
XML Conversion Utility

Version 2.0

Websphere MQ Everyplace XML Conversion Utility

 ii

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, August 2000

This edition applies to Version 1.0 of Websphere MQ Everyplace XML Conversion Utility and
to all subsequent releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to US Government Users -- Documentation related to restricted rights -- Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Second Edition, December 2002

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to US Government Users -- Documentation related to restricted rights -- Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Websphere MQ Everyplace XML Conversion Utility

 iii

Contents

Contents...iii

Preface ... v

Summary of changes.. vii

Chapter 1. Getting started .. 1

Prerequisites ..1

Installation..1

Chapter 2. The XML representation of MQeFields objects..................... 2

The node representation of an MQeFields object...2
Basic fields ...2
Array fields ...3
Embedded fields...4

The XML representation of other message fields ...5
The document root ...5
The class..5
The unreadable fields ...6

Restrictions ..9
Field Names ...7
Security ..9

Chapter 3. com.ibm.mqe.xml.MQeXMLConverter 10

Constructor ..10

Members..10

Methods ...11
The XML-MQeFields transformation...11
The MQeFields-XML transformation...13
The Websphere MQ Everyplace specific fields...15

Chapter 4. Example applications... 17

Disk adapter example ..17

The MQeDiskFields viewer ..19

The XML bridge transformer ..22
The Websphere MQ Everyplace to Websphere MQ transformation22
Websphere MQ to Websphere MQ Everyplace transformation ..24
MQeMQMsgObject considerations...25
Configuring the transformer in your Gateway Websphere MQ Everyplace queue manager
...25

Websphere MQ Everyplace XML Conversion Utility

 iv

Bibliography .. 28

Notices ... 29

Trademarks and service marks ..29

Websphere MQ Everyplace XML Conversion Utility

 v

Preface
Websphere MQ Everyplace is a messaging product that extends the reach of the Websphere
MQ family to a wider range of distributed and mobile environments. Written in pure Java it
runs on many platforms and uses a message queuing paradigm to provide secure, robust,
and assured once-only in-order delivery of messages between applications.

Websphere MQ Everyplace seamlessly interfaces with other members of the Websphere MQ
family of products, and is often used to extend the reach of corporate applications and data
onto wireless and small footprint devices.

For more information on the Websphere MQ Everyplace base product, please see
http://www.ibm.com/software/ts/Websphere MQ/everyplace/, or try the free download of the
trial version of the product available at http://software.boulder.ibm.com/dl/mqsem/mqsem-p.

Websphere MQ Everyplace transports messages between applications and queues. The
messages are built using a data container, called an MQeFields object, in which the
application data is placed.

This support pack allows you to transform any MQeFields object to an XML string and hence
to use all the XML-enabled software products (including Websphere MQ Integrator).

Websphere MQ Everyplace can be used either on its own, or in conjunction with an
Websphere MQ application. Presently, as Websphere MQ Everyplace messages are passed
to Websphere MQ, the messages are transformed between formats using a 'bridge'. The
default behavior of the bridge, for a basic Websphere MQ Everyplace message is to embed a
binary form of the message into a Websphere MQ message body (special forms of the
Websphere MQ Everyplace message and customizations of the bridge can provide more
readily usable content).

If the binary representation of a Websphere MQ Everyplace message is placed in the
Websphere MQ message, within Websphere MQ itself, you cannot easily access the various
fields, and you cannot meaningfully process the content of an Websphere MQ Everyplace
message using Websphere MQ Integrator (WMQI)1. More specifically, you cannot easily
parse messages using WMQI, extracting pieces of the message for separate processing.
Using the conversion tool provided by this SupportPac, the 'bridge' can be configured to
produce Websphere MQ message with an XML data payload. This format is suitable for
WMQI to fragment and process as if the XML content were originating from any other
Websphere MQ XML application.

This SupportPac also enables you to represent MQeFields objects in a human readable
language. This can be very useful for debugging purposes, for example, when a Websphere
MQ Everyplace programmer wishes to view the contents of a message, or output the contents
of a message to trace output, a file, or the screen.

This documentation explains all the conventions used to convert an MQeFields or
MQeMsgObject object to an XML string and back again. The class that performs the
transformation is also described.

1 Websphere MQ Integrator (WMQI) was previously kown as MQSeries Integrator (MQSI).

Websphere MQ Everyplace XML Conversion Utility

 vi

Some examples of the use of the conversion tool are included:

 The use of the XML adapter as a disk adapter that allows you to configure a queue such
that when a message is put on that queue, it is rendered to disk as an XML string, rather
than the binary format normally used.

 An example “transformer” used by the bridging facility in a gateway Websphere MQ
Everyplace queue manager. This code converts any MQeMsgObject sent over the
Websphere MQ Everyplace network into an Websphere MQ message such that the body
of that message contains an XML string representing the message content.

 A command-line tool that can render an existing unencrypted or compressed dumped
MQeFields object, into an XML string representation for viewing. This application can be
useful when observing your messages on the disk.

Websphere MQ Everyplace XML Conversion Utility

 vii

Summary of changes
Date Changes

November 2001 Release 1.0

December 2002 Release 2.0

Updated to work with WMQe version 2.0

Websphere MQ Everyplace XML Conversion Utility

 1

Chapter 1. Getting started
This chapter describes the software you need to use Websphere MQ Everyplace XML and
how to install the SupportPac.

