
WebSphere Business Integration

Message Broker V5

Change Management and
Naming Standards

Version 3.0

September 2004

Cyril Stewart

Keith Guttridge

Lakshman Yatawara

Andy Piper

Jonathan Marshall

Emir Garza

IBM UK Laboratories
Hursley Park

Winchester
Hampshire
SO21 2JN

Property of IBM

WBI Message Broker Version 5
Change Management and Naming Standards

Take Note!

Before using this report please read the general information under "Notices".

Second Edition, September 2004.

Page 2 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

This edition applies to Version 5 of WebSphere Business Integration Message Broker with fixpack 2
(or later).

© Copyright International Business Machines Corporation 2004. All rights reserved. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Page 3 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

Notices
The following paragraph does not apply in any country where such provisions are
inconsistent with local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not
intended to state or imply that only IBM's program or other product may be used. Any
functionally equivalent program that does not infringe any of the intellectual property rights
may be used instead of the IBM product.

Evaluation and verification of operation in conjunction with other products, except those
expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
500 Columbus Avenue, Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and
is distributed AS-IS. The use of the information or the implementation of any of these
techniques is a customer responsibility and depends on the customer's ability to evaluate
and integrate them into the customer's operational environment. While each item has been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere.

Customers attempting to adapt these techniques to their own environments do so at their
own risk.

Page 4 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

Trademarks and service marks

The following terms are trademarks of the International Business Machines Corporation in
the United States, other countries, or both:

Eserver® Redbooks (logo) ™ developerWorks® ibm.com®

iSeries™ z/OS® zSeries® AIX®

ClearCase® CICS® DB2® Everyplace®

IBM® MQSeries® Parallel Sysplex® POWER™

Rational® Redbooks™ RACF® S/390®

SupportPac™ WebSphere®

The following terms are trademarks of other companies:

Intel and Intel Inside (logos) are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Page 5 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

Summary of Amendments

Date Changes

February 2001 Initial version.

June 2004 Updated for WBIMB Version 5.

September 2004 Added Rational ClearCase. Minor editorial changes.

Page 6 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

Table of contents
1 Overview... 10

2 Naming Standards.. 11

2.1 Characters allowed in commands ... 11

2.2 Converting Version 2.1 names that are not valid .. 11

2.3 Message Broker Naming Standards ... 12

3 Change Management with CVS... 17

3.1 SCM System Terminology... 17

3.1.1 Branching .. 17

3.1.2 Commit .. 17

3.1.3 Repository ... 17

3.1.4 Resources ... 18

3.1.5 Stream/Branch .. 18

3.1.6 Synchronizing..18

3.1.7 Versions... 18

3.1.8 Update ... 19

3.1.9 SCM Terminology Comparison ... 19

3.2 CVS Background ...20

3.2.1 Recommended use of multiple branches.. 20

3.3 Team working principles.. 21

3.4 Version conventions ..22

3.5 Repository Structure .. 23

3.6 Initial Team Working Configuration ... 25

3.6.1 Set up repository ... 25

3.6.2 Create user ids ..25

3.6.3 Create baseline version... 25

3.6.4 File type settings ...26

3.6.5 Create project set .. 26

3.6.6 Procedure for creating workspace .. 27

Page 7 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

3.7 Team work procedure.. 28

3.7.1 Using CVS during Development ... 28

3.8 References .. 40

4 Change Management with Rational ClearCase... 41

4.1 Change Management with ClearCase .. 41

4.1.1 Basic Terms ..41

4.1.2 ClearCase SCM and UCM Terminology ... 41

4.2 ClearCase Overview.. 43

4.3 Working with Branches.. 48

4.4 ClearCase & WebSphere Business Integration Message Broker....................................... 50

4.4.1 Creating a new project under ClearCase Control ... 53

4.4.2 Adding an existing project to ClearCase control ... 53

4.4.3 Adding an existing ClearCase project to your workspace .. 53

4.4.4 Adding an element to ClearCase control .. 53

4.4.5 Check out and edit .. 53

4.4.6 Save and Check in .. 53

4.5 Reference: ... 54

4.5.1 White Papers...54

4.5.2 Redbooks .. 54

4.5.3 Manuals ... 54

4.5.4 Web-Based Courses ... 54

5 Working without a repository.. 55

5.1 Organizing Projects ... 55

5.2 Moving Projects into different workspaces .. 57

5.2.1 Export Project using Toolkit... 57

5.2.2 Copy/Move Project using Broker Toolkit ... 57

5.2.3 Drag and Drop Projects between Broker Toolkits... 58

5.2.4 Copy/Move Project using Windows Explorer .. 58

5.2.5 Export Project as ZIP file... 58

5.3 Sharing projects between workspaces.. 59

Page 8 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

Page 9 of 59

WBI Message Broker Version 5
Change Management and Naming Standards

1 Overview

This document is available as IBM SupportPac IC04 from

http://www.ibm.com/software/integration/support/supportpacs/individual/ic04.html

SupportPac IC04 provides:

• Guidelines for Message Broker naming conventions. See Naming Standards on page
10.

