
MQSeries IBM

Using Java

 SC34-5456-02

MQSeries IBM

Using Java

 SC34-5456-02

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix D, “Notices”
on page 287.

Third edition (November 1999)

This edition applies to the following products:

� MQSeries classes for Java Version 5.1 on the following platforms:
– MQSeries for AIX Version 5 Release 1
– MQSeries for HP-UX Version 5 Release 1
– MQSeries for Sun Solaris Version 5 Release 1
– MQSeries for Windows NT Version 5 Release 1
– MQSeries for OS/2 Warp Version 5 Release 1
– MQSeries for AS/400 Version 4 Release 2 Modification 1
– MQSeries for AT&T GIS UNIX Version 2 Release 2
– MQSeries for SINIX and DC/OSx Version 2 Release 2
– MQSeries for MVS/ESA Version 1 Release 2
– MQSeries classes for Java for OS/390 Version 1 Release 2 (SupportPac MAG13)

� MQSeries Product Extension MA88 on the following platforms:
– MQSeries for AIX Version 5 Release 1
– MQSeries for HP-UX Version 5 Release 1
– MQSeries for Sun Solaris Version 5 Release 1
– MQSeries for Windows NT Version 5 Release 1

and to all subsequent releases and modifications until otherwise indicated in new editions.

 Copyright International Business Machines Corporation 1997,1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . ix
Who this book is for . ix
What you need to know to understand this book ix
How to use this book . x
Abbreviations used in this book . x

Summary of changes . xi
Changes for this edition (SC34-5456-02) . xi
Changes for the previous edition . xi
Changes for the first edition . xi

Part 1. Guidance for users . 1

Chapter 1. Getting started . 3
What is MQSeries classes for Java? . 3
What is MQSeries classes for Java Message Service(JMS)? 3
Who should use MQ Java? . 3
Connection options . 4
Prerequisites . 6

Chapter 2. Installation procedures . 7
Installing MQ base Java Version 5.1 . 7
Installing Product Extension MA88 . 9
Web server configuration . 10

Chapter 3. Using MQ base Java . 11
Using the sample applet to verify the TCP/IP client 11
Verifying with the sample application . 13
Running your own programs . 15
Solving MQ base Java problems . 15

Chapter 4. Using MQ JMS . 17
Running the point-to-point IVT . 18
The Publish/Subscribe Installation Verification Test 21
Running your own programs . 24
Solving problems . 24

Chapter 5. Using the MQ JMS administration tool 27
Invoking the Administration tool . 27
Configuration . 28
Administration commands . 29
Manipulating subcontexts . 30
Administering JMS objects . 31

Part 2. Programming with MQ base Java . 39

Chapter 6. Introduction for programmers . 41
Why should I use the Java interface? . 41
The MQSeries classes for Java interface . 42

 Copyright IBM Corp. 1997,1999 iii

 Contents

Java Developer's Kit . 42
MQSeries classes for Java class library . 43

Chapter 7. Writing MQ base Java programs 45
Should I write applets or applications? . 45
Connection differences . 45
Example code fragments . 46
Operations on queue managers . 52
Accessing queues and processes . 53
Handling messages . 54
Handling errors . 55
Getting and setting attribute values . 55
Multithreaded programs . 56
Writing user exits . 57
Compiling and testing MQSeries classes for Java programs 58

Chapter 8. Environment-dependent behavior 61
Core details . 61
Restrictions and variations for core classes . 62
Version 5 extensions operating in other environments 63

Chapter 9. The MQSeries classes for Java classes and interfaces 67
MQChannelDefinition . 68
MQChannelExit . 70
MQDistributionList . 73
MQDistributionListItem . 75
MQEnvironment . 77
MQException . 81
MQGetMessageOptions . 83
MQManagedObject . 87
MQMessage . 90
MQMessageTracker . 108
MQProcess . 110
MQPutMessageOptions . 112
MQQueue . 115
MQQueueManager . 123
MQC . 131
MQReceiveExit . 132
MQSecurityExit . 134
MQSendExit . 136

Part 3. Programming with MQ JMS . 139

Chapter 10. Writing MQ JMS programs . 143
The JMS model . 143
Building a Connection . 144
Obtaining a Session . 147
Sending a message . 147
Receiving a message . 150
Closing down . 152
Handling errors . 152

Chapter 11. Programming Publish/Subscribe applications 153

iv MQSeries Using Java

 Contents

Writing a simple Pub/Sub application . 153
Using Topics . 155
Subscriber options . 158
Solving Pub/Sub problems . 159

Chapter 12. JMS messages . 161
Message selectors . 161
Mapping JMS messages onto MQSeries messages 165

Chapter 13. JMS interfaces and classes . 179
Sun Java Message Service classes and interfaces 179
MQSeries JMS classes . 182
BytesMessage . 184
Connection . 192
ConnectionFactory . 195
ConnectionMetaData . 198
DeliveryMode . 200
Destination . 201
ExceptionListener . 203
MapMessage . 204
Message . 212
MessageConsumer . 224
MessageListener . 226
MessageProducer . 227
MQQueueEnumeration * . 230
ObjectMessage . 231
Queue . 232
QueueBrowser . 234
QueueConnection . 236
QueueConnectionFactory . 238
QueueReceiver . 240
QueueRequestor . 241
QueueSender . 243
QueueSession . 246
Session . 249
StreamMessage . 253
TemporaryQueue . 260
TemporaryTopic . 261
TextMessage . 262
Topic . 263
TopicConnection . 265
TopicConnectionFactory . 267
TopicPublisher . 270
TopicRequestor . 273
TopicSession . 275
TopicSubscriber . 278

Part 4. Appendices . 279

Appendix A. Mapping between Administration tool properties and
programmable properties . 281

 Contents v

 Figures � Tables

Appendix B. Scripts provided with MQSeries classes for Java Message
Service(JMS) . 283

Appendix C. LDAP server configuration for Java objects 285
Checking your LDAP server configuration . 285
Configuration procedures . 285

Appendix D. Notices . 287
Trademarks . 288

Glossary of terms and abbreviations . 289

Bibliography . 291
MQSeries cross-platform publications . 291
MQSeries platform-specific publications . 292
Softcopy books . 293
MQSeries information available on the Internet 294

Index . 295

 Figures

1. MQSeries classes for Java example applet 47
2. MQSeries classes for Java example application 50
3. Topic name hierarchy . 156
4. JMS to MQSeries mapping model . 165
5. JMS to MQSeries mapping model . 175

 Tables

1. Platforms and connection modes . 5
2. MQ base Java V 5.1 installation directories 7
3. Sample CLASSPATH statements for the client and server 8
4. Environment variables for client and server 9
5. Product Extension installation directories . 9
6. Sample CLASSPATH statements for the Product Extension 10
7. Environment variables for Product Extension 10
8. Classes required by JMS . 17
9. Administration verbs . 30

10. Syntax and description of commands used to manipulate subcontexts . 30
11. The JMS object types that are handled by the administration tool 31
12. Syntax and description of commands used to manipulate administered

objects . 31
13. Property names and valid values . 33
14. The valid combinations of property and object type 34
15. Core classes restrictions and variations 62
16. Character set identifiers . 93

vi MQSeries Using Java

 Tables

17. Set methods on MQQueueConnectionFactory 146
18. Property names for queue URIs . 148
19. Symbolic values for queue properties . 149
20. MQRFH2 folders and properties used by JMS 167
21. Property datatypes and values . 168
22. JMS properties mapping to MQMD fields 169
23. Outgoing message field mapping . 170
24. Incoming message field mapping . 174
25. Interface Summary . 179
26. Class Summary . 181
27. Package ’com.ibm.mq.jms’ class Summary 182
28. Package ’com.ibm.jms’ class summary 183
29. Comparison of representations of properties within the administration

tool, and the programmable equivalents. 281
30. Utilities suppled with MQSeries classes for Java Message Service(JMS) 283

 Tables vii

 Tables

viii MQSeries Using Java

 About this book

About this book

This book describes MQSeries classes for Java (MQ base Java) which can be
used to access MQSeries systems, and MQSeries classes for Java Message
Service(JMS) (MQ JMS) which can be used to access both Java Message Service
and MQSeries applications.

Part 1 describes the use of MQ Java and MQ JMS, Part 2 provides assistance for
programmers wanting to use MQ base Java, and Part 3 provides assistance for
programmers wanting to use MQ JMS.

Note: This documentation is available in softcopy format only (PDF and HTML). It
is available as part of the Product Extension MA88, and from the MQSeries
family website at:

http://www.ibm.com/software/ts/mqseries/

This documentation cannot be ordered as a printed book.

Who this book is for
This information is written for programmers who are familiar with the procedural
MQSeries application programming interface as described in the Application
Programming Guide, and shows how to transfer this knowledge to become
productive with the MQ Java programming interfaces.

What you need to know to understand this book
You should have:

� Knowledge of the Java programming language

� Understanding of the purpose of the Message Queue Interface (MQI) as
described in Chapter 6, "Introducing the Message Queue Interface" in the
MQSeries Application Programming Guide and in Chapter 3, "Call descriptions"
in the MQSeries Application Programming Reference book

� Experience of MQSeries programs in general, or familiarity with the content of
the other MQSeries publications

Users intending to use the MQ base Java with CICS Transaction Server for OS/390
should also be familiar with:

 � CICS concepts
� Using the CICS Java API
� Running Java programs from within CICS

Users intending to use VisualAge for Java to develop OS/390 UNIX System
Services High Performance Java (HPJ) applications should be familiar with the
Enterprise Toolkit for OS/390 (supplied with VisualAge for Java Enterprise Edition
for OS/390, Version 2).

 Copyright IBM Corp. 1997,1999 ix

 How to use this book

How to use this book
First read the chapters in Part 1 that introduce you to MQ base Java and MQ JMS
Then use the programming guidance in Part 2 or 3 to understand how to use the
classes to send and receive MQSeries messages in the environment you wish to
use.

There is a glossary and bibliography at the back of this book.

Abbreviations used in this book
The following abbreviations are used throughout this book:

MQ Java MQSeries classes for Java and MQSeries classes for Java
Message Service(JMS) combined

MQ base Java MQSeries classes for Java

MQ JMS MQSeries classes for Java Message Service(JMS)

x MQSeries Using Java

 Changes

Summary of changes

This section describes changes to this edition of MQSeries Using Java. Changes
since the previous edition of the book are marked by vertical lines to the left of the
changes.

Changes for this edition (SC34-5456-02)
Major changes for this edition include:

Enhanced support for AIX, HP-UX, Windows, and Solaris
MQ base Java version 5.1.1 is now available as a Product Extension for these
platforms. The Product Extension includes updated MQSeries client and
bindings files together with JMS support.

Changes for the previous edition
Major changes in this edition include:

Enhanced support for OS/390
MQ base Java now supports CICS Transaction Server for OS/390 (Version
1.3) as well as the Java Virtual Machine (JVM) available under UNIX System
Services.

Changes for the first edition
This version of MQ base Java is a consolidation of the MQSeries Client for Java
and MQSeries Bindings for Java products and contains the following additions and
enhancements:

Programmable transport options
MQSeries client and bindings code have been combined into a single Java
package. The transport choice is now a programmable option making it
possible to connect to the MQSeries server either as an MQSeries client, or
through the Java Native Interface (JNI). Applications previously written
specifically for MQSeries Client for Java or MQSeries Bindings for Java can
still be run with this version of MQ base Java. The package com.ibm.mqbind

can still be used on some platforms but it is deprecated and you are
recommended not to use it in any new applications.

Repackaging into Java .jar files
The client, bindings, and common files have been repackaged into .jar files for
easier installation and downloading to clients.

Support for connection using VisiBroker for Java
As an option, MQ base Java running on supported Windows platforms can
connect to the MQSeries server using an IIOP protocol. This support is
provided using VisiBroker for Java in conjunction with Netscape Navigator, and
requires Inprise VisiBroker for Java to be installed on the MQSeries server
machine.

 Copyright IBM Corp. 1997,1999 xi

 Changes

xii MQSeries Using Java

Part 1. Guidance for users

Chapter 1. Getting started . 3
What is MQSeries classes for Java? . 3
What is MQSeries classes for Java Message Service(JMS)? 3
Who should use MQ Java? . 3
Connection options . 4

Client connection . 5
Using VisiBroker for Java . 5
Bindings connection . 6

Prerequisites . 6

Chapter 2. Installation procedures . 7
Installing MQ base Java Version 5.1 . 7
Installing Product Extension MA88 . 9
Web server configuration . 10

Chapter 3. Using MQ base Java . 11
Using the sample applet to verify the TCP/IP client 11

Configuring your queue manager to accept client connections 11
Running from appletviewer . 12
Running from a Web browser . 12
Customizing the verification applet . 13

Verifying with the sample application . 13
Using VisiBroker connectivity . 14
Using CICS Transaction Server for OS/390 14

Running your own programs . 15
Solving MQ base Java problems . 15

Tracing the sample applet . 15
Tracing the sample application . 15
Error messages . 16

Chapter 4. Using MQ JMS . 17
Post installation setup . 17
Additional setup for Pub/Sub mode . 18

Running the point-to-point IVT . 18
Point-to-point verification without JNDI . 19
Point-to-point verification with JNDI . 19
IVT error recovery . 21

The Publish/Subscribe Installation Verification Test 21
Pub/Sub verification without JNDI . 22
Pub/Sub verification with JNDI . 23
PSIVT error recovery . 23

Running your own programs . 24
Solving problems . 24

Tracing programs . 24
Logging . 25

Chapter 5. Using the MQ JMS administration tool 27
Invoking the Administration tool . 27
Configuration . 28

Security . 29

 Copyright IBM Corp. 1997,1999 1

Administration commands . 29
Manipulating subcontexts . 30
Administering JMS objects . 31

Object types . 31
Verbs used with JMS objects . 31
Creating objects . 32
Properties . 33
Property dependencies . 36
The ENCODING property . 36
Sample error conditions . 37

2 MQSeries Using Java

 Overview � Who should use Java

 Chapter 1. Getting started

This chapter gives an overview of MQSeries classes for Java and MQSeries
classes for Java Message Service(JMS), and their uses.

What is MQSeries classes for Java?
MQSeries classes for Java (MQ base Java) allows a program written in the Java
programming language to connect to MQSeries as an MQSeries client, or directly
to an MQSeries server. It enables Java applets, applications, and servlets to issue
calls and queries to MQSeries giving access to mainframe and legacy applications,
typically over the Internet, without necessarily having any other MQSeries code on
the client machine. With MQ base Java the user of an Internet terminal can
become a true participant in transactions, rather than just a giver and receiver of
information.

What is MQSeries classes for Java Message Service(JMS)?
MQSeries classes for Java Message Service(JMS) (MQ JMS) is a set of Java
classes, that implement Sun's Java Message Service(JMS) interfaces to enable
JMS programs to access MQSeries systems. Both the point-to-point and
publish-and-subscribe models of JMS are supported.

There are a number of benefits that arise from using MQ JMS as the API for writing
MQSeries applications. Some advantages derive from JMS being an open standard
with multiple implementations, others result from additional features that are present
in MQ JMS but not in MQ base Java.

Benefits arising from the use of an open standard include:

� The protection of investment both in skills and application code
� The availability of people skilled in JMS application programming
� The ability to plug in different JMS implementations to fit different requirements

More information about the benefits of the JMS API can be found on Sun's web site
at http://java.sun.com.

The extra function provided over MQ base Java includes:

� Asynchronous message delivery
 � Message selectors
� Support for pub/sub messaging
� Structured message classes

Who should use MQ Java?
If your enterprise fits any of the following scenarios, you can gain significant
advantage by using MQSeries classes for Java and MQSeries classes for Java
Message Service(JMS):

� A medium or large enterprise that is introducing intranet-based client/server
solutions. Here Internet technology provides low cost easy access to global

 Copyright IBM Corp. 1997,1999 3

 Connections

communications, while MQSeries connectivity provides high integrity with
assured delivery and time independence.

� A medium or large enterprise with a need for reliable business-to-business
communications with partner enterprises. Here again, the Internet provides
low-cost easy access to global communications, while MQSeries connectivity
provides high integrity with assured delivery and time independence.

� A medium or large enterprise that wishes to provide access from the public
Internet to some of its enterprise applications. Here the Internet provides
global reach at a low cost, while MQSeries connectivity provides high integrity
through the queuing paradigm. In addition to low cost, the business can
achieve improved customer satisfaction through 24 hour a day availability, fast
response, and improved accuracy.

� An Internet Service provider, or other Value Added Network provider. These
companies can exploit the low cost and easy communications provided by the
Internet and add the value of high integrity provided by MQSeries connectivity.
An Internet Service provider that exploits MQSeries can immediately
acknowledge receipt of input data from a Web browser, guarantee delivery, and
provide an easy way for the user of the Web browser to monitor the status of
the message.

MQSeries and MQSeries classes for Java Message Service(JMS) provide an
excellent infrastructure for access to enterprise applications and for development of
complex Web applications. A service request from a Web browser can be queued
and processed when possible, thus allowing a timely response to be sent to the
end user regardless of system loading. By placing this queue 'close' to the user in
network terms, the timeliness of the response is not impacted by network loading.
In addition, the transactional nature of MQSeries messaging means that a simple
request from the browser can be expanded safely into a sequence of individual
back-end processes in a transactional manner.

MQSeries classes for Java also enables application developers to exploit the power
of the Java programming language to create applets and applications that can run
on any platform that supports the Java run-time environment. These factors
combine to reduce significantly the development time for multi-platform MQSeries
applications, and future enhancements to applets are automatically picked up by
end users as the applet code is downloaded.

 Connection options
Programmable options allow MQ Java to connect to MQSeries in either of the
following ways:

� As an MQSeries client using TCP/IP
� In bindings mode, connecting directly to MQSeries

MQ base Java on Windows NT can also connect using VisiBroker for JavaTable 1
on page 5 shows the connection modes that can be used for each platform.

4 MQSeries Using Java

 Connections

These options are described in more detail below.

Table 1. Platforms and connection modes

Server platform Connection mode

Client Bindings

stand. VisiB.

Windows NT yes yes yes

AIX yes no yes

Solaris yes no yes

OS/2 yes no yes

AS/400 yes no no

HP-UX yes no yes

AT&T GIS UNIX yes no no

Sun OS yes no no

SINIX and DC/OSx yes no no

OS/390 no no yes

Note: HP-UX Java bindings support is only available for HP-UXv11 systems running
the POSIX draft10 pthreaded version of MQSeries. You also require the HP-UX
Developer's Kit for Java 1.1.7 (JDK), Release C.01.17.01 or above.

 Client connection
If you are using MQ Java as an MQSeries client, it can be installed either on the
MQSeries server machine, which may also contain a Web server, or on a separate
machine. Installation on the same machine as a Web server has the advantage of
allowing you to download and run MQSeries client applications on machines that do
not have MQ Java installed locally.

Wherever you choose to install the client, it can be run in three different modes:

From within any Java-enabled Web browser
When running in this mode, the locations of the MQSeries queue managers
that can be accessed may be constrained by the security restrictions of the
browser being used.

Using an applet viewer
To use this method you must have the Java Developer's Kit (JDK) or Java
Runtime Environment (JRE) installed on the client machine.

As a stand-alone Java program or in a Web application server
To use this method you must have the Java Developer's Kit (JDK) or Java
Runtime Environment (JRE) installed on the client machine.

Using VisiBroker for Java
Connection through Visibroker is provided on the Wndows platform, as an
alternative to using the standard MQSeries client protocols. This support is provided
by VisiBroker for Java in conjunction with Netscape Navigator, and requires
VisiBroker for Java and an MQSeries object server on the MQSeries server
machine. A suitable object server is provided with MQ base Java.

 Chapter 1. Getting started 5

 Prerequisites

 Bindings connection
When used in bindings mode, MQ Java uses the JNI to call directly into the existing
queue manager API rather than communicating through a network. This provides
better performance for MQSeries applications than using network connections.
Unlike the client mode, applications written using the bindings mode cannot be
downloaded as applets.

To use the bindings connection, MQ Java must be installed on the MQSeries
server.

 Prerequisites
The following software is required to run MQ base Java:

� MQSeries for the server platform you wish to use.

� Java Developers Kit (JDK) for the server platform.

� Java Developers Kit, or Java Runtime Environment (JRE), or Java-enabled
Web browser for client platforms. (See “Client connection” on page 5.)

Note: To run MQ base Java applets (for example the installation verification
program) inside a Web browser, you need a browser that can run Java 1.1.6
applets. Sun System's HotJava, Netscape Navigator 4, and Microsoft Internet
Explorer 4 are examples of browsers that meet this requirement.

� VisiBroker for Java. (Only if running on Windows with a VisiBroker connection.)

� For OS/390, OS/390 Version 2 Release 5 with UNIX System Services.

MQ base Java must be installed on your machine before you install and run MQ
JMS. The following additional software is required if you want to use the
Administration Tool (see Chapter 5, “Using the MQ JMS administration tool” on
page 27):

� At least one of the following service provider packages:

– Lightweight Directory Access Protocol (LDAP) - ldap.jar,
providerutil.jar.

– File system - fscontext.jar, providerutil.jar.

� A JNDI service provider. This is the resource in which physical representations
of the administered objects is stored. It is expected that users of MQ JMS will
use an LDAP server for this purpose, but the tools also supports the use of the
file system context service provider. If an LDAP server is used, it must be
configured to store JMS objects. Information to assist with this configuration is
provided in Appendix C, “LDAP server configuration for Java objects” on
page 285.

6 MQSeries Using Java

 Installation

 Chapter 2. Installation procedures

This section describes the installation of MQ base Java Version 5.1 and of the
Product Extension MA88, which comprises MQ base Java Version 5.1.1 and MQ
JMS. Go to the relevant section to find the information you require.

Installing MQ base Java Version 5.1
The MQ base Java Version 5.1, for all platforms except OS/390 and AS/400 can be
installed from either the MQSeries Version 5.1 Software Server CD or the
MQSeries Version 5.1 Software Client CD. Follow the installation instructions
provided with the CD. If you choose the typical installation, MQ base Java is
included in the installation. If you choose to customize your installation, make sure
that MQSeries classes for Java is checked.

Notes:

1. If you want to use the native connection (bindings) mode, you must install from
the server CD

2. On an OS/2 system, MQ base Java must be installed in an HPFS partition.

For OS/390 MQ base Java is supplied as a downloadable MQSeries SupportPac,
available from http://www.ibm.com/software/ts/mqseries/.

For AS/400, MQ base Java can only be downloaded as a client.

The MQ base Java Version 5.1 files, documentation, and samples are installed in
the directories shown in Table 2 and Table 5 on page 9.

Table 2. MQ base Java V 5.1 installation directories

Platform Files Directory

AIX code
Documentation
Samples

usr/mqm/java/lib
usr/mqm/html/mqjava
usr/mqm/samp/javaclnt/langdir

HP-UX
 Solaris

code
Documentation
Samples

opt/mqm/java/lib
opt/mqm/html/mqjava
opt/mqm/samp/javaclnt/langdir

 OS/2
Windows
NT

code
Documentation
Samples

install_dir\java\lib
install_dir\html\mqjava\
install_dir\tools\javaclnt\samples\langdir

 OS/390 code
Samples

install_dir/java/lib
install_dir/samp/mqjava

Note:
install_dir is the directory in which you chose to install MQ base Java
langdir is the language directory for your installation

 Copyright IBM Corp. 1997,1999 7

 Installation

MQSeries Java is contained in the following Java .jar files:

com.ibm.mq.jar This code includes support for all the connection options.

com.ibm.mq.iiop.jar This code supports only the Visibroker connection.

com.ibm.mqbind.jar This code supports only the bindings connection and is not
supplied or supported on all platforms You are recommended
not to use it in any new applications.

Notes:

1. com.ibm.mq.iiop.jar is supplied only on the Windows platform.

2. On OS/390, only the com.ibm.mq.jar file is supplied. This file supports the
bindings connection to MQSeries from both UNIX System Services and CICS
Transaction Server for OS/390.

After installation, you must update your CLASSPATH environment variable to
include the MQSeries Java code and samples directories.Table 3 and Table 6 on
page 10 show typical CLASSPATH settings for the various platforms

Additional environment variables need to be updated on some platforms as shown
in Table 4 on page 9 and Table 7 on page 10.

Table 3. Sample CLASSPATH statements for the client and server

Platform Sample CLASSPATH

AIX CLASSPATH=jdk_dir/lib/classes.zip:
/usr/mqm/java/lib/com.ibm.mq.jar:
/usr/mqm/java/lib/com.ibm.mqbind.jar:
/usr/mqm/java/lib:
/usr/mqm/samp/javaclnt/lang_dir:

HP-UX
Solaris

CLASSPATH=jdk_dir/lib/classes.zip:
/opt/mqm/java/lib/com.ibm.mq.jar:
/opt/mqm/java/lib/com.ibm.mqbind.jar:
/opt/mqm/java/lib
/opt/mqm/samp/javaclnt/lang_dir:

OS/2 CLASSPATH=jdk_dir\lib\classes.zip;
install_dir\java\lib\com.ibm.mq.jar;
install_dir\java\lib\com.ibm.mqbind.jar;
install_dir\java\lib;
install_dir\tools\javaclnt\samples\lang_dir;

Windows NT CLASSPATH=C:jdk_dir\lib\classes.zip;
install_dir\java\lib\com.ibm.mq.jar;
install_dir\java\lib\com.ibm.mqiiop.jar;
install_dir\java\lib\com.ibm.mqbind.jar;
install_dir\java\lib\;
install_dir\tools\javaclnt\samples\lang_dir;

OS/390 CLASSPATH=/usr/lpp/J1.1/lib/classes.zip:
install_dir/java/lib:
install_dir/java/lib/com.ibm.mq.jar:
install_dir/samp/mqjava

Note:
jdk_dir is the directory in which the JDK is installed.
install_dir is the directory in which you chose to install MQSeries.
lang_dir is the language directory for your installation

8 MQSeries Using Java

 Installation

Table 4. Environment variables for client and server

Platform Environment variable

AIX LD_LIBRARY_PATH=/usr/mqm/lib

HP-UX SHLIB_PATH=/opt/mqm/lib

Solaris LD_LIBRARY_PATH=/opt/mqm/lib

OS/390 LIBPATH=install_dir/java/lib
STEPLIB=hlq.SCSQAUTH:hlq.SQCSQANLE

Note: hlq is the high level qualifier for the MQSeries installation.

Installing Product Extension MA88
The MQSeries Product Extension MA88 is available for AIX, HP_UX, Windows, and
Solaris, platforms. The Product Extension contains:

� MQ base Java Version 5.1.1
 � MQ JMS

You can install MQ base Java Version 5.1.1 alone if you only want the latest
versions of the MQ base Java classes, or both packages if you want to use MQ
JMS applications.

Note: If you install the product extension and subsequently install or reinstall base
MQSeries, make sure that you do not install the base MQ Java version 5.1 as this
will cause your MQSeries Java support to be back level.

Table 5. Product Extension installation directories

Platform Files Directory

AIX code
Documentation
Samples

usr/mqm/java/lib
usr/mqm/java/doc
usr/mqm/java/samples

HP-UX
and
 Solaris

code
Documentation
Samples

opt/mqm/java/lib
opt/mqm/java/doc
opt/mqm/java/samples

Windows
95,98,
and NT

code
Documentation
Samples

install_dir\lib
install_dir\doc
install_dir\samples

Note:
install_dir is the directory in which you chose to install the Product Extension.

 Chapter 2. Installation procedures 9

 Installation

If you have existing applications that have a dependency on the deprecated
bindings package, com.ibm.mqbind, you also need to add the com.ibm.mqbind.jar

file to your classpath.

Table 6. Sample CLASSPATH statements for the Product Extension

Platform Sample CLASSPATH

AIX CLASSPATH=jdk_dir/lib/classes.zip:
/usr/mqm/java/lib/com.ibm.mq.jar:
/usr/mqm/java/lib:
/usr/mqm/java/samples:

HP-UX and
Solaris

CLASSPATH=jdk_dir/lib/classes.zip:
/opt/mqm/java/lib/com.ibm.mq.jar:
/opt/mqm/java/lib:
/opt/mqm/java/samples:

Windows
95,98, and NT

CLASSPATH=C:jdk_dir\lib\classes.zip;
install_dir\com.ibm.mq.jar;
install_dir\com.ibm.mqiiop.jar;
install_dir\lib\;
install_dir\samples\;

Note:
jdk_dir is the directory in which the JDK is installed.
install_dir is the directory in which you chose to install the Product Extension.

Table 7. Environment variables for Product Extension

Platform Environment variable

AIX LD_LIBRARY_PATH=/usr/mqm/java/lib

HP_UX LD_LIBRARY_PATH=/opt/mqm/java/lib

Solaris SHLIB_PATH=/opt/mqm/java/lib

Windows95,
98, and NT

PATH=install_dir\lib

Note: install_dir is the installation directory for the Product Extension

Web server configuration
If you install MQSeries Java on a Web server, you can download and run
MQSeries Java applications on machines that do not have MQSeries Java installed
locally. To make the MQSeries Java files accessible to your Web server, you must
set up your Web server configuration to point to the directory where the client is
installed. Consult your Web server documentation for details of how to configure
this.

Note: On OS/390 the installed classes do not support client connection and
cannot be usefully downloaded to clients. However, jar files from another platform
can be transferred to OS/390 and served to clients.

10 MQSeries Using Java

 Verifying client mode

Chapter 3. Using MQ base Java

This chapter describes how to configure your system to run the sample applet and
application programs to verify your MQ base Java installation and how to modify
the procedures to run your own programs.

The procedures depend on the connection option you want to use. Follow the
instructions in the section that is appropriate for your requirements.

Using the sample applet to verify the TCP/IP client
An installation verification applet, mqjavac.html, is provided as part of MQ base
Java. The applet can be used to verify the TCP/IP connected client mode of MQ
base Java. (See also “Verifying with the sample application” on page 13.)

The applet connects to a given queue manager, exercises all the MQSeries calls,
and produces diagnostic messages in the event of any failures.

The applet can be run from the applet viewer supplied with your JDK (v1.1.6 or
later), or any Java 1.1.6 enabled browser. When using the applet viewer you will
be able to access a queue manager on any host. When using a Web browser, you
will be able to access a queue manager only on the host from which the applet was
loaded. This is your local machine if you have MQ base Java installed, or the
machine on which your Web server is running if you download the applet from a
Web server.

Note: When loading applets from a local installation, some Web browsers allow
you to specify only the literal string "localhost" as the name of the host to connect
to. Consult your Web browser documentation for further information.

In all cases, if the applet does not complete successfully, follow the advice given in
the diagnostic messages and try to run the applet again.

Configuring your queue manager to accept client connections
Use the following procedures to configure your queue manager to accept incoming
connection requests from the clients.

 TCP/IP client
1. Define a server connection channel using the following procedure:

a. Start your queue manager using the strmqm command

 b. Type

runmqsc

to start the runmqsc program

c. Define a sample channel called JAVA.CHANNEL by typing:

DEF CHL('JAVA.CHANNEL') CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ') +

DESCR('Sample channel for MQSeries Client for Java')

 Copyright IBM Corp. 1997,1999 11

 Verifying client mode

2. Start a listener program with the following commands:

For OS/2 and NT operating systems:
Issue the command:

runmqlsr -t tcp [-m QMNAME] -p 1414

Note: If you use the default queue manager, the -m flag is not required.

Using VisiBroker for Java on the Windows NT operating system:
Start the IIOP server with the following command:

java com.ibm.mq.iiop.Server

Note: To stop the IIOP server, issue the following command:

java com.ibm.mq.iiop.samples.AdministrationApplet shutdown

For UNIX operating systems:
Configure the inetd daemon, so that the inetd starts the MQSeries channels.
See MQSeries Clients for instructions on how to do this.

Running from appletviewer
To use this method you must have the Java Developer's Kit (JDK) installed on your
machine.

Local installation procedure

1. Change to your samples directory for your language

 2. Type:

appletviewer mqjavac.html

Web server installation procedure:
Enter the command:

appletviewer http://Web.server.host/MQJavaclient/mqjavac.html

Notes:

1. On some platforms the command is 'applet', and not 'appletviewer'.

2. On some platforms, you may need to select 'Properties' from the 'Applet' menu
at the top left of your screen, and then set 'Network Access' to 'Unrestricted'.

Using this technique you should be able to connect to any queue manager running
on any host to which you have TCP/IP access.

Running from a Web browser
To run the applet from a Web browser, first copy the contents of the samples
directory (for your chosen language) into the directory that contains the MQ base
Java code. This is necessary because browsers may not make use of your local
CLASSPATH setting and so require all the files used by the applet to be in a single
directory tree.

Local installation procedure

Note: This method requires a Java 1.1 capable browser.

Open your copied version of the file mqjavac.html in your Web browser. The
file open procedure varies from between browsers, but the function is usually
found on the 'File' menu and is likely to be called 'open', or 'open page'.

12 MQSeries Using Java

 Sample application

Web server installation procedure

1. Configure your Web server so that it can serve files located in this
directory. (Consult your Web server documentation for details on how to do
this.)

2. Open the URL:

http://Web.server.hostname/MQJavaclient/mqjavac.html

Note: Because of security restrictions imposed by your browser, you will be
able to connect only to a queue manager running on the same host as the
Web server.

Customizing the verification applet
Optional parameters are included in the mqjavac.html file. These parameters allow
you to modify the applet to suit your requirements. Each parameter is defined in a
line of HTML which looks like the following:

<!PARAM name="xxx" value="yyy">

To specify a parameter value, remove the initial exclamation mark, and edit the
value as desired. The following parameters can be specified:

hostname
Prefills the hostname edit box with the supplied value.

port
Prefills the port number edit box with the supplied value.

channel
Prefills the channel edit box with the supplied value.

queueManager
Prefills the queue manager edit box with the supplied value.

userID:
Uses the specified user ID when connecting to the queue manager.

password
Uses the specified password when connecting to the queue manager.

trace
Causes MQ base Java to write a trace log. Use this option only at the direction
of IBM service.

Verifying with the sample application
An installation verification program MQIVP is supplied with MQ base Java. You
can use this application to test all the connection modes of MQ base Java. The
program prompts for a number of choices and data to determine which connection
mode you want to verify. Use the following procedure to verify your installation:

1. If you want to test a client connection:
Configure your queue manager as described in “Configuring your queue
manager to accept client connections” on page 11.

Note: Carry out the rest of the procedure on the client machine if you are
testing a client connection. For a bindings connection it should be carried out
on the MQSeries server machine.

2. Change to your samples directory.

 Chapter 3. Using MQ base Java 13

 Sample application

 3. Type

java MQIVP

The program tries to:

a. Connect to, and disconnect from the named queue manager

b. Open, put, get, and close the system default local queue

c. Return a message if the operations are successful

Here is an example of the prompts and responses you may see. The actual
prompts and your responses depend on your MQSeries network.
(1)Please enter the type of connection (MQSeries) : (MQSeries)
(2)Please enter the IP address of the MQSeries server : myhost
(3)Please enter the port to connect to : (1414)
(3)Please enter the server connection channel name : JAVA.CHANNEL

Please enter the queue manager name :

Success: Connected to queue manager.

Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE

Success: Disconnected from queue manager

Tests complete -

SUCCESS: This transport is functioning correctly.

Press Enter to continue...

4. At prompt (1):

Leave the default 'MQSeries'.

5. At prompt (2):

� If you want to use TCP/IP connection, enter an MQSeries server hostname.
� If you want to use native connection (bindings mode), leave the field blank.

(Do not enter a name.)

Notes:

1. If you choose server connection, you do not see the prompts marked (3).
2. On OS/390 you do not see prompts (1), (2), or (3)

Using VisiBroker connectivity
If you are running with VisiBroker, the procedures described in “Configuring your
queue manager to accept client connections” on page 11 are not required.

To test an installation using VisBroker, use the procedures described in “Verifying
with the sample application” on page 13, but at prompt (1), type VisiBroker using
the exact case.

Using CICS Transaction Server for OS/390
1. Define the sample application program to CICS
2. Define a transaction to run the sample application
3. Put the queue manager name into the file used for standard input
4. Execute the transaction

The program output is placed in the files used for standard and error output.

Refer to CICS documentation for more information on running Java programs and
setting the input and output files.

14 MQSeries Using Java

 Running programs � Tracing

Running your own programs
To run your own Java applets or applications, use the procedures described for the
verification programs, substituting your application name in place of 'mqjavac.html'
or 'MQIVP'.

For information on writing MQ base Java applications and applets, see Part 2,
“Programming with MQ base Java” on page 39.

Solving MQ base Java problems
If a program does not complete successfully, try running the installation verification
applet or installation verification program, both of which are described in Chapter 3,
“Using MQ base Java” on page 11, and follow the advice given in the diagnostic
messages.

If you continue to have problems and need to contact the IBM service team, you
may be asked to turn on the trace facility. The method of doing this depends on
whether you are running the client or the bindings. Choose the appropriate section
below to find the procedures for your system.

Tracing the sample applet
To run trace with the sample applet, edit the mqjavac.html file as follows:

In the line

<!PARAM name="trace" value="1">

remove the exclamation mark, and change the value from 1 to a number from 1 to
5 depending on the level of detail required. (The higher the number, the more
information will be gathered.)

The line should then read:

<PARAM name="trace" value="n">

where 'n' is a number between 1 and 5.

The trace output appears in the Java console or in your Web browser's Java log
file.

Tracing the sample application
To trace the MQIVP program enter the following:

java MQIVP -trace n

where 'n' is a number between 1 and 5, depending on the level of detail required.
(The higher the number, the more information is gathered.)

For more information on using trace, and how to find and use the output on your
platform, see MQSeries System Administration.

 Chapter 3. Using MQ base Java 15

 Error messsages

Tracing with CICS Transaction Server for OS/390
When using CICS Transaction Server for OS/390 it is not possible to supply
command line arguments directly to the program. It is necessary to write a small
wrapper program which invokes MQIVP.main() with the appropriate arguments.

 Error messages
Here are some of the more common error messages that you may see:

Unable to identify local host IP address
The server is not connected to the network.

Recommended Action: Connect the server to the network and retry.

Unable to load file gatekeeper.ior
This failure can occur on a web server deploying VisiBroker applets, when the
gatekeeper.ior file is not located in the correct place.

Recommended Action: Restart the VisiBroker Gatekeeper from the directory in
which the applet is deployed. The gatekeeper file will be written to this
directory.

Failure: Missing software, may be MQSeries, or VBROKER_ADM variable
This failure occurs in the MQIVP sample program if your Java software
environment is incomplete.

Recommended Action: On the client, ensure that the VBROKER_ADM
environment variable is set to address the VisiBroker for Java administration
(adm) directory, and retry.

On the server, ensure that MQ base Java from MQSeries Version 5.1 is
installed and retry.

NO_IMPLEMENT
There is a communications problem involving VisiBroker Smart Agents.

Recommended Action: Consult your VisiBroker documentation.

COMM_FAILURE
There is a communications problem involving VisiBroker Smart Agents.

Recommended Action: Use the same port number for all VisiBroker Smart
Agents and retry. Consult your VisiBroker documentation.

MQRC_ADAPTER_NOT_AVAILABLE
If you get this error when you are trying to use Visibroker, it is likely that the
JAVA class org.omg.CORBA.ORB cannot be found in the CLASSPATH.

Recommended action: Ensure that your CLASSPATH statement includes the
path to the Visibroker vbjorb.jar and vbjapp.jar files.

MQRC_ADAPTER_CONN_LOAD_ERROR
If you see this error while running on OS/390, ensure that the MQSeries
SCSQANLE, and SCSQAUTH datasets are in your STEPLIB statement.

16 MQSeries Using Java

 setup

Chapter 4. Using MQ JMS

This chapter describes the following tasks:

� Setting up your system to use the Test and sample programs

� Running the point-to-point Installation Verification Test (IVT) program to verify
your MQSeries classes for Java Message Service(JMS) installation

� Running the sample Pub/Sub Installation Verification Test (PSIVT) program to
verify your Pub/Sub installation

� Running your own programs

Post installation setup
To make all the necessary resources available to MQ JMS programs, the following
system variables need to be updated:

Classpath
Successful operation of JMS programs requires a number of Java packages to
be available to the JVM. These need to be specified on the classpath after the
necessary packages have been obtained and installed.

Table 8 lists the classes that are required, and the package that they come from:

Environment variables
There are a number of scripts provided in the bin subdirectory of the MQ JMS
installation. These are intended as convenient shortcuts for a number of common
actions. Many of these scripts assume that there is an environment variable
named MQ_JAVA_INSTALL_PATH defined which points to the directory in which MQ
JMS is installed. Setting this variable isn't mandatory, but if it is not set, the
scripts in the bin directory must be edited accordingly.

On Windows NT the classpath and new environment variable can be set using the
Environment tab of the System Properties . On Unix they would normally be set
from each user's logon scripts. On any platform, you can choose to use scripts to
maintain different classpaths and other environment variables for different projects.

Table 8. Classes required by JMS

Class Jar file Notes

MQSeries JMS classes com.ibm.mqjms.jar provided with MQ JMS in the
java/lib directory

com.ibm.mq.MQMessage com.ibm.mq.jar provided with MQSeries 5.1,
in the java/lib subdirectory.

javax.jms.Message jms.jar provided with MQ JMS in the
java/lib directory

javax.naming.InitialContext jndi.jar provided with MQ JMS in the
java/lib directory

com/sun/jndi/toolkit/ComponentDirContext providerutil.jar provided with MQ JMS in the
java/lib directory

com.sun.jndi.ldap.LdapCtxFactory ldap.jar provided with MQ JMS in the
java/lib directory (This is the
default service used by the
IVT. Other services may be
specified using the -icf
parameter.)

 Copyright IBM Corp. 1997,1999 17

 Pub/Sub setup � Running the IVT

Additional setup for Pub/Sub mode
Before the MQ JMS implementation of JMS Pub/Sub can be used, some additional
setup is required:

Ensure the Broker is Running
To verify that the MQSeries Message Broker has been installed and is running,
use the command:

dspmqbrk -m MY.QUEUE.MANAGER

where:

MY.QUEUE.MANAGER is the name of the queue manager on which the
broker is running.

If the broker is running, then a message similar to the following is displayed:

MQSeries message broker for queue manager MY.QUEUE.MANAGER running.

If the operating system reports that it cannot execute the dspmqbrk command,
ensure that the MQSeries Message Broker has been installed properly.

If the operating system reports that the broker is not active, start it using the
command:

strmqbrk -m MY.QUEUE.MANAGER

Create the MQ JMS System Queues
For the MQ JMS Pub/Sub implementation to work correctly, a number of system
queues must be created. A script has been suppled in the bin subdirectory of
the MQ JMS installation to assist with this task. To use the script, enter the
following command:

runmqsc MY.QUEUE.MANAGER < MQJMS_PSQ.mqsc

If an error occurs, check that you have typed the queue manager name correctly,
and verify that it is running.

Running the point-to-point IVT
This section describes the running of the point-to-point installation verification test
program (IVT) that is supplied with MQ JMS.

The IVT attempts to verify the installation by connecting to the default queue
manager on the local machine using the MQ JMS in bindings mode. It then sends a
message to the SYSTEM.DEFAULT.LOCAL.QUEUE queue and reads it back again.

The program can be run in one of two possible modes.

Using JNDI lookup of administered objects
JNDI mode forces the program to obtain its administered objects (see
“Administering JMS objects” on page 31 for a description of administered
objects) from a JNDI namespace, which is the expected operation of JMS client
applications. This invocation method has the same prerequisites as the
administration tool (see Chapter 5, “Using the MQ JMS administration tool” on
page 27).

18 MQSeries Using Java

 Running the IVT

With no JNDI lookup of administered objects
If the user does not wish to use JNDI, the administered objects can be created at
run-time by running the IVT in no-JNDI mode. Since a JNDI based repository is
relatively complex to set up, it is recommended that the IVT is first run without
JNDI.

Point-to-point verification without JNDI
A script, named IVTRun on Unix or IVTRun.bat on Windows NT, is provided to run
the IVT. This file is installed in the bin subdirectory of the installation.

To run the test without JNDI issue the following command:

IVTRun -nojndi

If the test completes successfully, output similar to the following should be seen:

5648-C6ð (c) Copyright IBM Corp. 1999. All Rights Reserved.

MQSeries Classes for Java(tm) Message Service - Installation Verification Test

Creating a QueueConnectionFactory

Creating a Connection

Creating a Session

Creating a Queue

Creating a QueueSender

Creating a QueueReceiver

Creating a TextMessage

Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE

Reading the message back again

Got message: Message Class: jms_text JMSType: null

JMSDeliveryMode: 2 JMSExpiration: ð

JMSPriority: 4 JMSMessageID: ID:414d512ð716

d312ð2ð2ð2ð2ð2ð2ð2ð2ð3ðððc437134ððððð

JMSTimestamp: 935592657ððð JMSCorrelationID: null

JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE

JMSReplyTo: null

JMSRedelivered: false

JMS_IBM_Format:MQSTR JMS_IBM_PutApplType:11

JMSXGroupSeq:1 JMSXDeliveryCount:ð

JMS_IBM_MsgType:8 JMSXUserID:kingdon

JMSXApplID:D:\jdk1.1.8\bin\java.exe

A simple text message from the MQJMSIVT program

Reply string equals original string

Closing QueueReceiver

Closing QueueSender

Closing Session

Closing Connection

IVT completed OK

IVT finished

Point-to-point verification with JNDI
In order for the IVT to run correctly using JNDI, the following administered objects
must be retrievable from a JNDI namespace.

 � MQQueueConnectionFactory
 � MQQueue

A script, named IVTSetup on Unix or IVTSetup.bat on Windows NT, is provided to
automate the task of creating these objects. Enter the command:

IVTSetup

The script invokes the MQ JMS Administration tool (see Chapter 5, “Using the MQ
JMS administration tool” on page 27) and creates the objects in a JNDI
namespace.

 Chapter 4. Using MQ JMS 19

 Running the IVT

The MQQueueConnectionFactory is bound under the name ivtQCF (for LDAP,
cn=ivtQCF). All the properties are default values:

TRANSPORT(BIND)

PORT(1414)

HOSTNAME(localhost)

CHANNEL(SYSTEM.DEF.SVRCONN)

VERSION(1)

CCSID(819)

TEMPMODEL(SYSTEM.DEFAULT.MODEL.QUEUE)

QMANAGER()

The MQQueue is bound under the name ivtQ (cn=ivtQ). The QUEUE property is
given the value QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE). All other properties have
default values:

PERSISTENCE(APP)

QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE)

EXPIRY(APP)

TARGCLIENT(JMS)

ENCODING(NATIVE)

VERSION(1)

CCSID(12ð8)

PRIORITY(APP)

QMANAGER()

When the administered objects have been created in the JNDI namespace, run the
IVTRun (IVTRun.bat on Windows NT) script using the following command:

IVTRun [-t] [-url <"providerURL"> [-icf <initCtxFact>]]

where:

-t = turn tracing on (default: tracing off)

providerURL = JNDI location of the administered objects. If the default initial
context factory is in use, this is an LDAP URL of the form:

ldap://hostname.company.com/contextName

If a file system service provider is being used, (see initCtxFact

below) , the URL is of the form:

file://directorySpec

Note: The providerURL string should be enclosed in quotation
marks (").

initCtxFact = classname of initial context factory. The default is for an LDAP
service provider, and has the value:

com.sun.jndi.ldap.LdapCtxFactory

If a file system service provider is being used, this parameter
should be set to:

com.sun.jndi.fscontext.RefFSContextFactory

If the test completes successfully, output similar to that from the non-JNDI output
should be seen, except that the 'create' QueueConnectionFactory and Queue lines
should indicate retrieval of the object from JNDI instead, as shown in the following
code fragment:

20 MQSeries Using Java

 Pub/Sub IVT

5648-C6ð (c) Copyright IBM Corp. 1999. All Rights Reserved.

MQSeries Classes for Java(tm) Message Service - Installation Verification Test

Using administered objects, please ensure that these are available

Retrieving a QueueConnectionFactory from JNDI

Creating a Connection

Creating a Session

Retrieving a Queue from JNDI

Creating a QueueSender

 ...

 ...

Although not strictly necessary, it is good practice to remove objects created by the
IVTSetup script from the JNDI namespace the . A script called IVTTidy
(IVTTidy.bat on Windows NT) is provided for this purpose.

IVT error recovery
If the test is not successful, the following notes may be helpful:

� For assistance with any error messages involving classpath, check that your
classpath is set correctly as described in “Post installation setup” on page 17.

� If the IVT fails with a message 'failed to create MQQueueManager' with an
additional message including the number 2059, this is an indication that
MQSeries failed to connect to the default local queue manager on the machine
on which the IVT was run. Check that the queue manager is running and that it
is marked as the default queue manager.

� A message of 'failed to open MQ queue' indicates that a connection to the
default queue manager was obtained, but that the
'SYSTEM.DEFAULT.LOCAL.QUEUE' could not be opened. This may indicate
that the queue does not exist on your default queue manager, or that it is not
enabled for PUT and GET. Add or enable the queue for the duration of the
test.

The Publish/Subscribe Installation Verification Test
The Publish/Subscribe Installation Verification Test (PSIVT) is supplied in compiled
form only, and can be found in the com.ibm.mq.jms package.

The PSIVT attempts to perform the following tasks:

1. Create a publisher, p, publishing on the topic MQJMS/PSIVT/Information

2. Create a subscriber, s, subscribing on the topic MQJMS/PSIVT/Information

3. Use p to publish a simple text message

4. Use s to receive a message waiting on its input queue

When the PSIVT is run, the message is published by the publisher and is received
and displayed by the subscriber. The publisher publishes to the broker's default
stream. The subscriber is non-durable, doesn't perform message selection,
accepts messages from local connections, and performs a synchronous receive,
waiting a maximum of 5 seconds for a message to arrive.

 Chapter 4. Using MQ JMS 21

 Pub/Sub IVT

The PSIVT, like the IVT, may be run in either JNDI-mode or standalone-mode.
JNDI mode uses JNDI to retrieve a TopicConnectionFactory and a Topic from a
JNDI namespace. If JNDI is not used, these objects are created at runtime.

Pub/Sub verification without JNDI
A 'PSIVTRun' script named PSIVTRun (PSIVTRun.bat on Windows NT) is provided
to run PSIVT. The file is installed in the bin subdirectory of the installation.

To run the test without JNDI issue the following command:

PSIVTRun -nojndi [-m <qmgr>] [-t]

where:

-t turn tracing on (default: tracing off)

-nojndi JNDI lookup of the administered objects

-m <qmgr> specify queue manager to connect to.

If the test completes successfully, output similar to the following should be seen:

5648-C6ð (c) Copyright IBM Corp. 1999. All Rights Reserved.

MQSeries Classes for Java(tm) Message Service

Publish/Subscribe Installation Verification Test

Creating a TopicConnectionFactory

Creating a Topic

Creating a Connection

Creating a Session

Creating a TopicPublisher

Creating a TopicSubscriber

Creating a TextMessage

Adding Text

Publishing the message to topic://MQJMS/PSIVT/Information

Waiting for a message to arrive...