Prerequisites
This section describes the software you require to use this SupportPac:

• Websphere MQ Everyplace version 2.0.0.0 or above is required in order to use the
SupportPac (we recommend you download the very latest version of Websphere MQ
Everyplace from the Websphere MQ Everyplace download site)

• The examples within this SupportPac (.bat files) work only on Windows platforms, but the
Java parts of the examples, and the XML conversion utility itself are platform-
independent.

• A Java virtual machine (JVM) of level 1.3 or above is required to use the XML conversion
utility, and a Java development toolkit (JDK) is needed to modify or extend the examples.

Installation
This XML utility is provided in a .zip file. Download the .zip file and unpack it to a directory of
your choosing.

The XML utility contains the following files:

Filename Content
\ea01.pdf Documentation in adobe acrobat (PDF)

format
\license2.txt The license covering the use of his utility.
\com.ibm.mqe.xml.jar. Java archive containing the XML conversion

utility classes
\examples.xml.jar Java archive containing example class files.
\examples\ Tree of directories containing example source

code.

Edit your classpath to include the path to the XML utility classes on your machine.
On windows this can be done using the command-line syntax:

Set CLASSPATH=<xml_supportpac_directory>\com.ibm.mqe.xml.jar;
<xml_supportpac_directory>\examples.xml.jar;%CLASSPATH%

Where <xml_supportpac_directory> is the folder in which you installed the xml SupportPac.

The examples directory contains the Java source code for the example programs.

Websphere MQ Everyplace XML Conversion Utility

 2

Chapter 2. The XML representation of MQeFields
objects

Many objects in Websphere MQ Everyplace are subclasses of the MQeFields class.

An MQeFields object can be thought of as an unsorted tree of items, each node in the tree is
a 'field' Fields can themselves be MQeFields objects. Hence, a nested multi-level container
structure can be built using MQeFields objects.

The Websphere MQ Everyplace programming interface exposes the MQeFields class, but
does not expose any sub-divisions of the MQeFields class in their own right. Although it is not
a programming construct, throughout this document we refer to an MQeField or field to mean
a logical node in the MQeFields tree of items.

XML is a popular format for representing tree structures due to its flexibility, the powerful
technologies related to it (XSLT, DTD for example), and the increasing number of software
products, such as WMQI, that use XML to represent data, and can also parse and manipulate
XML content.

By using XML to represent the tree structure of an MQeFields object, Websphere MQ
Everyplace users can exchange data with XML-enabled software products.

The node representation of an MQeFields object
There are three underlying constructs that are used to represent an MQeFields object when it
is expressed as an XML string. These are:

• Basic elements
• Array elements
• Embedded MQeFields elements

Basic fields

Each item in an MQeFields object has three characteristics:

 name: A string of characters, in the allowable range as specified in the Websphere MQ

Everyplace Programming Guide.

 type: The type of the information represented by this MQeFields item. Supported basic
types are: ASCII, Boolean, byte, double, float, int, long, short, Unicode. Further types of
array and fields are discussed later in this section.

 value: The value of a field.

Examples of the XML representation of some primitive-typed fields (unicode string, int,
Boolean, long and ASCII) are shown below:

<my_unicode_field type=”unicode”>This is a Unicode string</my_unicode_field>

<my_integer_field type=”int”>1234</my_integer_field>

<my_boolean_field type=”boolean”>true</my_boolean_field>

<my_long_field type=”long”>12344</my_long_field>

<my_ascii_field type=”ascii”>This is an ASCII string</my_ascii_field>

Websphere MQ Everyplace XML Conversion Utility

 3

Note that the name of the XML tag corresponds to the name of the field in the MQeFields
object.

Array fields
The array construct is found in many computer languages. In Websphere MQ Everyplace, an
array can be put inside an MQeFields object in one of two ways, either as a ‘static array’ or as
a ‘dynamic array’ of MQeFields elements.

Each method of array representation provides different capabilities to the Websphere MQ
Everyplace application programmer, and each leads to different XML representations.

Static array representation

In a static array MQeFields element all the data in the array is put into a single MQeFields
element, using the putArrayOf<type> style of Websphere MQ Everyplace call. For example,
when using the MQeFields.putArrayOfInt() or MQeFields.putArrayOfLong() methods. A single
XML tag is used to express the whole array, and the text between the begin-tag and end-tag
bracketing contains a textual representation of all the array data. All elements of the array are
marked as being the same type.

The XML representation of a static array conforms to the following syntax:

<its_name type=”its_type”>[array_length] {<value>;<value>; … <value> }</its_name>

Note that the values enclosed within the ‘{‘ ‘}’ bracket are separated by ‘;’ characters.

As an example, a static array containing three integer numbers has an XML representation of:

<my_integer_static_array type=”int”>[10]{9;8;7}</my_integer_static_array>

Dynamic array representation

A dynamic array in an MQeFields object is represented using several individual MQeFields
elements, one for each element of the array, all on the same level of the Fields hierarchy.

The array is put into the MQeFields object using the put<type>Array() style of Websphere MQ
Everyplace call. For example, when using the MQeFields.putIntArray() or
MQeFields.putLongArray() methods.

When a dynamic array is expressed as an XML string, each element of the array is represent
separately within it’s own XML tag. All such elements are themselves enclosed by a
bracketing XML tag to indicate that the fields are elements of a dynamic array.

