<|lI!

WebSphere Business Integration

Using Multi- Language Message Service

Version 10

SC34-6363-00

Note!

Before using this information and the product it supports, be sure to read the general information under

First edition (May 2004)

This edition applies to IBM Multi-Language Message Service, Version 1.0 and to any subsequent releases and
modifications until otherwise indicated in new editions.

Parts of the specification of Multi-Language Message Service are derived from the following sources:

The Java Message Service Specification, Version 1.1
Copyright 2002 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

Package javax.jms (JMS 1.1 API specification)

Copyright 2002 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . .V
Tables . . vii
About this book . ix
Who this book is for .. ix
What you need to know to understand thls book .. ix
Terms used in this book . ix
How to use this book . X
Part 1. Getting started with XMS. . . 1
Chapter 1. Introducing XMS . 3
What is Multi-Language Message Service? .3
Styles of messaging . . .3
Messaging transports .4
The XMS object model . .5
Attributes and properties of ob]ects . 6
The first release of XMS . .7
Supported operating environments . .7
Function supported . .7
Function not supported. . 8
Chapter 2. Installing XMS . . 9
Installing on Windows. . 10
What is installed. . 10
Uninstalling XMS .1
Chapter 3. Using XMS . . 13
The sample applications . .13
C sample applications . .13
C++ sample applications . .14
WebSphere MQ JMS sample apphcatrons .14
Running the C sample applications .15
Building the sample applications . . 16
Building the C sample applications . 16
Building the C++ sample applications . 16
Building your own applications . .17
Building your own C applications . .17
Building your own C++ applications . .17
Problem determination .17
Part 2. Programming with XMS . . . 19
Chapter 4. Writing XMS appllcatlons . 21
The threading model . .21
Connections . .o . .21
Starting and stopplng a connectlon .22
Closing a connection .22
Handling exceptions .22
Sessions .22
Asynchronous message dehvery .22
Synchronous message delivery . .23

© Copyright IBM Corp. 2004

Uniform resource identifiers (URIs)23
Deleting objects24
Iterators24

Chapter 5. ertlng XMS appllcatlons in

C. . .27
Object handles in C e 27
Listeners and callbacks27
C functions that return a string or byte array by
value28
C functions that return a strlng or byte array by
reference . . . 2]
Handling errors in C < (0]
Returncodes.30
The error block30

Chapter 6. XMS messages 31

Header fields in an XMS message31
Properties of an XMS message32
JMS defined properties of a message33
IBM defined properties of a message.33
Application defined properties of a message . . 34
The body of an XMS message34
Bytes messages36
Map messages36
Message selectors37

Part 3. XMS API reference 39

Chapter7. XMSclasses 43

Exceptions.43
BytesMessage.45
Methods45
Connectionb58
Methods58
ConnectionFactory63
Constructor63
Methods63
ConnectionMetaData70
Methods70
Destination73
Constructor73
Methods74
ErrorBlock.80
Methods80
Exception84
Methods8
ExceptionListener86
Methods86
Iterator.87
Methods87
MapMessage9
Methods9
Message106
iii

Methods .
MessageConsumer

Methods .
MessageListener

Methods .
MessageProducer .

Methods .
Property .

Methods .
Session

Methods .

Chapter 8. Properties of XMS objects

Properties of Connection

iv Using Multi-Language Message Service

. 106
. 131
. 131
. 136
. 136
. 137
. 137
. 147
. 147
. 163
. 163

171
171

Properties of ConnectionFactory .
Properties of ConnectionMetaData
Properties of Destination .
Properties of MessageConsumer .
Properties of Session .

Appendix. Notices

Trademarks .

Index .

Sending your comments to IBM

. 171
. 173
. 173
. 174
. 175

177
. 178

. 181

. 183

Figures

1. XMS objects and their relationships .

© Copyright IBM Corp. 2004

vi Using Multi-Language Message Service

Tables

XMS client platforms and compilers.

2. The XMS installation directories and their
contents. .

The names and Val1d Values of propert1es that
you can use in a topic URI

Objects that are deleted automatically .
Object handle data types .

Return codes from C function calls

JMS message header fields .
JMS defined properties of a message .
IBM defined properties of a message .

—_

@

O 0 NSO

© Copyright IBM Corp. 2004

. 10

.23
. 24
.27
. 30
.31
. 33
. 33

10.

11.
12.
13.
14.
15.
16.
17.
18.

XMS data types that are compatible with Java
data types . . e

A summary of the XMS classes .

C exception codes and C++ exception classes
Properties of Connection.

Properties of ConnectionFactory

Properties of ConnectionMetaData

Properties of Destination.

Properties of MessageConsumer

Properties of Session .

. 35
. 43

44

. 171
. 172
. 173
. 174
. 175
. 175

vii

viii Using Multi-Language Message Service

About this book

This book is about IBM® Multi-Language Message Service (XMS), Version 1.0. The
book has the following parts:

Part 1, “Getting started with XMS,” on page 1|which describes what XMS is,
and how to install and use XMS

Part 2, “Programming with XMS,” on page 19 which describes how to write
XMS applications

« |Part 3, “XMS API reference,” on page 39| which documents the XMS classes and
their methods, and the properties of XMS objects

For the latest information about XMS, see the product readme.txt file, which is in
the zipped file supplied with XMS.

Who this book is for

This book is primarily for application programmers who write XMS applications.
Some of the information might also be useful to system administrators who
manage systems on which XMS applications run, or who manage WebSphere®
Business Integration Event Broker or WebSphere Business Integration Message
Broker brokers to which XMS applications connect.

What you need to know to understand this book

To understand this book, you need the following skills, knowledge, and
experience:

* C or C++ application programming skills. If you are not a C++ programmer, you
need some knowledge of object oriented concepts and terminology.

* A working knowledge of the operating system that you are using.
* Experience in using TCP/IP as a communications protocol.
* Some knowledge of the concepts and terminology associated with WebSphere

Business Integration Event Broker or WebSphere Business Integration Message
Broker.

* Some knowledge of the Java Message Service Specification, Version 1.1 and the
WebSphere MQ implementation of JMS, WebSphere MQ classes for Java Message
Service, might be beneficial, but is not absolutely necessary. You do not need to
be a Java or JMS application programmer.

Terms used in this book

The term XMS is used as an abbreviation for Multi-Language Message Service.
The term JMS means Java Message Service.

The term WebSphere MQ JMS means WebSphere MQ classes for Java Message
Service.

The term Linux means SUSE LINUX Enterprise Server.

The term Windows® means Windows XP.

© Copyright IBM Corp. 2004 ix

About this book

How to use this book

Certain sections in this book refer you to [WebSphere MQ Using Javal for more
information. You can download the latest edition of [WebSphere MQ Using Java| from
http:/ /www.ibm.com/software/integration/mqfamily/library /manualsa/

X Using Multi-Language Message Service

Part 1. Getting started with XMS

Chapter 1. Introducing XMS. .3
What is Multi-Language Message Serv1ce7 .3
Styles of messaging . S .3
Messaging transports .4
The XMS object model . .5
Attributes and properties of ob]ects .6
The first release of XMS . .7
Supported operating environments . .7
Function supported . .7
Function not supported. . 8
Chapter 2. InstallingXms9
Installing on Windows.10
What is installed.10
Uninstalling XMs11
Chapter 3. UsingXMs13
The sample applications13
C sample applications.13
C++ sample applications . . . S
WebSphere MQ JMS sample apphcatlons .. .14
Running the C sample applications15
Building the sample applications16
Building the C sample applications16
Building the C++ sample applications16
Building your own applications17
Building your own C applications.17
Building your own C++ applications17
Problem determination17

© Copyright IBM Corp. 2004

2 Using Multi-Language Message Service

Chapter 1. Introducing XMS

This chapter introduces Multi-Language Message Service. The chapter contains the
following sections:

“What is Multi-Language Message Service?”|

“Styles of messaging”

“Messaging transports” on page 4|

“The XMS object model” on page 5|

“The first release of XMS” on page 7

What is Multi-Language Message Service?

Multi-Language Message Service (XMS) is an application programming interface
(API) that is based on the Java Message Service (JMS) API. With the first release of
XMS, you can write XMS applications that use the publish/subscribe style of
messaging. An XMS application acts as a client application to a broker of
WebSphere Business Integration Event Broker or WebSphere Business Integration
Message Broker, and uses WebSphere MQ Real-Time Transport or WebSphere MQ
Multicast Transport to communicate with the broker. You can write XMS
applications in either the C or C++ programming language.

Styles of messaging

Point-to-point and publish/subscribe are two styles of messaging. Styles of messaging
are also called messaging domains.

Point-to-point messaging

A common form of point-to-point messaging uses queuing. In the simplest
case, an application sends a message to another application by identifying,
implicitly or explicitly, a destination queue. The underlying messaging and
queuing system receives the message from the sending application and
routes the message to its destination queue. The receiving application can
then retrieve the message from the queue.

If the underlying messaging and queuing system contains a message
broker, the broker might replicate a message and route copies of the
message to different queues so that more than one application can receive
the message. The broker might also transform a message and add data to
it.

A key characteristic of point-to-point messaging is that an application
identifies a destination queue when it sends a message. The configuration
of the underlying messaging and queuing system then determines
precisely which queue the message is put on so that it can be retrieved by
the receiving application.

Publish/subscribe messaging

© Copyright IBM Corp. 2004

In publish/subscribe messaging, there are two types of application:
publisher and subscriber.

A publisher supplies information in the form of messages. When a publisher
publishes a message, it specifies a topic, which identifies the subject of the
information inside the message.

Introducing XMS

A subscriber is a consumer of the information that is published. A
subscriber specifies the topics it is interested in by sending subscription
requests to a publish/subscribe broker in the form of messages. The broker
receives published messages from publishers and subscription requests
from subscribers, and routes published messages to subscribers. A
subscriber receives messages on all topics, and only those topics, to which
it has subscribed.

A key characteristic of publish/subscribe messaging is that a publisher
identifies a topic when it publishes a message, and a subscriber receives
the message only if has subscribed to the topic. If a message is published
on a topic for which there are no subscribers, no application receives the
message.

An application can be both a publisher and a subscriber.

Note: The first release of XMS supports only the publish/subscribe messaging
domain.

Messaging transports

A messaging transport is a way in which an application can exchange messages with
a broker.

XMS supports two brokers for the publish/subscribe domain:
* WebSphere Business Integration Event Broker
* WebSphere Business Integration Message Broker

Each broker provides the following three transports:

WebSphere MQ Enterprise Transport
All communication between a publisher and a broker, or between a
subscriber and a broker, uses WebSphere MQ.

If a publisher uses this transport, the publisher publishes messages by
putting them on a queue that is monitored by the broker.

If a subscriber uses this transport, the subscriber sends subscription
requests to the broker by putting messages on a queue that is monitored
by the broker. In turn, the broker puts messages, published on topics to
which the subscriber has subscribed, on a queue that is monitored by the
subscriber.

WebSphere MQ Real-Time Transport
All communication between a publisher and a broker, or between a
subscriber and a broker, uses a TCP connection.

If a publisher uses this transport, the publisher publishes messages by
sending them directly to the broker over a TCP connection.

If a subscriber uses this transport, the subscriber sends subscription
requests directly to the broker over a TCP connection. In turn, the broker
sends messages, published on topics to which the subscriber has
subscribed, directly to the subscriber over a TCP connection.

WebSphere MQ Multicast Transport
A subscriber can use this transport to receive published messages from a
broker. The transport cannot be used for any other purpose.

The transport works by associating a multicast IP address with a topic.
When a message is published, the broker transmits one copy of the

4 Using Multi-Language Message Service

Introducing XMS

message to the multicast IP address associated with the topic. IP then
routes the message to all subscribers that have subscribed to the topic.

WebSphere MQ Multicast Transport is a high performance transport. Using
this transport, a broker transmits only one copy of a published message
over the network. Using WebSphere MQ Real-Time Transport, by
comparison, a broker must transmit a copy of a published message to each
subscriber.

Note: The first release of XMS supports only WebSphere MQ Real-Time Transport
and WebSphere MQ Multicast Transport.

The XMS object model

The XMS API is an object oriented interface. The XMS object model is based on the
JMS 1.1 object model.

The following list summarizes the main XMS classes, or types of object:

ConnectionFactory
A ConnectionFactory object encapsulates a set of configuration parameters
for a connection. An application uses a connection factory to create a
connection.

Connection
A Connection object encapsulates an application’s active connection to a
broker. An application uses a connection to create sessions.

Destination
A destination is where an application sends messages, or it is a source
from which an application receives messages, or both. In the
publish/subscribe domain, a Destination object encapsulates a topic.

Session
A session is a single threaded context for sending and receiving messages.
An application uses a session to create messages, message producers, and
message consumers.

Message
A Message object encapsulates a message that an application sends or
receives.

MessageProducer
An application uses a message producer to send messages to a destination.

MessageConsumer
An application uses a message consumer to receive messages sent to a
destination.

[Figure 1 on page €[shows these objects and their relationships.

Chapter 1. Introducing XMS 5

Introducing XMS

Connection
factory

Creates

<=

Connection

Creates

—

Message Creates Creates Message
producer j‘ Session E consumer

l Sends to

Creates IFZeoeives from

—

Destination Message Destination

Figure 1. XMS objects and their relationships

XMS applications written in C++ use these classes and their methods. XMS
applications written in C use the same object model even though C is not an object
oriented language. When a C application creates an object, XMS stores the object
internally and returns a handle for the object to the application. The application
can then use the handle subsequently to reference the object. For example, if a C
application creates a connection factory, XMS returns a handle for the connection
factory to the application. In general, for each C++ method in the C++ interface,
there is an equivalent C function in the C interface.

The XMS object model is based upon the domain independent interfaces that are
described in the Java Message Service Specification, Version 1.1. Domain specific
classes, such as Topic, TopicPublisher, and TopicSubscriber, are not provided.

Attributes and properties of objects

An XMS object can have attributes and properties, which are characteristics of the
object. Attributes and properties, however, are implemented in different ways.

Attributes
An attribute of an object is always present and occupies storage, even if
the attribute does not have a value. In this respect, an attribute is similar in
concept to a field in a fixed length data structure. Another distinguishing
feature is that each attribute has its own methods for setting and getting its
value.

Properties
A property of an object is present and occupies storage only after its value
is set. However, a property cannot be deleted, and the storage recovered,
after its value has been set, although you can change its value. A property
does not have its own methods for setting and getting its value. Instead,
XMS provides a set of generic methods for setting and getting the values
of properties.

6 Using Multi-Language Message Service

Introducing XMS

The first release of XMS

This section specifies the supported operating environments for the first release of
XMS. It also summarizes the function supported in the first release, and the
function that is not supported. If you need an explanation of any of the function
mentioned in this section, see the following sources of information:

¢ The WebSphere Business Integration Event Broker or WebSphere Business
Integration Message Broker Information Center.

WebSphere MQ Using Java]
* Java Message Service Specification, Version 1.1

Supported operating environments

An XMS client is supplied for each of the operating systems listed in The
table also lists the supported C and C++ compiler for each client platform.

Table 1. XMS client platforms and compilers

Supported operating system Supported C and C++ compiler

Microsoft® Windows XP Professional with Microsoft Visual C++, Version 6.0 with
Service Pack 1 Service Pack 5

SUSE LINUX Enterprise Server 8 (Intel™ gce 3.2 (supplied with the operating system)
only)

Function supported
The following function is supported in the first release of XMS:

¢ An XMS publisher can publish messages using WebSphere MQ Real-Time
Transport. To receive the messages and forward them to subscribers, the broker
must be configured with a message flow that contains a Real-
timeOptimizedFlow message processing node.

¢ An XMS subscriber can send subscription requests using WebSphere MQ
Real-Time Transport. The subscriber can then receive messages, published on the
topics to which it has subscribed, using WebSphere MQ Real-Time Transport or
WebSphere MQ Multicast Transport.

e The XMS message model is the same as the WebSphere MQ JMS message model.
In particular, XMS implements the same message header fields and message
properties that WebSphere MQ JMS implements:

— JMS header fields. These are fields whose names commence with the prefix
JMS.

— JMS defined properties. These are properties whose names commence with
the prefix JMSX.

— IBM defined properties. These are the properties whose names commence
with the prefix JMS_IBM_.

As a result, XMS subscribers can receive messages published by WebSphere MQ
JMS publishers, and WebSphere MQ JMS subscribers can receive messages
published by XMS publishers. For each message that is published, some of the
header fields and properties are set by the publisher and others are set by the
XMS or WebSphere MQ JMS client when the message is sent. Where
appropriate, these header fields and properties are propagated with a message
through the broker and are made available to each subscriber that receives the
message. This level of interoperability is also available if a WebSphere MQ JMS
publisher or subscriber uses WebSphere MQ Enterprise Transport.

Chapter 1. Introducing XMS 7

Introducing XMS

Function not supported

The following function is not supported in the first release of XMS:

An XMS application cannot connect to a WebSphere MQ queue manager and
perform messaging and queuing operations.

Administered objects are not supported. ConnectionFactory and Destination
objects are administered objects in JMS but, in XMS, only applications can create
these objects and set their attributes and properties.

Object messages, stream messages, and text messages are not supported. Only
bytes messages, map messages, and messages without bodies are supported.

Durable topic subscribers are not supported. Only nondurable message
consumers are supported.

Persistent messages are not supported. Only nonpersistent messages are
supported.

Transacted sessions are not supported.

When an application connects to a broker, the application can supply a user
identifier and a password, which the broker can use to authenticate the
application. In the WebSphere Business Integration Event Broker and WebSphere
Business Integration Message Broker Information Centers, this is referred to as
“simple telnet-like password authentication”. This is the only form of
authentication supported by XMS, and it means that you cannot use the message
protection facilities provided by the broker. Authentication using Secure Sockets
Layer (SSL) is not supported.

A TopicRequestor class is not provided, which means that the request/reply
style of messaging is not directly supported.

8 Using Multi-Language Message Service

Chapter 2. Installing XMS

This chapter describes how to install the Multi-Language Message Service (XMS)
client on Windows. For instructions on how to install the XMS client on Linux, and
for the latest information about installing the product, see the product readme.txt
file, which is in the zipped file supplied with XMS.

On all platforms, XMS is installed using an InstallShield MultiPlatform 5 installer.
The procedures in this chapter describe how to use the installer in the form of a
Wizard with a graphical user interface. However, if you invoke the installer from a
command prompt using the runtime command line option -silent, you can
perform an unattended, or silent, installation, which requires no interaction with
the Wizard. Other runtime command line options allow you to have more control
over the installation. For general information about MultiPlatform 5, see the
InstallShield Web site at http:/ /www.installshield.com/. For more specific
information about the runtime command line options, see the InstallShield
MultiPlatform 5 User’s Guide, which you can download from the same Web site.

This chapter contains the following section:

+ |“Installing on Windows” on page 10|

© Copyright IBM Corp. 2004 9

Installing XMS

Installing on Windows

To install the XMS client on Windows, follow this procedure. You must be logged
on to Windows as an administrator. The installed code requires 40 MB of disk
space.

1.

7.

Create a temporary directory and extract the contents of zipped file supplied
with XMS into the directory.

A subdirectory of the temporary directory is created. The subdirectory is called
gxixms_install and contains the files needed for the installation.

Run the file setup.exe that is in the gxixms_install directory.

A command prompt window opens to run setup.exe. The messages in the
window inform you that setup.exe is searching for, and preparing, a Java
Virtual Machine (JVM). If you do not have a JVM on your system, setup.exe
uses its own JVM.

Eventually, the Installer window opens and displays the following message:
Welcome to the InstallShield Wizard for IBM Multi-Language Message Service
Click Next.

The Installer windows asks you where you want to install XMS. If you do not

want to install XMS in the directory suggested, you can choose another
directory.

Click Next.

The Installer window asks you which features you want to install. Ensure that
IBM Multi-Language Message Service Toolkit Feature is selected.

Click Next.
The Installer window displays details of what is about to be installed.
Click Next to start the installation.

The Installer windows displays a bar showing the progress of the installation.
Wait for the progress bar to complete. When the installation completes
successfully, the window displays the following message:

The InstallShield Wizard has successfully installed IBM Multi-Language Message
Service. Choose Finish to exit the wizard.

Click Finish to close the Installer window.

You have now successfully installed the XMS client, which is ready to use.

What is installed

XMS is installed in the C:\Program Files\IBM\gxixms directory unless you choose
to install it in a different directory. lists the installation directories and their

contents.

Table 2. The XMS installation directories and their contents

Installation directory Content

\gxixms The readme.txt file

\gxixms\bin The *.dll and *.pdb files required to run
XMS applications

\gxixms\doc This book as a PDF file

\gxixms\tools\c\include The XMS header files for C

\gxixms\tools\cpp\include The XMS header files for C++

\gxixms\tools\lib The XMS link libraries for C and C++

10 Using Multi-Language Message Service

Installing XMS

Table 2. The XMS installation directories and their contents (continued)

Installation directory

Content

\gxixms\tools\samples

The readme.txt file for the samples

\gxixms\tools\samples\bin

The compiled sample applications and
the command files to run them

\gxixms\tools\samples\c\RTTconsumer

The source and makefile for the C
message consumer sample application
that uses WebSphere MQ Real-Time
Transport or WebSphere MQ Multicast
Transport

\gxixms\tools\samples\c\RTTconsumersync

The source and makefile for the C
message consumer application that uses
synchronous message delivery and
WebSphere MQ Real-Time Transport

\gxixms\tools\samples\c\RTTproducer

The source and makefile for the C
message producer sample application
that uses WebSphere MQ Real-Time
Transport

\gxixms\tools\samples\cpp\RTTcons

The source and makefile for the C++
message consumer sample application
that uses WebSphere MQ Real-Time
Transport

\gxixms\tools\samples\cpp\RTTprod

The source and makefile for the C++
message producer sample application
that uses WebSphere MQ Real-Time
Transport

\gxixms\tools\samples\java\RTTpublisher

The source for the WebSphere MQ JMS
message producer sample application
that uses WebSphere MQ Real-Time
Transport

\gxixms\tools\samples\java\RTTsubscriber

The source for the WebSphere MQ JMS
message consumer sample application
that uses WebSphere MQ Real-Time
Transport

\gxixms\tools\samples\java\RTTsubscribersync

The source for the WebSphere MQ JMS
message consumer application that uses
synchronous message delivery and
WebSphere MQ Real-Time Transport

Uninstalling XMS

To remove the XMS client from your system, follow this procedure. You must be

logged on to Windows as an administrator.

1. From the Windows task bar, click Start —> Settings —> Control Panel.

The Control Panel window opens.
2. Double-click Add/Remove Programs.

The Add/Remove Programs window opens.

3. Click IBM Multi-Language Message Service to select it.

4. Click Change/Remove.

The Uninstaller window opens and displays the following message:

Welcome to the InstallShield Wizard for IBM Multi-Language Message Service

5. Click Next.

Chapter 2. Installing XMS 11

Installing XMS

The Uninstaller window provides information about what is about to be
uninstalled.

6. Click Next to start the removal of the XMS.

The Uninstaller window confirms that XMS is being uninstalled. When XMS
has been removed successfully, the window displays the following message:

The InstallShield Wizard has successfully uninstalled IBM Multi-Language Message
Service. Choose Finish to exit the wizard.
7. Click Finish to close the Uninstaller window.

You have now successfully removed the XMS client from your system.

12 Using Multi-Language Message Service

Chapter 3. Using XMS

This chapter provides information about how to use XMS after you have installed
it. It describes the sample applications provided with XMS and how to use them to
verify your installation. It explains how to build the sample applications and your
own applications. The chapter ends by describing how to produce a trace to help
diagnose a problem.

The information in this chapter applies only to Windows. For the equivalent
information about how to use XMS on Linux, see the samples readme.txt file in the
samples installation directory and the product readme.txt file in the gxixms
installation directory.

The chapter contains the following sections:

+ |“The sample applications”]

+ [“Running the C sample applications” on page 15

+ |“Building the sample applications” on page 16|

+ |“Building your own applications” on page 17

* [“Problem determination” on page 17]

The sample applications

This section describes the sample applications supplied with XMS. Both the source
and an executable version are provided for each application. To find out where the
applications are installed, see|Table 2 on page 10}

Three sets of sample applications are supplied with XMS:

+ |“C sample applications”|

* [“C++ sample applications” on page 14

* |“WebSphere MQ JMS sample applications” on page 14|

C sample applications
The following C sample applications are supplied with XMS:

RTTproducer
This application publishes a bytes message every 2 seconds. Each bytes
message has a string property and a body that contains a string encoded in
UTF-8 format.

RTTconsumer
This application receives bytes messages asynchronously using WebSphere
MQ Real-Time Transport. For each message received, the application reads
a string, encoded in UTF-8 format, from the body of the message and gets
the value of a string property of the message. The application then
displays the two strings on the screen.