• Recommendations for version control and change management procedures when
using CVS as a repository. See Change Management with CVS on page 17.

• Guidelines for organizing your work when not using a repository. See Change
Management with on page 41.

http://www.ibm.com/software/integration/support/supportpacs/individual/ic04.html

WBI Message Broker Version 5
Naming Standards

2 Naming Standards

As a general rule naming standards for MQSeries and Message Broker components should
closely follow organizational rules for naming objects but there may be a few subtle
differences required.

2.1 Characters allowed in commands

The character set that can be used for naming brokers, execution groups and message
identifiers is as follows:

• Uppercase A-Z

• Lowercase a-z

• Numeric 0-9

• Any special characters supported by the underlying file system.

IBM recommends the only non-alphanumeric character used in the name is underscore.

On UNIX platforms, broker names are case sensitive: for example broker names Broker1
and BROKER1 refer to different brokers. On Windows this is not the case. For this reason
IBM recommends using all uppercase characters to ensure consistency across platforms.

2.2 Converting Version 2.1 names that are not valid

Flows and properties can contain names that are not valid in Message Broker Version 5. If
this situation arises, the following transformation occurs. Each offending character is
replaced with a series of characters representing its Unicode code point. For example,
character "!" is replaced with X0026. This is explained in the report file that is generated.

This transformation is deterministic. If a flow is migrated on another occasion, which refers to
a flow with a character that is not valid, both names are transformed in the same way.

These transformations do not result in conflicting names except in extremely rare
circumstances. A conflict might occur because a Unicode code point sequence occurs in a
name precisely where the corresponding character occurs in another name which is
otherwise identical. In this case you must rename one of these flows or properties and re-
export the flows. You are recommended to select a new name that does not contain a
Unicode code point sequence ('Xnnnn') and to rename the message flow in the Control
Center before you migrate. Never rename a .msgflow file in the file system; always use the
Control Center or the workbench to perform renaming tasks.

Page 11 of 59

WBI Message Broker Version 5
Naming Standards

2.3 Message Broker Naming Standards

A naming convention for all components of the Message Broker network is required to
ensure that all names are unique and that users have clear guidance as to how to name new
objects. This section of the document aims to lay out a suggested naming convention for a
Message Broker network.

In IBM WebSphere Business Integration Message Brokers the Control Center has been
replaced with WebSphere Message Brokers Toolkit. This gives the build time environment a
consistent user interface across the range of WebSphere products. With the introduction of
WebSphere Message Brokers Toolkit comes the need to support a naming standard for the
new object that are needed when developing message set and flows.

So in addition to the objects that were present in earlier versions of IBM WebSphere
Business Integration Message Brokers:

• The Brokers.

• The Execution Groups.

• The Message Flows.

• The message sets.

• The messages.

• The message flow nodes.

There are new object to be included in the naming standard:

• The Message Flow Project.

• The Message Flow ESQL File.

• The Message Flow File.

• The Flow Mapping File.

• The Message Set Project.

• The Message Broker Archive File.

Brokers

The name used at creation time must be unique within the broker domain. Since Queue
Manager names are normally unique within a given organization’s environment it is
suggested that brokers should have the same name as the Queue Managers they are
associated with. For example a Queue Manager called WBIMB would have a broker WBIMB
associated with it.

Page 12 of 59

WBI Message Broker Version 5
Naming Standards

Execution Groups

The name for each Execution Group must be unique within a broker. It would be
recommended to separate Execution Groups by department name. This means that all
related departmental message flows could be grouped easily within the broker.

There may, however, be a situation where message flows within a department may need to
be kept apart from the others (for example if one is particularly large). In this instance the
name of the execution group could be the department name with a suffix of the relevant
project name or identifier.

One further thing you may wish to consider when working within the development
environment is having separate Execution Groups per developer. The benefit of this is that it
will avoid interference at deploy time with other developers and also keep each person’s
work autonomous within system processes for testing purposes. One way of achieving this
would be to use a prefix or suffix on the Execution Group name to identify a particular
developer. However, you could only use this naming standard in a development
environment, as the Execution Group configuration in System Test needs to exactly match
that of Production.

Message Sets

The name for a message set must be unique within a broker domain. Any reference to that
name within the domain must use that one message set. However, several brokers may use
a single message set. A suggested naming standard for message sets could be:

ProjectCode_MessageSetDescription

1. Project Code is an alphanumeric code representing the project that owns the
message set, for example BillingProject.

2. Message Set Description is a short description that is concise, clear and
understandable as to the function of the message set, for example
AccountingMessages.

