

WebSphere MQ for Linux (Intel) V5.3 -
Performance Evaluations

Version 1.0

24th October 2002

Mark Orchard

Peter Toghill.

WebSphere MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Take Note!

Before using this report, be sure to read the general information under “Notices”.

First Edition, November 2002
This edition applies to V1.0 of WebSphere MQ for Linux V5.3 – Performance Evaluations
and to all subsequent releases and modifications until otherwise indicated in new editions.
(C) Copyright International Business Machines Corporation 2002. All rights reserved. Note
to U.S. Government users – Documentation related to restricted rights – Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM corp.

Page II

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Notices
This report is intended to help the reader understand the performance characteristics of
WebSphere MQ for Linux V5.3. The information is not intended as the specification of any
programming interfaces that are provided by WebSphere MQ.

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which it operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “as-is”. The use of this information and the implementation of any of the
techniques is the responsibility of the customer. Much depends on the ability of the reader to
evaluate the information and project the results to their operational environment.

The performance measurements included in this report were measured in a controlled
environment and the results obtained in other environments may vary significantly.

Trademarks and service marks:
The following terms used in this publication are trademarks of the IBM Corporation in the
United States or other countries or both:

IBM

MQSeries

WebSphere MQ

SupportPac

FFST

Red Hat is a registered trademark of Red Hat, Inc

Intel and xeon are registered trademarks of Intel Corporation

Linux is a registered trademark of Linus Torvalds

Page i

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Preface
Target audience
This SupportPac is designed for people who:

• Will be designing and implementing solutions using WebSphere MQ for Linux

• Want to understand the performance limits of WebSphere MQ for Linux V5.3

• Want to understand what actions may be taken to tune WebSphere MQ for Linux

The reader should have a general awareness of the Linux Red Hat Operating System and of
MQSeries in order to make best use of this SupportPac. Readers should read the section
‘How this document is arranged’—Page iii to familiarise themselves with where specific
information can be found for later reference.

The contents of this SupportPac
This SupportPac includes:

• Release highlights performance charts,

• Performance measurements with figures and tables to present the performance
capabilities of WebSphere MQ local queue manager, client channel, and distributed
queuing scenarios,

• Interpretation of the results and implications on designing or sizing WebSphere MQ
local queue manager, client channel, and distributed queuing configurations.

Feedback on this SupportPac
We welcome constructive feedback on this report. Does it provide the sort of information you
want? Do you feel something important is missing? Is there too much technical detail, or not
enough? Could the material be presented in a manner more useful to you? Please direct any
comments of this nature to: WMQPG@uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be
directed to your local IBM Representative or Support Center.

Acknowledgements
The author is very grateful to Richard Eures for help in producing this report.

Page ii

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Introduction
The three scenarios in this report used to generate the performance data are classified into:
the local queue manager scenario, the client channel scenario, and the distributed queuing
scenario. The performance improvements in WebSphere MQ V5.3 can be divided into two
areas:

• queue manager enhancements, and
• channel capacity enhancements.

The enhancements to the queue manager are apparent through many of the measurements
in this report where WebSphere MQ V5.3 is compared to Version 5.2. Channel capacity
enhancements are covered briefly in the release highlights section and in more detail towards
the end of the report.

Unless otherwise specified, the standard message sized used for all the measurements in this
report is 2K (2,048 bytes), trusted channels using the inetd ‘amqcrsta’ listener, and nontrusted
threaded server application are used.

A Netfinity 4-way Intel (xeon) 700MHz with 8GB of RAM was used as the device under test
for all the measurements in this report.

How this document is arranged
Release highlights
Pages: 1-3
Section one outlines the major performance improvements achieved in WebSphere MQ V5.3
compared to Version 5.2. The highlights are a subset of the results shown in the performance
headlines section.

Performance headlines
Pages: 4-15
Section two of the document contains the performance headlines for each of the three test
scenarios, with MQI applications connected to:

• a local queue manager,
• to a remote queue manager over MQI-client channels, and
• to a local queue manager, driving throughput between the local and remote queue

manager, over server channel pairs.

The headline tests show:

• the maximum message throughput achieved with an increasing number of MQI
applications,

• the maximum message throughput achieved using MQI-clients connected to a queue
manager

• the maximum message throughput achieved over server channel pairs between two
queue managers.

Large messages
Pages: 17-26
Section three of the document contains performance measurements for large messages.
This includes MQI response times of 50byte to 2MB messages, and 20K and 200K messages
using the same test scenarios as for the performance headlines.

Page iii

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Trusted server application
Pages: 29-29
Section four contains performance measurements for a trusted server application, using the
three test scenarios as for the performance headlines.

Appendix A Measurement environment

Pages: 33-36
Detailed discussion on further tuning parameters for MQSeries Queue Managers and a
summary of the way in which the workload is used in each test scenario is given in the
performance headlines section

Glossary:
Pages: 37

A short glossary of the terms used in the tables throughout this document

Page iv

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

CONTENTS
1 Release highlights ..1

1.1 Improvements to nonpersistent and persistent messaging1
1.2 Peak message throughput – local queue manager1
1.3 Peak message throughput – client channels..2
1.4 Peak message throughput – distributed queuing ...3

2 Performance headlines...4
2.1 Local queue manager test scenario ...4

2.1.1 Nonpersistent messages – local queue manager ... 5
2.1.2 Persistent messages – local queue manager.. 6

2.2 Client channels test scenario ...7
2.2.1 Nonpersistent Messages – Client channels... 8
2.2.2 Persistent messages – client channels.. 9
2.2.3 ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener – client channels................................... 10

Distributed queuing test scenario...12
2.2.4 Persistent messages – server channels .. 14
2.2.5 ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener – server channels 15

3 Large messages ...17
3.1 MQI response times: 50bytes to 2MB – local queue manager...................17
3.2 Large messages: 20K and 200K – local queue manager...........................20
Large messages: 20K and 200K – client channels ..23
3.3 Large messages: 20K and 200K – distributed queuing..............................26

4 Trusted server application...29
5 MQSeries Tuning recommendations ..30

5.1 Tuning the queue manager ..30
5.1.1 Queue disk, Log disk, and message persistence .. 30
5.1.2 Log buffer size, Log file size, and number of log extents 31
5.1.3 Channels: process or thread, standard or fastpath? ... 31

5.2 Application design and configuration..32
5.2.1 Standard or fastpath? .. 32
5.2.2 Parallelism, batching, and triggering.. 32

Appendix A Measurement environment ...33
A.1 Workload description ...33

A.1.1 MQI response time tool ... 33
A1.2 Test scenarios workload... 34

A.2 Hardware ...36
A.3 Software...36

Glossary...37

Page v

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

TABLES
Table 1 – Performance headline, nonpersistent messages, local queue manager5
Table 2 – Performance headline, persistent messages, local queue manager6
Table 3 – Performance headline, nonpersistent messages, client channels8
Table 4– Performance headline, persistent messages, client channels9
Table 5 – 1 round trip per driving application per second, client channels11
Table 6 – Performance headline, nonpersistent messages, server channels............13
Table 7 – Performance headline, persistent messages, server channels..................14
Table 8 – 1 round trip per driving application per second, server channels...............16
Table 9 – 2K, 20K and 200K messages, local queue manager20
Table 10 – 2K, 20K and 200K messages, client channels...23
Table 11 – 2K, 20K and 200K messages, server channels26
Table 12 – Trusted server application, local queue manager29

