
WMB – Cryptographic Nodes

1

WMB Encryption Decryption Nodes

Shravan Kumar Kudikala
IBM-India Software Labs
shravankk@in.ibm.com

Property of IBM

WMB – Cryptographic Nodes

2

Take Note!

Before using this report, be sure to read the general information under "Notices".

First Edition, July 2007
This edition applies to Version 1.0 of WMB Encryption Decryption Nodes and to all subsequent
releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2004.
All rights reserved.
Note to US Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

WMB – Cryptographic Nodes

3

Table of Contents

NOTICES --- 04

OVERVIEW AND CONFIGURATION --- 05

INSTALLING THE PLUG-IN NODE --- 09

EXAMPLE USAGE OF THE NODE --- 10

WMB – Cryptographic Nodes

4

Notices

The following paragraph does not apply in any country where such provisions are inconsistent
with local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended
to state or imply that only IBM's program or other product may be used. Any functionally
equivalent program that does not infringe any of the intellectual property rights may be used
instead of the IBM product.

Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus
Avenue, Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is
distributed AS-IS. The use of the information or the implementation of any of these techniques is
a customer responsibility and depends on the customer's ability to evaluate and integrate them
into the customer's operational environment. While each item has been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

• AIX

• IBM

• WebSphere MQ

• WebSphere Message Broker (WMB)

WMB – Cryptographic Nodes

5

Overview and Configuration

Overview:

This Support pack provides two nodes to encrypt and decrypt the message body of amessage
traversing in WMB. The plug-in nodes are developed in Java and hence they can be used on any
platform supported by the WMB V6 brokers. However problems might be encountered on some
platforms as the JRE and its dependant packages might behave differently. The nodes are tested
on the following platforms Solaris, AIX, Windows XP and found to work normally.

Two nodes are provided in this support pack to encrypt and decrypt the messages. To encrypt a
message using password based encryption concept (as per message exchangers’ choice - for
the selected algorithm) use PasswordBasedEncryption node. To decrypt the message using
password based decryption concept use PasswordBasedDecryption node.

The Cryptographic Nodes are developed for the following reasons:

� All protocols in WMB do not support SSL, hence messages sent/received from/to WMB can
be tampered.

� Numerous complex methods are available to encrypt and decrypt the messages. Which one
to choose is a complex decision.

� Writing own cryptographic algorithm needs strong development skills and is time consuming
expensive work.

� Using the existing industry standard packages is easy but again it has large volume of
complex algorithms. One needs to have deep skills to understand and use them.

� In WMB there is no standard package or node that would allow users to encrypt and decrypt
messages on the fly.

What does this support pack provide you?

� Separate nodes were developed for encryption and decryption of messages to increase
clarity in the usage of the nodes.

� The nodes are provided with simple node properties (for ease of use) so that one can
encrypt/decrypt messages without having any knowledge of cryptography.

� Messages sent outside the scope of WMB environment can now be encrypted using various
algorithms ensuring the confidentiality of the message.

� Messages received from other sources by the WMB environment might be encrypted. Using
these nodes the message can be decrypted and further processed safely.

� Currently Password Based Cryptography is provided in this supportpac and all messages are
expected to be in BLOB format only.

� The nodes initialization / termination and exceptions are logged into Operating System log to
notify the users.

What’s planned in the future releases?

� Extend the cryptographic method from Password Based to Key Pair Based where the users
can use the public/private keys to encrypt / decrypt the messages.

� Provide custom built-in symmetric cryptographic methods to secure the messages.

� Extend the nodes to use specific security provider like IBM, Bouncy castle, etc.
���� Extend the nodes such that users can plug-in their own cryptographic methods to the existing

nodes and use their own algorithms programmatically.

���� Provide security to secure the user specified password on the node property tab.

WMB – Cryptographic Nodes

6

���� Provide an interface so that customers can use the plug-in package outside the scope of
message broker to encrypt / decrypt the messages.

Currently the nodes are developed only for Password Based cryptography concepts. The default
provider being IBM, shipped with the JRE 142 which comes with WMB V6. Additionally,
customers can consider using other providers like Bouncy Castle.

