
WebSphere

MQ

Using

.NET

Version

5

Release

3

GC34-6328-02

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Appendix

B,

“Notices,”

on

page

77.

Third

edition

(January

2004)

This

is

the

third

edition

of

this

book.

It

applies

to

IBM

WebSphere

MQ

classes

for

.NET

Version

5.3,

and

to

any

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

2003,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

About

this

book

.

.

.

.

.

.

.

.

.

.

. ix

Who

this

book

is

for

.

.

.

.

.

.

.

.

.

.

. ix

What

you

need

to

know

to

understand

this

book

.

. ix

How

to

use

this

book

.

.

.

.

.

.

.

.

.

.

. ix

Terms

used

in

this

book

.

.

.

.

.

.

.

.

.

. ix

Summary

of

changes

.

.

.

.

.

.

.

.

. xi

Changes

for

this

edition

(GC34–6328–02)

.

.

.

.

. xi

Changes

for

previous

edition

(GC34–6328–01)

.

.

. xi

Part

1.

Guidance

for

users

.

.

.

.

. 1

Chapter

1.

Getting

started

.

.

.

.

.

.

. 3

What

are

WebSphere

MQ

classes

for

.NET?

.

.

.

. 3

Who

should

use

WebSphere

MQ

classes

for

.NET?

.

. 3

Connection

options

.

.

.

.

.

.

.

.

.

.

.

. 4

Client

bindings

connection

.

.

.

.

.

.

.

.

. 4

Server

bindings

connection

.

.

.

.

.

.

.

. 4

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Chapter

2.

Installation

.

.

.

.

.

.

.

.

. 5

How

to

install

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

What

is

installed

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Chapter

3.

Using

WebSphere

MQ

classes

for

.NET

.

.

.

.

.

.

.

.

.

.

. 7

Configuring

your

queue

manager

to

accept

client

connections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

TCP/IP

client

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Sample

applications

.

.

.

.

.

.

.

.

.

.

.

. 7

Running

your

own

WebSphere

MQ

.NET

programs

. 9

Solving

WebSphere

MQ

.NET

problems

.

.

.

.

. 9

Tracing

the

sample

application

.

.

.

.

.

.

. 9

Error

messages

.

.

.

.

.

.

.

.

.

.

.

. 9

Part

2.

Programming

with

WebSphere

MQ

classes

for

.NET

.

. 11

Chapter

4.

Introduction

for

programmers

.

.

.

.

.

.

.

.

.

.

.

. 13

Why

should

I

use

the

.NET

interface?

.

.

.

.

. 13

The

WebSphere

MQ

.NET

interface

.

.

.

.

.

. 13

Compiling

WebSphere

MQ

.NET

applications

.

.

. 13

WebSphere

MQ

classes

for

.NET

class

library

.

.

. 13

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Connection

differences

.

.

.

.

.

.

.

.

.

.

. 15

Client

connections

.

.

.

.

.

.

.

.

.

.

. 15

Defining

which

connection

to

use

.

.

.

.

.

. 15

Example

code

fragments

.

.

.

.

.

.

.

.

.

. 16

Example

code

(client

connection)

.

.

.

.

.

. 16

Example

code

(server

bindings

connection)

.

.

. 18

Operations

on

queue

managers

.

.

.

.

.

.

.

. 20

Setting

up

the

WebSphere

MQ

environment

.

. 20

Connecting

to

a

queue

manager

.

.

.

.

.

. 20

Accessing

queues

and

processes

.

.

.

.

.

.

. 20

Handling

messages

.

.

.

.

.

.

.

.

.

.

.

. 21

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Getting

and

setting

attribute

values

.

.

.

.

.

. 23

Multithreaded

programs

.

.

.

.

.

.

.

.

.

. 23

Secure

Sockets

Layer

(SSL)

support

.

.

.

.

.

. 24

Enabling

SSL

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Using

the

distinguished

name

of

the

queue

manager

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Error

handling

when

using

SSL

.

.

.

.

.

.

. 25

Compiling

and

testing

WebSphere

MQ

.NET

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Tracing

WebSphere

MQ

.NET

programs

.

.

.

. 26

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

.

.

.

.

.

.

.

. 27

MQEnvironment

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

MQException

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

MQGetMessageOptions

.

.

.

.

.

.

.

.

.

. 29

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

MQManagedObject

.

.

.

.

.

.

.

.

.

.

.

. 33

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

MQMessage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

MQPutMessageOptions

.

.

.

.

.

.

.

.

.

. 54

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

MQQueue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

MQQueueManager

.

.

.

.

.

.

.

.

.

.

.

. 64

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

MQC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

©

Copyright

IBM

Corp.

2003,

2004

iii

Part

3.

Appendixes

.

.

.

.

.

.

.

.

. 73

Appendix

A.

SSL

CipherSpecs

supported

by

WebSphere

MQ

.

.

.

.

. 75

Appendix

B.

Notices

.

.

.

.

.

.

.

.

. 77

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Sending

your

comments

to

IBM

.

.

.

. 81

iv

Using

.NET

Figures

1.

WebSphere

MQ

classes

for

.NET

example

code

(client

connection)

.

.

.

.

.

.

.

.

.

. 16

2.

WebSphere

MQ

classes

for

.NET

example

code

(server

bindings

connection)

.

.

.

.

.

.

. 18

©

Copyright

IBM

Corp.

2003,

2004

v

vi

Using

.NET

Tables

1.

Character

set

identifiers

.

.

.

.

.

.

.

. 46

2.

Supported

CipherSpecs

.

.

.

.

.

.

.

. 75

©

Copyright

IBM

Corp.

2003,

2004

vii

viii

Using

.NET

About

this

book

This

book

describes:

v

WebSphere

MQ

classes

for

.NET,

which

can

be

used

to

access

WebSphere

MQ

systems

Note:

Consult

the

README

file

for

information

that

expands

and

corrects

information

in

this

book.

The

README

file

is

installed

with

the

WebSphere

MQ

classes

for

.NET

code

and

can

be

found

in

the

doc

subdirectory.

Who

this

book

is

for

This

information

is

written

for

programmers

who

are

familiar

with

the

procedural

WebSphere

MQ

application

programming

interface

as

described

in

the

WebSphere

MQ

Application

Programming

Guide.

It

shows

how

to

transfer

this

knowledge

to

become

productive

with

the

WebSphere

MQ

classes

for

.NET

programming

interfaces.

What

you

need

to

know

to

understand

this

book

You

need:

v

Knowledge

of

the

.NET

programming

environment

v

Understanding

of

the

purpose

of

the

message

queue

interface

(MQI)

as

described

in

the

WebSphere

MQ

Application

Programming

Guide

and

the

chapter

about

Call

Descriptions

in

the

WebSphere

MQ

Application

Programming

Reference

v

Experience

of

WebSphere

MQ

programs

in

general,

or

familiarity

with

the

content

of

the

other

WebSphere

MQ

publications

How

to

use

this

book

Part

1

of

this

book

tells

you

how

to

use

WebSphere

MQ

classes

for

.NET;

Part

2

helps

programmers

wanting

to

use

WebSphere

MQ

classes

for

.NET.

First,

read

the

topics

in

Part

1

that

introduce

you

to

WebSphere

MQ

classes

for

.NET.

Then

use

the

programming

guidance

in

Part

2

to

understand

how

to

use

the

classes

to

send

and

receive

WebSphere

MQ

messages

in

the

.NET

environment.

Remember

to

check

the

README

file

installed

with

the

WebSphere

MQ

classes

for

.NET

code

for

later

or

more

specific

information.

Terms

used

in

this

book

The

terms

WebSphere

MQ

and

WebSphere

MQ

for

Windows®

systems

mean

WebSphere

MQ

running

on

the

Windows

platforms:

v

Windows

NT®

v

Windows

2000

v

Windows

XP

We

also

use

the

term

Windows

systems

or

just

Windows

as

general

terms

for

these

Windows

platforms.

©

Copyright

IBM

Corp.

2003,

2004

ix

x

Using

.NET

Summary

of

changes

This

section

describes

changes

in

this

edition

of

WebSphere

MQ

Using

.NET.

Changes

since

the

previous

edition

of

the

book

are

marked

by

vertical

lines

to

the

left

of

the

changes.

Changes

for

this

edition

(GC34–6328–02)

The

changes

to

this

edition

of

Using

.NET

include:

v

The

correction

of

the

prerequisite

level

of

the

.NET

Framework.

Changes

for

previous

edition

(GC34–6328–01)

The

changes

to

this

edition

of

Using

.NET

include:

v

The

correction

of

NMQ_MQ_LIB

values

in

“Defining

which

connection

to

use”

on

page

15.

©

Copyright

IBM

Corp.

2003,

2004

xi

|

|

|

|
|

Changes

xii

Using

.NET

Part

1.

Guidance

for

users

Chapter

1.

Getting

started

.

.

.

.

.

.

.

.

. 3

What

are

WebSphere

MQ

classes

for

.NET?

.

.

.

. 3

Who

should

use

WebSphere

MQ

classes

for

.NET?

.

. 3

Connection

options

.

.

.

.

.

.

.

.

.

.

.

. 4

Client

bindings

connection

.

.

.

.

.

.

.

.

. 4

Server

bindings

connection

.

.

.

.

.

.

.

. 4

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Chapter

2.

Installation

.

.

.

.

.

.

.

.

.

.

. 5

How

to

install

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

What

is

installed

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Chapter

3.

Using

WebSphere

MQ

classes

for

.NET

7

Configuring

your

queue

manager

to

accept

client

connections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

TCP/IP

client

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Sample

applications

.

.

.

.

.

.

.

.

.

.

.

. 7

Running

your

own

WebSphere

MQ

.NET

programs

. 9

Solving

WebSphere

MQ

.NET

problems

.

.

.

.

. 9

Tracing

the

sample

application

.

.

.

.

.

.

. 9

Error

messages

.

.

.

.

.

.

.

.

.

.

.

. 9

©

Copyright

IBM

Corp.

2003,

2004

1

2

Using

.NET

Chapter

1.

Getting

started

This

topic

gives

an

overview

of

WebSphere

MQ

classes

for

.NET

and

their

uses.

What

are

WebSphere

MQ

classes

for

.NET?

WebSphere

MQ

classes

for

.NET

allow

a

program

written

in

the

.NET

programming

framework

to:

v

Connect

to

WebSphere

MQ

as

a

WebSphere

MQ

client

v

Connect

directly

to

a

WebSphere

MQ

server

WebSphere

MQ

classes

for

.NET

enable

.NET

applications

to

issue

calls

and

queries

to

WebSphere

MQ.

This

gives

access

to

mainframe

and

legacy

applications,

typically

over

the

Internet,

without

necessarily

having

any

other

WebSphere

MQ

code

on

the

client

machine.

With

WebSphere

MQ

classes

for

.NET,

Internet

users

can

become

true

participants

in

transactions,

rather

than

just

givers

and

receivers

of

information.

Who

should

use

WebSphere

MQ

classes

for

.NET?

If

your

enterprise

fits

any

of

the

following

scenarios,

you

can

gain

significant

advantage

by

using

WebSphere

MQ

classes

for

.NET:

v

A

medium

or

large

enterprise

that

is

introducing

intranet-based

client/server

solutions.

Here,

Internet

technology

provides

low

cost

easy

access

to

global

communications;

WebSphere

MQ

connectivity

provides

high

integrity

with

assured

delivery

and

time

independence.

v

A

medium

or

large

enterprise

with

a

need

for

reliable

business-to-business

communications

with

partner

enterprises.

Here

again,

the

Internet

provides

low-cost

easy

access

to

global

communications;

WebSphere

MQ

connectivity

provides

high

integrity

with

assured

delivery

and

time

independence.

v

A

medium

or

large

enterprise

that

wants

to

provide

access

from

the

public

Internet

to

some

of

its

enterprise

applications.

Here,

the

Internet

provides

global

reach

at

a

low

cost;

WebSphere

MQ

connectivity

provides

high

integrity

through

the

queuing

paradigm.

In

addition

to

low

cost,

the

business

can

achieve

improved

customer

satisfaction

through

24

hour

a

day

availability,

fast

response,

and

improved

accuracy.

v

An

Internet

Service

provider,

or

other

Value

Added

Network

provider.

These

companies

can

exploit

the

low

cost

and

easy

communications

provided

by

the

Internet.

They

can

also

add

value

with

the

high

integrity

provided

by

WebSphere

MQ

connectivity.

An

Internet

Service

provider

that

exploits

WebSphere

MQ

can

immediately

acknowledge

receipt

of

input

data

from

a

Web

browser,

guarantee

delivery,

and

provide

an

easy

way

for

the

user

of

the

Web

browser

to

monitor

the

status

of

the

message.

WebSphere

MQ

classes

for

.NET

provide

an

excellent

infrastructure

to

access

enterprise

applications

and

develop

complex

Web

applications.

A

service

request

from

a

Web

browser

can

be

queued

then

processed

when

possible,

allowing

a

timely

response

to

be

sent

to

the

end

user,

regardless

of

system

loading.

By

placing

this

queue

close

to

the

user

in

network

terms,

the

load

on

the

network

does

not

impact

the

timeliness

of

the

response.

Also,

the

transactional

nature

of

WebSphere

©

Copyright

IBM

Corp.

2003,

2004

3

MQ

messaging

means

that

a

simple

request

from

the

browser

can

be

expanded

safely

into

a

sequence

of

individual

back

end

processes

in

a

transactional

manner.

Connection

options

The

following

sections

describe

these

options

in

more

detail.

Client

bindings

connection

To

useWebSphere

MQ

classes

for

.NET

as

a

WebSphere

MQ

client,

you

can

install

it

either

on

the

WebSphere

MQ

server

machine,

or

on

a

separate

machine.

Server

bindings

connection

When

used

in

server

bindings

mode,

WebSphere

MQ

classes

for

.NET

uses

the

queue

manager

API,

rather

than

communicating

through

a

network.

This

provides

better

performance

for

WebSphere

MQ

applications

than

using

network

connections.

To

use

the

bindings

connection,

you

must

install

WebSphere

MQ

classes

for

.NET

on

the

WebSphere

MQ

server.

Prerequisites

To

run

WebSphere

MQ

classes

for

.NET,

you

need

the

following

software:

v

WebSphere

MQ

for

Windows

systems.

v

Microsoft®

.NET

Framework

(v1.1.4322

or

later).

Check

the

README

file

for

the

latest

information

about

operating

system

levels

this

product

has

been

tested

against.

Who

should

use

WebSphere

MQ

classes

for

.NET

4

Using

.NET

|

Chapter

2.

Installation

This

topic

tells

you

how

to

install

the

WebSphere

MQ

classes

for

.NET

code.

How

to

install

WebSphere

MQ

classes

for

.NET

are

supplied

as

part

of

CSD

5.

There

is

no

separate

installation

procedure

beyond

that

for

the

CSD.

Note:

The

.NET

Framework

is

a

prerequisite

for

WebSphere

MQ

classes

for

.NET

but

is

not

a

prerequisite

for

any

other

part

of

CSD

5.

What

is

installed

The

latest

version

of

WebSphere

MQ

classes

for

.NET

is

installed.

The

class

libraries

are

implemented

in

the

single

file

amqmdnet.dll.

We

also

supply

sample

applications,

including

source;

see

“Sample

applications”

on

page

7

Note:

Sample

applications

are

only

installed

as

part

of

the

CSD

installation

if

samples

were

previously

installed.

©

Copyright

IBM

Corp.

2003,

2004

5

What

is

installed

6

Using

.NET

Chapter

3.

Using

WebSphere

MQ

classes

for

.NET

This

topic

tells

you

how

to:

v

Configure

your

system

to

run

the

sample

programs

to

verify

your

WebSphere

MQ

classes

for

.NET

installation.

v

Modify

the

procedures

to

run

your

own

programs.

Remember

to

check

the

README

file

installed

with

the

WebSphere

MQ

classes

for

.NET

code

for

later

or

more

specific

information

for

your

environment.

The

procedures

depend

on

the

connection

option

you

want

to

use.

Follow

the

instructions

in

the

section

that

is

appropriate

for

your

requirements.

Configuring

your

queue

manager

to

accept

client

connections

Use

the

following

procedures

to

configure

your

queue

manager

to

accept

incoming

connection

requests

from

the

clients.

TCP/IP

client

1.

Define

a

server

connection

channel

using

the

following

procedures:

a.

Start

your

queue

manager

by

using

the

strmqm

command.

b.

Type

the

following

command

to

start

the

runmqsc

program:

runmqsc

[QMNAME]

c.

Define

a

sample

channel

called

NET.CHANNEL

by

issuing

the

following

command:

DEF

CHL(’NET.CHANNEL’)

CHLTYPE(SVRCONN)

TRPTYPE(TCP)

MCAUSER(’

’)

+

DESCR(’Sample

channel

for

WebSphere

MQ

classes

for

.NET’)

2.

Start

a

listener

program

with

the

following

commands:

runmqlsr

-t

tcp

[-m

QMNAME]

-p

1414

Note:

If

you

use

the

default

queue

manager,

you

can

omit

the

-m

option.

Sample

applications

Three

sample

applications

are

supplied:

v

a

simple

put

message

application

v

a

simple

get

message

application

v

a

’hello

world’

application

″Put

message″

program

SPUT

(nmqsput.cs,

mmqsput.cpp,

vmqsput.vb)

This

program

shows

how

to

put

a

message

to

a

named

queue.

The

program

has

3

parameters:

v

The

name

of

a

queue

(required)

e.g.

SYSTEM.DEFAULT.LOCAL.QUEUE

v

The

name

of

a

queue

manager

(optional)

v

The

definition

of

a

channel

(optional)

e.g.

SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If

no

queue

manager

name

is

given,

the

queue

manager

defaults

to

the

default

local

queue

manager.

If

a

channel

is

defined,

it

should

have

the

same

format

as

the

MQSERVER

environment

variable.

©

Copyright

IBM

Corp.

2003,

2004

7

″Get

message″

program

SGET

(nmqsget.cs,

mmqsget.cpp,

vmqsget.vb)

This

program

shows

how

to

get

a

message

from

a

named

queue.

The

program

has

3

parameters:

v

The

name

of

a

queue

(required)

e.g.

SYSTEM.DEFAULT.LOCAL.QUEUE

v

The

name

of

a

queue

manager

(optional)

v

The

definition

of

a

channel

(optional)

e.g.

SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If

no

queue

manager

name

is

given,

the

queue

manager

defaults

to

the

default

local

queue

manager.