Page vi

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

FIGURES
Figure 1 – Peak message throughput, local queue manager1
Figure 2 – Peak message throughput, client channels ..2
Figure 3 – Peak message throughput, distributed queuing..3
Figure 4 – Connections into a local queue manager..4
Figure 5 – Performance headline, nonpersistent messages, local queue manager5
Figure 6 – Performance headline, persistent messages, local queue manager6
Figure 7 – MQI-client channels into a remote queue manager7
Figure 8 – Performance headline, nonpersistent messages, client channels8
Figure 9 – Performance headline, persistent messages, client channels9
Figure 10 - 'runmqlsr' vs. inetd 'amqcrsta' listener, client channels............................11
Figure 11 – Server channels between two queue managers.....................................12
Figure 12 – Performance headline, nonpersistent messages, server channels13
Figure 13 – Performance headline, persistent messages, server channels14
Figure 14 – ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener, server channels.........................15
Figure 15 – ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener, server channels.........................16
Figure 16 – Effect of message size on MQI response time (50byte - 32K)................17
Figure 17 – Effect of message size on MQI response time (32K - 2MB)18
Figure 18 – Effect of message size on trusted MQI response time (50byte - 32K)....19
Figure 19 – Effect of message size on trusted MQI response time (32K - 2MB)19
Figure 20 – 2K and 20K nonpersistent messages, local queue manager..................21
Figure 21 – 2K and 20K persistent messages, local queue manager........................21
Figure 22 – 200K nonpersistent and persistent messages, local queue manager22
Figure 23 – 2K and 20K nonpersistent messages, client channels24
Figure 24 – 2K and 20K persistent messages, client channels24
Figure 25 – 200K nonpersistent and persistent messages, client channels25
Figure 26 – 2K and 20K nonpersistent messages, server channels..........................27
Figure 27 – 2K and 20K persistent messages, server channels................................27
Figure 28 – 200K nonpersistent and persistent messages, server channels.............28
Figure 29 – Trusted server application, local queue manager29

Page vii

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

1 Release highlights

1.1 Improvements to nonpersistent and persistent messaging

• Nonpersistent Messages
• 70%: In a local queue manager environment
• 47%: In an MQI-client environment,
• 40%: In a distributed queuing environment.

• Persistent messages
• 216%: In a local queue manager environment
• 198%: In an MQI-client environment
• 102%: In a distributed queuing environment.

1.2 Peak message throughput – local queue manager
Figure 1 shows the peak round trips per second achieved for nonpersistent and persistent
messages with a local queue manager, MQSeries V5.2 vs. WebSphere MQ V5.3.

Local queue manager
peak message throughput

3,167

247

5,392

781

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000

R
ou

nd
 T

/s Nonpersistent (V5.2)
Persistent (V5.2)
Nonpersistent (V5.3)
Persistent (V5.3)

Figure 1 – Peak message throughput, local queue manager

Note: messaging in these tests is with no think-time.

Page 1

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

1.3 Peak message throughput – client channels
Figure 2 below shows the peak round trips per second achieved for nonpersistent and
persistent messages with MQI-client channels, MQSeries V5.2 vs. WebSphere MQ V5.3.

Client channels
peak message throughput

2,660

239

3,913

711

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

R
ou

nd
 T

/s Nonpersistent (V5.2)
Persistent (V5.2)
Nonpersistent (V5.3)
Persistent (V5.3)

Figure 2 – Peak message throughput, client channels
Note: messaging in these tests is with no think-time.

Page 2

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

1.4 Peak message throughput – distributed queuing
Figure 3 shows the peak round trips per second achieved for nonpersistent and persistent
messages with server channels, MQSeries V5.2 vs. WebSphere MQ for V5.3.

Distributed queuing
peak message throughput

3,067

288

4,283

582

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

R
ou

nd
 T

/s Nonpersistent (V5.2)
Persistent (V5.2)
Nonpersistent (V5.3)
Persistent (V5.3)

Figure 3 – Peak message throughput, distributed queuing
Note: messaging in these tests is with no think-time.

Page 3

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2 Performance headlines
The measurements for the local queue manager scenario are for processing messages with
no think-time. For the client channel scenario and distributed queuing scenario, there are
also measurements for rated messaging.

No think-time is defined as when the driving applications do not wait after getting a reply
message before submitting subsequent request messages—this is also referred to as tight-
loop.

In the rated messaging tests, the rate used is 1 round trip per driving application per second.
In the client channel test scenarios, each driving application using a dedicated MQI-client
channel, in the distributed queuing test scenarios, one or more applications submit messages
over a fixed number of server channels.

All tests are automatically stopped after the response time of 1 round trip exceeds 1 second.

2.1 Local queue manager test scenario

Figure 4 – Connections into a local queue manager

Server application

2

Driving applications

3
1

Reply queue Local queue manager

Input queue

1) The driving application puts a message to the common input queue on the local queue manager,
and holds on to the message identifier returned in the message descriptor. The driving
application then waits indefinitely for a reply to arrive on the common reply queue.

2) The server application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request
message to the correlation identifier of the reply message.

3) The driving application gets a reply from the common reply queue using the message identifier
held from when the request message was put to the common input queue, as the correlation
identifier in the message descriptor.

Nonpersistent and persistent messages were used in the local queue manager tests, with a
message size of 2K. The effect of message throughput with larger messages sizes is
investigated in ‘MQI response times: 50bytes to 2MB – local queue manager’—Page 17,
and ‘Large messages: 20K and 200K – local queue manager’—Page 20

Page 4

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.1.1 Nonpersistent messages – local queue manager
Figure 5 and Table 1 show that the peak throughput of nonpersistent messages has
increased in Version 5.3 compared to Version 5.2. Using 8 driving applications nonpersistent
throughput is improved by 78% (3,021 cf. 5,392 RT/s). Version 5.3 shows a consistent
throughput improvement — which is important in most queue manager systems.

Local queue manager - nonpersistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3

0

1,000

2,000

3,000

4,000

5,000

6,000

0 5 10 15 20 25

Driving applications

R
ou

nd
 T

/s

MQSeries V5.2 WebSphere MQ V5.3

Figure 5 – Performance headline, nonpersistent messages, and local queue manager
Note: messaging in these tests is with no think-time.

Test name Product version Apps Round T/s % Resp time (s)

local_np1 MQSeries
V5.2

5
(8)

(20)

3,167
(3,021)
(2,422)

n/a 0.002
(0.003)
(0.010)

local_np1 WebSphere
MQ V5.3

(5)
8

(20)

(5,251)
5,392
(5,077)

(+66)
+78

(+110)

(0.001)
0.002
(0.005)

Table 1 – Performance headline, nonpersistent messages, local queue manager
Note: the large bold figures in the table above show the peak number of round trips per second, and the
number of driving applications used to achieve the peak throughput. The smaller figures in brackets are
included in the table to provide meaningful comparison between WebSphere MQ V5.3 and Version 5.2.
The percentage column shows the percentage Round T/s improvement of Version 5.3 over Version 5.2.

Page 5

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.1.2 Persistent messages – local queue manager
Figure 6 and Table 2 below show that the peak throughput of persistent messages has
increased by 216% (247 cf. 780 RT/s) comparing Version 5.2 to Version 5.3. Using 20 driving
applications persistent throughput is improved by 52% (247 cf. 377 RT/s). Version 5.3 has
the advantage of improved scalability when using 8 or more driving applications.

Local queue manager - persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140

Driving applications

R
ou

nd
 T

/s

MQSeries V5.2 WebSphere MQ V5.3

Figure 6 – Performance headline, persistent messages, and local queue manager
Note: messaging in these tests is with no think-time.