If you start the application with one of the following optional arguments,

the application uses WebSphere MQ Multicast Transport instead:
multicast:XMSC_MULTICAST_ENABLED
multicast:XMSC_MULTICAST_NOT_RELIABLE
multicast:XMSC_MULTICAST_RELIABLE

© Copyright IBM Corp. 2004 13

Using XMS

RTTconsumersync
This application receives bytes messages synchronously using WebSphere
MQ Real-Time Transport. The application calls the Receive method with a
specified wait interval. For each message received, the application reads a
string, encoded in UTF-8 format, from the body of the message and gets
the value of a string property of the message. The application then
displays the two strings on the screen.

C++ sample applications
The following C++ sample applications are supplied with XMS:

RTTpub
This application publishes a bytes message every 2 seconds. Each bytes

message has a string property and a body that contains a string encoded in
UTEF-8 format.

The application has two classes:

RTTpub
This class contains the main method.

SampleExpListener
This is an exception listener class defined by the application and
contains the onException method.

RTTcons
This application receives bytes messages asynchronously using WebSphere
MQ Real-Time Transport. For each message received, the application reads
a string, encoded in UTF-8 format, from the body of the message and gets
the value of a string property of the message. The application then
displays the two strings on the screen.

If you start the application with one of the following optional arguments,

the application uses WebSphere MQ Multicast Transport instead:
multicast:XMSC_MULTICAST_ENABLED
multicast:XMSC_MULTICAST_NOT_RELIABLE
multicast:XMSC_MULTICAST_RELIABLE

The application has three classes:

RTTcons
This class contains the main method.

SampleExpListener
This is an exception listener class defined by the application and
contains the onException method.

SampleMsgListener
This is a message listener class defined by the application and
contains the onMessage method.

WebSphere MQ JMS sample applications

The following WebSphere MQ JMS sample applications are supplied with XMS.
Using these applications, you can demonstrate XMS applications exchanging
messages with WebSphere MQ JMS applications.

14 Using Multi-Language Message Service

Using XMS

RTTpublisher
This application publishes a bytes message every 2 seconds. Each bytes
message has a string property and a body that contains a string encoded in
UTF-8 format.

RTTsubscriber
This application receives bytes messages asynchronously using WebSphere
MQ Real-Time Transport. For each message received, the application reads
a string, encoded in UTF-8 format, from the body of the message and gets
the value of a string property of the message. The application then
displays the two strings on the screen.

RTTsubscribersync
This application receives bytes messages synchronously using WebSphere
MQ Real-Time Transport. The application calls the receive() method with a
specified timeout interval. For each message received, the application reads
a string, encoded in UTF-8 format, from the body of the message and gets
the value of a string property of the message. The application then
displays the two strings on the screen.

Running the C sample applications

This section describes how to run the executable versions of the RTTproducer and
RTTconsumer applications on Windows. You can use these applications to verify
that you have installed XMS correctly.

The RTTproducer and RTTconsumer applications connect to a WebSphere Business
Integration Event Broker or WebSphere Business Integration Message Broker broker
using WebSphere MQ Real-Time Transport. Before you can run the applications,
you must create a message flow that contains a Real-timeOptimizedFlow message
processing node and deploy the message flow to a broker that is running on your
system. If you need more information about how to do this, see the WebSphere
Business Integration Event Broker or WebSphere Business Integration Message
Broker Information Center.

After you have prepared the broker, follow this procedure to run the applications.
The cd (change directory) command in the procedure assumes that you have
installed XMS in the C:\Program Files\IBM\gxixms directory. If you have installed
XMS in a different directory, you must make the appropriate modification to the
command.

1. Open a command prompt window.

2. At the command prompt, enter the following command:
cd \Program Files\IBM\gxixms\tools\samples\bin

3. At the command prompt, enter the following command:
xmsdemo port_number

where port_number is the port number on which the Real-timeOptimizedFlow
message processing node listens for publish and subscribe requests.

The command file, xmsdemo.cmd, starts the RTTconsumer application and then the
RTTproducer application, passing the following arguments to each application:

host:localhost port:port number topic:xms/test

RTTconsumer subscribes to the topic xms/test, and then receives each message
published on that topic. RTTproducer publishes a message on the topic xms/test
every 2 seconds.

Chapter 3. Using XMS 15

Using XMS

Building the sample applications

This section describes how to build the sample applications on Windows. The cd
(change directory) command in each procedure in this section assumes that you
have installed XMS in the C:\Program Files\IBM\gxixms directory. If you have
installed XMS in a different directory, you must make the appropriate modification
to the command.

Building the C sample applications

Before you can build the C sample applications, you must ensure that you have set
up the Microsoft Visual C++ build environment. You can do this by running
vevars32.

To build a C sample application, follow this procedure:
1. Open a command prompt window.
2. At the command prompt, enter the following command:
cd \Program Files\IBM\gxixms\tools\samples\c\application name

where application_name is one of the following names:
RTTproducer
RTTconsumer
RTTconsumersync
3. At the command prompt, enter the following command:
nmake

The command builds an executable version of the application,
application_name.exe, in the current directory.

Building the C++ sample applications

Before you can build the C++ sample applications, you must ensure that you have
configured the Microsoft Visual C++ build environment. You can do this by
running vcvars32.

To build a C++ sample application, follow this procedure:
1. Open a command prompt window.
2. At the command prompt, enter the following command:
cd \Program Files\IBM\gxixms\tools\samples\cpp\application name

where application_name is one of the following names:
RTTprod
RTTcons
3. At the command prompt, enter the following command:
nmake

The command builds an executable version of the application,
application_name.exe, in the current directory.

16 Using Multi-Language Message Service

Using XMS

Building your own applications

This section provides the information you need to build your own XMS
applications on Windows. To find out where the files and libraries mentioned in
this section are installed, see [Table 2 on page 10

Building your own C applications

Your C applications must include the file xms.h, which defines the function
prototypes for the XMS methods. The file also includes the file xmsc.h, which
defines the data types, enumerated data types, and constants used by the XMS
APL

The makefile called Makefile, which is provided for each of the C sample
applications, shows you how to build your applications. Note, in particular, that
you must link your applications using the library gxi.lib.

Before running your applications, make sure that the gxixms\bin directory is in the
path specified by the PATH environment variable.

Building your own C++ applications

Your C++ applications must include the file xms.hpp, which defines the XMS
classes and their methods. The file also includes the file xmsc.h, which defines the
data types, enumerated data types, and constants used by the XMS APIL

The makefile called Makefile, which is provided for each of the C++ sample
applications, shows you how to build your applications. Note, in particular, that
you must link your applications using the library gxiOlvn.lib.

Before running your applications, make sure that the gxixms\bin directory is in the
path specified by the PATH environment variable.

Problem determination

If you experience a problem with XMS, your IBM Support Center might ask you to
produce a trace to help diagnose the problem.

To enable tracing for an application, set the environment variable
XMS_TRACE_ON to 1 and then start the application.

To disable tracing for an application, clear the environment variable
XMS_TRACE_ON. Tracing ends only after the application ends.

XMS creates a trace file in the current working directory unless you specify an
alternative location by setting the environment variable XMS_TRACE_FILE_PATH
to the fully qualified path name of the directory where you want XMS to create the
trace file. You must set the environment variable before you start the application
that you want to trace, and you must make sure that the user identifier under
which the application runs has the authority to write to the directory where XMS
creates the trace file. The trace file has the extension .trc.

Chapter 3. Using XMS 17

18 Using Multi-Language Message Service

Part 2. Programming with XMS

Chapter 4. Writing XMS applications .
The threading model . .
Connections . Coe e
Starting and stopping a connection
Closing a connection
Handling exceptions
Sessions Ce e
Asynchronous message delivery
Synchronous message delivery .
Uniform resource identifiers (URIs)
Deleting objects .
Iterators

Chapter 5. Writing XMS applications in C
Object handles in C. o
Listeners and callbacks

C functions that return a string or byte array by

value
C functions that return a string or byte array by
reference ..
Handling errors in C .

Return codes .

The error block .

Chapter 6. XMS messages .
Header fields in an XMS message .
Properties of an XMS message . .
JMS defined properties of a message .
IBM defined properties of a message .
Application defined properties of a message
The body of an XMS message .
Bytes messages .
Map messages
Message selectors

© Copyright IBM Corp. 2004

.21
.21
.21
.22
.22
.22
.22
.22
.23
.23
.24
.24

.27
.27
.27

.28

.29
. 30
. 30
. 30

. 31
.31
.32
.33
. 33
. 34
. 34
. 36
. 36
. 37

19

20 Using Multi-Language Message Service

Chapter 4. Writing XMS applications

This chapter provides information that you might find useful when writing
Multi-Language Message Service (XMS) applications. If you are writing
applications in C, see also [Chapter 5, “Writing XMS applications in C,” on page 27

The chapter contains the following sections:
* |“The threading model”|
* [“Connections’

* [“Sessions” on page 22|

* [“Uniform resource identifiers (URIs)” on page 23|

* ["Deleting objects” on page 24

* |“Iterators” on page 2

The threading model

The following general rules govern how a multithreaded application can use XMS
objects:

* Only objects of the following types can be used concurrently on different
threads:

- ConnectionFactory
— Connection
ConnectionMetaData

Destination

* A Session object can be used only on the thread on which it is created.

* All other objects can be used only on the same thread as the session in which
they are created.

Exceptions to these rules are indicated by entries labelled “Thread context” in the
interface definitions of the methods in |[Chapter 7, “XMS classes,” on page 43

Connections

An application uses a ConnectionFactory object to create a Connection object, and
uses a Connection object to create a Session object. Creating a connection is
relatively expensive in terms of system resources because it involves establishing a
communications connection and authenticating the application.

An instance of an XMS client can support multiple connections. A multithreaded
application can use a single Connection object concurrently on multiple threads.

A connection serves several purposes:

* A connection encapsulates a communications connection. If the connection uses
WebSphere MQ Real-Time Transport, the connection encapsulates a TCP
connection between the application and WebSphere Business Integration Event
Broker or WebSphere Business Integration Message Broker broker.

* When an application creates a connection, the application can be authenticated.
* A connection can specify a unique client identifier.

© Copyright IBM Corp. 2004 21

Writing XMS applications

* An application can register an ExceptionListener object with a connection.

An XMS application typically creates a connection, one or more sessions, and a
number of message producers and consumers.

Starting and stopping a connection

A connection can operate in either a started or a stopped mode. When an
application creates a connection, the connection is in stopped mode. In this mode,
the application can receive no messages, either synchronously or asynchronously,
until the application starts the connection using the Start Connection method. The
application can use the time while the connection is stopped to initialize sessions.
After a connection has started, an application can stop and restart the connection
using the Stop Connection and Start Connection methods.

Note that an application can still send messages when a connection is stopped.

Closing a connection

Closing a connection has the following impacts:

¢ XMS closes all the sessions associated with the connection, and deletes certain
objects associated those sessions. For more information, see [“Deleting objects” onl|
_

¢ XMS ends the communications connection with the broker.
* XMS releases the memory and other internal resources used by the connection.

Handling exceptions

If an application registers an exception listener with a connection, XMS notifies the
application asynchronously whenever a serious problem occurs with the
connection. The ExceptionListener object contains a pointer to an onException()
method, which XMS calls if a failure occurs. If an application uses a connection
only to receive messages asynchronously, then the only way the application can
learn about a problem with the connection is by using an exception listener.

Sessions

A session is a single threaded context for sending and receiving messages. Using a
Session object, an application can create MessageProducer, MessageConsumer, and
TemporaryTopic objects, and dynamically create Destination objects that represent
topics.

An application can create multiple sessions that produce and consume messages
independently. If two sessions subscribe to the same topic, they each receive a copy
of any message published on the topic.

Unlike a Connection object, a Session object cannot be shared across threads. Only

the Close Session method of a Session object can be called from a thread other than
the one on which the Session object was created. The Close Session method ends a

session and releases any system resources allocated to the session.

Asynchronous message delivery

To receive messages asynchronously, an application must register a message
listener with one or more message consumers. In the C API, a message listener is a
callback function and a pointer to application defined context data. In the C++

22 Using Multi-Language Message Service

Writing XMS applications

API, a message listener is an object with an onMessage() method. When messages
arrive for a message consumer, XMS calls the message listener function or
onMessage() method to deliver them.

A session uses its thread to handle all asynchronous message delivery. This means
that only one message listener can run at a time. If more than one message
consumer in a session has a registered message listener, and one message listener
is currently delivering a message, other messages waiting to be delivered to the
session must wait.

If an application needs concurrent delivery of messages, it must create more than
one session, where each session runs in its own thread. In this way, a message
listener can run concurrently in each session.

Synchronous message delivery

Messages can be delivered synchronously to an application if the application uses
the Receive methods of a MessageConsumer object. Using the Receive methods, an
application can wait a specified period of time for a message, or it can wait
indefinitely.

Uniform resource identifiers (URIs)

A uniform resource identifier (URI) is a string that identifies a destination and,
optionally, specifies one or more properties of the destination.

In its simplest form, a URI for a topic has the following format:
topic://topic_name

where topic_name is the name of the topic. If you want to specify one or more
properties of a topic, a URI has the following extended format:

topic://topic_name?prop_namel=prop_valuel&prop_name2=prop_value2& ...

where prop_name is the name of a property and prop_value is the value of a
property.

In a URI, you cannot use named constants for the names and values of properties.
shows, for each property of a topic, the name and valid values that you can
use in a URI For more information about the properties of a topic, see
fof Destination” on page 173

Table 3. The names and valid values of properties that you can use in a topic URI

The name that you | The valid values that you can use in a URI
Name of property can use in a URI (default value in bold)

XMSC_MULTICAST | multicast -1 (= XMSC_MULTICAST_ASCEF)

0 (= XMSC_MULTICAST_DISABLED)

3 (= XMSC_MULTICAST_NOT_RELIABLE)
5 (= XMSC_MULTICAST_RELIABLE)

7 (= XMSC_MULTICAST_ENABLED)

XMSC_PRIORITY priority -2 (= XMSC_PROPERTY_AS_APP)
An integer in the range 0 to 9

An application can use a topic URI as a parameter when it calls the Create
Destination method of the Destination class. Here is an example in a fragment of C
code:

Chapter 4. Writing XMS applications 23

Writing XMS applications

rc = xmsDestCreate("topic://Sport/Football/Results?multicast=0&priority=9");

A C++ application can also use a topic URI as a parameter when it calls the Create
Topic method of the Session class. Here is an example in a fragment of C++ code:

topic = session.createTopic("topic://Sport/Football/Results?multicast=7");

Deleting objects

When an application creates an XMS object, XMS allocates memory and other
internal resources to the object. XMS retains these internal resources until the
application explicitly deletes the object by calling the object’s close or delete
method, at which point XMS releases the internal resources. In a C++ application,
an object is also deleted when it goes out of scope. If an application tries to delete
an object that is already deleted, the call is ignored.

When an application deletes a Connection or Session object, XMS deletes certain
associated objects automatically and releases their internal resources. These are
objects that were created by the Connection or Session object and depend for their
existence upon the connection or session. These objects are shown in . Note
that, if an application closes a connection with dependent sessions, all objects
dependent on those sessions are also deleted. Only a Connection or Session object
can have dependent objects.

Table 4. Objects that are deleted automatically

Deleted object Method Dependent objects that are deleted automatically
Connection Close Connection | ConnectionMetaData and Session objects
Session Close Session MessageConsumer and MessageProducer objects

Iterators

Using an iterator, an application can retrieve the elements in a list. The iterator
encapsulates a list and a cursor to the list. When an iterator is created, the position
of the cursor is before the first element in the list.

The Iterator class provides the methods for using an iterator and is equivalent to
the Enumerator class in Java. The Iterator class provides three methods that an
application can use to retrieve the elements in a list sequentially:

* Check for More Properties
* Get Next Property
* Reset Iterator

An application can use an iterator to retrieve the properties of a message, and to
retrieve the name-value pairs in the body of a map message. The following code
fragment shows how a C application can use an iterator to print out all properties
of a message:

/**/

/* XMS Sample using an iterator to browse properties */
/**/
rc = xmsMsgGetProperties(hMsg, &it, xmsError);
if (rc == XMS_0K)
{

rc = xmsIteratorHasNext(it, &more, xmsError);

while (more)

rc = xmsIteratorGetNextProperty(it, &p, xmsError);

24 Using Multi-Language Message Service

Writing XMS applications

if (rc == XMS_OK)

{
xmsPropertyGetName(p, name, 100, &len, xmsError);
printf("Property name=\"%s\"\n", name);
xmsPropertyGetType(p, &type, xmsError);
switch (type)
{

case XMS_PROPERTY TYPE_INT:
{
xmsINT value=0;
xmsPropertyGetInt (p, &value, xmsError);
printf("Property value=%d\n", value);
break;
!
case XMS_PROPERTY_TYPE_STRING:
{
xmsSIZE Ten=0;
char value[100];
xmsPropertyGetString(p, value, 100, &len, xmsError);
printf("Property value=\"%s\"\n", value);
break;
}
default:
{
printf("Unhandled property type (%d)\n", (int)type);

}

xmsPropertyDispose(&p, xmsError);
1
rc = xmsIteratorHasNext(it, &more, xmsError);
}
printf("Finished iterator....\n");
xmsIteratorDispose(&it, xmsError);

}

/**/

Chapter 4. Writing XMS applications 25

Writing XMS applications

26 Using Multi-Language Message Service

Chapter 5. Writing XMS applications in C

This chapter provides information that you might find useful when writing
Multi-Language Message Service (XMS) applications in C. The chapter contains the
following sections:

+ [“Object handles in C”|

 |“Listeners and callbacks”l

» [“C functions that return a string or byte array by value” on page 2§

» [“C functions that return a string or byte array by reference” on page 29|

* |“Handling errors in C” on page 30|

Object handles in C

When writing an XMS application in C, every object handle has a data type, where
the data type of the handle relates specifically to the type of object. shows
the handle data type for each type of object.

Note, however, that BytesMessage, MapMessage, and Message objects all have
handles with data type xmsHMsg. For more information about how to use handles
for messages, see [“The body of an XMS message” on page 34/

Table 5. Object handle data types

Type of object Object handle data type
BytesMessage xmsHMsg
Connection xmsHConn
ConnectionFactory xmsHConnFact
ConnectionMetaData xmsHConnMetaData
Destination xmsHDest
ErrorBlock xmsHErrorBlock
Iterator xmsHIterator
MapMessage xmsHMsg

Message xmsHMsg
MessageConsumer xmsHMsgConsumer
MessageProducer xmsHMSsgProducer
Property xmsHProperty

Listeners and callbacks

The API supports two types of asynchronous callback: message callbacks and
exception callbacks.

A C application calls the Set Exception Listener or Set Message Listener method to
pass a pointer to a callback function to XMS. On the same call, the application
passes a pointer to context data, which XMS subsequently passes to the callback
function when XMS calls the function.

© Copyright IBM Corp. 2004 27

Writing XMS applications in C

The context data is in an area of memory defined by the application. For example,
it might be a structure allocated on the heap. The context data contains all the
information that the application needs to refer to when XMS calls the onMessage()
or onException() function.

XMS does not take a copy of the context data and considers the area of memory
occupied by the context data to be owned by the application. Your application
must ensure that the context data is still available and in scope when XMS calls the
callback function.

The signature of the C message callback function is:
xmsVOID onMessage (xmsCONTEXT context, xmsHMsg message);

The application must free the resources used by the message when the
onMessage() function returns. XMS does not free these resources.

The signature of the C exception callback function is:
xmsVOID onException(xmsCONTEXT context, xmsHErrorBlock errorBlock);

The application must free the resources used by the error block when the
onException() function returns. XMS does not free these resources.

An application can stop the asynchronous delivery of messages or exceptions by
passing a null function pointer to the Set Message Listener method or Set
Exception Listener method respectively.

C functions that return a string or byte array by value

In the C AP, certain functions return a string or byte array as a parameter. Each of
these functions provides essentially the same interface for the purpose of retrieving
a string or byte array.

Here is an example of one of these functions. The function implements the Get
String Property method in the Message class and returns a string.
xmsRC xmsMsgGetStringProperty(xmsHMsg message,

xmsCHAR *propertyName,

xmsCHAR *propertyValue,

xmsSIZE length,

xmsSIZE =actuallength,

xmsHErrorBlock errorBlock);

Three parameters control the retrieval of the string:

propertyValue
This parameter is a pointer to an buffer provided by the application into
which XMS copies the characters in the string. If data conversion is
required, XMS converts the characters into the code page of the application
before copying them into the buffer.

length This parameter is the length of the buffer in bytes. This is an input
parameter that must be set by the application before the call.

actualLength
This output parameter is the length of the string that XMS stores in the
buffer. The length is measured in bytes. If data conversion is required, this
is the length after conversion.

28 Using Multi-Language Message Service

Writing XMS applications in C

If the buffer is not large enough to contain the whole string, XMS returns the
string truncated to the length of the buffer and sets error code
XMS_E_DATA_TRUNCATED in the error block.

If the length parameter is zero, XMS returns the length of the string in the
actualLength parameter but does not copy the string into the buffer. XMS sets error
code XMS_E_DATA_TRUNCATED in this case as well.

If the length of the buffer is larger than the length of the string that XMS copies
into the buffer, XMS appends a null character to the end of the string. If the length
of the buffer is less than or equal to the length of the string, XMS does not append
a null character. The length of the string in the buffer, as reported by XMS in the
actualLength parameter, does not include this null character. If a function returns a
byte array instead of a string, XMS still appends a null character to the end of the
byte array, if there is room in the buffer.

Note that, if an XMS application receives a message sent by a WebSphere MQ JMS
application, the values of header fields, properties, and application data in the
message that are strings might contain embedded null characters.

C functions that return a string or byte array by reference

When a C application calls one of the functions discussed in [“C functions tha{
freturn a string or byte array by value” on page 28| XMS must copy the string or
byte array into the buffer provided by the application. If the string or byte array is
very large, the time taken to copy it might have a significant impact on
performance.

To deliver better performance in this situation, the C API provides another set of
functions. When an application calls one of these functions, one parameter returns
a pointer to a string or byte array that is stored in memory owned by XMS, and
another parameter returns the length of the string or byte array.

Here are some examples of these functions:

* xmsMsgGetStringPropertyByRef(), which implements the Get String Property by
Reference method in the Message class

* xmsBytesMsgReadBytesByRef(), which implements the Read Bytes by Reference
method in the BytesMessage class

If data conversion is required for a string, XMS converts the characters into the
code page of the application and returns a pointer to the converted string. The
length returned to the application is the length of the converted string.

If data conversion is required, the first time an application retrieves a string by
reference might take as long as retrieving the string by value. However, XMS
caches the converted string and so subsequent calls to retrieve the same string do
not take as long.

Because these functions return a pointer to memory owned by XMS, the
application must not attempt to free or modify the contents of this memory.
Attempting to do so might cause unpredictable results.

The pointer returned to the application remains valid until the XMS object, with

which string or byte array is associated, is deleted. The application must copy the
string or byte array if it needs the data after the object is deleted.

Chapter 5. Writing XMS applications in C 29

Writing XMS applications in C

Handling errors in C

Most functions in the C API return a value that is a return code, and have an
optional input parameter that is a handle for an error block. This section describes
the respective roles of the return code and the error block.

Return codes

The return code from a C function call indicates whether the call was successful.
The return code has data type xmsRC. shows the possible return codes and
their meaning.

Table 6. Return codes from C function calls

Return code Meaning

XMS_OK The call completed successfully.

Any other value |The call failed. The error block contains more details about why the call
failed.

The error block

When an application calls a C function, the application can include a handle for an
error block as an input parameter on the call. If the call fails, XMS stores
information in the error block about why the call failed. The application can then
retrieve this information from the error block.

An error block contains the following information:

Exception code
An integer representing the exception. The header file xmsc.h defines a
named constant for each exception code.

Error code
An integer representing the error. The header file xmsc.h defines a named
constant for each error code.

Error string
A null terminated string of characters that describes the error. The
characters in the string are the same as those in the named constant that
represents the error code.

Error data
A null terminated string of characters that provides additional information
about the error. The information is free format.

Linked error
The handle for an linked error block. If XMS needs to report more
information about an error, XMS can create one or more additional error
blocks and chain them from the error block provided by the application.

XMS provides a set of helper functions to create an error block and extract
information from it. An application must use a helper function to create an error
block and obtain a handle for it before calling the first function that can accept the
handle as an input parameter. If the function call fails, the application can then use
other helper functions to extract information about the error that XMS has stored
in the error block. For details of these helper functions, see|“ErrorBlock” on page]

30 Using Multi-Language Message Service

Chapter 6. XMS messages

This chapter describes the structure and content of Multi-Language Message
Service (XMS) messages and how applications process XMS messages.