3. All sections of the message set name should be separated by an underscore

Messages

The name for a message must be unique within a message set. Any reference to that name
within the message set must use that one message. However, several message sets may
use a single message. A suggested naming standard for message could be:

ProjectCode_MessageDescription_InputOrOutput

1. Project Code is an alphanumeric code representing the project that owns the
message, for example BillingProject.

2. Message Description is a short description that is concise, clear and understandable
as to the function of the message set, for example AccountValidation.

Page 13 of 59

WBI Message Broker Version 5
Naming Standards

3. Input or Output describes whether the message is an input or output message type. If
a message is both input and output then this could be set to InOut or left blank
depending on your preference.

4. All sections of the message name should be separated by an underscore.

Going down into lower levels from messages you get to elements, element lengths etc.
Naming standards are normally not needed at this point as element names are normally
generated automatically by importing C structures, COBOL copybooks or XML schemas. If
you are not using the importer then the message element names should be meaningful.

It should also be noted that message element identifiers will be generated automatically for
you and it is recommended to change these to the same names as the elements
themselves. The reason for this is that when you use the messages within your message
flows you refer to the specific element using the element identifiers and not the element
names. Therefore it will make you ESQL easier to write and understand if your element
identifiers are the same as your element names.

The importer will automatically generate element lengths. If you have to create these
manually then you should give them a meaningful name. For example if you are creating an
element length for a string of length 20 the call the element length Length_20, or L20. This
means that you could re-use this component if another message element required the same
element length.

Message Flow Nodes

Generally speaking there is no hard and fast way that message flow nodes should be
named.

However there are some guidelines that can be presented here in order to make the
message flow clearer for people trying to understand its business purpose.

• When naming MQInput and MQOutput nodes always name them the same as the
underlying MQSeries queue for clarity.

• When naming Filter nodes give them a question title, for example Is Name NULL?

• When naming Compute nodes give them a meaningful name to concisely explain their
business purpose.

• If you are using Database nodes try and give them a meaningful name to concisely explain
their business purpose.

• When using Publication nodes name the node after the Subscription Point name, or
possibly a Business Description of what is being published, or maybe even a combination of
both.

The Message Flow Project

The name for a message flow project must be unique within WebSphere Message Brokers
Toolkit. It is recommended that the name of the message flow project is related to the name
of a project in a version control tool. A suggested naming standard for message flows could
be:

Page 14 of 59

WBI Message Broker Version 5
Naming Standards

ProjectCode_MessageFlowDescription_Project

If you are using a CVS repository, add a suffix to the project name that identifies the project
as a message flow project. For example, append MF to the project name. See Repository
Structure in section Change Management with CVS, for more details.

Message Flows (File)

The name for a message flow must be unique within a broker domain. Any reference to that
name within the domain must use that one message flow. However, several brokers or
execution groups may use a single message flow. A suggested naming standard for
message flows could be:

ProjectCode_MessageFlowDescription

1. Project Code is an alphanumeric code representing the project that owns the
message flow, for example BillingProject.

2. Message Flow Description is a short description that is concise, clear and
understandable as to the function of the message flow, for example
AccountValidation.

3. All sections of the message flow name should be separated by an underscore

The Message Flow ESQL File

The suggested naming standard is to have it’s the same as the Message Flow (this is the
default behavior).

The Message Set Project

The name for a message set must be unique within a WebSphere Message Brokers Toolkit.
The scope of the name does not go beyond WebSphere Message Brokers Toolkit. However,
It is recommended that the name of the message set project is related to the name of a
project in a version control tool. The recommended standard is:

ProjectCode_MessageSetDescription_Project

If you are using a CVS repository, add a suffix to the project name that identifies the project
as a message set project. For example, append MSET to the project name. See Repository
Structure in section Change Management with CVS, for more details.

The Message Definition File

This is the same as a Message Set in version 2.1. Therefore we recommended the same
name as that given for the message set project.

Page 15 of 59

WBI Message Broker Version 5
Naming Standards

The Message Broker Archive File

The Broker archive file (also known as a bar file) is the unit of deployment to the broker. It is
recommended that copies of this file are place under version control, when they are
promoted through the different environments, such as Integration Test, QA test, and
Production.

The recommended naming standard is:

ProjectCode_SystemDeployedTo

Page 16 of 59

WBI Message Broker Version 5
Change Management with CVS

3 Change Management with CVS

This section has 2 purposes:

1. To provide some technical background and recommendations: It outlines some of the
basics of System Configuration Management (SCM) usage.

2. To provide a team working framework: It provides an outline of principles of team
working with the WebSphere Business Integration Message Brokers Toolkit and an
SCM repository – specifically, the Concurrent Versions System (CVS). The concepts
are transferable to other source control systems such as Rational ClearCase.

3.1 SCM System Terminology

For those unfamiliar with SCM systems, this section is intended to provide some background
to the terminology used. For readers who are familiar with source control systems, SCM
Terminology Comparison on page19, covers the differences between the Eclipse view of
team development, and the terms used by the most popular products (CVS and Rational
ClearCase).