The XML representation of a dynamic array follows the form:

<array_name type=”dynamicArray”>

<array_name:index type=”element_type” > value </array_name:index>

<array_name:index+1 type=”element_type” > value </array_name:index+1>

…etc…

<array_name:index+n type=”element_type” > value </array_name:index+n>

</array_name>

Websphere MQ Everyplace XML Conversion Utility

 4

Where the array-name corresponds to the name of the dynamic array as it exists in the
MQeFields object, the index is an integer, starting at 0, and incremented for each successive
element in the dynamic array.

Note that the type attribute for each element of the array can be different, although normally
all elements of the array would have the same type. For example, a dynamic array containing
three integer numbers as the elements has an XML representation of:

<my_array type=”dynamicArray”>

 <my_array:0 type=”int”>9</my_array:0>

 <my_array:1 type=”int”>8</my_array:1>

 <my_array:2 type=”int”>7</my_array:2>

</my_array>

Notes:

 There are no such methods as putArrayOfAscii and putArrayOfUnicode.

 The methods putArrayOfByte(String, byte[][]) and putByteArray(String, byte[]) do not take
the same arguments

 You can only put a null array using the putArrayOf*** methods, if you try to use the
put***Array methods with a null array, an exception is thrown.

Embedded fields
An MQeFields object can be placed, or embedded into another MQeFields object using the
MQeFields.putFields() method. This has the effect of adding a nested level of fields within the
existing MQeFields structure, forming a deeper hierarchy of field nodes. The MQeFields being
embedded has a name similar to an integer field name. If an MQeFields object ‘A’ is being
embedded within the MQeFields object ‘B’, then the XML representation of this follows the
form:

 … the XML representation of the items contained in A…

For example, if an MQeFields object ‘A’ contains a selection of basic fields, in XML this would
look like the following:

<my_unicode_field type=”unicode”>This is a Unicode
string</my_unicode_field>

<my_integer_field type=”int”>1234</my_integer_field>

<my_boolean_field type=”boolean”>true</my_boolean_field>

<my_long_field type=”long”>12344</my_long_field>

<my_ascii_field type=”ascii”>This is an ASCII string</my_ascii_field>

Websphere MQ Everyplace XML Conversion Utility

 5

Then suppose this MQeFields object is embedded inside another (called ‘B’), using the
B.putFields(“myEmbeddedMQeFields” , A);, statement, the resultant XML representation of B
would be:

<myEmbeddedMQeFields type=”fields”>

<my_unicode_field type=”unicode”>This is a Unicode
String</my_unicode_field>

<my_integer_field type=”int”>1234</my_integer_field>

<my_boolean_field type=”boolean”>true</my_boolean_field>

<my_long_field type=”long”>12344</my_long_field>

<my_ascii_field type=”ascii”>This is an ASCII
string</my_ascii_field>

</myEmbeddedMQeFields>

The XML representation of other message fields
Three more pieces of information are required to represent an MQeFields object or any
instance of an object that derives from the MQeFields class in XML:

 We must be able to set the document root of the XML document (the name of the tag,
which is parent to all the other nodes).

 We must store the name of the class of the object we represent, in the XML document, so
that it can be restored later if necessary.

 We must have a method of displaying the fields that are generated by Websphere MQ
Everyplace and whose names are not explicit.

The document root
The top-level MQeFields object does not have a name, so we have to choose the name of the
document root. By default, the name is "MQeFields" but you can change this value if you
wish. The Java symbolic name for this is MQeXMLConverter.Document_Root. The following
conventions are used:

 If the MQeFields object contains a Unicode field named 'XML_Document_Root', the value
of this field is used as the name of the XML document root.

 If the MQeFields does not contain such a field, the default value is used.

Note: If you want to integrate Websphere MQ Everyplace into an existing XML application,
you will probably not be given the choice of the name of the XML document root, as this will
already have been decided by the application.

The class
Java is an object-oriented language, hence we must store the class of the object we are
representing to XML. When we restore this object, we must create an instance of the same
class to be able to apply the same methods to the restored object and to the original instance.

By convention, an attribute of the XML document root named “class” stores the class of the
object represented. For example:

 <MQeFields class="com.ibm.mqe.MQeMsgObject">

Websphere MQ Everyplace XML Conversion Utility

 6

If the attribute is missing when we try to restore the object, a default class is used and, as with
the document root, you can set the default class to be used if you wish.

The unreadable fields
To reduce the size of the objects it handles or sends through any network, Websphere MQ
Everyplace uses very short names to store message specific information. For instance, if you
try to represent an MQeMsgObject object without using any further convention, you will get an
XML document like the one below:

<TEST_UNICODE TYPE="UNICODE">THIS IS A UNICODE STRING</TEST_UNICODE>
<TEST_INT TYPE="INT">123</TEST_INT>
<TEST_BYTE_ARRAY TYPE="BYTE">[10] {0;1;2;3;4;5;6;7;8;9}</TEST_BYTE_ARRAY>
<TEST_BOOLEAN TYPE="BOOLEAN">TRUE</TEST_BOOLEAN>
<°TA TYPE="LONG">989588710031</°TA>
<´ TYPE="LONG">989588709968</´>
<² TYPE="ASCII">MQEBRIDGE</²>

The highlighted fields are generated by Websphere MQ Everyplace and they store
information such as the originating queue manager name or the time when the message was
created. As you can see, in some cases, the name is not readable and the value of the field
can be obscure as well, for instance, when it represents time with a long value.

To provide a more readable format for these fields, the names of the fields are changed while
generating the XML representation, and an attribute named “comment” is added to the node
whose value is the content of the field in a more readable format. The following table shows
the mapping of the original fields to the XML generated fields.