An XMS message has the following parts:

A header
The header of a message contains fields, and all messages contain the same
set of header fields. XMS and applications use the values of the header
fields to identify and route messages. For more information about header
fields, see ["Header fields in an XMS message.”]

A set of properties
The properties of a message specify additional information about the
message. Although all messages have the same set of header fields, every
message can have a different set of properties. For more information about
properties of a message, see [“Properties of an XMS message” on page]
3

A body
The body of a message contains the application data. For more information
about the body of a message, see [“The body of an XMS message” on page|

An application can select which messages it wants to receive. It does this by using

message selectors, which specify the selection criteria. The criteria can be based on
the values of certain header fields and the values of any of the properties of a

message. For more information about message selectors, see[“Message selectors”]
on page 37,

Header fields in an XMS message

To allow an XMS application to exchange messages with a WebSphere MQ JMS
application, the header of an XMS message contains the J]MS message header
fields. The names of these header fields commence with the prefix JMS. For a
description of the JMS message header fields, see the Java Message Service
Specification, Version 1.1.

XMS implements the JMS message header fields as attributes of a Message object.
Each header field has its own methods for setting and getting its value. For a
description of these methods, see [“Message” on page 106] A header field is always
readable and writable.

lists the J]MS message header fields and indicates how the value of each
field is set for a transmitted message. Note that some of the fields are set
automatically by XMS when an application sends a message or, in the case of
JMSRedelivered, when an application receives a message.

Table 7. JIMS message header fields

Name of the JMS message How the value is set for a transmitted message (in the
header field format method [class])

JMSCorrelationID Set JMSCorrelationID [Message]

© Copyright IBM Corp. 2004 31

XMS messages

Table 7. JMS message header fields (continued)

Name of the JMS message How the value is set for a transmitted message (in the
header field format method [class])
JMSDeliveryMode Send [MessageProducer]
JMSDestination Send [MessageProducer]
JMSExpiration Send [MessageProducer]
JMSMessagelD Send [MessageProducer]
JMSPriority Send [MessageProducer]
JMSRedelivered Receive [MessageConsumer]
JMSReplyTo Set JMSReplyTo [Message]
JMSTimestamp Send [MessageProducer]
JMSType Set JMSType [Message]

Properties of an XMS message

To allow an XMS application to exchange messages with a WebSphere MQ JMS

application, XMS supports the following predefined properties of a Message object:

* The same JMS defined properties that WebSphere MQ JMS supports. The names
of these properties commence with the prefix JMSX.

¢ The same IBM defined properties that WebSphere MQ JMS supports. The names
of these properties commence with the prefix JMS_IBM_.

Each predefined property has two names:

e An XMS name. Use this name in an XMS application to identify the property,
except in a message selector expression.

* A JMS name. This is the name by which the property is known in JMS, and is
also the name that is transmitted with a message that has this property. Use this
name in an XMS application to identify the property in a message selector
expression.

In addition to the predefined properties, an XMS application can create and use its
own set of message properties. These properties are called application defined
properties.

A message property does not have its own methods for setting and getting its
value. Instead, the Message class provides the following generic methods:

* Aset and a get method for each of the following data types: xmsBOOL,
xmsBYTE, xmsSHORT, xmsINT, xmsLONG, xmsFLOAT, xmsDOUBLE, and
String (or character array, if you are using the C interface)

* A Set Property method and a Get Property method

For more information about these methods, see [“Message” on page 106 .|

After an application creates a message, the properties of the message are readable
and writable. The properties remain readable and writable after the application
sends the message. When an application receives a message, the properties of the
message are read-only. If an application calls the Clear Properties method of the
Message class when the properties of a message are read-only, the properties
become readable and writable. The method also clears the properties.

32 Using Multi-Language Message Service

XMS messages

To determine the values of all the properties of a message, an application can call
the Get Properties method of the Message class. The method creates an iterator
that encapsulates a list of Property objects, where each Property object represents a
property of the message. The application can then use the methods of the Iterator
class to retrieve each Property object in turn, and use the methods of the Property
class to retrieve the name, data type, and value of each property. For a sample
fragment of C code that performs a similar function, see [‘Iterators” on page 24

JMS defined properties of a message

lists the JMS defined properties of a message that are supported by both
XMS and WebSphere MQ JMS. For a description of the JMS defined properties, see
the Java Message Service Specification, Version 1.1.

The table specifies the data type of each property and indicates how the value of
the property is set for a transmitted message. Note that some of the properties are
set automatically by XMS when an application sends a message or, in the case of
JMSXDeliveryCount, when an application receives a message.

Table 8. JMS defined properties of a message

XMS name of the JMS How the value is set for a transmitted
defined property JMS name Data type | message (in the format method [class])
JMSX_APPID JMSXAppID Strin Send [MessageProducer]
JMSX_DELIVERY_COUNT JMSXDeliveryCount xmsINT | Receive [MessageConsumer]
JMSX_GROUPID JMSXGrouplD Strin Set String Property [Message]
JMSX_GROUPSEQ JMSXGroupSeq xmsINT | Set Integer Property [Message]
JMSX_USERID JMSXUserID Strin Send [MessageProducer]

Notes:

1. This is the data type if you are using C++. If you are programming in C, it is a
character array.

IBM defined properties of a message

lists the IBM defined properties of a message that are supported by both
XMS and WebSphere MQ JMS. For more information about the IBM defined
properties, see [WebSphere MQ Using Javal

The table specifies the data type of each property and indicates how the value of
the property is set for a transmitted message. Note that some of the properties are
set automatically by XMS when an application sends a message.

Table 9. IBM defined properties of a message

How the value is set for a

XMS name of the IBM defined Data transmitted message method
property WebSphere MQ JMS name type [class])
JMS_IBM_CHARACTER_SET JMS_IBM_Character_Set xmsINT | Set Integer Property [Message]
JMS_IBM_ENCODING JMS_IBM_Encoding xmsINT | Set Integer Property [Message]
JMS_IBM_FEEDBACK JMS_IBM_Feedback xmsINT | Set Integer Property [Message]
JMS_IBM_FORMAT JMS_IBM_Format Strin Set String Property [Message]

JMS_IBM_LAST_MSG_IN_GROUP |JMS_IBM_Last_Msg_In_Group xmsINT | Set Integer Property [Message]

JMS_IBM_MSGTYPE

JMS_IBM_MsgType xmsINT | Set Integer Property [Message]

Chapter 6. XMS messages 33

XMS messages

Table 9. IBM defined properties of a message (continued)

How the value is set for a

XMS name of the IBM defined Data transmitted message method
property WebSphere MQ JMS name type [class])
JMS_IBM_PUTAPPLTYPE JMS_IBM_PutApplType xmsINT |Send [MessageProducer]
JMS_IBM_PUTDATE JMS_IBM_PutDate Strin Send [MessageProducer]
JMS_IBM_PUTTIME JMS_IBM_PutTime Strin Send [MessageProducer]
JMS_IBM_REPORT_COA JMS_IBM_Report_COA xmsINT |Set Integer Property [Message]
JMS_IBM_REPORT_COD JMS_IBM_Report_COD xmsINT |Set Integer Property [Message]
JMS_IBM_REPORT_DISCARD_MSG | JMS_IBM_Report_Discard_Msg xmsINT |Set Integer Property [Message]
JMS_IBM_REPORT_EXCEPTION JMS_IBM_Report_Exception xmsINT | Set Integer Property [Message]
JMS_IBM_REPORT_EXPIRATION JMS_IBM_Report_Expiration xmsINT |Set Integer Property [Message]
JMS_IBM_REPORT_NAN JMS_IBM_Report NAN xmsINT |Set Integer Property [Message]
JMS_IBM_REPORT_PAN JMS_IBM_Report_PAN xmsINT |Set Integer Property [Message]
JMS_IBM_REPORT_PASS_CORREL_ |JMS_IBM_Report_Pass_Correl_ID |xmsINT |Set Integer Property [Message]
ID
JMS_IBM_REPORT_PASS_MSG_ID |JMS_IBM_Report_Pass_Msg_ID |xmsINT |Set Integer Property [Message]

Notes:

1. This is the data type if you are using C++. If you are programming in C, it is a
character array.

Application defined properties of a message

An XMS application can create and use its own set of message properties. When
an application sends a message, these properties are also transmitted with the
message. A receiving application, using message selectors, can then select which
messages it wants to receive based upon the values of these properties.

To allow a JMS application to select and process messages sent by an XMS
application, the name of an application defined property must conform to the rules
documented in [WebSphere MQ Using Java. The value of an application defined
property must have one of the following data types: xmsBOOL, xmsBYTE,
xmsSHORT, xmsINT, xmsLONG, xmsFLOAT, xmsDOUBLE, or String (or character
array, if you are using the C interface).

The body of an XMS message

The body of a message contains the application data. However, a message can
contain no application data and therefore have no body. In this case, the message
comprises only the header fields and properties.

The first release of XMS supports two types of message body:

Bytes

The body contains a stream of bytes. A message with this type of body is

called a bytes message. The BytesMessage class contains the methods to
process the body of a bytes message. For more information about bytes

messages, see |['Bytes messages” on page 36,

The body contains a set of name-value pairs. A message with this type of

body is called a map message. The MapMessage class contains the methods
to process the body of a map message. For more information about map
messages, see [‘Map messages” on page 36

34 Using Multi-Language Message Service

XMS messages

In the C interface, XMS returns a message handle to an application when the
application creates a bytes message or map message. The application can use this
handle to call any of the methods of the Message class, and any of the methods of
the BytesMessage or MapMessage class, whichever is appropriate for the type of
message body. However, if an application tries to call a method that is
inappropriate for the type of message body, the call fails and XMS returns error
code XMS_E_BAD_PARAMETER.

A C application can use the Get Type method of the Message class to determine
the body type of a message. The Get Type method returns one of the following
values:

XMSC_T_BYTES_MSG
If the message is a bytes message

XMSC_T_MAP_MSG
If the message is a map message

XMSC_T_MSG
If the message contains no application data and therefore has no body.

See the following fragment of C code, for example:

xmsMESSAGE_TYPE msgtype;
xmsMsgConsumerReceive (messageConsumer, &msg, errorBlock);
xmsMsgGetTypeld(msg, &msgtype, errorBlock);
if (msgtype == XMSC_T BYTES_MSG)
{
xmsBytesMsgGetBodyLength(msg, &length, errorBlock);

}

In the C++ interface, BytesMessage and MapMessage are subclasses of the Message
class.

To ensure that XMS applications can exchange messages with WebSphere MQ JMS
applications, an XMS application and a WebSphere MQ JMS application must be
able to interpret the application data in the body of a message in the same way.
For this reason, each element of application data written in the body of a message
by an XMS application must have one of the data types listed in For each
XMS data type, the table shows the compatible Java data type. XMS provides the
methods to write elements of application data with these data types, and only
these data types.

Table 10. XMS data types that are compatible with Java data types

Compatible
XMS data type | Represents Size Java data type
xmsBOOL The boolean value xmsTRUE or xmsFALSE 32 bits |boolean
xmsCHAR16 Double byte character 16 bits | char
xmsBYTE Signed 8-bit integer 8 bits | byte
xmsSHORT Signed 16-bit integer 16 bits | short
xmsINT Signed 32-bit integer 32 bits |int
xmsLONG Signed 64-bit integer 64 bits |long
xmsFLOAT Signed floating point number 32 bits | float
xmsDOUBLE | Signed double precision floating point number |64 bits |double
Strin String of characters - String

Chapter 6. XMS messages 35

XMS messages

Notes:

1. This is the data type if you are using C++. If you are programming in C, it is a
character array.

Bytes messages

The body of a bytes message contains a stream of bytes. After an application
creates a bytes message, the body of the message is write-only. The application
assembles the application data into the body by calling the appropriate write
methods of the BytesMessage class. Each time the application writes a value to the
bytes message stream, the value is assembled immediately after the previous value
written by the application. XMS maintains an internal cursor to remember the
position of the last byte that was assembled.

When the application sends the message, the body of the message becomes
read-only. In this mode, the application can send the message multiple times.

When an application receives a bytes message, the body of the message is
read-only. The application can use the appropriate read methods of the
BytesMessage class to read the contents of the bytes message stream. The
application reads the bytes in sequence, and XMS maintains an internal cursor to
remember the position of the last byte that was read. The application can skip over
bytes without reading them by calling a read method with a null pointer for the
value parameter (or for the buffer parameter, if the application calls Read Bytes).

If an application calls the Reset method of the BytesMessage class when the body
of a bytes message is write-only, the body becomes read-only. The method also
repositions the cursor at the beginning of the bytes message stream.

If an application calls the Clear Body method of the Message class when the body
of a bytes message is read-only, the body becomes write-only. The method also
clears the body.

When a bytes message is transported over WebSphere MQ Real-Time Transport or
WebSphere MQ Multicast Transport, no data conversion is performed on the body
of the message, except for character data encoded in UTF-8 format, which is
converted.

Map messages

The body of a map message contains a set of name-value pairs. In each
name-value pair, the name is a string that identifies the value, and the value is an
element of application data that has one of the XMS data types listed in [Table 10

The order of the name-value pairs is not defined. The MapMessage

class contains the methods to set and get name-value pairs.

An application can access a name-value pair randomly by specifying its name.
Alternatively, the application can access the name-value pairs sequentially using an
iterator. The application can call the Get Name-Value Pairs method of the
MapMessage class to create an iterator that encapsulates a list of Property objects,
where each Property object encapsulates a name-value pair. The application can
then use the methods of the Iterator class to retrieve each Property object in turn,
and use the methods of the Property class to retrieve the name, data type, and
value of each name-value pair. Although a name-value pair is not a property, the
methods of the Property class treat a name-value pair like a property.

36 Using Multi-Language Message Service

XMS messages

After an application creates a map message, the body of the message is readable
and writable. The body remains readable and writable after the application sends
the message. When an application receives a map message, the body of the
message is read-only. If an application calls the Clear Body method of the Message
class when the body of a map message is read-only, the body becomes readable
and writable. The method also clears the body.

If a connection uses WebSphere MQ Real-Time Transport, XMS converts the
character data in the bodies of outgoing map messages into Unicode format so that
the messages can be received and processed by WebSphere MQ JMS applications.

Message selectors

An XMS application uses messages selectors to select which messages it wants to
receive.

When an application creates a message consumer, it can associate a message
selector expression with the message consumer. The message selector expression
specifies the selection criteria. XMS determines whether each incoming message
satisfies the selection criteria. If a message satisfies the selection criteria, XMS
delivers the message to the message consumer. If a message does not satisfy the
selection criteria, XMS does not deliver the message.

An application can create more than one message consumer, each with its own
message selector expression. If an incoming message satisfies the selection criteria
of more than one message consumer, XMS delivers the message to each of these
consumers.

A message selector expression can reference the following properties of a message:
* JMS defined properties

* IBM defined properties

* Application defined properties

It can also reference the following message header fields:
* JMSCorrelationID

¢ JMSDeliveryMode

* JMSMessagelD

* JMSPriority

* JMSTimestamp

e JMSType

A message selector expression, however, cannot reference data in the body of a
message.

Here is an example of a message selector expression:
JMSPriority > 3 AND manufacturer = 'Jaguar' AND model in ('xj6','xjl2")

XMS delivers a message to a message consumer with this message selector
expression only if the message has a priority greater than 3, an application defined
property, manufacturer, with a value of Jaguar, and another application defined
property, model, with a value of xj6 or xjl12.

The syntax rules for forming a message selector expression in XMS are the same as
those in WebSphere MQ JMS. For information about how to construct a message

Chapter 6. XMS messages 37

XMS messages

selector expression, therefore, see [WebSphere MQ Using Javal Note, in particular,
that, in a message selector expression, the names of JMS defined properties and
IBM defined properties must be the J]MS names, not the XMS names.

38 Using Multi-Language Message Service

Part 3. XMS API reference

Chapter 7. XMS classes.
Exceptions.
BytesMessage.
Methods
Get Body Length
Read Boolean Value
Read Byte .
Read Bytes .
Read Bytes by Reference .
Read Character .
Read Double Precision Floatlng Pomt Number
Read Floating Point Number
Read Integer .
Read Long Integer .
Read Short Integer .
Read Unsigned Byte
Read Unsigned Short Integer
Read UTF String.
Reset .
Write Boolean Value
Write Byte.
Write Bytes
Write Character .
Write Double Precision Floatlng Pomt Number
Write Floating Point Number
Write Integer . .
Write Long Integer .
Write Short Integer .
Write UTF Strmg
Connection .
Methods
Close Connection
Create Session
Get Exception Llstener
Get Metadata.
Get Property .
Set Exception Listener .
Set Property .
Start Connection.
Stop Connection.
ConnectionFactory .
Constructor
Create Connection Factory
Methods .
Create Connection (usmg the default user
identity) .
Create Connection (usmg a spec1f1ed user
identity)
Delete Connection Factory
Get Boolean Property .
Get Integer Property
Get Property .
Get String Property . . .
Get String Property by Reference .
Set Boolean Property .
Set Integer Property

© Copyright IBM Corp. 2004

. 43
. 43
. 45
. 45
. 45
. 45
. 46
. 46
. 47
. 48

48

. 49
. 49
. 50
. 50
.51
. 51
. 52
. 52
. 53
. 53
. 54
. 54

. 55
. 56
. 56
. 56
. 57
. 58
. 58
. 58
. 58
. 59
. 59
. 60
. 60
. 61
. 61
. 62
. 63
. 63
. 63
. 63

. 63

. 64
. 64
. 65
. 65
. 66
. 66
. 67
. 68
. 68

Set Property .
Set String Property .
ConnectionMetaData
Methods .
Delete Connection Metadata
Get Integer Property
Get Property .
Get String Property .

Destination
Constructor
Create Destination (usmg a URI)

Create Destination (spec1fy1ng a type and

name) .
Methods .
Delete Destination .
Get Destination Name .
Get Destination Name as URI
Get Destination Type .
Get Integer Property
Get Property .
Get String Property .

Get String Property by Reference .

Set Integer Property
Set Property .
Set String Property
ErrorBlock. .
Methods
Clear Error Block
Create Error Block .
Delete Error Block .
Get Error Code .
Get Error Data
Get Error Module
Get Error String .
Get Exception Code
Get Linked Error
Exception .
Methods .
Delete Exception.
Get Error Code .
Get Error Data
Get Error String .
Get Exception Code
Get Linked Exception .
ExceptionListener
Methods
On Exception.
Iterator .
Methods
Check for More Propertles
Delete Iterator ..
Get Next Property .
Reset Iterator .
MapMessage .
Methods

Get String Property by Reference .

. 69
. 69
. 70
. 70
.70
. 70
.71
.71
.72
.73
.73

.73
. 74
. 74
.74
.75
.75
.76
. 76
.77
.78
.78
.79
.79
. 80
. 80
. 80
. 80
. 80
. 81
. 81
. 82
. 82
. 83
. 83
. 84
. 84
. 84
. 84
. 84
. 84
. 85
. 85
. 86
. 86
. 86
. 87
. 87
. 87
. 87
. 88
. 88
. 90
. 90

39

Check Name-Value Pair Exists .
Get Boolean Value .

Get Byte

Get Bytes .

Get Bytes by Reference

Get Character.

Get Double Precision Floatmg Pomt Number

Get Floating Point Number .
Get Integer .
Get Long Integer

Get Name-Value Pairs .
Get Object .

Get Short Integer

Get String .

Get String by Reference
Set Boolean Value

Set Byte

Set Bytes .

Set Character

Set Double Precision Floatrng Pornt Number

Set Floating Point Number .
Set Integer
Set Long Integer
Set Object
Set Short Integer
Set String.

Message .

Methods .

Check Property Exrsts
Clear Body .
Clear Properties
Delete Message.
Get Boolean Property.
Get Byte Property .

Get Double Precision Floatrng Pornt Property

Get Floating Point Property
Get Integer Property .

Get JMSCorrelationID

Get JMSDeliveryMode

Get JMSDestination

Get JMSExpiration.

Get J]MSMessagelD

Get JMSPriority. .

Get JMSRedelivered .

Get JMSReplyTo

Get JMSTimestamp

Get JMSType .
Get Long Integer Property .
Get Properties .

Get Property. . .
Get Short Integer Property .
Get String Property

Get String Property by Reference
Get Type . .
Set Boolean Property

Set Byte Property .

Set Double Precision Floatrng Pornt Property

Set Floating Point Property .
Set Integer Property .
Set JMSCorrelationID.
Set JMSDeliveryMode

40 Using Multi-Language Message Service

. 90
.90
.91
.91
.92
. 93

93

. 94
. 94
. 95
. 95
. 96
.97
. 97
. 98
.99
.99
. 100
. 100

101

. 101
. 102
. 103
. 103
. 104
. 105
. 106
. 106
. 106
. 106
. 107
. 107
. 108

. 108
109

. 109
. 110
. 110
. 111
. 111
. 112
. 113
. 113
. 114
. 114
. 115
. 115
. 116
. 117
. 117
. 118
. 118
. 119
. 120
. 120

. 121
121

. 122
. 122
. 123
. 123

Set JMSDestination

Set JMSExpiration .

Set J]MSMessagelD.

Set JMSPriority .

Set JMSRedelivered

Set J]MSReplyTo

Set JMSTimestamp.

Set JMSType. .
Set Long Integer Property .
Set Property . . .
Set Short Integer Property .
Set String Property

MessageConsumer
Methods .

Close Message Consumer
Get Message Listener.

Get Message Selector .

Get Property

Receive .

Receive (with a wart 1nterva1)
Receive with No Wait

Set Message Listener .

Set Property .

MessageListener
Methods .

On Message .

MessageProducer .
Methods .

Close Message Producer

Get Default Delivery Mode.

Get Default Priority .

Get Default Time to Live

Get Destination. . .
Get Disable Message ID Flag .
Get Disable Timestamp Flag

Get Property

Send

Send (spec1fy1ng a dehvery mode pr10r1ty,
and time to live) .

Send (to a specified destlnatron) .

Send (to a specified destination, spec1fy1ng a

delivery mode, priority, and time to live) .
Set Default Delivery Mode .

Set Default Priority

Set Default Time to Live.

Set Disable Message ID Flag

Set Disable Timestamp Flag

Set Property .

Property .
Methods .

Check Property Type

Copy Property .

Create Property

Delete Property. .

Get Boolean Property Value
Get Byte Array Property Value

Get Byte Array Property Value by Reference

Get Byte Property Value.
Get Character Property Value .

Get Double Precision Floating Point Property

Value .

. 124
. 124
. 125
. 125
. 126
. 126
. 127
. 127
. 128
. 128
. 129
. 129
. 131
. 131
. 131
. 131
. 132
. 132
. 133
. 133
. 134
. 134
. 135
. 136
. 136
. 136
. 137
. 137
. 137
. 137
. 138
. 138
. 139
. 139
. 140
. 140
. 141

. 141
. 142

. 143
. 144
. 144
. 145
. 145
. 146
. 146
. 147
. 147
. 147
. 148
. 148
. 149
. 149
. 150

150

. 151

. 151

. 152

Get Floating Point Property Value
Get Integer Property Value .
Get Long Integer Property Value .
Get Property Name .o
Get Property Type.
Get Short Integer Property Value
Get String Property Value .
Get String Property Value by Reference
Set Boolean Property Value. .
Set Byte Array Property Value.
Set Byte Property Value .
Set Character Property Value .
Set Double Precision Floating Point Property
Value . . .
Set Floating Pomt Property Value
Set Integer Property Value .
Set Long Integer Property Value .
Set Short Integer Property Value .
Set String Property Value
Session .
Methods .
Close Session .
Create Bytes Message.
Create Consumer .
Create Consumer (with rnessage selector)
Create Consumer (with message selector and
local message flag)
Create Map Message .
Create Message.
Create Producer
Create Temporary Topic .
Create Topic.
Get Acknowledgernent Mode .
Get Property
Set Property .

Chapter 8. Properties of XMS objects
Properties of Connection R
Properties of ConnectionFactory .
Properties of ConnectionMetaData
Properties of Destination .
Properties of MessageConsumer .
Properties of Session .

. 152
. 153
. 153
. 154
. 154
. 155
. 156
. 156
. 157
. 157
. 158
. 158

. 159
. 159
. 160
. 160
. 161
. 161
. 163
. 163
. 163
. 163
. 164
. 164

. 165
. 166
. 166
. 167
. 167
. 168
. 168
. 168
. 169

.17
. 171
. 171
. 173
. 173
. 174
. 175

Part 3. XMS API reference

41

42 Using Multi-Language Message Service

Chapter 7. XMS classes

This chapter documents the XMS classes and their methods. [Table 11| summarizes
all the classes.