Got message:

JMS Message class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: ð

 JMSPriority: 4

 JMSMessageID: ID:414d512ð514d2e5ð4f4c415249532e4254b7dc37537ððððð

 JMSTimestamp: 937232ð48ððð

 JMSCorrelationID:ID:414d5158ðð

 JMSDestination: topic

 ://MQJMS/PSIVT/Information

 JMSReplyTo: null

 JMSRedelivered: false

 JMS_IBM_Format:MQSTR

 UNIQUE_CONNECTION_ID:937232ð47753

 JMS_IBM_PutApplType:26

 JMSXGroupSeq:1

 JMSXDeliveryCount:ð

 JMS_IBM_MsgType:8

 JMSXUserID:hollingl

 JMSXApplID:QM.POLARIS.BROKER

A simple text message from the MQJMSPSIVT program

Reply string equals original string

Closing TopicSubscriber

Closing TopicPublisher

Closing Session

Closing Connection

PSIVT completed OK

PSIVT finished

22 MQSeries Using Java

 Pub/Sub IVT

Pub/Sub verification with JNDI
To run the PSIVT in JNDI-mode, two administered objects must be retrievable from
a JNDI namespace:

� A TopicConnectionFactory bound under the name ivtTCF
� A Topic bound under the name ivtT

These objects may be defined using the MQ JMS Administration Tool (see
Chapter 5, “Using the MQ JMS administration tool” on page 27) using the following
commands:

DEFINE TCF(ivtTCF)

to define the TopicConnectionFactory, and:

DEFINE T(ivtT) TOPIC(MQJMS/PSIVT/Information)

to define the Topic.

These definitions assume that a default queue manager is available, on which the
broker is running. For details on configuring these objects to use a non-default
queue manager, see “Administering JMS objects” on page 31. These objects
should reside in a context pointed to by the -url command-line parameter
described below.

To run the test using the JNDI, enter the following command:

PSIVTRun -url <purl> [-icf <initcf>] [-t]

where:

-t = turn tracing on (default: tracing off)

-url <purl> = specify the URL of the JNDI location in which the administered
objects reside

-icf <initcf> = specify the initialContextFactory for JNDI
[com.sun.jndi.ldap.LdapCtxFactory]

If the test completes successfully, output similar to that from the non-JNDI output
should be seen, except that the 'create' QueueConnectionFactory and Queue lines
should indicate retrieval of the object from JNDI instead.

PSIVT error recovery
If the test is not successful, the following notes may be helpful:

� If you see the message:

\\\ The broker is not running! Please start it using 'strmqbrk' \\\

this indicates that the broker is installed on the target queue manager, but its
control queue contains outstanding messages. This indicates that the broker is
not running, and it should be started using the strmqbrk command. (See
“Additional setup for Pub/Sub mode” on page 18.)

� If the following message is displayed:

Unable to connect to queue manager: <default>

ensure that your MQSeries system has configured a default queue manager.

� If the following message is displayed:

Unable to connect to queue manager: ...

 Chapter 4. Using MQ JMS 23

 Running programs � Tracing

ensure that the administered TopicConnectionFactory the PSIVT uses is
configured with a valid queue manager name (or, if you are using the -nojndi
option, you have supplied a valid queue manager using the -m option).

� If the following message is displayed:

Unable to access broker control queue on queue manager: ...

Please ensure the broker is installed on this queue manager

ensure that the administered TopicConnectionFactory the PSIVT uses is
configured with the name of the queue manager on which the broker is
installed (or, if you are using the -nojndi option, you have supplied a queue
manager name using the -m option).

Running your own programs
For information on writing your own MQ JMS programs, see Chapter 10, “Writing
MQ JMS programs” on page 143.

MQ JMS includes a utility file, runjms (runjms.bat on Windows NT) to help you to
run programs that have been provided for you, or that you have written.

The utility provides default locations for the trace and log files and enables you to
add any application runtime parameters that your application needs. As supplied,
the script assumes that the environment variable MQ_JAVA_INSTALL_PATH has
been set to the directory in which the MQ JMS is installed, and that the
subdirectories trace and log within that directory are to be used for trace and log
output. These are only suggested locations and the script can be edited to use any
directory you choose.

Use the following command to run your application:

runjms <classname of application> [application specific arguments]

For information on writing MQ JMS applications and applets, see Part 3,
“Programming with MQ JMS” on page 139.

 Solving problems
If a program does not complete successfully, try running the installation verification
program, which is described in Chapter 4, “Using MQ JMS” on page 17, and follow
the advice given in the diagnostic messages.

 Tracing programs
The MQJMS trace facility is provided to assist IBM staff diagnose customer
problems.

Trace is disabled by default since the output rapidly becomes large, and is unlikely
to be of use to the customer under normal circumstances. If you are asked to
provide trace output it can be enabled by setting the Java property
MQJMS_TRACE_LEVEL to one of the following values:

off no tracing

on traces MQ JMS calls only

base traces both MQ JMS calls and the underlying MQ base Java calls

24 MQSeries Using Java

 Logging

For example:

java -DMQJMS_TRACE_LEVEL=base MyJMSProg

By default, trace is output to a file named mqjms.trc in the current working
directory. It can be redirected to a different directory using the Java property
MQJMS_TRACE_DIR. For example:

java -DMQJMS_TRACE_LEVEL=base -DMQJMS_TRACE_DIR=/somepath/tracedir MyJMSProg

The runjms utility script sets these properties using environment variables
MQJMS_TRACE_LEVEL and MQ_JAVA_INSTALL_PATH: as follows:

java -DMQJMS_LOG_DIR=%MQ_JAVA_INSTALL_PATH%\log

-DMQJMS-TRACE_DIR=%MQ_JAVA_INSTALL_PATH%\trace

-DMQJMS_TRACE_LEVEL=%MQJMS_TRACE_LEVEL% %1 %2 %3 %4 %5 %6 %7 %8 %9

This is only a suggestion and can be modified as required.

 Logging
The MQ JMS log facility is provided to report serious problems, particularly those
that may indicate configuration errors rather than programming errors. By default,
log output is sent to the System.err stream, which usually appears on the stderr

of the console in which the JVM is run.

The output may be redirected to a file using a Java property which specifies the
new location, for example:

java -DMQJMS_LOG_DIR=/mydir/forlogs MyJMSProg

The utility script runjms in the bin directory of the MQJMS installation sets this
property to

<MQ_JAVA_INSTALL_PATH>/log

(Where MQ_JAVA_INSTALL_PATH is the path to your MQ JMS installation.) This is a
suggestion, and can be modified as required.

When redirected to a file the log is output in a binary form. In order to view the log,
the utility formatLog (formatLog.bat on Windows NT) is provided to convert the file
to plain text format. The utility is stored in the bin directory of your MQ JMS
installation. Run the conversion as follows:

formatLog <inputfile> <outputfile>

 Chapter 4. Using MQ JMS 25

 Logging

26 MQSeries Using Java

 Administration tool

Chapter 5. Using the MQ JMS administration tool

The administration tool enables administrators to define the properties of four types
of MQ JMS object and to store them within a JNDI namespace. JMS clients can
then retrieve these administered objects from the namespace using JNDI, and use
them.

The JMS objects that can be administered by the tool are:

 � MQQueueConnectionFactory
 � MQTopicConnectionFactory
 � MQQueue
 � MQTopic

These objects are described in more detail in “Administering JMS objects” on
page 31.

The tool also allows administrators to manipulate directory namespace subcontexts
within the JNDI. See “Manipulating subcontexts” on page 30.

Invoking the Administration tool
The administration tool has a command line interface which can be used
interactively or to start a batch process. The interactive mode provides a command
prompt where administration commands can be entered. In the batch mode, the
command to start the tool includes the name of a file which contains an
administration command script.

To start the tool in interactive mode, enter the command:

JMSAdmin [-t] [-v] [-cfg config_filename]

where:

-t Enables trace (default is trace off)

-v Produces verbose output (default is terse output)

-cfg config_filename The name of an alternative configuration file (see
“Configuration” on page 28)

A command prompt is displayed indicating that the tool is ready to accept
administration commands. This prompt initially appears as:

InitCtx>

indicating that the current context (that is, the JNDI context to which all naming and
directory operations currently refer) is the initial context defined in the
PROVIDER_URL configuration parameter (see “Configuration” on page 28). As
the user traverses the directory namespace, the prompt changes to reflect this, so
that the current context is always displayed in the prompt.

To start the tool in batch mode, enter the command:

JMSAdmin <test.scp

where test.scp is a script file containing administration commands (see
“Administration commands” on page 29). The last command in the file must be the
END command.

 Copyright IBM Corp. 1997,1999 27

 Administration tool

 Configuration
The administration tool needs to be configured with values for the following three
parameters:

INITIAL_CONTEXT_FACTORY This indicates the service provider being used by
the tool. There are currently two supported values for this property:

� com.sun.jndi.ldap.LdapCtxFactory (for LDAP)
� com.sun.jndi.fscontext.RefFSContextFactory (for file system context)

PROVIDER_URL This indicates the URL of the session's initial context, the root of
all JNDI operations carried out by the tool. Two forms of this property
are currently supported:

� ldap://hostname/contextname (for LDAP)
� file:[drive:]/pathname (for file system context)

SECURITY_AUTHENTICATION This indicates whether security credentials are
passed over to your service provider by JNDI. This parameter is used
only if an LDAP service provider is being used. This property can
currently take one of three values:

� none (anonymous authentication)
� simple (simple authentication)
� CRAM-MD5 (CRAM-MD5 authentication mechanism)

If a valid value is not supplied, then the property defaults to none. See
“Security” on page 29 for more details about security with the
administration tool.

These parameters are set in a configuration file, the name of which may be
supplied with the -cfg command-line parameter, as described in “Invoking the
Administration tool” on page 27. If no configuration filename is specified the tool
attempts to load the default configuration file (JMSAdmin.config), looking first in the
current directory, and then in the <MQ_JAVA_INSTALL_PATH>/bin directory. (Where
MQ_JAVA_INSTALL_PATH is the path to your MQ JMS installation.)

The configuration file is a plain-text file consisting of a set of key-value pairs,
separated by an '=' as shown in the following example:

#Set the service provider

 INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

#Set the initial context

 PROVIDER_URL=ldap://polaris/o=ibm_us,c=us

#Set the authentication type

 SECURITY_AUTHENTICATION=none

(A '#' in the first column of the line indicates a comment, or a line that will not be
used.)

The installation comes with a sample configuration file that is called
JMSAdmin.config, and is found in the <MQ_JAVA_INSTALL_PATH>/bin directory. This
file should be edited to suit the setup of your system.

28 MQSeries Using Java

 Administration tool

 Security
Administrators need to be aware of the effect of the SECURITY_AUTHENTICATION

property described in “Configuration” on page 28.

� If this parameter is set to none, then no security credentials are passed to the
service provider by JNDI and "anonymous authentication" is performed.

� If the parameter is set to either simple or CRAM-MD5, then security credentials in
the form of a user distinguished name (User DN) and password are passed
through JNDI to the underlying service provider.

If security credentials are required, then the user will be prompted for these when
the tool initializes.

Note: The text typed is echoed to the screen, and this includes the password.
Care should therefore be taken to ensure that passwords are not disclosed to
unauthorized users.

The tool does no authentication itself, the task is delegated to the LDAP server. It is
the responsibility of the LDAP server administrator to set up and maintain access
privileges to different parts of the directory. If authentication fails, then the tool
displays an appropriate error message and terminates.

 Administration commands
More detailed information about security and JNDI can be found in the
documentation at Sun's Java website (http://java.sun.com). When the command
prompt is displayed, the tool is ready to accept commands. Administration
commands are generally of the following form:

verb [param]\

where verb is one of the administration verbs listed in Table 9 on page 30. All
valid commands consist of at least one (and only one) verb, which appears at the
beginning of the command in either its standard or short form.

The parameters a verb may take depend on the verb. For example, the END verb
cannot take any parameters but the DEFINE verb may take anything between 1 and
20 parameters. Details of the verbs which take at least one parameter are
discussed in later sections of this chapter. Verb names are not case sensitive.

Commands are usually terminated using the carriage return key, but this can be
over-ridden by keying the '+' symbol directly before the carriage return. This allows
the entering of multi-line commands as shown in the following example:

DEFINE Q(BookingsInputQueue) +

 QMGR(QM.POLARIS.TEST) +

 QUEUE(BOOKINGS.INPUT.QUEUE) +

 PORT(1415) +

 CCSID(437)

Lines beginning with one of the characters *,#, or / are treated as comments, or
lines that should be ignored.

 Chapter 5. Using the MQ JMS administration tool 29

 Administration tool

Table 9. Administration verbs

Verb Description

Standard Shortform

ALTER ALT Change at least one of the properties of a given
administered object

DEFINE DEF Create and store an administered object, or create a new
subcontext

DISPLAY DIS Display the properties of one or more stored administered
objects, or the contents of the current context

DELETE DEL Remove one or more administered objects from the
namespace, or remove an empty subcontext

CHANGE CHG Alter the current context, allowing the user to traverse the
directory namespace anywhere below the initial context
(pending security clearance)

COPY CP Make a copy of a stored administered object, storing it
under an alternative name

MOVE MV Alter the name under which an administered object is
stored

END Close the administration tool

 Manipulating subcontexts
The verbs CHANGE, DEFINE, DISPLAY and DELETE allow the user to manipulate
directory namespace subcontexts and their use is described in Table 10.

Table 10. Syntax and description of commands used to manipulate subcontexts

Command syntax Description

DEFINE CTX(ctxName) Attempts to create a new child subcontext of the current
context, having the name ctxName. Fails if there is a
security violation, if the subcontext already exists, or if the
name supplied is invalid.

DISPLAY CTX Displays the contents of the current context. Administered
objects are annotated with a, subcontexts with [D]. The
Java type of each object is also displayed.

DELETE CTX(ctxName) Attempts to delete the current context's child context
having the name ctxName. Fails if the context is not
found, is non-empty, or if there is a security violation.

CHANGE CTX(ctxName) Alters the current context, so that it now refers to the
child context having the name ctxName. One of two
special values of ctxName may be supplied:

=UP which moves to the current context's parent
=INIT which moves directly to the initial context

Fails if the specified context does not exist, or if there is a
security violation.

30 MQSeries Using Java

 Administration tool

Administering JMS objects
This section describes the four types of objects the administration tool can handle.
It includes details about each of their configurable properties and the verbs that can
be used to manipulate them.

 Object types
The four type of administered objects are shown in Table 11.

The 'keyword' column indicates the strings that can be substituted for TYPE in the
commands shown in Table 12.

Table 11. The JMS object types that are handled by the administration tool

Object Type Description

Java Keyword

MQQueueConnectionFactory QCF The MQSeries implementation of the JMS
QueueConnectionFactory interface. This
represents a factory object for creating
connections in the point-to-point domain
of JMS.

MQTopicConnectionFactory TCF The MQSeries implementation of the JMS
TopicConnectionFactory interface. This
represents a factory object for creating
connections in the publish/subscribe
domain of JMS.

MQQueue Q The MQSeries implementation of the JMS
Queue interface. This represents a
destination for messages in the
point-to-point domain of JMS.

MQTopic T The MQSeries implementation of the JMS
Topic interface. This represents a
destination for messages in the
publish/subscribe domain of JMS.

Verbs used with JMS objects
The verbs ALTER, DEFINE, DISPLAY, DELETE, COPY, and MOVE allow the user to
manipulate administered objects in the directory namespace and their use is
summarized in Table 12.

Table 12 (Page 1 of 2). Syntax and description of commands used to manipulate
administered objects

Command syntax Description

ALTER TYPE(name) [property]* Attempts to update the given administered object's
properties with the ones supplied. Fails if there is a
security violation, if the specified object cannot be
found, or if the new properties supplied are invalid.

 Chapter 5. Using the MQ JMS administration tool 31

 Administration tool

Table 12 (Page 2 of 2). Syntax and description of commands used to manipulate
administered objects

Command syntax Description

DEFINE TYPE(name) [property]* Attempts to create an administered object of type
TYPE with the supplied properties, and tries to store
it under the name name in the current context.
Fails if there is a security violation, if the supplied
name is invalid or already exists, or if the
properties supplied are invalid.

DISPLAY TYPE(name) Displays the properties of the administered object
of type TYPE, bound under the name name in the
current context.
Fails if the object does not exist, or if there is a
security violation.

DELETE TYPE(name) Attempts to remove the administered object of type
TYPE, having the name name, from the current
context.
Fails if the object does not exist, or if there is a
security violation.

COPY TYPE(nameA)
TYPE(nameB)

Makes a copy of the administered object of type
TYPE, having the name nameA, naming the copy
nameB. This all occurs within the scope of the
current context.
Fails if the object to be copied does not exist, if an
object of name nameB already exists, or if there is
a security violation.

MOVE TYPE(nameA)
TYPE(nameB)

Moves (renames) the administered object of type
TYPE, having the name nameA, to nameB. This all
occurs within the scope of the current context.
Fails if the object to be moved does not exist, if an
object of name nameB already exists, or if there is
a security violation.

 Creating objects
Objects are created and stored in a JNDI namespace using the following command
syntax:

DEFINE TYPE(name) [property]\

That is, the DEFINE verb, followed by a TYPE(name) administered object reference,
followed by zero or more properties (see “Properties” on page 33).

LDAP naming considerations
If you want to store your objects in an LDAP environment, their names must comply
with certain conventions. One of these is that object and subcontext names must
include a prefix such as cn= (common name), or ou= (organizational unit).

The administration tool simplifies the use of LDAP service providers by allowing the
user to refer to object and context names without a prefix. If a prefix is not
supplied, then the tool automatically adds a default prefix (currently cn=) to the
name supplied by the user, as shown in the following example:

32 MQSeries Using Java

 Administration tool

InitCtx> DEFINE Q(testQueue)

InitCtx> DISPLAY CTX

Contents of InitCtx

 a cn=testQueue com.ibm.mq.jms.MQQueue

 1 Object(s)

 ð Context(s)

1 Binding(s), 1 Administered

Note that although the object name supplied (testQueue) is without a prefix, the tool
automatically adds one to ensure compliance with the LDAP naming convention.
Likewise, submitting the command DISPLAY Q(testQueue) also causes this prefix to
be added.

You may need to configure your LDAP server to store Java objects. Information to
assist with this configuration is provided in Appendix C, “LDAP server configuration
for Java objects” on page 285.

 Properties
A property consists of a name-value pair in the format:

PROPERTY_NAME(property_value)

Property names are case-insensitive, and are restricted to the set of recognized
names shown in Table 13. Valid property values depend on the property and are
also indicated in the table.

Table 13 (Page 1 of 2). Property names and valid values

Property Valid values (defaults in bold)

Standard Shortform

DESCRIPTION DESC Any string

TRANSPORT TRAN � BIND - Connections use MQSeries bindings.
� CLIENT - Client connection is used

CLIENTID CID Any string

QMANAGER QMGR Any string

HOSTNAME HOST Any string

PORT Any positive integer

CHANNEL CHAN Any string

CCSID CCS Any positive integer

RECEXIT RCX Any string

RECEXITINIT RCXI Any string

SECEXIT SCX Any string

SECEXITINIT SCXI Any string

SENDEXIT SDX Any string

SENDXITINIT SDXI Any string

TEMPMODEL TM Any string

 Chapter 5. Using the MQ JMS administration tool 33

 Administration tool

Many of the properties are only relevant to a specific subset of the object types.
Table 14 shows which property-object type combinations are valid, and brief
descriptions of each property.

Table 13 (Page 2 of 2). Property names and valid values

Property Valid values (defaults in bold)

Standard Shortform

BROKERVER BVER V1 - The broker contained in SupportPac maðc is
used.

BROKERPUBQ BPUB Any string

BROKERQMGR BQM Any string

BROKERCONQ BCON Any string

EXPIRY EXP � APP - Expiry may be defined by the JMS
application.

� UNLIM - No expiry occurs.
� Any positive integer representing expiry in

milliseconds.

PRIORITY PRI � APP - Priority may be defined by the JMS
application.

� QDEF - Priority takes the value of the queue
default.

� Any integer in the range 0-9.

PERSISTENCE PER � APP - Persistence may be defined by the JMS
application.

� QDEF - Persistence takes the value of the
queue default.

� PERS - Messages are persistent.
� NON - messages are non-persistent.

TARGCLIENT TC � JMS - Client is a JMS application.
� MQ - Client is a non-JMS, traditional MQSeries

application.

ENCODING ENC See “The ENCODING property” on page 36

QUEUE QU Any string

TOPIC TOP Any string

Table 14 (Page 1 of 2). The valid combinations of property and object type

Property Valid object types Description

QCF TCF Q T

DESCRIPTION Y Y Y Y A description of the stored object

TRANSPORT Y Y Whether connections will use the
MQ Bindings, or a client
connection

CLIENTID Y Y A string identifier for the client

QMANAGER Y Y Y The name of the queue manager
to connect to

PORT Y Y The port to connect to

HOSTNAME Y Y The name of the host on which
the queue manager resides

34 MQSeries Using Java

 Administration tool

Note: Appendix A, “Mapping between Administration tool properties and
programmable properties” on page 281 shows the relationship between properties
set by the tool and programmable properties.

Table 14 (Page 2 of 2). The valid combinations of property and object type

Property Valid object types Description

QCF TCF Q T

CHANNEL Y Y The name of the channel being
used

CCSID Y Y Y Y The coded-character-set-ID in use
on connections

RECEXIT Y Y Fully-qualified class name of the
receive exit being used

RECEXITINIT Y Y Receive exit initialization string

SECEXIT Y Y Fully-qualified class name of the
security exit being used

SECEXITINIT Y Y Security exit initialization string

SENDEXIT Y Y Fully-qualified class name of the
send exit being used

SENDEXITINIT Y Y Send exit initialization string

TEMPMODEL Y Name of the model queue from
which temporary queues are
created

BROKERVER Y The version of the broker being
used

BROKERPUBQ Y The name of the queue onto
which published messages are put

BROKERQMGR Y The queue manager on which the
broker is running

BROKERCONQ Y Broker's control queue name

EXPIRY Y Y The period after which messages
at a destination expire

PRIORITY Y Y The priority for messages sent to
a destination

PERSISTENCE Y Y The persistence of messages sent
to a destination

TARGCLIENT Y Y The type of the client being used

ENCODING Y Y The encoding scheme used for
this destination

QUEUE Y The underlying name of the queue
representing this destination

TOPIC Y The underlying name of the topic
representing this destination

 Chapter 5. Using the MQ JMS administration tool 35

 Administration tool

 Property dependencies
Some properties have dependencies on each other. This may mean, that supplying
a property is meaningless unless another property has been set to a particular
value. The two specific property groups where this can occur are Client properties
and Exit initialization strings.

Client properties
If the TRANSPORT(CLIENT) property has not been explicitly set on a connection
factory, then the transport used on connections provided by the factory is MQ
Bindings. Consequently, none of the client properties on this connection factory
can be configured. These are:

 � HOST
 � PORT
 � CHANNEL
 � CCSID
 � RECEXIT
 � RECEXITINIT
 � SECEXIT
 � SECEXITINIT
 � SENDEXIT
 � SENDEXITINIT

Attempting to set any of these properties without setting the TRANSPORT property
to CLIENT causes an error.

Exit initialization strings
Setting of any of the exit initialization strings is invalid unless the corresponding
exit name has been supplied. The exit initialization properties are:

 � RECEXITINIT
 � SECEXITINIT
 � SENDEXITINIT

For example, specifying RECEXITINIT(myString) without specifying
RECEXIT(some.exit.classname) causes an error.

The ENCODING property
The valid values that the ENCODING property can take are more complex than the
rest of the properties. The encoding property is constructed from three
sub-properties:

integer encoding which is either normal or reversed

decimal encoding which is either normal or reversed

floating-point encoding which is either IEEE normal, IEEE reversed or
System/390.

The ENCODING is expressed as a three-character string with the following syntax:

{N|R}{N|R}{N|R|3}

where the first character represents integer encoding, the second decimal
encoding, and the third floating-point encoding. This gives us a set of 12 possible
values for the ENCODING property.

There is an additional value, the string NATIVE, which sets appropriate encoding
values for the Java platform

36 MQSeries Using Java

 Administration tool

The following examples show valid combinations for ENCODING:

 ENCODING(NNR)

 ENCODING(NATIVE)

 ENCODING(RR3)

Sample error conditions
This section provides examples of the error conditions that may arise during object
creation.

Unknown property

InitCtx/cn=Trash> DEFINE QCF(testQCF) PIZZA(ham and mushroom)

Unable to create a valid object, please check the parameters supplied

Unknown property: PIZZA

Invalid property for object

InitCtx/cn=Trash> DEFINE QCF(testQCF) PRIORITY(4)

Unable to create a valid object, please check the parameters supplied

Invalid property for a QCF: PRI

Invalid type for property value

InitCtx/cn=Trash> DEFINE QCF(testQCF) CCSID(english)

Unable to create a valid object, please check the parameters supplied

Invalid value for CCS property: English

Property value outside valid range

InitCtx/cn=Trash> DEFINE Q(testQ) PRIORITY(12)

Unable to create a valid object, please check the parameters supplied

Invalid value for PRI property: 12

Property clash - client/bindings

InitCtx/cn=Trash> DEFINE QCF(testQCF) HOSTNAME(polaris.hursley.ibm.com)

Unable to create a valid object, please check the parameters supplied

Invalid property in this context: Client-bindings attribute clash

Property clash - Exit initialization

InitCtx/cn=Trash> DEFINE QCF(testQCF) SECEXITINIT(initStr)

Unable to create a valid object, please check the parameters supplied

Invalid property in this context: ExitInit string supplied

without Exit string

 Chapter 5. Using the MQ JMS administration tool 37

 Administration tool

38 MQSeries Using Java

Part 2. Programming with MQ base Java

Chapter 6. Introduction for programmers . 41
Why should I use the Java interface? . 41
The MQSeries classes for Java interface . 42
Java Developer's Kit . 42
MQSeries classes for Java class library . 43

Chapter 7. Writing MQ base Java programs 45
Should I write applets or applications? . 45
Connection differences . 45

Client connections . 45
Bindings mode . 46
Defining which connection to use . 46

Example code fragments . 46
Example applet code . 46
Example application code . 50

Operations on queue managers . 52
Setting up the MQSeries environment . 52
Connecting to a queue manager . 52

Accessing queues and processes . 53
Handling messages . 54
Handling errors . 55
Getting and setting attribute values . 55
Multithreaded programs . 56
Writing user exits . 57
Compiling and testing MQSeries classes for Java programs 58

Running MQSeries classes for Java applets 58
Running MQSeries classes for Java applications 58
Running MQSeries classes for Java applications under CICS Transaction

Server for OS/390 . 59
Tracing MQSeries Java programs . 59

Chapter 8. Environment-dependent behavior 61
Core details . 61
Restrictions and variations for core classes . 62
Version 5 extensions operating in other environments 63

Chapter 9. The MQSeries classes for Java classes and interfaces 67
MQChannelDefinition . 68

Variables . 68
Constructors . 69

MQChannelExit . 70
Variables . 70
Constructors . 72

MQDistributionList . 73
Constructors . 73
Methods . 73

MQDistributionListItem . 75
Variables . 75
Constructors . 76

MQEnvironment . 77

 Copyright IBM Corp. 1997,1999 39

Variables . 77
Constructors . 80
Methods . 80

MQException . 81
Variables . 81
Constructors . 81

MQGetMessageOptions . 83
Variables . 83
Constructors . 86

MQManagedObject . 87
Variables . 87
Constructors . 88
Methods . 88

MQMessage . 90
Variables . 90
Constructors . 98
Methods . 98

MQMessageTracker . 108
Variables . 108

MQProcess . 110
Constructors . 110
Methods . 110

MQPutMessageOptions . 112
Variables . 112
Constructors . 114

MQQueue . 115
Constructors . 115
Methods . 115

MQQueueManager . 123
Variables . 123
Constructors . 123
Methods . 124

MQC . 131
MQReceiveExit . 132

Methods . 132
MQSecurityExit . 134

Methods . 134
MQSendExit . 136

Methods . 136

40 MQSeries Using Java

 Programming � Java advantages

Chapter 6. Introduction for programmers

This chapter contains general information for programmers. For more detailed
information about writing programs see Chapter 7, “Writing MQ base Java
programs” on page 45.

Why should I use the Java interface?
The MQSeries classes for Java programming interface makes the many benefits of
Java available to you as a developer of MQSeries applications:

� The Java programming language is easy to use . There is no need for header
files, pointers, structures, unions, and operator overloading. Programs written
in Java are easier to develop and debug than their C and C++ equivalents.

� Java is object-oriented . The object-oriented features of Java are comparable
to those of C++, but there is no multiple inheritance. Instead, Java uses the
concept of an interface.

� Java is inherently distributed . The Java class libraries contain a library of
routines for coping with TCP/IP protocols like HTTP and FTP. Java programs
can access URLs as easily as accessing a file system.

� Java is robust . Java puts a lot of emphasis on early checking for possible
problems, dynamic (runtime) checking, and the elimination of situations that are
error prone. Java uses a concept of references that eliminates the possibility of
overwriting memory and corrupting data.

� Java is secure . Java is intended to be run in networked/distributed
environments, and a lot of emphasis has been placed on security. Java
programs cannot overrun their run-time stack, cannot corrupt memory outside
of their process space, and when downloaded from the Internet cannot even
read or write local files.

� Java programs are portable . There are no "implementation-dependent"
aspects of the Java specification. The Java compiler generates an architecture
neutral object file format. The compiled code is executable on many
processors, as long as the Java run-time system is present.

If you write your application using MQSeries classes for Java, users can download
the Java byte codes for your program (called applets) from the Internet and run
them on their own machines. This means that users with access to your Web
server can load and run your application with no prior installation needed on their
machines. When an update to the program is required, you update the copy on the
Web server and users automatically receive the latest version the next time they
access the applet. This can significantly reduce the costs involved in installing and
updating traditional client applications where a large number of desktops are
involved. If you place your applet on a Web server that is accessible outside the
corporate firewall, anyone on the Internet can download and use your application.
This means that you can get messages into your MQSeries system from anywhere
on the internet. This opens the door to building a whole new set of Internet
accessible service, support and electronic commerce applications.

 Copyright IBM Corp. 1997,1999 41

 Java interface � JDK

The MQSeries classes for Java interface
The procedural MQSeries application programming interface is built around the
following verbs:

MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,

MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQPUT1, MQSET

These verbs all take, as a parameter, a handle to the MQSeries object on which
they are to operate. Because Java is object-oriented, the Java programming
interface turns this round. Your program consists of a set of MQSeries objects,
which you act upon by calling methods on those objects, as in the following
example.

Using the procedural interface, you disconnect from a queue manager using the
call MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to the queue
manager.

In the Java interface, the queue manager is represented by an object of class
MQQueueManager and you disconnect from it by calling the disconnect() method
on that class.

// declare an object of type queue manager

MQQueueManager queueManager=new MQQueueManager();

...

// do something...

...

// disconnect from the queue manager

queueManager.disconnect();

Java Developer's Kit
Before you can compile any applets or applications that you write, you must have
access to the Java Developers Kit (JDK) for your development platform. The JDK
contains all the standard Java classes, variables, constructors, and interfaces on
which the MQSeries classes for Java classes depend, and the tools required to
compile and run the applets and programs on each supported platform.

MQSeries classes for Java requires JDK 1.1.6 or higher.

If you do not have the right JDK, go to the IBM Software Download Catalog which
is available on the World Wide Web at location:

http: //www.ibm.com/software/download

You can also develop applications using the JDK included with the integrated
development environment of IBM Visual Age for Java.

42 MQSeries Using Java

 MQSeries classes

MQSeries classes for Java class library
MQSeries classes for Java is a set of Java classes that enable Java applets and
applications to interact with MQSeries.

The following classes are provided:

 � MQChannelDefinition
 � MQChannelExit
 � MQDistributionList
 � MQDistributionListItem
 � MQEnvironment
 � MQException
 � MQGetMessageOptions
 � MQManagedObject
 � MQMessage
 � MQMessageTracker
 � MQPutMessageOptions
 � MQProcess
 � MQQueue
 � MQQueueManager

and the following Java interfaces:

 � MQC
 � MQReceiveExit
 � MQSecurityExit
 � MQSendExit

In Java, a package is a mechanism for grouping sets of related classes together.
The MQSeries classes and interfaces are shipped as a Java package called
com.ibm.mq. To include the MQSeries classes for Java package in your program,
add the following line at the top of your source file:

import com.ibm.mq.\;

 Chapter 6. Introduction for programmers 43

 MQSeries classes

44 MQSeries Using Java

 Writing programs � Connection differences

Chapter 7. Writing MQ base Java programs

To access MQSeries queues using MQSeries classes for Java, you write Java
programs containing calls that put messages onto and get messages from
MQSeries queues. The programs can take the form of Java applets, servlets, or
Java applications.

This chapter provides information to assist with writing Java applets, servlets, and
applications to interact with MQSeries systems. For details of individual classes,
see Chapter 9, “The MQSeries classes for Java classes and interfaces” on
page 67.

Should I write applets or applications?
Whether you write applets, servlets, or applications depends on the connection that
you want to use and from where you want to run the programs.

The main differences between applets and applications are:

� Applets are run with an applet viewer or in a Web browser, servlets are run in a
Web application server,and applications are run stand-alone.

� Applets can be downloaded from a Web server to a Web browser machine, but
applications and servlets are not.

The following general rules apply:

� If you want to run your programs from machines that do not have MQSeries
classes for Java installed locally, you should write applets.

� The native bindings mode of MQSeries classes for Java does not support
applets. Therefore, if you want to use your programs in all connection modes,
including the native bindings mode, you must write servlets or applications.

 Connection differences
The way you program for MQSeries classes for Java has some dependencies on
the connection modes you want to use.

 Client connections
When MQSeries classes for Java is used as a client, it is similar to the MQSeries C
client, but has the following differences:

� It supports only TCP/IP.

� It does not support connection tables.

� It does not read any MQSeries environment variables at startup.

� Information that would be stored in a channel definition and in environment
variables is stored in a class called MQEnvironment, or can be passed as
parameters when the connection is made.

� Error and exception conditions are written to a log specified in the
MQException class. The default error destination is the Java console.

 Copyright IBM Corp. 1997,1999 45

 Example code

The MQSeries classes for Java clients do not support the MQBEGIN verb or fast
bindings.

For general information on MQSeries clients see the MQSeries Clients book.

Note: When you use the VisiBroker connection, the userid and password settings
in MQEnvironment are not forwarded to the MQSeries server. The effective userid
is that which applies to the IIOP server.

 Bindings mode
The bindings mode of MQSeries classes for Java differs from the client modes in
the following ways:

� Most of the parameters provided by the MQEnvironment class are ignored

� The bindings support the MQBEGIN verb and fast bindings into the MQSeries
queue manager

Defining which connection to use
The connection is determined by the setting of variables in the MQEnvironment
class.

MQEnvironment.properties
This can contain the following key/value pairs:

� For client and bindings connections:

MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES

� For VisiBroker connections:

MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_VISIBROKER

MQC.ORB_PROPERTY, orb

MQEnvironment.hostname
Set the value of this variable follows:

� For client connections, set this to the hostname of the MQSeries server to
which you want to connect

� For bindings mode, set this to null

Example code fragments
Two example code fragments are included in this section; Figure 1 on page 47
and Figure 2 on page 50. Each is written to use a particular connection with notes
to describe the changes needed to use alternative connections.

Example applet code
The following code fragment demonstrates an applet that uses a TCP/IP connection
to:

1. Connect to a queue manager
2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE
3. Get the message back

46 MQSeries Using Java

 Example code

// ===

//

// Licensed Materials - Property of IBM

//

// 5639-C34

//

// (c) Copyright IBM Corp. 1995,1999

//

// ===

// MQSeries Client for Java sample applet

//

// This sample runs as an applet using the appletviewer and HTML file,

// using the command :-

// appletviewer MQSample.html

// Output is to the command line, NOT the applet viewer window.

//

// Note. If you receive MQSeries error 2 reason 2ð59 and you are sure your

// MQSeries and TCP/IP setup is correct,

// you should click on the "Applet" selection in the Applet viewer window

// select properties, and change "Network access" to unrestricted.

import com.ibm.mq.\; // Include the MQSeries classes for Java package

public class MQSample extends java.applet.Applet

{

private String hostname = "your_hostname"; // define the name of your

// host to connect to

private String channel = "server_channel"; // define name of channel

// for client to use

// Note. assumes MQSeries Server

// is listening on the default

// TCP/IP port of 1414

private String qManager = "your_Q_manager"; // define name of queue

// manager object to

// connect to.

private MQQueueManager qMgr; // define a queue manager object

// When the class is called, this initialization is done first.

public void init()

 {

// Set up MQSeries environment

MQEnvironment.hostname = hostname; // Could have put the

// hostname & channel

MQEnvironment.channel = channel; // string directly here!

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,//Set TCP/IP or server

 MQC.TRANSPORT_MQSERIES);//Connection

} // end of init

Figure 1 (Part 1 of 3). MQSeries classes for Java example applet

 Chapter 7. Writing MQ base Java programs 47

 Example code

public void start()

 {

 try {

// Create a connection to the queue manager

qMgr = new MQQueueManager(qManager);

// Set up the options on the queue we wish to open...

// Note. All MQSeries Options are prefixed with MQC in Java.

int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |

 MQC.MQOO_OUTPUT ;

// Now specify the queue that we wish to open, and the open options...

MQQueue system_default_local_queue =

 qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

 openOptions,

null, // default q manager

null, // no dynamic q name

null); // no alternate user id

// Define a simple MQSeries message, and write some text in UTF format..

MQMessage hello_world = new MQMessage();

 hello_world.writeUTF("Hello World!");

// specify the message options...

MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the defaults,

// same as

 // MQPMO_DEFAULT

 // constant

// put the message on the queue

 system_default_local_queue.put(hello_world,pmo);

// get the message back again...

// First define a MQSeries message buffer to receive the message into..

MQMessage retrievedMessage = new MQMessage();

retrievedMessage.messageId = hello_world.messageId;

// Set the get message options..

MQGetMessageOptions gmo = new MQGetMessageOptions(); // accept the defaults

// same as

 // MQGMO_DEFAULT

// get the message off the queue..

 system_default_local_queue.get(retrievedMessage, gmo);

Figure 1 (Part 2 of 3). MQSeries classes for Java example applet

48 MQSeries Using Java

 Example code

// And prove we have the message by displaying the UTF message text

String msgText = retrievedMessage.readUTF();

System.out.println("The message is: " + msgText);

// Close the queue

 system_default_local_queue.close();

// Disconnect from the queue manager

 qMgr.disconnect();

 }

// If an error has occurred in the above, try to identify what went wrong.

// Was it an MQSeries error?

catch (MQException ex)

 {

System.out.println("An MQSeries error occurred : Completion code " +

 ex.completionCode +

" Reason code " + ex.reasonCode);

 }

// Was it a Java buffer space error?

catch (java.io.IOException ex)

 {

System.out.println("An error occurred whilst writing to the

message buffer: " + ex);

 }

} // end of start

} // end of sample

Figure 1 (Part 3 of 3). MQSeries classes for Java example applet

Changing the connection to use VisiBroker for Java
Modify the line

MQEnvironment.properties.put (MQC.TRANSPORT_PROPERTY,

 MQC.TRANSPORT_MQSERIES);

to

MQEnvironment.properties.put (MQC.TRANSPORT_PROPERTY,

 MQC.TRANSPORT_VISIBROKER);

and add the following lines to initialize the ORB:

ORB orb=ORB.init(this,null);

MQEnvironment.properties.put(MQC.ORB_PROPERTY,orb);

You also need to add the following import statement to the beginning of the file:

import org.omg.CORBA.ORB;

You do not need to specify port number or channel if you are using VisiBroker.

 Chapter 7. Writing MQ base Java programs 49

 Example code

Example application code
The following code fragment demonstrates a simple application that uses bindings
mode to:

1. Connect to a queue manager
2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE
3. Get the message back again

// ==

// Licensed Materials - Property of IBM

// 5639-C34

// (c) Copyright IBM Corp. 1995, 1999

// ==

// MQSeries classes for Java sample application

//

// This sample runs as a Java application using the command :- java MQSample

import com.ibm.mq.\; // Include the MQSeries classes for Java package

import java.util.Hashtable; // Required for properties

public class MQSample

{

private String qManager = "your_Q_manager"; // define name of queue

// manager to connect to.

private MQQueueManager qMgr; // define a queue manager

 // object

public static void main(String args[]) {

 new MQSample();

 }

public MQSample() {

 try {

 java.util.Hashtable properties;

// Create a connection to the queue manager

qMgr = new MQQueueManager(qManager);

// Set up the options on the queue we wish to open...

// Note. All MQSeries Options are prefixed with MQC in Java.

int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |

 MQC.MQOO_OUTPUT ;

Figure 2 (Part 1 of 2). MQSeries classes for Java example application

50 MQSeries Using Java

 Example code

// Now specify the queue that we wish to open,

// and the open options...

MQQueue system_default_local_queue =

 qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

 openOptions,

null, // default q manager

null, // no dynamic q name

null); // no alternate user id

// Define a simple MQSeries message, and write some text in UTF format..

MQMessage hello_world = new MQMessage();

 hello_world.writeUTF("Hello World!");

// specify the message options...

MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the // defaults,

// same as MQPMO_DEFAULT

// put the message on the queue

 system_default_local_queue.put(hello_world,pmo);

// get the message back again...

// First define a MQSeries message buffer to receive the message into..

MQMessage retrievedMessage = new MQMessage();

retrievedMessage.messageId = hello_world.messageId;

// Set the get message options...

MQGetMessageOptions gmo = new MQGetMessageOptions(); // accept the defaults

// same as MQGMO_DEFAULT

// get the message off the queue...

 system_default_local_queue.get(retrievedMessage, gmo);

// And prove we have the message by displaying the UTF message text

String msgText = retrievedMessage.readUTF();

System.out.println("The message is: " + msgText);

// Close the queue...

 system_default_local_queue.close();

// Disconnect from the queue manager

 qMgr.disconnect();

 }

// If an error has occurred in the above, try to identify what went wrong

// Was it an MQSeries error?

catch (MQException ex)

 {

System.out.println("An MQSeries error occurred : Completion code " +

ex.completionCode + " Reason code " + ex.reasonCode);

 }

// Was it a Java buffer space error?

catch (java.io.IOException ex)

 {

System.out.println("An error occurred whilst writing to the message buffer: " + ex);

 }

 }

} // end of sample

Figure 2 (Part 2 of 2). MQSeries classes for Java example application

 Chapter 7. Writing MQ base Java programs 51

 Queue manager operations

Operations on queue managers
This section describes how to connect to and disconnect from a queue manager
using MQSeries classes for Java.

Setting up the MQSeries environment
Note: This step is not necessary when using MQSeries classes for Java in
bindings mode. In that case, go directly to “Connecting to a queue manager.”
Before connecting to a queue manager using the client connection, you must take
care to set up the MQEnvironment.

The "C" based MQSeries clients rely on environment variables to control the
behavior of the MQCONN call. Because Java applets have no access to
environment variables, the Java programming interface includes a class
MQEnvironment, which allows you to specify the following details that are to be
used during the connection attempt:

 � Channel name
 � Hostname
 � Port number
 � User ID
 � Password

To specify the channel name and hostname use the following code:

MQEnvironment.hostname = "host.domain.com";

MQEnvironment.channel = "java.client.channel";

This is equivalent to an MQSERVER environment variable setting of:

"java.client.channel/TCP/host.domain.com".

By default, the Java clients attempt to connect to an MQSeries listener at port
1414. To specify a different port, use the code:

MQEnvironment.port = nnnn;

The user ID and password default to blanks. To specify a non-blank user ID or
password use the code:

MQEnvironment.userID = "uid"; // equivalent to env var MQ_USER_ID

MQEnvironment.password = "pwd"; // equivalent to env var MQ_PASSWORD

Note: If you are setting up a connection using VisiBroker for Java, see “Changing
the connection to use VisiBroker for Java” on page 49.

Connecting to a queue manager
You are now ready to connect to a queue manager by creating a new instance of
the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the disconnect() method on the queue
manager:

queueManager.disconnect();

Calling the disconnect method causes all open queues and processes that you
have accessed through that queue manager to be closed. It is good programming

52 MQSeries Using Java

 Queue and process access

practice, however, to close these resources yourself when you have finished using
them. You do this with the close() method.

The commit() and backout() methods on a queue manager replace the MQCMIT
and MQBACK calls of the procedural interface.

Accessing queues and processes
Queues and process are accessed using the MQQueueManager class. The MQOD
(object descriptor structure) has been collapsed into the parameters of these
methods. For example, to open a queue on a queue manager "queueManager",
use the following code:

MQQueue queue = queueManager.accessQueue("qName",

 MQC.MQOO_OUTPUT,

 "qMgrName",

 "dynamicQName",

 "altUserId");

The options parameter is the same as the Options parameter in the MQOPEN call.

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, close it using the close() method, as in
the following example:

queue.close();

With MQSeries classes for Java you can also create a queue using the MQQueue
constructor. The parameters are exactly the same as for the accessQueue
method, with the addition of a queue manager parameter. For example:

MQQueue queue = new MQQueue(queueManager,

 "qName",

 MQC.MQOO_OUTPUT,

 "qMgrName",

 "dynamicQName",

 "altUserId");

Constructing a queue object in this way enables you to write your own subclasses
of MQQueue.

To access a process use the accessProcess method in place of accessQueue.
This method does not have a dynamic queue name parameter since this does not
apply to processes.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object, close it using the close()
method, as in the following example:

process.close();

With MQSeries classes for Java you can also create a process using the
MQProcess constructor. The parameters are exactly the same as for the
accessProcess method, with the addition of a queue manager parameter.
Constructing a process object in this way enables you to write your own subclasses
of MQProcess.

 Chapter 7. Writing MQ base Java programs 53

 Handling messages

 Handling messages
You put messages onto queues using the put() method of the MQQueue class, and
you get messages from queues using the get() method of the MQQueue class.
Unlike the procedural interface, where MQPUT and MQGET put and get arrays of
bytes, the Java programming language puts and gets instances of the MQMessage
class. The MQMessage class encapsulates the data buffer that contains the actual
message data, together with all the MQMD parameters that describe that message.

To build a new message, create a new instance of the MQMessage class, and use
the writeXXX methods to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are
automatically set to their default values, as defined in the MQSeries Application
Programming Reference. The put() method of MQQueue also takes an instance of
the MQPutMessageOptions class as a parameter. This class represents the
MQPMO structure. The following example shows the creation of a message and
putting it onto a queue:

// Build a new message containing my age followed by my name

MQMessage myMessage = new MQMessage();

myMessage.writeInt(25);

String name = "Wendy Ling";

myMessage.writeInt(name.length());

myMessage.writeBytes(name);

// Use the default put message options...

MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!

queue.put(myMessage,pmo);

The get() method of MQQueue returns a new instance of MQMessage, which
represents the message just taken from the queue. It also takes an instance of the
MQGetMessageOptions class as a parameter. This class represents the MQGMO
structure.

There is no need to specify a maximum message size because get() method
automatically adjusts the size of its internal buffer to fit the incoming message. Use
the readXXX methods of the MQMessage class to access the data in the returned
message.

The following example shows how to get a message from a queue:

// Get a message from the queue

MQMessage theMessage = new MQMessage();

MQGetMessageOptions gmo = new MQGetMessageOptions();

queue.get(theMessage,gmo); // has default values

// Extract the message data

int age = theMessage.readInt();

int strLen = theMessage.readInt();

byte[] strData = new byte[strLen];

theMessage.readFully(strData,ð,strLen);

String name = new String(strData,ð);

54 MQSeries Using Java

 Handling errors � Using attribute values

The number format used by the read and write methods can be altered by setting
the encoding member variable.

The character set to use for reading and writing strings can be altered by setting
the characterSet member variable.

See “MQMessage” on page 90 for more details.

Note: Using the writeUTF() method of MQMessage automatically encodes the
length of the string as well as the Unicode bytes it contains. When your
message is to be read by another Java program (using readUTF()), this is
the simplest way to send string information.

 Handling errors
Methods in the Java interface do not return a completion code and reason code.
Instead, they throw an exception whenever the completion code and reason code
resulting from an MQSeries call are not both zero. This simplifies the program logic
so that you do not have to check the return codes after each call to MQSeries.
You can decide at which point in your program you want to deal with the possibility
of failure by surrounding your code with 'try' and 'catch' blocks, as in the following
example:

try {

myQueue.put(messageA,putMessageOptionsA);

myQueue.put(messageB,putMessageOptionsB);

}

catch (MQException ex) {

// This block of code is only executed if one of

// the two put methods gave rise to a non-zero

// completion code or reason code.

System.out.println("An error occurred during the put operation:" +

"CC = " + ex.completionCode +

"RC = " + ex.reasonCode);

}

Getting and setting attribute values
For many of the common attributes, the classes MQManagedObject, MQQueue,
MQProcess, and MQQueueManager contain getXXX() and setXXX() methods
which allow you to get and set their attribute values. Note that for MQQueue, the
methods will work only if you specify the appropriate 'inquire' and 'set' flags when
you open the queue.

For less common attributes, the MQQueueManager, MQQueue, and MQProcess
classes all inherit from a class called MQManagedObject. This class defines the
inquire() and set() interfaces.

When you create a new queue manager object using the new operator, it is
automatically opened for 'inquiry'. When you access a process object using the
accessProcess() method, it is automatically opened for 'inquiry'. When you access
a queue object using the accessQueue() method, it is not automatically opened for
either 'inquire' or 'set' operations, because automatically adding these options can
cause problems with some types of remote queues. To use the inquire, set, and
getXXX/setXXX methods on a queue, you must specify the appropriate 'inquire' and
'set' flags in the openOptions parameter of the accessQueue() method.

 Chapter 7. Writing MQ base Java programs 55

 Multithreading

The inquire and set methods take three parameters:

 � selectors array
 � intAttrs array
 � charAttrs array

There is no need for the SelectorCount, IntAttrCount and CharAttrLength
parameters found in MQINQ, because the length of an array in Java is always
known. The following example shows how to make an inquiry on a queue:

// inquire on a queue

final static int MQIA_DEF_PRIORITY = 6;

final static int MQCA_Q_DESC = 2ð13;

final static int MQ_Q_DESC_LENGTH = 64;

int[] selectors = new int[2];

int[] intAttrs = new int[1];

byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH]

selectors[ð] = MQIA_DEF_PRIORITY;

selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default Priority = " + intAttrs[ð]);

System.out.println("Description : " + new String(charAttrs,ð));

 Multithreaded programs
Multithreaded programs are hard to avoid in Java. Consider a simple program that
connects to a queue manager and opens a queue at startup. The program
displays a single button on the screen and, when the button is pressed, it fetches a
message from the queue.

Because the Java runtime environment is inherently multithreaded, your application
initialization will take place in one thread, and the code that is executed in response
to the button press executes in a separate thread (the user interface thread).

With the "C" based MQSeries client this would cause a problem, since handles
cannot be shared across multiple threads. MQSeries classes for Java relaxes this
constraint, allowing a queue manager object (and its associated queue and process
objects) to be shared across multiple threads.

The implementation of MQSeries classes for Java ensures that, for a given
connection (queue manager object instance), all access to the target MQSeries
queue manager is synchronized. This means that a thread wishing to issue a call
to a queue manager is blocked until all other calls in progress for that connection
have completed. If you require simultaneous access to the same queue manager
from within your program, create a new queue manager object for each thread
requiring concurrent access. (This is equivalent to issuing a separate MQCONN
call for each thread.)

