote messaging aspects of security.

You need to provide users with authority to make use of the MQSeries facilities,
and this is organized according to actions to be taken with respect to objects and
definitions. For example:

e Queue managers can be started and stopped by authorized users

e Applications need to connect to the queue manager, and have authority to
make use of queues

¢ Message channels need to be created and controlled by authorized users

* Objects are kept in libraries, and access to these libraries may be restricted

The message channel agent at a remote site needs to check that the message
being delivered originated from a user with authority to do so at this remote site. In
addition, as MCAs can be started remotely, it may be necessary to verify that the
remote processes trying to start your MCAs are authorized to do so. There are
three possible ways for you to deal with this:

1. Specify PUTAUT=CTX in the channel definition to indicate that messages must
contain acceptable context authority, otherwise they will be discarded.

2. Implement user exit security checking to ensure that the corresponding
message channel is authorized. The security of the installation hosting the
corresponding channel ensures that all users are properly authorized, so that
you do not need to check individual messages.

3. Implement user exit message processing to ensure that individual messages
are vetted for authorization.

On UNIX systems, Digital OpenVMS, and Tandem NSK

Administration users must be part of the mgm group on your system (including root)
if this ID is going to use MQSeries administration commands. In Digital OpenVMS,
the user must hold the mgm identifier.

You should always run amqcrsta as the “mgm” user ID.

User IDs on UNIX systems and Digital OpenVMS: In Digital OpenVMS, all user
IDs are displayed in uppercase. The queue manager converts all uppercase or
mixed case user identifiers into lowercase, before inserting them into the context
part of a message, or checking their authorization. All authorizations should
therefore be based only on lowercase identifiers.

132 MQSeries Intercommunication

Other things to consider

On Windows NT

Administration users must be part of both the mgm group and the administrators
group on your Windows NT system if this ID is going to use MQSeries
administration commands.

User IDs on Windows NT systems: On Windows NT, if there is no message exit
installed, the queue manager converts any uppercase or mixed case user identifiers
into lowercase, before inserting them into the context part of a message, or
checking their authorization. All authorizations should therefore be based only on
lowercase identifiers.

User IDs across systems

Platforms other than Windows NT and UNIX systems use uppercase characters for
user IDs. To allow Windows NT and UNIX systems to use lowercase user IDs, the
following conversions are carried out by the message channel agent (MCA) on
these platforms:

At the sending end
The alpha characters in all user IDs are converted to uppercase, if there is
no message exit installed

At the receiving end
The alpha characters in all user IDs are converted to lowercase, if there is
no message exit installed

Note that the automatic conversions are not carried out if you provide a message
exit on UNIX systems and Windows NT for any other reason.

User IDs on OS/2

The user identifier service enables queue managers running under OS/2 to obtain a
user-defined user ID. This is described in Chapter 14, “User identifier service” in
the MQSeries Programmable System Management book.

System extensions and user-exit programs
A facility is provided in the channel definition to allow extra programs to be run at
defined times during the processing of messages. These programs are not
supplied with MQSeries, but may be provided by each installation according to local
requirements.

In order to run, these user-exit programs must have predefined names and be
available on call to the channel programs. The names of the user-exit programs
are included in the message channel definitions.

There is a defined control block interface for handing over control to these
programs, and for handling the return of control from these programs.

The precise places where these programs are called, and details of control blocks
and names, are to be found in Part 7, “Further intercommunication considerations”

on page

Chapter 9. Preparing MQSeries for distributed platforms 133

Other things to consider

Running channels and listeners as trusted applications
If performance is an important consideration in your environment and your
environment is stable, you can choose to run your channels and listeners as
trusted, that is, using the fastpath binding. There are two factors that influence
whether or not channels and listeners run as trusted.

e The environment variable MQ_CONNECT_TYPE=FASTPATH or
MQ_CONNECT_TYPE=STANDARD. This is case sensitive. If you specify a
value that is not valid it is ignored.

¢ MQIBindType in the Channels stanza of the gm.ini or registry file. You can set
this to FASTPATH or STANDARD and it is not case sensitive. The default is
STANDARD.

You can use MQIBindType in association with the environment variable to achieve
the desired affect as follows:

MQIBindType Environment variable Result
STANDARD UNDEFINED STANDARD
FASTPATH UNDEFINED FASTPATH
STANDARD STANDARD STANDARD
FASTPATH STANDARD STANDARD
STANDARD FASTPATH STANDARD
FASTPATH FASTPATH FASTPATH

In summary, there are only two ways of actually making channels and listeners run
as trusted:

1. By specifying MQIBindType=FASTPATH in gm.ini or registry and not specifying
the environment variable.

2. By specifying MQIBindType=FASTPATH in gm.ini or registry and setting the
environment variable to FASTPATH.

You are recommended to run channels and listeners as trusted only in a stable
environment in which you are not, for example, testing applications or user exits
that may abend or need to be cancelled. An errant application could compromise
the integrity of your queue manager. However, if your environment is stable and if
performance is an important issue, you may choose to run channels and listeners
as trusted.

Note: If you are using MQSeries for Digital OpenVMS the option on the
MQ_CONNECT_TYPE is FAST, not FASTPATH.

134 mQsSeries Intercommunication

What next

What next?

When you have made the preparations described in this chapter you are ready to
set up communications. Proceed to one of the following chapters, depending on
what platform you are using:

e Chapter 10, “Setting up communication for OS/2 and Windows NT” on
page

e Chapter 13, “Setting up communication in UNIX systems” on page

e Chapter 18, “Setting up communication in Digital OpenVMS systems” on

page
e Chapter 19, “Setting up communication in Tandem NSK” on page

Chapter 9. Preparing MQSeries for distributed platforms 135

What next

136 MQSeries Intercommunication

Communications for OS/2 and Windows NT e Defining a TCP connection

Chapter 10. Setting up communication for OS/2 and

Windows NT

DQM is a remote queuing facility for MQSeries. It provides channel control
programs for the queue manager which form the interface to communication links,
controllable by the system operator. The channel definitions held by distributed
gueue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this. You may also find it helpful to refer to Chapter 11, “Example configuration -
IBM MQSeries for OS/2 Warp” on page or Chapter 12, “Example configuration
- IBM MQSeries for Windows NT” on page

For UNIX systems see Chapter 13, “Setting up communication in UNIX systems”
on page For Digital OpenVMS, see Chapter 18, “Setting up communication
in Digital OpenVMS systems” on page

Deciding on a connection

There are four forms of communication for MQSeries for OS/2 Warp and
Windows NT:

« TCP

¢ LUG.2
* NetBIOS
« SPX

Each channel definition must specify only one protocol as the Transmission
protocol (Transport Type) attribute. One or more protocols may be used by a
gueue manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See Chapter 5, “Configuring communication links” in the
MQSeries Clients book.

Defining a TCP connection

Sending end

The channel definition at the sending end specifies the address of the target. A
listener program must be run at the receiving end.

Specify the host name, or the TCP address of the target machine, in the
Connection name field of the channel definition. The port to connect to will default
to 1414. Port number 1414 is assigned by the Internet Assigned Numbers
Authority to MQSeries.

© Copyright IBM Corp. 1993,1999 137

Defining a TCP connection

To use a port number other than the default, change the connection name field
thus:

Connection Name 0S2R0G3(1822)

where 1822 is the port required. (This must be the port that the listener at the
receiving end is listening on.)

You can change the default port number by specifying it in the queue manager
configuration file (gm.ini) for MQSeries for OS/2 Warp and the registry for
MQSeries for Windows NT:
TCP:

Port=1822

For more information about the values you set using gm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page

Receiving on TCP

Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use either the TCP/IP listener (INETD) (not for Windows NT) or the
MQSeries listener.

Using the TCP/IP listener
To use INETD to start channels on OS/2, two files must be configured:

1. Add a line in the TCPIP\ETC\SERVICES file:
MQSeries 1414/tcp

where 1414 is the port number required for MQSeries. You can change this
but it must match the port number specified at the sending end.

2. Add a line to the TCPIP\ETC\INETD.LST file:
MQSeries tcp C:\MQM\BIN\AMQCRSTA [-m QMName]

The last part in square brackets is optional and is not required for the default
gueue manager. If your MQSeries for OS/2 Warp is installed on a different
drive, replace the C: above with the correct drive letter.

It is possible to have more than one queue manager on the machine. You must
add a line to each of the two files, as above, for each of the queue managers. For
example:

MQSeries?2 1822/tcp

Now stop, and then start the inetd program, before continuing.

138 MQSeries Intercommunication

Defining a TCP connection

Using the TCP listener backlog option

When receiving on TCP, a maximum number of outstanding connection requests is
set. This can be considered a backlog of requests waiting on the TCP port for the
listener to accept the request. The default listener backlog values are shown in
Table 11.

Table 11. Default outstanding connection requests on OS/2 and Windows NT
Platform Default listener backlog value
0OS/2 Warp 10

Windows NT Server 100

Windows NT Workstation 5

If the backlog reaches the values shown in Table 11, the TCP/IP connection is
rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state and
retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
reason code from MQCONN and should retry the connection at a later time.

However, to avoid this error, you can add an entry in the gm.ini file or in the
registry for Windows NT:

TCP:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 11)
for the TCP/IP listener.

Note: Some operating systems support a larger value than the default. If
necessary, this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on, use the RUNMQLSR -B
command. For information about the RUNMQLSR command, see “runmglsr (Run
listener)” in the MQSeries System Administration book.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the port number is not required if you are using the
default (1414).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

Chapter 10. Setting up communication for 0S/2 and Windows NT 139

Defining an LU 6.2 connection

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

Using the TCP/IP SO_KEEPALIVE option

If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page you need to add the
following entry to your queue manager configuration file (gm.ini):

TCP:
KeepAlive=yes
If you are using OS/2, you must then issue the following command:
inetcfg keepalive=value

where value is the time interval in minutes.

On Windows NT, the TCP configuration registry value for KeepAliveTime controls
the interval that elapses before the connection will be checked. The default is two
hours. For information about changing this value, see the Microsoft article TCP/IP
and NBT Configuration Parameters for Windows NT 3.5 (PSS ID number
Q120642).

Defining an LU 6.2 connection

SNA must be configured so that an LU 6.2 conversation can be established
between the two machines. Then proceed as follows.

See the Multiplatform APPC Configuration Guide for OS/2 examples, and the
following table for information.

140 MQSeries Intercommunication

Defining an LU 6.2 connection

Table 12. Settings on the local OS/2 or Windows NT system for a remote queue

manager platform
Remote TPNAME TPPATH
platform
0S/390 or The same as in the -
MVS/ESA corresponding side information
without CICS on the remote queue manager.
0OS/390 or CKRC (sender) -
MVS/ESA CKSV (requester)
using CICS CKRC (server)
0S/400 The same as the compare value -
in the routing entry on the
0OS/400 system.
0S/2 As specified in the OS/2 Run <drive>:\mgm\bin\amqcrs6a

Listener command, or defaulted
from the OS/2 queue manager
configuration file.

The same as in the
corresponding side information
on the remote queue manager.

UNIX systems mgmtop/bin/amgcrs6a

Windows NT As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup

on Windows NT.

<drive>:\mgm\bin\amqcrs6a

If you have more than one queue manager on the same machine, ensure that the
TPnames in the channel definitions are unique.

Sending end for OS/2

Establish a valid session between the two machines. The local LU that MQSeries
uses is decided in the following order:

1. Specify the LU that will be used. In the queue manager configuration file
(gm.ini), under the LU 6.2 section add the line:

LOCALLU = Your LU Name

For more information about the values you set using gm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page

2. Specify the environment variable:
APPNLLU = Your LU Name
3. If this has not been specified, your default LU will be used.
When you define an MQSeries channel that will use the LU 6.2 connection, the

Connection name (CONNAME) channel attribute specifies the fully-qualified name
of the partner LU. as defined in the local Communications Manager/2 profile.

SECURITY PROGRAM is always used when MQSeries attempts to establish an
SNA session.

Chapter 10. Setting up communication for 0S/2 and Windows NT 141

Defining an LU 6.2 connection

Sending end for Windows NT
Create a CPI-C side object (symbolic destination) from the administration
application of the LU 6.2 product you are using, and enter this nhame in the
Connection name field in the channel definition. Also create an LU 6.2 link to the
partner.

In the CPI-C side object enter the partner LU Name at the receiving machine, the
TP Name and the Mode Name. For example:

Partner LU Name 0S2R0G2
Partner TP Name recv
Mode Name #INTER

Receiving on LU 6.2
Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel. You start this listener
program with the RUNMQLSR command, giving the TpName to listen on.
Alternatively, you can use Attach Manager in Communications Manager/2 for OS/2,
or TpStart under SNA Server for Windows NT.

Using the RUNMQLSR command
Example of the command to start the listener:

RUNMQLSR -t LU62 -n RECV [-m QMNAME]

where RECV is the TpName that is specified at the other (sending) end as the
“TpName to start on the remote side”. The last part in square brackets is optional
and is not required for the default queue manager.

It is possible to have more than one queue manager running on one machine. You
must assign a different TpName to each queue manager, and then start a listener
program for each one. For example:

RUNMQLSR -t LU62 -m QM1 -n TpNamel
RUNMQLSR -t LU62 -m QM2 -n TpName2

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

142 MQSeries Intercommunication

Defining a NetBIOS connection

Using Communications Manager/2 on OS/2

If you are going to use Attach Manager in Communications Manager/2 to start the
listener program, you must specify the Program parameter string or parm_string in
addition to the TPNAME and TPPATH.

You can do this using the panel configuration in Communications Manager/2 or,
alternatively, you can edit your NDF file directly (see the heading “Define
Transaction Programs” in the Multiplatform APPC Configuration Guide).

Panel configuration: ~ These are the entries required on the TP definition panel:

Transaction Program (TP) name : AMQCRS6A
0S/2 program path and file name: c:\mgm\bin\amgcrs6a.exe
Program parameter string : -n AMQCRS6A

NDF file configuration: ~ Your node definitions file (.ndf) must contain a define_tp
command. The following example shows what must be included:
define_tp

tp_name (AMQCRS6A)

filespec(c:\mgm\bin\amgcrs6a.exe)

parm_string(-n AMQCRS6A -m QM1)

Using Microsoft SNA Server on Windows NT

You can use TpSetup (from the SNA Server SDK) to define an invokable TP that
then drives amqcrs6a.exe, or you can set various registry values manually. The
parameters that should be passed to amqcrs6a.exe are:

-m QM -n TpName

where QM is the Queue Manager name and TpName is the TP Name. See the
Microsoft SNA Server APPC Programmers Guide or the Microsoft SNA Server
CPI-C Programmers Guide for more information.

Defining a NetBIOS connection

MQSeries uses three types of NetBIOS resource when establishing a NetBIOS
connection to another MQSeries product: sessions, commands, and names. Each
of these resources has a limit, which is established either by default or by choice
during the installation of NetBIOS.

Each running channel, regardless of type, uses one NetBIOS session and one
NetBIOS command. The IBM NetBIOS implementation allows multiple processes
to use the same local NetBIOS name. Therefore, only one NetBIOS name needs
to be available for use by MQSeries. Other vendors’ implementations, for example
Novell's NetBIOS emulation, require a different local name per process. Verify your
requirements from the documentation for the NetBIOS product you are using.

In all cases, ensure that sufficient resources of each type are already available, or
increase the maximums specified in the configuration. Any changes to the values
will require a system restart.

Chapter 10. Setting up communication for 0S/2 and Windows NT 143

Defining a NetBIOS connection

During system startup, the NetBIOS device driver displays the number of sessions,
commands, and names available for use by applications. These resources are
available to any NetBIOS-based application that is running on the same system.
Therefore, it is possible for other applications to consume these resources before
MQSeries needs to acquire them. Your LAN network administrator should be able
to clarify this for you.

Defining the MQSeries local NetBIOS name

144

The local NetBIOS name used by MQSeries channel processes can be specified in
three ways. In order of precedence they are:

1. The value specified in the -1 parameter of the RUNMQLSR command, for
example:

RUNMQLSR -t NETBIOS -1 my_station

2. The MQNAME environment variable whose value is established by the
command:

SET MQNAME=my_station

You can set the MQNAME value for each process. Alternatively, you may set it
at a system level — in the CONFIG.SYS file on OS/2 or in the Windows NT
registry.

If you are using a NetBIOS implementation that requires unique names, you
must issue a SET MQNAME command in each window in which an MQSeries
process is started. The MQNAME value is arbitrary but it must be unique for
each process.

3. The NETBIOS stanza in the queue manager configuration file gm.ini or in the
Windows NT registry. For example:

NETBIOS:
LocalName=my_station

Notes:

1. Due to the variations in implementation of the NetBIOS products supported,
you are advised to make each NetBIOS name unique in the network. If you do
not, unpredictable results may occur. If you have problems establishing a
NetBIOS channel and there are error messages in the queue-manager error log
showing a NetBIOS return code of X'15', review your use of NetBIOS names.