Table 11. A summary of the XMS classes

ConnectionMetaData | A ConnectionMetaData object provides information about
a connection.

Class Description Page

BytesMessage A bytes message is a message whose body comprises a
stream of bytes.

Connection A Connection object represents an application’s active 58
connection to a broker.

ConnectionFactory An application uses a connection factory to create a @
connection.

Destination A destination is where an application sends messages, or it
is a source from which an application receives messages,
or both.
ErrorBlock If a C function call fails, XMS can store information in an

error block about why the call failed.

Exception If a call of a C++ method fails, XMS creates an Exception
object, which encapsulates information about why the call
failed.

ExceptionListener An application uses an exception listener to be notified

asynchronously of a problem with a connection.

Iterator An iterator encapsulates a list of Property objects. An
application can use an iterator to retrieve each Property
object in turn.

(=]

MapMessage A map message is a message whose body comprises a set
of name-value pairs.

—
o
D

Message A Message object represents a message that an application
sends or receives.

MessageConsumer An application uses a message consumer to receive
messages sent to a destination.

MessageListener An application uses a message listener to receive messages |[136
asynchronously.

MessageProducer An application uses a message producer to send messages
to a destination.

Property A Property object represents a property of an object.

Session A session is a single threaded context for sending and 163

receiving messages.

Exceptions

[Table 12 on page 44| lists all the exception codes that XMS can return to a C
application. For each exception code, the table shows the corresponding C++
exception class.

© Copyright IBM Corp. 2004 43

XMS classes

uondeoxg43tmoag

NOILJEDOXT ALRINDHIS X SINX

u0ordedX7 U0} EDO[[IDINOSIY]

NOLLdADXHT NOILVOOTTV dDdNO0SHI X SINX

uondaoxgarqeitip10Na3essa

NOILJHOXT TIVIRIM ION dDVSSHIW X SINX

uondaoxgarqepeayioNo8essa

NOILLdEOXT 19vAvad LON dDVSSHN X SIAX

uondeoxgyewrro,Jo3essaiA

NOILJHOXT LVINIOd dDVSSHIN X SINX

uondaoxgJOgedessoN

NOLLdADXH 40d HOVSSHN X SINX

“pI[eA j0u
s jey} uorssardxa 10309[as adessawr e asn 03 pajydwa)ye uonesrydde ayy,

uondaoxgI103oa1agpIeAU]

NOILJIOXH JOLDHTHS AI'TVANI X SINX

uondeoxguoneunsacpreAu]

NOILdAOXT NOLLVNILSAA AI'TVANI X SINX

uondeoxgapuerOpIeAu]

NOILJHOXT ALLNHITD dI'TVANI X SINX

uondeoxgareigredayy

NOILLdIDXT H1VLS TVOITIL X SINX

uonpdaoxy

NOILJHOXHT TVIANTD X SINX

uonjeue[dxy

ssep uonpdadxa ++)

apod uondadxa D

$855B|0 UoIdBoXxa ++0) pUE S8pod uoideoxs O Z| 8/qel

44 Using Multi-Language Message Service

BytesMessage

BytesMessage

A bytes message is a message whose body comprises a stream of bytes.

Methods
Get Body Length

C interface:
xmsRC xmsBytesMsgGetBodyLength(xmsHMsg message,
xmsLONG *bodylLength,
xmsHErrorBlock errorBlock);

C++ interface:

xmsLONG getBodyLength() const;
Get the length of the body of the message when the message is in read-only mode.
Parameters:

message (input)
The handle for the message.
bodyLength (output)
The length of the body of the message in bytes. The call returns the

length of the whole body regardless of where the cursor for
reading the message is currently positioned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

Read Boolean Value

C interface:

xmsRC xmsBytesMsgReadBoolean (xmsHMsg message,
xmsBOOL *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsBOOL readBoolean() const;

Read the next byte from the bytes message stream as a boolean value .
Parameters:

message (input)
The handle for the message.

value (output)
The boolean value that is read.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
¢ XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

Chapter 7. XMS classes 45

BytesMessage

* XMS_X_MESSAGE_EOF_EXCEPTION

Read Byte

C interface:
xmsRC xmsBytesMsgReadByte (xmsHMsg message,
xmsBYTE =*value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsBYTE readByte() const;

Read the next byte from the bytes message stream as a signed 8-bit integer.
Parameters:

message (input)
The handle for the message.

value (output)
The byte that is read.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
¢ XMS_X_MESSAGE_EOF_EXCEPTION

Read Bytes

C interface:
xmsRC xmsBytesMsgReadBytes (xmsHMsg message,
xmsBYTE *buffer,
xmsSIZE bufferLength,
xmsSIZE *returnedLength,
xmsHErrorBlock errorBlock);

C++ interface:
xmsINT readBytes(xmsBYTE *buffer,
const xmsSIZE bufferLength,
xmsSIZE *returnedlLength) const;

Read an array of bytes from the bytes message stream starting from the current

position of the cursor.
Parameters:

message (input)
The handle for the message.

buffer (output)

The buffer to contain the array of bytes that is read. If the number
of bytes remaining to be read from the stream before the call is
greater than or equal to the length of the buffer, the buffer is filled.
Otherwise, the buffer is partially filled with all the remaining
bytes.

46 Using Multi-Language Message Service

BytesMessage

bufferLength (input)
The length of the buffer in bytes.

returnedLength (output)
The number of bytes that are read into the buffer. If the buffer is
partially filled, the value is less than the length of the buffer,
indicating that there are no more bytes remaining to be read. If
there are no bytes remaining to be read from the stream before the
call, the value is XMSC_END_OF_STREAM.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
e XMS_X_MESSAGE_EOF_EXCEPTION

Read Bytes by Reference

C interface:
xmsRC xmsBytesMsgReadBytesByRef (xmsHMsg message,
xmsBYTE **stream,
xmsSIZE *length,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to the start of the bytes message stream and get the length of the
stream.

For more information about how to use this function, see [’C functions that return|
la string or byte array by reference” on page 29|

Parameters:

message (input)
The handle for the message.

stream (output)
A pointer to the start of the bytes message stream.

length (output)
The number of bytes in the bytes message stream.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

Chapter 7. XMS classes 47

BytesMessage

Read Character

C interface:
xmsRC xmsBytesMsgReadChar(xmsHMsg message,
xmsCHAR16 *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsCHAR16 readChar() const;

Read the next 2 bytes from the bytes message stream as a character.
Parameters:

message (input)
The handle for the message.

value (output)
The character that is read.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

Read Double Precision Floating Point Number

C interface:

xmsRC xmsBytesMsgReadDouble (xmsHMsg message,
xmsDOUBLE *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsDOUBLE readDouble() const;

Read the next eight bytes from the bytes message stream as a double precision
floating point number.

Parameters:

message (input)
The handle for the message.

value (output)
The double precision floating point number that is read.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

48 Using Multi-Language Message Service

BytesMessage

Read Floating Point Number

C interface:

xmsRC xmsBytesMsgReadFloat (xmsHMsg message,
xmsFLOAT =*value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsFLOAT readFloat() const;

Read the next four bytes from the bytes message stream as a floating point
number.

Parameters:

message (input)
The handle for the message.

value (output)
The floating point number that is read.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

Read Integer

C interface:
xmsRC xmsBytesMsgReadInt (xmsHMsg message,
xmsINT *value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsINT readInt() const;
Read the next four bytes from the bytes message stream as a signed 32-bit integer.
Parameters:

message (input)
The handle for the message.

value (output)
The integer that is read.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

Chapter 7. XMS classes 49

BytesMessage

Read Long Integer

C interface:
xmsRC xmsBytesMsgReadLong (xmsHMsg message,
xmsLONG *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsLONG readLong() const;

Read the next eight bytes from the bytes message stream as a signed 64-bit integer.
Parameters:

message (input)
The handle for the message.

value (output)
The long integer that is read.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
e XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
¢ XMS_X_MESSAGE_EOF_EXCEPTION

Read Short Integer

C interface:
xmsRC xmsBytesMsgReadShort (xmsHMsg message,
xmsSHORT *value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsSHORT readShort() const;
Read the next two bytes from the bytes message stream as a signed 16-bit integer.
Parameters:

message (input)
The handle for the message.

value (output)
The short integer that is read.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
¢ XMS_X_MESSAGE_EOF_EXCEPTION

50 Using Multi-Language Message Service

BytesMessage

Read Unsigned Byte

C interface:
xmsRC xmsBytesMsgReadUnsignedByte (xmsHMsg message,
xmsUINT8 *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsUINT8 readUnsignedByte() const;

Read the next byte from the bytes message stream as an unsigned 8-bit integer.

Parameters:

message (input)
The handle for the message.

value (output)
The byte that is read.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

Read Unsigned Short Integer

C interface:
xmsRC xmsBytesMsgReadUnsignedShort (xmsHMsg message,
xmsUINT16 *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsUINT16 readUnsignedShort() const;
Read the next two bytes from the bytes message stream as an unsigned 16-bit
integer.
Parameters:

message (input)
The handle for the message.

value (output)
The unsigned short integer that is read.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

Chapter 7. XMS classes

51

BytesMessage

Read UTF String

C interface:
xmsRC xmsBytesMsgReadUTF (xmsHMsg message,
xmsCHAR *buffer,
xmsSIZE bufferLength,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String readUTF() const;

Read a string, encoded in UTF-8 format, from the bytes message stream.
Parameters:

message (input)
The handle for the message.

buffer (output)
The buffer to contain the string that is read.

bufferLength (input)
The length of the buffer in bytes. If you specify a length of zero,
the string is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the string in bytes.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
* XMS_X_MESSAGE_EOF_EXCEPTION

Reset

C interface:

xmsRC xmsBytesMsgReset (xmsHMsg message,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID reset() const;
Put the body of the message into read-only mode and reposition the cursor at the
beginning of the bytes message stream.

Parameters:

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
e XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

52 Using Multi-Language Message Service

BytesMessage

* XMS_X_MESSAGE_EOF_EXCEPTION

Write Boolean Value

C interface:
xmsRC xmsBytesMsgWriteBoolean(xmsHMsg message,
xmsBOOL value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID writeBoolean(const xmsBOOL value);
Write a boolean value to the bytes message stream as 1 byte.
Parameters:

message (input)
The handle for the message.

value (input)
The boolean value to be written. The value xmsTRUE is written as
X'01', and the value xmsFALSE is written as X'00"'.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
e XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Write Byte

C interface:
xmsRC xmsBytesMsgWriteByte (xmsHMsg message,
xmsBYTE value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID writeByte(const xmsBYTE value);
Write a byte to the bytes message stream.
Parameters:

message (input)
The handle for the message.

value (input)
The byte to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
¢ XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Chapter 7. XMS classes 53

BytesMessage

Write Bytes

C interface:
xmsRC xmsBytesMsgWriteBytes (xmsHMsg message,
xmsBYTE *value,
xmsSIZE length,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID writeBytes(const xmsBYTE =*value,
const xmsSIZE Tength);

Write an array of bytes to the bytes message stream.
Parameters:

message (input)
The handle for the message.

value (input)
The array of bytes to be written.

length (input)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
e XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Write Character

C interface:

xmsRC xmsBytesMsgWriteChar(xmsHMsg message,
xmsCHAR16 value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID writeChar(const xmsCHAR16 value);
Write a character to the bytes message stream as 2 bytes, high order byte first.
Parameters:

message (input)
The handle for the message.

value (input)
The character to be written.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
e XMS_X_GENERAL_EXCEPTION
e XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

54 Using Multi-Language Message Service

BytesMessage

Write Double Precision Floating Point Number

C interface:
xmsRC xmsBytesMsgWriteDouble(xmsHMsg message,
xmsDOUBLE value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID writeDouble(const xmsDOUBLE value);
Convert a double precision floating point number to a long integer and write the
long integer to the bytes message stream as 8 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The double precision floating point number to be written.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
e XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Write Floating Point Number

C interface:

xmsRC xmsBytesMsgWriteFloat (xmsHMsg message,
xmsFLOAT value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID writeFloat(const xmsFLOAT value);
Convert a floating point number to an integer and write the integer to the bytes
message stream as 4 bytes, high order byte first.
Parameters:

message (input)
The handle for the message.

value (input)
The floating point number to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Chapter 7. XMS classes 55

BytesMessage

Write Integer

C interface:
xmsRC xmsBytesMsgWriteInt(xmsHMsg message,
xmsINT value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID writeInt(const xmsINT value);

Write an integer to the bytes message stream as 4 bytes, high order byte first.
Parameters:
message (input)
The handle for the message.
value (input)
The integer to be written.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Write Long Integer

C interface:

xmsRC xmsBytesMsgWritelLong(xmsHMsg message,
xmsLONG value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID writeLong(const xmsLONG value);

Write a long integer to the bytes message stream as 8 bytes, high order byte first.
Parameters:

message (input)
The handle for the message.
value (input)
The long integer to be written.
errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
*+ XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Write Short Integer

C interface:

xmsRC xmsBytesMsgWriteShort (xmsHMsg message,
xmsSHORT value,
xmsHErrorBlock errorBlock);

56 Using Multi-Language Message Service

BytesMessage

C++ interface:
xmsVOID writeShort(const xmsSHORT value);

Write a short integer to the bytes message stream as 2 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The short integer to be written.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
e XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Write UTF String

C interface:
xmsRC xmsBytesMsgWriteUTF(xmsHMsg message,
xmsCHAR =*value,
xmsSIZE Tength,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID writeUTF(const String & value);
Write a string, encoded in UTF-8 format, to the bytes message stream.
Parameters:

message (input)
The handle for the message.

value (input)
The string, which must be encoded in UTF-8 format.

length (input)
The length of the string in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Chapter 7. XMS classes

57

Connection

Connection

A Connection object represents an application’s active connection to a broker.

Methods

Close Connection

C interface:
xmsRC xmsConnClose (xmsHConn *connection,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID close();

Close the connection.

If an application tries to close a connection that is already closed, the call is
ignored.

Parameters:

connection (input/output)
On input, the handle for the connection. On output, the call returns
a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Create Session

C interface:
xmsRC xmsConnCreateSession(xmsHConn connection,
xmsBOOL transacted,
xmsACKNOWLEDGE_MODE acknowledgeMode,
xmsHSess *session,
xmsHErrorBlock errorBlock);

C++ interface:
Session createSession(const xmsBOOL transacted = xmsFALSE,
const xmsACKNOWLEDGE_MODE
acknowledgeMode = XMSC_AUTO_ACKNOWLEDGE) ;

Create a session.
Parameters:

connection (input)
The handle for the connection.

transacted (input)
The value must be xmsFALSE.

acknowledgeMode (input)
Indicates how messages received by an application are
acknowledged. The value must be XMSC_AUTO_ACKNOWLEDGE.

session (output)
The handle for the session.

58 Using Multi-Language Message Service

Connection

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Exception Listener

C interface:
xmsRC xmsConnGetExceptionListener(xmsHConn connection,
fpXMS_EXCEPTION_CALLBACK *Tsr,
xmsCONTEXT *context,
xmsHErrorBlock errorBlock);

C++ interface:
ExceptionListener * getExceptionListener() const;

Get pointers to the exception listener function and context data that are registered
with the connection.

For more information about using exception listeners and context data, see
[“Listeners and callbacks” on page 27

Parameters:

connection (input)
The handle for the connection.

Isr (output)
A pointer to the exception listener function. If no exception listener
function is registered with the connection, the call returns a null
pointer.

context (output)
A pointer to the context data. If no exception listener function is
registered with the connection, the call returns a null pointer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Metadata

C interface:
xmsRC xmsConnGetMetaData(xmsHConn connection,
xmsHConnMetaData *connectionMetaData,
xmsHErrorBlock errorBlock);

C++ interface:
ConnectionMetaData getMetaData() const;

Get the metadata for the connection.
Parameters:

connection (input)
The handle for the connection.

Chapter 7. XMS classes 59

Connection

connectionMetaData (output)
The handle for the connection metadata.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsConnGetProperty (xmsHConn connection,
xmsCHAR *propertyName,
xmsHProperty #*property,
xmsHErrorBlock errorBlock);

C++ interface:

virtual Property getProperty(const String & propertyName) const;
Get a Property object for the property identified by name.
Parameters:

connection (input)
The handle for the connection.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Exception Listener

C interface:
xmsRC xmsConnSetExceptionListener(xmsHConn connection,
fpXMS_EXCEPTION_CALLBACK Tsr,
xmsCONTEXT context,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setExceptionListener(const ExceptionListener * 1sr);

Register an exception listener function and context data with the connection.

For more information about using exception listeners and context data, see
[“Listeners and callbacks” on page 27|

Parameters:

connection (input)
The handle for the connection.

60 Using Multi-Language Message Service

Connection

Isr (input)
A pointer to the exception listener function. If an exception listener
function is already registered with the connection, you can cancel
the registration by specifying a null pointer instead.

context (input)
A pointer to the context data.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Property

C interface:
xmsRC xmsConnSetProperty (xmsHConn connection,
xmsHProperty property,
xmsHErrorBlock errorBlock);

C++ interface:

virtual xmsVOID setProperty(const Property & property);
Set the value of a property using a Property object.
Parameters:

connection (input)
The handle for the connection.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Start Connection

C interface:
xmsRC xmsConnStart (xmsHConn connection,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID start() const;
Start, or restart, the delivery of incoming messages for the connection. The call is
ignored if the connection is already started.

Parameters:

connection (input)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 7. XMS classes 61

Connection

Exceptions:
XMS_X_GENERAL_EXCEPTION

Stop Connection

C interface:
xmsRC xmsConnStop (xmsHConn connection,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID stop() const;
Stop temporarily the delivery of incoming messages for the connection. The call is
ignored if the connection is already stopped.

Parameters:

connection (input)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

62 Using Multi-Language Message Service

ConnectionFactory

ConnectionFactory

An application uses a connection factory to create a connection.

For a list of the XMS defined properties of a ConnectionFactory object, see
[“Properties of ConnectionFactory” on page 171

Constructor

Create Connection Factory

C interface:
xmsRC xmsConnFactCreate(xmsHConnFact *factory,
xmsHErrorBlock errorBlock);

C++ interface:

ConnectionFactory();
Create a connection factory with the default properties.
Parameters:

factory (output)
The handle for the connection factory.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Methods

Create Connection (using the default user identity)

C interface:
xmsRC xmsConnFactCreateConnection(xmsHConnFact factory,
xmsHConn *connection,
xmsHErrorBlock errorBlock);

C++ interface:
Connection createConnection();

Create a connection using the default user identity. The connection factory
properties XMSC_USER and XMSC_PASSWORD, if they are set, are used to
authenticate the application. If these properties are not set, the connection is
created without authenticating the client, provided the broker permits a connection
without authentication.

The connection is created in stopped mode. No messages are delivered until Start
Connection is called explicitly.
Parameters:

factory (input)
The handle for the connection factory.

connection (output)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 7. XMS classes 63

ConnectionFactory

Exceptions:
* XMS_X_GENERAL_EXCEPTION
e XMS_X_SECURITY_EXCEPTION

Create Connection (using a specified user identity)

C interface:
xmsRC xmsConnFactCreateConnectionForUser(xmsHConnFact factory,
xmsCHAR *userID,
xmsCHAR *password,
xmsHConn *connection,
xmsHErrorBock errorBlock);

C++ interface:
Connection createConnection(const String & userID,
const String & password);

Create a connection using a specified user identity. The specified user identifier
and password are used to authenticate the application. The connection factory
properties XMSC_USER and XMSC_PASSWORD, if they are set, are ignored.

The connection is created in stopped mode. No messages are delivered until Start
Connection is called explicitly.

Parameters:

factory (input)
The handle for the connection factory.

userID (input)
The user identifier to be used to authenticate the application. The
user identifier is in the format of a null terminated string.

password (input)
The password to be used to authenticate the application. The
password is in the format of a null terminated string.

connection (output)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_SECURITY_EXCEPTION

Delete Connection Factory

C interface:
xmsRC xmsConnFactDispose(xmsHConnFact *factory,
xmsHErrorBlock errorBlock);

C++ interface:
virtual ~ConnectionFactory();

Delete the connection factory.

64 Using Multi-Language Message Service

ConnectionFactory

If an application tries to delete a connection factory that is already deleted, the call
is ignored.

Parameters:

factory (input/output)
On input, the handle for the connection factory. On output, the call
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Boolean Property

C interface:
xmsRC xmsConnFactGetBooleanProperty(xmsHConnFact factory,
xmsCHAR *propertyName,
xmsBOOL *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the boolean property identified by name.
Parameters:

factory (input)
The handle for the connection factory.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Integer Property

C interface:
xmsRC xmsConnFactGetIntProperty(xmsHConnFact factory,
xmsCHAR *propertyName,
xmsINT *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the integer property identified by name.
Parameters:

factory (input)
The handle for the connection factory.

Chapter 7. XMS classes 65

ConnectionFactory

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsConnFactGetProperty (xmsHConnFact factory,
xmsCHAR *propertyName,
xmsHProperty *property,
xmsHErrorBlock errorBlock);

C++ interface:
Property getProperty(const String & propertyName) const;

Get a Property object for the property identified by name.
Parameters:

factory (input)
The handle for the connection factory.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property

C interface:
xmsRC xmsConnFactGetStringProperty(xmsHConnFact factory,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsSIZE length,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class

Get the value of the string property identified by name.

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28|

Parameters:

66 Using Multi-Language Message Service

ConnectionFactory

factory (input)
The handle for the connection factory.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue(output)
The buffer to contain the value of the property.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the value of the property is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property by Reference

C interface:
xmsRC xmsConnFactGetStringPropertyByRef (xmsHConnFact factory,
xmsCHAR *propertyName,
xmsCHAR **propertyValue,
xmsSIZE *length,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to the value of the string property identified by name.

For more information about how to use this function, see [’C functions that return|
la string or byte array by reference” on page 29)

Parameters:

factory (input)
The handle for the connection factory.

propertyName (input)
The name of the property in the format of a null terminated string.

property Value(output)
A pointer to the value of the property.

length (output)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 67

ConnectionFactory

Set Boolean Property

C interface:
xmsRC xmsConnFactSetBooleanProperty(xmsHConnFact factory,
xmsCHAR *propertyName,
xmsBOOL propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the boolean property identified by name.
Parameters:

factory (input)
The handle for the connection factory.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Integer Property

C interface:
xmsRC xmsConnFactSetIntProperty(xmsHConnFact factory,
xmsCHAR *propertyName,
xmsINT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the integer property identified by name.
Parameters:

factory (input)
The handle for the connection factory.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

68 Using Multi-Language Message Service

ConnectionFactory

Set Property

C interface:
xmsRC xmsConnFactSetProperty(xmsHConnFact factory,
xmsHProperty property,
xmsHErrorBlock errorBlock);

C++ interface:
virtual xmsVOID setProperty(const Property & property);
Set the value of a property using a Property object.
Parameters:
factory (input)
The handle for the connection factory.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set String Property

C interface:
xmsRC xmsConnFactSetStringProperty(xmsHConnFact factory,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsSIZE length,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the string property identified by name.
Parameters:

factory (input)
The handle for the connection factory.

propertyName (input)
The name of the property in the format of a null terminated string.

property Value(input)
The value of the property as a character array.

length (input)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 69

ConnectionMetaData

ConnectionMetaData

A ConnectionMetaData object provides information about a connection.

For a list of the XMS defined properties of a ConnectionMetaData object, see
[“Properties of ConnectionMetaData” on page 173)

Methods

Delete Connection Metadata

C interface:
xmsRC xmsConnMetaDataDispose (xmsHConnMetaData *connectionMetaData,
xmsHErrorBlock errorBlock);

C++ interface:
virtual ~ConnectionMetaData();

Delete the metadata for the connection.

If an application tries to delete connection metadata that is already deleted, the call
is ignored.

Parameters:

connectionMetaData (input/output)
On input, the handle for the connection metadata. On output, the
call returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Integer Property

C interface:
xmsRC xmsConnMetaDataGetIntProperty(xmsHConnMetaData connectionMetaData,
xmsCHAR *propertyName,
xmsINT *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the integer property identified by name.
Parameters:

connectionMetaData (input)
The handle for the connection metadata.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

70 Using Multi-Language Message Service

ConnectionMetaData

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsConnMetaDataGetProperty(xmsHConnMetaData connectionMetaData,
xmsCHAR *propertyName,
xmsHProperty =*property,
xmsHErrorBlock errorBlock);

C++ interface:
virtual Property getProperty(const String & propertyName) const;

Get a Property object for the property identified by name.
Parameters:

connectionMetaData (input)
The handle for the connection metadata.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property

C interface:

xmsRC xmsConnMetaDataGetStringProperty(xmsHConnMetaData connectionMetaData,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsSIZE Tength,
xmsSIZE xactuallength,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class

Get the value of the string property identified by name.