Test name Product version Apps Round T/s % Resp time (s)

local_pm1 MQSeries
V5.2

20
 (120)

247
 (208)

n/a 0.09
 (0.638)

local_pm1 WebSphere
MQ V5.3

(20)
 120

(377)
 780

(+52)
 +276

(0.063)
 0.184

Table 2 – Performance headline, persistent messages, local queue manager
Note: the large bold figures in the table above show the peak number of round trips per second, and the
number of driving applications used to achieve the peak throughput. The smaller figures in brackets are
included in the table to provide meaningful comparison between WebSphere MQ V5.3 and Version 5.2.
The percentage column shows the percentage Round T/s improvement of Version 5.3 over Version 5.2.

Page 6

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.2 Client channels test scenario

Figure 7 – MQI-client channels into a remote queue manager

Driving machine

Driving
application

Server
application

Input queue

Reply queue

Client channel
5

4
3 21

Server machine

Remote queue manager

1, 2) The driving application puts a request message (over a client channel), to the common input
queue, and holds on to the message identifier returned in the message descriptor. The driving
application then waits indefinitely for a reply to arrive on the common reply queue.

3) The server application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request
message to the correlation identifier of the reply message.

4, 5) The driving application gets the reply message (over the client channel), from the common reply
queue. The driving application uses the message identifier held from when the request message
was put to the common input queue, as the correlation identifier in the message descriptor.

Nonpersistent and persistent messages were used in the client channel tests, with a message
size of 2K. The effect of message throughput with larger messages sizes is investigated in
‘Large messages: 20K and 200K – client channels’—Page 23.

Page 7

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.2.1 Nonpersistent Messages – Client channels

Figure 8 and Table 3 below show that the peak throughput of nonpersistent messages is
higher comparing Version 5.2 to Version 5.3, with the advantage of improved scalability when
using as few as 5 driving applications (throughput up by 47% : 2,660 cf. 3,913 RT/s). Using
20 driving applications throughput is improved by 75% : 2,153 cf. 3,765 RT/s).

Client channels - nonpersistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 5 10 15 20 25

Driving applications

R
ou

nd
 T

/s

MQSeries V5.2 WebSphere MQ V5.3

Figure 8 – Performance headline, nonpersistent messages, and client channels
Note: messaging in these tests is with no think-time.

Test name Product version Apps Round T/s % Resp time (s)

clnp1 (inetd) MQSeries
V5.2

7
(11)
(20)

2,660
(2,507)
(2,153)

n/a 0.003
(0.005)
(0.011)

clnp1 (inetd) WebSphere
MQ V5.3

(7)
11
(20)

(3,663)
3,913
(3,765)

(+38)
+56
(+75)

(0.002)
0.003
(0.012)

Table 3 – Performance headline, nonpersistent messages, and client channels
Note: the large bold figures in the table above show the peak number of round trips per second, and the
number of driving applications used to achieve the peak throughput. The smaller figures in brackets are
included in the table to provide meaningful comparison between WebSphere MQ V5.3 and Version 5.2.
The percentage column shows the percentage Round T/s improvement of Version 5.3 over Version 5.2.

Page 8

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.2.2 Persistent messages – client channels

Figure 9 and Table 4 below show that the peak throughput of persistent messages has
increased by 200% (239 cf. 717 Round T/s) comparing Version 5.2 to Version 5.3, with the
advantage of improved scalability giving the most performance improvement using one
hundred or more driving applications (throughput up by 266% : 194 cf. 717 RT/s at 120 apps).

Client channels - persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

Driving applications

R
ou

nd
 T

/s

MQSeries V5.2 WebSphere MQ V5.3

Figure 9 – Performance headline, persistent messages, and client channels
Note: messaging in these tests is with no think-time.

Test name Product version Apps Round T/s % Resp time (s)

clpm3 (inetd) MQSeries
V5.2

16
 (120)

239
(194)

n/a 0.076
(0.781)

clpm3 (inetd) WebSphere
MQ V5.3

(16)
 120

(280)
 717

(+17)
 +266

(0.124)
0.341

Table 4– Performance headline, persistent messages, and client channels
Note: the large bold figures in the table above show the peak number of round trips per second, and the
number of driving applications used to achieve the peak throughput. The smaller figures in brackets are
included in the table to provide meaningful comparison between WebSphere MQ V5.3 and Version 5.2.
The percentage column shows the percentage Round T/s improvement of Version 5.3 over Version 5.2.

Page 9

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.2.3 ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener – client channels

For the following client channel measurements, the messaging rate used is 1 round trip per
second per MQI-client channel, i.e. a request message outbound over the client channel and
a reply message inbound over the channel per second. These tests also compare the
difference between nonthreaded channels (the ‘amqcrsta’ process started by inetd) with
threaded channels (the ‘runmqlsr’ process started by the user).

Figure 10 and Table 9 below show how the ‘runmqlsr’ and inetd ‘amqcrsta’ listeners in
WebSphere MQ V5.3 give improved scalability by permitting a larger number of MQI-client
connections into a single queue manager. In Version 5.3, it is now possible to connect more
than 1,000 driving application into a single queue manager. Furthermore, the ‘runmqlsr’ has a
reduced resource utilisation (one thread per connection compared to a process per
connection for the ‘amqcrsta’ listener, a smaller memory footprint, less System V IPC), so is
now the preferred method of running client channels and server channels.

Page 10

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Figure 10 below compares the swap reservation of WebSphere MQ V5.3 MQI-client
connections for the inetd ‘amqcrsta’ listener and ‘runmqlsr’ listener.

An approximate formula for calculating swap reservation in MB using the inetd listener is

swap = 2 x No. driving apps

in addition, an approximate formula for calculating swap reservation in MB using the runmqlsr is

swap = 0.625 x No. driving apps

Client channels scenario - storage
1 nonpersistent msg/app/second (inetd vs. runmqlsr)

0

300

600

900

1,200

1,500

0 200 400 600 800 1,000 1,200 1,400 1,600

Driving applications

R
ou

nd
 T

/s

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Sw
ap

 re
se

rv
at

io
n

(M
B

)

Round T/s (inetd) Round T/s (runmqlsr) sw ap MB (inetd) sw ap MB (runmqlsr)

Figure 10 - 'runmqlsr' vs. inetd 'amqcrsta' listener, client channels
Note: messaging in these tests is 1 round trip per driving application per second.

Test name Apps Rate/App/hr Round T/s % Resp time (s)

clnp1_r3600 (inetd)
(MQSeries V5.2)

1,250
(950)

3,600 1,249
(949)

+31 0.006
(0.010)

clnp1_r3600_runmqlsr
(MQSeries V5.2)

2,350
(950)

3,600 2,348
(950)

+147 0.008
(0.005)

clpm3_r3600 (inetd)
(MQSeries V5.2)

700
(250)

3,600 699
(117)

+497 0.118
(0.062)

clpm3_r3600_runmqlsr
(MQSeries V5.2)

700
(200)

3,600 699
(190)

+268 0.095
(0.202)

Table 5 – 1 round trip per driving application per second, client channels
Note: messaging in these tests is 1 round trip per driving application per second.

Page 11

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.3 Distributed queuing test scenario

Figure 11 – Server channels between two queue managers

Server channel(s)

Driving machine Server machine

Transmission queue
per channel

Input queue

Reply queue

4 3
21

5

Local queue manager Remote queue manager

Transmission queue
per channel

1) The driving application puts a message to a local definition of a remote queue located on the
server machine, and holds on to the message identifier returned in the message descriptor. The
driving application then waits indefinitely for a reply to arrive on a local queue.