2. On Windows NT you cannot use your machine name as the NetBIOS name
because Windows NT already uses it.

3. Sender channel initiation requires that a NetBIOS name be specified either via
the MQNAME environment variable or the LocalName in the gm.ini file or in the
Windows NT registry.

MQSeries Intercommunication

Defining a NetBIOS connection

Establishing the queue manager NetBIOS session, command, and

name limits

The queue manager limits for NetBIOS sessions, commands, and names can be
specified in two ways. In order of precedence they are:

1. The values specified in the RUNMQLSR command:

-s Sessions
-e Names
-0 Commands

If the -m operand is not specified in the command, the values will apply only to
the default queue manager.

2. The NETBIOS stanza in the queue manager configuration file gm.ini or in the
Windows NT registry. For example:

NETBIOS:
NumSess=Qmgr_max_sess

NumCmds=Qmgr_max_cmds
NumNames=Qmgr_max_names

Establishing the LAN adapter number

For channels to work successfully across NetBIOS, the adapter support at each
end must be compatible. MQSeries allows you to control the choice of adapter
number (lana) by using the AdapterNum value in the NETBIOS stanza of your
gm.ini file or the Windows NT registry and by specifying the -a parameter on the
runmglsr command.

The default LAN adapter number used by MQSeries for NetBIOS connections is O.
Verify the adapter number being used on your system as follows:

On 0S/2 the adapter number used by NetBIOS on your system can be viewed in
the PROTOCOL.INI file or the LANTRAN.LOG file found in the \IBMCOM directory.

On Windows NT view the information displayed in the NetBIOS Interface pop-up
window. This is accessible by selecting the Network option, which is one of many
options displayed when opening the Control icon from the Main Window. Windows
NT can assign multiple ‘logical’ adapter numbers to one physical LAN adapter. The
installation default for ‘logical’ adapter number O is NetBIOS running over a TCP
network, not a Token-Ring network. This is not necessary for MQSeries. You
should select logical adapter number 1, which is native NetBIOS. MQSeries for
Windows NT uses the ‘logical’ adapter number for communication.

Specify the correct value in the NETBIOS stanza of the queue manager
configuration file, gm.ini, or the Windows NT registry:

NETBIOS:
AdapterNum=n

where n is the correct LAN adapter number for this system.

Chapter 10. Setting up communication for 0S/2 and Windows NT 145

Defining a NetBIOS connection

Initiating the connection
To initiate the connection, follow these steps at the sending end:

1. Define the NetBIOS station name using the MQNAME or LocalName value as
described above.

2. Verify the LAN adapter number being used on your system and specify the
correct file using the AdapterNum as described above.

3. In the ConnectionName field of the channel definition, specify the NetBIOS
name being used by the target listener program. On Windows NT, NetBIOS
channels must be run as threads. Do this by specifying MCATYPE(THREAD)
in the channel definition.

DEFINE CHANNEL (chname) CHLTYPE(SDR) +
TRPTYPE(NETBIOS) +
CONNAME (your_station) +
XMITQ(xmitq) +
MCATYPE (THREAD) +
REPLACE

Target listener
At the receiving end, follow these steps:

1. Define the NetBIOS station name using the MQNAME or LocalName value as
described above.

2. Verify the LAN adapter number being used on your system and specify the
correct file using the AdapterNum as described above.

3. Define the receiver channel:

DEFINE CHANNEL (chname) CHLTYPE(RCVR) +
TRPTYPE(NETBIOS) +
REPLACE

4. Start the MQSeries listener program to establish the station and make it
contactable. For example:
RUNMQLSR -t NETBIOS -1 your_station [-m gmgr]
This command establishes your_station as a NetBIOS station waiting to be

contacted. The NetBIOS station name must be unique throughout your
NetBIOS network.

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

146 MQSeries Intercommunication

Defining an SPX connection

Defining an SPX connection

Sending end

The channel definition at the sending end specifies the address of the target. A
listener program must be run at the receiving end.

If the target machine is remote, specify the SPX address of the target machine in
the Connection name field of the channel definition.

The SPX address is specified in the following form:

network.node (socket)

where:

network Is the 4-byte network address of the network on which the remote
machine resides,

node Is the 6-byte node address, which is the LAN address of the LAN
adapter in the remote machine

socket Is the 2-byte socket number on which the remote machine will
listen.

If the local and remote machines are on the same network then the network
address need not be specified. If the remote end is listening on the default socket
(5E86) then the socket need not be specified.

An example of a fully specified SPX address specified in the CONNAME parameter
of an MQSC command is:

CONNAME (' 00000001 .08005A7161E5(5E87) ')

In the default case, where the machines are both on the same network, this
becomes:

CONNAME (08005A7161E5)

The default socket number may be changed by specifying it in the queue manager
configuration file (gm.ini) or the Windows NT registry:

SPX:
Socket=5E87

For more information about the values you set using gm.ini or the Windows NT
registry, see Appendix D, “Configuration file stanzas for distributed queuing” on

page

Using the SPX KEEPALIVE option (OS/2 only)

If you want to use the KEEPALIVE option (as discussed in “Checking that the other
end of the channel is still available” on page you need to add the following
entry to your queue manager configuration file (gm.ini):

SPX:
KeepAlive=yes

You can use the timeouts described in “IPX/SPX parameters” on page to
adjust the behavior of KEEPALIVE.

Chapter 10. Setting up communication for 0S/2 and Windows NT 147

Defining an SPX connection

Receiving on SPX

Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use the MQSeries listener.

Using the TCP listener backlog option

When receiving on TCP/IP, a maximum number of outstanding connection requests
is set. This can be considered a backlog of requests waiting on the TCP/IP port for
the listener to accept the request. The default listener backlog values are shown in
Table 13.

Table 13. Default outstanding connection requests on OS/2 and Windows NT
Platform Default listener backlog value
0OS/2 Warp 10

Windows NT Server 100

Windows NT Workstation 5

If the backlog reaches the values in Table 13, the reason code,
MQRC_Q_MGR_NOT_AVAILABLE is received when trying to connect to the queue
manager using MQCONN or MQCONNX. If this happens, it is possible to try to
connect again.

However, to avoid this error, you can add an entry in the gm.ini file or in the
registry for Windows NT:

TCP:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 13)
for the TCP/IP listener.

Note: Some operating systems support a larger value than the default. If
necessary, this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on, use the RUNMQLSR -B
command. For information about the RUNMQLSR command, see “runmglsr (Run
listener)” in the MQSeries System Administration book.

148 WMQsSeries Intercommunication

Defining an SPX connection

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t spx [-m QMNAME] [-x 5E87]

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the socket number is not required if you are using the
default (5E86).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

ENDMQLSR [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

IPX/SPX parameters

In most cases the default settings for the IPX/SPX parameters will suit your needs.
However, you may need to modify some of them in your environment to tune its
use for MQSeries. The actual parameters and the method of changing them varies
according to the platform and provider of SPX communications support. The
following sections describe some of these parameters, particularly those that may
influence the operation of MQSeries channels and client connections.

0Ss/2
Please refer to the Novell Client for OS/2 documentation for full details of the use
and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

IPX

sockets (range = 9 - 128, default 64)
This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

SPX

sessions (default 16)
This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or client
connections you need to run.

Chapter 10. Setting up communication for 0S/2 and Windows NT 149

Defining an SPX connection

retry count (default = 12)
This controls the number of times an SPX session will resend
unacknowledged packets. MQSeries does not override this value.

verify timeout, listen timeout, and abort timeout (milliseconds)
These timeouts adjust the ‘Keepalive’ behavior. If an SPX sending end does
not receive anything within the ‘verify timeout’ period, it sends a packet to the
receiving end. It then waits for the duration of the ‘listen timeout’ for a
response. If it still does not receive a response, it sends another packet and
expects a response within the ‘abort timeout’ period.

DOS and Windows 3.1 client
Please refer to the Novell Client for DOS and MS Windows documentation for full
details of the use and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

IPX

sockets (default = 20)
This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

retry count
This controls the number of times unacknowledged packets will be resent.
MQSeries does not override this value.

SPX

connections (default 15)
This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or client
connections you need to run.

Windows NT

Please refer to the Microsoft documentation for full details of the use and setting of
the NWLIink IPX and SPX parameters. The IPX/SPX parameters are in the
following paths in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

Windows 95 and Windows 98

Please refer to the Microsoft documentation for full details of the use and setting of
the IPX and SPX parameters. You access them by selecting Network option in the
control panel, then double-clicking on IPX/SPX Compatible Transport .

150 MQSeries Intercommunication

MQSeries for OS/2 Warp ¢ OS/2 and LU 6.2

Chapter 11. Example configuration - IBM MQSeries for OS/2
Warp

This chapter gives an example of how to set up communication links from
MQSeries for OS/2 Warp to MQSeries products on the following platforms:

¢ Windows NT

e AIX

e HP-UX

e AT&T GIS UNIX?

e Sun Solaris

e 0S/400

e 0S/390 or MVS/ESA without CICS
e VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it guides
you through the following tasks:

 “Establishing an LU 6.2 connection” on page
* “Establishing a TCP connection” on page
 “Establishing a NetBIOS connection” on page
* “Establishing an SPX connection” on page

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for OS/2 Warp configuration” on

page

See Chapter 7, “Example configuration chapters in this book” on page for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Table 14 on page presents a worksheet listing all the parameters needed to
set up communication from OS/2 to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

This chapter shows how to use the values on the worksheet for:

« “Defining local node characteristics” on page
 “Connecting to a peer system” on page
 “Connecting to a host system” on page

* “Verifying the configuration” on page

2 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993,1999 151

0S/2 and LU 6.2

Configuration worksheet

Use the following worksheet to record the values you will use for this configuration.
Where numbers appear in the Reference column they indicate that the value must
match that in the appropriate worksheet elsewhere in this book. The examples that
follow in this chapter refer back to the values in the ID column of this table. The
entries in the Parameter Name column are explained in “Explanation of terms” on

page

Table 14 (Page 1 of 3). Configuration worksheet for Communications Manager/2

ID | Parameter Name

Reference

Example Used

User Value

Definition for local node

Configuration name EXAMPLE

2] Network 1D NETID

H Local node name 0S2PU

4] Local node ID (hex) 05D 12345

a Local node alias name OSs2pPU

6| LU name (local) 0S2LU

Alias (for local LU name) 0OS2QMGR

B Local transaction program (TP) name MQSERIES

9] 0S/2 program path and file name c:\mgm\bin\amqcrs6a.exe
LAN adapter address 10005AFC5D83

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page as indicated.

Link name WINNT

LAN destination address (hex) 9] 08005AA5FAB9
Partner network ID 2] NETID

Partner node name WINNTCP

LU name a WINNTLU
Alias (for remote LU name) NTQMGR
Mode #INTER
Remote transaction program name MQSERIES

Connection to an AlX system

The values in this section of the table must match those used in Table 20 on page [208] as indicated.

Link name RS6000

LAN destination address (hex) B 123456789012
Partner network ID NETID

Partner node name A AIXPU

LU name 4] AIXLU

Alias (for remote LU name) AIXQMGR
Mode #INTER
Remote transaction program name 6| MQSERIES

152 MQsSeries Intercommunication

0S/2 and LU 6.2

Table 14 (Page 2 of 3). Configuration worksheet for Communications Manager/2

ID | Parameter Name Reference Example Used | User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page as indicated.

Link name HPUX

LAN destination address (hex) 8] 100090DC2C7C
Partner network 1D 4] NETID

Partner node name 2] HPUXPU

LU name a HPUXLU

Alias (for remote LU name) HPUXQMGR
Mode a #INTER
Remote transaction program name MQSERIES

Connection to an AT&T GIS UNIX system
The values in this section of the table must match those used in Table 24 on page as indicated.

Link name GIS

LAN destination address (hex) B 10007038E86B
Partner network 1D 2] NETID

Partner node name GISPU

LU name 4] GISLU

Alias (for remote LU name) GISQMGR
Mode #INTER
Remote transaction program name B MQSERIES

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page as indicated.

Link name SOLARIS

LAN destination address (hex) a 08002071CC8A
Partner network 1D 2] NETID

Partner node name SOLARPU

LU name SOLARLU
Alias (for remote LU name) SOLQMGR
Mode #INTER
Remote transaction program name 8] MQSERIES

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page as indicated.

Link name AS400

LAN destination address (hex) 4] 10005A5962EF
Partner network 1D NETID

Partner node name A AS400PU

LU name AS400LU

Alias (for remote LU name) AS4QMGR
Mode #INTER
Remote transaction program name H MQSERIES

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 153

0S/2 and LU 6.2

Table 14 (Page 3 of 3). Configuration worksheet for Communications Manager/2

ID | Parameter Name

Reference

Example Used

| User Value

Connection to an OS/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page as indicated.

Link name HOST0001
LAN destination address (hex) 8] 400074511092
Partner network 1D 2] NETID

Partner node name MVSPU

LU name 4] MVSLU

Alias (for remote LU name) MVSQMGR
Mode #INTER
Remote transaction program name MQSERIES

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page as indicated.

Link name HOST0001

LAN destination address (hex) 5 | 400074511092

Partner network 1D NETID

Partner node name A VSEPU

LU name VSELU

Alias (for remote LU name) VSEQMGR

Mode #INTER

Remote transaction program name 4] MQO1 MQO1

Explanation of terms

Configuration name
This is the name of the OS/2 file that will hold the configuration.

154

If you are adding to or modifying an existing configuration it will be the name
previously specified.

If you are creating a new configuration then you can specify any 8-character

name that obeys the normal rules for file naming.
H Network ID

This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network ID works
with the local node name to uniquely identify a system. Your network
administrator will tell you the value.

Local node name

This is the unique Control Point name for this workstation. Your network
administrator will assign this to you.

B Local node ID (hex)
This is a unique identifier for this workstation. On other platforms it is often
referred to as the exchange ID (XID). Your network administrator will assign

this to you.

MQSeries Intercommunication

0S/2 and LU 6.2

B Local node alias name
This is the name by which your local node will be known within this
workstation. This value is not used elsewhere, but it is recommended that it
be the same as [, the local node name.

@ LU name (local)
An LU manages the exchange of data between systems. The local LU name
is the name of the LU on your system. Your network administrator will assign
this to you.

Alias (for local LU name)
The name by which your local LU will be known to your applications. You
choose this name yourself. It can be 1-8 characters long. This value is used
during MQSeries configuration, when entries are added to the gm.ini file.

B Local transaction program (TP) name
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. The TP name is also
used during MQSeries configuration, when entries are added to the gm.ini file.
For simplicity, wherever possible use a transaction program name of
MQSERIES, or in the case of a connection to VSE/ESA, where the length is
limited to 4 bytes, use MQTP.

See Table 12 on page for more information.

El 0S/2 program path and file name
This is the path and name of the actual program to be run when a
conversation has been initiated with this workstation. The example shown on
the worksheet assumes that MQSeries is installed in the default directory,
c\mgm. The configuration pairs this name with the symbolic name FJ.

LAN adapter address
This is the address of your token-ring card. When using the default address,
the exact value can be found in the LANTRAN.LOG file found in the
\IBMCOM directory.

For example:
Adapter 0 is using node address 10005AFC5D83

Link name
This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only inside Communications Manager/2 setup and
is specified by you. It can be 1-8 characters in length.

Alias (for remote LU name)
This is a value known only on this workstation and is used to represent the
fully qualified partner LU name. You supply the value.

Mode
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each point in the network
between the local and partner LUs. Your network administrator will assign
this to you.

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 155

Using Communications Manager/2

Establishing an LU 6.2 connection

This section describes how to establish an LU 6.2 connection using
Communications Manager/2 Version 1.11. You may use any of the supported LU
6.2 products for this platform. The panels would look different from those shown
but most of their content would be similar.

Defining local node characteristics

To set up the local node you need to perform
these tasks:

1. Configure a DLC.

2. Configure the local node.

3. Add a local LU.

4. Add a transaction program definition.
5. Configure a mode.

To define the local node characteristics:

1. Start the Communications Manager/2
Installation and Setup program by typing
CMSETUP on an OS/2 command line, and
pressing Enter.

b4 Communications Manager/2

I .. A
I B BN
] Il N S
| T AT
| . .
| Il N B W .
I T I W
I T I Y -
C ications Manager/2 | llation and Setup

Version 1.11

[C] Copyright IBM Corp. 1988, 1994. All rights reserved
IBM is a registered trademark of
International Business Machines Corp.

2. Press OK to continue.

[} Communications Manager Setup
Options Help

If you do not have a configuration, select SETUP to
create one and optionally install the necessary product
files. If you already have a configuration, select
either:

SETUP to modify the configuration and optionally install
the necessary product files, or

INSTALLATION to install the necessary product files.

If the configuration is from a previous release, it will be
upgraded automatically.

