

WebSphere Message Broker v7.0

IA9Y: WebSphere Message Broker Toolkit
Map to ESQL PlugIn

Version 2.0
January 2010

Ben Thompson

IBM Software Services for WebSphere
IBM UK Laboratories

Hursley Park
Winchester
Hampshire
SO21 2JN

Property of IBM

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,
“warranty and liability exclusion”, “errors and omissions”, and the other general
information paragraphs in the "Notices" section below.

Second Edition, January 2010.

This edition applies to WebSphere Message Broker V7 (and to all subsequent releases and
modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2010. All rights reserved.

Note to U.S. Government Users
Documentation related to restricted rights. Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Notices

DISCLAIMERS
The performance data contained in this report were measured in a controlled environment. Results obtained
in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to any formal testing
by IBM. Any use of this information and implementation of any of the techniques are the responsibility of the
licensed user. Much depends on the ability of the licensed user to evaluate the data and to project the
results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION
The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this
statement may not apply to you. In Germany and Austria, notwithstanding the above exclusions, IBM's
warranty and liability are governed only by the respective terms applicable for Germany and Austria in the
corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS
The information set forth in this report could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; any such change will be incorporated in new editions of the
information. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this information at any time and without notice.

INTENDED AUDIENCE
This report is intended for architects, systems programmers, analysts and programmers wanting to convert
WebSphere Message Broker V7 mapping files into ESQL code.

LOCAL AVAILABILITY
References in this report to IBM products or programs do not imply that IBM intends to make these available
in all countries in which IBM operates. Consult your local IBM representative for information on the products
and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU
IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS
The following terms used in this publication are trademarks of International Business Machines Corporation
in the United States, other countries or both:

- IBM
- WebSphere
Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS
You agree to comply with all applicable export and import laws and regulations.

Introduction:

The WebSphere Message Broker contains runtime transformation options which can be used to
manipulate the data (logical message tree structure) passed through a message flow, in order to
change an input message into an output message. A native installation of version 7 of the product
provides:

• Compute node (containing ESQL transform code)

• JavaCompute node (containing Java transform code)
• XMLTransformation node (containing XSL transform code)

• PHP Compute node (containiing PHP code)
• Mapping node (drag and drop interface)

When embarking on a new WMB development, careful project consideration should be given to
selecting which of these options is most suitable. Common factors to be taken into account
include:

• Developer skill level with each technology
• Maintainability / reuse of the transformation code

• Performance of the transformation when deployed to the Broker runtime

For some projects, the utilisation of a graphical tool is a mandatory requirement in order to
compensate for developers who have little experience with the other coding options, and also to
ensure faster speeds of development for large and / or complex message models. In these
circumstances, it can be a hard decision to select the graphical Mapping node option as it can
mean sacrificing the advantages of code which is better optimised for performance and more
easily maintained and reused.

Provided with this document, the MapToESQL Eclipse plugin for the Message Broker Toolkit, is
designed to help in these situations.

The document provides step-by-step instructions for how to install and use the MapToESQL
Eclipse plugin. It demonstrates its functional capability and using example message maps,
describes the value the plugin can bring to Message Flow development activities.

Installation of the Plugin:

1. To install, make sure the WebSphere Message Broker Toolkit is closed.

2. Extract the supplied zip file named ia9y_2.0.0.zip

3. Copy the resulting subfolder, named map2esql_2.0.0 into the eclipse installation’s

plugins subdirectory. If your broker was installed in the default location, then this
directory will be located at:

 For WebSphere Message Broker version 7.0:

 C:\Program Files\IBM\WMBT700\plugins

 The version 1.0.0 release of this support pac which is now deprecated, was designed for

use with WMBv6.0 and WMBv6.1 …

 For WebSphere Message Broker version 6.0:

 C:\Program Files\IBM\MessageBrokersToolkit\6.0\eclipse\plugins

 For WebSphere Message Broker version 6.1:

 C:\Program Files\IBM\WMBT610\plugins

4. Restart the WebSphere Message Broker Toolkit, using the “-clean” option:

 For WebSphere Message Broker version 7.0:

 "C:\Program Files\IBM\WMBT700\mb.exe" -clean

 The version 1.0.0 release of this support pac which is now deprecated, was designed for

use with WMBv6.0 and WMBv6.1 …

 For WebSphere Message Broker version 6.0:

 C:\Program Files\IBM\MessageBrokersToolkit\6.0\wmbt.exe -clean

 For WebSphere Message Broker version 6.1:

 "C:\Program Files\IBM\WMBT610\eclipse.exe" -product

com.ibm.etools.msgbroker.tooling.ide -clean

 For WebSphere Message Broker version 7.0:

 "C:\Program Files\IBM\WMBT700\mb.exe" -clean

Installation of the Samples:

The sample message sets and message flows have been updated to work with WMB version 7.0.
If you attempt to use them with earlier versions, they may not work. The original samples which
were produced for use with version 6.0 and version 6.1 are available in the project interchange
file named ia9y_DeprecatedSampleProjects.zip. However, the instructions, screen shots and
descriptions which follow in this document should be read in conjunction with the assets
produced for version 7.0.

1. From the WebSphere Message Broker Toolkit, select File → Import

2. From the Import wizard select the Import Source Project Interchange.

3. Click Next.

4. For the property From zip file, use the Browse button to navigate to the supplied zip

file named ia9y_SampleProjects.zip

5. Select both the listed projects, MapToESQL_MessageFlows and

MapToESQL_MessageSet.

6. Click Finish.

How to use the MapToESQL Plugin:

1. To invoke the Plugin, right-click a message map file in your Toolkit workspace, and from

the context menu, select Map To ESQL → Generate ESQL.

2. The resulting Map To ESQL – Generate ESQL wizard asks you to specify whether or

not you wish to use ESQL references, using checkboxes. An ESQL reference is a
datatype which holds the location of a field in a message, analogous to the role of a
pointer in most conventional programming languages. Using references in your ESQL
code can lead to better performance, due to quicker navigation of the logical tree.
Unfortunately, when dealing with complex transformations, references can also make
ESQL harder to read. For this reason, the MapToESQL Plugin provides checkboxes so
that you can specify what style of ESQL code should be produced.

3. The Map To ESQL – Generate ESQL wizard also contains dropdown menus, which

should be used to specify which Input and Output Message Domains the generated code
should use. The WebSphere Message Broker supplies a range of parsers to parse and
write different message formats. Each parser is suited to a particular class of messages
(for example, fixed-length binary, delimited text, or XML) known as a message domain.
When a message flow input node, such as the WebSphere MQInput node for example,
receives data from a queue it decides how the message should be parsed based upon
the specified message domain. This domain can be provided as a node property or in the
header of the message. Each message set that you create specifies a domain, which
determines the parser that is used when parsing and writing messages that are defined
within that message set. When you define a graphical message map, the message
domain selected by the runtime is specified by examining the message set. However,
when generating ESQL from a message map using the Plugin, it is necessary to inform
the Plugin which message domain for input and output, you would like the generated
code to use. The content of your map does not affect the message domain selections
which are available for the generated ESQL code. The domains which you select will
influence the syntax of the ESQL statements which refer to elements of the message
body. If you would like, you can experiment with different domain settings and analyse
the ESQL generated. When you have selected the Input and Output Message Domain,
click Finish.

4. The Plugin will generate an ESQL file in the same project as the message map. The map

will be named Generated_<Name of message map>.ESQL. If an ESQL file with this
name already exists, it will be overwritten. The generated ESQL will contain a single
Compute Module named:

 <Name of message map>_Compute

 The Module will contain a Function Main(), ready to be referenced from a Compute node.

5. To utilise the generated code in a message flow, replace the Mapping node with a

Compute node. Right-click the Compute node in the palette and select Properties.

For the ESQL Module property specify the Compute Module in the generated ESQL file:

 <Name of message map>_Compute

Example 1: Simple Mappings, MRM domain

Example 1 demonstrates the mapping of values from an input message parsed in the Message
Repository Manager (MRM) domain to an output message also in the MRM domain. The values
of fields in each of the Properties, MQMD and MQRFH2 folders are also copied from the input to
the output.