 MQeFields Name Name displayed Comment

MQe.Msg_OriginQMgr OriginQMgr

MQe.Msg_MsgID MsgID

MQe.Msg_CorrelID MsgCorrelID

MQe.Msg_LockID MsgLockID

MQe.Msg_Priority Priority

MQe.Msg_ReplyToQ ReplyToQ

MQe.Msg_ReplyToQMgr ReplyToQMgr

MQe.Msg_Resend Resend

Websphere MQ Everyplace XML Conversion Utility

 7

MQe.Msg_Style MsgStyle Request, Reply or Datagram

MQe.Msg_Time MsgTime LongtoString()

MQe.Msg_WrapMsg WrapMsg

MQe.Msg_ExpireTime ExpireTime Long.toString() or Int.toString()

MQeIndexEntryConstants.INDEX_CONFIRMID INDEX_CONFIRMID

MQeIndexEntryConstants.INDEX_PREVIOUS_LO
CKTYPE

INDEX_PREVIOUS_LOCKTYPE various internal message states

MQeIndexEntryConstants.INDEX_TIME_ADDED INDEX_TIME_ADDED LongtoString()

MQeIndexEntryConstants.INDEX_LOCKTYPE INDEX_LOCKTYPE various internal message states

Using the previous conventions, a sample MQeMsgObject is represented as follows:

<MQeFields class="com.ibm.mqe.MQeMsgObject">
 <OriginQMgr type="ascii">MQeBridge</OriginQMgr>
 <MsgTime type="long" comment="11 MAY 2001
14:42:36:109">989588556109</MsgTime>
 <INDEX_TIME_ADDED type="long" comment="11 MAY 2001 14:42:36:265">
 989588556265
 </INDEX_TIME_ADDED>
 <Test_Unicode type="unicode">This is a Unicode String</Test_Unicode>
<Test_Int type="int">123</Test_Int>
 <Test_Byte_Array type="byte">[10] {0;1;2;3;4;5;6;7;8;9}</Test_Byte_Array>
 <Test_Boolean type="boolean">true</Test_Boolean>
</MQeFields>

You can represent any object which subclasses the MQeFields class in a human readable
XML format, and restore an exact copy of this object from the XML document.

Special Characters converted between XML and MQeFields
representations

Field Names
Websphere MQ Everyplace allows a subset of the ASCII code page for field names.

The values are not checked by MQe code, and if used, some special handling of these field
names is performed. If you use any characters for which XML already has a meaning in your
field names, then these are converted into a form which is an acceptable XML element name.

Websphere MQ Everyplace XML Conversion Utility

 8

Special characters in MQeFields name

(not legal field names)

How it appears in an XML representation

‘<’ (less than) ‘_lt_’

‘ ‘ (space/required blank) ‘_rbl_’

‘>’ (greater than) ‘__gt_’

‘&’ (ampersand) ‘_amp_’

‘_’ (underscore) ‘__’ (double underscore)

‘-‘ (minus) ‘_minus_’

‘+’ (plus) ‘_plus_’

‘,’ (comma) ‘_comma_’

‘/’ (forward slash) ‘_fsl_’

If you try to convert an XML string which contains element names containing the longer XML-
friendly characters, then these names will be mapped back into MQe field names. In this way,
fields with poorly chosen field names will survive the MQeFields-to-XML-to-MQeFields round
trip.

Field Values
If an Ascii or Unicode field is stored in an MQeFields object. When the value contains
characters which have a special meaning in XML, then these will be converted to a form
which protect the data from the MQeFields-to-XML-to-MQeFields round trip.

The following mappings for fields values are performed.

Special characters in MQeFields name

(not legal WMQe field names)

How it appears in an XML representation

‘<’ (less than) <

‘>’ (greater than) >

‘&’ (ampersand) &

These conversions apply to Ascii and Unicode fields only.

For example, if an MQeFields has a unicode field created with a value of
“Value<With>wierd&characters/” this would be rendered to XML with the value of
“Value<With>weird&characters&fsl;”

When an XML element value is parsed into an MQeFields object, the opposite mapping is
performed for fields of type ascii and unicode.

Websphere MQ Everyplace XML Conversion Utility

 9

This allows data values containing these special characters to be used within values of Ascii
or Unicode fields, where they could otherwise make the resulting XML output invalid.

When constructing values for fields in XML, you will need to do a similar transformation on
raw data to get a version of the XML data which itself can be parsed by this supportpac.

Restrictions

Security
The adapter that uses the XML transformation cannot be used with field and message level
security but it can be used with limited queue level security. Remote queue managers have to
use security attributes to send messages to the secure queue manager. Most adapters apply
security when the messages are moved to disk, but with the XML adapter the attributes are
not used when the message is moved to disk, or other storage.

For example, configuring a queue with a queue security characteristic using the example NT
authenticator, DES encryption and GZIP compression, and then configuring the XML disk
adapter underneath the queue have contradictory aims. The encryption aims to make the
information less accessible to readers, while the XML adapter aims to make the information
more accessible to readers. In such cases, the data is NOT encrypted when stored on the
disk, though the security attributes are used as normal when the messages are transmitted
between queue managers.

A corollary is that using the XML adapter in the wrong place could breach your queue-based
security model.

Websphere MQ Everyplace XML Conversion Utility

 10

Chapter 3. com.ibm.mqe.xml.MQeXMLConverter
This section describes the class that provides the basic function of converting from an
MQeFields object into an XML string, and vice-versa.