Create or modify a configuration

Installation... Install necessary product files to

support a configuration

Close

156 MQSeries Intercommunication

3. Press Setup to create or modify a
configuration.

4 Open Configuration

Either type in a name and description to create a new
configuration or select a configuration from the list below.
Select OK when finished.

Configuration |EXAMPLE

Description ‘Example MQSeries Configuration

Directory [D:ACMLIB B
Directories Configurations

N | HURSLEY =

BACKUPS MQCONFIG

BOOK 0S2EIN2

DLL

[A:]

ci =

[< D>l =

(ol :
I]

4. Specify a name (up to 8-characters) for a new
configuration file ||, or select the one that
you wish to update. The following examples
guide you through the creation of a new
configuration file. Treat them as a guide if
you are modifying an existing configuration.

05/2 Communications Manager

The configuration D:\CMLIBAEXAMPLE was
9 not found. Would you like to create it?

5. Press Yes.

05/2 Communications Manager

Will the configuration D:\CMLIBA\EXAMPLE
9 be used for this workstation?

6. Press Yes.

Using Communications Manager/2

In this example we set up connections using 2. Select End node - no network node server
APPC over Token-ring. The foIIowmg screen 3. Click on Advanced .
appears in two stages. When you first see i,

highlight the line:

APPC APIs through Token-ring O =] |_| |
The complete screen appears as shown f : =
below. =

[~

[[TAPPC APIs through Token-ring for communications

— = = .” All profiles listed as Required MUST be configured to support the pictured
g4 Communications Manager Configuration Definition - EXAMPLE configuration. Check marks indicate configuration for a profile is complete.
Options Gateway Help

Action Profile Hame
Definition selection))) /. Required DLC - Token-ring or other LAN types
® Commonly used definitions T"l configure ;‘“H lﬂ' “‘g IleITIS listed, Required SHA local node characteristics
- select one and select Configure. Optional SHA connections
72 Additional definitions Select Close when the configuration Optional SHA features
- is complete.

Communications Definitions

3270 Emulation through Token-ring
5250 Emulation through Token-ring

< [> < [>]

FAPEC APls through Token-ring Iﬁ cl

5250 Emulation through Twinaxial for AS/400 : UG Close |
3270 Emulation using SHA Phone Connections ~ <

=i 1> ()

4. Select DLC - Token-ring or other LAN types
and press Configure... .

[~]

[[_/APPC APls through Token-ring for communications

£4 Token Ring or Other LAN Types DLC Adapter Parameters
Adapter J

[[] Free unused links

Window count——M——————
Send window count IE [1- 8]

[Send alert for Receive window count E 11-8)
beaconing
7. PI’eSS Conﬁgure . [Maximum activation l:l i1 - 68}
attempts
Maximum link stations El (1 - 255]
Configuring aDLC Maximum |-field size (265 - 16393)

Percent of incoming calls [%] El (0 - 100)

i APPC APIs through Token-ring Link establishment
- e

retransmission count

HeterorkJID HEHID Retransmission threshold [1-127)
Local node name |0S2PU Local sap [hex] [04 - ag)
Ll s CE5M LAN 1D HETID

() End node - to a network node server
Connection network

®)End node - no network node server : name [optional] |:| . |:|

[(e
Hobwork node gorver sddrese [hegd l:l

5. Enter the value for C&SM LAN ID. This
should be the same value as the Network ID
1. Complete the values for Network ID () and entered earlier (H).

Local node name (Hl). 6. Leave the remaining default values and press

OK.

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 157

Using Communications Manager/2

Configuring the local node

Hetwork ID NETID
B4 Communications Manager Profile List Local node name 052PU
u Hode typ

() End node to network node server

(®) End node - no network node server

() Hetwork node
[__APPC APls through Token-ring for communications H

All profiles listed as Required MUST be configured to support the pictured Vo RS G0 SR AR (Re |:|
configuration. Check marks indicate configuration for a profile is complete. Local node 1D (hex) 2345

Action Profile Hame oK e HetwarelR]... C L
+* Required DLC - Token-ring or other LAN types B = | [Eoetiones] [Evttarlisl | |[Coneal]

OptlinnalI SHA l:lon.nectlilons
» Optional SHA features

5. Press OK.

< [> <

<l () =
(- 1

1. Select SNA local node characteristics and

C f [[_APPC APls through Token-ring for communications H
press Configure... .

All profiles listed as Required MUST be configured to support the pictured
configuration. Check marks indicate configuration for a profile is complete.

£4 Local Hode Characteri

Action Profile Hame
' Required DLC - Token-ring or other LAN types |
Hetwork 1D NETID +" Required SHA local node characteristics
Optional SHA connections
Local node name 052PU

SHA features

Hode typ
() End node to network node server

(®) End node - no network node server

< [> Il <]

Configure... I Close I
<l

() Hetwork node

Youe network sode server sidress (hed l:l
Local node ID [hex]

0K | ‘ Options... | | HetWare[R]... | |Cancel|

6. Select SNA features and press Configure...

Adding a local LU
2. Complete the value for Local node ID (hex)

() using the values in your configuration

worksheet.

To create, change, or delete a definition of a feature, select a list
item, then choose the appropriate action.

3. Press Options...

~SMHA feature informati

Features Definition Comment
E4 Local Hode Options Partner LUs -
. Modes

Local node alias name 052PU Transaction program definit

. . i Transaction program defaul
Maximum compression level NONE | ¥ Transaction program securi
Maximum compression tokens E [0 - 3800) E:’J"‘{':riel‘}'gscﬁfﬁ:"tu
Optional comment ‘ CPl Communications side i

| |
[] Activate Attach Manager at start up [I = |
Create... | Change.. Betete | Close |

4. Complete the value for Local node alias
P 1. Select Local LUs and press Create....
name (JJ) and press OK.

158 MQSeries Intercommunication

E4 Local LU

L0 vame 05200 |
s o520

HAU addr
(®) Independent LU

O Dependent LUMAU [| ¢t - 2543

Hout ok l:”fj

[[]Use this local LU as your default local LU alias

Optional comment

\

2. Complete the fields LU name () and Alias

(H).

3. Press OK.
Adding a transaction program

definition

item, then choose the appropriate action.

~SHA feature informati

E4 SHA Features List

To create, change, or delete a definition of a feature, select a list

Features Definition Comment

Local LUs = =
Partner LUs

Transaction program defaul
Transaction program securi
Conversation security

LU to LU security

CPI Communications side i

= =
I I B | [= B Y |

Create... I Change... Delete | Close |

1. Select Transaction program definitions

press Create....

~Transaction program definiti
[[] Service TP

Transaction program (TP) name
05/2 program path and file name |c:\mgm\bin\amqcrsba.ex

Optional comment

~Optional val
[C] Conversation security required

Prgram paramoter svivg]
P ———— |

4 Transaction Program Definition

2. Complete the values for Transaction
program (TP) name () and OS/2 program
path and file name (). If you are going to
use Attach Manager to start the listener

Using Communications Manager/2

program, specify the Program parameter
string , for example -m 0S2 -n MQSERIES.

3. Press Continue... .

E4 Additional TP Parameters

Presentation type

Operation typ

() Presentation Manager () Queued, Attach Manager started

(0 ¥10-windowable (0 Queued, operator started

() Full screen () Queued, operator preloaded

® Background (@) Hon-queued, Attach Manager started

4. Specify that the program is to be run in the

Background and that it is to be Non-queued,

Attach Manager started
5. Press OK.

Configuring a mode

E4 SHA Features List

To create, change, or delete a definition of a feature, select a list
item, then choose the appropriate action.

~SHA feature informati
Features Definition Comment

Local LUs =
Partner LUs

Transaction program definit
Transaction program defaul
Transaction program securi
Conversation security

LU to LU security

CPl Communications side i

=
I I Dl |

Create... | | Change... | ‘ Delete | | Close |

and 1. Select Modes and #INTER and press
Change....

£4 Mode Definition

Mode name HINTER
Class of service |HINTER H
Mode session limit (0 - 32767]

Minimum contention winners D [0 - 32767)
Receive pacing window [0 - 63)

~Compr

Compression need PROHIBITED H
PLU->SLU compression level

SLU->PLU compression level |NONE | ¥

~RU siz
(@) Default RU size

OMaximum RU size | |56 - 15304

Optional comment

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp

159

Using Communications Manager/2

2. Ensure that the default values match those

Connectlng to a peer system
shown above and press Cancel.
To set up a connection to a peer system the steps
.
are:
To create, change, or delete a definition of a feature, select a list
item, then choose the appropriate action. 1 Addlng a peer ConneCtlon
~SHA feature informati T
Features Definition Comment 2 Deflnlng a pa‘rtner LU

Transaction program definit
Transaction program defaul
Transaction program securi
Conversation security
LU to LU security

Start from the Communications Manager Profile
List panel.

CPI Communications side i £4 Communications Manager Profile List
= =
I I EI] O |:_|
2= == i
C =
Create... | | Change... | ‘ Delete | | Close | T
 FEEEE:
[[_APPC APls through Token-ring for communications H
All profiles listed as Required MUST be configured to support the pictured
. configuration. Check marks indicate configuration for a profile is complete.
3. Press Close to close the SNA Features List
. Action Profile Hame
WIndOW- ' Required DLC - Token-ring or other LAN types |
+ Required SHA local node characteristics
Optiona A connectio
£4 Communications Manager Profile List ' Optional SHiYieatires
= g F]
¢ =
T =
| . —
— Configure... Close =
[[_APPC APls through Token-ring for communications H <0]
All profiles listed as Required MUST be configured to support the pictured
configuration. Check marks indicate configuration for a profile is complete.
ction Rrofile]Hame Select SNA connections and press Configure... .
' Required DLC - Token-ring or other LAN types |
+" Required SHA local node characteristics

Optional SHA connections
v Optional SHA features

Adding a peer connection

g
< > < [>]

Configure... I Close I
<l

Choose the type of node to change or create connections
to nodes of that type.

Selecting a partner type will display connections to
nodes of that type in the list.

i i . Partner typ:
Local configuration is complete. [on network node @7

e 2 To host

. i i Link Adapter
The following sections describe how to create ame Adapter ""mhe'J
connections to other nodes.
2
[< [>] J
Comment [

o
| Create... | | Chamge.. | Delete ‘ Close |
<l] |

1. Select To peer node and press Create....

160 MQSeries Intercommunication

b4 Adapter List

Select the local adapter to be used for this connection. |

Ethernet [ETHERAND) network
IPC Network

Twinaxial

'SDLC Adapters 0,1 Regular or User-dialed Connectiol
'SDLC using SNA Phone Connections

23

Configured Yes

Adapter number E”;l [0-1]
Continue... I Cancel I

<l

2.

Select Token-ring or other LAN types and
press Continue... .

4 Connection to a Peer Hode

Link name |LINKDDO1 ¥ Activate at startup

LAN destination address [hex] Address format Remote SAP [hex]

Adjacent node 1D [hex] l:l
Partner network 1D l:l

Partner node name l:| LU definition]

Optional comment

[Required for partner

Beline Pariser Lile ‘ Cancel |

3.

4,

Specify a Link name () and check
Activate at startup

Complete the fields LAN destination address
(hex) (), Partner network ID (|E]), and
Partner node name ().

E4 Connection to a Peer Hode

Link name |RS6000 ¥ Activate at startup

LAN destination address [hex] Address format Remote 3AP [hex]
123456789012 Taken Ring]

Adjanent nade 1D fhexd l:l

Partner network 1D NETID

Partner node name AlXPU LU definition]

Optional comment

[Required for partner

‘ Define Partner LUs... | ‘Cancel|

5.

Press Define Partner LUs...

Using Communications Manager/2

Defining a partner LU

To add a Partner LU, enter the LU name, alias, and comment. Then select Add/ |

To change a Partner LU, select an LU from the list, change the LU name, alias,
and/or comment fields and select Change.

To delete a Partner LU, select an LU from the list and select Delete.

Hetwork 1D [METID LU name Alias
LU name AlXLU
Aliag AIXOMGR

Dependent partner LU =
[[j Partner LU is dependent

Uninterprated name l:l
Optional comment |
[[Add | renge
B Iml -

1. Complete the fields Network ID ([fE]), LU
name (), and Alias (H}).

2. Press Add.

To add a Partner LU, enter the LU name, alias, and comment. Then select Add.| |

To change a Partner LU, select an LU from the list, change the LU name, alias,
and/or comment fields and select Change.

To delete a Partner LU, select an LU from the list and select Delete.

Hetwork D [NETID LU name Alias
N HETID.ATALU AIROMGR]
Alias AIXOMGR

Dependent partner LU &
[[iPartner LU is dependent

Halaterpreted name l:l

Optional comment |

¥ ?eazagé“ i

I Cancel I
al

3. Press OK.

4 Connection to a Peer Hode
Link name |RS6000 ¥ Activate at startup

LAN destination address [hex] Address format Remote SAP [hex]
123456789012 Taken Ring ¥
Adioent aude 13 Thexd l:l
Partner network 1D HETID

[Required for partner
Partner node name AIKPU LU definition]

Optional comment

\ |
| Define Partner LUs...: | ‘Cancel|

4. Press OK.

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 161

Using Communications Manager/2

F4 Connections List F4 Communications Manager Profile List

Choose the type of node to change or create connections | O - N
to nodes of that type. nlga. H

Selecting a partner type will display connections to C T =

nodes of that type in the list.

’—Partner typ [__APPC APls through Token-ring for communications H|

[To network node (®) To peer node () To host
All profiles listed as Required MUST be configured to support the pictured
configuration. Check marks indicate configuration for a profile is complete.

Link Adapter
MHame Adapter Humber Action Profile Hame
RS6000 Token-ring or other LAN types +" Required DLC - Token-ring or other LAN types =
v Required SHA local node characteristics
Optiona A connectio
+ Optional SHA features
=
|
Comment | =

Create... I | Change... I | Delete | ‘ Close I vl L e —
<0 = Configure... I Close I .J
<l

5. Press Close. . ,
Select SNA connections and press Configure... .

£4 Communications Manager Profile List

a fl Adding a host connection
2= =230 F
C : =
'
 FEEEE:
[[_APPC APls through Token-ring for communications H Choose the type of node to change or create connections |
to nodes of that type.
All profiles listed as Required MUST be configured to support the pictured
configuration. Check marks indicate configuration for a profile is complete. Selecting a partner type will display connections to
nodes of that type in the list.
Action Profile Hame
' Required DLC - Token-ring or other LAN types | Partner typ
+* Required SMA local node characteristics ([To network node (3 To peer node (#) To host
Optiona A connectio
v Optional SHA features Link Adapter
MHame Adapter Humber
E|
=
Configure... Close =
[Goiows.] _cose | (v . .
Comment |
) lC[ealE... I | Champe.. | Delele ‘ Close I
If you have connections to make to other : Jﬂ

platforms repeat this section as appropriate.

]] 1. Select To host and press Create....
If you have made all the connections you require

proceed to “Verifying the configuration” on
page [164]to complete Communications
Manager/2 configuration.

B4 Adapter List

Select the local adapter to be used for this connection. |

Adapter Type
e LR e ————_-
Ethernet [ETHERAND] network

H IPC Metwork
Connecting to a host system ruim
'SDLC Adapters 0,1 Regular or User-dialed Connectiol
'SDLC using SHA Phone Connections

To set up a connection to a host system, for C‘ o o
. onrigures es
example OS/390 or VSE/ESA, the steps are: stptoc gunber W] (0-1
1. Adding a host connection Continue... | [[Cancel |
2. Defining a partner LU =

Start from the Communications Manager Profile

2. Select Token-ring or other LAN types and
List panel.

press Continue... .

162 MQSeries Intercommunication

£4 Connection to a Host

Link name HOSTOO001 [] Activate at startup
fapal Fifname |ORIPY [CIAPPH support
Node 1D [hex] 12345

LAN destination address [hex] Address format Remote SAP [hex]

Token Ring e
Adjacent node 1D [hex] l:l
Partner network 1D l:l

[Required for partner
Partner node name l:| LU definition]

[# Use this host connection as your focal point support

Optional comment

\ |
Beline Pariser Lile ‘ Cancel |

3. Specify a Link name ([}) and check
Activate at startup

4. Complete the fields LAN destination address
(hex) (), Partner network ID (|E]), and
Partner node name ().

£4 Connection to a Host

Link name HOSTOO001 [] Activate at startup
fapal Fifname |ORIPY [CIAPPH support
Node 10 hes

LAN destination address [hex] Address format Remote SAP [hex]
400074511092 Token Ring J

Adioent aude 13 Thexd l:l
Partner network 1D HETID

[Required for partner

Partner node name MVYSPU LU definition]

[# Use this host connection as your focal point support

Optional comment

\ |
‘ Define Partner LUs... | ‘Cancel|

5. Press Define Partner LUSs...

Defining a partner LU

To add a Partner LU, enter the LU name, alias, and comment. Then select Add] |

To change a Partner LU, select an LU from the list, change the LU name, alias,
and/or comment fields and select Change.

To delete a Partner LU, select an LU from the list and select Delete.

