
ibm.com/redbooks

Front cover

Implementing EDI
Solutions

Geert Van de Putte
Krishna Bathini

Kiran Chandu
Ronan Dalton

Arpit Doshi
Reza Ghorieshi

Bhushan Mahashabde

Introduction to EDI technologies and
products

Multi-partner and multi-product
implementation scenarios

Integration options with
WebSphere Data Interchange
and InterChange Server

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Implementing EDI Solutions

October 2003

SG24-6906-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (October 2003)

This edition applies to Version 3, Release 2 of WebSphere Data Interchange (product number 5724-C50).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . xi
Comments welcome. xi

Chapter 1. Introducing EDI technologies and products . 1
1.1 EDI terms and concepts . 2
1.2 Benefits of EDI . 4
1.3 EDI components . 5

1.3.1 Message standards. 5
1.3.2 Communication . 8

1.4 The evolution of EDI . 10
1.4.1 Elements of an EDI solution . 12
1.4.2 The IBM EDI solution . 13

1.5 Introducing WebSphere Data Interchange . 14
1.5.1 Features of WebSphere Data Interchange . 14
1.5.2 Mailbox profiles . 15
1.5.3 Network profiles . 17
1.5.4 WebSphere MQ-related artifacts. 18
1.5.5 Service profiles . 19
1.5.6 Trading Partner profiles . 21
1.5.7 Concepts of the mapping editor . 23
1.5.8 Mapping rules . 33

1.6 Usage patterns for WebSphere Data Interchange . 35
1.6.1 A point-to-point solution . 35
1.6.2 An integration broker solution . 36
1.6.3 A B2B gateway solution . 36

1.7 Introducing the iSoft Peer-to-Peer Agent . 37
1.7.1 Communication features . 37
1.7.2 Data integrity and security characteristics. 38
1.7.3 Administration features . 39
1.7.4 Load-balancing and multi-machine setup . 41

1.8 Introducing Trading Partner Interchange . 43
1.8.1 How the system works . 44
1.8.2 Company profile . 46
1.8.3 Partner profile . 46
1.8.4 The relationship between the company and partner profiles 47
1.8.5 Document sizes . 47
1.8.6 Transports . 48

1.9 Internet references . 48

Chapter 2. Implementing iSoft P2PAgent . 49
2.1 Business scenario . 50
2.2 Basic implementation of iSoft . 51

2.2.1 Installation and initial configuration . 52
2.2.2 Validating the configuration. 58
© Copyright IBM Corp. 2003. All rights reserved. iii

2.2.3 Automating the send process . 60
2.2.4 Connecting to partners RETAILER2 and RETAILER3 . 61

2.3 Integration with WebSphere Data Interchange . 65
2.3.1 Translating received EDI documents . 66
2.3.2 Preparing EDI documents . 75

2.4 Integration with the Interchange Server . 83
2.4.1 Creating business objects . 84
2.4.2 Configuring the MQSeries connector . 88
2.4.3 Developing a test collaboration . 92
2.4.4 Using the Test Connector . 94
2.4.5 Inbound flow . 96

Chapter 3. Implementing multi-product AS/2 communication with trading partners 101
3.1 Business case . 102
3.2 Implementing TPI between two partners. 103

3.2.1 Installation of TPI for Supplier . 103
3.2.2 Company profile setup for Supplier. 103
3.2.3 Partner profile setup for Retailer1 at Supplier . 108
3.2.4 Validation of the setup . 110
3.2.5 MQ integration and validation . 113

3.3 Communicating with an iSoft P2PAgent installation . 116
3.3.1 Installation and initial configuration of iSoft’s P2PAgent 116
3.3.2 Exporting the certificate from TPI . 122
3.3.3 Creating a partner profile for Retailer2 in TPI of Supplier 124
3.3.4 Importing the certificate of Retailer2 in TPI . 129
3.3.5 Upgrading TPI . 130
3.3.6 Validation of the setup . 130

3.4 Integration between WebSphere Data Interchange and TPI 132
3.4.1 Processing received EDI documents . 132
3.4.2 Preparing EDI documents . 142

3.5 Integration between the Interchange Server, WebSphere Data Interchange and TPI 150
3.5.1 Creating business objects . 150
3.5.2 Configuring the MQSeries connector . 154
3.5.3 Developing a test collaboration . 157
3.5.4 Using the Test Connector . 159
3.5.5 Inbound flow . 162

Chapter 4. UCCnet and item synchronization via iSoft and TPI 167
4.1 Overview of UCCnet . 168
4.2 The IBM solution . 168
4.3 Installation of Item Sync collaboration. 170

4.3.1 Product installation . 171
4.3.2 Importing the solution components . 171
4.3.3 Database customization . 172
4.3.4 Installing additional samples for the UCCnet Item Sync collaboration 173

4.4 Implementation of scenario 1 . 173
4.4.1 Scenario overview. 173
4.4.2 Collaboration object definition and customization . 173
4.4.3 TPI connector configuration . 176
4.4.4 Port connector configuration . 179
4.4.5 SAP connector configuration . 179
4.4.6 Binding the ports . 180
4.4.7 TPI Server configuration . 181
iv Implementing EDI Solutions

4.4.8 Running the test scenario . 181
4.5 Implementation of scenario 2 . 188

4.5.1 Updating the business object . 188
4.5.2 Configuring the MQ connector . 189
4.5.3 Creating maps. 191
4.5.4 Updating the collaboration object . 192
4.5.5 Updating the TPI Server configuration . 193
4.5.6 Running the test scenario . 195

4.6 Implementation of scenario 3 . 195
4.6.1 Configuration of iSoft’s P2PAgent. 195

4.7 Conclusion . 198

Chapter 5. Implementing a back-up solution using IBM Expedite 199
5.1 Introduction . 200
5.2 Expedite Base for Windows installation . 200
5.3 AT&T Global Network Dialer installation . 201
5.4 Integrating iSoft and Expedite . 206
5.5 Case study . 206

5.5.1 Sending data from the supplier to the customer . 207
5.5.2 Creating a Windows task . 209
5.5.3 Receiving data from the retailer to the supplier. 211
5.5.4 Sending and receiving data at the same time. 212
5.5.5 Problem determination . 213
5.5.6 Things to watch out for . 214

Appendix A. Hardware and software configuration . 215
Hardware configuration . 216
Software configuration . 216

Appendix B. Additional material . 217
Locating the Web material . 217
Using the Web material . 217

System requirements for downloading the Web material . 218
How to use the Web material . 218

Abbreviations and acronyms . 219

Related publications . 221
IBM Redbooks . 221
Online resources . 221
How to get IBM Redbooks . 221
Help from IBM . 222

Index . 223
 Contents v

vi Implementing EDI Solutions

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

™
^™
Redbooks(logo) ™
ibm.com®
z/OS®
AIX®

CrossWorlds®
DB2 Universal Database™
DB2®
IBM®
MQSeries®
NetVista™

Redbooks™
ServicePac®
SupportPac™
WebSphere®

The following terms are trademarks of International Business Machines Corporation and Rational Software
Corporation, in the United States, other countries or both:

Rational Rose®
Rational Software Corporation®

Rational®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
viii Implementing EDI Solutions

Preface

This IBM® Redbook introduces the reader to the world of EDI. In addition to general terms
about EDI, it also introduces a number of products in this area. WebSphere® Data
Interchange is discussed as the translation engine to map EDI documents to and from
documents in other formats. The redbook also introduces two communication products that
use Internet technologies: iSoft’s P2PAgent and Trading Partner Interchange.

In addition to product introductions, the redbook describes several implementation scenarios
in a multi-partner and multi-product environment. Besides a network where trading partners
only use iSoft’s P2PAgent, we also look at a setup where trading partners use a combination
of the two products.

For each communication product, we investigate several integration options with internal
applications and other middleware. We discuss the integration options with the translation
product WebSphere Data Interchange and with the process integration product WebSphere
BI Interchange Server. The integration technique can be file-based or messaging-based.

Finally, we take a look at options to combine the flexibility of the Internet with the reliability of
value-added networks. When Internet connectivity is temporarily not available, a trading
partner can use Expedite to dial into IBM’s network and send or receive EDI documents. By
exploiting the recycle mechanics in iSoft’s P2PAgent, we can implement a solution that
provides a highly available connection between trading partners.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center. This redbook consists of
materials built by several teams and portions of it were published earlier as two Redpapers.

Geert Van de Putte is an IT Specialist at the International Technical Support Organization,
Raleigh Center. He is a subject matter expert in messaging and business integration and has
seven years of experience in the design and implementation of WebSphere MQ-based
application integration solutions. He has published several Redbooks™ about messaging
and business integration solutions. Geert has also taught several classes about messaging,
business integration and workflow. Before joining the ITSO, Geert worked at IBM Global
Services, Belgium where he designed and implemented EAI solutions for customers in many
industries. Geert holds a Master of Information Technology degree from the University of
Ghent in Belgium.

Krishna Bathini is a certified Senior EAI Consultant at Miracle Software Systems, Inc,
Detroit. He is an expert in system architecture, interface design and development using
CrossWorlds®, CrossWorldsTPI, WebSphere MQ, SAP and Java™. Krishna also worked on
WebSphere Data Interchange and iSoft’s P2PAgent. Krishna holds a Master of Engineering
degree from Andhra University of Visakhapatnam, India.

Kiran Chandu is a Senior EAI consultant and CrossWorlds Solutions Expert from Miracle
Software Systems, Inc, Detroit. He has three years of experience in the design and
implementation of EAI solutions and two years of experience in Web-based solutions. Kiran
holds a Master in Information Technology degree from India.
© Copyright IBM Corp. 2003. All rights reserved. ix

Ronan Dalton is an e-Procurement Specialist with IBM in Ireland. He has two years of
experience in IBM Procurement and has more recently worked as EDI Lead with the Dublin
Procurement e-Services Team. Ronan holds a degree in Business and Legal Studies from
University College, Dublin, a Post-Graduate Diploma in Computing from Griffith College,
Dublin, and is currently studying for a Master’s Degree in Computing.

Arpit Doshi has more than four years of experience in the analysis, design and development
of banking and financial applications, primarily using C++, Java, EJB 1.1/2.0, Weblogic
Application Server, EDI, ATG-Dynamo Application Server, Oracle, Rational® Rose®, and
UML. Arpit has a very good knowledge of databases, is BEA Certified and at present
preparing for his OCP certification. He received his bachelor’s degree in Engineering from
Thadomal Shahani Engineering College, Mumbai, India.

Reza Ghorieshi is a Global Technical Strategist and Senior Consulting IT Architect for the
IBM Software Group. He has over ten years of experience in the IT industry and has been
focusing on the services provider industry and the retail/distribution sector for the past four
years. In his current position, he designs and formulates the IBM Software Group's business
and technical strategy to drive industry-specific e-business solutions using IBM middleware
and ensuring open standards and interoperability with industry leading organizations such as
the Unified Code Council (UCC), Global Commerce Initiative (GCI), and many others. In
addition, he has served as Solution Architect for the WebSphere Business Components
product (formerly IBM San Francisco Framework). He came on board bringing strong Java
architecture experience, object-oriented analysis, and design solutions to the San Francisco
team. Prior to IBM, he co-founded Penumbra Software, a leading Java start-up focusing on
Enterprise Java Development.

Bhushan Mahashabde is a Solutions Architect at Y-Point Inc, New Jersey, USA. His areas of
expertise include e-commerce, J2EE, security, and biometrics. He has also worked
extensively in developing telecommunications applications. Bhushan holds a degree in
Computer Science from Pune University, India.

Thanks to the following people for their contributions to this project:

Shivendra Dubey, Sreevidhya Gnanasekaran, Ajit Mahajani, Daljeet Singh Sarna,
Y-Point Technologies

Nagaraju Goriparti, Gopal Krishna Nemani, Sunil Kundur, Meher Jyothi Kopparthi, Ravi Pydi,
Bhushan MahashabdePrasad Babu Vuppu, Murali Maka, Srinivas Ryali,
Miracle Software Systems

Pushkar Suri
Netcom Systems

John Hatfield
IBM
x Implementing EDI Solutions

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xii Implementing EDI Solutions

Chapter 1. Introducing EDI technologies
and products

This chapter provides a brief introduction to EDI technologies in general and how EDI
solutions have evolved in the world of Internet technologies. The chapter goes on to introduce
the reader to two business-to-business gateway products, iSoft’s P2PAgent and Trading
Partner Interchange (TPI), which both implement EDI technologies for the Internet world. We
also introduce the reader to WebSphere Data Interchange, which is an EDI translation
engine.

1

© Copyright IBM Corp. 2003. All rights reserved. 1

1.1 EDI terms and concepts
Electronic Data Interchange (EDI) is a concept that has been in commercial use for more than
30 years. It is widely accepted by companies all over the world as the way to electronically
exchange business data.

Over the years, we have seen a variety of interpretations of the term EDI. A common and
basic definition of EDI is: the transfer of business data between computer applications using a
mutually agreed standard to describe the data contained in the message.

Typically, this means that business data is extracted from a company’s internal application in
an application-specific data format. This data extraction can be implemented in several ways.
It can be a daily batch job reading information in a database and generating a file in an
application-specific format. This user format data file is then translated into a standardized
format such as EDI or XML and transmitted over a network to a trading partner.

An alternative technique is to generate a WebSphere MQ message from within the
application. This WebSphere MQ message will again be in an application-specific format.

For both techniques, the message will end up in some way at a translator component, where
the application-specific structure of the data will be mapped to an EDI standard format, as
shown in Figure 1-1.

Figure 1-1 The role of the translator

The receiving trading partner then re-translates the received EDI/XML message back into an
application-readable format that fits into their processes, as shown in Figure 1-2 on page 3.

An EDI-based information exchange is usually a two-way process. Thus, the translator
component will also be used to translate incoming EDI messages into an application-specific
format.

Application Data

Application Data

EDI Data

EDI Data

Inbound

 Translator Outbound
2 Implementing EDI Solutions

Figure 1-2 The very basic EDI message flow showing where WebSphere Data Interchange fits in

From a company perspective, the EDI concept means business integration and process
automation. Business documents such as purchase orders, invoices, shipping notices, and
price catalogs are exchanged between companies over a network in a structured and
computer processable format.

Figure 1-3 on page 4 shows a typical flow of actions and data between a buyer and a seller.
Usually, a buyer will ask for a quote and when a quote has been received, a purchase order
request might be sent out by the buyer to the supplier. This information exchange is typically
handled by a purchasing application at the buyer side and handled by a sales management
application at the seller side.

When the goods are ready to be delivered, a shipping notice will be sent by the seller to the
buyer. This time, the information exchange is very probably between different components of
the IT infrastructure at both the seller side and the buyer side.

Thus, the use of EDI between two companies implies integration between the applications at
each end. The application used in the warehouse or the accounting application needs to
know about the purchase order generated by the purchase application.

WebSphere Data Interchange
Typical Data Flow

VAN
Internet

FTP

User
Format

EDI or XML
Formats

WDIWDI
Your Trading PartnerYour Trading Partner

User
Format

EDI or XML
Formats

WDIWDI

Your CompanyYour Company
Chapter 1. Introducing EDI technologies and products 3

Figure 1-3 EDI and the business cycle

Since the early days of EDI, a lot of new initiatives and techniques have been adopted by the
market. Terms that hardly existed at that time, such as the Web, XML, B2B and Business
Process Management, are a natural part of today’s realities. So the obvious question is, why
is EDI still so important?

� EDI is a mission-critical part of companies’ B2B strategies

� 95% of Fortune 500 companies use EDI

� 80% of business transactions are conducted via EDI value-added networks (VAN) today

� EDI continues to deliver significant return on investment

� EDI continues to evolve in response to new enterprise and industry requirements, as well
as competitive pressures (for example, HIPAA, AS1, AS2)

1.2 Benefits of EDI
The market is driving every business to act smarter and more quickly and to be more visible.
Much of this can be achieved using EDI. Additionally, EDI can give companies a better
knowledge of their markets, because it opens up possibilities to collect and analyze
information from the EDI transactions the companies are generating.

Among the most visible benefits of adopting EDI are:

� Reduction of data entry errors
� Reduced cycle time
� Minimization of paper use
� Improved relationships with your business partners
� Information in electronic form is more easily shared over the organization
� Improved inventory management

Buyer Seller

Purchasing
&

Scheduling

Sales/Order
Mgmt.

ShippingReceiving

Accounts
Receivable

Accounts
Payable

Request for Quote
Quote

Purchase Order

Purchase Order
Acknowledgment

Shipping Notice

Invoice

Check and Invoice Info.
4 Implementing EDI Solutions

1.3 EDI components
The term EDI is a concept; it does not define any technique and does not point to any
specified product or service. An EDI transmission can basically be divided into two logical
parts: the message itself and the communication.

1.3.1 Message standards
Since the goal of EDI is to have a standardized message, a number of different standards
have been developed and established over the years. The most commonly used message
standards are:

� ANSI ASC X12 - US standard
� EDIFACT - standard recommended by the United Nations, used mainly in Europe
� UNTDI - UK retail standard
� ODETTE - European automotive industry
� Others such as HIPAA, VICS, VDA, UCS, etc.

The standardized messages are built by components such as elements, segments, and
transactions/messages. Between all objects, there is a separator.

The elements are the individually defined fields such as Amount, Name or Quantity. Two or
more elements can be grouped together, forming a composite element.

A segment is a set of elements or composite elements built to a logical entity, such as Name
and Address or Pricing Information.

An envelope contains overall information about the transaction or message, such as sender
and receiver, type, and control values.

A set of segments put together in a specified order all wrapped in an envelope make up a
transaction or message, such as an Invoice or a Purchase Order. The envelope contains
information about the sender and receiver, transaction/message type, and so on.

Figure 1-4 shows the structure of an EDI message in a graphical way.

Figure 1-4 Components of an EDI message

Transaction/Message

Segments

Elements Composite Element

Component Element Component Element
Chapter 1. Introducing EDI technologies and products 5

EDI interchange messages have a control structure made up of functional groups nested
within an EDI envelope, as shown in Figure 1-5. Functional groups, in turn, contain one or
more transaction records. The envelope header contains information such as the source
address, destination address, time stamp and return receipt (if any). A variety of addressing
methods are supported, including Duns Numbers, Standard Carrier Alpha Code, Phone
Number, CCITT X.121 Address, etc.

Figure 1-5 Interchange control structure

Transaction records include transaction headers, transaction trailers and a transaction data
segment. An important component of the transaction header is the transaction code. For
example, the code for a purchase order is 850 and the code for an invoice is 859. The data
segment of the transaction record itself is made up of multiple data elements separated by
data element separators. An example data segment for a purchase order transaction is
illustrated in Figure 1-6.

Figure 1-6 X12 encoding purchase order sample

Example 1-1 on page 7 shows a sample X12 transaction. The first three lines are part of the
envelope. The line starting with ST*810 is the start of the actual message. This time it is an
810 message, which is used to send invoices.

ISA - EDI Envelope Header
TA1 - Interchange Acknowledgment Segment

GS - Functional Group Header
ST - Transaction Header

Transaction Data
SE - Transaction Trailer

GE - Functional Group Trailer
IEA - EDI Envelope Trailer

Data Portion of
the EDI Structure

PO1*1*54*EA*0.99*CA***VN*456n/1

Data Element Separators
Data Segment Terminator

Product ID

Product ID, VN=Vendor Catalog
Two Empty Fields

Price Code, CA=Price from Catalog

Unit Price

Unit of Measure
Quantity Ordered

Assigned Identifier

Segment Name for the Line Item Segment
6 Implementing EDI Solutions

Example 1-1 X12 transaction (invoice)

ISA*00* *00* *ZZ*CELORGC02 *ZZ*IBMIRLPROD *021018
*0229*U*00401*000008899*0*P*~¬
GS*IN*CELITALY*IBMIRELAND*20021018*0229*8899*X*004010¬
ST*810*88990001¬
BIG*20021017*0002146553**P350342***DR¬
CUR*SE*USD¬
REF*D2*0080118614¬
N1*SE*Celestica Italia S.r.l.*92*103015¬
N2*Celestica Italia S.r.l.¬
N3*Via Lecco 61¬N4* Vimercate - MI - IT**20059¬
REF*GT*IT03029690967¬
N1*BY*IBM INTERNATIONAL HOLDINGS¬
N2*IBM INTERNATIONAL HOLDINGS¬
N3*MULHUDDARTH¬
N4*DUBLIN*DB*15 ¬
REF*GT*IE6602632V¬
IT1*000001*4*EA*1767.87*PE*BP*00004N3524*VP*4N3524¬
TXI*VA*0*0¬
PID*F****BK C_F_CARDINAL¬
REF*ZZ*7071.48¬TDS*707148*707148¬
TXI*VA*0¬
CTT*1¬
SE*22*88990001¬
GE*1*8899¬
IEA*1*000008899¬

Both the X12 and the EDIFACT transactions in Example 1-1 and Example 1-2 are presented
with one segment per row for easier viewing. Normally, a new segment follows directly after
the previous segment to save space.

Example 1-2 EDIFACT message (Purchase Order)

UNB+UNOA:2+3568579005454:14+3015437860102:14+021003:0053+02018852760++ORDERS'
UNH+1+ORDERS:D:93A:UN:EAN007'
BGM+220::9+001779'
DTM+137:20021002:102'
DTM+2:20021005:102'
DTM+63:20021005:102'
NAD+BY+3568579005454::9'
NAD+SU+3015166100102::9'
NAD+DP+3568579005454::9'
CUX+2:EUR:9+3:EUR:4'
LIN+1++3560998032054:EN::9'
QTY+21:2'QTY+59:1'
PRI+AAA:798.33::NTP'
LIN+2++3560998032054:EN::9'
QTY+21:5'QTY+59:1'
PRI+AAA:34.6::NTP'
UNS+S'
UNT+17+1'
UNZ+1+02018852760'

From a message organization point of view, these look similar. Every segment starts with a
three-letter word indicating the type of segment that follows. Each element within the segment
is separated from the next one by a separator. Finally, the message structure uses a segment
terminator. There are additional rules. Some elements are optional, other elements are
Chapter 1. Introducing EDI technologies and products 7

conditional. Element A and B are labeled conditional when, for example, the appearance of
element A implies the appearance of element B.

1.3.2 Communication
Transportation of the EDI file over a network can be done in many ways. Any network and
any protocol can be used as long as it fits the needs. Three types of communication are
discussed here:

� VAN communication
� Internet (AS1, AS2, FTP, etc.)
� WebSphere MQ

Note that we are focusing more on the communication aspect between two trading partners.
There is also a communication aspect within the IT setup of a trading partner. The data has to
be sent from the internal applications to the EDI translator software and after translation, the
data has to be handed over to some communication software.

VAN communication
For connectivity and exchange of EDI data between enterprises, one option is a direct
connection between the trading partners using the X.25 network or leased or dial-up lines.
The direct communication method assumes that two partners communicate with a single data
communication protocol out of over ten available options. This works well when only a few
partners are involved or if one party can dictate to all their trading partners the single protocol
to use. As the number of partners increases, so does the number of protocol options one
must support, and therefore the management of the trading partner communications
becomes more complex. This has been the primary driver for the advent of value-added
networks (VANs). Unlike the Internet, which is public and free of charge except for
connectivity to it, VANs are privately run; companies pay to be registered users and for
services. VANs offer services such as EDI packet transportation, conversion between
different EDI versions and standards, audit trails, security, trading partner identification,
education, and consulting. Multiple VAN providers are in existence and bridges are in place
between these in order to enable the subscribers of one to do business with the subscribers
of another. Connectivity options to the VAN itself from any enterprise vary depending on the
VAN provider and connectivity software vendor. Secure messaging-based connectivity using
a messaging middleware solution such as WebSphere MQ is the usual choice.

Using a value-added network (VAN) for the transmission of files is traditionally seen as the
most secure way of communication. Apart from pure communication, a VAN also provides
value-adds such as:

� Built-in security features that help protect against unauthorized access to customer data

� Restart and recovery facilities that help to reduce or eliminate the impact of
communications interruptions

� Archive capability for the online retention of data copies

� 24x7 availability

� Notification of message arrivals that meet predefined criteria, such as a message from a
specific trading partner
8 Implementing EDI Solutions

Figure 1-7 EDI VAN network

The VAN Gateway software will drop off and pick up EDI documents via the mailbox. The
VAN provides store-and-forward mailbox services. The physical communication system
between the VAN Gateway and the VAN network can vary from dial-up to FTP, or some
proprietary communication technology.

IBM Information Exchange (IIN) is an example of such a value-added network.

EDI over the Internet
Although the VAN has been a viable proposition for many of the big corporations, its high cost
has been a deterrent for its wider adoption by medium-sized and small businesses. Adoption
by the latter has been driven largely by the dictates of the big corporations with which they do
business. There has been a growing desire among businesses to explore means for driving
down the cost of electronic data exchange.

In 1996, a working group called EDI-INT was created by the IETF (Internet Engineering Task
Force) to create a set of secure protocols for conducting highly structured inter-enterprise
exchanges over the Internet. The requirement was to create a method for packaging
EDI/X12, UN/EDIFACT and mutually agreeable transaction sets in a MIME envelope. Several
additional requirements were included for obtaining multi-vendor, interoperable service
beyond how the EDI transactions are packed. These revolved around security issues, such
as EDI transaction integrity, privacy, and confirmation of source and destination. Currently,
there are two main EDI-INT initiatives, known as applicability statements AS1 and AS2, which
describe how current Internet standards can be used to achieve VAN functionality.

� AS1 uses MIME (Multipurpose Internet Mail Extensions) and SMTP (Simple Mail Transfer
Protocol).

� AS2 uses MIME and HTTP (Hypertext Transfer Protocol) for process-to-process real-time
EDI.

Although created originally for transporting EDI formatted data, AS1 and AS2 can be used to
transport a variety of data types, including XML documents.

VA
N

EDI Trading Partner 1

EDI Trading Partner 4EDI Trading Partner 3

EDI Trading Partner 2

Partner 1
Mailbox

Partner 2
Mailbox

Partner 3
Mailbox

Partner 4
Mailbox
Chapter 1. Introducing EDI technologies and products 9

The Uniform Code Council (UCC) and Drummond Group, Inc. have partnered to sponsor an
interoperability testing program for software vendors providing AS2 connectivity solutions.
For more information about the interoperability tests of the Drummond Group, visit their Web
site at:

http://www.drummondgroup.com

Message queuing
Message queueing (MQ) connects commercial systems in today’s business. It provides
assured, once-only delivery of data in any format.

IBM WebSphere MQ is an example of this.

1.4 The evolution of EDI
In today’s economy, market dynamics have converged on a business model that provides for
the integration of different trading partners in a value chain. Depending heavily on Internet
technologies, this model can enable highly coordinated trading communities, each with the
ability to operate as a virtual enterprise.

In the virtual marketplace, business relationships are formed electronically. Buyers and
sellers come together without the benefit of paper contracts, fee schedules, or sales people to
close the deal. This Web economy requires an agile enterprise, one that can work more
directly with suppliers and customers and respond more rapidly and intelligently to change.
The need for flexibility and lower costs, such as VAN charges, are driving the evolution of
EDI.

Organizations are recognizing the value of many years of investments in EDI. Rather than
replace the present solution, they plan to extend and evolve the EDI transactions. This
existing EDI solution is considered as a part of a multi-modal B2B gateway or hub alongside
XML, Web solutions, and portals. By integrating B2B and EDI technologies, event-driven or
process-driven integration models can be supported using the existing EDI solution.
10 Implementing EDI Solutions

http://www.drummondgroup.com.

Figure 1-8 Business Initiatives = Business Integration

The Internet is widely perceived as being much less expensive than a VAN, but this is not
necessarily the case. VANs generally provide valuable services, such as TPA management,
service-level administration, security, and store-and-forward capability. The Internet requires
you to manage these elements yourself, which means the total costs are not always lower
than those of a VAN.

EDI users cannot realize the full value of the Internet in e-commerce applications until the
entire underlying business process is optimized. Business process management (BPM) is the
automation, optimization, and management of end-to-end business process flows. In this
case, it is accomplished by integrating front-end Web applications to back-end legacy
applications and to existing EDI trading partners.

Earlier phases of EDI achieved efficiency by automating manual processes. Now, however,
the focus is on business process integration and optimizing business operations. EDI steps
are tied to the full value-chain processes by the ability to share information throughout.

The result of these trends is that traditional EDI customers are facing increasing challenges to
remain competitive. To grow or even preserve your business, you need to integrate your
existing EDI applications with core business processes by distributing transactions or
information to and from various back-end applications. Situations in which this kind of
integration can help are as follows:

� You have typically spent tens or hundreds of thousands of dollars on your current EDI
solutions and you want to leverage that investment.

� Internal departments lack timely information about EDI transactions and make costly
mistakes or provide poor service.

Enterprise
Transformation

Customer Relationship
Management

Product Life-cycle Management
Collaborative Product Design
Straight-through processing

ERP Integration
M&A Management

e-Procurement
Marketplaces
Exchanges

Supply Chain Management

Integration is Needed to
Optimize Execution and Reduce Costs ...
Chapter 1. Introducing EDI technologies and products 11

� Competitiveness suffers from an inability to track or manage the distribution of EDI
messages within the business.

� Manual processing of EDI messages is slow, error-prone and consumes valuable
resources.

Figure 1-9 The industry view

1.4.1 Elements of an EDI solution
In addition to obvious components of an EDI solution, such as application programs and
systems, VANs and trading partners, a complete and flexible solution should include the
following important elements.

Translators
A universal problem in integration of applications is the conversion of shared data from one
format to another. Common data fields, such as names, addresses, and numbers, often have
different formats across disparate systems. The traditional approach to EDI implementation is
to place the function that converts application data to the EDI standard directly into the
business application. This approach is less effective because a separate program is required
for each transaction as well as for each trading partner. In addition, it is difficult to keep up
with new versions of standards because programs must be modified every time a trading
partner adopts a newer standard or version of the standard.

This approach has changed with the introduction of third-party translation software, also
known as mappers. The translator is responsible for mapping application data to the specific
EDI format and vice versa. This translation software is implemented in either a centralized
engine or in an adapter. It must handle primary EDI standards as well as different and
evolving versions of each standard.

Enterprise
Transformation

Customer Relationship
Management

Product Life-cycle Management
Collaborative Product Design
Straight-through processing

ERP Integration
M&A Management

e-Procurement
Marketplaces
Exchanges

Supply Chain Management

Integration is Needed to
Optimize Execution and Reduce Costs ...
12 Implementing EDI Solutions

Batch enveloper/deenveloper
Typically, because VAN charging is based on each sent transaction, enterprises have been
driven to find ways to reduce the number of transactions and to compress more information
into each. Consequently, EDI messages are sent in large batches, which can then be
grouped from, or split out to, several divisions or areas of an enterprise.

Enveloping batch messages involves placing the EDI standard header and trailer around
transactions in preparation for sending. When the envelope is complete, the package can
then be sent to a trading partner through a VAN. Similarly, batch transactions must be
deenveloped when they are received from the VAN.

Message router
Once the EDI message is deenveloped, it can be divided into function groups. Each function
group may relate to a different division or area of the business. A mechanism is needed to
sort messages destined for different groups and deliver them to the appropriate target
applications. This means there is a requirement to fan in and fan out messages. Message
transformation may also be required to get the message into the correct format for the end
applications.

Trading Partner Agreements
A TPA is an agreement related to the exchange of information in electronic transactions. The
term includes a particular agreed-upon standard for business documents as well as
communications and business protocols, the service-level agreement, and more. TPAs can
also be extended to include business events. For example, if an event occurs in one
organization that might affect processes in a second organization, the TPA can specify that
the second organization be alerted to the event.

1.4.2 The IBM EDI solution
The key to the IBM EDI solution, shown in Figure 1-10, is IBM WebSphere Data Interchange
for Multiplatforms. It is the core of the solution and handles key EDI solution elements, such
as translation and enveloping/deenveloping.

Figure 1-10 The IBM EDI solution

Logistics:

Accounting:

B2B Gateway
EDI

Broker

Process
Broker

Message
Broker

Universal
Database

Information
Exchange

Connection
Software

 Business
Exchange Services
- Internet Transfer

Feature

Exchange for
WebSphere MQ

Direct
Connection

Manufacturing:

Business
Applications
Chapter 1. Introducing EDI technologies and products 13

Working closely in partnership with IBM WebSphere MQ Integrator Broker, WebSphere Data
Interchange can:

� Automate the distribution of EDI messages to and from all departments and trading
partners.

� Transform EDI messages, on the fly, to the proper format for each existing application.

� Automatically redirect messages based on message content and system state.

� Track the flow of messages through systems for offline analysis and data mining.

� Reconfigure the system to respond to changing circumstances by adding or deleting
applications.

1.5 Introducing WebSphere Data Interchange
This section provides an introduction to WebSphere Data Interchange. We discuss its main
features and functions and describe the usage and role of its main components.

1.5.1 Features of WebSphere Data Interchange
WebSphere Data Interchange for Multiplatforms V3.2 (WDI V3.2) provides advanced
translation, validation, and batched information exchange capabilities for Electronic Data
Interchange (EDI) standards and for XML. WebSphere Data Interchange V3.2 electronically
translates EDI format data, such as invoices, purchase orders, and billing forms, for
exchange with trading partners. WebSphere Data Interchange V3.2 supports industry
implementations of the ANSI X12, EDIFACT, VICS, UCS and Rail standards. Translation can
take place between any combination of EDI, XML, or structured Application Data Format,
which is a feature that is sometimes called any-to-any transformation. WebSphere Data
Interchange V3.2 provides advanced data validation and standards compliance functions that
allow the functional acknowledgments, defined by some standards, to be generated in
response to inconsistencies in the data content. WebSphere Data Interchange V3.2 can be
configured to both construct and deconstruct envelopes of EDI format data that contain
batches of related EDI items such as invoices or purchase orders.

WebSphere Data Interchange V3.2 provides a dedicated GUI mapping tool, the WebSphere
Data Interchange Client, which is optimized to build EDI, XML, and Application Data Format
transformations. The WebSphere Data Interchange Client allows direct import of EDI
standards definitions, Application Data Format structures and industry standards or
user-defined XML DTDs for mapping and translation.

The WebSphere Data Interchange Client provides configuration and administration
capabilities. Network profiles and Trading Partner profiles can all be managed via the client
interface of WebSphere Data Interchange.

In addition to mapping and configuration, the client interface can be used for auditing and
runtime support tasks. The client offers an interface to create reports on transactions and
messages. Event logs and activity logs can be created and used as a way to analyze system
behavior.

WebSphere Data Interchange V3.2 is available on the Windows® 2000, AIX®, and z/OS®
platforms. The server component is available in two shapes. One way to use the translation
engine is to start in a batch-type of mode driven by a command file. The command file
typically contains actions that the translation engine has to perform on a number of files
containing EDI messages. Typical actions include batching, enveloping, and deenveloping,
14 Implementing EDI Solutions

sending and receiving files. Usually, the startup of the translation engine is controlled by some
automation or scheduling tool.

Another way of launching the translation engine is to use the WDIAdapter program. You can
configure WebSphere MQ in such a way that the WDIAdapter program is launched when a
message arrives at a queue. The adapter program will then read this message and perform
the translations that are required, as configured in WebSphere Data Interchange. The
translated message can then be written to another WebSphere MQ queue.

WebSphere Data Interchange V3.2 supports integration with WebSphere MQ enabling
inter-operation with a wide range of enterprise applications, business process engines such
as the InterChange Server, information brokers such as WebSphere MQ Integrator, and ERP
systems such as SAP R3. The reading and writing of WebSphere MQ messages can be
performed in three different ways:

� Standard MQ messages with only a message descriptor.

� MQ messages with an MQRFH2 header. That header can contain an mcd folder, to
indicate the message set, type and format, and it can contain additional information in the
user folder to indicate receiver and sender information.

� MQ messages destined for JMS API clients.

WebSphere Data Interchange V3.2 provides for communication with trading partners via both
value-added networks (VANs) or Internet B2B gateways by provision of an easy-to-use
configurable interface which enables connection to leading VAN and Internet gateways. The
WebSphere Business Integration - Connect offerings that provide AS1 and AS2 support and
the IBM e-business hosting Expedite VAN gateway are two examples of supported gateways
from IBM.

In the context of a typical enterprise integration architecture, WebSphere Data Interchange
fulfills the role of an EDI broker that performs the specialist EDI validation, transformation,
and exchange functions, and propagates the resulting transformed information either
internally or externally. Internal propagation of transformed information may be via a message
broker, a process broker, direct to the business applications, or through any combination of
those, depending on the needs of enterprise. External propagation of transformed information
or receipt of information may be through a specialized, dedicated VAN gateway, an Internet
B2B gateway, directly to a trading partner, or through any combination of those interfaces,
depending on the nature of the trading relationship between the enterprise and its trading
partner.

There are certain concepts you should become familiar with before attempting to understand
how a message is processed by WebSphere Data Interchange. Described below are the
components of particular relevance:

� Mailbox profiles
� Network profiles
� WebSphere MQ-related artifacts
� Service profiles
� Trading Partners
� Maps
� Rules

1.5.2 Mailbox profiles
Mailbox profiles contain the information that WebSphere Data Interchange needs to identify
the individuals and groups in your organization that receive documents to be translated. Each
Chapter 1. Introducing EDI technologies and products 15

individual or group requires its own Mailbox profile. Figure 1-11 illustrates the default Mailbox
profiles shipped with WebSphere Data Interchange.

Figure 1-11 Mailbox configuration window

Of particular importance in the Mailbox profile settings are the Network ID and Receive File
details. The Network ID identifies which logical network within WebSphere Data Interchange
is to be used to send or receive information. The Network ID is selected from the list of
available Network profiles available in WebSphere Data Interchange. The Receive File field
defines the logical file name expected to be received by this Mailbox profile.

A mailbox can be something logical, referring to a file or an MQ queue, or it can refer to a
mailbox provided by a VAN. In that case, the attributes Account ID, User ID and Password are
the actual account ID, user ID, and password associated with your VAN account.

Figure 1-12 illustrates the default settings of the XML_IN Mailbox profile.

Figure 1-12 Settings of a Mailbox profile
16 Implementing EDI Solutions

Here we see that the selected Network ID is XML and Receive File is set to XML_IN. When
using WebSphere MQ as the communication between trading partners or applications, all
other details on this window are unused. The Account ID, User ID, Password and Msg User
Class fields come into play when required by the network, for example, when using IBM
Information Exchange.

1.5.3 Network profiles
Network profiles define for WebSphere Data Interchange the characteristics of the networks
you use for communications with trading partners. WebSphere Data Interchange is shipped
with the Network profiles required to communicate with several major networks. In
Figure 1-13, we see the default Network profiles shipped with WebSphere Data Interchange.

Figure 1-13 Default Network profiles

If we look at the XML profile in more detail, we can examine the details of importance.
Figure 1-14 shows the default details of the XML Network profile.

Figure 1-14 Settings of a Network profile

Network program EDIRFH2 is specified along with communications routine VANIMQ, so the
VANIMQ program will be called to actually process the WebSphere MQ queue specified by
the Network Parameters. This network program and communications routine are shipped with
WebSphere Data Interchange and are used when processing from an WebSphere MQ
queue. The network program EDIRFH2 is used when you expect to process or generate an
Chapter 1. Introducing EDI technologies and products 17

MQRFH2 header. If you do not have this requirement and you plan on using standard MQ
messages, you should use the network program EDIMQSR. There is a third MQ-oriented
network program, called EDICYCL, which is used when interacting with JMS clients.
Examples of these different network programs for WebSphere MQ can be found in Chapter 2,
“Implementing iSoft P2PAgent” on page 49 and in Chapter 3, “Implementing multi-product
AS/2 communication with trading partners” on page 101.

The logical names of the inbound and outbound queues to be processed are kept in the field
named Network Parameters. The format of the field is:

SENDMQ = name_of_the_queue_for_outbound_data RECEIVEMQ =
name_of_the_queue_for_inbound_data

The actual details of the queue, such as the queue manager name, full queue name, whether
destructive MQGET operations should be performed, and so on are specified in a different
profile called the MQSeries® Queue profile. Every WebSphere MQ queue that WebSphere
Data Interchange accesses must be described within WebSphere Data Interchange by an
MQSeries Queue profile.

The Envelope File field is an optional one. When translating documents, the output
documents are written to this file, here XML_IN. Documents are then read from this file when
sending to a trading partner. When receiving documents from a trading partner, the
documents will be written to this file. The WebSphere Data Interchange will read the
documents from this file to translate them.

1.5.4 WebSphere MQ-related artifacts
Of particular importance to the user is an understanding of the WebSphere MQ-related
artifacts that exist in WebSphere Data Interchange and how they are related to MQ concepts
such as queues and queue managers. The interface with each of these MQ-related artifacts
can be found in the Setup area of the WebSphere Data Interchange client. The MQSeries
Queues tab selected below contains WebSphere Data Interchange’s definitions of actual
queues defined in WebSphere MQ.

Figure 1-15 MQSeries Queue profiles

When we look at the details of one of these queue definitions, we can see that WebSphere
Data Interchange has assigned a logical queue name to the physical WebSphere MQ queue
and defined the queue manager where this queue resides.
18 Implementing EDI Solutions

Figure 1-16 Details of an MQSeries Queue profile

In Figure 1-16, the Queue Profile ID XML_IN corresponds to Full Queue Name XML_IN (the
actual WebSphere MQ queue). The Queue Manager field is not specified since this queue
resides on the default queue manger. If the queue isn’t on the default queue manager then
you would specify the name of the queue manager in the Queue Manager field above.

WebSphere Data Interchange uses these MQSeries Queue profiles once called from the
Network Parameters field in the Network profile.

1.5.5 Service profiles
The purpose of the Service profile is to allow you to enter a utility command and all the files
that will be used during execution of that command. There are specific fields for fixed names,
such as the print file (PRTFILE), and short name and long name pairs for times when both the
short and long names are user-defined, such as input and output files. Below are the default
Service profiles shipped with WebSphere Data Interchange.

Figure 1-17 Default Service profiles

In the General tab of the XML_IN Service profile, we can see the default utility command
provided by WebSphere Data Interchange.
Chapter 1. Introducing EDI technologies and products 19

Figure 1-18 Detailed view of the settings of a Service profile

The XML_IN parameters passed to INFILE tell WebSphere Data Interchange that this is the
file to perform translation on (to TRANSFORM). This corresponds to the Receive File detail
we specified earlier in the Mailbox profile. The X parameter passed to SYNTAX tells
WebSphere Data Interchange to expect XML_IN to be in an XML format.

The Common Files tab outlines the default locations for each of the file structures used by
WebSphere Data Interchange to provide the user with information on the TRANSFORM
process. These are discussed in more detail in Chapter 2, “Implementing iSoft P2PAgent” on
page 49.

Figure 1-19 The Common Files tab for a Service profile

The Input Files tab is typically left blank. This is only used if the input for the utility command
is different from the file that initially triggered the process. This is not a common scenario.

The Output Files tab associates a physical file location for the logical output of the utility
command. For example, let’s issue the following command in the General tab:

PERFORM TRANSFORM WHERE INFILE(XML_IN) SYNTAX(X) OUTFILE(XML_OUT)
20 Implementing EDI Solutions

The output of the utility command will reside in the physical file location associated with
XML_OUT in the Output Files tab.

Figure 1-20 The Output Files tab of a Service profile

In Figure 1-20, we see that the logical file name XML_OUT is mapped to the physical file
name ..\xml\xml_out.txt.

Note that the name you give to the Service profile is its logical name. If another command
writes information to the file associated with this logical name, the PERFORM command is
executed after that command completes, connecting the commands together. This is known
as command chaining.

The Network Files tab allows the user to enter details of files required for communication by
the network program. Typically, these are used if Expedite is being used as the
communication channel between WebSphere Data Interchange and Information Exchange. If
using WebSphere MQ-to-WebSphere MQ communications, these fields can remain unused.

1.5.6 Trading Partner profiles
Trading Partner profiles are maintained in WebSphere Data Interchange under the Trading
Partner icon. This icon is shown in Figure 1-21.

Figure 1-21 Icon to access Trading Partner profiles

WebSphere Data Interchange ships with two sample Trading Partner profiles.
Chapter 1. Introducing EDI technologies and products 21

Figure 1-22 Default Trading Partner profiles

The ANY trading partner is a useful template that can be used when simulating a data
transformation scenario where the sender and receiver details are of little importance.

The General tab of the ANY Trading Partner profile can be seen in Figure 1-23.

Figure 1-23 Settings of a Trading Partner profile

In a simple ANY to ANY scenario over WebSphere MQ, the only field of importance is the
Network ID field. This determines which WebSphere Data Interchange Network profile is to
be used with this trading partner. This should correspond to the network ID selected in the
Mailbox profile as illustrated earlier. If Information Exchange is being used, the user is
required to enter an Information Exchange Account and User ID. It will also be necessary to
identify the Interchange Attributes by entering the Trading Partner’s Qualifier and ID. The ID
in this instance could be an alias, depending on what you have defined in Information
Exchange.