Note: In the CICS Transaction Server for OS/390 environment, only the main
(first) thread is allowed to issue CICS or MQSeries calls. It is therefore not
possible to share MQQueueManager or MQQueue objects between threads in this
environment, or to create a new MQQueueManager on a child thread.

56 MQSeries Using Java

 Writing exits

Writing user exits
MQSeries classes for Java allows you to provide your own send, receive, and
security exits.

To implement an exit, you define a new Java class that implements the appropriate
interface. There are three exit interfaces defined in the MQSeries package:

 � MQSendExit
 � MQReceiveExit
 � MQSecurityExit

The following sample defines a class that implements all three:

class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {

// This method comes from the send exit

public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

// fill in the body of the send exit here

 }

// This method comes from the receive exit

public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

// fill in the body of the receive exit here

 }

// This method comes from the security exit

public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,

 byte agentBuffer[])

 {

// fill in the body of the security exit here

 }

}

Each exit is passed an MQChannelExit and an MQChannelDefinition object
instance. These objects represent the MQCXP and MQCD structures defined in the
procedural interface.

The agentBuffer parameter contains the data that is about to be sent (in the case of
the send exit), or has just been received (in the case of the receive and security
exits). There is no need for a length parameter, because the expression
agentBuffer.length tells you the length of the array.

For the Send and Security exits, your exit code should return the byte array that
you wish to be sent to the server. For a Receive exit, your code should return the
modified data that you wish to be interpreted by the MQSeries classes for Java.

 Chapter 7. Writing MQ base Java programs 57

 Compiling and testing � Running applications

The simplest possible exit body is:

{

 return agentBuffer;

}

If your program is to run as a downloaded Java applet, note that under the security
restrictions placed on it you will not be able to read or write any local files. If your
exit needs a configuration file, you can place the file on the web and use the
java.net.URL class to download it and examine its contents.

Compiling and testing MQSeries classes for Java programs
Before compiling MQSeries classes for Java programs you must ensure that your
MQSeries classes for Java installation directory is in your CLASSPATH
environment variable, as described in Chapter 2, “Installation procedures” on
page 7.

To compile a class "MyClass.java", use the command:

javac MyClass.java

Running MQSeries classes for Java applets
If you are writing an applet (subclass of java.applet.Applet), you must create an
HTML file referencing your class before you can run it. A sample HTML file might
look as follows:

<html>

<body>

<applet code="MyClass.class" width=2ðð height=4ðð>

</applet>

</body>

</html>

Run your applet either by loading this HTML file into a Java enabled web browser,
or by using the appletviewer that comes with the Java Development Kit (JDK).

To use the applet viewer, enter the command:

appletviewer myclass.html

Running MQSeries classes for Java applications
If you are writing an application (a class that contains a main() method), using
either the client or the bindings, run your program using the Java interpreter. Use
the command:

java MyClass

Note: The '.class' extension is omitted from the class name.

58 MQSeries Using Java

 Running applications � Tracing

Running MQSeries classes for Java applications under CICS
Transaction Server for OS/390

To run a Java application as a transaction under CICS, you must:

1. Define the application and transaction to CICS using the supplied CEDA
transaction.

2. Ensure that the MQSeries CICS adapter is installed in your CICS system. (See
MQSeries System Management Guide for details.)

3. Ensure that the JVM environment specified in the DHFJVM parameter of your
CICS startup JCL includes appropriate CLASSPATH and LIBPATH entries.

4. Initiate the transaction using any of your normal processes.

For more information on running CICS Java transactions, refer to your CICS
system documentation.

Tracing MQSeries Java programs
MQSeries classes for Java includes a trace facility, which can be used to produce
diagnostic messages if you suspect there might be a problem with the code. (You
will normally need to use this facility only at the request of IBM service.)

Tracing is controlled by the enableTracing and disableTracing methods of the
MQEnvironment class. For example:

MQEnvironment.enableTracing(2); // trace at level 2

 ... // these commands will be traced

MQEnvironment.disableTracing(); // turn tracing off again

The trace is written to the Java console (System.err).

If your program is an application, or you are running it from your local disk using
the appletviewer command, you also have the option of redirecting the trace output
to a file of your choice. The following code fragment shows an example of how to
make the redirection to a file called myapp.trc:

import java.io.\;

try {

 FileOutputStream

traceFile = new FileOutputStream("myapp.trc");

 MQEnvironment.enableTracing(2,traceFile);

}

catch (IOException ex) {

// couldn't open the file,

// trace to System.err instead

 MQEnvironment.enableTracing(2);

}

There are 5 different levels of tracing:

1 Provides entry, exit and exception tracing
2 Provides parameter information in addition to 1
3 Provides transmitted and received MQSeries headers and data blocks in addition to 2
4 Provides transmitted and received user message data in addition to 3
5 Provides tracing of methods in the Java Virtual Machine in addition to 4

 Chapter 7. Writing MQ base Java programs 59

 Tracing

To trace methods in the Java Virtual Machine with trace level 5, issue the
command java_g in place of java to run an application, or appletviewer_g instead
of appletviewer to run an applet.

Notes:

1. java_g is not supported for High Performance Java (HPJ) applications on
OS/390.

60 MQSeries Using Java

 Environment dependencies � Core details

 Chapter 8. Environment-dependent behavior

This chapter describes the behavior of the Java classes in the various
environments in which they can be used. The MQSeries classes for Java classes
allow you create applications that can be used in the following environments:

1. MQSeries Client for Java connected to an MQSeries V2.x server

2. MQSeries Client for Java connected to an MQSeries V5 server

3. MQSeries Bindings for Java executing on an MQSeries V5 server

4. MQSeries Bindings for Java executing on an MQSeries for MVS/ESA V1.2
server

5. MQSeries Bindings for Java executing on an MQSeries for MVS/ESA V1.2
server with CICS Transaction Server for OS/390 Version 1.3

In all cases the MQSeries classes for Java code makes use of services provided by
the underlying MQSeries server. There are differences in the level of function (for
example MQSeries V5 provides a superset of the function of V2), and in terms of
behavior of some of the API calls and options. The differences in behavior are
mainly minor, and mostly occur between the OS/390 (MQSeries for MVS/ESA)
servers and the servers on other platforms.

MQSeries classes for Java provides a 'core' of classes, which provide consistent
function and behavior in all the environments, and 'V5 extensions', which are
designed for use only in environments 2 and 3. The core and extensions are
documented below.

 Core details
MQSeries classes for Java contains the following core of classes, which can be
used in all environments with only the minor variations listed in “Restrictions and
variations for core classes” on page 62.

 � MQEnvironment
 � MQException
 � MQGetMessageOptions

Excluding:
 – MatchOptions
 – GroupStatus
 – SegmentStatus
 – Segmentation

 � MQManagedObject
Excluding:
 – inquire()
 – set()

 � MQMessage
Excluding:
 – groupId
 – messageFlags
 – messageSequenceNumber
 – offset
 – originalLength

 Copyright IBM Corp. 1997,1999 61

 Restrictions

 � MQPutMessageOptions
Excluding:
 – knownDestCount
 – unknownDestCount
 – invalidDestCount
 – recordFields

 � MQProcess
 � MQQueue
 � MQQueueManager

Excluding:
 – begin()
 – accessDistributionList()

 � MQC

Notes:

1. Some constants are not included in the core (see “Restrictions and variations
for core classes” for details), and you should not use them in completely
portable programs.

2. Some platforms do not support all connection modes. On these platforms you
can use only the core classes and options that relate to the supported modes.
(See Table 1 on page 5.)

Restrictions and variations for core classes
Although the core classes generally behave consistently across all environments,
there are some minor restrictions and variations which are documented in
Table 15.

Apart from these documented variations, the core classes give consistent behavior
across all environments, even if the equivalent MQSeries classes normally have
environment differences. In general, the behavior will be that expected in
environments 2 and 3.

Table 15 (Page 1 of 2). Core classes restrictions and variations

Class or element Restrictions and variations

MQGMO_LOCK
MQGMO_UNLOCK
MQGMO_BROWSE_MSG_UNDER_CURSOR

Cause MQRC_OPTIONS_ERROR when used in environments
4 or 5.

MQPMO_NEW_MSG_ID
MQPMO_NEW_CORREL_ID
MQPMO_LOGICAL_ORDER

Give errors except in environments 2 and 3. (See V5
extensions.)

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MESSAGE
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE

Give errors except in environments 2 and 3. (See V5
extensions.)

MQGMO_MARK_SKIP_BACKOUT Causes MQRC_OPTIONS_ERROR except in environment 4
and 5.

MQCNO_FASTPATH_BINDING Supported only in environment 3. (See V5 extensions.)

MQPMRF_* fields Supported only in environments 2 and 3.

62 MQSeries Using Java

 V5 extensions

Table 15 (Page 2 of 2). Core classes restrictions and variations

Class or element Restrictions and variations

Putting a message with MQQueue.priority >
MaxPriority

Rejected with MQCC_FAILED and MQRC_PRIORITY_ERROR
in environments 4 and 5. Other environments accept it with the
warnings MQCC_WARNING and
MQRC_PRIORITY_EXCEEDS_MAXIMUM and treat the
message as if it were put with MaxPriority.

BackoutCount Environments 4 and 5 return a maximum backout count of
255, even if the message has been backed out more than 255
times.

Default dynamic queue name CSQ.* for environments 4 and 5. AMQ.* for other systems.

MQMessage.report options:

MQRO_EXCEPTION_WITH_FULL_DATA
MQRO_EXPIRATION_WITH_FULL_DATA
MQRO_COA_WITH_FULL_DATA
MQRO_COD_WITH_FULL_DATA
MQRO_DISCARD_MSG

Not supported if a report message is generated by an OS/390
queue manager, although they may be set in all environments.
This issue affects all Java environments, because the OS/390
queue manager could be distant from the Java application.
Avoid relying on any of these options if there is a chance that
an OS/390 queue manager could be involved.

MQQueueManager.commit() and
MQQueueManager.backout()

In environment 5 these methods return
MQRC_ENVIRONMENT_ERROR. In this environment
applications should use the JCICS task synchronization
methods:
com.ibm.cics.server.Task.commit(), and
com.ibm.cics.server.Task.rollback().

MQQueueManager constructor In environments 4 and 5, if the options present in
MQEnvironment (and the optional properties argument) imply a
client connection, the constructor fails with
MQRC_ENVIRONMENT_ERROR.

In environments 4 and 5, the constructor may also return
MQRC_CHAR_CONVERSION_ERROR. Ensure that the
National Language Resources component of the OS/390
Language Environment is installed. In particular, ensure that
conversions are available between the IBM-1047 and
ISO8859-1 code pages.

In environments 4 and 5, the constructor may also return
MQRC_UCS2_CONVERSION_ERROR. The MQSeries
classes for Java attempt to convert from Unicode to the queue
manager code page, and default to IBM-500 if a specific code
page is unavailable. Ensure that you have appropriate
conversion tables for Unicode, which should be installed as
part of the OS/390 C/C++ optional feature, and ensure that the
Language Environment can locate the tables. See the OS/390
C/C++ Programming Guide, SC09-2362, for more information
about enabling UCS-2 conversions.

Version 5 extensions operating in other environments
MQSeries classes for Java contains the following functions specifically designed to
use the API extensions introduced in MQSeries V5. These functions operate as
designed only in environments 2 and 3. This topic describes how they can be
expected to behave in other environments.

 Chapter 8. Environment-dependent behavior 63

 V5 extensions

MQQueueManager constructor option
An optional integer argument is included in the MQQueueManager constructor.
This maps onto the MQI's MQCNO.options field, and is used to switch between
normal and fastpath connection. This extended form of the constructor is
accepted in all environments, provided that the only options used are
MQCNO_STANDARD_BINDING or MQCNO_FASTPATH_BINDING. Any other
options cause the constructor to fail with MQRC_OPTIONS_ERROR. The
fastpath option MQC.MQCNO_FASTPATH_BINDING is only honored when
used in the MQSeries V5 bindings (environment 3). If it is used in any other
environment, it is ignored.

MQQueueManager.begin() method
This can be used only in environment 3. In any other environment it fails with
MQRC_ENVIRONMENT_ERROR.

MQPutMessageOptions options.
The following flags may be set into the MQPutMessageOptions options fields in
any environment, but if used with a subsequent MQQueue.put() in any
environment other than 2 or 3, the put() fails with MQRC_OPTIONS_ERROR:

 � MQPMO_NEW_MSG_ID
 � MQPMO_NEW_CORREL_ID
 � MQPMO_LOGICAL_ORDER

MQGetMessageOptions options.
The following flags may be set into the MQGetMessageOptions options fields in
any environment, but if used with a subsequent MQQueue.get() in any
environment other than 2 or 3, the get() fails with MQRC_OPTIONS_ERROR:

 � MQGMO_SYNCPOINT_IF_PERSISTENT
 � MQGMO_LOGICAL_ORDER
 � MQGMO_COMPLETE_MESSAGE
 � MQGMO_ALL_MSGS_AVAILABLE
 � MQGMO_ALL_SEGMENTS_AVAILABLE

MQGetMessageOptions fields
Values may be set into the following fields, regardless of the environment, but if
the MQGetMessageOptions used on a subsequent MQQueue.get() is found to
contain non-default values when running in any environment other than 2 or 3,
the get() fails with MQRC_GMO_ERROR. This means that in environments
other than 2 or 3, these fields will always be set to their initial values after every
successful get().

 � MatchOptions
 � GroupStatus
 � SegmentStatus
 � Segmentation

Distribution Lists
The following classes are used to create Distribution Lists:

 � MQDistributionList
 � MQDistributionListItem
 � MQMessageTracker

You can create and populate MQDistributionList and MQDistributionListItems in
any environment, but you can only create and open MQDistributionList
successfully in environments 2 and 3. An attempt to create and open one in any
other environment is rejected with MQRC_OD_ERROR.

64 MQSeries Using Java

 V5 extensions

MQPutMessageOptions fields
Four fields in MQPMO are rendered as the following member variables in the
MQPutMessageOptions class:

 � knownDestCount
 � unknownDestCount
 � invalidDestCount
 � recordFields

Although primarily intended for use with distribution lists, the MQSeries V5
server also fills in the DestCount fields after an MQPUT to a single queue. For
example, if the queue resolves to a local queue, then knownDestCount is set to
1 and the other two fields to 0. In environments 2 and 3, the values set by the
V5 server are returned in the MQPutMessageOptions class. In the other
environments return values are simulated as follows:

� If the put() succeeds, unknownDestCount is set to 1, and the others are set
to 0.

� If the put() fails, invalidDestCount is set to 1, and the others to 0.

recordFields is used with distribution lists. A value may be written into
recordFields at any time, regardless of the environment, but is ignored if the
MQPutMessage options are used on a subsequent MQQueue.put(), rather than
MQDistributionList.put().

MQMD fields
The following MQMD fields are largely concerned with message segmentation:

 � GroupId
 � MsgSeqNumber
 � Offset MsgFlags
 � OriginalLength

If an application sets any of these MQMD fields to non-default values, and then
does a put() to or get() in an environment other than 2 or 3, the put() or get()
raises an exception (MQRC_MD_ERROR). A successful put() or get() in an
environment other than 2 or 3, always leaves the new MQMD fields set to their
default values. A grouped or segmented message should not normally be sent
to a Java application running against a queue manager that is not MQSeries
Version 5 or higher. If such an application does issue a get, and the physical
message to be retrieved happens to be part of a group or segmented message
(it has non-default values for the MQMD fields), it is retrieved without error.
However, the MQMD fields in the MQMessage are not updated. The
MQMessage format property is set to MQFMT_MD_EXTENSION, and the true
message data is prefixed with an MQMDE structure containing the values for
the new fields.

 Chapter 8. Environment-dependent behavior 65

 V5 extensions

66 MQSeries Using Java

 Java classes

Chapter 9. The MQSeries classes for Java classes and
interfaces

This chapter describes all the MQSeries classes for Java classes and interfaces. It
includes details of the variables, constructors, and methods in each class and
interface.

The following classes are described:

 � MQChannelDefinition
 � MQChannelExit
 � MQDistributionList
 � MQDistributionListItem
 � MQEnvironment
 � MQException
 � MQGetMessageOptions
 � MQManagedObject
 � MQMessage
 � MQMessageTracker
 � MQPutMessageOptions
 � MQProcess
 � MQQueue
 � MQQueueManager

and the following interfaces:

 � MQC
 � MQReceiveExit
 � MQSecurityExit
 � MQSendExit

 Copyright IBM Corp. 1997,1999 67

 MQChannelDefinition

 MQChannelDefinition

java.lang.Object

 │

 └─ com.ibm.mq.MQChannelDefinition

public class MQChannelDefinition
extends Object

The MQChannelDefinition class is used to pass information concerning the
connection to the queue manager to the send, receive and security exits.

Note: This class does not apply when connecting directly to MQSeries in bindings
mode.

 Variables
channelName

public String channelName

The name of the channel through which the connection is established.

queueManagerName
public String queueManagerName

The name of the queue manager to which the connection is made.

maxMessageLength
public int maxMessageLength

The maximum length of message that can be sent to the queue manager.

securityUserData
public String securityUserData

A storage area for the security exit to use. Information placed here is
preserved across invocations of the security exit, and is also available to the
send and receive exits.

sendUserData
public String sendUserData

A storage area for the send exit to use. Information placed here is preserved
across invocations of the send exit, and is also available to the security and
receive exits.

receiveUserData
public String receiveUserData

A storage area for the receive exit to use. Information placed here is
preserved across invocations of the receive exit, and is also available to the
send and security exits.

connectionName
public String connectionName

The TCP/IP hostname of the machine on which the queue manager resides.

68 MQSeries Using Java

 MQChannelDefinition

remoteUserId
public String remoteUserId

The user id used to establish the connection.

remotePassword
public String remotePassword

The password used to establish the connection.

 Constructors
MQChannelDefinition

public MQChannelDefinition()

 Chapter 9. The MQSeries classes for Java classes and interfaces 69

 MQChannelExit

 MQChannelExit

java.lang.Object

 │

 └─ com.ibm.mq.MQChannelExit

public class MQChannelExit
extends Object

This class defines context information passed to the send, receive, and security
exits when they are invoked. The exitResponse member variable should be set by
the exit to indicate what action the MQSeries client for Java should take next.

Note: This class does not apply when connecting directly to MQSeries in bindings
mode.

 Variables
MQXT_CHANNEL_SEC_EXIT

public final static int MQXT_CHANNEL_SEC_EXIT

MQXT_CHANNEL_SEND_EXIT
public final static int MQXT_CHANNEL_SEND_EXIT

MQXT_CHANNEL_RCV_EXIT
public final static int MQXT_CHANNEL_RCV_EXIT

MQXR_INIT
public final static int MQXR_INIT

MQXR_TERM
public final static int MQXR_TERM

MQXR_XMIT
public final static int MQXR_XMIT

MQXR_SEC_MSG
public final static int MQXR_SEC_MSG

MQXR_INIT_SEC
public final static int MQXR_INIT_SEC

MQXCC_OK
public final static int MQXCC_OK

MQXCC_SUPPRESS_FUNCTION
public final static int MQXCC_SUPPRESS_FUNCTION

MQXCC_SEND_AND_REQUEST_SEC_MSG
public final static int MQXCC_SEND_AND_REQUEST_SEC_MSG

MQXCC_SEND_SEC_MSG
public final static int MQXCC_SEND_SEC_MSG

MQXCC_SUPPRESS_EXIT
public final static int MQXCC_SUPPRESS_EXIT

MQXCC_CLOSE_CHANNEL
public final static int MQXCC_CLOSE_CHANNEL

70 MQSeries Using Java

 MQChannelExit

exitID
public int exitID

The type of exit that has been invoked. For an MQSecurityExit this is always
MQXT_CHANNEL_SEC_EXIT. For an MQSendExit this is always
MQXT_CHANNEL_SEND_EXIT, and for an MQReceiveExit this is always
MQXT_CHANNEL_RCV_EXIT.

exitReason
public int exitReason

The reason for invoking the exit. Possible values are:

MQXR_INIT
Exit initialization; called after the channel connection conditions have been
negotiated, but before any security flows have been sent.

MQXR_TERM
Exit termination; called after the disconnect flows have been sent but
before the socket connection is destroyed.

MQXR_XMIT
For a send exit indicates that data is to be transmitted to the queue
manager. For a receive exit, indicates that data has been received from
the queue manager.

MQXR_SEC_MSG
Indicates to the security exit that a security message has been received
from the queue manager.

MQXR_INIT_SEC
Indicates that the exit is to initiate the security dialog with the queue
manager.

exitResponse
public int exitResponse

Set by the exit to indicate the action that MQSeries classes for Java should
take next. Valid values are:

MQXCC_OK
Set by the security exit to indicate that security exchanges are complete.
Set by send exit to indicate that the returned data is to be transmitted to
the queue manager. Set by the receive exit to indicate that the returned
data is available for processing by the MQSeries client for Java.

MQXCC_SUPPRESS_FUNCTION
Set by the security exit to indicate that communications with the queue
manager should be shut down.

MQXCC_SEND_AND_REQUEST_SEC_MSG
Set by the security exit to indicate that the returned data is to be
transmitted to the queue manager, and that a response is expected from
the queue manager.

MQXCC_SEND_SEC_MSG
Set by the security exit to indicate that the returned data is to be
transmitted to the queue manager, and that no response is expected.

MQXCC_SUPPRESS_EXIT
Set by any exit to indicate that it should no longer be called.

 Chapter 9. The MQSeries classes for Java classes and interfaces 71

 MQChannelExit

MQXCC_CLOSE_CHANNEL
Set by any exit to indicate that the connection to the queue manager
should be closed.

maxSegmentLength
public int maxSegmentLength

The maximum length for any one transmission to a queue manager. If the exit
returns data that is to be sent to the queue manager, the length of the returned
data should not exceed this value.

exitUserArea
public byte exitUserArea[]

A storage area available for the exit to use. Any data placed in the
exitUserArea is preserved by the MQSeries Client for Java across exit
invocations with the same exitID. (That is to say, the send, receive, and
security exits each have their own, independent, user areas.)

capabilityFlags
public static final int capabilityFlags

Indicates the capability of the queue manager. Only the
MQC.MQCF_DIST_LISTS flag is supported.

fapLevel
public static final int fapLevel

The negotiated Format and Protocol (FAP) level.

 Constructors
MQChannelExit

 public MQChannelExit()

72 MQSeries Using Java

 MQDistributionList

 MQDistributionList

java.lang.Object

 │

 └─ com.ibm.mq.MQManagedObject

 │

 └─ com.ibm.mq.MQDistributionList

public class MQDistributionList
extends MQManagedObject (See page 87.)

Note: You can use this class only when connected to an MQSeries Version 5 (or
higher) queue manager.

An MQDistributionList is created with MQDistributionList constructor or with the
accessDistributionList method for MQQueueManager.

A distribution list represents a set of open queues to which messages can be sent
using a single call to the put() method. (See "Distribution lists" in the MQSeries
Application Programming Guide.)

 Constructors
MQDistributionList

public MQDistributionList(MQQueueManager qMgr,

 MQDistributionListItem[] litems,

 int openOptions,

String alternateUserId) Throws MQException.

qMgr is the queue manager where the list is to be opened.

litems are the items to be included in the distribution list.

See "accessDistributionList" on page 129 for details of the remaining
parameters.

 Methods
put

public synchronized void put(MQMessage message,

MQPutMessageOptions putMessageOptions) Throws
MQException.

Puts a message to the queues on the distribution list.

Parameters

message
An input/output parameter containing the message descriptor information
and the returned message data.

putMessageOptions
Options that control the action of MQPUT.(See “MQPutMessageOptions”
on page 112 for details.)

Throws MQException if the put fails.

 Chapter 9. The MQSeries classes for Java classes and interfaces 73

 MQDistributionList

getFirstDistributionListItem
public MQDistributionListItem getFirstDistributionListItem()

Returns the first item in the distribution list, or null if the list is empty.

getValidDestinationCount
public int getValidDestinationCount()

Returns the number of items in the distribution list that were opened
successfully.

getInvalidDestinationCount
public int getInvalidDestinationCount()

Returns the number of items in the distribution list that failed to open
successfully.

74 MQSeries Using Java

 MQDistributionListItem

 MQDistributionListItem

java.lang.Object

 │

 └─ com.ibm.mq.MQMessageTracker

 │

 └─ com.ibm.mq.MQDistributionListItem

public class MQDistributionListItem
extends MQMessageTracker (See page 108.)

Note: You can use this class only when connected to an MQSeries Version 5 (or
higher) queue manager.

An MQDistributionListItem represents a single item (queue) within a distribution list.

 Variables
completionCode

public int completionCode

The completion code resulting from the last operation on this item. If this was
the construction of an MQDistributionList, the completion code relates to the
opening of the queue. If it was a put operation, the completion code relates to
the attempt to put a message onto this queue.

The initial value is "0".

queueName
public String queueName

The name of a queue you want to use with a distribution list. This cannot be
the name of a model queue.

The initial value is "".

queueManagerName
public String queueManagerName

The name of the queue manager on which the queue is defined.

The initial value is "".

reasonCode
public int reasonCode

The reason code resulting from the last operation on this item. If this was the
construction of an MQDistributionList, the reason code relates to the opening of
the queue. If it was a put operation, the reason code relates to the attempt to
put a message onto this queue.

The initial value is "0".

 Chapter 9. The MQSeries classes for Java classes and interfaces 75

 MQDistributionListItem

 Constructors
MQDistributionListItem

public MQDistributionListItem()

Construct a new MQDistributionListItem object.

76 MQSeries Using Java

 MQEnvironment

 MQEnvironment

java.lang.Object

 │

 └─ com.ibm.mq.MQEnvironment

public class MQEnvironment
extends Object

Note: All the methods and attributes of this class apply to the MQSeries classes
for Java client connections, but only enableTracing, disableTracing, properties, and
version_notice apply to bindings connections.

MQEnvironment contains static member variables which control the environment in
which an MQQueueManager object (and its corresponding connection to MQSeries)
is constructed.

Values set in the MQEnvironment class take effect when the MQQueueManager
constructor is called so you should set the values in the MQEnvironment class
before constructing an MQQueueManager instance.

 Variables
Note: Variables marked with * do not apply when connecting directly to MQSeries
in bindings mode.

version_notice
public final static String version_notice

The current version of MQSeries classes for Java.

securityExit*
public static MQSecurityExit securityExit

A security exit allows you to customize the security flows that occur when an
attempt is made to connect to a queue manager.

To provide your own security exit, define a class that implements the
MQSecurityExit interface, and assign securityExit to an instance of that class.
Otherwise, you can leave securityExit set to null, in which case no security exit
will be called.

See also “MQSecurityExit” on page 134.

sendExit*
public static MQSendExit sendExit

A send exit allows you to examine and possibly alter the data sent to a queue
manager. It is normally used in conjunction with a corresponding receive exit
at the queue manager.

To provide your own send exit, define a class that implements the MQSendExit
interface, and assign sendExit to an instance of that class. Otherwise, you can
leave sendExit set to null, in which case no send exit will be called.

See also “MQSendExit” on page 136.

 Chapter 9. The MQSeries classes for Java classes and interfaces 77

 MQEnvironment

receiveExit*
public static MQReceiveExit receiveExit

A receive exit allows you to examine and possibly alter data received from a
queue manager. It is normally used in conjunction with a corresponding send
exit at the queue manager.

To provide your own receive exit, define a class that implements the
MQReceiveExit interface, and assign receiveExit to an instance of that class.
Otherwise, you can leave receiveExit set to null, in which case no receive exit
will be called.

See also “MQReceiveExit” on page 132.

hostname*
public static String hostname

The TCP/IP hostname of the machine on which the MQSeries server resides.
If the hostname is not set, and no overriding properties are set, bindings mode
is used to connect to the local queue manager.

port*
public static int port

The port to connect to. This is the port on which the MQSeries server is
listening for incoming connection requests. The default value is 1414.

channel*
public static String channel

The name of the channel to connect to on the target queue manager. You
must set this member variable, or the corresponding property, before
constructing an MQQueueManager instance for use in client mode.

userID*
public static String userID

Equivalent to the MQSeries environment variable MQ_USER_ID.

If a security exit is not defined for this client, the value of userID is transmitted
to the server and will be available to the server security exit when it is invoked.
The value may be used to verify the identity of the MQSeries client.

The default value is "".

password*
public static String password

Equivalent to the MQSeries environment variable MQ_PASSWORD.

If a security exit is not defined for this client, the value of password is
transmitted to the server and is available to the server security exit when it is
invoked. The value may be used to verify the identity of the MQSeries client.

The default value is "".

properties
public static java.util.Hashtable properties

A set of key/value pairs defining the MQSeries environment.

This hash table allows you to set environment properties as key/value pairs
rather than as individual variables.

78 MQSeries Using Java

 MQEnvironment

The properties can also be passed as a hash table in a parameter on the
MQQueueManager constructor. Properties passed on the constructor take
precedence over values set with this properties variable, but they are otherwise
interchangeable. The order of precedence of finding properties is:

1. properties parameter on MQQueueManager constructor
 2. MQEnvironment.properties

3. Other MQEnvironment variables
4. Constant default values

The possible Key/value pairs are shown in the following table:

CCSID*
public static int CCSID

The CCSID used by the client.

Changing this value affects the way that the queue manager you connect to
translates information in the MQSeries headers. All data in MQSeries headers
is drawn from the invariant part of the ASCII codeset, except for the data in the
applicationIdData and the putApplicationName fields of the MQMessage class.
(See “MQMessage” on page 90.)

If you avoid using characters from the variant part of the ASCII codeset for
these two fields, you are then safe to change the CCSID from 819 to any other
ASCII codeset.

If you change the client's CCSID to be the same as that of the queue manager
to which you are connecting, you gain a performance benefit at the queue
manager because it does not attempt to translate the message headers.

The default value is 819.

Key Value

MQC.CCSID_PROPERTY Integer (Overrides MQEnvironment.CCSID.)

MQC.CHANNEL_PROPERTY String (Overrides MQEnvironment.channel.)

MQC.CONNECT_OPTIONS_PROPERTY Integer, defaults to MQC.MQCNO_NONE.

MQC.HOST_NAME_PROPERTY String (Overrides MQEnvironment.hostname.)

MQC.ORB_PROPERTY org.omg.CORBA.ORB (optional)

MQC.PASSWORD_PROPERTY String (Overrides MQEnvironment.password.)

MQC.PORT_PROPERTY Integer (Overrides MQEnvironment.port.)

MQC.RECEIVE_EXIT_PROPERTY MQReceiveExit (Overrides
MQEnvironment.receiveExit.)

MQC.SECURITY_EXIT_PROPERTY MQSecurityExit (Overrides
MQEnvironment.securityExit.)

MQC.SEND_EXIT_PROPERTY MQSendExit (Overrides
MQEnvironment.sendExit.)

MQC.TRANSPORT_PROPERTY MQC.TRANSPORT_MQSERIES_BINDINGS
 or
MQC.TRANSPORT_MQSERIES_CLIENT
 or
MQC.TRANSPORT_VISIBROKER
 or
MQC.TRANSPORT_MQSERIES (The default,
which selects bindings or client based on the
value of "hostname".)

MQC.USER_ID_PROPERTY String (Overrides MQEnvironment.userID.)

 Chapter 9. The MQSeries classes for Java classes and interfaces 79

 MQEnvironment

 Constructors
MQEnvironment

public MQEnvironment()

 Methods
disableTracing

public static void disableTracing()

Turns off the MQSeries client for Java trace facility.

enableTracing
public static void enableTracing(int level)

Turns on the MQSeries client for Java trace facility.

Parameters

level
The level of tracing required, from 1 to 5 (5 being the most detailed)

enableTracing
public static void enableTracing(int level,

 OutputStream stream)

Turns on the MQSeries client for Java trace facility.

Parameters:

level
The level of tracing required, from 1 to 5 (5 being the most detailed)

stream
The stream to which the trace is written

80 MQSeries Using Java

 MQException

 MQException

java.lang.Object

 │

 └─ java.lang.Throwable

 │

 └─ java.lang.Exception

 │

 └─ com.ibm.mq.MQException

public class MQException
extends Exception

An MQException is thrown whenever an MQSeries error occurs. You can change
the output stream for the exceptions that are logged by setting the value of
MQException.log. The default value is System.err. This class contains definitions
of completion code and error code constants. Constants beginning MQCC_ are
MQSeries completion codes, and constants beginning MQRC_ are MQSeries
reason codes. The MQSeries Application Programming Reference contains a full
description of these errors and their probable causes.

 Variables
log

public static java.io.outputStreamWriter log

Stream to which exceptions are logged. (The default is System.err.) If you set
this to null no logging occurs.

completionCode
public int completionCode

 MQSeries completion code giving rise to the error. The possible values are:

 � MQException.MQCC_WARNING
 � MQException.MQCC_FAILED

reasonCode
public int reasonCode

MQSeries reason code describing the error. For a full explanation of the
reason codes refer to the MQSeries Application Programming Reference.

exceptionSource
public Object exceptionSource

The object instance that threw the exception. You can use this as part of your
diagnostics when determining the cause of an error.

 Constructors
MQException

public MQException(int completionCode,

 int reasonCode,

 Object source)

Construct a new MQException object.

 Chapter 9. The MQSeries classes for Java classes and interfaces 81

 MQException

Parameters

completionCode
The MQSeries completion code

reasonCode
The MQSeries reason code

source
The object in which the error occurred

82 MQSeries Using Java

 MQGetMessageOptions

 MQGetMessageOptions

java.lang.Object

 │

 └─ com.ibm.mq.MQGetMessageOptions

public class MQGetMessageOptions
extends Object

This class contains options that control the behavior of MQQueue.get().

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with a *. See
Chapter 8, “Environment-dependent behavior” on page 61 for details.

 Variables
options

public int options

Options that control the action of MQQueue.get. Any or none of the following
values can be specified. If more than one option is required the values can be
added together or combined using the bitwise OR operator.

MQC.MQGMO_NONE

MQC.MQGMO_WAIT
Wait for a message to arrive.

MQC.MQGMO_NO_WAIT
Return immediately if there is no suitable message.

MQC.MQGMO_SYNCPOINT
Get the message under syncpoint control; the message is marked as
being unavailable to other applications, but it is deleted from the queue
only when the unit of work is committed. The message is made available
again if the unit of work is backed out.

MQC.MQGMO_NO_SYNCPOINT
Get message without syncpoint control.

MQC.MQGMO_BROWSE_FIRST
Browse from start of queue.

MQC.MQGMO_BROWSE_NEXT
Browse from the current position in the queue.

MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR*
Browse message under browse cursor.

MQC.MQGMO_MSG_UNDER_CURSOR
Get message under browse cursor.

MQC.MQGMO_LOCK*
Lock the message that is browsed.

MQC.MQGMO_UNLOCK*
Unlock a previously locked message.

 Chapter 9. The MQSeries classes for Java classes and interfaces 83

 MQGetMessageOptions

MQC.MQGMO_ACCEPT_TRUNCATED_MSG
Allow truncation of message data.

MQC.MQGMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQGMO_CONVERT
Request the application data to be converted, to conform to the
characterSet and encoding attributes of the MQMessage, before the data
is copied into the message buffer. Because data conversion is also
applied as the data is retrieved from the message buffer, applications do
not usually set this option.

MQC.MQGMO_SYNCPOINT_IF_PERSISTENT*
Get message with syncpoint control if message is persistent.

MQC.MQGMO_MARK_SKIP_BACKOUT*
Allow a unit of work to be backed out without reinstating the message on
the queue.

Segmenting and grouping
MQSeries messages can be sent or received as a single entity, can be split
into several segments for sending and receiving, and can also be linked to
other messages in a group. Each piece of data that is sent is known as a
physical message which can be a complete logical message, or a segment of
a longer logical message. Each physical message usually has a different
MsgId. All the segments of a single logical message have the same groupId

value, and MsgSeqNumber value, but the Offset value is different for each
segment. The Offset field gives the offset of the data in the physical message
from the start of the logical message. The segments usually have different
MsgId values as they are individual physical messages. Logical messages
which form part of a group, have the same groupId value, but each message
in the group has a different MsgSeqNumber value. Messages in a group can
also be segmented.

The following options can be used for dealing with segmented or grouped
messages:

MQC.MQGMO_LOGICAL_ORDER*
Return messages in groups, and segments of logical messages, in logical
order

MQC.MQGMO_COMPLETE_MSG*
Retrieve only complete logical messages

MQC.MQGMO_ALL_MSGS_AVAILABLE*
Retrieve messages from a group only when all the messages in the group
are available

MQC.MQGMO_ALL_SEGMENTS_AVAILABLE*
Retrieve the segments of a logical message only when all the segments in
the group are available

waitInterval
public int waitInterval

The maximum time (in milliseconds) that an MQQueue.get call waits for a
suitable message to arrive (used in conjunction with MQC.MQGMO_WAIT). A
value of MQC.MQWI_UNLIMITED indicates that an unlimited wait is required.

84 MQSeries Using Java

 MQGetMessageOptions

resolvedQueueName
public String resolvedQueueName

This is an output field set by the queue manager to the local name of the
queue from which the message was retrieved. This will be different from the
name used to open the queue if an alias queue or model queue was opened.

matchOptions*
public int matchOptions

Selection criteria that determine which message is retrieved. The following
match options can be set:

MQC.MQMO_MATCH_MSG_ID
Message id to be matched

MQC.MQMO_MATCH_CORREL_ID
Correlation id to be matched

MQC.MQMO_MATCH_GROUP_ID
Group id to be matched

MQC.MQMO_MATCH_MSG_SEQ_NUMBER
Match message sequence number

MQC.MQMO_NONE
No matching required

groupStatus*
public char groupStatus

This is an output field which indicates whether the retrieved message is in a
group, and if it is, whether it is the last in the group. Possible values are:

MQC.MQGS_NOT_IN_GROUP
Message is not in a group.

MQC.MQGS_MSG_IN_GROUP
Message is in a group, but is not the last in the group.

MQC.MQGS_LAST_MSG_IN_GROUP
Message is the last in the group. This is also the value returned if the
group consists of only one message.

segmentStatus*
public char segmentStatus

This is an output field that indicates whether the retrieved message is a
segment of a logical message. If the message is a segment, the flag indicates
whether or not it is the last segment. Possible values are:

MQC.MQSS_NOT_A_SEGMENT
Message is not a segment.

MQC.MQSS_SEGMENT
Message is a segment, but is not the last segment of the logical message.

MQC.MQSS_LAST_SEGMENT
Message is the last segment of the logical message. This is also the
value returned if the logical message consists of only one segment.

 Chapter 9. The MQSeries classes for Java classes and interfaces 85

 MQGetMessageOptions

segmentation*
public char segmentation

This is an output field that indicates whether or not segmentation is allowed for
the retrieved message is a segment of a logical message. Possible values
are:

MQC.MQSEG_INHIBITED
Segmentation not allowed

MQC.MQSEG_ALLOWED
Segmentation allowed

 Constructors
MQGetMessageOptions

public MQGetMessageOptions()

Construct a new MQGetMessageOptions object with options set to
MQC.MQGMO_NO_WAIT, a wait interval of zero, and a blank resolved queue
name.

86 MQSeries Using Java

 MQManagedObject

 MQManagedObject

java.lang.Object

 │

 └─ com.ibm.mq.MQManagedObject

public class MQManagedObject
extends Object

MQManagedObject is a superclass for MQQueueManager, MQQueue and
MQProcess. It provides the ability to inquire and set attributes of these resources.

 Variables
alternateUserId

public String alternateUserId

The alternate user id specified (if any) when this resource was opened.
Setting this attribute has no effect.

name
public String name

The name of this resource (either the name supplied on the access method, or
the name allocated by the queue manager for a dynamic queue). Setting this
attribute has no effect.

openOptions
public int openOptions

The options specified when this resource was opened. Setting this attribute
has no effect.

isOpen
public boolean isOpen

Indicates whether this resource is currently open. This attribute is deprecated
and setting it has no effect.

connectionReference
public MQQueueManager connectionReference

The queue manager to which this resource belongs. Setting this attribute has
no effect.

closeOptions
public int closeOptions

Set this attribute to control the way the resource is closed. The default value is
MQC.MQCO_NONE, and this is the only permissible value for all resources
other than permanent dynamic queues, and temporary dynamic queues that
are being accessed by the objects that created them. For these queues, the
following additional values are permissible:

MQC.MQCO_DELETE
Delete the queue if there are no messages

MQC.MQCO_DELETE_PURGE
Delete the queue, purging any messages on it

 Chapter 9. The MQSeries classes for Java classes and interfaces 87

 MQManagedObject

 Constructors
MQManagedObject

 protected MQManagedObject()

Constructor method.

 Methods
getDescription

public String getDescription()

Throws MQException.

Return the description of this resource as held at the queue manager.

If this method is called after the resource has been closed, an MQException is
thrown.

inquire

public void inquire(int selectors[],

 int intAttrs[],

 byte charAttrs[])

throws MQException.

Returns an array of integers and a set of character strings containing the
attributes of an object (queue, process or queue manager).

The attributes to be queried are specified in the selectors array. Refer to the
MQSeries Application Programming Reference for details of the permissible
selectors and their corresponding integer values.

Note that many of the more common attributes can be queried using the
getXXX() methods defined in MQManagedObject, MQQueue,
MQQueueManager, and MQProcess.

Parameters

selectors
Integer array identifying the attributes with values to be inquired on.

intAttrs
The array in which the integer attribute values are returned. Integer
attribute values are returned in the same order as the integer attribute
selectors in the selectors array.

charAttrs
The buffer in which the character attributes are returned, concatenated.
Character attributes are returned in the same order as the character
attribute selectors in the selectors array. The length of each attribute
string is fixed for each attribute.

Throws MQException if the inquire fails.

isOpen
public boolean isOpen()

Returns the value of the isOpen variable.

88 MQSeries Using Java

 MQManagedObject

set

public synchronized void set(int selectors[],

 int intAttrs[],

 byte charAttrs[])

throws MQException.

Set the attributes defined in the selector's vector.

The attributes to be set are specified in the selectors array. Refer to the
MQSeries Application Programming Reference for details of the permissible
selectors and their corresponding integer values.

Note that some queue attributes can be set using the setXXX() methods
defined in MQQueue.

Parameters

selectors
Integer array identifying the attributes with values to be set.

intAttrs
The array of integer attribute values to be set. These values must be in
the same order as the integer attribute selectors in the selectors array.

charAttrs
The buffer in which the character attributes to be set are concatenated.
These values must be in the same order as the character attribute
selectors in the selectors array. The length of each character attribute is
fixed.

Throws MQException if the set fails.

close

public synchronized void close()

throws MQException.

Close the object. No further operations against this resource are permitted
after this method has been called. The behavior of the close method may be
altered by setting the closeOptions attribute.

Throws MQException if the MQSeries call fails.

 Chapter 9. The MQSeries classes for Java classes and interfaces 89

 MQMessage

 MQMessage

java.lang.Object

 │

 └─ com.ibm.mq.MQMessage

public class MQMessage
implements DataInput , DataOutput

MQMessage represents both the message descriptor and the data for an MQSeries
message. There is group of readXXX methods for reading data from a message,
and a group of writeXXX data for writing data into a message. The format of
numbers and strings used by these read and write methods can be controlled by
the encoding and characterSet member variables. The remaining member
variables contain control information that accompanies the application message
data when a message travels between sending and receiving applications. The
application can set values into the member variable before putting a message to a
queue and can read values after retrieving a message from a queue.

 Variables
report

public int report

A report is a message about another message. This member variable enables
the application sending the original message to specify which report messages
are required, whether the application message data is to be included in them,
and also how the message and correlation identifiers in the report or reply are
to be set. Any, all or none of the following report types can be requested:

 � Exception
 � Expiration
� Confirm on arrival
� Confirm on delivery

For each type, only one of the three corresponding values below should be
specified, depending on whether the application message data is to be
included in the report message.

Note: Values marked with ** in the following list are not supported by MVS
queue managers and should not be used if your application is likely to access
an MVS queue manager, regardless of the platform on which the application is
running.

The valid values are:

 � MQC.MQRO_EXCEPTION
 � MQC.MQRO_EXCEPTION_WITH_DATA
 � MQC.MQRO_EXCEPTION_WITH_FULL_DATA**
 � MQC.MQRO_EXPIRATION
 � MQC.MQRO_EXPIRATION_WITH_DATA
 � MQC.MQRO_EXPIRATION_WITH_FULL_DATA**
 � MQC.MQRO_COA
 � MQC.MQRO_COA_WITH_DATA
 � MQC.MQRO_COA_WITH_FULL_DATA**

90 MQSeries Using Java

 MQMessage

 � MQC.MQRO_COD
 � MQC.MQRO_COD_WITH_DATA
 � MQC.MQRO_COD_WITH_FULL_DATA**

You can specify one of the following to control how the message Id is
generated for the report or reply message:

 � MQC.MQRO_NEW_MSG_ID
 � MQC.MQRO_PASS_MSG_ID

You can specify one of the following to control how the correlation Id of the
report or reply message is to be set:

 � MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID
 � MQC.MQRO_PASS_CORREL_ID

You can specify one of the following to control the disposition of the original
message when it cannot be delivered to the destination queue:

 � MQC.MQRO_DEAD_LETTER_Q
 � MQC.MQRO_DISCARD_MSG **

If no report options are specified, the default is:

MQC.MQRO_NEW_MSG_ID |

MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID |

MQC.MQRO_DEAD_LETTER_Q

You can specify one or both of the following to request that the receiving
application send a positive action or negative action report message.

 � MQRO_PAN
 � MQRO_NAN

messageType
public int messageType

Indicates the type of the message. The following values are currently defined
by the system:

 � MQC.MQMT_DATAGRAM
 � MQC.MQMT_REQUEST
 � MQC.MQMT_REPLY
 � MQC.MQMT_REPORT

Application-defined values can also be used. These should be in the range
MQC.MQMT_APPL_FIRST to MQC.MQMT_APPL_LAST.

The default value of this field is MQC.MQMT_DATAGRAM.

expiry
public int expiry

An expiry time expressed in tenths of a second, set by the application that puts
the message. After a message's expiry time has elapsed, it is eligible to be
discarded by the queue manager. If the message specified one of the
MQC.MQRO_EXPIRATION flags, a report is generated when the message is
discarded.

The default value is MQC.MQEI_UNLIMITED, meaning that the message never
expires.

 Chapter 9. The MQSeries classes for Java classes and interfaces 91

 MQMessage

feedback
public int feedback

This is used with a message of type MQC.MQMT_REPORT to indicate the
nature of the report. The following feedback codes are defined by the system:

 � MQC.MQFB_EXPIRATION
 � MQC.MQFB_COA
 � MQC.MQFB_COD
 � MQC.MQFB_QUIT
 � MQC.MQFB_PAN
 � MQC.MQFB_NAN
 � MQC.MQFB_DATA_LENGTH_ZERO
 � MQC.MQFB_DATA_LENGTH_NEGATIVE
 � MQC.MQFB_DATA_LENGTH_TOO_BIG
 � MQC.MQFB_BUFFER_OVERFLOW
 � MQC.MQFB_LENGTH_OFF_BY_ONE
 � MQC.MQFB_IIH_ERROR

Application-defined feedback values in the range MQC.MQFB_APPL_FIRST to
MQC.MQFB_APPL_LAST can also be used.

The default value of this field is MQC.MQFB_NONE, indicating that no
feedback is provided. xreftext="encoding".

encoding
public int encoding

This member variable specifies the representation used for numeric values in
the application message data; this applies to binary, packed decimal, and
floating point data. The behavior of the read and write methods for these
numeric formats is altered accordingly.

The following encodings are defined for binary integers:

MQC.MQENC_INTEGER_NORMAL
Big-endian integers, as in Java

MQC.MQENC_INTEGER_REVERSED
Little-endian integers, as used by PCs

The following encodings are defined for packed-decimal integers:

MQC.MQENC_DECIMAL_NORMAL
Big-endian packed-decimal, as used by System/390

MQC.MQENC_DECIMAL_REVERSED
Little-endian packed-decimal

The following encodings are defined for floating-point numbers:

MQC.MQENC_FLOAT_IEEE_NORMAL
Big-endian IEEE floats, as in Java

MQC.MQENC_FLOAT_IEEE_REVERSED
Little-endian IEEE floats, as used by PCs

MQC.MQENC_FLOAT_S390
System/390 format floating points

A value for the encoding field should be constructed by adding together one
value from each of these three sections (or using the bitwise OR operator).
The default value is:

92 MQSeries Using Java

 MQMessage

MQC.MQENC_INTEGER_NORMAL |

MQC.MQENC_DECIMAL_NORMAL |

MQC.MQENC_FLOAT_IEEE_NORMAL

For convenience, this value is also represented by MQC.MQENC_NATIVE.
This setting causes writeInt() to write a big-endian integer, and readInt() to read
a big-endian integer. If the flag MQC.MQENC_INTEGER_REVERSED flag
had been set instead, writeInt() would write a little-endian integer, and readInt()
would read a little-endian integer.

Note that a loss in precision can occur when converting from IEEE format
floating points to System/390 format floating points.

characterSet
public int characterSet

This specifies the coded character set identifier of character data in the
application message data. The behavior of the readString, readLine and
writeString methods is altered accordingly.

The default value for this field is MQC.MQCCSI_Q_MGR, which specifies that
character data in the application message data is in the queue manager's
character set. The additional character set values shown in Table 16 are
supported.

Table 16 (Page 1 of 2). Character set identifiers

characterSet Description

819 iso-8859-1 / latin1 / ibm819
912 iso-8859-2 / latin2 / ibm912
913 iso-8859-3 / latin3 / ibm913
914 iso-8859-4 / latin4 / ibm914
915 iso-8859-5 / cyrillic / ibm915
1089 iso-8859-6 / arabic / ibm1089
813 iso-8859-7 / greek / ibm813
916 iso-8859-8 / hebrew / ibm916
920 iso-8859-9 / latin5 / ibm920
37 ibm037
273 ibm273
277 ibm277
278 ibm278
280 ibm280
284 ibm284
285 ibm285
297 ibm297
420 ibm420
424 ibm424
437 ibm437 / PC Original
500 ibm500
737 ibm737 / PC Greek
775 ibm775 / PC Baltic
838 ibm838
850 ibm850 / PC Latin 1
852 ibm852 / PC Latin 2
855 ibm855 / PC Cyrillic
856 ibm856
857 ibm857 / PC Turkish
860 ibm860 / PC Portuguese
861 ibm861 / PC Icelandic

 Chapter 9. The MQSeries classes for Java classes and interfaces 93

 MQMessage

Table 16 (Page 2 of 2). Character set identifiers

characterSet Description

862 ibm862 / PC Hebrew
863 ibm863 / PC Canadian French
864 ibm864 / PC Arabic
865 ibm865 / PC Nordic
866 ibm866 / PC Russian
868 ibm868
869 ibm869 / PC Modern Greek
870 ibm870
871 ibm871
874 ibm874
875 ibm875
918 ibm918
921 ibm921
922 ibm922
930 ibm930
933 ibm933
935 ibm935
937 ibm937
939 ibm939
942 ibm942
948 ibm948
949 ibm949
950 ibm950 / Big 5 Traditional Chinese
964 ibm964 / CNS 11643 Traditional Chinese
970 ibm970
1006 ibm1006
1025 ibm1025
1026 ibm1026
1097 ibm1097
1098 ibm1098
1112 ibm1112
1122 ibm1122
1123 ibm1123
1124 ibm1124
1381 ibm1381
1383 ibm1383
2022 JIS
932 PC Japanese
954 EUCJIS
1250 Windows Latin 2
1251 Windows Cyrillic
1252 Windows Latin 1
1253 Windows Greek
1254 Windows Turkish
1255 Windows Hebrew
1256 Windows Arabic
1257 Windows Baltic
1258 Windows Vietnamese
33722 ibm33722
5601 ksc-5601 Korean
1200 Unicode
1208 UTF-8

94 MQSeries Using Java

 MQMessage

format
public String format

A format name used by the sender of the message to indicate to the receiver
the nature of the data in the message. You can use your own format names,
but names beginning with the letters "MQ" have meanings that are defined by
the queue manager. The queue manager built-in formats are:

MQC.MQFMT_NONE
No format name

MQC.MQFMT_ADMIN
Command server request/reply message

MQC.MQFMT_COMMAND_1
Type 1 command reply message

MQC.MQFMT_COMMAND_2
Type 2 command reply message

MQC.MQFMT_DEAD_LETTER_HEADER
Dead letter header

MQC.MQFMT_EVENT
Event message

MQC.MQFMT_PCF
User-defined message in programmable command format

MQC.MQFMT_STRING
Message consisting entirely of characters

MQC.MQFMT_TRIGGER
Trigger message

MQC.MQFMT_XMIT_Q_HEADER
Transmission queue header

The default value is MQC.MQFMT_NONE.

priority
public int priority

The message priority. The special value MQC.MQPRI_PRIORITY_AS_Q_DEF
can also be set in outbound messages, in which case the priority for the
message is taken from the default priority attribute of the destination queue.