If

a

channel

is

defined,

it

should

have

the

same

format

as

the

MQSERVER

environment

variable.

″Hello

World″

program

(nmqwrld.cs,

mmqwrld.cpp,

vmqwrld.vb)

This

program

shows

how

to

put

and

get

a

message.

The

program

has

3

parameters:

v

The

name

of

a

queue

(optional)

e.g.

SYSTEM.DEFAULT.LOCAL.QUEUE

or

SYSTEM.DEFAULT.MODEL.QUEUE

v

the

name

of

a

queue

manager

(optional)

v

A

channel

definition

(optional)

e.g.

SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If

no

queue

name

is

given,

the

name

defaults

to

SYSTEM.DEFAULT.LOCAL.QUEUE.

If

no

queue

manager

name

is

given,

the

queue

manager

defaults

to

the

default

local

queue

manager.

You

can

verify

your

installation

by

compiling

and

running

these

applications.

The

sample

applications

will

be

installed

to

the

following

locations,

according

to

the

language

in

which

they

are

written,

where

mqmtop

represents

the

high-level

directory

in

which

the

product

has

been

installed:

C#

mqmtop\Tools\dotnet\samples\cs\nmqswrld.cs

mqmtop\Tools\dotnet\samples\cs\nmqsput.cs

mqmtop\Tools\dotnet\samples\cs\nmqsget.cs

Managed

C++

mqmtop\Tools\dotnet\samples\mcp\mmqswrld.cs

mqmtop\Tools\dotnet\samples\mcp\mmqsput.cs

mqmtop\Tools\dotnet\samples\mcp\mmqsget.cs

Visual

Basic

mqmtop\Tools\dotnet\samples\mcp\vmqswrld.cs

mqmtop\Tools\dotnet\samples\mcp\vmqsput.cs

mqmtop\Tools\dotnet\samples\mcp\vmqsget.cs

mqmtop\Tools\dotnet\samples\mcp\xmqswrld.cs

mqmtop\Tools\dotnet\samples\mcp\xmqsput.cs

mqmtop\Tools\dotnet\samples\mcp\xmqsget.cs

To

build

the

sample

applications

a

batch

file

has

been

supplied

for

each

language.

C#

Sample

applications

8

Using

.NET

mqmtop\Tools\dotnet\samples\cs\bldcssamp.bat

The

bldcssamp

contains

a

line

for

each

sample,

which

is

all

that

is

necessary

to

build

this

sample

program:

csc

/t:exe

/r:System.dll

/r:amqmdnet.dll

/lib:mqmtop\bin

/out:nmqwrld.exe

nmqwrld.cs

Managed

C++

mqmtop\Tools\dotnet\samples\mcp\bldmcpsamp.bat

The

bldmcpamp

contains

a

line

for

each

sample,

which

is

all

that

is

necessary

to

build

this

sample

program:

cl

/clr

mqmtop\bin

mmqwrld.cpp

Visual

Basic

mqmtop\Tools\dotnet\samples\vb\bldvbsamp.bat

The

bldcssamp

contains

a

line

for

each

sample,

which

is

all

that

is

necessary

to

build

this

sample

program:

vbc

/r:System.dll

/r:mqmtop\bin\amqmdnet.dll

/out:vmqwrld.exe

vmqwrld.vb

Running

your

own

WebSphere

MQ

.NET

programs

To

run

your

own

.NET

applications,

use

the

procedures

described

for

the

verification

programs,

substituting

your

application

name

in

place

of

the

sample

applications

For

information

on

writing

WebSphere

MQ

classes

for

.NET

applications,

see

Part

2,

“Programming

with

WebSphere

MQ

classes

for

.NET,”

on

page

11.

Solving

WebSphere

MQ

.NET

problems

If

a

program

does

not

complete

successfully,

run

one

of

the

sample

applications,

and

follow

the

advice

given

in

the

diagnostic

messages.

These

sample

applications

are

described

in

Chapter

3,

“Using

WebSphere

MQ

classes

for

.NET,”

on

page

7.

If

the

problems

continue

and

you

need

to

contact

the

IBM®

service

team,

you

might

be

asked

to

turn

on

the

trace

facility.

Tracing

the

sample

application

For

instructions

on

using

the

trace

facility,

refer

to

“Tracing

WebSphere

MQ

.NET

programs”

on

page

26.

Error

messages

You

might

see

the

following

common

error

message:

An

unhandled

exception

of

type

’System.IO.FileNotFoundException’

occurred

in

unknown

module

If

this

error

occurs,

either

ensure

the

amqmdnet.dll

is

registered

in

the

’Global

Assembly

Cache’

or

create

a

configuration

file

that

points

to

the

amqmdnet.dll

assembly.

Sample

applications

Chapter

3.

Using

WebSphere

MQ

classes

for

.NET

9

Error

messages

10

Using

.NET

Part

2.

Programming

with

WebSphere

MQ

classes

for

.NET

Chapter

4.

Introduction

for

programmers

.

.

. 13

Why

should

I

use

the

.NET

interface?

.

.

.

.

. 13

The

WebSphere

MQ

.NET

interface

.

.

.

.

.

. 13

Compiling

WebSphere

MQ

.NET

applications

.

.

. 13

WebSphere

MQ

classes

for

.NET

class

library

.

.

. 13

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Connection

differences

.

.

.

.

.

.

.

.

.

.

. 15

Client

connections

.

.

.

.

.

.

.

.

.

.

. 15

Defining

which

connection

to

use

.

.

.

.

.

. 15

Example

code

fragments

.

.

.

.

.

.

.

.

.

. 16

Example

code

(client

connection)

.

.

.

.

.

. 16

Example

code

(server

bindings

connection)

.

.

. 18

Operations

on

queue

managers

.

.

.

.

.

.

.

. 20

Setting

up

the

WebSphere

MQ

environment

.

. 20

Connecting

to

a

queue

manager

.

.

.

.

.

. 20

Accessing

queues

and

processes

.

.

.

.

.

.

. 20

Handling

messages

.

.

.

.

.

.

.

.

.

.

.

. 21

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Getting

and

setting

attribute

values

.

.

.

.

.

. 23

Multithreaded

programs

.

.

.

.

.

.

.

.

.

. 23

Secure

Sockets

Layer

(SSL)

support

.

.

.

.

.

. 24

Enabling

SSL

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Using

the

distinguished

name

of

the

queue

manager

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Error

handling

when

using

SSL

.

.

.

.

.

.

. 25

Compiling

and

testing

WebSphere

MQ

.NET

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Tracing

WebSphere

MQ

.NET

programs

.

.

.

. 26

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

MQEnvironment

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

MQException

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

MQGetMessageOptions

.

.

.

.

.

.

.

.

.

. 29

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

MQManagedObject

.

.

.

.

.

.

.

.

.

.

.

. 33

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

MQMessage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

MQPutMessageOptions

.

.

.

.

.

.

.

.

.

. 54

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

MQQueue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

MQQueueManager

.

.

.

.

.

.

.

.

.

.

.

. 64

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

MQC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

©

Copyright

IBM

Corp.

2003,

2004

11

12

Using

.NET

Chapter

4.

Introduction

for

programmers

This

topic

contains

general

information

for

programmers.

For

more

detailed

information

about

writing

programs,

see

Chapter

5,

“Writing

WebSphere

MQ

.NET

programs,”

on

page

15.

Why

should

I

use

the

.NET

interface?

If

you

have

applications

which

use

Microsoft’s

.NET

Framework

and

wish

to

take

advantage

of

the

facilities

of

WebSphere

MQ,

you

must

use

WebSphere

MQ

classes

for

.NET.

The

WebSphere

MQ

.NET

interface

The

procedural

WebSphere

MQ

application

programming

interface

is

built

around

the

following

verbs:

MQBACK,

MQBEGIN,

MQCLOSE,

MQCMIT,

MQCONN,

MQCONNX,

MQDISC,

MQGET,

MQINQ,

MQOPEN,

MQPUT,

MQPUT1,

MQSET

These

verbs

all

take,

as

a

parameter,

a

handle

to

the

WebSphere

MQ

object

on

which

they

are

to

operate.

Because

.NET

is

object-oriented,

the

.NET

programming

interface

turns

this

round.

Your

program

consists

of

a

set

of

WebSphere

MQ

objects,

which

you

act

upon

by

calling

methods

on

those

objects.

When

you

use

the

procedural

interface,

you

disconnect

from

a

queue

manager

by

using

the

call

MQDISC(Hconn,

CompCode,

Reason),

where

Hconn

is

a

handle

to

the

queue

manager.

In

the

.NET

interface,

the

queue

manager

is

represented

by

an

object

of

class

MQQueueManager.

You

disconnect

from

the

queue

manager

by

calling

the

Disconnect()

method

on

that

class.

//

declare

an

object

of

type

queue

manager

MQQueueManager

queueManager=new

MQQueueManager();

...

//

do

something...

...

//

disconnect

from

the

queue

manager

queueManager.Disconnect();

Compiling

WebSphere

MQ

.NET

applications

Before

you

can

compile

any

applications

that

you

write,

you

must

have

access

to

a

.NET

Framework,

as

detailed

in

“Prerequisites”

on

page

4.

WebSphere

MQ

classes

for

.NET

class

library

WebSphere

MQ

classes

for

.NET

is

a

set

of

classes

that

enable

.NET

applications

to

interact

with

WebSphere

MQ.

The

following

classes

are

provided:

v

MQChannelDefinition

v

MQEnvironment

v

MQException

©

Copyright

IBM

Corp.

2003,

2004

13

v

MQGetMessageOptions

v

MQManagedObject

v

MQMessage

v

MQPutMessageOptions

v

MQQueue

v

MQQueueManager

The

following

structure

is

provided:

v

MQC

WebSphere

MQ

classes

for

.NET

class

library

14

Using

.NET

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

To

use

WebSphere

MQ

classes

for

.NET

to

access

WebSphere

MQ

queues,

you

write

programs

in

any

language

supported

by

.NET

containing

calls

that

put

messages

onto,

and

get

messages

from,

WebSphere

MQ

queues.

This

chapter

provides

information

to

assist

with

writing

applications

to

interact

with

WebSphere

MQ

systems.

For

details

of

individual

classes,

see

Chapter

6,

“The

WebSphere

MQ

.NET

classes

and

interfaces,”

on

page

27.

Connection

differences

The

way

you

program

for

WebSphere

MQ

.NET

has

some

dependencies

on

the

connection

modes

you

want

to

use.

Client

connections

When

WebSphere

MQ

classes

for

.NET

is

used

as

a

client,

it

is

similar

to

the

WebSphere®

MQ

C

client,

but

has

the

following

differences:

v

It

supports

only

TCP/IP.

v

It

does

not

support

connection

tables.

v

Information

that

would

be

stored

in

a

channel

definition

and

in

environment

variables

is

stored

in

a

class

called

Environment.

Alternatively,

this

information

can

be

passed

as

parameters

when

the

connection

is

made.

For

general

information

on

WebSphere

MQ

clients,

see

the

WebSphere

MQ

Clients

book.

Defining

which

connection

to

use

The

connection

is

determined

by

the

setting

of

variables

in

the

MQEnvironment

class.

Either

set

the

value

of

MQEnvironment.Hostname

and

MQEnvironment.Channel

as

follows:

v

For

client

connections,

set

to

the

host

name

of

the

WebSphere

MQ

server

and

server

connection

channel

to

which

you

want

to

connect

v

For

bindings

mode,

set

both

variables

to

null

or

set

the

environment

variable

NMQ_MQ_LIB

to

explicitly

choose

connection

type

as

shown

in

the

following

table

NMQ_MQ_LIB

value

Connection

type

mqm.dll

Server

bindings

connection

mqic32.dll

Client

bindings

connection

mqic32xa.dll

XA

Client

bindings

connection

©

Copyright

IBM

Corp.

2003,

2004

15

|||

||

||

||
|

Example

code

fragments

This

section

includes

two

example

code

fragments;

Figure

1

and

Figure

2

on

page

18.

Each

one

uses

a

particular

connection

and

includes

notes

to

describe

the

changes

needed

to

use

alternative

connections.

Example

code

(client

connection)

The

following

code

fragment

demonstrates

an

application

that

uses

a

client

connection

to:

1.

Connect

to

a

queue

manager

2.

Put

a

message

onto

SYSTEM.DEFAULT.LOCAL.QUEUE

3.

Get

the

message

back

//

===

//

Licensed

Materials

-

Property

of

IBM

//

5639-C34

//

(c)

Copyright

IBM

Corp.

1995,

2003

//

===

using

System;

using

IBM.WMQ;

class

MQSample

{

private

String

hostname

=

"your_hostname";

//define

the

name

of

your

//host

to

connect

to

private

String

channel

=

"server_channel";

//define

name

of

channel

//for

client

to

use

//Note:assumes

WebSphere

MQ

Server

//is

listening

on

the

default

//TCP/IP

port

of

1414

private

String

qManager

=

"your_Q_manager";

//define

name

of

queue

//manager

object

to

//connect

to.

//When

the

class

is

called,this

initialization

is

done

first.

public

void

init()

{

//Set

up

WebSphere

MQ

environment

MQEnvironment.Hostname

=

hostname;

//Could

have

put

the

//hostname

and

channel

MQEnvironment.Channel

=

channel;

//string

directly

here!

}//end

of

init

Figure

1.

WebSphere

MQ

classes

for

.NET

example

code

(client

connection)

(Part

1

of

2)

Example

code

16

Using

.NET

public

void

start()

{

try

{

//Create

a

connection

to

the

queue

manager

MQQueueManager

qMgr

=new

MQQueueManager(qManager);

//Set

up

the

options

on

the

queue

we

wish

to

open...

int

openOptions

=MQC.MQOO_INPUT_AS_Q_DEF

|

MQC.MQOO_OUTPUT

;

//Now

specify

the

queue

that

we

wish

to

open,and

the

open

options...

MQQueue

system_default_local_queue

=

qMgr.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

openOptions);

//Define

a

simple

WebSphere

MQ

message,and

write

some

text

in

UTF

format..

MQMessage

hello_world

=new

MQMessage();

hello_world.WriteUTF("Hello

World!");

//specify

the

message

options...

MQPutMessageOptions

pmo

=new

MQPutMessageOptions();//accept

the

defaults,

//same

as

MQPMO_DEFAULT

constant

//put

the

message

on

the

queue

system_default_local_queue.Put(hello_world,pmo);

//get

the

message

back

again...

//First

define

a

WebSphere

MQ

message

buffer

to

receive

the

message

into..

MQMessage

retrievedMessage

=new

MQMessage();

retrievedMessage.MessageId

=hello_world.MessageId;

//Set

the

get

message

options..

MQGetMessageOptions

gmo

=new

MQGetMessageOptions();//accept

the

defaults

//same

as

MQGMO_DEFAULT

//get

the

message

off

the

queue..

system_default_local_queue.Get(retrievedMessage,gmo);

//And

prove

we

have

the

message

by

displaying

the

UTF

message

text

String

msgText

=retrievedMessage.ReadUTF();

Console.WriteLine("The

message

is:"+msgText);

//Close

the

queue

system_default_local_queue.Close();

//Disconnect

from

the

queue

manager

qMgr.Disconnect();

}

//If

an

error

has

occurred

in

the

above,try

to

identify

what

went

wrong.

//Was

it

a

WebSphere

MQ

error?

catch

(MQException

ex)

{

Console.WriteLine("A

WebSphere

MQ

error

occurred

:Completion

code

"+

ex.CompletionCode

+

"Reason

code

"+ex.ReasonCode);

}

catch

(System.Exception

ex)

{

Console.WriteLine("A

System

error

occurred:"+ex);

}

}//end

of

start

}//end

of

sample

Figure

1.

WebSphere

MQ

classes

for

.NET

example

code

(client

connection)

(Part

2

of

2)

Example

code

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

17

Example

code

(server

bindings

connection)

The

following

code

fragment

demonstrates

an

application

that

uses

server

bindings

mode

to:

1.

Connect

to

a

queue

manager

2.

Put

a

message

onto

SYSTEM.DEFAULT.LOCAL.QUEUE

3.

Get

the

message

back

again

//

==

//

Licensed

Materials

-

Property

of

IBM

//

5639-C34

//

(c)

Copyright

IBM

Corp.

1995,

2003

//

==

using

System;

using

IBM.WMQ;

public

class

MQSample1

{

private

String

qManager

="your_Q_manager";

//define

name

of

queue

//manager

to

connect

to.

private

MQQueueManager

qMgr;

//define

a

queue

manager

object

static

void

Main(string[]

args)

{

new

MQSample1();

}

Figure

2.

WebSphere

MQ

classes

for

.NET

example

code

(server

bindings

connection)

(Part

1

of

2)

Example

code

18

Using

.NET

public

MQSample1()

{

try

{

//Create

a

connection

to

the

queue

manager

qMgr

=new

MQQueueManager(qManager);

//Set

up

the

options

on

the

queue

we

wish

to

open...

//Note.All

WebSphere

MQ

Options

are

prefixed

with

MQC

int

openOptions

=MQC.MQOO_INPUT_AS_Q_DEF

|MQC.MQOO_OUTPUT

;

//Now

specify

the

queue

that

we

wish

to

open,

//and

the

open

options...

MQQueue

system_default_local_queue

=

qMgr.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

openOptions);

//Define

a

simple

WebSphere

MQ

message,and

write

some

text

in

UTF

format..

MQMessage

hello_world

=new

MQMessage();

hello_world.WriteUTF("Hello

World!");

//specify

the

message

options...

MQPutMessageOptions

pmo

=new

MQPutMessageOptions();//accept

the

defaults,

//same

as

MQPMO_DEFAULT

//put

the

message

on

the

queue

system_default_local_queue.Put(hello_world,pmo);

//get

the

message

back

again...

//First

define

a

WebSphere

MQ

message

buffer

to

receive

the

message

into..

MQMessage

retrievedMessage

=new

MQMessage();

retrievedMessage.MessageId

=hello_world.MessageId;

//Set

the

get

message

options...

MQGetMessageOptions

gmo

=new

MQGetMessageOptions();//accept

the

defaults

//same

as

MQGMO_DEFAULT

//get

the

message

off

the

queue...

system_default_local_queue.Get(retrievedMessage,gmo);

//And

prove

we

have

the

message

by

displaying

the

UTF

message

text

String

msgText

=retrievedMessage.ReadUTF();

Console.WriteLine("The

message

is:"+msgText);

//Close

the

queue...

system_default_local_queue.Close();

//Disconnect

from

the

queue

manager

qMgr.Disconnect();

}

//If

an

error

has

occurred

in

the

above,try

to

identify

what

went

wrong

//Was

it

a

WebSphere

MQ

error?

catch

(MQException

ex)

{

Console.WriteLine("A

WebSphere

MQ

error

occurred

:Completion

code

"+

ex.CompletionCode

+"Reason

code

"+ex.ReasonCode);

}

//Was

it

a

System

error?

catch

(System.Exception

ex)

{

Console.WriteLine("A

System

error

occurred:"+ex);

}

}

}//end

of

sample

Figure

2.