In WebSphere Data Interchange’s view of the world, there are two type of trading partners:
application (or internal) trading partners and EDI (or external) trading partners. An application
trading partner represents a business entity within the customer's enterprise. An external
trading partner is a business entity that the user's enterprise does business with via EDI. Both
are represented by a Trading Partner profile. What differentiates the two of them is the trading
partner type field on the General tab of the Trading Partner Profile editor. In Figure 1-23, we
see that ANY is defined as being both an EDI and application trading partner.

WebSphere Data Interchange provides tabs to store more specific details on the trading
partner. For example, space is provided for company information and contacts. These are not
required, however.
22 Implementing EDI Solutions

The only other tab of importance in this quick beginnings setup is the WDI Proc Options tab.
Here the user is allowed to specify the delimiters used by WebSphere Data Interchange.
Figure 1-24 shows the default settings of ANY.

Figure 1-24 The WDI Proc Options tab of a Trading Partner profile

1.5.7 Concepts of the mapping editor
A data transformation map is a set of mapping instructions that describes how to translate
data from a source document into a target document. The order in which the mapping
instructions occur can be based on the source document (source-based mapping) or the
target document (target-based mapping). Both the source and target documents can be one
of several supported document types.

In this section, we discuss a number of techniques available in WebSphere Data Interchange
when creating a data transformation map. To open the Map Editor, use the button shown in
Figure 1-25 on the tool bar.

Figure 1-25 Tool bar button to open the Map Editor

Basic mapping by drag-and-drop
The Details tab in the Map Editor (Figure 1-26 on page 24) allows you to perform drag and
drop mapping on your documents. The top left pane in the window displays the source
document definition, and the top right pane displays the target document definition. The lower
left pane is the Mapping Command window pane, and the lower right pane is the Variables
window pane, which includes the lists for Global, Local, and Special Variables.

Click the element you want to map on the top left side of the window. While holding down the
mouse button, drag it to the corresponding element in the target document definition on the
top right pane. When you have dragged the element to the right side of the window over the
element with which you want to associate it, that component becomes highlighted. Release
the mouse button.
Chapter 1. Introducing EDI technologies and products 23

In a target-based map, the result of this action will be a MapFrom() command. Refer to the
example in the Mapping Command window below.

Figure 1-26 The different panes of the Mapping Editor

Mapping elements by assignment
A value can be assigned to any variable or any simple element in the target document
definition. This is accomplished using an assignment statement.

One method of creating an assignment statement is to right-click a node where you want to
insert the statement. In the context menu that is displayed, select Insert within -> Command
-> Assignment.
24 Implementing EDI Solutions

Figure 1-27 Adding an assignment to a map

The WebSphere Data Interchange Client then displays the Mapping Command Editor
(Figure 1-28).

Figure 1-28 Mapping command editor

Click the element to which you want to assign a value on the top right side of the window
shown in Figure 1-27. While holding down the mouse button, drag it over the path in the
Mapping Command Editor shown in Figure 1-28. To assign a value to the target element,
replace expression with a value. Be sure to place this value in single quotes. An example of
an assignment completed using this method is shown in Figure 1-29 on page 26.
Chapter 1. Introducing EDI technologies and products 25

Figure 1-29 Completed assignment in the Mapping Command Editor

Another method of creating an assignment statement is to drag a simple element from the
source document definition or the target document definition and drop it on a variable. This
will create an assignment command at the appropriate position within the Mapping Command
window. The variable will then hold the value of the source element.

Using variables when building maps
Map variables are used like variables in any programming language. They are an integral part
of the WebSphere Data Interchange mapping command language. Variables are used to hold
and manipulate values assigned to them during translation. They are used in mapping
commands and functions, commonly within expressions. WebSphere Data Interchange
supports three types of variables: Local Variables, Global Variables, and Special Variables.

Local Variables are unique to the map in which they are defined. A Local Variable must be
defined to a map before it can be used in that map. Local Variables have a scope of
document or loop. During translation, Local Variables defined with a scope of document will
be created at the start of every document and deleted at the end of the document. Variables
defined with a scope of loop will be created and initialized whenever a new loop iteration is
started, and destroyed at the end of each loop iteration.

Global Variables are similar to Local Variables, but they are not unique to any map; they are
shared across data transformation maps, validation maps, and functional acknowledgement
maps.

Special Variables are a group of predefined variables used by WebSphere Data Interchange.
They function much like Local Variables or Global Variables, but they each have a special
purpose. A user can view properties of a Special Variable, but no changes can be made.
Special Variable names will always start with “DI”.

An example of such a variable is DIPROLOG, which holds the XML declaration for an
incoming XML document.

A variable is created in WebSphere Data Interchange by right-clicking below the variable type
in the variable window. In Figure 1-30 on page 27, we are creating a new local variable.
26 Implementing EDI Solutions

Figure 1-30 Creating a new variable

Using built-in functions
The WebSphere Data Interchange User Guide provides an extensive list of all functions
available when creating a data transformation map. Functions perform an action and return a
result within an expression or assignment statement. Functions can take zero or more
parameters as input. The number of parameters and the data type of the return value vary
from one function to the next.

In the example below, we use the Date() function. The Date() function returns the system date
as a character string in the format yyyymmdd. Here we use an assignment statement to
invoke the function; the target element will be assigned the return value.

Create an assignment statement as before. Right-click the Mapping Command window at
the node where the command will appear and select Insert Within -> Command ->
Assignment. Click the element you want to assign the system date on the top right side of
the screen. While holding down the mouse button, drag it over the path in the Mapping
Command Editor. Replace expression with Date(). The Date() function takes no
parameters. Complete this command by clicking OK.
Chapter 1. Introducing EDI technologies and products 27

Figure 1-31 Mapping an element to the system date

Handling multiple occurrences of an element
The ForEach() command is used in target-based maps to indicate that subsequent nested
mapping commands are to be executed for each occurrence of an element in the source
document. Each occurrence of the element in the source document results in a new
occurrence of the current element in the target document, unless other mapping commands,
such as Qualify() or If(), limit execution of the nested commands.

Create a ForEach() command by right-clicking the node where the command will occur in the
Mapping Command window and selecting ForEach.

Figure 1-32 Using the ForEach command

Replace sourcePath in the Mapping Command Editor by clicking the repeating element in the
top left side of the main window (see Figure 1-26 on page 24), where the source document is
listed and expanded. While holding down the mouse button, drag the repeating element over
sourcePath, resulting in a command as shown in Figure 1-33.

Figure 1-33 Completed ForEach() command

Mappings commands that occur within a ForEach() command are performed each time the
associated element in the source document is encountered. ForEach() commands can only
be used in target-based maps. They are inserted within simple elements or compound
elements that occur in the target document definition. You can include multiple ForEach()
commands within a single element in the target document definition. The element in the
target document definition can be either a repeating element or a non-repeating element. If
the target element is not repeating, you may need to use the Qualify() command or
conditional logic (If() / ElseIf() / Else() commands) so that the mapping commands within
the ForEach() command are executed only once. If a simple element in the target document
28 Implementing EDI Solutions

is non-repeating and multiple values are written to it, the last value will overwrite the earlier
values.

The Qualify() command should only be performed when specific conditions are satisfied.
For instance, the first occurrence of a compound element may need to be mapped differently
from all other occurrences of the compound element.

To qualify a ForEach() command by occurrence, right-click the ForEach() command in the
Mapping Command window and select Qualify -> By Occurrence.

Figure 1-34 Adding a Qualify By Occurrence command

The Mapping Command Editor is displayed with default parameters which must be changed.

Figure 1-35 Building a Qualify By Occurrence command

Specify the sourcePath as before. Next, overwrite number with the numeric value of the
occurrence to be mapped. For example, EQ 1 is the first occurrence of the sourcePath
element EQ. When you have completed the Qualify() command, the Mapping Command
Editor should look as shown in Figure 1-36 on page 30.
Chapter 1. Introducing EDI technologies and products 29

Figure 1-36 Completed Qualify() command

WebSphere Data Interchange allows for qualifications to be repeated. By doing so, a new set
of mapping commands is created for each occurrence of the repeating source element as
specified by the user.

ForEach() commands can also be qualified by value. Qualifying by value allows us to map an
element differently if a condition exists to test the value of an element in the source document.

To qualify a ForEach() command by value, simply right-click the command as before and
select Qualify -> By Value.

Qualifying by value utilizes the functionality available through the StrComp() function. The
Mapping Command Editor appears with a default set of parameters.

Figure 1-37 Building a Qualify By Value command

Replace path by clicking an element in the top left window and dragging it onto the Mapping
Command Editor. It is the value in this element that will determine the qualification. Replace
value with the value to test against the element, remembering not to remove the double
quotes. No other detail needs to be changed. If the StrComp() function returns zero, the
condition will be true and the subsequent mapping commands executed.

Using conditions in the transformation map
The If() / ElseIf() / Else() / Endif() commands are used to conditionally perform one or
more mapping commands. The If() command marks the beginning of the If() condition
block. The EndIf() command is used to mark the end of the If() condition block.

When the If() command is encountered, the expression will be evaluated. When the
expression evaluates to True, the mapping commands within the If() command will be
executed. If the expression evaluates to False, the WebSphere Data Interchange server will
look for an ElseIf() command within the If() condition block. If an ElseIf() command is
found, its associated expression will be evaluated. When the expression evaluates to True,
the mapping commands within the ElseIf() command will be executed. If the expression
evaluates to False, the server will look for the next ElseIf() command within the If() condition
block. When all ElseIf() commands have been tested and evaluated to False, the server will
look for an Else command within the If() condition block. If an Else command is found, the
mapping commands within the Else command will be executed.
30 Implementing EDI Solutions

To create an If() command, simply right-click the node where the command is to occur in the
Mapping Command window and select Insert Within -> Command -> If. The Mapping
Command Editor prompts the user to enter an expression. An expression in this instance
could take the form of a StrComp() function as seen previously or could perhaps test the
numeric value of an element using a conditional operator.

Figure 1-38 illustrates a simple If() /EndIf command. Here, we test the value of a variable,
called Element. If Element is equal to the number 12, then we execute a MapFrom() command
as specified within the If() / EndIf command. Since the variable Element is an integer, we
can use classic conditional operators. To test string variables or string elements, we can use
the StrComp() function.

Figure 1-38 Using conditional mapping

Using MapCall and MapSwitch commands
The MapCall() command is used to indicate that a new map must be used to process the
data within the current source element (for source-based maps) or the specified target
element (for target-based maps). This is commonly called an imbedded map.

When this command is encountered, the data from the source element is translated using an
imbedded map. The imbedded map receives the data from the source element to use as its
input document. The element can be a simple element (for example, the BIN02 element in a
BIN segment) or it can be a compound element (a subtree or subset).

When translation within the imbedded map has completed, translation resumes in the original
map if the translation with the imbedded map completed successfully. If a significant
translation error occurs in the imbedded map, translation will not resume in the original map.
Chapter 1. Introducing EDI technologies and products 31

Using the MapCall() command and imbedded maps can be compared to calling a subroutine
in an application programming language. You can, for example, build a single map to
transform a data segment that occurs in more than one EDI document. Using imbedded
maps then results in less development effort and in more consistent mapping across EDI
documents.

The MapSwitch() command is used to indicate that a document needs to be translated by
another map instead of the current map. Any translation performed by the current map is
terminated. The document is translated by the map identified in the MapSwitch() command.

This command can be used when data in the document must be inspected before it can be
determined which map should be used. The command allows you to switch the map
dynamically based on the data that is contained in the document. You can create a map that
will initially examine the data in the document. Only the compound and simple elements
necessary to make a decision are mapped. The map that should be used to translate the
document is determined based on the mapped elements. Then use conditional mapping
commands and the MapSwitch() command to begin translating the document with an
alternate map.

Before mapping can start
Given that creating a map is similar to building an application program, it comes as no
surprise that you cannot just jump into the Map Editor without spending some time to design
and to formally specify the map. The first step is to build a mapping specification. A mapping
specification could take many forms, but a good way to start is to create a table that lists all
elements of both the source and target documents. If a target element needs to have a value
but the source document does not contain an equivalent element, you can use the column
Comments and special instructions to specify how this element is going to be populated.
Usually, this is going to be via an assignment of a constant or calculated value.

If the source document contains information that is not required to build the target document,
you should still list that element in the column Source element, while the field target element
is empty. This leaves no doubt about the fact that this element contains unmapped
information.

The column Comments and special instructions can also be used to describe additional
constraints such as valid values or range or correlation information. Often, when a certain
element has a specific value, it has an impact on other elements and it requires that those
elements have valid values. In these cases, it would be wise to have several variations of the
same table for the same two documents: a version where that element has value A and
another version of the table where that element has value B.

By analyzing the requirements and building the specification in this way, you will find it easy to
design the actual map. For example, the example where the value of an element results in a
variation of the specification table can easily be implemented by using a MapCall(). Build a
map for that section of the document that is impacted by the value of that element. If that
element has three different kinds of values then this leads to three different sub-maps. The
parent map will then contain an If() statement to branch to the correct sub-map.

The following table provides a simple mapping specification to build an EDI 855 document
when the source document is XML. Later in this book, we will build this map.
32 Implementing EDI Solutions

Table 1-1 Mapping specification for an EDI 855 document

1.5.8 Mapping rules
How does WebSphere Data Interchange know which map to use and which queue to put the
output data on? WebSphere Data Interchange makes this decision based on the usage
(rules) defined by the user for a particular map. This area is known as “rules” in WebSphere
Data Interchange because conceptually it is simplest to think that whenever a message
arrives on a queue monitored by WebSphere Data Interchange, there is a “rule” (created by
the user) that defines what WebSphere Data Interchange should do with that message.

Each rule relates to a particular map and so a map must first be created before we can add a
rule to determine its usage. We can see all maps in our system by clicking the map icon. The
map icon is shown in Figure 1-39.

Figure 1-39 Icon to access the mapping editor

If we select the map by clicking it, we can either see existing usages or create new usages by
clicking the usage icon (Figure 1-40).

Figure 1-40 Icon to access the map usage editor

Position Target element Source Element Comments and special instructions

1 353
Transaction Set Purpose Code

Mandatory element
Filled in by assignment to value ‘06’

2 587
Acknowledgment Type

Header.Response

3 324
Purchase Order Number

Header.PONumber

4 373
Date

Mandatory element
Filled in by calling the system function Date()

5 330
Quantity Ordered

Detail.Quantity

6 235
Product/Service ID Qualifier

Filled in by assignment to value ‘ID’

7 234
Product/Service ID

Detail.ItemNumber

8 349
Item Description Type

Filled in by assignment to value ‘F’

9 352
Description

Detail.Description
Chapter 1. Introducing EDI technologies and products 33

In Figure 1-41, we can see the sample data transformation map shipped with WebSphere
Data Interchange; it has also been shipped with a sample rule for usage.

Figure 1-41 Sample rule for a data transformation map

If we look at the details of this rule, we can identify the areas of importance.

Figure 1-42 Details of the usage of a map

The Map Name, Dictionary Name and Document Name are all in grey and cannot be
changed since they are pulled from the map detail. In the Associated With frame, the user
has the opportunity to associate the map with either a particular process or a set of Trading
Partners. If selected, the process field allows the map to become associated with a particular
business process, for example 850, 855, etc. If the Trading Partner field is selected, the user
has the opportunity to specify a sender or receiver. These drop-down menus are populated
by the list of trading partners available in the Trading Partner profile area described earlier.

To activate a rule to allow a map to perform data transformation, select Active in the
Properties frame and set the Usage Indicator to Production. An Output File Name and Type
can also be specified here. This detail in this field will be overwritten if an output file is
specified in the PERFORM statement of the Service profile as described earlier.

The Envelope Attributes tab defines the type of envelope to be used on the EDI message
once it has been created. In Figure 1-43 on page 35, we see that X has been selected. X in
this instance defines an ANSI X12 standard envelope.
34 Implementing EDI Solutions

Figure 1-43 The Envelope Attributes tab of a usage of a map

The WDI Options tab allows the user to specify varying levels of validation on a translation
taking place using this usage.

1.6 Usage patterns for WebSphere Data Interchange
This section discusses some scenarios where WebSphere Data Interchange is being used in
conjunction with other components of a typical enterprise IT infrastructure.

1.6.1 A point-to-point solution
A first implementation of WebSphere Data Interchange in an enterprise environment consists
of a direct link between an ERP system or other internal application that manages your
business, and an EDI broker, such as WebSphere Data Interchange. The communication
between those two components can be MQ-based or file-based. The organization of the data
that is being passed between the ERP and the EDI broker can be XML documents or data
that can be modeled as C structures or COBOL copybooks.

Once the information has been translated into the appropriate EDI standard, it is handed over
to some communication product that interacts with the network or VAN. Note that WebSphere
Data Interchange is separate from the actual communications infrastructure and hence can
work with a number of software products. WebSphere Data Interchange does provide
configuration support for a number of software products, such as IBM Information Exchange,
iSoft AS2 client, or TPI. The interaction between the EDI broker and the communication
software can be file-based or MQ-based.

While this scenario is labeled as point-to-point, it still works perfectly well for communication
with a number of partners. The point-to-point label refers more to the direct link between a
single internal application and the EDI broker instance.

For inbound communication, the EDI information is received by the communication software
and handed over the EDI broker via files or queues. The EDI broker will then translate the
information into the appropriate format for the back-end system.
Chapter 1. Introducing EDI technologies and products 35

Figure 1-44 Point-to-point EDI solution

1.6.2 An integration broker solution
Typically, there will be more than a single application system. Referring to Figure 1-3 on
page 4, a typical business cycle will involve a number of application systems, such as order
management, scheduling systems, and so on. You can, of course, apply the point-to-point
solution in this environment, too. However, as discussed before, application integration
between the different components of an IT infrastructure is almost a prerequisite for a
successful EDI implementation. Hence, the integration of the EDI broker into the existing EAI
infrastructure is an important advantage.

Figure 1-45 shows a schematic view of the integration between a message broker and an EDI
broker. The message broker is responsible for distributing information between the different
applications. When the broker receives information from one system, it can pass it over to
other systems, including the EDI broker. When, for example, the EDI broker receives a
purchase order document, it can translate it into an XML document and hand it over to the
message broker. The message broker, in turn, will fan out to the different internal systems,
based on message content and system state. The contents of each message generated by
the message broker can be set with information out of the incoming EDI message but can
also be enriched by the broker.

Figure 1-45 Integration broker EDI solution

1.6.3 A B2B gateway solution
While the use of EDI technology is widespread, technology changes and evolution have
resulted in the use of many types of B2B communication infrastructures. Besides the
traditional VAN-based EDI communication, Internet-based techniques have become
available, too. AS1 and AS2 have been mentioned before and those protocols are still tied
more or less to traditional EDI communications. More recently, Web services-based
technologies also became available for use in the B2B area. While this technology is still
maturing, it is clear that a flexible B2B solution should handle multiple communication
techniques.

EDI
Broker ERPVAN

EDI Files
(MQ, FTP)

Application Messages
(XML,MQ, C, Cobol)

Message
Broker

ERP

CRM

SCM
Application
Messages
(XML,MQ, C,
Cobol)

EDI
Broker

VAN
EDI Files

(MQ, FTP)
EDI

Records
(XML)
36 Implementing EDI Solutions

A B2B gateway solution, such as WebSphere Business Integration - Connect, offers an
answer to these challenges. As shown in Figure 1-46, an EDI broker works next to an AS2
solution and a Web services solution. This offers trading partners a wide range of technology
options for interacting and at the same time there is a single point of control and management
for all technologies.

Note that the B2B gateway solution can be integrated with the integration broker solution.

Figure 1-46 The B2B gateway solution

1.7 Introducing the iSoft Peer-to-Peer Agent
iSoft’s Peer-to-Peer Agent, hereafter referred to as P2PAgent, enables you to exchange
documents between trading partners over the Internet in a secure and reliable way. In this
section, we describe the main features and components of the P2PAgent program.

1.7.1 Communication features
Since the main task of the P2PAgent is to move data from one company to an external trading
partner, the communication features are an important aspect of the product. The P2PAgent
program can accept data from internal applications in a number of ways.

A more traditional way of passing data to the agent is by delivering files in a given directory.
The agent can filter through these files using a number of selection criteria to determine what
to do with a given file. Also, when a file has been sent, you can choose to rename the file or
delete it. Simply preserving the file could result in the file being sent multiple times. The file
system can also be used to store received files. You can configure the agent in such a way
that the original file name (as it was named by the sender) is preserved, or that the file name
is being generated. This last option can avoid files being overwritten accidentally.

A more recent addition to the product is support for WebSphere MQ. The P2PAgent can
retrieve messages from an inbox queue. It considers each message as a separate entity that
should be sent to the correct destination trading partner. Also, when the agent receives
documents from trading partners, the agent can store the received document as a single
message in a queue. By default, such a message will be prefixed by an MQRFH2 header that
contains metadata information, such as the trading partner that had sent the document and
the target trading partner ID. The MQRFH2 header is constructed in such a way that this
information is also available to JMS clients in the form of message properties.

Further internal data delivery mechanisms include support for SMTP and HTTP. A received
document or a received receipt can be delivered as an e-mail to a configured e-mail address
using an SMTP server. HTTP communication for sending documents is used, for example, in

VAN

EDI
Broker

CRM

B2B
GatewayInternet

Application
Messages
(XML,MQ, C, Cobol)

EDI Files
(MQ, FTP)

EDI Files
(AS1, AS2)
Chapter 1. Introducing EDI technologies and products 37

a multi-machine setup of iSoft’s P2PAgent. However, if your internal applications can hand
over EDI documents using HTTP, then they can hook into the P2PAgent directly.

Since the P2PAgent program is an AS2 client program, the agent supports HTTP and HTTPS
for sending and receiving documents through the Internet. The agent is also an AS1 client,
which means that it needs to support SMTP for sending and receiving documents as an
e-mail attachment.

Figure 1-47 summarizes the support for the different techniques to move data to and from the
agent.

Figure 1-47 Inbound and outbound communication options

1.7.2 Data integrity and security characteristics
Since the P2PAgent program is designed to move business critical data, such as purchase
orders, over a public network, it is required that the agent support several techniques to
protect your data.

If configured to do so, the agent will encrypt the data using the certificate of the target partner.
This means that only the target partner can read the document, since only the target partner
is supposed to have access to the private key to decrypt the document. As such, this
guarantees confidentiality. The agent supports the encryption algorithms RC2 and Triple
DES. For additional data integrity, you can request to use base64 encoding.

As a receiver of a document, you want to be sure that the document has been sent by the
trading partner that you expect. The sending partner can digitally sign the document using its
private key. As a receiver, you can verify the signature using the certificate of the sender. The
agent supports two digital signature algorithms: SHA-1 and MD5. Both can be combined with
base64 encoding, if requested.

As a sender of a document, you want to have proof that the receiver has received the
document and that only he has received it. The sender can request a receipt, sometimes
referred to as an MDN (message disposition notification). Receipts can be delivered
asynchronously or synchronously and can be signed and encrypted using the same
technologies that are available for sending documents.

Internet
HTTP(s)

SMTP
P2P Agent

WebSphere
MQ

File System

HTTP

e-mail
38 Implementing EDI Solutions

The status of a document, including several statistics, can be generated by the P2PAgent in
the form of a notice. Again, this notice can be a message in a queue or a file in a named
directory. Any errors can be reported in a daily log file. Alternatively, an error for a given
document can result in an error file or message specifically tied to that document. The error
document can contain, for example, HTTP error codes. The P2PAgent can also be configured
to try to send a document several times, for example three times at an interval of one minute.
If the agent has tried to send a document the maximum allowed number of times, the
document can be stored in a separate location: a given directory or queue. This feature is
sometimes referred to as the recycle feature. The message or file contains nothing but the
original document, while the error itself is stored in the error message or file. The advantage
of this separation is that the recycled document can be used without any alteration in a
back-up transmission system, such as a VAN. The recycle feature will be exploited and
described in Chapter 5, “Implementing a back-up solution using IBM Expedite” on page 199.

1.7.3 Administration features
Configuring and managing a P2PAgent configuration can be done in a variety of ways. The
simplest form is to use the interactive session when the agent is started. The agent runs in a
command window and commands can be entered at the prompt.

Figure 1-48 on page 40 shows the console view of the P2PAgent. After start-up, the user has
executed the status command for which you can see the output in the lower part of the figure.
This output also shows us what different options can be configured and tuned. We will
introduce and use some of them throughout this redbook. For a complete reference, please
consult the product documentation.
Chapter 1. Introducing EDI technologies and products 39

Figure 1-48 Console view of the P2PAgent

For settings and commands that you need to execute every time at start-up of the agent, you
should use the configuration file, which is named by default p2pagent.cfg. We will use the
configuration file a lot when implementing an iSoft solution in this redbook. Some packages of
the iSoft product provide a command line utility, called buildcfg, that will quickly generate such

C:\iSoft_Advanced>p2pagent_odbc_ibm_unlimited.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:06:36]
IBM Unlimited Edition
Authorized License
2003.02.05 15:30:09.521 POPT OK Error path set to [error]
2003.02.05 15:30:09.521 POPT OK Inbound errant will be stored
2003.02.05 15:30:09.531 POPT OK Log path set to [log]
2003.02.05 15:30:09.531 POPT OK Trace set to WRITE_FILE
2003.02.05 15:30:09.541 POPT OK Notice path set to [mq://FMCQM/notices]
2003.02.05 15:30:09.541 POPT OK Notices will be written to file
2003.02.05 15:30:09.561 POPT OK Work-order path set to [mq://FMCQM/workorders]
2003.02.05 15:30:09.561 POPT OK Work-order searching enabled
2003.02.05 15:30:09.571 POPT OK Work-order file-spec set to [wo]
2003.02.05 15:30:09.581 POPT OK PKI path set to [pki]
2003.02.05 15:30:09.591 POPT OK Async. receipt path set to [mq://FMCQM/receipts]
2003.02.05 15:30:09.611 POPT OK First-receive interval set to [300000ms]
2003.02.05 15:30:09.621 POPT OK Mailbox host set to [mq://FMCQM]
2003.02.05 15:30:09.621 POPT OK Mailbox address set to [0.0.0.0]
2003.02.05 15:30:09.631 POPT OK Mailbox port set to [0]
2003.02.05 15:30:09.711 HPIM OK HTTP inbound service started
status
ok

 Build: 3.1.2002.10.30.1 Data Source: NONE
 Host: vdputteg SMTP Host: NONE
 Control IP: 9.24.104.115:3501 SMTP User: NONE

 --Services-------- --Config------------- --Timeouts-----------------------
 Serialize: ON Partner-Pairs: 2 Connect: 30.000s
 Outbound: ON Key-Pairs: 3 First-Receive: 300.000s
 Control: OFF Inbound Ctlrs: 1 Next-Receive: 90.000s
 Work-Orders: ON Outbound Txns: 0 First-Send: 30.000s
 Beacon: OFF Transports: 0 Next-Send: 90.000s
 Router: OFF Trace Level: 3 Resend Wait: 60.000s
 Web-UI: OFF Buffer Size: 4096 Beacon Wait: 20.000s
 PKI Admin: OFF Peer Group: 0 Work Order Interval: 10.000s
 Role: Stop Thread: 10.000s

 --Options--------- --Locations--
 Local Config: YES Error Path: error
 Show Trace: YES Log Path: log
 Write Trace: YES Notice Path: mq://FMCQM/notices
 Fast Write: NO PKI Path: pki
 Notices: FILE Receipt Path: mq://FMCQM/receipts
 Work-Order Path: mq://FMCQM/workorders
 Work-Order Extension: wo
40 Implementing EDI Solutions

a configuration file by asking the end user to answer some simple questions. This utility only
builds a starting configuration file and it is very probable that you will need to edit this file to
optimize the final configuration.

Series of commands that you execute from time to time but are not required to be executed
during the start-up of the agent can be stored in a work order file. You can then use the batch
command to execute the commands whenever this is appropriate. We will use this technique
to generate keys for a new trading partner in 2.2, “Basic implementation of iSoft” on page 51.
Work order files can also be executed automatically. The agent can be configured to monitor
a directory for files with a given extension (the default extension is .wo). When such a file is
dropped in the correct directory, the agent will read it and execute the commands.

Example 1-3 shows a sample work order file. It has an XML format where individual
commands are the data values of a command XML element. The actual command can be any
command that is supported by the agent. The actual command does not look any different
from what you would have typed in an interactive session.

Example 1-3 Sample work order file

<xml>
<command> send http QA_a QA_b -fNedi\edifile.x12 -r1 -cE</command>
</xml>

In addition to file-based work orders, you can use a message queue. However, the contents
of the message should not be in the XML format that is shown in Example 1-3. The contents
of the message should be the command text only, without the xml and command tags.
Unfortunately, the response or output of the command is not sent back as a reply message.
The output of the command is shown in the console view and in the log file, if activated.

Web-based status reporting can be turned on by executing the command start GUI. The
P2PAgent will then listen on port 80 for any HTTP requests. If a request is received, it
responds with the output of the status command. The standard product does not offer a
complete Web-based administration tool. However, this functionality is available as an add-on
product.

1.7.4 Load-balancing and multi-machine setup
For environments where many documents need to be sent and received, a single machine
might not be sufficient to handle all the workload. iSoft’s P2PAgent provides a solution to this
problem. The task of sending and receiving documents can be split into three different roles:

� The Transport role: this is the task of encrypting, decrypting, signing and verifying
signatures, as well as sending and receiving documents. Encryption and digital signature
algorithms are mathematically intensive operations and it is therefore useful if these tasks
can be spread over multiple machines.

� The Router role: this is the role that can perform software-based load sharing between
multiple computers that provide the Transport role. The Router provides a single point of
entry for data of a given Internet protocol. The actual processing of the incoming data is
then delegated to one of the computers performing the Transport role. Figure 1-49 on
page 42 graphically shows this inbound load sharing technique.
Chapter 1. Introducing EDI technologies and products 41

Figure 1-49 Inbound load sharing as provided by iSoft’s P2PAgent

� The Admin role: this is the role that performs the outbound distribution, in addition to other
services. Documents that have been prepared for sending to trading partners are
distributed by the Admin role to the computers that provide the Transport role. In addition
to this outbound load sharing, the Admin role also provides administration services to
manage trading partner relationships, for example. Figure 1-50 on page 43 graphically
shows how the different roles work together. The EDI Generator role, for example, could
be provided by WebSphere Data Interchange.

Transport Transport Transport

Router

Internet
42 Implementing EDI Solutions

Figure 1-50 Outbound load sharing as provided by iSoft’s P2PAgent

In this redbook, we will focus on an implementation of iSoft’s P2PAgent where all roles are
performed by a single computer. For more information about setting up a multi-machine
implementation of the P2PAgent, please refer to the product documentation of iSoft’s
P2PAgent.

1.8 Introducing Trading Partner Interchange
The TPI Server enables the secure exchange of documents among trading partners over the
Internet. The application packages documents in secure envelopes that are transmitted
among trading partners according to user-configured schedules.

TPI organizes the information you need to exchange documents with your trading partners
into company and partner profiles. This makes it easy to set up and maintain trading
relationships. Company profiles define how you receive documents from your partners.
Partner profiles define how you send documents to your partners.

To establish a trading relationship, you create and export your company profile to your trading
partner, who imports it to TPI as your partner profile. Conversely, your partner creates and
exports a company profile that you import as a partner profile on your system.

TPI supports HTTP/HTTPS, FTP, SMTP, and WebSphere MQ (MQSeries) for transporting
documents among trading partners. The TPI Server uses a system of directories for delivery
and retrieval of documents. The TPI Server maintains six document directories for each
trading partner: three for inbound and three for outbound. Each of the directories holds
incoming or outgoing documents of a specific format: XML, EDI, or binary.

Admin

Transport Transport Transport

Internet

EDI
Generator
Chapter 1. Introducing EDI technologies and products 43

In this section, the following topics are described:

� How the system works
� Company profile
� Partner profile
� The relationship between company and partner profiles
� Document sizes
� Transports

1.8.1 How the system works
Figure 1-51 on page 45 and Figure 1-52 on page 46 present high-level views of how TPI
processes outbound and inbound documents. These figures show typical document flows,
although your organization’s configuration might differ.

The flow starts on the left-hand side with the generation of a document by an internal
application within the IT infrastructure. This application can be a translation engine, such as
WebSphere Data Interchange, which translates documents in an internal representation to
documents in a EDI standard. Or, it can be a back office application system, such as SAP. TPI
makes a distinction between three possible structures of EDI documents. The document can
be a binary document, an XML document or a traditional EDI document. Each document
category has its own outbound directory. When the TPI Server detects the arrival of a new
document in one of these three directories, it will store it in a back-up directory and parse it to
extract routing information. This routing information is used to determine the partner profile
that should be used to send the document to the correct partner. If the parsing fails or if the
system cannot map the routing information in the document to a profile in the TPI database,
the document is moved to a directory where rejected documents are stored.

Based on the configuration, the document might be compressed, signed and encrypted
before it is queued for transmission to the partner. When the actual transmission takes place,
the trading partner should send an MDN in return to acknowledge the receipt of the
document. The sending partner will then store the sent document in its archive folder.
44 Implementing EDI Solutions

Figure 1-51 Outbound document processing

When a document is being received by the TPI Server, it is first stored in a back-up directory.
Next, the server will process header information so that it can determine whether the
document is being sent by a valid and known trading partner. The header will also provide
information to the server about the packaging, such as encryption, signature and
compression. Based on that information, the server will decrypt the document, verify the
signature and decompress it. Finally, the document is stored in one of the three folders
corresponding to the document category. From there, the document can be picked up by a
translation engine or another internal application system.
Chapter 1. Introducing EDI technologies and products 45

Figure 1-52 Inbound document processing

1.8.2 Company profile
You can use the company profile information viewer to set up and maintain company profiles.
With a company profile, you can trade with different trading partners using:

� Any transport; you may use different transports with different partners. You do not have to
use the same transport method for all your trading partners.

� Any document type, including X12, EDIFACT, XML or binary documents such as those
generated by legacy business applications, SAP, PeopleSoft or Oracle Financials.

You might find it necessary to set up more than one company profile. Each company profile
you set up must have its own ID. Moreover, creating additional company profiles affects the
performance of TPI by adding to its processing overhead. You should not create multiple
company profiles unless you need them.

One reason for creating more than one company profile could be that you have more than
one business unit, each using a different EDI ID.

1.8.3 Partner profile
One way to create a partner profile is to import a company profile file that was sent to you by
a trading partner who also uses Trading Partner Interchange (TPI). When imported, the
46 Implementing EDI Solutions

profile, which contains your partner’s identity and transport information, becomes a partner
profile on your system.

Importing a profile from a partner who uses TPI is the simplest and most direct method of
adding a new partner profile to your system. You must manually create partner profiles for
your partners who use a different communication engine.

Creating a partner profile lets TPI know how to send documents to that partner. The partner
profile describes the transport the partner is using, as well as his name and address. This is
just like giving your e-mail ID to someone, who loads it in his address book, so that he can
e-mail you at any time.

1.8.4 The relationship between the company and partner profiles
When you or your partner sets up a company profile, you each decide what transport method
or methods to make available to all of your trading partners. At a minimum, you must select
one transport method by which your partners can send documents to you and complete all
the fields for that method. If you choose to support additional transport methods, you fill in the
appropriate information for them also.

When you import your partner’s profile and open the Partner Profile window Inbound
Transport tab, you see your partner’s transport choices. You know that your partner is
prepared to receive documents from you by way of any of the transport methods that your
partner has indicated. Although your partner might have indicated two or more transports, you
choose only the one you want to use to send documents to that partner. The one you select to
send documents to your partner does not have to match the one your partner selects to send
documents to you. Obviously, you would not choose a transport method that your partner has
not made available to you.

Your choice of transports involves the security you want to apply to the documents you
exchange with this partner, except for one important advisory. When you change settings on
the Partner Profile window Security tab, you must coordinate the changes with your trading
partner.

You and your partner must have the following settings selected in the Partner Profile Security
tab to ensure that your document trading is EDI-INT-compliant:

� Sign documents

� Request acknowledgment of documents

� Request signed acknowledgment

� Encrypt documents.

You and your trading partners might want to change security settings based on what your
systems can support. If you and your partner use TPI, you need to ensure that all your
security settings are identical. If your trading partner uses other S/MIME- or EDI-INT-certified
software, you need to coordinate and test the changes.

1.8.5 Document sizes
TPI has no limitations on maximum sizes of documents, whether inbound or outbound.
Limitations on document sizes rest solely on you and your partners’ hardware resources and
software configurations for various transport methods. A document that one organization
considers to be large might be small by another organization’s standards. Your organization
might have to conduct its own capacity tests to determine the optimal transport for your
trading situation.
Chapter 1. Introducing EDI technologies and products 47

This depends entirely on the hardware resources and the transport that is used. If the
transport is the Internet, for instance HTTP, SMTP or FTP, it depends entirely on the
bandwidth and the speed of the Internet.

1.8.6 Transports
TPI Servers need transports to exchange documents between them. This is the medium in
which the documents are transferred from one TPI Server to another. TPI supports all of the
following transports:

� Bundled e-mail inbound transport

� Bundled HTTP inbound transport

� Bundled HTTPS inbound transport

� File system inbound transport

� FTP inbound transport

� HTTP inbound transport

� HTTPS inbound transport

� WebSphere MQ inbound transport

� JMS inbound transport

� Standard e-mail inbound transport

You need to use at least one transport to exchange documents between two TPI Servers.
Choosing a transport depends entirely on the transaction rate and the size of the documents,
and of course on the cost.

1.9 Internet references
More information about the different EDI products from IBM, the WebSphere platform in
general, and about EDI standards can be found at the following Web sites:

� WebSphere Data Interchange

http://www.ibm.com/websphere/datainterchange

� IBM Information Exchange

http://ieas.services.ibm.com/ie/index.shtml

� Expedite family

http://edi.services.ibm.com/expedite

� Business Exchange Internet transfer

http://ieas.services.ibm.com/ide/index.shtml

� WebSphere software platform

http://www-3.ibm.com/software/info1/websphere

� WebSphere Business Integration Family

http://www.ibm.com/websphere/integrationinfo/

� EDI standards organizations

http://www.disa.org
http://www.unece.org/trade/untdid/welcome.htm
48 Implementing EDI Solutions

http://www.ibm.com/websphere/datainterchange
http://ieas.services.ibm.com/ie/index.shtml
http://edi.services.ibm.com/expedite
http://ieas.services.ibm.com/ide/index.shtml
http://www-3.ibm.com/software/info1/websphere
http://www.ibm.com/websphere/integrationinfo/
http://www.disa.org
http://www.unece.org/trade/untdid/welcome.htm

Chapter 2. Implementing iSoft P2PAgent

In this chapter, we describe the implementation of iSoft P2PAgent in an environment with
multiple trading partners. We look at issues such as routing and integration with EDI
translation software, such as WebSphere Data Interchange. Also, the integration with
WebSphere Business Integration Server is being discussed as well.

2

© Copyright IBM Corp. 2003. All rights reserved. 49

2.1 Business scenario
During this chapter, we will step through the implementation of iSoft at a company, named
Supplier, that manufactures products for a number of retailers. These companies have
decided to implement an AS2 solution whereby EDI documents are exchanged using Internet
technologies. As AS2 client software, these companies are using iSoft P2PAgent (Express,
Advanced or Enterprise Edition), which is also available from IBM.

The integration of iSoft with the back-end infrastructure of an enterprise can be file based or
queue based. For outbound communication, this means that an EDI document can be
handed over to iSoft either as file in a pre-configured directory, or as a message in a
pre-configured queue of WebSphere MQ. Note that the integration of iSoft for one company
has no effect on the other companies. This means that the company Supplier might use
queue-based integration on their side while the company Retailer3 has a file-based
integration.

For demonstration purposes, the setup for the company Supplier includes both file-based and
queue-based integration. This setup will prove that you are not forced to make one or the
other integration. The implementation of iSoft will be described from the viewpoint of the
company Supplier. An initial implementation will be done for establishing communication
between the company Supplier and a single retailer. This setup will then be expanded to
exchange documents with more than one trading partner. Figure 2-1 shows an overall
diagram for this first step of the implementation of iSoft.

Figure 2-1 Implementation of iSoft for a company Supplier and a number of retailers

The next step during the implementation of iSoft at company Supplier is to focus on the
integration of this B2B product with the overall IT infrastructure of the company. Two tasks are
identified here:

Supplier

FF
ii
rr
ee
ww
aa
ll
ll

Internet

FF
ii
rr
ee
ww
aa
ll
ll

Retailer 1

FF
ii
rr
ee
ww
aa
ll
ll

Retailer 2

FF
ii
rr
ee
ww
aa
ll
ll

Queue

File

File

AS/2 AS/2

AS/2

AS/2

Retailer 3
50 Implementing EDI Solutions

� The translation of documents in an internal format into EDI documents, and vice-versa.

� Connecting the EDI data stream into the overall integration engine implemented by the
InterChange Server.

Figure 2-2 Integrating iSoft with WebSphere Data Interchange and Interchange Server

Figure 2-2 shows the overall data flow. Within the ICS, we assume an existing integration
collaboration that connects to internal applications that manage supply chain, resource
planning, and customer relationships. To extend such a collaboration with iSoft integration,
we could use an MQSeries connector or a JText connector. The data that is being passed via
these connectors flows to the EDI translation engine WebSphere Data Interchange. Based on
the setup of WebSphere Data Interchange, the translation engine then generates an EDI
document in a file or in a queue, from where it is being picked up by the P2PAgent program.

For inbound communication, the iSoft P2PAgent program drops the EDI document in a
directory or in a queue, where the translation engine is retrieving it. The translation engine
produces then a new document in an internal format and stores that either as a message in a
queue or as a file in the directory. For message-based output, we can again use an MQSeries
connector to retrieve that message and hand it over to an integration collaboration. For
file-based output of the translation engine, we can again use the JText connector.

Examples of these integration scenarios are covered in 2.3, “Integration with WebSphere
Data Interchange” on page 65 and 2.4, “Integration with the Interchange Server” on page 83.

2.2 Basic implementation of iSoft
Before we can discuss any integration scenarios, we need to create a basic implementation
of iSoft, which is the subject of this section.

EDI_OUTEDI_OUTEDI_OUT
iSoft

WDI
Transaction

XML-EDI

MQSeries
Connector

ASBO

Collaboration
(Generic BO)

Connector
ASBO

SCM ERP

Connector
ASBO

Connector
ASBO

CRM

XML_IN

FF
ii
rr
ee
ww
aa
ll
ll

Retailer 1

FF
ii
rr
ee
ww
aa
ll
ll

Retailer 2

FF
ii
rr
ee
ww
aa
ll
ll

Retailer 3

Supplier

Internet

AS/2

AS/2

InternetAS/2 AS/2

AS/2

AS/2

Internet

JTextConnector

File

File

FF
ii
rr
ee
ww
aa
ll
ll
Chapter 2. Implementing iSoft P2PAgent 51

2.2.1 Installation and initial configuration
The AS2 client software is available in a few different packages from IBM or iSoft itself and
with different licensing restrictions. In some packages you may or may not find sample files
and documentation. However, in all cases, the installation of the software is straight forward.
Some steps below may not be required since they were done during the installation itself.

Figure 2-3 Installer for iSoft P2P Agent Enterprise edition

The P2PAgent program can use queues and/or files for several functions. To set up an initial
environment, you should create a number of queues and/or directories to support those
functions.

Example 2-1 lists a number of WebSphere MQ commands that you can use to create queues
for use by the P2PAgent program. These queues can be used in the configuration file as
described below.

Example 2-1 WebSphere MQ commands to create supporting queues

def ql('notices') defpsist(yes)
def ql('receipts’) defpsist(yes)
def ql('workorders') defpsist(yes)
def ql('outbox') defpsist(yes)
def ql('inbox') defpsist(yes)
def ql('log') defpsist(yes)
def ql('errors') defpsist(yes)

In case you want a file-based integration for some or all of the iSoft functions, you should
create the following directories. Again, these directories are used in the configuration file
described below.

� inbox
� outbox
� receipt
� workorders
� pki
� errors
� log
� notices
52 Implementing EDI Solutions

The P2PAgent’s operations are controlled by a configuration file. The default location of this
file is the install directory and the default name of this file is p2pagent.cfg. Note that it is
possible to have a different name and location. You would then need to use start-up
parameters to provide this information. Throughout this redbook, we’ll use the default name
and location. The configuration file has an XML format and is basically a sequence of
commands that are interpreted by the P2PAgent program at start-up time. Note again that
these commands are the same as the interactive commands or the work order commands.

For all settings related to file locations and directories, you can replace the name of a
directory with an mq URI, in the format of mq://queue_manager_name/queue_name, unless it is
said that only directory names are supported.