The default value is MQC.MQPRI_PRIORITY_AS_Q_DEF.

persistence
public int persistence

Message persistence. The following values are defined:

 � MQC.MQPER_PERSISTENT
 � MQC.MQPER_NOT_PERSISTENT
 � MQC.MQPER_PERSISTENCE_AS_Q_DEF

The default value is MQC.MQPER_PERSISTENCE_AS_Q_DEF, which
indicates that the persistence for the message should be taken from the default
persistence attribute of the destination queue.

 Chapter 9. The MQSeries classes for Java classes and interfaces 95

 MQMessage

messageId
public byte messageId[]

For an MQQueue.get() call, this field specifies the message identifier of the
message to be retrieved. Normally the queue manager returns the first
message with a message identifier and correlation identifier match those
specified. The special value MQC.MQMI_NONE allows any message identifier
to match.

For an MQQueue.put() call, this specifies the message identifier to use. If
MQC.MQMI_NONE is specified,the queue manager generates a unique
message identifier when the message is put. The value of this member
variable is updated after the put to indicate the message identifier that was
used.

The default value is MQC.MQMI_NONE.

correlationId
public byte correlationId[]

For an MQQueue.get() call, this field specifies the correlation identifier of the
message to be retrieved. Normally the queue manager returns the first
message with a message identifier and correlation identifier that match those
specified. The special value MQC.MQCI_NONE allows any correlation
identifier to match.

For an MQQueue.put()() call, this specifies the correlation identifier to use.

The default value is MQC.MQCI_NONE.

backoutCount
public int backoutCount

A count of the number of times the message has previously been returned by
an MQQueue.get() call as part of a unit of work, and subsequently backed out.

The default value is zero.

replyToQueueName
public String replyToQueueName

The name of the message queue to which the application that issued the get
request for the message should send MQC.MQMT_REPLY and
MQC.MQMT_REPORT messages.

The default value is "".

replyToQueueManagerName
public String replyToQueueManagerName

The name of the queue manager to which reply or report messages should be
sent.

The default value is "".

If the value is "" on an MQQueue.put() call, the QueueManager fills in the
value.

userId
public String userId

Part of the identity context of the message; it identifies the user that originated
this message.

The default value is "".

96 MQSeries Using Java

 MQMessage

accountingToken
public byte accountingToken[]

Part of the identity context of the message; it allows an application to cause
work done as a result of the message to be appropriately charged.

The default value is "MQC.MQACT_NONE".

applicationIdData
public String applicationIdData

Part of the identity context of the message; it is information that is defined by
the application suite, and can be used to provide additional information about
the message or its originator.

The default value is "".

putApplicationType
public int putApplicationType

The type of application that put the message. This may be a system or user
defined value. The following values are defined by the system:

 � MQC.MQAT_AIX
 � MQC.MQAT_CICS
 � MQC.MQAT_DOS
 � MQC.MQAT_IMS
 � MQC.MQAT_MVS
 � MQC.MQAT_OS2
 � MQC.MQAT_OS400
 � MQC.MQAT_QMGR
 � MQC.MQAT_UNIX
 � MQC.MQAT_WINDOWS
 � MQC.MQAT_JAVA

The default value is the special value MQC.MQAT_NO_CONTEXT, which
indicates that no context information is present in the message.

putApplicationName
public String putApplicationName

The name of the application that put the message. The default value is "".

putDateTime
public GregorianCalendar putDateTime

The time and date that the message was put.

applicationOriginData
public String applicationOriginData

Information defined by the application that can be used to provide additional
information about the origin of the message.

The default value is "".

groupId
public byte[] groupId

A byte string that identifies the message group to which the physical message
belongs.

The default value is "MQC.MQGI_NONE".

 Chapter 9. The MQSeries classes for Java classes and interfaces 97

 MQMessage

messageSequenceNumber
public int messageSequenceNumber

The sequence number of a logical message within a group.

offset
public int offset

In a segmented message, the offset of data in a physical message from the
start of a logical message.

messageFlags
public int messageFlags

Flags controlling the segmentation and status of a message.

originalLength
public int originalLength

The original length of a segmented message.

 Constructors
MQMessage

public MQMessage()

Create a new message with default message descriptor information and an
empty message buffer.

 Methods
getTotalMessageLength

public int getTotalMessageLength()

The total number of bytes in the message as stored on the message queue
from which this message was retrieved (or attempted to be retrieved). When an
MQQueue.get() method fails with a message-truncated error code, this method
tells you the total size of the message on the queue.

See also "MQQueue.get" on page 116.

getMessageLength

public int getMessageLength

Throws IOException.

The number of bytes of message data in this MQMessage object.

getDataLength

public int getDataLength()

Throws MQException.

The number of bytes of message data remaining to be read.

seek

public void seek(int pos)

Throws IOException.

Move the cursor to the absolute position in the message buffer given by pos.
Subsequent reads and writes will act at this position in the buffer.

Throws EOFException if pos is outside the message data length.

98 MQSeries Using Java

 MQMessage

setDataOffset

public void setDataOffset(int offset)

Throws IOException.

Move the cursor to the absolute position in the message buffer. This method
is a synonym for seek(), and is provided for cross-language compatibility with
the other MQSeries APIs.

getDataOffset

public int getDataOffset()

Throws IOException.

Return the current cursor position within the message data (the point at which
read and write operations take effect).

clearMessage

public void clearMessage()

Throws IOException.

Discard any data in the message buffer and set the data offset back to zero.

getVersion
public int getVersion()

Returns the version of the structure in use.

resizeBuffer

public void resizeBuffer(int size)

Throws IOException.

A hint to the MQMessage object about the size of buffer that may be required
for subsequent get operations. If the message currently contains message
data, and the new size is less than the current size, the message data is
truncated.

readBoolean

public boolean readBoolean()

Throws IOException.

Read a (signed) byte from the current position in the message buffer.

readChar

public char readChar()

Throws IOException, EOFException.

Read a Unicode character from the current position in the message buffer.

readDouble

public double readDouble()

Throws IOException, EOFException.

Read a double from the current position in the message buffer. The behavior
of this method is determined by the value of the encoding member variable.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard doubles in
big-endian and little-endian formats respectively.

 Chapter 9. The MQSeries classes for Java classes and interfaces 99

 MQMessage

A value of MQC.MQENC_FLOAT_S390 reads a System/390 format floating
point number.

readFloat

public float readFloat()

Throws IOException, EOFException.

Read a float from the current position in the message buffer. The behavior of
this method is determined by the value of the encoding member variable.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard floats in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 reads a System/390 format floating
point number.

readFully

public void readFully(byte b[])

Throws Exception, EOFException.

Fill the byte array b with data from the message buffer.

readFully

public void readFully(byte b[],

 int off,

 int len)

Throws IOException, EOFException.

Fill len elements of the byte array b with data from the message buffer, starting
at offset off.

readInt

public int readInt()

Throws IOException, EOFException.

Read an integer from the current position in the message buffer. The behavior
of this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian integer, a
value of MQC.MQENC_INTEGER_REVERSED reads a little-endian integer.

readInt4

public int readInt4()

Throws IOException, EOFException.

Synonym for readInt(), provided for cross-language MQSeries API
compatibility.

readLine

public String readLine()

Throws IOException.

Converts from the codeset identified in the characterSet member variable to
Unicode, and then reads in a line that has been terminated by \n, \r, \r\n, or
EOF.

100 MQSeries Using Java

 MQMessage

readLong

public long readLong()

Throws IOException, EOFException.

Read a long from the current position in the message buffer. The behavior of
this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian long, a
value of MQC.MQENC_INTEGER_REVERSED reads a little-endian long.

readInt8

public long readInt8()

Throws IOException, EOFException.

Synonym for readLong(), provided for cross-language MQSeries API
compatibility.

readObject

public Object readObject()

Throws OptionalDataException, ClassNotFoundException, IOException.

Read an object from the message buffer. The class of the object, the
signature of the class, and the value of the non-transient and non-static fields
of the class are all read.

readShort

public short readShort()

Throws IOException, EOFException.

readInt2

public short readInt2()

Throws IOException, EOFException.

Synonym for readShort(), provided for cross-language MQSeries API
compatibility.

readUTF

public String readUTF()

Throws IOException.

Read a UFT string, prefixed by a 2-byte length field, from the current position
in the message buffer.

readUnsignedByte

public int readUnsignedByte()

Throws IOException, EOFException.

Read an unsigned byte from the current position in the message buffer.

readUnsignedShort

public int readUnsignedShort()

Throws IOException, EOFException.

Read an unsigned short from the current position in the message buffer. The
behavior of this method is determined by the value of the encoding member
variable.

 Chapter 9. The MQSeries classes for Java classes and interfaces 101

 MQMessage

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian unsigned
short, a value of MQC.MQENC_INTEGER_REVERSED reads a little-endian
unsigned short.

readUInt2

public int readUInt2()

Throws IOException, EOFException.

Synonym for readUnsignedShort(), provided for cross-language MQSeries API
compatibility.

readString

public String readString(int length)

Throws IOException, EOFException.

Read a string in the codeset identified by the characterSet member variable,
and convert it into Unicode.

Parameters:

length The number of characters to read (which may differ from the
number of bytes according to the codeset, because some codesets
use more than one byte per character).

readDecimal2

public short readDecimal2()

Throws IOException, EOFException.

Read a 2-byte packed decimal number (-999..999). The behavior of this
method is controlled by the value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal
number, and a value of MQC.MQENC_DECIMAL_REVERSED reads a
little-endian packed decimal number.

readDecimal4

public int readDecimal4()

Throws IOException, EOFException.

Read a 4-byte packed decimal number (-9999999..9999999). The behavior of
this method is controlled by the value of the encoding member variable. A
value of MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed
decimal number, and a value of MQC.MQENC_DECIMAL_REVERSED reads a
little-endian packed decimal number.

readDecimal8

public long readDecimal8()

Throws IOException, EOFException.

Read an 8-byte packed decimal number (-999999999999999 to
999999999999999). The behavior of this method is controlled by the encoding
member variable. A value of MQC.MQENC_DECIMAL_NORMAL reads a
big-endian packed decimal number, and
MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

102 MQSeries Using Java

 MQMessage

setVersion

public void setVersion(int version)

Specifies which version of the structure to use. Possible values are:

 � MQC.MQMD_VERSION_1
 � MQC.MQMD_VERSION_2

You should not normally need to call this method unless you wish to force the
client to use a version 1 structure when connected to a queue manager that is
capable of handling version 2 structures. In all other situations, the client
determines the correct version of the structure to use by querying the queue
manager's capabilities.

skipBytes

public int skipBytes(int n)

Throws IOException, EOFException.

Move forward n bytes in the message buffer.

This method blocks until one of the following occurs:

� All the bytes are skipped
� The end of message buffer is detected
� An exception is thrown

Returns the number of bytes skipped, which is always n.

write

public void write(int b)

Throws IOException.

Write a byte into the message buffer at the current position.

write

public void write(byte b[])

Throws IOException.

Write an array of bytes into the message buffer at the current position.

write

public void write(byte b[],

 int off,

 int len)

Throws IOException.

Write a series of bytes into the message buffer at the current position. len
bytes will be written, taken from offset off in the array b.

writeBoolean

public void writeBoolean(boolean v)

Throws IOException.

Write a boolean into the message buffer at the current position.

 Chapter 9. The MQSeries classes for Java classes and interfaces 103

 MQMessage

writeByte

public void writeByte(int v)

Throws IOException.

Write a byte into the message buffer at the current position.

writeBytes

public void writeBytes(String s)

Throws IOException.

Writes out the string to the message buffer as a sequence of bytes. Each
character in the string is written out in sequence by discarding its high eight
bits.

writeChar

public void writeChar(int v)

Throws IOException.

Write a Unicode character into the message buffer at the current position.

writeChars

public void writeChars(String s)

Throws IOException.

Write a string as a sequence of Unicode characters into the message buffer at
the current position.

writeDouble

public void writeDouble(double v)

Throws IOException

Write a double into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in
Big-endian and Little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format floating
point number. Note that the range of IEEE doubles is greater than the range
of S/390 double precision floating point numbers, and so very large numbers
cannot be converted.

writeFloat

public void writeFloat(float v)

Throws IOException.

Write a float into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 will write a System/390 format floating
point number.

104 MQSeries Using Java

 MQMessage

writeInt

public void writeInt(int v)

Throws IOException.

Write an integer into the message buffer at the current position. The behavior
of this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian integer, a
value of MQC.MQENC_INTEGER_REVERSED writes a little-endian integer.

writeInt4

public void writeInt4(int v)

Throws IOException.

Synonym for writeInt(), provided for cross-language MQSeries API
compatibility.

writeLong

public void writeLong(long v)

Throws IOException.

Write a long into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian long, a
value of MQC.MQENC_INTEGER_REVERSED writes a little-endian long.

writeInt8

public void writeInt8(long v)

Throws IOException.

Synonym for writeLong(), provided for cross-language MQSeries API
compatibility.

writeObject

public void writeObject(Object obj)

Throws IOException.

Write the specified object to the message buffer. The class of the object, the
signature of the class, and the values of the non-transient and non-static fields
of the class and all its supertypes are all written.

writeShort

public void writeShort(int v)

Throws IOException.

Write a short into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian short, a
value of MQC.MQENC_INTEGER_REVERSED writes a little-endian short.

 Chapter 9. The MQSeries classes for Java classes and interfaces 105

 MQMessage

writeInt2

public void writeInt2(int v)

Throws IOException.

Synonym for writeShort(), provided for cross-language MQSeries API
compatibility.

writeDecimal2

public void writeDecimal2(short v)

Throws IOException.

Write a 2-byte packed decimal format number into the message buffer at the
current position. The behavior of this method is determined by the value of the
encoding member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed
decimal, a value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian
packed decimal.

Parameters

v can be in the range -999 to 999.

writeDecimal4

public void writeDecimal4(int v)

Throws IOException.

Write a 4-byte packed decimal format number into the message buffer at the
current position. The behavior of this method is determined by the value of the
encoding member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed
decimal, a value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian
packed decimal.

Parameters

v can be in the range -9999999 to 9999999.

writeDecimal8

public void writeDecimal8(long v)

Throws IOException.

Write an 8-byte packed decimal format number into the message buffer at the
current position. The behavior of this method is determined by the value of the
encoding member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed
decimal, a value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian
packed decimal.

Parameters:

v can be in the range -999999999999999 to 999999999999999.

106 MQSeries Using Java

 MQMessage

writeUTF

public void writeUTF(String str)

Throws IOException.

Write a UFT string, prefixed by a 2-byte length field, into the message buffer at
the current position.

writeString

public void writeString(String str)

Throws IOException.

Write a string into the message buffer at the current position, converting it to
the codeset identified by the characterSet member variable.

 Chapter 9. The MQSeries classes for Java classes and interfaces 107

 MQMessageTracker

 MQMessageTracker

java.lang.Object

 │

 └─ com.ibm.mq.MQMessageTracker

public abstract class MQMessageTracker
extends Object

Note: You can use this class only when connected to an MQSeries Version 5 (or
higher) queue manager.

This class is inherited by MQDistributionListItem (on page 75) where it is used to
tailor message parameters for a given destination in a distribution list.

 Variables
feedback

public int feedback

This is used with a message of type MQC.MQMT_REPORT to indicate the
nature of the report. The following feedback codes are defined by the system:

 � MQC.MQFB_EXPIRATION
 � MQC.MQFB_COA
 � MQC.MQFB_COD
 � MQC.MQFB_QUIT
 � MQC.MQFB_PAN
 � MQC.MQFB_NAN
 � MQC.MQFB_DATA_LENGTH_ZERO
 � MQC.MQFB_DATA_LENGTH_NEGATIVE
 � MQC.MQFB_DATA_LENGTH_TOO_BIG
 � MQC.MQFB_BUFFER_OVERFLOW
 � MQC.MQFB_LENGTH_OFF_BY_ONE
 � MQC.MQFB_IIH_ERROR

Application defined feedback values in the range MQC.MQFB_APPL_FIRST to
MQC.MQFB_APPL_LAST can also be used.

The default value of this field is MQC.MQFB_NONE, indicating that no
feedback is provided.

messageId
public byte messageId[]

This specifies the message identifier to use when the message is put. If
MQC.MQMI_NONE is specified, the queue manager generates a unique
message identifier when the message is put. The value of this member
variable is updated after the put to indicate the message identifier that was
used.

The default value is MQC.MQMI_NONE.

108 MQSeries Using Java

 MQMessageTracker

correlationId
public byte correlationId[]

This specifies the correlation identifier to use when the message is put.

The default value is MQC.MQCI_NONE.

accountingToken
public byte accountingToken[]

This is part of the identity context of the message. It allows an application to
cause work done as a result of the message to be appropriately charged.

The default value is "MQC.MQACT_NONE".

groupId
public byte[] groupId

A byte string that identifies the message group to which the physical message
belongs.

The default value is "MQC.MQGI_NONE".

 Chapter 9. The MQSeries classes for Java classes and interfaces 109

 MQProcess

 MQProcess

java.lang.Object

 │

 └─ com.ibm.mq.MQManagedObject

 │

 └─ com.ibm.mq.MQProcess

public class MQProcess
extends MQManagedObject . (on page 87.)

MQProcess provides inquire operations for MQSeries processes.

 Constructors
MQProcess

public MQProcess(MQQueueManager qMgr,

 String processName,

 int openOptions,

 String queueManagerName,

 String alternateUserId)

Throws MQException.

Access a process on the queue manager qMgr. See accessProcess in the
“MQQueueManager” on page 123 for details of the remaining parameters.

 Methods
getApplicationId

public String getApplicationId()

A character string that identifies the application to be started. This information
is for use by a trigger monitor application that processes messages on the
initiation queue; the information is sent to the initiation queue as part of the
trigger message.

Throws MQException if you call this method after you have closed the process.

getApplicationType
public int getApplicationType() throws MQException (see page 81)

This identifies the nature of the program to be started in response to the
receipt of a trigger message. The application type can take any value, but the
following values are recommended for standard types:

 � MQC.MQAT_AIX
 � MQC.MQAT_CICS
 � MQC.MQAT_DOS
 � MQC.MQAT_IMS
 � MQC.MQAT_MVS
 � MQC.MQAT_OS2
 � MQC.MQAT_OS400
 � MQC.MQAT_UNIX
 � MQC.MQAT_WINDOWS
 � MQC.MQAT_WINDOWS_NT

110 MQSeries Using Java

 MQProcess

� MQC.MWQAT_USER_FIRST (lowest value for user-defined application
type)

� MQC.MQAT_USER_LAST (highest value for user-defined application type)

getEnvironmentData

public String getEnvironmentData()

Throws MQException.

A string containing environment-related information pertaining to the application
to be started.

getUserData

public String getUserData()

Throws MQException.

A string containing user information relevant to the application to be started.

close

public synchronized void close()

Throws MQException.

Override of "MQManagedObject.close" on page 89.

 Chapter 9. The MQSeries classes for Java classes and interfaces 111

 MQPutMessageOptions

 MQPutMessageOptions

java.lang.Object

 │

 └─ com.ibm.mq.MQPutMessageOptions

public class MQPutMessageOptions
extends Object

This class contains options that control the behavior of MQQueue.put().

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with a *. See
“Version 5 extensions operating in other environments” on page 63 for details.

 Variables
options

public int options

Options that control the action of MQQueue.put. Any or none of the following
values can be specified. If more than one option is required the values can be
added together or combined using the bitwise OR operator.

MQC.MQPMO_SYNCPOINT
Put a message with syncpoint control. The message is not visible outside
the unit of work until the unit of work is committed. If the unit of work is
backed out, the message is deleted.

MQC.MQPMO_NO_SYNCPOINT
Put a message without syncpoint control.

MQC.MQPMO_NO_CONTEXT
No context is to be associated with the message.

MQC.MQPMO_DEFAULT_CONTEXT
Associate default context with the message.

MQC.MQPMO_SET_IDENTITY_CONTEXT
Set identity context from the application.

MQC.MQPMO_SET_ALL_CONTEXT
Set all context from the application.

MQC.MQPMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQPMO_NEW_MSG_ID*
Generate a new message id for each sent message.

MQC.MQPMO_NEW_CORREL_ID*
Generate a new correlation id for each sent message.

MQC.MQPMO_LOGICAL_ORDER*
Put logical messages and segments in message groups into their logical
order.

112 MQSeries Using Java

 MQPutMessageOptions

MQC.MQPMO_NONE
No options specified. Do not use in conjunction with other options.

MQC.MQPMO_PASS_IDENTITY_CONTEXT
Pass identity context from an input queue handle.

MQC.MQPMO_PASS_ALL_CONTEXT
Pass all context from an input queue handle.

contextReference
public MQQueue ContextReference

This is an input field which indicates the source of the context information.

If the options field includes MQC.MQPMO_PASS_IDENTITY_CONTEXT, or
MQC.MQPMO_PASS_ALL_CONTEXT, set this field to refer to the MQQueue
from which the context information should be taken.

The initial value of this field is null.

recordFields *
public int recordFields

Flags indicating which fields are to be customized on a per-queue basis when
putting a message to a distribution list. One or more of the following flags can
be specified:

MQC.MQPMRF_MSG_ID
Use the messageId attribute in the MQDistributionListItem.

MQC.MQPMRF_CORREL_ID
Use the correlationId attribute in the MQDistributionListItem.

MQC.MQPMRF_GROUP_ID
Use the groupId attribute in the MQDistributionListItem.

MQC.MQPMRF_FEEDBACK
Use the feedback attribute in the MQDistributionListItem.

MQC.MQPMRF_ACCOUNTING_TOKEN
Use the accountingToken attribute in the MQDistributionListItem.

The special value MQC.MQPMRF_NONE indicates that no fields are to be
customized.

resolvedQueueName
public String resolvedQueueName

This is an output field that is set by the queue manager to the name of the
queue on which the message is placed. This may be different from the name
used to open the queue if the opened queue was an alias or model queue.

resolvedQueueManagerName
public String resolvedQueueManagerName

This is an output field set by the queue manager to the name of the queue
manager that owns the queue specified by the remote queue name. This may
be different from the name of the queue manager from which the queue was
accessed if the queue is a remote queue.

 Chapter 9. The MQSeries classes for Java classes and interfaces 113

 MQPutMessageOptions

knownDestCount *
public int knownDestCount

This is an output field set by the queue manager to the number of messages
that the current call has sent successfully to queues that resolve to local
queues. This field is also set when opening a single queue that is not part of a
distribution list.

unknownDestCount *
public int unknownDestCount

This is an output field set by the queue manager to the number of messages
that the current call has sent successfully to queues that resolve to remote
queues. This field is also set when opening a single queue that is not part of a
distribution list.

invalidDestCount *
public int invalidDestCount

This is an output field set by the queue manager to the number of messages
that could not be sent to queues in a distribution list. The count includes
queues that failed to open as well as queues that were opened successfully,
but for which the put operation failed. This field is also set when opening a
single queue that is not part of a distribution list.

 Constructors
MQPutMessageOptions

public MQPutMessageOptions()

Construct a new MQPutMessageOptions object with no options set, and a
blank resolvedQueueName and resolvedQueueManagerName.

114 MQSeries Using Java

 MQQueue

 MQQueue

java.lang.Object

 │

 └─ com.ibm.mq.MQManagedObject

 │

 └─ com.ibm.mq.MQQueue

public class MQQueue
extends MQManagedObject . (See page 87.)

MQQueue provides inquire, set, put, and get operations for MQSeries queues. The
inquire and set capabilities are inherited from MQ.MQManagedObject.

See also "MQQueueManager.accessQueue" on page 126.

 Constructors
MQQueue:

public MQQueue(MQQueueManager qMgr, String queueName, int openOptions,

String queueManagerName, String dynamicQueueName,

String alternateUserId)

Throws MQException.

Access a queue on the queue manager qMgr.

See "MQQueueManager.accessQueue" on page 126 for details of the
remaining parameters.

 Methods
get

public synchronized void get(MQMessage message,

 MQGetMessageOptions getMessageOptions,

 int MaxMsgSize)

Throws MQException.

Retrieves a message from the queue, up to a maximum specified message
size.

This method takes an MQMessage object as a parameter. It uses some of the
fields in the object as input parameters - in particular the messageId and
correlationId, so it is important to ensure that these are set as required. (See
“Message” on page 212.)

If the get fails the MQMessage object is unchanged. If it succeeds the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

Note that all calls to MQSeries from a given MQQueueManager are
synchronous. Therefore, if you perform a get with wait, all other threads using
the same MQQueueManager are blocked from making further MQSeries calls

 Chapter 9. The MQSeries classes for Java classes and interfaces 115

 MQQueue

until the get completes. If you need multiple threads to access MQSeries
simultaneously, each thread must create its own MQQueueManager object.

Parameters

message
An input/output parameter containing the message descriptor information
and the returned message data.

getMessageOptions
Options controlling the action of the get. (See “MQGetMessageOptions”
on page 83.)

MaxMsgSize
The largest message this call will be able to receive. If the message on
the queue is larger than this size, one of two things can occur:

1. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the
options member variable of the MQGetMessageOptions object, the
message is filled with as much of the message data as will fit in the
specified buffer size, and an exception is thrown with completion code
MQException.MQCC_WARNING and reason code
MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is not set, the
message is left on the queue and an MQException is raised with
completion code MQException.MQCC_WARNING and reason code
MQException.MQRC_TRUNCATED_MSG_FAILED.

Throws MQException if the get fails.

get

public synchronized void get(MQMessage message,

 MQGetMessageOptions getMessageOptions)

Throws MQException.

Retrieves a message from the queue, regardless of the size of the message.
For large messages, the get method may have to issue two calls to MQSeries
on your behalf, one to establish the required buffer size and one to get the
message data itself.

This method takes an MQMessage object as a parameter. It uses some of the
fields in the object as input parameters - in particular the messageId and
correlationId, so it is important to ensure that these are set as required. (See
“Message” on page 212.)

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

Note that all calls to MQSeries from a given MQQueueManager are
synchronous. Therefore, if you perform a get with wait, all other threads using
the same MQQueueManager are blocked from making further MQSeries calls
until the get completes. If you need multiple threads to access MQSeries
simultaneously, each thread must create its own MQQueueManager object.

116 MQSeries Using Java

 MQQueue

Parameters

message
An input/output parameter containing the message descriptor information
and the returned message data.

getMessageOptions
Options controlling the action of the get. (See “MQGetMessageOptions”
on page 83 for details.)

Throws MQException if the get fails.

get

public synchronized void get(MQMessage message)

This is a simplified version of the get method previously described.

Parameters

MQmessage
An input/output parameter containing the message descriptor information
and the returned message data.

This method uses a default instance of MQGetMessageOptions to do the get.
The message option used is MQGMO_NOWAIT.

put

public synchronized void put(MQMessage message,

 MQPutMessageOptions putMessageOptions)

Throws MQException.

Places a message onto the queue.

This method takes an MQMessage object as a parameter. The message
descriptor properties of this object may be altered as a result of this method.
The values they have immediately after the completion of this method are the
values that were put onto the MQSeries queue.

Modifications to the MQMessage object after the put has completed do not
affect the actual message on the MQSeries queue.

Performing a put updates the messageId and correlationId. This must be
taken into consideration when making further calls to put/get using the same
MQMessage object. Also, calling put does not clear the message data, so:

msg.writeString("a");

q.put(msg,pmo);

msg.writeString("b");

q.put(msg,pmo);

puts two messages. The first contains "a" and the second "ab".

Parameters

message
Message Buffer containing the Message Descriptor data and message to
be sent.

putMessageOptions
Options controlling the action of the put. (See “MQGetMessageOptions”
on page 83.)

Throws MQException if the put fails.

 Chapter 9. The MQSeries classes for Java classes and interfaces 117

 MQQueue

put

public synchronized void put(MQMessage message)

This is a simplified version of the put method previously described.

Parameters

MQmessage
Message Buffer containing the Message Descriptor data and message to
be sent.

This method uses a default instance of MQPutMessageOptions to do the put.

Note: All the following methods throw MQException if you call the method after
you have closed the queue.

getCreationDateTime

public GregorianCalendar getCreationDateTime()

Throws MQException.

The date and time that this queue was created.

getQueueType
public int getQueueType()

Throws MQException.

Returns
The type of this queue with one of the following values:

 � MQC.MQQT_ALIAS
 � MQC.MQQT_LOCAL
 � MQC.MQQT_REMOTE
 � MQC.MQQT_CLUSTER

getCurrentDepth

public int getCurrentDepth()

Throws MQException.

Get the number of messages currently on the queue. This value is
incremented during a put call, and during backout of a get call. It is
decremented during a non-browse get and during backout of a put call.

getDefinitionType

public int getDefinitionType()

Throws MQException.

Indicates how the queue was defined.

Returns
One of the following:

 � MQC.MQQDT_PREDEFINED
 � MQC.MQQDT_PERMANENT_DYNAMIC
 � MQC.MQQDT_TEMPORARY_DYNAMIC

getMaximumDepth

public int getMaximumDepth()

Throws MQException.

118 MQSeries Using Java

 MQQueue

The maximum number of messages that can exist on the queue at any one
time. An attempt to put a message to a queue that already contains this many
messages fails with reason code MQException.MQRC_Q_FULL.

getMaximumMessageLength

public int getMaximumMessageLength()

Throws MQException.

This is the maximum length of the application data that can exist in each
message on this queue. An attempt to put a message larger than this value
fails with reason code MQException.MQRC_MSG_TOO_BIG_FOR_Q.

getOpenInputCount

public int getOpenInputCount()

Throws MQException.

The number of handles that are currently valid for removing messages from the
queue. This is the total number of such handles known to the local queue
manager, not just those created by the MQSeries classes for Java (using
accessQueue).

getOpenOutputCount

public int getOpenOutputCount()

Throws MQException.

The number of handles that are currently valid for adding messages to the
queue. This is the total number of such handles known to the local queue
manager, not just those created by the MQSeries classes for Java (using
accessQueue).

getShareability

public int getShareability()

Throws MQException.

Indicates whether the queue can be opened for input multiple times.

Returns
One of the following:

 � MQC.MQQA_SHAREABLE
 � MQC.MQQA_NOT_SHAREABLE

getInhibitPut

public int getInhibitPut()

Throws MQException.

Indicates whether or not put operations are allowed for this queue.

Returns
One of the following:

 � MQC.MQQA_PUT_INHIBITED
 � MQC.MQQA_PUT_ALLOWED

 Chapter 9. The MQSeries classes for Java classes and interfaces 119

 MQQueue

setInhibitPut

public void setInhibitPut(int inhibit)

Throws MQException.

Controls whether or not put operations are allowed for this queue. The
permissible values are:

 � MQC.MQQA_PUT_INHIBITED
 � MQC.MQQA_PUT_ALLOWED

getInhibitGet

public int getInhibitGet()

Throws MQException.

Indicates whether or not get operations are allowed for this queue.

Returns
The possible values are:

 � MQC.MQQA_GET_INHIBITED
 � MQC.MQQA_GET_ALLOWED

setInhibitGet

public void setInhibitGet(int inhibit)

Throws MQException.

Controls whether or not get operations are allowed for this queue. The
permissible values are:

 � MQC.MQQA_GET_INHIBITED
 � MQC.MQQA_GET_ALLOWED

getTriggerControl

public int getTriggerControl()

Throws MQException.

Indicates whether or not trigger messages are written to an initiation queue, in
order to cause an application to be started to service the queue.

Returns
The possible values are:

 � MQC.MQTC_OFF
 � MQC.MQTC_ON

setTriggerControl

public void setTriggerControl(int trigger)

Throws MQException.

Controls whether or not trigger messages are written to an initiation queue, in
order to cause an application to be started to service the queue. The
permissible values are:

 � MQC.MQTC_OFF
 � MQC.MQTC_ON

120 MQSeries Using Java

 MQQueue

getTriggerData

public String getTriggerData()

Throws MQException.

The free-format data that the queue manager inserts into the trigger message
when a message arriving on this queue causes a trigger message to be written
to the initiation queue.

setTriggerData

public void setTriggerData(String data)

Throws MQException.

Sets the free-format data that the queue manager inserts into the trigger
message when a message arriving on this queue causes a trigger message to
be written to the initiation queue. The maximum permissible length of the
string is given by MQC.MQ_TRIGGER_DATA_LENGTH.

getTriggerDepth

public int getTriggerDepth()

Throws MQException.

The number of messages that have to be on the queue before a trigger
message is written when trigger type is set to MQC.MQTT_DEPTH.

setTriggerDepth

public void setTriggerDepth(int depth)

Throws MQException.

Sets the number of messages that have to be on the queue before a trigger
message is written when trigger type is set to MQC.MQTT_DEPTH.

getTriggerMessagePriority

public int getTriggerMessagePriority()

Throws MQException.

This is the message priority below which messages do not contribute to the
generation of trigger messages (that is, the queue manager ignores these
messages when deciding whether a trigger should be generated). A value of
zero causes all messages to contribute to the generation of trigger messages.

setTriggerMessagePriority

public void setTriggerMessagePriority(int priority)

Throws MQException.

Sets the message priority below which messages do not contribute to the
generation of trigger messages (that is, the queue manager ignores these
messages when deciding whether a trigger should be generated). A value of
zero causes all messages to contribute to the generation of trigger messages.

 Chapter 9. The MQSeries classes for Java classes and interfaces 121

 MQQueue

getTriggerType

public int getTriggerType()

Throws MQException.

The conditions under which trigger messages are written as a result of
messages arriving on this queue.

Returns
The possible values are:

 � MQC.MQTT_NONE
 � MQC.MQTT_FIRST
 � MQC.MQTT_EVERY
 � MQC.MQTT_DEPTH

setTriggerType

public void setTriggerType(int type)

Throws MQException.

Sets the conditions under which trigger messages are written as a result of
messages arriving on this queue. The possible values are:

 � MQC.MQTT_NONE
 � MQC.MQTT_FIRST
 � MQC.MQTT_EVERY
 � MQC.MQTT_DEPTH

close

public synchronized void close()

Throws MQException.

Override of "MQManagedObject.close" on page 89.

122 MQSeries Using Java

 MQQueueManager

 MQQueueManager

java.lang.Object

 │

 └─ com.ibm.mq.MQManagedObject

 │

 └─ com.ibm.mq.MQQueueManager

public class MQQueueManager
extends MQManagedObject . (See page 87.)

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with a *. See
Chapter 8, “Environment-dependent behavior” on page 61 for details.

 Variables
isConnected

public boolean isConnected

True if the connection to the queue manager is still open.

 Constructors
MQQueueManager

public MQQueueManager(String queueManagerName)

Throws MQException.

Create a connection to the named queue manager.

Note: When using MQSeries classes for Java, the hostname, channel name
and port to use during the connection request are specified in the
MQEnvironment class. This must be done before calling this constructor.

The following example shows a connection to a queue manager "MYQM",
running on a machine with hostname fred.mq.com.

MQEnvironment.hostname = "fred.mq.com"; // host to connect to

MQEnvironment.port = 1414; // port to connect to.

// If I don't set this,

// it defaults to 1414

// (the default MQSeries port)

MQEnvironment.channel = "channel.name"; // the CASE-SENSITIVE

// name of the

// SVR CONN channel on

// the queue manager

MQQueueManager qMgr = new MQQueueManager("MYQM");

If the queue manager name is left blank (null or ""), a connection is made to
the default queue manager.

See also “MQEnvironment” on page 77.

MQQueueManager

public MQQueueManager(String queueManagerName, int options)

Throws MQException.

 Chapter 9. The MQSeries classes for Java classes and interfaces 123

 MQQueueManager

This version of the constructor is intended for use only in bindings mode and it
uses the extended connection API (MQCONNX) to connect to the queue
manager. The options parameter allows you to choose fast or normal bindings.
Possible values are:

� MQC.MQCNO_FASTPATH_BINDING for fast bindings *
� MQC.MQCNO_STANDARD_BINDING for normal bindings

MQQueueManager

public MQQueueManager(String queueManagerName,

java.util.Hashtable properties)

The properties parameter takes a series of key/value pairs that describe the
MQSeries environment for this particular queue manager. These properties,
where specified, override the values set by the MQEnvironment class, and
allow the individual properties to be set on a queue manager by queue
manager basis. See "MQEnvironment.properties" on page 78.

 Methods
getCharacterSet

public int getCharacterSet()

Throws MQException.

Returns the CCSID (Coded Character Set Identifier) of the queue manager's
codeset. This defines the character set used by the queue manager for all
character string fields in the application programming interface.

Throws MQException if you call this method after disconnecting from the
queue manager.

getMaximumMessageLength

public int getMaximumMessageLength()

Throws MQException.

Returns the maximum length of a message (in bytes) that can be handled by
the queue manager. No queue can be defined with a maximum message
length greater than this.

Throws MQException if you call this method after disconnecting from the
queue manager.

getCommandLevel

public int getCommandLevel()

Throws MQException.

Indicates the level of system control commands supported by the queue
manager. The set of system control commands that correspond to a particular
command level varies according to the architecture of the platform on which
the queue manager is running. See the MQSeries documentation for your
platform for further details.

Throws MQException if you call this method after disconnecting from the
queue manager.

Returns
One of the MQC.MQCMDL_LEVEL_xxx constants

124 MQSeries Using Java

 MQQueueManager

getCommandInputQueueName

public String getCommandInputQueueName()

Throws MQException.

Returns the name of the command input queue defined on the queue
manager. This is a queue to which applications can send commands, if
authorized to do so.

Throws MQException if you call this method after disconnecting from the
queue manager.

getMaximumPriority

public int getMaximumPriority()

Throws MQException.

Returns the maximum message priority supported by the queue manager.
Priorities range from zero (lowest) to this value.

Throws MQException if you call this method after disconnecting from the
queue manager.

getSyncpointAvailability

public int getSyncpointAvailability()

Throws MQException.

Indicates whether the queue manager supports units of work and syncpointing
with the MQQueue.get and MQQueue.put methods.

Returns

� MQC.MQSP_AVAILABLE if syncpointing is available
� MQC.MQSP_NOT_AVAILABLE if syncpointing is not available

Throws MQException if you call this method after disconnecting from the
queue manager.

getDistributionListCapable

public boolean getDistributionListCapable()

Indicates whether the queue manager supports distribution lists.

disconnect

public synchronized void disconnect()

Throws MQException.

Terminates the connection to the queue manager. All open queues and
processes accessed by this queue manager are closed, and hence become
unusable. When you have disconnected from a queue manager the only way
to reconnect is to create a new MQQueueManager object.

commit

public synchronized void commit()

Throws MQException.

Calling this method indicates to the queue manager that the application has
reached a syncpoint, and that all of the message gets and puts that have
occurred since the last syncpoint are to be made permanent. Messages put as
part of a unit of work (with the MQC.MQPMO_SYNCPOINT flag set in the

 Chapter 9. The MQSeries classes for Java classes and interfaces 125

 MQQueueManager

options field of MQPutMessageOptions) are made available to other
applications. Messages retrieved as part of a unit of work (with the
MQC.MQGMO_SYNCPOINT flag set in the options field of
MQGetMessageOptions) are deleted.

See also the description of "backout" that follows.

backout

public synchronized void backout()

Throws MQException.

Calling this method indicates to the queue manager that all the message gets
and puts that have occurred since the last syncpoint are to be backed out.
Messages put as part of a unit of work (with the MQC.MQPMO_SYNCPOINT
flag set in the options field of MQPutMessageOptions) are deleted; messages
retrieved as part of a unit of work (with the MQC.MQGMO_SYNCPOINT flag
set in the options field of MQGetMessageOptions) are reinstated on the queue.

See also the decription of "commit" above.

accessQueue

public synchronized MQQueue accessQueue

 (

String queueName, int openOptions,

 String queueManagerName,

 String dynamicQueueName,

 String alternateUserId

)

Throws MQException.

Establishes access to an MQSeries queue on this queue manager to get or
browse messages, put messages, inquire about the attributes of the queue or
set the attributes of the queue.

If the queue named is a model queue, then a dynamic local queue is created.
The name of the created queue can be determined by inspecting the name

attribute of the returned MQQueue object.

Parameters

queueName
Name of queue to open

openOptions
Options that control the opening of the queue. Valid options are:

MQC.MQOO_BROWSE
Open to browse message

MQC.MQOO_INPUT_AS_Q_DEF
Open to get messages using queue-defined default

MQC.MQOO_INPUT_SHARED
Open to get messages with shared access

MQC.MQOO_INPUT_EXCLUSIVE
Open to get messages with exclusive access

MQC.MQOO_OUTPUT
Open to put messages

126 MQSeries Using Java

 MQQueueManager

MQC.MQOO_INQUIRE
Open for inquiry - required if you wish to query properties

MQC.MQOO_SET
Open to set attributes

MQC.MQOO_SAVE_ALL_CONTEXT
Save context when message retrieved*

MQC.MQOO_SET_IDENTITY_CONTEXT
Allows identity context to be set

MQC.MQOO_SET_ALL_CONTEXT
Allows all context to be set

MQC.MQOO_ALTERNATE_USER_AUTHORITY
Validate with the specified user identifier

MQC.MQOO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing

MQC.MQOO_BIND_AS_QDEF
Use default binding for queue

MQC.MQOO_BIND_ON_OPEN
Bind handle to destination when queue is opened

MQC.MQOO_BIND_NOT_FIXED
Do not bind to a specific destination

MQC.MQOO_PASS_ALL_CONTEXT
Allow all context to be passed

MQC.MQOO_PASS_IDENTITY_CONTEXT
Allow identity context to be passed

If more than one option is required the values can be added together or
combined using the bitwise OR operator. See the MQSeries Application
Programming Reference for a fuller description of these options.

queueManagerName
Name of the queue manager on which the queue is defined. A name
which is entirely blank, or which is null, denotes the queue manager to
which this MQQueueManager object is connected.

dynamicQueueName
This parameter is ignored unless queueName specifies the name of a
model queue. If it does, this parameter specifies the name of the dynamic
queue to be created. A blank or null name is not valid if queueName
specifies the name of a model queue. If the last non-blank character in
the name is an asterisk (*), the queue manager replaces the asterisk with
a string of characters that guarantees that the name generated for the
queue is unique on this queue manager.

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter this parameter specifies the alternate user
identifier that is to be used to check the authorization for the open. If
MQOO_ALTERNATE_USER_AUTHORITY is not specified this parameter
can be left blank (or null).

 Chapter 9. The MQSeries classes for Java classes and interfaces 127

 MQQueueManager

Returns
MQQueue that has been successfully opened

Throws MQException if the open fails.

See also "accessProcess" on page 128.

accessQueue

public synchronized MQQueue accessQueue

 (

 String queueName,

 int openOptions

)

Throws MQException if you call this method after disconnecting from the
queue manager.

Parameters

queueName
Name of queue to open

openOptions
Options that control the opening of the queue

See "MQQueueManager.accessQueue" on page 126 for details of the
parameters.

queueManagerName, dynamicQueueName, and alternateUserId are set to "".

accessProcess

public synchronized MQProcess accessProcess

 (

 String processName,

 int openOptions,

 String queueManagerName,

 String alternateUserId

)

Throws MQException.

Establishes access to an MQSeries process on this queue manager to inquire
about the process attributes.

Parameters

processName
Name of process to open.

openOptions
Options that control the opening of the process. Inquire is automatically
added to the options specified, so there is no need to specify it explicitly.

Valid options are:

MQC.MQOO_ALTERNATE_USER_AUTHORITY
Validate with the specified user id

MQC.MQOO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing

If more than one option is required,the values can be added together or
combined using the bitwise OR operator. See the MQSeries Application
Programming Reference for a fuller description of these options.

128 MQSeries Using Java

 MQQueueManager

queueManagerName
Name of the queue manager on which the process is defined.
Applications should leave this parameter blank or null.

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter this parameter specifies the alternate user
identifier that is to be used to check the authorization for the open. If
MQOO_ALTERNATE_USER_AUTHORITY is not specified this parameter
can be left blank (or null).

Returns
MQProcess that has been successfully opened.

Throws MQException if the open fails.

See also "MQQueueManager.accessQueue" on page 126.

accessProcess
This is a simplified version of the AccessProcess method previously described.

public synchronized MQProcess accessProcess

 (

 String processName,

 int openOptions

)

This is a simplified version of the AccessQueue method previously described.

Parameters

processName
The name of the process to open.

openOptions
Options that control the opening of the process.

See "accessProcess" on page 128 for details of the options.

queueManagerName and alternateUserId are set to "".

accessDistributionList

public synchronized MQDistributionList accessDistributionList

 (

MQDistributionListItem[] litems, int openOptions,

 String alternateUserId

)

Throws MQException.

Parameters

litems
The items to be included in the distribution list.

openOptions
Options that control the opening of the distribution list.

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter this parameter specifies the alternate user
identifier that is to be used to check the authorization for the open. If
MQOO_ALTERNATE_USER_AUTHORITY is not specified this parameter
can be left blank (or null).

 Chapter 9. The MQSeries classes for Java classes and interfaces 129

 MQQueueManager

Returns
A newly created MQDistributionList which is open and ready for put
operations.

Throws MQException if the open fails.

See also "MQQueueManager.accessQueue" on page 126.

accessDistributionList
This is a simplified version of the AccessDistributionList method previously
described.

public synchronized MQDistributionList accessDistributionList

 (

 MQDistributionListItem[] litems,

 int openOptions,

)

Parameters

litems
The items to be included in the distribution list.

openOptions
Options that control the opening of the distribution list.

See "accessDistributionList" on page 129 for details of the parameters.

alternateUserId is set to "".

begin* (bindings connection only)
public synchronized void begin()

Throws MQException.

This method is supported only by the MQSeries classes for Java in bindings
mode and it signals the queue manager that a new unit of work is starting.

isConnected

public boolean isConnected()

Returns the value of the isConnected variable.

130 MQSeries Using Java

 MQC

 MQC
public interface MQC
extends Object

The MQC interface defines all the constants used by the MQSeries Java
programming interface. To refer to one of these constants from within your
programs, prefix the constant name with "MQC.". For example, you can set the
close options for a queue as follows:

MQQueue queue;

 ...

queue.closeOptions = MQC.MQCO_DELETE; // delete the

// queue when

// it is closed

 ...

A full description of these constants can be found in Chapter 6, "MQSeries
constants" in the MQSeries Application Programming Reference book.

 Chapter 9. The MQSeries classes for Java classes and interfaces 131

 MQReceiveExit

 MQReceiveExit
public interface MQReceiveExit
extends Object

The receive exit interface allows you to examine and possibly alter the data
received from the queue manager by the MQSeries classes for Java.

Note: This interface does not apply when connecting directly to MQSeries in
bindings mode.

To provide your own receive exit, define a class that implements this interface.
Create a new instance of your class and assign the MQEnvironment.receiveExit
variable to it before constructing your MQQueueManager object. For example:

// in MyReceiveExit.java

class MyReceiveExit implements MQReceiveExit {

// you must provide an implementation

// of the receiveExit method

public byte[] receiveExit(

 MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer)

 {

// your exit code goes here...

 }

}

// in your main program...

MQEnvironment.receiveExit = new MyReceiveExit();

 ... // other initialization

MQQueueManager qMgr = new MQQueueManager("");

 Methods
receiveExit

public abstract byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte agentBuffer[])

The receive exit method that your class must provide. This method will be
invoked whenever the MQSeries classes for Java receives some data from the
queue manager.

Parameters

channelExitParms
Contains information regarding the context in which the exit is being
invoked. The exitResponse member variable is an output parameter that
you use to tell the MQSeries classes for Java what action to take next.
See “MQChannelExit” on page 70 for further details.

channelDefinition
Contains details of the channel through which all communications with the
queue manager take place.

132 MQSeries Using Java

 MQReceiveExit

agentBuffer
If the channelExitParms.exitReason is MQChannelExit.MQXR_XMIT,
agentBuffer contains the data received from the queue manager; otherwise
agentBuffer is null.

Returns

If the exit response code (in channelExitParms) is set so that the MQSeries
classes for Java can now process the data (MQXCC_OK), your receive exit
method must return the data to be processed. The simplest receive exit,
therefore, consists of the single line "return agentBuffer;".

See also:

� “MQC” on page 131
� “MQChannelDefinition” on page 68

 Chapter 9. The MQSeries classes for Java classes and interfaces 133

 MQSecurityExit

 MQSecurityExit
public interface MQSecurityExit
extends Object

The security exit interface allows you to customize the security flows that occur
when an attempt is made to connect to a queue manager.

Note: This interface does not apply when connecting directly to MQSeries in
bindings mode.

To provide your own security exit, define a class that implements this interface.
Create a new instance of your class and assign the MQEnvironment.securityExit
variable to it before constructing your MQQueueManager object. For example:

// in MySecurityExit.java

class MySecurityExit implements MQSecurityExit {

// you must provide an implementation

// of the securityExit method

public byte[] securityExit(

 MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer)

 {

// your exit code goes here...

 }

}

// in your main program...

MQEnvironment.securityExit = new MySecurityExit();

 ... // other initialization

MQQueueManager qMgr = new MQQueueManager("");

 Methods
securityExit

public abstract byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte agentBuffer[])

The security exit method that your class must provide.

Parameters

channelExitParms
Contains information regarding the context in which the exit is being
invoked. The exitResponse member variable is an output parameter that
you use to tell the MQSeries Client for Java what action to take next. See
the “MQChannelExit” on page 70 for further details.

channelDefinition
Contains details of the channel through which all communications with the
queue manager take place.

agentBuffer
If the channelExitParms.exitReason is MQChannelExit.MQXR_SEC_MSG,
agentBuffer contains the security message received from the queue
manager; otherwise agentBuffer is null.

134 MQSeries Using Java

 MQSecurityExit

Returns
If the exit response code (in channelExitParms) is set so that a message is to
be transmitted to the queue manager, your security exit method must return
the data to be transmitted.