The following Password Based algorithms were tested using the nodes provided in this
supportpac. During the tests we used IBM and Bouncy Castle as the security providers. Some of
the below mentioned algorithms might not work when Bouncy Castle is not used. The below data
is only for awareness and users need not have depth knowledge about them.

Algorithm Padding Scheme Bits

PBEWithMD5AndDES PKCS5 Scheme 1 64

PBEWithMD5AndRC2 PKCS5 Scheme 1 128

PBEWithSHA1AndDES PKCS5 Scheme 1 64

PBEWithSHA1AndRC2 PKCS5 Scheme 1 128

PBEWithSHAAnd40BitRC4 PKCS12 40

PBEWithSHAAnd128BitRC4 PKCS12 128

PBEWithSHAAndTwofish-CBC PKCS12 256

PBEWithSHAAnd40BitRC2-CBC PKCS12 40

PBEWithSHAAnd128BitRC2-CBC PKCS12 128

PBEWithSHAAnd2-KeyTripleDES-CBC PKCS12 128

PBEWithSHAAnd3-KeyTripleDES-CBC PKCS12 192

Configuring the nodes:

Apart from the node configuration described below, no special configuration is needed to run the
basic functionality of the supportpac. Some basic algorithms work fine with default IBM provider.
In order to have all algorithms working, it is recommended to have Bouncy Castle installed and
configured. The installation and configuration is narrated below. More details about Bouncy
Castle are available at http://www.bouncycastle.org/latest_releases.html.

The way we have installed/configured Bouncy Castle during our tests is narrated here. The same
can be followed by the customers.

1. Download the signed jar file “bcprov-jdk14-136.jar” and copy it to ext directory of WMB
JRE. (<WMB-Install-Dir>\jre\lib\ext).

2. Add Bouncy Castle as the last provider in the java.security file located under security
folder of WMB JRE. (<WMB-Install-Dir>\jre\lib\security) as shown below :

security.provider.1=com.ibm.jsse.IBMJSSEProvider

security.provider.2=com.ibm.crypto.provider.IBMJCE

security.provider.3=com.ibm.security.jgss.IBMJGSSProvider

security.provider.4=com.ibm.security.cert.IBMCertPath

security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProv

ider

When large messages are used to encrypt or decrypt there can be failures. To overcome it
customers need to request the “Unlimited strength jurisdiction policy file” from the JRE provider.
The provider will provide two jar files (a) local_policy.jar and (b) US_export_policy.jar. Replace
similar jar files available under “<WMB-Install-Dir>\jre\lib\security” with the jar files provided by the
JRE provider.

WMB – Cryptographic Nodes

7

Note: An encrypted message can be larger than the original message. When using WMQ as the
protocol customers need to configure the queue size properly as the resulting message can be
large.

All the algorithms that passed with the above configuration are listed under the node property
“Algorithm” for both the nodes. We have limited our testing to the max message size of 52 MB in
our test cases.

For both the nodes, PasswordBasedEncryption and PasswordBasedDecryption node, the
properties are common which are explained below. Put an instance of the node on message flow
editor. Right click on the node and select “Properties” option to configure the node properties. The
following image shows the Basic properties of the nodes.

 Property Algorithm: From the drop down list select an algorithm that which you would
like to use for encryption/decryption of the message. If no value is chosen, the default
algorithm chosen is “PBEWithMD5AndDES”. Use the same algorithm to encrypt/decrypt
the message on the nodes. For ex:- If you are using “PBEWithMD5AndRC2” algorithm for
encryption then same algorithm must be used for decryption of the same message.

 Property Iteration Count: Give iteration count number. It is recommended to have
iteration count greater than 10. If no value is specified the node takes it as 30. Use the
same value to encrypt / decrypt the message on the nodes. For ex:- If you are using 20
for encryption then the same 20 value must be used for decryption of the same message.

 Property Password: This is a mandatory field. Enter a password value. Use the same
value to encrypt/decrypt the message on the nodes. For ex:- If you are using a value like
“Shravan” for encryption then same value must be used for decryption of the same
message.