� Define the location to store error information

To store error information in files in a directory named errors, use the following command:

set -eperrors -ef

� Define the location to store logging information

To store log information in files in a directory named log, use the following command:

set -lplog -lf

The name of the log file is P2PYYYYMMDD.log, where YYYYMMDD is the current day.
This implies that the P2PAgent program will automatically create a new file for each day
and append information to it. The contents of this log file is basically the same as the
standard output of the agent program.

� Define the location to store notices

Notices are files or messages that indicate the results of document transactions.

set -npmq://cw_studenta.queue.manager/notices -nf

� Define the location of certificates and private keys.

The PKI service component of the P2PAgent component will look in this directory to find
any keys and certificates. The command below identifies this directory as pki.

set -pppki

� Define the location to store receipts

Receipts are the documents received by the sending agent when the receiving agent
confirms the delivery of a given EDI document. In most case, such a receipt document will
be signed using a digital signature algorithm. Receipts are delivered asynchronously.

set -rpmq://cw_studenta.queue.manager/receipts

� Set time-out values

The P2PAgent allows you to configure several types of time-outs. The command below
sets the time-out for a first receive after accepting an inbound connection. For more
information about other types of time-out values, refer to the iSoft product documentation.

set -tr300s

� Set mailbox information

Mailboxes can be file-based or queue-based or even stored in a database. The command
below identifies a queue manager as the host of the mailboxes. Note that the location of a
mailbox can still be set at the individual trading partner level.

set -bhmq://cw_studenta.queue.manager

� Start the inbound service

This command starts the inbound service, to listen on port 4080 for hostname studenta.

start http://studenta:4080
Chapter 2. Implementing iSoft P2PAgent 53

There are more options and settings that can be controlled in the configuration file, but for an
initial deployment, these values are sufficient. Besides a number of set commands, a
configuration file typically contains a number of addpair commands and importkey
commands. The addpair command defines a relationship between two symbolic trading
partner names. The structure of the addpair command is as following:

addpair <from> <to> <to-URL> <rcpt-URL> <notify-name> <mailbox>

Applied to this first occurrence of the addpair command in Example 2-2, this means:

When processing documents sent by partner SUP1 to partner RETAILER1, send this to
the URL http://studentb:4080. Request that receipts are sent to the URL
http://studenta:4080 and address those receipts to partner SUP1.

The second occurrence of the addpair command in Example 2-2 applies to the processing of
incoming documents. Here, the rcpt-URL parameter is set to * to indicate that we do not
override the settings that is requested by the sender of the document.

The importkey command assigns certificates and/or private keys to a trading partner
relationship for a specific function, such as encryption and signing. While there are again
many possibilities, a typical scenario is expressed in Example 2-2. The syntax of the
importkey command is shown below:

importkey <from> <to> <usage> <options>

From and To identify the trading partner relationship. Usage is a one character code that
identifies when the certificate and/or private key should be used. The options are used to
identify the key and certificate.

The first command instructs the P2PAgent program that documents from SUP1 to
RETAILER1 are to be signed and decrypted (option E) using the private key and certificate of
the partner SUP1. The signing here relates to documents sent to RETAILER1. The decrypting
relates to the decryption of MDNs received from RETAILER1 as a result of sending
documents to RETAILER1.

The encryption for documents sent from SUP1 to RETAILER1 (option J) is done using the
certificate of partner RETAILER1, as shown in the second importkey command. In practise
this means that:

� SUP1 sends documents to RETAILER1 in a way that only RETAILER1 can read this,
since we can assume that only RETAILER1 has access to its own private key.

� SUP1 sends documents to RETAILER1 in a way that SUP1 can never deny that it has
sent that document. SUP1 will sign the document using its private key.

The reverse commands are needed too to control how documents should be received by
SUP1 when sent by RETAILER1.

Example 2-2 P2P agent configuration file for one bi-directional communication link

<xml>
<command>set -eperrors -ef </command>
<command>set -lplog -lf </command>
<command>set -npmq://cw_studenta.queue.manager/notices -nf </command>
<command>set -opmq://cw_studenta.queue.manager/workorders -of -oswo </command>
<command>set -pppki </command>
<command>set -rpmq://cw_studenta.queue.manager/receipts </command>
<command>set -tr300s </command>
<command>set -bhmq://cw_studenta.queue.manager </command>
54 Implementing EDI Solutions

<command>addpair SUP1 RETAILER1 http://studentb:4080/ http://studenta:4080/ SUP1
mq://cw_studenta.queue.manager/outbox</command>
<command>addpair RETAILER1 SUP1 http://studenta:4080/ * RETAILER1
mq://cw_studenta.queue.manager/inbox</command>
<command>importkey SUP1 RETAILER1 E -fCpki\SUP1-RETAILER1.cer -fKpki/SUP1-RETAILER1.prv</command>
<command>importkey SUP1 RETAILER1 J -fCpki\RETAILER1-SUP1.cer </command>
<command>importkey RETAILER1 SUP1 E -fCpki\SUP1-RETAILER1.cer -fKpki/SUP1-RETAILER1.prv</command>
<command>importkey RETAILER1 SUP1 J -fCpki\SUP1-RETAILER1.cer </command>

<command>start http://studenta:4080</command>
</xml>

This completes the first step of the configuration and you can now start-up the agent. Open a
command window and switch to the directory that hold the configuration file (shown in
Example 2-2 on page 54) and the program executable. Start the program and you should see
output similar to the output shown in Example 2-3.

Example 2-3 Standard output of first start-up of the P2PAgent program

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:25:43.299 POPT OK Error path set to [error]
2003.01.27 13:25:43.299 POPT OK Inbound errant will be stored
2003.01.27 13:25:43.309 POPT OK Log path set to [log]
2003.01.27 13:25:43.309 POPT OK Trace set to WRITE_FILE
2003.01.27 13:25:43.329 POPT OK Notice path set to [mq://cw_studenta.queue.manager/notices]
2003.01.27 13:25:43.329 POPT OK Notices will be written to file
2003.01.27 13:25:43.349 POPT OK Work-order path set to [mq://cw_studenta.queue.manager/workorders]
2003.01.27 13:25:43.349 POPT OK Work-order searching enabled
2003.01.27 13:25:43.349 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:25:43.359 POPT OK PKI path set to [pki]
2003.01.27 13:25:43.379 POPT OK Async. receipt path set to [mq://cw_studenta.queue.manager/receipts]
2003.01.27 13:25:43.389 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:25:43.399 POPT OK Mailbox host set to [mq://cw_studenta.queue.manager]
2003.01.27 13:25:43.399 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:25:43.409 POPT OK Mailbox port set to [0]
2003.01.27 13:25:43.479 HPIM OK HTTP inbound service started
2003.01.27 13:25:48.506 PIKC ERR Unable to import keys
2003.01.27 13:25:48.536 PIKC ERR Unable to import keys
2003.01.27 13:25:48.556 PIKC ERR Unable to import keys
2003.01.27 13:25:48.576 PIKC ERR Unable to import keys

Since we have not yet generated any keys and since we have not received any certificates
from our trading partner RETAILER1, it is not surprising that the four importkey commands
are failing. To generate these keys, we need to run an addkey command. However, since the
addkey command only needs to be run once, it is not included in the configuration file. To
generate keys, create a work order file (for example addkeys.wo) that contains a XML
document, such as the one shown in Example 2-4 on page 56.

The structure of the addkey command is as following:

addkey <from> <to> <function> <key length> <issuer> <subject>

Applied to the first occurrence of the addkey command, we request to generate a key that is
used for communication from SUP1 to RETAILER1 for the functions sign, encrypt, decrypt
Chapter 2. Implementing iSoft P2PAgent 55

and signature verification (option O) with a key length of 1024 bits for RSA. The certificate is
self-signed and has the provided subject. Since we need to set up communication for two
more retailers, we will need to create keys for that relationship too. Note that we use a
different identity (SUP1, SUP2, SUP3) for communicating with each retailer. This is not
mandatory but it can increase the level of security.

Example 2-4 Addkeys.wo work order file

<xml>

Create Keys

<command>addkey SUP1 RETAILER1 O 1024 self C=US;S=TX;L=Dallas;O=iSoft;CN=RETAILER1</command>
<command>addkey SUP2 RETAILER2 O 1024 self C=US;S=TX;L=Dallas;O=iSoft;CN=RETAILER2</command>
<command>addkey SUP3 RETAILER3 O 1024 self C=US;S=TX;L=Dallas;O=iSoft;CN=RETAILER3</command>

</xml>

To execute the commands of the work order, you need to execute the batch command in an
interactive session of the P2PAgent program. Type batch addkeys.wo followed by the enter
key in the command window (see Example 2-5).

Example 2-5 Output of addkeys.wo work order

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:26:52.448 POPT OK Error path set to [error]
2003.01.27 13:26:52.448 POPT OK Inbound errant will be stored
2003.01.27 13:26:52.458 POPT OK Log path set to [log]
2003.01.27 13:26:52.458 POPT OK Trace set to WRITE_FILE
2003.01.27 13:26:52.478 POPT OK Notice path set to [mq://cw_studenta.queue.manager/notices]
2003.01.27 13:26:52.478 POPT OK Notices will be written to file
2003.01.27 13:26:52.498 POPT OK Work-order path set to [mq://cw_studenta.queue.manager/workorders]
2003.01.27 13:26:52.498 POPT OK Work-order searching enabled
2003.01.27 13:26:52.508 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:26:52.518 POPT OK PKI path set to [pki]
2003.01.27 13:26:52.528 POPT OK Async. receipt path set to [mq://cw_studenta.queue.manager/receipts]
2003.01.27 13:26:52.538 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:26:52.558 POPT OK Mailbox host set to [mq://cw_studenta.queue.manager]
2003.01.27 13:26:52.558 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:26:52.569 POPT OK Mailbox port set to [0]
2003.01.27 13:26:52.649 PIKC ERR Unable to import keys
2003.01.27 13:26:52.649 HPIM OK HTTP inbound service started
2003.01.27 13:26:52.669 PIKC ERR Unable to import keys
2003.01.27 13:26:52.689 PIKC ERR Unable to import keys
2003.01.27 13:26:52.719 PIKC ERR Unable to import keys
batch addkeys.wo
ok
2003.01.27 13:27:18.125 PAKC OK Keypair generated

Since we need to share the certificate with our trading partner RETAILER1, we need to export
the key in a file. Here, we use again the concept of a work order to perform these actions.
Example 2-6 on page 57 shows the Exportkeys.wo work order file for all three trading
partners.
56 Implementing EDI Solutions

Example 2-6 Exportkeys.wo work order file

<xml>

Export Keys

<command>exportkey SUP1 RETAILER1 O SUP1-RETAILER1.cer SUP1-RETAILER1.prv</command>
<command>exportkey SUP2 RETAILER2 O SUP2-RETAILER2.cer SUP2-RETAILER2.prv</command>
<command>exportkey SUP3 RETAILER3 O SUP3-RETAILER3.cer SUP3-RETAILER3.prv</command>

</xml>

To run these commands in an interactive session, we use again the batch command, as
shown below in Example 2-7.

Example 2-7 Output of the exportkeys.wo work order

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:26:52.448 POPT OK Error path set to [error]
2003.01.27 13:26:52.448 POPT OK Inbound errant will be stored
2003.01.27 13:26:52.458 POPT OK Log path set to [log]
2003.01.27 13:26:52.458 POPT OK Trace set to WRITE_FILE
2003.01.27 13:26:52.478 POPT OK Notice path set to [mq://cw_studenta.queue.manager/notices]
2003.01.27 13:26:52.478 POPT OK Notices will be written to file
2003.01.27 13:26:52.498 POPT OK Work-order path set to [mq://cw_studenta.queue.manager/workorders]
2003.01.27 13:26:52.498 POPT OK Work-order searching enabled
2003.01.27 13:26:52.508 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:26:52.518 POPT OK PKI path set to [pki]
2003.01.27 13:26:52.528 POPT OK Async. receipt path set to [mq://cw_studenta.queue.manager/receipts]
2003.01.27 13:26:52.538 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:26:52.558 POPT OK Mailbox host set to [mq://cw_studenta.queue.manager]
2003.01.27 13:26:52.558 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:26:52.569 POPT OK Mailbox port set to [0]
2003.01.27 13:26:52.649 PIKC ERR Unable to import keys
2003.01.27 13:26:52.649 HPIM OK HTTP inbound service started
2003.01.27 13:26:52.669 PIKC ERR Unable to import keys
2003.01.27 13:26:52.689 PIKC ERR Unable to import keys
2003.01.27 13:26:52.719 PIKC ERR Unable to import keys
batch addkeys.wo
ok
2003.01.27 13:27:18.125 PAKC OK Keypair generated
batch exportkeys.wo
ok
2003.01.27 13:27:45.645 POKC OK Key-pair exported

At this time, stop the P2PAgent program using the shutdown command. Assuming that a
similar setup was done at the side of RETAILER1, you can now exchange certificates and
store that certificate in the pki directory. Make sure that the filename of the certificate matches
with what you have set in the configuration file. The configuration file in Example 2-2 on
page 54 assumes a name of RETAILER1-SUP1.cer for the certificate received from
RETAILER1 and to be used by SUP1.

You can now restart the P2PAgent at both sides. This time, the output should not any more
contain any errors, as shown below in Example 2-8 on page 58. The setup is now complete
Chapter 2. Implementing iSoft P2PAgent 57

and we can now validate the setup by sending some documents from SUP1 to RETAILER1
and vice versa.

Example 2-8 Standard output of restarted P2PAgent program

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:32:54.209 POPT OK Error path set to [error]
2003.01.27 13:32:54.209 POPT OK Inbound errant will be stored
2003.01.27 13:32:54.219 POPT OK Log path set to [log]
2003.01.27 13:32:54.229 POPT OK Trace set to WRITE_FILE
2003.01.27 13:32:54.239 POPT OK Notice path set to [mq://cw_studenta.queue.manager/notices]
2003.01.27 13:32:54.239 POPT OK Notices will be written to file
2003.01.27 13:32:54.249 POPT OK Work-order path set to [mq://cw_studenta.queue.manager/workorders]
2003.01.27 13:32:54.259 POPT OK Work-order searching enabled
2003.01.27 13:32:54.259 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:32:54.269 POPT OK PKI path set to [pki]
2003.01.27 13:32:54.289 POPT OK Async. receipt path set to [mq://cw_studenta.queue.manager/receipts]
2003.01.27 13:32:54.299 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:32:54.309 POPT OK Mailbox host set to [mq://cw_studenta.queue.manager]
2003.01.27 13:32:54.309 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:32:54.319 POPT OK Mailbox port set to [0]
2003.01.27 13:32:54.399 HPIM OK HTTP inbound service started

2.2.2 Validating the configuration
The configuration that we have described in the previous section does not yet involve the
start-up of outbound communication tasks. At this time, dropping a message in the outbox
queue will not result in an actual transmission. To start-up this outbound transmission task,
we’ll need to include a send command in the configuration file. But before we do that, we
would like to perform a manual send to allow us to step through the whole flow and validate
that the setup so far is correct.

The send command can have many parameters to perform different functions. Here, in
Example 2-9 on page 59, the command initiates a send from partner SUP1 to partner
RETAILER1. The data to be sent is stored in the current directory in a file called test.txt (-fN
parameter). We ask to try to send only once (-n parameter) and we request an unsigned MDN
(message disposition notification) receipt. This command can be entered in the interactive
session, as shown below in Example 2-9 on page 59. The output also shows that the
P2PAgent program has twice stored data in MQ. The first entry maps to the creation of a
notice message in the queue notices, as configured in the configuration file. The second entry
maps to the arrival of an MDN receipt by SUP1. This receipt is stored in the queue receipts as
it was set in the configuration file.

Note: The steps above did not expand in detail how certificates are exchanged. It should
be mentioned that the P2PAgent program contains a sendcert command to send
certificates to trading partners. This might be a sufficient solution for your security
requirements. However, it might very well be that you require a more formal exchange
procedure where both partners acknowledge that certificates have been received.
Procedures can vary from a simple e-mail attachment to a delivery by a courier. For the
purposes of this redbook, it is sufficient to assume that an exchange procedure can be set
up and that certificates become available for the P2PAgent program.
58 Implementing EDI Solutions

Example 2-9 Perform an initial send

send http SUP1 RETAILER1 -fNtest.txt -n1 -r
ok
2003.01.27 14:34:40.372 73957 HPOS OK Outbound session started - mbox=[0] batch=[0] attempt=[1 of 1]
2003.01.27 14:34:41.313 35014 STMQ OK Data stored
2003.01.27 14:34:41.333 11530 STMQ OK Data stored
2003.01.27 14:34:41.333 73957 HPOS OK Outbound session stopping - batch=[0]

The output of the P2PAgent program at the receiving side is shown below in Example 2-10.
The arrival of an inbound connection request is logged, together with the IP address that
originated the connection request. This is followed by a two log entries indicating that
information was stored in MQ. The first entry maps to the storage of the incoming data as an
MQ message in the queue inbox. The second entry is for the notice message. The setup for
RETAILER1 is similar to the setup of SUP1. Queue names, outbox and inbox configuration is
exactly the same.

Example 2-10 Receiving a message at RETAILER1

2003.01.27 14:34:05.789 44452 HPIS OK HTTP inbound session started
2003.01.27 14:34:05.789 44452 HPIS OK HTTP client: 9.24.104.158:1087
2003.01.27 14:34:05.829 44452 STMQ OK Data stored
2003.01.27 14:34:05.859 58670 STMQ OK Data stored
2003.01.27 14:34:05.869 44452 HPIS OK HTTP inbound session stopping

The previous send command resulted in a number of MQ operations, at both the sending and
receiving side. But it did not yet validate access to the mailbox, which is also hosted by MQ.
Therefore, we use a utility such as RFHUTIL to load the same file text.txt into the queue
outbox. The send command in Example 2-11 will pick up this message and send it out to
REATILER1.

The parameter -ds indicates to the P2PAgent where to find the data. This is set to be a
mailbox, with identifier outbox. Note that in this case, we have not asked to request a MDN
receipt of RETAILER1. As a result, there is only one MQ message stored as a result of the
transactions (the notice).

Example 2-11 Validating the mailbox implementation

send http SUP1 RETAILER1 -dsMAILBOXID=outbox -n1
ok
2003.01.27 16:41:54.118 22768 HPOS OK Outbound session started - mbox=[outbox] batch=[0] attempt=[1 of 1]
2003.01.27 16:41:54.148 22768 EXMQ OK File extracted - [1533] bytes
2003.01.27 16:41:54.369 30639 STMQ OK Data stored
2003.01.27 16:41:54.379 22768 HPOS OK Outbound session stopping - batch=[0]

The above tests validated the whole setup with respect to MQ and Internet communication.
We should also do a number of tests to validate encryption, digital signatures and possible
compression. The following commands can be executed for these purposes.

� Sign outbound EDI file

send http SUP1 RETAILER1 -fNtest.txt -n1 -s -r1

Note: Time stamps in Example 2-9 and Example 2-10 do not match completely, since the
clock of both computers was not synchronized. However, the logging in Example 2-9 does
match the logging in Example 2-10.
Chapter 2. Implementing iSoft P2PAgent 59

The -s parameter signs the document using the default SHA-1 algorithm. If you would
need an MD5 algorithm, use the option -s5. When you would like to use Base64 encoding
for the signature, add B to the parameter (-sB and -s5B).

Previously, we had used -r to request a receipt. Here, we used -r1, to indicate that we
request a signed receipt, using the SHA-1 algorithm.

� Encrypt and sign the outbound EDI file

send http SUP1 RETAILER1 -fNtest.txt -n1 -e -s -r1

The option -e is used to indicate that the outbound EDI document needs to be encrypted
using the Triple DES algorithm. You can also use the RC2 algorithm by specifying the
option -e2.

� Encrypt, sign and compress the outbound EDI file

send http SUP1 RETAILER1 -fNtest.txt -n1 -e -s -oZ -r1

The option -oZ indicates that the message payload needs to be compressed using the
ZLIB compression algorithm. This compression is then followed by encryption and signing
of the payload.

� More options to control the receipt.

So far, we’ve seen the options -r and -r1 or requesting an unsigned or signed receipt. You
can also use the option -r5, to request a MD5 signed receipt, instead of the default SHA-1.
For each of these three cases, you can add the option A to the parameter to indicate that
the receipt may be sent asynchronously (thus, -rA, -rA1, -rA5).

2.2.3 Automating the send process
So far, we’ve initiated the transmission of EDI documents by entering manually a send
command in the interactive session of the P2PAgent program. This works fine for testing
purposes, but in a real implementation, you would like that the agent sends the data without
any manual intervention.

Using work orders
As part of the configuration file in Example 2-2 on page 54, we had the configuration for a
source of work orders. Our sample configuration used a queue called workorders. To validate
that this configuration is actually working, issue the command set -m6 in the interactive
session and you will see that the agent opens this queue every ten seconds to see if any work
orders are outstanding. Note that the above command is merely used for debugging
purposes. To switch back to normal logging, issue the command set -m3. A work order can
be any type of command that the agent understands, including a send command. Thus, one
option to automate the transmission of outbound documents, is to put a message on the
queue workorders containing a send command, such as the ones that we have seen in 2.2.2,
“Validating the configuration” on page 58. The generation of this message could be done at
the same time that the EDI document is being generated. If for example the generation is
being handled by WebSphere MQ Integrator or WebSphere Data Interchange, you can
augment the message flow to generate a message with a send command in the correct
queue.

Persistent send
The alternative to use work orders, is to include a so-called persistent send in the
configuration file itself. Such a send command will contain an option that tells the agent how
long the send command should persist and what the polling interval should be.
60 Implementing EDI Solutions

For file-based input to the P2PAgent program:

send http SUP1 RETAILER1 -fPoutbox -fSout -fE.pend -tE20031231000000 -s -e -r1 -n2

This command will:

1. Send files from SUP1 to RETAILER1

2. Use http as a protocol

3. Load the files from the directory outbox

4. Send only those files with extension out

5. Append the sent files with the string .pend

6. Keep on sending until 12/31/2003 at mid-night

7. Sign the document

8. Encrypt the document

9. Request a signed MDN

10.Try to send the document twice if the first time failed (-n2)

Instead of renaming the file (option -fE) after the transmission, you can ask to delete the file
after transmission. In that case, replace the -fE.pend string in the command with -x.

You should include such a send command for all partner relationships that you have defined.

For queue-based input, the send command could be as following:

send http SUP1 RETAILER1 -dsMAILBOXID=outbox -tE20031231000000 -s -e -r1 -n2

This command behaves the same as the previous command, except for the following

� Input is now the queue outbox
� The sent message is not being saved

Choosing persistent send or work orders depends on your environment. Persisting send is
probably a better solution when the transaction volume is high. For a low volume and many
trading partners, the persistent send option implies many active threads that are polling the
system for any new files. In that environment, the work order mechanism might be more
appropriate.

2.2.4 Connecting to partners RETAILER2 and RETAILER3
So far, the setup of iSoft’s P2PAgent program has been to enable document exchange
between two partners. In most situations, there will be a requirement to connect tens or
hundreds, sometimes even thousands of partners. In this section we will look at a number of
configuration options how we can handle this kind of requirement. For the purposes of this
redbook, we will not look into multi-machine setups of the P2PAgent program, which can be
required to achieve high levels of throughput and/or high availability.

Assuming that the P2PAgent maintains the information that translates a trading partner ID
(SUP1, RETAILER1) into a network address (IP address or qualified hostname), then it is the
responsibility of the generator of the document to indicate which partner is the final recipient
of that document. The generator of a document can be an EDI translation engine, such as
WebSphere Data Interchange, or a message broker such as WebSphere MQ Integrator or
back-end application software, such as SAP R/3. There are three levels of information that
can be used to derive the trading partner name.
Chapter 2. Implementing iSoft P2PAgent 61

1. The location of the document.

Given the example configuration file (see Example 2-2 on page 54), it is clear how we can
handle this. One can easily create a separate directory for each partner. Each partner to
which we would like to send documents should have its own outbox directory or outbox
queue. For inbound communication, we can use a similar solution. Each sending partner
could have its own inbox queue or directory on the receiving machine.

The concept of individual inboxes and outboxes is attractive because of its simplicity, but it
becomes an administrative issue when you have to communicate with thousands of
trading partners. Creating and managing thousands of queues or directories is not a trivial
task.

2. The meta-data information that is wrapped around the actual data.

One obvious example of meta-data is the use of the well-known MQRFH2 header in
WebSphere MQ. When iSoft’s P2PAgent is requested to store an incoming document in a
queue, it will automatically add an MQRFH2 header. iSoft has defined a custom usr folder
with the following elements:

i. to: holds the sending trading partner ID as it is known in iSoft
ii. from: holds the receiving trading partner ID as it is known in iSoft
iii. subject: a customizable subject (-u option on send command)
iv. msgid: a generated ID that is used for correlating asynchronous MDNs

Applications generating documents for transmission by iSoft can also generate such an
MQRFH2 header and as such provide the required information for iSoft to locate network
parameters based on the contents of the usr folder. However, in the current release of
iSoft, this header is only validated if present but not used.

Example 2-12 shows a portion of a message dump that includes an MQRFH2 header and
the start of the ISA segment of an EDI document.

Example 2-12 Usage of the MQRF2 header by iSoft

00000000: 5246 4820 0200 0000 C000 0000 2202 0000 'RFH+..."...'
00000010: B501 0000 2020 2020 2020 2020 0000 0000 '¦... '
00000020: B804 0000 9800 0000 3C6D 6364 3E3C 4D73 '+...ÿ...<mcd><Ms'
00000030: 643E 6A6D 735F 7465 7874 3C2F 4D73 643E 'd>jms_text</Msd>'
00000040: 3C2F 6D63 643E 3C75 7372 3E3C 6672 6F6D '</mcd><usr><from'
00000050: 3E53 5550 323C 2F66 726F 6D3E 3C74 6F3E '>SUP2</from><to>'
00000060: 5245 5441 494C 4552 323C 2F74 6F3E 3C73 'RETAILER2</to><s'
00000070: 7562 6A65 6374 3E45 4449 494E 5444 4154 'ubject>EDIINTDAT'
00000080: 413C 2F73 7562 6A65 6374 3E3C 6D73 6769 'A</subject><msgi'
00000090: 643E 3C32 3030 3330 3132 3731 3834 3230 'd><2003012718420'
000000A0: 3738 3941 4641 3244 3740 5355 5032 3E3C '789AFA2D7@SUP2><'
000000B0: 2F6D 7367 6964 3E3C 2F75 7372 3E20 2020 '/msgid></usr> '
000000C0: 4953 412A 3030 2A20 2020 2020 2020 2020 'ISA*00* '
000000D0: 202A 3030 2A20 2020 2020 2020 2020 202A ' *00* *'
000000E0: 5245 2A54 4149 4C45 5232 2020 2020 2020 'RE*TAILER2 '
000000F0: 202A 5355 2A50 3220 2020 2020 2020 2020 ' *SU*P2 '
00000100: 2020 2020 2A39 3631 3030 372A 3230 3133 ' *961007*2013'

Meta-data for file-based integration with iSoft could be embedded in the name of the file.
As you have seen in 2.2.2, “Validating the configuration” on page 58, the send command
has options to specify file extensions (-fE) or file specifications (-fS). For example, all files
with destination RETAILER2 should start with RET2 and have an extension out. The
applicable options would be -fEout -fSRET2*.

3. The contents of the document itself

Many types of EDI documents include already a field or segment that addresses
document routing. For example the ISA segment in an EDI X12 document contains
62 Implementing EDI Solutions

exactly that information. At present, there is no option in iSoft’s P2PAgent program to
enforce that it looks up the trading partner information in the document itself.

For inbound communication, iSoft P2PAgent can quite happily drop every received
document in the same location. But then it is up to the document processing application to
match the document with a trading partner. For EDI documents that are processed by
WebSphere Data Interchange, there is little problem if all received documents are stored
in the same inbox.

The three options for handling routing information are mainly discussing the outbound aspect.
Given a document to be sent, how does iSoft know to whom to send it? For inbound
communication, any requirements on the location of the document or the name of the
document depends on what application is going to process the incoming document. If for
example the incoming document is first being picked up by WebSphere Data Interchange,
then there is no requirement at all. WebSphere Data Interchange can handle the MQRFH2
that is being generated by iSoft or it can look directly at the ISA segment. For XML
documents, it is possible in WebSphere Data Interchange to tell it what element contains
partner information and to use that information in any downstream processing of the
document. If the processing application is the InterChange Server and the iSoft Connector,
then the information in the MQRFH2 is available to make any decisions about further
processing.

Now that we have a broader understanding of document routing and its implications towards
the implementation of iSoft, let us go back to our business scenario as outlined in 2.1,
“Business scenario” on page 50. The setup for iSoft at RETAILER2 is similar to what we have
described for RETAILER1. The configuration file needs a number of small changes, such as
queue manager name and hostname, besides the obvious change from RETAILER1 to
RETAILER2. As discussed before, we need to generate keys, export them and exchange
them. For RETAILER3, we have chosen a complete file-based integration of iSoft.
Example 2-13 lists the configuration file as it is used at the iSoft machine for RETAILER3.

Example 2-13 File-based setup of the agent for Retailer3

<xml>
<command>set -eperror -ef </command>
<command>set -lplog -lf </command>
<command>set -npnotices -nf </command>
<command>set -opworkorders -of -oswo </command>

<command>set -pppki </command>
<command>set -rpreceipts </command>
<command>set -tr300s </command>

<command>addpair RETAILER3 SUP3 http://studenta:4080/ http://ispddemo:4080/ RETAILER3 outbox</command>
<command>addpair SUP3 RETAILER3 http://ispddemo:4080/ * SUP3 inbox</command>
<command>importkey RETAILER3 SUP3 E -fCpki\RETAILER3-SUP3.cer -fKpki/RETAILER3-SUP3.prv</command>
<command>importkey RETAILER3 SUP3 J -fCpki\SUP3-RETAILER3.cer </command>
<command>importkey SUP3 RETAILER3 E -fCpki\RETAILER3-SUP3.cer -fKpki/RETAILER3-SUP3.prv</command>
<command>importkey SUP3 RETAILER3 J -fCpki\RETAILER3-SUP3.cer </command>

Note: Some packages of the iSoft P2PAgent contain a version of the product that will
always try to load WebSphere MQ modules, even if your configuration file does not refer to
any WebSphere MQ objects. This is not a problem if you have WebSphere MQ installed.
However, if you do not have WebSphere MQ, the start of the P2PAgent program will fail. If
you happen to have such a version, please contact IBM Support to obtain an updated
version of the software.
Chapter 2. Implementing iSoft P2PAgent 63

<command>start http://ispddemo:4080</command>
</xml>

Most changes are of course to be made at the side of Supplier. Besides the routing
discussion we had before, there is another decision to be made. Do we use the same identity
to interact with each retailer or do we use a different one? Example 2-4 on page 56 gave
already an indication that we will chose to option to have different identities for each retailer.
This is again one of those issues that can lead to endless discussions and for which there is
no single answer. All options have their strengths and weaknesses. In the scenario described
in this redbook, we chose to have one matching ID for each trading partner and each ID
would have its own private key and certificate. Indeed, this means a lot more work. More keys
need to be generated and managed. Likely more information about partner IDs needs to be
propagated to upstream applications, such as WebSphere Data Interchange and the ICS.
The advantage is that there is higher level of security. Assuming that you and your partners
exchange encrypted and signed documents, that means that a network intruder needs

� The private key of the receiver to decrypt and read an intercepted message
� The certificate of the receiver to create an encrypted message himself
� The private key of the sender to sign the message that he created himself

Thus, an intruder needs to get access to several pieces of information to break the security.
But if he succeeds and if a single certificate and key is used with all trading partners, then
suddenly the intruder can play around with all your partners and cause damage at a much
wider scale. In real networks, trading partner networks can span thousands of companies and
you can not assume that nothing will ever happen. Having certificates for each partner limits
the risks to a single pair of trading partners. Having a shared certificate makes the whole
network at risk.

Given the decision to create unique identities SUP1, SUP2 and SUP3, we need to create a
new set of keys and export those keys. Sample commands for these tasks were given before
in Example 2-4 on page 56 and Example 2-6 on page 57. Then, new partner pairs need to be
added to the configuration file. Example 2-14 lists this updated configuration file. The section
for the relationship SUP1 and RETAITER1 is basically the same. The name of the outbox
queue has been changed to outbox.retailer1. The relationship record for SUP2 and
RETAILER2 is similar. This time, the name of the outbox queue is outbox.retailer2. For the
SUP3 and RETAILER3 combination, we chose a file-based integration, as a proof that you
can combine both types of integration within the same instance of the P2PAgent program.

Finally, you should not forget to define the additional queues and directories:

� Queues outbox.retailer2 and outbox.retailer3
� Directories inbox\retailer3 and outbox\retailer3

Note also that the inbox for retailer1 and retailer2 is shared (the queue inbox), while the
naming of the inbox directory suggests that it will be used for receiving documents from
retailer3 only.

Example 2-14 Extended configuration file for the company Supplier

<xml>
<command>set -eperror -ef </command>
<command>set -lplog -lf </command>
<command>set -npmq://cw_studenta.queue.manager/notices -nf </command>
<command>set -opmq://cw_studenta.queue.manager/workorders -of -oswo </command>

<command>set -pppki </command>
<command>set -rpmq://cw_studenta.queue.manager/receipts </command>
<command>set -tr300s </command>
64 Implementing EDI Solutions

<command>set -bhmq://cw_studenta.queue.manager </command>

<command>addpair SUP1 RETAILER1 http://studentb:4080/ http://studenta:4080/ SUP1
mq://cw_studenta.queue.manager/outbox.retailer1</command>
<command>addpair RETAILER1 SUP1 http://studenta:4080/ * RETAILER1
mq://cw_studenta.queue.manager/inbox</command>
<command>importkey SUP1 RETAILER1 E -fCpki\SUP1-RETAILER1.cer -fKpki/SUP1-RETAILER1.prv</command>
<command>importkey SUP1 RETAILER1 J -fCpki\RETAILER1-SUP1.cer </command>
<command>importkey RETAILER1 SUP1 E -fCpki\SUP1-RETAILER1.cer -fKpki/SUP1-RETAILER1.prv</command>
<command>importkey RETAILER1 SUP1 J -fCpki\SUP1-RETAILER1.cer </command>

<command>addpair SUP2 RETAILER2 http://vdputteg:4080/ http://studenta:4080/ SUP2
mq://cw_studenta.queue.manager/outbox.retailer2</command>
<command>addpair RETAILER2 SUP2 http://studenta:4080/ * RETAILER2
mq://cw_studenta.queue.manager/inbox</command>
<command>importkey SUP2 RETAILER2 E -fCpki\SUP2-RETAILER2.cer -fKpki/SUP2-RETAILER2.prv</command>
<command>importkey SUP2 RETAILER2 J -fCpki\RETAILER2-SUP2.cer </command>
<command>importkey RETAILER2 SUP2 E -fCpki\SUP2-RETAILER2.cer -fKpki/SUP2-RETAILER2.prv</command>
<command>importkey RETAILER2 SUP2 J -fCpki\SUP2-RETAILER2.cer </command>

<command>addpair SUP3 RETAILER3 http://ispddemo:4080/ http://studenta:4080/ SUP3
outbox\retailer3</command>
<command>addpair RETAILER3 SUP3 http://studenta:4080/ * RETAILER3 inbox\retailer3</command>
<command>importkey SUP3 RETAILER3 E -fCpki\SUP3-RETAILER3.cer -fKpki/SUP3-RETAILER3.prv</command>
<command>importkey SUP3 RETAILER3 J -fCpki\RETAILER3-SUP3.cer </command>
<command>importkey RETAILER3 SUP3 E -fCpki\SUP3-RETAILER3.cer -fKpki/SUP3-RETAILER3.prv</command>
<command>importkey RETAILER3 SUP3 J -fCpki\SUP3-RETAILER3.cer </command>

<command>start http://studenta:4080</command>
</xml>

Once these changes have been implemented at Supplier and the iSoft implementations have
been completed for Retailer2 and Retailer3, you can again use the send command to validate
the setup if all possible directions. Use the commands discussed in 2.2.2, “Validating the
configuration” on page 58 to test the communication, encryption and signatures.

2.3 Integration with WebSphere Data Interchange
Business documents such as purchase orders and invoices are in general created, managed,
and stored in back-end systems that are very much enterprise specific. As a result, the
structure and data format of those documents can be very different from what industry
organizations have agreed upon as a standard. An EDI 850 document, for purchase orders,
has a specific layout that internal applications can not always generate. This mismatch
between the internal document and the standard document to be used in an B2B transactions
has resulted in the development of EDI specific document translators. An example of such a
product is WebSphere Data Interchange.

Since the use of EDI translators is very common, a typical implementation of iSoft’s P2PAgent
involves the integration with products such as WebSphere Data Integration.

Throughout this section, we are assuming that you have a working WebSphere Data
Interchange environment with at least one client and one server. Also, we are assuming that
the server is running on the same machine as the P2PAgent program.

For more information about configuring a WebSphere Data Interchange environment, refer to
the Redpaper WebSphere Data Interchange installation and configuration, REDP3600.
Chapter 2. Implementing iSoft P2PAgent 65

2.3.1 Translating received EDI documents
In this section we are going to describe the flow of inbound documents, where documents are
received by the P2PAgent program and stored in queues or files. WebSphere Data
Interchange picks up these documents and performs the required translation into an internal
format, which happen to be an XML format.

Figure 2-4 shows the overall data flow. Data that is received from retailer1 or retailer2 arrives
in a queue, while data received from retailer3 arrives in a file in a given directory. Note that the
configuration of the P2PAgent in Example 2-14 on page 64 had the same queue for incoming
documents for both retailer1 and retailer2. Figure 2-4 assumes that each retailer has its own
queue. From a WebSphere Data Interchange point of view, there is little difference between
both types of setup. WebSphere Data Interchange can find the appropriate trading partner
information in the ISA segment of the incoming EDI document and use that information to
apply the correct translation rules.

The configuration of WebSphere Data Interchange involves the following steps:

� Definition of trading partner profiles for all retailers and the supplier itself

� Document definition

– Import of the EDI 850 document definition

– Import of a DTD, matching the internal representation of a purchase order

� Definition of the translation map

� Definition of mailboxes, network profiles, queue profiles and service profiles

� Definition of the rules associated with the map

� Creating a command file to process incoming EDI files

� Definitions of queue and process objects in WebSphere MQ to support the automatic
translation of incoming EDI documents in queues.

Figure 2-4 Inbound data flow

WebSphere
Data

Interchange

EDI Input Folder
 for Retailer 3

EDI Input MQ Queue
for Retailer 2

EDI Input MQ Queue
for Retailer 1

XML Output Folder
for Retailer 3

XML Output MQ Queue
for Retailer 2

XML Output MQ Queue
for Retailer 1

 ED I XML

 ED I

 ED I XML

 XML

(Translation)
66 Implementing EDI Solutions

Trading partner setup
Start the WebSphere Data Interchange client program and click the trading partner setup icon
in the tool bar. A new window will appear with a list of currently defined trading partners. Click
the new document button in the tool bar. On the tab General, provide a nickname for the new
trading partner (SUP1) and fill in the Interchange Qualifier and ID (see Figure 2-5), which are
found in the EDI document. These fields in the ISA segment will be used by WebSphere Data
Interchange as a key to locate the trading partner document (nickname) and that nickname
will then be used in further processing within WebSphere Data Interchange. The value for the
nickname is only relevant within the scope of WebSphere Data Interchange.

Repeat this process for the trading partners Retailer1, Retailer2 and Retailer3. Create profiles
also for the secondary IDs SUP2 and SUP3 that are used by the Supplier (refer to the
configuration in Example 2-14 on page 64.

Figure 2-5 Trading partner definition

EDI document definition
For each EDI document standard, there are a number of versions and releases. You can
download import files for ANSI X12 and other standards from the following Web site:

http://www-3.ibm.com/software/integration/appconn/wdi/downloads/

For our purposes we have used the ANSI X12 Standard Version 4 Release 3. This standard
can be downloaded as an export/import file (eif) for WebSphere Data Interchange. Select File
-> Open Import File to load the definitions in your database and point the file browser to the
downloaded file X12V4R3.eif. A window of document definitions will appear that lists all the

Note: The creation of trading partner profiles will be required because we have different
routing requirements depending on the actual destination/origin of the document. If a
document is destined for Retailer3, WebSphere Data Interchange needs to write it in a file
instead of a queue. A more common reason for trading partner specific rules is the fact that
you may have different translation requirements for the same EDI document, depending on
the target or origin trading partner.
Chapter 2. Implementing iSoft P2PAgent 67

http://www-3.ibm.com/software/integration/appconn/wdi/downloads/

definitions that are included in this file. Select the documents that you would need, for
example 850 and 855. Use the Control key to select multiple definitions. Press the enter key
and select the correct system (database) to import the document definitions. Note that both
the 850 and 855 documents are quite big and contain many segments and fields. As a result,
the import might take a while to complete.

XML document definition
WebSphere Data Interchange supports the import of DTDs to define XML documents to the
translator. In general the structure of XML documents that are used by a company’s internal
applications, is very specific. Since this redbook is not just about EDI translation and
mapping, we’re going to use a simple DTD that helps us focusing on the integration issue
instead of the mapping issue. Example 2-15 lists the DTD, while Example 2-16 provides a
sample message that complies with this DTD.

Example 2-15 DTD for XML document representing a purchase order

<?xml encoding="US-ASCII"?>

<!ELEMENT PO (Header, Detail)>

<!ELEMENT Header (FROM, TO, PONO,PODate)>
<!ELEMENT FROM (#PCDATA)>
<!ELEMENT TO (#PCDATA)>
<!ELEMENT PONO (#PCDATA)>
<!ELEMENT PODate (#PCDATA)>

<!ELEMENT Detail (QTY, ITEMNO, DESC)>
<!ELEMENT QTY (#PCDATA)>
<!ELEMENT ITEMNO (#PCDATA)>
<!ELEMENT DESC (#PCDATA)>

Example 2-16 Sample XML purchase order

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "XMLPO.dtd">

<PO>
<Header>
<FROM>RETAILER1</FROM>
<TO>SUP1</TO>
<PONO> 12345669 </PONO>
<PODate> 20021018 </PODate>
</Header>

<Detail>
 <QTY> 1000 </QTY>
 <ITEMNO> ABC2 </ITEMNO>
 <DESC> Some product </DESC>

</Detail>
</PO>

To import this DTD in WebSphere Data Interchange, you need to have a dictionary to hold the
DTD. If you do not have already a dictionary, or if you want to create a new one to store this
DTD, open the XML window by clicking the XML button in the main tool bar of WebSphere
Data Interchange. A new window will appear that lists XML dictionaries and XML DTDs.
Select the tab XML Dictionary and select File -> New to create a new dictionary. Name the
new dictionary 850XML, for example. Save the new dictionary by selecting File -> Save. Now
you can import the DTD itself. Select File -> Open Import File to start this import process. In
68 Implementing EDI Solutions

the file browser window, change the file type property from Export/Import Files (*.eif) to XML
DTD File (*.dtd). During the import you will be prompted to provide the following information:

� DTD file name
� DTD object name in WebSphere Data Interchange, for example POXML
� Name of the dictionary, to be selected from a drop-down box
� Name of the target database, to be selected from a list
� Name of the root element: set this to PO for the DTD listed in Example 2-15 on page 68.

When the import has completed, open the DTD document within WebSphere Data
Interchange (see Figure 2-6). Within this document, you can name the XML elements that
identify sender and receiver. If the names in the XML document do not match directly with the
EDI names, you can provide the name of a translation table that WebSphere Data
Interchange can use at runtime to look-up the correct partner information. Note that this
information is used when building an EDI

Figure 2-6 Finding partner information in the XML document

The DTD that was provided in Example 2-15 on page 68 has only one field to provide
information about the sender and another field to provide information about the receiver. To
make the link, set:

� Field ID Element for Sender: \PO\Header\FROM\\
� Field ID Element for Receiver: \PO\Header\TO\\

Note the double back-slash symbol at the end.

The result is now that we can build custom rules for routing and mapping based on who is the
target or source partner for a given document. For an incoming EDI 850 document, the
information in the ISA segment will be copied into the XML elements that were set in
Figure 2-6 and we will not require specific mapping statements in the translation map.

Definition of the translation map
Since the Supplier company expects to receive EDI 850 documents (purchase orders) from
its customers, the retailers, we need a map that translates the incoming EDI document into an
XML document that can be handled by the Supplier’s internal systems. To create this map,
Chapter 2. Implementing iSoft P2PAgent 69

start the map editor by clicking the mapping button in the main tool bar of WebSphere Data
Interchange. Within the map editor, click either the new document button or select File ->
New. A map definition wizard will appear. Provide the following values for these parameters:

� Map name: 850TOXML
� Target or source based: Target
� Source document definition: EDI Standard
� Source dictionary: X12V4R3
� Source EDI transaction: 850
� Target syntax type: XML
� Target dictionary: 850XML
� Target DTD: POXML

Given the simple structure of the XML document, the mapping itself is quite easy too. Note
that the target XML document is likely too simple for most practical purposes. We do not
intend to cover all options for mapping EDI documents in this redbook. Figure 2-7 shows the
mapping statements between the EDI segments and fields and the target XML document.
These statements are obtained by dragging the EDI field onto the XML element.