Constructor
public MQeXMLConverter(Errorhandler error_handler) :

Parameter:
Errorhandler error_handler:

This parameter allows you to handle the error messages generated by any method of this
instance as you wish. A sample class named “com.ibm.mqe.xml.DefaultErrorhandler” is
shipped as an example. It outputs the various error and warning messages using Websphere
MQ Everyplace Trace.

Members
public String Default_Class = "com.ibm.mqe.MQeFields" :

You can set this member to change the class used to create the object from an XML string
when no attribute named “class” is set in the document root (see the “class” section in the
previous chapter for more information).

public String Document_Root = "MQeFields"

Stores the default document root to be used if the MQeFields object does not contains a
Unicode field named XML_Document_Root (see the “document root” section in the previous
chapter for more information).

Websphere MQ Everyplace XML Conversion Utility

 11

Methods

The XML-MQeFields transformation
public MQeFields toMQeFields(String xml) throws Exception :

Generates an MQeFields object from the XML representation that is passed as a parameter.

Effectively the opposite to the toString() method.

Parameters:
String xml:

A string that is an XML representation of an MQeFields object or of any instance of a
subclass of MQeFields. For example, this string could be the output of the toString() method
on this class.

Returns:
The object that is represented by the XML string that was passed as parameter. This object is
either an MQeFields or an instance of a subclass of the MQeFields class.

Exceptions:
An exception is thrown if the string is not a valid XML representation of an MQeFields object
or of an instance of a subclass of the MQeFields class.

In order to make this method more tolerant, two conventions are used:

 If the document root does not contain an attribute named class, the Default_Class is
used.

 If a tag does not have an attribute named type, it is considered to be an embedded field
tag if it has any children. If it does not have any children, it is considered to be a Unicode
field.

If any of the above conventions are used, a warning message is generated, but the process is
not stopped.

With these conventions, any XML document that is structured as a MQeFields object can be
understood.

Related Methods:
toMQeFields, toString, toXMLByteArray

Websphere MQ Everyplace XML Conversion Utility

 12

public MQeFields toMQeFields(byte[] XML) throws Exception :

This method is quite similar to the previous one. It constructs a string using the byte array
provided as parameter and calls the previous method to output an MQeFields object.

Parameters:
byte[] XML:

A byte array representation of an XML string.

This is converted internally to a string using the platform's default character encoding, as
documented in the java.lang.String(byte[]) constructor, before the string is converted into an
MQeFields object.

Returns:
The object that is represented by the byte array that was passed as parameter. This object is
either an MQeFields object, or an instance of a subclass of the MQeFields class.

Exceptions:
An exception is thrown if the string constructed from the byte array is not a valid XML
representation of an MQeFields object or of an instance of a subclass of the MQeFields class.

Related methods:
toString, toMQeFields

Websphere MQ Everyplace XML Conversion Utility

 13

The MQeFields-XML transformation
public String toString(MQeFields MQeMsg) throws Exception :

This method takes any MQeFields object as a parameter and outputs the XML representation
of the MQeFields object as a string. This operation is the opposite of the toMQeFields method
on this class.

Parameters:
MQeFields MQeMsg:

Any instance of an MQeFields class or of a subclass of the MQeFields class.

Returns:
A string that is an XML representation of the object that was passed as a parameter. All the
conventions described previously are applied. The name of the class is stored in the “class”
attribute of the document root. The fields generated by Websphere MQ Everyplace are
transformed into a readable format and, if the object does not contains an ASCII field named
“XML_Document_Root”, the Document_Root field of this class is chosen as the name of the
document root.

Exceptions:
No exceptions are thrown as long as you pass an instance of MQeFields or of its subclass
that does not overwrite the basic methods of the MQeFields class.

Websphere MQ Everyplace XML Conversion Utility

 14

public byte[] toXMLbyteArray(MQeFields mqemsg) throws Exception :

This method is very similar to the previous one. It calls the above method and dumps the
result as a byte array.

Parameters :
MQeFields mqemsg:

Any instance of MQeFields or of a subclass of the MQeFields class.

Returns:
A byte array that corresponds to the string containing the XML representation of the object
that was passed as a parameter.

Exceptions:
As for the previous method, no exception is thrown as long as you pass an instance of
MQeFields or of its subclass that does not overwrite the basic methods of the MQeFields
class.

Related Methods:
toMQeFields

Websphere MQ Everyplace XML Conversion Utility

 15

The Websphere MQ Everyplace specific fields
public String toParameters(MQeFields MQeMsg) throws Exception :

This method is used to make the unreadable Websphere MQ Everyplace specific fields
understandable. For more information concerning the transformations performed, see the
“unreadable field” section in the previous chapter.

Parameters :
MQeFields MQeMsg:

Any instance of MQeFields or of a subclass of the MQeFields class.

Returns :
A string that is an XML representation of the fields generated by Websphere MQ Everyplace
inside the object that was passed as parameter. The other fields (generated by the user) are
not transformed and do not appear in the returned string.

Exceptions :
An exception is thrown if a field reserved to Websphere MQ Everyplace, for instance the
queue manager name field, was overwritten by the user with another field of the wrong type.