WebSphere

MQ

classes

for

.NET

example

code

(server

bindings

connection)

(Part

2

of

2)

Example

code

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

19

Operations

on

queue

managers

This

section

describes

how

to

connect

to,

and

disconnect

from,

a

queue

manager

using

WebSphere

MQ

classes

for

.NET.

Setting

up

the

WebSphere

MQ

environment

Note:

This

step

is

not

necessary

when

using

WebSphere

MQ

classes

for

.NET

in

server

bindings

mode.

In

that

case,

go

directly

to

“Connecting

to

a

queue

manager.”

Before

you

use

the

client

connection

to

connect

to

a

queue

manager,

you

must

set

up

the

MQEnvironment.

The

C

based

WebSphere

MQ

clients

rely

on

environment

variables

to

control

the

behavior

of

the

MQCONN

call.

The

.NET

programming

interface

allows

you

to

use

the

NMQ_MQ_LIB

environment

variable

but

also

includes

a

class

MQEnvironment.

This

class

allows

you

to

specify

the

following

details

that

are

to

be

used

during

the

connection

attempt:

v

Channel

name

v

Host

name

v

Port

number

To

specify

the

channel

name

and

host

name,

use

the

following

code:

MQEnvironment.Hostname

=

"host.domain.com";

MQEnvironment.Channel

=

"client.channel";

By

default,

the

clients

attempt

to

connect

to

a

WebSphere

MQ

listener

at

port

1414.

To

specify

a

different

port,

use

the

code:

MQEnvironment.Port

=

nnnn;

Connecting

to

a

queue

manager

You

are

now

ready

to

connect

to

a

queue

manager

by

creating

a

new

instance

of

the

MQQueueManager

class:

MQQueueManager

queueManager

=

new

MQQueueManager("qMgrName");

To

disconnect

from

a

queue

manager,

call

the

Disconnect()

method

on

the

queue

manager:

queueManager.Disconnect();

If

you

call

the

Disconnect

method,

all

open

queues

and

processes

that

you

have

accessed

through

that

queue

manager

are

closed.

However,

it

is

good

programming

practice

to

close

these

resources

explicitly

when

you

finish

using

them.

To

do

this,

use

the

Close()

method.

The

Commit()

and

Backout()

methods

on

a

queue

manager

replace

the

MQCMIT

and

MQBACK

calls

that

are

used

with

the

procedural

interface.

Accessing

queues

and

processes

To

access

queues,

use

the

MQQueueManager

class.

The

MQOD

(object

descriptor

structure)

is

collapsed

into

the

parameters

of

these

methods.

For

example,

to

open

a

queue

on

a

queue

manager

called

queueManager,

use

the

following

code:

Queue

manager

operations

20

Using

.NET

MQQueue

queue

=

queueManager.AccessQueue("qName",

MQC.MQOO_OUTPUT,

"qMgrName",

"dynamicQName",

"altUserId");

The

options

parameter

is

the

same

as

the

Options

parameter

in

the

MQOPEN

call.

The

AccessQueue

method

returns

a

new

object

of

class

MQQueue.

When

you

have

finished

using

the

queue,

use

the

Close()

method

to

close

it,

as

in

the

following

example:

queue.Close();

With

WebSphere

MQ

.NET,

you

can

also

create

a

queue

by

using

the

MQQueue

constructor.

The

parameters

are

exactly

the

same

as

for

the

accessQueue

method,

with

the

addition

of

a

queue

manager

parameter.

For

example:

MQQueue

queue

=

new

MQQueue(queueManager,

"qName",

MQC.MQOO_OUTPUT,

"qMgrName",

"dynamicQName",

"altUserId");

Constructing

a

queue

object

in

this

way

enables

you

to

write

your

own

subclasses

of

MQQueue.

Handling

messages

Put

messages

onto

queues

using

the

Put()

method

of

the

MQQueue

class.

You

get

messages

from

queues

using

the

Get()

method

of

the

MQQueue

class.

Unlike

the

procedural

interface,

where

MQPUT

and

MQGET

put

and

get

arrays

of

bytes,

the

WebSphere

MQ

classes

for

.NET

put

and

get

instances

of

the

MQMessage

class.

The

MQMessage

class

encapsulates

the

data

buffer

that

contains

the

actual

message

data,

together

with

all

the

MQMD

(message

descriptor)

parameters

that

describe

that

message.

To

build

a

new

message,

create

a

new

instance

of

the

MQMessage

class

and

use

the

WriteXXX

methods

to

put

data

into

the

message

buffer.

When

the

new

message

instance

is

created,

all

the

MQMD

parameters

are

automatically

set

to

their

default

values,

as

defined

in

the

WebSphere

MQ

Application

Programming

Reference.

The

Put()

method

of

MQQueue

also

takes

an

instance

of

the

MQPutMessageOptions

class

as

a

parameter.

This

class

represents

the

MQPMO

structure.

The

following

example

creates

a

message

and

puts

it

onto

a

queue:

//

Build

a

new

message

containing

my

age

followed

by

my

name

MQMessage

myMessage

=

new

MQMessage();

myMessage.WriteInt(25);

String

name

=

"Charlie

Jordan";

myMessage.WriteUTF(name);

//

Use

the

default

put

message

options...

MQPutMessageOptions

pmo

=

new

MQPutMessageOptions();

//

put

the

message!

queue.Put(myMessage,pmo);

Queue

and

process

access

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

21

The

Get()

method

of

MQQueue

returns

a

new

instance

of

MQMessage,

which

represents

the

message

just

taken

from

the

queue.

It

also

takes

an

instance

of

the

MQGetMessageOptions

class

as

a

parameter.

This

class

represents

the

MQGMO

structure.

You

do

not

need

to

specify

a

maximum

message

size,

because

the

Get()

method

automatically

adjusts

the

size

of

its

internal

buffer

to

fit

the

incoming

message.

Use

the

ReadXXX

methods

of

the

MQMessage

class

to

access

the

data

in

the

returned

message.

The

following

example

shows

how

to

get

a

message

from

a

queue:

//

Get

a

message

from

the

queue

MQMessage

theMessage

=

new

MQMessage();

MQGetMessageOptions

gmo

=

new

MQGetMessageOptions();

queue.Get(theMessage,gmo);

//

has

default

values

//

Extract

the

message

data

int

age

=

theMessage.ReadInt();

String

name1

=

theMessage.ReadUTF();

You

can

alter

the

number

format

that

the

read

and

write

methods

use

by

setting

the

encoding

member

variable.

You

can

alter

the

character

set

to

use

for

reading

and

writing

strings

by

setting

the

characterSet

member

variable.

See

“MQMessage”

on

page

35

for

more

details.

Note:

The

WriteUTF()

method

of

MQMessage

automatically

encodes

the

length

of

the

string

as

well

as

the

Unicode

bytes

it

contains.

When

your

message

will

be

read

by

another

.NET

program

(using

ReadUTF()),

this

is

the

simplest

way

to

send

string

information.

Handling

errors

Methods

in

the

.NET

interface

do

not

return

a

completion

code

and

reason

code.

Instead,

they

throw

an

exception

whenever

the

completion

code

and

reason

code

resulting

from

a

WebSphere

MQ

call

are

not

both

zero.

This

simplifies

the

program

logic

so

that

you

do

not

have

to

check

the

return

codes

after

each

call

to

WebSphere

MQ.

You

can

decide

at

which

points

in

your

program

you

want

to

deal

with

the

possibility

of

failure.

At

these

points,

you

can

surround

your

code

with

try

and

catch

blocks,

as

in

the

following

example:

try

{

myQueue.Put(messageA,PutMessageOptionsA);

myQueue.Put(messageB,PutMessageOptionsB);

}

catch

(MQException

ex)

{

//

This

block

of

code

is

only

executed

if

one

of

//

the

two

put

methods

gave

rise

to

a

non-zero

//

completion

code

or

reason

code.

Console.WriteLine("An

error

occurred

during

the

put

operation:"

+

"CC

=

"

+

ex.CompletionCode

+

"RC

=

"

+

ex.ReasonCode);

Console.WriteLine("Cause

exception:"

+

ex

);

}

The

WebSphere

MQ

call

reason

codes

reported

back

in

.NET

exceptions

are

documented

in

a

chapter

called

“Return

Codes”

in

the

WebSphere

MQ

Application

Programming

Reference.

Message

handling

22

Using

.NET

Getting

and

setting

attribute

values

The

classes

MQManagedObject,

MQQueue,

and

MQQueueManager

contain

properties

that

allow

you

to

get

and

set

their

attribute

values.

Note

that

for

MQQueue,

the

methods

work

only

if

you

specify

the

appropriate

inquire

and

set

flags

when

you

open

the

queue.

For

less

common

attributes,

the

MQQueueManager

and

MQQueue

classes

all

inherit

from

a

class

called

MQManagedObject.

This

class

defines

the

Inquire()

and

Set()

interfaces.

When

you

create

a

new

queue

manager

object

by

using

the

new

operator,

it

is

automatically

opened

for

inquire.

When

you

use

the

AccessQueue()

method

to

access

a

queue

object,

that

object

is

not

automatically

opened

for

either

inquire

or

set

operations.

This

is

because

adding

these

options

automatically

can

cause

problems

with

some

types

of

remote

queues.

To

use

the

Inquire

and

Set

methods

and

to

set

properties

on

a

queue,

you

must

specify

the

appropriate

inquire

and

set

flags

in

the

openOptions

parameter

of

the

AccessQueue()

method.

The

inquire

and

set

methods

take

three

parameters:

v

selectors

array

v

intAttrs

array

v

charAttrs

array

You

do

not

need

the

SelectorCount,

IntAttrCount,

and

CharAttrLength

parameters

that

are

found

in

MQINQ,

because

the

length

of

an

array

is

always

known.

The

following

example

shows

how

to

make

an

inquiry

on

a

queue:

//inquire

on

a

queue

const

int

MQIA_DEF_PRIORITY

=6;

const

int

MQCA_Q_DESC

=2013;

const

int

MQ_Q_DESC_LENGTH

=64;

int

[

]

selectors

=new

int

[2

]

;

int

[

]

intAttrs

=new

int

[1

]

;

byte

[

]

charAttrs

=new

byte

[MQ_Q_DESC_LENGTH

];

selectors

[0

]

=MQIA_DEF_PRIORITY;

selectors

[1

]

=MQCA_Q_DESC;

queue.Inquire(selectors,intAttrs,charAttrs);

ASCIIEncoding

enc

=

new

ASCIIEncoding();

String

s1

=

"";

s1

=

enc.GetString(charAttrs);

Multithreaded

programs

Multithreaded

programs

are

hard

to

avoid.

Consider

a

simple

program

that

connects

to

a

queue

manager

and

opens

a

queue

at

startup.

The

program

displays

a

single

button

on

the

screen.

When

a

user

presses

that

button,

the

program

fetches

a

message

from

the

queue.

The

.NET

runtime

environment

is

inherently

multithreaded.

Therefore,

your

application

initialization

occurs

in

one

thread,

and

the

code

that

executes

in

response

to

the

button

press

executes

in

a

separate

thread

(the

user

interface

thread).

The

implementation

of

WebSphere

MQ

.NET

ensures

that,

for

a

given

connection

(MQQueueManager

object

instance),

all

access

to

the

target

WebSphere

MQ

queue

manager

is

synchronized.

The

default

behaviour

is

that

a

thread

that

wants

to

issue

a

call

to

a

queue

manager

is

blocked

until

all

other

calls

in

progress

for

that

Using

attribute

values

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

23

connection

are

complete.

If

you

require

simultaneous

access

to

the

same

queue

manager

from

multiple

threads

within

your

program,

create

a

new

MQQueueManager

object

for

each

thread

that

requires

concurrent

access.

(This

is

equivalent

to

issuing

a

separate

MQCONN

call

for

each

thread.)

If

the

default

connection

options

are

overridden

by

MQC.MQCNO_HANDLE_SHARE_NONE

or

MQC.MQCNO_SHARE_NO_BLOCK

then

the

queue

manager

is

no

longer

synchronized.

Secure

Sockets

Layer

(SSL)

support

WebSphere

MQ

classes

for

.NET

client

applications

support

Secure

Sockets

Layer

(SSL)

encryption.

SSL

provides

communication

encryption,

authentication,

and

message

integrity.

It

is

typically

used

to

secure

communications

between

any

two

peers

on

the

Internet

or

within

an

intranet.

Enabling

SSL

SSL

is

supported

only

for

client

connections.

To

enable

SSL,

you

must

specify

the

CipherSpec

to

use

when

communicating

with

the

queue

manager,

and

this

must

match

the

CipherSpec

set

on

the

target

channel.

To

enable

SSL,

specify

the

CipherSpec

using

the

SSLCipherSpec

static

member

variable

of

MQEnvironment.

The

following

example

attaches

to

a

SVRCONN

channel

named

SECURE.SVRCONN.CHANNEL,

which

has

been

set

up

to

require

SSL

with

a

CipherSpec

of

NULL_MD5:

MQEnvironment.Hostname

=

"your_hostname";

MQEnvironment.Channel

=

"SECURE.SVRCONN.CHANNEL";

MQEnvironment.SSLCipherSpec

=

"NULL_MD5";

MQEnvironment.SSLKeyRepository

=

@"C:\mqm\key"

MQQueueManager

qmgr

=

new

MQQueueManager("your_Q_manager");

See

Appendix

A,

“SSL

CipherSpecs

supported

by

WebSphere

MQ,”

on

page

75

for

a

list

of

CipherSpecs.

The

SSLCipherSpec

property

can

also

be

set

using

the

MQC.SSL_CIPHER_SPEC_PROPERTY

in

the

hash

table

of

connection

properties.

To

successfully

connect

using

SSL,

the

client

key

store

must

be

set

up

with

Certificate

Authority

root

certificates

chain

from

which

the

certificate

presented

by

the

queue

manager

can

be

authenticated.

Similarly,

if

SSLClientAuth

on

the

SVRCONN

channel

has

been

set

to

MQSSL_CLIENT_AUTH_REQUIRED,

the

client

key

store

must

contain

an

identifying

personal

certificate

that

is

trusted

by

the

queue

manager.

Using

the

distinguished

name

of

the

queue

manager

The

queue

manager

identifies

itself

using

an

SSL

certificate,

which

contains

a

Distinguished

Name

(DN).

A

WebSphere

MQ

.NET

client

application

can

use

this

DN

to

ensure

that

it

is

communicating

with

the

correct

queue

manager.

A

DN

pattern

is

specified

using

the

sslPeerName

variable

of

MQEnvironment.

For

example,

setting:

MQEnvironment.SSLPeerName

=

"CN=QMGR.*,

OU=IBM,

OU=WEBSPHERE";

allows

the

connection

to

succeed

only

if

the

queue

manager

presents

a

certificate

with

a

Common

Name

beginning

QMGR.,

and

at

least

two

Organizational

Unit

names,

the

first

of

which

must

be

IBM

and

the

second

WEBSPHERE.

Multithreaded

programs

24

Using

.NET

The

SSLPeerName

property

can

also

be

set

using

the

MQC.SSL_PEER_NAME_PROPERTY

in

the

hash

table

of

connection

properties.

For

more

information

about

distinguished

names

and

rules

for

setting

peer

names,

refer

to

WebSphere

MQ

Security.

If

SSLPeerName

is

set,

connections

succeed

only

if

it

is

set

to

a

valid

pattern

and

the

queue

manager

presents

a

matching

certificate.

Error

handling

when

using

SSL

The

following

reason

codes

can

be

issued

by

WebSphere

MQ

classes

for

.NET

when

connecting

to

a

queue

manager

using

SSL:

MQRC_SSL_NOT_ALLOWED

The

SSLCipherSpec

property

was

set,

but

bindings

connect

was

used.

Only

client

connect

supports

SSL.

MQRC_SSL_PEER_NAME_MISMATCH

The

DN

pattern

specified

in

the

SSLPeerName

property

did

not

match

the

DN

presented

by

the

queue

manager.

MQRC_SSL_PEER_NAME_ERROR

The

DN

pattern

specified

in

the

SSLPeerName

property

was

not

valid.

Compiling

and

testing

WebSphere

MQ

.NET

programs

Before

compiling

WebSphere

MQ

.NET

programs,

you

must

ensure

that

your

WebSphere

MQ

classes

for

.NET

installation

directory

is

in

your

CLASSPATH

environment

variable.

To

build

a

C#

application

using

WebSphere

MQ

classes

for

.NET,

use

the

following

command

csc

/t:exe

/r:System.dll

/r:amqmdnet.dll

/lib:mqmtop\bin

/out:MyProg.exe

MyProg.cs

To

build

a

Visual

Basic

application

using

WebSphere

MQ

classes

for

.NET,

use

the

following

command

vbc

/r:System.dll

/r:mqmtop\bin\amqmdnet.dll

/out:MyProg.exe

MyProg.vb

To

build

a

Managed

C++

application

using

WebSphere

MQ

classes

for

.NET,

use

the

following

command.

cl

/clr

mqmtop\bin

Myprog.cpp

Before

running

WebSphere

MQ

.NET

programs,

you

must

ensure

the

CLR

can

locate

the

.NET

Assembly.

This

can

be

done

by

either:

v

registering

amgmdnet.dll

in

the

’Global

Assembly

Cache’.

The

command

to

register

the

assembly

is:

gacutil

-i

mqmtop\bin\amqmdnet.dll.

or

v

creating

a

’configuration

file’

for

the

WebSphere

MQ

.NET

program.

The

configuration

file

should

tell

the

CLR

how

to

locate

the

amqmdnet.dll

assembly.

SSL

support

Chapter

5.

Writing

WebSphere

MQ

.NET

programs

25

Tracing

WebSphere

MQ

.NET

programs

WebSphere

MQ

.NET

uses

the

standard

WebSphere

MQ

trace

facility,

which

you

can

use

to

produce

diagnostic

messages

if

you

suspect

that

there

might

be

a

problem

with

the

code.

(You

normally

need

to

use

this

facility

only

at

the

request

of

IBM

service.)