Figure 2-7 Mapping the EDI 850 document into an XML document.

The two statements in Figure 2-7 that were not created by drag-and-drop, are the statements
to fill in the elements FROM and TO in the Header element. To pass along the information of
the EDI ISA header into the XML document, you can add an assignment command and call
the function GetProperty to obtain the value of a field in the ISA header. Adding an
assignment is performed by right-clicking the target field and selecting Insert After ->
Command -> Assignment from the context menu. This will open a command editor to assist
you in building the command.

Setup within WebSphere Data Interchange for SUP1 and RETAILER1
Now that we have a map, we need to tie it to a couple of other objects in WebSphere Data
Interchange, by creating a rule for the map. However, before we can do that, we need to
create those other objects in WebSphere Data Interchange.

The queue inbox will receive EDI documents from the retailers 1 and 2. The documents will
be written in this queue by iSoft’s P2PAgent. To make this queue known to WebSphere Data
Interchange, we need to define a queue profile. Open the setup window in WebSphere Data
70 Implementing EDI Solutions

Interchange and select the tab MQSeries Queues. Select File -> New to create a new
document. You need to name this document, for example INBOX. Set the name of the queue
to inbox and specify the name of the queue manager, cw_studenta.queue.manager in our
example. If your documents are large, you should consider setting an appropriate value for
the field Maximum Message Length. The default value is 32KB, which might not be sufficient
for your environment. Select File -> Save to store this new document in the database.

When WebSphere Data Interchange has translated the incoming EDI 850 document, it will
need to send it to the internal system for processing. That destination might be a queue or a
file in a given directory. We will describe both examples below. The target destination, either
queue of directory, can be dependent of the document and/or dependent of the trading
partner. For most environments, the back-end system will not require specific locations for
each trading partner. But it is quite common that purchase orders are to be stored in a
different location than for example requests for quotation.

In our example we’re going to assume that all purchase orders are to be sent to the same
queue, called purchase.orders, except for purchase orders coming from retailer3 for which
we want to store the documents in a directory. As described before, create a queue profile
PO_IN in WebSphere Data Interchange and set the queue name to purchase.orders and set
the name of the queue manager, cw_studenta.queue.manager in our example. Save the
document.

The next object we should define, is a network profile. While it is possible to use a single
network profile to describe the access to the queues inbox and purchase.orders, it might be
easier to separate those two. The queue inbox might contain messages with an RFH2
header, while the messages for the queue purchase.orders should not have this header. To
create network profiles, open the setup window in WebSphere Data Interchange and select
the tab Network Profiles. Select File -> New to create a new document.

Create a network profile INBOX, with the following values:

� Network ID: INBOX
� Communication Routine: VANIMQ
� Network Program: EDIRFH2 (iSoft’s P2PAgent adds an RFH2 header)
� Network Parameters: RECEIVEMQ=INBOX (the name of the queue profile)

Save the document by selecting File -> Save and create a second network profile, with the
following values:

� Network ID: PO_IN
� Communication Routine: VANIMQ
� Network Program: EDIMQSR
� Network Parameters: SENDMQ=PO_IN (the name of the queue profile)

The next step is to create mailboxes. A mailbox in WebSphere Data Interchange is a logical
start point or end point for a translation. It can map onto a mailbox in a VAN solution or to any
other resource, such as a queue or a file.

� Create mailbox INBOX with network ID INBOX.
� Create mailbox PO_IN with network ID PO_IN.

Finally, the setup within WebSphere Data Interchange is complete by creating services
profiles. A service profile is named after a mailbox and contains the WebSphere Data
Interchange commands that need to be executed when a document arrives in a mailbox.

Create service profile INBOX with the following settings:

� Perform command:
PERFORM TRANSFORM WHERE INFILE(INBOX) SYNTAX(E) OUTFILE(PO_IN)
Chapter 2. Implementing iSoft P2PAgent 71

� Output files: PO_IN ..\xml\po_in.txt

Create a service profile PO_IN with the following settings:

� Perform command:
PERFORM SEND WHERE REQID(PO_IN) OUTFILE(PO_IN) OUTTYPE(MQ) CLEARFILE(Y)

� Input files: PO_IN ..\xml\po_in.txt

Creating a rule for the translation map
So far, we have created a transformation map and we have created objects within
WebSphere Data Interchange that control the flow of data. The last object to create is a rule
(or usage) associated with a map. The rule will tell WebSphere Data Interchange when a map
should be used.

Open the mapping window and select the map 850TOXML that we have created before.
Select Actions -> Usages. Since a rule is associated with a map, some conditions are already
set up front. It’s clear that the map 850TOXML will only be used to transform EDI 850
documents that adhere to the standard X12V4R3. But typically, you will need more
granularity. Often a map should only be used when the document comes from one partner or
when the document is going to be sent to one partner, while another map should be used for
yet another partner. That is the kind of information that you can encode in a data
transformation map. Select File -> New to create a new rule for the map 850TOXML. Set the
following attributes:

� Usage Indicator: Production
� Trading Partners:

– Sending: ANY
– Receiving: SUP1

� Make the map active by selecting the check box Active.

This results in a map and rule where documents received from any partner and targeted for
the internal trading partner SUP1 are all translated according to the same rules.

Updating WebSphere MQ resources
The translation process that we have described in the previous section assumes that
messages are going to arrive in a queue called inbox and that they can be written after
translation in another queue, called purchase.orders. The queue inbox was already created
before when we had configured iSoft’s P2PAgent. Define now the queue purchase.orders
using WebSphere MQ Explorer.

To automate the translation process, we would like to use the triggering features of
WebSphere MQ. Therefore, update the definition of the queue inbox and set the following
attributes using WebSphere MQ Explorer:

On the tab labeled Triggering:

� Trigger Control: On
� Trigger Type: First
� Initiation Queue: WDI.INIT.Q
� Process Name: WDI.PROC

Usually, the setup of a WebSphere Data Interchange server includes the creation of a number
of WebSphere MQ objects. The commands to create these objects, are available in the file
wdimqcommands.txt in the samples directory of a WebSphere Data Interchange server
installation. If you have executed these commands, then the queue WDI.INIT.Q already exists
and also the process WDI.PROC already exists. If the process WDI.PROC and the queue
72 Implementing EDI Solutions

WDI.INIT.Q do not exist for your queue manager, consult the file wdimqcommands.txt to know
the requirements for these objects.

Completing the setup of WebSphere Data Interchange
The above configuration of WebSphere Data Interchange works fine for input received from
Retailer1. The EDI 850 document from Retailer1 is written in the queue inbox by iSoft’s
P2PAgent and WebSphere Data Interchange will pick it up and translate it based on the rule
that we created before. What needs to be done when the Retailer1 sends other types of EDI
documents? For sure, we need to make sure that the EDI definition for this document is
imported and that an equivalent DTD is imported. Also, we will need to define a map between
the EDI definition and the XML document. This new EDI document will arrive in the same
queue called inbox. WebSphere Data Interchange is able to detect that this is a different
document than the EDI 850 and hence can pick up the correct map. But, will this new
document after translation be passed onto the same queue purchase.orders? Likely not. How
is WebSphere Data Interchange going to perform this routing?

At this point, any message in the queue inbox is going to be handed over to the queue
purchase.orders. To tie the routing to the document type, and not the origin, perform the
following changes to the configuration that you have created so far:

� Update the rule for 850TOXML. Set output file to PO_IN and type to MQ on the tab
General of the data transformation rule.

� Update the service profile INBOX and remove the references to the output file on the
perform command for the service profile INBOX. The updated perform command looks
now as follows:

PERFORM TRANSFORM WHERE INFILE(INBOX) SYNTAX(E)

At this time, the target destination (PO_IN) is set in the rule and can be tied to either trading
partner combination and/or document combination.

For the rule associated with the map for the new EDI document, set the output file to a
different file. Add a queue profile, a service profile, a mailbox profile, and a network profile to
the WebSphere Data Interchange configuration.

When adding more trading partners (Retailer2, Retailer3 and so on), we need to make sure
that these trading partners are known in WebSphere Data Interchange. The rule itself was not
linked to a source trading partner. However, in the setup of iSoft’s P2PAgent, we had created
a configuration where there was a one-to-one relationship between a trading partner and an
internal ID (SUP1, SUP2, and SUP3). If you are sure that the rule for the translation of 850
documents is partner independent, you can update the rule to make it an any-to-any rule.
Alternatively, you need to create an additional rule, for example to set a specific output file.
Or, you may need to create an additional map and rule, to handle specific translation and/or
destination requirements.

Processing file-based input for WebSphere Data Interchange
When iSoft’s P2PAgent receives an EDI document and it is configured to store the document
as a file in a given directory, it will generate a unique file name for each incoming document.
The default generated name contains sender and receiver identification, followed by the date
and time and a message id. An example of such a name is shown below:

RETAILER3.SUP3.20030127192149C8A1302A.file.in

The file name can be controlled by using the iSoft command set -fs. Then, the file name will
not include partner IDs.
Chapter 2. Implementing iSoft P2PAgent 73

Besides variable file names, there is also the issue of how to start the EDI translation engine.
When using WebSphere MQ, you can rely on MQ triggering to start the EDI translation
engine. The most common solution is to use a scheduler tool and run a command file at a
regular interval to process incoming EDI documents.

Both issues, variable file names and kicking off the translation process, can be solved in a
variety of ways using command files and scripts. We describe here one solution that will
mainly focus on the interaction between WebSphere Data Interchange and iSoft’s P2PAgent
and not on the scripting aspect.

Assuming that we have a configuration of iSoft as described in Example 2-14 on page 64, the
EDI documents will be written by the P2PAgent program in a directory inbox\retailer3.
Assume that the installation directory of WebSphere Data Interchange Server is
C:\WDIServer32. In the directory C:\WDIServer32\runtime\dicmd, we created a command
file, called wdi.bat with the following commands

Example 2-17 Command file wdi.bat

echo off
For %%f in (c:\isoft_enterprise\inbox\retailer3*.file.in) do @translate.bat %%f

This command file will result in running another command file, translate.bat, as many times
as there are EDI document files in the directory inbox\retailer3. We need to make sure that we
don’t process an EDI document twice or never. The set of file names will be built at the
beginning of the execution of the command file wdi.bat. The name of each file will be passed
as a parameter to translate.bat. It is clear that the command file translate.bat will have to
move or rename the file when the processing is complete, otherwise it will be processed
again the next time that the wdi.bat command file is executed. If a new document arrives
during the period of time that wdi.bat is already running, it will not be found before the next
time that wdi.bat is scheduled to run.

The contents of translate.bat is shown in Example 2-18. Since the command file knows the
variable name of the file for which it is started, we can copy it to a fixed name, in this case
edi.in. Then we make sure that the bin directory of WebSphere Data Interchange is part of the
PATH environment variable. Next, we call the EDISERVR program which is the WebSphere
Data Interchange engine. That program is given some WebSphere Data Interchange
commands via indirection. Finally, we copy the original source file to add the extension
.processed to its name and delete the original file.

Since all files will be copied at some point to the file edi.in, we can not run multiple instances
of translate.bat at the same time. As a result we can not run multiple instances of wdi.bat at
the same time. If this would cause a problem for your environment, you would need to write
smarter scripts to handle that.

Example 2-18 Command file translate.bat

echo %1
copy %1 c:\isoft_enterprise\inbox\retailer3\edi.in
set WDIRESTOREPATH=%PATH%
set PATH=C:\WDISERVER32\bin;%PATH%
ediservr < wdicmds.txt
set PATH=%WDIRESTOREPATH%
copy %1 %1.processed
del %1

Finally, let us look at the contents of the file wdicmds.txt, the content of which is given next.
74 Implementing EDI Solutions

Example 2-19 Contents of the file wdicmds.txt

set plan(WDIC);
init;
set file(PRTFILE,prtfile.txt);
set file(TRKFILE,trkfile.txt);
set file(EXPFILE, expfile.txt);
set file(EDI_IN,c:\isoft_enterprise\inbox\retailer3\edi.in);
set file(PO_IN,c:\isoft_enterprise\inbox\retailer3\po.in);
PERFORM TRANSFORM WHERE INFILE(EDI_IN) SYNTAX(E);
term;

You can easily see the correspondence between these commands and what we have
configured before using the client interface of WebSphere Data Interchange. The set file
commands correspond to the service profile settings where we had given values for similar
parameters. Setting the plan to the name of the database was something we did before in the
file wdi.properties. The PERFORM command in Example 2-19is the same command as we
had in the service profile INBOX.

It should be noted that the translated XML document is always stored in a file called po.in. By
default, WebSphere Data Interchange will append to this file, if it already exists. A single file
with multiple XML documents might cause problems for other applications that are going to
process this incoming order. If that is the case, an easy solution might be to add a copy
command to translate.bat. For example:

copy c:\isoft_enterprise\inbox\retailer3\po.in %1.translated

2.3.2 Preparing EDI documents
The process of translating XML documents to EDI documents is conceptually not much
different from the reverse process that we explained in the previous section. Figure 2-8 on
page 76 shows this flow in a graphical way. It shows that WebSphere Data Interchange can
handle file-based and queue-based XML input at the same time. Figure 2-8 on page 76
shows also that documents for Retailer2 and Retailer1 are in a different queue. But they might
as well be stored in the same queue, called POACKQ. The translated documents should be
written in unique queues per trading partners, since the P2PAgent program can not yet
handle routing information in the MQRFH2 at this time. This is likely to change in future
versions of the P2PAgent program. Given the configuration of the P2PAgent program that
was shown in Example 2-14 on page 64, the names of these queues are outbox.retailer1 and
outbox.retailer2.

In this section, we will use EDI 855 (purchase order acknowledgement) as the document that
is being sent by the supplier to the retailer that was sent previously a purchase order.
Chapter 2. Implementing iSoft P2PAgent 75

Figure 2-8 Outbound data flow

The process of configuring WebSphere Data Interchange for this task consists of the
following steps:

� Definition of trading partner profiles for all retailers and the supplier itself. This step had
been completed already when we described the setup for the inbound flow.

� Document definition

– Import of the EDI 855 document definition. During the import of the 850 document, we
had also selected the 855 document. Thus, we can skip this step.

– Import of a DTD, matching the internal representation of a purchase order.

� Definition of the translation map

� Definition of mailboxes, network profiles, queue profiles and service profiles

� Definition of the rules associated with the map

� Creating a command file to process incoming XML files

� Definitions of queue and process objects in WebSphere MQ to support the automatic
translation of incoming XML documents in queues.

XML document definition
In 2.3.1, “Translating received EDI documents” on page 66, we described how the company
Supplier was processing incoming EDI 850 documents. In general, when a company receives
such a document, it will respond with a purchase acknowledgement, which is an 855
document in EDI terminology. The internal systems of the company Supplier will likely not
generate an 855 document directly. The format will be company and application specific.
Example 2-20 on page 77 shows a simple DTD representing an XML document that contains
information that is typically found in a PO Ack. Again, the sample DTD is simple to not loose
focus in this redbook.

WebSphere
Data

Interchange

XML Input Folder
 for Retailer 3

XML Input MQ Queue
for Retailer 2

XML Input MQ Queue
for Retailer 1

EDI Output Folder
for Retailer 3

EDI Output MQ Queue
for Retailer 2

EDI Output MQ Queue
for Retailer 1

 XML EDI

 XML

XML EDI

 EDI

(Translation)
76 Implementing EDI Solutions

Example 2-20 DTD representing a PO acknowledgement

<?xml encoding="US-ASCII"?>
<!ELEMENT POResponse (Header,Detail)>

<!ELEMENT Header (PONumber,TargetPartnerID,Response)>

<!ELEMENT PONumber (#PCDATA)>
<!ELEMENT TargetPartnerID (#PCDATA)>
<!ELEMENT Response (#PCDATA)>

<!ELEMENT Detail (ItemNumber,Quantity,Description)>

<!ELEMENT ItemNumber (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT Description (#PCDATA)>

Example 2-21 shows a sample message that complies with the DTD of Example 2-20. It
contains an ID representing the target partner, a PO ID and a response field. Further down,
we also see a detailed view of the actual order.

Example 2-21 Sample XML document representing a PO acknowledgement

<?xml version="1.0"?>
<POResponse>

<Header>
<PONumber>P12347</PONumber>
<TargetPartnerID>RETAILER2</TradingPartnerID>
<Response>AT</Response>

</Header>
<Detail>

<ItemNumber>00123</ItemNumber>
<Quantity>10</Quantity>
<Description>Parts</Description>

</Detail>
</POResponse>

The DTD is imported in a dictionary called 855XML and the root element name is set to
POResponse (see Figure 2-9).

Figure 2-9 Import XML DTD in WebSphere Data Interchange

After importing the DTD, we need to tell WebSphere Data Interchange about the role of the
field TargetPartnerID. Open the DTD again in WebSphere Data Interchange and set the field
ID Element for Receiver to \POResponse\Header\TargetTradingPartnerID\\. Refer to
Figure 2-6 on page 69 to understand where we did this for the PO DTD.
Chapter 2. Implementing iSoft P2PAgent 77

Definition of the translation map
The next step is to create the translation map to translate the XML document in the
corresponding EDI 855 document. Open the map editor and select File -> New. Use the
following values in the map definition wizard:

� Map name: XMLTO855
� Target or source based: Target
� Source document definition: XML
� Source dictionary name: 855XML
� Source DTD: XMLPOACK
� Target document definition: EDI
� Target dictionary name: X12V4R3
� Target EDI standard transaction: 855

After reviewing your selections in the summary window of the wizard, select Finish to start
the actual mapping between the XML document and the EDI transaction.

Figure 2-10 shows the first portion of the map. It shows the mappings for Table 1. The data
segments of the BAK segment are filled in by dragging the corresponding elements from the
XML document. The field Date is filled in via an assignment command in which we invoke the
built-in function Date(). The field Transaction Set Purpose Code is filled in via an assignment
in which the field is set to the constant value ‘06’.

Figure 2-10 Building an EDI 855 document - step 1

Figure 2-11 on page 79 shows the first part of the mapping for Table 2. Two data elements are
mapped directly from the source XML document, while the element Product/Service ID
Qualifier is filled in via an assignment.
78 Implementing EDI Solutions

Figure 2-11 Building an EDI 855 document - step 2

Figure 2-12 shows the second part of the mapping for Table 2. One element is filled via a
direct mapping from the corresponding element in the XML document, while the other
element is filled in via assignment.

Figure 2-12 Building an EDI 855 document - step 3

Setup within WebSphere Data Interchange
Similar to what we have done for the inbound flow, we need to set up a number of objects in
WebSphere Data Interchange to support this map.

Open the setup window in WebSphere Data Interchange and define an MQSeries queue
profile POACKQ for the queue POACKQ. Set also the name of the queue manager in this
profile. Define a second MQSeries queue profile called OUT_RET1 for the queue
outbox.retailer1. Define also an MQSeries queue profile OUT_RET2 for the queue
outbox.retailer2.

Notice the implied naming convention for the queues. The queue POACKQ, and also the
queue PO_IN that was used before, have a name that imply a function, since the contents of
the queue will be application dependent. The queues inbox, outbox.retailer1 and
outbox.retailer2 are not application dependent but destination dependent. The queue inbox
Chapter 2. Implementing iSoft P2PAgent 79

was used for EDI 850 documents but can be used for any type of documents for which the
destination is the internal system of the Supplier. The queues outbox.retailer1 and
outbox.retailer2 are to be used for any type of document targeted for the implied trading
partner.

The next step is the definition of three network profiles, which are defined in the setup window
of WebSphere Data Interchange.

� Create network profile OUT_RET1 with values:

– Network ID: OUT_RET1

– Communication Routine: VANIMQ

– Network Program: EDIMQSR

– Network Parameters: SENDMQ=OUT_RET1

� Create network profile OUT_RET2 with values:

– Network ID: OUT_RET2

– Communication Routine: VANIMQ

– Network Program: EDIMQSR

– Network Parameters: SENDMQ=OUT_RET2

� Create network profile POACKQ with values:

– Network ID: POACKQ

– Communication Routine: VANIMQ

– Network Program: EDIMQSR

– Network Parameters: RECEIVEMQ=POACKQ

Next, we need some mailboxes to represent the new destination and source queues. Create
the following mailboxes:

� OUT_RET1: set network profile ID to OUT_RET1

� OUT_RET2: set network profile ID to OUT_RET2

� POACKQ: set network profile ID to POACKQ

Finally, we need to create service profiles that describe the actions that WebSphere Data
Interchange should perform when documents are posted in a mailbox.

� Service profile OUT_RET1

– Perform command:
PERFORM SEND WHERE REQID(OUT_RET1) CLEARFILE(Y)

– Input files: OUT_RET1 - ..\xml\out_ret1.txt

� Service profile OUT_RET2

– Perform command:
PERFORM SEND WHERE REQID(OUT_RET1) CLEARFILE(Y)

– Input files: OUT_RET2 - ..\xml\out_ret2.txt

� Service profile POACKQ

– Perform command:
PERFORM TRANSFORM WHERE INFILE(POACKQ) SYNTAX(X)

– Input files: OUT_RET1 - ..\xml\out_ret1.txt

– Input files: OUT_RET2 - ..\xml\out_ret2.txt
80 Implementing EDI Solutions

Creating an envelope profile
Before we can tie everything together, we need one more object in WebSphere Data
Interchange, which is an envelope profile. EDI documents can be grouped in a single file and
surrounded by an envelope. An envelope can contain documents of different transactions. In
our setup, we always process (send and receive) the documents as soon as they become
available. You may have situations where you want to batch the documents before
enveloping them and then passing them to the trading partner. However, even when you will
send and receive the documents one at a time, you still need to have an envelope.

Envelope profiles are used to set values for specific segments in an EDI document, such as
the ISA segment. The ISA segment contains, beside others, the fields sender and receiver ID
and the fields sender and receiver qualifier. In the DTD definition, we have made the link
between the XML element TargetPartnerID and receiver ID. However, no information was
available in the XML document to fill in the field sender ID. We could have set a value in the
map, using the setProperty built-in function. However, that would result in a value (say SUP1)
that is independent of the target partner. Remember that the iSoft configuration had a
separate ID for the supplier to interact with a retailer. An elegant solution to set the correct
value (SUP1, SUP2 or SUP3) in the ISA segment is to use separate X envelope profiles.

Envelope profiles are managed in the setup window. Different types exist corresponding with
different EDI standards. Since we have used X12 documents, we will need to create an X
profile.

Select the tab X Envelope Profiles and select File -> New. Name the profile 855SUP1.
Select the tab Interchange Header (ISA) and set the field ISA06 to SUP1. Save the
document. Create similar profiles 855SUP2 and 855SUP3 where the ISA06 field is set to
SUP2 and SUP3, respectively.

Creating a rule for the map
Given that the destination of the translated document is different based on the target partner
ID, we will need to define three new rules for the map XMLTO855. Open the map editor and
select the map XMLTO855 that we created before. Select Action -> Usages to open the rules
editor. Select File -> New to create a rule and set these fields to the following values:

� Usage Indicator: Production
� Trading Partners:

– Sending: ANY
– Receiving: RETAILER1

� Output file and type: OUT_RET1 and MQ
� Make the map active by selecting the check box Active.
� Select the tab Envelope Attributes

– Envelope Type: X
– Envelope Profile Name: 855SUP1

Create a second and third rule for Retailer2 and Retailer3 with matching values.

Updating WebSphere MQ resources
The queues outbox.retailer1 and outbox.retailer2 were defined previously to support the
configuration of the P2PAgent program. In order to validate the WebSphere Data Interchange
configuration discussed above, we need to define a queue called POACKQ. This queue could

Tip: Since these profiles are all similar, you can use the copy function of WebSphere Data
Interchange by selecting the menu option Action -> Copy.
Chapter 2. Implementing iSoft P2PAgent 81

be modeled after the queue inbox that was defined to support the inbound data flow. The
queue POACKQ should have the following values for these attributes:

On the tab labeled Triggering:

� Trigger Control: On
� Trigger Type: First
� Initiation Queue: WDI.INIT.Q
� Process Name: WDI.PROC

These values can be set by using WebSphere MQ Explorer. Note that it is assumed that the
objects WDI.INIT.Q and WDI.PROC have been created as part of the standard configuration
of WebSphere Data Interchange.

When you write an MQ message (such as the one shown in Example 2-21 on page 77) on the
queue POACKQ, the WDIAdapter program should be launched by the WebSphere MQ
Trigger Monitor program and the queue outbox.retailer2 should contain a message as shown
in Example 2-22.

Example 2-22 Sample translated EDI document

00000000 ISA* * * * * *SUP2 * *RETAILER2 *060303*1506* *
000000009 *P*:!
00000106 GS*PR* * *060303*1506*000000009* *004030!
00000149 ST*855*000000009!
00000166 BAK*06*AT*P12347*20030306!
00000192 PO1**10****ID*00123!
00000212 PID*F****Parts!
00000227 SE*5*000000009!
00000242 GE*1*000000009!
00000257 IEA*1*000000009!
00000273 .

Processing file-based input for WebSphere Data Interchange
As shown in Figure 2-8 on page 76, the outbound flow for Retailer3 is file based. WebSphere
Data Interchange needs to read files containing XML documents from a given directory and
write them in the directory that is used by the P2PAgent program. Similar to the inbound flow,
we need to make sure that script files are written in such a way that each file is processed
exactly once. The P2PAgent program will have a persistent send command to monitor a given
directory. An example of such a command is shown below:

send http SUP3 RETAILER3 -fPoutbox -fSout -fE.pend -tE2003231000000 -s -e -r1 -n2

This command will instruct the P2PAgent program to monitor the directory outbox and send
all files with the extension out to partner RETAILER3. Sent files are renamed with an
extension .pend.

On the input side, we need to assume again that the application that generates the XML files,
uses filenames that are unique so that a file is not overwritten by this application before
WebSphere Data Interchange has translated the XML document into an EDI document.

And finally, there is again the issue of automating the translation process, since we can not
rely on WebSphere MQ triggering to start the translation engine.

To handle all these issues, we will present some script files. The first script file is called by a
scheduler program at regular intervals and looks for files in the directory
C:\iSoft_Enterprise\outbox\retailer3 with an extension of .file.txt. For each found file, the
82 Implementing EDI Solutions

command file translate_out.bat is being called, passing it the name of the XML file. such a
command file is shown in Example 2-23.

Example 2-23 Command file wdi_out.bat

echo off
For %%f in (c:\isoft_enterprise\outbox\retailer3*.txt) do @translate_out.bat %%f

The second command file, translate_out.bat, prepares the WebSphere Data Interchange
environment by setting the PATH environment variable correctly. It also copies the current file
(passed to the command file as the first argument) to the intermediate file xml.in and then
calls the actual translation engine. When the engine returns, the current file is renamed to
have an extension .out, which is what the P2PAgent program is looking for.

Example 2-24 Command file translate_out.bat

echo %1
copy %1 c:\isoft_enterprise\outbox\retailer3\xml_in
set WDIRESTOREPATH=%PATH%
set PATH=C:\WDISERVER32\bin;%PATH%
ediservr < wdi_out_cmds.txt
copy C:\iSoft_Enterprise\outbox\retailer3\edi_out %1.out
copy %1 %1.processed
del %1
set PATH=%WDIRESTOREPATH%

The actual WebSphere Data Interchange commands are stored in the file wdi_out.cmds,
shown in Example 2-25. Similar to the inbound flow, the commands consist of a series of
environment setup commands followed by the familiar PERFORM command.

Example 2-25 WebSphere Data Interchange commands

set plan(WDIC);
init;
set file(PRTFILE,prtfile.txt);
set file(TRKFILE,trkfile.txt);
set file(EXPFILE, expfile.txt);
set file(XML_IN,c:\isoft_enterprise\outbox\retailer3\xml_in);
set file(POACK,c:\isoft_enterprise\outbox\retailer3\edi_out);
PERFORM TRANSFORM WHERE INFILE(XML_IN) SYNTAX(X) OUTFILE(POACK);
term;

The generated files, with the extension .out, are now ready for transmission by the P2PAgent
program and will be picked up by it at the next polling interval.

2.4 Integration with the Interchange Server
The InterChange Server (ICS) is often used as a platform for integrating applications within
an enterprise. While we can not cover all aspects of using this technology in a single redbook,
this section will describe some typical operations that would allow the ICS to interact with
WebSphere Data Interchange. We will cover the use of the MQSeries Connector to send and
receive data to and from products such as WebSphere Data Interchange. The use of other
connectors, such as JTextConnector, is very similar.
Chapter 2. Implementing iSoft P2PAgent 83

2.4.1 Creating business objects
The first step would be the creation of a business object matching the DTD that we used
before in WebSphere Data Interchange. You can use the Business Object Designer and
define the fields manually. However, for a more realistic DTD representing a purchase order,
there will be a lot more fields than what we used here. Defining the business object manually
would then become an error-prone operation.

The Interchange Server provides some tools to make the definition of a business object
easier. An optional installation component of the ICS is the XMLODA, XML Object Discovery
Agent. Launch the agent, from the ODA\XML directory. When it is started, you should see a
command windows as shown in Figure 2-13.

Figure 2-13 XML Object Discovery Agent is running

Launch now the Business Object Designer and select File -> New Using ODA from the
menu, as shown in Figure 2-14 on page 85.
84 Implementing EDI Solutions

Figure 2-14 Using the Business Object Designer

A new window will appear that will guide you through the definition process. Click the button
Find Agents to populate the right pane with available agents and select the XML ODA agent
out of the list. Select Next to continue (Figure 2-15 on page 86).

Note: The Visibroker component should be running to get this list of available agents.
Chapter 2. Implementing iSoft P2PAgent 85

Figure 2-15 Business Object wizard - Step 1

Most of the fields in step 2 are populated by default. Provide the following information:

� Name of the file that contains the DTD
� Root element
� Top Level element
� BOPrefix

and select Next to continue (Figure 2-16).

Figure 2-16 Business Object wizard - Step 2
86 Implementing EDI Solutions

The next step allows you to select other levels (or nodes) in the XML document for which you
would like to create a business object definition. You might for example require an object to
represent a single Detail element. For our purposes, this is not required. So, we select the top
one and click Next to continue (Figure 2-17).

Figure 2-17 Business Object wizard - Step 3

Step 4 summarizes your selections so far. At step 5, you need to select a verb with the
business objects. Figure 2-18 shows the selection of the Create verb. Select OK to continue.

Figure 2-18 Business Object wizard - Step 5
Chapter 2. Implementing iSoft P2PAgent 87

Finally, in step 6, you can select where to save the business object. If the ICS is running and
you are connected to it, the first option, save to server, should be available. Alternatively, save
the business object to an import file (selected option in Figure 2-19) and open the file later in
the System Manager via File -> Open from File.

Figure 2-19 Business Object wizard - Step 6

2.4.2 Configuring the MQSeries connector
The configuration of the MQSeries connector consists of the definition of some meta-data
business objects and the configuration of the connector itself.

Updating the XML meta-object
Open the business object MO_DataHandler_DefaultXMLConfig and save it as
MO_DataHandler_WDIXML_Config. Make the following changes to this business object:

� Set the attribute DTDPath to the directory that holds the DTD for the POResponse XML
document.

� Set the BOPrefix to POACK, which is the prefix used during the creation of the business
object (see Figure 2-16 on page 86).

� Save this business object to the server.
88 Implementing EDI Solutions

Figure 2-20 Data Handler business object

Open now the business object MO_DataHandler_Default. Update the type field for element
text_xml and set it to the XML Data Handler object MO_DataHandler_WDIXML_Config that
we created before. Save this business object.

Figure 2-21 Default Data Handler business object

Define meta-object MO_WDIXML_config
The connector requires a meta-object that describes how to convert the business object to an
XML message in a queue. Open the Business Object Designer and create a new business
object, named MO_WDIXML_Config. When the object designer window appears, select the
tab Attributes and make the following changes:

� In the name field, add POACK_POResponse_Create

� In the field App Spec Info, type InputFormat=MQSTR

� Add another attribute. In the name field, type Default
Chapter 2. Implementing iSoft P2PAgent 89

� Select the check box Key for this attribute

� In the field App Spec Info, type:

OutputQueue=queue://cw_studenta.queue.manager/POACKQ?targetClient=1

POACKQ is the name of the triggered queue for which WebSphere MQ will launch the
WDIAdapter program, as configured in 2.3.2, “Preparing EDI documents” on page 75.
Replace cw_studenta.queue.manager with the name of your queue manager. The option
targetClient=1 instructs the ICS to generate a standard WebSphere MQ message, instead of
a JMS message.

Figure 2-22 Business object MO_WDIXML_Config

Configuring the MQSeries connector
Expand the folder Connectors in the System Manager and double-click the object MQSeries
Connector. Click the tab Connector Agent to specify the connector specific properties, as
detailed in Table 2-1 on page 91.
90 Implementing EDI Solutions

Table 2-1 Connector properties

Figure 2-23 shows the Connector Designer window where you need to specify the values
listed in Table 2-1.

Figure 2-23 Configuring the MQSeries connector

Select then the tab Supported Business Objects. Click the blank cell under the heading
Business Object Name. A drop-down box will appear. Select POACK_POResponse from the
list and select the check box Agent Support. Add the meta-object MO_DataHandler_default
to this table and select the check box Agent Support.

When finished, select File -> Save to Server. During the save, you may receive warnings
about the need to restart the connector. You can accept those warnings. When the save
process is finished, switch to the System Manager and right-click the MQSeries connector in
the folder Connectors, then stop and restart the connector.

Property Value

InDoubtEvents Reprocess

Channel CHANNEL1

InProgressQueue queue://cw_studenta.queue.manager/MQCONN
.IN_PROGRESS

DataHandlerConfigMO MO_DataHandler_Default

ConfigurationMetaObject MO_WDIXML_Config

DataHandlerMimeType text/xml

Port 1414

Hostname studenta
Chapter 2. Implementing iSoft P2PAgent 91

2.4.3 Developing a test collaboration
The next step is the development of a collaboration that will generate the POResponse
document for processing by WebSphere Data Interchange. Open the System Manager and
expand the folder Collaboration Templates. Locate the template CollaborationFoundation and
copy/paste it in the folder Collaboration Templates.

Name the copied template WDI_Outbound_Template. Open the new template in the Process
Designer, by double-clicking it. Select Template -> Open Template Definitions to update the
template. Select the tab Ports and Triggering Events. Update the BO Name for each port and
set it to POACK_POResponse. Change the field Create for the row From to Main (see
Figure 2-24).

Apply the changes and compile the updated template.You can delete the port
DestinationAppRetrieve, but that is not required.

Figure 2-24 Update the template definitions

Now that we have a template that fits our needs, we can create a collaboration object.
Right-click the folder Collaborations and select New collaboration object from the context
menu. Select the template WDI_Outbound_Template and name the new collaboration
WDI_Outbound. Select Next. Bind now the ports to connectors, as shown in Figure 2-25 on
page 93.

Set the From port to the PortConnector and the To port to the MQSeriesConnector. Set also
the DestinationAppRetriever port to the PortConnector, if you have not deleted this port in the
template.

Note: If your installation of the Interchange Server does not have this template, you can
find an import file for this template as part of the additional material for this redbook. Refer
to Appendix B, “Additional material” on page 217.

Note: If you do not see the PortConnector as an available choice, you need to update the
list of supported business objects for the PortConnector and include the business object
POACK_POResponse.
92 Implementing EDI Solutions

Click Next twice and click Finish to complete the definition of this collaboration.

Figure 2-25 Bind the ports of the collaboration

If all steps went well, the System Manager will now show a graphical representation of the
collaboration, as shown in Figure 2-26.

Figure 2-26 WDI_Outbound collaboration

Finally, start the collaboration by selecting Component -> Start WDI_Outbound. Or select
the start command from the context menu of the collaboration.
Chapter 2. Implementing iSoft P2PAgent 93

2.4.4 Using the Test Connector
The final step is to use the Test Connector tool to drive the collaboration. Before you start this
tool, you should perform a number of validation tasks.

� Expand the folder Connectors in the System Manager and verify that the
MQSeriesConnector is started.

� Verify that the PortConnector is started. Sometimes this connector is in a paused state,
which is usually caused by a missing queue in WebSphere MQ. If you can not get the
PortConnector to start, verify that the queue AP/PORTCONNECTOR/CW_STUDENTA
exist. Replace CW_STUDENTA with the name of your ICS. If this queue does not exist,
create it with default attributes.

� Start the MQSeries Connector that we configured before by selecting Start -> Programs
-> IBM CrossWorlds -> Connectors -> MQSeries Connector. Verify in the output that
the connector starts correctly. You can also start the System Monitor (from the Tools menu
in the System Manager) and verify that the agent state of the MQSeries Connector is
Active.

Start now the Test Connector by selecting Start -> Programs -> IBM CrossWorlds ->
Connectors -> Test Connector. When the tool is started, select File -> New Profile, which
will bring up a profile selection window. Select Add to create a new profile.

Provide the name of the server, the password of the admin user ID (usually the word null) and
the name of the connector that we’re going to simulate: PortConnector. You can leave the field
Config File blank. The test connector should be able to locate the configuration file by itself.
Alternatively, you should point to the ICS configuration file manually (usually
D:\CrossWorlds\InterchangeSystem.cfg). Select OK to close this window.

Figure 2-27 Create a new profile for the test connector

Select now the new profile in the profile list window and click OK. The test connector is now
loaded with the correct profile. Select File -> Connect Agent to connect to the ICS.

When the connection succeeds, the test connector will list all business objects that are
supported by the port connector, as shown in Figure 2-28 on page 95.
94 Implementing EDI Solutions

Figure 2-28 Running the test connector

Double-click the business object POACK_POResponse to bring up the next window. Select
the verb Create and name the instance of the business object (for example testbo).
Right-click the element ROOT and select Add Instance. Now expand the ROOT element
which will list two child elements, Header and Detail. Right-click these elements too and
select Add Instance each time. The business object window should now look as shown in
Figure 2-29.

Figure 2-29 Setting values for the business object
Chapter 2. Implementing iSoft P2PAgent 95

Provide values for the six data elements of this business object and click OK.

This will bring you back to the main window of the test connector. Select the new business
object in the tree structure and select Request -> Send.

Figure 2-30 Business object is being sent

Open now WebSphere MQ Explorer and browse the queue POACKQ which should contain
an XML message representing this business object. However, if the WebSphere MQ Trigger
Monitor is still running, your message might be consumed already and you may need to
inspect the output queues of WebSphere Data Interchange. And, if iSoft’s P2PAgent is still
running, your message might be gone to a trading partner.

This completes the basic integration of the Interchange Server in a solution with WebSphere
Data Interchange. The collaboration can now be extended to include ports to real back-office
applications and at that time you will probably need to develop some maps in the System
Manager.

2.4.5 Inbound flow
The previous sections described in detail the integration process for the outbound flow. The
steps of integrating the InterChange Server in the inbound flow are quite similar.

Business object
First, we need again a business object to represent the incoming purchase order. The DTD,
listed in Example 2-15 on page 68, can be imported in the InterChange Server using the XML
ODA as described in 2.4.1, “Creating business objects” on page 84.

Important: Since this business object will result in a message that is going to be
processed by WebSphere Data Interchange, you should provide data that makes sense for
WebSphere Data Interchange. Setting a random value for TargetPartnerID will likely result
in an unprocessed document within WebSphere Data Interchange.
96 Implementing EDI Solutions

Specify the following values for the PO DTD:

� Root element: PO
� Top Level element: PO
� BOPrefix: PO

The MQSeriesInbound connector
The next step is to create an additional MQSeries connector. Perform the following steps:

� Copy/paste the existing MQSeriesConnector object in the folder Connectors in the System
Manager. Name it MQSeriesInboundConnector.

� Open a file browser and find the directory MQSeries in the connectors directory of the ICS
installation. Copy the whole directory and name it MQSeriesInbound.

� Open the folder Connectors in the Start menu and copy/paste the existing short-cut
MQSeries Connector as MQSeriesInbound Connector.

� Open the properties of this new short-cut and update the field Target:

D:\CrossWorlds\connectors\MQSeriesInbound\start_MQSeries.bat MQSeriesInbound cw_studenta
-cD:\CrossWorlds\connectors\MQSeriesInbound\MQSeriesAgentConfig.cfg

MQSeries has been replaced three times with MQSeriesInbound. Update also the field
Start in to the name of the new directory:

D:\CrossWorlds\connectors\MQSeriesInbound\

� Define a new queue AP/MQSERIESINBOUNDCONNECTOR/CW_STUDENTA on the
queue manager used by the ICS. Replace CW_STUDENTA with the name of your ICS.

� Restart the ICS. After the restart, verify that the connector is running via the System
Manager.

� Start the connector agent via the short-cut in the Programs folder and verify that the Agent
State in the System Monitor is active.

Open the PortConnector object and update the supported business objects. Include business
object PO_PO in the list and make sure to check the field Agent Support.

Create meta-objects
Once you have verified that the new connector can be started, proceed with the definition of
meta-objects. Open the meta-object MO_DataHandler_WDIXML_Config and safe it as
MO_DataHandler_CWXML_Config. Make the following changes:

� Provide the path to the location of the DTD and the file name

� Set the BOPrefix to PO

Define meta-object MO_CWXML_Config. You can copy the meta-object
MO_WDIXML_Config. Rename the field POACK_POResponse to PO_PO.

Define meta-object MO_DataHandler_Inbound_Default. You can copy it from
MO_DataHandler_Default. For the MIME type text/xml, set the field type to
MO_DataHandler_CWXML_Config.

Open the connector object MQSeriesInboundConnector and switch to the tab Application
Config Properties. Set the value of the property DataHandlerConfigMO to
MO_DataHandler_Inbound_Default. Set the value of the property ConfigurationMetaObject to
MO_CWXML_Config. Set the value of the property InputQueue to
queue://cw_studenta.queue.manager/purchase.orders. Save the changes and restart the
connector.
Chapter 2. Implementing iSoft P2PAgent 97

Verify the map in WebSphere Data Interchange
The ICS requires that the incoming XML message contains a DOCTYPE statement, that
includes the name of the DTD. To make sure that the XML document contains the DTD name,
review the map 850TOXML in WebSphere Data Interchange. Open the map editor and verify
if you have a SetProperty call for the property Diprolog, as shown in Figure 2-31.

Figure 2-31 Setting the property Diprolog

If this statement does not exist, right-click the name of the map 850TOXML and select
Insert -> Command -> SetProperty from the context menu. A mapping command editor
should appear, as shown in Figure 2-32. Update the template call of SetProperty to refer to
the property Diprolog and set the value to what is required for your XML document.

Figure 2-32 Adding the name of the DTD to the XML document

Save and re-compile the map.

Create the collaboration
Expand the folder Collaboration Templates in the System Manager. Copy/paste the template
CollaborationFoundation and name the new template WDI_Inbound_Template. Open the new
template and open its definitions. Select the tab Ports and Triggering Events (see Figure 2-33
on page 99). Set the BOType to PO_PO for all three ports. Set the Create field for the From port
to Main. Apply the changes. Compile and save the template.
98 Implementing EDI Solutions

Figure 2-33 Template definitions

Create now a new collaboration WDI_Inbound from the template WDI_Inbound_Template.
Bind the ports as follows:

� From port: MQSeriesInboundConnector
� To port: PortConnector
� DestinationAppRetrieve port: PortConnector

Save and start the collaboration. Check the server log and verify that you see log messages
as shown in Example 2-26.

Example 2-26 ICS log

[System: Server] [Thread: VBJ ThreadPool Worker (#5244814)] [Type: Info] [MsgID: 31] [Mesg: Initializing
collaboration "WDI_Inbound".]
[System: Collaboration] [SS: WDI_Inbound] [Thread: VBJ ThreadPool Worker (#4968337)] [Type: Info] [MsgID:
11009] [Mesg: Subscribed to PO_PO.Create from publisher MQSeriesInboundConnector.]
[System: Collaboration] [SS: WDI_Inbound] [Thread: VBJ ThreadPool Worker (#4968337)] [Type: Info] [MsgID:
11014] [Mesg: Collaboration is active.]

Use the test connector
Finally, start the test connector and select the profile PortConnector. Connect to the server
and create a business object of type PO_PO. Select the newly created business object and
select Request -> Accept Request. The PortConnector acts now as an endpoint and is
ready to receive PO_PO business objects.

Write now an EDI message on the queue INBOX, processed by WebSphere Data
Interchange. The translated message, including a DOCTYPE, should then end on queue
purchase.orders, which is monitored by the MQSeriesInbound Connector. The message will
then be routed through the collaboration and end at the port connector in the test connector.