Locate the project named MapToESQL_MessageFlows, and open the message map named

MessageFlow1_Mapping. The map script is shown in Figure 1.

Figure 1 MessageFlow1_Mapping

Note that this example also includes a simple “For” loop which iterates over the children of the
mcd folder. More in-depth coverage of loop constructs is also provided with Example 2 and
Example 3.

From the Broker Development View, right-click the Message Map named

MessageFlow1_Mapping and from the context menu select Map To ESQL → Generate

ESQL, as shown in Figure 2.

Figure 2 Context Menu Generate ESQL

This will start the plugin configuration wizard, as shown in Figure 3.

Figure 3 Map to ESQL – Generate ESQL Preferences Wizard

Figure 3 shows a screen shot of the wizard which is launched when you run the Plugin to
Generate ESQL from a map. The Input message domain and output message domain are
selected using dropdown menus. You can choose from the following message domains: MRM,
XMLNSC, XMLNS, XML. To follow the documented Example 1, leave the default selection of
MRM domain from both the dropdown menus and click the Finish button. Leave the check boxes
unchecked. These features are explained in a later example. The message flow project will now
contain a generated ESQL file named Generated_MessageFlow1_Mapping.ESQL

Figure 4 Top Part of Generated ESQL From MessageFlow1_Mapping

Figure 5 Bottom Part of Generated ESQL From MessageFlow1_Mapping

Example 2: FOR loops, MRM and XMLNSC domains

Example 2 demonstrates the mapping of values from an input message parsed in the XMLNSC
domain to an output message in the MRM domain. The values of fields in the Properties Folder
and MQMD header are also copied from the input to the output.

Locate the project named MapToESQL_MessageFlows, and open the message map named

MessageFlow2_Mapping. The map script is shown in Figure 7.

Figure 6 MessageFlow2_Mapping

The input message includes three localElements named localElementA, localElementB

and localElementC, which can occur between 1 and 5 times. Likewise the output message
contains three localElements which can also repeat. This use case demonstrates the way that
For loops contained in message maps are translated into For loops in the ESQL which is
generated. The generated ESQL code uses Integer variables as loop indices. The plugin
successfully handles maps which contain more than one loop, and also deals with nested
elements which repeat.

Figure 7 shows a screen shot of the wizard which is launched when you run the Plugin to
Generate ESQL from a map. The Input message domain and output message domain are
selected using dropdown menus. You can choose from the following message domains: MRM,

XMLNSC, XMLNS, XML. To follow the documented Example 2, select an Input Message

Domain of XMLNSC and leave the Output Message Domain as the default selection of MRM.

Click the Finish button.

The message flow project will now contain a generated ESQL file named
Generated_MessageFlow2_Mapping.ESQL

Figure 7 Map to ESQL - Generate ESQL Preferences Wizard for Example2

Figure 8 Generated ESQL from MessageFlow2_Mapping

Example 3: Nested FOR loops, MRM domain

Example 3 demonstrates the mapping of values from an input message parsed in the MRM
domain to an output message also in the MRM domain. The values of fields in the Properties
Folder and MQMD header are copied from the input to the output. The message body itself
includes three fields which repeat, whose mapping is achieved using For loops. This example is
more complex than Example 2 as it includes nested loops and a mixture of repeating and non-
repeating items.

Locate the project named MapToESQL_MessageFlows, and open the message map named

MessageFlow3_Mapping. The map script is shown in Figure 9.

Figure 9 MessageFlow3_Mapping

Figure 9 shows the map script from which the ESQL is generated. Note that the output message
includes localElements at three levels. mappedLevel1Element, has a child

mappedlevel2Element which in turn has a child mappedLevel3Element.

mappedLevel1Element also has two children which do not repeat and are defined either side
of the second for loop. This complex structure is catered for by the plugin. Figure 10 shows the
ESQL which is produced when the plugin is run with an input and output domain set to MRM. In

particular your attention is drawn to the loop indices, named A, C and E. Note also the insertion of
the SET statements within the correct loops.