3.1.1 Branching

A repository can branch into multiple streams, which are distinguished by name. In a CVS
repository, for example, a stream maps to the main trunk HEAD or to a branch. When the
same project appears in different streams, the resources evolve independently. Changes
released in one stream have no effect on other streams until they are merged.

3.1.2 Commit

After you have caught up with the stream, merged any conflicting changes in your local
workbench, and tested all changes locally, you can safely commit your changes to the
stream. In this way you can be sure that you are not overwriting work that has been done by
other team members.

When you commit your changes to the stream, they will be copied from your local workspace
to the stream. As a result, these changes will be seen as incoming changes when other
developers later commit to the stream.

3.1.3 Repository

A repository is a persistent store that coordinates multi-user access to projects and team
streams. In WebSphere Message Brokers Toolkit, repositories are managed by SCM
products such as CVS or Rational ClearCase LT. SCM vendors provide plugins that enable
WebSphere Message Brokers Toolkit to communicate with their repository client.
Communication between WebSphere Message Brokers Toolkit and the repository server is
via TCP/IP. In ClearCase terminology, a repository is a VOB.

Page 17 of 59

WBI Message Broker Version 5
Change Management with CVS

3.1.4 Resources

Resources are a collective term for projects, packages, folders, and files that exist in the
Workbench. The Navigator view provides a hierarchical view of resources and allows you to
open them for editing. Other tools may display and handle these resources differently.

There are three basic types of resources that exist in the Workbench:

Files Comparable to files as you see them in the file system.

Folders Comparable to directories on a file system. In the Workbench, folders
are contained in projects or other folders. Folders can contain files and
other folders.

Projects Contain folders and files. Projects are used for builds, version
management, sharing, and resource organization. Like folders,
projects map to directories in the file system. (When you create a
project, you specify a location for it in the file system.)

3.1.5 Stream/Branch

A stream is a shared work area that lets team member release their work and use code
updates from others. The stream represents the current state of a shared project. A
repository can contain multiple streams for different projects or different development stages,
such as one stream for new development and another stream for maintenance. In CVS
terminology, a stream is a branch.

3.1.6 Synchronizing

When you make changes in the workbench, resources are saved in the local workspace.
You need to release resources in order for other team members to access them. At the
same time, other team members may have released updates to the stream, which you can
access with WebSphere Message Brokers Toolkit. Conflicts arise when you modify a
resource and try to release it when there is a more recent version in the stream. In this
situation, you can either catch up/update the resource from the stream, release/commit your
version of the resource to the stream, or merge your work and the stream resource.

3.1.7 Versions

A version of a file resource captures the content of the file. A version of a project captures
the configuration of folders and files as well as their specific versions. You can create new
project versions as a snapshot of the current configuration of a project either in a stream, or
in the workspace. In the team environment, you cannot explicitly version resources other
than projects, such as files or folders. However, they are automatically and implicitly
versioned when they are released to the stream.

Page 18 of 59

WBI Message Broker Version 5
Change Management with CVS

3.1.8 Update

Update is the process of copying changes other developers have made to a resource into
your local workspace. This ensures that you will have the latest work from the other team
members incorporated in your work as well.

3.1.9 SCM Terminology Comparison

SCM systems frequently use different terminology to refer to similar SCM commands and
functions. The following table lists commands/features and attempts to map them to
terminology/features in other SCM systems:

Message Brokers
Toolkit

CVS ClearCase

Workspace File System Work area

Repository Repository VOB

Branch Branch (Tag) Stream and project

Project Module View

Resource File Element

Commit Commit Check-in

Update Update Compare with

Version Version (Tag) Version

Page 19 of 59

WBI Message Broker Version 5
Change Management with CVS

3.2 CVS Background

CVS is one of many Source Control Management Systems that the WebSphere tools can
work with. This document assumes some working knowledge of WebSphere Message
Brokers Toolkit and CVS.

• For additional information on using CVS and WebSphere Message Brokers Toolkit,
see the online help sections covering CVS.

• For additional information and tutorials on using CVS with the Message Brokers
Toolkit, see the Redbook Migration to WebSphere Business Integration Message
Broker version 5.

When working with CVS and WebSphere Message Brokers Toolkit, branches are the
shared storage areas where developers commit the changed resources from their
workbench. When a resource is committed to the branch, a new edition of the resource is
created. Logical versions are created by applying a CVS tag to the collection of current
resources in the branch.

The primary model for developing with CVS is to use the default HEAD branch, as the
branch developers will commit their work to during the standard development cycle. As
project builds are required, a new version tag is applied to the contents of the HEAD branch.
The project is built with the contents of the version and deployed to test and production
environments. When production fixes are required, a fix branch is created based on the
version currently in production. Code fixes are placed in both the fix branch and the HEAD
branch, where ongoing development continues to be done.