Websphere MQ Everyplace XML Conversion Utility

 16

public String longtoString(long Time) :

This methods transforms a long, representing a date, to a string with the following format:

 day month year(4 digits) hours:minutes:seconds:milliseconds(3 digits)

It is used when displaying the comment of field such as MQe.Msg_ExpireTime or
MQe.Msg_Time

Parameters :
long Time :

A long value representing a date in milliseconds

Returns :
A string representation of this date, for example:

 11 MAY 2001 14:42:36:109.

Websphere MQ Everyplace XML Conversion Utility

 17

Chapter 4. Example applications

Disk adapter example
By default, MQeFields objects are stored on the disk in a binary format and their content is
unreadable. This is because the com.ibm.mqe.adapters.MQeDiskFieldsAdapter is used to
store MQeFields objects to disk.

If you choose to configure the XML transformation instead of using the default, then the
MQeFields objects will be written to disk using a readable XML format.

The XML adapter can be useful when you are debugging an application since you can view
the file on the disk to see if any field is missing or of the wrong type.

As an alternative to this, you could use the examples.xml.viewer.View example program
described below.

Please note the security restrictions documented on 9.

You should not use this adapter when you deploy your application because it is much slower
than the default.

Note: You cannot use the Notepad Editor to view the XML files as it does not recognize the
new line character used in the transformation. You can use Wordpad, and many other editors.

If you want to store MQeFields objects using the XML transformation, set the adapter for any
given queue to use the XML adapter (examples.xml.MQeXMLFieldsAdapter) instead of the
default as it is shown in figure below.

Websphere MQ Everyplace XML Conversion Utility

 18

From Websphere MQ Everyplace version 1.2.3 onwards, it is also possible to configure
Websphere MQ Everyplace so that the entire configuration registry is written to disk using the
same XML adapter.

This effect can be achieved by adding the following field to the ‘Registry’ section of the queue
manager start-up parameters.

(ascii)Adapter=examples.xml.adapters.MQeXMLFieldsAdapter

For example, if your queue manager obtains its start-up configuration parameters from an .ini
file in the same way the product examples do, then the following stanzas would provide a
readable registry:

[Registry]
(ascii)LocalRegType=FileRegistry
(ascii)DirName=.\ExampleQM\Registry\
(ascii)Adapter=RegistryAdapter

Websphere MQ Everyplace XML Conversion Utility

 19

The MQeDiskFields viewer
The default adapter used to store Websphere MQ Everyplace messages onto hard disk is the
MQeDiskFieldsAdapter. This creates binary (dumped) rendering of an MQeFields object on
the disk.

If the queue used to put the message does not use any security attributes (cryptor or
compressor) then the Websphere MQ Everyplace messages can be converted to a readable
format using this simple command-line tool.

Syntax

java examples.xml.viewer.View <filename> [-unwrapcompressor (lzw|null)]

Parameters

filename
The file and directory that holds the message.
This can be a relative or absolute path of the full name of the file.

-unwrapcompressor

An optional flag.
When used, it indicates what the viewer should do when it encounters an MQeMsgObject
embedded inside the MQeFields structure, with the field name of MQe. Msg_WrapMsg.
If used, it should be followed by a string indicating which decompression algorithm should be
used to de-compress the embedded MQeMsgObject.
If the parameter is not specific then the embedded MQeMsgObject is considered to be a byte
array, and rendered to XML as such.

Example

If you view the directory structure of a queue manager, and navigate such that the current
directory of a command-line prompt is the same directory in which several *.Msg or *.MQe
files are stored, then the following command in Windows would generate XML
representations of all the messages in the directory…

In Websphere MQ Everyplace version 2, by default, messages are stored in two files.*.Msg
files contain the message payload in a dumped MQeFields format. The *.MQe files contain
the message state, used during message transmission, or to reflect locking status of the
message.

C:\MQe\ClientQM\Queues\ClientQM\SYSTEM.DEFAULT.LOCAL.QUEUE>FOR %I IN (*.Msg) DO java
examples.xml.viewer.View . %I

Or

C:\MQe\ClientQM\Queues\ClientQM\SYSTEM.DEFAULT.LOCAL.QUEUE>FOR %I IN (*.MQe) DO java
examples.xml.viewer.View . %I

Output might look simiar to this :

C:\MQe\ClientQM\Queues\ClientQM\SYSTEM.DEFAULT.LOCAL.QUEUE>java
examples.xml.viewer.View . 1.Msg
<MQeFields class="com.ibm.mqe.MQeMsgObject">
 <OriginQMgr type="ascii">ClientQM</OriginQMgr>
 <MsgTime type="long" comment="10 SEPTEMBER 2001
20:34:16:121">1000150456121</MsgTime>
 <INDEX_TIME_ADDED type="long" comment="10 SEPTEMBER 2001
20:34:16:151">1000150456151</INDEX_TIME_ADDED>
 <Test_Int type="int">123</Test_Int>
 <Test_Unicode type="unicode">This is a Unicode String</Test_Unicode>

Websphere MQ Everyplace XML Conversion Utility

 20

 <Test_Boolean type="boolean">true</Test_Boolean>
 <Test_Byte_Array type="byte">[10] {0;1;2;3;4;5;6;7;8;9}</Test_Byte_Array>
</MQeFields>

C:\MQe\ClientQM\Queues\ClientQM\SYSTEM.DEFAULT.LOCAL.QUEUE>java
examples.xml.viewer.View . 1.Msg
<MQeFields class="com.ibm.mqe.MQeMsgObject">
 <OriginQMgr type="ascii">ClientQM</OriginQMgr>
 <MsgTime type="long" comment="10 SEPTEMBER 2001
20:34:29:30">1000150469030</MsgTime>
 <INDEX_TIME_ADDED type="long" comment="10 SEPTEMBER 2001
20:34:29:30">1000150469030</INDEX_TIME_ADDED>
 <Test_Int type="int">123</Test_Int>
 <Test_Unicode type="unicode">This is a Unicode String</Test_Unicode>
 <Test_Boolean type="boolean">true</Test_Boolean>
 <Test_Byte_Array type="byte">[10] {0;1;2;3;4;5;6;7;8;9}</Test_Byte_Array>
</MQeFields>

The same viewer can be used to view the Websphere MQ Everyplace registry files, as
configured objects in Websphere MQ Everyplace also dump an MQeFields format of their
configuration information to disk using the DiskFIeldsAdapter.