Figure 2-34 on page 100 shows the test connector window when data has arrived.
Chapter 2. Implementing iSoft P2PAgent 99

Figure 2-34 A business object has arrived

Select the business object in the right pane to inspect the details. Figure 2-35 shows the
business object representation of this XML message, which was a translation of an EDI 850
document.

Figure 2-35 Details of the received business object
100 Implementing EDI Solutions

Chapter 3. Implementing multi-product AS/2
communication with trading
partners

This chapter describes the implementation of a small trading partner network with three
partners where not every partner is using the same AS/2 provider. We consider a company
called Supplier that is using Trading Partner Interchange (TPI) interacting with another TPI
installation. We describe the setup of this network and then add a partner to it that is using
iSoft’s P2PAgent.

This chapter also discusses integration scenarios between TPI, WebSphere Data
Interchange and the InterChange Server.

3

© Copyright IBM Corp. 2003. All rights reserved. 101

3.1 Business case
In this chapter, we will describe the use of TPI by a manufacturer of consumer products. This
company, called Supplier throughout this chapter, uses TPI to receive purchase orders from a
retailer, called Retailer1. Both companies use the same product for their B2B document
exchange. The setup of this exchange will be discussed in detail in 3.2, “Implementing TPI
between two partners” on page 103.

The company Supplier has signed a new deal with a second retailer, called Retailer2. The
company Retailer2 would also like to exchange EDI documents with Supplier. However,
Retailer2 imposes the use of iSoft’s P2PAgent as the preferred AS2 client. The company
Supplier is not very eager to implement a second AS2 client and would like to use TPI to
interact with Retailer2. In 3.3, “Communicating with an iSoft P2PAgent installation” on
page 116, we describe the implementation and the interoperability of iSoft’s P2PAgent and
TPI.

Figure 3-1 shows a schematic view of the infrastructure that we are going to build.

Figure 3-1 Implementation of TPI and iSoft for a supplier and two retailers

In addition to the basic implementation of B2B communication for Supplier with his two
customers Retailer1 and Retailer2, we will describe several integration scenarios.
Section 3.4, “Integration between WebSphere Data Interchange and TPI” on page 132
explains how the integration of TPI and WebSphere Data Interchange works. We will look at
trading partner information synchronization and routing decisions. Further up the integration
chain, the company Supplier might use the InterChange Server to integrate its B2B exchange
with its back-office applications. Again, there are several integration scenarios, which we
describe in 3.5, “Integration between the Interchange Server, WebSphere Data Interchange
and TPI” on page 150.

Collaboration

WDI
Transaction

XML-EDI

ERP/CRM/SCM

TPI
Supplier

TPI
Retailer1

FF
ii
rr
ee
ww
aa
ll
ll

Internet

Internet

FF
ii
rr
ee
ww
aa
ll
ll

FF
ii
rr
ee
ww
aa
ll
ll

FF
ii
rr
ee
ww
aa
ll
ll

iSoft
Retailer2

InterChange Server

AS/2

AS/2

AS/2

AS/2
102 Implementing EDI Solutions

3.2 Implementing TPI between two partners
In this section, we describe the steps to set up communication between Supplier and
Retailer1 who both use TPI as their B2B gateway. Besides the basic setup of profiles, we also
set up integration using WebSphere MQ for Supplier.

Figure 3-2 provides an overview of the different components within the IT infrastructure of
company Supplier.

Figure 3-2 Overview of components

3.2.1 Installation of TPI for Supplier
The installation of TPI is straightforward. During the process, you will be asked for the
following information:

� Registration number of the product
� Company name
� Memory limit for the TPI Server
� Destination directory

Note that the company name provided during the installation does not result in any
pre-defined company profiles nor does it imply that this name should be used as the ID or
profile name.

3.2.2 Company profile setup for Supplier
The very first thing you would do when using TPI is to create a company profile. Note that you
might have several company profiles to represent a single physical company. Associated with
a company is a public-private key pair. One can argue that you should use a different key pair
for each trading partner. Thus, if you company deals with ten trading partners, this approach
would result in ten different company profiles.

Start the TPI Administrator. The program will prompt you for a user ID and password. The
only predefined user ID is Administrator with a blank password.

FF
ii
rr
ee
ww
aa
ll
ll

TPI
Supplier

AS/2
Internet

FF
ii
rr
ee
ww
aa
ll
ll

AS/2

Collaboration
(Generic BO)

Connector
ASBO

SCM ERP

Connector
ASBO

Connector
ASBO

CRM

EDI_OUTEDI_OUTEDI_OUTEDI_OUTXML_IN

MQSeries
Connector

ASBO

WDI
Transaction

XML-EDI

TPI
Retailer
Chapter 3. Implementing multi-product AS/2 communication with trading partners 103

Figure 3-3 TPI login window

The initial window will appear. Select File -> New to create a company profile.

Figure 3-4 Initial window of TPI

The process starts by prompting you for a trading partner name and ID, as shown in
Figure 3-5 on page 105. The field ID is the concatenation of two fields in the ISA segment of
an EDI document. While you can freely choose the value of the field Name, you will likely
need to synchronize the value for the field ID with the configurations of other software
products, such as WebSphere Data Interchange.
104 Implementing EDI Solutions

Figure 3-5 First step to create a new company profile

After you click OK, the process requires you to fill in a number of fields on different tabs
(Figure 3-6). Provide such data as address information, contact information, and the ISO
country code. The Preferences tab allows you to control document retention values and
notification e-mail addresses. You can leave this tab to its default values.

Figure 3-6 Create company profile: the Identity tab

Switch to the Inbound Transports tab and click the Add button. From the drop-down box,
select Bundled HTTP. Click OK. You will then be presented with the HTTP location that is not
configurable for bundled HTTP. Click OK once more to return to the main window (Figure 3-7
on page 106).
Chapter 3. Implementing multi-product AS/2 communication with trading partners 105

Figure 3-7 Completed inbound transport settings

For this scenario, we do not need to configure anything on the XML tab. Note that your
version of TPI might disable the tabs Integration and Tuning. This depends on the type of
licence that you have acquired.

For file-based integration, which we will use initially, select the tab System Directories and
review the default directory names. If necessary, you can alter them now.

Click OK to save this profile. The TPI Administrator tool will prompt you as to whether you
want to set up a certificate for this new company profile. Select Yes, which will open another
window that will help you generate a new certificate (Figure 3-8 on page 107).
106 Implementing EDI Solutions

Figure 3-8 Create a new certificate

You can choose to generate a self-signed certificate or acquire one from a trusted authority. If
you prefer to work with self-signed certificates, the next window will ask you to specify the
length of the key and the validity period (Figure 3-9 on page 108). You can use keys with a
length of up to 2048 bits. However, if you would like to create a setup that can interoperate
with other AS2 clients, such as iSoft, you should use the default length of 512. The next
window summarizes your selections. Select Finish to close the configuration process and
start the actual generation. Note that the key generation might take a while, depending on the
speed of your processor.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 107

Figure 3-9 Settings for the new certificate

This completes the setup of a company profile. A similar procedure is required for the setup of
TPI for trading partner Retailer1.

3.2.3 Partner profile setup for Retailer1 at Supplier
To connect the two TPI environments, you can either manually create a partner profile or
export the company profiles on both sides and exchange the export files in a secure way.
When both trading partners use TPI, it is probably easier to just export the profiles and import
them on the other side.

To export the company profile, make sure that the Administrator window is currently
displaying Company Profiles. If not, click the Company Profiles button on the left-hand side.
Select File -> Export to initiate the export process (Figure 3-10 on page 109).

Select the radio button to export your company as an XML partner profile. This means that
the export file can be used only as an import file for partners at another TPI installation. If you
would like to import the company profile itself on another TPI Server (for example, to stage a
profile from test to production), you should use the option XML company profile. Click the
Browse button to specify a file name and location to store the export file. This file can now be
exchanged with your trading partners.
108 Implementing EDI Solutions

Figure 3-10 Export company profile

You can now import the company profile as a partner profile. Switch to the Partner Profiles
window (click View -> Partner Profiles) and select File -> Import. Select the import file on
the file system and click OK. The profile will now be loaded.

Double-click the profile to inspect it or to make any changes to it. For example, the target
HTTP location, by default, contains only the host name and not the domain name of the
partner. You might need to change this on the Outbound Transports tab. Select Bundled
HTTP, click the Edit button, and update the URL. Also, you might need to add information
about firewalls and firewall authentication.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 109

Figure 3-11 Partner Profiles window after import

3.2.4 Validation of the setup
Before proceeding with any type of integration, it is probably a good idea to perform some
simple validation of the current setup. First, from the Start menu, start the TPI Server and the
View Server Log application.

When the server is started, a window is shown with two tabs, labeled Transactions and
Agents. Select the tab Agents and verify that the system is running. You can also inspect the
log to validate this. The outbound communication is implemented by polling the outbound
directories every 30 seconds. This value is tunable in certain versions of TPI using the Tuning
tab for the company profile. By monitoring the tab Agents in the window Server Display for 30
seconds, you can see that the task Outbound polling EDI runs for a moment and then returns
to the idle status. This is an indication that the server is operating as expected.
110 Implementing EDI Solutions

Figure 3-12 TPI Server Display

A common problem is a collision on TCP ports. Usually, TPI uses port 1090, but this port can
already be used by other applications such as WebSphere Application Server. To avoid this,
you can start TPI first before you start WebSphere Application Server.

Assuming that all server components start well, we can proceed to the next task: the actual
exchange of some EDI documents. To exchange documents quickly, you can use the
Document Generator tool, which you can start from the Start menu.

Figure 3-13 The Document Generator tool

Click the Generate EDI button to provide details about the document that you want to
generate.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 111

Figure 3-14 EDI Document Generator

Fill in the Sender ID and Receiver ID fields. Provide a value for the Control ID field also, since
this is used in the document. You can use this, for example, to find out what both partners do
when the same document is sent twice. The output directory should be set to the directory
that you specify in the company profile (System Directories tab). Here, the default destination
was used. Click the Generate button. When the document is generated, click the Stop
button. If you do not do so, the generation will continue and repeat every minute. Now switch
to the Server Display window (Figure 3-15) or the Server Log window to track the send
process. Note that TPI uses polling techniques. The generated file might not be processed
immediately.

Figure 3-15 Server Display window at Supplier

Check the Server Display window at the target machine and verify that the file has been
received correctly. Notice that a first document was rejected. The second document was
received correctly by Retailer1 (Figure 3-16 on page 113). Usually, the Server Log will contain
enough information to determine why a document was rejected. Note also that the target
112 Implementing EDI Solutions

machine has acknowledged the receipt of the file. This reply message is sometimes called a
message disposition notification (MDN).

Figure 3-16 Server Display window at Retailer1

3.2.5 MQ integration and validation
Besides file-based integration, TPI also offers integration through JMS. For an example of
JMS integration, refer to REDP3600, WebSphere Data Interchange Installation and
Configuration.

Depending on your licence, TPI might also support other types of integration to the internal
applications of a company. In this section, we are going to set up an integration using
WebSphere MQ (MQSeries).

Start the TPI Administrator program and double-click the company profile Supplier which we
created earlier. Select the tab Integration. In the drop-down box labeled Document
integration method, select By document type. The Administrator will then show more
options below this drop-down box, as shown in the next figure.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 113

Figure 3-17 Setting integration options

Now select the option IBM MQSeries from the drop-down menu labeled EDI documents. To
configure the interaction with WebSphere MQ or MQSeries, click the button Options. TPI
uses the MQ client interface to interact with a queue manager. You can set up different
parameters (that is, a different queue manager) for inbound and outbound communication.

Provide the hostname of the machine that hosts the queue manager. Provide also the port
that is used by the MQ listener task. You can find this port number by using the WebSphere
MQ Services application.

You should also provide the name of the queue manager and the names of the queues that
are used to integrate with your internal systems. The queues EDI_IN and EDI_OUT are for
example standard queues that are defined as part of the installation of WebSphere Data
Interchange. Finally, since TPI is using the MQ client interface, you need to provide the name
of an MQ channel of type Server Connection. Use the application WebSphere MQ Explorer to
find the name of an existing channel or to define a new one.
114 Implementing EDI Solutions

Figure 3-18 Settings integration options for WebSphere MQ (MQSeries)

Click OK to close the window to configure MQ options. Click OK again to close the company
profile. Verify in the Server Log that the server has detected that the profile was updated. Now
switch to the Server Display window and select the tab Agents. It should now list an
additional agent for integration through WebSphere MQ (MQSeries).

Figure 3-19 Additional agent for integration with WebSphere MQ

Note again that this new task is idle. This type of integration is once more a polling type of
integration. By contrast, integration using JMS is immediate, that is, when a message arrives
on a queue and TPI is listening on this queue via the JMS interface, the message will be
picked up immediately. When TPI uses the standard MQ interface, it will open and read the
queue periodically.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 115

A quick way to verify that TPI is polling the queue EDI_OUT is to write a dummy message to
this queue. You can for example use the Put Test Message option within WebSphere MQ
Explorer for the queue EDI_OUT and send a “hello world” message. After a while, TPI should
read this message from the queue and reject it as an invalid message. This proves that TPI is
reading the queue.

An alternative way of testing is again to use the Document Generator tool. However, this time,
do not save the generated document in the standard directory ediout, to prevent the server
from sending the message before you can get the generated file. Use a tool like rfhutil to read
the file and write it to the queue EDI_OUT. The tool rfhutil can be downloaded for free as a
SupportPac™ from the following Web site:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ih03.html

This completes the basic setup for TPI for two partners and an integration using WebSphere
MQ.

3.3 Communicating with an iSoft P2PAgent installation
This section discusses the implementation of iSoft’s P2PAgent program for the company
Retailer2 and how to configure the P2PAgent and TPI to allow both companies to exchange
EDI documents using a different B2B gateway product.

Figure 3-20 Overview of the components

3.3.1 Installation and initial configuration of iSoft’s P2PAgent
The AS2 client software is available in a few different packages from IBM or iSoft itself and
with different licensing restrictions. In some packages, you may or may not find sample files
and documentation. However, in all cases, the installation of the software is straightforward.
Some of the steps below may not be required since they were performed during the
installation itself.

FF
ii
rr
ee
ww
aa
ll
ll

TPI
Supplier

AS/2
Internet

FF
ii
rr
ee
ww
aa
ll
ll

AS/2

Collaboration
(Generic BO)

Connector
ASBO

SCM ERP

Connector
ASBO

Connector
ASBO

CRM

EDI_OUTEDI_OUTEDI_OUTEDI_OUTXML_IN

MQSeries
Connector

ASBO

WDI
Transaction

XML-EDI

iSoft
Retailer2
116 Implementing EDI Solutions

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ih03.html

Figure 3-21 Installer for iSoft P2P Agent Enterprise edition

The P2PAgent program can use queues and/or files for several functions. To set up an initial
environment, you should create a number of queues and/or directories to support those
functions.

Example 3-1 lists a number of WebSphere MQ commands that you can use to create queues
for use by the P2PAgent program. These queues can be used in the configuration file as
described below.

Example 3-1 WebSphere MQ commands to create supporting queues

def ql('notices') defpsist(yes)
def ql('receipts’) defpsist(yes)
def ql('workorders') defpsist(yes)
def ql('outbox') defpsist(yes)
def ql('inbox') defpsist(yes)
def ql('log') defpsist(yes)
def ql('errors') defpsist(yes)

If you want a file-based integration for some or all of the iSoft functions, you should create the
following directories. Again, these directories are used in the configuration file described
below.

� inbox
� outbox
� receipts
� workorders
� pki
� errors
� log
� notices

The P2PAgent’s operations are controlled by a configuration file. The default location of this
file is the install directory and the default name of this file is p2pagent.cfg. Note that it is
possible to have a different name and location. You would then need to use start-up
parameters to provide this information. Throughout this redbook, we will use the default name
and location. The configuration file has an XML format and is basically a sequence of
Chapter 3. Implementing multi-product AS/2 communication with trading partners 117

commands that are interpreted by the P2PAgent program at start-up time. Note again that
these commands are the same as the interactive commands or the work order commands.

For all settings related to file locations and directories, you can replace the name of a
directory with an MQ URI, in the format mq://queue_manager_name/queue_name, unless it is
specified that only directory names are supported.

� Define the location to store error information

To store error information in files in a directory named errors, use the following command:

set -eperrors -ef

� Define the location to store logging information

To store logging information in files in a directory named log, use the following command:

set -lplog -lf

The name of the log file is P2PYYYYMMDD.log, where YYYYMMDD is the current date.
This implies that the P2PAgent program will automatically create a new file for each day
and append information to it. The contents of this log file are basically the same as the
standard output of the agent program.

� Define the location to store notices

Notices are files or messages that indicate the results of document transactions.

set -npmq://cw_studentc.queue.manager/notices -nf

� Define the location of certificates and private keys

The PKI service component of the P2PAgent component will look in this directory to find
any keys and certificates. The command below identifies this directory as pki.

set -pppki

� Define the location to store receipts

Receipts are the documents received by the sending agent when the receiving agent
confirms the delivery of a given EDI document. In most case, such a receipt document will
be signed using a digital signature algorithm. Receipts are delivered asynchronously.

set -rpmq://cw_studentc.queue.manager/receipts

� Set time-out values

The P2PAgent allows you to configure several types of time-outs. The command below
sets the time-out for a first receive after accepting an inbound connection. For more
information about other types of time-out values, refer to the iSoft product documentation.

set -tr300s

� Set mailbox information

Mailboxes can be file-based or queue-based or even stored in a database. The command
below identifies a queue manager as the host of the mailboxes. Note that the location of a
mailbox can still be set at the individual trading partner level.

set -bhmq://cw_studentc.queue.manager

� Start the inbound service

This command starts the inbound service, to listen on port 4080 for host name studentc.

start http://studentc:4080

There are more options and settings that can be controlled in the configuration file, but for an
initial deployment, these values are sufficient. In addition to a number of set commands, a
configuration file typically contains a number of addpair commands and importkey
118 Implementing EDI Solutions

commands. The addpair command defines a relationship between two symbolic trading
partner names. The structure of the addpair command is as follows:

addpair <from> <to> <to-URL> <rcpt-URL> <notify-name> <mailbox>

Applied to this first occurrence of the addpair command in Example 3-2, this means:

When processing documents sent by partner SUPPLIER to partner RETAILER2, send this to
the URL http://studenta:4080/exchange/SUPPLIER. Request that receipts be sent to the
URL http://studentc:4080 and address those receipts to partner RETAILER2.

The second occurrence of the addpair command in Example 3-2 applies to the processing of
incoming documents. Here, the rcpt-URL parameter is set to * to indicate that we do not
override the settings requested by the sender of the document.

The importkey command assigns certificates and/or private keys to a trading partner
relationship for a specific function, such as encryption and signing. While many possibilities
exist, a typical scenario is expressed in Example 3-2. The syntax of the importkey command
is shown below:

importkey <from> <to> <usage> <options>

From and To identify the trading partner relationship. The usage is a one character code that
identifies when the certificate and/or private key should be used. The options are used to
identify the key and certificate.

The first command instructs the P2PAgent program that documents from RETAILER2 to
SUPPLIER are to be signed and decrypted (option E) using the private key and certificate of
the partner RETAILER2. The signing here relates to documents sent to RETAILER2. The
decrypting relates to the decryption of MDNs received from RETAILER2 as a result of
sending documents to RETAILER2.

The encryption for documents sent from RETAILER2 to SUPPLIER (option J) is done using
the certificate of partner SUPPLIER, as shown in the second importkey command. In
practice, this means that:

� RETAILER2 sends documents to SUPPLIER in such a way that only SUPPLIER can read
them, since we can assume that only SUPPLIER has access to its own private key.

� RETAILER2 sends documents to SUPPLIER in such a way that RETAILER2 can never
deny that it has sent that document. RETAILER2 will sign the document using its private
key.

The reverse commands are needed too to control how documents should be received by
RETAILER2 when sent by SUPPLIER.

Example 3-2 P2P agent configuration file for one bi-directional communication link

<xml>
<command>set -eperrors -ef </command>
<command>set -lplog -lf </command>
<command>set -npmq://cw_studentc.queue.manager/notices -nf </command>
<command>set -opmq://cw_studentc.queue.manager/workorders -of -oswo </command>
<command>set -pppki </command>
<command>set -rpmq://cw_studentc.queue.manager/receipts </command>
<command>set -tr300s </command>
<command>set -bhmq://cw_studentc.queue.manager </command>

<command>addpair RETAILER2 SUPPLIER http://studenta:4080/exchange/SUPPLIER/ http://studentc:4080/
RETAILER2 mq://cw_studentc.queue.manager/outbox</command>
Chapter 3. Implementing multi-product AS/2 communication with trading partners 119

<command>addpair SUPPLIER RETAILER2 http://studentc:4080/ * SUPPLIER
mq://cw_studentc.queue.manager/inbox</command>
<command>importkey SUPPLIER RETAILER2 E -fCpki\RETAILER2-SUPPLIER.cer
-fKpki\RETAILER2-SUPPLIER.prv</command>
<command>importkey SUPPLIER RETAILER2 J -fCpki\SUPPLIER-RETAILER2.cer </command>
<command>importkey RETAILER2 SUPPLIER E -fCpki\RETAILER2-SUPPLIER.cer
-fKpki\RETAILER2-SUPPLIER.prv</command>
<command>importkey RETAILER2 SUPPLIER J -fCpki\SUPPLIER-RETAILER2.cer </command>

<command>start http://studentc:4080</command>
</xml>

This completes the first step of the configuration and you can now start up the agent. Open a
command window and switch to the directory that holds the configuration file (shown in
Example 3-2 on page 119) and the program executable. Start the program and you should
see output similar to the output shown in Example 3-3.

Example 3-3 Standard output of first start-up of the P2PAgent program

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:25:43.299 POPT OK Error path set to [errors]
2003.01.27 13:25:43.299 POPT OK Inbound errant will be stored
2003.01.27 13:25:43.309 POPT OK Log path set to [log]
2003.01.27 13:25:43.309 POPT OK Trace set to WRITE_FILE
2003.01.27 13:25:43.329 POPT OK Notice path set to [mq://cw_studentc.queue.manager/notices]
2003.01.27 13:25:43.329 POPT OK Notices will be written to file
2003.01.27 13:25:43.349 POPT OK Work-order path set to [mq://cw_studentc.queue.manager/workorders]
2003.01.27 13:25:43.349 POPT OK Work-order searching enabled
2003.01.27 13:25:43.349 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:25:43.359 POPT OK PKI path set to [pki]
2003.01.27 13:25:43.379 POPT OK Async. receipt path set to [mq://cw_studentc.queue.manager/receipts]
2003.01.27 13:25:43.389 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:25:43.399 POPT OK Mailbox host set to [mq://cw_studentc.queue.manager]
2003.01.27 13:25:43.399 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:25:43.409 POPT OK Mailbox port set to [0]
2003.01.27 13:25:43.479 HPIM OK HTTP inbound service started
2003.01.27 13:25:48.506 PIKC ERR Unable to import keys
2003.01.27 13:25:48.536 PIKC ERR Unable to import keys
2003.01.27 13:25:48.556 PIKC ERR Unable to import keys
2003.01.27 13:25:48.576 PIKC ERR Unable to import keys

Since we have not yet generated any keys nor received any certificates from our trading
partner SUPPLIER, it is not surprising that the four importkey commands are failing. To
generate these keys, we need to run an addkey command. However, since the addkey
command only needs to be run once, it is not included in the configuration file. To generate
keys, create a work order file (for example addkeys.wo) that contains an XML document,
such as the one shown in Example 3-4 on page 121.

The structure of the addkey command is as follows:

addkey <from> <to> <function> <key length> <issuer> <subject>

Applied to the first occurrence of the addkey command, we ask to generate a key that is used
for communication from RETAILER2 to SUPPLIER for the functions sign, encrypt, decrypt
120 Implementing EDI Solutions

and signature verification (option O) with a key length of 1024 bits for RSA. The certificate is
self-signed and has the provided subject.

Example 3-4 Addkeys.wo work order file

<xml>

Create Keys

<command>addkey RETAILER2 SUPPLIER O 512 self C=US;S=TX;L=Dallas;O=iSoft;CN=RETAILER2</command>

</xml>

To execute the commands of the work order, you need to execute the batch command in an
interactive session of the P2PAgent program. Type batch addkeys.wo and press the Enter
key in the command window (see Example 3-5).

Example 3-5 Output of addkeys.wo work order

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:26:52.448 POPT OK Error path set to [error]
2003.01.27 13:26:52.448 POPT OK Inbound errant will be stored
2003.01.27 13:26:52.458 POPT OK Log path set to [log]
2003.01.27 13:26:52.458 POPT OK Trace set to WRITE_FILE
2003.01.27 13:26:52.478 POPT OK Notice path set to [mq://cw_studentc.queue.manager/notices]
2003.01.27 13:26:52.478 POPT OK Notices will be written to file
2003.01.27 13:26:52.498 POPT OK Work-order path set to [mq://cw_studentc.queue.manager/workorders]
2003.01.27 13:26:52.498 POPT OK Work-order searching enabled
2003.01.27 13:26:52.508 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:26:52.518 POPT OK PKI path set to [pki]
2003.01.27 13:26:52.528 POPT OK Async. receipt path set to [mq://cw_studentc.queue.manager/receipts]
2003.01.27 13:26:52.538 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:26:52.558 POPT OK Mailbox host set to [mq://cw_studentc.queue.manager]
2003.01.27 13:26:52.558 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:26:52.569 POPT OK Mailbox port set to [0]
2003.01.27 13:26:52.649 PIKC ERR Unable to import keys
2003.01.27 13:26:52.649 HPIM OK HTTP inbound service started
2003.01.27 13:26:52.669 PIKC ERR Unable to import keys
2003.01.27 13:26:52.689 PIKC ERR Unable to import keys
2003.01.27 13:26:52.719 PIKC ERR Unable to import keys
batch addkeys.wo
ok
2003.01.27 13:27:18.125 PAKC OK Keypair generated

Since we need to share the certificate with our trading partner SUPPLIER, we need to export
the key in a file. Here, we again use the concept of a work order to perform these actions.
Example 3-6 on page 122 shows the Exportkeys.wo work order file for all three trading
partners.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 121

Example 3-6 Exportkeys.wo work order file

<xml>

Export Keys

<command>exportkey RETAILER2 SUPPLIER O RETAILER2-SUPPLIER.cer RETAILER2-SUPPLIER.prv</command>

</xml>

To run these commands in an interactive session, we again use the batch command, as
shown in Example 3-7.

Example 3-7 Output of the exportkeys.wo work order

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:26:52.448 POPT OK Error path set to [error]
2003.01.27 13:26:52.448 POPT OK Inbound errant will be stored
2003.01.27 13:26:52.458 POPT OK Log path set to [log]
2003.01.27 13:26:52.458 POPT OK Trace set to WRITE_FILE
2003.01.27 13:26:52.478 POPT OK Notice path set to [mq://cw_studentc.queue.manager/notices]
2003.01.27 13:26:52.478 POPT OK Notices will be written to file
2003.01.27 13:26:52.498 POPT OK Work-order path set to [mq://cw_studentc.queue.manager/workorders]
2003.01.27 13:26:52.498 POPT OK Work-order searching enabled
2003.01.27 13:26:52.508 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:26:52.518 POPT OK PKI path set to [pki]
2003.01.27 13:26:52.528 POPT OK Async. receipt path set to [mq://cw_studentc.queue.manager/receipts]
2003.01.27 13:26:52.538 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:26:52.558 POPT OK Mailbox host set to [mq://cw_studentc.queue.manager]
2003.01.27 13:26:52.558 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:26:52.569 POPT OK Mailbox port set to [0]
2003.01.27 13:26:52.649 PIKC ERR Unable to import keys
2003.01.27 13:26:52.649 HPIM OK HTTP inbound service started
2003.01.27 13:26:52.669 PIKC ERR Unable to import keys
2003.01.27 13:26:52.689 PIKC ERR Unable to import keys
2003.01.27 13:26:52.719 PIKC ERR Unable to import keys
batch addkeys.wo
ok
2003.01.27 13:27:18.125 PAKC OK Keypair generated
batch exportkeys.wo
ok
2003.01.27 13:27:45.645 POKC OK Key-pair exported

At this time, stop the P2PAgent program using the shutdown command. Before we can restart
the P2PAgent, we need to exchange certificates.

3.3.2 Exporting the certificate from TPI
Start the TPI Administrator tool on the machine that hosts the exchange for SUPPLIER and
select the view Certificates. As shown in Figure 3-22 on page 123, the view Certificates
contains a company certificate and a partner certificate for RETAILER1. Select the company
certificate and select File -> Export.
122 Implementing EDI Solutions

Figure 3-22 The view Certificates of TPI Administrator

You can export a certificate in a few formats. Select the option DER Encoded binary X.509
and click Next. Provide a file name and folder name in the next window and click Next again.
A summary window will appear where you click Finish.

Figure 3-23 Export certificate window

On the machine that hosts the iSoft P2PAgent for RETAILER2, copy the certificate in the
folder pki within the iSoft installation folder. Make sure that the file name matches the
importkey statements. You can then restart the P2PAgent. This time, the start-up should no
longer generate errors, as shown in Example 3-8 on page 124.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 123

Example 3-8 Standard output of restarted P2PAgent program

C:\iSoft_Enterprise>p2pagent_odbc_ibm_enterprise.exe
iSoft(R) Peer-to-Peer Agent(TM) for MQSeries(R)
(C) Copyright 2001-2002 iSoft Corp.
Build: 3.1.2002.10.30.1 [Nov 27 2002 15:08:00]
IBM Enterprise Edition
Authorized License
2003.01.27 13:32:54.209 POPT OK Error path set to [errors]
2003.01.27 13:32:54.209 POPT OK Inbound errant will be stored
2003.01.27 13:32:54.219 POPT OK Log path set to [log]
2003.01.27 13:32:54.229 POPT OK Trace set to WRITE_FILE
2003.01.27 13:32:54.239 POPT OK Notice path set to [mq://cw_studenta.queue.manager/notices]
2003.01.27 13:32:54.239 POPT OK Notices will be written to file
2003.01.27 13:32:54.249 POPT OK Work-order path set to [mq://cw_studenta.queue.manager/workorders]
2003.01.27 13:32:54.259 POPT OK Work-order searching enabled
2003.01.27 13:32:54.259 POPT OK Work-order file-spec set to [wo]
2003.01.27 13:32:54.269 POPT OK PKI path set to [pki]
2003.01.27 13:32:54.289 POPT OK Async. receipt path set to [mq://cw_studenta.queue.manager/receipts]
2003.01.27 13:32:54.299 POPT OK First-receive interval set to [300000ms]
2003.01.27 13:32:54.309 POPT OK Mailbox host set to [mq://cw_studenta.queue.manager]
2003.01.27 13:32:54.309 POPT OK Mailbox address set to [0.0.0.0]
2003.01.27 13:32:54.319 POPT OK Mailbox port set to [0]
2003.01.27 13:32:54.399 HPIM OK HTTP inbound service started

This completes the setup for Retailer2. Before we can exchange documents, we need to
create a partner profile for Retailer2 in the TPI of Supplier.

3.3.3 Creating a partner profile for Retailer2 in TPI of Supplier
On the machine that hosts the TPI exchange of Supplier, start the TPI Administrator and
select the view Partner Profiles. As shown in Figure 3-24 on page 125, the view contains the
profile of Retailer1, which was created by importing the profile. For Retailer2, we cannot use
the import function, since Retailer2 uses iSoft’s P2PAgent, which cannot generate an XML
profile suitable for TPI.
124 Implementing EDI Solutions

Figure 3-24 Partner Profiles view of TPI

To define the profile for Retailer2 manually, select File -> New. The New Partner Profile
window (Figure 3-25). Provide a name for this profile and specify the ID, as it will appear in
the ISA segment of an EDI document for and from Retailer2. Click OK.

Figure 3-25 New partner profile: set name and ID

After clicking OK, a new window will appear that will allow you to specify different kinds of
information about Retailer2 and how to communicate with it. On the Identity tab, provide
address and contact information.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 125

Figure 3-26 New partner profile: provide address and contact information

Select the tab Preferences and review the settings about retries and resends. The default
values are fine for our purposes. The tab Preferences also controls whether a partner is
active or not. Select Inactive in the list box Trading Status. We will change it to Active after
importing the certificate of Retailer2. We cannot leave it active at this time, since we will
require encryption and digital signatures. TPI makes sure that no partner profile is active for
which there is no certificate and for which encryption and signatures are required.

Figure 3-27 New partner profile: the tab Preferences

Now select the tab Outbound Transports. Click the Add button to set up a transport for
Retailer2.
126 Implementing EDI Solutions

Figure 3-28 New partner profile: the tab Outbound Transport

In the Add Transport window, select Bundled HTTP and click OK.

A new window will appear to provide transport options for Bundled HTTP. Provide the URL on
which iSoft’s P2PAgent is listening, which is http://studentc:4080 in our case.

Figure 3-29 New partner profile: Bundled HTTP Transport Options

Click OK to close this window, which will bring you back to the main setup window for a
partner profile.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 127

Figure 3-30 New partner profile: completed outbound transport settings

If Supplier will be using a firewall, you need to provide details about the firewall on the tab
Firewall. Select the tab Security to control the exchange of documents with Retailer2. Set the
options as shown in Figure 3-31 to make sure that both documents and acknowledgments
are signed and encrypted. Note that these settings will impact the send command in iSoft’s
P2PAgent as we see in 3.3.6, “Validation of the setup” on page 130.

Figure 3-31 New partner profile: the Security tab

Since we do not exchange binary documents, we do not need to make any changes on the
tab Binary Directories. Click OK to finish the partner profile definition.
128 Implementing EDI Solutions

3.3.4 Importing the certificate of Retailer2 in TPI
The next step is to import the certificate of Retailer2 in the database of TPI. We assume again
that the trading partners have agreed upon a secure way to exchange the certificates. Start
the TPI Administrator and select the view Certificates.

Figure 3-32 The view Certificates of TPI Administrator

Select the inactive partner Retailer2 and click File -> Import. Provide the file name of the
certificate file and select Finish. Figure 3-33 shows the Certificates view after the import.

Figure 3-33 The Certificates view of TPI Administrator
Chapter 3. Implementing multi-product AS/2 communication with trading partners 129

Switch now to the Partner Profiles view. Double-click the profile Retailer2 and switch to the
tab Preferences. Set the property Trading Status to Active and click OK.

Figure 3-34 Completed partner profile for Retailer2 in TPI

3.3.5 Upgrading TPI
TPI had some AS/2 interoperability problems that are solved by upgrading to V4.1.2.6 or
later. If you use TPI V4.1, you can download a fix from the following Web site:

http://www-1.ibm.com/support/docview.wss?uid=swg24001872

To apply the fix, unzip the download package in a temporary file and copy the upgraded file
cyclone.jar to the lib directory in the TPI installation directory.

3.3.6 Validation of the setup
Now that we are using TPI at the right level and that we have configured profiles on both
sides, we can perform some validation by exchanging documents between the two partners.

Retailer2 sends documents
There are several ways within iSoft’s P2PAgent to send files. Some of those techniques are:

� Polling a directory for files with a given extension.
� Polling a queue for messages.
� Polling for workorders that contain a send command. Workorders can be stored in a

directory and the extension of the file name should match a given extension, which is .wo
by default.

� Sending a file as the result of a send command.

To simply send a test file for validation, we use the last technique. The workorder file
sendcmd.wo is shown in Example 3-9 on page 131. The send command instructs the
P2PAgent program to send files with extension .out (-fS parameter) from the directory outbox
(-fP parameter) to the Supplier. When the transmission completes, the file should be renamed
by adding the extension .pend (-fE parameter). The document should be encrypted using the
130 Implementing EDI Solutions

http://www-1.ibm.com/support/docview.wss?uid=swg24001872

Triple Des algorithm (-e parameter) and encoded using the Base64 technique (-pB). The
document will we signed using the SH-1 algorithm and the signature will be encoded using
the Base64 technique (-sB parameter). The P2PAgent will request a synchronous MDN from
the partner and the MDN needs to be signed using the SH-1 algorithm (-r1 parameter; an
asynchronous MDN would be -r1A). The send command is performed only once (-n1
parameter). Therefore, no retries take place if it fails. The -cE parameter sets the MIME type
to application/edi-x.12. Finally, the -hQ parameter instructs the P2PAgent program to quote
the EDI names (RETAILER2 and SUPPLIER) in the MIME headers.

Example 3-9 The command file sendcmd.wo

<xml>
<command>
send http RETAILER2 SUPPLIER -fPoutbox -fSout -fE.pend -tE20032132000000 -e -pB -sB -r1 -n1 -cE -hQ
</command>
</xml>

To launch the send command, you type the command batch sendcmd.wo in an interactive
session of the P2PAgent, as shown in Example 3-10. The output of the interaction with TPI is
the top part of what is shown in the example. The output in the TPI Server Display is shown in
Figure 3-36 on page 132.

Example 3-10 Output of the P2PAgent for a send to TPI and a receive from TPI

batch sendcmd.wo
ok
2003.01.28 09:07:40.564 84044 HPOS OK Outbound session started - mbox=[0] batch=[0] attempt=[1 of 1]
2003.01.28 09:07:48.335 84044 VRFY OK ** Signature verified **
2003.01.28 09:07:48.395 84044 PMDN OK ** Original-Content-MIC found in MDN **
2003.01.28 09:07:48.495 84044 HPOS OK Outbound session stopping - batch=[0]
2003.01.28 09:08:48.061 64089 HPIS OK HTTP inbound session started
2003.01.28 09:08:48.081 64089 HPIS OK HTTP client: 9.24.104.248:3164
2003.01.28 09:08:48.201 64089 DECR OK ** Content decrypted **
2003.01.28 09:08:48.301 64089 VRFY OK ** Signature verified **
2003.01.28 09:08:48.462 64089 STMQ OK Data stored
2003.01.28 09:08:48.572 64089 HPIS OK HTTP inbound session stopping

Supplier sends documents
To send documents from Supplier (TPI) to Retailer2 (iSoft), we can again use the Document
Generator tool, as demonstrated earlier in 3.2.4, “Validation of the setup” on page 110. Set
the Sender’s ID and Receiver’s ID to the correct values and click Generate to generate a
sample EDI document.

Figure 3-35 Using the Document Generator tool
Chapter 3. Implementing multi-product AS/2 communication with trading partners 131

Depending on the polling rates within TPI, the server will detect the new file, package it and
send it out. The output of iSoft’s P2PAgent for this transaction is shown in Example 3-10 on
page 131 (lower part).

Figure 3-36 TPI Server Display window

Figure 3-36 shows the different states for the transaction between TPI and iSoft, including the
Acknowledgment from iSoft.

3.4 Integration between WebSphere Data Interchange and TPI
Business documents such as purchase orders and invoices are in general created, managed,
and stored in back-end systems that are very much enterprise-specific. As a result, the
structure and data format of those documents can be very different from what industry
organizations have agreed upon as a standard. An EDI 850 document, for purchase orders,
has a specific layout that internal applications cannot always generate. This mismatch
between the internal document and the standard document to be used in B2B transactions
has resulted in the development of EDI-specific document translators. An example of such a
product is WebSphere Data Interchange.

Since the use of EDI translators is very common, a typical implementation of the TPI Server
involves the integration with products such as WebSphere Data Integration.

Throughout this section, we are assuming that you have a working WebSphere Data
Interchange environment with at least one client and one server. We are also assuming that
the server is running on the same machine as the TPI Server.

For more information about configuring a WebSphere Data Interchange environment, refer to
the Redpaper WebSphere Data Interchange Installation and Configuration, REDP3600.

3.4.1 Processing received EDI documents
In this section, we will describe the flow of inbound documents, where documents are
received by the TPI Server and stored in queues or files. WebSphere Data Interchange picks
up these documents and performs the required translation into an internal format, which
happens to be an XML format.
132 Implementing EDI Solutions

Figure 3-37 shows the overall data flow. Data that is received from Retailer1 or Retailer2
arrives in a queue, while data from Retailer3 is stored in a files. Note that the configuration of
the TPI Server of the MQ integration (see Figure 3-18 on page 115) has the same queue for
incoming documents for both Retailer1 and Retailer2. WebSphere Data Interchange can find
the appropriate trading partner information in the ISA segment of the incoming EDI document
and use that information to apply the correct translation rules. Also note that a single
company profile can only have one destination for a document type. If we built a TPI
configuration to match Figure 3-37, we would need to create a separate company profile to
handle the inbound EDI documents that need to be stored in a directory. For outbound
communication, TPI can pick up files from the EDI_OUT directory and from the EDI_OUT
queue in parallel. For the purposes of this section, we simply assume that EDI documents are
received in files and in messages; we need to work with WebSphere Data Interchange to
handle both sources of data.

The configuration of WebSphere Data Interchange involves the following steps:

1. Definition of trading partner profiles for all retailers and the supplier itself.

2. Document definition:

a. Import of the EDI 850 document definition.

b. Import of a DTD, matching the internal representation of a purchase order

3. Definition of the translation map.

4. Definition of mailboxes, network profiles, queue profiles and service profiles.

5. Definition of the rules associated with the map.

6. Creation of a command file to process incoming EDI files.

7. Definitions of queue and process objects in WebSphere MQ to support the automatic
translation of incoming EDI documents in queues.

Figure 3-37 Inbound data flow

WebSphere
Data

Interchange

EDI Input Folder
 for Retailer 3

EDI Input MQ Queue
for Retailer 1
and Retailer 2

XML Output Folder
for Retailer 3

XML Output MQ Queue
for Retailer 2

XML Output MQ Queue
for Retailer 1

 ED I XML

 ED I

 XML

 XML

(Translation)
Chapter 3. Implementing multi-product AS/2 communication with trading partners 133

Trading partner setup
Start the WebSphere Data Interchange client program and click the trading partner setup icon
in the tool bar. A new window will appear with a list of currently defined trading partners. Click
the new document button in the tool bar. On the General tab, provide a nickname for the new
trading partner (RETAILER1) and fill in the values for the Interchange Qualifier and ID (see
Figure 3-38), which are found in the EDI document. These fields in the ISA segment will be
used by WebSphere Data Interchange as a key to locate the trading partner document
(nickname) and that nickname will then be used in further processing within WebSphere Data
Interchange. The value for the nickname is only relevant within the scope of WebSphere Data
Interchange.

Figure 3-38 Trading partner definition

Repeat this process for the trading partner Retailer2.

EDI document definition
For each EDI document standard, there are a number of versions and releases. You can
download import files for ANSI X12 and other standards from the following Web site:

http://www-3.ibm.com/software/integration/appconn/wdi/downloads/

For our purposes, we have used the ANSI X12 Standard Version 4 Release 3. This standard
can be downloaded as an export/import file (eif) for WebSphere Data Interchange. Select
File -> Open Import File to load the definitions in your database and point the file browser to
the downloaded file X12V4R3.eif. A window of document definitions will appear that lists all
the definitions that are included in this file. Select the documents that you will need, for
example 850 and 855. Use the Control key to select multiple definitions. Press the Enter key
and select the correct system (database) to import the document definitions. Note that both
the 850 and 855 documents are quite large and contain many segments and fields. As a
result, the import might take a while to complete.

XML document definition
WebSphere Data Interchange supports the import of DTDs to define XML documents to the
translator. In general, the structure of XML documents that are used by a company’s internal
134 Implementing EDI Solutions

http://www-3.ibm.com/software/integration/appconn/wdi/downloads/

applications is very specific. Since this redbook is not just about EDI translation and mapping,
we will use a simple DTD that helps us focus on the integration issue instead of the mapping
issue. Example 3-11 lists the DTD, while Example 3-12 provides a sample message that
complies with this DTD.

Example 3-11 DTD for XML document representing a purchase order

<?xml encoding="US-ASCII"?>

<!ELEMENT PO (Header, Detail)>

<!ELEMENT Header (FROM, TO, PONO,PODate)>
<!ELEMENT FROM (#PCDATA)>
<!ELEMENT TO (#PCDATA)>
<!ELEMENT PONO (#PCDATA)>
<!ELEMENT PODate (#PCDATA)>

<!ELEMENT Detail (QTY, ITEMNO, DESC)>
<!ELEMENT QTY (#PCDATA)>
<!ELEMENT ITEMNO (#PCDATA)>
<!ELEMENT DESC (#PCDATA)>

Example 3-12 Sample XML purchase order

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "XMLPO.dtd">

<PO>
<Header>
<FROM>RETAILER1</FROM>
<TO>SUP1</TO>
<PONO> 12345669 </PONO>
<PODate> 20021018 </PODate>
</Header>

<Detail>
 <QTY> 1000 </QTY>
 <ITEMNO> ABC2 </ITEMNO>
 <DESC> Some product </DESC>

</Detail>
</PO>

To import this DTD in WebSphere Data Interchange, you need to have a dictionary to hold the
DTD. If you do not already have a dictionary, or if you want to create a new one to store this
DTD, open the XML window by clicking the XML button in the main tool bar of WebSphere
Data Interchange. A new window will appear that lists XML dictionaries and XML DTDs.
Select the tab XML Dictionary and click File -> New to create a new dictionary. Name the
new dictionary 850XML, for example. Save the new dictionary by clicking File -> Save. Now
you can import the DTD itself. Select File -> Open Import File to start this import process. In
the file browser window, change the file type property from Export/Import Files (*.eif) to
XML DTD File (*.dtd). During the import, you will be prompted to provide the following
information:

� DTD file name
� DTD object name in WebSphere Data Interchange, for example POXML
� Name of the dictionary, to be selected from a drop-down box
� Name of the target database, to be selected from a list
� Name of the root element: set this to PO for the DTD listed in Example 3-11.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 135

When the import has completed, open the DTD document within WebSphere Data
Interchange (see Figure 3-39). Within this document, you can name the XML elements that
identify the sender and receiver. If the names in the XML document do not directly match the
EDI names, you can provide the name of a translation table that WebSphere Data
Interchange can use at runtime to look up the correct partner information. Note that this
information is used when building an EDI.