3.2.1 Recommended use of multiple branches

It is recommended that development teams do not use the HEAD branch as the
development branch. Reasons for this include:

1. Untrustworthy developers: The development team should tightly control what code
gets committed to the HEAD branch for build purposes.

2. Interleaved code and build cycles: This is the case where developers may want to
store their code in the SCM system, but it is not ready or scheduled for the next build.
The “not ready for prime-time” code may be partially or fully completed, but not
scheduled for rollout for a variety of reasons. It is still better to get the code into the
SCM system instead of leaving it on the developers’ workstations. In some cases,
special branches should be created for significant long-term efforts, but in other
cases a single development branch can be used to collect the changes from different
developers that are not ready for inclusion in the HEAD branch.

3. Frequent Production Builds: In those development environments where small
changes are frequently pushed out into production, untested changes need to be
kept separated from CVS branch.

Page 20 of 59

WBI Message Broker Version 5
Change Management with CVS

3.3 Team working principles

1. Development must always be done on branches

2. Production level code should always reside in the HEAD stream

3. Developers should only commit changes to the repository once testing has ensured that
it does not break the existing code.

4. Work can only be performed on a branch’s current contents. Do not start development
on back version levels: you will not be able to commit changes. Instead first create
branch on that version before progressing.

5. Versions can be used for:

a. Deployment level.

b. Branching reference.

c. ‘Comparing with’ to retrieve back levels of code into current stream.

Page 21 of 59

WBI Message Broker Version 5
Change Management with CVS

3.4 Version conventions

Note: periods and spaces are not permitted in CVS version names.

Naming conventions must be decided on prior to development and should include the
following:

1. Versioning policy.
It should be clear how the version number should be incremented every time code is
versioned. For example, if the first production version is V1-0-0:
Increment to V1-0-1 on a small fix, to V1-1-0 on a feature release, and to V2-0-0 on
a new version.

2. Branch name.
Each branch and category of branch should have a naming convention. For example:

a. BASELINE

b. MAINTENANCE

c. CRxxx

Page 22 of 59

WBI Message Broker Version 5
Change Management with CVS

3.5 Repository Structure

There are essentially two approaches that can be taken to structuring the repository:

1. Flat, i.e. all projects at the top-level of a CVS repository root. This is the structure
which is probably easiest to configure when working with CVS and WebSphere
Message Brokers Toolkit. This is because a single CVS repository root is used.
Projects are added to the workspace on an individual basis, or on a project set
basis. The downside is that unless projects are consistently named, the
organization of the repository can become unstructured.

2. Multiple roots. If desired, multiple CVS repository roots can be configured, for
example to accommodate multiple sub-organizations or different types of
development (Message Broker and Java). Since WebSphere Message Brokers
Toolkit can connect to multiple repositories, this is also perfectly workable since
projects from different sources can be added to the workspace.

Most development environments are not likely to be sufficiently complicated to require
multiple repository roots at first. If projects come along later which wish to segregate their
development resources, CVS can be configured to provide an additional repository root for
that project.

The recommended initial approach is for a flat structure: all projects at the top-level of
a single CVS repository root.

Project sets should be used to relate different development resources together.

All project set files, and any common configuration files will reside in a common CVS module
called ApplicationResources.

CVS has no concept of project “types”. However, WebSphere Message Brokers Toolkit
relies on “typing” a project to know how to treat it in development terms. Therefore it is useful
to add an indicator to the project name to enable project types to be quickly identified when
looking at the source control system.

Message Flow projects and Message Set projects will be named appropriately to include the
business Project name as a prefix, and the WebSphere Message Brokers Toolkit project
type as a suffix.

Page 23 of 59

WBI Message Broker Version 5
Change Management with CVS

Modules containing shareable code (common ESQL routines, etc.) will have a prefix of
Common:

XYZTransferMF: a message flow project belonging to the XYZ business project.

CommonConversionMF: a message flow project containing shared ESQL library
code.

Note that spaces are not valid in CVS module names. Use underscores (_) instead if you
need to use a space, but in general this should be avoided.

Page 24 of 59

WBI Message Broker Version 5
Change Management with CVS

3.6 Initial Team Working Configuration

Here we outline the steps that need to be taken to provide the relevant resources and team
working practices:

3.6.1 Set up repository

Create a CVS repository on a server accessible to all. This is recommended to be a UNIX or
Linux server, because the CVS server on Windows is not officially supported with
WebSphere Message Brokers Toolkit1.

Establish a regular back up of the repository.

3.6.2 Create user ids

Each developer working as part of the development team will need a user id set up on the
OS of the CVS server. This will be the user id that they use to connect to CVS and all
changes will be logged against this username.

3.6.3 Create baseline version

Once the baseline code base is established in WebSphere Message Brokers Toolkit, share
the contents into CVS. Tag this code as the Initial Code drop in the new repository.

1 This is due to stability problems. For more information see
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-vcm-
home/docs/online/cvs_features2.0/cvs-faq.html.

However, some customers have successfully run CVSNT v2.0.x on Windows.