See also:

� “MQC” on page 131
� “MQChannelDefinition” on page 68

 Chapter 9. The MQSeries classes for Java classes and interfaces 135

 MQSendExit

 MQSendExit
public interface MQSendExit
extends Object

The send exit interface allows you to examine and possibly alter the data sent to
the queue manager by the MQSeries Client for Java.

Note: This interface does not apply when connecting directly to MQSeries in
bindings mode.

To provide your own send exit, define a class that implements this interface.
Create a new instance of your class and assign the MQEnvironment.sendExit
variable to it before constructing your MQQueueManager object. For example:

// in MySendExit.java

class MySendExit implements MQSendExit {

// you must provide an implementation of the sendExit method

public byte[] sendExit(

 MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte[] agentBuffer)

 {

// your exit code goes here...

 }

}

// in your main program...

MQEnvironment.sendExit = new MySendExit();

 ... // other initialization

MQQueueManager qMgr = new MQQueueManager("");

 Methods
sendExit

public abstract byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefinition,

 byte agentBuffer[])

The send exit method that your class must provide. This method is invoked
whenever the MQSeries classes for Java wishes to transmit some data to the
queue manager.

Parameters

channelExitParms
Contains information regarding the context in which the exit is being
invoked. The exitResponse member variable is an output parameter that
you use to tell the MQSeries classes for Java what action to take next.
See “MQChannelExit” on page 70 for further details.

channelDefinition
Contains details of the channel through which all communications with the
queue manager take place.

136 MQSeries Using Java

 MQSendExit

agentBuffer
If the channelExitParms.exitReason is MQChannelExit.MQXR_XMIT,
agentBuffer contains the data to be transmitted to the queue manager;
otherwise agentBuffer is null.

Returns

If the exit response code (in channelExitParms) is set so that a message is to
be transmitted to the queue manager (MQXCC_OK), your send exit method
must return the data to be transmitted. The simplest send exit, therefore,
consists of the single line "return agentBuffer;".

See also:

� “MQC” on page 131
� “MQChannelDefinition” on page 68

 Chapter 9. The MQSeries classes for Java classes and interfaces 137

 MQSendExit

138 MQSeries Using Java

Part 3. Programming with MQ JMS

Chapter 10. Writing MQ JMS programs . 143
The JMS model . 143
Building a Connection . 144

Retrieving the factory from JNDI . 144
Using the factory to create a connection . 145
Creating factories at runtime . 145
Choosing client or bindings transport . 146

Obtaining a Session . 147
Sending a message . 147

Setting properties with the 'set' method . 149
Message types . 149

Receiving a message . 150
Message Selectors . 151
Asynchronous Delivery . 151

Closing down . 152
JVM hang at shutdown . 152

Handling errors . 152
Exception listener . 152

Chapter 11. Programming Publish/Subscribe applications 153
Writing a simple Pub/Sub application . 153

Import required packages . 153
Obtain or create JMS objects . 153
Publish messages . 154
Receive subscriptions . 155
Close down unwanted resources . 155

Using Topics . 155
Topic Names . 155
Creating topics at runtime . 157

Subscriber options . 158
Creating non-durable subscribers . 158
Creating durable subscribers . 158
Using Message Selectors . 158
Suppressing local publications . 159
Combining the subscriber options . 159

Solving Pub/Sub problems . 159
Incomplete Pub/Sub close down . 159
Handling broker reports . 160

Chapter 12. JMS messages . 161
Message selectors . 161
Mapping JMS messages onto MQSeries messages 165

The MQRFH2 Header . 166
JMS Fields and Properties with corresponding MQMD Fields 169
Mapping JMS fields onto MQSeries fields (Outgoing Messages) 170
Mapping MQSeries fields onto JMS Fields (Incoming Messages) 174
Mapping JMS to a Native MQSeries Application 175
Message Body . 175

Chapter 13. JMS interfaces and classes . 179

 Copyright IBM Corp. 1997,1999 139

Sun Java Message Service classes and interfaces 179
MQSeries JMS classes . 182
BytesMessage . 184

Methods . 184
Connection . 192

Methods . 192
ConnectionFactory . 195

MQSeries constructor . 195
Methods . 195

ConnectionMetaData . 198
MQSeries constructor . 198
Methods . 198

DeliveryMode . 200
Fields . 200

Destination . 201
MQSeries constructors . 201
Methods . 201

ExceptionListener . 203
Methods . 203

MapMessage . 204
Methods . 204

Message . 212
Fields . 212
Methods . 212

MessageConsumer . 224
Methods . 224

MessageListener . 226
Methods . 226

MessageProducer . 227
MQSeries constructors . 227
Methods . 227

MQQueueEnumeration * . 230
Methods . 230

ObjectMessage . 231
Methods . 231

Queue . 232
MQSeries constructors . 232
Methods . 232

QueueBrowser . 234
Methods . 234

QueueConnection . 236
Methods . 236

QueueConnectionFactory . 238
MQSeries constructor . 238
Methods . 238

QueueReceiver . 240
Methods . 240

QueueRequestor . 241
Constructors . 241
Methods . 241

QueueSender . 243
Methods . 243

QueueSession . 246
Methods . 246

140 MQSeries Using Java

Session . 249
Fields . 249
Methods . 249

StreamMessage . 253
Methods . 253

TemporaryQueue . 260
Methods . 260

TemporaryTopic . 261
MQSeries constructor . 261
Methods . 261

TextMessage . 262
Methods . 262

Topic . 263
MQSeries constructor . 263
Methods . 263

TopicConnection . 265
Methods . 265

TopicConnectionFactory . 267
MQSeries constructor . 267
Methods . 267

TopicPublisher . 270
Methods . 270

TopicRequestor . 273
Constructors . 273
Methods . 273

TopicSession . 275
MQSeries constructor . 275
Methods . 275

TopicSubscriber . 278
Methods . 278

 Part 3. Programming with MQ JMS 141

142 MQSeries Using Java

 Writing programs � JMS model

Chapter 10. Writing MQ JMS programs

This chapter provides information to assist with writing MQ JMS applications. It
provides a brief introduction to the JMS model, and detailed information on
programming some common tasks that application programs are likely to need to
perform.

The JMS model
JMS defines a generic view of a message passing service and it is important to
understand this view, and how it maps onto the underlying MQSeries transport.

The generic JMS model is based around the following interfaces that are defined in
Sun's javax.jms package:

Connection
Provides access to the underlying transport, and is used to create Sessions .

Session
Provides a context for producing and consuming messages, including the
methods used to create MessageProducers and MessageConsumers .

MessageProducer
Used to send messages.

MessageConsumer
Used to receive messages.

It is important to note that a Connection is thread safe, but Sessions ,
MessageProducers and MessageConsumers are not. The recommended
strategy is to use one Session per application thread.

In MQSeries terms:

Connection
Provides a scope for temporary queues, as well as a place to hold the
parameters that control how to connect to MQSeries (for example, the name of
the queue manager, and the name of the remote host if using the MQSeries Java
client connectivity).

Session
Contains an HCONN and therefore defines a transactional scope.

MessageProducer and MessageConsumer
Contain an HOBJ that defines a particular queue for writing to or reading from.

Note that normal MQSeries rules apply:

� Only a single operation can be in progress per HCONN at any given time, so
the MessageProducers or MessageConsumers associated with a Session can
not be called concurrently. This is consistent with the JMS restriction of a single
thread per Session.

� PUTs can use remote queues, but GETs can only be applied to queues on the
local queue manager.

The generic JMS interfaces are subclassed into more specific versions for 'Point to
Point' and 'Pub/Sub' behavior.

 Copyright IBM Corp. 1997,1999 143

 Building a connection

The point to point versions are:

 � QueueConnection
 � QueueSession
 � QueueSender
 � QueueReceiver.

One of the key ideas in JMS is that it is possible, and strongly recommended, to
write application programs using only references to the interfaces in javax.jms. All
vendor specific information is encapsulated in implementations of:

 � QueueConnectionFactory
 � TopicConnectionFactory
 � Queue
 � Topic

These are known as 'administered objects', which are so named because they can
be built using a vendor-supplied administration tool and can be stored in a JNDI
namespace. A JMS application can retrieve these objects from the namespace and
use them without needing to know which vendor provided the implementation.

Building a Connection
Connections are not created directly, but are built using a connection factory.
Factory objects can be stored in a JNDI namespace, allowing the JMS application
to be insulated from provider-specific information. Details of how to create and
store factory objects are given in Chapter 5, “Using the MQ JMS administration
tool” on page 27.

If you do not have a JNDI namespace available, see “Creating factories at runtime”
on page 145.

Retrieving the factory from JNDI
To retrieve an object from a JNDI namespace an initial context must be setup as
shown in this fragment taken from the IVTRun sample file:

import javax.jms.\;

import javax.naming.\;

import javax.naming.directory.\;

 .

 .

 .

java.util.Hashtable environment = new java.util.Hashtable();

 environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);

 environment.put(Context.PROVIDER_URL, url);

Context ctx = new InitialDirContext(environment);

where:

icf defines a factory class for the initial context

url defines a context specific URL

(see Sun's JNDI documentation for more details of JNDI usage).

Note: Some combinations of the JNDI packages and LDAP service providers can
result in an LDAP error 84. To resolve the problem, insert the following line before
the call to InitialDirContext.

environment.put(Context.REFERRAL, "throw");

144 MQSeries Using Java

 Building a connection

Having obtained an initial context, objects are retrieved from the namespace with
the lookup() method. The following code retrieves a QueueConnectionFactory
named ivtQCF from an LDAP-based namespace:

QueueConnectionFactory factory;

factory = (QueueConnectionFactory)ctx.lookup("cn=ivtQCF");

Using the factory to create a connection
The createQueueConnection() method on the factory object is used to create a
'Connection' as shown in the following code:

QueueConnection connection;

connection = factory.createQueueConnection();

Creating factories at runtime
If a JNDI namespace is not available it is possible to create factory objects at
runtime. However, using this method reduces the portability of the JMS application
as it requires references to MQSeries specific classes.

The following code creates a QueueConnectionFactory with all default settings:

factory = new com.ibm.mq.jms.MQQueueConnectionFactory();

(The com.ibm.mq.jms. prefix may be omitted if you choose to import the
com.ibm.mq.jms package instead.)

A connection created from the above factory uses the Java bindings to connect to
the default queue manager on the local machine. The set methods shown in
Table 17 on page 146 can be used to customize the factory with MQSeries
specific information.

Starting the connection
The JMS specification defines that connections should be created in the 'stopped'
state. Until the connection is started, no messages can be received by
MessageConsumers that are associated with the connection. To start the
connection, issue the following command:

connection.start();

 Chapter 10. Writing MQ JMS programs 145

 Building a connection

Table 17. Set methods on MQQueueConnectionFactory

Method Description

setCCSID(int) Used to set the MQEnvironment.CCSID property

setChannel(String) The name of the channel for a client connection

setHostName(String) The name of the host for a client connection

setPort(int) The port for a client connection

setQueueManager(String) The name of the queue manager

setTemporaryModel(String) The name of a model queue used to generate a
temporary destination as a result of a call to
QueueSession.createTemporaryQueue(). It is
recommended that this be the name of a temporary
dynamic queue rather than a permanent dynamic
queue.

setTransportType(int) Specify how to connect to MQSeries. The options
currently available are:

� JMSC.MQJMS_TP_BINDINGS_MQ (the default)
 � JMSC.MQJMS_TP_CLIENT_MQ_TCPIP.

JMSC is in the package com.ibm.mq.jms

 setReceiveExit(String)
 setSecurityExit(String)
 setSendExit(String)
 setReceiveExitInit(String)
 setSecutityExitInit(String)
 setSendExitInit(String)

These methods exist to allow the use of the send,
receive and security exits provided by the underlying
MQSeries Classes for Java. The set\Exit methods
take the name of a class which implements the
relevant exit methods. (See the MQSeries 5.1 product
documentation for details.)
In addition the class must implement a constructor
with a single String parameter. This string is used to
provide any initialization data that may be required by
the exit, and is set to the value provided in the
corresponding set\ExitInit method.

Choosing client or bindings transport
MQJMS can communicate with MQSeries using either the client or bindings
transports. Use of the Java bindings requires the JMS application and the
MQSeries queue manager to be located on the same machine. The client permits
the queue manager to be on a different machine to the application.

The transport to be used is determined by the contents of the connection factory
object. Chapter 5, “Using the MQ JMS administration tool” on page 27 describes
how to define a factory object for use with client or bindings transport.

The following code fragment illustrates how you can define the transport within an
application:

String HOSTNAME = "machine1";

String QMGRNAME = "machine1.QM1";

String CHANNEL = "SYSTEM.DEF.SVRCONN";

factory = new MQQueueConnectionFactory();

factory.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

factory.setQueueManager(QMGRNAME);

factory.setHostName(HOSTNAME);

factory.setChannel(CHANNEL);

146 MQSeries Using Java

 Obtaining a session � Sending a message

Obtaining a Session
Once a connection has been made, use the createQueueSession method on the
QueueConnection to obtain a session.

The method takes two parameters:

1. A boolean that determines whether the session is 'transacted' or
'non-transacted'

2. A parameter that determines the 'acknowledge' mode.

The simplest case is that of the 'non-transacted' session with AUTO_ACKNOWLEDGE, as
shown in the following code fragment:

QueueSession session;

boolean transacted = false;

session = connection.createQueueSession(transacted,

 Session.AUTO_ACKNOWLEDGE);

Note: A connection is thread safe, but sessions (and objects created from them)
are not. The recommended practice for multi-threaded applications is to use a
separate session for each thread.

Sending a message
Messages are sent using a MessageProducer. For point-to-point this is a
QueueSender that is created using the createSender method on QueueSession. A
QueueSender is normally created for a specific queue, so that all messages sent
using that sender are sent to the same destination. The destination is specified
using a Queue object. Queue objects can be either created at runtime, or built and
stored in a JNDI namespace.

Queue objects are retrieved from JNDI in the following way:

Queue ioQueue;

ioQueue = (Queue)ctx.lookup(qLookup);

MQ JMS provides an implementation of Queue in com.ibm.mq.jms.MQQueue. It
contains properties for controlling the details of MQSeries specific behavior, but in
many cases it is possible to use the default values. JMS defines a standard way of
specifying the destination which minimizes the MQSeries specific code in the
application. This mechanism uses the QueueSession.createQueue method which
takes a string parameter describing the destination. The string itself is still in a
vendor specific format, but this is a more flexible approach than directly referencing
the vendor classes.

MQ JMS accepts two forms for the string parameter of createQueue().

� The first is the name of the MQSeries queue, as illustrated in the following
fragment taken from the IVTRun program in the samples directory:

public static final String QUEUE = "SYSTEM.DEFAULT.LOCAL.QUEUE" ;

 .

 .

 .

ioQueue = session.createQueue(QUEUE);

 Chapter 10. Writing MQ JMS programs 147

 Sending a message

� The second and more powerful form is based on 'uniform resource identifiers'
(URI) and allows the specification of remote queues (queues on a queue
manager other than the one to which you have connected), as well as the
setting of the other properties contained in a com.ibm.mq.jms.MQQueue object.

The URI for a queue begins with the sequence queue://, followed by the name
of the queue manager on which the queue resides, a further '/', the name of the
queue, and optionally, a list of name-value pairs to set the remaining Queue
properties. For example, the URI equivalent of the previous example is:

ioQueue = session.createQueue("queue:///SYSTEM.DEFAULT.LOCAL.QUEUE");

Note that the name of the queue manager has been omitted. This is interpreted
as the queue manager to which the owning QueueConnection is connected at
the time when the Queue object is used.

The following example connects to queue 'Q1' on queue manager 'HOST1.QM1',
and causes all messages to be sent as non-persistent and priority 5:

ioQueue = session.createQueue("queue://HOST1.QM1/Q1?persistence=1&priority=5");

Table 18 lists the names that can be used in the name-value part of the URI. A
disadvantage of this format is that it doesn't support symbolic names for the values,
so where appropriate the 'special' values have been indicated below. It should be
noted that these special values may be subject to change. (See “Setting properties
with the 'set' method” on page 149 for an alternative method for setting properties.)

where:

QDEF - a special value that means the property should be determined by the
configuration of the MQSeries queue.

APP - a special value that means the JMS application can control this property.

After obtaining a Queue object (either using createQueue as above or from JNDI) it
must be passed into the createSender method to create a QueueSender:

QueueSender queueSender = session.createSender(ioQueue);

The resulting queueSender object is used to send messages using the send method:

queueSender.send(outMessage);

Table 18. Property names for queue URIs

Property Description Values

expiry Lifetime of the message in
milliseconds

0 for unlimited, positive integers
for timeout (ms)

priority Priority of the message 0 through 9, -1=QDEF, -2=APP

persistence Whether the message should be
'hardened' to disk

1=non-persistent, 2=persistent,
-1=QDEF, -2=APP

CCSID Character set of the destination integers - valid values listed in
base MQSeries documentation.

targetClient Whether the receiving application
is JMS compliant or not

0=JMS, 1=MQ

encoding How to represent numeric fields An integer value as described in
the base MQSeries documentation

148 MQSeries Using Java

 Sending a message

Setting properties with the 'set' method
Queue properties can be set by creating an instance of com.ibm.mq.jms.MQQueue
using the default constructor and then filling in the required values with public set

methods. This method allows symbolic names to be used for the property values,
but, because these values are vendor specific and are embedded in the code, the
applications become less portable.

The following code fragment shows the setting of a queue property with a set
method.

com.ibm.mq.jms.MQQueue q1 = new com.ibm.mq.jms.MQQueue();

 q1.setBaseQueueManagerName("HOST1.QM1");

 q1.setBaseQueueName("Q1");

 q1.setPersistence(DeliveryMode.NON_PERSISTENT);

 q1.setPriority(5);

Table 19 shows the symbolic property values that are supplied with MQ JMS for
use with the set methods.

See “The ENCODING property” on page 36 for a discussion on encoding.

Table 19. Symbolic values for queue properties

Property Admin
tool
keyword

Values

expiry UNLIM
APP

JMSC.MQJMS_EXP_UNLIMITED
JMSC.MQJMS_EXP_APP

priority APP
QDEF

JMSC.MQJMS_PRI_APP
JMSC.MQJMS_PRI_QDEF

persistence APP
QDEF
PERS
NON

JMSC.MQJMS_PER_APP
JMSC.MQJMS_PER_QDEF
JMSC.MQJMS_PER_PER
JMSC.MQJMS_PER_NON

targetClient JMS
MQ

JMSC.MQJMS_CLIENT_JMS-COMPLIANT
JMSC.MQJMS_CLIENT_NONJMS_MQ

encoding Integer(N)
Integer(R)
Decimal(N)
Decimal(R)
Float(N)
Float(R)
Native

JMSC.MQJMS_ENCODING_INTEGER_NORMAL
JMSC.MQJMS_ENCODING_INTEGER_REVERSED
JMSC.MQJMS_ENCODING_DECIMAL_NORMAL
JMSC.MQJMS_ENCODING_DECIMAL_REVERSED
JMSC.MQJMS_ENCODING_FLOAT_IEEE_NORMAL
JMSC.MQJMS_ENCODING_FLOAT_IEEE_REVERSED
JMSC.MQJMS_ENCODING_NATIVE

 Message types
JMS provides several message types, each of which embodies some knowledge of
its content. To avoid referencing the vendor specific class names for the message
types, methods are provided on the Session object for message creation.

In the sample program a text message is created in the following manner:

System.out.println("Creating a TextMessage");

TextMessage outMessage = session.createTextMessage();

System.out.println("Adding Text");

outMessage.setText(outString);

 Chapter 10. Writing MQ JMS programs 149

 Receiving a message

The message types that can be used are:

 � BytesMessage
 � MapMessage
 � ObjectMessage
 � StreamMessage
 � TextMessage

Details of these types can be found in Chapter 13, “JMS interfaces and classes” on
page 179.

Receiving a message
Messages are received with a QueueReceiver. This is created from a Session
using the createReceiver() method. This method takes a Queue parameter to
define where the messages are received from. See “Sending a message” on
page 147 for a details of how to create a Queue object.

The sample program creates a receiver and reads back the test message with the
following code:

QueueReceiver queueReceiver = session.createReceiver(ioQueue);

Message inMessage = queueReceiver.receive(1ððð);

The parameter in the receive call is a timeout in milliseconds which defines how
long the method should wait if no message is immediately available. The parameter
may be omitted, in which case the call blocks indefinitely. If you want no delay, use
the receiveNoWait() method.

The receive methods return a message of the appropriate type. For example, if a
TextMessage is put on a queue then when the message is received the object
returned is an instance of TextMessage.

To extract the content from the body of the message it is necessary to cast from
the generic Message class (which is the declared return type of the receive
methods) to the more specific subclass such as TextMessage. If the received
message type is not known, the 'instanceof' operator may be used to determine
which type it is. It is good practice always to test the message class before casting
so that unexpected errors can be handled gracefully.

The following code illustrates the use of 'instanceof' and extracting the content from
a TextMessage:

if (inMessage instanceof TextMessage) {

String replyString = ((TextMessage) inMessage).getText();

 .

 .

 .

} else {

// Print error message if Message was not a TextMessage.

System.out.println("Reply message was not a TextMessage");

}

150 MQSeries Using Java

 Receiving a message

 Message Selectors
JMS provides a mechanism for selecting a subset of the messages on a queue to
be returned by a receive call. When creating a QueueReceiver, a string can be
provided which contains an SQL expression to determine which messages to
retrieve. The selector can refer to fields in the JMS message header as well as
fields in the message properties (these are effectively application defined header
fields). Details of the header field names, as well as the syntax for the SQL selector
can be found in Chapter 12, “JMS messages” on page 161.

The following example shows how to select for a user defined property named
myProp:

queueReceiver = session.createReceiver(ioQueue, "myProp = 'blue'");

Note: The JMS specification does not permit the selector associated with a
receiver to be changed. Once a receiver has been created the selector is fixed for
the lifetime of that receiver. This means that, if different selectors are required it is
necessary to create new receivers.

 Asynchronous Delivery
As an alternative to making calls to QueueReceiver.receive(), a method can be
registered to be called automatically when a suitable message is available. The
following fragment illustrates the mechanism:

import javax.jms.\;

public class MyClass implements MessageListener

{

// The method that will be called by JMS when a message

// is available.

public void onMessage(Message message)

 {

System.out.println("message is "+message);

// application specific processing here

 .

 .

 .

 }

}

 .

 .

 .

// In Main program (possibly of some other class)

MyClass listener = new MyClass();

 queueReceiver.setMessageListener(listener);

// main program can now continue with other application specific

 // behavior.

Note: Using asynchronous delivery with a QueueReceiver marks the entire
Session as asynchronous. It is an error to make an explicit call to the receive
methods of a QueueReceiver associated with a Session using asynchronous
delivery.

 Chapter 10. Writing MQ JMS programs 151

 Closing down � Handling errors

 Closing down
Garbage collection alone cannot release all MQSeries resources in a timely
manner, particularly if the application requires the creation of many short lived JMS
objects at the Session level or below. It is therefore important to call the close()
methods of the various classes (QueueConnection, QueueSession, QueueSender
and QueueReceiver) when the resources are no longer required.

JVM hang at shutdown
If an MQ JMS application finishes without calling Connection.close() some JVMs
will appear to hang. If this problem occurs, the application should be edited to
include a call to Connection.close(), or the JVM may be terminated with Ctrl-C.

 Handling errors
Runtime errors in a JMS application are reported by exceptions. The majority of
methods in JMS throw JMSExceptions to indicate errors. It is good programming
practice to catch these exceptions and display them on a suitable output.

Unlike normal Java Exceptions, a JMSException may contain a further exception
embedded within it. For JMS this can be a valuable way of passing important detail
from the underlying transport. In the case of MQ JMS, when MQSeries raises an
MQException, this exception is usually included as the embedded exception within
a JMSException.

The implementation of JMSException does not include the embedded exception in
the output of its toString() method. It is therefore necessary to explicitly check for
an embedded exception and print it out, as shown in the following fragment:

try {

 .

. code which may throw a JMSException

 .

} catch (JMSException je) {

 System.err.println("caught "+je);

Exception e = je.getLinkedException();

if (e != null) {

System.err.println("linked exception: "+e);

 }

}

 Exception listener
When using asynchronous message delivery, the application code is not able to
catch exceptions raised by failures to receive messages, because the application
code does not make explicit calls to receive() methods. To cope with this situation
it is possible to register an ExceptionListener, which is an instance of a class that
implements the onException() method. When a serious error occurs, this method is
called with the JMSException passed as its only parameter. Further details can be
found in Sun's JMS documentation.

152 MQSeries Using Java

 Pub/Sub programming � writing Pub/Sub applications

Chapter 11. Programming Publish/Subscribe applications

This section provides the reader with an introduction to the programming model
used when writing Publish/Subscribe applications using the MQSeries Classes for
Java Message Service.

Writing a simple Pub/Sub application
This section walks through a simple MQSeries classes for Java Message
Service(JMS) application.

Import required packages
An MQSeries classes for Java Message Service(JMS) application starts with a
number of import statements which should at least include the following:

import javax.jms.\; // JMS interfaces

import javax.naming.\; // Used for JNDI lookup of

import javax.naming.directory.\; // administered objects

Obtain or create JMS objects
The next step is to obtain or create a number of JMS objects:

1. Obtain a TopicConnectionFactory

2. Create a TopicConnection

3. Create a TopicSession

4. Obtain a Topic from JNDI

5. Create TopicPublishers and TopicSubscribers

Many of these processes are similar to those used for point-to-point as shown in
the following:

Obtain a TopicConnectionFactory
The preferred method of doing this is to use JNDI lookup to, maintain portability
of the application code. The following code initializes a JNDI context:

String CTX_FACTORY = "com.sun.jndi.ldap.LdapCtxFactory";

String INIT_URL = "ldap://server.company.com/o=company_us,c=us";

Java.util.Hashtable env = new java.util.Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY, CTX_FACTORY);

env.put(Context.PROVIDER_URL, INIT_URL);

env.put(Context.REFERRAL, "throw");

Context ctx = null;

try {

ctx = new InitialDirContext(env);

} catch(NamingException nx) {

// Add code to handle inability to connect to JNDI context

}

Note: The CTX_FACTORY and INIT_URL variables need customizing to suit your
installation and your JNDI service provider .

 Copyright IBM Corp. 1997,1999 153

 writing Pub/Sub applications

The properties required by JNDI initialization are placed in a hashtable, that is
passed to the InitialDirContext constructor. If this connection fails, an exception is
thrown to indicate that the administered objects required later in the application
are not available.

Now obtain a TopicConnectionFactory using a lookup key which the administrator
has defined:

TopicConnectionFactory factory;

factory = (TopicConnectionFactory)lookup("cn=sample.tcf");

Create a TopicConnection
This is created from the TopicConnectionFactory object. Connections are always
initialized in a stop state and need to be started with the following code:

TopicConnection conn;

conn = factory.createTopicConnection();

conn.start();

Create a TopicSession
This is created with the TopicConnection. This method takes two parameters,
one to signify whether the session is transacted, and one to specify the
acknowledgement mode:

TopicSession session = conn.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

Obtain a Topic
This object is obtained from JNDI for use with TopicPublishers and
TopicSubscribers that are created later. The following code retrieves a Topic:

Topic topic = null;

 try {

topic = (Topic)ctx.lookup("cn=sample.topic");

 } catch(NamingException nx) {

// Add code to handle inability to retrieve Topic from JNDI

 }

Create consumers and producers of publications
Depending on the nature of the JMS client application being written, either a
subscriber or a publisher (or both) needs to be created. Use the createPublisher
and createSubscriber methods as follows:

// Create a publisher, publishing on the given topic

 TopicPublisher pub = session.createPublisher(topic);

// Create a subscriber, subscribing on the given topic

 TopicSubscriber sub = session.createSubscriber(topic);

 Publish messages
The TopicPublisher object, pub, is used to publish messages, rather like a
QueueSender is used in the point-to-point domain. The following fragment creates
a TextMessage using the session, and then publishes the message:

// Create the TextMessage and place some data into it

TextMessage outMsg = session.createTextMessage();

outMsg.setText("This is a short test string!");

// Use the publisher to publish the message

pub.publish(outMsg);

154 MQSeries Using Java

 using Topics

 Receive subscriptions
Subscribers need to be able to read the subscriptions that are delivered to them as
in the following code:

// Retrieve the next waiting subscription

TextMessage inMsg = (TextMessage)sub.receive();

// Obtain the contents of the message

String payload = inMsg.getText();

This fragment of code performs a 'get-with-wait', which means that the receive call
will block until a message becomes available. Alternative versions of the receive
call are available (such as 'receiveNoWait') see “TopicSubscriber” on page 278.

Close down unwanted resources
It is important to free up all the resources used by the Pub/Sub application when it
terminates. Use the close() method of objects that can be closed (publishers,
subscribers, sessions and connections):

// Close publishers and subscribers

pub.close();

sub.close();

// Close sessions and connections

session.close();

conn.close();

 Using Topics
This section discusses the use of JMS Topic objects in MQSeries classes for Java
Message Service(JMS) applications

 Topic Names
This section describes the use of topic names within MQSeries classes for Java
Message Service(JMS).

Note: The JMS specification does not specify the exact details of the use and
maintenance of topic hierarchies, and so this area may well vary from one provider
to the next.

Topic names in MQJMS are arranged in a tree-like hierarchy, an example of which
is shown in Figure 3 on page 156.

 Chapter 11. Programming Publish/Subscribe applications 155

 using Topics

Figure 3. Topic name hierarchy

Levels in the tree are separated in a topic name by the '/' character, meaning that
the 'Signings' node is represented as the topic name:

Sport/Football/Spurs/Signings

A powerful feature of the topic system in MQSeries classes for Java Message
Service(JMS) is the use of wildcards. These allow subscribers to subscribe to more
than one topic at a time. The '*' wildcard matches zero or more characters, whilst
the '?' character matches a single character.

If a subscriber subscribes to the Topic representing the topic name:

Sport/Football/\/Results

it receives publications on topics including:

 � Sport/Football/Spurs/Results
 � Sport/Football/Arsenal/Results

If the subscription topic is:

Sport/Football/Spurs/\

it receives publications on topics including:

 � Sport/Football/Spurs/Results
 � Sport/Football/Spurs/Signings

There is no need explicitly to administer the topic hierarchies you use on the
broker-side of your system. When the first publisher or subscriber on a given topic
comes into existence, the state of the topics currently being published on and
subscribed to is automatically created by the broker.

Note: A publisher cannot publish on a topic whose name contains wildcards.

156 MQSeries Using Java

 using Topics

Creating topics at runtime
There are four methods for creating Topic objects at run-time:

1. Construct a topic using the one-argument MQTopic constructor

2. Construct a topic using the default MQTopic constructor, and then call the
setBaseTopicName(..) method

3. Use the session's createTopic(..) method

4. Use the session's createTemporaryTopic() method

Method 1: Using MQTopic(..)
This method requires a reference to the MQSeries implementation of the JMS
Topic interface, and therefore renders the code non-portable.

The constructor takes one argument which should be a uniform resource
identifier (URI). For MQSeries classes for Java Message Service(JMS) Topics,
this should be of the form:

topic://TopicName[?property=value[&property=value]\]

For further details on URIs and the permitted name-value pairs see “Sending a
message” on page 147.

The following code creates a topic for non-persistence, priority 5 messages:

// Create a Topic using the one-argument MQTopic constructor

String tSpec = "Sport/Football/Spurs/Results?persistence=1&priority=5";

Topic rtTopic = new MQTopic("topic://" + tSpec);

Method 2: Using MQTopic() then setBaseTopicName(..)
This method uses the default MQTopic constructor, and therefore renders the
code non-portable.

After creation of the object, the baseTopicName property is set using the
setBaseTopicName method, passing in the required topic name.

Note: The topic name used here is the non-URI form, and cannot include
name-value pairs. These should be set using the 'set' methods as described in
“Setting properties with the 'set' method” on page 149. The following code uses
this method to create a topic:

// Create a Topic using the default MQTopic constructor

Topic rtTopic = new MQTopic();

// Set the object properties using the setter methods

((MQTopic)rtTopic).setBaseTopicName("Sport/Football/Spurs/Results");

((MQTopic)rtTopic).setPersistence(1);

((MQTopic)rtTopic).setPriority(5);

Method 3: Using session.createTopic(..)
A Topic object may also be created using the createTopic method of
TopicSession, which takes a topic URI as follows:

// Create a Topic using the session factory method

Topic rtTopic = session.createTopic("topic://Sport/Football/Spurs/Results");

Method 4: Using session.createTemporaryTopic()
A TemporaryTopic is a Topic which may only be consumed by subscribers
created by the same TopicConnection. A TemporaryTopic is created as follows:

 Chapter 11. Programming Publish/Subscribe applications 157

 subscriber options

// Create a TemporaryTopic using the session factory method

Topic rtTopic = session.createTemporaryTopic();

 Subscriber options
There are a number of different ways of using JMS subscribers. Some examples of
their use are described in this section.

JMS provides two types of subscribers:

Non-durable subscribers
These subscribers receive messages on their chosen topic only if the messages
are published while the subscriber is active.

Durable subscribers
These subscribers receive all the messages published on a topic, including those
published while the subscriber is inactive

Creating non-durable subscribers
The subscriber created in Create consumers and producers of publications on
page 154 is non-durable and is created with the following code:

// Create a subscriber, subscribing on the given topic

 TopicSubscriber sub = session.createSubscriber(topic);

Creating durable subscribers
Creating a durable subscriber is very similar to creating a non-durable subscriber,
but a name which uniquely identifies the subscriber must also be provided:

// Create a durable subscriber, supplying a uniquely-identifying name

TopicSubscriber sub = session.createDurableSubscriber(topic, "D_SUB_ððððð1");

Unlike with non-durable subscribers, which automatically deregister themselves
when their close() method is called (or when they fall out of scope), the system
must be explicitly notified if the user wishes to terminate a durable subscription.
Use the session's unsubscribe() method, passing in the unique name which
created the subscriber:

// Unsubscribe the durable subscriber created above

session.unsubscribe("D_SUB_ððððð1");

Using Message Selectors
Message selectors, which are discussed in detail in “Message Selectors” on
page 151, can be used to filter out messages which do not satisfy given criteria.
Message selectors are associated with a subscriber as follows:

// Associate a message selector with a non-durable subscriber

String selector = "company = 'IBM'";

TopicSubscriber sub = session.createSubscriber(topic, selector, false);

158 MQSeries Using Java

 Pub/Sub problems

Suppressing local publications
It is possible to create a subscriber that ignores publications that are published on
the subscriber's own connection. Set the third parameter of the createSubscriber
call to true, as follows:

// Create a non-durable subscriber with the noLocal option set

TopicSubscriber sub = session.createSubscriber(topic, null, true);

Combining the subscriber options
The subscriber variations can be combined, allowing the user to create a durable
subscriber which applies a selector and ignores local publications if they so wish.
The following code fragment shows the use of the combined options:

// Create a durable, noLocal subscriber with a selector applied

String selector = "company = 'IBM'";

TopicSubscriber sub = session.createDurableSubscriber(topic, "D_SUB_ððððð1",

selector, true);

Solving Pub/Sub problems
This section describes some of the problems you may experience when developing
JMS client applications which use the publish/subscribe domain. Note that this
section discusses problems specific to the Pub/Sub domain. Refer to “Handling
errors” on page 152 and “Solving problems” on page 24 for more general trouble
shooting guidance.

Incomplete Pub/Sub close down
It is important that JMS client applications surrender all external resources when
they terminate. This is achieved by calling the close() method on all objects that
can be closed once they are no longer required. For the pub/sub domain, these
objects are:

 � TopicConnection
 � TopicSession
 � TopicPublisher
 � TopicSubscriber

The MQSeries classes for Java Message Service(JMS) implementation eases this
task through the use of a 'cascading close'. With this process, a call to 'close' on a
TopicConnection results in calls to 'close' on each of the TopicSessions it created.
This in turn result in calls to 'close' on all TopicSubscribers and TopicPublishers the
sessions created.

It is therefore important to call connection.close() for each of the connections an
application has created, in order to ensure proper release of external resources.

There are some circumstances where this 'close' procedure may not complete, they
include:

� Loss of an MQSeries client connection
� Unexpected application termination

In these circumstances, the close() is not called, and external resources remain
open on the dead application's behalf. The main consequences of this are:

 Chapter 11. Programming Publish/Subscribe applications 159

 Pub/Sub problems

Broker state inconsistency
The MQSeries Message Broker may well contain registration information for
subscribers and publishers which no longer exist. This means that the broker
may continue forwarding messages to subscribers which will never receive them.

Subscriber queues remain
Part of the subscriber deregistration procedure is the removal of the underlying
MQSeries queue that was used to receive subscriptions. If normal closure has
not occurred, these queues remain and, in the case of broker state inconsistency,
will continue to fill up with messages that will never be read.

Handling broker reports
The MQ JMS implementation uses report messages from the broker to confirm
registration and deregistration commands. These reports are normally consumed by
the MQSeries classes for Java Message Service(JMS) implementation, but under
some error conditions they may be left on the queue. These messages are sent to
the SYSTEM.JMS.REPORT.QUEUE queue on the local queue manager.

A Java application, PSReportDump, is supplied with MQSeries classes for Java
Message Service(JMS) which dumps the contents of this queue in plain text format.
The information can then be analyzed, either by the user or by IBM support staff.
The application may also be used to clear the queue of messages when a problem
has been diagnosed and/or fixed.

The compiled form of the tool is installed in the <MQ_JAVA_INSTALL_PATH>/bin

directory, and should be invoked from this directory with the following command:

java PSReportDump [-m queueManager] [-clear]

where:

-m queueManager = specify the name of the queue manager to use

-clear = clear the queue of messages after dumping its contents

Ouput is sent to the screen, but can be redirected to file if required.

160 MQSeries Using Java

 JMS messages

 Chapter 12. JMS messages

JMS Messages are composed of the following parts:

Header All messages support the same set of header fields. Header fields
contain values used by both clients and providers to identify and
route messages.

Properties Each message contains a built-in facility for supporting application
defined property values. Properties provide an efficient mechanism for
supporting application defined message filtering.

Body JMS defines several types of message body which cover the majority
of messaging styles currently in use.

JMS defines five types of message body:

Stream a stream of Java primitive values. It is filled and read
sequentially.

Map a set of name-value pairs where names are Strings and
values are Java primitive types. The entries can be accessed
sequentially or randomly by name. The order of the entries is
undefined.

Text a message containing a java.util.String.

Object a message that contains a Serializable java object

Bytes a stream of uninterpreted bytes. This message type is for
literally encoding a body to match an existing message
format.

The JMSCorrelationID header field is used for linking one message with another. It
typically links a reply message with its requesting message. JMSCorrelationID can
hold either a provider-specific message ID, an application-specific String or a
provider-native byte[] value.

 Message selectors
A Message contains a built-in facility for supporting application defined property
values. In effect, this provides a mechanism for adding application specific header
fields to a message. Properties allow an application, via message selectors, to
have a JMS provider select/filter messages on its behalf using application-specific
criteria. Application defined properties must obey the following rules:

� Property names must obey the rules for a message selector identifier.

� Property values can be boolean, byte, short, int, long, float, double, and string.

� The following name prefixes are reserved: JMSX, JMS_.

Property values are set prior to sending a message. When a client receives a
message, its properties are in read-only mode. If a client attempts to set properties
at this point, a MessageNotWriteableException is thrown. If clearProperties is
called, the properties can now be both read from and written to.

A property value may duplicate a value in a message's body or it may not.
Although JMS does not define a policy for what should or should not be made a

 Copyright IBM Corp. 1997,1999 161

 JMS messages

property, application developers should note that JMS providers are likely to handle
data in a message's body more efficiently than data in a message's properties. For
best performance, applications should only use message properties when they
need to customize a message's header. The primary reason for doing this is to
support customized message selection.

A JMS message selector allows a client to specify by message header the
messages it's interested in. Only messages whose headers match the selector are
delivered.

Message selectors cannot reference message body values.

A message selector matches a message when the selector evaluates to true when
the message's header field and property values are substituted for their
corresponding identifiers in the selector.

A message selector is a String, whose syntax is based on a subset of the SQL92
conditional expression syntax. The order of evaluation of a message selector is
from left to right within precedence level. Parenthesis can be used to change this
order. Predefined selector literals and operator names are written here in upper
case; however, they are case insensitive.

A selector can contain:

 � Literals

– A string literal is enclosed in single quotes with single quote represented by
doubled single quote such as 'literal' and 'literal''s'; like Java string literals
these use the unicode character encoding.

– An exact numeric literal is a numeric value without a decimal point such as
57, -957, +62; numbers in the range of Java long are supported.

– An approximate numeric literal is a numeric value in scientific notation
such as 7E3, -57.9E2 or a numeric value with a decimal such as 7., -95.7,
+6.2; numbers in the range of Java double are supported.

– The boolean literals TRUE and FALSE.

 � Identifiers:

– An identifier is an unlimited length sequence of Java letters and Java digits,
the first of which must be a Java letter. A letter is any character for which
the method Character.isJavaLetter returns true. This includes '_' and '$'. A
letter or digit is any character for which the method
Character.isJavaLetterOrDigit returns true.

– Identifiers cannot be the names NULL, TRUE, or FALSE.

– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, and IS.

– Identifiers are either header field references or property references.

– Identifiers are case sensitive.

– Message header field references are restricted to JMSDeliveryMode,
JMSPriority, JMSMessageID, JMSTimestamp, JMSCorrelationID, and
JMSType. JMSMessageID, JMSTimestamp, JMSCorrelationID, and
JMSType values may be null and if so are treated as a NULL value.

– Any name beginning with 'JMSX' is a JMS defined property name.

162 MQSeries Using Java

 JMS messages

– Any name beginning with 'JMS_' is a provider-specific property name.

– Any name that does not begin with 'JMS' is an application-specific property
name. If a property is referenced that does not exist in a message its value
is NULL. If it does exist, its value is the corresponding property value.

� Whitespace is the same as that defined for Java: space, horizontal tab, form
feed and line terminator.

 � Expressions:

– A selector is a conditional expression; a selector that evaluates to true
matches; a selector that evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic operations,
identifiers (whose value is treated as a numeric literal) and numeric literals.

– Conditional expressions are composed of themselves, comparison
operations and logical operations.

� Standard bracketing () for ordering expression evaluation is supported.

� Logical operators in precedence order: NOT, AND, OR

� Comparison operators: =, >, >=, <, <=, <> (not equal)

– Only like type values can be compared. One exception to this rule is that it
is valid to compare exact numeric values and approximate numeric values
(the type conversion required is defined by the rules of Java numeric
promotion). If the comparison of non-like types is attempted, the selector is
always false

– String and boolean comparison is restricted to = and <>. Two strings are
equal if and only if they contain the same sequence of characters.

� Arithmetic operators in precedence order:

– +, - unary

– *, / multiplication and division

– +, - addition and subtraction

– Arithmetic operations on a NULL value are not supported; if they are
attempted, the complete selector is always false.

– Arithmetic operations must use Java numeric promotion.

� arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3
comparison operator

– age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19

– age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19

– If any of the exprs of a BETWEEN operation are NULL the value of the
operation is false; if any of the exprs of a NOT BETWEEN operation are
NULL the value of the operation is true.

� identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where
identifier has a String or NULL value.

– Country IN (' UK', 'US', 'France') is true for 'UK' and false for 'Peru' it is
equivalent to the expression (Country = ' UK') OR (Country = ' US') OR
(Country = ' France')

 Chapter 12. JMS messages 163

 JMS messages

– Country NOT IN (' UK', 'US', 'France') is false for 'UK' and true for 'Peru' it
is equivalent to the expression NOT ((Country = ' UK') OR (Country = ' US')
OR (Country = ' France'))

– If identifier of an IN or NOT IN operation is NULL the value of the operation
is unknown.

� identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison
operator, where identifier has a String value; pattern-value is a string literal
where '_' stands for any single character; '%' stands for any sequence of
characters (including the empty sequence); and all other characters stand for
themselves. The optional escape-character is a single character string literal
whose character is used to escape the special meaning of the '_' and '%' in
pattern-value.

– phone LIKE '12%3' is true for '123' '12993' and false for '1234'

– word LIKE 'l_se' is true for 'lose' and false for 'loose'

– underscored LIKE '_%' ESCAPE '\' is true for '_foo' and false for 'bar'

– phone NOT LIKE '12%3' is false for '123' '12993' and true for '1234'

– If identifier of a LIKE or NOT LIKE operation is NULL the value of the
operation is unknown.

� identifier IS NULL comparison operator tests for a null header field value, or a
missing property value.

– prop_name IS NULL

� identifier IS NOT NULL comparison operator tests for the existence of a non
null header field value or a property value.

– prop_name IS NOT NULL

The following message selector selects messages with a message type of car and
color of blue and weight greater than 2500 lbs:

"JMSType = 'car' AND color = 'blue' AND weight > 25ðð"

As noted above, property values may be NULL. The evaluation of selector
expressions containing NULL values is defined by SQL 92 NULL semantics. A brief
description of these semantics is provided here.

� SQL treats a NULL value as unknown.

� Comparison or arithmetic with an unknown value always yields an unknown
value.

� The IS NULL and IS NOT NULL operators convert an unknown value into the
respective TRUE and FALSE values.

Although SQL supports fixed decimal comparison and arithmetic, JMS message
selectors do not. This is the reason for restricting exact numeric literals to those
without a decimal (and the addition of numerics with a decimal as an alternate
representation for an approximate numeric value).

SQL comments are not supported.

164 MQSeries Using Java

 JMS messages

Mapping JMS messages onto MQSeries messages
This section describes how the JMS message structure that is described in the first
part of this chapter is mapped onto an MQSeries message. It is of interest to
programmers wishing to transmit messages between JMS and traditional MQSeries
applications, or to people who wish to manipulate messages transmitted between
two JMS applications - for example in a message broker implementation.

MQSeries messages are composed of three components:

� The MQSeries Message Descriptor (MQMD)
� An MQSeries MQRFH2 header
� The message body.

The MQRFH2 is optional and its inclusion in an outgoing message is governed by a
flag in the JMS Destination class which can be set using the MQSeries JMS
administration tool. As the MQRFH2 is used to carry JMS-specific information, it
should always be included in the message when the sender is aware that the
receiving destination is a JMS application. It would normally be omitted when
sending a message directly to a non-JMS (MQSeries Native application) as such an
application would not expect an MQRFH2 in its MQSeries message. Figure 4
shows the transformation of the structures:

Figure 4. JMS to MQSeries mapping model

The structures are transformed in two ways:

Mapping
Where the MQMD includes a field that is equivalent to the JMS field, the JMS
field is mapped onto the MQMD field. Additional MQMD fields are exposed as
JMS properties, as a JMS application may need to get or set these fields
when communicating with a non-JMS application.

Copying
Where there is no MQMD equivalent, a JMS header field or property is passed,
possibly transformed, as a field inside the MQRFH2.

 Chapter 12. JMS messages 165

 JMS messages

The MQRFH2 Header
This section describes the MQRFH Version 2 header, which is used to carry
JMS-specific data associated with the message content. The MQRFH2 Version 2
is an extensible header, and may be used to carry additional information, not
directly associated with JMS, but this section covers only its use by JMS.

There are two parts of the header, a fixed and a variable portion.

Fixed portion
The fixed portion is modelled on the 'standard' MQSeries header pattern and
consists of the following fields:

StrucId (MQCHAR4)
Structure identifier.
Must be MQRFH_STRUC_ID (value: "RFH ") (initial value).
MQRFH_STRUC_ID_ARRAY (value: 'R','F','H',' ') is also defined in the usual
way.

Version (MQLONG)
Structure version number.
Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)
Total length of MQRFH2, including the NameValueData fields.
The valueset into StrucLength must be a multiple of 4 (the data in the
NameValueData fields may be padded with space characters to achieve this).

Encoding (MQLONG)
Data encoding.
Encoding of any numeric data in the portion of the message following the
MQRFH2 (the next header, or the message data following this header)

CodedCharSetId (MQLONG)
Coded character set identifier.
Representation of any character data in the portion of the message following
the MQRFH2 (the next header, or the message data following this header)

Format (MQCHAR8)
Format name.
Format name for the portion of the message following the MQRFH2.

Flags (MQLONG)
Flags.
MQRFH_NO_FLAGS =0 No flags set

NameValueCCSID (MQLONG)
The coded character set identifier for the NameValueData character strings
contained in this header. The NameValueData may be coded in a character set
that differs from the other character strings that are contained in the header
(StrucID and Format).

If the NameValueCCSID is a 2-byte Unicode CCSID (1200, 13488 or 17584)
the byte order of the Unicode is the same as the byte ordering of the numeric
fields in the MQRFH2 (for example: Version, StrucLength, NameValueCCSID
itself).

166 MQSeries Using Java

 JMS messages

The NameValueCCSID may take only values from the following list:

Variable Portion
The fixed portion is followed by the variable portion which contains a variable
number of MQRFH2 Folders. Each folder contains a variable number of
elements or properties. Folders are used to group together related properties.
The MQRFH2 headers created by JMS can contain up to three folders:

The <mcd> folder
This contains properties that describe the 'shape' or 'format' of the message.
For example the msd property identifies the message as being Text, Bytes,
Stream. Map, Object, or 'Null'. This folder is always present in a JMS
MQRFH2.

The <jms> folder
This is used to transport JMS header fields, and JMSX properties that
cannot be fully expressed in the MQMD. This folder is always present in a
JMS MQRFH2.

The <usr> folder
This is used to transport any application-defined properties associated with
the message. This folder is only present if the application has set some
application-defined properties.

A full list of property names is shown in Table 20.

1200 UCS2 open-ended
1208 UTF8
13488 UCS2 2.0 subset
17584 UCS2 2.1 subset (includes Euro symbol)

Table 20. MQRFH2 folders and properties used by JMS

JMS fields MQRFH2 fields

Name Java type Folder
name

Property
name

Type/values

JMSDestination Destination jms Dst string

JMSExpiration long jms Exp i8

JMSPriority int jms Pri i4

JMSDeliveryMode int jms Dlv i4

JMSCorrelationID String jms Cid string

JMSReplyTo Destination jms Rto string

JMSType String mcd Type string

JMSXGroupID String jms Gid string

JMSXGroupSeq int jms Seq i4

xxx (User Defined) Any usr.xxx xxx any

mcd Msd jms_none
jms_text
jms_bytes
jms_map
jms_stream
jms_object

 Chapter 12. JMS messages 167

 JMS messages

The syntax used to express the properties in the variable portion is as follows:

NameValueLength (MQLONG)
Length in bytes of the NameValueData string immediately following this length
field (it does not include its own length). The value set into NameValueLength
is always a multiple of 4 (the NameValueData field is padded with space
characters to achieve this).