Figure 3-39 Finding partner information in the XML document

The DTD that was shown in Example 3-11 on page 135 has only one field to provide
information about the sender and another field to provide information about the receiver. To
make the link, set:

� field ID Element for Sender: \PO\Header\FROM\\
� field ID Element for Receiver: \PO\Header\TO\\

Note the double backslash symbol at the end.

The result is that we can now build custom rules for routing and mapping based on who the
target or source partner is for a given document. For an incoming EDI 850 document, the
information in the ISA segment will be copied into the XML elements that were set in
Figure 3-39 and we will not require specific mapping statements in the translation map.

Definition of the translation map
Since the Supplier company expects to receive EDI 850 documents (purchase orders) from
its customers, the retailers, we need a map that translates the incoming EDI document into an
XML document that can be handled by the Supplier’s internal systems. To create this map,
start the map editor by clicking the mapping button in the main tool bar of WebSphere Data
Interchange. Within the map editor, either click the new document button or select
File -> New. A map definition wizard will appear. Provide the following values for these
parameters:

� Map name: 850TOXML
� Target or source based: Target
� Source document definition: EDI Standard
� Source dictionary: X12V4R3
136 Implementing EDI Solutions

� Source EDI transaction: 850
� Target syntax type: XML
� Target dictionary: 850XML
� Target DTD: POXML

Given the simple structure of the XML document, the mapping itself is quite easy too. Note
that the target XML document is probably too simple for most practical purposes. We do not
intend to cover all options for mapping EDI documents in this redbook. Figure 3-40 shows the
mapping statements between the EDI segments and fields and the target XML document.
These statements are obtained by dragging the EDI field onto the XML element.

Figure 3-40 Mapping the EDI 850 document into an XML document

The two statements in Figure 3-40 that were not created by drag-and-drop are the statements
to fill in the elements FROM and TO in the Header element. To pass along the information of
the EDI ISA header into the XML document, you can add an assignment command and call
the function GetProperty to obtain the value of a field in the ISA header. Adding an
assignment is performed by right-clicking the target field and selecting Insert After ->
Command -> Assignment from the context menu. This will open a command editor to assist
you in building the command.

Setup within WebSphere Data Interchange for SUP1 and RETAILER1
Now that we have a map, we need to tie it to a couple of other objects in WebSphere Data
Interchange, by creating a rule for the map. However, before we can do that, we need to
create those other objects in WebSphere Data Interchange.

The queue EDI_IN will receive EDI documents from the Retailers 1 and 2. The documents will
be written in this queue by the TPI Server. To make this queue known to WebSphere Data
Interchange, we need to define a queue profile. Open the setup window in WebSphere Data
Interchange and select the tab MQSeries Queues. Select File -> New to create a new
document. You need to name this document, for example EDI_IN. Set the name of the queue
to EDI_IN and specify the name of the queue manager, cw_studenta.queue.manager in our
Chapter 3. Implementing multi-product AS/2 communication with trading partners 137

example. If your documents are large, you should consider setting an appropriate value for
the field Maximum Message Length. The default value is 32KB, which might not be sufficient
for your environment. Select File -> Save to store this new document in the database.

Once WebSphere Data Interchange has translated the incoming EDI 850 document, it will
need to send it to the internal system for processing. That destination might be a queue or a
file in a given directory. We will describe both examples below. The target destination, either
queue of the directory, can be dependent of the document and/or dependent of the trading
partner. For most environments, the back-end system will not require specific locations for
each trading partner. But it is quite common for purchase orders to be stored in a different
location than, for example, requests for quotation.

In our example, we are going to assume that all purchase orders are to be sent to the same
queue, called PURCHASE.ORDERS. As described before, create a queue profile PO_IN in
WebSphere Data Interchange; set the queue name to PURCHASE.ORDERS and set the name of
the queue manager, cw_studenta.queue.manager in our example. Save the document.

The next object we should define is a network profile. While it is possible to use a single
network profile to describe the access to the queues EDI_IN and PURCHASE.ORDERS, it
might be easier to separate these two. The queue EDI_IN might contain messages with an
RFH2 header, while the messages for the queue PURCHASE.ORDERS should not have this
header. To create network profiles, open the setup window in WebSphere Data Interchange
and select the tab Network Profiles. Click File -> New to create a new document.

Create a network profile INBOX, with the following values:

� Network ID: EDI_IN
� Communication Routine: VANIMQ
� Network Program: EDIMQSR
� Network Parameters: RECEIVEMQ=EDI_IN (the name of the queue profile)

Save the document by clicking File -> Save and create a second network profile, with the
following values:

� Network ID: PO_IN
� Communication Routine: VANIMQ
� Network Program: EDIMQSR
� Network Parameters: SENDMQ=PO_IN (the name of the queue profile)

The next step is to create mailboxes. A mailbox in WebSphere Data Interchange is a logical
starting point or ending point for a translation. It can map onto a mailbox in a VAN solution or
to any other resource, such as a queue or a file.

� Create mailbox EDI_IN with network ID EDI_IN.
� Create mailbox PO_IN with network ID PO_IN.

Finally, complete the setup within WebSphere Data Interchange by creating services profiles.
A service profile is named after a mailbox and contains the WebSphere Data Interchange
commands that need to be executed when a document arrives in a mailbox.

Note: The structure of the MQ message generated by TPI depends on what interface is
used by TPI to interact with WebSphere MQ. If TPI is configured to use the JMS interface
of WebSphere MQ, the message will have an RFH2 and this needs to be reflected in the
network profile. If TPI is configured to use the standard MQ Client interface, as we have
configured TPI in this chapter, the message will not contain an RFH2 header.
138 Implementing EDI Solutions

Create service profile EDI_IN with the following settings:

� Perform command: PERFORM TRANSFORM WHERE INFILE(EDI_IN) SYNTAX(E)
OUTFILE(PO_IN)

� Output files: PO_IN ..\xml\po_in.txt

Create a service profile PO_IN with the following settings:

� Perform command: PERFORM SEND WHERE REQID(PO_IN) OUTFILE(PO_IN) OUTTYPE(MQ)
CLEARFILE(Y)

� Input files: PO_IN ..\xml\po_in.txt

Creating a rule for the translation map
So far, we have created a transformation map and objects within WebSphere Data
Interchange that control the flow of data. The last object to create is a rule (or usage)
associated with a map. The rule will tell WebSphere Data Interchange when a map should be
used.

Open the mapping window and select the map 850TOXML that we have created previously.
Select Actions -> Usages. Since a rule is associated with a map, some conditions are
already set up front. It is clear that the map 850TOXML will only be used to transform EDI 850
documents that adhere to the standard X12V4R3, but typically, you will need more
granularity. Often a map should only be used when the document comes from one partner or
is going to be sent to one partner, while another map should be used for another partner. That
is the kind of information that you can encode in a data transformation map. Select
File -> New to create a new rule for the map 850TOXML. Set the following attributes:

� Usage Indicator: Production
� Trading Partners:

– Sending: ANY
– Receiving: SUPPLIER

� Make the map active by selecting the check box Active.

This results in a map and rule such that documents received from any partner and targeted
for the internal trading partner SUPPLIER are all translated according to the same rules.

Updating WebSphere MQ resources
The translation process that we have described in the previous section assumes that
messages will arrive in a queue called EDI_IN and that they can be written after translation in
another queue, called PURCHASE.ORDERS. The queue EDI_IN was already created
previously when we configured the TPI Server. Now, define the queue PURCHASE.ORDERS
using WebSphere MQ Explorer.

To automate the translation process, we would like to use the triggering features of
WebSphere MQ. Therefore, update the definition of the queue EDI_IN and set the following
attributes using WebSphere MQ Explorer on the tab labeled Triggering:

� Trigger Control: On
� Trigger Type: First
� Initiation Queue: WDI.INIT.Q
� Process Name: WDI.PROC

Usually, the setup of a WebSphere Data Interchange server includes the creation of a number
of WebSphere MQ objects. The commands to create these objects are available in the file
wdimqcommands.txt in the samples directory of a WebSphere Data Interchange server
installation. If you have executed these commands, then the queue WDI.INIT.Q already
exists, as does the process WDI.PROC. If the process WDI.PROC and the queue WDI.INIT.Q
Chapter 3. Implementing multi-product AS/2 communication with trading partners 139

do not exist for your queue manager, consult the file wdimqcommands.txt to find the
requirements for these objects.

Completing the setup of WebSphere Data Interchange
The above configuration of WebSphere Data Interchange works fine for input received from
Retailer1. The EDI 850 document from Retailer1 is written in the queue EDI_IN by the TPI
Server and WebSphere Data Interchange will pick it up and translate it based on the rule that
we created before. What needs to be done when the Retailer1 sends other types of EDI
documents? Certainly, we need to make sure that the EDI definition for this document is
imported and that an equivalent DTD is imported. Also, we will need to define a map between
the EDI definition and the XML document. This new EDI document will arrive in the same
queue called EDI_IN. WebSphere Data Interchange is able to detect that this is a different
document than the EDI 850 and hence can pick up the correct map. However, will this new
document be passed, after translation, to the same queue PURCHASE.ORDERS? Probably
not. How is WebSphere Data Interchange going to perform this routing?

At this point, any message in the queue EDI_IN is going to be handed over to the queue
PURCHASE.ORDERS. To tie the routing to the document type, and not the origin, perform
the following changes to the configuration that you have created so far:

� Update the rule for 850TOXML. Set Output file to PO_IN and Type to MQ on the General tab
of the data transformation rule.

� Update the service profile EDI_IN and remove the references to the output file on the
perform command for the service profile EDI_IN. The updated perform command now
looks like this:

PERFORM TRANSFORM WHERE INFILE(EDI_IN) SYNTAX(E)

At this time, the target destination (PO_IN) is set in the rule and can be tied to either trading
partner combination and/or document combination.

For the rule associated with the map for the new EDI document, set the output file to a
different file. Add a queue profile, a service profile, a mailbox profile, and a network profile to
the WebSphere Data Interchange configuration.

When adding more trading partners (Retailer2, Retailer3 and so on), we need to make sure
that these trading partners are known in WebSphere Data Interchange. The rule itself was not
linked to a source trading partner. If you are sure that the rule for the translation of 850
documents is partner-independent, you can update it to make it an any-to-any rule.
Alternatively, you need to create an additional rule, for example to set a specific output file.
Or, you may need to create an additional map and rule, to handle specific translation and/or
destination requirements.

Processing file-based input for WebSphere Data Interchange
When the TPI Server receives an EDI document and it is configured to store the document as
a file in a given directory, it will generate a unique file name for each incoming document. The
default generated name contains sender and receiver identification, followed by the
document number obtained from the ISA segment and the extension edi. An example of such
a name is shown below:

RETAILER1.TO.SUPPLIER_1001.edi

Besides variable file names, there is also the issue of how to start the EDI translation engine.
When using WebSphere MQ, you can rely on MQ triggering to start the EDI translation
engine. The most common solution is to use a scheduler tool and run a command file at a
regular interval to process incoming EDI documents.
140 Implementing EDI Solutions

Both issues (variable file names and kicking off the translation process) can be solved in a
variety of ways using command files and scripts. We describe here one solution that will
mainly focus on the interaction between WebSphere Data Interchange and TPI and not on
the scripting aspect.

Assuming that we have a configuration of TPI without MQ integration and with default system
directory names, the EDI documents will be written by the TPI Server in the directory
c:\CrossWorldsTPI\data\Supplier\ediin. Assume that the installation directory of WebSphere
Data Interchange Server is C:\WDIServer32. In the directory C:\WDIServer32\runtime\dicmd,
we created a command file, called wdi.bat with the following commands (see Example 3-13).

Example 3-13 Command file wdi.bat

echo off
For %%f in (c:\CrossWorldsTPI\data\Supplier\ediin*.edi) do @translate.bat %%f

This command file will result in running another command file, translate.bat, as many times
as there are EDI document files in the directory inbox\retailer3. We need to make sure that we
process an EDI document once only. The set of file names will be built at the beginning of the
execution of the command file wdi.bat. The name of each file will be passed as a parameter
to translate.bat. It is clear that the command file translate.bat will have to move or rename the
file when the processing is complete, otherwise it will be processed again the next time that
the wdi.bat command file is executed. If a new document arrives during the period of time that
wdi.bat is already running, it will not be found before the next time that wdi.bat is scheduled to
run.

The contents of translate.bat are shown in Example 3-14. Since the command file knows the
variable name of the file for which it is started, we can copy it to a fixed name, in this case
edi.in. Then we make sure that the bin directory of WebSphere Data Interchange is part of the
PATH environment variable. Next, we call the EDISERVR program, which is the WebSphere
Data Interchange engine. That program is given some WDI commands via indirection. Finally,
we copy the original source file to add the extension .processed to its name and delete the
original file.

Since all files will be copied at some point to the file edi.in, we cannot run multiple instances
of translate.bat at the same time. As a result, we cannot run multiple instances of wdi.bat at
the same time. If this causes a problem for your environment, you will need to write smarter
scripts to handle that.

Example 3-14 Command file translate.bat

echo %1
copy %1 c:\CrossWorldsTPI\data\Supplier\ediin\edi.in
set WDIRESTOREPATH=%PATH%
set PATH=C:\WDISERVER32\bin;%PATH%
ediservr < wdicmds.txt
set PATH=%WDIRESTOREPATH%
copy %1 %1.processed
del %1

Finally, let us look at the contents of the file wdicmds.txt, the contents of which are given in
Example 3-15 on page 142.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 141

Example 3-15 Contents of the file wdicmds.txt

set plan(WDIC);
init;
set file(PRTFILE,prtfile.txt);
set file(TRKFILE,trkfile.txt);
set file(EXPFILE, expfile.txt);
set file(EDI_IN,c:\CrossWorldsTPI\data\Supplier\ediin\edi.in);
set file(PO_IN,c:\CrossWorldsTPI\data\Supplier\ediin\po.in);
PERFORM TRANSFORM WHERE INFILE(EDI_IN) SYNTAX(E);
term;

You can easily see the correspondence between these commands and what we had
configured before using the client interface of WebSphere Data Interchange. The set file
commands correspond to the service profile settings where we had given values for similar
parameters. Setting the plan to the name of the database was something we did previously in
the file wdi.properties. The PERFORM command in Example 3-15 is the same command that we
had in the service profile INBOX.

It should be noted that the translated XML document is always stored in a file called po.in. By
default, WebSphere Data Interchange will append to this file, if it already exists. A single file
with multiple XML documents might cause problems for other applications that are going to
process this incoming order. If that is the case, an easy solution might be to add a copy
command to translate.bat. For example:

copy c:\CrossWorldsTPI\data\Supplier\ediin\po.in %1.translated

3.4.2 Preparing EDI documents
The process of translating XML documents to EDI documents is conceptually not much
different from the reverse process that we explained in the previous section. Figure 3-41 on
page 143 shows this flow in a graphical way. Figure 3-41 on page 143 also shows that
documents for Retailer2 and Retailer1 are in a different queue. However, they can just as well
be stored in the same queue, called POACKQ. The translated documents should be written in
the queue EDI_OUT, which is set in the company profile for Supplier in TPI.

In this section, we will use EDI 855 (purchase order acknowledgement) as the document that
is being sent by the supplier to the retailer that has previously sent a purchase order.
142 Implementing EDI Solutions

Figure 3-41 Outbound data flow

The process of configuring WebSphere Data Interchange for this task consists of the
following steps:

1. Definition of trading partner profiles for all retailers and the supplier itself. This step was
completed when we described the setup for the inbound flow.

2. Document definition:

a. Import of the EDI 855 document definition. During the import of the 850 document, we
had also selected the 855 document. Thus, we can skip this step.

b. Import of a DTD, matching the internal representation of a purchase order
acknowledgment.

3. Definition of the translation map.

4. Definition of mailboxes, network profiles, queue profiles and service profiles.

5. Definition of the rules associated with the map.

6. Creation of a command file to process incoming XML files.

7. Definitions of queue and process objects in WebSphere MQ to support the automatic
translation of incoming XML documents in queues.

XML document definition
In 3.4.1, “Processing received EDI documents” on page 132, we described how the company
Supplier was processing incoming EDI 850 documents. In general, when a company receives
such a document, it will respond with a purchase acknowledgement, which is an 855
document in EDI terminology. The internal systems of the company Supplier will likely not
generate an 855 document directly. The format will be company- and application-specific.
Example 3-16 on page 144 shows a simple DTD representing an XML document that
contains information typically found in a PO Ack. Again, the sample DTD is simple to avoid
losing focus in this redbook.

WebSphere
Data

Interchange

XML Input Folder
 for Retailer 3

XML Input MQ Queue
for Retailer 2

XML Input MQ Queue
for Retailer 1

EDI Output Folder
for Retailer 3

EDI Output MQ Queue
for Retailer 1 and 2

 XML EDI

 XML

XML EDI

(Translation)
Chapter 3. Implementing multi-product AS/2 communication with trading partners 143

Example 3-16 DTD representing a PO acknowledgement

<?xml encoding="US-ASCII"?>
<!ELEMENT POResponse (Header,Detail)>

<!ELEMENT Header (PONumber,TargetPartnerID,Response)>

<!ELEMENT PONumber (#PCDATA)>
<!ELEMENT TargetPartnerID (#PCDATA)>
<!ELEMENT Response (#PCDATA)>

<!ELEMENT Detail (ItemNumber,Quantity,Description)>

<!ELEMENT ItemNumber (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT Description (#PCDATA)>

Example 3-17 shows a sample message that complies with the DTD of Example 3-16. It
contains an ID representing the target partner, a PO ID and a response field. Farther down,
we also see a detailed view of the actual order.

Example 3-17 Sample XML document representing a PO acknowledgement

<?xml version="1.0"?>
<POResponse>

<Header>
<PONumber>P12347</PONumber>
<TargetPartnerID>RETAILER2</TradingPartnerID>
<Response>AT</Response>

</Header>
<Detail>

<ItemNumber>00123</ItemNumber>
<Quantity>10</Quantity>
<Description>Parts</Description>

</Detail>
</POResponse>

The DTD is imported in a dictionary called 855XML and the root element name is set to
POResponse (see Figure 3-42).

Figure 3-42 Import XML DTD in WebSphere Data Interchange

After importing the DTD, we need to tell WebSphere Data Interchange about the role of the
field TargetPartnerID. Open the DTD again in WebSphere Data Interchange and set the field
ID Element for Receiver to \POResponse\Header\TargetTradingPartnerID\\. Refer to
Figure 3-39 on page 136 to see where we did this for the PO DTD.
144 Implementing EDI Solutions

Definition of the translation map
The next step is to create the translation map to translate the XML document to the
corresponding EDI 855 document. Open the map editor and select File -> New. Use the
following values in the map definition wizard:

� Map name: XMLTO855
� Target or source based: Target
� Source document definition: XML
� Source dictionary name: 855XML
� Source DTD: XMLPOACK
� Target document definition: EDI
� Target dictionary name: X12V4R3
� Target EDI standard transaction: 855

After reviewing your selections in the summary window of the wizard, select Finish to start
the actual mapping between the XML document and the EDI transaction.

Figure 3-43 shows the first portion of the map. It shows the mappings for Table 1. The data
segments of the BAK segment are filled in by dragging the corresponding elements from the
XML document. The field Date is filled in using an assignment command in which we invoke
the built-in function Date(). The field Transaction Set Purpose Code is filled in using an
assignment in which the field is set to the constant value 06.

Figure 3-43 Building an EDI 855 document - step 1

Figure 3-44 on page 146 shows the first part of the mapping for Table 2. Two data elements
are mapped directly from the source XML document, while the element Product/Service ID
Qualifier is filled in using an assignment.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 145

Figure 3-44 Building an EDI 855 document - step 2

Figure 3-45 shows the second part of the mapping for Table 2. One element is filled using a
direct mapping from the corresponding element in the XML document, while the other
element is filled in using an assignment.

Figure 3-45 Building an EDI 855 document - step 3

Setup within WebSphere Data Interchange
As we have done for the inbound flow, we need to set up a number of objects in WebSphere
Data Interchange to support this map.

Open the setup window in WebSphere Data Interchange and define an MQSeries queue
profile POACKQ for the queue POACKQ. Set the name of the queue manager in this profile.
Define a second MQSeries queue profile called EDI_OUT for the queue EDI_OUT.

Notice the implied naming convention for the queues. The queue POACKQ, like the queue
PO_IN that was used before, has a name that implies a function, since the contents of the
queue will be application-dependent. The queues EDI_IN and EDI_OUT are not
application-dependent. The queue EDI_IN was used for EDI 850 documents but can be used
for any type of document for which the destination is the internal system of the Supplier. The
queue EDI_OUT is to be used for any type of document targeted for any trading partner.
146 Implementing EDI Solutions

The next step is the definition of two network profiles, which are defined in the setup window
of WebSphere Data Interchange.

� Create network profile EDI_OUT with the following values:

– Network ID: EDI_OUT

– Communication Routine: VANIMQ

– Network Program: EDIMQSR

– Network Parameters: SENDMQ=EDI_OUT

� Create network profile POACKQ with the following values:

– Network ID: POACKQ

– Communication Routine: VANIMQ

– Network Program: EDIMQSR

– Network Parameters: RECEIVEMQ=POACKQ

Next, we need some mailboxes to represent the new destination and source queues. Create
the following mailboxes:

� EDI_OUT: set network profile ID to EDI_OUT

� POACKQ: set network profile ID to POACKQ

Finally, we need to create service profiles that describe the actions that WebSphere Data
Interchange should perform when documents are posted in a mailbox.

� Service profile EDI_OUT

– Perform command:
PERFORM SEND WHERE REQID(EDI_OUT) CLEARFILE(Y)

– Input files: EDI_OUT - ..\xml\edi_out.txt

� Service profile POACKQ

– Perform command:
PERFORM TRANSFORM WHERE INFILE(POACKQ) SYNTAX(X)

– Input files: EDI_OUT - ..\xml\edi_out.txt

Creating an envelope profile
Before we can tie everything together, we need one more object in WebSphere Data
Interchange: an envelope profile. EDI documents can be grouped in a single file and
surrounded by an envelope. An envelope can contain documents of different transactions. In
our setup, we always process (send and receive) the documents as soon as they become
available. You may have situations where you want to batch the documents before
enveloping them and then passing them to the trading partner. However, even when you send
and receive the documents one at a time, you need to have an envelope.

Envelope profiles are used to set values for specific segments in an EDI document, such as
the ISA segment. The ISA segment contains, beside other fields, the fields Sender and
Receiver ID and the fields Sender and Receiver qualifier. In the DTD definition, we have
made the link between the XML element TargetPartnerID and the Receiver ID. However, no
information was available in the XML document to fill in the field Sender ID. We could have
set a value in the map, using the setProperty built-in function. However, this would result in a
value that is independent of the target partner. Given that you might have a requirement for

Tip: Since these profiles are all similar, you can use the copy function of WebSphere Data
Interchange by selecting the menu option Action -> Copy.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 147

several company profiles, we may need a different approach. An elegant solution to set the
correct value (SUPPLIER) in the ISA segment is to use separate X envelope profiles.

Envelope profiles are managed in the setup window. Different types exist, corresponding to
different EDI standards. Since we have used X12 documents, we will need to create an X
profile.

Select the tab X Envelope Profiles and click File -> New. Name the profile 855SUP1. Select
the tab Interchange Header (ISA) and set the field ISA06 to PPLIER and the ISA05 field to SU.
Save the document. Note that TPI will combine the ISA05 and ISA06 field to map it to its
company and/or partner profile names. SU concatenated with PPLIER gives us exactly the
company ID that was set during the creating of the company profile in TPI (see 3.2.2,
“Company profile setup for Supplier” on page 103). When you have a naming conflict
between what you can store in the ISA segment and what you have configured in TPI, you
can provide a secondary ID in TPI for a company profile to tie different partner names
together.

Creating a rule for the map
Given that the destination of the translated document is different based on the target partner
ID, we will need to define three new rules for the map XMLTO855. Open the map editor and
select the map XMLTO855 that we created before. Click Action -> Usages to open the rules
editor. Select File -> New to create a rule and set these fields to the following values:

� Usage Indicator: Production
� Trading Partners:

– Sending: ANY
– Receiving: RETAILER1

� Output file and type: EDI_OUT and MQ
� Make the map active by selecting the check box Active.
� Select the tab Envelope Attributes

– Envelope Type: X
– Envelope Profile Name: 855SUP1

Create a second and third rule for Retailer2 and Retailer3 with matching values.

Updating WebSphere MQ resources
The queue EDI_OUT was defined previously to support the configuration of the TPI Server. In
order to validate the WebSphere Data Interchange configuration discussed above, we need
to define a queue called POACKQ. This queue could be modeled after the queue EDI_IN that
was defined to support the inbound data flow. The queue POACKQ should have the following
values for these attributes on the tab labeled Triggering:

� Trigger Control: On
� Trigger Type: First
� Initiation Queue: WDI.INIT.Q
� Process Name: WDI.PROC

These values can be set by using WebSphere MQ Explorer. Note that it is assumed that the
objects WDI.INIT.Q and WDI.PROC have been created as part of the standard configuration
of WebSphere Data Interchange.

When you write an MQ message (such as the one shown in Example 3-17 on page 144) on
the queue POACKQ, the WDIAdapter program should be launched by the WebSphere MQ
Trigger Monitor program and the queue EDI_OUT should contain a message as shown in
Example 3-18 on page 149.
148 Implementing EDI Solutions

Example 3-18 Sample translated EDI document

00000000 ISA* * * * *SU*PPLIER *RE*TAILER2 *060303*1506* * *000000009* *P*:!
00000106 GS*PR* * *060303*1506*000000009* *004030!
00000149 ST*855*000000009!
00000166 BAK*06*AT*P12347*20030306!
00000192 PO1**10****ID*00123!
00000212 PID*F****Parts!
00000227 SE*5*000000009!
00000242 GE*1*000000009!
00000257 IEA*1*000000009!
00000273 .

Processing file-based input for WebSphere Data Interchange
As shown in Figure 3-41 on page 143, the outbound flow for Retailer3 is file-based.
WebSphere Data Interchange needs to read files containing XML documents from a given
directory and write them in the directory that is used by the TPI Server. As with the inbound
flow, we need to make sure that script files are written in such a way that each file is
processed exactly once. The TPI Server will poll the directory that was provided in the
company profile (the tab System Directories).

On the input side, we need to assume again that the application that generates the XML files
uses file names that are unique so that a file is not overwritten by this application before
WebSphere Data Interchange has translated the XML document into an EDI document.

And finally, there is again the issue of automating the translation process, since we cannot
rely on WebSphere MQ triggering to start the translation engine.

To handle all these issues, we will again present some script files. The first script file is called
by a scheduler program at regular intervals and looks for files in the directory
C:\WDIServer32\outbox\retailer3 with an extension of .file.txt. For each found file, the
command file translate_out.bat is called, passing it the name of the XML file. Such a
command file is shown in Example 3-19.

Example 3-19 Command file wdi_out.bat

echo off
For %%f in (c:\WDIServer32\outbox\retailer3*.txt) do @translate_out.bat %%f

The second command file, translate_out.bat, prepares the WebSphere Data Interchange
environment by setting the PATH environment variable correctly. It also copies the current file
(passed to the command file as the first argument) to the intermediate file xml.in and then
calls the actual translation engine. When the engine returns, the output file is copied to the
ediout directory where TPI is polling for new files.

Example 3-20 Command file translate_out.bat

echo %1
copy %1 c:\WDIServer32\outbox\retailer3\xml_in
set WDIRESTOREPATH=%PATH%
set PATH=C:\WDISERVER32\bin;%PATH%
ediservr < wdi_out_cmds.txt
copy C:\WDIServer32\outbox\retailer3\edi_out c:\CrossWorldsTPI\data\Supplier\ediout\%1.edi
copy %1 %1.processed
del %1
set PATH=%WDIRESTOREPATH%
Chapter 3. Implementing multi-product AS/2 communication with trading partners 149

The actual WebSphere Data Interchange commands are stored in the file wdi_out.cmds,
shown in Example 3-21. Similar to the inbound flow, the commands consist of a series of
environment setup commands followed by the familiar PERFORM command.

Example 3-21 WebSphere Data Interchange commands

set plan(WDIC);
init;
set file(PRTFILE,prtfile.txt);
set file(TRKFILE,trkfile.txt);
set file(EXPFILE, expfile.txt);
set file(XML_IN,c:\WDIServer32\outbox\retailer3\xml_in);
set file(POACK,c:\WDIServer32\outbox\retailer3\edi_out);
PERFORM TRANSFORM WHERE INFILE(XML_IN) SYNTAX(X) OUTFILE(POACK);
term;

The generated files, with the extension .edi, are now ready for transmission by the TPI Server
program and will be picked up by it at the next polling interval.

3.5 Integration between the Interchange Server, WebSphere
Data Interchange and TPI

The Interchange Server (ICS) is often used as a platform for integrating applications within an
enterprise. While we cannot cover all aspects of using this technology in a single redbook,
this section will describe some typical operations that allow the ICS to interact with
WebSphere Data Interchange. We will cover the use of the MQSeries Connector to send and
receive data to and from products such as WebSphere Data Interchange. The use of other
connectors, such as JText Connector, is very similar. One can also use the TPI Connector for
a close integration between TPI and the ICS. For an example of such a setup, refer to the
redbook B2B Solutions using WebSphere Business Connection, SG24-6197.

3.5.1 Creating business objects
The first step would be the creation of a business object matching the DTD that we used
previously in WebSphere Data Interchange. You can use the Business Object Designer and
define the fields manually. However, for a more realistic DTD representing a purchase order,
there would be many more fields than what we use here. Defining the business object
manually would then become an error-prone operation.

Tools are provided to make the definition of a business object easier. An optional installation
component of the Interchange Server is the XMLODA, XML Object Discovery Agent. Launch
the agent from the ODA\XML directory. When it is started, you should see a command
window as shown in Figure 3-46 on page 151.
150 Implementing EDI Solutions

Figure 3-46 XML Object Discovery Agent is running

Now launch the Business Object Designer and select File -> New Using ODA from the
menu, as shown in Figure 3-47.

Figure 3-47 Using the Business Object Designer

A new window will appear to guide you through the definition process. Click the button Find
Agents to populate the right pane with available agents and select the XML ODA agent from
the list. Select Next to continue (Figure 3-48 on page 152).

Note: The Visibroker component should be running to get this list of available agents.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 151

Figure 3-48 Business Object wizard - Step 1

Most of the fields in Step 2 are populated by default. Provide the following information:

� Name of the file that contains the DTD
� Root element
� Top Level element
� BOPrefix

Then select Next to continue (Figure 3-49).

Figure 3-49 Business Object wizard - Step 2
152 Implementing EDI Solutions

The next step allows you to select other levels (or nodes) in the XML document for which you
would like to create a business object definition. You might, for example, require an object to
represent a single Detail element. For our purposes, this is not required. Therefore, we select
the top node and click Next to continue (Figure 3-50).

Figure 3-50 Business Object wizard - Step 3

Step 4 summarizes your selections so far. At Step 5, you need to select a verb to go with the
business objects. Figure 3-51 shows the selection of the Create verb. Click OK to continue.

Figure 3-51 Business Object wizard - Step 5
Chapter 3. Implementing multi-product AS/2 communication with trading partners 153

Finally, in Step 6, you can choose where to save the business object. If the ICS is running and
you are connected to it, the first option, Save business objects to the server, should be
available. Alternatively, save the business object to an import file (selected option in
Figure 3-52) and open the file later in the CrossWorlds System Manager by clicking File ->
Open from File.

Figure 3-52 Business Object wizard - Step 6

3.5.2 Configuring the MQSeries connector
Depending on the version of ICS with which you are working, the MQSeries connector might
also be called the WebSphere MQ connector, reflecting the name change of WebSphere MQ
itself.

Updating the XML meta-object
Open the business object MO_DataHandler_DefaultXMLConfig and save it as
MO_DataHandler_WDIXML_Config. Make the following changes to this business object:

� Set the attribute DTDPath to the directory that holds the DTD for the POResponse XML
document.

� Set the BOPrefix to POACK, which is the prefix used during the creation of the business
object (see Figure 3-49 on page 152).

Figure 3-53 on page 155 shows the completed meta-object. Save the object to the server.
154 Implementing EDI Solutions

Figure 3-53 Data Handler business object

Now open the business object MO_DataHandler_Default. Update the Type field for element
text_xml and set it to the XML Data Handler object MO_DataHandler_WDIXML_Config which we
created before. Figure 3-54 shows the completed meta-object. Save this business object to
the server.

Figure 3-54 Default Data Handler business object

Defining the meta-object MO_WDIXML_config
The connector requires a meta-object that describes how to convert the business object to an
XML message in a queue. Open the Business Object Designer and create a new business
Chapter 3. Implementing multi-product AS/2 communication with trading partners 155

object, named MO_WDIXML_Config. When the Object Designer window appears, select the
tab Attributes and make the following changes:

� In the name field, add POACK_POResponse_Create

� In the field App Spec Info, type InputFormat=MQSTR

� Add another attribute. In the name field, type Default

� Select the check box Key for this attribute

� In the field App Spec Info, type:

OutputQueue=queue://cw_studenta.queue.manager/POACKQ?targetClient=1

POACKQ is the name of the triggered queue for which WebSphere MQ will launch the
WDIAdapter program, as configured in 3.4.2, “Preparing EDI documents” on page 142.
Replace cw_studenta.queue.manager with the name of your queue manager. The option
targetClient=1 instructs the ICS to generate a standard WebSphere MQ message, instead
of a JMS message. Figure 3-55 shows the completed meta-object.

Figure 3-55 Business object MO_WDIXML_Config

Configuring the MQSeries connector
Expand the folder Connectors in the System Manager and double-click the object MQSeries
Connector. Click the tab Connector Agent to specify the connector-specific properties, as
detailed in Table 3-1.

Table 3-1 Connector properties

Property Value

InDoubtEvents Reprocess

Channel CHANNEL1

InProgressQueue queue://cw_studenta.queue.manager/MQ-
CONN.IN_PROGRESS
156 Implementing EDI Solutions

Figure 3-56 shows the Connector Designer window where you need to specify the values
listed in Table 3-1 on page 156.

Figure 3-56 Configuring the MQSeries connector

Select the tab Supported Business Objects. Click the blank cell under the heading
Business Object Name. A drop-down box will appear. Select POACK_POResponse from the
list and select the check box Agent Support. Also add the meta-object
MO_DataHandler_default to this table and select the check box Agent Support again.

When finished, select File -> Save to Server. During the save, you may receive warnings
about the need to restart the connector. You can accept those warnings. When the save
process is finished, switch to the System Manager and right-click the MQSeries connector in
the folder Connectors; stop and restart the connector.

3.5.3 Developing a test collaboration
The next step is the development of a collaboration that will generate the POResponse
document for processing by WebSphere Data Interchange. Open the CrossWorlds System
Manager and expand the folder Collaboration Templates. Locate the template
CollaborationFoundation and copy and paste it in the folder Collaboration Templates.

DataHandlerConfigMO MO_DataHandler_Default

ConfigurationMetaObject MO_WDIXML_Config

DataHandlerMimeType text/xml

Port 1414

Hostname studenta

Property Value
Chapter 3. Implementing multi-product AS/2 communication with trading partners 157

Name the copied template WDI_Outbound_Template. Open the new template in the Process
Designer by double-clicking it. Select Template -> Open Template Definitions to update the
template. Select the tab Ports and Triggering Events. Update the BO Name for each port
and set it to POACK_POResponse. Change the field Create for the From row (2) to Main (see
Figure 3-57).

Apply the changes and compile the updated template.You can delete the port
DestinationAppRetrieve, but that is not required.

Figure 3-57 Update the template definitions

Now that we have a template that fits our needs, we can create a collaboration object.
Right-click the folder Collaborations and select New collaboration object from the context
menu. Select the template WDI_Outbound_Template and name the new collaboration
WDI_Outbound. Click Next. Now bind the ports to the connectors, as shown in Figure 3-58
on page 159.

Set the From port to PortConnector and the To port to MQSeriesConnector. Also set the
DestinationAppRetriever port to PortConnector, if you have not deleted this port in the
template.

Click Next twice, then click Finish to complete the definition of this collaboration.

Note: If your installation of the Interchange Server does not have this template, you can
find an import file for this template as part of the additional material for this redbook. Refer
to Appendix B, “Additional material” on page 217.

Note: If you do not see the PortConnector as an available choice, you need to update the
list of supported business objects for the PortConnector and include the business object
POACK_POResponse.
158 Implementing EDI Solutions

Figure 3-58 Bind the ports of the collaboration

If all steps were performed without problems, the System Manager will now show a graphical
representation of the collaboration, as shown in Figure 3-59.

Figure 3-59 WDI_Outbound collaboration

Finally, start the collaboration by selecting Component -> Start WDI_Outbound. Or, select
the start command from the context menu of the collaboration.

3.5.4 Using the Test Connector
The final step is to use the Test Connector tool to drive the collaboration. Before you start this
tool, you should perform a number of validation tasks.

� Expand the folder Connectors in the System Manager and verify that the
MQSeriesConnector is started.

� Verify that the PortConnector is started. Sometimes this connector is in a paused state,
which is usually caused by a missing queue in WebSphere MQ. If you cannot get the
PortConnector to start, verify that the queue AP/PORTCONNECTOR/CW_STUDENTA
Chapter 3. Implementing multi-product AS/2 communication with trading partners 159

exists. Replace CW_STUDENTA with the name of your InterChange Server. If this queue
does not exist, create it with default attributes.

� Start the MQSeries Connector that we configured previously by selecting Start ->
Programs -> IBM CrossWorlds -> Connectors -> MQSeries Connector. Verify in the
output that the connector has started correctly. You can also start the System Monitor
(from the Tools menu in the CrossWorlds System Manager) and verify that the agent state
of the MQSeries Connector is Active.

Now start the Test Connector by selecting Start -> Programs -> IBM CrossWorlds ->
Connectors -> Test Connector. When the tool is started, select File -> New Profile, which
will bring up a profile selection window. Select Add to create a new profile.

Provide the name of the server, the password of the admin user ID (usually the word null)
and the name of the connector that we are going to simulate: PortConnector. You can leave
the field Config File blank. The test connector should be able to locate the configuration file by
itself. Alternatively, you should point to the ICS configuration file manually (usually
D:\CrossWorlds\InterchangeSystem.cfg). Click OK to close this window.

Figure 3-60 Create a new profile for the test connector

Select the new profile in the profile list window and click OK. The test connector is now
loaded with the correct profile. Select File -> Connect Agent to connect to the ICS.

When the connection succeeds, the test connector will list all business objects that are
supported by the port connector, as shown in Figure 3-61 on page 161.
160 Implementing EDI Solutions

Figure 3-61 Running the test connector

Double-click the business object POACK_POResponse to bring up the next window. Select
the verb Create and name the instance of the business object (for example testbo).
Right-click the element ROOT and select Add Instance. Now expand the ROOT element
which will list two child elements, Header and Detail. Right-click these elements too and
select Add Instance each time. The business object window should now look as in
Figure 3-62.

Figure 3-62 Setting values for the business object
Chapter 3. Implementing multi-product AS/2 communication with trading partners 161

Provide values for the six data elements of this business object and click OK.

This will bring you back to the main window of the test connector. Select the new business
object in the tree structure and click Request -> Send.

Figure 3-63 Business object being sent

Open WebSphere MQ Explorer and browse the queue POACKQ, which should contain an
XML message representing this business object. However, if the WebSphere MQ Trigger
Monitor is still running, your message might be consumed already and you may need to
inspect the output queues of WebSphere Data Interchange. And, if TPI Server is still running,
your message might be gone to a trading partner.

This completes the basic integration of the InterChange Server in a solution with WebSphere
Data Interchange. The collaboration can now be extended to include ports to real back-office
applications and at this time, you will probably need to develop some maps to map business
objects.

3.5.5 Inbound flow
The previous sections described in detail the integration process for the outbound flow. The
steps to integrate CrossWorlds in the inbound flow are quite similar.

Business object
First, we again need a business object to represent the incoming purchase order. The DTD,
listed in Example 3-11 on page 135, can be imported in the InterChange Server using the
XML ODA as described in 3.5.1, “Creating business objects” on page 150.

Important: Since this business object will result in a message that will be processed by
WebSphere Data Interchange, you should provide data that makes sense for WebSphere
Data Interchange. Setting a random value for TargetPartnerID will likely result in an
unprocessed document within WebSphere Data Interchange.
162 Implementing EDI Solutions

Specify the following values for the PO DTD:

� Root element: PO
� Top Level element: PO
� BOPrefix: PO

The MQSeriesInbound Connector
The next step is to create an additional MQSeries Connector. Perform the following steps:

1. Copy and paste the existing MQSeriesConnector object in the folder Connectors in the
CrossWorlds System Manager. Name it MQSeriesInboundConnector.

2. Open a file browser and find the directory MQSeries in the connectors directory of the
CrossWorlds installation. Copy the whole directory and name it MQSeriesInbound.

3. Open the folder Connectors in the Start menu and copy and paste the existing shortcut
MQSeries Connector as MQSeriesInbound Connector.

4. Open the properties of this new short-cut and update the field Target:

D:\CrossWorlds\connectors\MQSeriesInbound\start_MQSeries.bat MQSeriesInbound cw_studenta
-cD:\CrossWorlds\connectors\MQSeriesInbound\MQSeriesAgentConfig.cfg

MQSeries has been replaced three times with MQSeriesInbound. Also update the field
Start in to the name of the new directory:

D:\CrossWorlds\connectors\MQSeriesInbound\

5. Define a new queue AP/MQSERIESINBOUNDCONNECTOR/CW_STUDENTA on the
queue manager used by the ICS. Replace CW_STUDENTA with the name of your ICS.

6. Restart the ICS. After the restart, verify that the connector is running using the
CrossWorlds System Manager.

7. Start the connector agent using the shortcut in the Programs folder and verify that the
Agent State in the System Monitor is Active.

Open the PortConnector object and update the supported business objects. Include business
object PO_PO in the list and be sure to check the field Agent Support.

Creating meta-objects
Once you have verified that the new connector can be started, proceed with the definition of
meta-objects. Open the meta-object MO_DataHandler_WDIXML_Config and save it as
MO_DataHandler_CWXML_Config. Make the following changes:

� Provide the path to the location of the DTD and the file name

� Set the BOPrefix to PO

Define meta-object MO_CWXML_Config. You can copy the meta-object
MO_WDIXML_Config. Rename the field POACK_POResponse to PO_PO.

Define meta-object MO_DataHandler_Inbound_Default. You can copy it from
MO_DataHandler_Default. For the MIME type text/xml, set the field type to
MO_DataHandler_CWXML_Config.

Open the connector object MQSeriesInboundConnector and switch to the tab Application
Config Properties. Set the value of the property DataHandlerConfigMO to
MO_DataHandler_Inbound_Default. Set the value of the property ConfigurationMetaObject to
MO_CWXML_Config. Set the value of the property InputQueue to
queue://cw_studenta.queue.manager/purchase.orders. Save the changes and restart the
connector.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 163

Verifying the map in WebSphere Data Interchange
The ICS requires that the incoming XML message contain a DOCTYPE statement that
includes the name of the DTD. To make sure that the XML document contains the DTD name,
review the map 850TOXML in WebSphere Data Interchange. Open the map editor and verify
that you have a SetProperty call for the property Diprolog, as shown in Figure 3-64.

Figure 3-64 Setting the property Diprolog

If this statement does not exist, right-click the name of the map 850TOXML and select
Insert -> Command -> SetProperty from the context menu. A mapping command editor
should appear, as shown in Figure 3-65. Update the template call of SetProperty to refer to
the property Diprolog and set the value to what is required for your XML document.

Figure 3-65 Adding the name of the DTD to the XML document

Save and re-compile the map.