Hetwork ID [NETID LU name Alias .
LU name MVYSLU
Alias MVSOMGR
J =
Dep partner LU T = O -

[[] Partner LU is dependent

Pelats
Uninforpreied name I:l Mwwj

Optional comment |

: Changs
|

Using Communications Manager/2

1. Complete the fields Network ID ([f&]), LU
name (), and Alias (R).

2. Press Add

To change a Partner LU, select an LU from the list, change the LU name, alias,
and/or comment fields and select Change.

To delete a Partner LU, select an LU from the list and select Delete.

B4 Partner | Us

To add a Partner LU, enter the LU name, alias, and comment. Then select Add.| |

Hetwork D LU name Alias
- NETID.MVYSLU MVSOMGR | |

LU name MYSLU
Alias MVSQMGR

Dependent partner LU

[C1Partner LU is dependent

ulnterpreted name |:|

Optional comment |

Chanis

I Cancel I
<1

3. Press OK.

£4 Connection to a Host

Link name HOSTOO001 [] Activate at startup
fapal Fifname |ORIPY [CIAPPH support
Node 1D [hex] 12345

LAN destination address [hex] Address format Remote SAP [hex]
400074511092 Token Ring x

Adioent aude 13 Thexd l:l
Partner network 1D HETID

[Required for partner

Partner node name MVYSPU LU definition]

[# Use this host connection as your focal point support

Optional comment

\ |
| Define Partner LUs...: | ‘Cancel|

4, Press OK.

E4 Connections List

Choose the type of node to change or create connections
to nodes of that type.

Selecting a partner type will display connections to
nodes of that type in the list.

Partner typ:
’701-0 network node () To peer node (®) To host

Link Adapter
Hame Adapter Humber

HOSTO001 Token-ring or other LAN types

G [

| Create... | | Change... | | Delete | ‘ Close |

q |

5. Press Close.

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp

163

Using Communications Manager/2

B4 Communications Manager Profile List Communications Manager Configuration Definition - EXAMPLE

Options Gateway Help

Definition selection
(®) Commonly used definitions

To configure any of the ftems listed,
select one and select Configure.

2 Additional definitions Select Close when the configuration
- is complete.

[__APPC APls through Token-ring for communications H

All profiles listed as Required MUST be configured to support the pictured Communications Definitions
configuration. Check marks indicate configuration for a profile is complete.

3270 Emulation through Token-ring

. n 5250 Emulation through Token-ring
Eetion hictileltame g APPC APls through Taken-ring
~ Required DLC - Token-ring or other LAN types = 5250 Emulation through Twinaxial for AS/400
¥ Required SHA local node characteristics 3270 Emulation using SHA Phone Connections ~
T A connectio ! Bl |
+ Optional SHA features
< [> <
Configure... I Close I a
<l

If you have connections to make to other
platforms, proceed to the appropriate section.

If you have made all the connections you require
proceed to “Verifying the configuration” to

. . Confi tion OSZEI12 is th it

complete Communications Manager/2 @ it coniouration. Do you vant
. . to make configuration EXAMPLE the

COﬂfIguratlon new default configuration?

Verifying the configuration

£4 Communications Manager Profile List 3 Press Yes_
o]
)
C 4 Communications Manager Completion
T =
|
- i
[[_APPC APls through Token-ring for communications H [ications Manager i llation is pl
.)))) ‘You can start Communications Manager
All profiles listed as Required MUST be configured to support the pictured immediately.
configuration. Check marks indicate configuration for a profile is complete.
Action Profile Hame
Required DLC - Token-ring or other LAN types
Required SHA local node characteristics
Optional SHA connections
Optional SHA features
4. Press OK.
Configure... I Close I [B] Communications Manager Setup | = |
| Options Help

If you do not have a configuration, select SETUP to
create one and optionally install the necessary product

H H files. If lready h: fi tion, select
1. Press Close to close the Communications e
Manager Profile List panel.

SETUP to modify the configuration and optionally install
the necessary product files, or

INSTALLATION to install the necessary product files.

If the configuration is from a previous release, it will be
upgraded automatically.

Create or modify a configuration

Install necessary product files to

support a configuration

Close

5. Press Close.

164 MQSeries Intercommunication

What next?

The LU 6.2 connection is nhow established. You
are ready to complete the configuration. Go to
“MQSeries for OS/2 Warp configuration” on
page

Establishing a TCP connection

1. From your desktop, open the TCP Icon View.

@ TCP/IP - lcon View =l

B =8 6

3270 Telnet 5250 Telnet Application FTP-PM Gopher Information Intraduction to TCRIP

Templates
= 0
TCPIP

Network NewsReader’2 Flead Me REX<FTPAPI REX< Sockets API
Dialer Ca S Utiities

TCFIIP Startup Telnet webE rplorer

The icons you see may vary from those
shown above, depending on how you have
installed the product.

2. Start the TCP Configuration program.

3. On the Network page, ensure that the IP
Address and Subnet Mask fields have been
completed.

4. Select the Autostart tab.

] TCP/IP Configuration

Configure Automatic Starting Of Services

L
TIZI
T Services to t ~Autostart Opti
i [_] Autostart service
B
3 }f:lfl;em et super cevver dasimn Hostnames
$ thpd } () Detached Autostart
rexec
ﬁ rshd () Foreground session General
LS |ld e
j_l:' Iprportd (L] Minimized
routed
3 portmap Parameters
sendmail
$ snmpd | ‘ |
TIZI
=] =
[T Sendmail
7:' Undn Default | | Help | =
=

0S/2 and TCP

8. Close the configuration notebook.

Note: You may see a panel warning that the
inetd superserver has been selected without
selecting servers. Press No to indicate that
you do not wish to correct this.

Closing TCP/IP Configuration

YYou have chosen to End the TCP/IP Configuration Notebook Program

Select Save to close the notebook and save all changes to hard disk.
Select Discard to close the notebook WITHOUT saving AHY changes to hard disk
Select Cancel to return back to the notebook.

Savel | | Discard | | Cancel

}

5. Ensure that inetd is selected.
6. Select the Hostnames tab.

7. Ensure that This machine’s hostname
Local domain name , and Nameserver
address have been completed.

9. Press Save to save the changes made.

10. Verify that the \MPTN\ETC\SERVICES file,
which is located on the drive where you
installed IBM Multi-Protocol Transport
Services (MPTS), contains the following line:

MQSeries 1414/tcp # MQSeries Chan'l Listener

If this line is not present, add it.

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 165

0S/2 and TCP

11. Verify that the file \MPTN\ETC\INETD.LST,

12.

located on the same drive contains the
following line:

MQSeries tcp c:\mgm\bin\amgcrsta [-m QMName]

If this line is not present, add it. Note that this
assumes you have installed MQSeries on the
default drive and in the default directories.

(Re)start the inetd superserver, either by
rebooting OS/2 or by stopping any existing

166 MQSeries Intercommunication

inetd superserver and then entering start
inetd on the command line.

What next?

The TCP connection is now established. You are
ready to complete the configuration. Go to
“MQSeries for OS/2 Warp configuration” on

page

0S/2 and NetBIOS ¢ OS/2 and SPX

Establishing a NetBIOS connection

A NetBIOS connection is initiated from a queue manager that uses the
ConnectionName parameter on its channel definition to connect to a target listener.
To set up a NetBIOS connection, follow these steps:

1.

At each end of the channel specify the local NetBIOS name to be used by the
MQSeries channel processes, in the queue manager configuration file gm.ini or
in the registry for Windows NT. For example, the NETBIOS stanza in gm.ini at
the sending end might look like this:

NETBIOS:
LocalName=02NETB1

and at the receiving end:

NETBIOS:
LocalName=02NETB2

. At each end of the channel, look at the LANTRAN.LOG file in the \IBMCOM

directory to see what LAN adapter number is used by NetBIOS on your system.
If it is not O, which MQSeries uses by default, specify the correct value in the
NETBIOS stanza of the gm.ini file or of the registry for Windows NT. For
example:

NETBIOS:
AdapterNum=1

. At the sending end, define a channel specifying the NetBIOS name being used

at the other end of the channel. For example:

DEFINE CHANNEL (0S2.WINNT.NET) CHLTYPE(SDR) +
TRPTYPE(NETBIOS) +
CONNAME (02NETB2) +
XMITQ(WINNT) +
REPLACE

. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (0S2.WINNT.NET) CHLTYPE(RCVR) +
TRPTYPE (NETBIOS) +
REPLACE

. At the receiving end, start the MQSeries listener:

runmglsr -t netbios

Optionally you may specify values for the queue manager name, NetBIOS local
name, number of sessions, number of names, and number of commands. See
“Defining a NetBIOS connection” on page [143]for more information about
setting up NetBIOS connections.

Establishing an SPX connection

This section discusses the following topics:

IPX/SPX parameters

SPX addressing

Using the SPX KEEPALIVE option
Receiving on SPX

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 167

0S/2 and SPX

IPX/SPX parameters

SPX addressing

In most cases the default settings for the IPX/SPX parameters will suit your needs.
However, you may need to modify some of them in your environment to tune its
use for MQSeries. The actual parameters and the method of changing them varies
according to the platform and provider of SPX communications support. The
following sections describe some of these parameters, particularly those that may
influence the operation of MQSeries channels and client connections.

Please refer to the Novell Client for OS/2 documentation for full details of the use
and setting of NET.CFG parameters.

The following IPX/SPX parameters can be added to the Novell NET.CFG file, and
can affect MQSeries SPX channels and client connections.

IPX

sockets (range = 9 - 128, default 64)
This specifies the total number of IPX sockets available. MQSeries channels
use this resource, so depending on the number of channels and the
requirements of other IPX/SPX applications, you may need to increase this
value.

SPX

sessions (default 16)
This specifies the total number of simultaneous SPX connections. Each
MQSeries channel or client connection uses one session. You may need to
increase this value depending on the number of MQSeries channels or client
connections you need to run.

retry count (default = 12)
This controls the number of times an SPX session will resend
unacknowledged packets. MQSeries does not override this value.

verify timeout, listen timeout, and abort timeout (milliseconds)
These timeouts adjust the ‘Keepalive’ behavior. If an SPX sending end does
not receive anything within the ‘verify timeout’ period, it sends a packet to the
receiving end. It then waits for the duration of the ‘listen timeout’ for a
response. If it still does not receive a response, it sends another packet and
expects a response within the ‘abort timeout’ period.

MQSeries uses the SPX address of each machine to establish connectivity. The
SPX address is specified in the following form:

network.node (socket)

where

network Is the 4-byte network address of the network on which the remote
machine resides,

node Is the 6-byte node address, which is the LAN address of the LAN
adapter in the remote machine

socket Is the 2-byte socket number on which the remote machine will
listen.

168 MQSeries Intercommunication

0S/2 and SPX

The default socket number used by MQSeries is 5E86. You can change the
default socket number by specifying it in the queue manager configuration file
gm.ini or the Windows NT registry. If you have taken the default options for
installation, the gm.ini file for queue manager OS2 is found in c:\mgm\gmgs\os2.
The lines in gm.ini might read:

SPX:
SOCKET=n

For more information about values you can set in gm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page

The SPX address is later specified in the CONNAME parameter of the sender
channel definition. If the MQSeries systems being connected reside on the same
network, the network address need not be specified. Similarly, if the remote
system is listening on the default socket number (5E86), it need not be specified.
A fully qualified SPX address in the CONNAME parameter would be:

CONNAME ('network.node(socket) ')

but if the systems reside on the same network and the default socket number is
used, the parameter would be:

CONNAME (node)

A detailed example of the channel configuration parameters is given in “MQSeries
for OS/2 Warp configuration” on page

Using the SPX KEEPALIVE option

If you want to use the KEEPALIVE option you need to add the following entry to
your queue manager configuration file (gm.ini) or the Windows NT registry:

SPX:
KeepAlive=yes

You can use the timeout parameters described above to adjust the behavior of
KEEPALIVE.

Receiving on SPX

Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use the MQSeries listener.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t spx

Optionally you may specify the queue manager name or the socket number if you
are not using the defaults.

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 169

OS/2 configuration

MQSeries for OS/2 Warp configuration

Notes:

1. You can use the sample program AMQSBCG to display, to the stdout spool,
the contents and headers of all the messages in a queue. For example:

AMQSBCG g_name gmgr_name

displays the contents of the queue g_name defined in queue manager
gmgr_name.

2. The MQSeries command used to start the TCP listener is:
runmglsr -t tcp

The listener enables receiver channels to start automatically in response to a
start request from an inbound sender channel.

3. You can start any channel from the command prompt using the command
runmqgchl -c channel.name

4. Error logs can be found in the directories \mgm\gmgrs\gmgrname\errors,
\mgm\gmagrs\@system\errors, and \mgm\errors. In all cases, the most recent
messages are at the end of amqgerrO1.log.

5. When you are using the command interpreter runmgsc to enter administration
commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Basic configuration
1. Create the queue manager from the OS/2 command line using the command:

crtmgm -u dlgname -q o0s2

where:
0s2 Is the name of the queue manager
-q Indicates that this is to become the default queue manager

-u dlgname Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects, and sets
the DEADQ attribute of the queue manager.

2. For SNA channels add an LU 6.2 stanza to the queue manager’s gm.ini file:

LU62:
TPName=MQSERIES B}
LocalLU=0S2QMGR

If you have taken the default options for installation, the gm.ini file for queue
manager os2 is found in c:\mgm\gmgrs\os2.

3. Start the queue manager from the OS/2 command line using the command:

strmgm os2

where os2 is the name given to the queue manager when it was created.

170 MQSeries Intercommunication

Channel configuration

OS/2 configuration

The following sections detail the configuration to be performed on the OS/2 queue
manager to implement the channel described in Figure 32 on page In each
case the MQSC command is shown.

Examples are given for connecting MQSeries for OS/2 Warp and MQSeries for
Windows NT. If you wish connect to another MQSeries product use the
appropriate set of values from the table in place of those for Windows NT.

Note: The words in bold are user-specified and reflect the names of MQSeries

objects used throughout these examples. If you change the names used here,

ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 15 (Page 1 of 3). Configuration worksheet for MQSeries for OS/2 Warp

| Parameter Name

Reference

Example Used

User Value

Definition for local node

A Queue Manager Name

0S2

B Local queue name

0S2.LOCALQ

Connection to MQSeries for Windows NT

The values in this section of the table must match those used in Table 17 on page as indicated.

Remote queue manager name (A WINNT

D Remote queue name WINNT.REMOTEQ
E | Queue name at remote system B] WINNT.LOCALQ
@ | Transmission queue name WINNT

G| Sender (SNA) channel name OS2.WINNT.SNA
[H| Sender (TCP/IP) channel name OS2.WINNT.TCP
1] Receiver (SNA) channel name G | WINNT.OS2.SNA
Receiver (TCP/IP) channel name [H] WINNT.OS2.TCP
K| Sender (NetBIOS) channel name OS2.WINNT.NET
Sender (SPX) channel name OS2.WINNT.SPX
M| Receiver (NetBIOS) channel name K | WINNT.OS2.NET
m Receiver (SPX) channel name WINNT.0S2.SPX

Connection to MQSeries for AIX

The values in this section of the table must match those used in Table 21 on page [220] as indicated.

Remote queue manager name [A] AIX

D Remote queue name AIX.REMOTEQ
E| Queue name at remote system B AIX.LOCALQ
Transmission queue name AIX

G| Sender (SNA) channel name OS2.AIX.SNA
[H| Sender (TCP/IP) channel name OS2.AIX.TCP
H Receiver (SNA) channel name G| AIX.0S2.SNA
Receiver (TCP) channel name [H| AIX.0S2.TCP

Chapter 11. Example configuration - IBM MQSeries for OS/2 Warp

171

OS/2 configuration

Table 15 (Page 2 of 3). Configuration worksheet for MQSeries for OS/2 Warp

| Parameter Name

| Reference | Example Used

Connection to MQSeries for HP-UX

The values in this section of the table must match those used in Table 23 on page as indicated.

Remote queue manager name [A] HPUX

D] Remote queue name HPUX.REMOTEQ
E| Queue name at remote system B | HPUX.LOCALQ
Transmission queue name HPUX

G| Sender (SNA) channel name 0S2.HPUX.SNA
[H| Sender (TCP) channel name 0S2.HPUX.TCP
H Receiver (SNA) channel name G| HPUX.0S2.SNA
Receiver (TCP) channel name m HPUX.0S2.TCP

Connection to MQSeries for AT&T GIS UNIX

The values in this section of the table must match those used in Table 25 on page as indicated.

Remote queue manager name [A] GIS

D Remote queue name GIS.REMOTEQ
E| Queue name at remote system B GIS.LOCALQ
Transmission queue name GIS

G| Sender (SNA) channel name 0S2.GIS.SNA
[H| Sender (TCP) channel name 0S2.GIS.TCP
ﬂ Receiver (SNA) channel name ﬂ GIS.0S2.SNA
Receiver (TCP) channel name [H| GIS.0S2.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page as indicated.