NameValueData (MQCHARn)
A single character string, whose length in bytes is given by the preceding
NameValueLength field. It contains a 'folder' holding a sequence of
'properties'. Each property is a 'name/type/value' triplet, contained within an
XML element whose name is the folder name, as follows:

 <foldername> triplet1 triplet2 tripletn </foldername>

The closing </foldername> tag can be followed by spaces as padding
characters. Each triplet is encoded using an XML-like syntax:

 <name dt="datatype">value</name>

The dt="datatype" element is optional and is omitted for many properties, as
their datatype is predefined. If it is included, one or more space characters
must be included before the 'dt='

name is the name of the property - see Table 20 on page 167

datatype must match, after folding, one of the literal values in Table 21

value is a string representation of the value to be conveyed, as shown in
Table 21

A null value is encoded using the following syntax:

<name/>

Table 21. Property datatypes and values

Datatype Value

string Any sequence of characters excluding < and &
Boolean The character ð or 1 (1=="true")
bin.hex Hexadecimal digits representing octets
i1 A number, expressed using digits ð..9, with optional sign (no fractions or

exponent). Must lie in the range -128 to 127 inclusive
i2 A number, expressed using digits ð..9, with optional sign (no fractions or

exponent). Must lie in the range -32768 to 32767 inclusive
i4 A number, expressed using digits ð..9, with optional sign (no fractions or

exponent). Must lie in the range -2147483648 to 2147483647 inclusive
i8 A number, expressed using digits ð..9, with optional sign (no fractions or

exponent). Must lie in the range -9223372036854775808 to
92233720368547750807 inclusive

int A number, expressed using digits 0..9, with optional sign (no fractions or
exponent). Must lie in the same range as 'i8'. This can be used in place of one
of the 'i*' types if the sender doesn't wish to associate a particular precision
with the property

r4 Floating point number, magnitude <= 3.40282347E+38, >= 1.175E-37
expressed using digits 0..9, optional sign, optional fractional digits, optional
exponent

r8 Floating point number, magnitude <= 1.7976931348623E+308, >= 2.225E-307
expressed using digits 0..9, optional sign, optional fractional digits, optional
exponent

168 MQSeries Using Java

 JMS messages

A string value may contain spaces. The following escape sequences must be
used in a string value:

& for the & character
> for the > character

The following escape sequences may be used, but are not required:

< for the < character
' for the ' character
" for the " character

JMS Fields and Properties with corresponding MQMD Fields
Table 22 lists the properties that are be mapped directly to MQMD fields.

Table 22. JMS properties mapping to MQMD fields

JMS field MQMD field

Header Java
type

Field C type

JMSDeliveryMode int Persistence MQLONG

JMSExpiration long Expiry MQLONG

JMSPriority int Priority MQLONG

JMSMessageID String MessageID MQBYTE24

JMSTimestamp long PutDate
PutTime

MQCHAR8
MQCHAR8

JMSCorrelationID String CorrelId MQBYTE24

Properties

JMSXUserID String UserIdentifier MQCHAR12

JMSXAppID String PutApplName MQCHAR28

JMSXDeliveryCount int BackoutCount MQLONG

JMSXGroupID String GroupId MQBYTE24

JMSXGroupSeq int MsgSeqNumber MQLONG

Provider specific

JMS_IBM_Report_Exception int Report MQLONG

JMS_IBM_Report_Expiration int Report MQLONG

JMS_IBM_Report_COA int Report MQLONG

JMS_IBM_Report_COD int Report MQLONG

JMS_IBM_Report_PAN int Report MQLONG

JMS_IBM_Report_NAN int Report MQLONG

JMS_IBM_Report_Pass_Msg_ID int Report MQLONG

JMS_IBM_Report_Pass_Correl_ID int Report MQLONG

JMS_IBM_MsgType int MsgType MQLONG

JMS_IBM_Feedback int Feedback MQLONG

JMS_IBM_Format String Format MQCHAR8

JMS_IBM_PutApplType int PutApplType MQLONG

 Chapter 12. JMS messages 169

 JMS messages

Mapping JMS fields onto MQSeries fields (Outgoing Messages)
Table 23 shows how the header/property fields are mapped into MQMD/RFH2
fields at send() or publish() time.

For fields marked 'Set by Client', the value transmitted is the value held in the JMS
message immediately prior to the send/publish() - the value in the JMS Message is
left unchanged by the send/publish().

For fields marked 'set by Send Method', a value is assigned when the
send/publish() is executed (any value held in the JMS Message is ignored) and the
value in the JMS message is updated to show the value used.

Fields marked as 'Receive-only' are not transmitted and are left unchanged in the
message by send() or publish().

Table 23 (Page 1 of 2). Outgoing message field mapping

JMS fields Xmitted in Set by

Name MQMD field

Header

JMSDestination MQRFH2 Send
Method

JMSDeliveryMode Persistence MQRFH2 Send
Method

JMSExpiration Expiry MQRFH2 Send
Method

JMSPriority Priority MQRFH2 Send
Method

JMSMessageID MessageID Send
Method

JMSTimestamp PutDate/PutTime Send
Method

JMSCorrelationID CorrelId MQRFH2 Client

JMSReplyTo ReplyToQ/ReplyToQMgr MQRFH2 Client

JMSType MQRFH2 Client

JMSRedelivered Receive-only

Properties

JMSXUserID UserIdentifier Send
Method

JMSXAppID PutApplName Send
Method

JMSXDeliveryCount Receive-only

JMSXGroupID GroupId MQRFH2 Client

JMSXGroupSeq MsgSeqNumber MQRFH2 Client

Provider specific

JMS_IBM_Report_Exception Report Client

JMS_IBM_Report_Expiration Report Client

170 MQSeries Using Java

 JMS messages

Table 23 (Page 2 of 2). Outgoing message field mapping

JMS fields Xmitted in Set by

Name MQMD field

JMS_IBM_Report_COA/COD Report Client

JMS_IBM_Report_NAN/PAN Report Client

JMS_IBM_Report_Pass_Msg_ID Report Client

JMS_IBM_Report_Pass_Correl_ID Report Client

JMS_IBM_MsgType MsgType Client

JMS_IBM_Feedback Feedback Client

JMS_IBM_Format Format Client

JMS_IBM_PutApplType PutApplType Send
Method

Mapping JMS header fields at send()/publish()
The following notes relate to the mapping of JMS fields at send()/publish():

� JMS Destination to MQRFH2: This is stored as a string that serializes the
salient characteristics of the destination object, so that a receiving JMS can
reconstitute an equivalent destination object. The MQRFH2 field is encoded as
URI (see 148 for details of the URI notation).

� JMSReplyTo to MQMD ReplyToQ, ReplyToQMgr, MQRFH2: The Queue and
QueueManager name is copied to the MQMD ReplyToQ and ReplyToQMgr
fields respectively. The destination extension information (other 'useful' details
that are kept in the Destination Object) is copied into the MQRFH2 field. The
MQRFH2 field is encoded as URI (see 148 for details of the URI notation).

� JMSDeliveryMode to MQMD Persistence: The JMSDeliveryMode value is set
by the send/publish() Method or MessageProducer unless overridden by the
Destination Object. The JMSDeliveryMode value is mapped to the MQMD
Persistence field as follows:

– JMS value PERSISTENT is equivalent to MQPER_PERSISTENT,

– JMS value NON_PERSISTENT is equivalent to
MQPER_NOT_PERSISTENT.

If JMSDeliveryMode is set to a non-default value, the delivery mode value is
also encoded in the MQRFH2.

� JMSExpiration to/from MQMD Expiry, MQRFH2: JMSExpiration stores the
time to expire (the sum of the current time and the time to live), whereas
MQMD stores the time to live. Also JMSExpiration is measured in milliseconds,
but MQMD.expiry is in centiseconds.

– If the send() method sets an unlimited time to live, then MQMD Expiry is
set to MQEI_UNLIMITED, and no JMSExpiration is encoded in the
MQRFH2.

– If the send() method sets a limited time to live, and that time to live is less
than 214748364.7 seconds (about 7 years), then the time to live is stored
in MQMD.Expiry and the expiration time (in milliseconds) is encoded as an
i8 value in the MQRFH2.

 Chapter 12. JMS messages 171

 JMS messages

– If the send() method sets a time to live greater than 214748364.7 seconds,
then MQMD.Expiry is set to MQEI_UNLIMITED, but the true expiration time
in milliseconds is encoded as an i8 value in the MQRFH2.

� JMSPriority to MQMD Priority: Directly map JMSPriority value (0-9) onto
MQMD priority value (0-9). If JMSPriority is set to a non-default value, the
priority level is also encoded in the MQRFH2.

� JMSMessageID from MQMD MessageID: All messages sent from JMS have
unique message identifiers assigned by MQSeries. The value assigned is
returned in the MQMD messageId field after the MQPUT call, and is passed
back to the application in the JMSMessageID field. The MQSeries messageId
is a 24-byte binary value, whereas the JMSMessageID is a String. The
JMSMessageID is composed of the binary messageId value converted to a
sequence of 48 hexadecimal characters, prefixed with the characters 'ID:'. JMS
provides a hint that can be set to disable the production of message identifiers.
This hint is ignored, and a unique identifier is assigned in all cases. Any value
set into the JMSMessageId field prior to a send() is overwritten.

� JMSTimestamp from MQMD PutDate, PutTime: After a send, the
JMSTimestamp field is set equal to the date/time value given by the MQMD
PutDate and PutTime fields. Any value set into the JMSMessageId field prior to
a send() is overwritten.

� JMSType to MQRFH2: This string is set into the MQRFH2.

� JMSCorrelationID to MQMD CorrelId, MQRFH2: The JMSCorrelationID can
hold one of the following:

– A provider specific message ID: This should be a message identifier
from a message previously sent or received, and so should be a string of
48 hexadecimal digits prefixed with 'ID:'. The prefix is removed and the
remaining characters converted into binary and are then set into the MQMD
CorrelId field. No correlid value is encoded in the MQRFH2.

– A provider-native byte[] value: The value is copied into the MQMD
CorrelId field - padded with nulls, or truncated to 24 bytes if necessary. No
correlid value is encoded in the MQRFH2.

– An application specific String: The value is copied into the MQRFH2.
The first 24 bytes of the string, in UTF8 format, is written into the MQMD
CorrelID.

Mapping JMS Property Fields
These notes refer to the mapping of JMS property fields in MQSeries messages:

� JMSXUserID from MQMD UserIdentifier: JMSXUserID is set on return from
send call.

� JMSXAppID from MQMD PutApplName: JSMXAppID is set on return from
send call.

� JMSXGroupID to MQRFH2 (point-to-point): For point-to-point messages, the
JMSXGroupID is copied into the MQMD GroupID field.If the JMSXGroupID
starts with the prefix 'ID:' it is converted into binary, otherwise it is encoded as a
UTF8 string. The value is padded or truncated if necessary to a length of 24
bytes. The MQF_MSG_IN_GROUP flag is set.

� JMSXGroupID to MQRFH2 (publish/subscribe): For publish/subscribe
messages, the JMSXGroupID is copied into the MQRFH2 as a string.

172 MQSeries Using Java

 JMS messages

� JMSXGroupSeq MQMD MsgSeqNumber (point-to-point): For point-to-point
messages, the JMSXGroupSeq is copied into the MQMD MsgSeqNumber field.
The MQF_MSG_IN_GROUP flag is set.

� JMSXGroupSeq MQMD MsgSeqNumber (publish/subscribe): For
publish/subscribe messages, the JMSXGroupSeq is copied into the MQRFH2
as an i4.

Mapping JMS Provider-Specific Fields
The following notes refer to the mapping of JMS Provider specific fields into
MQSeries messages:

� JMS_IBM_Report_<name> to MQMD Report: A JMS application can set the
MQMD Report options, using the following JMS_IBM_Report_XXX properties.
The single MQMD is mapped to several JMS_IBM_Report_XXX properties.
The application should set the value of these properties to the standard
MQSeries MQRO_ constants (included in com.ibm.mq.MQC). So, for example,
to request COD with full Data, the application should set
JMS_IBM_Report_COD to the value MQC.MQRO_COD_WITH_FULL_DATA.

JMS _IBM_Report_Exception MQRO_EXCEPTION or
MQRO_EXCEPTION_WITH_DATA or
MQRO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration MQRO_EXPIRATION or
MQRO_EXPIRATION_WITH_DATA or
MQRO_EXPIRATION_WITH_FULL_DATA

JMS_IBM_Report_COA MQRO_COA or
MQRO_COA_WITH_DATA or
MQRO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD MQRO_COD or
MQRO_COD_WITH_DATA or
MQRO_COD_WITH_FULL_DATA

JMS_IBM_Report_PAN MQRO_PAN

JMS_IBM_Report_NAN MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID MQRO_PASS_MSG_ID

JMS_IBM_Report_Pass_Correl_ID MQRO_PASS_CORREL_ID

Note: The Disposition report options cannot be set.

� JMS_IBM_MsgType to MQMD MsgType: Value maps directly onto MQMD
MsgType. If the application has not set an explicit value of JMS_IBM_MsgType,
then a default value is used. This default value is determined as follows:

– If JMSReplyTo is set to an MQSeries queue destination, MSGType is set to
the value MQMT_REQUEST

– If JMSReplyTo is not set, or is set to anything other than an MQSeries
queue destination, MsgType is set to the value MQMT_DATAGRAM

� JMS_IBM_Feedback to MQMD Feedback: Value maps directly onto MQMD
Feedback.

� JMS_IBM_Format to MQMD Format: Value maps directly onto MQMD
Format.

 Chapter 12. JMS messages 173

 JMS messages

Mapping MQSeries fields onto JMS Fields (Incoming Messages)
Table 24 shows how the header/property fields are mapped into MQMD/MQRFH2
fields at send() or publish() time.

Table 24. Incoming message field mapping

JMS fields Retrieved from

Name MQMD field MQRFH2

JMS headers

JMSDestination jms.Dst

JMSDeliveryMode Persistence

JMSExpiration jms.Exp

JMSPriority Priority

JMSMessageID MessageID

JMSTimestamp PutDate
PutTime

JMSCorrelationID CorrelId jms.Cid

JMSReplyTo ReplyToQ
ReplyToQMgr

jms.Rto

JMSType mcd.Type

JMSRedelivered BackoutCount

JMS properties

JMSXUserID UserIdentifier

JMSXAppID PutApplName

JMSXDeliveryCount BackoutCount

JMSXGroupID GroupId jms.Gid

JMSXGroupSeq MsgSeqNumber jms.Seq

JMS provider specific

JMS_IBM_Report_Exception Report

JMS_IBM_Report_Expiration Report

JMS_IBM_Report_COA Report

JMS_IBM_Report_COD Report

JMS_IBM_Report_PAN Report

JMS_IBM_Report_NAN Report

JMS_IBM_Report_ Pass_Msg_ID Report

JMS_IBM_Report_Pass_Correl_ID Report

JMS_IBM_MsgType MsgType

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format

JMS_IBM_PutApplType PutApplType

174 MQSeries Using Java

 JMS messages

Mapping JMS to a Native MQSeries Application
This section describes what happens if we send a message from a JMS Client
application to a traditional MQSeries application which has no knowledge of
MQRFH2 headers. Figure 5 is a diagram of the mapping.

Figure 5. JMS to MQSeries mapping model

The administrator indicates that the JMS Client is communicating with such an
application by setting the MQSeries Destination's TargetClient value to
JMSC.MQJMS_CLIENT_NONJMS_MQ. This indicates no MQRFH2 field is to be
produced.

The mapping from JMS to MQMD targeted at a Native MQSeries application is the
same as for mapping JMS to MQMD targeted at a true JMS client. If an MQSeries
message is received by JMS with the MQMD Format field set to other than
MQFMT_RFH2 then we know we are receiving data from a nonJMS application. If
the Format is MQFMT_STRING, the message is received as a JMS Text Message,
otherwise it is received as a JMS Bytes message. As there is no MQRFH2, then
only those JMS properties that are transmitted in the MQMD can be restored .

 Message Body
This section discusses the encoding of the message body itself. The encoding
depends on the type of JMS message:

ObjectMessage
is an object serialized by the Java Runtime in the normal fashion

TextMessage
is an encoded string. For an outgoing message the string is encoded in the
character set given by the Destination object. This defaults to UTF8 encoding
(the UTF8 encoding starts with the first character of the message - there is no
length field at the start). It is, however, possible to specify any other character
set supported by the MQ Java - such character sets are mainly used when
sending a message to a non-JMS application.

 Chapter 12. JMS messages 175

 JMS messages

If the character set is a double-byte set (including UTF16), then the ordering of
the bytes is determined by the Destination object's integer encoding specification.

An incoming message is interpreted using the character set and encoding
specified in the message itself. These specifications are carried in the rightmost
MQSeries header (or MQMD if there are no headers). For JMS messages the
rightmost header will usually be the MQRFH2.

BytesMessage
is, by default, a sequence of bytes as defined by the JMS 1.02 specification, and
associated JavaDoc.

For an outgoing message that was assembled by the application itself, the
Destination object's encoding property may be used to override the encodings of
integer and floating point fields contained in the message (for example you can
request that floating point values be stored in S/390 rather than IEEE format).

An incoming message is interpreted using the numeric encoding specified in the
message itself. This specification is carried in the rightmost MQSeries header (or
MQMD if there are no headers). For JMS messages the rightmost header will
usually be the MQRFH2.

If a BytesMessage is received and resent without modification, then its body is
transmitted byte for byte as it was received. The Destination object's encoding
property has no effect on the body. The only string-like entity that can be
explicitly sent in a BytesMessage is a UTF8 string. This is encoded in Java
UTF8 format, and starts with a 2-byte length field. The Destination object's
character set property has no effect on the encoding of an outgoing
BytesMessage, and the character set value carried in an incoming MQSeries
message has no effect on the interpretation of that message as a JMS
BytesMessage.

Non-Java applications are unlikely to recognize the Java UTF8 encoding, so a
JMS application that wishes to send a BytesMessage containing some textual
data must itself convert its strings to byte arrays and write these byte arrays into
the BytesMessage.

MapMessage
is a string containing a set of XML name/type/value triplets, encoded as:

<map><elementName1 dt="type">value</elementName1>

<elementName2 dt="type">value</elementName2>.....

</map>

where

type can take one of the values described in Table 20 on page 167.
string is the default datatype, so dt="string" is omitted.

The character set used to encode or interpret the XML string that makes up the
MapMessage body is determined following the rules that apply to a
TextMessage.

StreamMessage
is like a map, but without element names:

<stream><elt dt="type">value</elt>

<elt dt="type">value</elt>.....</stream>

Every element is sent using the same tagname (elt). The default type is string,
so dt="string" is omitted for string elements.

176 MQSeries Using Java

 JMS messages

The character set used to encode or interpret the XML string that makes up the
StreamMessage body is determined following the rules that apply to a
TextMessage.

The MQRFH2.format field is set as follows:

MQFMT_NONE for ObjectMessage, BytesMessage or messages with no body

MQFMT_STRING for TextMessage, StreamMessage or MapMessage

 Chapter 12. JMS messages 177

 JMS messages

178 MQSeries Using Java

 JMS Classes � javax.jms

Chapter 13. JMS interfaces and classes

MQSeries classes for Java Message Service(JMS) consists of a number of java
classes and interfaces based on the Sun javax.jms package of interfaces and
classes. Clients should be written using the Sun interfaces and classes which are
listed below and are described in detail in the following sections. The names of the
MQSeries objects which implement the Sun interfaces and classes have a prefix of
'MQ' (unless stated otherwise in the object description). The descriptions detail any
deviations of the MQSeries objects from the standard JMS definitions. These
deviations are marked with '*'.

Sun Java Message Service classes and interfaces
The following tables list the JMS objects contained in the package javax.jms .
Interfaces marked with '**' are not implemented in this release of MQSeries classes
for Java Message Service(JMS).

Table 25 (Page 1 of 3). Interface Summary

Interface Description

BytesMessage A BytesMessage is used to send a message
containing a stream of uninterpreted bytes.

Connection A JMS Connection is a client's active connection to
its JMS provider.

ConnectionConsumer ** For application servers, Connections provide a
special facility for creating a ConnectionConsumer.

ConnectionFactory A ConnectionFactory encapsulates a set of
connection configuration parameters that has been
defined by an administrator.

ConnectionMetaData ConnectionMetaData provides information describing
the Connection.

DeliveryMode Delivery modes supported by JMS.

Destination The parent interface for Queue and Topic.

ExceptionListener An exception listener is used to receive exceptions
thrown by a Connections asynchronous delivery
threads.

MapMessage A MapMessage is used to send a set of name-value
pairs where names are Strings and values are Java
primitive types.

Message The Message interface is the root interface of all JMS
messages.

MessageConsumer The parent interface for all message consumers.

MessageListener A MessageListener is used to receive asynchronously
delivered messages.

MessageProducer A client uses a message producer to send messages
to a Destination.

ObjectMessage An ObjectMessage is used to send a message that
contains a serializable Java object.

 Copyright IBM Corp. 1997,1999 179

 javax.jms

Table 25 (Page 2 of 3). Interface Summary

Interface Description

Queue A Queue object encapsulates a provider-specific
queue name.

QueueBrowser A client uses a QueueBrowser to look at messages
on a queue without removing them.

QueueConnection A QueueConnection is an active connection to a JMS
point to point provider.

QueueConnectionFactory A client uses a QueueConnectionFactory to create
QueueConnections with a JMS PTP provider.

QueueReceiver A client uses a QueueReceiver for receiving
messages that have been delivered to a queue.

QueueSender A client uses a QueueSender to send messages to a
queue.

QueueSession A QueueSession provides methods for creating
QueueReceivers, QueueSenders, QueueBrowsers
and TemporaryQueues.

ServerSession ** A ServerSession is an object implemented by an
application server.

ServerSessionPool ** A ServerSessionPool is an object implemented by an
application server to provide a pool of ServerSessions
for processing the messages of a
ConnectionConsumer.

Session A JMS Session is a single threaded context for
producing and consuming messages.

StreamMessage A StreamMessage is used to send a stream of Java
primitives.

TemporaryQueue A TemporaryQueue is a unique Queue object created
for the duration of a QueueConnection.

TemporaryTopic A TemporaryTopic is a unique Topic object created
for the duration of a TopicConnection.

TextMessage A TextMessage is used to send a message
containing a java.lang.String.

Topic A Topic object encapsulates a provider-specific topic
name.

TopicConnection A TopicConnection is an active connection to a JMS
Pub/Sub provider.

TopicConnectionFactory A client uses a TopicConnectionFactory to create
TopicConnections with a JMS Pub/Sub provider.

TopicPublisher A client uses a TopicPublisher for publishing
messages on a topic.

TopicSession A TopicSession provides methods for creating
TopicPublishers, TopicSubscribers and
TemporaryTopics.

TopicSubscriber A client uses a TopicSubscriber for receiving
messages that have been published to a topic.

XAConnection ** XAConnection extends the capability of Connection
by providing an XASession.

180 MQSeries Using Java

 javax.jms

Table 25 (Page 3 of 3). Interface Summary

Interface Description

XAConnectionFactory ** Some application servers provide support for
grouping JTS capable resource use into a distributed
transaction.

XAQueueConnection ** XAQueueConnection provides the same create
options as QueueConnection.

XAQueueConnectionFactory
**

An XAQueueConnectionFactory provides the same
create options as a QueueConnectionFactory.

XAQueueSession ** An XAQueueSession provides a regular
QueueSession which can be used to create
QueueReceivers, QueueSenders and
QueueBrowsers.

XASession ** XASession extends the capability of Session by
adding access to a JMS provider's support for JTA.

XATopicConnection ** An XATopicConnection provides the same create
options as TopicConnection.

XATopicConnectionFactory
**

An XATopicConnectionFactory provides the same
create options as TopicConnectionFactory.

XATopicSession ** An XATopicSession provides a regular TopicSession
which can be used to create TopicSubscribers and
TopicPublishers.

Table 26. Class Summary

Class Description

QueueRequestor JMS provides a QueueRequestor helper class to simplify
making service requests.

TopicRequestor JMS provides a TopicRequestor helper class to simplify
making service requests.

 Chapter 13. JMS interfaces and classes 181

 MQSeries classes

MQSeries JMS classes
The following tables list the com.ibm.mq.jms and com.ibm.jms packages which
contain the MQSeries classes that implement the sun interfaces.

Table 27. Package ’com.ibm.mq.jms’ class Summary

Class Implements

MQConnection Connection

MQConnectionConsumer ConnectionConsumer

MQConnectionFactory ConnectionFactory

MQConnectionMetaData ConnectionMetaData

MQDestination Destination

MQMessageConsumer MessageConsumer

MQMessageProducer MessageProducer

MQQueue Queue

MQQueueBrowser QueueBrowser

MQQueueConnection QueueConnection

MQQueueConnectionFactory QueueConnectionFactory

MQQueueEnumeration java.util.Enumeration from QueueBrowser

MQQueueReceiver QueueReceiver

MQQueueSender QueueSender

MQQueueSession QueueSession

MQServerSession ServerSession

MQServerSessionPool ServerSessionPool

MQSession Session

MQTemporaryQueue TemporaryQueue

MQTemporaryTopic TemporaryTopic

MQTopic Topic

MQTopicConnection TopicConnection

MQTopicConnectionFactory TopicConnectionFactory

MQTopicPublisher TopicPublisher

MQTopicSession TopicSession

MQTopicSubscriber TopicSubscriber

182 MQSeries Using Java

 MQSeries classes

The following JMS interfaces are not implemented in this release of MQSeries
classes for Java Message Service(JMS).

 � ConnectionConsumer
 � ServerSession
 � ServerSessionPool
 � XAConnection
 � XAConnectionFactory
 � XAQueueConnection
 � XAQueueConnectionFactory
 � XAQueueSession
 � XASession
 � XATopicConnection
 � XATopicConnectionFactory
 � XATopicSession

Table 28. Package ’com.ibm.jms’ class summary

Class Implements

JMSBytesMessage BytesMessage

JMSMapMessage MapMessage

JMSMessage Message

JMSObjectMessage ObjectMessage

JMSStreamMessage StreamMessage

JMSTextMessage TextMessage

 Chapter 13. JMS interfaces and classes 183

 BytesMessage

 BytesMessage
public interface BytesMessage
extends Message

MQSeries class: JMSBytesMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSBytesMessage

A BytesMessage is used to send a message containing a stream of uninterpreted
bytes. It inherits Message and adds a bytes message body. The receiver of the
message supplies the interpretation of the bytes.

Note: This message type is for client encoding of existing message formats. If
possible, one of the other self-defining message types should be used instead.

See also: MapMessage , Message , ObjectMessage , StreamMessage , and
TextMessage .

 Methods
readBoolean

public boolean readBoolean() throws JMSException

Read a boolean from the bytes message.

Returns: the boolean value read.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if end of message bytes

readByte

public byte readByte() throws JMSException

Read a signed 8-bit value from the bytes message.

Returns: the next byte from the bytes message as a signed 8-bit byte.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readUnsignedByte

184 MQSeries Using Java

 BytesMessage

public int readUnsignedByte() throws JMSException

Read an unsigned 8-bit number from the bytes message.

Returns: the next byte from the bytes message, interpreted as an unsigned
8-bit number.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readShort

public short readShort() throws JMSException

Read a signed 16-bit number from the bytes message.

Returns: the next two bytes from the bytes message, interpreted as a
signed 16-bit number.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readUnsignedShort

public int readUnsignedShort() throws JMSException

Read an unsigned 16-bit number from the bytes message.

Returns: the next two bytes from the bytes message, interpreted as an
unsigned 16-bit integer.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readChar

public char readChar() throws JMSException

Read a Unicode character value from the bytes message.

Returns: the next two bytes from the bytes message as a Unicode
character.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

 Chapter 13. JMS interfaces and classes 185

 BytesMessage

� JMSException - if JMS fails to read message due to some
internal JMS error.

readInt

public int readInt() throws JMSException

Read a signed 32-bit integer from the bytes message.

Returns: the next four bytes from the bytes message, interpreted as an
int.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readLong

public long readLong() throws JMSException

Read a signed 64-bit integer from the bytes message.

Returns: the next eight bytes from the bytes message, interpreted as a
long.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readFloat

public float readFloat() throws JMSException

Read a float from the bytes message.

Returns: the next four bytes from the bytes message, interpreted as a
float.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readDouble

public double readDouble() throws JMSException

Read a double from the bytes message.

Returns: the next eight bytes from the bytes message, interpreted as a
double.

186 MQSeries Using Java

 BytesMessage

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readUTF

public java.lang.String readUTF() throws JMSException

Read in a string that has been encoded using a modified UTF-8 format from
the bytes message. The first two bytes are interpreted as a 2-byte length field.

Returns: a Unicode string from the bytes message.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� MessageEOFException - if end of message bytes

� JMSException - if JMS fails to read message due to some
internal JMS error.

readBytes

public int readBytes(byte[] value) throws JMSException

Read a byte array from the bytes message. If there are sufficient bytes
remaining in the stream the entire buffer is filled, if not, the buffer is partially
filled.

Parameters: value - the buffer into which the data is read.

Returns: the total number of bytes read into the buffer, or -1 if there is no
more data because the end of the bytes has been reached.

Throws:

� MessageNotReadableException - if message in write-only
mode.

� JMSException - if JMS fails to read message due to some
internal JMS error.

readBytes

public int readBytes(byte[] value, int length)

 throws JMSException

Read a portion of the bytes message.

Parameters:

� value- the buffer into which the data is read.

� length- the number of bytes to read.

Returns: the total number of bytes read into the buffer, or -1 if there is no
more data because the end of the bytes has been reached.

 Chapter 13. JMS interfaces and classes 187

 BytesMessage

Throws:

� MessageNotReadableException - if message in write-only
mode.

� IndexOutOfBoundsException - if length is negative, or is less
than the length of the array value

� JMSException - if JMS fails to read message due to some
internal JMS error.

writeBoolean

public void writeBoolean(boolean value) throws JMSException

Write a boolean to the bytes message as a 1-byte value. The value true is
written out as the value (byte)1; the value false is written out as the value
(byte)ð.

Parameters: value - the boolean value to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeByte

public void writeByte(byte value) throws JMSException

Write out a byte to the bytes message as a 1-byte value.

Parameters: value - the byte value to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeShort

public void writeShort(short value) throws JMSException

Write a short to the bytes message as two bytes.

Parameters: value - the short to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeChar

public void writeChar(char value) throws JMSException

Write a char to the bytes message as a 2-byte value, high byte first.

Parameters: value - the char value to be written.

188 MQSeries Using Java

 BytesMessage

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeInt

public void writeInt(int value) throws JMSException

Write an int to the bytes message as four bytes.

Parameters: value - the int to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeLong

public void writeLong(long value) throws JMSException

Write a long to the bytes message as eight bytes,

Parameters: value - the long to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeFloat

public void writeFloat(float value) throws JMSException

Convert the float argument to an int using floatToIntBits method in class
Float, and then writes that int value to the bytes message as a 4-byte
quantity.

Parameters: value - the float value to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeDouble

public void writeDouble(double value) throws JMSException

Convert the double argument to a long using doubleToLongBits method in
class Double, and then writes that long value to the bytes message as an
8-byte quantity.

Parameters: value - the double value to be written.

 Chapter 13. JMS interfaces and classes 189

 BytesMessage

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� .JMSException - if JMS fails to write message due to some
internal JMS error.

writeUTF

public void writeUTF(java.lang.String value)

 throws JMSException

Write a string to the bytes message using UTF-8 encoding in a
machine-independent manner. The UTF-8 string written to the buffer starts with
a 2-byte length field.

Parameters: value - the String value to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeBytes

public void writeBytes(byte[] value) throws JMSException

Write a byte array to the bytes message.

Parameters: value - the byte array to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeBytes

public void writeBytes(byte[] value,

int length) throws JMSException

Write a portion of a byte array to the bytes message.

Parameters:

� value - the byte array value to be written.

� offset - the initial offset within the byte array.

� length - the number of bytes to use.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� JMSException - if JMS fails to write message due to some
internal JMS error.

writeObject

public void writeObject(java.lang.Object value)

 throws JMSException

190 MQSeries Using Java

 BytesMessage

Write a Java object to the bytes message.

Note: This method only works for the primitive object types (Integer, Double,
Long etc.), Strings and byte arrays.

Parameters: value - the Java object to be written.

Throws:

� MessageNotWriteableException - if message in read-only
mode.

� MessageFormatException - if object is invalid type.

� JMSException - if JMS fails to write message due to some
internal JMS error.

reset

public void reset() throws JMSException

Put the message body in read-only mode, and reposition the bytes of bytes to
the beginning.

Throws:

� JMSException - if JMS fails to reset the message due to
some internal JMS error.

� MessageFormatException - if message has an invalid format

 Chapter 13. JMS interfaces and classes 191

 Connection

 Connection
public interface Connection
Subinterfaces: QueueConnection and TopicConnection

MQSeries class: MQConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

A JMS Connection is a client's active connection to its JMS provider.

See also: QueueConnection and TopicConnection

 Methods
getClientID

public java.lang.String getClientID()
 throws JMSException

Get the client identifier for this connection. The client identifier can either be
preconfigured by the administrator in a ConnectionFactory, or assigned by
calling setClientId

Returns: the unique client identifier.

Throws: JMSException - if JMS implementation fails to return the client ID
for this Connection due to some internal error.

setClientID

public void setClientID(java.lang.String clientID)
 throws JMSException

Set the client identifier for this connection.

Note: The client identifier is ignored for point to point connections.

Parameters: clientID - the unique client identifier

Throws:

� JMSException - if JMS implementation fails to set the client
ID for this Connection due to some internal error.

� InvalidClientIDException - if JMS client specifies an invalid or
duplicate client id.

� IllegalStateException - if attempting to set a connection's
client identifier at the wrong time, or if it has been configured
administratively.

getMetaData

public ConnectionMetaData getMetaData() throws JMSException

Get the metadata for this connection.

Returns: the connection metadata.

192 MQSeries Using Java

 Connection

Throws: JMSException - general exception if JMS implementation fails to
get the Connection metadata for this Connection.

See also: ConnectionMetaData

getExceptionListener

public ExceptionListener getExceptionListener()
 throws JMSException

Get the ExceptionListener for this Connection.

Returns: The ExceptionListener for this Connection

Throws: JMSException - general exception if JMS implementation fails to
get the Exception listener for this Connection.

setExceptionListener

public void setExceptionListener(ExceptionListener listener)
 throws JMSException

Set an exception listener for this connection.

Parameters: handler - the exception listener.

Throws: JMSException - general exception if JMS implementation fails to
set the Exception listener for this Connection.

start

public void start() throws JMSException

Start (or restart) a Connection's delivery of incoming messages. Starting a
started session is ignored.

Throws: JMSException - if JMS implementation fails to start the message
delivery due to some internal error.

See also: stop

stop

public void stop() throws JMSException

Used to temporarily stop a Connection's delivery of incoming messages. It can
be restarted using its start method. When stopped, delivery to all the
Connection's message consumers is inhibited. synchronous receives block and
messages are not delivered to message listeners.

Stopping a session has no affect on its ability to send messages. Stopping a
stopped session is ignored.

Throws: JMSException - if JMS implementation fails to stop the message
delivery due to some internal error.

See also: start

close

public void close() throws JMSException

Since a provider typically allocates significant resources outside the JVM on
behalf of a Connection, clients should close them when they are not needed.
Relying on garbage collection to eventually reclaim these resources may not
be timely enough. There is no need to close the sessions, producers, and
consumers of a closed connection

 Chapter 13. JMS interfaces and classes 193

 Connection

Closing a connection causes any of its sessions' in-process transactions to be
rolled back. In the case where a session's work is coordinated by an external
transaction manager, when using XASesssion, a session's commit and rollback
methods are not used and the result of a closed session's work is determined
later by a transaction manager. Closing a connection does NOT force an
acknowledge of client acknowledged sessions.

Throws: JMSException - if JMS implementation fails to close the
connection due to internal error. For example, a failure to release
resources or to close socket connection can lead to throwing of
this exception.

194 MQSeries Using Java

 ConnectionFactory

 ConnectionFactory
public interface ConnectionFactory
Subinterfaces: QueueConnectionFactory and TopicConnectionFactory

MQSeries class: MQConnectionFactory

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

A ConnectionFactory encapsulates a set of connection configuration parameters
that has been defined by an administrator. A client uses it to create a Connection
with a JMS provider.

See also: QueueConnectionFactory and TopicConnectionFactory

 MQSeries constructor
MQConnectionFactory

public MQConnectionFactory()

 Methods
setDescription *

public void setDescription(String x)

A short description of the object

getDescription *

public String getDescription()

Retrieve the object description

setTransportType *

public void setTransportType(int x) throws JMSException

Set the transport type to use. can be either
JMSC.MQJMS_TP_BINDINGS_MQ, or
JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

getTransportType *

Retrieve the transport type

public int getTransportType()

setClientId *

public void setClientId(String x)

Sets the client Identifier to be used for all connections created using this
Connection.

getClientId *

public String getClientId()

Gets the client Identifier that is used for all connections created using this
ConnectionFactory.

 Chapter 13. JMS interfaces and classes 195

 ConnectionFactory

setQueueManager *

public void setQueueManager(String x) throws JMSException

Set the name of the queue manager to connect to

getQueueManager *

public String getQueueManager()

Get the name of the queue manager

setHostName *

public void setHostName(String hostname)

For client only, the name of the host to connect to

getHostName *

public String getHostName()

Retrieve the name of the host

setPort *

public void setPort(int port) throws JMSException

Set the port for a client connection.

Parameters: port - the new value to use.

Throws: JMSException if port is negative

getPort *

public int getPort()

For client connections only, get the port number

setChannel *

public void setChannel(String x) throws JMSException

For client only, set the channel to use

getChannel *

public String getChannel()

For client only, get the channel that was used

setCCSID *

public void setCCSID(int x) throws JMSException

Set the character set of the queue manager

getCCSID *

public int getCCSID()

Get the character set of the queue manager

setReceiveExit *

public void setReceiveExit(String receiveExit)

The name of a class that implements a receive exit

getReceiveExit *

public String getReceiveExit()

Get the name of the receive exit class

196 MQSeries Using Java

 ConnectionFactory

setReceiveExitInit *

public void setReceiveExitInit(String x)

Initialization string that is passed to the constructor of the receive exit class

getReceiveExitInit *

public String getReceiveExitInit()

Get the initialization string that was passed to the receive exit class

setSecurityExit *

public void setSecurityExit(String securityExit)

The name of a class that implements a security exit

getSecurityExit *

public String getSecurityExit()

Get the name of the security exit class

setSecurityExitInit *

public void setSecurityExitInit(String x)

Initialization string that is passed to the security exit constructor

getSecurityExitInit *

public String getSecurityExitInit()

Get the security exit inittialization string

setSendExit *

public void setSendExit(String sendExit)

The name of a class that implements a send exit

getSendExit *

public String getSendExit()

Get the name of the send exit class

setSendExitInit *

public void setSendExitInit(String x)

Initialization string that is passed to the constructor of send exit

getSendExitInit *

public String getSendExitInit()

get the send exit initialization string

 Chapter 13. JMS interfaces and classes 197

 ConnectionMetaData

 ConnectionMetaData
public interface ConnectionMetaData

MQSeries class: MQConnectionMetaData

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionMetaData

ConnectionMetaData provides information describing the Connection.

 MQSeries constructor
MQConnectionMetaData

public MQConnectionMetaData()

 Methods
getJMSVersion

public java.lang.String getJMSVersion() throws JMSException

Get the JMS version.

Returns: the JMS version.

Throws: JMSException - if some internal error occurs in JMS
implementation during the metadata retrieval.

getJMSMajorVersion

public int getJMSMajorVersion() throws JMSException

Get the JMS major version number.

Returns: the JMS major version number.

Throws: JMSException - if some internal error occurs in JMS
implementation during the metadata retrieval.

getJMSMinorVersion

public int getJMSMinorVersion() throws JMSException

Get the JMS minor version number.

Returns: the JMS minor version number.

Throws: JMSException - if some internal error occurs in JMS
implementation during the metadata retrieval.

getJMSXPropertyNames

public java.util.Enumeration getJMSXPropertyNames()
 throws JMSException

Get an enumeration of the names of the JMSX Properties supported by this
connection

Returns: an Enumeration of JMSX PropertyNames

Throws: JMSException - if some internal error occurs in JMS
implementation ring during the property names retrieval

198 MQSeries Using Java

 ConnectionMetaData

getJMSProviderName

public java.lang.String getJMSProviderName()
 throws JMSException

Get the JMS provider name.

Returns: the JMS provider name.

Throws: JMSException - if some internal error occurs in JMS
implementation during the meta-data retrieval.

getProviderVersion

public java.lang.String getProviderVersion()
 throws JMSException

Get the JMS provider version.

Returns: the JMS provider version.

Throws: JMSException - if some internal error occurs in JMS
implementation during the metadata retrieval.

getProviderMajorVersion

public int getProviderMajorVersion() throws JMSException

Get the JMS provider major version number.

Returns: the JMS provider major version number.

Throws: JMSException - if some internal error occurs in JMS
implementation during the metadata retrieval.

getProviderMinorVersion

public int getProviderMinorVersion() throws JMSException

Get the JMS provider minor version number.

Returns: the JMS provider minor version number.

Throws: JMSException - if some internal error occurs in JMS
implementation during the metadata retrieval.

toString *

public String toString()

Overrides: toString in class Object

getJMSXPropertyNames

public java.util.Enumeration getJMSXPropertyNames()

 throws JMSException

Get an enumeration of JMSX Property Names.

Returns:
an Enumeration of JMSX PropertyNames.

Throws:
JMSException - if some internal error occurs in JMS
implementation during the property names retrieval.

 Chapter 13. JMS interfaces and classes 199

 DeliveryMode

 DeliveryMode
public interface DeliveryMode

Delivery modes supported by JMS.

 Fields
NON_PERSISTENT

public static final int NON_PERSISTENT

This is the lowest overhead delivery mode because it does not require that the
message be logged to stable storage.

PERSISTENT

public static final int PERSISTENT

This mode instructs the JMS provider to log the message to stable storage as
part of the client's send operation.

200 MQSeries Using Java

 Destination

 Destination
public interface Destination
Subinterfaces: Queue and Topic

MQSeries class: MQDestination

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

The Destination object encapsulates provider-specific addresses.

See also: Queue and Topic

 MQSeries constructors
MQDestination

public MQDestination()

 Methods
setDescription *

public void setDescription(String x)

A short description of the object

getDescription *

public String getDescription()

Get the description of the object

setPriority *

public void setPriority(int priority) throws JMSException

Used to override the priority of all messages sent to this destination

getPriority *

public int getPriority()

Get the override priority value

setExpiry *

public void setExpiry(int expiry) throws JMSException

Used to override the expiry of all messages sent to this destination

getExpiry *

public int getExpiry()

Get the value of the expiry for this destination

setPersistence *

public void setPersistence(int persistence)

 throws JMSException

Used to override the persistence of all messages sent to this destination

 Chapter 13. JMS interfaces and classes 201

 Destination

getPersistence *

public int getPersistence()

Get the value of the persistence for this destination

setTargetClient *

public void setTargetClient(int targetClient)

 throws JMSException

Flag to indicate whether or not the remote application is JMS compliant

getTargetClient *

public int getTargetClient()

Get JMS compliance indicator flag

setCCSID *

public void setCCSID(int x) throws JMSException

Character set to be used to encode text strings in messages sent to this
destination. See Table 16 on page 93 for a list of allowed values.

getCCSID *

public int getCCSID()

Get the name of the character set that is used by this destination

setEncoding *

public void setEncoding(int x) throws JMSException

Specifies the encoding to be used for numeric fields in messages sent to this
destination. See 92 for a list of allowed values

getEncoding *

public int getEncoding()

Get the encoding that is used for this destination.

202 MQSeries Using Java

 ExceptionListener

 ExceptionListener
public interface ExceptionListener

If a JMS provider detects a serious problem with a Connection it will inform the
Connection's ExceptionListener if one has been registered. It does this by calling
the listener's onException() method passing it a JMSException describing the
problem.

This allows a client to be asynchronously notified of a problem. Some Connections
only consume messages so they would have no other way to learn their
Connection has failed.

Exceptions are delivered when:

� There is a failure in receiving an asynchronous message
� A message throws a runtime exception

 Methods
onException

public void onException(JMSException exception)

Notify user of a JMS exception.

Parameters: exception - the JMS exception. These are exceptions that result
from asynchronous message delivery and typically indicate a
problem with receiving a message from the queue manager, or
possibly an internal error in the JMS implementation.

 Chapter 13. JMS interfaces and classes 203

 MapMessage

 MapMessage
public interface MapMessage
extends Message

MQSeries class: JMSMapMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSMapMessage

A MapMessage is used to send a set of name-value pairs where names are Strings
and values are Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined.

See also: BytesMessage , Message , ObjectMessage , StreamMessage , and
TextMessage

 Methods
getBoolean

public boolean getBoolean(java.lang.String name)
 throws JMSException

Return the boolean value with the given name.

Parameters: name - the name of the boolean

Returns: the boolean value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

getByte

public byte getByte(java.lang.String name)
 throws JMSException

Return the byte value with the given name.

Parameters: name - the name of the byte

Returns: the byte value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

204 MQSeries Using Java

 MapMessage

getShort

public short getShort(java.lang.String name) throws JMSException

Return the short value with the given name.

Parameters: name - the name of the short

Returns: the short value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

getChar

public char getChar(java.lang.String name)
 throws JMSException

Return the Unicode character value with the given name.

Parameters: name - the name of the Unicode character

Returns: the Unicode character value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

getInt

public int getInt(java.lang.String name)
 throws JMSException

Return the integer value with the given name.

Parameters: name - the name of the integer

Returns: the integer value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

getLong

public long getLong(java.lang.String name)
 throws JMSException

Return the long value with the given name.

Parameters: name - the name of the long

Returns: the long value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

 Chapter 13. JMS interfaces and classes 205

 MapMessage

getFloat

public float getFloat(java.lang.String name) throws JMSException

Return the float value with the given name.

Parameters: name - the name of the float

Returns: the float value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

getDouble

public double getDouble(java.lang.String name) throws JMSException

Return the double value with the given name.

Parameters: name - the name of the double

Returns: the double value with the given name.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

getString

public java.lang.String getString(java.lang.String name)
 throws JMSException

Return the String value with the given name.

Parameters: name - the name of the String

Returns: the String value with the given name. If there is no item by this
name, a null value is returned.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

getBytes

public byte[] getBytes(java.lang.String name) throws JMSException

Return the byte array value with the given name.

Parameters: name - the name of the byte array

Returns: a copy of the byte array value with the given name. If there is no
item by this name, a null value is returned.

Throws:

JMSException - if JMS fails to read message due to some
internal JMS error.

MessageFormatException - if this type conversion is invalid.

206 MQSeries Using Java

 MapMessage

getObject

public java.lang.Object getObject(java.lang.String name)
 throws JMSException

Return the Java object value with the given name. This method returns in
object format, a value that has been stored in the Map either using the
setObject method call, or the equivalent primitive set method.

Parameters: name - the name of the Java object

Returns: a copy of the Java object value with the given name, in object
format (if it is set as an int, then a Integer is returned). If there is
no item by this name, a null value is returned.

Throws: JMSException - if JMS fails to read message due to some
internal JMS error.

getMapNames

public java.util.Enumeration getMapNames() throws JMSException

Return an Enumeration of all the Map message's names.

Returns: an enumeration of all the names in this Map message.

Throws: JMSException - if JMS fails to read message due to some
internal JMS error

setBoolean

public void setBoolean(java.lang.String name,
boolean value) throws JMSException

Set a boolean value with the given name, into the Map.

Parameters:

name - the name of the boolean

value - the boolean value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

setByte

public void setByte(java.lang.String name,
byte value) throws JMSException

Set a byte value with the given name, into the Map.

Parameters:

name - the name of the byte

value - the byte value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error

MessageNotWriteableException - if message in read-only
mode.

 Chapter 13. JMS interfaces and classes 207

 MapMessage

setShort

public void setShort(java.lang.String name,
short value) throws JMSException

Set a short value with the given name, into the Map.

Parameters:

name - the name of the short

value - the short value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

setChar

public void setChar(java.lang.String name,
char value) throws JMSException

Set a Unicode character value with the given name, into the Map.

Parameters:

name - the name of the Unicode character

value - the Unicode character value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

setInt

public void setInt(java.lang.String name,
int value) throws JMSException

Set an integer value with the given name, into the Map.

Parameters:

name - the name of the integer

value - the integer value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

setLong

public void setLong(java.lang.String name,
long value) throws JMSException

Set a long value with the given name, into the Map.

208 MQSeries Using Java

 MapMessage

Parameters:

name - the name of the long

value - the long value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode

setFloat

public void setFloat(java.lang.String name,
float value) throws JMSException

Set a float value with the given name, into the Map.

Parameters:

name - the name of the float

value - the float value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

setDouble

public void setDouble(java.lang.String name,
double value) throws JMSException

Set a double value with the given name, into the Map.

Parameters:

name - the name of the double

value - the double value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode

setString

public void setString(java.lang.String name,
java.lang.String value) throws JMSException

Set a String value with the given name, into the Map.

Parameters:

name - the name of the String

value - the String value to set in the Map.

 Chapter 13. JMS interfaces and classes 209

 MapMessage

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

setBytes

public void setBytes(java.lang.String name,
byte[] value) throws JMSException

Set a byte array value with the given name, into the Map.

Parameters:

name - the name of the byte array

value - the byte array value to set in the Map.

The array is copied, so the value in the map is not altered by
subsequent modifications to the array.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

setBytes

public void setBytes(java.lang.String name,
 byte[] value,

 int offset,

int length) throws JMSException

Set a portion of the byte array value with the given name, into the Map.

The array is copied, so the value in the map is not altered by subsequent
modifications to the array.

Parameters:

name - the name of the byte array

value - the byte array value to set in the Map.

offset - the initial offset within the byte array.

length - the number of bytes to be copied.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageNotWriteableException - if message in read-only
mode.

210 MQSeries Using Java

 MapMessage

setObject

public void setObject(java.lang.String name,
java.lang.Object value) throws JMSException

Set a Java object value with the given name, into the Map. This method only
works for object primitive types (Integer, Double, Long, for example), Strings
and byte arrays.

Parameters:

name - the name of the Java object

value - the Java object value to set in the Map.

Throws:

JMSException - if JMS fails to write message due to some
internal JMS error.

MessageFormatException - if object is invalid

MessageNotWriteableException - if message in read-only
mode.

itemExists

public boolean itemExists(java.lang.String name)
 throws JMSException

Check if an item exists in this MapMessage.

Parameters: name - the name of the item to test

Returns: true if the item does exist.

Throws: JMSException - if a JMS error occurs.

 Chapter 13. JMS interfaces and classes 211

 Message

 Message
public interface Message
Subinterfaces: BytesMessage , MapMessage , ObjectMessage ,
StreamMessage ,and TextMessage

MQSeries class: JMSMessage

java.lang.Object

 |

 +----com.ibm.jms.MQJMSMessage

The Message interface is the root interface of all JMS messages. It defines the
JMS header and the acknowledge method used for all messages.

 Fields
DEFAULT_DELIVERY_MODE

public static final int DEFAULT_DELIVERY_MODE

The default delivery mode value

DEFAULT_PRIORITY

public static final int DEFAULT_PRIORITY

The default priority value

DEFAULT_TIME_TO_LIVE

public static final long DEFAULT_TIME_TO_LIVE

The default time to live value.

 Methods
getJMSMessageID

public java.lang.String getJMSMessageID()
 throws JMSException

Get the message ID.

Returns: the message ID

Throws: JMSException - if JMS fails to get the message Id due to internal
JMS error.

See also: setJMSMessageID()

setJMSMessageID

public void setJMSMessageID(java.lang.String id)
 throws JMSException

Set the message ID.

Any value set using this method is ignored when the message is sent, but this
method can be used to change the value in a received message.

Parameters: id - the ID of the message

212 MQSeries Using Java

 Message

Throws: JMSException - if JMS fails to set the message Id due to internal
JMS error.