 Property Node Tracing: Choose the appropriate level to trace the activity of the node. By
default this is “NONE”. It is encouraged to set NONE on production systems as the log
refreshing mechanism isn’t present in this node. The node appends the information into a
single log file, irrespective of number of instances of the flows that use this node. The log
file “CryptographicNodesLogData.txt” can be located in <WMB-install-dir>\bin on
windows and on Unix machines it can be located in the directory from where the broker
start command is issued. The same file is used by both the nodes. The Node Tracing
value set here will have the following significance.

NONE: No logging is done.
ERROR: Log only if an error occurs in the node during message processing.
INFO : Log basic node operations and ERROR(s) if any.
DEBUG : Log very detailed information of the node, including every function it enters and
exists along with ERROR(s).

WMB – Cryptographic Nodes

8

Connecting the terminals:

The plug-in nodes route each message it processes successfully to the out terminal. If this fails,
the message is routed to the failure terminal; you can connect nodes to this terminal to handle
further processing. If you have not connected the failure terminal, the message is backed out to
the input node.

Terminals and properties:

The plug-in node terminals are described in the following Table - 1.

Terminal Description

In The input terminal from which the message is routed to the node.

Out The output terminal to which the message is routed if it is successfully
processed.

Failure The output terminal to which the message is routed if an error occurred.
If this is not connected then the message is backed out to the input
node.

Table – 1

WMB – Cryptographic Nodes

9

Installing the plug-in node

���� SupportPac contents

Download the supportpac and unzip into a temporary directory

The following directories will be present:

\WMB Encryption Decryption Nodes\V6Runtime\ - Contains files meant for WMB V6 runtime.
\WMB Encryption Decryption Nodes\V6Workbench\ - Contains files meant for WMB V6 Toolkit
\WMB Encryption Decryption Nodes\ia9w.pdf - Current user manual that you are reading

���� Prerequisites

This Support Pac provides a plug-in node to be used with the IBM WebSphere Message Broker
Version 6. If any changes are to be made to the plug-in node, then contact the author.

� Supported Platforms

This SupportPac has been developed and tested on Microsoft Windows XP, AIX and Sun Solaris
environments. But this plug-in node can be run on any environment that is supported by the WMB
Broker V6.

� Installing the Cryptographic nodes

From the extracted files :->

• copy ‘\WMB Encryption Decryption Nodes \V6Runtime\CryptographicNodes.jar’ file to
‘<WMB-Install–Directory>\jplugin’.

• Copy ‘\WMB Encryption Decryption Nodes
\V6Workbench\com.ibm.broker.xternal.plugins.cryptographicnodes’ directory to ‘<WMB-
Toolkit-Install-Directory>\evtoolkit\eclipse\plugins’ directory.

• Install “Unlimited strength jurisdiction policy” and “BounceCastle” files as described in
“Configuring the nodes” section.

• Restart message broker (use mqsistart command).

• Restart the toolkit with “–clean” option (use wmbt.exe -clean)

WMB – Cryptographic Nodes

10

Example usage of the nodes

This section demonstrates the usage of the nodes supplied in this supportpac.

Install the plug-in as described above. After the successful installation of the node, you would see
the two nodes (PasswordBasedEncryption and PasswordBasedDecryption) in the Message
Flow Editor palette, as shown below:

Choose the PasswordBasedEncryption node to encrypt the message body and
PasswordBasedDecryption node to decrypt the message body. The headers are untouched and
only the message body is encrypted / decrypted. The nodes expect only BLOB message data so
use ResetContentDescriptor node available under the “Transformation” category to change the
message domain.

Demonstrating how to encrypt the data :

In this example (please see below figure), the input message is of XML domain and is received
from WMQ using MQInput node. As the PasswordBasedEncryption node expects only BLOB
message body, ResetContentDescriptor node is used to convert the message domain from XML
to BLOB. The trace nodes are used only for diagnostic purpose. A screen shot of the message
flow is shown below.

WMB – Cryptographic Nodes

11

The properties of ‘ResetContentDescriptor’ node are set as shown below.

This converts the XML message domain to BLOB message domain. The properties of
PasswordBasedEncryption node are set as shown below.

As per the example, the node uses the password based encryption algorithm
“PBEWithMD5AndDES’ with iteration count 20 and password as “Shravan”. On the decryption
node the same properties should and must be used to decrypt the same message. It is not
possible to encrypt with one set of properties and decrypt with another set of properties. Once the
message is encrypted at this node, the message which is in BLOB domain is put on the WMQ
queue using MQOutput node.