Page 25 of 59

http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-vcm-home/docs/online/cvs_features2.0/cvs-faq.html
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-vcm-home/docs/online/cvs_features2.0/cvs-faq.html

WBI Message Broker Version 5
Change Management with CVS

3.6.4 File type settings

The Message Brokers Toolkit does not come pre-configured with correct file type settings for
use with CVS. When working with CVS, files can be added to the repository as ASCII or
binary. By default, the Toolkit assumes that unknown files are binary, unless the file
extensions are configured to be recognized as ASCII. Most of the files created when working
with message flows contain ASCII data. Before attempting to add any files to the repository,
the Toolkit needs to be configured to tell CVS about the contents of all of the different file
types. Do this via the Window → Preferences → Team → File Contents menu
option. Configure files types as shown in Table 1.

Table 1 File extensions used by the Message Brokers Toolkit

Extension Content Description

esql ASCII Message flow ESQL file

msgflow ASCII Message flow file

mfmap ASCII Message flow mapping file

mset ASCII Message set file

mxsd ASCII Message definition file

category ASCII Message category file

msgnode ASCII Message flow node file

xmi ASCII Artifact definition file

configmgr ASCII Domain connection file

bar Binary Broker archive file

enqueue ASCII Enqueue message file

3.6.5 Create project set

A project set is an XML file that lists the projects required as part of the development project.

Create the project set including all of the development projects:

2. essage Set projects.

1. Message Flow projects.

M

Page 26 of 59

WBI Message Broker Version 5
Change Management with CVS

This is done as follows:

1. Load workspace with projects from the correct branches that are to comprise the
project set.

2. Select Export → Team Project Set and select the destination for this file.
Name it according to the branch that it represents. Place this file in the
ApplicationResources project, which should also be in CVS.

3.6.6 Procedure for creating workspace

The procedure to create the WebSphere Message Brokers Toolkit workspace for each
developer is as follows:

1. Connect to repository.
Switch to the CVS Repository Exploring perspective
Create the new repository connecting to the CVS server and supplying the
developer’s userid and password.

2. Set up workspace variables.
This can be useful if an environment independent path is required.

3. Import project set.
Import the project set file. This will configure the workspace with the latest committed
contents of the application projects.

Page 27 of 59

WBI Message Broker Version 5
Change Management with CVS

3.7 Team work procedure

This section provides a framework for team development with WebSphere Message Brokers
Toolkit and CVS.

A brief outline of the team working principles are mentioned here, but further information on
this can be found in:

•

•

•

•

•

•

A Team Development tutorial on the WebSphere Developer Domain (see References
on page 40) .

The WebSphere Message Brokers Toolkit Help System, under Team programming
with CVS.

3.7.1 Using CVS during Development

When a developer is working on code, he should be working in a WebSphere Message
Brokers Toolkit workspace that has projects associated with the primary development
branch. The standard developer should never commit items directly to the HEAD branch as
the HEAD branch is used for integration and building of releases.

The development cycle

The standard development cycle is as follows:

Set up the development branch. When the projects are initially shared, they should
be added and committed to the HEAD branch. At this point, the new development
branch should be created from the HEAD branch. For the purposes of this document,
this branch is known as DevBranch

The developer initializes his workbench by connecting to CVS and pulling the
projects from the DevBranch branch. It should only be necessary to do this once.

Prior to starting a new development effort, the developer will refresh the workspace
with the latest code from the development branch. This can be done be selecting all
of the projects and use either the Team…Synchronize option or the Replace…Latest
from Repository option.

Fully build and test code prior to committing the code back to the development
branch. Check in code as follows:

1. Select the projects and do a Team…Synchronize with Repository… action.

2. From the Synchronize view, analyze the Incoming Mode first. Identify any
changes that were placed to the repository since his last synchronization.
The Show Conflicts page will highlight the incoming changes that directly
conflict with the outgoing changes. Any changes should be brought into his
workbench, through either direct replacement or merging of code. Any
conflicts with the developer’s own modifications should be resolved. The
code should then be retested.

Page 28 of 59

WBI Message Broker Version 5
Change Management with CVS

3. After processing incoming changes, resynchronize (if necessary) and commit
outgoing changes using the Outgoing mode.

New Projects

When a new project is created and associated with CVS with the Team…Share Project
menu action, the project will be associated with the HEAD branch. Before synchronizing
with the repository, use the Team…Branch menu action to move the project over to the
development branch.

Although the dialog refers to a “new branch”, an existing branch can be specified. In this
case, the developer should specify DevBranch as the branch name.

New Branches

Although branches are an easy way of isolating code from the main development stream for
many reasons, branching should not be conducted outside the strict guidelines provided in
this document.

If code does need to be shared between developers but not merged into the main
development stream, then the developers should consider using the patch capability of
WebSphere Message Brokers Toolkit. However, patching can be difficult when using
resources generated by the Message Brokers Toolkit because the files are visually-edited
but XML-based, making standard diff comparisons of questionable value.