See also: getJMSMessageID()

getJMSTimestamp

public long getJMSTimestamp() throws JMSException

Get the message timestamp.

Any value set using this method is ignored when the message is sent, but this
method can be used to change the value in a received message.

Returns: the message timestamp

Throws: JMSException - if JMS fails to get the Timestamp due to internal
JMS error.

See also: setJMSTimestamp()

setJMSTimestamp

public void setJMSTimestamp(long timestamp)
 throws JMSException

Set the message timestamp.

Parameters: timestamp - the timestamp for this message

Throws: JMSException - if JMS fails to set the timestamp due to some
internal JMS error.

See also: getJMSTimestamp()

getJMSCorrelationIDAsBytes

public byte[] getJMSCorrelationIDAsBytes()
 throws JMSException

Get the correlation ID as an array of bytes for the message.

Returns: the correlation ID of a message as an array of bytes.

Throws: JMSException - if JMS fails to get correlationId due to some
internal JMS error.

See also: setJMSCorrelationID(), getJMSCorrelationID(),
setJMSCorrelationIDAsBytes()

setJMSCorrelationIDAsBytes

public void setJMSCorrelationIDAsBytes(byte[]
correlationID) throws JMSException

Set the correlation ID as an array of bytes for the message. A client can use
this call to set the correlationID equal either to a messageID from a previous
message, or to an application-specific string. Application-specific strings must
not start with the characters ID:

Parameters: correlationID - the correlation ID as a string, or the message ID of
a message being referred to

Throws: JMSException - if JMS fails to set correlationId due to some
internal JMS error.

See also: setJMSCorrelationID(), getJMSCorrelationID(),
getJMSCorrelationIDAsBytes()

 Chapter 13. JMS interfaces and classes 213

 Message

getJMSCorrelationID

public java.lang.String getJMSCorrelationID()
 throws JMSException

Get the correlation ID for the message.

Returns: the correlation ID of a message as a String.

Throws: JMSException - if JMS fails to get correlationId due to some
internal JMS error.

See also: setJMSCorrelationID(), getJMSCorrelationIDAsBytes(),
setJMSCorrelationIDAsBytes()

getJMSReplyTo

public Destination getJMSReplyTo() throws JMSException

Get where a reply to this message should be sent.

Returns: where to send a response to this message

Throws: JMSException - if JMS fails to get ReplyTo Destination due to
some internal JMS error.

See also: setJMSReplyTo()

setJMSCorrelationID

public void setJMSCorrelationID
 (java.lang.String correlationID)

 throws JMSException

Set the correlation ID for the message.

A client can use the JMSCorrelationID header field to link one message with
another. A typically use is to link a response message with its request
message.

Note: The use of a byte[] value for JMSCorrelationID is non-portable.

Parameters: correlationID - the message ID of a message being referred to.

Throws: JMSException - if JMS fails to set correlationId due to some
internal JMS error.

See also: getJMSCorrelationID(), getJMSCorrelationIDAsBytes(),
setJMSCorrelationIDAsBytes()

setJMSReplyTo

public void setJMSReplyTo(Destination replyTo)
 throws JMSException

Set where a reply to this message should be sent.

Parameters: replyTo - where to send a response to this message. A null
value indicates that no reply is expected.

Throws: JMSException - if JMS fails to set ReplyTo Destination due to
some internal JMS error.

See also: getJMSReplyTo()

214 MQSeries Using Java

 Message

getJMSDestination

public Destination getJMSDestination() throws JMSException

Get the destination for this message.

Any value set using this method is ignored when the message is sent, but this
method can be used to change the value in a received message.

Returns: the destination of this message.

Throws: JMSException - if JMS fails to get JMS Destination due to some
internal JMS error.

See also: setJMSDestination()

setJMSDestination

public void setJMSDestination(Destination destination)
 throws JMSexception

Set the destination for this message.

Parameters: destination - the destination for this message.

Throws: JMSException - if JMS fails to set JMS Destination due to some
internal JMS error.

See also: getJMSDestination()

getJMSDeliveryMode

public int getJMSDeliveryMode() throws JMSException

Get the delivery mode for this message.

Any value set using this method is ignored when the message is sent, but this
method can be used to change the value in a received message.

Returns: the delivery mode of this message.

Throws: JMSException - if JMS fails to get JMS DeliveryMode due to
some internal JMS error.

See also: setJMSDeliveryMode(), DeliveryMode

setJMSDeliveryMode

public void setJMSDeliveryMode(int deliveryMode)
 throws JMSException

Set the delivery mode for this message.

Parameters: deliveryMode - the delivery mode for this message.

Throws: JMSException - if JMS fails to set JMS DeliveryMode due to
some internal JMS error.

See also: getJMSDeliveryMode(), DeliveryMode

getJMSRedelivered

public boolean getJMSRedelivered() throws JMSException

Get an indication of whether this message is being redelivered.

If a client receives a message with the redelivered indicator set, it is likely, but
not guaranteed, that this message was delivered to the client earlier but the
client did not acknowledge its receipt at that earlier time.

 Chapter 13. JMS interfaces and classes 215

 Message

Any value set using this method is ignored when the message is sent, but this
method can be used to change the value in a received message.

Returns: set to true if this message is being redelivered.

Throws: JMSException - if JMS fails to get JMS Redelivered flag due to
some internal JMS error.

See also: setJMSRedelivered()

setJMSRedelivered

public void setJMSRedelivered(boolean redelivered)
 throws JMSException

Set to indicate whether this message is being redelivered.

Parameters: redelivered - an indication of whether this message is being
redelivered.

Throws: JMSException - if JMS fails to set JMSRedelivered flag due to
some internal JMS error.

See also: getJMSRedelivered()

getJMSType

public java.lang.String getJMSType() throws JMSException

Get the message type.

Returns: the message type

Throws: JMSException - if JMS fails to get JMS message type due to
some internal JMS error.

See also: setJMSType()

setJMSType

public void setJMSType(java.lang.String type)
 throws JMSException

Set the message type.

JMS clients should assign a value to type whether the application makes use
of it or not. This insures that it is properly set for those providers that require it.

Parameters: type - the class of message

Throws: JMSException - if JMS fails to set JMS message type due to
some internal JMS error.

See also: getJMSType()

getJMSExpiration

public long getJMSExpiration() throws JMSException

Get the message's expiration value.

Any value set using this method is ignored when the message is sent, but this
method can be used to change the value in a received message.

Returns: the time the message expires. It is the sum of the time-to-live
value specified by the client, and the GMT at the time of the
send.

216 MQSeries Using Java

 Message

Throws: JMSException - if JMS fails to get JMS message expiration due
to some internal JMS error.

See also: setJMSExpiration()

setJMSExpiration

public void setJMSExpiration(long expiration)
 throws JMSException

Set the message's expiration value.

Parameters: expiration - the message's expiration time

Throws: JMSException - if JMS fails to set JMS message expiration due
to some internal JMS error.

See also: getJMSExpiration()

getJMSPriority

public int getJMSPriority() throws JMSException

Get the message priority.

Returns: the message priority

Throws: JMSException - if JMS fails to get JMS message priority due to
some internal JMS error.

See also: setJMSPriority() for priority levels

setJMSPriority

public void setJMSPriority(int priority)
 throws JMSException

Set the priority for this message.

JMS defines a ten level priority value with 0 as the lowest priority and 9 as the
highest. In addition, clients should consider priorities 0-4 as gradations of
normal priority and priorities 5-9 as gradations of expedited priority.

Parameters: priority - the priority of this message

Throws: JMSException - if JMS fails to set JMS message priority due to
some internal JMS error.

See also: getJMSPriority()

clearProperties

public void clearProperties() throws JMSException

Clear a message's properties. The header fields and message body are not
cleared.

Throws: JMSException - if JMS fails to clear JMS message properties due
to some internal JMS error.

propertyExists

public boolean propertyExists(java.lang.String name)
 throws JMSException

Check if a property value exists.

Parameters: name - the name of the property to test

Returns: true if the property does exist.

 Chapter 13. JMS interfaces and classes 217

 Message

Throws: JMSException - if JMS fails to check if property exists due to
some internal JMS error.

getBooleanProperty

public boolean getBooleanProperty(java.lang.String name)
 throws JMSException

Return the boolean property value with the given name.

Parameters: name - the name of the boolean property

Returns: the boolean property value with the given name.

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid

getByteProperty

public byte getByteProperty(java.lang.String name)
 throws JMSException

Return the byte property value with the given name.

Parameters: name - the name of the byte property

Returns: the byte property value with the given name.

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid.

getShortProperty

public short getShortProperty(java.lang.String name)
 throws JMSException

Return the short property value with the given name.

Parameters: name - the name of the short property

Returns: the short property value with the given name.

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid.

getIntProperty

public int getIntProperty(java.lang.String name)
 throws JMSException

Return the integer property value with the given name.

Parameters: name - the name of the integer property

Returns: the integer property value with the given name.

218 MQSeries Using Java

 Message

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid.

getLongProperty

public long getLongProperty(java.lang.String name)
 throws JMSException

Return the long property value with the given name.

Parameters: name - the name of the long property

Returns: the long property value with the given name.

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid.

getFloatProperty

public float getFloatProperty(java.lang.String name)
 throws JMSException

Return the float property value with the given name.

Parameters: name - the name of the float property

Returns: the float property value with the given name.

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid.

getDoubleProperty

public double getDoubleProperty(java.lang.String name)
 throws JMSException

Return the double property value with the given name.

Parameters: name - the name of the double property

Returns: the double property value with the given name.

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid.

getStringProperty

public java.lang.String getStringProperty (java.lang.String name)
 throws JMSException

Return the String property value with the given name.

Parameters: name - the name of the String property

 Chapter 13. JMS interfaces and classes 219

 Message

Returns: the String property value with the given name. If there is no
property by this name, a null value is returned.

Throws:

� JMSException - if JMS fails to get Property due to some
internal JMS error.

� MessageFormatException - if this type conversion is invalid.

getObjectProperty

public java.lang.Object getObjectProperty
 (java.lang.String name)

 throws JMSException

Return the Java object property value with the given name.

Parameters: name - the name of the Java object property

Returns: the Java object property value with the given name, in object
format (for example, if it set as an int, then a Integer is returned).
If there is no property by this name, a null value is returned.

Throws: JMSException - if JMS fails to get Property due to some internal
JMS error.

getPropertyNames

public java.util.Enumeration getPropertyNames()
 throws JMSException

Return an Enumeration of all the property names.

Returns: an enumeration of all the names of property values.

Throws: JMSException - if JMS fails to get Property names due to some
internal JMS error.

setBooleanProperty

public void setBooleanProperty(java.lang.String name,
boolean value) throws JMSException

Set a boolean property value with the given name, into the Message.

Parameters:

� name - the name of the boolean property

� value - the boolean property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

setByteProperty

public void setByteProperty(java.lang.String name,
byte value) throws JMSException

Set a byte property value with the given name, into the Message.

220 MQSeries Using Java

 Message

Parameters:

� name - the name of the byte property

� value - the byte property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

setShortProperty

public void setShortProperty(java.lang.String name,
short value) throws JMSException

Set a short property value with the given name, into the Message.

Parameters:

� name - the name of the short property

� value - the short property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

setIntProperty

public void setIntProperty(java.lang.String name,
int value) throws JMSException

Set an integer property value with the given name, into the Message.

Parameters:

� name - the name of the integer property

� value - the integer property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

setLongProperty

public void setLongProperty(java.lang.String name,
long value) throws JMSException

Set a long property value with the given name, into the Message.

Parameters:

� name - the name of the long property

� value - the long property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

 Chapter 13. JMS interfaces and classes 221

 Message

setFloatProperty

public void setFloatProperty(java.lang.String name,
float value) throws JMSException

Set a float property value with the given name, into the Message.

Parameters:

� name - the name of the float property

� value - the float property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

setDoubleProperty

public void setDoubleProperty(java.lang.String name,
double value) throws JMSException

Set a double property value with the given name, into the Message.

Parameters:

� name - the name of the double property

� value - the double property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

setStringProperty

public void setStringProperty(java.lang.String name,
 java.lang.String value)

 throws JMSException

Set a String property value with the given name, into the Message.

Parameters:

� name - the name of the String property

� value - the String property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageNotWriteableException - if properties are read-only

setObjectProperty

public void setObjectProperty(java.lang.String name,
 java.lang.Object value)

 throws JMSException

Set a property value with the given name, into the Message.

222 MQSeries Using Java

 Message

Parameters:

� name - the name of the Java object property.

� value - the Java object property value to set in the Message.

Throws:

� JMSException - if JMS fails to set Property due to some
internal JMS error.

� MessageFormatException - if object is invalid

� MessageNotWriteableException - if properties are read-only

acknowledge

public void acknowledge() throws JMSException

Acknowledge this and all previous messages received by the session.

Throws: JMSException - if JMS fails to acknowledge due to some internal
JMS error.

clearBody

public void clearBody() throws JMSException

Clear out the message body. All other parts of the message are left
 untouched.

Throws: JMSException - if JMS fails to due to some internal JMS error.

 Chapter 13. JMS interfaces and classes 223

 MessageConsumer

 MessageConsumer
public interface MessageConsumer
Subinterfaces: QueueReceiver and TopicSubscriber

MQSeries class: MQMessageConsumer

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageConsumer

The parent interface for all message consumers.
A client uses a message consumer to receive messages from a Destination.

 Methods
getMessageSelector

public java.lang.String getMessageSelector()
 throws JMSException

Get this message consumer's message selector expression.

Returns: this message consumer's message selector

Throws: JMSException - if JMS fails to get message selector due to some
JMS error

getMessageListener

public MessageListener getMessageListener()
 throws JMSException

Get the message consumer's MessageListener.

Returns: the listener for the message consumer, or null if a listener is
 not set.

Throws: JMSException - if JMS fails to get message listener due to some
JMS error

See also: setMessageListener

setMessageListener

public void setMessageListener(MessageListener listener)
 throws JMSException

Set the message consumer's MessageListener.

Parameters: messageListener - the messages are delivered to this listener

Throws: JMSException - if JMS fails to set message listener due to some
JMS error

See also: getMessageListener

receive

public Message receive() throws JMSException

Receive the next message produced for this message consumer.

Returns: the next message produced for this message consumer.

224 MQSeries Using Java

 MessageConsumer

Throws: JMSException - if JMS fails to receive the next message due to
some error.

receive

public Message receive(long timeOut) throws JMSException

Receive the next message that arrives within the specified timeout interval. A
timeout value of zero causes the call to wait indefinitely until a message
arrives.

Parameters: timeout - the timeout value (in milliseconds)

Returns: the next message produced for this message consumer, or null if
one is not available.

Throws: JMSException - if JMS fails to receive the next message due to
some error.

receiveNoWait

public Message receiveNoWait() throws JMSException

Receive the next message if one is immediately available.

Returns: the next message produced for this message consumer, or null if
one is not available.

Throws: JMSException - if JMS fails to receive the next message due to
some error.

close

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a
MessageConsumer outside the JVM, clients should close them when they are
not needed. Relying on garbage collection to eventually reclaim these
resources may not be timely enough.

This call blocks until a receive or message listener in progress has completed.

Throws: JMSException - if JMS fails to close the consumer due to some
error.

 Chapter 13. JMS interfaces and classes 225

 MessageListener

 MessageListener
public interface MessageListener

A MessageListener is used to receive asynchronously delivered messages.

 Methods
onMessage

public void onMessage(Message message)

Pass a message to the Listener.

Parameters: message - the message passed to the listener.

See also Session.setMessageListener

226 MQSeries Using Java

 MessageProducer

 MessageProducer
public interface MessageProducer
Subinterfaces: QueueSender and TopicPublisher

MQSeries class: MQMessageProducer

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageProducer

A client uses a message producer to send messages to a Destination.

 MQSeries constructors
MQMessageProducer

public MQMessageProducer()

 Methods
setDisableMessageID

public void setDisableMessageID(boolean value)
 throws JMSException

Set whether message IDs are disabled.

Message IDs are enabled by default.

Note: This method is ignored in the MQSeries classes for Java Message
Service(JMS) implementation.

Parameters: value - indicates if message IDs are disabled.

Throws: JMSException - if JMS fails to set disabled message Id due to
some internal error.

getDisableMessageID

public boolean getDisableMessageID() throws JMSException

Get an indication of whether message IDs are disabled.

Returns: an indication of whether message IDs are disabled.

Throws: JMSException - if JMS fails to get disabled message Id due to
some internal error.

setDisableMessageTimestamp

public void setDisableMessageTimestamp(boolean value)
 throws JMSException

Set whether message timestamps are disabled.

Message timestamps are enabled by default.

Note: This method is ignored in the MQSeries classes for Java Message
Service(JMS) implementation.

Parameters: value - indicates if message timestamps are disabled.

 Chapter 13. JMS interfaces and classes 227

 MessageProducer

Throws: JMSException - if JMS fails to set disabled message timestamp
due to some internal error.

getDisableMessageTimestamp

public boolean getDisableMessageTimestamp()
 throws JMSException

Get an indication of whether message timestamps are disabled.

Returns: an indication of whether message IDs are disabled.

Throws: JMSException - if JMS fails to get disabled message timestamp
due to some internal error.

setDeliveryMode

public void setDeliveryMode(int deliveryMode)
 throws JMSException

Set the producer's default delivery mode.

Delivery mode is set to PERSISTENT by default.

Parameters: deliveryMode - the message delivery mode for this message
 producer.

Throws: JMSException - if JMS fails to set delivery mode due to some
internal error.

See also: getDeliveryMode

getDeliveryMode

public int getDeliveryMode() throws JMSException

Get the producer's default delivery mode.

Returns: the message delivery mode for this message producer.

Throws: JMSException - if JMS fails to get delivery mode due to some
internal error.

See also: setDeliveryMode

setPriority

public void setPriority(int priority)
 throws JMSException

Set the producer's default priority.

Priority is set to 4, by default.

Parameters: priority - the message priority for this message producer.

Throws: JMSException - if JMS fails to set priority due to some internal
error.

See also: getPriority

getPriority

public int getPriority() throws JMSException

Get the producer's default priority.

Returns: the message priority for this message producer.

228 MQSeries Using Java

 MessageProducer

Throws: JMSException - if JMS fails to get priority due to some internal
error.

See also: setPriority

setTimeToLive

public void setTimeToLive(long timeToLive)
 throws JMSException

Set the default length of time in milliseconds from its dispatch time that a
produced message should be retained by the message system.

Time to live is set to zero by default.

Parameters: timeToLive - the message time to live in milliseconds; zero is
unlimited

Throws: JMSException - if JMS fails to set Time to Live due to some
internal error.

See also: getTimeToLive

getTimeToLive

public long getTimeToLive() throws JMSException

Get the default length of time in milliseconds from its dispatch time that a
produced message should be retained by the message system.

Returns: the message time to live in milliseconds; zero is unlimited

Throws: JMSException - if JMS fails to get Time to Live due to some
internal error.

See also: setTimeToLive

close

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a
MessageProducer outside the JVM, clients should close them when they are
not needed. Relying on garbage collection to eventually reclaim these
resources may not be timely enough.

Throws: JMSException - if JMS fails to close the producer due to some
error.

 Chapter 13. JMS interfaces and classes 229

 MQQueueEnumeration

 MQQueueEnumeration *
public class MQQueueEnumeration
extends Object
implements Enumeration

java.lang.Object

 |

 +----com.ibm.mq.jms.MQQueueEnumeration

Enumeration of messages on a queue. This class is not defined in the JMS
specification, it is created by calling the getEnumeration method of
MQQueueBrowser. The class contains a base MQ queue instance to hold the
browse cursor. The queue is closed once the cursor has moved off the end of the
queue.
There is no way of resetting an instance of this class - it acts as a 'one-shot'
mechanism.

See also: MQQueueBrowser

 Methods
hasMoreElements

public boolean hasMoreElements()

Indicate whether we can return another message

nextElement

public Object nextElement() throws NoSuchElementException

Return the current message.

If hasMoreElements() returns 'true', nextElement() always returns a message.
It is possible for the returned message to pass its expiry date between the
hasMoreElements() and the nextElement calls.

230 MQSeries Using Java

 ObjectMessage

 ObjectMessage
public interface ObjectMessage
extends Message

MQSeries class: JMSObjectMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSObjectMessage

An ObjectMessage is used to send a message that contains a serializable Java
object. It inherits from Message and adds a body containing a single Java
reference. Only Serializable Java objects can be used.

See also: BytesMessage , MapMessage , Message , StreamMessage and
TextMessage

 Methods
setObject

public void setObject(java.io.Serializable object)
 throws JMSException

Set the serializable object containing this message's data. The ObjectMessage
contains a snapshot of the object at the time setObject() is called. Subsequent
modifications of the object have no effect on the ObjectMessage body."

Parameters: object - the message's data

Throws:

� JMSException - if JMS fails to set object due to some
internal JMS error

� MessageFormatException - if object serialization fails

� MessageNotWriteableException - if message in read-only
mode

getObject

public java.io.Serializable getObject()
 throws JMSException

Get the serializable object containing this message's data. The default value is
null.

Returns: the serializable object containing this message's data

Throws:

� JMSException - if JMS fails to get object due to some
internal JMS error

� MessageFormatException - if object deserialization fails

 Chapter 13. JMS interfaces and classes 231

 Queue

 Queue
public interface Queue
extends Destination Subinterfaces: TemporaryQueue

MQSeries class: MQQueue

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQQueue

A Queue object encapsulates a provider-specific queue name. It is the way a client
specifies the identity of a queue to JMS methods.

 MQSeries constructors
MQQueue *

public MQQueue()

Default constructor for use by the administration tool.

MQQueue *

public MQQueue(String URIqueue)

Create a new MQQueue instance. The string takes a URI format as described
on page 148.

MQQueue *

public MQQueue(String queueManagerName,

 String queueName)

 Methods
getQueueName

public java.lang.String getQueueName()
 throws JMSException

Get the name of this queue.

Clients that depend upon the name, are not portable.

Returns: the queue name

Throws: JMSException - if JMS implementation for Queue fails to return
queue name due to some internal error.

toString

public java.lang.String toString()

Return a pretty printed version of the queue name

Returns: the provider specific identity values for this queue.

Overrides: toString in class java.lang.Object

232 MQSeries Using Java

 Queue

getReference *

public Reference getReference() throws NamingException

Create a reference for this queue

Returns: a reference for this object

Throws: NamingException

setBaseQueueName *

public void setBaseQueueName(String x) throws JMSException

Set the value of the MQSeries queue name.

Note: This method should only be used by the administration tool. It makes
no attempt to decode queue:qmgr:queue format strings.

getBaseQueueName *

public String getBaseQueueName()

Returns: the value of the MQSeries Queue name.

setBaseQueueManagerName *

public void setBaseQueueManagerName(String x) throws JMSException

Set the value of the MQSeries queue manager name.

Note: This method should only be used by the administration tool.

getBaseQueueManagerName *

public String getBaseQueueManagerName()

Returns: the value of the MQSeries Queue manager name

 Chapter 13. JMS interfaces and classes 233

 QueueBrowser

 QueueBrowser
public interface QueueBrowser

MQSeries class: MQQueueBrowser

java.lang.Object

 |

 +----com.ibm.mq.jms.MQQueueBrowser

A client uses a QueueBrowser to look at messages on a queue without removing
them.

Note: The MQSeries class MQQueueEnumeration is used to hold the browse
cursor.

See also: QueueReceiver

 Methods
getQueue

public Queue getQueue() throws JMSException

Get the queue associated with this queue browser.

Returns: the queue

Throws: JMSException - if JMS fails to get the queue associated with this
Browser due to some JMS error.

getMessageSelector

public java.lang.String getMessageSelector()
 throws JMSException

Get this queue browser's message selector expression.

Returns: this queue browser's message selector

Throws: JMSException - if JMS fails to get the message selector for this
browser due to some JMS error.

getEnumeration

public java.util.Enumeration getEnumeration()
 throws JMSException

Get an enumeration for browsing the current queue messages in the order they
would be received.

Returns: an enumeration for browsing the messages

Throws: JMSException - if JMS fails to get the enumeration for this
browser due to some JMS error.

Note: If the browser is created for a non-existent queue,this is
not detected until the first call to getEnumeration.

234 MQSeries Using Java

 QueueBrowser

close

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a QueueBrowser
outside the JVM, clients should close them when they are not needed. Relying
on garbage collection to eventually reclaim these resources may not be timely
enough.

Throws: JMSException - if a JMS fails to close this Browser due to some
JMS error.

 Chapter 13. JMS interfaces and classes 235

 QueueConnection

 QueueConnection
public interface QueueConnection
extends Connection
Subinterfaces: XAQueueConnection

MQSeries class: MQQueueConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

 |

 +----com.ibm.mq.jms.MQQueueConnection

A QueueConnection is an active connection to a JMS point to point provider. A
client uses a QueueConnection to create one or more QueueSessions for
producing and consuming messages.

 Methods
createQueueSession

public QueueSession createQueueSession(boolean transacted,
 int acknowledgeMode)

 throws JMSException

Create a QueueSession

Parameters:

� transacted - if true, the session is transacted.

� acknowledgeMode - indicates whether the consumer or the
client will acknowledge any messages it receives. possible
values are:

 Session.AUTO_ACKNOWLEDGE
 Session.CLIENT_ACKNOWLEDGE
 Session.DUPS_OK_ACKNOWLEDGE

This parameter is ignored if the session is transacted.

Returns: a newly created queue session.

Throws: JMSException - if JMS Connection fails to create a session due
to some internal error or lack of support for specific transaction
and acknowledgement mode.

createConnectionConsumer

public ConnectionConsumer createConnectionConsumer
 (Queue queue,

 java.lang.String message

 Selector,

 ServerSessionPool

 sessionPool,

 int maxMessages)

 throws JMSException

Create a connection consumer for this connection.

236 MQSeries Using Java

 QueueConnection

Note: This method is not implemented in MQSeries classes for Java Message
Service(JMS).

close *

public void close() throws JMSException

Overrides: close in class MQConnection

 Chapter 13. JMS interfaces and classes 237

 QueueConnectionFactory

 QueueConnectionFactory
public interface QueueConnectionFactory
extends ConnectionFactory
Subinterfaces: XAQueueConnectionFactory

MQSeries class: MQQueueConnectionFactory

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.MQQueueConnectionFactory

A client uses a QueueConnectionFactory to create QueueConnections with a JMS
PTP provider.

See also: ConnectionFactory

 MQSeries constructor
MQQueueConnectionFactory

public MQQueueConnectionFactory()

 Methods
createQueueConnection

public QueueConnection createQueueConnection()
 throws JMSException

Create a queue connection with default user identity. The connection is
created in stopped mode. No messages will be delivered until Connection.start
method is explicitly called.

Returns: a newly created queue connection.

Throws:

� JMSException - if JMS Provider fails to create Queue
Connection due to some internal error.

� JMSSecurityException - if client authentication fails due to
invalid user name or password.

createQueueConnection

public QueueConnection createQueueConnection
 (java.lang.String userName,

 java.lang.String password)

 throws JMSException

Create a queue connection with specified user identity.

Note: This method can be used only with transport type
JMSC.MQJMS_TP_CLIENT_MQ_TCPIP (see ConnectionFactory). The
connection is created in stopped mode. No messages will be delivered until
Connection.start method is explicitly called.

238 MQSeries Using Java

 QueueConnectionFactory

Parameters:

� userName - the caller's user name

� password - the caller's password

Returns: a newly created queue connection.

Throws:

� JMSException - if JMS Provider fails to create Queue
Connection due to some internal error.

� JMSSecurityException - if client authentication fails due to
invalid user name or password.

setTemporaryModel *

public void setTemporaryModel(String x) throws JMSException

getTemporaryModel *

public String getTemporaryModel()

getReference *

public Reference getReference() throws NamingException

Create a reference for this queue connection factory

Returns: a reference for this object

Throws: NamingException

 Chapter 13. JMS interfaces and classes 239

 QueueReceiver

 QueueReceiver
public interface QueueReceiver
extends MessageConsumer

MQSeries class: MQQueueReceiver

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageConsumer

 |

 +----com.ibm.mq.jms.MQQueueReceiver

A client uses a QueueReceiver for receiving messages that have been delivered to
a queue.

See also: MessageConsumer

This class inherits the following classes from MQMessageConsumer .

 � receive
 � receiveNoWait
 � close
 � getMessageListener
 � setMessageListener

 Methods
getQueue

public Queue getQueue() throws JMSException

Get the queue associated with this queue receiver.

Returns: the queue

Throws: JMSException - if JMS fails to get queue for this queue receiver
due to some internal error.

240 MQSeries Using Java

 QueueRequestor

 QueueRequestor

java.lang.Object

 |

 +----javax.jms.QueueRequestor

public class QueueRequestor
extends java.lang.Object

JMS provides this QueueRequestor helper class to simplify making service
requests.
The QueueRequestor constructor is given a non-transacted QueueSession and a
destination Queue. It creates a TemporaryQueue for the responses and provides a
request() method that sends the request message and waits for its reply.
Users are free to create more sophisticated versions.

See also: TopicRequestor

 Constructors
QueueRequestor

public QueueRequestor(QueueSession session,

Queue queue) throws JMSException

This implementation assumes the session parameter to be non-transacted and
either AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE.

Parameters:

� session - the queue session the queue belongs to.
� queue - the queue to perform the request/reply call on.

Throws: JMSException - if a JMS error occurs.

 Methods
request

public Message request(Message message)
 throws JMSException

Send a request and wait for a reply. The temporary queue is used for replyTo,
and only one reply per request is expected.

Parameters: message - the message to send.

Returns: the reply message.

Throws: JMSException - if a JMS error occurs.

close

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a QueueRequestor
outside the JVM, clients should close them when they are not needed. Relying
on garbage collection to eventually reclaim these resources may not be timely
enough.

 Chapter 13. JMS interfaces and classes 241

 QueueRequestor

Note: This method closes the Session object passed to the QueueRequestor
constructor.

Throws: JMSException - if a JMS error occurs.

242 MQSeries Using Java

 QueueSender

 QueueSender
public interface QueueSender
extends MessageProducer

MQSeries class: MQQueueSender

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageProducer

 |

 +----com.ibm.mq.jms.MQQueueSender

A client uses a QueueSender to send messages to a queue.

A QueueSender is normally associated with a particular Queue, however it is
possible to create an unidentified QueueSender, not associated with any given
Queue.

See also: MessageProducer

 Methods
getQueue

public Queue getQueue() throws JMSException

Get the queue associated with this queue sender.

Returns: the queue

Throws: JMSException - if JMS fails to get the queue for this queue
sender due to some internal error.

send

public void send(Message message) throws JMSException

Send a message to the queue. Use the QueueSender's default delivery mode,
timeToLive and priority.

Parameters: message - the message to be sent

Throws:

� JMSException - if JMS fails to send the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
a Queue sender with an invalid queue.

send

public void send(Message message,
 int deliveryMode,

 int priority,

long timeToLive) throws JMSException

Send a message specifying delivery mode, priority and time to live to the
queue.

 Chapter 13. JMS interfaces and classes 243

 QueueSender

Parameters:

� message - the message to be sent

� deliveryMode - the delivery mode to use

� priority - the priority for this message

� timeToLive - the message's lifetime (in milliseconds).

Throws:

� JMSException - if JMS fails to send the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
a Queue sender with an invalid queue.

send

public void send(Queue queue,
Message message) throws JMSException

Send a message to the specified queue with the QueueSender's default
delivery mode, timeToLive and priority.

Note: This method can only be used with unidentified QueueSenders.

Parameters:

� queue - the queue that this message should be sent to

� message - the message to be sent

Throws:

� JMSException - if JMS fails to send the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
an invalid queue.

send

public void send(Queue queue,
 Message message,

 int deliveryMode,

 int priority,

long timeToLive) throws JMSException

Send a message to the specified queue with delivery mode, priority and time to
live.

Note: This method can only be used with unidentified QueueSenders.

Parameters:

� queue - the queue that this message should be sent to

� message - the message to be sent

� deliveryMode - the delivery mode to use

� priority - the priority for this message

� timeToLive - the message's lifetime (in milliseconds).

244 MQSeries Using Java

 QueueSender

Throws:

� JMSException - if JMS fails to send the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
an invalid queue.

close *

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a
MessageProducer outside the JVM, clients should close them when they are
not needed. Relying on garbage collection to eventually reclaim these
resources may not be timely enough.

Throws: JMSException if JMS fails to close the producer due to some
error.

Overrides: close in class MQMessageProducer

 Chapter 13. JMS interfaces and classes 245

 QueueSession

 QueueSession
public interface QueueSession
extends Session

MQSeries class: MQQueueSession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

 |

 +----com.ibm.mq.jms.MQQueueSession

A QueueSession provides methods for creating QueueReceivers, QueueSenders,
QueueBrowsers and TemporaryQueues.

See also: Session

The following methods are inherited from MQsession :

 � close
 � commit
 � rollback
 � recover

 Methods
createQueue

public Queue createQueue(java.lang.String queueName)
 throws JMSException

Create a Queue given a Queue name. This allows the creation of a queue with
a provider specific name. The string takes a URI format as described on page
148.

Note: Clients that depend on this ability are not portable.

Parameters: queueName - the name of this queue

Returns: a Queue with the given name.

Throws: JMSException - if a session fails to create a queue due to some
JMS error.

createReceiver

public QueueReceiver createReceiver(Queue queue)
 throws JMSException

Create a QueueReceiver to receive messages from the specified queue.

Parameters: queue - the queue to access

Throws:

� JMSException - if a session fails to create a receiver due to
some JMS error.

� InvalidDestinationException - if invalid Queue specified.

246 MQSeries Using Java

 QueueSession

createReceiver

public QueueReceiver createReceiver(Queue queue,
 java.lang.String messageSelector)

 throws JMSException

Create a QueueReceiver to receive messages from the specified queue.

Parameters:

� queue - the queue to access

� messageSelector - only messages with properties matching
the message selector expression are delivered

Throws:

� JMSException - if a session fails to create a receiver due to
some JMS error.

� InvalidDestinationException - if invalid Queue specified.

� InvalidSelectorException - if the message selector is invalid.

createSender

public QueueSender createSender(Queue queue)
 throws JMSException

Create a QueueSender to send messages to the specified queue.

Parameters: queue - the queue to access, or null if this is to be an unidentified
 producer.

Throws:

� JMSException - if a session fails to create a sender due to
some JMS error.

� InvalidDestinationException - if invalid Queue specified.

createBrowser

public QueueBrowser createBrowser(Queue queue)
 throws JMSException

Create a QueueBrowser to peek at the messages on the specified queue.

Parameters: queue - the queue to access

Throws:

� JMSException - if a session fails to create a browser due to
some JMS error.

� InvalidDestinationException - if invalid Queue specified.

createBrowser

public QueueBrowser createBrowser(Queue queue,
 java.lang.String messageSelector)

 throws JMSException

Create a QueueBrowser to peek at the messages on the specified queue.

 Chapter 13. JMS interfaces and classes 247

 QueueSession

Parameters:

� queue - the queue to access

� messageSelector - only messages with properties matching
the message selector expression are delivered

Throws:

� JMSException - if a session fails to create a browser due to
some JMS error.

� InvalidDestinationException - if invalid Queue specified.

� InvalidSelectorException - if the message selector is invalid.

createTemporaryQueue

public TemporaryQueue createTemporaryQueue()
 throws JMSException

Create a temporary queue. It's lifetime will be that of the QueueConnection
unless deleted earlier.

Returns: a temporary queue.

Throws: JMSException - if a session fails to create a Temporary Queue
due to some JMS error.

248 MQSeries Using Java

 Session

 Session
public interface Session
extends java.lang.Runnable
Subinterfaces: QueueSession , TopicSession and XASession

MQSeries class: MQSession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

A JMS Session is a single threaded context for producing and consuming
messages.

See also: QueueSession and TopicSession ,

 Fields
AUTO_ACKNOWLEDGE

public static final int AUTO_ACKNOWLEDGE

With this acknowledgement mode, the session automatically acknowledges a
message when it has either successfully returned from a call to receive, or the
message listener it has called to process the message successfully returns.

CLIENT_ACKNOWLEDGE

public static final int CLIENT_ACKNOWLEDGE

With this acknowledgement mode, the client acknowledges a message by
calling a message's acknowledge method.

DUPS_OK_ACKNOWLEDGE

public static final int DUPS_OK_ACKNOWLEDGE

This acknowledgement mode instructs the session to lazily acknowledge the
delivery of messages.

 Methods
createBytesMessage

public BytesMessage createBytesMessage()
 throws JMSException

Create a BytesMessage. A BytesMessage is used to send a message
containing a stream of uninterpreted bytes.

Throws: JMSException - if JMS fails to create this message due to some
internal error.

createMapMessage

public MapMessage createMapMessage() throws JMSException

Create a MapMessage. A MapMessage is used to send a self-defining set of
name-value pairs where names are Strings and values are Java primitive
types.

 Chapter 13. JMS interfaces and classes 249

 Session

Throws: JMSException - if JMS fails to create this message due to some
internal error.

createMessage

public Message createMessage() throws JMSException

Create a Message. The Message interface is the root interface of all JMS
messages. It holds all the standard message header information. It can be sent
when a message containing only header information is sufficient.

Throws: JMSException - if JMS fails to create this message due to some
internal error.

createObjectMessage

public ObjectMessage createObjectMessage()
 throws JMSException

Create an ObjectMessage. An ObjectMessage is used to send a message that
contains a serializable Java object.

Throws: JMSException - if JMS fails to create this message due to some
internal error.

createObjectMessage

public ObjectMessage createObjectMessage
 (java.io.Serializable object)

 throws JMSException

Create an initialized ObjectMessage. An ObjectMessage is used to send a
message that contains a serializable Java object.

Parameters: object - the object to use to initialize this message.

Throws: JMSException - if JMS fails to create this message due to some
internal error.

createStreamMessage

public StreamMessage createStreamMessage()

 throws JMSException

Create a StreamMessage. A StreamMessage is used to send a self-defining
stream of Java primitives.

Throws: JMSException if JMS fails to create this message due to some
internal error.

createTextMessage

public TextMessage createTextMessage() throws JMSException

Create a TextMessage. A TextMessage is used to send a message containing
a String.

Throws: JMSException - if JMS fails to create this message due to some
internal error.

createTextMessage

public TextMessage createTextMessage
 (java.lang.String string)

 throws JMSException

Create an initialized TextMessage. A TextMessage is used to send a message
containing a String.

250 MQSeries Using Java

 Session

Parameters: string - the string used to initialize this message.

Throws: JMSException - if JMS fails to create this message due to some
internal error.

getTransacted

public boolean getTransacted() throws JMSException

Is the session in transacted mode?

Returns: true if in transacted mode

Throws: JMSException - if JMS fails to return the transaction mode due to
internal error in JMS Provider.

commit

public void commit() throws JMSException

Commit all messages done in this transaction and releases any locks currently
held.

Throws:

� JMSException - if JMS implementation fails to commit the
transaction due to some internal error.

� TransactionRolledBackException - if the transaction gets
rolled back due to some internal error during commit.

rollback

public void rollback() throws JMSException

Rollback any messages done in this transaction and releases any locks
currently held.

Throws: JMSException - if JMS implementation fails to rollback the
transaction due to some internal error.

close

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a Session outside
the JVM, clients should close them when they are not needed. Relying on
garbage collection to eventually reclaim these resources may not be timely
enough.

Closing a transacted session rolls back any in-progress transaction. Closing a
session automatically closes its message producers and consumer, so there is
no need to close them individually.

Throws: JMSException - if JMS implementation fails to close a Session
due to some internal error.

recover

public void recover() throws JMSException

Stop message delivery in this session, and restart sending messages with the
oldest unacknowledged message.

Throws: JMSException - if JMS implementation fails to stop message
delivery and restart message send due to due to some internal
error.

 Chapter 13. JMS interfaces and classes 251

 Session

getMessageListener

public MessageListener getMessageListener()
 throws JMSException

Return the session's distinguished message listener.

Note: This method is not implemented.

Returns: the message listener associated with this session.

Throws: JMSException - if JMS fails to get the message listener due to an
internal error in JMS Provider.

See also: setMessageListener

setMessageListener

public void setMessageListener(MessageListener listener)
 throws JMSException

Set the session's distinguished message listener. When it is set no other form
of message receipt in the session can be used; however, all forms of sending
messages are still supported.

This is an expert facility not used by regular JMS clients.

Note: This method is not implemented

Parameters: listener - the message listener to associate with this session.

Throws: JMSException - if JMS fails to set the message listener due to an
internal error in JMS Provider.

See also: getMessageListener

run

public void run()

Reserved for use with the advanced server facilities.

Note: This method is not implemented

252 MQSeries Using Java

 StreamMessage

 StreamMessage
public interface StreamMessage
extends Message

MQSeries class: JMSStreamMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSStreamMessage

A StreamMessage is used to send a stream of Java primitives.

See also: BytesMessage , MapMessage , Message , ObjectMessage and
TextMessage

 Methods
readBoolean

public boolean readBoolean() throws JMSException

Read a boolean from the stream message.

Returns: the boolean value read.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� MessageFormatException - if this type conversion is invalid

� MessageNotReadableException - if message in write-only
mode.

readByte

public byte readByte() throws JMSException

Read a byte value from the stream message.

Returns: the next byte from the stream message as an 8-bit byte

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� MessageFormatException - if this type conversion is invalid

� MessageNotReadableException - if message in write-only
mode.

 Chapter 13. JMS interfaces and classes 253

 StreamMessage

readShort

public short readShort() throws JMSException

Read a 16-bit number from the stream message.

Returns: a 16-bit number from the stream message.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� MessageFormatException - if this type conversion is invalid

� MessageNotReadableException - if message in write-only
mode.

readChar

public char readChar() throws JMSException

Read a Unicode character value from the stream message.

Returns: a Unicode character from the stream message.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� MessageFormatException if this type conversion is invalid

� MessageNotReadableException if message in write-only
mode.

readInt

public int readInt() throws JMSException

Read a 32-bit integer from the stream message.

Returns: a 32-bit integer value from the stream message, interpreted as an
int.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� MessageFormatException if this type conversion is invalid

� MessageNotReadableException if message in write-only
mode.

readLong

public long readLong() throws JMSException

Read a 64-bit integer from the stream message.

254 MQSeries Using Java

 StreamMessage

Returns: a 64-bit integer value from the stream message, interpreted as a
long.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream

� MessageFormatException if this type conversion is invalid

� MessageNotReadableException if message in write-only
mode.

readFloat

public float readFloat() throws JMSException

Read a float from the stream message.

Returns: a float value from the stream message.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream

� MessageFormatException if this type conversion is invalid

� MessageNotReadableException - if message in write-only
mode.

readDouble

public double readDouble() throws JMSException

Read a double from the stream message.

Returns: a double value from the stream message.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� MessageFormatException - if this type conversion is invalid

� MessageNotReadableException - if message in write-only
mode.

readString

public java.lang.String readString() throws JMSException

Read in a string from the stream message.

Returns: a Unicode string from the stream message.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

 Chapter 13. JMS interfaces and classes 255

 StreamMessage

� MessageEOFException - if an end of message stream is
received

� MessageFormatException - if this type conversion is invalid

� MessageNotReadableException - if message in write-only
mode

readBytes

public int readBytes(byte[] value)

throws JMSExceptioneam message.

Read a byte array field from the stream message into the specified byte
lbrk.rbrk. object (the read buffer). If the buffer size is less than or equal to the
size of the data in the message field, then an application must make further
calls to this method to retrieve the remainder of the data. Once the first
readBytes call on a byte£‘ field value has been done, the full value of the field
must be read before it is valid to read the next field. An attempt to read the
next field before that has been done will throw a MessageFormatException.

Parameters: value - the buffer into which the data is read.

Returns: the total number of bytes read into the buffer, or -1 if there is no
more data because the end of the byte field has been reached.

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� MessageFormatException - if this type conversion is invalid

� MessageNotReadableException - if message in write-only
mode.

readObject

public java.lang.Object readObject() throws JMSException

Read a Java object from the stream message.

Returns: a Java object from the stream message, in object format (for
example, if it was set as an int, then a Integer is returned)

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageEOFException - if an end of message stream is
received

� NotReadableException if message in write-only mode.

writeBoolean

public void writeBoolean(boolean value) throws JMSException

Write a boolean to the stream message.

Parameters: value - the boolean value to be written.

256 MQSeries Using Java

 StreamMessage

Throws:

� JMSException - if JMS fails to read message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeByte

public void writeByte(byte value) throws JMSException

Write out a byte to the stream message.

Parameters: value - the byte value to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeShort

public void writeShort(short value) throws JMSException

Write a short to the stream message.

Parameters: value - the short to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeChar

public void writeChar(char value) throws JMSException

Write a char to the stream message.

Parameters: value - the char value to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeInt

public void writeInt(int value) throws JMSException

Write an int to the stream message.

Parameters: value - the int to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

 Chapter 13. JMS interfaces and classes 257

 StreamMessage

writeLong

public void writeLong(long value) throws JMSException

Write a long to the stream message.

Parameters: value - the long to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeFloat

public void writeFloat(float value) throws JMSException

Write a float to the stream message.

Parameters: value - the float value to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeDouble

public void writeDouble(double value) throws JMSException

Write a double to the stream message.

Parameters: value - the double value to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeString

public void writeString(java.lang.String value)
 throws JMSException

Write a string to the stream message.

Parameters: value - the String value to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeBytes

public void writeBytes(byte[] value) throws JMSException

Write a byte array to the stream message.

258 MQSeries Using Java

 StreamMessage

Parameters: value - the byte array to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeBytes

public void writeBytes(byte[] value,
 int offset,

int length) throws JMSException

Write a portion of a byte array to the stream message.

Parameters:

� value - the byte array value to be written.

� offset - the initial offset within the byte array.

� length - the number of bytes to use.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

writeObject

public void writeObject(java.lang.Object value)
 throws JMSException

Write a Java object to the stream message. This method only works for object
primitive types (Integer, Double, Long, for example), Strings, and byte arrays.

Parameters: value - the Java object to be written.

Throws:

� JMSException - if JMS fails to write message due to some
internal JMS error.

� MessageNotWriteableException - if message in read-only
mode.

� MessageFormatException - if the object is invalid

reset

public void reset() throws JMSException

Put the message in read-only mode, and reposition the stream to the
beginning.

Throws:

� JMSException - if JMS fails to reset the message due to
some internal JMS error.

� MessageFormatException - if message has an invalid format

 Chapter 13. JMS interfaces and classes 259

 TemporaryQueue

 TemporaryQueue
public interface TemporaryQueue
extends Queue

MQSeries class: MQTemporaryQueue

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQQueue

 |

 +----com.ibm.mq.jms.MQTemporaryQueue

A TemporaryQueue is a unique Queue object created for the duration of a
QueueConnection.

 Methods
delete

public void delete() throws JMSException

Delete this temporary queue. If there are still existing senders or receivers
using it, then a JMSException will be thrown.

Throws: JMSException - if JMS implementation fails to delete a
TemporaryQueue due to some internal error.

260 MQSeries Using Java

 TemporaryTopic

 TemporaryTopic
public interface TemporaryTopic
extends Topic

MQSeries class: MQTemporaryTopic

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQTopic

 |

 +----com.ibm.mq.jms.MQTemporaryTopic

A TemporaryTopic is a unique Topic object created for the duration of a
TopicConnection and can only be consumed by consumers of that connection.

 MQSeries constructor
 MQTemporaryTopic

MQTemporaryTopic() throws JMSException

 Methods
delete

public void delete() throws JMSException

Delete this temporary topic. If there are still existing publishers or subscribers
still using it, then a JMSException will be thrown.

Throws: JMSException - if JMS implementation fails to delete a
TemporaryTopic due to some internal error.

 Chapter 13. JMS interfaces and classes 261

 TextMessage

 TextMessage
public interface TextMessage
extends Message

MQSeries class: JMSTextMessage

java.lang.Object

 |

 +----com.ibm.jms.JMSMessage

 |

 +----com.ibm.jms.JMSTextMessage

TextMessage is used to send a message containing a java.lang.String. It inherits
from Message and adds a text message body.

See also: BytesMessage , MapMessage , Message , ObjectMessage and
StreamMessage

 Methods
setText

public void setText(java.lang.String string)
 throws JMSException

Set the string containing this message's data.

Parameters: string - the String containing the message's data

Throws:

� JMSException - if JMS fails to set text due to some internal
JMS error.

� MessageNotWriteableException - if message in read-only
mode.

getText

public java.lang.String getText() throws JMSException

Get the string containing this message's data. The default value is null.

Returns: the String containing the message's data

Throws: JMSException - if JMS fails to get text due to some internal JMS
error.

262 MQSeries Using Java

 Topic

 Topic
public interface Topic
extends Destination
Subinterfaces: TemporaryTopic

MQSeries class: MQTopic

java.lang.Object

 |

 +----com.ibm.mq.jms.MQDestination

 |

 +----com.ibm.mq.jms.MQTopic

A Topic object encapsulates a provider-specific topic name. It is the way a client
specifies the identity of a topic to JMS methods.

See also: Destination

 MQSeries constructor
MQTopic

public MQTopic()

public MQTopic(string URItopic)

See TopicSession.createTopic.

 Methods
getTopicName

public java.lang.String getTopicName() throws JMSException

Get the name of this topic in URI format. (URI format is described on 148.)

Note: Clients that depend upon the name, are not portable.

Returns: the topic name

Throws: JMSException - if JMS implementation for Topic fails to return
topic name due to some internal error.

toString

public String toString()

Return a pretty printed version of the Topic name

Returns: the provider specific identity values for this Topic.

Overrides: toString in class Object

getReference *

public Reference getReference()

Create a reference for this queue

Returns: a reference for this object

Throws: NamingException

 Chapter 13. JMS interfaces and classes 263

 Topic

setBaseTopicName *

public void setBaseTopicName(String x)

set method for the underlying MQSeries topic name.

getBaseTopicName

public String getBaseTopicName()

get method for the underlying MQSeries topic name.

264 MQSeries Using Java

 TopicConnection

 TopicConnection
public interface TopicConnection
extends Connection

MQSeries class: MQTopicConnection

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnection

 |

 +----com.ibm.mq.jms.MQTopicConnection

A TopicConnection is an active connection to a JMS Pub/Sub provider.

See also: Connection

 Methods
createTopicSession

public TopicSession createTopicSession(boolean transacted,
 int acknowledgeMode)

 throws JMSException

Create a TopicSession

Parameters:

� transacted - if true, the session is transacted.

� acknowledgeMode - one of:

 Session.AUTO_ACKNOWLEDGE
 Session.CLIENT_ACKNOWLEDGE
 Session.DUPS_OK_ACKNOWLEDGE

Indicates whether the consumer or the client will acknowledge
any messages it receives. This parameter will be ignored if
the session is transacted.

Returns: a newly created topic session.

Throws: JMSException - if JMS Connection fails to create a session due
to some internal error or lack of support for specific transaction
and acknowledgement mode.

createConnectionConsumer

public ConnectionConsumer createConnectionConsumer(Topic topic,
 java.lang.String messageSelector,

 ServerSessionPool sessionPool,

int maxMessages) throws JMSException

Create a connection consumer for this connection. This is an expert facility not
used by regular JMS clients.

Note: This method is not implemented

 Chapter 13. JMS interfaces and classes 265

 TopicConnection

Parameters:

� topic - the topic to access

� messageSelector - only messages with properties matching
the message selector expression are delivered

� sessionPool - the server session pool to associate with this
connection consumer.