Remote queue manager name SOLARIS

m Remote queue name SOLARIS.REMOTEQ
E | Queue name at remote system B] SOLARIS.LOCALQ
Transmission queue name SOLARIS

G| Sender (SNA) channel name 0OS2.SOLARIS.SNA
[H| Sender (TCP/IP) channel name OS2.SOLARIS.TCP
ﬂ Receiver (SNA) channel name ﬂ SOLARIS.0S2.SNA
Receiver (TCP/IP) channel name [H] SOLARIS.0S2.TCP

Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page as indicated.

Remote queue manager name AS400

D Remote queue name AS400.REMOTEQ
E | Queue name at remote system B | AS400.LOCALQ
[F] Transmission queue name AS400

G | Sender (SNA) channel name 0S2.AS400.SNA
[H| Sender (TCP/IP) channel name 0S2.AS400.TCP
1] Receiver (SNA) channel name a AS400.0S2.SNA
Receiver (TCP) channel name [H | AS400.0S2.TCP

172 MQSeries Intercommunication

| User Value

OS/2 configuration

Table 15 (Page 3 of 3). Configuration worksheet for MQSeries for OS/2 Warp

| Parameter Name | Reference | Example Used

| User Value

Connection to MQSeries for OS/390 or MVS/ESA without CICS

The values in this section of the table must match those used in Table 36 on page as indicated.

Remote queue manager name MVS

D] Remote queue name MVS.REMOTEQ
E| Queue name at remote system B | MVS.LOCALQ
Transmission queue name MVS

G| Sender (SNA) channel name 0S2.MVS.SNA
[H| Sender (TCP) channel name 0S2.MVS.TCP
H Receiver (SNA) channel name G| MVS.0S2.SNA
Receiver (TCP) channel name [H| MVS.0S2.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page as indicated.

Remote queue manager name VSE

D Remote queue name VSE.REMOTEQ
E| Queue name at remote system B VSE.LOCALQ
Transmission queue name VSE

G| Sender channel name OS2.VSE.SNA
H Receiver channel name G | VSE.0S2.SNA

MQSeries for OS/2 Warp sender-channel definitions using SNA

def g1 (WINNT)
usage(xmitq) +
replace

def gr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq (WINNT) +
replace

def chl (0S2.WINNT.SNA) chltype(sdr) +
trptype(lu62) +
conname ('NETID.WINNTLU') +
xmitq (WINNT) +
modename (' #INTER') +
tpname ('MQSERIES') +
replace

(n|olm o]

BESE =

MQSeries for OS/2 Warp receiver-channel definitions using SNA

def g1 (0S2.LOCALQ) replace

def chl (WINNT.0S2.SNA) chltype(rcvr) +
trptype(lu62) +
replace

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 173

OS/2 configuration

MQSeries for OS/2 Warp sender-channel definitions using TCP
def g1 (WINNT) +

usage(xmitq) +

replace

def gr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq (WINNT) +
replace

(n|olmo

def chl (0S2.WINNT.TCP) chltype(sdr) +
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq(WINNT) +
replace

MQSeries for OS/2 Warp receiver-channel definitions using
TCP/IP

def g1 (0S2.LOCALQ) replace B |
def chl (WINNT.0S2.TCP) chltype(rcvr) +
trptype(tcp) +
replace

MQSeries for OS/2 Warp sender-channel definitions using
NetBIOS
def q1 (WINNT) +
usage(xmitq) +
replace

def gr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq (WINNT) +
replace

(n|omo

def chl (0S2.WINNT.NET) chltype(sdr) +
trptype(netbhios) +
conname (remote NetBIOS name) +
xmitq (WINNT) +
replace

MQSeries for OS/2 Warp receiver-channel definitions using
NetBIOS

def q1 (0S2.LOCALQ) replace B
def chl (WINNT.0S2.NET) chltype(rcvr) + (M|
trptype(netbios) +
replace

174 MQSeries Intercommunication

OS/2 configuration

MQSeries for OS/2 Warp sender-channel definitions using

IPX/SPX

def g1 (WINNT) +
usage(xmitq) +
replace

def gr (WINNT.REMOTEQ) + D
rname (WINNT.LOCALQ) + E|
rgmname (WINNT) +
xmitq(WINNT) +
replace

def chl (0S2.WINNT.SPX) chltype(sdr) +
trptype(spx) +
conname ('network.node(socket)') +
xmitq (WINNT) + F|

replace

MQSeries for OS/2 Warp receiver-channel definitions using

IPX/SPX
def g1 (0S2.LOCALQ) replace B |
def chl (WINNT.0S2.SPX) chltype(rcvr) + [N
trptype(spx) +
replace

Running channels as processes or threads

MQSeries for OS/2 Warp provides the flexibility to run sender channels as 0OS/2
processes or OS/2 threads. This is specified in the MCATYPE parameter on the
sender channel definition. Each installation should select the type appropriate for
their application and configuration. Factors affecting this choice are discussed
below.

Most installations will select to run their sender channels as threads, because the
virtual and real memory required to support a large number of concurrent channel
connections will be reduced. When the MQSeries listener process (started via the
RUNMQLSR command) exhausts the available private memory needed, an
additional listener process will need to be started to support more channel
connections. When each channel runs as a process, additional processes are
automatically started, avoiding the out-of-memory condition.

If all channels are run as threads under one MQSeries listener, a failure of the
listener for any reason will cause all channel connections to be temporarily lost.
This can be prevented by balancing the threaded channel connections across two
or more listener processes, thus enabling other connections to keep running. If
each sender channel is run as a separate process, the failure of the listener for that
process will affect only that specific channel connection.

A NetBIOS connection needs a separate process for the Message Channel Agent.

Therefore, before you can issue a START CHANNEL command, you must start the
channel initiator, or you may start a channel using the RUNMQCHL command.

Chapter 11. Example configuration - IBM MQSeries for 0S/2 Warp 175

OS/2 configuration

176 MQSeries Intercommunication

MQSeries for Windows NT

¢ Windows NT and LU 6.2

Chapter 12. Example configuration - IBM MQSeries for

Windows NT

This chapter gives an example of how to set up communication links from
MQSeries for Windows NT to MQSeries products on the following platforms:

e 0S/2

e AIX

e HP-UX

e AT&T GIS UNIX3

e Sun Solaris

e 0S/400

e 0S/390 or MVS/ESA without CICS
e VSE/ESA

This chapter first describes the parameters needed for an LU 6.2 connection, then
it guides you through the following tasks:

 “Establishing an LU 6.2 connection” on page
* “Establishing a TCP connection” on page

« “Establishing a NetBIOS connection” on page
* “Establishing an SPX connection” on page

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for Windows NT configuration” on

page [191]

See Chapter 7, “Example configuration chapters in this book” on page for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Table 16 on page presents a worksheet listing all the parameters needed to
set up communication from Windows NT to one of the other MQSeries platforms.
The worksheet shows examples of the parameters, which have been tested in a
working environment, and leaves space for you to fill in your own values. An
explanation of the parameter names follows the worksheet. Use the worksheet in
this chapter in conjunction with the worksheet in the chapter for the platform to
which you are connecting.

The steps required to set up an LU 6.2 connection are described, with numbered
cross references to the parameters on the worksheet. These steps are:

* “Configuring the local node” on page
 “Adding a connection” on page
 “Adding a partner” on page

 “Adding a CPI-C entry” on page

* “Configuring an invokable TP” on page

3 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993,1999

177

Windows NT and LU 6.2

Configuration worksheet

Use this worksheet to record the values you use for your configuration. Where
numbers appear in the Reference column they indicate that the value must match
that in the appropriate worksheet elsewhere in this book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page [181.

Table 16 (Page 1 of 3). Configuration worksheet for IBM Communications Server for Windows NT

ID | Parameter Name

Reference Example Used

User Value

Definition for local node

Configuration name NTCONFIG
2] Network Name NETID
Control Point Name WINNTCP
ocal Node ex
4] Local Node ID (hex) 05D 30F65
ame (loca
B LUN (local) WINNTLU
6| LU Alias (local) NTQMGR
TP Name MQSERIES
B Command line c:\mgm\bin\amqcrs6a.exe
9] LAN adapter address 08005AA5FAB9

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page as indicated.

Connection 0Ss2

Remote Network Address 10005AFC5D83
Network Name 2] NETID

Control Point Name 0S2PU
Remote Node ID 4] 05D 12345

LU Alias (remote) 0OS2QMGR

LU Name 6| 0S2LU

Mode #INTER

CPI-C Name 0S2CPIC
Partner TP Name B MQSERIES

Connection to an AlX system

The values in this section of the table must match those used in Table 20 on page as indicated.

Connection AIX

Remote Network Address 8] 123456789012
Network Name NETID

Control Point Name 2] AIXPU
Remote Node ID 071 23456

LU Alias (remote) AIXQMGR

LU Name A AIXLU

Mode #INTER

CPI-C Name AIXCPIC
Partner TP Name 6| MQSERIES

178 MQSeries Intercommunication

Windows NT and LU 6.2

Table 16 (Page 2 of 3). Configuration worksheet for IBM Communications Server for Windows NT

ID | Parameter Name Reference Example Used | User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page as indicated.

Connection HPUX

Remote Network Address B 100090DC2C7C
Network Name 4] NETID

Control Point Name 2] HPUXPU
Remote Node ID 05D 54321

LU Alias (remote) HPUXQMGR
LU Name 5] HPUXLU

Mode #INTER

CPI-C Name HPUXCPIC
Partner TP Name MQSERIES

Connection to an AT&T GIS UNIX system
The values in this section of the table must match those used in Table 24 on page as indicated.

Connection GIS

Remote Network Address 8] 10007038E86B
Network Name A NETID

Control Point Name GISPU
Remote Node ID B 03E 00018

LU Alias (remote) GISQMGR

LU Name [4] GISLU

Mode #INTER

CPI-C Name GISCPIC
Partner TP Name 5 | MQSERIES

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page as indicated.

Connection SOLARIS
Remote Network Address 5] 08002071CC8A
Network Name A NETID

Control Point Name SOLARPU
Remote Node ID 6| 05D 310D6

LU Alias (remote) SOLARQMGR
LU Name SOLARLU
Mode #INTER

CPI-C Name SOLCPIC
Partner TP Name 8] MQSERIES

Chapter 12. Example configuration - IBM MQSeries for Windows NT 179

Windows NT and LU 6.2

Table 16 (Page 3 of 3). Configuration worksheet for IBM Communications Server for Windows NT

ID | Parameter Name Reference Example Used | User Value

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page as indicated.

Connection AS400

Remote Network Address 4] 10005A5962EF
Network Name NETID

Control Point Name 2] AS400PU
Remote Node ID

LU Alias (remote) AS400QMGR
LU Name AS400LU
Mode #INTER

CPI-C Name AS4CPIC
Partner TP Name B MQSERIES

Connection to an 0OS/390 or MVS/ESA system without CICS
The values in this section of the table must match those used in Table 35 on page as indicated.

Connection MVS

Remote Network Address 8] 400074511092
Network Name A NETID

Control Point Name MVSPU
Remote Node ID

LU Alias (remote) MVSQMGR
LU Name [4] MVSLU

Mode #INTER

CPI-C Name MVSCPIC
Partner TP Name MQSERIES

Connection to a VSE/ESA system
The values in this section of the table must match those used in Table 43 on page as indicated.

Connection MVS

Remote Network Address 5] 400074511092

Network Name NETID

Control Point Name A VSEPU

Remote Node 1D

LU Alias (remote) VSEQMGR

LU Name VSELU

Mode #INTER

CPI-C Name VSECPIC

Partner TP Name 4] MQO1 MQO01

180 MQsSeries Intercommunication

Windows NT and LU 6.2

Explanation of terms

Configuration Name
This is the name of the file in which the Communications Server configuration
is saved.

H Network Name
This is the unique ID of the network to which you are connected. It is an
alphanumeric value and can be 1-8 characters long. The network name
works with the Control Point Name to uniquely identify a system. Your
network administrator will tell you the value.

Control Point Name
In Advanced Peer-to-Peer Networking® (APPN®), a control point is
responsible for managing a node and its resources. A control point is also a
logical unit (LU). The Control Point Name is the name of the LU and is
assigned to your system by the network administrator.

I Local Node ID (hex)
Some SNA products require partner systems to specify a node identifier that
uniquely identifies their workstation. The two systems exchange this node
identifier in a message unit called the exchange identifier (XID). Your network
administrator will assign this ID for you.

H LU Name (local)
A logical unit (LU) is software that serves as an interface or translator
between a transaction program and the network. An LU manages the
exchange of data between transaction programs. The local LU Name is the
name of the LU on your workstation. Your network administrator will assign
this to you.

@ LU Alias (local)
The name by which your local LU will be known to your applications. You
choose this name yourself. It can be 1-8 characters long.

TP Name
MQSeries applications trying to converse with your workstation specify a
symbolic name for the program that is to start running. This will have been
defined on the channel definition at the sender. For simplicity, wherever
possible use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See Table 12 on page for more information.

B Ccommand line
This is the path and name of the actual program to be run when a
conversation has been initiated with your workstation. The example shown on
the worksheet assumes that MQSeries is installed in the default directory,
c:\mgm. The configuration pairs this name with the symbolic name when
you use TPSETUP (which is part of the SNA Server software developers kit).

El LAN adapter address
This is the address of your token-ring card. To discover this type net config
server at a command prompt. The address appears in the output. For
example:

Server is active on 08005AA5FAB9

Chapter 12. Example configuration - IBM MQSeries for Windows NT 181

Using IBM Communications Server

Connection

This is a meaningful symbolic name by which the connection to a partner
node is known. It is used only within SNA Server administration and is

specified by you.
LU Alias (remote)

This is a value known only in this server and is used to represent the fully
qualified partner LU name. You supply the value.

Mode

This is the name given to the set of parameters that control the APPC
conversation. An entry with this name and a similar set of parameters must
be defined at each partner system. Your network administrator will tell you

this name.
CPI-C Name

This is the name given to a locally held definition of a partner application.
You supply the name and it must be unique within this server. The name is
specified in the CONNAME attribute of the MQSeries sender channel

definition.

Establishing an LU 6.2 connection

This section describes how to establish an LU 6.2 connection using IBM
Communications Server for Windows NT, Version 5.0. You may use any of the
supported LU 6.2 products for this platform. The panels of other products will not
be identical to those shown here, but most of their content will be similar.

Configuring the local node
To configure the local node, follow these steps:

1. From the Scenarios pull-down of the
Communications Server SNA Node
Configuration window, select the CPI-C,
APPC or 5250 Emulation scenario.

M= E3

i Untitled - Communications Server SHA Node Configuration

Bl Options Help
SHA Gateway...
TH3ZF0E Server...
APPM Metwork Mode...
DLUR/DLUS suppart far local LU s
DLUR/DLUS support for downstream L s. ..
Arwhet SHA over TCP/P Gateway...
Arybet Sockets over SHA,
L SMA API Clients running APPC applications. ..
—| 5SMa AP Clients running 3270 or gther LUA applications...
v CPI-C, APPC or 5250 Emulation...
Dependent LU 6.2 Sessions to a Host. ..
| 327040 Applications. ..
1 Focal-Point...

Advanced... —I

e EhangeraEn |

[elefe |

rr

Show steps for the CPI-C, APPC or 5250 Emulation scenario

182 MQSeries Intercommunication

The CPI-C, APPC or 5250 Emulation scenario
window is displayed.

2. Click on Configure Node , then click on New.
The Define the Node property sheet is
displayed.

Using IBM Communications Server

Defi 5. In the Local LU name field on the Basic
efine the Node E
. page, enter the name of the LU on your
Basic | Advanced | DLU Requester | workstation (J|). In the Local LU alias field,

enter the name by which your local LU will be

— Cantrol Point [CP] . . .
ol o £ known to your applications (JJ). Click on OK
Ly gqualine narne: H
|NETID L [wINNTCH to continue.
CF alias: Adding a connection

e

To add a connection, follow these steps:

ploceliied=iD 1. From the SNA Node Configuration window,
Black |D: Physical Unit 1D select Configure Devices , select LAN as the
030 0000 DLC type, then click on New. The Define a
LAN Device property sheet is displayed.
—Mode Type
& EndMods
= Metwork Mode Basic Iﬂdvancedl F'elfolmancel
0k I Cancel | Al | Help I Fort hame:
Adapter number: Im vI
3. In the Fully qualified CP name field on the
Basic page, enter the unique ID of the Local 547 04 |
network to which you are connected () and
the control point name ([E]). Click on OK to
continue.
4. From the SNA Node Configuration window,
click on Configure Local LU 6.2 , then click
on New. The Define a Local LU 6.2 window
Ok I Cancel Ao Hel
is displayed. | e | > |
| |
——] 2. If you have the LLC2 protocol installed with
Basic | Communications Server for Windows NT, the

Adapter number list box lists the available
LAN adapters. See the help file INLLC40.HLP

Local LU name:

[WINNTLU (Windows NT 4.0) or INLLC35.HLP (Windows
" Dependent LU NT 3.51) in the Communications Server
[~ SMA AP clisnt use installation directory for LLC2 installation
instructions.
Local LU alias: W : i
o 3. The default values displayed on the Define a
Pl rrames LAN Device Basic page may be accepted.