2) The message channel agent takes messages off the channel and places them on the common
input queue on the server machine.

3) The server application gets messages from the common input queue, and places a reply to the
queue name extracted from the messages descriptor (the name of a local definition of a remote
queue located on the driving machine). The queue manager copies over the message identifier
from the request message to the correlation identifier of the reply message.

4) The message channel agent takes messages off the transmission queue and sends them over
the channel to the driving machine.

5) The driving application gets a reply from a local queue. The driving application uses the
message identifier held from when the request message was put to the local definition of the
remote queue, as the correlation identifier in the message descriptor.

Nonpersistent and persistent messages were used in the distributed queuing tests, with a
message size of 2K. The effect of message throughput with larger messages sizes is
investigated in ‘Large messages: 20K and 200K – distributed queuing’—Page 26.

Page 12

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.3.1 Nonpersistent messages – server Channels

Figure 12 and Table 6 show that the peak throughput of nonpersistent messages has
increased by 40% (3,067 cf. 4,283 RT/s) comparing Version 5.2 to Version 5.3, also with the
advantage of improved scalability when using as few as 3 driving applications (throughput up
by 8% : 2,364 cf. 2,545 RT/s).

Distributed queuing - nonpersistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 5 10 15 20 25

Driving applications

R
ou

nd
 T

/s

MQSeries V5.2 WebSphere MQ V5.3

Figure 12 – Performance headline, nonpersistent messages, and server channels
Note: messaging in these tests is with no think-time.

Test name Product version Apps Round T/s % Resp time (s)

dqnp1 (inetd) MQSeries
V5.2

17
(13)

3,067
(3,059)

n/a 0.005
(0.011)

dqnp1 (inetd) WebSphere
MQ V5.3

(17)
13

(4,261)
4,283

(+39)
+40

(0.005)
0.003

Table 6 – Performance headline, nonpersistent messages, and server channels
Note: the large bold figures in the table above show the peak number of round trips per second, and the
number of driving applications used to achieve the peak throughput. The smaller figures in brackets are
included in the table to provide meaningful comparison between WebSphere MQ V5.3 and Version 5.2.
The percentage column shows the percentage Round T/s improvement of Version 5.3 over Version 5.2.

Page 13

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.3.2 Persistent messages – server channels

Figure 13 and Table 7 below show that at 120 driving applications persistent message
throughput has increased by 105% (284 cf. 582 RT/s) comparing Version 5.2 to Version 5.3,
also with the advantage of improved scalability after 40 driving applications.

Distributed queuing - persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140

Driving applications

R
ou

nd
 T

/s

MQSeries V5.2 WebSphere MQ V5.3

Figure 13 – Performance headline, persistent messages, and server channels
Note: messaging in these tests is with no think-time.

Test name Product version Apps Round T/s % Resp time (s)

dqpm1 (inetd) MQSeries
V5.2

116
(120)

288
(284)

n/a 0.468
(0.533)

dqpm1 (inetd) WebSphere
MQ V5.3

(116)
120

(570)
582

(+98)
+105

(0.249)
0.239

Table 7 – Performance headline, persistent messages, and server channels
Note: the large figures in the table above show the peak number of round trips per second—within the
range of the test, and the number of driving applications used to achieve the throughput. The smaller
figures in brackets are included in the table to provide meaningful comparison between WebSphere MQ
V5.3 and Version 5.2. The percentage column shows the percentage Round T/s improvement of
Version 5.3 over Version 5.2.

Page 14

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

2.3.3 ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener – server channels

For the following distributed queuing measurements, the messaging rate used is 1 round trip
per driving application per second, i.e. a request message outbound over the sender channel,
and a reply message inbound over the receiver channel per second. Note that there are a
fixed number of 4 server channel pairs for the nonpersistent messaging tests, and 2 pairs for
the persistent message tests. These tests also compare the difference between nonthreaded
channels (the ‘amqcrsta’ process started by inetd, and the ‘runmqchl’ process started by the
queue manager) with threaded channels (the ‘runmqlsr’ process started by the user, and the
‘runmqchi’ process started with the queue manager).

Figure 14 shows that there is little difference between the inetd ‘amqcrsta’ and ‘runmqlsr’
listener in terms of the number of round trips that can be achieved per second before the
round trip response time exceeds one second. However, there is greatly improved scalability
at more then 1250 apps.

MQSeries V5.3 Distributed queuing scenario - CPU
1 nonpersistent msg/app/second (inetd vs. runmqlsr)

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500

Driving applications

R
ou

nd
 T

/s

0

20

40

60

80

100

120

140

160

180

200

C
PU

 u
til

is
at

io
n

(%
cp

u)

Round T/s (inetd) Round T/s (runmqlsr) %cpu (inetd) %cpu (runmqlsr)

Figure 14 – ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener, server channels
Note: messaging in these tests is 1 round trip per driving application per second.

Page 15

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Figure 15 below show that there is little difference between the inetd ‘amqcrsta’ and
‘runmqlsr’ listener in terms of the number of round trips that can be achieved per second
before 250 apps. However, there is greatly improved scalability at more then 250 apps.

igure 15 – ‘runmqlsr’ vs. inetd ‘amqcrsta’ listener, server channels

able 8 – 1 round trip per driving application per second, server channels
econd, and the

number of driving applications used to achieve the peak throughput. The smaller figures in brackets are

Distributed queuing scenario
1 persistent msg/app/second (amqcrsta vs. runmqlsr)

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

Driving applications

R
ou

nd
 T

/s

MQSeries V5.2 (amqcrsta) WebSphere MQ V5.3 (amqcrsta)
MQSeries V5.2 (runmqlsr) WebSphere MQ V5.3 (runmqlsr)

F

T

Test name Apps Rate/App/hr Round T/s % Resp time (s)

Dqnp1_r3600 (inetd)
(MQSeries V5.2)

1,250
(1,000)

3,600 1,249
(999)

+25 0.006
(0.005)

Dqnp1_r3600_runmqlsr
(MQSeries V5.2)

3,150
(2,800)

3,600 3,147
(2,798)

+12 0.022
(0.010)

dqpm1_r3600 (inetd)
(MQSeries V5.2)

500
(250)

3,600 500
(250)

+100 0.232
(0.266)

dqpm1_r3600_runmqlsr
(MQSeries V5.2)

750
(250)

3,600 725
(250)

+190 0.384
(0.263)

Note: the large figures in the table above show the peak number of round trips per s

included in the table to provide a comparison with MQSeries V5.2. The percentage column shows the
percentage Round T/s improvement of Version 5.3 over Version 5.2.

Page 16

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

3 Large messages
3.1 MQI response times: 50bytes to 2MB – local queue

manager
Figure 16 and Figure 17 below show that the response for MQPUT/GET pairs is improved
for persistent message sizes from 5K to 2MB.

Nontrusted MQPUT+MQGET (50bytes to 32K)
MQSeries V5.2 vs. WebSphere MQ V5.3

0

5

10

15

20

25

30

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Message size (bytes)

R
es

po
ns

e
tim

e
(m

s)

Persistent (V5.2) Persistent (V5.3)

Figure 16 – Effect of message size on MQI response time (50byte - 32K)
Note: messaging in these tests is with no think-time.