Creating the collaboration
Expand the folder Collaboration Templates in CrossWorlds System Manager. Copy and paste
the template CollaborationFoundation and name the new template WDI_Inbound_Template.
Open the new template and its definitions. Select the tab Ports and Triggering Events (see
Figure 3-66 on page 165). Set the BOType to PO_PO for all three ports. Set the Create field for
the From port to Main. Apply the changes. Compile and save the template.
164 Implementing EDI Solutions

Figure 3-66 Template definitions

Now create a new collaboration WDI_Inbound from the template WDI_Inbound_Template.
Bind the ports as follows:

� From port: MQSeriesInboundConnector
� To port: PortConnector
� DestinationAppRetrieve port: PortConnector

Save and start the collaboration. Check the server log and verify that you see log messages,
as shown in Example 3-22.

Example 3-22 ICS log

[System: Server] [Thread: VBJ ThreadPool Worker (#5244814)] [Type: Info] [MsgID: 31] [Mesg: Initializing
collaboration "WDI_Inbound".]
[System: Collaboration] [SS: WDI_Inbound] [Thread: VBJ ThreadPool Worker (#4968337)] [Type: Info] [MsgID:
11009] [Mesg: Subscribed to PO_PO.Create from publisher MQSeriesInboundConnector.]
[System: Collaboration] [SS: WDI_Inbound] [Thread: VBJ ThreadPool Worker (#4968337)] [Type: Info] [MsgID:
11014] [Mesg: Collaboration is active.]

Using the test connector
Finally, start the test connector and select the profile PortConnector. Connect to the server
and create a business object of type PO_PO. Select the newly created business object and
select Request -> Accept Request. The PortConnector now acts as an endpoint and is
ready to receive PO_PO business objects.

Write an EDI message on the queue INBOX, processed by WebSphere Data Interchange.
The translated message, including a DOCTYPE, should then end up on queue
purchase.orders, which is monitored by the MQSeriesInbound Connector. The message will
then be routed through the collaboration and end up at the port connector in the test
connector.

Figure 3-67 on page 166 shows the test connector window when data has arrived.
Chapter 3. Implementing multi-product AS/2 communication with trading partners 165

Figure 3-67 A business object has arrived

Select the business object in the right pane to inspect the details. Figure 3-68 shows the
business object representation of this XML message, which was a translation of an EDI 850
document.

Figure 3-68 Details of the received business object
166 Implementing EDI Solutions

Chapter 4. UCCnet and item
synchronization via iSoft and TPI

The previous chapter demonstrated that we can combine TPI and iSoft AS/2 providers.
Companies using one of those two products can interact with each other using AS/2. This
chapter focuses on interoperability between the two AS/2 providers and existing integration
solutions.

As an example integration solution, we use the UCCnet Item Sync collaboration. This
collaboration is usually implemented on top of the Interchange Server and interacts with
UCCnet via TPI. ICS and TPI interact via the TPI connector.

In two steps, we demonstrate that connectors can be changed, from a TPI connector to an
MQ connector, without impacting the overall solution. We also demonstrate that the Item
Sync solution can work over iSoft’s P2PAgent as well.

4

© Copyright IBM Corp. 2003. All rights reserved. 167

4.1 Overview of UCCnet
UCCnet, a not-for-profit, tax-exempt organization, aims to synchronize item information
among all trading partners within the 23 industries served by the Uniform Code Council, Inc.
(UCC). The mission of UCCnet is to provide value by enabling the formation of collaborative
relationships through an electronic trading capability, allowing trading partners served by the
UCC to have synchronized EAN·UCC item information, as well as access to compliant
business applications and services.

UCCnet provides a universal foundation for electronic commerce, ensuring the integrity of
fast, clean business transactions across the Internet, backed with the trustmark of the UCC.

Through its support of the global EAN•UCC standards, UCCnet delivers an open platform for
collaborative commerce services, including standards-compliance verification,
synchronization of product information, registry and lifecycle management of synchronized
products, user locations and user trade capabilities.

UCCnet has been developed to provide an essential backbone that links trade exchange
members, peer-to-peer partners, industry-driven e-marketplaces and alliance partners to one
open, seamless repository of information.

As a subsidiary of the UCC, the global standards organization, UCCnet leverages its position
to enable the rapid, clear development of industry Internet standards and practices.

In addition, UCCnet provides an implementation methodology, allowing small, medium and
large enterprises to integrate e-commerce into their business in a swift and efficient manner.

4.2 The IBM solution
WebSphere Business Integration for Retail Distribution is a portfolio that provides retailers
and their suppliers with industry-specific business process templates, a portfolio of
connectors to leading applications, and an integration hub to help them automate their current
business processes.

This overview focuses on the portfolio’s first solution offering, the collaboration for UCCnet
Item Synchronization for Suppliers, which automatically integrates a supplier’s item business
processes with those of its trading partners. The process solution uses the IBM WebSphere
BI Collaboration for UCCnet Item Synchronization, along with application connectors, the IBM
InterChange Server (ICS) and the Trading Partner Interchange (TPI) connector and server to
provide affordable, extensible, scalable, and secure access to the UCCnet standard registry.
The resulting efficiencies to supply chains can significantly drive down costs and improve
profits for suppliers.

The Item Synchronization for Suppliers process solution meets these challenges by helping
suppliers automate the item synchronization process in compliance with UCCnet standards.
In fact, the solution is certified for interoperability with UCCnet V2.0 and V2.1.

The collaboration, or pre-built template, enables suppliers to automatically add items to,
update or delist items within, or withdraw items from UCCnet when item updates are made in
their Enterprise Resource Planning (ERP) applications. When an item is updated in a
supplier’s ERP system, item data is automatically validated, reformatted, and sent to the
UCCnet standard registry. This collaboration also provides a single process for
communicating item information to trading partners via UCCnet. Thus, a supplier’s enterprise
data is synchronized with item data sent outside the enterprise.
168 Implementing EDI Solutions

Figure 4-1 and the description following it show high-level components of the IBM WebSphere
BI Collaboration for UCCnet Item Synchronization and how one of the possible business
scenarios (the publication of a new item) is played out.

In this ItemAdd/ItemChange scenario, new item information is passed to UCCnet. The source
of the flow is the creation of a new item (it could also be a change to an existing item) in the
source ERP application. The end result of the flow processing is an ItemAdd (or an
ItemChange) message that is received by UCCnet through the TPI connector.

The numbered steps in the graphic correspond to the description that follows.

Figure 4-1 The Item Sync collaboration for UCCnet

1. A trigger from the ERP source provides the item (for example, an IDOC from SAP) to the
WebSphere BI ERP-specific connector.

2. The connector transforms the data into an application-specific business object, initiates
mapping from the application-specific business object to the generic business object
ItemBasic and then passes the ItemBasic business object to the UCCnet_ItemSync
collaboration.

3. The UCCnet_ItemSync collaboration delivers the ItemBasic business object to the TPI
connector.
Chapter 4. UCCnet and item synchronization via iSoft and TPI 169

4. The TPI connector initiates mapping from the generic ItemBasic business object to the
application-specific UCCnet_envelope business object, builds a UCCnet ItemAdd XML
document from the UCCnet_envelope business object, and sends the ItemAdd document
to the TPI Server.

5. The TPI Server uses the trading partner profile for UCCnet, creates the digest, encrypts,
and transmits the ItemAdd document to UCCnet.

6. The Message Disposition Notification (MDN) is generated by UCCnet and returned to the
TPI Server.

7. The UCCnet_requestWorklist collaboration uses the JTextRWL sample connector to poll a
worklist directory on the InterChange Server for an XML message containing a response
Item_Add notification from UCCnet.

8. When the JTextRWL sample connector finds an XML file in its input folder for events, it
transforms and maps the message to a generic UCCnetGBO_envelope business object,
and delivers the business object to the UCCnet_requestWorklist collaboration.

9. The UCCnet_requestWorklist collaboration delivers the business object to the TPI
connector. The TPI connector initiates mapping from the generic UCCnetGBO_envelope
sample business object to the application-specific UCCnet_envelope business object,
builds an XML document from the UCCnet_envelope business object, and sends the XML
document to the TPI Server. The TPI Server uses the trading partner profile for UCCnet,
creates the digest, encrypts, and transmits the XML document to UCCnet.

10.UCCnet generates an MDN and returns this worklist response message to the TPI Server.
The TPI connector transforms the message into a UCCnet_envelope business object,
maps it to a UCCnetGBO_envelope sample business object, which it then sends to the
UCCnet_processWorklist collaboration.

11.The UCCnet_processWorklist collaboration processes the generic
UCCnetGBO_envelope sample business object. It identifies the business object as
representing an ITEM_ADD notification response. It is dispatched to the specific
ITEM_ADD_CHANGE sub-collaboration.

12.This collaboration then sends a UCCnetGBO_envelope sample business object for
ItemPublicationAdd to the TPI connector. The TPI connector builds the UCCnet XML
document from the UCCnet_envelope business object and delivers this ItemPublication
document to the TPI Server.

13.The TPI Server uses the trading partner profile for UCCnet, creates the digest, encrypts,
and transmits the document to UCCnet.

14.The MDN is generated by UCCnet and returned to the TPI Server.

15.The UCCnet_requestWorklist collaboration sends another request for notifications.

4.3 Installation of Item Sync collaboration
The UCCnet Item Sync Collaboration represents synchronization activities between a
supplier and UCCnet. The architectural components involved are the supply-side trading
partner legacy systems, the InterChange Server (ICS), various specific connectors (which
communicate between legacy systems and the ICS), and the Trading Partner Interchange
Server (TPI), which provides Internet access to the UCCnet system. These components are
shown in Figure 4-2 on page 171.
170 Implementing EDI Solutions

Figure 4-2 UCCnet solution with TPI Server

This chapter describes the following scenarios to deploy the UCCnet Item Sync collaboration:

� Using TPI for the supplier and TPI to simulate UCCnet

� Replacing the TPI connector with an MQ connector

� Replacing the TPI Server with iSoft’s P2PAgent

4.3.1 Product installation
For the installation of the Item Sync collaboration and the required customizations, we
assume that a configured Interchange Server, including a queue manager and a working TPI
Server, are available.

Before describing the actual scenarios, we need to install and import the required
components of the Item Sync solution.

The installation program for the Item Sync collaboration prompts you for the directory within
which the installation program will create a folder called collaborations and a folder called
repository. The folder collaborations contains a JAR file and a few database scripts, while the
folder repository contains repository import files for collaboration templates, maps,
relationships and business objects. You may want to merge those folders into your existing
installation directory for the InterChange Server or you may opt for the InterChange Server
installation directory as the installation directory for the Item Sync collaboration.

4.3.2 Importing the solution components
To import these repository files, you can use the command line tool repos_copy or you can
import them by using the System Manager. Select File -> Open from file in the System
Manager and select each file in the folder repository that relates to the UCCnet Item Sync
collaboration. Import first the business objects, followed by the maps, the relationships and
the collaboration templates.

The import of maps will generate warning messages, which you can ignore. The warnings are
resolved by compiling the maps in the System Manager.

During the import of a relationship, you may get a warning about creating a schema. You can
select Ignore at this time.

When the import is finished, open the Relationship Designer for each relationship and save it.
This will trigger the creation of the schema in the database, as shown in Figure 4-3.

InterChangeInterChange
ServerServer

UCCnet_Item
Sync

Collaboration

UCCnet

1

ERP
System

3

TPI
Server

FF
ii
rr
ee
ww
aa
ll
ll

FF
ii
rr
ee
ww
aa
ll
ll

5

6

InternetTPI
Connector4

ERP
Connector2
Chapter 4. UCCnet and item synchronization via iSoft and TPI 171

Figure 4-3 Loading relationships in the database

4.3.3 Database customization
The Item Sync collaboration requires a number of changes and add-ons to the InterChange
Server repository database. The folder collaborations\dependencies\UCCnet\db2 contains
three DB2® scripts that you need to run to update the ICS database. Before we run those
scripts, open the file InitializeRelationshipTables.sql in a text editor and update the ALTER
TABLE statements. The file contains:

ALTER TABLE "CROSSWORLDS"."PROCESSED_GTIN" ADD("GTIN" VARCHAR2(100) NOT NULL,
"WITHDRAWN" VARCHAR2(1) NOT NULL)

Assuming that the ICS connects to DB2 using the user db2admin, replace the above
statement with:

ALTER TABLE DB2ADMIN.PROCESSED_GTIN ADD COLUMN GTIN VARCHAR(100);
ALTER TABLE DB2ADMIN.PROCESSED_GTIN ADD COLUMN WITHDRAWN VARCHAR(1);

Save and close this SQL file. Open a DB2 command window, change to the directory that
holds the SQL scripts and execute the following commands:

DB2 connect to ICSREPOS user db2admin using password
DB2 -tvf audit_los.sql
DB2 -tvf InitializeRelationshipTables.sql
DB2 -tvf trading_partner.sql
DB2 connect reset

Stop and restart the ICS after you have executed these database commands.

Note: While you create the schema for the relationships, you may get an error message
saying that nmake.exe was not found. Install Microsoft® Visual Studio to provide a C
compiler to compile the stored procedures. Also, when installing Visual Studio, make sure
that the environment variables are updated correctly.
172 Implementing EDI Solutions

4.3.4 Installing additional samples for the UCCnet Item Sync collaboration
To further assist with the deployment of the Item Sync collaboration, you can download
sample ICS objects from the following Web site:

http://www-1.ibm.com/support/entdocview.wss?uid=swg24001766

Download the package into a temporary directory and run the installation program
UCCNet_NT.exe. Next, unzip the file UCCnetSamples.zip into the installation directory of the
InterChange Server.

Import the repository file called UCCnetSamples.in into the ICS repository via the System
Manager. If you see any warnings, you can ignore them at this time.

4.4 Implementation of scenario 1
In this section, we describe the implementation of a UCCnet collaboration that interacts with
UCCnet via TPI and the TPI connector. In later sections, this setup is changed to use the MQ
connector and, later, iSoft’s P2PAgent.

4.4.1 Scenario overview
Figure 4-2 on page 171 shows the overall flow that we are going to discuss in this section.
The ERP system in our case is SAP. However, we are using the SAP connector only in a
simulation mode. Instead of using a real SAP system, we are using the Test connector based
on an SAP connector profile. We provide an SAP-based business object to the collaboration
that is going to map the data to an XML document. This XML document is written in the
directory that is monitored by the TPI connector. When the TPI connector detects this new
XML document, it will pass it on to the TPI Server for transmission to UCCnet over the
Internet.

The implementation of this scenario consists of:

� The definition and customization of the collaboration object

� The configuration of the TPI connector

� The configuration of the Port connector, which is used to bind any unused ports of the
collaboration

� The configuration of the SAP connector

� The configuration of the TPI Server

4.4.2 Collaboration object definition and customization
1. In the System Manager, right-click the folder Collaboration Objects and select New

Collaboration Object. The collaboration creation wizard will appear.

2. Select the collaboration template UCCNet_ItemSync as shown in Figure 4-4 and provide
a name for the new collaboration object.

Note: The commands above assume that the schemas for the relationships are created.
Replace ICSREPOS with the name of the ICS repository. Replace db2admin and password
with the correct user ID and password that you use for the ICS to connect to its database
repository. This user ID and password are set during initial installation of the ICS and can
be changed by using the InterChange Server Configuration Wizard.
Chapter 4. UCCnet and item synchronization via iSoft and TPI 173

http://www-1.ibm.com/support/entdocview.wss?uid=swg24001766

Figure 4-4 Select the collaboration Template UCCnet_ItemSync.

3. Select Next, which will allow you to bind the ports of the collaboration. You may keep the
default value of None at this time and bind the ports later after you have completed the
configuration of the connectors. Click Next.

Figure 4-5 Binding ports while creating new collaboration object.

4. During this step, you can set trace and transaction levels. To allow for easier debugging,
set the property System Trace Level to 5, as shown in Figure 4-6 on page 175. Click Next
again.
174 Implementing EDI Solutions

Figure 4-6 Setting System Trace Level

5. The final step allows you to customize the collaboration properties. Make the following
changes to the properties as described in Table 4-1.

Table 4-1 Collaboration object properties

Figure 4-7 on page 176 shows other properties that can be customized. These changes
can be made after the collaboration object is created by right-clicking the collaboration
object and selecting the option Properties from the context menu.

6. Select Finish to complete the definition of the collaboration object.

Property Name Value

GinDB_USER Specify the database user, for example: db2admin

JDBC_URL Specify the connection URL for the database, for
example: jdbc:db2:CWREPOS1

GinDB_PASSWORD Specify the password of the database user

JDBC_DRIVER The driver to connect to the database, for example:
COM.ibm.db2.jdbc.app.DB2Driver
Chapter 4. UCCnet and item synchronization via iSoft and TPI 175

Figure 4-7 Collaboration object properties

4.4.3 TPI connector configuration
1. Select the TPIConnector object in the System Manager and open it in the Connector

Designer. Select the tab Supported Business Objects and add the following business
objects:

– ItemBasic

– MO_DataHandler_Default

– UCCnet_envelope

2. Select the check box for Agent Supported for all Business Object Names except
ItemBasic, as shown in Figure 4-6 on page 175.

Figure 4-8 Setting business object support for SAP Connector

3. Now select the tab Associated Maps and make sure that the correct maps and business
objects are present, as shown in Figure 4-9 on page 177.
176 Implementing EDI Solutions

Figure 4-9 Associating maps with business objects for TPIConnector

4. Select the tab Application Config Properties and change the value of the properties
listed in Table 4-2. You also need to create the three directories that are mentioned in
Table 4-2.

Table 4-2 TPI Connector App Config Properties

Figure 4-10 shows the updated properties in the Connector Designer.

Figure 4-10 TPI Connector Application Config Properties

TradingPartnerConfiguartionFile Path of the configuration file, for example
C:\CrossWorlds\connectors\TPI\tpicfg.in

MetaEventDir Name of the event directory, for example
C:\CrossWorlds\TPI_Conn\event

DefaultXMLMimeType text/xml

DocumentOutDir Name of the document directory, for example
C:\CrossWorlds\TPI_Conn\out

ArchiveProcessedDocDir Name of the archive directory, for example
C:\CrossWorlds\TPI_Conn\archive
Chapter 4. UCCnet and item synchronization via iSoft and TPI 177

5. Save the changes to the TPIConnector object and close the Connector Designer.

6. The connector configuration refers to a configuration file tpicfg.in, which we need to
create. This file holds information about patterns and MIME types. A sample file can be
found in the directory connectors\TPI\samples within the ICS installation directory. Copy
the sample file to the location that you specified in the connector properties (see
Figure 4-10 on page 177).

7. Open the copied file in a text editor and add the line for the UCCnet trading partner and
MIME type text/xml.

<Suppliername> text/xml

You can comment out the other data in the file by prefixing each line with a pound sign (#).

8. The TPIConnector is started via a batch file called start_TPI.bat. We need to update this
file to specify the installation directory for the TPI Server. The file start_TPI.bat is located
in connectors\TPI within the ICS installation directory. Open it in a text editor and make the
following changes:

– Locate the statement SET CYCLONEHOMEDIR= and update this environment variable to
have the TPI installation directory as its value.

set CYCLONEHOMEDIR=<TPI server installation path>

– If you have not done so yet, create the folders that were specified in the TPIConnector
configuration (see Figure 4-10 on page 177). For example:

C:\CrossWorlds\TPI_Conn\archive
C:\CrossWorlds\TPI_Conn\event
C:\CrossWorlds\TPI_Conn\logs
C:\CrossWorlds\TPI_Conn\out

9. Finally, open the map RouterMap_CwItemBasic_to_UCCnet_envelope in the Map
Designer. Select the tab Table, locate the attributes SenderID and ReceiverID and update
the mapping statements. These properties should contain the TPI profile names for the
sender and receiver trading partners.

Figure 4-11 Configuring MAP

10.Shut down the Interchange server and the TPIConnectorgracefully . Restart the ICS and
the TPIConnector to pick up the changes that were made.
178 Implementing EDI Solutions

4.4.4 Port connector configuration
Usually, the Port connector is configured during the base installation and configuration of the
ICS. Start the MQ Explorer program and verify that the following queues exist:

� IC/CWREPOS1/PORTCONNECTOR
� AP/PORTCONNECTOR/CWREPOS1
� APE/PORTCONNECTOR/CWREPOS1
� ICA/CWREPOS1/PORTCONNECTOR
� APA/PORTCONNECTOR/CWREPOS1

Replace CWREPOS1 with the name of your ICS. If those queues do not exist, define them
using MQ Explorer.

Open the PortConnector object in the Connector Designer and add the business object
ItemBasic to the list of supported business objects. You can now save the PortConnector in
the System Manager.

4.4.5 SAP connector configuration
There is more to the configuration of an SAP connector than what we describe in this section.
However, full integration with SAP and step-by-step configuration of the SAP connector is
beyond the scope of this redbook. For more documentation and scenarios that include the
SAP connector, refer to “Related publications” on page 221.

1. Open the SAP Connector.

2. Click the Supported Business Objects tab and add the business objects listed in
Table 4-3.

Table 4-3 Supported business objects for the SAP connector

Figure 4-12 shows the completed tab Supported Business Objects for the SAP connector.

Figure 4-12 Setting business object support for SAP Connector

3. Save and close.

Business Object Name Agent Supported

ItemBasic

SAP4_MATBasic yes
Chapter 4. UCCnet and item synchronization via iSoft and TPI 179

4.4.6 Binding the ports
Now that we have configured all the connectors that we want to use, we can go back to the
collaboration object and bind the ports to the connectors.

In the System Manager, double-click the collaboration object that we created previously (see
4.4.2, “Collaboration object definition and customization” on page 173). This will bring up the
graphical view of the collaboration. Right-click the From port and select Bind Port. A window
similar to Figure 4-13 will appear. For the From port, select the SAPConnector. Repeat this
process for the To port and the DestinationAppRetrieve port. The To port should be bound to
the TPIConnector and the DestinationAppRetrieve port should be bound to the
PortConnector. Binding to the PortConnector basically means that this port is not going to be
used.

If the required connector does not appear in the list of possible connectors, you should review
the list of supported business objects for the missing connector and make sure that that list is
complete.

Figure 4-13 Binding the ports

The completed collaboration object is shown in Figure 4-14.

Figure 4-14 Collaboration object diagram
180 Implementing EDI Solutions

4.4.7 TPI Server configuration
Assuming that the TPI Server is configured in a way similar to the configurations described in
Chapter 3, “Implementing multi-product AS/2 communication with trading partners” on
page 101, the configuration of the company profile needs to be updated to support the XML
documents for UCCnet. Start the TPI Administrator and select the view Company Profiles.
Double-click your company profile and select the tab XML (see Figure 4-15). Select BizTalk
in the drop-down box labeled Document type and click Add. Click OK to close the company
profile. This change is applied dynamically, in case the TPI Server is running.

Figure 4-15 Configuring TPI company profile for UCCnet

4.4.8 Running the test scenario
To test the collaboration, the connectors and the TPI Server setup, we use the Test Connector
to send a SAP business object through the collaboration to the TPI Server.

1. Start the Test Connector and select File -> New Profile. Click Add to create a new profile
for the testing of the SAPConnector.

2. Provide a server name, a password, the connector name and the location of the
InterchangeSystem.cfg file, as shown in Figure 4-16 on page 182.
Chapter 4. UCCnet and item synchronization via iSoft and TPI 181

Figure 4-16 Creating new profile in Test Connector

3. Click OK to close the profile definition window and select File -> Connect Agent to bind
the agent.

4. When the Test connector is connected to the server, a list of supported business objects
will appear. Select the SAP4_MatBasic business object.

5. Select Edit -> Load BO if you have an existing saved business object. If you do not have
a saved business object, you can create one by right-clicking the SAP4_MatBasic
business object and selecting New from the context menu. You can then name the new
object and populate the required fields.

Figure 4-17 Running Test Connector for SAP Agent

Figure 4-18 on page 183 shows an SAP-based business object with applicable values for
different attributes of this business object.
182 Implementing EDI Solutions

Figure 4-18 Sample BO for SAP4_MatlBasic with Test Connector

6. Select Request -> Send to send the business object to the collaboration.

7. Review the ICS log and the TPIConnector log to inspect the execution.

8. If all goes well, the TPI Server will pick up the XML document and send it off.

Figure 4-19 on page 184 and Figure 4-20 on page 185 show the UCCnet request message
that is being built by the ICS and sent by the TPI Server.
Chapter 4. UCCnet and item synchronization via iSoft and TPI 183

Figure 4-19 XML data sent to UCCnet for ItemAdd

<?xml version="1.0" ?>
 <!DOCTYPE envelope (View Source for full doctype...)>
- <envelope communicationVersion="2.0">
- <messageHeader>
- <messageIdentifier>
 <value>MSGID1036612411921</value>
 </messageIdentifier>
 <userId>testUser</userId>
- <representingParty>
 <gln>0000000000001</gln>
 </representingParty>
 </messageHeader>
- <body>
- <transaction>
- <entityIdentification>
 <uniqueCreatorIdentification>MSGID1036612411921</uniqueCreatorIdentification>
- <globalLocationNumber>
 <gln>0000000000001</gln>
 </globalLocationNumber>
 </entityIdentification>
- <command>
- <documentCommand>
- <documentCommandHeader type="ADD">
- <entityIdentification>
 <uniqueCreatorIdentification>UID21036612411921</uniqueCreatorIdentification>
- <globalLocationNumber>
 <gln>0000000000001</gln>
 </globalLocationNumber>
 </entityIdentification>
 </documentCommandHeader>
- <documentCommandOperand>
- <item>
- <documentInformation documentStructureVersion="2.0" status="ORIGINAL">
 <creationDate>2002-11-06</creationDate>
 <lastUpdateDate>2002-11-06</lastUpdateDate>
 </documentInformation>
- <itemInformation>
- <globalTradeItemNumber>
 <gtin>02050000000454</gtin>
 </globalTradeItemNumber>
 <itemEffectiveDate>2002-11-06</itemEffectiveDate>
 <versionStatus value="F" />
- <globalLocationNumber>
 <gln>0000000000001</gln>
 </globalLocationNumber>
 <itemBrandName>Natural Beauty Soap</itemBrandName>
 <productTypeName>EA</productTypeName>
- <categoryList>
 <categoryCode>UDEX.05.0139.0334</categoryCode>
 </categoryList>
184 Implementing EDI Solutions

Figure 4-20 XML data sent to UCCnet for ItemAdd - continued

After sending the business object to the UCCnet, you will get an MDN and a response
message file from UCCnet. Figure 4-21 on page 186 shows a sample XML response
message from UCCnet.

This XML document is typically the input for the collaboration UCCnet_requestWorklist.

- <itemDimensions>
 <size>5.0</size>
 <sizeUnits>OZ</sizeUnits>
 <height>1.0</height>
 <width>1.0</width>
 <length>1.0</length>
 <linearUnits>IN</linearUnits>
 <netWeight>5.0</netWeight>
 <grossWeight>5.0</grossWeight>
 <weightUnits>OZ</weightUnits>
 <volume>1.0</volume>
 <volumeUnits>CI</volumeUnits>
 <ti>10</ti>
 <hi>10</hi>
 <pack>1</pack>
 </itemDimensions>
- <itemDescription>
 <itemName>NOF1</itemName>
 <publicOrPrivate value="PUBLIC" />
 <upcType>EN</upcType>
 <upc>2050000000454</upc>
 </itemDescription>
- <itemMiscInfo>
 <consumerUnit value="TRUE" />
 <orderable value="TRUE" />
 </itemMiscInfo>
- <itemDates>
 <firstOrderDate>2002-11-06</firstOrderDate>
 </itemDates>
 </itemInformation>
 </item>
 </documentCommandOperand>
 </documentCommand>
 </command>
 </transaction>
 </body>
 </envelope>
Chapter 4. UCCnet and item synchronization via iSoft and TPI 185

Figure 4-21 Sample XML response notification sent by UCCnet

The notification message is then followed by an actual response from UCCnet, as shown in
Figure 4-22 on page 187 and Figure 4-23 on page 188.

<?xml version="1.0" ?>
 <!DOCTYPE MQenvelope (View Source for full doctype...)>
- <envelope communicationVersion="2.0">
- <messageHeader>
- <messageIdentifier>
 <value>1023219322107</value>
 </messageIdentifier>
 <userId>IBMRTPERP2</userId>
- <representingParty>
 <gln>7789788000015</gln>
 </representingParty>
 </messageHeader>
- <body>
- <transaction>
- <entityIdentification>
 <uniqueCreatorIdentification>1023219322107</uniqueCreatorIdentification>
- <globalLocationNumber>
 <gln>7789788000015</gln>
 </globalLocationNumber>
 </entityIdentification>
- <command>
- <queryCommand showDetails="TRUE">
- <entityIdentification>
 <uniqueCreatorIdentification>1023219322107</uniqueCreatorIdentification>
- <globalLocationNumber>
 <gln>7789788000015</gln>
 </globalLocationNumber>
 </entityIdentification>
- <query type="NOTIFICATION">
- <where>
- <termList>
- <term>
- <field>
 <fieldName>status</fieldName>
 <value>ALL</value>
 </field>
 </term>
 </termList>
 </where>
 </query>
 </queryCommand>
 </command>
 </transaction>
 </body>
 </envelope>
186 Implementing EDI Solutions

Figure 4-22 Sample XML response message sent from UCCnet

<?xml version="1.0" ?>
 <!DOCTYPE MQenvelope (View Source for full doctype...)>
- <envelope communicationVersion="2.0">
- <messageHeader>
- <to>
- <globalLocationNumber>
 <gln>0000077897886</gln>
 </globalLocationNumber>
 </to>
- <from>
- <globalLocationNumber>
 <gln>0614141800001</gln>
 </globalLocationNumber>
 </from>
- <messageIdentifier>
 <value>2814650</value>
 </messageIdentifier>
 <userId>UCCNET_SYSTEM</userId>
- <representingParty>
 <gln>0614141800001</gln>
 </representingParty>
 </messageHeader>
-<body>
- <response>
- <acknowledge>
- <acknowledgement>
- <acknowledgementHeader type="PROCESSED" success="TRUE" duplicate="TRUE">
+ <entityIdentification>
 <uniqueCreatorIdentification>3450644332534556899001</uniqueCreatorIdentification>
- <globalLocationNumber>
 <gln>0000077897886</gln>
 </globalLocationNumber>
 </entityIdentification>
- <messageIdentifier>
 <value>3450644332534556899001</value>
 </messageIdentifier>
 </acknowledgementHeader>
- <subdocumentValid success="TRUE">
- <documentIdentifier>
- <typedEntityIdentification type="TRANSACTION">
- <entityIdentification>
 <uniqueCreatorIdentification>76917633</uniqueCreatorIdentification>
+ <globalLocationNumber>
 <gln>0000077897886</gln>
 </globalLocationNumber>
 </entityIdentification>
 </typedEntityIdentification>
 </documentIdentifier>
- <subdocumentValid success="TRUE">
- <documentIdentifier>
- <typedEntityIdentification type="QUERY_COMMAND">
+ <entityIdentification>
Chapter 4. UCCnet and item synchronization via iSoft and TPI 187

Figure 4-23 Sample XML response message sent from UCCnet

4.5 Implementation of scenario 2
This scenario is actually only a step up to the next scenario. The third scenario will use the
MQ connector and iSoft, instead of the TPI connector and TPI Server. In this intermediate
step, we are replacing the TPI connector with the MQ connector. Note that not all editions of
TPI Server support the MQ interface. Some editions support the JMS interface and not the
MQ interface.

4.5.1 Updating the business object
Open the System Manager, right-click the business UCCnet_envelope and select Copy.
Right-click the folder Business Object and select Paste. Rename the new business object as
UCCnet_MQenvelope. Then open the new object in the Business Object Designer. Delete
the element TPIRouteInfo and save the business object.

Create a new business object called MO_TPIXML_Config. Select the tab Attributes for this
business object and add the attributes and values that are listed in Table 4-4 on page 189.

Replace the string <qmgr name> with the actual name of the queue manager. The queue
name MQCONN.OUT will be the outbound document queue for the TPI company profile. The
name of the attribute UCCnet_MQenvolepe_Create is the name of the business object
created previously, suffixed with the verb. This name is case sensitive.

<uniqueCreatorIdentification>76917633</uniqueCreatorIdentification>
- <globalLocationNumber>
 <gln>0000077897886</gln>
 </globalLocationNumber>
 </entityIdentification>
 </typedEntityIdentification>
 </documentIdentifier>
- <resultList showDetails="TRUE">
+ <notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_NEW_ITEM">
 + <notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_NEW_ITEM">
 +<notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_WITHDRAW">
 + <notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_WITHDRAW">
 + <notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_WITHDRAW">
 + <notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_WITHDRAW">
 +<notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_WITHDRAW">
 + <notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_NEW_ITEM">
 + <notification type="PUBLICATION_INFORMATION" topic="PUB_RELEASE_NEW_ITEM">
 </resultList>
 </subdocumentValid>
 </subdocumentValid>
 </acknowledgement>
 </acknowledge>
 </response>
 </body>
 </envelope>
188 Implementing EDI Solutions

Table 4-4 Properties and values for meta-object MO_TPIXML_Config

The completed business object is shown in Figure 4-24. Save the business object and close
the Business Object Designer.

Figure 4-24 Meta-object for XML documents

4.5.2 Configuring the MQ connector
To support the use of the MQ connector, we need to create a number of queues. Open MQ
Explorer and define the following queues:

� MQCONN.REPLY
� MQCONN.UNSUBSCRIBED
� MQCONN.IN_PROGRESS
� MQCONN.ARCHIVE
� MQCONN.ERROR
� MQCONN.IN
� MQCONN.OUT

The naming of these queues is in line with common practices for naming queues that are
used by connectors. However, the IN and OUT queues should match the configuration of the
TPI company profile.

Next, open the MQSeriesConnector object and select the tab Application Config
Properties. Update the properties as listed in Table 4-5.

Table 4-5 Configuration details for the MQ connector

Name Type Key App Spec Info

UCCnet_MQenvelope_Create String InputFormat=MQSTR;OutputFormat=MQST
R

Default String Yes OutputQueue=queue://<qmgr
name>/MQCONN.OUT?targetClient=1

ReplyToQueue queue://<qmgr name>/MQCONN.REPLY

UnsubscribedQueue queue://<qmgr name>/MQCONN.UNSUBSCRIBED

IndoubtEvents Reprocess

Channel MQ server channel name, for example CHANNEL1

InProgressQueue queue://<qmgr name>/MQCONN.IN_PROGRESS

DataHandlerConfigMO MO_DataHandler_Default

ConfigurationMetaObject Name of the configuration meta-object
Chapter 4. UCCnet and item synchronization via iSoft and TPI 189

Figure 4-25 shows the complete set of properties and values for the MQ connector.

Figure 4-25 Application Config Properties for the MQ connector

Switch now to the tab Supported Business Objects and add the following business objects to
the list:

� ItemBasic
� MO_DataHandler_Default
� MO_TPIXML_Config
� UCCnet_MQenvelope

Set the flag for Agent Support, as shown in Figure 4-26 on page 191.

ArchiveQueue queue://<qmgr name>/MQCONN.ARCHIVE

DataHandlerMimeType text/xml

ErrorQueue queue://<qmgr name>/MQCONN.ERROR

InputQueue queue://<qmgr name>/MQCONN.IN

DataHandlerClassName com.crossworlds.DataHandlers.text.xml

Port Port number on which the MQ listener accepts
connections, for example 1414

Hostname hostname of the computer that runs the queue manager

ReplyToQueue queue://<qmgr name>/MQCONN.REPLY
190 Implementing EDI Solutions

Figure 4-26 Supported business objects for the MQ connector

Save and close the MQ connector.

4.5.3 Creating maps
Open the System Manager, right-click the folder Maps and select New. Choose ItemBasic as
the source business object and UCCnet_MQenvelope as the destination business object.
Name the map MAP_CWItemBasic_to_UCCnet_MQenvelope.

Map the attributes as listed in the Table 4-6.

Table 4-6 Mapping statements for the map MAP_CWItemBasic_to_UCCnet_MQenvelope.

Select the tab Verbs for this map and set the value Create for the column Verb. Save and
compile the map. Re-open the connector MQSeriesConnector and select the tab Associated
Maps. This time, the new map should be listed for the business object ItemBasic. If it does
not show, select the check box Explicit Binding and choose the correct box in the drop-down
menu under the heading Associated Map.

Source Attribute Target Attribute Transformation rule

ItemId uniqueCreatorIdentification Move

TLO.messageHeader.from.globalLocati
onNumber.gln

Set value(Retailer1)

TLO.messageHeader.to.globalLocation
Number.gln

Set value(Supplier)

XMLDeclaration Set value(“xml version=\”1.0””)

DocType Set Value(“DOCTYPE
envelope SYSTEM
\”http://cert.uccnet.net/xmlsche
ma/2.0/Envelope.dtd\””)
Chapter 4. UCCnet and item synchronization via iSoft and TPI 191

Figure 4-27 Associated maps for the MQ connector

4.5.4 Updating the collaboration object
You can either update the collaboration that we created in 4.4.2, “Collaboration object
definition and customization” on page 173 or create a new object based on the same
template. to create a new collaboration object:

1. In the System Manager, right-click the folder Collaboration Objects and select New
Collaboration Object. The collaboration creation wizard will appear.

2. Select the collaboration template UCCNet_ItemSync and name the new collaboration
object UCCnet_ItemSync_MQ_CO.

3. Bind the ports in the same way as was done for the first scenario. However, this time bind
the To port to the MQ connector.

Your collaboration diagram should look as shown in Figure 4-28.

Figure 4-28 Collaboration object diagram with MQ connector
192 Implementing EDI Solutions

4.5.5 Updating the TPI Server configuration
1. Start the TPI Administrator tool and open the company profile. Select the tab XML and set

UCC XML as the document type. Modify the fields Sender and Receiver as shown below.

– Sender: /envelope/messageHeader/from/globalLocationNumber/gln

– Receiver: /envelope/messageHeader/to/globalLocationNumber/gln

2. Click Add (see Figure 4-29).

Figure 4-29 Configuring XML support in TPI

3. Select the tab Integration and choose By document type as the Document integration
method. Select IBM MQSeries for the field XML documents (see Figure 4-30 on
page 194).
Chapter 4. UCCnet and item synchronization via iSoft and TPI 193

Figure 4-30 Add WebSphere MQ as an integration option for XML

4. Click Options for XML documents to bring up the window that allows you to configure the
integration with WebSphere MQ.

5. As shown in Figure 4-31, provide the required parameters to interact with WebSphere MQ
for inbound and outbound documents. Note that the communication is through MQ client
channels.

Figure 4-31 Setting integration options for WebSphere MQ

6. Save the profile by clicking OK.
194 Implementing EDI Solutions

4.5.6 Running the test scenario
Run a test using the Test connector as described previously to validate the setup of the MQ
connector. This time, the XML documents that are prepared by the ICS should pass to the TPI
Server via the MQ connector. However, the actual XML documents should look as was shown
earlier in Figure 4-19 on page 184 and in the following figures.

4.6 Implementation of scenario 3
In this section, we describe the use of iSoft’s P2PAgent as the AS/2 provider. Typically, a
customer will standardize on a single As/2 provider. While the ItemSync collaboration was
developed for use with TPI, it can be configured to work with iSoft’s P2Pagent as well.

The overall flow is shown in Figure 4-32. We will continue to use the SAP connector and test
the setup via the Test connector. The collaboration itself is not different from the collaboration
that was developed earlier in this chapter. The MQ connector in the diagram is the connector
that was configured in the previous section. We are now going to configure iSoft’s P2PAgent
to pick up the XML documents from the same queue that was used by the TPI connector. The
P2PAgent program will then be able to send the XML document to UCCnet, receive any
responses from UCCnet and store those responses in an MQ queue.

Figure 4-32 UCCnet solution with iSoft’s P2PAgent

4.6.1 Configuration of iSoft’s P2PAgent
The configuration file p2pagent.cfg that is used to configure iSoft’s P2PAgent needs to be
updated to reflect the use of queues. Also, you should be careful to use those queues that are
used by the MQ connector. The addpair command in Example 4-1 that ties UCCnet to the
P2PAgent of this company refers to the queue MQCONN.IN that is also used by the MQ
connector.

For the other destination parameters, you can use files or queues, as shown in Example 4-1.

Example 4-1 p2pagent.cfg with mq queues

<xml>

configuration settings
<command>set -eperror -ef</command>
<command>set -lplog -lf</command>
<command>set -npmq://ISOFT.M23WPK60.QMANAGER/NOTICES -nf </command>
<command>set -opmq://ISOFT.M23WPK60.QMANAGER/WORKORDERS -of -oswo </command>
<command>set -pppki</command>

UCCnet_Item
Sync

Collaboration

UCCnet

1

ERP
System

3

FF
ii
rr
ee
ww
aa
ll
ll

FF
ii
rr
ee
ww
aa
ll
ll

5

6

InternetMQSeries
Connector4

ERP
Connector2

iSoft

InterChangeInterChange
ServerServer
Chapter 4. UCCnet and item synchronization via iSoft and TPI 195

<command>set -rpmq://ISOFT.M23WPK60.QMANAGER/RECEIPTS </command>
<command>set -tr300s</command>
<command>set -bhmq://ISOFT.M23WPK60.QMANAGER </command>

iSoft Testing Relationship
<command>addpair Supplier1 UCCnet http://9.24.105.161:4080/ http://9.24.104.115:4080/ Supplier1 inbox
</command>
<command>addpair UCCnet Supplier1 http://9.24.104.115:4080/ * UCCnet
mq://ISOFT.M23WPK60.QMANAGER/MQCONN.IN</command>
 </command>

iSoft certificates and keys
<command>importkey Supplier1 UCCnet E -fCpki\Supplier1.cer -fKpki\Supplier1.prv</command>
<command>importkey Supplier1 UCCnet J -fCpki\UCCnet.cer</command>
<command>importkey UCCnet Supplier1 E -fCpki\Supplier1.cer -fKpki\Supplier1.prv</command>
<command>importkey UCCnet Supplier1 J -fCpki\UCCnet.cer</command>

#
start services
<command>start http://9.24.104.115:4080/</command>
<command>send http iSoft UCCnet -de -dsMAILBOXID=MQCONN.OUT -tC30s -tE20031231000000 -e -sC -r1
-cX</command>
</xml>

While it is not strictly required, we preferred to create a separate MQ configuration
meta-object, called iSoft_MQSeries_MO_config. Create this business object using the
Business Object Designer and add two attributes to it. Those attributes and their values are
listed in Table 4-7.

Table 4-7 Attributes and values for the configuration meta-object

The attribute Default refers to the name of the queue manager and the name of the queue;
these values should match the values of the addpair command in the P2PAgent’s
configuration file. Figure 4-33 shows the completed business object.

Figure 4-33 Meta-object for use by the MQ connector

Name Type Key App Spec Info

Default String yes OutputQueue=queue://ISOFT.M23WPK60.QMAN
AGER/MQCONN.OUT?targetClient=1

UCCnet_envelope_Create String InputFormat=MQSTR;OutputFormat=MQSTR
196 Implementing EDI Solutions

Assuming that the MQ connector uses different MQ objects to interact with iSoft’s P2PAgent,
you need to update the MQ connector configuration. Figure 4-34 shows the tab Application
Config Properties of the MQ connector where the queue names match the settings in the
P2PAgent’s configuration file. It also refers to the configuration meta-object
iSoft_MQSeries_MO_Config which we created previously.

Figure 4-34 Properties of the MQ connector

Since we have used a different configuration meta-object, we need to make sure that this
business object is added to the list of supported business objects of this MQ connector.
Figure 4-35 on page 198 shows us the MQ connector’s Supported Business Objects tab.
Chapter 4. UCCnet and item synchronization via iSoft and TPI 197

Figure 4-35 Supported business objects for the MQ connector

This concludes the setup of the MQ connector. After restarting the MQ connector, we can
execute the same test process as shown earlier in 4.4.8, “Running the test scenario” on
page 181.

4.7 Conclusion
In Chapter 3, “Implementing multi-product AS/2 communication with trading partners” on
page 101, we described how trading partners with different AS/2 products can be connected
to each other. The choice of one business partner for a given product does not imply that all
its partners need to use the same product. We described what settings were required to make
iSoft’s P2PAgent interoperable with TPI.

In this chapter, we described how iSoft’s P2PAgent can be used as well as TPI for integration
with the InterChange Server and any back-office application systems. By configuring an MQ
connector and binding this MQ connector to the collaboration, we can set up AS/2
communication with iSoft’s P2PAgent. This proves that an integration solution built for one
AS/2 provider can work equally well for another AS/2 provider. As such, it shows the
interoperability of iSoft’s P2PAgent and TPI both within the company and between trading
partners.
198 Implementing EDI Solutions

Chapter 5. Implementing a back-up solution
using IBM Expedite

Using Internet technology for the transfer of EDI documents is cost-effective, but it also
means that a company is relying on technology for which there is no (or at least less)
guaranteed reliability. Therefore, it might be required for an organization to define a back-up
strategy for those situations where the Internet is not offering a reliable connection. In this
chapter, we discuss the use of IBM Expedite and the IBM VAN and how it can be combined
with iSoft to create a solution with full reliability.