For example, here is the output when I view the registry entry for the
SYSTEM.DEFAULT.LOCAL.QUEUE definition of the ClientQM queue manager on the hard
disk:

C:\MQe\ClientQM\Registry\ClientQM\Queue>java examples.xml.viewer.View .
ClientQM+SYSTEM.DEFAULT.LOCAL.QUEUE.MQeReg
<MQeFields class="com.ibm.mqe.MQeFields">
 <QMS type="int">-1</QMS>
 <QID type="int">0</QID>
 <QR type="ascii"></QR>
 <QQMN type="ascii">ClientQM</QQMN>
 <QFD type="ascii">MsgLog:C:\MQeDev\ClientQM\Queues\</QFD>
 <QCD type="long">999182727459</QCD>
 <QP type="byte">[1] {4}</QP>
 <QQOS type="fields">
 <Puts type="long">0</Puts>
 <Expired type="long">0</Expired>
 <FailedGets type="long">0</FailedGets>
 <Deletes type="long">0</Deletes>
 <Gets type="long">0</Gets>
 <ConfirmPuts type="long">0</ConfirmPuts>
 <Browses type="long">0</Browses>
 <ConfirmGets type="long">0</ConfirmGets>
 </QQOS>
 <QN type="ascii">SYSTEM.DEFAULT.LOCAL.QUEUE</QN>
 <QM type="byte">0</QM>
 <QMSGSTORE type="ascii">com.ibm.mqe.messagestore.MQeMessageStore</QMSGSTORE>
 <QANL type="dynamicArray">
 </QANL>
 <MQe_Class type="ascii">7:</MQe_Class>
 <QMQS type="int">-1</QMQS>
 <QE type="long">0</QE>
 <QD type="unicode">Default Queue for ClientQM</QD>
</MQeFields>

Note: This tool provides a (sometimes useful) view into messages stored using the dumped
MQeFields binary format, but the field names, and formats used should not necessarily be
relied upon. Future releases of Websphere MQ Everyplace may well change the amount,
type, labels and values of information within these registry files.

Tip:
This tool can be very useful when getting a snapshot of the entire queue manager registry
and queue message stores when no encryption or compression is being used.
Under windows, you can use the command
FOR /R <my_queue_manager_directory> %i DO (*) java examples.xml.viewer.View %i

Websphere MQ Everyplace XML Conversion Utility

 21

Websphere MQ Everyplace XML Conversion Utility

 22

The XML bridge transformer
The aim of this bridge transformer is to provide the ability for any Websphere MQ Everyplace
application to send XML-encoded string messages to Websphere MQ or WMQI applications,
and receive their XML-encoded string reply messages.

With this feature you can use all the functionality of WMQI relative to XML, for example you
can:

 Use WMQI to parse the information within the XML-encoded string message, and only
send the relevant part of the message to any other Websphere MQ queue or any
Websphere MQ Everyplace queue. For example, strip out irrelevant message content.

 Insert some data into a DB2 database using the database nodes; enriching the message
content with new data.

 Insert your Websphere MQ Everyplace application inside your existing Websphere MQ-
WMQI workflow, so that services provided by Websphere MQ Everyplace applications
can be used remotely from within an WMQI message flow application.

 Combinations of all the above.

The Websphere MQ Everyplace to Websphere MQ transformation
This section describes the default Websphere MQ Everyplace to Websphere MQ message
transform, and the XML transform provided by this SupportPac.

The default Websphere MQ Everyplace to Websphere MQ transformation

Websphere MQ Everyplace XML Conversion Utility

 23

As you can see, the MQeMsgObject is dumped to a binary format and is embedded into an
Websphere MQ message as the message payload. The Websphere MQ message header is
populated with information extracted from individual fields within the MQeMsgObject, such as
the MQe.Msg_Priority and the MQe.Msg_ExpireTime fields. Using the default Websphere
MQ-bridge transformer (com.ibm.mqe.mqbridge.MQeBaseTransformer) you can send an
MQeMsgObject across the Websphere MQ network without any loss of information (the whole
MQeMsgObject is stored in the message data), but you cannot process this message since
WMQI can’t handle this format.

The XML transformation

Instead of embedding the whole MQeMsgObject in a binary format inside a default
Websphere MQ message, the XML bridge puts all the information relative to the message in
the Websphere MQ header and only transforms the core date into XML. The XML data is put
into the Websphere MQ message data.

The transformation separates the fields into two categories; those fields that contain core data
from the fields relating to the behavior of the message. The priority and the message type are
examples of the latter.

The fields relating to message behavior are used to populate the Websphere MQ message
header, and the fields relating to the core data are supplied to the XML conversion class for
translation into an XML string, which then forms the payload to the Websphere MQ message.