Figure 10 Generated ESQL from MessageFlow3_Mapping

Example 4: XPath STRING Functions, MRM domain

Example 4 demonstrates the mapping of values from an input message parsed in the MRM
domain to an output message also in the MRM domain. The values of fields in the Properties
Folder and MQMD header are copied from the input to the output. The message body itself
includes two fields whose output values are generated using XPath String functions.

Locate the project named MapToESQL_MessageFlows, and open the message map named

MessageFlow4_Mapping. The map script is shown in Figure 11.

Figure 11 MessageFlow4_Mapping

Figure 11 shows the map script from which the ESQL is generated. Note that the output message
includes localElement1 which takes its output value from the concatenation of two string

values in the input message. The output message also contains localElement2 which takes its
value from substringing the first three characters of the input message’s localElement3.

The XPath concat function supports the concatenation of multiple (more than two) string values.

The XPath substring function expects three arguments: The string from which the substring is
extracted, the starting position from which the substring runs, and the number of characters to be
taken. If the last argument is omitted, then the substring will run to the very end of the first
argument’s data.

Figure 12 Generated ESQL from MessageFlow4_Mapping

Example 5: User Defined ESQL Functions, MRM domain

Example 5 demonstrates the mapping of values from an input message parsed in the MRM
domain to an output message also in the MRM domain. The values of fields in the Properties
Folder and MQMD header are copied from the input to the output. The message body itself
includes two fields whose output values are generated using ESQL functions. Locate the project
named MapToESQL_MessageFlows, and open the message map named

MessageFlow5_Mapping. The map script is shown in Figure 13.

Figure 13 MessageFlow5_Mapping

Figure 13 shows the map script from which the ESQL is generated. The output message includes
a resultElement1 which takes its output value from the ESQL function named Cardinality

and a resultElement2 which takes its output value from the ESQL function named Average.

These two ESQL functions are defined in the file named Library.esql which you will find in
the same message flow project, named MapToESQL_MessageFlows.

Figure 14 Library.esql file containing ESQL functions

Figure 15 ESQL Average and Cardinality Functions

Figure 15 shows the contents of Library.esql which contains the two ESQL functions,
Average and Cardinality. Figure 16 shows the generated ESQL:

Figure 16 Generated ESQL from MessageFlow5_Mapping

Example 6: IF and ELSE clauses, MRM domain

Example 6 demonstrates the mapping of values from an input message parsed in the MRM
domain to an output message also in the MRM domain. The values of fields in the Properties
Folder and MQMD header are copied from the input to the output. The message body itself
includes the string field named localElement1 whose output value is dependent on the input
localElement1 of type xsd:int.

Locate the project named MapToESQL_MessageFlows, and open the message map named
MessageFlow6_Mapping. The map script is shown in Figure 17.

Figure 17 MessageFlow6_Mapping

Figure 17 shows the map script from which the ESQL is generated. The output message contains
a single localElement named localElement1. The string value which is assigned to this

element depends upon the xsd:int value of the input message’s localElement1. The if

elseif and else clauses define three possible outcomes, dependent on whether the integer
value is less than, greater than or equal to the value 5.

Figure 18 shows the generated ESQL.

Figure 18 Generated ESQL from MessageFlow6_Mapping

Example 7: Multiple Header Support, MRM domain

Example 7 demonstrates the mapping of values from an input message parsed in the MRM
domain to an output message also in the MRM domain. The values of all fields in all supported
headers are copied from the input to the output. The mapping of the message body itself includes
copying values from five input fields to five output fields (differently named).

Locate the project named MapToESQL_MessageFlows, and open the message map named

MessageFlow7_Mapping. The mapping itself is shown in Figure 19, and the Map Script is
shown in Figure 20.