Page 17

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Page 18

Nontrusted MQPUT+MQGET (32K to 2MB)
MQSeries V5.2 vs. WebSphere MQ V5.3

0

100

200

300

400

500

600

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

Message size (bytes)

R
es

po
ns

e
tim

e
(m

s)

Persistent (V5.2) Persistent (V5.3)

Figure 17 – Effect of message size on MQI response time (32K - 2MB)
Note: messaging in these tests is with no think-time.

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Figure 18

Figure 18 – Effect of message size on trusted MQI response time (50byte - 32K)

 and show that the response for MQPUT/GET pairs is improved for
persistent message sizes from 250K to 2MB

Figure 19

Figure 19 – Effect of message size on trusted MQI response time (32K - 2MB)

Trusted MQPUT+MQGET (50bytes to 32K)
MQSeries V5.2 vs. WebSphere MQ V5.3

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

Message size (bytes)

R
es

po
ns

e
tim

e
(m

s)

Nonpersistent (V5.2) Nonpersistent (V5.3)

Note: messaging in these tests is with no think-time.

Trusted MQPUT+MQGET (32K to 2MB)
MQSeries V5.2 vs. WebSphere MQ V5.3

0

20

40

60

80

100

120

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

Message size (bytes)

R
es

po
ns

e
tim

e
(m

s)

Nonpersistent (V5.2) Nonpersistent (V5.3)

Note: messaging in these tests is with no think-time.

Page 19

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

3.2 Large messages: 20K and 200K – local queue manager

Test name Apps Msg size Round T/s % Resp time (s)

local_np1_2K
(MQSeries V5.2)

8
(5)

2K 5,392
(3,167)

+70 0.002
(0.002)

local_np1_20K
(MQSeries V5.2)

5
(4)

20K 2,816
(1,944)

+45 0.002
(0.002)

local_np1_200K
(MQSeries V5.2)

2
(3)

200K 311
(247)

+26 0.007
(0.013)

local_pm3_2K
(MQSeries V5.2)

120
(20)

2K 781
(247)

+216 0.184
(0.090)

local_pm3_20K
(MQSeries V5.2)

60
(28)

20K 212
(166)

+28 0.439
(0.191)

local_pm3_200K
(MQSeries V5.2)

16
(20)

200K 31
(31)

0 0.587
(0.756)

Table 9 – 2K, 20K and 200K messages, local queue manager
Note: messaging in these tests is with no think-time.

Note: the figures in the table above show the peak number of round trips per second, and the number of
driving applications used to achieve the peak throughput. The smaller figures in brackets are included
in the table to provide a comparison with MQSeries V5.2. The percentage column shows the
percentage Round T/s improvement of Version 5.3 over Version 5.2.

The measurements for 200K persistent messages show that there is little difference in the
performance of large messages between Version 5.2 and Version 5.3—this is because most
of the time taken by the queue manager is in logging the messages to disk.

Page 20

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Figure 20 below shows how the throughput of small nonpersistent messages is improved in
WebSphere MQ V5.3, using any number of driving applications. For 2k applications up to
70% peak throughput, and up to 45% peak throughput for 20k messages

2K vs. 20K nonpersistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (local queue manager)

0

1,000

2,000

3,000

4,000

5,000

6,000

0 5 10 15 20 25

Driving applications

R
ou

nd
 T

/s

2K (V5.2) 20K (V5.2) 2K (V5.3) 20K (V5.3)

Figure 20 – 2K and 20K nonpersistent messages, local queue manager

Figure 21 below shows how the throughput of 2K persistent messages is improved
significantly (216% peak throughput in round trips per second), and the throughput of 20K
persistent messages is improved slightly, in WebSphere MQ V5.3, using more than 8 driving
applications.

2K vs. 20K persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (local queue manager)

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120 140

Driving applications

R
ou

nd
 T

/s

2K (V5.2) 20K (V5.2) 2K (V5.3) 20K (V5.3)

Figure 21 – 2K and 20K persistent messages, local queue manager

Page 21

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

200K nonpersistent and persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (local queue manager)

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

Driving applications

R
ou

nd
 T

/s

200K nonpersistent (V5.2) 200K persistent (V5.2)

200K nonpersistent (V5.3) 200K persistent (V5.3)

Figure 22 – 200K nonpersistent and persistent messages, local queue manager
*Note in the above graph the 200k persistent (V 5.2) line is behind the 200k (V 5.3) line.

Page 22

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Large messages: 20K and 200K – client channels

Test name Apps Msg size Round T/s % Resp time (s)

clnp1
(MQSeries V5.2)

11
(7)

2K 3,913
(2,660)

+47 0.003
(0.003)

clnp1_20K
(MQSeries V5.2)

12
(11)

20K 1,181
(1,045)

+13 0.012
(0.012)

clnp1_200K
(MQSeries V5.2)

6
(6)

200K 110
(108)

+2 0.064
(0.064)

clpm3
(MQSeries V5.2)

120
(16)

2K 711
(239)

+197 0.203
(0.076)

clpm3_20K
(MQSeries V5.2)

60
(20)

20K 212
(157)

+35 0.439
(0.150)

clpm3_200K
(MQSeries V5.2)

24
(28)

200K 28
(28)

0 0.989
(0.978)

Table 10 – 2K, 20K and 200K messages, client channels
Note: messaging in these tests is with no think-time, and the inetd ‘amqcrsta’ listener.

Note: the figures in the table above show the peak number of round trips per second, and the number of
driving applications used to achieve the peak throughput. The smaller figures in brackets are included
in the table to provide a comparison with MQSeries V5.2. The percentage column shows the
percentage Round T/s improvement of Version 5.3 over Version 5.2.

The measurements for 200K persistent messages show that there is little difference in the
performance of large messages between Version 5.2 and Version 5.3—this is because most
of the time taken by the queue manager is in logging the messages to disk.

Page 23

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Figure 23 below shows how the throughput of small (2K) nonpersistent messages is
improved by 47% peak throughput in round trips per second in WebSphere MQ V5.3, using 5
or more driving applications.

2K vs. 20K nonpersistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (client channels)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 5 10 15 20 25

Driving applications

R
ou

nd
 T

/s

2K (V5.2) 20K (V5.2) 2K (V5.3) 20K (V5.3)

Figure 23 – 2K and 20K nonpersistent messages, client channels
Figure 24 below shows how the throughput of 2K persistent messages is improved
significantly, and the throughput of 20K persistent messages is improved slightly, in
WebSphere MQ V5.3, using more than 16 driving applications. Using 80 or more driving
applications Version 5.3 gives a maintained persistent throughput of 700 round trips or more
per second (71% more than Version 5.2).

2K vs. 20K persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (client channels)

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

Driving applications

R
ou

nd
 T

/s

2K (V5.2) 20K (V5.2) 2K (V5.3) 20K (V5.3)

Figure 24 – 2K and 20K persistent messages, client channels

Page 24

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Figure 25 below shows that there is almost no difference in performance in 200k messages
over MQI client channels.

200K nonpersistent and persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (client channels)

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

Driving applications

R
ou

nd
 T

/s

200K nonpersistent (V5.2) 200K persistent (V5.2)

200K nonpersistent (V5.3) 200K persistent (V5.3)

Figure 25 – 200K nonpersistent and persistent messages, client channels
*Note in the above graph the 200k persistent (V 5.2) line is behind the 200k (V 5.3) line.