The mapping of each Websphere MQ Everyplace field to the Websphere MQ message
header field is summarized in the following table:

Websphere MQ Everyplace XML Conversion Utility

 24

Websphere MQ message
header

Value

Format MQC.MQFMT_STRING
putApplicationName "MQe"
putApplicationType MQC.MQAT_JAVA
priority (int) MQe.Msg_Priority
messageType MQe.Msg_Style_Datagram -> MQC.MQMT_DATAGRAM

MQe.Msg_Style_Reply -> MQC.MQMT_REPLY
MQe.Msg_Style_Request -> MQC.MQMT_REQUEST

replyToQueueName MQe.Msg_ReplyToQ
replyToQueueManagerName MQe.Msg_ReplyToQMgr
expiry MQe.Msg_ExpireTime

Note: If the expiry time is of type ‘long’ then the message
will expire “at” a certain time. If the expiry time is of type ‘int’
then the message will expire “after” that number of
milliseconds have elapsed since the message was created.

putDateTime MQe.Msg_Time
messageId MQe.Msg_MsgID
correlationId MQe.Msg_CorrelID

When millisecond values are converted into a readable minute-hour-day-month-year format,
the default time zone in the default locale is used.

Be aware that for some parameters, further transformations are performed. For example, the
putDateTime parameter in the Websphere MQ message header is a GregorianCalendar but
the MQe.Msg_ExpireTime field in the MQeMsgObject is a long.

Websphere MQ to Websphere MQ Everyplace transformation
The same mechanism is used to transform an MQMessage to an MQeMsgObject object.

You should be aware that there might be a loss of information during the MQMessage to
MQeMsgObject transformation because some features of Websphere MQ are not supported
by Websphere MQ Everyplace. Examples are message group, character set, and
persistence. If the header of the MQMessage contains these parameters, they will not be
available in the resulting MQeMsgObject object. The same is true for the REPORT message
style, that is support by Websphere MQ Everyplace.

This should not affect your application since if you want an Websphere MQ message to cross
your Websphere MQ Everyplace network; the best solution is to use the default bridge which
does not alter the messages.

Websphere MQ Everyplace XML Conversion Utility

 25

MQeMQMsgObject considerations
The com.ibm.mqe.mqbridge.MQeBaseTransformer is the default transformer for the
Websphere MQ Everyplace - Websphere MQ bridge. When this transformer is sent a
message of the MQeMQMsgObject class, the fields within this class are used to directly
construct an Websphere MQ header and payload explicitly using the contents of the
message. (See the Websphere MQ Everyplace Programming Guide for more details.)

Unlike the MQeBaseTransformer, the MQeXMLConverter class does NOT treat such
MQeMQMsgObject messages as a special case. Such messages are treated in the same
manner as any MQeMsgObject, or subclass of MQeMsgObject in that the MQeFields
contained within the message are themselves converted to be part of the XML payload of the
Websphere MQ message.

Consequently, configuring the XML transformer in place of the MQeBaseTransformer needs
to be done with care, otherwise applications that use this feature of the MQeBaseTransformer
will fail.

Configuring the transformer in your Gateway Websphere MQ Everyplace
queue manager
The transformer is available in the examples.xml.bridge.MQeXMLTransformer.class.

The source for this class can be found in the examples\xml\bridge directory.

To configure your Websphere MQ Everyplace gateway queue manager, follow your normal
method of configuring your Websphere MQ Everyplace queue manager, but instead of
specifying the default com.ibm.mqe.mqbridge.MQeBaseTransformer in the configuration of
your bridge object, specify examples.xml.bridge.MQeXMLTransformer instead.

If using the MQe_Explorer.exe to configure your bridge, you might have a set of properties for
the bridge object as:

Websphere MQ Everyplace XML Conversion Utility

 26

If this is the case, simply change the “Default transformer field” in the panel to be:

For convenience, you will find the class named in the list by default.

If you specify the transformer explicitly on each bridge queue, or Websphere MQ Everyplace
transmission queue listener bridge object, then you can use the same technique to substitute
the name of the XML transformer instead of the default.

Websphere MQ Everyplace XML Conversion Utility

 27

Websphere MQ Everyplace XML Conversion Utility

 28

Bibliography

 Websphere MQ Everyplace for Multi-platforms Programming Guide, SC34-5845

 Websphere MQ Everyplace for Multi-platforms Programming Reference, SC34-5846

 Websphere MQ Everyplace for Multi-platforms Introduction, GC34-5843

 Business Integration Solutions With Websphere MQ Integrator, SC24-6154

 WMQI Introduction and Planning, GC34-5599

 Websphere MQ for Windows NT Quick Beginnings, GC34-5389

 Websphere MQ System Administration, SC33-1873

Websphere MQ Everyplace XML Conversion Utility

 29

Notices
The following paragraph does not apply in any country where such provisions are inconsistent
with local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not
intended to state or imply that only IBM's program or other product may be used. Any
functionally equivalent program that does not infringe any of the intellectual property rights
may be used instead of the IBM product.

Evaluation and verification of operation in conjunction with other products, except those
expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
500 Columbus Avenue, Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and
is distributed AS-IS. The use of the information or the implementation of any of these
techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item has been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques
to their own environments do so at their own risk.

Trademarks and service marks
The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

IBM, Websphere MQ

Microsoft, Windows, and Windows NT, are trademarks of Microsoft Corporation in the United
States and/or other countries.