5

© Copyright IBM Corp. 2003. All rights reserved. 199

5.1 Introduction
Usage of a back-up communication method for iSoft is strongly recommended and allowed
for the iSoft product. One such method is using Expedite Base for Windows along with
Information Exchange. Using a personal computer, a modem, Expedite Base for Windows
and Information Exchange, you can have a complete back-up solution for your data
transmissions to your trading partners.

Expedite Base for Windows and Information Exchange provide for an excellent low cost
back-up solution for iSoft. When iSoft fails to connect to the receiving trading partner via the
Internet, it will write out the file to a given directory or to a message queue. Using this
directory, or message queue, we are able to gather the unsent files and send them directly
using Expedite Base for Windows and Information Exchange. These dual paths are separate
from one another so you can maintain your connectivity even during Internet outages.

In order to use Expedite Base for Windows, you must have an Information Exchange mailbox
account, a user ID and a password. Expedite Base can only receive and send messages from
the Information Exchange system.

5.2 Expedite Base for Windows installation
Expedite Base for Windows is available over the Web at no charge from IBM. There is a
registration which you must complete, but that is all. To install Expedite Base, perform the
following steps:

1. Download the Expedite Base for Windows Programming Guide from:

http://ieas.services.ibm.com/expedite/publications.shtml

While this is not required, it will come in handy later for reference and error codes.

2. Download the Expedite Base for Windows 4.6.2 product code from:

https://www6.software.ibm.com/dl/expv2/expv2-p

You must complete the registration form if you have not done so before. Notice we chose
Expedite Base for Windows 4.6.2. This is due to the fact that we want to automate this
process later. Selecting Expedite for Windows will not allow you to automate the process.

3. Install the software according to the instructions. Make sure you choose the TCP/IP
option.

4. Edit the file win.ini found in your Windows directory. Change the AutoMode value from N to
Y. This will allow Expedite Base to run fully automatically. Otherwise, it will pause and wait
for you to select File -> Start. An example of the win.ini file is shown in Example 5-1.

Example 5-1 Sample file win.ini

[Expedite Base]
AutoMode=Y
MainWindow=Show
WindowSize=201,27,849,523
DialDelay=3
FileNameFormat=0

5. Add the install directory for Expedite to the Windows PATH environment variable.

a. Click Start -> Settings -> Control Panel.

b. In the Control Panel window, click System.

c. In the System window, click Advanced.
200 Implementing EDI Solutions

http://ieas.services.ibm.com/expedite/publications.shtml
https://www6.software.ibm.com/dl/expv2/expv2-p

d. In the Advanced window, click Environment Variables.

e. In System Variables, select the PATH variable and then click Edit.

f. Add the Expedite directory to the PATH variable. For example, C:\Expedite;

g. Click OK.

6. Two files must be copied from the C:\Expedite\Samples directory to the C:\Expedite
directory.

– C:\Expedite\Samples\BASEMSG.IN -> C:\Expedite\BASEIN.MSG

– C:\Expedite\Samples\TCPDSAMP.PRO -> C:\Expedite\BASEIN.PRO

7. Edit the file C:\Expedite\BASEIN.PRO. This will contain your Information Exchange
account, user ID and password. Edit the IDENTIFY section of the file so it is correct. The
TRANSMIT section will set your communication method. The default is a TCP/IP leased
line. For this redbook, we will be using TCP/IP dial. Therefore, we need to change
COMMTYPE(T) to COMMTYPE(C). A sample file is shown in Example 5-2.

For more information on the profile commands, see the “Using Expedite Base for
Windows Profile commands” chapter in the Expedite Base for Windows Programming
Guide.

Example 5-2 Sample file BASEIN.PRO

IDENTIFY # provide information for logon
 IEACCOUNT(IEACCT) # replace "ieacct" with your IE account
 IEUSERID(IEUSER01) # replace "ieuser01" with your IE user ID
 IEPASSWORD(IEPASSS) # replace "iepass" with your IE password
 ;

TRANSMIT
 COMMTYPE(C) # Connect using TCP/IP dialed line connection.
 AUTOSTART(Y)
 AUTOEND(Y)
 RECONNECT(5)
 RECOVERY(C)
 ;

TCPCOMM
 DIALPROFILE(IEACCT)
 ;

8. Edit C:\Expedite\BASEIN.MSG. This is where the actual commands go. As an example, it
could look like:

SENDEDI FILEID(C:\EDIDataNotSent\edidatatobesent.txt);

For all the commands and syntax, see the “Using Expedite Base for Windows message
commands” chapter in the Expedite Base for Windows Programming Guide.

5.3 AT&T Global Network Dialer installation
When Expedite Base for Windows is installed, AT&T Global Network Dialer will also be
installed since the TCP/IP option was chosen during the installation of Expedite itself. We
recommend that you set up the AT&T Global Network Dialer first, then let Expedite Base for

Note: The files must also be renamed and edited to match your communication
method.
Chapter 5. Implementing a back-up solution using IBM Expedite 201

Windows use it. To do this, start the AT&T Global Network Dialer by selecting Start ->
Programs -> AT&T Global Network -> AT&T Global Network Dialer.

1. When starting the dialer for the very first time, it will prompt you to perform a number of
setup tasks. In the first window, shown in Figure 5-1, select your country/region. Fill in the
area code from which you will be dialing into Information Exchange and if a number is
needed to reach an outside line, complete the appropriate field. Also, you may select Tone
dialing or Pulse dialing. Then click OK.

Figure 5-1 AT&T Global Network Dialer install program

2. Figure 5-2 shows the requirements for AT&T Global Network Dialer. Item 3 is the account,
user ID and password on the Information Exchange system. Review this and make sure
you meet these requirements, then click Next.

Figure 5-2 Requirements window for AT&T Global Network Dialer
202 Implementing EDI Solutions

3. As shown in Figure 5-3, you want to be sure and select the option Yes, I have a business
account. Then click Next.

Figure 5-3 AT&T Global Network Dialer account type window

4. In the account and user ID window, shown in Figure 5-4, enter your Information Exchange
Account and user ID. If you do not have those, then click Cancel and run the install when
you do have the proper information. After completing this, click Next.

Figure 5-4 Provide your account and user ID from the Information Exchange system

5. As in Figure 5-5 on page 204, select My company’s private intranet for the question
Which network would you like to access? While this account and ID may not be for your
company’s private intranet, it is for IBM. Based upon your account and user ID, AT&T will
make sure that you get connected to the right system. The default Standard secure IP is
correct for the services option. Click Next.
Chapter 5. Implementing a back-up solution using IBM Expedite 203

Figure 5-5 AT&T Global Network Dialer access type window

6. Select Web, e-mail, and other TCP/IP servers as the type of computers you would like to
access, as shown in Figure 5-6. In this redbook, we are using TCP/IP to reach Information
Exchange. Click Next.

Figure 5-6 AT&T Global Network Dialer system types you need access to

7. Figure 5-7 on page 205 shows the window where you can set information about domain
name servers (DNS). It is optional to fill this out and you should only do so if you know the
information. If you do not know the DNS for your company, then leave the fields blank and
click Next.
204 Implementing EDI Solutions

Figure 5-7 AT&T Global Network Dialer optional name server window

8. As shown in Figure 5-8, the setup is completed. Make sure you select Yes, start login
when Finish is pressed and Automatically start Dialer when needed. Then click
Finish.

Figure 5-8 AT&T global network dialer completion window

Note: The first time you connect, many downloads and updates will occur. This is
normal for the first time. This could take 20 minutes or more to complete. Also, as you
sign on, select the box Save Password.
Chapter 5. Implementing a back-up solution using IBM Expedite 205

5.4 Integrating iSoft and Expedite
The configuration of iSoft needs an additional command in order to produce a usable file
which Expedite Base for Windows can send to Information Exchange. The additional
command is:

<command> set -yprecycle -yf</command>

where recycle is the name of a directory.

This command can be placed in the usual configuration file. The P2PAgent also generates an
error file (or message), but that error file contains a dump of the HTML buffer. It contains
HTML specific information and the actual data can be in an encrypted format.

If you would like to use WebSphere MQ to move the data, you will need to add this command
instead:

<command> set -ypmq://queue_manager_name/queue_name -yf</command>

For example:

<command> set -ypmq://WDI/recycle_for_expedite -yf</command>

Using this messaging queue, you can send it directly into Information Exchange using the
MQSeries Services/Information Exchange Bridge. The document IBM MQSeries Services
Administration and Application Development Guide, in the chapter “MQSeries
Services/Information Exchange Bridge”, covers this in detail. Since this is outside the scope
of this redbook, it will not be covered.

5.5 Case study
Company Supplier is sending and receiving EDI data with several retailers. One retailer has
requested the usage of the Internet and EDI-INT AS2 technology instead of the traditional
Value Add Network (VAN). Because the Internet may not always be available, it is required
that Information Exchange be used if that is the case. Also, if the company Supplier is not
reachable from a retailer, then that retailer may use the VAN to send the data. Since company
Supplier currently does not use Information Exchange, what does this mean to them?

The first question is: how much data could be sent out using this back-up method? If it is
more than 3.6 MB in 20 minutes of time, then this solution will not work. The 3.6 MB number
was obtained by taking 20 minutes times 60 seconds times 3 KB per second. This works out
to be 3.6 MB. The 20 minutes of time value was chosen as the time interval between sending
runs. The 3 KB per second value is the upload speed expected from a 56 Kb modem. How
much is 3.6 MB of data? If an average segment is 60 characters long, then the file would be
60,000 lines long.

Assuming that we can live with a 3.6 megabyte limit per 20 minutes, let us lay out the
solution. A personal computer (running Windows 95, 98, NT 4.0 or Windows 2000), a
modem, an analog phone line and an account on Information Exchange would be required.
The modem has to be supported by Windows and support a 56 Kb connection. It may be an
internal or external modem.

Since company Supplier does not have an Information Exchange account, it will need to call
IBM and request an account/user ID on the Information Exchange system. The phone
number is (800) 655-8865 and the e-mail address is edihelp@us.ibm.com®.
206 Implementing EDI Solutions

5.5.1 Sending data from the supplier to the customer
If iSoft’s P2PAgent fails to connect to the receiving party, it will place the original file in the
recycle directory and move on to the next file. In this solution, the file will stay there until the
next run of a Windows command file that tries to send the failed file using Exchange. In the
worst case, it would be there in 19 minutes 59 seconds. The best case would be one second.
The company Supplier decided it could live with a 20 minutes wait. Here is a list of steps we
need to take in order to automate this.

1. Install and configure iSoft as described in Chapter 2, “Implementing iSoft P2PAgent” on
page 49.

2. Decide how you will exchange information with iSoft. Are you are going to run Expedite
Base for Windows on the same machine that has iSoft on it? Then you can use directories
to access the files. If this is another machine then will you be using Microsoft Networking
to exchange the information? In that case, you can make the recycle directory a shared
directory and connect to the shared directory on the Expedite Base for Windows machine.
Will you be using WebSphere MQ to move the data around? If so, you will need to install
WebSphere MQ on the machine and write a program to read it off the queue. For this
example scenario, we will assume that iSoft and Expedite Base for Windows are running
on the same machine.

3. Download the Expedite Manual and Software onto the machine that will be running it. See
5.3, “AT&T Global Network Dialer installation” on page 201 for more details. Also complete
section 5.3, “AT&T Global Network Dialer installation” on page 201.

4. Review and include the changes described in 5.4, “Integrating iSoft and Expedite” on
page 206.

5. At this point, we need to make some assumptions. The recycle directory for iSoft is going
to be C:\Recycle. Expedite Base for Windows was installed in the default directory
(C:\Expedite). A directory named C:\EDIDataNotSent has been created.

6. Edit C:\Expedite\Basein.msg. It should contain:

SENDEDI FILEID(C:\EDIDataNotSent\edidatatobesent.txt);

7. Expedite Base for Windows will handle sending out the file only if it is one file and has the
given name of a file. It cannot be C:\Recycle*.file.in or C:\RECycle*.*. iSoft will write out
one file per transaction. If several files cannot be sent, you will have several files in the
directory. This requires a Windows command file that will combine the files together and
then send them out. An example of such a command file is shown in Example 5-3.

Example 5-3 Sample command file to prepare a single file for transmission via VAN

Dir C:\recycle* | find "0 File" > nul
if errorlevel 0 if not errorlevel 1 GOTO END
Type C:\recycle*.file.in > C:\EDIDataNotSent\edidatatobesent.txt
Del C:\recycle*.file.in
For /f "tokens=2,3,4 delims=/- " %%x in ("%date%") do set d=%%x%%y%%z
For /f "tokens=1,2,3 delims=:. " %%x in ("%time%") do set t=%%x%%y%%z
If exist C:\EDIDataNotSent\edidatatobesent.txt CD C:\Expedite
If exist C:\EDIDataNotSent\edidatatobesent.txt C:\Expedite\IEBase.exe
If exist C:\EDIDataNotSent\edidatatobesent.txt find "SESSIONEND(00000)"
c:\Expedite\Baseout.msg > nul
If ErrorLevel 1 GOTO BACKUPDATA
GOTO CLEANUP

:BACKUPDATA
Rename C:\EDIDataNotSent\edidatatobesent.txt EDIDATANOTSENT%d%-%t%.txt
GOTO END
Chapter 5. Implementing a back-up solution using IBM Expedite 207

:CLEANUP
Del C:\EDIDataNotSent\edidatatobesent.txt
GOTO END

:END

8. The first two lines of this command file:

Dir C:\recycle* | find "0 File" > nul
if errorlevel 0 if not errorlevel 1 GOTO END

perform a check to see whether there are any files in the directory to be sent out. If the
directory is empty then the command file ends without sending anything.

The next two lines:

Type C:\recycle*.file.in > C:\EDIDataNotSent\edidatatobesent.txt
Del C:\recycle*.file.in

are executed if there are files in the directory. With the type command, we can combine
them into one large file (C:\EDIDataNotSent\edidatatobesent.txt). With the DEL command,
we can remove the ones we have just combined; this way, iSoft can continue processing
transactions. Next, we create temporary variables that will be used if there is an error from
Expedite Base for Windows when the file is sent. Those lines are:

For /f "tokens=2,3,4 delims=/- " %%x in ("%date%") do set d=%%x%%y%%z
For /f "tokens=1,2,3 delims=:. " %%x in ("%time%") do set t=%%x%%y%%z

Next, we perform the actual sending to Information Exchange. Those lines are:

If exist C:\EDIDataNotSent\edidatatobesent.txt CD C:\Expedite
If exist C:\EDIDataNotSent\edidatatobesent.txt C:\Expedite\IEBase.exe

Then we review the return code sent back from Expedite Base for Windows. That line is:

If exist C:\EDIDataNotSent\edidatatobesent.txt find "SESSIONEND(00000)"
c:\Expedite\Baseout.msg > nul

Note: This is one line. If the text inside C:\Expedite\Baseout.msg is anything other than
SESSIONEND(00000) then there is an error and the file may not have been sent out. The
rest of the command file is for error handling. It is:

If ErrorLevel 1 GOTO BACKUPDATA
GOTO CLEANUP

:BACKUPDATA
Rename C:\EDIDataNotSent\edidatatobesent.txt EDIDATANOTSENT%d%-%t%.txt
GOTO END

:CLEANUP
Del C:\EDIDataNotSent\edidatatobesent.txt
GOTO END

If a problem occurred, then go to BACKUPDATA and create a file named
EDIDATANOTSENT%DATE%-%TIME%.txt., where %DATE% is today’s date in
YYYYMMDD format. %TIME% is the system time in HHMMSS format. This file is placed
in the C:\EDIDataNotSent directory. If the file was sent out correctly, then the temporary
file is deleted and you can end the command file.

In summary, the command file checks to see if there is anything to be sent. If there are
files, it gathers them together into a temporary file, then deletes the original files. Expedite
Base for Windows is called to send them out. Upon completion of Expedite Base for
Windows, the script examines the return code to make sure Expedite Base for Windows
was successful. If Expedite Base for Windows was not successful, it then creates a file in
C:\EDIDataNotSent with a date and time stamp in the name so that it will not be
208 Implementing EDI Solutions

overwritten. If Expedite Base for Windows was successful, it deletes the temporary file
and ends.

5.5.2 Creating a Windows task
In order to run this command file every 20 minutes, we need to create an item in the Windows
Task Manager.

1. Click Start -> Programs -> Accessories -> System Tools -> Scheduled Task.

Figure 5-9 Windows scheduled tasks

2. Click the Add Scheduled Task icon as shown in Figure 5-9. A window will open up
announcing that it is running a wizard to schedule a task. Click Next. In the next window
(Figure 5-10), choose a program from the list presented by Windows or click Browse and
find the command file.

Figure 5-10 Choose a task

3. After locating the command file (name EDIDATASEND.bat), click Open. Next, name the
task for Windows Task Manager. You can accept the default or change it. Select Daily for
the Perform this Task option. Click Next. Fill in your user ID and password in the
appropriate fields in the next window.
Chapter 5. Implementing a back-up solution using IBM Expedite 209

Figure 5-11 Choose a schedule

4. In the final window, shown in Figure 5-12, make sure to select the check box Open
advanced properties for this task when I click Finish. Then click Finish.

Figure 5-12 Successful scheduling

5. In the Advanced Properties window, click the tab Schedule at the top. Then click
Advanced.
210 Implementing EDI Solutions

Figure 5-13 Advanced properties for a scheduled task

6. In this window, shown in Figure 5-14, you can select Repeat Task and change the repeat
interval to 20 minutes. Then click OK. Click Apply, then click OK again. The Task item
should be closed.

Figure 5-14 Set advanced schedule options

5.5.3 Receiving data from the retailer to the supplier
On the receiving side, our choices are limited. We can check the Information Exchange box
periodically or use Expedite Notification Manager for Windows. Usage of Expedite
Notification Manager for Windows involves the use of a modem with auto-answer turned on.
For this sample scenario, we will check the mailbox periodically.
Chapter 5. Implementing a back-up solution using IBM Expedite 211

The company Supplier has decided that the mailbox should be checked twice a day at 7:45
a.m. and 8:15 p.m. The reason why 7:45 a.m. and 8:15 p.m. where chosen is the cost of
receiving data in prime time. It is less expensive to receive data in non-prime time. Prime time
is from 8:00 a.m. to 8:00 p.m. each weekday. By receiving just before and then again just
after prime time, the company can save money if there are transactions in the mailbox. If
there are no transactions, there is still a TCP/IP dial connect time charge.

In order to use Expedite Base for Windows for a receive process, a separate directory is
needed. For the example, C:\RECVExpedite is created. Two files from C:\Expedite have to be
copied over to this directory. It is assumed that the send process is working. They are:

� BASEIN.PRO
� BASEIN.MSG

Edit C:\RECVExpedite\BASEIN.PRO to include the following:

SESSION IEPATH(C:\EXPEDITE);

This tells Expedite Base for Windows where to find the files it needs. Edit
C:\RECVExpedite\BASEIN.MSG. Tell it where to place the file it may receive. An example is:

RECEIVEEDI FILEID(C:\InboundEDIData\Inbound_EDI_Data.txt);

This command receive any EDI data from the mailbox and places it into the file
Inbound_EDI_Data.txt in the directory InboundEDIData. The directory must exist before
running Expedite Base for Windows. Expedite Base for Windows will overwrite this file by
default. So, if data came in at 7:45 a.m. and nothing is done with it, then the 8:15 p.m. run will
overwrite the file. If there is nothing to receive, the file will be empty after the 8:15 p.m. run.
You may wish to change this by adding:

SESSION IEPATH(C:\EXPEDITE) OVERWRITE(N);

This will cause Expedite Base for Windows to append to the existing file instead of overwriting
it. We recommend this option be added.

We will need to automate the process, then set up a task in Windows to perform it. The
Windows command file could look something like Example 5-4.

Example 5-4 The command file RecvEDIData.bat

CD C:\RECVExpedite
C:\Expedite\IEBase.exe

In this command file, we are changing the directory to C:\RECVExpedite. This is a
requirement so Expedite Base for Windows will use the correct BASEIN.PRO and
BASEIN.MSG files. The last line calls Expedite Base for Windows. There is no error
checking. There is no other processing.

To schedule these tasks, two new tasks must be created in the Task Manager. See 5.5.2,
“Creating a Windows task” on page 209 for more details on how to create a task. The first one
should be run at 7:45 a.m. and be named RecvEDIDataAM. The second task will be the same
as the first but will run at 8:15 p.m. and be named RecvEDIDataPM.

5.5.4 Sending and receiving data at the same time
Expedite Base for Windows can connect to Information Exchange and do a send then a
receive without disconnecting. This can save you in TCP/IP connect charges but you can also
miss data if this is the only method you use. For example, company Supplier could not reach
its customer over the Internet, so it is using the VAN to send the data. After sending the data,
212 Implementing EDI Solutions

a receive is done and no data is found. Five minutes later, a retailer tries to send some data to
the company Supplier. It, too, finds that the Internet is down and send the transactions over
the VAN. Two hours later, when the Supplier tries to send more data, it finds the Internet to be
up again and sends the data that way. Meanwhile, the VAN transactions sent by the customer
are in the mailbox until the next time the Internet fails.

To add this dual capability, edit the BASEIN.MSG file. Add the receive line from 5.5.3,
“Receiving data from the retailer to the supplier” on page 211. The file should look like the
following:

SENDEDI FILEID(C:\EDIDataNotSent\edidatatobesent.txt);
RECEIVEEDI FILEID(C:\RECVExpedite\Inbound_EDI_Data.txt);

5.5.5 Problem determination
Most problems can be classified into one of three areas.

1. Expedite Base for Windows: use the manual you downloaded. Use the Search feature
found in Adobe Acrobat Reader to find error codes and suggested fixes. If this does not
help, call the Expedite help desk at (877) ECOM-IBM then select Option 2 for Expedite
Base for Windows support.

2. AT&T Global Network Dialer: the best way to troubleshoot this is to run it manually. Start
up the product by clicking Start -> Programs -> ATT Global Network -> AT&T Global
Network Dialer. Make sure it can connect. After it is connected, make sure you can
download updates by clicking Services -> Check for Updated Software. If you are
unable to log in, you may need to call the AT&T help desk at (800) 727-2222 then select
Option 4 for AT&T Global Network Dialer support. If you can log in, you should see a box
as shown in Figure 5-15.

Figure 5-15 AT&T Global Network after successful dial-up

3. Windows command file: have someone else review your typing. Look at the logic. Do it in
pieces instead of all at once.
Chapter 5. Implementing a back-up solution using IBM Expedite 213

Some problems are not easy to solve. If Expedite Base for Windows starts but does not run
automatically, you need to edit the WIN.INI file. If you are getting a 19011 error from Expedite
Base for Windows, you will need to call the Expedite Base for Windows help desk because
your Information Exchange account was not created with TCP/IP access. If the AT&T Global
Network Dialer is started but does not automatically connect, make sure you have saved your
password. Do this by typing in your password then clicking the Save Password box.

If you need to see what is going on with Information Exchange (sent and received), consult
this Web site:

http://ieas.services.ibm.com/servlet/RBNDNavigateRequestServlet?signon=Y&iesys=USA&
language=US&pagekey=index.html

By signing on with your Information Exchange account and password, you can see what is
being sent and received from any Web browser. Note that only data processed during the last
30 days is kept.

5.5.6 Things to watch out for
Often, changes are made concerning the AT&T Global Network Dialer. New phone numbers
are added, phone numbers are dropped, area codes change; those are just a few of the
reasons why there can be changes with the dialer. By default, the AT&T Dialer will look to see
if there are any updates and download them. This can cause you problems since you are just
signing on and sending data. In order to change this default behavior, start the AT&T Global
Network Dialer and sign on to the network. Once the dialer is connected, it looks something
like Figure 5-15 on page 213; select Network -> Connection Properties.

Go to the Updates tab and deselect the option Automatically check for updates after
connecting. This will stop the dialer from checking for phone number updates. Click OK.

If you would like to receive updates for the AT&T Global Network Dialer, you still can do this
manually. Select Service -> Check for Updated Software while connected.

Whenever you perform the updates, make sure you restart the dialer manually after the
update. The AT&T Global Network Dialer may force you to choose a new phone number
based upon the update, your area code and your exchange. It will not run until this selection
is made, which could impact automatic start-ups of the dialer and, as a consequence,
Expedite.
214 Implementing EDI Solutions

http://ieas.services.ibm.com/servlet/RBNDNavigateRequestServlet?signon=Y&iesys=USA&language=US&pagekey=index.html

Appendix A. Hardware and software
configuration

This appendix provides details about the hardware and software configuration of the
computers that were used to build the B2B solution.

A

© Copyright IBM Corp. 2003. All rights reserved. 215

Hardware configuration
The configuration consisted of three machines connected to each other via a 100Mb Ethernet
connection. Each machine had the same hardware configuration.

Machine details
� IBM NetVista™ PC, Model 6792-MHU
� Pentium® 4 processor running at 1800 MHz
� 1 GB memory
� 40 GB hard disk

Software configuration
All machines had the same software configuration:

� Operating system:

Windows 2000 Server with ServicePac® 3 installed.

� Software:

– DB2 Universal Database™ Enterprise Edition V7.2 + FixPak 6
– WebSphere MQ for Windows V5.3.0.1
– InterChange Server V4.1.1
– WebSphere Data Interchange for Multiplatforms V3.2 with CSD1
– iSoft Peer-to-Peer Agent V3.1.2
– Trading Partner Interchange V4.1.2.6

Some machines had the Enterprise edition while others had the Advanced edition. Since
the difference between those two editions is only a license issue, it only has an impact on
how many connections you are allowed to create and it has, as such, no impact on
functionality or performance.

Additional fixes for WebSphere MQ can be found at:

ftp://ftp.software.ibm.com/software/mqseries/fixes/

but were not required for our sample configuration.

DB2 FixPaks can be downloaded from:

ftp://ftp.software.ibm.com/ps/products/db2/fixes/

WebSphere Data Interchange fixes can be found at:

http://www-3.ibm.com/software/integration/appconn/wdi/downloads/csdv32.html
216 Implementing EDI Solutions

ftp://ftp.software.ibm.com/software/mqseries/fixes/
ftp://ftp.software.ibm.com/ps/products/db2/fixes/
http://www-3.ibm.com/software/integration/appconn/wdi/downloads/csdv32.html

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246906

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook
form number, SG246906.

Using the Web material
The additional Web material that accompanies this redbook includes the following files:

File name Description
SG246906.zip Sample files for iSoft, WebSphere Data Interchange and InterChange

Server in separate directories

Directory phase1
This directory contains two subdirectories named Supplier1 and Retailer1. Each directory
contains a sample configuration for that specific partner and work order files to add and
export keys. These files were used when the P2PAgent program was used for communication
between two partners only.

B

© Copyright IBM Corp. 2003. All rights reserved. 217

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Directory phase2
This directory contains three subdirectories, with files for the partners Retailer2, Retailer3 and
for SUP2, which is the second identity of the Supplier. For each partner, there are again work
order files and a P2PAgent configuration file.

Directory expedite
Here you will find two sample command files that were used in Chapter 5, “Implementing a
back-up solution using IBM Expedite” on page 199.

Directory wdi
This directory contains two DTD files for use with WebSphere Data Interchange and
CrossWorlds. A sample XML document and an EDI 850 document are available too, for use
as input to the translation maps.

Directory ICS
This directory contains the import file for the collaboration template CollaborationFoundation,
which was used in Chapter 2, “Implementing iSoft P2PAgent” on page 49.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 1 MB
Operating System: Windows 2000

To recreate an environment as described in the redbook, you will need to have a machine
similar to the one described in Appendix A, “Hardware and software configuration” on
page 215.

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder.
218 Implementing EDI Solutions

ronyms
ANSI American National Standards
Institute

API Application Programming Interface

ASC Accredited Standards Committee

BO Business Object

BPM Business Process Management

CCITT Comite Consultatif International
Telegraphique et Telephonique

DER Distinguished Encoding Rules

DES Data Encryption Standard

DNS Domain Name Server

DTD Document Type Definition

EAI Enterprise Application Integration

EDI Electronic Document Interchange

EDIFACT Electronic Data Interchange For
Administration, Commerce &
Transport

EDI-INT EDI over the Internet

EJB Enterprise JavaBean

ERP Enterprise Resource Planning

FTP File Transfer Protocol

GLN Global Location Number

GTIN Global Trade Item Number

GUI Graphical User Interface

HIPAA Healthcare Information Portability
and Accountability Act

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Extension of HTTP running under
the Secure Socket Layer (SSL)

IBM International Business Machines
Corporation

ICS InterChange Server

IDoc Intermediate Document

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Standards
Organization

ITSO International Technical Support
Organization

JAR Java Archive

JMS Java Messaging Service

MDN Message Disposition Notification

Abbreviations and ac
© Copyright IBM Corp. 2003. All rights reserved.
MIME Multipurpose Internet Mail
Extensions (RFC 1521)

ODA Object Discovery Agent

ODETTE Organization for Data Exchange
through Teletransmission in Europe

PKI Public Key Infrastructure

RFH Rules and Formats Header

RSA Rivest-Shamir-Adleman algorithm

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

TPI Trading Partner Interchange

UCC Uniform Code Council

UML Unified Modeling Language

URI Universal Resource Identifier

URL Universal Resource Locator

VAN Value-added network

VICS Voluntary Inter-industry
Communications Standards
 219

220 Implementing EDI Solutions

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 221.
Note that some of the documents referenced here may be available in softcopy only.

� WebSphere Data Interchange Installation and Configuration, REDP-3600

� Implementation of iSoft and integration with an EAI solution, REDP-3625

� Interoperability of iSoft P2PAgent and TPI, REDP3650

� An EAI Solution using WebSphere Business Integration (V4.1), SG24-6849

� A B2B Solution using WebSphere Business Integration V4.1 and WebSphere Business
Connection V1.1, SG24-6916

� B2B Solutions using WebSphere Business Connection, SG24-6197

Online resources
These Web sites are also relevant as further information sources:

� The Drummond Group

http://www.drummondgroup.com

� WebSphere Data Interchange download site for EDI standards

http://www-3.ibm.com/software/integration/appconn/wdi/downloads

� DB2 fixes

ftp://ftp.software.ibm.com/ps/products/db2/fixes

� WebSphere MQ fixes

ftp://ftp.software.ibm.com/software/mqseries/fixes

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks
© Copyright IBM Corp. 2003. All rights reserved. 221

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.drummondgroup.com
http://www-3.ibm.com/software/integration/appconn/wdi/downloads
ftp://ftp.software.ibm.com/ps/products/db2/fixes
ftp://ftp.software.ibm.com/software/mqseries/fixes

Help from IBM
� IBM Support and downloads

ibm.com/support

� IBM Global Services

ibm.com/services
222 Implementing EDI Solutions

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
acknowledgment 44, 128
activate

a map 34
a trading partner 126

ANSI 5
ANSI ASC X12 5
ANSI X12

download definitions 67
envelope 34, 81

AS1 9
AS2 9

product implementation 37
AT&T Global Network Dialer

installation 201
audit 14

B
B2B gateway usage of WebSphere Data Interchange 37
business object

create 84

C
certificate

exchange between partners 58
in iSoft 53
in TPI 106

command
addkey 55
addpair 54
batch 41, 56
define queue 52
ElseIf 30
EndIf 30
exportkey 57
ForEach 28
If 28, 30
importkey 54
MapCall 31
MapFrom 24
MapSwitch 32
Qualify 28
send 58, 130

persistent 60
sendcert 58
set debug info 60
shutdown 57
start GUI 41
status 39
transform 20
WebSphere Data Interchange 83
work order files 41

command chaining 21
© Copyright IBM Corp. 2003. All rights reserved.
communication
AS2 client 37
EDI over Internet 9, 37, 43
interoperability 10
VAN 8

communication methods for EDI 8
company profile 43, 46
compression

P2PAgent 60
TPI 44

configuration file of iSoft 53
create

business object 84
collaboration object 92, 173
company profile in TPI 103
dictionary in WebSphere Data Interchange 68
envelope profile 81
If command in a map 31
mailbox 80
MQSeries queue profile 79
network profile 80
partner profile 46
partner profile in TPI 125
partner profile in WebSphere Data Interchange 67
rule in WebSphere Data Interchange 81
service profile 80
translation map 69
variable in WebSphere Data Interchange 26
WebSphere MQ queue 52
Windows task 209

D
data confidentiality

P2PAgent 38
TPI 44

data integrity 38
define

envelope profile 81
mailbox 80
meta-data business object 88–89
network profile 80
rule in WebSphere Data Interchange 81
service profile 80
trading partner profile in WebSphere Data Inter-
change 67
variable in WebSphere Data Interchange 26
WebSphere MQ queue 52

definition
AS1 9
AS2 9
composite element 5
EDI 2
element 5
envelope 5
 223

message 5
segment 5
transaction 5

dictionary 68
digital signature 126
digital signature algorithms 38

P2PAgent 60
digital signatures

P2PAgent 38, 54, 59
TPI 44, 128

document type
P2PAgent 131
TPI 46

download
EDI standards 67

E
EDI

benefits 4
communication 8
data conversion 12
definition 2
event-driven integration 10
integration 3
medium-sized and small businesses 9
message structure 5
process-driven integration 10
solution component

enveloper 13
message router 13
translator 12

solution components 5
standards 5

EDI broker 15, 35
EDIFACT 5

sample message 7
element of an EDI message 5
encryption

P2PAgent 38, 54, 60
TPI 44, 126

encryption algorithms 38
P2PAgent 60
TPI 128

envelope
attributes 34
set-up in WebSphere Data Interchange 81

envelope of an EDI message 5
envelope profile 81
error information of iSoft 53
event-driven integration 10
exchange of certificates 58
exchange profiles 108
Expedite Base

installation 200
export

certificate from iSoft 56
certificate from TPI 122
company profile 43, 108

F
features

P2PAgent 37
TPI 44
WebSphere Data Interchange 14

file based integration
iSoft 50
TPI 82

file-based integration 106
function

Date() 27
GetProperty() 70
SetProperty() 98
StrComp() 31

G
generate

certificate in TPI 106
EDI document 111
key in iSoft 55

global variables 26

H
HIPAA 5

I
imbedded map 31
import

a certificate 129
company profile 46
DTD in WebSphere Data Interchange 68
EDI standards 67
of a key in iSoft 54
partner profile 43
partner profile in TPI 109
repository file 171

inbound communication in iSoft 53
industry standards 14
installation

AT&T Global Network Dialer 201
Expedite Base 200
iSoft 52, 116
Item Sync collaboration 171
TPI 103

integration
data conversion 12
iSoft within the enterprise 50
TPI within the enterprise 103

integration broker usage of WebSphere Data Interchange
36
interoperability 10

J
JMS 15

integration with TPI 113
network program 18
224 Implementing EDI Solutions

K
key length

iSoft 56
TPI 107

keys
in iSoft 53
in TPI 107

L
load balancing 41
local variables 26
logging information of iSoft 53

M
mailbox in iSoft 53
mailbox profile 16
map

activate 34
mapper 12

WebSphere Data Interchange 14
mapping

assignment 24
conditions 30
create 69
drag-and-drop 24
MapCall 31–32
MapSwitch 32
multiple occurrences 28
rules 33
using built-in functions 27
using variables 26

mapping specification 32
mapping techniques 23
MDN

in iSoft 58
in TPI 128

message broker 36
message routing

P2PAgent 62
TPI 133
WebSphere Data Interchange 140

message standards 5
WebSphere Data Interchange 14

messaging interfaces 15
MQRFH2 15

network program 18
use in iSoft 62

MQSeries queue profile 18, 79
multiple occurrences of an element 28

N
name of an iSoft log file 53
network program 17
non-repudiation 38
notices of iSoft 53

O
ODETTE 5

P
P2PAgent

certificate 56
certificates and keys 53
communication protocols 37
compression 60
configuration file

location 53
name 53

digital signature 54, 59
encryption 38, 54, 60
encryption algorithm 60
error information 53
features 37
inbound communication 53
installation 52, 116
logging information 53
mailbox 53
MDN 58
message routing 62
multi-machine setup 41
notices 53
receipt 60
receipts 53
send command 58
set debug info 60
shutdown 57
time-out values 53
trading partner relationship 54

partner profile 43, 46
PKI in iSoft 53
point-to-point usage of WebSphere Data Interchange 35
process-driven integration 10
profile

mailbox 16
MQSeries queue 18
network 17
service 19
trading partner 21, 67
WebSphere MQ queue 18

protocols for EDI 8, 37, 43

Q
queue based integration

iSoft 50
TPI 113

queue profile 18

R
receipt

P2PAgent 60
TPI 128

receipts in iSoft 53
Redbooks Web site 221

Contact us xi
 Index 225

reliability 199
request

an MDN in iSoft 58
an MDN in TPI 128

risk management 64
rule for a map 34
runtime options for WebSphere Data Interchange 14
runtime platform 14

S
schedule a task 209
segment of an EDI message 5
self-signed certificate 56, 107
send

documents in iSoft 58
documents in TPI 111

service profile 19
special variables 26
specification of a map 32
status of a trading partner in TPI 126

T
time-out values

in iSoft 53
in TPI 110

TPI
certificate and keys 107
communication protocols 43, 48
company profile 43
create company profile 103
create partner profile 125
export certificate 122
export company profile 108
import a partner profile 109
import certificate 129
inbound communication 105
installation 103
message routing 133
outbound communication 110
partner profile 43
status of a trading partner 126

trading partner profiles 21
trading partner status in TPI 126
trading partner type 22
transaction 5
translation engine

runtime options 14
translation software 12

WebSphere Data Interchange 14

U
UCCnet

overview 168
UCS 5
UNTDI 5
URI for MQ resources 53
usage for a map 34, 81
usage indicator of a map 34

V
validation 35
variables in WebSphere Data Interchange 26
VDA 5
VICS 5

W
WebSphere Data Interchange

B2B gateway 37
batch operation 14
built-in functions 27
commands 83
concepts 15
create dictionary 68
create map 70
envelope profile 81
features 14
import DTD 68
integration broker 36
mailbox 80
mailbox profiles 15
mapping concepts 23
mapping rules 33
message based operation 15
message standards 14
network profile 17, 80
platforms 14
point-to-point 35
queue profile 18
service profile 19, 80
trading partner profile 21, 67
variables 26

WebSphere MQ queue profiles 18

X
X12 5

example message 7
226 Implementing EDI Solutions

(0.2”spine)
0.17”<->

0.473”
90<->

249 pages

Im
plem

enting EDI Solutions

®

SG24-6906-00 ISBN 0738453366

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Implementing EDI
Solutions

Introduction to EDI
technologies and
products

Multi-partner and
multi-product
implementation
scenarios

Integration options
with WebSphere Data
Interchange and
InterChange Server

This IBM Redbook introduces the reader to the world of EDI. In
addition to general terms about EDI, it also introduces a number
of products in this area. WebSphere Data Interchange is
discussed as the translation engine to map EDI documents to and
from documents in other formats. This redbook also introduces
two communication products that use Internet technologies:
iSoft’s P2PAgent and Trading Partner Interchange.

In addition to product introductions, the redbook describes several
implementation scenarios in a multi-partner and multi-product
environment. Besides a network where trading partners only use
iSoft’s P2PAgent, we also look at a setup where trading partners
use a combination of the two products.

For each communication product, we investigate several
integration options with internal applications and other
middleware. We discuss the integration options with the
translation product WebSphere Data Interchange and with the
process integration product WebSphere BI Interchange Server.
The integration technique can be file-based or messaging-based.

Finally, we take a look at options to combine the flexibility of the
Internet with the reliability of value-added networks. When Internet
connectivity is temporarily not available, a trading partner has the
ability to use Expedite to dial into IBM’s network and send or
receive EDI documents. By exploiting the recycle mechanics in
iSoft’s P2PAgent, we can implement a solution that provides a
highly available connection between trading partners.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introducing EDI technologies and products
	1.1 EDI terms and concepts
	1.2 Benefits of EDI
	1.3 EDI components
	1.3.1 Message standards
	1.3.2 Communication

	1.4 The evolution of EDI
	1.4.1 Elements of an EDI solution
	1.4.2 The IBM EDI solution

	1.5 Introducing WebSphere Data Interchange
	1.5.1 Features of WebSphere Data Interchange
	1.5.2 Mailbox profiles
	1.5.3 Network profiles
	1.5.4 WebSphere MQ-related artifacts
	1.5.5 Service profiles
	1.5.6 Trading Partner profiles
	1.5.7 Concepts of the mapping editor
	1.5.8 Mapping rules

	1.6 Usage patterns for WebSphere Data Interchange
	1.6.1 A point-to-point solution
	1.6.2 An integration broker solution
	1.6.3 A B2B gateway solution

	1.7 Introducing the iSoft Peer-to-Peer Agent
	1.7.1 Communication features
	1.7.2 Data integrity and security characteristics
	1.7.3 Administration features
	1.7.4 Load-balancing and multi-machine setup

	1.8 Introducing Trading Partner Interchange
	1.8.1 How the system works
	1.8.2 Company profile
	1.8.3 Partner profile
	1.8.4 The relationship between the company and partner profiles
	1.8.5 Document sizes
	1.8.6 Transports

	1.9 Internet references

	Chapter 2. Implementing iSoft P2PAgent
	2.1 Business scenario
	2.2 Basic implementation of iSoft
	2.2.1 Installation and initial configuration
	2.2.2 Validating the configuration
	2.2.3 Automating the send process
	2.2.4 Connecting to partners RETAILER2 and RETAILER3

	2.3 Integration with WebSphere Data Interchange
	2.3.1 Translating received EDI documents
	2.3.2 Preparing EDI documents

	2.4 Integration with the Interchange Server
	2.4.1 Creating business objects
	2.4.2 Configuring the MQSeries connector
	2.4.3 Developing a test collaboration
	2.4.4 Using the Test Connector
	2.4.5 Inbound flow

	Chapter 3. Implementing multi-product AS/2 communication with trading partners
	3.1 Business case
	3.2 Implementing TPI between two partners
	3.2.1 Installation of TPI for Supplier
	3.2.2 Company profile setup for Supplier
	3.2.3 Partner profile setup for Retailer1 at Supplier
	3.2.4 Validation of the setup
	3.2.5 MQ integration and validation

	3.3 Communicating with an iSoft P2PAgent installation
	3.3.1 Installation and initial configuration of iSoft’s P2PAgent
	3.3.2 Exporting the certificate from TPI
	3.3.3 Creating a partner profile for Retailer2 in TPI of Supplier
	3.3.4 Importing the certificate of Retailer2 in TPI
	3.3.5 Upgrading TPI
	3.3.6 Validation of the setup

	3.4 Integration between WebSphere Data Interchange and TPI
	3.4.1 Processing received EDI documents
	3.4.2 Preparing EDI documents

	3.5 Integration between the Interchange Server, WebSphere Data Interchange and TPI
	3.5.1 Creating business objects
	3.5.2 Configuring the MQSeries connector
	3.5.3 Developing a test collaboration
	3.5.4 Using the Test Connector
	3.5.5 Inbound flow

	Chapter 4. UCCnet and item synchronization via iSoft and TPI
	4.1 Overview of UCCnet
	4.2 The IBM solution
	4.3 Installation of Item Sync collaboration
	4.3.1 Product installation
	4.3.2 Importing the solution components
	4.3.3 Database customization
	4.3.4 Installing additional samples for the UCCnet Item Sync collaboration

	4.4 Implementation of scenario 1
	4.4.1 Scenario overview
	4.4.2 Collaboration object definition and customization
	4.4.3 TPI connector configuration
	4.4.4 Port connector configuration
	4.4.5 SAP connector configuration
	4.4.6 Binding the ports
	4.4.7 TPI Server configuration
	4.4.8 Running the test scenario

	4.5 Implementation of scenario 2
	4.5.1 Updating the business object
	4.5.2 Configuring the MQ connector
	4.5.3 Creating maps
	4.5.4 Updating the collaboration object
	4.5.5 Updating the TPI Server configuration
	4.5.6 Running the test scenario

	4.6 Implementation of scenario 3
	4.6.1 Configuration of iSoft’s P2PAgent

	4.7 Conclusion

	Chapter 5. Implementing a back-up solution using IBM Expedite
	5.1 Introduction
	5.2 Expedite Base for Windows installation
	5.3 AT&T Global Network Dialer installation
	5.4 Integrating iSoft and Expedite
	5.5 Case study
	5.5.1 Sending data from the supplier to the customer
	5.5.2 Creating a Windows task
	5.5.3 Receiving data from the retailer to the supplier
	5.5.4 Sending and receiving data at the same time
	5.5.5 Problem determination
	5.5.6 Things to watch out for

	Appendix A. Hardware and software configuration
	Hardware configuration
	Software configuration

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