For more information about how to use this function in a C application, see
functions that return a string or byte array by value” on page 28}

Parameters:

connectionMetaData (input)
The handle for the connection metadata.

propertyName (input)
The name of the property in the format of a null terminated string.

property Value(output)
The buffer to contain the value of the property.

Chapter 7. XMS classes 71

ConnectionMetaData

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the value of the property is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property by Reference

C interface:
xmsRC
xmsConnMetaDataGetStringPropertyByRef (xmsHConnMetaData connectionMetaData,
xmsCHAR *propertyName,
xmsCHAR **propertyValue,
xmsSIZE *Tength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to the value of the string property identified by name.

For more information about how to use this function, see|“C functions that return|
la string or byte array by reference” on page 29)

Parameters:

connectionMetaData (input)
The handle for the connection metadata.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue(output)
A pointer to the value of the property.

length (output)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

72 Using Multi-Language Message Service

Destination

Destination
A destination is where an application sends messages, or it is a source from which
an application receives messages, or both.
For a list of the XMS defined properties of a Destination object, see
IDestination” on page 173.|
Constructor

Create Destination (using a URI)

C interface:

xmsRC xmsDestCreate(xmsCHAR *URI,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

C++ interface:
Destination(const String & URI);

Create a destination using the specified uniform resource identifier (URI).
Properties of the destination that are not specified by the uniform resource
identifier take the default values.

Parameters:

URI (input)
A uniform resource identifier in the format of a null terminated
string.

destination (output)
The handle for the destination.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Create Destination (specifying a type and name)

C interface:
xmsRC xmsDestCreateByType (xmsDESTINATION TYPE destinationType,
xmsCHAR *destinationName,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

C++ interface:

Destination(const xmsDESTINATION TYPE destinationType,
const String & destinationName);

Create a destination using the specified destination type and name.
Parameters:

destinationType (input)
The type of the destination. The value must be XMSC_TOPIC.

destinationName (input)
The name of the destination in the format of a null terminated
string.

Chapter 7. XMS classes

73

Destination

destination (output)
The handle for the destination.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Methods

Delete Destination

C interface:
xmsRC xmsDestDispose(xmsHDest *destination,
xmsHErrorBlock errorBlock);

C++ interface:
virtual “~Destination();

Delete the destination.

If an application tries to delete a destination that is already deleted, the call is
ignored.

Parameters:

destination (input/output)
On input, the handle for the destination. On output, the call
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Destination Name

C interface:
xmsRC xmsDestGetName (xmsHDest destination,
xmsCHAR *destinationName,
xmsSIZE length,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String getDestinationName() const;

Get the name of the destination.

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28|

Parameters:

destination (input)
The handle for the destination.

destinationName (output)
The buffer to contain the name of the destination.

74 Using Multi-Language Message Service

Destination

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the name of the destination is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the name of the destination in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Destination Name as URI

C interface:
xmsRC xmsDestToString(xmsHDest destination,
xmsCHAR *destinationName,
xmsSIZE Tength,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String toString() const;

Get the name of the destination in the format of a uniform resource identifier
(URI).

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28}

Parameters:

destination (input)
The handle for the destination.

destinationName (output)
The buffer to contain the uniform resource identifier.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the URI is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the URI in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Destination Type

C interface:

xmsRC xmsDestGetTypeld(xmsHDest destination,
xmsDESTINATION_TYPE *destinationType,
xmsHErrorBlock errorBlock);

Chapter 7. XMS classes 75

Destination

C++ interface:
xmsDESTINATION_TYPE GetType();
Get the type of the destination.
Parameters:
destination (input)
The handle for the destination.

destinationType (output)
The type of the destination. The value is always XMSC_TOPIC.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Integer Property

C interface:
xmsRC xmsDestGetIntProperty(xmsHDest destination,
xmsCHAR *propertyName,
xmsINT *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class
Get the value of the integer property identified by name.
Parameters:
destination (input)
The handle for the destination.
propertyName (input)
The name of the property in the format of a null terminated string.
propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsDestGetProperty(xmsHDest destination,
xmsCHAR *propertyName,
xmsHProperty #*property,
xmsHErrorBlock errorBlock);

C++ interface:
virtual Property getProperty(const String & propertyName) const;

Get a Property object for the property identified by name.

76 Using Multi-Language Message Service

Destination

Parameters:

destination (input)
The handle for the destination.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property

C interface:
xmsRC xmsDestGetStringProperty(xmsHDest destination,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsSIZE length,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class

Get the value of the string property identified by name.

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28]

Parameters:

destination (input)
The handle for the destination.

propertyName (input)
The name of the property in the format of a null terminated string.

property Value(output)
The buffer to contain the value of the property.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the value of the property is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 77

Destination

Get String Property by Reference

C interface:
xmsRC xmsDestGetStringPropertyByRef (xmsHDest destination,
xmsCHAR *propertyName,
xmsCHAR **propertyValue,
xmsSIZE *length,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to the value of the string property identified by name.

For more information about how to use this function, see [“C functions that return|

la string or byte array by reference” on page 29|

Parameters:

destination (input)
The handle for the destination.

propertyName (input)

The name of the property in the format of a null terminated string.

propertyValue(output)
A pointer to the value of the property.

length (output)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Integer Property

C interface:
xmsRC xmsDestSetIntProperty(xmsHDest destination,
xmsCHAR *propertyName,
xmsINT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the integer property identified by name.
Parameters:

destination (input)
The handle for the destination.

propertyName (input)

The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

78 Using Multi-Language Message Service

Destination

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Property

C interface:
xmsRC xmsDestSetProperty(xmsHDest destination,
xmsHProperty property,
xmsHErrorBlock errorBlock);

C++ interface:
virtual xmsVOID setProperty(const Property & property);
Set the value of a property using a Property object.
Parameters:
destination (input)
The handle for the destination.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set String Property

C interface:
xmsRC xmsDestSetStringProperty(xmsHDest destination,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsSIZE length,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the string property identified by name.
Parameters:

destination (input)
The handle for the destination.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property as a character array.

length (input)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 79

ErrorBlock

ErrorBlock

If a C function call fails, XMS can store information in an error block about why
the call failed. For more information about the error block and its contents, see
[‘The error block” on page 30.|

Only the C interface uses this class.

Methods

Clear Error Block

C interface:
xmsRC xmsErrorClear(xmsHErrorBlock errorBlock);

Clear the contents of the error block.

XMS automatically clears the contents of an error block before filling the block
with information about why a C function call has failed.

Parameters:

errorBlock (input)
The handle for the error block.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Create Error Block
C interface:
xmsRC xmsErrorCreate (xmsHErrorBlock *errorBlock);
Create an error block.
Parameters:

errorBlock (output)
The handle for the error block.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Delete Error Block

C interface:
xmsRC xmsErrorDispose(xmsHErrorBlock *errorBlock);

Delete an error block and any linked error blocks.

If an application tries to delete an error block that is already deleted, the call is
ignored.

80 Using Multi-Language Message Service

ErrorBlock

Parameters:

errorBlock (input/output)
On input, the handle for the error block. On output the call returns
a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Error Code

C interface:
xmsRC xmsErrorGetErrorCode (xmsHErrorBlock errorBlock,
xmsINT *errorCode);

Get the error code.
Parameters:

errorBlock (input)
The handle for the error block.

errorCode (output)
The error code.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Error Data

C interface:
xmsRC xmsErrorGetErrorData(xmsHErrorBlock errorBlock,
xmsCHAR *buffer,
xmsSIZE bufferLength,
xmsSIZE xactuallength);

Get the error data.
Parameters:

errorBlock (input)
The handle for the error block.

buffer (output)
The buffer to contain the error data.

bufferLength (input)
The length of the buffer in bytes. If you specify a length of zero,
the error data is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the error data in bytes.

Chapter 7. XMS classes 81

ErrorBlock

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Error Module

C interface:

xmsRC xmsErrorGetModule (xmsHErrorBlock errorBlock,
xmsMODULE_TYPE *errorModule);

Get the identifier of the XMS module where the error originated. This information
might be useful to your IBM Support Center if an unexpected error occurs.

Parameters:

errorBlock (input)
The handle for the error block.

errorModule (output)
The identifier of the XMS module.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Error String

C interface:
xmsRC xmsErrorGetErrorString (xmsHErrorBlock errorBlock,
xmsCHAR *buffer,
xmsSIZE bufferLength,
xmsSIZE *actuallength);

Get the error string.
Parameters:

errorBlock (input)
The handle for the error block.

buffer (output)
The buffer to contain the error string.

bufferLength (input)
The length of the buffer in bytes. If you specify a length of zero,
the error string is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the error string in bytes.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

82 Using Multi-Language Message Service

ErrorBlock

Get Exception Code

C interface:
xmsRC xmsErrorGetJMSException(xmsHErrorBlock errorBlock,
xmsJMSEXP_TYPE *exceptionCode);

Get the exception code.
Parameters:

errorBlock (input)
The handle for the error block.

exceptionCode (output)
The exception code.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Linked Error

C interface:
xmsRC xmsErrorGetLinkedError(xmsHErrorBlock errorBlock,
xmsHErrorBlock *1inkedError);

Get the handle for the next error block in the chain of error blocks.
Parameters:

errorBlock (input)
The handle for the error block.

linkedError (output)
The handle for the next error block in the chain. The call returns a
null handle if there are no more error blocks in the chain.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 83

Exception

Exception

If a call of a C++ method fails, XMS creates an Exception object, which
encapsulates information about why the call failed.

Only the C++ interface uses this class.

Methods

Delete Exception
C++ interface:
virtual “Exception();
Delete the exception and any linked exceptions.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Error Code
C++ interface:

xmsINT getErrorCode() const;
Get the error code.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Error Data

C++ interface:
String getErrorData() const;

Get the free format data that provides additional information about the error.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Error String

C++ interface:
String getErrorString() const;

Get the string of characters that describes the error. The characters in the string are
the same as those in the named constant that represents the error code.

84 Using Multi-Language Message Service

Exception

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Exception Code
C++ interface:

xmsJMSEXP_TYPE getJMSException() const;
Get the exception code.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Linked Exception
C++ interface:
Exception getLinkedException() const;
Get the next exception in the chain of exceptions. The call returns a null Exception

object if there are no more exceptions in the chain.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 85

ExceptionListener

ExceptionListener

An application uses an exception listener to be notified asynchronously of a
problem with a connection.

If an application uses a connection only to consume messages asynchronously, and
for no other purpose, then the only way the application can learn about a problem
with the connection is by using an exception listener.

Methods

On Exception

C interface:

xmsVOID onException(xmsCONTEXT context,
xmsHErrorBlock errorBlock);

C++ interface:
virtual xmsVOID onException(const Exception * exception);

Notify the application of a problem with a connection.

For a C application, onException() is the exception listener function that is
registered with the connection. For a C++ application, onException() is a method of
the exception listener that is registered with the connection.

For more information about using exception listeners, see [“Listeners and callbacks’]

Parameters:

context (input)
A pointer to the context data that is registered with the connection.

errorBlock (input)
The handle for an error block created by the connection.

86 Using Multi-Language Message Service

Iterator

Iterator

An iterator encapsulates a list of Property objects and a cursor that maintains the
current position in the list. When an iterator is created, the cursor is positioned
before the first Property object.

An application can use an iterator to retrieve each Property object in turn.

Methods

Check for More Properties

C interface:
xmsRC xmsIteratorHasNext(xmsHIterator iterator,
xmsBOOL *moreProperties,
xmsHErrorBlock errorBlock);

C++ interface:

xmsBOOL xmsIterator::hasNext();
Check whether there are any more Property objects beyond the current position of
the cursor. The call does not move the cursor.

Parameters:

iterator (input)
The handle for the iterator.

moreProperties (output)
If the value is xmsTRUE, more Property objects are available for
retrieval beyond the current position of the cursor. If the value is
xmsFALSE, no more Property objects are available for retrieval
beyond the current position of the cursor.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Session

Exceptions:
XMS_X_GENERAL_EXCEPTION

Delete Iterator

C interface:

xmsRC xmsIteratorDispose(xmsHIterator xiterator,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID xmsIterator::~xmsIterator();

Delete the iterator.

If an application tries to delete an iterator that is already deleted, the call is
ignored.

Parameters:

Chapter 7. XMS classes 87

Iterator

iterator (input/output)
On input, the handle for the iterator. On output, the call returns a
null handle.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Session

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Next Property

C interface:
xmsRC xmsIteratorGetNextProperty(xmsHIterator iterator,
xmsHProperty =*property,
xmsHErrorBlock errorBlock);

C++ interface:

xmsProperty xmsIterator::getNextProperty();
Move the cursor to the next Property object and get the Property object at the new
position of the cursor.

Parameters:

iterator (input)
The handle for the iterator.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Session

Exceptions:
XMS_X_GENERAL_EXCEPTION

Reset Iterator

C interface:
xmsRC xmsIteratorReset(xmsHIterator iterator,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID xmsIterator::reset();
Move the cursor back to a position before the first Property object.
Parameters:

iterator (input)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

88 Using Multi-Language Message Service

Iterator

Thread context:
Session

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 89

MapMessage

MapMessage

A map message is a message whose body comprises a set of name-value pairs.

Methods

Check Name-Value Pair Exists

C interface:
xmsRC xmsMapMsgItemExists(xmsHMsg message,
xmsCHAR +*name,
xmsBOOL *pairExists,
xmsHErrorBlock errorBlock);

C++ interface:
xmsBOOL itemExists(const String & name) const;

Check whether the body of the map message contains a name-value pair with the
specified name.

Parameters:

message (input)
The handle for the message.

name (input)
The name of the name-value pair in the format of a null
terminated string.

pairExists (output)
If the value is xmsTRUE, the body of the map message contains a
name-value pair with the specified name. If the value is xmsFALSE,
the body of the map message does not contain a name-value pair
with the specified name.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Boolean Value

C interface:
xmsRC xmsMapMsgGetBoolean(xmsHMsg message,
xmsCHAR *name,
xmsBOOL *value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsBOOL getBoolean(const String & name) const;
Get the boolean value identified by name from the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the boolean value. The name is in the
format of a null terminated string.

90 Using Multi-Language Message Service

MapMessage

value (output)
The boolean value that is returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Byte

C interface:

xmsRC xmsMapMsgGetByte (xmsHMsg message,
xmsCHAR *name,
xmsBYTE *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsBYTE getByte(const String & name) const;

Get the byte identified by name from the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the byte. The name is in the format of a
null terminated string.

value (output)
The byte that is returned. No data conversion is performed on the
byte.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Bytes

C interface:

xmsRC xmsMapMsgGetBytes (xmsHMsg message,
xmsCHAR *name,
xmsBYTE *buffer,
xmsSIZE bufferLength,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:

xmsINT getBytes(const String & name,
xmsBYTE *buffer,
const xmsSIZE bufferLength,
xmsSIZE xactuallength) const;

Get the array of bytes identified by name from the body of the map message.

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28]

Chapter 7. XMS classes 91

MapMessage

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the array of bytes. The name is in the
format of a null terminated string.

buffer (output)
The buffer to contain the array of bytes. No data conversion is
performed on the bytes that are returned.

bufferLength (input)
The length of the buffer in bytes. If you specify a length of zero,
the array of bytes is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Bytes by Reference

C interface:

xmsRC xmsMapMsgGetBytesByRef (xmsHMsg message,
xmsCHAR *name,
xmsBYTE =*+*array,
xmsSIZE *Tength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to an array of bytes in the body of the map message and get the
length of the array. The array of bytes is identified by name.

For more information about how to use this function, see|’C functions that return|
fa string or byte array by reference” on page 29)

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the array of bytes. The name is in the
format of a null terminated string.

array (output)
A pointer to the array of bytes.

length (output)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

92 Using Multi-Language Message Service

MapMessage

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Character

C interface:
xmsRC xmsMapMsgGetChar (xmsHMsg message,
xmsCHAR *name,
xmsCHAR16 *value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsCHAR16 getChar(const String & name) const;
Get the character identified by name from the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the character. The name is in the format of
a null terminated string.

value (output)
The character that is returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Double Precision Floating Point Number

C interface:
xmsRC xmsMapMsgGetDouble(xmsHMsg message,
xmsCHAR *name,
xmsDOUBLE *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsDOUBLE getDouble(const String & name) const;
Get the double precision floating point number identified by name from the body
of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the double precision floating point
number. The name is in the format of a null terminated string.

value (output)
The double precision floating point number that is returned.

Chapter 7. XMS classes 93

MapMessage

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Floating Point Number

C interface:

xmsRC xmsMapMsgGetFloat (xmsHMsg message,
xmsCHAR #*name,
xmsFLOAT *value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsFLOAT getFloat(const String & name) const;

Get the floating point number identified by name from the body of the map
message.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the floating point number. The name is in
the format of a null terminated string.

value (output)
The floating point number that is returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Integer

C interface:

xmsRC xmsMapMsgGetInt (xmsHMsg message,
xmsCHAR *name,
xmsINT *value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsINT getInt(const String & name) const;
Get the integer identified by name from the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the integer. The name is in the format of a
null terminated string.

94 Using Multi-Language Message Service

MapMessage

value (output)
The integer that is returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Long Integer

C interface:

xmsRC xmsMapMsgGetLong (xmsHMsg message,
xmsCHAR *name,
xmsLONG *value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsLONG getLong(const String & name) const;
Get the long integer identified by name from the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the long integer. The name is in the
format of a null terminated string.

value (output)
The long integer that is returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Name-Value Pairs

C interface:
xmsRC xmsMapMsgGetMapNames (xmsHMsg message,
xmsHIterator *iterator,
xmsHErrorBlock errorBlock);

C++ interface:
Iterator getMapNames() const;

Get a list of the name-value pairs in the body of the map message.

The call returns a handle for an iterator, which the application can then use to
access each of the name-value pairs in turn. The iterator encapsulates a list of
Property objects, where each Property object encapsulates a name-value pair.

Note: The equivalent JMS method performs a slightly different function. The JMS

method returns an enumeration of only the names, not the values, in the
body of the map message.

Chapter 7. XMS classes 95

MapMessage

Parameters:

message (input)
The handle for the message.

iterator (output)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Object

C interface:

xmsRC xmsMapMsgGetObject (xmsHMsg message,
xmsCHAR *name,
xmsBYTE *buffer,
xmsSIZE bufferLength,
xmsSIZE =actuallength,
xmsOBJECT_TYPE =*objectType,
xmsHErrorBlock errorBlock);

C++ interface:
xmsOBJECT_TYPE getObject(const String & name,
xmsBYTE *buffer,
const xmsSIZE bufferLength,
xmsSIZE *actuallength,
xmsOBJECT _TYPE *objectType) const;

Get the value of a name-value pair, and its type, from the body of the map
message. The name-value pair is identified by name.

Parameters:

message (input)
The handle for the message.

name (input)
The name of the name-value pair in the format of a null
terminated string.

buffer (output)
The buffer to contain the value, which is returned as an array of
bytes. If the type of the value is XMS_OBJECT_TYPE_STRING and
data conversion is required, this is the value after conversion. No
data conversion is performed on a value of any other type.

bufferLength (input)
The length of the buffer in bytes. If you specify a length of zero,
the object is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the value in bytes. If data conversion is required, this
is the length after conversion.

objectType (output)
The type of the value, which is one of the following types:
XMS_OBJECT_TYPE_BOOL

96 Using Multi-Language Message Service

MapMessage

XMS_OBJECT_TYPE_BYTE
XMS_OBJECT_TYPE_CHAR
XMS_OBJECT_TYPE_DOUBLE
XMS_OBJECT_TYPE_FLOAT
XMS_OBJECT_TYPE_INT
XMS_OBJECT_TYPE_LONG
XMS_OBJECT_TYPE_SHORT
XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Short Integer

C interface:
xmsRC xmsMapMsgGetShort (xmsHMsg message,
xmsCHAR *name,
xmsSHORT =*value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsSHORT getShort(const String & name) const;

Get the short integer identified by name from the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the short integer. The name is in the
format of a null terminated string.

value (output)
The short integer that is returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String

C interface:
xmsRC xmsMapMsgGetString(xmsHMsg message,
xmsCHAR *name,
xmsCHAR xbuffer,
xmsSIZE bufferLength,
xmsSIZE xactuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String getString(const String & name) const;

Chapter 7. XMS classes 97

MapMessage

Get the string identified by name from the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the string. The name is in the format of a
null terminated string.

buffer (output)
The buffer to contain the string. If data conversion is required, this
is the string after conversion.

bufferLength (input)
The length of the buffer in bytes. If you specify a length of zero,
the string is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the string in bytes. If data conversion is required,
this is the length of the string after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String by Reference

C interface:

xmsRC xmsMapMsgGetStringByRef (xmsHMsg message,
xmsCHAR *name,
xmsCHAR #*string,
xmsSIZE *1ength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to the string identified by name and get the length of the string.

For more information about how to use this function, see|’C functions that return|
la string or byte array by reference” on page 29|

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the string. The name is in the format of a
null terminated string.

string (output)
A pointer to the string. If data conversion is required, this is the
string after conversion.

98 Using Multi-Language Message Service

MapMessage

length (output)
The length of the string in bytes. If data conversion is required,
this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Boolean Value

C interface:
xmsRC xmsMapMsgSetBoolean(xmsHMsg message,
xmsCHAR *name,
xmsBOOL value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setBoolean(const String & name,

const xmsBOOL value);
Set a boolean value in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the boolean value in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The boolean value to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Byte

C interface:
xmsRC xmsMapMsgSetByte (xmsHMsg message,
xmsCHAR *name,
xmsBYTE value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setByte(const String & name,
const xmsBYTE value);

Set a byte in the body of the map message.
Parameters:

message (input)
The handle for the message.

Chapter 7. XMS classes 99

MapMessage

name (input)
The name to identify the byte in the body of the map message. The
name is in the format of a null terminated string.

value (input)
The byte to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Bytes

C interface:
xmsRC xmsMapMsgSetBytes (xmsHMsg message,
xmsCHAR *name,
xmsBYTE *value,
xmsSIZE Tength,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setBytes(const String & name,
const xmsBYTE =*value,
const xmsSIZE length);

Set an array of bytes in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the array of bytes in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The array of bytes to be set.

length (input)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Character

C interface:
xmsRC xmsMapMsgSetChar (xmsHMsg message,
xmsCHAR *name,
xmsCHAR16 value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID setChar(const String & name,
const xmsCHAR16 value);

100 Using Multi-Language Message Service

MapMessage

Set a 2-byte character in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the character in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The character to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Double Precision Floating Point Number

C interface:

xmsRC xmsMapMsgSetDouble(xmsHMsg message,
xmsCHAR *name,
xmsDOUBLE value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID setDouble(const String & name,
const xmsDOUBLE value);

Set a double precision floating point number in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the double precision floating point number in
the body of the map message. The name is in the format of a null
terminated string.

value (input)
The double precision floating point number to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Floating Point Number

C interface:
xmsRC xmsMapMsgSetFloat (xmsHMsg message,
xmsCHAR *name,
xmsFLOAT value,
xmsHErrorBlock errorBlock);

Chapter 7. XMS classes 101

MapMessage

C++ interface:
xmsVOID setFloat(const String & name,
const xmsFLOAT value);

Set a floating point number in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the floating point number in the body of the
map message. The name is in the format of a null terminated
string.

value (input)
The floating point number to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Integer

C interface:

xmsRC xmsMapMsgSetInt (xmsHMsg message,
xmsCHAR *name,
xmsINT value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID setInt(const String & name,
const xmsINT value);

Set an integer in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the integer in the body of the map message.
The name is in the format of a null terminated string.

value (input)
The integer to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

102 Using Multi-Language Message Service

MapMessage

Set Long Integer

C interface:
xmsRC xmsMapMsgSetLong (xmsHMsg message,
xmsCHAR *name,
xmsLONG value,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setLong(const String & name,
const xmsLONG value);

Set a long integer in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the long integer in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The long integer to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Object

C interface:
xmsRC xmsMapMsgSetObject (xmsHMsg message,
xmsCHAR *name,
xmsBYTE *value,
xmsSIZE length,
xmsOBJECT_TYPE objectType
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setObject(const String & name,
const xmsBYTE xvalue,
const xmsSIZE length
const xmsOBJECT_TYPE objectType);

Set a value, with a specified type, in the body of the map message.
Parameters:

message (input)
The handle for the message.
name (input)
The name to identify the value in the body of the map message.
The name is in the format of a null terminated string.
value (input)
The array of bytes representing the value to be set.
length (input)
The number of bytes in the array.