� maxMessages - the maximum number of messages that can
be assigned to a server session at one time.

Returns: the connection consumer.

Throws:

� JMSException - if JMS Connection fails to create a
connection consumer due to some internal error or invalid
arguments for sessionPool.

� InvalidSelectorException - if the message selector is invalid.

See also: ConnectionConsumer

createDurableConnectionConsumer

public ConnectionConsumer createDurableConnectionConsumer
 (Topic topic,

 java.lang.String subscriptionName

 java.lang.String messageSelector,

 ServerSessionPool sessionPool,

int maxMessages) throws JMSException

Create a durable connection consumer for this connection. This is an expert
facility not used by regular JMS clients.

Note: This method is not implemented

Parameters:

� topic - the topic to access

� subscriptionName - durable subscription name

� messageSelector - only messages with properties matching
the message selector expression are delivered

� sessionPool - the serversession pool to associate with this
durable connection consumer.

� maxMessages - the maximum number of messages that can
be assigned to a server session at one time.

Returns: the durable connection consumer.

Throws: JMSException - if JMS Connection fails to create a connection
consumer due to some internal error or invalid arguments for
sessionPool and message selector.

See also: ConnectionConsumer

266 MQSeries Using Java

 TopicConnectionFactory

 TopicConnectionFactory
public interface TopicConnectionFactory
extends ConnectionFactory

MQSeries class: MQTopicConnectionFactory

java.lang.Object

 |

 +----com.ibm.mq.jms.MQConnectionFactory

 |

 +----com.ibm.mq.jms.MQTopicConnectionFactory

A client uses a TopicConnectionFactory to create TopicConnections with a JMS
Publish/Subscribe provider.

See also: ConnectionFactory

 MQSeries constructor
MQTopicConnectionFactory

public MQTopicConnectionFactory()

 Methods
createTopicConnection

public TopicConnection createTopicConnection()
 throws JMSException

Create a topic connection with default user identity. The connection is created
in stopped mode. No messages will be delivered until Connection.start method
is explicitly called.

Returns: a newly created topic connection.

Throws:

JMSException - if JMS Provider fails to create a Topic
Connection due to some internal error.

JMSSecurityException - if client authentication fails due to
invalid user name or password.

createTopicConnection

public TopicConnection createTopicConnection
 (java.lang.String userName,

 java.lang.String password)

 throws JMSException

Create a topic connection with specified user identity. The connection is
created in stopped mode. No messages will be delivered until Connection.start
method is explicitly called.

Note: This method is valid only for transport type
IBM_JMS_TP_CLIENT_MQ_TCPIP. See ConnectionFactory.

 Chapter 13. JMS interfaces and classes 267

 TopicConnectionFactory

Parameters:

userName - the caller's user name

password - the caller's password

Returns: a newly created topic connection.

Throws:

JMSException - if JMS Provider fails to create a Topic
Connection due to some internal error.

JMSSecurityException - if client authentication fails due to
invalid user name or password.

setBrokerControlQueue *

public void setBrokerControlQueue(String x)

 throws JMSException

Set method for brokerControlQueue attribute

Parameters: brokerControlQueue - the name of the broker control queue

getBrokerControlQueue *

public String getBrokerControlQueue()

Get method for brokerControlQueue attribute

Returns: the broker's control queue name

setBrokerQueueManager *

public void setBrokerQueueManager(String x)

 throws JMSException

Set method for brokerQueueManager attribute

Parameters: brokerQueueManager - the name of the broker's Queue Manager

getBrokerQueueManager *

public String getBrokerQueueManager()

Get method for brokerQueueManager attribute

Returns: the broker's queue manager name

setBrokerPubQueue *

public void setBrokerPubQueue(String x) throws JMSException

Set method for brokerPubQueue attribute

Parameters: brokerPubQueue - the name of the broker publish queue

getBrokerPubQueue *

public String getBrokerPubQueue()

Get method for brokerPubQueue attribute

Returns: the broker's publish queue name

getBrokerVersion *

public int getBrokerVersion()

setBrokerVersion *

public void setBrokerVersion(int x) throws JMSException

268 MQSeries Using Java

 TopicConnectionFactory

getReference *

public Reference getReference()

Return a reference for this topic connection factory

Returns: a reference for this topic connection factory

Throws: NamingException

 Chapter 13. JMS interfaces and classes 269

 TopicPublisher

 TopicPublisher
public interface TopicPublisher
extends MessageProducer

MQSeries class: MQTopicPublisher

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageProducer

 |

 +----com.ibm.mq.jms.MQTopicPublisher

A client uses a TopicPublisher for publishing messages on a topic. TopicPublisher
is the Pub/Sub variant of a JMS message producer.

 Methods
getTopic

public Topic getTopic() throws JMSException

Get the topic associated with this publisher.

Returns: this publisher's topic

Throws: JMSException - if JMS fails to get topic for this topic publisher
due to some internal error.

publish

public void publish(Message message) throws JMSException

Publish a Message to the topic Use the topic's default delivery mode,
timeToLive and priority.

Parameters: message - the message to publish

Throws:

� JMSException - if JMS fails to publish the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
a Topic Publisher with an invalid topic.

publish

public void publish(Message message,
 int deliveryMode,

 int priority,

long timeToLive) throws JMSException

Publish a Message to the topic specifying delivery mode, priority and time to
live to the topic.

Parameters:

� message - the message to publish

� deliveryMode - the delivery mode to use

270 MQSeries Using Java

 TopicPublisher

� priority - the priority for this message

� timeToLive - the message's lifetime (in milliseconds).

Throws:

� JMSException - if JMS fails to publish the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
a Topic Publisher with an invalid topic.

publish

public void publish(Topic topic,
Message message) throws JMSException

Publish a Message to a topic for an unidentified message producer. Use the
topic's default delivery mode, timeToLive and priority.

Parameters:

� topic - the topic to publish this message to

� message - the message to send

Throws:

� JMSException - if JMS fails to publish the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
an invalid topic.

publish

public void publish(Topic topic,
 Message message,

 int deliveryMode,

 int priority,

long timeToLive) throws JMSException

Publish a Message to a topic for an unidentified message producer, specifying
delivery mode, priority and time to live.

Parameters:

� topic - the topic to publish this message to

� message - the message to send

� deliveryMode - the delivery mode to use

� priority - the priority for this message

� timeToLive - the message's lifetime (in milliseconds).

Throws:

� JMSException - if JMS fails to publish the message due to
some internal error.

� MessageFormatException - if invalid message specified

� InvalidDestinationException - if a client uses this method with
an invalid topic.

 Chapter 13. JMS interfaces and classes 271

 TopicPublisher

close *

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a
MessageProducer outside the JVM, clients should close them when they are
not needed. Relying on garbage collection to eventually reclaim these
resources may not be timely enough.

Throws: JMSException if JMS fails to close the producer due to some
error.

Overrides: close in class MQMessageProducer

272 MQSeries Using Java

 TopicRequestor

 TopicRequestor

java.lang.Object

 |

 +----javax.jms.TopicRequestor

public class TopicRequestor
extends java.lang.Object JMS provides this TopicRequestor class to assist with
making service requests.

The TopicRequestor constructor is given a non-transacted TopicSession and a
destination Topic. It creates a TemporaryTopic for the responses and provides a
request() method that sends the request message and waits for its reply.
Users are free to create more sophisticated versions

 Constructors
TopicRequestor

public TopicRequestor(TopicSession session,
Topic topic) throws JMSException

Constructor for the TopicRequestor class. This implementation assumes the
session parameter to be non-transacted and either AUTO_ACKNOWLEDGE or
DUPS_OK_ACKNOWLEDGE.

Parameters:

session - the topic session the topic belongs to.

topic - the topic to perform the request/reply call on.

Throws: JMSException - if a JMS error occurs.

 Methods
request

public Message request(Message message) throws JMSException

Send a request and wait for a reply.

Parameters: message - the message to send.

Returns: the reply message.

Throws: JMSException - if a JMS error occurs.

close

public void close() throws JMSException

Since a provider may allocate some resources on behalf of a TopicRequestor
outside the JVM, clients should close them when they are not needed. Relying
on garbage collection to eventually reclaim these resources may not be timely
enough.

Note: This method closes the Session object passed to the TopicRequestor
constructor.

 Chapter 13. JMS interfaces and classes 273

 TopicRequestor

Throws: JMSException - if a JMS error occurs.

274 MQSeries Using Java

 TopicSession

 TopicSession
public interface TopicSession
extends Session

MQSeries class: MQTopicSession

java.lang.Object

 |

 +----com.ibm.mq.jms.MQSession

 |

 +----com.ibm.mq.jms.MQTopicSession

A TopicSession provides methods for creating TopicPublishers, TopicSubscribers
and TemporaryTopics.

See also: Session

 MQSeries constructor
MQTopicSession

public MQTopicSession(boolean transacted,

int acknowledgeMode) throws JMSException

See TopicConnection.createTopicSession.

 Methods
createTopic

public Topic createTopic(java.lang.String topicName)
 throws JMSException

Create a Topic given a URI format Topic name. (URI format is described on
page 148.) This allows the creation of a topic with a provider specific name.

Note: Clients that depend on this ability are not portable.

Parameters: topicName - the name of this topic

Returns: a Topic with the given name.

Throws: JMSException - if a session fails to create a topic due to some
JMS error.

createSubscriber

public TopicSubscriber createSubscriber(Topic topic)
 throws JMSException

Create a non-durable Subscriber to the specified topic.

Parameters: topic - the topic to subscribe to

Throws:

� JMSException - if a session fails to create a subscriber due to
some JMS error.

� InvalidDestinationException - if invalid Topic specified.

 Chapter 13. JMS interfaces and classes 275

 TopicSession

createSubscriber

public TopicSubscriber createSubscriber(Topic topic,
 java.lang.String messageSelector,

boolean noLocal) throws JMSException

Create a non-durable Subscriber to the specified topic.

Parameters:

� topic - the topic to subscribe to

� messageSelector - only messages with properties matching
the message selector expression are delivered. This value
may be null.

� noLocal - if set, inhibits the delivery of messages published
by its own connection.

Throws:

� JMSException - if a session fails to create a subscriber due to
some JMS error or invalid selector.

� InvalidDestinationException - if invalid Topic specified.

� InvalidSelectorException - if the message selector is invalid.

createDurableSubscriber

public TopicSubscriber createDurableSubscriber(Topic topic,
 java.lang.String name)

 throws JMSException

Create a durable Subscriber to the specified topic. A client can change an
existing durable subscription by creating a Durable Subscriber with the same
name and a new topic and/or message selector.

Parameters:

� topic - the topic to subscribe to

� name - the name used to identify this subscription.

Throws:

� JMSException - if a session fails to create a subscriber due to
some JMS error.

� InvalidDestinationException - if invalid Topic specified.

See TopicSession.unsubscribe.

createDurableSubscriber

public TopicSubscriber createDurableSubscriber(Topic topic,
 java.lang.String name,

 java.lang.String messageSelector,

 boolean noLocal)

 throws JMSException

Create a durable Subscriber to the specified topic.

Parameters:

� topic - the topic to subscribe to

� name - the name used to identify this subscription.

276 MQSeries Using Java

 TopicSession

� messageSelector - only messages with properties matching
the message selector expression are delivered. This value
may be null.

� noLocal - if set, inhibits the delivery of messages published
by its own connection.

Throws:

� JMSException - if a session fails to create a subscriber due to
some JMS error or invalid selector.

� InvalidDestinationException - if invalid Topic specified.

� InvalidSelectorException - if the message selector is invalid.

createPublisher

public TopicPublisher createPublisher(Topic topic)
 throws JMSException

Create a Publisher for the specified topic.

Parameters: topic - the topic to publish to, or null if this is an unidentified
producer.

Throws:

� JMSException - if a session fails to create a publisher due to
some JMS error.

� InvalidDestinationException - if invalid Topic specified.

createTemporaryTopic

public TemporaryTopic createTemporaryTopic()
 throws JMSException

Create a temporary topic. Its lifetime will be that of the TopicConnection unless
deleted earlier.

Returns: a temporary topic.

Throws: JMSException - if a session fails to create a temporary topic due
to some JMS error.

unsubscribe

public void unsubscribe(java.lang.String name)
 throws JMSException

Unsubscribe a durable subscription that has been created by a client.

Parameters: name - the name used to identify this subscription.

Throws:

� JMSException - if JMS fails to unsubscribe to durable
subscription due to some JMS error.

� InvalidDestinationException - if invalid Topic specified

 Chapter 13. JMS interfaces and classes 277

 TopicSubscriber

 TopicSubscriber
public interface TopicSubscriber
extends MessageConsumer

MQSeries class: MQTopicSubscriber

java.lang.Object

 |

 +----com.ibm.mq.jms.MQMessageConsumer

 |

 +----com.ibm.mq.jms.MQTopicSubscriber

A client uses a TopicSubscriber for receiving messages that have been published
to a topic. TopicSubscriber is the Pub/Sub variant of a JMS message consumer.

See also: MessageConsumer and TopicSession.createSubscriber

MQTopicSubscriber inherits the following methods from MQMessageConsumer:

 close
 getMessageListener
 receive
 receiveNoWait
 setMessageListener

 Methods
getTopic

public Topic getTopic() throws JMSException

Get the topic associated with this subscriber.

Returns: this subscriber's topic

Throws: JMSException - if JMS fails to get topic for this topic subscriber
due to some internal error.

getNoLocal

public boolean getNoLocal() throws JMSException

Get the NoLocal attribute for this TopicSubscriber. The default value for this
attribute is false.

Returns: set to true if locally published messages are being inhibited.

Throws: JMSException - if JMS fails to get NoLocal attribute for this topic
subscriber due to some internal error.

278 MQSeries Using Java

 Part 4. Appendices

Appendix A. Mapping between Administration tool properties and
programmable properties . 281

Appendix B. Scripts provided with MQSeries classes for Java Message
Service(JMS) . 283

Appendix C. LDAP server configuration for Java objects 285
Checking your LDAP server configuration . 285
Configuration procedures . 285

Appendix D. Notices . 287
Trademarks . 288

 Copyright IBM Corp. 1997,1999 279

280 MQSeries Using Java

 Properties

Appendix A. Mapping between Administration tool properties
and programmable properties

MQSeries Classes for Java Message Service provides facilities for setting and
querying the properties of administered objects using the Administration tool, or
from within an application program. Table 29 shows the mapping between the
property names used from within the administration tool and the corresponding
member variable it refers to. It also shows the mapping between symbolic property
values used in the tool and their programmable equivalents.

Table 29. Comparison of representations of properties within the administration tool,
and the programmable equivalents.

Property Member variable name Property value mapping

Tool Program

DESCRIPTION description

TRANSPORT transportType � BIND
 � CLIENT

 JMSC.MQJMS_TP_BINDINGS_MQ
 JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

CLIENTID clientId

QMANAGER queueManager*

HOSTNAME hostName

PORT port

CHANNEL channel

CCSID CCSID

RECEXIT receiveExit

RECEXITINIT receiveExitinit

SECEXIT securityExit

SECEXITINIT securityExitInit

SENDEXIT sendExit

SENDEXITINIT sendExitInit

TEMPMODEL temporaryModel

BROKERVER brokerVersion � V1
 � V2

 JMSC.MQJMS_BROKER_V1

 JMSC.MQJMS_BROKER_V2

BROKERPUBQ brokerPubQueue

BROKERQMGR brokerQueueManager

BROKERCONQ brokerControlQueue

EXPIRY expiry � APP
 � UNLIM

 JMSC.MQJMS_EXP_APP
 JMSC.MQJMS_EXP_UNLIMITED

PRIORITY priority � APP
 � QDEF

 JMSC.MQJMS_PRI_APP
 JMSC.MQJMS_PRI_QDEF

PERSISTENCE persistence � APP
 � QDEF
 � PERS
 � NON

 JMSC.MQJMS_PER_APP
 JMSC.MQJMS_PER_QDEF
 JMSC.MQJMS_PER_PER
 JMSC.MQJMS_PER_NON

TARGCLIENT targetClient � JMS
 � MQ

 JMSC.MQJMS_CLIENT_JMS_COMPLIANT
 JMSC.MQJMS_CLIENT_NONJMS_MQ

ENCODING encoding

QUEUE baseQueueName

TOPIC baseTopicName

Note: * for an MQQueue object, the member variable name is baseQueueManagerName

 Copyright IBM Corp. 1997,1999 281

 Properties

282 MQSeries Using Java

 Scripts

Appendix B. Scripts provided with MQSeries classes for Java
Message Service(JMS)

The following files are provided in the bin directory of your MQ JMS installation.
These scripts are provided to assist with common tasks that need to be performed
while installing or using MQ JMS. Table 30 lists the scripts and their uses.

Table 30. Utilities suppled with MQSeries classes for Java Message Service(JMS)

Utility Use

IVTRun.bat
IVTTidy.bat
IVTSetup.bat

Used to run the point-to-point installation verification test
program, described in “Running the point-to-point IVT” on
page 18

PSIVTRun.bat Used to run the Pub/Sub installation verification test program
described in “The Publish/Subscribe Installation Verification
Test” on page 21.

formatLog.bat Used to convert binary log files to plain text,described in
“Logging” on page 25

JMSAdmin.bat Used to run the administration tool, described in Chapter 5,
“Using the MQ JMS administration tool” on page 27

JMSAdmin.config Configuration file for the administration tool, described in
“Configuration” on page 28

runjms.bat A utility script to assist with the running of JMS applications,
described in “Running your own programs” on page 24

PSReportDump.class Used to view broker report messages, described in
“Handling broker reports” on page 160

Note: On UNIX systems the extension '.bat' is omitted from the filenames.

 Copyright IBM Corp. 1997,1999 283

 Scripts

284 MQSeries Using Java

Appendix C. LDAP server configuration for Java objects

If you are using JNDI to store MQJMS administered objects and you are using an
LDAP server as your JNDI service provider, the server must be LDAP v3, such as
the SecureWay eNetwork Directory v3.1., and it must be configured to store Java
objects.

Checking your LDAP server configuration
To check whether the LDAP server is already configured to accept Java objects,
run the MQ JMS Administration Tool in LDAP mode (see “Invoking the
Administration tool” on page 27).

Attempt to create and display a test object using the following commands:

DEFINE QCF(ldapTest)

DISPLAY QCF(ldapTest)

If no exception occurs, then your server is properly configured configured and you
can proceed to store JMS objects.

If a 'SchemaViolationException' is returned, your server is not configured for the
storing of Java objects. The procedures below are provided to assist you with the
configuration task.

 Configuration procedures
Many LDAP servers provide tools that allow you to administer the server, refer to
your server documentation for details on using these tools. The tools should allow
you to view and update the schema, which contains 'attribute' and 'objectclass'
definitions.

Ensure that the schema contains the following objectclass definitions, adding them
if necessary:

(1.3.6.1.4.1.42.2.27.4.2.1

 NAME 'javaContainer'

 SUP top

MUST cn)

(1.3.6.1.4.1.42.2.27.4.2.4

 NAME 'javaObject'

 SUP top

 ABSTRACT

 MUST javaClassName

MAY javaCodebase)

(1.3.6.1.4.1.42.2.27.4.2.5

 NAME 'javaSerializedObject'

 SUP javaObject

 AUXILIARY

 MUST javaSerializedData

MAY javacodebase)

 Copyright IBM Corp. 1997,1999 285

(1.3.6.1.4.1.42.2.27.4.2.7

 NAME 'javaNamingReference'

 SUP javaObject

 AUXILIARY

 MUST javaclassname

MAY (javaFactory $ javaReferenceAddress))

In addition, ensure that the schema contains the following attribute definitions,
updating the schema if necessary:

(1.3.6.1.4.1.42.2.27.4.1.3

 NAME 'javaReferenceAddress'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

(1.3.6.1.4.1.42.2.27.4.1.4

 NAME 'javaFactory'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

(1.3.6.1.4.1.42.2.27.4.1.6

 NAME 'javaCodebase'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

When you have completed the updates, stop and restart the LDAP server, and
repeat the configuration checking procedure described in “Checking your LDAP
server configuration” on page 285.

286 MQSeries Using Java

 Notices

 Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

 Copyright IBM Corp. 1997,1999 287

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Windows and Windows NT are registered trademarks of Microsoft Corporation in
the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

AIX AS/400 BookManager
IBM IBMLink MQSeries
MVS/ESA OS/2 OS/390
OS/400 SupportPac System/390
VSE/ESA

288 MQSeries Using Java

 Glossary

Glossary of terms and abbreviations

This glossary describes terms used in this book and
words used with other than their everyday meaning. In
some cases, a definition may not be the only one
applicable to a term, but it gives the particular sense in
which the word is used in this book.

If you do not find the term you are looking for, see the
index or the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

applet . A Java program which is designed to run only
on a web page.

Application Programming Interface (API) . An
Application Programming Interface consists of the
functions and variables that programmers are allowed to
use in their applications.

channel . See MQI channel.

class . A class is an encapsulated collection of data
and methods to operate on the data. A class may be
instantiated to produce an object that is an instance of
the class.

client . In MQSeries, a client is a run-time component
that provides access to queuing services on a server for
local user applications.

encapsulation . Encapsulation is an object-oriented
programming technique that makes an object's data
private or protected and allows programmers to access
and manipulate the data only through method calls.

Hypertext Markup Language (HTML) . A language
used to define informa tion
that is to be displayed on the World Wide Web.

Internet Inter-ORB Protocol (IIOP) . A standard for
TCP/IP communications between ORBs from different
vendors.

instance . An instance is an object. When a class is
instantiated to produce an object, we say that the object
is an instance of the class.

interface . An interface is a class that contains only
abstract methods and no instance variables. An
interface provides a common set of methods that can
be implemented by subclasses of a number of different
classes.

Internet . The Internet is a cooperative public network
of shared information. Physically, the Internet uses a
subset of the total resources of all the currently existing
public telecommunication networks. Technically, what

distinguishes the Internet as a cooperative public
network is its use of a set of protocols called TCP/IP
(Transport Control Protocol/Internet Protocol).

Java Developers Kit (JDK) . A package of software
distributed by Sun Microsystems for Java developers. It
includes the Java interpreter, Java classes and Java
development tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation
generator.

Java Naming and Directory Service (JNDI) . An API
specified in the Java programming language. It provides
naming and directory functions to applications written in
the Java programming language.

Java Message Service (JMS) . Sun microsystem's API
for accessing enterprise messaging systems from Java
programs.

Lightweight Directory Access Protocol (LDAP) .
LDAP is a client-server protocol for accessing a
directory service.

message . In message queuing applications, a
message is a communication sent between programs.

message queue . See queue

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

method . Method is the object-oriented programming
term for a function or procedure.

MQI channel . An MQI channel connects an MQSeries
client to a queue manager on a server system and
transfers MQI calls and responses in a bidirectional
manner.

MQSeries . MQSeries is a family of IBM licensed
programs that provide message queuing services.

object . (1) In Java, an object is an instance of a class.
A class models a group of things; an object models a
particular member of that group. (2) In MQSeries, an
object is a queue manager, a queue, or a channel.

Object Request Broker (ORB) . An application
framework that provides interoperability between
objects, built in different languages, running on different
machines, in heterogeneous distributed environments.

package . A package in Java is a way of giving a piece
of Java code access to a specific set of classes. Java
code that is part of a particular package has access to

 Copyright IBM Corp. 1997,1999 289

 Glossary

all the classes in the package and to all non-private
methods and fields in the classes.

private . A private field is not visible outside its own
class.

protected . A protected field is visible only within its
own class, within a subclass, or within packages of
which the class is a part

public . A public class or interface is visible
everywhere. A public method or variable is visible
everywhere that its class is visible

queue . A queue is an MQSeries object. Message
queueing applications can put messages on, and get
messages from, a queue

queue manager . a queue manager is a system
program the provides message queuing services to
applications.

server . (1) An MQSeries a server is a queue
manager that provides message queuing services to
client applications running on a remote workstation. (2)
More generally, a server is a program that responds to
requests for information in the particular two-program
information flow model of client/server. (3) The
computer on which a server program runs.

servlet . A Java program which is designed to run only
on a web server.

subclass . A subclass is a class that extends another.
The subclass inherits the public and protected methods
and variables of its superclass.

superclass . A superclass is a class that is extended
by some other class. The superclass's public and
protected methods and variables are available to the
subclass.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

Visibroker for Java . An Object Request Broker (ORB)
written in Java

Web. See World Wide Web.

Web browser . A program that formats and displays
information that is distributed on the World Wide Web.

World Wide Web (Web) . The World Wide Web is an
Internet service, based on a common set of protocols,
which allows a particularly configured server computer
to distribute documents across the Internet in a
standard way.

290 MQSeries Using Java

 Bibliography

 Bibliography

This section describes the documentation available for
all current MQSeries products.

 MQSeries cross-platform
publications

Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply to all
MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2
� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Compaq (DIGITAL) OpenVMS

V2.2.1.1
� MQSeries for DIGITAL UNIX (Compaq Tru64 UNIX)

V2.2.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for Sun Solaris V5.1
� MQSeries for Tandem NonStop Kernel V2.2.0.1
� MQSeries for VSE/ESA V2.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief
introduction to the benefits of MQSeries. It is intended
to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing
MQSeries: An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what MQSeries is, how it
works, and how it can solve some classic
interoperability problems. This book is intended for a
more technical audience than the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes
some key MQSeries concepts, identifies items that need
to be considered before MQSeries is installed, including
storage requirements, backup and recovery, security,
and migration from earlier releases, and specifies
hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872,
defines the concepts of distributed queuing and explains

how to set up a distributed queuing network in a variety
of MQSeries environments. In particular, it
demonstrates how to (1) configure communications to
and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3)
create and configure MQSeries channels. The use of
channel exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters, SC34-5349,
describes MQSeries clustering. It explains the concepts
and terminology and shows how you can benefit by
taking advantage of clustering. It details changes to the
MQI, and summarizes the syntax of new and changed
MQSeries commands. It shows a number of examples
of tasks you can perform to set up and maintain
clusters of queue managers.

This book applies to the following MQSeries products
only:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how
to install, configure, use, and manage MQSeries client
systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873,
supports day-to-day management of local and remote
MQSeries objects. It includes topics such as security,
recovery and restart, transactional support, problem
determination, and the dead-letter queue handler. It
also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products
only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369,
contains the syntax of the MQSC commands, which are
used by MQSeries system operators and administrators
to manage MQSeries objects.

 Copyright IBM Corp. 1997,1999 291

 Bibliography

MQSeries Programmable System Management
The MQSeries Programmable System Management
book, SC33-1482, provides both reference and
guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and
installable services.

MQSeries Administration Interface Programming
Guide and Reference
The MQSeries Administration Interface Programming
Guide and Reference, SC34-5390, provides information
for users of the MQAI. The MQAI is a programming
interface that simplifies the way in which applications
manipulate Programmable Command Format (PCF)
messages and their associated data structures.

This book applies to the following MQSeries products
only:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876, which
describes “AMQ” messages issued by MQSeries,
applies to these MQSeries products only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the messages are
supplied with the system. They do not appear in
softcopy manual form.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide,
SC33-0807, provides guidance information for users of
the message queue interface (MQI). It describes how
to design, write, and build an MQSeries application. It
also includes full descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference,
SC33-1673, provides comprehensive reference
information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries
objects; return codes; constants; and code-page
conversion tables.

MQSeries Application Programming Reference
Summary
The MQSeries Application Programming Reference

Summary, SX33-6095, summarizes the information in
the MQSeries Application Programming Reference
manual.

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both
guidance and reference information for users of the
MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries
products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for AS/400 V4R2
� MQSeries for OS/390 V2.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients
supplied with these products and installed in the
following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
� Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides both
guidance and reference information for users of the
MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries classes for Java are supported by
these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2
� MQSeries for HP-UX V5.1
� MQSeries for MVS/ESA V1.2
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

 MQSeries platform-specific
publications

Each MQSeries product is documented in at least one
platform-specific publication, in addition to the MQSeries
family books.

MQSeries for AIX

MQSeries for AIX Version 5 Release 1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2
Administration Guide, SC33-1956

292 MQSeries Using Java

 Bibliography

MQSeries for AS/400 Version 4 Release 2
Application Programming Reference (ILE RPG),
SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2
System Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Compaq (DIGITAL) OpenVMS
Version 2 Release 2.1.1 System Management
Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64 UNIX)

MQSeries for Digital UNIX Version 2 Release 2.1
System Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1
Quick Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1 Licensed
Program Specifications, GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program
Directory

MQSeries for OS/390 Version 2 Release 1 System
Management Guide, SC34-5374

MQSeries for OS/390 Version 2 Release 1
Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1 Release 2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release
2 System Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris Version 5 Release 1
Quick Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2
Release 2.0.1 System Management Guide,
GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1
Licensed Program Specifications, GC34-5365

MQSeries for VSE/ESA Version 2 Release 1
System Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s
Guide, GC33-1822

MQSeries for Windows Version 2 Release 1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1
Quick Beginnings, GC34-5389

MQSeries for Windows NT Using the Component
Object Model Interface, SC34-5387

MQSeries LotusScript Extension, SC34-5404

 Softcopy books

Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

 BookManager format

The MQSeries library is supplied in IBM BookManager
format on a variety of online library collection kits,
including the Transaction Processing and Data
collection kit, SK2T-0730. You can view the softcopy
books in IBM BookManager format using the following
IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 HTML format

Relevant MQSeries documentation is provided in HTML
format with these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1 (compiled HTML)
� MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format
from the MQSeries product family Web site at:

 http://www.ibm.com/software/ts/mqseries/

 Bibliography 293

 MQSeries on the Internet

Portable Document Format (PDF)

PDF files can be viewed and printed using the Adobe
Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or
would like up-to-date information about the platforms on
which the Acrobat Reader is supported, visit the Adobe
Systems Inc. Web site at:

 http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied
with these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1
� MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also
available from the MQSeries product family Web site at:

 http://www.ibm.com/software/ts/mqseries/

 PostScript format

The MQSeries library is provided in PostScript (.PS)
format with many MQSeries Version 2 products. Books
in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format

The MQSeries for Windows User’s Guide is provided in
Windows Help format with MQSeries for Windows
Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available
on the Internet

The MQSeries product family Web site is at:

 http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:

� Obtain latest information about the MQSeries
product family.

� Access the MQSeries books in HTML and PDF
formats.

� Download MQSeries SupportPacs.

294 MQSeries Using Java

 index

 Index

A
accessing queues and processes 53
administered objects 31, 144
administering JMS objects 31
administration

commands 29
verbs 29

administration tool
configuration file 28
configuring 28
overview 27
starting 27

advantages of Java interface 41
applet example 46
applet viewer

using 5
with sample applet 12

applet viewer, using 11
applets versus applications 45
applets, running 58
application example 50
applications

closing 152
Pub/Sub, writing 153
unexpected termination 159

applications versus applets 45
asynchronous message delivery 151

B
behavior in different environments 61
benefits of JMS 3
bibliography 291
bindings

connection 6
connection, programming 46
verifying 13

bindings transport, choosing 146
body, message 161
BookManager 293
broker reports 160
BROKERCONQ object property 34
BROKERPUBQ object property 34
BROKERQMGR object property 34
BROKERVER object property 34
building a connection 144
bytes message 161
BytesMessage interface 184
BytesMessage type 150

C
CCSID object property 34
CHANGE (administration verb) 29
CHANNEL object property 34
choosing transport 146
CICS Transaction Server

running applications 59
using 14

CICS Transaction Server for OS/390 xi
class library 43
classes, core 61
classes, JMS 179
classes, MQSeries classes for Java 67

MQC 131
MQChannelDefinition 68
MQChannelExit 70
MQDistributionList 73
MQDistributionListItem 75
MQEnvironment 77
MQException 81
MQGetMessageOptions 83
MQManagedObject 87
MQMessage 90
MQMessageTracker 108
MQProcess 110
MQPutMessageOptions 112
MQQueue 115
MQQueueManager 123
MQReceiveExit 132
MQSecurityExit 134
MQSendExit 136

classpath, configuring 17
CLASSPATH, updating 8
client properties 36
client transport, choosing 146
CLIENTID object property 34
clients

configuring queue manager 11
connection 5
programming 45
verifying 13

closing
applications 152
JMS resources in Pub/Sub mode 155
resources 152

code examples 46
com.ibm.jms, package 183
com.ibm.mq.iiop.jar 8
com.ibm.mq.jar 8
com.ibm.mq.jms, package 182

 Copyright IBM Corp. 1997,1999 295

 index

com.ibm.mqbind.jar 8
combinations, valid, of objects and properties 35
commands, administration 29
compiling MQSeries classes for Java programs 58
configuration file, for administration tool 28
configuring

for Pub/Sub 18
queue manager for clients 11
the administration tool 28
Web server 10
your classpath 17
your installation 17

connecting to a queue manager 52
connection

building 144
creating 145
interface 143
MQSeries, losing 159
starting 145

Connection interface 192
connection type, defining 46
ConnectionFactory interface 195
ConnectionMetaData interface 198
connections xi

binding 6
client 5
client, programming 45
programming 45

converting the log file 25
COPY (administration verb) 29
core classes 61

exceptions 62
extensions for V5 63

createQueueSession method 147
createReceiver method 150
createSender method 147
creating

a connection 145
factories at runtime 145
JMS objects 32
Topics at runtime 157

customizing the sample applet 13

D
default trace and log output locations 24
DEFINE (administration verb) 29
defining connection type 46
defining transport 146
DELETE (administration verb) 29
DeliveryMode interface 200
dependencies, property 36
DESCRIPTION object property 34
Destination interface 201
differences between applets and applications 45

differences due to environment 61
directories, installation 7
disconnecting from a queue manager 52
DISPLAY (administration verb) 29
durable subscribers 158

E
ENCODING object property 36
END (administration verb) 29
environment differences 61
environment variables, configuring 17

refid-jmscfi.environment variables 17
error

conditions for object creation 37
recovery, IVT 21
recovery, PSIVT 23

error messages 16
errors

logging 25
runtime, handling 152

errors, handling 55
example code 46
exception listener 152
ExceptionListener interface 203
exceptions

JMS 152
MQSeries 152

exceptions to core classes 62
exit string properties 36
EXPIRY object property 34
extensions to core classes for V5 63
extra function provided over MQ Java 3

F
factories, creating at runtime 145
formatLog utility 25, 283
function, extra provided over MQ Java 3

G
getting started 3
glossary 289

H
handling

errors 55
messages 54

handling runtime errors 152
headers, message 161
HOSTNAME object property 34
HTML (Hypertext Markup Language) 293
Hypertext Markup Language (HTML) 293

296 MQSeries Using Java

 index

I
IIOP

connection, programming 45
IIOP support xi

IIOP xi
visibroker xi

import statements 153
INITIAL_CONTEXT_FACTORY parameter 28
inquire and set 56
installation

Installation Verification Test program for Pub/Sub
(PSIVT) 21

IVT error recovery 21
PSIVT error recovery 23
setup 17
verifying 17

installation directories 7
Installation Verification Test program (IVT) 18
installing MQ base Java 9
interface, programming 42
interfaces

JMS 143, 179
MQSeries 143

introduction 3
introduction for programmers 41
introduction to JMS 3
IVT (Installation Verification Test program) 18
IVTRun utility 19, 20, 283
IVTSetup utility 19, 283
IVTTidy utility 21, 283

J
jar files 8
Java classes 43, 67
Java Developers Kit 42
Java interface, advantages 41
javax.jms package 179
JDK 42
JMS

administered objects 144
benefits 3
classes 179
exception listener 152
exceptions 152
interfaces 143, 179
introduction 3
message types 149
messages 161
model 143
objects for Pub/Sub 153
objects, administering 31
objects, creating 32
objects, properties 33
programs, writing 143

JMS (continued)
resources, closing in Pub/Sub mode 155

JMSAdmin utility 283
JMSAdmin.config utility 283
JMSBytesMessage class 184
JMSCorrelationID header field 161
JMSMapMessage class 204
JMSMessage class 212
JMSStreamMessage class 253
JMSTextMessage class 262
JNDI

retrieving 144
security considerations 29

L
LDAP naming considerations 32
library, Java classes 43
listener, JMS exception 152
local publications, suppressing 159
log file

converting 25
default output location 24

logging errors 25

M
manipulating subcontexts 30
map message 161
MapMessage interface 204
MapMessage type 150
mapping properties between admin tool and

programs 281
message

body 161
delivery, asynchronous 151
headers 161
properties 161
selectors 151, 161
selectors and SQL 162
selectors in Pub/Sub mode 158
sending 147
types 149, 161

Message interface 212
MessageConsumer interface 143, 224
MessageListener interface 226
MessageProducer interface 143, 227
MessageProducer object 147
messages

error 16
handling 54
JMS 161
publishing 154
receiving 150
receiving in Pub/Sub mode 155
selecting 151, 161

 Index 297

 index

model, JMS 143
MOVE (administration verb) 29
MQC 131
MQChannelDefinition 68
MQChannelExit 70
MQConnection class 192
MQConnectionFactory class 195
MQConnectionMetaData class 198
MQDeliveryMode class 200
MQDestination class 201
MQDistributionList 73
MQDistributionListItem 75
MQEnvironment 46, 52, 77
MQException 81
MQGetMessageOptions 83
MQIVP

listing 14
sample application 13
tracing 15

mqjavac
tracing 15
using to verify 11

MQManagedObject 87
MQMessage 90
MQMessageConsumer class 224
MQMessageProducer interface 227
MQMessageTracker 108
MQObjectMessage class 231
MQProcess 110
MQPutMessageOptions 112
MQQueue 115

(JMS object) 31
class 232
for verification 19

MQQueueBrowser class 234
MQQueueConnection class 236
MQQueueConnectionFactory

(JMS object) 31
class 238
for verification 19
set methods 146

MQQueueEnumeration class 230
MQQueueManager 53, 123
MQQueueReceiver class 240
MQQueueSender interface 243
MQQueueSession class 246
MQReceiveExit 132
MQSecurityExit 134
MQSendExit 136
MQSeries

connection, losing 159
exceptions 152
interfaces 143

MQSeries classes for Java classes 67
MQSeries publications 291

MQSeries software client CD 9
MQSeries software server CD 9
MQSeries supported verbs 42
MQSeriesV5 extensions 63
MQSession class 249
MQTemporaryQueue class 260
MQTemporaryTopic class 261
MQTopic

(JMS object) 31
class 263

MQTopicConnection class 265
MQTopicConnectionFactory

(JMS object) 31
class 267

MQTopicPublisher class 270
MQTopicSession class 275
MQTopicSubscriber class 278
multithreaded programs 56

N
names, of Topics 155
naming considerations, LDAP 32
Netscape Navigator, using 5
non-durable subscribers 158

O
object creation, error conditions 37
ObjectMessage interface 231
ObjectMessage type 150
objects

administered 144
JMS, administering 31
JMS, creating 32
JMS, properties 33
message 161
retrieving from JNDI 144

objects and properties, valid combinations 35
obtaining a session 147
Operations on queue managers 52
options

connection 4
OS/390 support xi
overview 3

P
package

com.ibm.jms 183
com.mq.ibm.jms 182
javax.jmss 179

PDF (Portable Document Format) 294
PERSISTENCE object property 34
platform differences 61

298 MQSeries Using Java

 index

point-to-point installation verification 18
PORT object property 34
Portable Document Format (PDF) 294
PostScript format 294
prerequisite software 6
prerequisites 6
PRIORITY object property 34
problems, solving 15, 24
problems, solving in Pub/Sub mode 159
processes, accessing 53
Product Extensions 9
progams, running 58
programmers, introduction 41
programming

bindings connection 46
client connections 45
compiling 58
connections 45
multithreaded 56
tracing 59
writing 45

programming interface 42
programs

JMS, writing 143
Pub/Sub, writing 153
running 24

properties
client 36
dependencies 36
mapping between admin tool and programs 281
message 161
of exit strings 36
of JMS objects 33
queue, setting 147

properties and objects, valid combinations 35
PROVIDER_URL parameter 28
PSIVT (Installation Verification Test program) 21
PSIVTRun utility 22, 283
Pub/Sub
publications

MQSeries 291
publications (Pub/Sub), local suppressing 159
Publish/Subscribe Installation Verification Test program

(PSIVT) 21
publishing messages 154

Q
QMANAGER object property 34
Queue

interface 232
object 144

queue manager
connecting to 52
disconnecting from 52
operations on 52

queue manager, configuring for clients 11
QUEUE object property 34
queue properties

setting 147
setting with set methods 149

QueueBrowser interface 234
QueueConnection interface 236
QueueReceiver interface 240
QueueRequestor class 241
queues, accessing 53
QueueSender interface 243
QueueSession interface 246

R
reading strings 55
receiving
RECEXIT object property 34
RECEXITINIT object property 34
reports, broker 160
resources, closing 152
retrieving objects from JNDI 144
runjms utility 24, 283
running

applets 58
applications under CICS Transaction Server 59
in a Web browser 5
MQSeries classes for Java programs 58
stand-alone 5
with applet viewer 5
your own programs 15

runtime

S
sample applet

customizing 13
tracing 15
using to verify 11
with applet viewer 12
with Web browser 12

sample application
tracing 15
using to verify 13

sample application, Pub/Sub 153
scripts provided with MQSeries classes for Java

Message Service(JMS) 283
SECEXIT object property 34
SECEXITINIT object property 34
security considerations, JNDI 29
SECURITY_AUTHENTICATION parameter 28
selecting a subset of messages 151, 161
selectors

message 151, 161
message in Pub/Sub mode 158
message, and SQL 162

 Index 299

 index

SENDEXIT object property 34
SENDEXITINIT object property 34
sending a message 147
session interface 143, 249
session, obtaining 147
set and inquire 56
set methods

on MQQueueConnectionFactory 146
using to set queue properties 149

setting
queue properties 147
queue properties with set methods 149

shutting down applications 152
softcopy books 293
software requirements 6
software, prerequisite 6
solving problems 15

general 24
in Pub/Sub mode 159

SQL for message selectors 162
stand-alone, running 5
starting a connection 145
starting the administration tool 27
stream message 161
StreamMessage interface 253
StreamMessage type 150
strings, reading and writing 55
subcontexts, manipulating 30
subscriber options 158
subscriptions, receiving 155
subset of messages, selecting 151, 161
Sun JMS interfaces and classes 179
Sun Web site 3
suppressing local publications 159

T
TARGCLIENT object property 34
TCP/IP

client verifying 13
connection, programming 45

TEMPMODEL object property 34
TemporaryQueue interface 260
TemporaryTopic interface 261
termination, unexpected 159
testing MQSeries classes for Java progams 59
text message 161
TextMessage interface 262
TextMessage type 150
Topic

interface 153, 263
names 155
names, wildcards 156
object 144

TOPIC object property 34

TopicConnection 153
TopicConnection interface 265
TopicConnectionFactory 153

interface 267
object 144

TopicPublisher 154
TopicPublisher interface 270
TopicRequestor class 273
TopicSession 153
TopicSession interface 275
TopicSubscriber 154
TopicSubscriber interface 278
trace, default output location 24
tracing

programs 59
sample applet 15
the sample application 15

TRANSPORT object property 34
transport options xi
transport, choosing 146
types of JMS message 149
types of message 161

U
unexpected application termination 159
uniform resource identifier (URI) for queue

properties 148
updating your CLASSPATH 8
URI for queue properties 148
user exits, writing 57
uses for MQSeries 3
using

applet viewer 11
CICS Transaction server 14
MQ base Java 11

utilities provided with MQSeries classes for Java
Message Service(JMS) 283

V
v5 extensions 63
valid combinations of objects and properties 35
verbs, MQSeries supported 42
verification

with JNDI (PTP) 19
with JNDI (Pub/Sub) 23
without JNDI (PTP) 19
without JNDI (Pub/Sub) 22

verifying
client mode installation 11
TCP/IP clients 13
with the sample applet 11
with the sample application 13

verifying your installation 17

300 MQSeries Using Java

 index

versions of software required 6
Visibroker xi

using 4, 5, 14

W
Web browser

using 5
with sample applet 12

Web server, configuring 10
widcards in topic names 156
Windows Help 294
writing

programs 45
strings 55
user exits 57

X
XAQueueConnection interface 236
XAQueueConnectionFactory interface 238

 Index 301

IBM

SC34-5456-ð2

Spine information:

IBM MQSeries Using Java

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Abbreviations used in this book

	Summary of changes
	Changes for this edition (SC34-5456-02)
	Changes for the previous edition
	Changes for the first edition

	Part 1. Guidance for users
	Chapter 1. Getting started
	What is MQSeries classes for Java?
	What is MQSeries classes for Java Message Service(JMS)?
	Who should use MQ Java?
	Connection options
	Client connection
	Using VisiBroker for Java
	Bindings connection

	Prerequisites

	Chapter 2. Installation procedures
	Installing MQ base Java Version 5.1
	Installing Product Extension MA88
	Web server configuration

	Chapter 3. Using MQ base Java
	Using the sample applet to verify the TCP/IP client
	Configuring your queue manager to accept client connections
	TCP/IP client

	Running from appletviewer
	Running from a Web browser
	Customizing the verification applet

	Verifying with the sample application
	Using VisiBroker connectivity
	Using CICS Transaction Server for OS/390

	Running your own programs
	Solving MQ base Java problems
	Tracing the sample applet
	Tracing the sample application
	Tracing with CICS Transaction Server for OS/390

	Error messages

	Chapter 4. Using MQ JMS
	Post installation setup
	Additional setup for Pub/Sub mode
	Running the point-to-point IVT
	Point-to-point verification without JNDI
	Point-to-point verification with JNDI
	IVT error recovery

	The Publish/Subscribe Installation Verification Test
	Pub/Sub verification without JNDI
	Pub/Sub verification with JNDI
	PSIVT error recovery

	Running your own programs
	Solving problems
	Tracing programs
	Logging

	Chapter 5. Using the MQ JMS administration tool
	Invoking the Administration tool
	Configuration
	Security

	Administration commands
	Manipulating subcontexts
	Administering JMS objects
	Object types
	Verbs used with JMS objects
	Creating objects
	LDAP naming considerations

	Properties
	Property dependencies
	The ENCODING property
	Sample error conditions

	Part 2. Programming with MQ base Java
	Chapter 6. Introduction for programmers
	Why should I use the Java interface?
	The MQSeries classes for Java interface
	Java Developer's Kit
	MQSeries classes for Java class library

	Chapter 7. Writing MQ base Java programs
	Should I write applets or applications?
	Connection differences
	Client connections
	Bindings mode
	Defining which connection to use

	Example code fragments
	Example applet code
	Changing the connection to use VisiBroker for Java

	Example application code

	Operations on queue managers
	Setting up the MQSeries environment
	Connecting to a queue manager

	Accessing queues and processes
	Handling messages
	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Writing user exits
	Compiling and testing MQSeries classes for Java programs
	Running MQSeries classes for Java applets
	Running MQSeries classes for Java applications
	Running MQSeries classes for Java applications under CICS Transaction Server for OS/390
	Tracing MQSeries Java programs

	Chapter 8. Environment-dependent behavior
	Core details
	Restrictions and variations for core classes
	Version 5 extensions operating in other environments

	Chapter 9. The MQSeries classes for Java classes and interfaces
	MQChannelDefinition
	Variables
	Constructors

	MQChannelExit
	Variables
	Constructors

	MQDistributionList
	Constructors
	Methods

	MQDistributionListItem
	Variables
	Constructors

	MQEnvironment
	Variables
	Constructors
	Methods

	MQException
	Variables
	Constructors

	MQGetMessageOptions
	Variables
	Constructors

	MQManagedObject
	Variables
	Constructors
	Methods

	MQMessage
	Variables
	Constructors
	Methods

	MQMessageTracker
	Variables

	MQProcess
	Constructors
	Methods

	MQPutMessageOptions
	Variables
	Constructors

	MQQueue
	Constructors
	Methods

	MQQueueManager
	Variables
	Constructors
	Methods

	MQC
	MQReceiveExit
	Methods

	MQSecurityExit
	Methods

	MQSendExit
	Methods

	Part 3. Programming with MQ JMS
	Chapter 10. Writing MQ JMS programs
	The JMS model
	Building a Connection
	Retrieving the factory from JNDI
	Using the factory to create a connection
	Creating factories at runtime
	Starting the connection

	Choosing client or bindings transport

	Obtaining a Session
	Sending a message
	Setting properties with the 'set' method
	Message types

	Receiving a message
	Message Selectors
	Asynchronous Delivery

	Closing down
	JVM hang at shutdown

	Handling errors
	Exception listener

	Chapter 11. Programming Publish/Subscribe applications
	Writing a simple Pub/Sub application
	Import required packages
	Obtain or create JMS objects
	Publish messages
	Receive subscriptions
	Close down unwanted resources

	Using Topics
	Topic Names
	Creating topics at runtime

	Subscriber options
	Creating non-durable subscribers
	Creating durable subscribers
	Using Message Selectors
	Suppressing local publications
	Combining the subscriber options

	Solving Pub/Sub problems
	Incomplete Pub/Sub close down
	Handling broker reports

	Chapter 12. JMS messages
	Message selectors
	Mapping JMS messages onto MQSeries messages
	The MQRFH2 Header
	JMS Fields and Properties with corresponding MQMD Fields
	Mapping JMS fields onto MQSeries fields (Outgoing Messages)
	Mapping JMS header fields at send()/publish()
	Mapping JMS Property Fields
	Mapping JMS Provider-Specific Fields

	Mapping MQSeries fields onto JMS Fields (Incoming Messages)
	Mapping JMS to a Native MQSeries Application
	Message Body

	Chapter 13. JMS interfaces and classes
	Sun Java Message Service classes and interfaces
	MQSeries JMS classes
	BytesMessage
	Methods

	Connection
	Methods

	ConnectionFactory
	MQSeries constructor
	Methods

	ConnectionMetaData
	MQSeries constructor
	Methods

	DeliveryMode
	Fields

	Destination
	MQSeries constructors
	Methods

	ExceptionListener
	Methods

	MapMessage
	Methods

	Message
	Fields
	Methods

	MessageConsumer
	Methods

	MessageListener
	Methods

	MessageProducer
	MQSeries constructors
	Methods

	MQQueueEnumeration *
	Methods

	ObjectMessage
	Methods

	Queue
	MQSeries constructors
	Methods

	QueueBrowser
	Methods

	QueueConnection
	Methods

	QueueConnectionFactory
	MQSeries constructor
	Methods

	QueueReceiver
	Methods

	QueueRequestor
	Constructors
	Methods

	QueueSender
	Methods

	QueueSession
	Methods

	Session
	Fields
	Methods

	StreamMessage
	Methods

	TemporaryQueue
	Methods

	TemporaryTopic
	MQSeries constructor
	Methods

	TextMessage
	Methods

	Topic
	MQSeries constructor
	Methods

	TopicConnection
	Methods

	TopicConnectionFactory
	MQSeries constructor
	Methods

	TopicPublisher
	Methods

	TopicRequestor
	Constructors
	Methods

	TopicSession
	MQSeries constructor
	Methods

	TopicSubscriber
	Methods

	Part 4. Appendices
	Appendix A. Mapping between Administration tool properties and programmable properties
	Appendix B. Scripts provided with MQSeries classes for Java Message Service(JMS)
	Appendix C. LDAP server configuration for Java objects
	Checking your LDAP server configuration
	Configuration procedures

	Appendix D. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platform publications
	MQSeries platform-specific publications
	Softcopy books
	BookManager format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information available on the Internet

	Index