Refer

to

WebSphere

MQ

Script

(MQSC)

Command

Reference

for

information

on

trace

commands.

Tracing

WebSphere

MQ

.NET

programs

26

Using

.NET

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

This

topic

describes

all

the

WebSphere

MQ

.NET

classes

and

interfaces.

It

includes

details

of

the

variables,

constructors,

and

methods

in

each

class

and

interface.

The

following

classes

are

described:

v

MQEnvironment

v

MQException

v

MQGetMessageOptions

v

MQManagedObject

v

MQMessage

v

MQPutMessageOptions

v

MQQueue

v

MQQueueManager

The

following

structure

is

described:

v

MQC

MQEnvironment

public

class

IBM.WMQ.MQEnvironment

extends

System.Object

The

MQEnvironment

class

is

used

to

control

how

the

MQQueueManager

constructor

is

called.

Constructors

MQEnvironment

public

MQEnvironment()

Properties

Note:

Variables

marked

with

*

do

not

apply

when

connecting

directly

to

WebSphere

MQ

in

server

bindings

mode.

Channel*

public

static

String

Channel

{get;

set;}

The

name

of

the

channel

to

connect

to

on

the

target

queue

manager.

You

must

set

this

property,

before

constructing

an

MQQueueManager

instance

for

use

in

client

mode.

Hostname*

public

static

String

Hostname

{get;

set;}

System.Object

│

└─

IBM.WMQ.MQEnvironment

©

Copyright

IBM

Corp.

2003,

2004

27

The

TCP/IP

hostname

of

the

machine

on

which

the

WebSphere

MQ

server

resides.

If

the

hostname

is

not

set,

and

no

overriding

properties

are

set,

server

bindings

mode

is

used

to

connect

to

the

local

queue

manager.

Port*

public

static

int

Port

{get;

set;}

The

port

to

connect

to.

This

is

the

port

on

which

the

WebSphere

MQ

server

is

listening

for

incoming

connection

requests.

The

default

value

is

1414.

SSLCipherSpec*

public

static

String

SSLCipherSpec

{get;

set;}

If

set,

SSL

is

enabled

for

the

connection.

Set

the

SSLCipherSpec

to

the

value

of

the

CipherSpec

set

on

the

SVRCONN

channel.

If

set

to

null

(default),

no

SSL

encryption

is

performed.

SSLKeyRepository

public

static

String

SSLCipherSpec

{get;

set;}

This

property

is

set

to

the

fully-qualified

filename

of

the

key

repository.

The

.sto

extension

is

a

mandatory

part

of

the

filename,

but

is

not

included

as

part

of

the

value

of

the

parameter.

If

set

to

null

(default),

the

certificate

MQSSLKEYR

environment

variable

will

be

used

to

locate

the

key

repository.

This

variable

is

ignored

if

sslCipherSpec

is

null.

Note:

The

.sto

extension

is

a

mandatory

part

of

the

filename,

but

is

not

included

as

part

of

the

value

of

the

parameter.

The

directory

you

specify

must

exist.WebSphere

MQ

creates

the

file

the

first

time

it

accesses

the

new

key

repository,

unless

the

file

already

exists.

SSLPeerName*

public

static

String

sslPeerName

{get;

set;}

A

distinguished

name

pattern.

If

sslCipherSpec

is

set,

this

variable

can

be

used

to

ensure

the

correct

queue

manager

is

used.

For

a

description

of

the

format

for

this

value,

see

“Using

the

distinguished

name

of

the

queue

manager”

on

page

24.

If

set

to

null

(default),

no

checking

of

the

queue

manager’s

DN

is

performed.

This

variable

is

ignored

if

sslCipherSpec

is

null.

MQException

public

class

IBM.WMQ.MQException

extends

System.ApplicationException

An

MQException

is

thrown

whenever

a

WebSphere

MQ

error

occurs.

Constructors

MQException

System.Object

│

└─

System.Exception

│

└─

System.ApplicationException

│

└─

IBM.WMQ.WMQException

MQEnvironment

28

Using

.NET

public

MQException(int

completionCode,

int

reasonCode)

Construct

a

new

MQException

object.

Parameters

completionCode

The

WebSphere

MQ

completion

code.

reasonCode

The

WebSphere

MQ

reason

code.

Properties

CompletionCode

public

int

CompletionCode

{get;

set;}

WebSphere

MQ

completion

code

giving

rise

to

the

error.

The

possible

values

are:

v

MQException.MQCC_WARNING

v

MQException.MQCC_FAILED

ReasonCode

public

int

ReasonCode

{get;

set;}

WebSphere

MQ

reason

code

describing

the

error.

For

a

full

explanation

of

the

reason

codes,

refer

to

the

WebSphere

MQ

Application

Programming

Reference.

MQGetMessageOptions

public

class

IBM.WMQ.MQGetMessageOptions

extends

IBM.WMQ.MQBaseObject

This

class

contains

options

that

control

the

behavior

of

MQQueue.Get().

Note:

The

behavior

of

some

of

the

options

available

in

this

class

depends

on

the

environment

in

which

they

are

used.

These

elements

are

marked

with

an

asterisk

(*).

Constructors

MQGetMessageOptions

public

MQGetMessageOptions()

Construct

a

new

MQGetMessageOptions

object

with

options

set

to

MQC.MQGMO_NO_WAIT,

a

wait

interval

of

zero,

and

a

blank

resolved

queue

name.

System.Object

│

└─

IBM.WMQ.MQBase

│

└─

IBM.WMQ.MQBaseObject

│

└─

IBM.WMQ.MQGetMessageOptions

MQException

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

29

Properties

GroupStatus*

public

int

GroupStatus

{get;}

This

is

an

output

field

that

indicates

whether

the

retrieved

message

is

in

a

group,

and

if

it

is,

whether

it

is

the

last

in

the

group.

Possible

values

are:

MQC.MQGS_LAST_MSG_IN_GROUP

Message

is

the

last

in

the

group.

This

is

also

the

value

returned

if

the

group

consists

of

only

one

message.

MQC.MQGS_MSG_IN_GROUP

Message

is

in

a

group,

but

is

not

the

last

in

the

group.

MQC.MQGS_NOT_IN_GROUP

Message

is

not

in

a

group.

MatchOptions*

public

int

MatchOptions

{get;

set;}

Selection

criteria

that

determine

which

message

is

retrieved.

The

following

match

options

can

be

set:

MQC.MQMO_MATCH_CORREL_ID

Correlation

id

to

be

matched.

MQC.MQMO_MATCH_GROUP_ID

Group

id

to

be

matched.

MQC.MQMO_MATCH_MSG_ID

Message

id

to

be

matched.

MQC.MQMO_MATCH_MSG_SEQ_NUMBER

Match

message

sequence

number.

MQC.MQMO_NONE

No

matching

required.

Options

public

int

Options

{get;

set;}

Options

that

control

the

action

of

MQQueue.get.

Any

or

none

of

the

following

values

can

be

specified.

If

more

than

one

option

is

required,

the

values

can

be

added

together

or

combined

using

the

bitwise

OR

operator.

MQC.MQGMO_ACCEPT_TRUNCATED_MSG

Allow

truncation

of

message

data.

MQC.MQGMO_BROWSE_FIRST

Browse

from

start

of

queue.

MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR*

Browse

message

under

browse

cursor.

MQC.MQGMO_BROWSE_NEXT

Browse

from

the

current

position

in

the

queue.

MQC.MQGMO_CONVERT

Request

the

application

data

to

be

converted,

to

conform

to

the

characterSet

and

encoding

attributes

of

the

MQMessage,

before

the

data

is

copied

into

the

message

buffer.

Because

data

conversion

is

also

applied

as

the

data

is

retrieved

from

the

message

buffer,

applications

do

not

usually

set

this

option.

MQGetMessageOptions

30

Using

.NET

Using

this

option

can

cause

problems

when

converting

from

single

byte

character

sets

to

double

byte

character

sets.

Instead,

do

the

conversion

using

the

readString,

readLine,

and

writeString

methods

after

the

message

has

been

delivered.

MQC.MQGMO_FAIL_IF_QUIESCING

Fail

if

the

queue

manager

is

quiescing.

MQC.MQGMO_LOCK*

Lock

the

message

that

is

browsed.

MQC.MQGMO_MARK_SKIP_BACKOUT*

Allow

a

unit

of

work

to

be

backed

out

without

reinstating

the

message

on

the

queue.

MQC.MQGMO_MSG_UNDER_CURSOR

Get

message

under

browse

cursor.

MQC.MQGMO_NONE

No

other

options

have

been

specified;

all

options

assume

their

default

values.

MQC.MQGMO_NO_SYNCPOINT

Get

message

without

syncpoint

control.

MQC.MQGMO_NO_WAIT

Return

immediately

if

there

is

no

suitable

message.

MQC.MQGMO_SYNCPOINT

Get

the

message

under

syncpoint

control;

the

message

is

marked

as

being

unavailable

to

other

applications,

but

it

is

deleted

from

the

queue

only

when

the

unit

of

work

is

committed.

The

message

is

made

available

again

if

the

unit

of

work

is

backed

out.

MQC.MQGMO_SYNCPOINT_IF_PERSISTENT*

Get

message

with

syncpoint

control

if

message

is

persistent.

MQC.MQGMO_UNLOCK*

Unlock

a

previously

locked

message.

MQC.MQGMO_WAIT

Wait

for

a

message

to

arrive.

Segmenting

and

grouping

WebSphere

MQ

messages

can

be

sent

or

received

as

a

single

entity,

can

be

split

into

several

segments

for

sending

and

receiving,

and

can

also

be

linked

to

other

messages

in

a

group.

Each

piece

of

data

that

is

sent

is

known

as

a

physical

message,

which

can

be

a

complete

logical

message,

or

a

segment

of

a

longer

logical

message.

Each

physical

message

usually

has

a

different

MsgId.

All

the

segments

of

a

single

logical

message

have

the

same

groupId

value

and

MsgSeqNumber

value,

but

the

Offset

value

is

different

for

each

segment.

The

Offset

field

gives

the

offset

of

the

data

in

the

physical

message

from

the

start

of

the

logical

message.

The

segments

usually

have

different

MsgId

values,

because

they

are

individual

physical

messages.

Logical

messages

that

form

part

of

a

group

have

the

same

groupId

value,

but

each

message

in

the

group

has

a

different

MsgSeqNumber

value.

Messages

in

a

group

can

also

be

segmented.

MQGetMessageOptions

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

31

The

following

options

can

be

used

for

dealing

with

segmented

or

grouped

messages:

MQC.MQGMO_ALL_MSGS_AVAILABLE*

Retrieve

messages

from

a

group

only

when

all

the

messages

in

the

group

are

available.

MQC.MQGMO_ALL_SEGMENTS_AVAILABLE*

Retrieve

the

segments

of

a

logical

message

only

when

all

the

segments

in

the

group

are

available.

MQC.MQGMO_COMPLETE_MSG*

Retrieve

only

complete

logical

messages.

MQC.MQGMO_LOGICAL_ORDER*

Return

messages

in

groups,

and

segments

of

logical

messages,

in

logical

order.

ResolvedQueueName

public

String

ResolvedQueueName

{get;}

This

is

an

output

field

that

the

queue

manager

sets

to

the

local

name

of

the

queue

from

which

the

message

was

retrieved.

This

is

different

from

the

name

used

to

open

the

queue

if

an

alias

queue

or

model

queue

was

opened.

Segmentation*

public

char

Segmentation

{get;}

This

is

an

output

field

that

indicates

whether

or

not

segmentation

is

allowed

for

the

retrieved

message.

Possible

values

are:

MQC.MQSEG_INHIBITED

Segmentation

not

allowed.

MQC.MQSEG_ALLOWED

Segmentation

allowed.

SegmentStatus*

public

byte

SegmentStatus

{get;}

This

is

an

output

field

that

indicates

whether

the

retrieved

message

is

a

segment

of

a

logical

message.

If

the

message

is

a

segment,

the

flag

indicates

whether

or

not

it

is

the

last

segment.

Possible

values

are:

MQC.MQSS_LAST_SEGMENT

Message

is

the

last

segment

of

the

logical

message.

This

is

also

the

value

returned

if

the

logical

message

consists

of

only

one

segment.

MQC.MQSS_NOT_A_SEGMENT

Message

is

not

a

segment.

MQC.MQSS_SEGMENT

Message

is

a

segment,

but

is

not

the

last

segment

of

the

logical

message.

WaitInterval

public

int

WaitInterval

{get;

set;}

The

maximum

time

(in

milliseconds)

that

an

MQQueue.get

call

waits

for

a

suitable

message

to

arrive

(used

in

conjunction

with

MQC.MQGMO_WAIT).

A

value

of

MQC.MQWI_UNLIMITED

indicates

that

an

unlimited

wait

is

required.

MQGetMessageOptions

32

Using

.NET

MQManagedObject

public

class

IBM.WMQ.MQManagedObject

extends

IBM.WMQ.MQBaseObject

MQManagedObject

is

a

superclass

for

MQQueueManager

and

MQQueue.

It

provides

the

ability

to

inquire

and

set

attributes

of

these

resources.

Constructors

MQManagedObject

protected

MQManagedObject()

Constructor

method.

Methods

Close

public

virtual

void

Close()

Throws

MQException.

Closes

the

object.

No

further

operations

against

this

resource

are

permitted

after

this

method

has

been

called.

To

change

the

behavior

of

the

Close

method,

set

the

closeOptions

attribute.

Throws

MQException

if

the

WebSphere

MQ

call

fails.

Inquire

public

void

Inquire(int[]

selectors,

int[]

intAttrs,

byte[]

charAttrs)

Throws

MQException.

Returns

an

array

of

integers

and

a

set

of

character

strings

containing

the

attributes

of

an

object

(queue,

process,

or

queue

manager).

The

attributes

to

be

queried

are

specified

in

the

selectors

array.

Refer

to

the

WebSphere

MQ

Application

Programming

Reference

for

details

of

the

permissible

selectors

and

their

corresponding

integer

values.

Many

of

the

more

common

attributes

can

be

queried

using

the

GetXXX()

methods

defined

in

MQManagedObject,

MQQueue

and

MQQueueManager.

Parameters

System.Object

│

└─

IBM.WMQ.MQBase

│

└─

IBM.WMQ.MQBaseObject

│

└─

IBM.WMQ.MQManagedObject

MQManagedObject

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

33

selectors

Integer

array

identifying

the

attributes

with

values

to

be

inquired

on.

intAttrs

The

array

in

which

the

integer

attribute

values

are

returned.

Integer

attribute

values

are

returned

in

the

same

order

as

the

integer

attribute

selectors

in

the

selectors

array.

charAttrs

The

buffer

in

which

the

character

attributes

are

returned,

concatenated.

Character

attributes

are

returned

in

the

same

order

as

the

character

attribute

selectors

in

the

selectors

array.

The

length

of

each

attribute

string

is

fixed

for

each

attribute.

Throws

MQException

if

the

inquire

fails.

Set

public

void

Set(int[]

selectors,

int[]

intAttrs,

byte[]

charAttrs)

Throws

MQException.

Sets

the

attributes

defined

in

the

selector’s

vector.

The

attributes

to

be

set

are

specified

in

the

selectors

array.

Refer

to

the

WebSphere

MQ

Application

Programming

Reference

for

details

of

the

permissible

selectors

and

their

corresponding

integer

values.

Parameters

selectors

Integer

array

identifying

the

attributes

with

values

to

be

set.

intAttrs

The

array

of

integer

attribute

values

to

be

set.

These

values

must

be

in

the

same

order

as

the

integer

attribute

selectors

in

the

selectors

array.

charAttrs

The

buffer

in

which

the

character

attributes

to

be

set

are

concatenated.

These

values

must

be

in

the

same

order

as

the

character

attribute

selectors

in

the

selectors

array.

The

length

of

each

character

attribute

is

fixed.

Throws

MQException

if

the

set

fails.

Properties

AlternateUserId

public

String

AlternateUserId

{get;

set;}

The

alternate

user

ID

(if

any)

specified

when

this

resource

was

opened.

Setting

this

attribute

has

no

effect.

CloseOptions

public

int

CloseOptions

{get;

set;}

Set

this

attribute

to

control

the

way

the

resource

is

closed.

The

default

value

is

MQC.MQCO_NONE,

and

this

is

the

only

permissible

value

for

all

MQManagedObject

34

Using

.NET

resources

other

than

permanent

dynamic

queues,

and

temporary

dynamic

queues

that

are

being

accessed

by

the

objects

that

created

them.

For

these

queues,

the

following

additional

values

are

permissible:

MQC.MQCO_DELETE

Delete

the

queue

if

there

are

no

messages.

MQC.MQCO_DELETE_PURGE

Delete

the

queue,

purging

any

messages

on

it.

ConnectionReference

public

MQQueueManager

ConnectionReference

{get;}

The

queue

manager

to

which

this

resource

belongs.

IsOpen

public

boolean

IsOpen

{get;}

Indicates

whether

this

resource

is

currently

open.

Name

public

String

Name

{get;}

The

name

of

this

resource

(either

the

name

supplied

on

the

access

method,

or

the

name

allocated

by

the

queue

manager

for

a

dynamic

queue).

OpenOptions

public

int

OpenOptions

{get;

set;}

The

options

specified

when

this

resource

was

opened.

Setting

this

attribute

has

no

effect.

MQMessage

public

class

IBM.WMQ.MQMessage

extends

IBM.WMQ.MQBaseObject

implements

DataInput,

DataOutput

MQMessage

represents

both

the

message

descriptor

and

the

data

for

a

WebSphere

MQ

message.

There

is

group

of

readXXX

methods

for

reading

data

from

a

message,

and

a

group

of

writeXXX

methods

for

writing

data

into

a

message.

The

format

of

numbers

and

strings

used

by

these

read

and

write

methods

can

be

controlled

by

the

Encoding

and

CharacterSet

properties.

The

remaining

properties

contain

control

information

that

accompanies

the

application

message

data

when

a

message

travels

between

sending

and

receiving

applications.

The

application

can

set

values

into

the

property

before

putting

a

message

to

a

queue

and

can

read

values

after

retrieving

a

message

from

a

queue.

Constructors

MQMessage

public

MQMessage()

Creates

a

new

message

with

default

message

descriptor

information

and

an

empty

message

buffer.

System.Object

│

└─

IBM.WMQ.MQBase

│

└─

IBM.WMQ.MQBaseObject

│

└─

IBM.WMQ.MQMessage

MQManagedObject

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

35

Methods

ClearMessage

public

void

ClearMessage()

Throws

IOException.