Chapter 7. XMS classes 103

MapMessage

objectType (input)

The type of the value, which must be one of the following types:
XMS_OBJECT_TYPE_BOOL
XMS_OBJECT_TYPE_BYTE
XMS_OBJECT_TYPE_CHAR
XMS_OBJECT_TYPE_DOUBLE
XMS_OBJECT_TYPE_FLOAT
XMS_OBJECT_TYPE_INT
XMS_OBJECT_TYPE_LONG
XMS_OBJECT_TYPE_SHORT
XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Short Integer

C interface:
xmsRC xmsMapMsgSetShort (xmsHMsg message,
xmsCHAR #*name,
xmsSHORT value,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID setShort(const String & name,
const xmsSHORT value);

Set a short integer in the body of the map message.
Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the short integer in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The short integer to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

104 Using Multi-Language Message Service

MapMessage

Set String

C interface:
xmsRC xmsMapMsgSetString(xmsHMsg message,
xmsCHAR *name,
xmsCHAR *value,
xmsSIZE length,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setString(const String & name,

const String value);
Set a string in the body of the map message.
Parameters:

message (input)
The handle for the message.
name (input)
The name to identify the string in the body of the map message.
The name is in the format of a null terminated string.
value (input)
The character array representing the string to be set.
length (input)
The length of the string in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 105

Message

Message

A Message object represents a message that an application sends or receives.

For a list of the JMS message header fields in a Message object, see ["Header field
Iin an XMS message” on page 31 For a list of the JMS defined properties of a

Message object, see [/TMS defined properties of a message” on page 33 For a list of
the IBM defined properties of a Message object, see ['IBM defined properties of al
Imessage” on page 33

Methods

Check Property Exists

C interface:
xmsRC xmsMsgPropertyExists(xmsHMsg message,
xmsCHAR *propertyName,
xmsBOOL *valueExists,
xmsHErrorBlock errorBlock);

C++ interface:

xmsBOOL propertyExists(const String & propertyName) const;
Check whether the property identified by name has a value.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

valueExists (output)
If the value is xmsTRUE, the property has a value. If the value is
xmsFALSE, the property does not have a value.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Clear Body

C interface:
xmsRC xmsMsgClearBody (xmsHMsg message,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID clearBody();

Clear the body of the message. The header fields and message properties are not
cleared.

If you clear a message body that is read-only, the body becomes writable.
Parameters:

message (input)
The handle for the message.

106 Using Multi-Language Message Service

Message

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Clear Properties

C interface:
xmsRC xmsMsgClearProperties(xmsHMsg message,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID clearProperties();

Clear the properties of the message. The header fields and the message body are
not cleared.

If you clear message properties that are read-only, the properties become writable.
Parameters:

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Delete Message

C interface:
xmsRC xmsMsgDispose(xmsHMsg *message,
xmsHErrorBlock errorBlock);

C++ interface:
virtual “Message();
Delete the message.
If an application tries to delete a message that is already deleted, the call is
ignored.
Parameters:

message (input)
On input, the handle for the message. On output, the call returns a
null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 107

Message

Get Boolean Property

C interface:

xmsRC xmsMsgGetBooleanProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsBOOL *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the boolean property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Byte Property

C interface:
xmsRC xmsMsgGetByteProperty(xmsHMsg message,
xmsCHAR *propertyName,
xmsBYTE *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the byte property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

108 Using Multi-Language Message Service

Message

Get Double Precision Floating Point Property

C interface:

xmsRC xmsMsgGetDoubleProperty(xmsHMsg message,
xmsCHAR *propertyName,
xmsDOUBLE *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the double precision floating point property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Floating Point Property

C interface:
xmsRC xmsMsgGetFloatProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsFLOAT *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the floating point property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 109

Message

Get Integer Property

C interface:

xmsRC xmsMsgGetFloatProperty(xmsHMsg message,
xmsCHAR *propertyName,
xmsFLOAT =*propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class

Get the value of the integer property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSCorrelationID

C interface:
xmsRC xmsMsgGetJIMSCorrelationID(xmsHMsg message,
xmsCHAR *correllD,
xmsSIZE length,
xmsSIZE =actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String getJMSCorrelationID() const;

Get the correlation identifier of the message in the format of a string.

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28|

Parameters:

message (input)
The handle for the message.

correlID (output)
The buffer to contain the correlation identifier. If data conversion is
required, this is the correlation identifier after conversion.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the correlation identifier is not returned, but its length is returned
in the actualLength parameter.

110 Using Multi-Language Message Service

Message

actualLength (output)
The length of the correlation identifier in bytes. If data conversion
is required, this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSDeliveryMode

C interface:

xmsRC xmsMsgGetJIMSDeliveryMode (xmsHMsg message,
xmsDELIVERY_MODE =deliveryMode,
xmsHErrorBlock errorBlock);

C++ interface:

xmsDELIVERY_MODE getJMSDeliveryMode() const;
Get the delivery mode of the message.
Parameters:

message (input)
The handle for the message.
deliveryMode (output)

The delivery mode of the message, which is one of the following
values:

XMSC_NON_PERSISTENT
XMSC_PERSISTENT

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSDestination

C interface:

xmsRC xmsMsgGetJMSDestination(xmsHMsg message,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

C++ interface:

Destination getJMSDestination() const;
Get the destination of the message. The destination is set by the Send call when
the message is sent.

Parameters:

message (input)
The handle for the message.

destination (output)
The handle for the destination of the message.

Chapter 7. XMS classes 111

Message

For a newly created message that has not been sent, the call
returns a null handle unless the sending application sets a
destination by calling Set JMSDestination. For a message that has
been received, the call returns a handle for the destination that was
set by the Send call when the message was sent unless the
receiving application changes the destination by calling Set
JMSDestination.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSExpiration

C interface:
xmsRC xmsMsgGetJMSExpiration(xmsHMsg message,
xmsLONG *expiration,
xmsHErrorBlock errorBlock);

C++ interface:
xmsLONG getJMSExpiration() const;

Get the expiration time of the message.

The expiration time is set by the Send call when the message is sent. Its value is
calculated by adding the time to live, as specified by the sending application, to
the time when the message is sent. The expiration time is expressed in milliseconds
since 00:00:00 GMT on the 1 January 1970.

If the time to live is zero, the Send call sets the expiration time to zero to indicate
that the message does not expire.

Parameters:

message (input)
The handle for the message.

expiration (output)
The expiration time of the message.

For a newly created message that has not been sent, the expiration
time is undefined unless the sending application sets an expiration
time by calling Set JMSExpiration. For a message that has been
received, the call returns the expiration time that was set by the
Send call when the message was sent unless the receiving
application changes the expiration time by calling Set
JMSExpiration.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

112 Using Multi-Language Message Service

Message

Get JMSMessagelD

C interface:
xmsRC xmsMsgGetJMSMessagelD(xmsHMsg message,
xmsCHAR *msgID,
xmsSIZE length,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String getJMSMessageID() const;

Get the message identifier of the message. The message identifier is set by the

Send call when the message is sent.

For more information about how to use this function in a C application, see

functions that return a string or byte array by value” on page 28}

Parameters:

message (input)
The handle for the message.

msgID (output)

The buffer to contain the message identifier. If data conversion is

required, this is the message identifier after conversion.

For a newly created message that has not been sent, the call

returns a null string unless the sending application sets a message
identifier by calling Set JMSMessagelD. For a message that has
been received, the call returns the message identifier that was set

by the Send call when the message was sent unless the receiving

application changes the message identifier by calling Set
JMSMessagelD.

length (input)

The length of the buffer in bytes. If you specify a length of zero,
the message identifier is not returned, but its length is returned in

the actualLength parameter.

actualLength (output)

The length of the message identifier in bytes. If data conversion is

required, this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSPriority

C interface:

xmsRC xmsMsgGetJMSPriority(xmsHMsg message,
xmsINT *priority,
xmsHErrorBlock errorBlock);

C++ interface:
xmsINT getJMSPriority() const;

Get the priority of the message.

Chapter 7. XMS classes

113

Message

Parameters:

message (input)
The handle for the message.

priority (output)
The priority of the message. The value is an integer in the range 0,
the lowest priority, to 9, the highest priority.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSRedelivered

C interface:

xmsRC xmsMsgGetJMSRedelivered(xmsHMsg message,
xmsBOOL *redelivered,
xmsHErrorBlock errorBlock);

C++ interface:

xmsBOOL getJMSRedelivered() const;
Get an indication of whether the message is being re-delivered.
Parameters:

message (input)
The handle for the message.

redelivered (output)
If the value is xmsTRUE, it is likely, but not guaranteed, that the
message was delivered earlier but its receipt was not

acknowledged at that time. If the value is xmsFALSE, the message is
not being re-delivered.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSReplyTo

C interface:

xmsRC xmsMsgGetJMSReplyTo(xmsHMsg message,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

C++ interface:

Destination getJMSReplyTo() const;
Get the destination where a reply to the message is to be sent.
Parameters:

message (input)
The handle for the message.

114 Using Multi-Language Message Service

Message

destination (output)
The handle for the destination where a reply to the message is to
be sent.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSTimestamp

C interface:
xmsRC xmsMsgGetJMSTimestamp (xmsHMsg message,
xmsLONG *timestamp,
xmsHErrorBlock errorBlock);

C++ interface:
xmsLONG getJIMSTimestamp() const;

Get the time when the message was sent. The timestamp is set by the Send call
when the message is sent and is expressed in milliseconds since 00:00:00 GMT on
the 1 January 1970.

Parameters:

message (input)
The handle for the message.

timestamp (output)
The time when the message was sent.

For a newly created message that has not been sent, the timestamp
is undefined unless the sending application sets a timestamp by
calling Set JMSTimestamp. For a message that has been received,
the call returns the timestamp that was set by the Send call when
the message was sent unless the receiving application changes the
timestamp by calling Set J]MSTimestamp.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get JMSType

C interface:
xmsRC xmsMsgGetJMSType (xmsHMsg message,
xmsCHAR =type,
xmsSIZE Tlength,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String getJMSType() const;

Get the type of the message.

Chapter 7. XMS classes 115

Message

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28.|

Parameters:

message (input)
The handle for the message.

type (output)
The buffer to contain the type of the message. If data conversion is
required, this is the type after conversion.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the type of the message is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The length of the type of the message in bytes. If data conversion
is required, this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Long Integer Property

C interface:
xmsRC xmsMsgGetlLongProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsLONG *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Get the value of the long property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

116 Using Multi-Language Message Service

Message

Get Properties

C interface:
xmsRC xmsMsgGetProperties(xmsHMsg message,
xmsHIterator *iterator,
xmsHErrorBlock errorBlock);

C++ interface:
Iterator getProperties() const;
Get a list of the properties of the message.
The call returns a handle for an iterator, which the application can then use to
access each of the properties in turn.
Parameters:

message (input)
The handle for the message.

iterator (input)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsMsgGetProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsHProperty #*property,
xmsHErrorBlock errorBlock);

C++ interface:

virtual Property getProperty(String & propertyName) const;
Get a Property object for the property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 117

Message

Get Short Integer Property

C interface:
xmsRC xmsMsgGetShortProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsSHORT *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class

Get the value of the short property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property

C interface:
xmsRC xmsMsgGetStringProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsSIZE length,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class

Get the value of the string property identified by name.

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28.|

Parameters:

message (input)
The handle for the message.
propertyName (input)
The name of the property in the format of a null terminated string.
propertyValue (output)
The buffer to contain the value of the property. If data conversion
is required, this is the value after conversion.

118 Using Multi-Language Message Service

Message

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the value of the property is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The length of the value of the property in bytes. If data conversion
is required, this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property by Reference

C interface:
xmsRC xmsMsgGetStringPropertyByRef (xmsHMsg message,
xmsCHAR *propertyName,
xmsCHAR **propertyValue,
xmsSIZE *1ength,
xmsHErrorBlock errorBlock);

C++ interface:

xmsCHAR * Message::getStringPropertyByRef(const xmsString & propertyName,
xmsCHAR *propertyValue,
xmsSIZE *length);

Get a pointer to the value of the string property identified by name.

For more information about how to use this function, see|“C functions that return|
la string or byte array by reference” on page 29)

Parameters:

message (input)
The handle for the message.
propertyName (input)
The name of the property in the format of a null terminated string.
propertyValue (output)
A pointer to the value of the property. If data conversion is
required, this is the value after conversion.
length (output)
The length of the value of the property in bytes. If data conversion
is required, this is the length of the value after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 119

Message

Get Type

C interface:
xmsRC xmsMsgGetTypeld(xmsHMsg message,
xmsMESSAGE_TYPE =*type,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get the body type of the message.

For information about message body types, see [“The body of an XMS message” on|

Parameters:

message (input)
The handle for the message.

type (output)
The body type of the message, which is one of the following
values:

XMSC_T_BYTES_MSG
XMSC_T_MAP_MSG
XMSC_T_MSG

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Boolean Property

C interface:
xmsRC xmsMsgSetBooleanProperty (xmsHMsg message,
xmsCHAR propertyName,
xmsBOOL propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the boolean property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION

120 Using Multi-Language Message Service

Message

* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Set Byte Property

C interface:
xmsRC xmsMsgSetByteProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsBYTE propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the byte property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
¢ XMS_X_GENERAL_EXCEPTION
¢ XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Set Double Precision Floating Point Property

C interface:
xmsRC xmsMsgSetDoubleProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsDOUBLE propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the double precision floating point property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

Chapter 7. XMS classes 121

Message

* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Set Floating Point Property

C interface:
xmsRC xmsMsgSetFloatProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsFLOAT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the floating point property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Set Integer Property

C interface:
xmsRC xmsMsgSetIntProperty(xmsHMsg message,
xmsCHAR *propertyName,
xmsINT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the integer property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

122 Using Multi-Language Message Service

Message

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Set JMSCorrelationlD

C interface:
xmsRC xmsMsgSetJMSCorrelationID(xmsHMsg message,
xmsCHAR *correllD,
xmsSIZE Tength,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSCorrelationID(const String correllD);
Set the correlation identifier of the message.
Parameters:
message (input)
The handle for the message.
correlID (input)
The correlation identifier as a character array.
length (input)
The length of the correlation identifier in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSDeliveryMode

C interface:
xmsRC xmsMsgSetJMSDeliveryMode (xmsHMsg message,
xmsDELIVERY_MODE deliveryMode,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSDeliveryMode(const xmsDELIVERY_MODE deliveryMode);

Set the delivery mode of the message.

A delivery mode set by this method before the message is sent is ignored and
replaced by the Send call when the message is sent. However, you can use this
method to change the delivery mode of a message that has been received.

Parameters:

message (input)
The handle for the message.

deliveryMode (input)
The delivery mode of the message. The value must be
XMSC_NON_PERSISTENT.

Chapter 7. XMS classes 123

Message

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSDestination

C interface:
xmsRC xmsMsgSetJMSDestination(xmsHMsg message,
xmsHDest destination,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSDestination(const Destination & destination);

Set the destination of the message.

A destination set by this method before the message is sent is ignored and replaced
by the Send call when the message is sent. However, you can use this method to
change the destination of a message that has been received.

Parameters:

message (input)
The handle for the message.

destination (input)
The handle for the destination of the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSExpiration

C interface:
xmsRC xmsMsgSetJMSExpiration(xmsHMsg message,
xmsLONG expiration,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSExpiration(const xmsLONG expiration);

Set the expiration time of the message.

An expiration time set by this method before the message is sent is ignored and
replaced by the Send call when the message is sent. However, you can use this
method to change the expiration time of a message that has been received.

Parameters:

message (input)
The handle for the message.
expiration (input)

The expiration time of the message expressed in milliseconds since
00:00:00 GMT on the 1 January 1970.

124 Using Multi-Language Message Service

Message

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSMessagelD

C interface:
xmsRC xmsMsgSetJMSMessagelD(xmsHMsg message,
xmsCHAR *msgID,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSMessageID(const String & msglID);

Set the message identifier of the message.

A message identifier set by this method before the message is sent is ignored and
replaced by the Send call when the message is sent. However, you can use this
method to change the message identifier of a message that has been received.

Parameters:

message (input)
The handle for the message.
msgID (input)
The message identifier in the format of a null terminated string.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSPriority

C interface:
xmsRC xmsMsgSetJMSPriority(xmsHMsg message,
xmsINT priority,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSPriority(const xmsINT priority);
Set the priority of the message.

A priority set by this method before the message is sent is ignored and replaced by
the Send call when the message is sent. However, you can use this method to
change the priority of a message that has been received.

Parameters:

message (input)
The handle for the message.

priority (input)
The priority of the message. The value can be an integer in the
range 0, the lowest priority, to 9, the highest priority.

Chapter 7. XMS classes 125

Message

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSRedelivered

C interface:
xmsRC xmsMsgSetJMSRedelivered(xmsHMsg message,
xmsBOOL redelivered,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSRedelivered(const xmsBOOL redelivered);

Indicate whether the message is being re-delivered.

An indication of re-delivery set by this method before the message is sent is
ignored by the Send call when the message is sent, and is ignored and replaced by
the Receive call when the message is received. However, you can use this method
to change the indication for a message that has been received.

Parameters:

message (input)
The handle for the message.
redelivered (input)
The value xmsTRUE means that the message is being re-delivered.

The value xmsFALSE means that the message is not being
re-delivered.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSReplyTo

C interface:
xmsRC xmsMsgSetJMSReplyTo(xmsHMsg message,
xmsHDest destination ,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID setJMSReplyTo(const Destination & destination);
Set the destination where a reply to the message is to be sent.
Parameters:

message (input)
The handle for the message.

destination (input)
The handle for the destination where a reply to the message is to
be sent. A null handle means that no reply is expected.

126 Using Multi-Language Message Service

Message

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSTimestamp

C interface:

xmsRC xmsMsgSetJMSTimestamp (xmsHMsg message,
xmsLONG timestamp,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setJMSTimestamp(const xmsLONG timestamp);

Set the time when the message is sent.

A timestamp set by this method before the message is sent is ignored and replaced
by the Send call when the message is sent. However, you can use this method to
change the timestamp of a message that has been received.

Parameters:

message (input)
The handle for the message.

timestamp (input)
The time when the message is sent expressed in milliseconds since
00:00:00 GMT on the 1 January 1970.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set JMSType

C interface:
xmsRC xmsMsgSetJIMSType (xmsHMsg message,
xmsCHAR =type,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID setJMSType(const String & type);
Set the type of the message.
Parameters:

message (input)
The handle for the message.

type (input)
The type of the message in the format of a null terminated string.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 7. XMS classes 127

Message

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Long Integer Property

C interface:
xmsRC xmsMsgSetLongProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsLONG propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the long integer property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Set Property

C interface:
xmsRC xmsMsgSetProperty (xmsHMsg message,
xmsHProperty property,
xmsHErrorBlock errorBlock);

C++ interface:

virtual xmsVOID setProperty(const Property & property);
Set the value of a property using a Property object.
Parameters:

message (input)
The handle for the message.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

128 Using Multi-Language Message Service

Message

Set Short Integer Property

C interface:
xmsRC xmsMsgSetShortProperty (xmsHMsg message,
xmsCHAR *propertyNname,
xmsSHORT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Inherited from the PropertyContext class

Set the value of the short integer property identified by name.
Parameters:

message (input)

The handle for the message.
propertyName (input)

The name of the property in the format of a null terminated string.
propertyValue (input)

The value of the property.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
e XMS_X_GENERAL_EXCEPTION
e XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Set String Property

C interface:
xmsRC xmsMsgSetStringProperty (xmsHMsg message,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsSIZE Tlength,
xmsHErrorBlock errorBlock);

C++ interface:

Inherited from the PropertyContext class
Set the value of the string property identified by name.
Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property as a character array.

length (input)
The length of the value of the property in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 7. XMS classes 129

Message
Exceptions:

* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

130 Using Multi-Language Message Service

MessageConsumer

MessageConsumer

An application uses a message consumer to receive messages sent to a destination.

For a list of the XMS defined properties of a MessageConsumer object, see
[“Properties of MessageConsumer” on page 174/

Methods

Close Message Consumer

C interface:
xmsRC xmsMsgConsumerClose (xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID close();

Close the message consumer.

If an application tries to close a message consumer that is already closed, the call is
ignored.

Parameters:

consumer (input/output)
On input, the handle for the message consumer. On output, the call
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Message Listener

C interface:
xmsRC xmsMsgConsumerGetMessagelListener(xmsHMsgConsumer consumer,
fpXMS_MESSAGE_CALLBACK *1sr,
xmsCONTEXT *context,
xmsHErrorBlock errorBlock);

C++ interface:

MessagelListener * getMessagelistener() const;

Get pointers to the message listener function and context data that are registered
with the message consumer.

For more information about using message listeners and context data, see
[“Listeners and callbacks” on page 27 |

Parameters:

consumer (input)
The handle for the message consumer.

Isr (output)
A pointer to the message listener function. If no message listener
function is registered with the message consumer, the call returns a
null pointer.

Chapter 7. XMS classes 131

MessageConsumer

context (output)
A pointer to the context data. If no message listener function is
registered with the connection, the call returns a null pointer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Message Selector

C interface:
xmsRC xmsMsgConsumerGetMessageSelector (xmsHMsgConsumer consumer,
xmsCHAR *messageSelector,
xmsSIZE length,
xmsSIZE =actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
String getMessageSelector() const;

Get the message selector for the message consumer.

For more information about how to use this function in a C application, see
ffunctions that return a string or byte array by value” on page 28.|

Parameters:

consumer (input)
The handle for the message consumer.

messageSelector (output)
The buffer to contain the message selector expression.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the message selector expression is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the message selector expression in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsMsgConsumerGetProperty (xmsHMsgConsumer consumer,
xmsCHAR *propertyName,
xmsHProperty =*property,
xmsHErrorBlock errorBlock);

C++ interface:
virtual Property getProperty(const String & propertyName) const;

132 Using Multi-Language Message Service

MessageConsumer

Get a Property object for the property identified by name.
Parameters:

consumer (input)
The handle for the message consumer.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Receive

C interface:
xmsRC xmsMsgConsumerReceive (xmsHMsgConsumer consumer,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

C++ interface:
Message * receive() const;

Receive the next message for the message consumer. The call waits indefinitely for
a message, or until the message consumer is closed.

Parameters:

consumer (input)
The handle for the message consumer.

message (output)
The handle for the message. If the message consumer is closed
while the call is waiting for a message, the call returns a null
handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Receive (with a wait interval)

C interface:
xmsRC xmsMsgConsumerReceiveWithWait (xmsHMsgConsumer consumer,
xmsLONG waitInterval,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

C++ interface:
Message * receive(const xmsLONG waitInterval) const;

Receive the next message for the message consumer. The call waits only a specified
period of time for a message, or until the message consumer is closed.

Chapter 7. XMS classes 133

MessageConsumer

Parameters:

consumer (input)
The handle for the message consumer.

waitInterval (input)
The time, in milliseconds, that the call waits for a message. If you
specify a wait interval of zero, the call waits indefinitely for a
message.

message (output)
The handle for the message. If no message arrives during the wait
interval, or if the message consumer is closed while the call is
waiting for a message, the call returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Receive with No Wait

C interface:
xmsRC xmsMsgConsumerReceiveNoWait (xmsHMsgConsumer consumer,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

C++ interface:
Message * receiveNoWait() const;
Receive the next message for the message consumer if one is available
immediately.
Parameters:

consumer (input)
The handle for the message consumer.

message (output)
The handle for the message. If no message is available
immediately, the call returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Message Listener

C interface:
xmsRC xmsMsgConsumerGetMessageListener (xmsHMsgConsumer consumer,
fpXMS_MESSAGE_CALLBACK *1sr,
xmsCONTEXT *context,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setMessagelistener(const MessagelListener = Isr);

Register a message listener function and context data with the message consumer.

134 Using Multi-Language Message Service

MessageConsumer

For more information about using message listeners and context data, see
[“Listeners and callbacks” on page 27|

Parameters:

consumer (input)
The handle for the message consumer.

Isr (input)

A pointer to the message listener function. If a message listener

function is already registered with the message consumer, you can

cancel the registration by specifying a null pointer instead.

context (input)
A pointer to the context data.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Property

C interface:
xmsRC xmsMsgConsumerSetProperty (xmsHMsgConsumer consumer,
xmsHProperty property,
xmsHErrorBlock errorBlock);

C++ interface:

virtual xmsVOID setProperty(const Property & property);
Set the value of a property using a Property object.
Parameters:

consumer (input)
The handle for the message consumer.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes

135

MessageListener

MessageL.istener

An application uses a message listener to receive messages asynchronously.

Methods

On Message

C interface:
xmsVOID onMessage (xmsCONTEXT context,
xmsHMsg message) ;

C++ interface:
virtual xmsVOID onMessage(const Message * message);

Deliver a message asynchronously to the message consumer.