WMB – Cryptographic Nodes

12

Demonstrating how to decrypt the data :

In this example (please see below figure), the input message is of BLOB domain and is received
from WMQ using MQInput node. The message we receive should be encrypted message. So, in
this case for demonstration purpose, we will have the above flow output queue as the input queue
of this flow. As the PasswordBasedDecryption node returns the decrypted message body in
BLOB domain, use the ResetContentDescriptor node to convert the message domain to XML.
The message can be encrypted by user application using password based encryption algorithms
and can be decrypted using the PasswordBasedDecryption node, provided the node properties
are chosen appropriately. The algorithm, iteration count and the password with which the
message is encrypted, the same values should be specified on the node properties to decrypt the
message. It is not possible to encrypt with one set of properties and decrypt with another set of
properties. The trace nodes in this case are used only for diagnostic purpose. A screen shot of
the message flow is shown below.

The properties of PasswordBasedEncryption node are set as shown below. The node expects the
BLOB message in encrypted format and it decrypts the message and returns the BLOB message.

As per the example, the node uses the password based decryption algorithm
“PBEWithMD5AndDES’ with iteration count 20 and password as “Shravan”. Once the message is
decrypted at this node, the message which is in BLOB domain is sent to the next node. Here we
used the ‘ResetContentDescriptor node to change the BLOB domain to XML domain as the
original message which is encrypted is of XML domain.

The properties of ‘ResetContentDescriptor’ node are set as shown below. This converts the
BLOB message domain to XML message domain.

WMB – Cryptographic Nodes

13

The XML message returned from this node is sent to the WMQ Queue using the MQOutput Node.
At this stage the input message sent to the first flow should be same as the output received on
the last flow as the process of encryption is done in first flow and decryption is done in the second
flow.

Using in client applications

If you are planning to do only one operation, either encryption or decryption in message broker
and the other operation else where in your java client application then you need to use the plug-in
jar file. For ex:

1. You have encrypted the data using the WebSphere Message Broker and your application
has received the encrypted message. In order to decrypt the message in your application
use the following method.

byte output [] =

new PasswordBasedImplementation().decrypt(
algorithm,
password,
iterationCount,
encryptedMessageByteArray);

where algorithm, password and iterationCount are java String objects which indicate the
parameters used for encrypting the data in WebSphere Message Broker.

2. You want to encrypt the data using your application and send the encrypted message to

WebSphere Message Broker so that it can be decrypted using the plug-in node. In order
to encrypt the message in your application use the following method.

byte output [] =

new PasswordBasedImplementation().encrypt(
algorithm,
password,
iterationCount,
inputMessageByteArray);

WMB – Cryptographic Nodes

14

where algorithm, password and iterationCount are java String objects which indicate the
parameters to be used for decrypting the data in WebSphere Message Broker.

3. You need to have the supplied plug-in jar file “CryptographicNodes.jar” in the classpath.
4. You need to import the following class in your java application.

com.ibm.broker.xternal.plugins.cryptographicnodes.PasswordBasedImplementation;

A simple java client application is shown here to demonstrate how to use the encryption and
decryption.

/*Java Source Code – testClient.java */

import com.ibm.broker.xternal.plugins.cryptographicnodes.PasswordBasedImplementation;

public class testClient
{
 public static void main(String[] args)
 {
 String inputMessage = "Hello Cryptography";
 String algorithm = "PBEWithSHAAnd40BitRC4";
 int iterationCount = 750;
 String password = "Shravan K Kudikala";
 try
 {
 System.out.println("Message to be encrypted \""+inputMessage+"\"");
 byte input[] = inputMessage.getBytes();
 byte cypher[]= new
PasswordBasedImplementation().encrypt(algorithm,password,iterationCount,input);
 System.out.println("Encrypted message \""+new String(cypher)+"\"");
 byte output[] = new
PasswordBasedImplementation().decrypt(algorithm,password,iterationCount,cypher);
 System.out.println("Message after decryption \""+new String(output)+"\"");
 }catch(Exception e)
 {
 e.printStackTrace();
 }
 }
}