Figure 19 MessageFlow7_Mapping

Figure 20 MessageFlow7_Mapping Map Script

The ESQL which is generated from the Mapping, contains a series of For loops, one for each
header. The For loops ensure that the header is created on output if it was present in the input.
The reason for this sample is to demonstrate the header support within the Plugin. In real life, it is
highly unlikely that a logical message tree would contain all of the headers shown. The first part
of the generated ESQL is shown in Figure 21:

Figure 21 First section of Generated ESQL from MessageFlow7_Mapping

Example 8: Namespace Support, MRM domain

Example 8 demonstrates the mapping of values from an input message parsed in the MRM
domain to an output message also in the MRM domain. The input message’s elements and the
output message’s elements exist in Target Namespaces (not in the default
NoTargetNamespace). This example demonstrates that the ESQL generated by the Plugin is
sensitive to the required namespace prefixes.

Locate the project named MapToESQL_MessageFlows, and open the message map named

MessageFlow8_Mapping. The mapping itself is shown in Figure 22, and the Map Script is
shown in Figure 23.

Figure 22 MessageFlow8_Mapping

Figure 23 MessageFlow8_Mapping Map Script

The ESQL which is generated includes declarations for the namespace prefixes used in both the
input and output messages. The generated ESQL is shown in Figure 24:

Figure 24 Generated ESQL from MessageFlow8_Mapping

Example 9: Input Body and Output Body REFERENCE, MRM domain

Example 9 demonstrates the mapping of values from an input message parsed in the MRM
domain to an output message also in the MRM domain. This time, when invoking the
MapToESQL Plugin, check the boxes which indicate you would like to use ESQL REFERENCES
for both the Input Body and Output Body. This example demonstrates that the ESQL generated
by the Plugin contains REFERENCE declarations which will lead to more performant ESQL code
being generated.

Locate the project named MapToESQL_MessageFlows, and open the message map named

MessageFlow9_Mapping. The mapping itself is shown in Figure 25, and the Map Script is
shown in Figure 26.

Figure 25 MessageFlow9_Mapping

Figure 26 MessageFlow9_Mapping Map Script

The generated ESQL is shown in Figure 26:

Figure 27 Generated ESQL from MessageFlow9_Mapping

Example 10: Input and Output support for SOAP domain

Example 10 demonstrates the mapping of values from an input message parsed in the SOAP
domain to an output message also in the SOAP domain.

Locate the project named MapToESQL_MessageFlows, and open the message map named
MessageFlow10_Mapping. The mapping itself is shown in Figure 28, and the Map Script is
shown in Figure 29.

Figure 28 MessageFlow10_Mapping

Figure 29 MessageFlow10_Mapping Map Script

This time, when invoking the MapToESQL Plugin, select the SOAP domain from both the drop
down menus, as shown in Figure 30:

Figure 30 Map to ESQL Preferences page for MessageFlow10_Mapping

The generated ESQL is shown in Figure 31:

Figure 31 Generated ESQL from MessageFlow10_Mapping

Statement of Support

This second iteration of the Plugin supports the majority of functional requirements of message
maps designed using the Broker Toolkit. This section provides a formal statement of support for
items which the Plugin should be able to handle. This release has added support for the SOAP
domain, and makes the plugin compatible with WMBv7.

Supported Input Message domains: MRM, XMLNSC, XMLNS, XML, SOAP
Supported Output Message domains: MRM, XMLNSC, XMLNS, XML, SOAP

All Folders supported by the Mapping node are supported by the Plugin:

Properties, MQMD, MQCFH, MQCIH, DLH, MQIIH, MQMDE, MQRFH, MQRFH2, MQRMH,
MQSAPH, MQWIH, SMQ_BMH, HTTPInputHeader, HTTPReplyHeader, HTTPResponseHeader,
HTTPRequestHeader, JMSTransport

For loops are supported.
If constructs are supported.
Conditions are supported.
Else statements are supported.

Calling ESQL functions and procedures from within a map are supported.
Calling XPath String functions (concat, substr) are supported.
Calling XPath Boolean functions (empty, exists, false, not, true) are supported.
Calling XPath Numeric functions (avg, count, max, min, sum) are supported.
Calling XPath Date and Time functions are supported.

Database targets are not supported.

About the Author:

Ben Thompson is a Senior IT Specialist in IBM Software Group
EMEA Laboratory Services in Hursley, UK. He has worked with
distributed transactional middleware for seven years and has
extensive experience designing and implementing solutions using
the WebSphere product portfolio with IBM customers worldwide.