For a C application, onMessage() is the message listener function that is registered
with the message consumer. For a C++ application, onMessage() is a method of the
message listener that is registered with the message consumer.

For more information about using message listeners, see [“Listeners and callbacks’]

Parameters:

context (input)
A pointer to the context data that is registered with the message
consumer.

message (input)
The handle for the message.

136 Using Multi-Language Message Service

MessageProducer

MessageProducer

An application uses a message producer to send messages to a destination.

Methods

Close Message Producer

C interface:

xmsRC xmsMsgProducerClose (xmsHMsgProducer *producer,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID close();
Close the message producer.
If an application tries to close a message producer that is already closed, the call is
ignored.
Parameters:

producer (input/output)
On input, the handle for the message producer. On output, the call
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Default Delivery Mode

C interface:

xmsRC xmsMsgProducerGetDeliveryMode (xmsHMsgProducer producer,
xmsDELIVERY_MODE *deliveryMode,
xmsHErrorBlock errorBlock);

C++ interface:

xmsDELIVERY MODE getDeliveryMode() const;
Get the default delivery mode for messages sent by the message producer.
Parameters:

producer (input)
The handle for the message producer.

deliveryMode (output)
The default delivery mode. If the connection uses WebSphere MQ
Real-Time Transport, the value is always XMSC_NON_PERSISTENT.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 137

MessageProducer

Get Default Priority

C interface:
xmsRC xmsMsgProducerGetPriority (xmsHMsgProducer producer,
xmsINT *priority,
xmsHErrorBlock errorBlock);

C++ interface:
xmsINT getPriority() const;

Get the default priority for messages sent by the message producer.
Parameters:

producer (input)
The handle for the message producer.

priority (output)
The default message priority. The value is an integer in the range
0, the lowest priority, to 9, the highest priority.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Default Time to Live

C interface:
xmsRC xmsMsgProducerGetTimeToLive (xmsHMsgProducer producer,
xmsLONG *timeTolLive,
xmsHErrorBlock errorBlock);

C++ interface:
xmsLONG getTimeToLive() const;

Get the default length of time that a message exists before it expires. The time is
measured from when the message producer sends the message.

Parameters:

producer (input)
The handle for the message producer.

timeToLive (output)
The default time to live in milliseconds. A value of zero means that
a message never expires. If the connection uses WebSphere MQ
Real-Time Transport, the value is always zero.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

138 Using Multi-Language Message Service

MessageProducer

Get Destination

C interface:
xmsRC xmsMsgProducerGetDestination(xmsHMsgProducer producer,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

C++ interface:
Destination getDestination() const;

Get the destination for the message producer.
Parameters:

producer (input)
The handle for the message producer.

destination (output)
The handle for the destination. If the message producer does not
have a destination, the call returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Disable Message ID Flag

C interface:
xmsRC xmsMsgProducerGetDisableMsgID(xmsHMsgProducer producer,
xmsBOOL *msgIDDisabled,
xmsHErrorBlock errorBlock);

C++ interface:
xmsBOOL getDisabledMessageID() const;

Get an indication of whether a receiving application uses message identifiers that
are included in messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

msglIDDisabled (output)
If the value is xmsTRUE, a receiving application does not use
message identifiers included in messages sent by the message
producer. If the value is xmsFALSE, a receiving application does use
message identifiers.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 139

MessageProducer

Get Disable Timestamp Flag

C interface:
xmsRC xmsMsgProducerGetDisableMsgTS (xmsHMsgProducer producer,
xmsBOOL *timestampDisabled,
xmsHErrorBlock errorBlock);

C++ interface:
xmsBOOL getDisableMessageTimestamp() const;

Get an indication of whether a receiving application uses timestamps that are
included in messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

timestampDisabled (output)
If the value is xmsTRUE, a receiving application does not use
timestamps included in messages sent by the message producer. If
the value is xmsFALSE, a receiving application does use timestamps.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsMsgProducerGetProperty (xmsHMsgProducer producer,
xmsCHAR *propertyName,
xmsHProperty =*propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
virtual Property getProperty(const String & propertyName) const;

Get a Property object for the property identified by name.
Parameters:

producer (input)
The handle for the message producer.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

140 Using Multi-Language Message Service

MessageProducer

Send

C interface:
xmsRC xmsMsgProducerSend (xmsHMsgProducer producer,
xmsHMsg message,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID send(const Message & message) const;

Send a message to the destination that was specified when the message producer
was created. Send the message using the message producer’s default delivery
mode, priority, and time to live.

Parameters:

producer (input)
The handle for the message producer.

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_FORMAT_EXCEPTION
¢ XMS_X_INVALID_DESTINATION_EXCEPTION

Send (specifying a delivery mode, priority, and time to live)

C interface:
xmsRC xmsMsgProducerSendWithAttr(xmsHMsgProducer producer,
xmsHMsg message,
xmsDELIVERY_MODE deliveryMode,
xmsINT priority,
xmsLONG timeTolLive,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID send(const Message & message,
const xmsDELIVERY_MODE deliveryMode,
const xmsINT priority,
const xmsLONG timeToLive) const;

Send a message to the destination that was specified when the message producer
was created. Send the message using the specified delivery mode, priority, and
time to live.

Parameters:

producer (input)
The handle for the message producer.
message (input)
The handle for the message.
deliveryMode (input)
The delivery mode for the message. If the connection uses

WebSphere MQ Real-Time Transport, the value must be
XMSC_NON_PERSISTENT.

Chapter 7. XMS classes 141

MessageProducer

priority (input)
The priority of the message. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. If the
connection uses WebSphere MQ Real-Time Transport, the value is
ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of zero

means that the message never expires. If the connection uses
WebSphere MQ Real-Time Transport, the value must be zero.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_FORMAT_EXCEPTION
* XMS_X_INVALID_DESTINATION_EXCEPTION
* XMS_X_ILLEGAL_STATE_EXCEPTION

Send (to a specified destination)

C interface:
xmsRC xmsMsgProducerSendDest (xmsHMsgProducer producer,
xmsHDest destination,
xmsHMsg message,
xmsHErrorBlock errorBlock);

C++ interface:

xmsVOID send(const Destination & destination,
const Message & message) const;

Send a message to a specified destination if you are using a message producer for
which no destination was specified when the message producer was created. Send
the message using the message producer’s default delivery mode, priority, and
time to live.

Typically, you specify a destination when you create a message producer but, if
you do not, you must specify a destination every time you send a message.
Parameters:

producer (input)
The handle for the message producer.

destination (input)
The handle for the destination.

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_FORMAT_EXCEPTION
* XMS_X_INVALID_DESTINATION_EXCEPTION

142 Using Multi-Language Message Service

MessageProducer

Send (to a specified destination, specifying a delivery mode,
priority, and time to live)

C interface:
xmsRC xmsMsgProducerSendWithAttr(xmsHMsgProducer producer,

xmsHDest destination,
xmsHMsg message,
xmsDELIVERY_MODE deliveryMode,
xmsINT priority,
xmsLONG timeTolLive,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID send(const Destination & destination,
const Message & message,
const xmsDELIVERY_MODE deliveryMode,
const xmsINT priority,
const xmsLONG timeToLive) const;

Send a message to a specified destination if you are using a message producer for
which no destination was specified when the message producer was created. Send
the message using the specified delivery mode, priority, and time to live.

Typically, you specify a destination when you create a message producer but, if
you do not, you must specify a destination every time you send a message.

Parameters:

producer (input)
The handle for the message producer.

destination (input)
The handle for the destination.

message (input)
The handle for the message.

deliveryMode (input)
The delivery mode for the message. If the connection uses
WebSphere MQ Real-Time Transport, the value must be
XMSC_NON_PERSISTENT.

priority (input)
The priority of the message. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. If the
connection uses WebSphere MQ Real-Time Transport, the value is
ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of zero

means that the message never expires. If the connection uses
WebSphere MQ Real-Time Transport, the value must be zero.

errorBlock (input)
The handle for an error block or a null handle.
Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_MESSAGE_FORMAT_EXCEPTION
* XMS_X_INVALID_DESTINATION_EXCEPTION
* XMS_X_ILLEGAL_STATE_EXCEPTION

Chapter 7. XMS classes 143

MessageProducer

Set Default Delivery Mode

C interface:

xmsRC xmsMsgProducerSetDeliveryMode (xmsHMsgProducer producer,
xmsDELIVERY_MODE deliveryMode,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setDeliveryMode(const xmsDELIVERY_MODE deliveryMode);

Set the default delivery mode for messages sent by the message producer.
Parameters:

producer (input)
The handle for the message producer.

deliveryMode (input)
The default delivery mode. If the connection uses WebSphere MQ
Real-Time Transport, the value must be XMSC_NON_PERSISTENT,
which is the default value in this case.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Default Priority

C interface:
xmsRC xmsMsgProducerSetPriority(xmsHMsgProducer producer,
xmsINT priority,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setPriority(const xmsINT priority);
Set the default priority for messages sent by the message producer.
If the connection uses WebSphere MQ Real-Time Transport, the priority of a
message is ignored.
Parameters:

producer (input)
The handle for the message producer.

priority (input)
The default message priority. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. The
default value is 4.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

144 Using Multi-Language Message Service

MessageProducer

Set Default Time to Live

C interface:
xmsRC xmsMsgProducerSetTimeToLive(xmsHMsgProducer producer,
xmsLONG timeTolLive,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setTimeToLive(const xmsLONG timeToLive);

Set the default length of time that a message exists before it expires. The time is
measured from when the message producer sends the message.

Parameters:

producer (input)
The handle for the message producer.

timeToLive (input)
The default time to live in milliseconds. A value of zero means that
a message never expires. If the connection uses WebSphere MQ
Real-Time Transport, the value must be zero, which is the default
value in this case.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Disable Message ID Flag

C interface:
xmsRC xmsMsgProducerSetDisableMsgID(xmsHMsgProducer producer,
xmsBOOL msgIDDisabled,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setDisableMessageID(const xmsBOOL msgIDDisabled);

Indicate whether a receiving application uses message identifiers that are included
in messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

msgIDDisabled (input)
The value xmsTRUE means that a receiving application does not use
message identifiers included in messages sent by the message
producer. The value xmsFALSE means that a receiving application
does use message identifiers. The default value is xmsFALSE.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 145

MessageProducer

Set Disable Timestamp Flag

C interface:
xmsRC xmsMsgProducerSetDisableMsgTS (xmsHMsgProducer producer,
xmsBOOL timestampDisabled,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID setDisableMessageTimestamp(const xmsBOOL timestampDisabled);

Indicate whether a receiving application uses timestamps that are included in
messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

timestampDisabled (input)
The value xmsTRUE means that a receiving application does not use
timestamps included in messages sent by the message producer.
The value xmsFALSE means that a receiving application does use
timestamps. The default value is xmsFALSE.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Property

C interface:
xmsRC xmsMsgProducerSetProperty (xmsHMsgProducer producer,
xmsHProperty property,
xmsHErrorBlock errorBlock);

C++ interface:

virtual xmsVOID setProperty(const Property & property);
Set the value of a property using a Property object.
Parameters:

producer (input)
The handle for the message producer.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

146 Using Multi-Language Message Service

Property

Property

A Property object represents a property of an object. A Property object has three
attributes:

Property name
The name of the property

Property value
The value of the property

Property type
The data type of the value of the property

Methods
Check Property Type

C interface:

xmsRC xmsPropertyIsType(xmsHProperty property,
xmsPROPERTY_TYPE propertyType,
xmsBOOL *isType,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Check whether the Property object has the specified property type.

Parameters:

property (input)
The handle for the Property object.

propertyType (input)
The property type, which must be one of the following values:
XMS_PROPERTY_TYPE_UNKNOWN
XMS_PROPERTY_TYPE_BOOL
XMS_PROPERTY_TYPE_BYTE
XMS_PROPERTY_TYPE_BYTEARRAY
XMS_PROPERTY_TYPE_CHAR
XMS_PROPERTY_TYPE_STRING
XMS_PROPERTY_TYPE_SHORT
XMS_PROPERTY TYPE_INT
XMS_PROPERTY_TYPE_LONG
XMS_PROPERTY TYPE_FLOAT
XMS_PROPERTY_TYPE_DOUBLE
isType (output)
If the value is xmsTRUE, the Property object has the specified

property type. If the value is xmsFALSE, the Property object does not
have the specified property type.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Chapter 7. XMS classes 147

Property

Exceptions:
XMS_X_GENERAL_EXCEPTION

Copy Property

C interface:
xmsRC xmsPropertyDuplicate(xmsHProperty property,
xmsHProperty *copiedProperty,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Copy the Property object.

Parameters:

property (input)
The handle for the Property object.

copiedProperty (output)
The handle for the copy of the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Create Property

C interface:

xmsRC xmsPropertyCreate(xmsCHAR *propertyName,
xmsHProperty =*property,
xmsHErrorBlock errorBlock);

C++ interface:

Not applicable
Create a Property object. The new Property object has no property type or property
value.

Parameters:

propertyName (input)
The property name.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

148 Using Multi-Language Message Service

Property

Delete Property

C interface:
xmsRC xmsPropertyDispose(xmsHProperty xproperty,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Delete the Property object.
If an application tries to delete a Property object that is already deleted, the call is
ignored.
Parameters:

property (input/output)
On input, the handle for the Property object. On output the call
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Boolean Property Value

C interface:
xmsRC xmsPropertyGetBoolean(xmsHProperty property,
xmsBOOL *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the boolean property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The boolean property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 149

Property

Get Byte Array Property Value

C interface:
xmsRC xmsPropertyGetByteArray(xmsHProperty property,
xmsBYTE *propertyValue,
xmsSIZE Tength,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get the byte array property value from the Property object.

For more information about how to use this function, see [“C functions that return|
la string or byte array by value” on page 28)

Parameters:

property (input)
The handle for the Property object.
propertyValue (output)
The buffer to contain the byte array property value.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the property value is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the property value in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Byte Array Property Value by Reference

C interface:
xmsRC xmsPropertyGetByteArrayByRef (xmsHProperty property,
xmsBYTE **propertyValue,
xmsSIZE *Tength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to the byte array property value in the Property object.

For more information about how to use this function, see [“C functions that return|
la string or byte array by reference” on page 29|

Parameters:

property (input)
The handle for the Property object.

150 Using Multi-Language Message Service

Property

propertyValue (output)
A pointer to the byte array property value.

length (output)
The length of the property value in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Byte Property Value

C interface:
xmsRC xmsPropertyGetByte (xmsHProperty property,
xmsBYTE *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the byte property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The byte property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Character Property Value

C interface:
xmsRC xmsPropertyGetChar(xmsHProperty property,
xmsCHAR16 =*propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the 2-byte character property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

Chapter 7. XMS classes 151

Property

propertyValue (output)
The 2-byte character property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Double Precision Floating Point Property Value

C interface:
xmsRC xmsPropertyGetDouble (xmsHProperty property,
xmsDOUBLE *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the double precision floating point property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The double precision floating point property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Floating Point Property Value

C interface:
xmsRC xmsPropertyGetFloat (xmsHProperty property,
xmsFLOAT *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the floating point property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The floating point property value.

152 Using Multi-Language Message Service

Property

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Integer Property Value

C interface:

xmsRC xmsPropertyGetInt (xmsHProperty property,
xmsINT *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the integer property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Long Integer Property Value

C interface:
xmsRC xmsPropertyGetLong(xmsHProperty property,
xmsLONG *propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the long integer property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The long integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 7. XMS classes 153

Property

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property Name

C interface:
xmsRC xmsPropertyGetName (xmsHProperty property,
xmsCHAR *propertyName,
xmsSIZE length,
xmsSIZE =actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get the property name from the Property object.

For more information about how to use this function, see |[“C functions that return|
la string or byte array by value” on page 28]

Parameters:
property (input)
The handle for the Property object.

propertyName (output)
The buffer to contain the property name.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the property name is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the property name in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property Type

C interface:

xmsRC xmsPropertyGetType (xmsHProperty property,
xmsPROPERTY_TYPE #propertyType,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get the property type from the Property object.

Parameters:

154 Using Multi-Language Message Service

Property

property (input)
The handle for the Property object.

propertyType (output)

The property type, which is one of the following values:
XMS_PROPERTY_TYPE_UNKNOWN
XMS_PROPERTY_TYPE_BOOL
XMS_PROPERTY_TYPE_BYTE
XMS_PROPERTY_TYPE_BYTEARRAY
XMS_PROPERTY TYPE_CHAR
XMS_PROPERTY_TYPE_STRING
XMS_PROPERTY_TYPE_SHORT
XMS_PROPERTY_TYPE_INT
XMS_PROPERTY_TYPE_LONG
XMS_PROPERTY_TYPE_FLOAT
XMS_PROPERTY_TYPE_DOUBLE

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Short Integer Property Value

C interface:
xmsRC xmsPropertyGetShort (xmsHProperty property,
xmsSHORT =*propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Get the short integer property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The short integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 155

Property

Get String Property Value

C interface:
xmsRC xmsPropertyGetString(xmsHProperty property,
xmsCHAR *propertyValue,
xmsSIZE Tlength,
xmsSIZE *actuallength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get the string property value from the Property object.

For more information about how to use this function, see [“C functions that return|
la string or byte array by value” on page 28)

Parameters:

property (input)

The handle for the Property object.
propertyValue (output)

The buffer to contain the string property value.

length (input)
The length of the buffer in bytes. If you specify a length of zero,
the property value is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the property value in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get String Property Value by Reference

C interface:
xmsRC xmsPropertyGetStringByRef (xmsHProperty property,
xmsCHAR **propertyValue,
xmsSIZE *1ength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable

Get a pointer to the string property value in the Property object.

For more information about how to use this function, see [“C functions that return|
la string or byte array by reference” on page 29]

Parameters:

property (input)
The handle for the Property object.

156 Using Multi-Language Message Service

Property

propertyValue (output)
A pointer to the string property value.

length (output)
The length of the property value in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Boolean Property Value

C interface:
xmsRC xmsPropertySetBoolean(xmsHProperty property,
xmsBOOL propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a boolean property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The boolean property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Byte Array Property Value

C interface:
xmsRC xmsPropertySetByteArray (xmsHProperty property,
xmsBYTE propertyValue,
xmsSIZE Tength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a byte array property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

Chapter 7. XMS classes 157

Property

propertyValue (input)
The byte array property value.

length (input)
The length of the property value in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Byte Property Value

C interface:
xmsRC xmsPropertySetByte (xmsHProperty property,
xmsBYTE propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a byte property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The byte property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Character Property Value

C interface:

xmsRC xmsPropertySetChar(xmsHProperty Property,
xmsCHAR16 Value,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a 2-byte character property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

158 Using Multi-Language Message Service

Property

propertyValue (input)
The 2-byte character property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Double Precision Floating Point Property Value

C interface:
xmsRC xmsPropertySetDouble (xmsHProperty property,
xmsDOUBLE propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a double precision floating point property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The double precision floating point property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Floating Point Property Value

C interface:

xmsRC xmsPropertySetFloat(xmsHProperty property,
xmsFLOAT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a floating point property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The floating point property value.

Chapter 7. XMS classes 159

Property

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Integer Property Value

C interface:

xmsRC xmsPropertySetInt(xmsHProperty property,
xmsINT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set an integer property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Long Integer Property Value

C interface:
xmsRC xmsPropertySetLong(xmsHProperty property,
xmsLONG propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a long integer property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The long integer property value.

errorBlock (input)
The handle for an error block or a null handle.

160 Using Multi-Language Message Service

Property

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Short Integer Property Value

C interface:
xmsRC xmsPropertySetShort (xmsHProperty property,
xmsSHORT propertyValue,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a short integer property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The short integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set String Property Value

C interface:
xmsRC xmsPropertySetString(xmsHProperty property,
xmsCHAR *propertyValue,
xmsSIZE Tlength,
xmsHErrorBlock errorBlock);

C++ interface:
Not applicable
Set a string property value in the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The string property value as a character array.

length (input)
The length of the property value in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 7. XMS classes 161

Property

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

162 Using Multi-Language Message Service

Session

Session

A session is a single threaded context for sending and receiving messages.

Methods

Close Session

C interface:
xmsRC xmsSessClose (xmsHSess *session,
xmsHErrorBlock errorBlock);

C++ interface:
xmsVOID close();

Close the session.

All objects dependent on the session are deleted. For information about which
objects are deleted, see|“Deleting objects” on page 24/

If an application tries to close a session that is already closed, the call is ignored.
Parameters:

session (input/output)
On input, the handle for the session. On output, the call returns a
null handle.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:
XMS_X_GENERAL_EXCEPTION

Create Bytes Message

C interface:

xmsRC xmsSessCreateBytesMessage (xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

C++ interface:

BytesMessage createBytesMessage() const;
Create a bytes message.
Parameters:

session (input)
The handle for the session.

message (output)
The handle for the bytes message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 163

Session

Create Consumer

C interface:

xmsRC xmsSessCreateConsumer(xmsHSess session,
xmsHDest destination,
xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

C++ interface:
MessageConsumer createConsumer(const Destination & destination) const;

Create a message consumer for the specified destination.
Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination.

consumer (output)
The handle for the message consumer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
¢ XMS_X_GENERAL_EXCEPTION
¢ XMS_X_INVALID_DESTINATION_EXCEPTION

Create Consumer (with message selector)

C interface:

xmsRC xmsSessCreateConsumerSelector(xmsHSess session,
xmsHDest destination,
xmsCHAR *messageSelector,
xmsSIZE Tength,
xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

C++ interface:
MessageConsumer createConsumer(const Destination & destination,
const String & messageSelector) const;

Create a message consumer for the specified destination using a message selector.
Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination.

messageSelector (input)
A message selector expression as a character array. Only those
messages with properties that match the message selector
expression are delivered to the message consumer. A value of null
or an empty string indicates that there is no message selector for
the message consumer.

164 Using Multi-Language Message Service

Session

length (input)
The length of the message selector expression in bytes.

consumer (output)
The handle for the message consumer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
¢ XMS_X_INVALID_DESTINATION_EXCEPTION
e XMS_X_INVALID_SELECTOR_EXCEPTION

Create Consumer (with message selector and local message
flag)

C interface:

xmsRC xmsSessCreateConsumerSelectorLocal (xmsHSess session,
xmsHDest destination,
xmsCHAR *messageSelector,
xmsSIZE length,
xmsBOOL noLocal,
xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

C++ interface:
MessageConsumer createConsumer(const Destination & destination,
const String & messageSelector,
const xmsBOOL nolLocal) const;

Create a message consumer for the specified destination using a message selector,
and specifying whether the message consumer can receive messages published by
its own connection.

Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination.

messageSelector (input)
A message selector expression as a character array. Only those
messages with properties that match the message selector
expression are delivered to the message consumer. A value of null
or an empty string indicates that there is no message selector for
the message consumer.

length (input)
The length of the message selector expression in bytes.
noLocal (input)
If the value is xmsTRUE, the message consumer does not receive the

messages published by its own connection. By default, a message
consumer receives messages published by its own connection.

consumer (output)
The handle for the message consumer.

Chapter 7. XMS classes 165

Session

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
¢ XMS_X_GENERAL_EXCEPTION
* XMS_X_INVALID_DESTINATION_EXCEPTION
* XMS_X_INVALID_SELECTOR_EXCEPTION

Create Map Message

C interface:

xmsRC xmsSessCreateMapMessage (xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

C++ interface:

MapMessage createMapMessage() const;
Create a map message.
Parameters:

session (input)
The handle for the session.

message (output)
The handle for the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Create Message

C interface:
xmsRC xmsSessCreateMessage (xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

C++ interface:
Message createMessage() const;

Create a message that has no body and therefore contains no application data.
Parameters:

session (input)
The handle for the session.

message (output)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

166 Using Multi-Language Message Service

Session

Create Producer

C interface:
xmsRC xmsSessCreateProducer(xmsHSess session,
xmsHDest destination,
xmsHMsgProducer *producer,
xmsHErrorBlock errorBlock);

C++ interface:

MessageProducer createProducer(const Destination & destination) const;
Create a message producer to send messages to the specified destination.
Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination. If you specify a null handle, the
message producer is created without a destination.

producer (output)
The handle for the message producer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
* XMS_X_GENERAL_EXCEPTION
* XMS_X_INVALID_DESTINATION_EXCEPTION

Create Temporary Topic

C interface:

xmsRC xmsSessCreateTemporaryTopic(xmsHSess session,
xmsHDest =*topic,
xmsHErrorBlock errorBlock);

C++ interface:
Destination createTemporaryTopic() const;

Create a temporary topic. The temporary topic remains until the connection ends
or the topic is explicitly deleted, whichever is the sooner.
Parameters:

session (input)
The handle for the session.

topic (output)
The handle for the temporary topic.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 167

Session

Create Topic

C interface:
Not implemented. Use one of the following methods instead:

* |“Create Destination (using a URI)” on page 73|

» |“Create Destination (specifying a type and name)” on page 73

C++ interface:
Destination createTopic(const String & topicName) const;
Create a topic.
Parameter:
topicName (input)
The name of the topic in the format of a null terminated string.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Acknowledgement Mode

C interface:
xmsRC xmsSessGetAcknowledgeMode (xmsHSess session,
xmsACKNOWLEDGE_MODE =*acknowledgeMode,
xmsHErrorBlock errorBlock);

C++ interface:

xmsACKNOWLEDGE_MODE getAcknowledgeMode() const;
Get the acknowledgement mode for the session. The acknowledgement mode is
specified when the session is created.