Click on OK to continue.

4. From the SNA Node Configuration window,
select Configure Connections , select LAN
as the DLC type, then click on New. The

ok | cancel | spph | Hep Define a LAN Connection property sheet is
displayed.

LU seszion limit:

| jv
HEll adtress: Iﬁ
IU

Chapter 12. Example configuration - IBM MQSeries for Windows NT 183

Using IBM Communications Server

Define a LAN Connection E

Bazic | Advanced I Security I

[LiNKoo0
| LAND_04 -]

Link station name:

Device name:

Dizcover network addresses. . |

Destination address: |1 Na05AFCEDES
Femaote SAF: 04 -
0] I Cahcel | Apply | Help I

5. In the Destination address field on the Basic
page, enter the LAN address of the system to
which you are connecting (J]). Select the
Advanced page.

Define a LAN Connection

Bazic Advanced | SEcurit_l.JI

<

Activate link at start
HFR zuppart

APPM suppoart
Eutoraetivate sUEpoTE

Link to preferred MM server

i i B

Solicit SSCP sessions

PU name: ILINKDDDD

Local Mode 1D
Block 1D Physical Unit 1D:
|0sD 12344

o]

Cancel | Spply Help

6. In the Block ID field on the Advanced page,
enter the local node ID (hex) (). Select the
Security page.

Define a LAN Connection

Basic I Advanced Security |

adiacent CP name:
[NETID N ST

adiacent CF type: TG rumber:

[4PPN Node =2 oo =

Ldpaeemt fode |
Bl b Ebmeeal L

1

u].4 I Cancel Spply Help

184 MQSeries Intercommunication

7. In the Adjacent CP name field on the
Security page, enter the network name and
control point name of the remote node ([
and [E]). In the Adjacent CP type field,
enter APPN Node. You do not need to
complete the Adjacent node ID field for a
peer-to-peer connection. Click on OK to
continue. Take note of the default link name
used to identify this new definition (for
example, LINKOOOO).

Using IBM Communications Server

Adding a partner Adding a CPI-C entry

To add a CPI-C Side information entry, follow
these steps:

To add a partner LU definition, follow these steps:

1. From the SNA Node Configuration window,
select Configure Partner LU 6.2 , then click
on New. The Define a Partner LU 6.2
property sheet is displayed.

Dehine a Partner LU 6.2 E

Basic | Advanced I

1. From the SNA Node Configuration window,
select Configure CPI-C Side Information
then click on New. The Define a CPI-C Side
Information property sheet is displayed.

Define CPI-C Side Information E

B asic | Securityl
Partner LU name:

[NETID

. IDS2LU Symbolic destination narme:

IDS2CF‘IC

tMode name:

IﬂINTEH "I

Partner LU alias:
IDS2QM GR

Fully qualified CP name:

METID 052rPU
I . I ! = Use partner LU name
Fartner LU name:;
1] I Cahcel | Apply Help I

 Lze partner LU alias

2. In the Partner LU name field on the Basic Partner LU alias:

page, enter the network name ([fH]) and LU
name of the remote system (). In the
Partner LU alias field, enter the remote LU
alias (/). In the Fully qualified CP name

IDSEQMGH "I

TF name:
[MasERIES

[T Service TP

fields, enter the network name and control
point name of the remote system (i and
EE]). Click on OK to continue.

Apply | Help |

o]

Cancel |

2. In the Symbolic destination name field of
the Basic page, enter the CPI-C name ([ff]).
In the Mode name field, enter the mode value
(). Enter either a fully qualified partner
LU name ([.3) or a partner LU alias
() depending on what you choose in the
CPI-C Side Information property sheet. In the
TP name field, enter the partner TP name
(J&]). Click on OK to continue.

Chapter 12. Example configuration - IBM MQSeries for Windows NT 185

Using IBM Communications Server

Configuring an invokable TP
To add a Transaction Program (TP) definition,
follow these steps:

1. From the SNA Node Configuration window,
select Configure Transaction Programs ,

then click on New. The Define a Transaction

Program property sheet is displayed.

Define a Tranzaction Program

Basic | Advanced I

TP name:
[MOSERIES

[T Sermwice TP

Complete pathhane:

Ic:\mwm\bln\achraﬁa.exe

Program parameters:

Corverzation ype:

I Either - I

Synchronization level: Ary ~

W Conversation security required

Ok I Cancel Spply Help

186 MQSeries Intercommunication

2. In the TP name field on the Basic page, enter

the transaction program name (). In the
Complete pathname field, enter the actual
path and name of the the program that will be
run when a conversation is initiated with your
workstation (JJJ). When you are happy with
the settings, click on OK to continue.

. In order to be able to stop the MQSeries

Transaction Program, you need to start it in
one of the following ways:

a. Check Service TP on the Basic page.
This starts the TP programs at Windows
NT startup and will run the programs
under the system user ID.

b. Check Dynamically loaded on the
Advanced page. This dynamically loads
and starts the programs as and when
incoming SNA conversation requests
arrive. It will run the programs under the
same user ID as the rest of MQSeries.

Note: To use dynamic loading, it is
necessary to vary the user ID under which
the MQSeries SNA Transaction program
runs. To do this, set the Attach Manager
to run under the desired user context by
modifying the startup parameters within
the Control Panel in the Services applet
for the AppnNode service.

c. Issue the MQSeries command, runmqlsr,
to run the channel listener process.

Communications Server has a tuning parameter
called the Receive_Allocate timeout parameter
that is set in the Transaction Program. The
default value of this parameter is 3600 and this
indicates that the listener will only remain active
for 3600 seconds, that is, 1 hour. You can make
your listener run for longer than this by increasing
the value of the Receive_Allocate timeout
parameter. You can also make it run ‘forever’ by
specifying zero.

What next?

The SNA configuration task is complete. From the
File pull-down, select Save and specify a file
name under which to save your SNA configuration
information, for example, NTCONFIG (|l}). When
prompted, select this configuration as the default.

From the SNA Node Operations application, start
the node by clicking the Start node button on the

Using IBM Communications Server

toolbar. Specify the file name of the configuration
you just saved. (It should appear in the file-name
box by default, because you identified it as your
default configuration.) When the node startup is
complete, ensure that your link to the remote node
has been established by selecting the
Connections button on the toolbar, then find the
link name you configured (for example,
LINKOOOO). The link should be active if the
remote node is active waiting for the link to be
established.

A complementary SNA setup process is required
on the node to which you are connecting before
you can attempt MQSeries server-to-server
message transmissions.

The LU 6.2 connection is now established. You
are ready to complete the configuration. Go to
“MQSeries for Windows NT configuration” on

page [191.

Chapter 12. Example configuration - IBM MQSeries for Windows NT 187

Windows NT and TCP e Windows NT and NetBIOS

Establishing a TCP connection

The TCP stack that is shipped with Windows NT does not include an inet daemon
or equivalent.

The MQSeries command used to start a TCP listener is:

runmglsr -t tcp

The listener must be started explicitly before any channels are started.

What next?

When the TCP/IP connection is established, you are ready to complete the
configuration. Go to “MQSeries for Windows NT configuration” on page [191.

Establishing a NetBIOS connection

A NetBIOS connection is initiated from a queue manager that uses the
ConnectionName parameter on its channel definition to connect to a target listener.
To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the
| MQSeries channel processes, in the Windows NT registry or in the queue
| manager configuration file gm.ini. For example, the NETBIOS stanza in the
| Windows NT registry at the sending end might look like this:

NETBIOS:
LocalName=WNTNETB1

and at the receiving end:
NETBIOS:
LocalName=WNTNETB2

Each MQSeries process must use a different local NetBIOS name. Do not use
your machine name as the NetBIOS name because Windows NT already uses
it.

2. At each end of the channel, verify the LAN adapter number being used on your
system. The MQSeries for Windows NT default for logical adapter number 0 is
NetBIOS running over a TCP/IP network. To use native NetBIOS you need to
select logical adapter number 1. See “Establishing the LAN adapter number”

on page

| Specify the correct LAN adapter number in the NETBIOS stanza of the the
| Windows NT registry. For example:

NETBIOS:
AdapterNum=1

3. So that sender channel initiation will work, specify the local NetBIOS name via
the MONAME environment variable:

SET MQNAME=WNTNETB1I

This name must be unique.

188 MQSeries Intercommunication

Windows NT and SPX

4. At the sending end, define a channel specifying the NetBIOS name being used
at the other end of the channel. For example:

DEFINE CHANNEL (WINNT.0S2.NET) CHLTYPE(SDR) +
TRPTYPE (NETBIOS) +
CONNAME (WNTNETB2) +
XMITQ(0S2) +
MCATYPE (THREAD) +
REPLACE

You must specify the option MCATYPE (THREAD) because, on Windows NT, sender
channels must be run as threads.

5. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (WINNT.0S2.NET) CHLTYPE(RCVR) +
TRPTYPE(NETBIOS) +
REPLACE

6. Start the channel initiator because each new channel is started as a thread
rather than as a new process.

runmqchi
7. At the receiving end, start the MQSeries listener:
runmglsr -t netbios

Optionally you may specify values for the queue manager name, NetBIOS local
name, number of sessions, number of names, and number of commands. See
“Defining a NetBIOS connection” on page [143]for more information about
setting up NetBIOS connections.

Establishing an SPX connection
This section discusses the following topics:

e |PX/SPX parameters
e SPX addressing
* Receiving on SPX

IPX/SPX parameters

Please refer to the Microsoft documentation for full details of the use and setting of
the NWLIink IPX and SPX parameters. The IPX/SPX parameters are in the
following paths in the registry:

HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkSPX\Parameters
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service\NWLinkIPX\Parameters

Chapter 12. Example configuration - IBM MQSeries for Windows NT 189

Windows NT and SPX

SPX addressing

MQSeries uses the SPX address of each machine to establish connectivity. The
SPX address is specified in the following form:

network.node (socket)

where

network Is the 4-byte network address of the network on which the remote
machine resides,

node Is the 6-byte node address, which is the LAN address of the LAN
adapter in the remote machine

socket Is the 2-byte socket number on which the remote machine will
listen.

The default socket number used by MQSeries is 5E86. You can change the
default socket number by specifying it in the the Windows NT registry or in the
gueue manager configuration file gm.ini. If you have taken the default options for
installation, the gm.ini file for queue manager OS2 is found in c:\mgm\gmgs\os2.
The lines in the Windows NT registry might read:

SPX:
SOCKET=n

For more information about values you can set in gm.ini, see Appendix D,
“Configuration file stanzas for distributed queuing” on page

The SPX address is later specified in the CONNAME parameter of the sender
channel definition. If the MQSeries systems being connected reside on the same
network, the network address need not be specified. Similarly, if the remote
system is listening on the default socket number (5E86), it need not be specified.
A fully qualified SPX address in the CONNAME parameter would be:

CONNAME ('network.node(socket) ')

but if the systems reside on the same network and the default socket number is
used, the parameter would be:

CONNAME (node)

A detailed example of the channel configuration parameters is given in “MQSeries
for Windows NT configuration” on page [191].

Receiving on SPX

Receiving channel programs are started in response to a startup request from the
sending channel. To do this, a listener program has to be started to detect
incoming network requests and start the associated channel.

You should use the MQSeries listener.

Using the MQSeries listener
To run the Listener supplied with MQSeries, that starts new channels as threads,
use the RUNMQLSR command. For example:

RUNMQLSR -t spx

Optionally you may specify the queue manager name or the socket number if you
are not using the defaults.

190 MQSeries Intercommunication

Windows NT configuration

MQSeries for Windows NT configuration

Notes:

1.

You can use the sample program, AMQSBCG, to display the contents and
headers of all the messages in a queue. For example:

AMQSBCG g_name gmgr_name

displays the contents of the queue g_name defined in queue manager
gmgr_name.

Alternatively, you can use the message browser in the MQSeries Explorer.

. The MQSeries command used to start the TCP/IP listener is:

runmglsr -t tcp

The listener enables receiver channels to start automatically in response to a
start request from an inbound sender channel.

. You can start any channel from the command prompt using the command

runmqchl -c channel.name

. Error logs can be found in the directories \mgm\gmgrs\gmgrname\errors and

\mgm\gmgrs\@system\errors. In both cases, the most recent messages are at
the end of amgerr01.log.

. When you are using the command interpreter runmgsc to enter administration

commands, a + at the end of a line indicates that the next line is a continuation.
Ensure that there is a space between the last parameter and the continuation
character.

Default configuration

You can create a default configuration by using either the First Steps application or
the MQSeries Postcard application to guide you through the process. For
information about this, see “Windows NT Default Configuration objects” in the
MQSeries System Administration book.

Basic configuration

You can create and start a queue manager from the MQSeries Explorer or from the
command prompt.

If you choose the command prompt:

1.

Create the queue manager using the command:

crtmgm -u dlgname -q winnt

where:
winnt Is the name of the queue manager
-q Indicates that this is to become the default queue manager

-u digname Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.

. Start the queue manager using the command:

strmgm winnt

where winnt is the name given to the queue manager when it was created.

Chapter 12. Example configuration - IBM MQSeries for Windows NT 191

Windows NT configuration

Channel configuration

The following sections detail the configuration to be performed on the Windows NT
gueue manager to implement the channel described in Figure 32 on page

In each case the MQSC command is shown. Either start runmgsc from a
command prompt and enter each command in turn, or build the commands into a

command file.

Examples are given for connecting MQSeries for Windows NT and MQSeries for
0OS/2 Warp. If you wish to connect to another MQSeries product use the
appropriate set of values from the table in place of those for OS/2.

Note: The words in bold are user-specified and reflect the names of MQSeries
objects used throughout these examples. If you change the names used here,
ensure that you also change the other references made to these objects throughout
this book. All others are keywords and should be entered as shown.

Table 17 (Page 1 of 3). Configuration worksheet for MQSeries for Windows NT

| Parameter Name

Reference

Example Used

User Value

Definition for local node

A Queue Manager Name

WINNT

a Local queue name

WINNT.LOCALQ

Connection to MQSeries for OS/2 Warp

The values in this section of the table must match those used in Table 15 on page , as indicated.
Remote queue manager name A 0S2

D Remote queue name OS2.REMOTEQ
E| Queue name at remote system B | OS2.LOCALQ
Transmission queue name 0S2

G| Sender (SNA) channel name WINNT.OS2.SNA
[H| Sender (TCP/IP) channel name WINNT.0S2.TCP
H Receiver (SNA) channel name G| OS2.WINNT.SNA
Receiver (TCP) channel name [H] OS2.WINNT.TCP
K | Sender (NetBIOS) channel name WINNT.OS2.NET
Sender (SPX) channel name WINNT.0S2.SPX
[M] Receiver (NetBIOS) channel name K | OS2.WINNT.NET
[N | Receiver (SPX) channel name OS2.WINNT.SPX
Connection to MQSeries for AlX

The values in this section of the table must match those used in Table 21 on page as indicated.
Remote queue manager name (A AIX

D Remote queue name AIX.REMOTEQ
E| Queue name at remote system B | AIX.LOCALQ

F| Transmission queue name AIX

G| Sender (SNA) channel name WINNT.AIX.SNA
[H| Sender (TCP) channel name WINNT.AIX.TCP
1] Receiver (SNA) channel name a AIX.WINNT.SNA
Receiver (TCP) channel name [H] AIX.WINNT.TCP

192 MQsSeries Intercommunication

Windows NT configuration

Table 17 (Page 2 of 3). Configuration worksheet for MQSeries for Windows NT

| Parameter Name | Reference | Example Used | User Value

Connection to MQSeries for HP-UX
The values in this section of the table must match those used in Table 23 on page as indicated.

Remote queue manager name [A] HPUX

D] Remote queue name HPUX.REMOTEQ
E| Queue name at remote system B | HPUX.LOCALQ
Transmission queue name HPUX

G| Sender (SNA) channel name WINNT.HPUX.SNA
[H| Sender (TCP) channel name WINNT.HPUX.TCP
H Receiver (SNA) channel name G| HPUX.WINNT.SNA
Receiver (TCP/IP) channel name m HPUX.WINNT.TCP

Connection to MQSeries for AT&T GIS UNIX
The values in this section of the table must match those used in Table 25 on page as indicated.

Remote queue manager name [A] GIS

D Remote queue name GIS.REMOTEQ
E| Queue name at remote system B GIS.LOCALQ
Transmission queue name GIS

G| Sender (SNA) channel name WINNT.GIS.SNA
[H| Sender (TCP/IP) channel name WINNT.GIS.TCP
ﬂ Receiver (SNA) channel name ﬂ GIS.WINNT.SNA
Receiver (TCP/IP) channel name [H| GIS.WINNT.TCP

Connection to MQSeries for Sun Solaris

The values in this section of the table must match those used in Table 27 on page as indicated.