Discards

any

data

in

the

message

buffer

and

sets

the

data

offset

back

to

zero.

ReadBoolean

public

bool

ReadBoolean()

Throws

IOException.

Reads

a

(signed)

byte

from

the

current

position

in

the

message

buffer.

ReadByte

public

byte

ReadByte()

Throws

IOException.

Reads

a

byte

from

the

current

position

in

the

message

buffer.

ReadBytes

public

byte[]

ReadBytes(int

count)

Throws

IOException.

Reads

byte[’count’]

(’count’

bytes)

from

the

buffer

starting

at

the

data

pointer.

After

the

data

has

been

read

the

data

pointer

is

incremented

by

’count’.

ReadChar

public

char

ReadChar()

Throws

IOException,

EndOfStreamException.

Reads

a

Unicode

character

from

the

current

position

in

the

message

buffer.

ReadDecimal2

public

short

ReadDecimal2()

Throws

IOException,

EndOfStreamException.

Reads

a

2-byte

packed

decimal

number

(-999

to

999).

The

behavior

of

this

method

is

controlled

by

the

value

of

the

encoding

member

variable.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

reads

a

big-endian

packed

decimal

number;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

reads

a

little-endian

packed

decimal

number.

ReadDecimal4

public

int

readDecimal4()

Throws

IOException,

EndOfStreamException.

Reads

a

4-byte

packed

decimal

number

(-9999999

to

9999999).

The

behavior

of

this

method

is

controlled

by

the

value

of

the

encoding

member

variable.

MQMessage

36

Using

.NET

A

value

of

MQC.MQENC_DECIMAL_NORMAL

reads

a

big-endian

packed

decimal

number;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

reads

a

little-endian

packed

decimal

number.

ReadDecimal8

public

long

ReadDecimal8()

Throws

IOException,

EndOfStreamException.

Reads

an

8-byte

packed

decimal

number

(-999999999999999

to

999999999999999).

The

behavior

of

this

method

is

controlled

by

the

encoding

member

variable.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

reads

a

big-endian

packed

decimal

number;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

reads

a

little-endian

packed

decimal

number.

ReadDouble

public

double

ReadDouble()

Throws

IOException,

EndOfStreamException.

Reads

a

double

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

read

IEEE

standard

doubles

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

reads

a

System/390®

format

floating

point

number.

ReadFloat

public

float

ReadFloat()

Throws

IOException,

EndOfStreamException.

Reads

a

float

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

read

IEEE

standard

floats

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

reads

a

System/390

format

floating

point

number.

ReadFully

public

void

ReadFully(ref

byte[]

b)

Throws

Exception,

EndOfStreamException.

Fills

the

byte

array

b

with

data

from

the

message

buffer.

ReadFully

public

void

ReadFully(ref

sbyte[]

b)

Throws

Exception,

EndOfStreamException.

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

37

Fills

the

sbyte

array

b

with

data

from

the

message

buffer.

ReadFully

public

void

ReadFully(ref

byte[]

b,

int

off,

int

len)

Throws

IOException,

EndOfStreamException.

Fills

len

elements

of

the

byte

array

b

with

data

from

the

message

buffer,

starting

at

offset

off.

ReadFully

public

void

ReadFully(ref

sbyte[]

b,

int

off,

int

len)

Throws

IOException,

EndOfStreamException.

Fills

len

elements

of

the

sbyte

array

b

with

data

from

the

message

buffer,

starting

at

offset

off.

ReadInt

public

int

ReadInt()

Throws

IOException,

EndOfStreamException.

Reads

an

integer

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

integer;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

integer.

ReadInt2

public

short

ReadInt2()

Throws

IOException,

EndOfStreamException.

Synonym

for

ReadShort(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

ReadInt4

public

int

ReadInt4()

Throws

IOException,

EndOfStreamException.

Synonym

for

ReadInt(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

ReadInt8

public

long

ReadInt8()

Throws

IOException,

EndOfStreamException.

Synonym

for

ReadLong(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

ReadLine

MQMessage

38

Using

.NET

public

String

ReadLine()

Throws

IOException.

Converts

from

the

codeset

identified

in

the

characterSet

member

variable

to

Unicode,

and

then

reads

in

a

line

that

has

been

terminated

by

\n,

\r,

\r\n,

or

EOF.

ReadLong

public

long

ReadLong()

Throws

IOException,

EndOfStreamException.

Reads

a

long

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

long;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

long.

ReadObject

public

Object

ReadObject()

Throws

SerialisationException,

IOException.

Reads

an

object

from

the

message

buffer.

The

class

of

the

object,

the

signature

of

the

class,

and

the

value

of

the

non-transient

and

non-static

fields

of

the

class

are

all

read.

ReadShort

public

short

ReadShort()

Throws

IOException,

EndOfStreamException.

Reads

a

short

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

short;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

short.

ReadString

public

String

ReadString(int

length)

Throws

IOException,

EndOfStreamException.

Reads

a

string

in

the

codeset

identified

by

the

characterSet

member

variable,

and

convert

it

into

Unicode.

Parameters:

length

The

number

of

characters

to

read

(which

may

differ

from

the

number

of

bytes

according

to

the

codeset,

because

some

codesets

use

more

than

one

byte

per

character).

ReadUInt2

public

ushort

ReadUInt2()

Throws

IOException,

EndOfStreamException.

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

39

Synonym

for

ReadUnsignedShort(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

ReadUnsignedByte

public

byte

ReadUnsignedByte()

Throws

IOException,

EndOfStreamException.

Reads

an

unsigned

byte

from

the

current

position

in

the

message

buffer.

ReadUnsignedShort

public

ushort

ReadUnsignedShort()

Throws

IOException,

EndOfStreamException.

Reads

an

unsigned

short

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

unsigned

short;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

unsigned

short.

ReadUTF

public

String

ReadUTF()

Throws

IOException.

Reads

a

UTF

string,

prefixed

by

a

2-byte

length

field,

from

the

current

position

in

the

message

buffer.

ResizeBuffer

public

void

ResizeBuffer(int

size)

Throws

IOException.

A

hint

to

the

MQMessage

object

about

the

size

of

buffer

that

might

be

required

for

subsequent

get

operations.

If

the

message

currently

contains

message

data,

and

the

new

size

is

less

than

the

current

size,

the

message

data

is

truncated.

Seek

public

void

Seek(int

pos)

Throws

IOException,

ArgumentOutOfRangeException

ArgumentException.

Moves

the

cursor

to

the

absolute

position

in

the

message

buffer

given

by

pos.

Subsequent

reads

and

writes

act

at

this

position

in

the

buffer.

SkipBytes

public

int

SkipBytes(int

n)

Throws

IOException,

EndOfStreamException.

Moves

forward

n

bytes

in

the

message

buffer.

This

method

blocks

until

one

of

the

following

occurs:

v

All

the

bytes

are

skipped

MQMessage

40

Using

.NET

v

The

end

of

message

buffer

is

detected

v

An

exception

is

thrown

Returns

the

number

of

bytes

skipped,

which

is

always

n.

Write

public

void

Write(int

b)

Throws

IOException.

Writes

a

byte

into

the

message

buffer

at

the

current

position.

Write

public

void

Write(byte[]

b)

Throws

IOException.

Writes

an

array

of

bytes

into

the

message

buffer

at

the

current

position.

Write

public

void

Write(sbyte[]

b)

Throws

IOException.

Writes

an

array

of

sbytes

into

the

message

buffer

at

the

current

position.

Write

public

void

Write(byte[]

b,

int

off,

int

len)

Throws

IOException.

Writes

a

series

of

bytes

into

the

message

buffer

at

the

current

position.

len

bytes

are

written,

taken

from

offset

off

in

the

array

b.

Write

public

void

Write(sbyte

b[],

int

off,

int

len)

Throws

IOException.

Writes

a

series

of

sbytes

into

the

message

buffer

at

the

current

position.

len

sbytes

are

written,

taken

from

offset

off

in

the

array

b.

WriteBoolean

public

void

WriteBoolean(boolean

v)

Throws

IOException.

Writes

a

boolean

into

the

message

buffer

at

the

current

position.

WriteByte

public

void

WriteByte(int

v)

Throws

IOException.

Writes

a

byte

into

the

message

buffer

at

the

current

position.

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

41

WriteByte

public

void

WriteByte(byte

value)

Throws

IOException.

Writes

a

byte

into

the

message

buffer

at

the

current

position.

WriteByte

public

void

WriteByte(sbyte

value)

Throws

IOException.

Writes

an

sbyte

into

the

message

buffer

at

the

current

position.

WriteBytes

public

void

WriteBytes(String

s)

Throws

IOException.

Writes

the

string

to

the

message

buffer

as

a

sequence

of

bytes.

Each

character

in

the

string

is

written

in

sequence

by

discarding

its

high

eight

bits.

WriteChar

public

void

WriteChar(int

v)

Throws

IOException.

Writes

a

Unicode

character

into

the

message

buffer

at

the

current

position.

WriteChars

public

void

WriteChars(String

s)

Throws

IOException.

Writes

a

string

as

a

sequence

of

Unicode

characters

into

the

message

buffer

at

the

current

position.

WriteDecimal2

public

void

WriteDecimal2(short

v)

Throws

IOException,

MQException.

Writes

a

2-byte

packed

decimal

format

number

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

writes

a

big-endian

packed

decimal;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

writes

a

little-endian

packed

decimal.

Parameters

v

can

be

in

the

range

-999

to

999.

WriteDecimal4

public

void

WriteDecimal4(int

v)

MQMessage

42

Using

.NET

Throws

IOException,

MQException.

Writes

a

4-byte

packed

decimal

format

number

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

writes

a

big-endian

packed

decimal;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

writes

a

little-endian

packed

decimal.

Parameters

v

can

be

in

the

range

-9999999

to

9999999.

WriteDecimal8

public

void

WriteDecimal8(long

v)

Throws

IOException,

MQException.

Writes

an

8-byte

packed

decimal

format

number

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

writes

a

big-endian

packed

decimal;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

writes

a

little-endian

packed

decimal.

Parameters:

v

can

be

in

the

range

-999999999999999

to

999999999999999.

WriteDouble

public

void

WriteDouble(double

v)

Throws

IOException,

MQException.

Writes

a

double

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

write

IEEE

standard

floats

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

writes

a

System/390

format

floating

point

number.

Note

that

the

range

of

IEEE

doubles

is

greater

than

the

range

of

S/390®

double

precision

floating

point

numbers,

so

very

large

numbers

cannot

be

converted.

WriteFloat

public

void

WriteFloat(float

v)

Throws

IOException,

MQException.

Writes

a

float

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

43

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

write

IEEE

standard

floats

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

writes

a

System/390

format

floating

point

number.

WriteInt

public

void

WriteInt(int

v)

Throws

IOException.

Writes

an

integer

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

writes

a

big-endian

integer;

a

value

of

MQC.MQENC_INTEGER_REVERSED

writes

a

little-endian

integer.

WriteInt2

public

void

WriteInt2(int

v)

Throws

IOException.

Synonym

for

WriteShort(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

WriteInt4

public

void

WriteInt4(int

v)

Throws

IOException.

Synonym

for

WriteInt(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

WriteInt8

public

void

WriteInt8(long

v)

Throws

IOException.

Synonym

for

WriteLong(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

WriteLong

public

void

WriteLong(long

v)

Throws

IOException.

Writes

a

long

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

writes

a

big-endian

long;

a

value

of

MQC.MQENC_INTEGER_REVERSED

writes

a

little-endian

long.

WriteObject

public

void

WriteObject(Object

obj)

Throws

IOException.

MQMessage

44

Using

.NET

Writes

the

specified

object

to

the

message

buffer.

The

class

of

the

object,

the

signature

of

the

class,

and

the

values

of

the

non-transient

and

non-static

fields

of

the

class

and

all

its

supertypes

are

all

written.

WriteShort

public

void

WriteShort(int

v)

Throws

IOException.

Writes

a

short

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

writes

a

big-endian

short;

a

value

of

MQC.MQENC_INTEGER_REVERSED

writes

a

little-endian

short.

WriteString

public

void

WriteString(String

str)

Throws

IOException.

Writes

a

string

into

the

message

buffer

at

the

current

position,

converting

it

to

the

codeset

identified

by

the

characterSet

member

variable.

WriteUTF

public

void

WriteUTF(String

str)

Throws

IOException.

Writes

a

UTF

string,

prefixed

by

a

2-byte

length

field,

into

the

message

buffer

at

the

current

position.

Properties

AccountingToken

public

String

AccountingToken

{get;

set;}

Part

of

the

identity

context

of

the

message;

it

allows

an

application

to

charge

for

work

done

as

a

result

of

the

message.

The

default

value

is

MQC.MQACT_NONE.

ApplicationIdData

public

String

ApplicationIdData

{get;

set;}

Part

of

the

identity

context

of

the

message;

it

is

information

that

is

defined

by

the

application

suite,

and

can

be

used

to

provide

additional

information

about

the

message

or

its

originator.

The

default

value

is

″″.

ApplicationOriginData

public

String

ApplicationOriginData

{get;

set;}

Information

defined

by

the

application

that

can

be

used

to

provide

additional

information

about

the

origin

of

the

message.

The

default

value

is

″″.

BackoutCount

public

int

BackoutCount

{get;}

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

45

A

count

of

the

number

of

times

the

message

has

previously

been

returned

by

an

MQQueue.Get()

call

as

part

of

a

unit

of

work,

and

subsequently

backed

out.

The

default

value

is

zero.

CharacterSet

public

int

CharacterSet

{get;

set;}

The

coded

character

set

identifier

of

character

data

in

the

application

message

data.

The

behavior

of

the

ReadString,

ReadLine,

and

WriteString

methods

is

altered

accordingly.

The

default

value

for

this

field

is

MQC.MQCCSI_Q_MGR.

If

the

default

value

is

used,

CharacterSet

1200

(Unicode)

is

assumed.

The

following

table

shows

coded

character

set

identifiers

and

the

characterSet

values

to

use:

Table

1.

Character

set

identifiers

characterSet

Description

37

ibm037

437

ibm437

/

PC

Original

500

ibm500

819

iso-8859-1

/

latin1

/

ibm819

1200

Unicode

1208

UTF-8

273

ibm273

277

ibm277

278

ibm278

280

ibm280

284

ibm284

285

ibm285

297

ibm297

420

ibm420

424

ibm424

737

ibm737

/

PC

Greek

775

ibm775

/

PC

Baltic

813

iso-8859-7

/

greek

/

ibm813

838

ibm838

850

ibm850

/

PC

Latin

1

852

ibm852

/

PC

Latin

2

855

ibm855

/

PC

Cyrillic

856

ibm856

857

ibm857

/

PC

Turkish

860

ibm860

/

PC

Portuguese

861

ibm861

/

PC

Icelandic

862

ibm862

/

PC

Hebrew

863

ibm863

/

PC

Canadian

French

864

ibm864

/

PC

Arabic

865

ibm865

/

PC

Nordic

866

ibm866

/

PC

Russian

868

ibm868

869

ibm869

/

PC

Modern

Greek

870

ibm870

871

ibm871

874

ibm874

875

ibm875

912

iso-8859-2

/

latin2

/

ibm912

MQMessage

46

Using

.NET

Table

1.

Character

set

identifiers

(continued)

characterSet

Description

913

iso-8859-3

/

latin3

/

ibm913

914

iso-8859-4

/

latin4

/

ibm914

915

iso-8859-5

/

cyrillic

/

ibm915

916

iso-8859-8

/

hebrew

/

ibm916

918

ibm918

920

iso-8859-9

/

latin5

/

ibm920

921

ibm921

922

ibm922

930

ibm930

932

PC

Japanese

933

ibm933

935

ibm935

937

ibm937

939

ibm939

942

ibm942

948

ibm948

949

ibm949

950

ibm950

/

Big

5

Traditional

Chinese

954

EUCJIS

964

ibm964

/

CNS

11643

Traditional

Chinese

970

ibm970

1006

ibm1006

1025

ibm1025

1026

ibm1026

1089

iso-8859-6

/

arabic

/

ibm1089

1097

ibm1097

1098

ibm1098

1112

ibm1112

1122

ibm1122

1123

ibm1123

1124

ibm1124

1250

Windows

Latin

2

1251

Windows

Cyrillic

1252

Windows

Latin

1

1253

Windows

Greek

1254

Windows

Turkish

1255

Windows

Hebrew

1256

Windows

Arabic

1257

Windows

Baltic

1258

Windows

Vietnamese

1381

ibm1381

1383

ibm1383

2022

JIS

5601

ksc-5601

Korean

33722

ibm33722

CorrelationId

public

byte[]

CorrelationId

{get;set;}

For

an

MQQueue.Get()

call,

the

correlation

identifier

of

the

message

to

be

retrieved.

Normally

the

queue

manager

returns

the

first

message

with

a

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

47

message

identifier

and

correlation

identifier

that

match

those

specified.

The

special

value

MQC.MQCI_NONE

allows

any

correlation

identifier

to

match.

For

an

MQQueue.Put()

call,

this

specifies

the

correlation

identifier

to

use.

The

default

value

is

MQC.MQCI_NONE.

DataLength

public

int

DataLength

{get;}

The

number

of

bytes

of

message

data

remaining

to

be

read.

DataOffset

public

int

DataOffset

{get;

set;}

The

current

cursor

position

within

the

message

data

(the

point

at

which

read

and

write

operations

take

effect).

Encoding

public

int

Encoding

{get;

set;}

The

representation

used

for

numeric

values

in

the

application

message

data;

this

applies

to

binary,

packed

decimal,

and

floating

point

data.

The

behavior

of

the

read

and

write

methods

for

these

numeric

formats

is

altered

accordingly.

The

following

encodings

are

defined

for

binary

integers:

MQC.MQENC_INTEGER_NORMAL

Big-endian

integers.

MQC.MQENC_INTEGER_REVERSED

Little-endian

integers,

as

used

by

PCs.

The

following

encodings

are

defined

for

packed-decimal

integers:

MQC.MQENC_DECIMAL_NORMAL

Big-endian

packed-decimal,

as

used

by

z/OS™.

MQC.MQENC_DECIMAL_REVERSED

Little-endian

packed-decimal.

The

following

encodings

are

defined

for

floating-point

numbers:

MQC.MQENC_FLOAT_IEEE_NORMAL

Big-endian

IEEE

floats.

MQC.MQENC_FLOAT_IEEE_REVERSED

Little-endian

IEEE

floats,

as

used

by

PCs.