Versioning Outline

The following outlines the principles involved in versioning. This discusses the simple
scenario, where the main code base resides purely in the HEAD stream. This can be
extrapolated into the situation where parallel development is taking place on multiple
branches.

There are two approaches to versioning.

Page 29 of 59

WBI Message Broker Version 5
Change Management with CVS

Standard versioning

1. Load HEAD contents into workspace

2. Merge in changes from DevBranch

3. Synchronize and commit changes back into HEAD stream

4. Tag as version. After the branch has been versioned, the application should be
rebuilt, tested, and deployed.

Figure 1. An overview of CVS versioning process

Page 30 of 59

WBI Message Broker Version 5
Change Management with CVS

Fix versioning

These are the steps to create and release a fix using a Fix Branch. (See Figure 2)

1. The new fix branch must be created from a previous version of the HEAD branch.
Determine the version of the code that is in production and use this version tag as
the basis of the fix branch.

2. Load contents of new fix branch into workspace.

3. Fix problem and test.

4. Synchronize and commit changes to fix branch.

5. Merge fix into DevBranch (or notify developers of change).
The fix will typically be merged into HEAD as well, so that the fix can be rolled into
production quickly.

6. The integrator should load the current fix branch contents, which should include the
fix.

7. Tag as version. After the branch has been versioned, the application should be
rebuilt, tested, and deployed.

Page 31 of 59

WBI Message Broker Version 5
Change Management with CVS

Figure 2. Versioning from a Fix Branch

Page 32 of 59

WBI Message Broker Version 5
Change Management with CVS

Versioning with multiple branches

As mentioned in the previous section, versioning can be extended to work on multiple
branches. The following is an outline of how this can work

Figure 3 Versioning with multiple branches

Branch usage

BASELINE (HEAD stream) - This will contain the production ready code at all times. It is
the responsibility of a designated integrator to merge changes into this branch.

MAINTENANCE - This branch will contain maintenance fixes. Although mentioned here as
one branch, that is only conceptual. A branch will be created per fix, tested and then merged
back into the BASELINE. (Hence the importance of naming conventions: all
MAINTENANCE branches should be prefixed with MAINT.)

CHANGE REQUEST (CR) – Similarly this is a branch created for a single change request.
It is expected to by longer living that a maintenance fix, but will not require versioning as part
of the branch life cycle. It will have to cater for maintenance fixes being made and will need
them to be manually merged into this branch.

NEW DEVELOPMENT – This branch will hold the new development code. It will need to
merge in changes made in the CR and MAINT branches. This branch will need periodic
versioning at milestones in the development.

Page 33 of 59

WBI Message Broker Version 5
Change Management with CVS

Version usage

As previously mentioned, a version can not be further developed. A version is a means of
marking a milestone in the code development.

The CVS term for a version is a ‘tag’. A tag is a way of labeling together all the resources in
a project at a specific resource revision level. For example:

TestProject is tagged as V1_0 and contains

 Test.msgflow at 1.1
 Test.esql at 1.2.1

There are 2 options that can be used to perform branching and merging in WebSphere
Message Brokers Toolkit.

1. Manually branch (not recommended)

a. Replace workspace contents with a previous version of a project

b. Create new branch

c. Make changes

d. Synchronize and commit (which will commit the changes back into the new
branch)

2. Merge changes back into current branch contents (recommended)
If old code needs to be retrieved for further development. The code should be
retrieved from the required version and merged back into the current contents of the
working branch. A simple Compare with…version should suffice.

To continue development, the latest contents of a branch (including HEAD) must be
loaded into the workspace.

A version provides functionality for:

a. Deployment – A specific level of code can deployed to production

b. Branching reference – When a branch is created, it needs to be ‘rooted’ in a
given version of the stream that it is branching from.

c. ‘Comparing with’ to retrieve back levels of code into current stream

Page 34 of 59

WBI Message Broker Version 5
Change Management with CVS

Inserting version information in message flows and bar files

Most version control systems, including CVS, support the concept of "tags" which are special
character sequences in text files. These tags can be automatically replaced by the extract
command with the revision value of the corresponding data in the repository.

More detailed information is available at
http://www.cvshome.org/docs/manual/cvs-1.11.7/cvs_12.html#SEC98.

First, add a Passthru node to the subflow. Name it with the key $RCSfile$ $Revision$.
Nodes are permitted to have pretty much any name at all, so this is acceptable to the flow
compiler. However, avoid characters that will be XML escaped: the encoded version will be
different from the edited version!

Notice that the file name and version number do not have to be maintained by the user. The
Passthru node was added to v5.0 Fixpack 2 precisely to support this scenario.