Remote queue manager name SOLARIS

m Remote queue name SOLARIS.REMOTEQ
E | Queue name at remote system B] SOLARIS.LOCALQ
Transmission queue name SOLARIS

G| Sender (SNA) channel name WINNT.SOLARIS.SNA
[H| Sender (TCP) channel name WINNT.SOLARIS.TCP
ﬂ Receiver (SNA) channel name ﬂ SOLARIS.WINNT.SNA
Receiver (TCP) channel name [H] SOLARIS.WINNT.TCP
Connection to MQSeries for AS/400

The values in this section of the table must match those used in Table 42 on page as indicated.

Remote queue manager name AS400

D Remote queue name AS400.REMOTEQ
E | Queue name at remote system B | AS400.LOCALQ
[F] Transmission queue name AS400

G | Sender (SNA) channel name WINNT.AS400.SNA
[H| Sender (TCP) channel name WINNT.AS400.TCP
1] Receiver (SNA) channel name a AS400.WINNT.SNA
Receiver (TCP) channel name [H | AS400.WINNT.TCP

Chapter 12. Example configuration - IBM MQSeries for Windows NT

193

Windows NT configuration

Table 17 (Page 3 of 3). Configuration worksheet for MQSeries for Windows NT

| Parameter Name | Reference | Example Used | User Value

Connection to MQSeries for OS/390 or MVS/ESA without CICS
The values in this section of the table must match those used in Table 36 on page as indicated.

Remote queue manager name MVS

D] Remote queue name MVS.REMOTEQ
E| Queue name at remote system B | MVS.LOCALQ
Transmission queue name MVS

G| Sender (SNA) channel name WINNT.MVS.SNA
[H| Sender (TCP) channel name WINNT.MVS.TCP
H Receiver (SNA) channel name G| MVS.WINNT.SNA
Receiver (TCP/IP) channel name [H] MVS.WINNT.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in Table 44 on page as indicated.

Remote queue manager name VSE

D Remote queue name VSE.REMOTEQ
E| Queue name at remote system B VSE.LOCALQ
Transmission queue name VSE

G| Sender channel name WINNT.VSE.SNA
H Receiver channel name G | VSE.WINNT.SNA

MQSeries for Windows NT sender-channel definitions using SNA
def g1 (0S2) +

usage(xmitq) +

replace

def gr (0S2.REMOTEQ) +
rname (0S2.LOCALQ) +
rgmname (0S2) +
xmitq(0S2) +
replace

(n|olm o]

def chl (WINNT.0S2.SNA) chltype(sdr) +
trptype(lu62) +
conname (0S2CPIC) +
xmitq(0S2) +
replace

oy =

MQSeries for Windows NT receiver-channel definitions using

SNA
def g1 (WINNT.LOCALQ) replace B |
def chl (0S2.WINNT.SNA) chltype(rcvr) + 1]
trptype(lu62) +
replace

194 mQsSeries Intercommunication

Windows NT configuration

MQSeries for Windows NT sender-channel definitions using
TCP/IP
def q1 (0S2) +

usage(xmitq) +

replace

def gr (0S2.REMOTEQ) +
rname (0S2.LOCALQ) +
rgmname (0S2) +
xmitq(0S2) +
replace

(n|olmo

def chl (WINNT.0S2.TCP) chltype(sdr) +
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq(0S2) +
replace

MQSeries for Windows NT receiver-channel definitions using
TCP

def q1 (WINNT.LOCALQ) replace B |
def chl (0S2.WINNT.TCP) chltype(rcvr) +
trptype(tcp) +
replace

MQSeries for Windows NT sender-channel definitions using
NetBIOS
def q1 (0S2) +

usage(xmitq) +

replace

def gr (0S2.REMOTEQ) +
rname (0S2.LOCALQ) +
rgmname (0S2) +
xmitq(0S2) +
replace

(n|omo

def chl (WINNT.0S2.NET) chltype(sdr) +
trptype(netbhios) +
conname(remote system NetBIOS name) +
xmitq(0S2) +
replace

MQSeries for Windows NT receiver-channel definitions using
NetBIOS

def q1 (WINNT.LOCALQ) replace B
def chl (0S2.WINNT.NET) chltype(rcvr) + (M|
trptype(tcp) +
replace

Chapter 12. Example configuration - IBM MQSeries for Windows NT 195

Windows NT configuration

MQSeries for Windows NT sender-channel definitions using SPX

def q1 (0S2) +
usage(xmitq) +
replace

def gr (0S2.REMOTEQ) + D
rname (0S2.LOCALQ) + E|
rqmname (0S2) +
xmitq(0S2) +
replace

def chl (WINNT.0S2.SPX) chltype(sdr) +
trptype(spx) +
conname ('network.node(socket) ') +
xmitq(0S2) + F|

replace

MQSeries for Windows NT receiver-channel definitions using

SPX
def q1 (WINNT.LOCALQ) replace B |
def chl (0S2.WINNT.SPX) chltype(rcvr) + [N
trptype(tcp) +
replace

Automatic startup

MQSeries for Windows NT allows you to automate the startup of a queue manager
and its channel initiator, channels, listeners, and command servers. Use the IBM
MQSeries Services snap-in to define the services for the queue manager. When
you have successfully completed testing of your communications setup, set the
relevant services to automatic within the snap-in. This file can be read by the
supplied MQSeries service when the system is started.

For more information about this, see “Starting a queue manager automatically” in
the MQSeries System Administration book.

Running channels as processes or threads

MQSeries for Windows NT provides the flexibility to run sender channels as
Windows NT processes or Windows NT threads. This is specified in the
MCATYPE parameter on the sender channel definition. Each installation should
select the type appropriate for their application and configuration. Factors affecting
this choice are discussed below.

Most installations will select to run their sender channels as threads, because the
virtual and real memory required to support a large number of concurrent channel
connections will be reduced. When the MQSeries listener process (started via the
RUNMQLSR command) exhausts the available private memory needed, an
additional listener process will need to be started to support more channel
connections. When each channel runs as a process, additional processes are
automatically started, avoiding the out-of-memory condition.

196 MQSeries Intercommunication

Windows NT configuration

If all channels are run as threads under one MQSeries listener, a failure of the
listener for any reason will cause all channel connections to be temporarily lost.
This can be prevented by balancing the threaded channel connections across two
or more listener processes, thus enabling other connections to keep running. If
each sender channel is run as a separate process, the failure of the listener for that
process will affect only that specific channel connection.

A NetBIOS connection needs a separate process for the Message Channel Agent.
Therefore, before you can issue a START CHANNEL command, you must start the
channel initiator, or you may start a channel using the RUNMQCHL command.

Chapter 12. Example configuration - IBM MQSeries for Windows NT 197

Windows NT configuration

198 MQSeries Intercommunication

Communications in UNIX systems ¢ Deciding on a connection

Chapter 13. Setting up communication in UNIX systems

DQM is a remote queuing facility for MQSeries. It provides channel control
programs for the queue manager which form the interface to communication links,
controllable by the system operator. The channel definitions held by distributed
gueue management use these connections.

When a distributed queue management channel is started, it tries to use the
connection specified in the channel definition. For this to succeed, it is necessary
for the connection to be defined and available. This chapter explains how to do
this. You may also find it helpful to refer to the following chapters:

» Chapter 14, “Example configuration - IBM MQSeries for AIX" on page
e Chapter 15, “Example configuration - IBM MQSeries for HP-UX” on page

e Chapter 16, “Example configuration - IBM MQSeries for AT&T GIS UNIX
Version 2.2” on page

e Chapter 17, “Example configuration - IBM MQSeries for Sun Solaris” on
page

For OS/2 and Windows NT, see Chapter 10, “Setting up communication for OS/2
and Windows NT” on page For Digital OpenVMS, see Chapter 18, “Setting
up communication in Digital OpenVMS systems” on page For Tandem NSK,
see Chapter 19, “Setting up communication in Tandem NSK” on page

Deciding on a connection
There are three forms of communication for MQSeries on UNIX systems:

. TCP
e LUB.2
« UDP (AIX only)

Each channel definition must specify one only as the transmission protocol
(Transport Type) attribute. One or more protocols may be used by a queue
manager.

For MQSeries clients, it may be useful to have alternative channels using different
transmission protocols. See Chapter 5, “Configuring communication links” in the
MQSeries Clients book.

© Copyright IBM Corp. 1993,1999 199

Defining a TCP connection

Defining a TCP connection

The channel definition at the sending end specifies the address of the target. The
inetd daemon is configured for the connection at the receiving end.

Sending end

Specify the host name, or the TCP address of the target machine, in the
Connection Name field of the channel definition. The port to connect to will default
to 1414. Port number 1414 is assigned by the Internet Assigned Numbers
Authority to MQSeries.

To use a port number other than the default, change the connection name field
thus:

Connection Name REMHOST(1822)

where REMHOST is the hostname of the remote machine and 1822 is the port number
required. (This must be the port that the listener at the receiving end is listening
on.)

Alternatively you can change the port number by specifying it in the queue manager
configuration file (gm.ini):

TCP:
Port=1822

For more information about the values you set using QM.INI, see Appendix D,
“Configuration file stanzas for distributed queuing” on page

Receiving on TCP
You should use either the TCP/IP listener (INETD) or the MQSeries listener.

Using the TCP/IP listener
To use INETD to start channels on UNIX, two files must be configured:

1. Add a line in the /etc/services file:
MQSeries 1414/tcp
where 1414 is the port number required by MQSeries.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. You can change this, but it must match the port number specified at the
sending end.

2. Add a line in the inetd.conf file to call the program amqcrsta:

MQSeries stream tcp nowait mgm /mgmtop/bin/amgcrsta amgcrsta
[-m Queue_Man_Name]

200 MQsSeries Intercommunication

Defining a TCP connection

The updates are active after inetd has reread the configuration files. To do this,
issue the following commands from the root user ID:

e On AIX:
inetimp
refresh -s inetd
e On HP-UX:
inetd -c
e On other UNIX systems:

kill -1 <process number>

It is possible to have more than one queue manager on the server machine. You
must add a line to each of the two files, as above, for each of the queue managers.
For example:

MQSeriesl 1414/tcp
MQSeries2 1822/tcp

MQSeries2 stream tcp nowait mgm /mgmtop/bin/amgcrsta amgcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number
of outstanding connection requests queued at a single TCP port. For information

about the number of outstanding connection requests, see “Using the TCP listener
backlog option.”

Using the TCP listener backlog option

When receiving on TCP, a maximum number of outstanding connection requests is
set. This can be considered a backlog of requests waiting on the TCP port for the
listener to accept the request. The default listener backlog values are shown in
Table 18.

Table 18. Default outstanding connection requests

Platform Default listener backlog value
AIX V4.2 or later 100

AIX V4.1 10

HP-UX 20

Sun Solaris 100

All others 5

If the backlog reaches the values shown in Table 18, the TCP/IP connection is
rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state and
retrying the connection at a later time.

For client connections, the client receives an MQRC_Q_MGR_NOT_AVAILABLE
reason code from MQCONN and should retry the connection at a later time.

Chapter 13. Setting up communication in UNIX systems 201

Defining a TCP connection

However, to avoid this error, you can add an entry in the gm.ini file:

TCP:
ListenerBacklog = n

This overrides the default maximum number of outstanding requests (see Table 18
on page [201]) for the TCP/IP listener.

Note: Some operating systems support a larger value than the default. If
necessary, this can be used to avoid reaching the connection limit.

To run the listener with the backlog option switched on, use the RUNMQLSR -B
command. For information about the RUNMQLSR command, see “runmgqlsr (Run
listener)” in the MQSeries System Administration book.

Using the MQSeries listener
To run the listener supplied with MQSeries, which starts new channels as threads,
use the runmglsr command. For example:

runmglsr -t tcp [-m QMNAME] [-p 1822]

The square brackets indicate optional parameters; QMNAME is not required for the
default queue manager, and the port number is not required if you are using the
default (1414).

For the best performance, run the MQSeries listener as a trusted application as
described in “Running channels and listeners as trusted applications” on page
See “Connecting to a queue manager using the MQCONNX call” in the MQSeries
Application Programming Guide for information about trusted applications.

You can stop all MQSeries listeners running on a queue manager that is inactive,
using the command:

endmglsr [-m QMNAME]

If you do not specify a queue manager name, the default queue manager is
assumed.

Using the TCP/IP SO_KEEPALIVE option
If you want to use the SO_KEEPALIVE option (as discussed in “Checking that the
other end of the channel is still available” on page you must the add the
following entry to your queue manager configuration file (QM.INI) or the Windows
NT registry:
TCP:

KeepAlive=yes

On some UNIX systems, you can define how long TCP waits before checking that
the connection is still available, and how frequently it retries the connection if the
first check fails. This is either a kernel tunable parameter, or can be entered at the
command line. See the documentation for your UNIX system for more information.

On MQSeries for SINIX and DC/OSx you can set the TCP keepalive parameters by
using the idtune and idbuild commands to modify the TCP_KEEPCNT and
TCP_KEEPINT values for the kernel configuration. The default configuration is to
retry 7 times at 7200 second (2 hourly) intervals.

202 MQSeries Intercommunication

Defining an LU 6.2 connection

Defining an LU 6.2 connection

Sending end

SNA must be configured so that an LU 6.2 conversation can be established
between the two machines.

See the Multiplatform APPC Configuration Guide and the following table for
information.

Table 19. Settings on the local UNIX system for a remote queue manager platform

Remote TPNAME TPPATH
platform
0OS/390 or The same as the corresponding -
MVS/ESA TPName in the side information
without CICS on the remote queue manager.
0OS/390 or CKRC (sender) -
MVS/ESA CKSV (requester)
using CICS CKRC (server)
0S/400 The same as the compare value -
in the routing entry on the
0OS/400 system.
0Ss/2 As specified in the OS/2 Run <drive>:\mgm\bin\amqcrs6a

Listener command, or defaulted
from the OS/2 queue manager
configuration file.

UNIX systems

The same as the corresponding
TPName in the side information
on the remote queue manager.

mgmtop/bin/amqcrs6a

Windows NT

As specified in the Windows NT
Run Listener command, or the
invokable Transaction Program
that was defined using TpSetup
on Windows NT.

<drive>:\mgm\bin\amqcrs6a

If you have more than one queue manager on the same machine, ensure that the
TPnames in the channel definitions are unique.

e On UNIX systems other than SINIX, and DC/OSx, create a CPI-C side object
(symbolic destination) and enter this name in the Connection name field in the
channel definition. Also create an LU 6.2 link to the partner.

In the CPI-C side object enter the partner LU name at the receiving machine,
the transaction program name and the mode name. For example:

Partner LU Name
Remote TP Name

REMHOST
recv

Service Transaction Program no

Mode Name

#INTER

On HP-UX, use the APPCLLU environment variable to name the local LU that
the sender should use. On Sun Solaris, set the APPC_LOCAL_LU
environment variable to be the local LU name.

Chapter 13. Setting up communication in UNIX systems 203

Defining an LU 6.2 connection

SECURITY PROGRAM is used, where supported by CPI-C, when MQSeries
attempts to establish an SNA session.

e On SINIX, create an XSYMDEST entry in SNA configuration file (the TRANSIT
KOGS file), for example:

XSYMDEST sendMPO1,

RLU = forties,
MODE = MODE1,
TP = recvMPO1,
TP-TYP = USER,
SEC-TYP = NONE

See the MQSeries for SINIX and DC/OSx System Management Guide for more
information about the TRANSIT KOGS file.

e On DC/OSx, create an entry in the /etc/opt/lu62/cpic_cfg file, for example:

sendMPO1 <local LU name> <remote LU name> <mode name> <remote TP name>

Receiving on LU 6.2

e On UNIX systems other than SINIX, and DC/OSx, create a listening attachment
at the receiving end, an LU 6.2 logical connection profile, and a TPN profile.

In the TPN profile, enter the full path to the executable and the Transaction
Program name:

Full path to TPN executable mgmtop/bin/amqcrs6a
Transaction Program name recv
User ID 0

On systems where you can set the User ID, you should specify a user who is a
member of the mgm group. On HP-UX, set the APPCTPN (transaction name)
and APPCLLU (local LU name) environment variables (you can use the
configuration panels for the invoked transaction program). On Sun Solaris, set
the APPC_LOCAL_LU environment variable to be the local LU name.

On Sun Solaris, amgcrs6a requires the option -n tp_name, where tp_name is
the TP name on the receiving end of the SNA connection. It is the value of the
tp_path variable in the SunLink configuration file.