MQC.MQENC_FLOAT_S390

z/OS

format

floating

points.

Construct

a

value

for

the

encoding

field

by

adding

together

one

value

from

each

of

these

three

sections

(or

using

the

bitwise

OR

operator).

The

default

value

is:

MQC.MQENC_INTEGER_NORMAL

|

MQC.MQENC_DECIMAL_NORMAL

|

MQC.MQENC_FLOAT_IEEE_NORMAL

For

convenience,

this

value

is

also

represented

by

MQC.MQENC_NATIVE.

This

setting

causes

WriteInt()

to

write

a

big-endian

integer,

and

ReadInt()

to

read

a

big-endian

integer.

If

you

set

the

flag

MQMessage

48

Using

.NET

MQC.MQENC_INTEGER_REVERSED

flag

instead,

WriteInt()

writes

a

little-endian

integer,

and

ReadInt()

reads

a

little-endian

integer.

A

loss

in

precision

can

occur

when

converting

from

IEEE

format

floating

points

to

zSeries®

format

floating

points.

Expiry

public

int

Expiry

{get;

set;}

An

expiry

time

expressed

in

tenths

of

a

second,

set

by

the

application

that

puts

the

message.

After

a

message’s

expiry

time

has

elapsed,

it

is

eligible

to

be

discarded

by

the

queue

manager.

If

the

message

specified

one

of

the

MQC.MQRO_EXPIRATION

flags,

a

report

is

generated

when

the

message

is

discarded.

The

default

value

is

MQC.MQEI_UNLIMITED,

meaning

that

the

message

never

expires.

Feedback

public

int

Feedback

{get;

set;}

Used

with

a

message

of

type

MQC.MQMT_REPORT

to

indicate

the

nature

of

the

report.

The

following

feedback

codes

are

defined

by

the

system:

v

MQC.MQFB_EXPIRATION

v

MQC.MQFB_COA

v

MQC.MQFB_COD

v

MQC.MQFB_QUIT

v

MQC.MQFB_PAN

v

MQC.MQFB_NAN

v

MQC.MQFB_DATA_LENGTH_ZERO

v

MQC.MQFB_DATA_LENGTH_NEGATIVE

v

MQC.MQFB_DATA_LENGTH_TOO_BIG

v

MQC.MQFB_BUFFER_OVERFLOW

v

MQC.MQFB_LENGTH_OFF_BY_ONE

v

MQC.MQFB_IIH_ERROR

Application-defined

feedback

values

in

the

range

MQC.MQFB_APPL_FIRST

to

MQC.MQFB_APPL_LAST

can

also

be

used.

The

default

value

of

this

field

is

MQC.MQFB_NONE,

indicating

that

no

feedback

is

provided.

Format

public

String

Format

{get;

set;}

A

format

name

used

by

the

sender

of

the

message

to

indicate

the

nature

of

the

data

in

the

message

to

the

receiver.

You

can

use

your

own

format

names,

but

names

beginning

with

the

letters

MQ

have

meanings

that

are

defined

by

the

queue

manager.

The

queue

manager

built-in

formats

are:

MQC.MQFMT_ADMIN

Command

server

request/reply

message.

MQC.MQFMT_COMMAND_1

Type

1

command

reply

message.

MQC.MQFMT_COMMAND_2

Type

2

command

reply

message.

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

49

MQC.MQFMT_DEAD_LETTER_HEADER

Dead-letter

header.

MQC.MQFMT_EVENT

Event

message.

MQC.MQFMT_NONE

No

format

name.

MQC.MQFMT_PCF

User-defined

message

in

programmable

command

format.

MQC.MQFMT_STRING

Message

consisting

entirely

of

characters.

MQC.MQFMT_TRIGGER

Trigger

message

MQC.MQFMT_XMIT_Q_HEADER

Transmission

queue

header.

The

default

value

is

MQC.MQFMT_NONE.

GroupId

public

byte[]

GroupId

{get;

set;}

A

byte

string

that

identifies

the

message

group

to

which

the

physical

message

belongs.

The

default

value

is

MQC.MQGI_NONE.

MessageFlags

public

int

MessageFlags

{get;

set;}

Flags

controlling

the

segmentation

and

status

of

a

message.

MessageId

public

byte[]

MessageId

{get;

set;}

For

an

MQQueue.Get()

call,

this

field

specifies

the

message

identifier

of

the

message

to

be

retrieved.

Normally,

the

queue

manager

returns

the

first

message

with

a

message

identifier

and

correlation

identifier

that

match

those

specified.

The

special

value

MQC.MQMI_NONE

allows

any

message

identifier

to

match.

For

an

MQQueue.Put()

call,

this

specifies

the

message

identifier

to

use.

If

MQC.MQMI_NONE

is

specified,

the

queue

manager

generates

a

unique

message

identifier

when

the

message

is

put.

The

value

of

this

member

variable

is

updated

after

the

put,

to

indicate

the

message

identifier

that

was

used.

The

default

value

is

MQC.MQMI_NONE.

MessageLength

public

int

MessageLength

{get;}

The

number

of

bytes

of

message

data

in

the

MQMessage

object.

MessageSequenceNumber

public

int

MessageSequenceNumber

{get;

set;}

The

sequence

number

of

a

logical

message

within

a

group.

MessageType

public

int

MessageType

{get;

set;}

MQMessage

50

Using

.NET

Indicates

the

type

of

the

message.

The

following

values

are

currently

defined

by

the

system:

v

MQC.MQMT_DATAGRAM

v

MQC.MQMT_REPLY

v

MQC.MQMT_REPORT

v

MQC.MQMT_REQUEST

Application-defined

values

can

also

be

used,

in

the

range

MQC.MQMT_APPL_FIRST

to

MQC.MQMT_APPL_LAST.

The

default

value

of

this

field

is

MQC.MQMT_DATAGRAM.

Offset

public

int

Offset

{get;}

In

a

segmented

message,

the

offset

of

data

in

a

physical

message

from

the

start

of

a

logical

message.

OriginalLength

public

int

OriginalLength

{get;}

The

original

length

of

a

segmented

message.

Persistence

public

int

Persistence

{get;

set;}

Message

persistence.

The

following

values

are

defined:

v

MQC.MQPER_NOT_PERSISTENT

v

MQC.MQPER_PERSISTENT

v

MQC.MQPER_PERSISTENCE_AS_Q_DEF

The

default

value

is

MQC.MQPER_PERSISTENCE_AS_Q_DEF,

which

takes

the

persistence

for

the

message

from

the

default

persistence

attribute

of

the

destination

queue.

Priority

public

int

Priority

{get;

set;}

The

message

priority.

The

special

value

MQC.MQPRI_PRIORITY_AS_Q_DEF

can

also

be

set

in

outbound

messages,

in

which

case

the

priority

for

the

message

is

taken

from

the

default

priority

attribute

of

the

destination

queue.

The

default

value

is

MQC.MQPRI_PRIORITY_AS_Q_DEF.

PutApplicationName

public

String

PutApplicationName

{get;

set;}

The

name

of

the

application

that

put

the

message.

The

default

value

is

″″.

PutApplicationType

public

int

PutApplicationType

{get;

set;}

The

type

of

application

that

put

the

message.

This

can

be

a

system-defined

or

user-defined

value.

The

following

values

are

defined

by

the

system:

v

MQC.MQAT_AIX

v

MQC.MQAT_CICS

v

MQC.MQAT_DOS

v

MQC.MQAT_IMS

v

MQC.MQAT_MVS

v

MQC.MQAT_OS2

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

51

v

MQC.MQAT_OS400

v

MQC.MQAT_QMGR

v

MQC.MQAT_UNIX

v

MQC.MQAT_WINDOWS

v

MQC.MQAT_JAVA

The

default

value

is

the

special

value

MQC.MQAT_NO_CONTEXT,

which

indicates

that

no

context

information

is

present

in

the

message.

PutDateTime

public

DateTime

PutDateTime

{get;}

The

time

and

date

that

the

message

was

put.

ReplyToQueueManagerName

public

String

ReplyToQueueManagerName

{get;

set;}

The

name

of

the

queue

manager

to

which

reply

or

report

messages

should

be

sent.

The

default

value

is

″″.

If

the

value

is

″″

on

an

MQQueue.put()

call,

the

QueueManager

fills

in

the

value.

ReplyToQueueName

public

String

ReplyToQueueName

{get;

set;}

The

name

of

the

message

queue

to

which

the

application

that

issued

the

get

request

for

the

message

should

send

MQC.MQMT_REPLY

and

MQC.MQMT_REPORT

messages.

The

default

value

is

″″.

Report

public

int

Report

{get;

set;}

A

report

is

a

message

about

another

message.

This

member

variable

enables

the

application

sending

the

original

message

to

specify

which

report

messages

are

required,

whether

the

application

message

data

is

to

be

included

in

them,

and

how

to

set

the

message

and

correlation

identifiers

in

the

report

or

reply.

Any,

all,

or

none

of

the

following

report

types

can

be

requested:

v

Exception

v

Expiration

v

Confirm

on

arrival

v

Confirm

on

delivery

For

each

type,

only

one

of

the

three

corresponding

values

below

should

be

specified,

depending

on

whether

the

application

message

data

is

to

be

included

in

the

report

message.

Note:

Values

marked

with

**

in

the

following

list

are

not

supported

by

z/OS

queue

managers;

do

not

use

them

if

your

application

is

likely

to

access

a

z/OS

queue

manager,

regardless

of

the

platform

on

which

the

application

is

running.

The

valid

values

are:

v

MQC.MQRO_COA

MQMessage

52

Using

.NET

v

MQC.MQRO_COA_WITH_DATA

v

MQC.MQRO_COA_WITH_FULL_DATA**

v

MQC.MQRO_COD

v

MQC.MQRO_COD_WITH_DATA

v

MQC.MQRO_COD_WITH_FULL_DATA**

v

MQC.MQRO_EXCEPTION

v

MQC.MQRO_EXCEPTION_WITH_DATA

v

MQC.MQRO_EXCEPTION_WITH_FULL_DATA**

v

MQC.MQRO_EXPIRATION

v

MQC.MQRO_EXPIRATION_WITH_DATA

v

MQC.MQRO_EXPIRATION_WITH_FULL_DATA**

You

can

specify

one

of

the

following

to

control

how

the

message

Id

is

generated

for

the

report

or

reply

message:

v

MQC.MQRO_NEW_MSG_ID

v

MQC.MQRO_PASS_MSG_ID

You

can

specify

one

of

the

following

to

control

how

the

correlation

Id

of

the

report

or

reply

message

is

to

be

set:

v

MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID

v

MQC.MQRO_PASS_CORREL_ID

You

can

specify

one

of

the

following

to

control

the

disposition

of

the

original

message

when

it

cannot

be

delivered

to

the

destination

queue:

v

MQC.MQRO_DEAD_LETTER_Q

v

MQC.MQRO_DISCARD_MSG

**

If

no

report

options

are

specified,

the

default

is:

MQC.MQRO_NEW_MSG_ID

|

MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID

|

MQC.MQRO_DEAD_LETTER_Q

You

can

specify

one

or

both

of

the

following

to

request

that

the

receiving

application

sends

a

positive

action

or

negative

action

report

message.

v

MQRO_PAN

v

MQRO_NAN

TotalMessageLength

public

int

TotalMessageLength

{get;}

The

total

number

of

bytes

in

the

message

as

stored

on

the

message

queue

from

which

this

message

was

received.

UserId

public

String

UserId

{get;

set;}

Part

of

the

identity

context

of

the

message;

it

identifies

the

user

that

originated

this

message.

The

default

value

is

″″.

Version

public

int

Version

{get;

set;}

The

version

of

the

MQMD

structure

in

use.

MQMessage

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

53

MQPutMessageOptions

public

class

IBM.WMQ.MQPutMessageOptions

extends

IBM.WMQ.MQBaseObject

This

class

contains

options

that

control

the

behavior

of

MQQueue.put().

Constructors

MQPutMessageOptions

public

MQPutMessageOptions()

Construct

a

new

MQPutMessageOptions

object

with

no

options

set,

and

a

blank

resolvedQueueName

and

resolvedQueueManagerName.

Properties

ContextReference

public

MQQueue

ContextReference

{get;

set;}

An

input

field

that

indicates

the

source

of

the

context

information.

If

the

options

field

includes

MQC.MQPMO_PASS_IDENTITY_CONTEXT,

or

MQC.MQPMO_PASS_ALL_CONTEXT,

set

this

field

to

refer

to

the

MQQueue

from

which

to

take

the

context

information.

The

initial

value

of

this

field

is

null.

InvalidDestCount

*

public

int

InvalidDestCount

{get;}

An

output

field

set

by

the

queue

manager

to

the

number

of

messages

that

could

not

be

sent

to

queues

in

a

distribution

list.

The

count

includes

queues

that

failed

to

open

as

well

as

queues

that

were

opened

successfully,

but

for

which

the

put

operation

failed.

This

field

is

also

set

when

opening

a

single

queue

that

is

not

part

of

a

distribution

list.

KnownDestCount

*

public

int

KnownDestCount

{get;}

An

output

field

set

by

the

queue

manager

to

the

number

of

messages

that

the

current

call

has

sent

successfully

to

queues

that

resolve

to

local

queues.

This

field

is

also

set

when

opening

a

single

queue

that

is

not

part

of

a

distribution

list.

Options

public

int

Options

{get;

set;}

Options

that

control

the

action

of

MQQueue.put.

Any

or

none

of

the

following

values

can

be

specified.

If

more

than

one

option

is

required,

the

values

can

be

added

together

or

combined

using

the

bitwise

OR

operator.

MQC.MQPMO_DEFAULT_CONTEXT

Associate

default

context

with

the

message.

System.Object

│

└─

IBM.WMQ.MQBase

│

└─

IBM.WMQ.MQBaseObject

│

└─

IBM.WMQ.MQPutMessageOptions

MQPutMessageOptions

54

Using

.NET

MQC.MQPMO_FAIL_IF_QUIESCING

Fail

if

the

queue

manager

is

quiescing.

MQC.MQPMO_LOGICAL_ORDER*

Put

logical

messages

and

segments

in

message

groups

into

their

logical

order.

MQC.MQPMO_NEW_CORREL_ID*

Generate

a

new

correlation

id

for

each

sent

message.

MQC.MQPMO_NEW_MSG_ID*

Generate

a

new

message

id

for

each

sent

message.

MQC.MQPMO_NONE

No

options

specified.

Do

not

use

in

conjunction

with

other

options.

MQC.MQPMO_NO_CONTEXT

No

context

is

to

be

associated

with

the

message.

MQC.MQPMO_NO_SYNCPOINT

Put

a

message

without

syncpoint

control.

Note

that,

if

the

syncpoint

control

option

is

not

specified,

a

default

of

no

syncpoint

is

assumed.

This

applies

to

all

supported

platforms.

MQC.MQPMO_PASS_ALL_CONTEXT

Pass

all

context

from

an

input

queue

handle.

MQC.MQPMO_PASS_IDENTITY_CONTEXT

Pass

identity

context

from

an

input

queue

handle.

MQC.MQPMO_SET_ALL_CONTEXT

Set

all

context

from

the

application.

MQC.MQPMO_SET_IDENTITY_CONTEXT

Set

identity

context

from

the

application.

MQC.MQPMO_SYNCPOINT

Put

a

message

with

syncpoint

control.

The

message

is

not

visible

outside

the

unit

of

work

until

the

unit

of

work

is

committed.

If

the

unit

of

work

is

backed

out,

the

message

is

deleted.

RecordFields

*

public

int

RecordFields

{get;

set;}

Flags

indicating

which

fields

are

to

be

customized

in

each

queue

when

putting

a

message

to

a

distribution

list.

One

or

more

of

the

following

flags

can

be

specified:

MQC.MQPMRF_ACCOUNTING_TOKEN

Use

the

accountingToken

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_CORREL_ID

Use

the

correlationId

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_FEEDBACK

Use

the

feedback

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_GROUP_ID

Use

the

groupId

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_MSG_ID

Use

the

messageId

attribute

in

the

MQDistributionListItem.

The

special

value

MQC.MQPMRF_NONE

indicates

that

no

fields

are

to

be

customized.

MQPutMessageOptions

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

55

ResolvedQueueManagerName

public

String

ResolvedQueueManagerName

{get;}

An

output

field

set

by

the

queue

manager

to

the

name

of

the

queue

manager

that

owns

the

queue

specified

by

the

remote

queue

name.

This

might

be

different

from

the

name

of

the

queue

manager

from

which

the

queue

was

accessed

if

the

queue

is

a

remote

queue.

ResolvedQueueName

public

String

ResolvedQueueName

{get;}

An

output

field

that

is

set

by

the

queue

manager

to

the

name

of

the

queue

on

which

the

message

is

placed.

This

might

be

different

from

the

name

used

to

open

the

queue

if

the

opened

queue

was

an

alias

or

model

queue.

UnknownDestCount

*

public

int

UnknownDestCount

{get;}

An

output

field

set

by

the

queue

manager

to

the

number

of

messages

that

the

current

call

has

sent

successfully

to

queues

that

resolve

to

remote

queues.

This

field

is

also

set

when

opening

a

single

queue

that

is

not

part

of

a

distribution

list.

MQQueue

public

class

IBM.WMQ.MQQueue

extends

IBM.WMQ.MQManagedObject.

(See

“MQManagedObject”

on

page

33.)

MQQueue

provides

inquire,

set,

put,

and

get

operations

for

WebSphere

MQ

queues.

The

inquire

and

set

capabilities

are

inherited

from

MQ.MQManagedObject.

See

also

“MQQueueManager.AccessQueue”

on

page

65.

Constructors

MQQueue

public

MQQueue(MQQueueManager

qMgr,

String

queueName,

int

openOptions,

String

queueManagerName,

String

dynamicQueueName,

String

alternateUserId

)

Throws

MQException.

Accesses

a

queue

on

the

queue

manager

qMgr.

See

“MQQueueManager.AccessQueue”

on

page

65

for

details

of

the

remaining

parameters.

System.Object

│

└─

IBM.WMQ.MQBase

│

└─

IBM.WMQ.MQBaseObject

│

└─

IBM.WMQ.MQManagedObject

│

└─

IBM.WMQ.MQQueue

MQPutMessageOptions

56

Using

.NET

Methods

Close

public

override

void

Close()

Overrides

“MQManagedObject.Close”

on

page

33.

Get

public

void

Get(MQMessage

message,

MQGetMessageOptions

getMessageOptions,

int

MaxMsgSize)

Throws

MQException.