Page 25

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

3.3 Large messages: 20K and 200K – distributed queuing

Test name Apps Msg size Round T/s % Resp time (s)

dqnp1
(MQSeries V5.2)

19
(16)

2K 2,128
(2,021)

+5 0.010
(0.009)

dqnp1_20K
(MQSeries V5.2)

7
(10)

20K 1,076
(985)

+9 0.007
(0.012)

dqnp1_200K
(MQSeries V5.2)

16
(11)

200K 83
(29)

+186 0.231
(0.440)

dqpm1
(MQSeries V5.2)

236
(108)

2K 459
(353)

+30 0.627
(0.365)

dqpm1_20K
(MQSeries V5.2)

68
(56)

20K 79
(78)

+1 0.992
(0.965)

dqpm1_200K
(MQSeries V5.2)

8
(4)

200K 10
(7)

+43 0.888
(0.583)

Table 11 – 2K, 20K and 200K messages, server channels
Note: messaging in these tests is with no think-time, and the inetd ‘amqcrsta’ listener.

Note: the figures in the table above show the peak number of round trips per second, and the number of
driving applications used to achieve the peak throughput. The smaller figures in brackets are included
in the table to provide a comparison with MQSeries V5.2. The percentage column shows the
percentage Round T/s improvement of Version 5.3 over Version 5.2.

The measurements for 20K and 200K persistent messages show that there is little difference
in the performance of large messages between Version 5.2 and Version 5.3—this is because
most of the time taken by the queue manager is in logging the messages to disk.

Page 26

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Figure 26 below shows how the throughput of small (2K) nonpersistent messages is
improved in WebSphere MQ V5.3, using as few as 3 driving applications.

2K vs. 20K nonpersistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (distributed queuing)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 5 10 15 20 25

Driving applications

R
ou

nd
 T

/s

2K (V5.2) 20K (V5.2) 2K (V5.3) 20K (V5.3)

Figure 26 – 2K and 20K nonpersistent messages, server channels
Figure 27 below shows how the throughput of 2K persistent messages is improved
significantly, and the throughput of 20K persistent messages is improved slightly, in Version
5.3 using more than 40 driving applications. Using more than 40 driving applications Version
5.3 gives better throughput (compared to Version 5.2) and V.5.3 shows greater scalability.

Figure 27 – 2K and 20K persistent messages, server channels

2K vs. 20K persistent messages
MQSeries V5.2 vs. WebSphere MQ V5.3 (distributed queuing)

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140

Driving applications

R
ou

nd
 T

/s

2K (V5.2) 20K (V5.2) 2K (V5.3) 20K (V5.3)

Page 27

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Page 28

 The 200K nonpersistent message tests were intentionally designed to finish at 20 driving
applications. Using more than 10 driving applications, message throughput levels out. The
200K persistent message tests were designed to finish at 120 driving application, but after 28
driving applications (both Version 5.2 and Version 5.3) the tests approach the response time
criteria.

Figure 28 – 200K nonpersistent and persistent messages, server channels

MQSeries V5.2 vs. WebSphere MQ V5.3 (distributed queuing)

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

R
ou

nd
 T

/s

200K nonpersistent (V5.2) 200K persistent (V5.2)

200K nonpersistent (V5.3) 200K persistent (V5.3)

200K nonpersistent and persistent messages

Driving applications

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

4 Trusted server application

Figure 29 and Table 12 show that peak persistent message throughput has increased by
228% (267 cf. 875 RT/s) comparing Version 5.2 to Version 5.3, also with the advantage of
improved scalability after 3 driving applications. In addition, peak nonpersistent message
throughput has increased by 50% (5,130 cf. 7,678 RT/s)

Figure 29 – Trusted server application, local queue manager

Test name Apps Msg size Round T/s % Resp time (s)

local_np1_trusted
(MQSeries V5.2)

7
(2)

2K 7,678
(5,130)

+50 0.001
(0.001)

local_pm1_trusted
(MQSeries V5.2)

120
(16)

2K 875
(267)

+228 0.171
(0.070)

Table 12 – Trusted server application, local queue manager
Note: messaging in these tests is with no think-time.

Note: the large figures in the table above show the peak number of round trips per second, and the
number of driving applications used to achieve the peak throughput. The smaller figures in brackets are
included in the table to provide a comparison with MQSeries V5.2. The percentage column shows the
percentage Round T/s improvement of Version 5.3 over Version 5.2.

Nontrusted vs. trusted server application
Nonpersistent messages - local queue manager

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

0 5 10 15 20 25

R
ou

nd
 T

/s

nontrusted (V5.2) trusted (V5.2) nontrusted (V5.3) trusted (V5.3)

Driving applications

Page 29

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

5 MQSeries Tuning recommendations

ime of the queue manager system
already meets the required level. Some tuning recommendations that follow may degrade the

erformance of a previously balanced system if applied inappropriately. The reader should
carefully monitor the result of tuning the queue manager to be satisfied that there have been
no adverse effects.

Customers should test that any changes have not used excessive real resources in their
environment and make only essential changes. For example, allocating several megabytes
for multiple queues reduces the amount of shared and virtual memory available for other
subsystems, as well as over committing real storage

5.1.1 Queue disk, Log disk, and message persistence

To avoid potential queue and log I/O contention due to the queue manager simultaneously
updating a queue file and log extent on the same disk, it is important that queues and logs are
located on separate and dedicated physical devices. With the queue and log disks configured
in this manner, careful consideration must still be given to message persistence: persistent
messages should only be used if the message needs to survive a queue manager restart
(forced by the administrator or as the result of a power failure, communications failure, or
hardware failure). In guaranteeing the recoverability of persistent messages, the path length
through the queue manager is three times longer than for a nonpersistent message. This
overhead does not include the additional time for the message to be written to the log,
although this can be minimised by using cached disks.

5.1.1.1 Nonpersistent queue buffer
The default nonpersistent queue buffer size is 64K per queue. This can be increased to 1MB

ferSize parameter. The
nonpersistent queue buffer is computationally less expensive because the queue manager

oes not have to retrieve the message from the queue file. Increasing the queue buffer
rovides the capability to absorb peaks in message throughput at the expense of real storage,

uitable a g g sis m buffer is not
ter a que a . eu si istent queue

performance either if the is s f real cause a large
ues have already been defined rge buffers, or for other reasons—e.g. a

large numbers of channels defined.
rsistent q buffer is allocated i ed storage so con ust be given to

whether the agent process or application process has the memory addressability for all the required

DefaultQBufferSize. If some queues need to

 queue was created.

5.1 Tuning the queue manager
This section highlights the tuning activities that are known to give performance benefits for
WebSphere MQ V5.3; all of these can be applied equally to Version 5.2. The reader should
note that the following tuning recommendations might not necessarily need to be applied,
especially if the message throughput and/or response t

p

using the TuningParameters stanza and the DefaultQBuf

d
p
but it is not s
recovered af

s a lon
ue man

-term stora
ger restart

e for nonper
 Defining qu

tent
es u

essages as this
ng large nonpers

buffers can degrade system hort o memory be
number of que with la

Note: the nonpe ueue n shar sideration m

shared memory segments.

Queues can be defined with different values of
be defined differently to others, the values can be set in the TuningParameters stanza. When
the queue manager is restarted, existing queues will keep their earlier definitions and new
queues will be created with the desired parameters. When a queue is opened, resources are
allocated according to the definition held on disk from when the

Page 30

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

5.1.2 Log buffer size, Log file size, and number of log extents

 LogBufferPages should be increased to its
maximum configurable size of 512 x 4K pages = 2MB, the LogFilePages (i.e. crtmqm –lf

ne extent),

ged for all subsequent queue managers
by changing the LogBufferPages parameter in the product default Log stanza.