Parameters:
session (input)
The handle for the session.

acknowledgeMode (output)
The acknowledgement mode, which is XMSC_AUTO_ACKNOWLEDGE.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Get Property

C interface:
xmsRC xmsSessGetProperty(xmsHSess session,
xmsCHAR *propertyName,
xmsHProperty =*property,
xmsHErrorBlock errorBlock);

C++ interface:
virtual Property getProperty(const String & propertyName) const;
Get a Property object for the property identified by name.

Parameters:

168 Using Multi-Language Message Service

Session

session (input)
The handle for the session.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Set Property

C interface:
xmsRC xmsSessSetProperty(xmsHSess session,
xmsHProperty property,
xmsHErrorBlock errorBlock);

C++ interface:

virtual xmsVOID setProperty(const Property & property);
Set the value of a property using a Property object.
Parameters:

session (input)
The handle for the session.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Chapter 7. XMS classes 169

Session

170 Using Multi-Language Message Service

Chapter 8. Properties of XMS objects

This chapter describes the properties of objects that are defined by XMS. For the
@Jperties of a Message object, however, see [Chapter 6, “XMS messages,” on pagel

The name of each property is defined as a named constant in the header file,
xmsc.h, and so an application can use the name to identify the property.

If an application defines its own properties of the objects discussed in this chapter,
it does not cause an error but it might cause unpredictable results.

The chapter contains the following sections:

+ |[“Properties of Connection”|

* [“Properties of ConnectionFactory”]

+ |[“Properties of ConnectionMetaData” on page 173

« |“Properties of Destination” on page 173

* [“Properties of MessageConsumer” on page 174

+ |“Properties of Session” on page 175|

Properties of Connection

[Table 14 on page 172|lists the XMS defined properties of a Connection object. For
each property, the table provides its name, data type, description, and valid values,
including its default value.

Table 13. Properties of Connection

Name of property Data type | Description Valid values (default value in bold)

XMSC_CLIENT_CCSIDH | xmsINT | The identifier of the coded character |, XMSC_USE_PROCESS_CCSID
set that the application uses for the « XMSC_DEFAULT RTT_CCSID

connection.
e A coded character set identifier

Notes:

1. For a description of each of the valid values of this property, see [[able 14 o

Properties of ConnectionFactory

[Table 14 on page 172|lists the XMS defined properties of a ConnectionFactory
object. For each property, the table provides its name, data type, description, and
valid values, including its default value.

© Copyright IBM Corp. 2004 171

Properties of XMS objects

Table 14. Properties of ConnectionFactory

Name of property Data type

Description

Valid values (default value in bold)

XMSC_CLIENT_CCSID xmsINT

The identifier of the coded
character set that the
application uses for a
connection.

« XMSC_USE_PROCESS_CCSID - The
application uses the same character set
as the current process. On Windows,
XMS calls the console function
GetConsoleCP() to determine the
character set of the current process.

* XMSC_DEFAULT_RTT_CCSID - The
application uses the same character set
as the broker to which it is connected.
If the connection uses WebSphere MQ
Real-Time Transport or WebSphere MQ
Multicast Transport, no code page
conversion is attempted for messages
sent to, or received from, the broker.

* A coded character set identifier - The
application uses the specified character
set.

used to authenticate the
application when it attempts
to create a connection. The
user identifier is used in
conjunction with the value of
XMSC_PASSWORD.

XMSC_HOST_NAME Strin The host name or IP address |. Not set
of the system on which the
. ¢ localhost
broker resides.
¢ A host name
e An IP address

XMSC_MULTICAS"IE xmsINT The multicast setting for the |, XMSC_MULTICAST DISABLED
connection factory. « XMSC_MULTICAST_NOT_RELIABLE
This setting is used only * XMSC_MULTICAST_RELIABLE
when the multicast setting for |, XMSC MULTICAST ENABLED
a destination is a B
XMSC_MULTICAST_ASCE.

XMSC_PASSWORD Byte arrayEl A password that can be used |. Not set
to authenticate the . A £ byt
application when it attempts n array ot bytes
to create a connection. The
password is used in
conjunction with the value of
XMSC_USERID.

XMSC_PORT xmsINT The port number on which « Not set
the broker listens for CA ‘ b
published messages and port umber
subscription requests.

XMSC_TRANSPORT_TYPE | xmsINT The means by which an XMSC_TP_DIRECT_TCPIP - The
application connects to a connection uses WebSphere MQ
broker. Real-Time Transport or WebSphere MQ

Multicast Transport.

XMSC_USERID Strin A user identifier that can be |. WNot get

* A null terminated string

172 Using Multi-Language Message Service

Notes:

Properties of XMS objects

1. This is the data type if you are using C++. If you are programming in C, it is a

character array.

2. For a full description of this property, and a description of each of its valid
values, see [Table 16 on page 174]

3. A value with this data type can be set using the Set Byte Array Property Value
method of a Property object.

Properties of ConnectionMetaData

property, the table provides its name, data type, description, and value.

Table 15. Properties of ConnectionMetaData

lists the XMS defined properties of a ConnectionMetaData object. For each

Name of property Data type |Description Value

XMSC_JMS_MAJOR_VERSION | xmsINT The major version number of the JMS specification upon 1
which XMS is based.

XMSC_JMS_MINOR_VERSION | xmsINT The minor version number of the JMS specification upon 1
which XMS is based.

XMSC_JMS_VERSION StringIII The version identifier of the JMS specification upon which “1.1”
XMS is based.

XMSC_MAJOR_VERSION xmsINT The version number of the XMS client. 1

XMSC_MINOR_VERSION xmsINT The release number of the XMS client. 0

XMSC_PROVIDER_NAME StringIII The provider of the XMS client. “IBM”

XMSC_VERSION StringIII The version identifier of the XMS client. “1.0”

Notes:

1. This is the data type if you are using C++. If you are programming in C, it is a

character array.

Properties of Destination

[Table 16 on page 174|lists the XMS defined properties of a Destination object. For

each property, the table provides its name, data type, description, and valid values,
including its default value.

Chapter 8. Properties of XMS objects 173

Properties of XMS objects

Table 16. Properties of Destination

Name of property Data type

Description

Valid values (default value in bold)

XMSC_MULTICAST | xmsINT

The multicast setting for
the destination. The setting
determines how messages
are delivered to a message
consumer that receives
messages from the
destination.

Only a destination that is a
topic can have this

property.

The property has no effect
on how a message
producer sends messages to
the destination.

XMSC_MULTICAST_ASCEF - Messages are
delivered to the message consumer according to
the multicast setting for the connection factory
associated with the message consumer. The
multicast setting for the connection factory is
noted at the time the message consumer is
created.

* XMSC_MULTICAST_DISABLED - Messages are

not delivered to the message consumer using
WebSphere MQ Multicast Transport.

XMSC_MULTICAST _NOT_RELIABLE - If the
topic is configured for multicast in the broker,
messages are delivered to the message consumer
using WebSphere MQ Multicast Transport. A
reliable quality of service is not used even if the
topic is configured for reliable multicast.

XMSC_MULTICAST_RELIABLE - If the topic is
configured for reliable multicast in the broker,
messages are delivered to the message consumer
using WebSphere MQ Multicast Transport with a
reliable quality of service. If the topic is not
configured for reliable multicast, you cannot
create a message consumer for the topic.

XMSC_MULTICAST_ENABLED - If the topic is
configured for multicast in the broker, messages
are delivered to a message consumer using
WebSphere MQ Multicast Transport. A reliable
quality of service is used if the topic is
configured for reliable multicast.

XMSC_PRIORITYZ | xmsINT

The priority of messages
sent to the destination.

XMSC_PROPERTY_AS_APP - A message has
the priority specified by the Send call. If the Send
call specifies no priority, the default priority of
the message producer is used instead.

An integer in the range 0, for the lowest priority,
to 9, for the highest priority - A message has the
priority specified for the destination. The default
priority of the message producer and any
priority specified on the Send call are ignored.

Notes:

1. WebSphere MQ Real-Time Transport and WebSphere MQ Multicast Transport
take no action based upon the priority of a message. The priority of a message
is honoured only if the message is eventually put on a WebSphere MQ queue
and the MsgDeliverySequence attribute of the queue is MQMDS_PRIORITY.

Properties of MessageConsumer

[Table 17 on page 175 lists the XMS defined properties of a MessageConsumer

object. For each property, the table provides its name, data type, description, and
valid values.

174 Using Multi-Language Message Service

Table 17. Properties of MessageConsumer

Properties of XMS objects

Name of property Data type |Description Valid values
XMSC_IS_SUBSCRIPTION_ | xmsBOOL |Indicates whether messages are « xmsTRUE - Messages are being
MULTICAST being delivered to the message delivered using WebSphere MQ
consumer using WebSphere MQ Multicast Transport.
Multicast Transport. * xmsFALSE - Messages are not
being delivered using
WebSphere MQ Multicast
Transport.
XMSC_IS_SUBSCRIPTION_ | xmsBOOL |Indicates whether messages are « xmsTRUE - Messages are being

RELIABLE_MULTICAST

being delivered to the message

quality of service.

consumer using WebSphere MQ
Multicast Transport with a reliable

delivered using WebSphere MQ
Multicast Transport with a
reliable quality of service.

* xmsFALSE - Messages are not
being delivered using
WebSphere MQ Multicast
Transport with a reliable quality
of service.

Properties of Session

lists the XMS defined properties of a Session object. For each property, the
table provides its name, data type, description, and valid values, including its
default value.

Table 18. Properties of Session

Name of property Data type | Description Valid values (default value in bold)
XMSC_CLIENT_CCSIDH | xmsINT | The identifier of the coded character |, XMSC_USE_PROCESS_CCSID
22’; Stil'cl)e;t the application uses for the « XMSC_DEFAULT RTT_CCSID
* A coded character set identifier
Notes:

1. For a description of each of the valid values of this property, see [Table 14 o

Chapter 8. Properties of XMS objects

175

176 Using Multi-Language Message Service

Appendix. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 177

Notices

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

S0O21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM WebSphere

Intel is a trademark of Intel Corporation in the United States, other countries, or
both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

178 Using Multi-Language Message Service

Notices

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices 179

180 Using Multi-Language Message Service

Index
A

applications, building
Cc 17
C++ 17
applications, sample
C
building 16
description 13
running 15
CH++
building 16
description 14
WebSphere MQ JMS 14
applications, writing
general 21
inC 27
asynchronous message delivery 22
attribute
introduction 6

body types of messages 34

building
C applications
sample 16

your own 17
C++ applications

sample 16
your own 17
byte array

C functions returning by reference 29

C functions returning by value 28
bytes message 36
BytesMessage class

interface definition 45

C

C
building applications 17
functions returning a string or byte
array by reference 29
functions returning a string or byte
array by value 28
handling errors 30
sample applications
building 16
description 13
running 15
supported compilers 7
writing applications 27
CH++
building applications 17
sample applications
building 16
description 14
supported compilers 7
closing a connection 22
compilers, supported 7

© Copyright IBM Corp. 2004

Connection class
interface definition 58
introduction 5
properties 171
ConnectionFactory class
interface definition 63
introduction 5
properties 171
ConnectionMetaData class
interface definition 70
properties 173
connections
closing 22
general 21
handling exceptions 22
starting 22
stopping 22
context data 27

D

data types compatible with Java 35
deleting objects 24
Destination class
interface definition 73
introduction 5
properties 173

E

error block 30
ErrorBlock class

interface definition 80
errors, handling in C 30
Exception class

interface definition 84
exception listener 27
ExceptionListener class

interface definition 86

H

handle, object
data types 27
introduction 6
handling errors in C 30

handling exceptions on a connection 22

installation directories

Windows 10
installing XMS

Linux 9

Windows 10

Iterator class
interface definition 87
iterators 24

J

Java compatible data types 35

L

Linux
installing XMS 9
supported compilers 7

M

map message 36
MapMessage class
interface definition 90
message
body 34
body type
bytes 36
map 36
bytes 36
delivery
asynchronous 22
synchronous 23
header fields 31
map 36
properties
application defined 34
IBM defined 33
JMS defined 33
selectors 37
structure 31
Message class
header fields 31
interface definition 106
introduction 5
properties
application defined 34
IBM defined 33
JMS defined 33
message listener 27
MessageConsumer class
interface definition 131
introduction 5
properties 174
MessageListener class
interface definition 136
MessageProducer class
interface definition 137
introduction 5
messaging
point-to-point 3
publish/subscribe 3
styles 3
transports 4

O

object handle
data types 27

181

object handle (continued)
introduction 6
object model, XMS 5
objects, deleting 24
operating environments, supported 7

P

point-to-point messaging 3
problem determination 17
properties
Connection 171
ConnectionFactory 171
ConnectionMetaData 173
Destination 173
Message
application defined 34
IBM defined 33
JMS defined 33
MessageConsumer 174
Session 175
property
introduction 6
XMSC_CLIENT_CCSID
Connection 171
ConnectionFactory 171
Session 175
XMSC_HOST_NAME 171
XMSC_IS_SUBSCRIPTION_
MULTICAST 174
XMSC_IS_SUBSCRIPTION_
RELIABLE_MULTICAST 174
XMSC_JMS_MAJOR_VERSION 173
XMSC_JMS_MINOR_VERSION 173
XMSC_JMS_VERSION 173
XMSC_MAJOR_VERSION 173
XMSC_MINOR_VERSION 173
XMSC_MULTICAST
ConnectionFactory 171
Destination 173
XMSC_PASSWORD 171
XMSC_PORT 171
XMSC_PRIORITY 173
XMSC_PROVIDER_NAME 173
XMSC_TRANSPORT_TYPE 171
XMSC_USERID 171
XMSC_VERSION 173
Property class
interface definition 147
publish/subscribe messaging 3

R

removing XMS
Windows 11
return codes 30
running the C sample applications 15

S

sample applications
C
building 16
description 13
running 15

sample applications (continued)
C++
building 16
description 14
WebSphere MQ JMS 14
selectors, message 37
Session class
interface definition 163
introduction 5
properties 175
sessions 22
starting a connection 22
stopping a connection 22
string
C functions returning by reference 29
C functions returning by value 28
structure of a message 31
styles of messaging 3
supported compilers 7
supported operating environments 7
synchronous message delivery 23

T

threading model 21
tracing 17

trademarks 178
transports, messaging 4

U

uniform resource identifier (URI) 23
uninstalling XMS

Windows 11
URI

See uniform resource identifier (URI)

W

WebSphere MQ Enterprise Transport 4
WebSphere MQ JMS sample
applications 14

WebSphere MQ Multicast Transport 4
WebSphere MQ Real-Time Transport 4
Windows

installing XMS 10

supported compilers 7

uninstalling XMS 11

XMS installation directories 10
writing applications

general 21

inC 27

X

XMS
classes 43
first release 7
messages 31
object model 5
supported compilers 7
supported operating environments 7
threading model 21
XMSC_CLIENT_CCSID property
Connection 171

182 Using Multi-Language Message Service

XMSC_CLIENT_CCSID property
(continued)
ConnectionFactory 171
Session 175
XMSC_HOST_NAME property 171
XMSC_IS_SUBSCRIPTION_MULTICAST
property 174
XMSC_IS_SUBSCRIPTION_RELIABLE_
MULTICAST property 174
XMSC_JMS_MAJOR_VERSION
property 173
XMSC_JMS_MINOR_VERSION
property 173
XMSC_JMS_VERSION property 173
XMSC_MAJOR_VERSION property 173
XMSC_MINOR_VERSION property 173
XMSC_MULTICAST property
ConnectionFactory 171
Destination 173
XMSC_PASSWORD property 171
XMSC_PORT property 171
XMSC_PRIORITY property 173
XMSC_PROVIDER_NAME property 173
XMSC_TRANSPORT_TYPE
property 171
XMSC_USERID property 171
XMSC_VERSION property 173

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
* By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

S0O21 2JN
United Kingdom

* By fax:
— From outside the U.K,, after your international access code use
44-1962-816151
— From within the U.K., use 01962816151
¢ Electronically, use the appropriate network ID:
— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink ": HURSLEY(IDRCF)

— Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

* The publication title and order number

* The topic to which your comment applies

* Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2004 183

184 Using Multi-Language Message Service

Printed in USA

SC34-6363-00

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	How to use this book

	Part 1. Getting started with XMS
	Chapter 1. Introducing XMS
	What is Multi-Language Message Service?
	Styles of messaging
	Messaging transports
	The XMS object model
	Attributes and properties of objects

	The first release of XMS
	Supported operating environments
	Function supported
	Function not supported

	Chapter 2. Installing XMS
	Installing on Windows
	What is installed
	Uninstalling XMS

	Chapter 3. Using XMS
	The sample applications
	C sample applications
	C++ sample applications
	WebSphere MQ JMS sample applications

	Running the C sample applications
	Building the sample applications
	Building the C sample applications
	Building the C++ sample applications

	Building your own applications
	Building your own C applications
	Building your own C++ applications

	Problem determination

	Part 2. Programming with XMS
	Chapter 4. Writing XMS applications
	The threading model
	Connections
	Starting and stopping a connection
	Closing a connection
	Handling exceptions

	Sessions
	Asynchronous message delivery
	Synchronous message delivery

	Uniform resource identifiers (URIs)
	Deleting objects
	Iterators

	Chapter 5. Writing XMS applications in C
	Object handles in C
	Listeners and callbacks
	C functions that return a string or byte array by value
	C functions that return a string or byte array by reference
	Handling errors in C
	Return codes
	The error block

	Chapter 6. XMS messages
	Header fields in an XMS message
	Properties of an XMS message
	JMS defined properties of a message
	IBM defined properties of a message
	Application defined properties of a message

	The body of an XMS message
	Bytes messages
	Map messages

	Message selectors

	Part 3. XMS API reference
	Chapter 7. XMS classes
	Exceptions
	BytesMessage
	Methods
	Get Body Length
	Read Boolean Value
	Read Byte
	Read Bytes
	Read Bytes by Reference
	Read Character
	Read Double Precision Floating Point Number
	Read Floating Point Number
	Read Integer
	Read Long Integer
	Read Short Integer
	Read Unsigned Byte
	Read Unsigned Short Integer
	Read UTF String
	Reset
	Write Boolean Value
	Write Byte
	Write Bytes
	Write Character
	Write Double Precision Floating Point Number
	Write Floating Point Number
	Write Integer
	Write Long Integer
	Write Short Integer
	Write UTF String

	Connection
	Methods
	Close Connection
	Create Session
	Get Exception Listener
	Get Metadata
	Get Property
	Set Exception Listener
	Set Property
	Start Connection
	Stop Connection

	ConnectionFactory
	Constructor
	Create Connection Factory

	Methods
	Create Connection (using the default user identity)
	Create Connection (using a specified user identity)
	Delete Connection Factory
	Get Boolean Property
	Get Integer Property
	Get Property
	Get String Property
	Get String Property by Reference
	Set Boolean Property
	Set Integer Property
	Set Property
	Set String Property

	ConnectionMetaData
	Methods
	Delete Connection Metadata
	Get Integer Property
	Get Property
	Get String Property
	Get String Property by Reference

	Destination
	Constructor
	Create Destination (using a URI)
	Create Destination (specifying a type and name)

	Methods
	Delete Destination
	Get Destination Name
	Get Destination Name as URI
	Get Destination Type
	Get Integer Property
	Get Property
	Get String Property
	Get String Property by Reference
	Set Integer Property
	Set Property
	Set String Property

	ErrorBlock
	Methods
	Clear Error Block
	Create Error Block
	Delete Error Block
	Get Error Code
	Get Error Data
	Get Error Module
	Get Error String
	Get Exception Code
	Get Linked Error

	Exception
	Methods
	Delete Exception
	Get Error Code
	Get Error Data
	Get Error String
	Get Exception Code
	Get Linked Exception

	ExceptionListener
	Methods
	On Exception

	Iterator
	Methods
	Check for More Properties
	Delete Iterator
	Get Next Property
	Reset Iterator

	MapMessage
	Methods
	Check Name-Value Pair Exists
	Get Boolean Value
	Get Byte
	Get Bytes
	Get Bytes by Reference
	Get Character
	Get Double Precision Floating Point Number
	Get Floating Point Number
	Get Integer
	Get Long Integer
	Get Name-Value Pairs
	Get Object
	Get Short Integer
	Get String
	Get String by Reference
	Set Boolean Value
	Set Byte
	Set Bytes
	Set Character
	Set Double Precision Floating Point Number
	Set Floating Point Number
	Set Integer
	Set Long Integer
	Set Object
	Set Short Integer
	Set String

	Message
	Methods
	Check Property Exists
	Clear Body
	Clear Properties
	Delete Message
	Get Boolean Property
	Get Byte Property
	Get Double Precision Floating Point Property
	Get Floating Point Property
	Get Integer Property
	Get JMSCorrelationID
	Get JMSDeliveryMode
	Get JMSDestination
	Get JMSExpiration
	Get JMSMessageID
	Get JMSPriority
	Get JMSRedelivered
	Get JMSReplyTo
	Get JMSTimestamp
	Get JMSType
	Get Long Integer Property
	Get Properties
	Get Property
	Get Short Integer Property
	Get String Property
	Get String Property by Reference
	Get Type
	Set Boolean Property
	Set Byte Property
	Set Double Precision Floating Point Property
	Set Floating Point Property
	Set Integer Property
	Set JMSCorrelationID
	Set JMSDeliveryMode
	Set JMSDestination
	Set JMSExpiration
	Set JMSMessageID
	Set JMSPriority
	Set JMSRedelivered
	Set JMSReplyTo
	Set JMSTimestamp
	Set JMSType
	Set Long Integer Property
	Set Property
	Set Short Integer Property
	Set String Property

	MessageConsumer
	Methods
	Close Message Consumer
	Get Message Listener
	Get Message Selector
	Get Property
	Receive
	Receive (with a wait interval)
	Receive with No Wait
	Set Message Listener
	Set Property

	MessageListener
	Methods
	On Message

	MessageProducer
	Methods
	Close Message Producer
	Get Default Delivery Mode
	Get Default Priority
	Get Default Time to Live
	Get Destination
	Get Disable Message ID Flag
	Get Disable Timestamp Flag
	Get Property
	Send
	Send (specifying a delivery mode, priority, and time to live)
	Send (to a specified destination)
	Send (to a specified destination, specifying a delivery mode, priority, and time to live)
	Set Default Delivery Mode
	Set Default Priority
	Set Default Time to Live
	Set Disable Message ID Flag
	Set Disable Timestamp Flag
	Set Property

	Property
	Methods
	Check Property Type
	Copy Property
	Create Property
	Delete Property
	Get Boolean Property Value
	Get Byte Array Property Value
	Get Byte Array Property Value by Reference
	Get Byte Property Value
	Get Character Property Value
	Get Double Precision Floating Point Property Value
	Get Floating Point Property Value
	Get Integer Property Value
	Get Long Integer Property Value
	Get Property Name
	Get Property Type
	Get Short Integer Property Value
	Get String Property Value
	Get String Property Value by Reference
	Set Boolean Property Value
	Set Byte Array Property Value
	Set Byte Property Value
	Set Character Property Value
	Set Double Precision Floating Point Property Value
	Set Floating Point Property Value
	Set Integer Property Value
	Set Long Integer Property Value
	Set Short Integer Property Value
	Set String Property Value

	Session
	Methods
	Close Session
	Create Bytes Message
	Create Consumer
	Create Consumer (with message selector)
	Create Consumer (with message selector and local message flag)
	Create Map Message
	Create Message
	Create Producer
	Create Temporary Topic
	Create Topic
	Get Acknowledgement Mode
	Get Property
	Set Property

	Chapter 8. Properties of XMS objects
	Properties of Connection
	Properties of ConnectionFactory
	Properties of ConnectionMetaData
	Properties of Destination
	Properties of MessageConsumer
	Properties of Session

	Appendix. Notices
	Trademarks

	Index
	Sending your comments to IBM