Retrieves

a

message

from

the

queue,

up

to

a

maximum

specified

message

size.

This

method

takes

an

MQMessage

object

as

a

parameter.

It

uses

some

of

the

fields

in

the

object

as

input

parameters,

in

particular

the

messageId

and

correlationId,

so

it

is

important

to

ensure

that

these

are

set

as

required.

If

the

get

fails,

the

MQMessage

object

is

unchanged.

If

it

succeeds,

the

message

descriptor

(member

variables)

and

message

data

portions

of

the

MQMessage

are

completely

replaced

with

the

message

descriptor

and

message

data

from

the

incoming

message.

All

calls

to

WebSphere

MQ

from

a

given

MQQueueManager

are

synchronous.

Therefore,

if

you

perform

a

get

with

wait,

all

other

threads

using

the

same

MQQueueManager

are

blocked

from

making

further

WebSphere

MQ

calls

until

the

get

completes.

If

you

need

multiple

threads

to

access

WebSphere

MQ

simultaneously,

each

thread

must

create

its

own

MQQueueManager

object.

Parameters

message

An

input/output

parameter

containing

the

message

descriptor

information

and

the

returned

message

data.

getMessageOptions

Options

controlling

the

action

of

the

get.

(See

“MQGetMessageOptions”

on

page

29.)

Using

option

MQC.MQGMO_CONVERT

might

result

in

an

exception

with

reason

code

MQException.MQRC_CONVERTED_STRING_TOO_BIG

when

converting

from

single

byte

character

codes

to

double

byte

codes.

In

this

case,

the

message

is

copied

into

the

buffer

but

remains

encoded

using

its

original

character

set.

MaxMsgSize

The

largest

message

this

call

can

receive.

If

the

message

on

the

queue

is

larger

than

this

size,

one

of

two

things

occurs:

1.

If

the

MQC.MQGMO_ACCEPT_TRUNCATED_MSG

flag

is

set

in

the

options

member

variable

of

the

MQGetMessageOptions

object,

the

message

is

filled

with

as

much

of

the

message

data

as

will

fit

in

the

specified

buffer

size,

and

an

exception

is

thrown

with

completion

code

MQException.MQCC_WARNING

MQQueue

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

57

and

reason

code

MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2.

If

the

MQC.MQGMO_ACCEPT_TRUNCATED_MSG

flag

is

not

set,

the

message

is

left

on

the

queue

and

an

MQException

is

raised

with

completion

code

MQException.MQCC_WARNING

and

reason

code

MQException.MQRC_TRUNCATED_MSG_FAILED.

Throws

MQException

if

the

get

fails.

Get

public

void

Get(MQMessage

message,

MQGetMessageOptions

getMessageOptions)

Throws

MQException.

Retrieves

a

message

from

the

queue,

regardless

of

the

size

of

the

message.

For

large

messages,

the

get

method

might

have

to

issue

two

calls

to

WebSphere

MQ

on

your

behalf,

one

to

establish

the

required

buffer

size

and

one

to

get

the

message

data

itself.

This

method

takes

an

MQMessage

object

as

a

parameter.

It

uses

some

of

the

fields

in

the

object

as

input

parameters,

in

particular

the

messageId

and

correlationId,

so

it

is

important

to

ensure

that

these

are

set

as

required.

If

the

get

fails,

the

MQMessage

object

is

unchanged.

If

it

succeeds,

the

message

descriptor

(member

variables)

and

message

data

portions

of

the

MQMessage

are

completely

replaced

with

the

message

descriptor

and

message

data

from

the

incoming

message.

All

calls

to

WebSphere

MQ

from

a

given

MQQueueManager

are

synchronous.

Therefore,

if

you

perform

a

get

with

wait,

all

other

threads

using

the

same

MQQueueManager

are

blocked

from

making

further

WebSphere

MQ

calls

until

the

get

completes.

If

you

need

multiple

threads

to

access

WebSphere

MQ

simultaneously,

each

thread

must

create

its

own

MQQueueManager

object.

Parameters

message

An

input/output

parameter

containing

the

message

descriptor

information

and

the

returned

message

data.

getMessageOptions

Options

controlling

the

action

of

the

get.

(See

“MQGetMessageOptions”

on

page

29

for

details.)

Throws

MQException

if

the

get

fails.

Get

public

void

Get(MQMessage

message)

A

simplified

version

of

the

Get

method

previously

described.

Parameters

MQQueue

58

Using

.NET

MQMessage

An

input/output

parameter

containing

the

message

descriptor

information

and

the

returned

message

data.

This

method

uses

a

default

instance

of

MQGetMessageOptions

to

do

the

get.

The

message

option

used

is

MQGMO_NOWAIT.

Put

public

void

Put(MQMessage

message,

MQPutMessageOptions

putMessageOptions)

Throws

MQException.

Places

a

message

onto

the

queue.

Note:

For

simplicity

and

performance,

if

you

want

to

put

just

a

single

message

to

a

queue,

use

the

Put()

method

on

your

MQQueueManager

object.

For

this

you

do

not

need

to

have

an

MQQueue

object.

See

“MQQueueManager.Put”

on

page

69.

This

method

takes

an

MQMessage

object

as

a

parameter.

The

message

descriptor

properties

of

this

object

can

be

altered

as

a

result

of

this

method.

The

values

that

they

have

immediately

after

the

completion

of

this

method

are

the

values

that

were

put

onto

the

WebSphere

MQ

queue.

Modifications

to

the

MQMessage

object

after

the

put

has

completed

do

not

affect

the

actual

message

on

the

WebSphere

MQ

queue.

A

Put

updates

the

messageId

and

correlationId.

Consider

this

when

making

further

calls

to

Put/Get

using

the

same

MQMessage

object.

Also,

calling

Put

does

not

clear

the

message

data,

so:

msg.WriteString("a");

q.Put(msg,pmo);

msg.WriteString("b");

q.Put(msg,pmo);

puts

two

messages.

The

first

contains

a

and

the

second

ab.

Parameters

message

Message

Buffer

containing

the

Message

Descriptor

data

and

message

to

be

sent.

putMessageOptions

Options

controlling

the

action

of

the

put.

(See

“MQPutMessageOptions”

on

page

54)

Throws

MQException

if

the

put

fails.

Put

public

void

Put(MQMessage

message)

A

simplified

version

of

the

Put

method

previously

described.

Parameters

MQQueue

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

59

MQMessage

Message

Buffer

containing

the

Message

Descriptor

data

and

message

to

be

sent.

This

method

uses

a

default

instance

of

MQPutMessageOptions

to

do

the

put.

Properties

CreationDateTime

public

DateTime

CreationDateTime

{get;}

Throws

MQException.

The

date

and

time

that

this

queue

was

created.

QueueType

public

int

QueueType

{get;}

Throws

MQException

Returns

The

type

of

this

queue

with

one

of

the

following

values:

v

MQC.MQQT_ALIAS

v

MQC.MQQT_LOCAL

v

MQC.MQQT_REMOTE

v

MQC.MQQT_CLUSTER

CurrentDepth

public

int

CurrentDepth

{get;}

Throws

MQException.

Gets

the

number

of

messages

currently

on

the

queue.

This

value

is

incremented

during

a

put

call,

and

during

backout

of

a

get

call.

It

is

decremented

during

a

non-browse

get

and

during

backout

of

a

put

call.

DefinitionType

public

int

DefinitionType

{get;}

Throws

MQException.

How

the

queue

was

defined.

Returns

One

of

the

following:

v

MQC.MQQDT_PREDEFINED

v

MQC.MQQDT_PERMANENT_DYNAMIC

v

MQC.MQQDT_TEMPORARY_DYNAMIC

InhibitGet

public

int

InhibitGet

{get;

set;}

Throws

MQException.

get

Whether

get

operations

are

allowed

for

this

queue.

MQQueue

60

Using

.NET

Returns

The

possible

values

are:

v

MQC.MQQA_GET_INHIBITED

v

MQC.MQQA_GET_ALLOWED

set

Controls

whether

get

operations

are

allowed

for

this

queue.

The

permissible

values

are:

v

MQC.MQQA_GET_INHIBITED

v

MQC.MQQA_GET_ALLOWED

InhibitPut

public

int

InhibitPut

{get;

set;}

Throws

MQException.

get

Whether

put

operations

are

allowed

for

this

queue.

Returns

One

of

the

following:

v

MQC.MQQA_PUT_INHIBITED

v

MQC.MQQA_PUT_ALLOWED

set

Controls

whether

put

operations

are

allowed

for

this

queue.

The

permissible

values

are:

v

MQC.MQQA_PUT_INHIBITED

v

MQC.MQQA_PUT_ALLOWED

MaximumDepth

public

int

MaximumDepth

{get;}

Throws

MQException.

The

maximum

number

of

messages

that

can

exist

on

the

queue

at

any

one

time.

An

attempt

to

put

a

message

to

a

queue

that

already

contains

this

many

messages

fails

with

reason

code

MQException.MQRC_Q_FULL.

MaximumMessageLength

public

int

MaximumMessageLength

{get;}

Throws

MQException.

The

maximum

length

of

the

application

data

that

can

exist

in

each

message

on

this

queue.

An

attempt

to

put

a

message

larger

than

this

value

fails

with

reason

code

MQException.MQRC_MSG_TOO_BIG_FOR_Q.

OpenInputCount

public

int

OpenInputCount

{get;}

Throws

MQException.

MQQueue

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

61

The

number

of

handles

that

are

currently

valid

for

removing

messages

from

the

queue.

This

is

the

total

number

of

such

handles

known

to

the

local

queue

manager,

not

just

those

created

by

the

WebSphere

MQ

classes

for

.NET

(using

accessQueue).

OpenOutputCount

public

int

OpenOutputCount

{get;}

Throws

MQException.

The

number

of

handles

that

are

currently

valid

for

adding

messages

to

the

queue.

This

is

the

total

number

of

such

handles

known

to

the

local

queue

manager,

not

just

those

created

by

the

WebSphere

MQ

classes

for

.NET

(using

accessQueue).

Shareability

public

int

Shareability

{get;}

Throws

MQException.

Whether

the

queue

can

be

opened

for

input

multiple

times.

Returns

One

of

the

following:

v

MQC.MQQA_SHAREABLE

v

MQC.MQQA_NOT_SHAREABLE

TriggerControl

public

int

TriggerControl

{get;

set;}

Throws

MQException.

get

Whether

trigger

messages

are

written

to

an

initiation

queue,

to

start

an

application

to

service

the

queue.

Returns

The

possible

values

are:

v

MQC.MQTC_OFF

v

MQC.MQTC_ON

set

Controls

whether

trigger

messages

are

written

to

an

initiation

queue

to

start

an

application

to

service

the

queue.

The

permissible

values

are:

v

MQC.MQTC_OFF

v

MQC.MQTC_ON

TriggerData

public

String

TriggerData

{get;

set;}

Throws

MQException.

get

The

free-format

data

that

the

queue

manager

inserts

into

the

trigger

message

when

a

message

arriving

on

this

queue

causes

a

trigger

message

to

be

written

to

the

initiation

queue.

MQQueue

62

Using

.NET

set

Sets

the

free-format

data

that

the

queue

manager

inserts

into

the

trigger

message

when

a

message

arriving

on

this

queue

causes

a

trigger

message

to

be

written

to

the

initiation

queue.

The

maximum

permissible

length

of

the

string

is

given

by

MQC.MQ_TRIGGER_DATA_LENGTH.

TriggerDepth

public

int

TriggerDepth

{get;

set;}

Throws

MQException.

get

The

number

of

messages

that

have

to

be

on

the

queue

before

a

trigger

message

is

written

when

trigger

type

is

set

to

MQC.MQTT_DEPTH.

set

Sets

the

number

of

messages

that

have

to

be

on

the

queue

before

a

trigger

message

is

written

when

trigger

type

is

set

to

MQC.MQTT_DEPTH.

TriggerMessagePriority

public

int

TriggerMessagePriority

{get;

set;}

Throws

MQException.

get

The

message

priority

below

which

messages

do

not

contribute

to

the

generation

of

trigger

messages

(that

is,

the

queue

manager

ignores

these

messages

when

deciding

whether

to

generate

a

trigger).

A

value

of

zero

causes

all

messages

to

contribute

to

the

generation

of

trigger

messages.

set

Sets

the

message

priority

below

which

messages

do

not

contribute

to

the

generation

of

trigger

messages

(that

is,

the

queue

manager

ignores

these

messages

when

deciding

whether

a

trigger

should

be

generated).

A

value

of

zero

causes

all

messages

to

contribute

to

the

generation

of

trigger

messages.

TriggerType

public

int

TriggerType

{get;

set;}

Throws

MQException.

get

The

conditions

under

which

trigger

messages

are

written

as

a

result

of

messages

arriving

on

this

queue.

Returns

The

possible

values

are:

v

MQC.MQTT_NONE

v

MQC.MQTT_FIRST

v

MQC.MQTT_EVERY

v

MQC.MQTT_DEPTH

MQQueue

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

63

set

Sets

the

conditions

under

which

trigger

messages

are

written

as

a

result

of

messages

arriving

on

this

queue.

The

possible

values

are:

v

MQC.MQTT_NONE

v

MQC.MQTT_FIRST

v

MQC.MQTT_EVERY

v

MQC.MQTT_DEPTH

MQQueueManager

public

class

IBM.WMQ.MQQueueManager

extends

IBM.WMQ.MQManagedObject.

(See

“MQManagedObject”

on

page

33.)

The

MQQueueManager

encapsulates

the

MQCONN.

It

has

an

overloaded

constructor

that

can

be

used

to

perform

client/server

connections

to

a

QueueManager.

The

MQQueueManager

contains

a

method

’AccessQueue’,

which

is

used

to

instantiate

an

MQQueue

object

associated

with

the

connected

MQQueueManager

object.

The

MQQueueManager

class

also

contains

methods

to

begin,

commit,

and

rollback

transactions.

Constructors

MQQueueManager

public

MQQueueManager(String

queueManagerName)

Throws

MQException.

Creates

a

connection

to

the

named

queue

manager.

Note:

When

using

WebSphere

MQ

classes

for

.NET,

the

hostname,

channel

name,

and

port

to

use

during

the

connection

request

are

specified

in

the

MQEnvironment

class.

This

must

be

done

before

calling

this

constructor.

The

following

example

shows

a

connection

to

a

queue

manager

MYQM,

running

on

a

machine

with

hostname

fred.mq.com.

MQEnvironment.Hostname

=

"fred.mq.com";

//

host

to

connect

to

MQEnvironment.Port

=

1414;

//

port

to

connect

to.

//

If

I

don’t

set

this,

//

it

defaults

to

1414

//

(the

default

WebSphere

MQ

port)

MQEnvironment.Channel

=

"channel.name";

//

the

CASE-SENSITIVE

System.Object

│

└─

IBM.WMQ.MQBase

│

└─

IBM.WMQ.MQBaseObject

│

└─

IBM.WMQ.ManagedObject

│

└─

IBM.WMQ.MQQueueManager

MQQueue

64

Using

.NET

//

name

of

the

//

SVR

CONN

channel

on

//

the

queue

manager

MQQueueManager

qMgr

=

new

MQQueueManager("MYQM");

If

the

queue

manager

name

is

left

blank

(null

or

″″),

a

connection

is

made

to

the

default

queue

manager.

See

also

“MQEnvironment”

on

page

27.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

int

options)

Throws

MQException.

This

version

of

the

constructor

is

intended

for

use

only

in

bindings

mode.

It

uses

the

extended

connection

API

(MQCONNX)

to

connect

to

the

queue

manager.

The

options

parameter

allows

you

to

choose

fast

or

normal

bindings.

Possible

values

are:

v

MQC.MQCNO_FASTPATH_BINDING

for

fast

bindings

*.

v

MQC.MQCNO_STANDARD_BINDING

for

normal

bindings.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

int

options,

ConnectionManager

cxManager)

Throws

MQException.

Performs

an

MQCONNX,

passing

the

supplied

options.

The

specified

ConnectionManager

manages

the

connection.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

Hashtable

properties)

Throws

MQException.

The

properties

parameter

takes

a

series

of

key/value

pairs

that

describe

the

WebSphere

MQ

environment

for

this

particular

queue

manager.

These

properties,

where

specified,

override

the

values

set

by

the

MQEnvironment

class,

and

allow

the

individual

properties

to

be

set

on

a

queue

manager

by

queue

manager

basis.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

String

channel,

String

connName)

Throws

MQException.

Connects

to

the

named

Queue

Manager,

using

the

supplied

’Server

Connection

Channel’

and

connection.

Methods

AccessQueue

MQQueueManager

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

65

public

MQQueue

AccessQueue

(String

queueName,

int

openOptions,

String

queueManagerName,

String

dynamicQueueName,

String

alternateUserId)

Throws

MQException.

Establishes

access

to

a

WebSphere

MQ

queue

on

this

queue

manager

to

get

or

browse

messages,

put

messages,

inquire

about

the

attributes

of

the

queue

or

set

the

attributes

of

the

queue.

If

the

queue

named

is

a

model

queue,

a

dynamic

local

queue

is

created.

The

name

of

the

created

queue

can

be

determined

from

the

name

attribute

of

the

returned

MQQueue

object.

Parameters

queueName

Name

of

queue

to

open.

openOptions

Options

that

control

the

opening

of

the

queue.

Valid

options

are:

MQC.MQOO_ALTERNATE_USER_AUTHORITY

Validate

with

the

specified

user

identifier.

MQC.MQOO_BIND_AS_QDEF

Use

default

binding

for

queue.

MQC.MQOO_BIND_NOT_FIXED

Do

not

bind

to

a

specific

destination.

MQC.MQOO_BIND_ON_OPEN

Bind

handle

to

destination

when

queue

is

opened.

MQC.MQOO_BROWSE

Open

to

browse

message.

MQC.MQOO_FAIL_IF_QUIESCING

Fail

if

the

queue

manager

is

quiescing.

MQC.MQOO_INPUT_AS_Q_DEF

Open

to

get

messages

using

queue-defined

default.

MQC.MQOO_INPUT_SHARED

Open

to

get

messages

with

shared

access.

MQC.MQOO_INPUT_EXCLUSIVE

Open

to

get

messages

with

exclusive

access.

MQC.MQOO_INQUIRE

Open

for

inquiry

-

required

if

you

wish

to

query

properties.

MQC.MQOO_OUTPUT

Open

to

put

messages.

MQC.MQOO_PASS_ALL_CONTEXT

Allow

all

context

to

be

passed.