 2MB limit of the
queue manager log buffer. It is possible to fill and empty the log buffer several times each

 in all scenarios with client and server
are available using ‘runmqlsr’, including a reduced

requirement on: virtual memory, number of processes file handles (nfile), and System V IPC

To improve persistent message throughput the

<LogFilePages>) should be configured to a large size, for example: 16384 x 4K pages =
64MB, and the number of LogPrimaryFiles (i.e. crtmqm -lp <LogPrimaryFiles>) should be
configured to a large number. The cumulative effect of this tuning will:

• improve the throughput of persistent messages (permitting a possible maximum 2MB
of log records to be written from the log buffer to the log disk in a single write),

• reduce the frequency of log switching (permitting a greater amount of log data to be
written into o

• Allow more time to prepare new linear logs or recycle old circular logs (especially
important for long-running units of work).

Changes to the queue manager LogBufferPages parameter takes effect at the next queue
manager restart. The number of pages can be chan

It is unlikely that poor persistent message throughput will be attributed to the

second and reach a CPU limit writing data into the log buffer, before a log disk bandwidth limit
is reached.

5.1.3 Channels: process or thread, standard or fastpath?

It is no longer necessary to consider the system design when deciding whether it is preferable
to configure inetd to use process channels (‘amqcrsta’, and for server channels an MCATYPE
of ‘PROCESS’), or use threaded channels (‘runmqlsr’, and for server channels an MCATYPE
of ‘THREAD’). Prior to Version 5.3, it was necessary to use more than one ‘runmqlsr’ listener
using more than one port. ‘runmqlsr’ can now be used
channels. Additional resource savings

(shmmax, semmni, and shmseg).

Fastpath channels, and/or fastpath applications—see later paragraph for further discussion,
can increase throughput for both nonpersistent and persistent messaging. For persistent
messages, the improvement is only for the path through the queue manager, and does not
affect performance writing to the log disk. The reader should note that since the greater
proportion of time for persistent messages is in the queue manager writing to the log disk, the
performance improvement for fastpath channels is less apparent with persistent messages
than with nonpersistent messages.

Page 31

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

5.2 Application design and configuration

5.2.1 Standard or fastpath?

The reader should be aware of the issues associated with writing and using fastpath
applications—described in the ‘MQSeries Application Programming Guide’. Although it is
recommended that customers use fastpath channels, it is not recommended to use fastpath
app t
means, never
forc
Fastpat

5.2

cessor system
can be fully utilised with a small number of applications using nonpersistent messages, more

ubject to variability through cycles of low and high message volumes, therefore a
degree of experimentation will be required to determine an optimum configuration.

 be passed
directly from an ‘MQPUT'er to an ‘MQGET'er without the message being placed on a queue.

and exponential effect, for example, when nonpersistent

threads in the server application), or using a larger
nonpersistent queue buffer, it may not be possible to avoid a performance degradation.

Processing messages inside syncpoint, (i.e. in batches) can be more efficient than outside of
syncpoint. As the number of messages in the batch increases, the average processing cost
of each message decreases. For persistent messages the queue manager can write the
entire batch of messages to the log disk in one go—outside of syncpoint control, the queue
manager must wait for each message to be written to the log before return control to the
application.

The ‘runmqlsr’ has a much smaller overhead of connecting to and disconnecting from the
queue manager because it does not have to create a new process. Furthermore, in Version
5.3 the maximum number of connections into a single ‘runmqlsr’ listener has been
significantly increased making it the preferred method of running short sessions over client
channels. Nevertheless, the implementation of triggering is still worth consideration with
regard to programming a disconnect interval as an input parameter to the application. This
can provide the flexibility to make tuning adjustments in a production environment, if for
instance, it is more efficient to remain connected to the queue manager between periods of
message processing, or disconnect to free queue manager and Operating System resources.

lica ions. If the performance gain offered by running fastpath is not achievable by other
 it is essential that applications are rigorously tested running fastpath, and

ibly terminated (i.e. the application should always disconnect from the queue manager).
h channels are documented in the ‘MQSeries Intercommunication Guide’.

.2 Parallelism, batching, and triggering

An application should be designed wherever possible to have the capability to run multiple
instances or multiple threads of execution. Although the capacity of a multi-pro

applications are required if the workload is mainly using persistent messages. Processing
messages inside syncpoint can help reduce the amount of time the queue managers takes to
write a batch of persistent messages to the log disk. The performance profile of a workload
will also be s

Queue avoidance is a feature of the queue manager that allows messages to

This feature only applies for processing nonpersistent messages outside of syncpoint. In
addition to improving the performance of a workload with multiple parallel applications, the
design should attempt to ensure that an application or application thread is always available
to process messages on a queue (i.e. an ‘MQGET'er). Then nonpersistent messages outside
of syncpoint do not need to be physically placed on a queue.

The reader should note that as more applications are processing messages on a single
queue there is an increasing likelihood that queue avoidance will not be maintainable. The
reasons for this have a cumulative
messages are being placed on a queue quicker than they can be removed. The first effect is
that messages begin to fill the nonpersistent queue buffer—and MQGETers need to retrieve
messages from the buffer rather than being received directly from an MQPUTer. A secondary
effect is that as messages are spilled from the buffer to the queue disk, the MQGETers must
wait for the queue manager to retrieve the message from the queue disk rather than being
retrieved from the queue buffer. While these problems can be addressed by configuring for
more MQGETers (i.e. processing

Page 32

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

Appendix A Measurement environment

• MQCONN(X) and MQDISC,

• MQPUT and MQGET,

A.1 Workload description

A.1.1 MQI response time tool

The MQI tool exercises the local queue manager by measuring elapsed times of the 8 main
MQSeries verbs: MQCONN(X), MQDISC, MQOPEN, MQCLOSE, MQPUT, MQGET,
MQCMIT, and MQBACK. The following MQI calls are paired together inside a test
application:

• MQOPEN and MQCLOSE,

• MQCMIT and MQBACK with MQPUT and MQGET.

Note: MQCLOSE elapsed time is only measured for an empty queue.

Note: performance of MQCMIT and MQBACK is measured in conjunction with MQPUT and MQGET,
putting and getting messages inside a unit of work (i.e. inside syncpoint control). The unit of work is
committed at the end of each batch. The number of messages per batch is a parameter of the test.

Note: the performance of verbs: MQSET, MQINQ, or MQBEGIN are not measured.

Page 33

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

A1.2 Test scenarios workload

A1.2.1 The driving application programs
The test scenario workload simulates ma
machine. This is not typical of a custom

ny driving applications running on a single driving
er environment and is only used to facilitate test

coordination. Driving applications were multi-threaded with each thread performing a

ation thread performed the sequence of actions as outlined in the test scenario
illus ti lines’ starting on page 4.

Messag ighlights and performance headlines (including rated
mes size was used. For the large message measurements a
20K used.

essage rate: In all but the rated and capacity limit tests, message processing was
erformed in a tight-loop. In the rated tests, a message rate of 1 round trip per driving

a message rate of 1 round trip

h-resolution timer.

A1.2.2 The server application program
The server application is written as a multi-threaded program configured to use 5 threads for
processing nonpersistent messages, and 20 or more threads to process persistent messages.
Each server thread performed the sequence of actions as outlined in the test scenario
illustrations in the ‘Performance headlines’ starting on page 4.