You may need to use a queue manager other than the default queue manager.
If so, define a command file that calls:

amgcrsba -m Queue_Man_Name

then call the command file. On AlX, this only applies up to version 3.2.5; for
later versions, use the TPN profile parameters as follows:

Use Command Line Parameters ? yes
Command Line Parameters -m Queue_Man_Name

204 MQsSeries Intercommunication

Defining an LU 6.2 connection

e On SINIX, create an XTP entry in the SNA configuration file (the TRANSIT
KOGS file), for example:

XTP recvMPO1,
UID = abcdefgh,
TYP = USER,
PATH = /home/abcdefgh/recvMPO1.sh,
SECURE = NO
Where /home/abcdefgh/recvMPO1.sh is a file that contains:
#1/bin/sh
#

script to start the receiving side for the gmgr MPO1
#
exec /opt/mgm/bin/amgcrs6a -m <queue manager>

See the MQSeries for SINIX and DC/OSx System Management Guide for more
information about the TRANSIT KOGS file.

e On DC/OSx, add a Transaction Program entry to the SNA configuration file,
including the following information:

TRANSACTION PROGRAM
transaction programname (ebcdic): recvMPO4
transaction program execute name:
"home/abcdefgh/recvMPO4 . sh
tp is enabled
tp supports basic conversations
tp supports mapped conversations
tp supports confirm synchronization
tp supports no synchronization
no verification is required
number of pip fields required: 0
privilege mask (hex): 0
(no privileges)

Chapter 13. Setting up communication in UNIX systems 205

Defining an LU 6.2 connection

206 MQSeries Intercommunication

MQSeries for AIX e AIX and LU 6.2

Chapter 14. Example configuration - IBM MQSeries for AIX

This chapter gives an example of how to set up communication links from
MQSeries for AIX to MQSeries products on the following platforms:

e 0S/2

e Windows NT

e HP-UX

e AT&T GIS UNIX4

e Sun Solaris

e 0S/400

e 0S/390 or MVS/ESA without CICS
e VSE/ESA

First it describes the parameters needed for an LU 6.2 connection, then it
describes:

» “Establishing a TCP connection” on page
 “Establishing a UDP connection” on page

Once the connection is established, you need to define some channels to complete
the configuration. This is described in “MQSeries for AIX configuration” on

page

See Chapter 7, “Example configuration chapters in this book” on page for
background information about this chapter and how to use it.

Configuration parameters for an LU 6.2 connection

Table 20 on page presents a worksheet listing all the parameters needed to
set up communication from AIX to one of the other MQSeries platforms. The
worksheet shows examples of the parameters, which have been tested in a working
environment, and leaves space for you to fill in your own values. An explanation of
the parameter names follows the worksheet. Use the worksheet in this chapter in
conjunction with the worksheet in the chapter for the platform to which you are
connecting.

Configuration worksheet

Use the following worksheet to record the values you will use for this configuration.
Where numbers appear in the Reference column they indicate that the value must
match that in the appropriate worksheet elsewhere in this book. The examples that
follow in this chapter refer back to the values in the ID column of this table. The
entries in the Parameter Name column are explained in “Explanation of terms” on

page [211.

4 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1993,1999 207

AlIX and LU 6.2

Table 20 (Page 1 of 3). Configuration worksheet for SNA Server for AIX

1D | Parameter Name Reference Example

User Value

Parameters for local node

Network name NETID

2] Control Point name AIXPU

H Node ID 07123456

4] Local LU name AIXLU

a Local LU alias AIXQMGR

6| TP Name MQSERIES

Full path to TP executable usr/lpp/mgm/bin/amgcrs6a
B Token-ring adapter address 123456789012

9] Mode name #INTER

Connection to an OS/2 system

The values in this section of the table must match those used in Table 14 on page as indicated.

Network name A NETID

Remote LU name 6 | 0Ss2LU

Remote Transaction Program name 8] MQSERIES

LU 6.2 CPI-C Side Information profile 0OS2CPIC
name

Mode name #INTER

LAN destination address 10005AFC5D83

Token-Ring Link Station profile name OS2PRO

CP name of adjacent node 0S2PU

LU 6.2 partner location profile name OS2LOCPRO

Connection to a Windows NT system

The values in this section of the table must match those used in Table 16 on page as indicated.

Network name 2] NETID
Remote LU name 5] WINNTLU
Remote Transaction Program name MQSERIES
LU 6.2 CPI-C Side Information profile NTCPIC
name
Mode name #INTER
LAN destination address 9] 08005AA5FAB9
Token-Ring Link Station profile name NTPRO
CP name of adjacent node WINNTCP
LU 6.2 partner LU profile name NTLUPRO

208 MQSeries Intercommunication

AlX and LU 6.2

Table 20 (Page 2 of 3). Configuration worksheet for SNA Server for AIX

ID | Parameter Name

| Reference | Example

| User Value

Connection to an HP-UX system

The values in this section of the table must match those used in Table 22 on page as indicated.

Network name 4] NETID

Remote LU name 5 | HPUXLU

Remote Transaction Program name MQSERIES

LU 6.2 CPI-C Side Information profile HPUXCPIC
name

Mode name a #INTER

LAN destination address B 100090DC2C7C

Token-Ring Link Station profile name HPUXPRO

CP name of adjacent node 2] HPUXPU

LU 6.2 partner LU profile name HPUXLUPRO

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in Table 24 on page as indicated.

Network name 2] NETID

Remote LU name 4] GISLU

Remote Transaction Program name 5] MQSERIES

LU 6.2 CPI-C Side Information profile GISCPIC
name

Mode name #INTER

LAN destination address 8] 10007038E86B

Token-Ring Link Station profile name GISPRO

CP name of adjacent node GISPU

LU 6.2 partner LU profile name GISLUPRO

Connection to a Sun Solaris system

The values in this section of the table must match those used in Table 26 on page as indicated.

Network name A NETID

Remote LU name SOLARLU

Remote Transaction Program name 8] MQSERIES

LU 6.2 CPI-C Side Information profile SOLCPIC
name

Mode name #INTER

5] LAN destination address 5 | 08002071CC8A

Token-Ring Link Station profile name SOLPRO

CP name of adjacent node SOLARPU

LU 6.2 partner LU profile name SOLLUPRO

Chapter 14. Example configuration - IBM MQSeries for AIX 209

AlIX and LU 6.2

Table 20 (Page 3 of 3). Configuration worksheet for SNA Server for AIX

ID | Parameter Name

| Reference | Example

| User Value

Connection to an AS/400 system

The values in this section of the table must match those used in Table 41 on page as indicated.

Network name NETID

Remote LU name AS400LU

Remote Transaction Program name B MQSERIES

LU 6.2 CPI-C Side Information profile ASA4CPIC
name

Mode name #INTER

LAN destination address 4] 10005A5962EF

Token-Ring Link Station profile name AS4PRO

CP name of adjacent node 2] AS400PU

LU 6.2 partner LU profile name AS4LUPRO

Connection to an 0S/390 or MVS/ESA system without CICS

The values in this section of the table must match those used in Table 35 on page as indicated.

Network name 2] NETID

Remote LU name MVSLU

Remote Transaction Program name MQSERIES

LU 6.2 CPI-C Side Information profile MVSCPIC
name

Mode name #INTER

LAN destination address 8] 400074511092

Token-Ring Link Station profile name MVSPRO

CP name of adjacent node MVSPU

LU 6.2 partner LU profile name MVSLUPRO

Connection to a VSE/ESA system

The values in this section of the table must match those used in Table 43 on page as indicated.

Network name NETID

Remote LU name VSELU

Remote Transaction Program name 4] MQO1

LU 6.2 CPI-C Side Information profile VSECPIC
name

Mode name #INTER

LAN destination address 5 | 400074511092

Token-Ring Link Station profile name VSEPRO

CP name of adjacent node 2] VSEPU

LU 6.2 partner LU profile name VSELUPRO

210 MQSeries Intercommunication

AlX and LU 6.2

Explanation of terms

Network name
This is the unique ID of the network to which you are connected. Your
network administrator will tell you this value.

H Control Point name
This is a unique control point name for this workstation. Your network
administrator will assign this to you.

El XID node ID
This is a unique identifier for this workstation. On other platforms it is often
referred to as the exchange ID (XID). Your network administrator will assign
this to you.

B Local LU name
A logical unit (LU) manages the exchange of data between systems. The
local LU name is the name of the LU on your system. Your network
administrator will assign this to you.

B Local LU alias
The local LU alias is the name by which your local LU is known to your
applications. You can choose this hame yourself. It need be unique only on
this machine.

@ TP Name
MQSeries applications trying to converse with this workstation will specify a
symbolic name for the program to be run at the receiving end. This will have
been defined on the channel definition at the sender. It is recommended that
when AIX is the receiver a Transaction Program Name of MQSERIES is
used, or in the case of a connection to VSE/ESA, where the length is limited
to 4 bytes, use MQTP.

See Table 19 on page [203|for more information.

Full path to TP executable
This is the path and name of a shell script file that invokes the actual program
to be run when a conversation is initiated with this workstation. You can
choose the path and name of the script file. The contents of the file are
illustrated in “MQSeries for AIX TPN setup” on page

B Token-ring adapter address
This is the 12-character hex address of the token-ring card. It can be found
by entering the AIX command:

1sfg -v -1 tokn

where n is the number assigned to the token-ring adapter you are using. The
Network Address field of the Token-Ring section indicates the adapter’s
address.

El Mode name
This is the name of a configuration profile used by SNA Server for AIX. The
profile contains the set of parameters that control the APPC conversation.
The mode name specified in the profile will be assigned to you by your
network administrator. You supply the name to be used for the profile.

LU 6.2 CPI-C Side Information profile name
This is a name given to the Side Information profile defining a partner node.
You supply the name. It needs to be unique only on this machine. You will
later use the name in the MQSeries sender channel definition.

Chapter 14. Example configuration - IBM MQSeries for AIX 211

AlIX and LU 6.2

Token-Ring Link Station profile name
This is the name of a configuration profile used by SNA Server for AIX. You
supply the name to be used for the profile. The link station profile associates
the link station with the SNA DLC profile, which has been used to define the
hardware adapter and link characteristics, and the node control point.

CP name of adjacent node
This is the unique control point name of the partner system which which you
are establishing communication. Your network administrator will assign this to
you.

LU 6.2 partner LU profile name
This is the name of a configuration profile used by SNA Server for AIX. You
supply the name to be used for the profile. It needs to be unique only on this
machine. The profile defines parameters for establishing a session with a
specific partner LU. In some scenarios, this profile may not be required but it
is shown here to reduce the likelihood of error. See the SNA Server for AlX
Configuration Reference manual for details.

212 MQSeries Intercommunication

Using SNA Server for AIX

| Establishing a session using SNA Server for AIX V5

Configuring your node

This configuration uses a token ring setup. To
define the end node to connect to the network
node (assuming that a network node already

exists), you need to:

1. Click on Services from the main menu on the

main window.

2. Select Configuration node parameters ...

Verify the level of SNA software you have installed by entering the AIX command:
1sT1pp -h sna.rte

The level displayed in the response needs to be at least Version 5.0.

To update the SNA configuration profile, you need root authority. (Without root
authority you can display options and appear to modify them, but cannot actually
make any changes.) You can make configuration changes when SNA is either
active or inactive.

The configuration scenario that follows was accomplished using the graphical
interface.

Note: The setup used is APPN using independent LUs.

If you are an experienced user of AlX, you may choose to circumvent the panels
and use the command-line interface. Refer to the SNA Server for AIX
Configuration Reference manual to see the commands that correspond to the
panels illustrated.

Throughout the following example, only the panels for profiles that must be added

or updated are shown.

3. Click on End node for APPN support

4. In the SNA addressing box, enter a name
and alias for the Control point. The Control
point name consists of a Network name ([|{)
and a Control point name (H).

5. Enter the Node ID (|EJ) of your local machine.

6. Click on OK.

You have now configured your node to connect to
the network node.

from the drop-down list.

A windows entitled Node parameters
appears:

Configuring connectivity to the
network

1. Defining your port:

Node parameters

|

|

|

| a. From the main menu of the main window,
| click on Services , Connectivity , and New
| port ...

| A window entitled Add to machine name
| screen appears.

|

|

|

b. Select the default card for connecting to
the network (Token ring card).

c. Click on OK.

Chapter 14. Example configuration - IBM MQSeries for AIX 213

Using SNA Server for AIX

A window entitled Token ring SAP | A window entitled Token ring link station
appears: | appears:

Token ring link station

Token ring SAP

d. Enter a port name in the SNA port name
box, for example, MQPORT.

e. Check Initially Active .
f. Click on OK.

2. Defining your connection to the network node:

c. Enter a name for your link station ().
for example, NETNODE.

d. Enter the port name to which you want to
connect the link station. In this case, the
port name would be MQPORT.

e. Check Any in the LU traffic box.

a. From the main menu on the main window,
click on Services , Connectivity , and New
link station ...

b. Click on OK to link your station to the

chosen port (MQPORT). f. Define where the remote node is by

|

|

|

|

|

|

|

| entering the control point on the network
| node in the Independent LU traffic box.
| The control point consists of a Network

| name (JfJ) and a CP name of adjacent
| node ().

| Note: The network node does not have
| to be on the remote system that you are
| connecting to.

|

|

|

|

I

|

I

|

I

g. Ensure the Remote node type is
Network node .

h. In the Contact information , enter the
MAC address () of the token ring
card on the network node.

Note: The network node does not have
to be on the remote system that you are
connecting to.

i. Click on Advanced

214 MQSeries Intercommunication

Using SNA Server for AIX

A window entitled Token ring parameters | 2. Enter an LU name (JJ) and alias (B).
appears. | 3. Click on OK.

Token ring parameters

| You have now set up a basic SNA system.

| To define the mode controlling the SNA session

| limits:

| 1. From the main menu in the main window, click
| on Services , APPC, and Modes
|

|

I

A Modes window appears.
2. Select the New ... button.

A window entitled Mode appears:

= Mode

j- Check Remote node is network node
server .

k. Click on OK.

The Token ring link station ~ window
remains on the screen.

I. Click on OK on the Token ring link
station window.

Defining a local LU

To define a local LU:

1. From the main menu on the main window,
click on Services , APPC, and New |
independent local LU

Figure 34. Mode window

3. Enter a Name (|g]) for your mode.

A window entitled Local LU appears:) L
4. When you are happy with the session limits,

click on OK.

Local LU

The Modes window remains on the screen.

5. Click on Done in the Modes window.

| Defining a transaction program

| This section describes how to define a transaction
| program. To do this, use the command line rather

Figure 33. Local LU window | than the graphical interface.

Chapter 14. Example configuration - IBM MQSeries for AIX 215

Using SNA Server for AIX

2) Verify the Application TP ().
3) Verify the Full path to TP executable

(HD.

1. Defining a transation program for the receiver
end of the channel:

a. Name your transaction program ([):

snaadmin define_tp, tp_name=MQSERIES 2. Defining the CPI-C side information for the

where MQSERIES can be any name that sender channel:

matches the name used on the CPI-C
side information at the sender end of the

|
|
|
|
|
| You can define the CPI-C side information for
| the sender channel using the graphical
channel. | interface:
b. Define the program your transaction | a. From the main menu on the main window,
I
I
I
I
|
I

click on Services , APPC, and CPI-C

A CPI-C destination names window
appears.

program (MQSERIES) relates to, that is, the
receiving MQSeries channel:

|

I

|

|

I

|

|

|

|

|

I

| snaadmin define_tp_load_info,

| tp_name=MQSERIES, userid=mgm, group=mgm,)

| sty] e:COMPATIBLE’ path:/usr/]pp/mqm/b'|n/ b C“Ck on the New ... button
I
I
I
|
I
|
I
|
|
|
|
I

amqcrséa, arguments=-m AIX -n MQSERIES A window entitled CPI-C destination

where AIX and MQSERIES can be upper or appears:
lower case but must be the same

throughout.

CPI-C destination

c. View the definition you have just created
through the graphical interface:

1) From the main window, click on
Services , APPC, and Transaction
programs ...

A window entitled TP invocation
appears for you to view your
configuration:

= TP invocation

This window lets you define the LU that
you want to connect to and the transaction
program you want to start:

c. Enter a Name, ([E]). You must specify
this name in the CONNAME parameter of
the channel.

216 MQSeries Intercommunication

d. Check Specify local LU alias and enter
the LU alias value (H).

e. In the Partner LU and mode box, check
Use PLU full name and enter the name
of the remote machine to which you are
connecting. This consists of a Network
name (JfJ) and a Remote LU name

(E).

f. Enter the Mode ().

Using SNA Server for AIX

| To start the transaction program on the
| remote machine:

| a. Check Application TP in the Partner TP

| box.

| b. Enter the name of the transaction program

I (H).

| c. Click on OK.

Chapter 14. Example configuration - IBM MQSeries for AlIX

217

AIX and TCP e AIX and UDP

Establishing a TCP connection
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or
root. If you do not have the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add
it as shown:

MQSeries stream tcp nowait root /usr/mgm/bin/amgcrsta amgcrsta
[-m que