MQC.MQOO_PASS_IDENTITY_CONTEXT

Allow

identity

context

to

be

passed.

MQQueueManager

66

Using

.NET

MQC.MQOO_SAVE_ALL_CONTEXT

Save

context

when

message

retrieved*.

MQC.MQOO_SET

Open

to

set

attributes

—required

if

you

wish

to

set

properties.

MQC.MQOO_SET_ALL_CONTEXT

Allows

all

context

to

be

set.

MQC.MQOO_SET_IDENTITY_CONTEXT

Allows

identity

context

to

be

set.

If

more

than

one

option

is

required,

the

values

can

be

added

together

or

combined

using

the

bitwise

OR

operator.

See

the

WebSphere

MQ

Application

Programming

Reference

for

a

fuller

description

of

these

options.

queueManagerName

Name

of

the

queue

manager

on

which

the

queue

is

defined.

A

name

that

is

entirely

blank

or

null

denotes

the

queue

manager

to

which

this

MQQueueManager

object

is

connected.

dynamicQueueName

This

parameter

is

ignored

unless

queueName

specifies

the

name

of

a

model

queue.

If

it

does,

this

parameter

specifies

the

name

of

the

dynamic

queue

to

be

created.

A

blank

or

null

name

is

not

valid

if

queueName

specifies

the

name

of

a

model

queue.

If

the

last

non-blank

character

in

the

name

is

an

asterisk

(*),

the

queue

manager

replaces

the

asterisk

with

a

string

of

characters

that

guarantees

that

the

name

generated

for

the

queue

is

unique

on

this

queue

manager.

alternateUserId

If

MQOO_ALTERNATE_USER_AUTHORITY

is

specified

in

the

openOptions

parameter,

this

parameter

specifies

the

alternate

user

identifier

that

is

used

to

check

the

authorization

for

the

open.

If

MQOO_ALTERNATE_USER_AUTHORITY

is

not

specified,

this

parameter

can

be

left

blank

(or

null).

Returns

MQQueue

that

has

been

successfully

opened.

Throws

MQException

if

the

open

fails.

AccessQueue

public

MQQueue

AccessQueue

(String

queueName,

int

openOptions)

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

Parameters

queueName

Name

of

queue

to

open

openOptions

Options

that

control

the

opening

of

the

queue

MQQueueManager

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

67

See

the

description

of

“MQQueueManager.AccessQueue”

on

page

65

for

details

of

the

parameters.

For

this

version

of

the

method,

queueManagerName,

dynamicQueueName,

and

alternateUserId

are

set

to

″″.

Returns

MQQueue

that

has

been

successfully

opened.

Throws

MQException

if

the

open

fails.

Backout

public

void

Backout()

Throws

MQException.

Calling

this

method

indicates

to

the

queue

manager

that

all

the

message

gets

and

puts

that

have

occurred

since

the

last

syncpoint

are

to

be

backed

out.

Messages

put

as

part

of

a

unit

of

work

(with

the

MQC.MQPMO_SYNCPOINT

flag

set

in

the

options

field

of

MQPutMessageOptions)

are

deleted;

messages

retrieved

as

part

of

a

unit

of

work

(with

the

MQC.MQGMO_SYNCPOINT

flag

set

in

the

options

field

of

MQGetMessageOptions)

are

reinstated

on

the

queue.

See

also

the

description

of

the

commit

method.

Begin*

public

void

Begin()

Throws

MQException.

This

method

is

supported

only

by

the

WebSphere

MQ

classes

for

.NET

in

server

bindings

mode.

It

signals

to

the

queue

manager

that

a

new

unit

of

work

is

starting.

Do

not

use

this

method

for

applications

that

use

local

one-phase

transactions.

Commit

public

void

Commit()

Throws

MQException.

Calling

this

method

indicates

to

the

queue

manager

that

the

application

has

reached

a

syncpoint,

and

that

all

the

message

gets

and

puts

that

have

occurred

since

the

last

syncpoint

are

to

be

made

permanent.

Messages

put

as

part

of

a

unit

of

work

(with

the

MQC.MQPMO_SYNCPOINT

flag

set

in

the

options

field

of

MQPutMessageOptions)

are

made

available

to

other

applications.

Messages

retrieved

as

part

of

a

unit

of

work

(with

the

MQC.MQGMO_SYNCPOINT

flag

set

in

the

options

field

of

MQGetMessageOptions)

are

deleted.

See

also

the

description

of

the

backout

method.

Disconnect

public

void

Disconnect()

Throws

MQException.

MQQueueManager

68

Using

.NET

Terminates

the

connection

to

the

queue

manager.

All

open

queues

and

processes

accessed

by

this

queue

manager

are

closed,

and

become

unusable.

When

you

have

disconnected

from

a

queue

manager,

the

only

way

to

reconnect

is

to

create

a

new

MQQueueManager

object.

Normally,

any

work

performed

as

part

of

a

unit

of

work

is

committed.

However,

if

this

connection

is

managed

by

a

ConnectionManager,

rather

than

an

MQConnectionManager,

the

unit

of

work

might

be

rolled

back.

Put

public

void

Put(String

qName,

String

qmName,

MQMessage

msg,

MQPutMessageOptions

pmo,

String

altUserId)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

The

qName

(queue

name)

and

qmName

(queue

manager

name)

parameters

identify

where

the

message

is

placed.

If

the

queue

is

a

model

queue,

an

MQException

is

thrown.

In

other

respects,

this

method

behaves

like

the

put

method

on

the

MQQueue

object.

It

is

an

implementation

of

the

MQPUT1

MQI

call.

See

“MQQueue.Put”

on

page

59.

Parameters

qName

The

name

of

the

queue

onto

which

to

place

the

message.

qmName

The

name

of

the

queue

manager

on

which

the

queue

is

defined.

msg

The

message

to

send.

pmo

Options

controlling

the

actions

of

the

put.

See

“MQPutMessageOptions”

on

page

54

for

more

details.

altUserid

Specifies

an

alternative

user

identifier

used

to

check

authorization

when

placing

the

message

on

a

queue.

If

you

do

not

specify

MQPMO_ALTERNATE_USER,

this

parameter

is

ignored.

Put

public

void

Put(String

qName,

String

qmName,

MQMessage

msg,

MQPutMessageOptions

pmo)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

This

version

of

the

method

allows

you

to

omit

the

altUserid

parameter.

See

the

fully-specified

method

(“MQQueueManager.Put”)

for

details

of

the

parameters.

MQQueueManager

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

69

Put

public

void

Put(String

qName,

String

qmName,

MQMessage

msg)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

This

version

of

the

method

allows

you

to

omit

the

put

message

options

(pmo)

and

altUserid

parameters.

See

the

fully-specified

method

(“MQQueueManager.Put”

on

page

69)

for

details

of

the

parameters.

Put

public

void

Put(String

qName,

MQMessage

msg,

MQPutMessageOptions

pmo)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

This

version

of

the

method

allows

you

to

omit

the

qmName

and

altUserid

parameters.

See

the

fully-specified

method

(“MQQueueManager.Put”

on

page

69)

for

details

of

the

parameters.

Put

public

void

Put(String

qName,

MQMessage

msg)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

This

version

of

the

method

allows

you

to

omit

the

qmName,

put

message

options

(pmo),

and

altUserid

parameters.

See

the

fully-specified

method

(“MQQueueManager.Put”

on

page

69)

for

details

of

the

parameters.

Properties

CharacterSet

public

int

CharacterSet

{get;}

Throws

MQException.

Returns

the

CCSID

(Coded

Character

Set

Identifier)

of

the

queue

manager’s

codeset.

This

defines

the

character

set

used

by

the

queue

manager

for

all

character

string

fields

in

the

application

programming

interface.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

CommandInputQueueName

public

String

CommandInputQueueName

{get;}

MQQueueManager

70

Using

.NET

Throws

MQException.

Returns

the

name

of

the

command

input

queue

defined

on

the

queue

manager.

This

is

a

queue

to

which

applications

can

send

commands,

if

authorized

to

do

so.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

CommandLevel

public

int

CommandLevel

{get;}

Throws

MQException.

Indicates

the

level

of

system

control

commands

supported

by

the

queue

manager.

The

set

of

system

control

commands

that

correspond

to

a

particular

command

level

varies

according

to

the

architecture

of

the

platform

on

which

the

queue

manager

is

running.

See

the

WebSphere

MQ

documentation

for

your

platform

for

further

details.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

Returns

One

of

the

MQC.MQCMDL_LEVEL_xxx

constants

IsConnected

public

boolean

IsConnected

{get;}

Returns

the

value

of

the

isConnected

variable.

MaximumMessageLength

public

int

MaximumMessageLength

{get;}

Throws

MQException.

Returns

the

maximum

length

of

a

message

(in

bytes)

that

can

be

handled

by

the

queue

manager.

No

queue

can

be

defined

with

a

maximum

message

length

greater

than

this.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

MaximumPriority

public

int

MaximumPriority

{get;}

Throws

MQException.

Returns

the

maximum

message

priority

supported

by

the

queue

manager.

Priorities

range

from

zero

(lowest)

to

this

value.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

SyncpointAvailability

public

int

SyncpointAvailability

{get;}

Throws

MQException.

MQQueueManager

Chapter

6.

The

WebSphere

MQ

.NET

classes

and

interfaces

71

Indicates

whether

the

queue

manager

supports

units

of

work

and

syncpointing

with

the

MQQueue.get

and

MQQueue.put

methods.

Returns

v

MQC.MQSP_AVAILABLE

if

syncpointing

is

available.

v

MQC.MQSP_NOT_AVAILABLE

if

syncpointing

is

not

available.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

MQC

public

interface

IBM.WMQ.MQC

extends

System.Object

The

MQC

interface

defines

all

the

constants

used

by

the

MQI

(except

for

completion

code

constants

and

error

code

constants).

To

refer

to

one

of

these

constants

from

within

your

programs,

prefix

the

constant

name

with

MQC..

For

example,

you

can

set

the

close

options

for

a

queue

as

follows:

MQQueue

queue;

...

queue.closeOptions

=

MQC.MQCO_DELETE;

//

delete

the

//

queue

when

//

it

is

closed

...

A

full

description

of

these

constants

is

in

the

WebSphere

MQ

Application

Programming

Reference.

Completion

code

and

error

code

constants

are

defined

in

the

MQException

class.

See

“MQException”

on

page

28.

System.Object

│

└─

IBM.WMQ.MQC

MQQueueManager

72

Using

.NET

Part

3.

Appendixes

©

Copyright

IBM

Corp.

2003,

2004

73

74

Using

.NET

Appendix

A.

SSL

CipherSpecs

supported

by

WebSphere

MQ

The

following

table

lists

the

CipherSpecs

supported

by

WebSphere

MQ.

Specify

the

CipherSpec

name

in

the

SSLCIPH

property

of

the

SVRCONN

channel

on

the

queue

manager

and

in

MQEnvironment.SSLCipherSpec

Table

2.

Supported

CipherSpecs

CipherSpec

DES_SHA_EXPORT

DES_SHA_EXPORT1024

NULL_MD5

NULL_SHA

RC2_MD5_EXPORT

RC4_56_SHA_EXPORT1024

RC4_MD5_US

RC4_MD5_EXPORT

RC4_SHA_US

TRIPLE_DES_SHA_US

©

Copyright

IBM

Corp.

2003,

2004

75

SSL

CipherSpecs

76

Using

.NET

Appendix

B.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

United

States.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

information

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

information.

The

furnishing

of

this

information

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

information.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

information

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2003,

2004

77

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

United

Kingdom

Laboratories,

Mail

Point

151,

Hursley

Park,

Winchester,

Hampshire,

England

SO21

2JN.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Programming

License

Agreement,

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

IBM

IBMLink

S/390

WebSphere

z/OS

zSeries

Microsoft,

Windows,

and

Windows

NT

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

78

Using

.NET

Index

Special

characters
.NET

classes
See

classes,

WebSphere

MQ

.NET

A
accessing

queues

20

C
CipherSpecs

75

class

library

13

classes

13

classes,

WebSphere

MQ

.NET

27

MQC

72

MQEnvironment

27

MQException

28

MQGetMessageOptions

29

MQManagedObject

33

MQMessage

35

MQPutMessageOptions

54

MQQueue

56

MQQueueManager

64

clients
configuring

queue

manager

7

programming

15

code

examples

16

compiling

WebSphere

MQ

.NET

programs

25

configuring

queue

manager

for

clients

7

confirm

on

arrival

report

options,

message

53

confirm

on

delivery

report

options,

message

53

connecting

to

a

queue

manager

20

connection

type,

defining

15

D
defining

connection

type

15

disconnecting

from

a

queue

manager

20

disposition

options,

message

53

E
error

handling

22

error

messages

9

example

code

16

client

connection

16

server

bindings

connection

18

exception

report

options,

message

53

expiration

report

options,

message

53

G
getting

started

3

H
handling

errors

22

messages

21

I
inquire

and

set

23

interface,

programming

13

introduction

3

for

programmers

13

M
message

error

9

handling

21

MQC

72

MQEnvironment

15,

20,

27

MQException

28

MQGetMessageOptions

29

MQManagedObject

33

MQMessage

21,

35

MQPutMessageOptions

54

MQQueue

21,

56

MQQueueManager

20,

64

multithreaded

programs

23

O
operations

on

queue

managers

20

P
prerequisite

software

4

problems,

solving

9

programmers,

introduction

13

programming
client

connections

15

compiling

25

connections

15

multithreaded

23

tracing

26

writing

15

programming

interface

13

Q
queue

manager
configuring

for

clients

7

connecting

to

20

disconnecting

from

20

operations

on

20

queues,

accessing

20

R
reading

strings

22

report

options,

message

52

S
Sample

applications

7

sample

code
client

connection

16

server

bindings

connection

18

Secure

Sockets

Layer
CipherSpecs

24,

75

distinguished

names

(DN)

24

enabling

24

sslCipherSpec

property

24

sslPeerName

property

24

Secure

Sockets

Layer

support

24

set

and

inquire

23

software,

prerequisites

4

solving

problems

9

SSL

support

24

sslCipherSpec

property

24

sslPeerName

property

24

strings,

reading

and

writing

22

T
TCP/IP

connection,

programming

15

testing

programs

26

tracing

programs

26

U
uses

for

WebSphere

MQ

3

Using

WebSphere

MQ

classes

for

.NET

7

V
verbs,

WebSphere

MQ

supported

13

versions

of

software

required

4

W
WebSphere

MQ

.NET

classes

27

WebSphere

MQ

supported

verbs

13

writing
programs

15

strings

22

©

Copyright

IBM

Corp.

2003,

2004

79

80

Using

.NET

Sending

your

comments

to

IBM

If

you

especially

like

or

dislike

anything

about

this

book,

please

use

one

of

the

methods

listed

below

to

send

your

comments

to

IBM.

Feel

free

to

comment

on

what

you

regard

as

specific

errors

or

omissions,

and

on

the

accuracy,

organization,

subject

matter,

or

completeness

of

this

book.

Please

limit

your

comments

to

the

information

in

this

book

and

the

way

in

which

the

information

is

presented.

To

make

comments

about

the

functions

of

IBM

products

or

systems,

talk

to

your

IBM

representative

or

to

your

IBM

authorized

remarketer.

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate,

without

incurring

any

obligation

to

you.

You

can

send

your

comments

to

IBM

in

any

of

the

following

ways:

v

By

mail,

to

this

address:

User

Technologies

Department

(MP095)

IBM

United

Kingdom

Laboratories

Hursley

Park

WINCHESTER,

Hampshire

SO21

2JN

United

Kingdom
v

By

fax:

–

From

outside

the

U.K.,

after

your

international

access

code

use

44–1962–816151

–

From

within

the

U.K.,

use

01962–816151
v

Electronically,

use

the

appropriate

network

ID:

–

IBM

Mail

Exchange:

GBIBM2Q9

at

IBMMAIL

–

IBMLink™:

HURSLEY(IDRCF)

–

Internet:

idrcf@hursley.ibm.com

Whichever

method

you

use,

ensure

that

you

include:

v

The

publication

title

and

order

number

v

The

topic

to

which

your

comment

applies

v

Your

name

and

address/telephone

number/fax

number/network

ID.

©

Copyright

IBM

Corp.

2003,

2004

81

82

Using

.NET

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Terms used in this book

	Summary of changes
	Changes for this edition (GC34–6328–02)
	Changes for previous edition (GC34–6328–01)

	Part 1. Guidance for users
	Chapter 1. Getting started
	What are WebSphere MQ classes for .NET?
	Who should use WebSphere MQ classes for .NET?
	Connection options
	Client bindings connection
	Server bindings connection

	Prerequisites

	Chapter 2. Installation
	How to install
	What is installed

	Chapter 3. Using WebSphere MQ classes for .NET
	Configuring your queue manager to accept client connections
	TCP/IP client

	Sample applications
	Running your own WebSphere MQ .NET programs
	Solving WebSphere MQ .NET problems
	Tracing the sample application
	Error messages

	Part 2. Programming with WebSphere MQ classes for .NET
	Chapter 4. Introduction for programmers
	Why should I use the .NET interface?
	The WebSphere MQ .NET interface
	Compiling WebSphere MQ .NET applications
	WebSphere MQ classes for .NET class library

	Chapter 5. Writing WebSphere MQ .NET programs
	Connection differences
	Client connections
	Defining which connection to use

	Example code fragments
	Example code (client connection)
	Example code (server bindings connection)

	Operations on queue managers
	Setting up the WebSphere MQ environment
	Connecting to a queue manager

	Accessing queues and processes
	Handling messages
	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Secure Sockets Layer (SSL) support
	Enabling SSL
	Using the distinguished name of the queue manager
	Error handling when using SSL

	Compiling and testing WebSphere MQ .NET programs
	Tracing WebSphere MQ .NET programs

	Chapter 6. The WebSphere MQ .NET classes and interfaces
	MQEnvironment
	Constructors
	Properties

	MQException
	Constructors
	Properties

	MQGetMessageOptions
	Constructors
	Properties

	MQManagedObject
	Constructors
	Methods
	Properties

	MQMessage
	Constructors
	Methods
	Properties

	MQPutMessageOptions
	Constructors
	Properties

	MQQueue
	Constructors
	Methods
	Properties

	MQQueueManager
	Constructors
	Methods
	Properties

	MQC

	Part 3. Appendixes
	Appendix A. SSL CipherSpecs supported by WebSphere MQ
	Appendix B. Notices
	Trademarks

	Index
	Sending your comments to IBM