Nonpersistent messaging is done outside of syncpoint control. Persistent messaging is done
inside of syncpoint control. The average message throughput expressed as a number of
round trips per second was calculated and reported by the server program.

sequence of MQI calls. The number of threads in each application was adjusted according to
whether the test was measuring a local queue manager, a client channel, or distributed
queuing scenario. This was done to reduce storage overheads on the driving system. Each
driving applic

tra ons in the ‘Performance head
e size: For the release h

saging tests), a 2K message
 and 200K message size was

M
p
application per second was used, and in the capacity limit tests
per channel per minute was used.

Nonpersistent and persistent messages were used in tests.
Note: the driving applications gathered timing information for all MQI calls using a hig

Page 34

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

A1.3 Test Descriptions

h driver and server applications running on the
 test uses non-persistent messages and unless

un to 120 client connections.

 log configuration:

re clients connect using MQI-client channels to a remote
ical hardware, the server is still
st uses non-persistent messages

connections. The aim is to provide measurements for client

mon set-up for customers).

hardware, the server is still
ager. T ses persistent messages and

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=4095, LogBufferPages=512

Dqnp A distributed test, the clients connect to a local queue manager and
the server to another local queue on different hardware, the two
queue managers then communicate via server channels. The test
uses non-persistent messages and unless otherwise stated tests are
designed to run to 20 client connections. The aim of this test is to
provide measurement of the server channels and comparison to
client and local tests.

Dqpm A local distributed test, the clients connect to a local queue manager
and the server to another local queue on different hardware, the two
queue managers then communicate via server channels. The test
uses persistent messages and unless otherwise stated tests are
designed to run to 120 client connections. The aim of this test is to
provide measurement of the server channels and comparison to
client and local tests.

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=4095, LogBufferPages=512

Local_np: A local test with bot
same hardware. The
otherwise stated tests are designed to run to 20 client connections.
The aim of this test is to get the highest possible throughput without
network or MCA restrictions.

Local_pm: A local test with both driver and server applications running on the
same hardware. The test uses persistent messages and unless
otherwise stated tests are designed to r
The aim of this test is to get the highest possible throughput without
network or MCA restrictions.

Queue manager
LogPrimaryFiles=4, LogFilePages=4095, LogBufferPages=512

Clnp A test whe
queue manager on separate phys
local to the queue manager. The te
and unless otherwise stated tests are designed to run to 20 client

applications (a com

Clpm A test where clients connect using MQI-client channels to a remote
queue manager on separate physical
local to the queue man he test u
unless otherwise stated tests are designed to run to 120 client
connections. The aim is to provide measurements for client
applications (a common set-up for customers).

Page 35

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

MQPUT + MQGET For this test a simple application records the time taken to do the MQ
verbs MQPUT and MQGET, each verb is repeated 5000 times and
the 90% percentile is shown in the graph. The tests are repeated for

ePages=2048

er

 usage.

ardware
Unless stated otherwise
of the tests in this report

Model:

rocessor: Intel Pentium 3 Xeon 700Mhz, 2 MB L2 cache

cture:

Memory (RAM):

Disk:

Network:

A.3 Software
/S:

MQSeries:

Compiler:

both persistent and non-persistent messages. Also, run both trusted
and nontrusted.

Queue manager log configuration:
LogPrimaryFiles=3, LogFil

Trusted serv The trusted tests are run with the same settings and scenarios as the
other tests however in the trusted tests the server application
connects directly to the queue manager rather then through an agent
process. This should give notable performance benefits, however it is
not recommended for general

A.2 H
 one or two machines of the following specification were used for all

IBM Netfinity 8500R

P

Archite 4-way SMP

8GB

2 Internal 10,000 rpm SCSI disks 18GB and 9GB

1 External 10,000 rpm SCSI disks – 9GB

1GBit Ethernet

Linux O Red Hat v 7.3 (2.4.18 kernel)

Version 5.3 (B.11.530.00), and Version 5.2 (B.11.520.00)

Linux POSIX-conforming C compiler

Page 36

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

he name of the te

Glossary
Test name T st

N ather long. This is done to provide a
descriptive qualification of the test measurement to relate to the performance
di
local => local queue manager test scenario
cl
d
n
p
r3 per second
runmqlsr => channels using the ‘runmqlsr’ listener (client channel test scenario,
in addition to ‘runmqchi’ for distributed queuing test scenarios)
c6000 => 6,000 client driving applications (i.e. 6,000 MQI-client connections)
q1000 => 1,000 server channel pairs
max => maximum number of channels (or channel pairs)
no_correl_id => correlation identifier not used in the response messages (as

ote: the test names in some cases are r

scussion in the sections throughout the document:

 => client channel test scenario
q => distributed queuing test scenario
p => nonpersistent messages
m => persistent messages
600 => 1 round trip per driving application

each response is placed on a unique reply-to queue per driving application)

Apps The number of driving applications connected to the queue manager at
e measurement is given the point where the performanc

Rate/App/hr he target message throughput rate of each driviT ng application

Round T/s he average achiT eved message throughput rate of all the driving
a ions together, measured by the server application pplicat

% (Round T/s) he percentage increase in the total message througT hput rate
N r each table where percentage
im

ote: the nature of the comparison is noted unde
provements have been given

Resp time (s) The average response time each round trip, as measured and averaged
by all the driving applications

CURDEPTH The number of messages on the input queue as a snapshot
Note: runmqsc <qmname>, DISPLAY QLOCAL(<qname>) CURDEPTH

queue disk (kbps) The queue disk kilobytes transferred per second

Swap he total amount of swap area reservat
nless otherwise specified as swap/app

T ion for all processes in MB,
u (i.e. swap area reservation per
driving application)
Note: swap area is reserved for ALL allocated virtual memory whether the
process needs it, is physically using it, or not. This is enforced by the HP-UX
kernel to ensure a process can use ALL its allocated swap should the need arise

Shm The amount of allocated System V IPC shared memory in MB

Segs The number of System V IPC shared memory segments

sems The number of System V IPC semaphores

Page 37

WebSphere MQ for Linux (Intel) V5.3 – Performance Evaluations

* t ***

** end of documen

Page 38

	Target audience
	The contents of this SupportPac
	Release highlights
	Improvements to nonpersistent and persistent messaging
	Peak message throughput – local queue manager
	Peak message throughput – client channels
	Peak message throughput – distributed queuing

	Performance headlines
	Local queue manager test scenario
	Nonpersistent messages – local queue manager
	Persistent messages – local queue manager

	Client channels test scenario
	Nonpersistent Messages – Client channels
	Persistent messages – client channels
	‘runmqlsr’ vs. inetd ‘amqcrsta’ listener – client

	Distributed queuing test scenario
	Nonpersistent messages – server Channels
	Persistent messages – server channels
	‘runmqlsr’ vs. inetd ‘amqcrsta’ listener – server

	Large messages
	MQI response times: 50bytes to 2MB – local queue
	Large messages: 20K and 200K – local queue manage
	Large messages: 20K and 200K – client channels
	Large messages: 20K and 200K – distributed queuin

	Trusted server application
	MQSeries Tuning recommendations
	Tuning the queue manager
	Queue disk, Log disk, and message persistence
	Nonpersistent queue buffer

	Log buffer size, Log file size, and number of log extents
	Channels: process or thread, standard or fastpath?

	Application design and configuration
	Standard or fastpath?
	Parallelism, batching, and triggering

	Appendix A Measurement environment
	A.1 Workload description
	A.1.1 MQI response time tool
	A1.2 Test scenarios workload
	A1.2.1 The driving application programs
	A1.2.2 The server application program

	A.2 Hardware
	A.3 Software

	Glossary