The following example contains two flows: "Mainflow.msgflow" and "Subflow.msgflow". The
first node in each flow is a Passthru node with the name set to $RCSfile$ $Revision$.
$RCSFile$ is the name of the file in CVS, and $Revision$ is the file revision number (of the
form X.Y[.x.y]). Additionally, the $Name$ tag can be used to substitute the version name
being extracted.

By default, the CVS client in Eclipse stores msgflow files as ASCII without keyword
substitution. See Window>Preferences...; then select Team>CVS to see the current value.
CVS can auto-expand the tags on commit, but this example uses the ASCII without
keyword substitution mode so they will produce nicer labels when editing the file. CVS
supports several options for substituting the tag; choose the one that best suits your needs..

Page 35 of 59

http://www.cvshome.org/docs/manual/cvs-1.11.7/cvs_12.html

WBI Message Broker Version 5
Change Management with CVS

Commit the flows to the CVS repository using the Team>Synchronize with Repository...
menu. This completes instumenting the flow to contain file revision numbers.

Page 36 of 59

WBI Message Broker Version 5
Change Management with CVS

Next, the deployer (the human administrator) must specify the build version tag, extract the
flows from the CVS repository and build the broker archive file. All these steps can be
performed in a single repeatable script using console tools.

The Eclipse CVS client or the CVS console tools can be used to tag the build id. The
console tools allow for automating the tagging as part of a script. This example uses the
Eclipse CVS client.

First, select the project and click the Team>Tag as Version... menu.

Next, specify the version tag. CVS applies this tag to all the most recent file revisions
committed to the repository in the current branch.

Page 37 of 59

WBI Message Broker Version 5
Change Management with CVS

This completes tagging the files with the build version number.

Next, export the build version from the repository. Use the CVS export command with the -
kv option to replace the tag with its value.

cvs export -r build2003Oct07_00 -kv
RuntimeVersioningWithPassthru

This extracts the file and replaces the $...$ CVS keywords with their current values, using
the current directory as the repository. The -d dir CVS option can be used to specify a
different repository location.

Open the files in the flow editor to see what they look like after extracting with cvs extract.
The Passthru node names are updated to contain the file and revision number in the source
control repository.

This completes naming the Passthru node with the repository tags.

Adding and deploying these flows to a bar file will result in the Passthru nodes logging their
name, in other words the file name and revision number, in the trace logs. The
mqsicreatebar command has a -v option to specify the build version number in the flow. For
example, building these flows with:

mqsicreatebar -b test.bar -version build2003Oct07_00 -o
RuntimeVersioningWithPassthru\Mainflow.msgflow

This will create the following compiled flow in the bar file:

 Mainflow_build2003Oct07_00.cmf

Here is the resulting bar file loaded in the Broker Archive Editor

Page 38 of 59

WBI Message Broker Version 5
Change Management with CVS

This flow has the build version (build2003Oct07_00) in the message flow name and the file
revision for each file added to the trace log by the Passthru node.

Page 39 of 59

WBI Message Broker Version 5
Change Management with CVS

3.8 References

WebSphere Message Brokers Toolkit Help – see “Team Programming with CVS”

IBM Website: developerWorks
http://www.ibm.com/developerWorks

Migration to WebSphere Business Integration Message Broker v5

http://www.redbooks.ibm.com book no: SG24-6995

Page 40 of 59

http://www.ibm.com/developerWorks
http://www.redbooks.ibm.com/

WBI Message Broker Version 5
Change Management with Rational ClearCase

4 Change Management with Rational ClearCase

4.1 Change Management with ClearCase

The purpose of this section is to give the reader an understanding of Software Configuration
Management (SCM) and how ClearCase addresses SCM issues. Before going into the
details it is best to see the terms ClearCase uses to aid SCM. Rational have also developed
something called Unified Change Management (UCM). This is an out of the box process to
give best practices for SCM. It allows for a wider control of elements and ties them into
components, projects and activities. The descriptions below are from the web-based course
“Getting Started with Rational ClearCase: Concepts and Terminology for WebSphere Studio
v5 Users”2.

4.1.1 Basic Terms

SCM – Software Configuration Management: Software Configuration Management is the
software engineering discipline that deals with managing change to software. The purpose
of the discipline is to ensure that each stage of the software development process is
controllable and reproducible. This means that all aspects of the project can be readily
identified and managed and that any stage of the project can be easily recreated.

ClearCase: Rational ClearCase is an SCM system used to control multiple versions of files
used in software development projects. ClearCase is the enterprise level solution designed
to handle multiple teams working in parallel across several locations if required.

ClearCase LT: Rational ClearCase LT is a lightweight version of ClearCase designed for
smaller development projects. It contains a subset of the full ClearCase implementation.

 ClearQuest: Rational ClearQuest is a defect and change tracking application designed to
aid companies in managing and tracking change together with reasons for the change etc.

4.1.2 ClearCase SCM and UCM Terminology

Element: An element is a file or directory under ClearCase control. Files and directories
become elements when they are checked into ClearCase.

Version: A version is a revision of an element that is being managed by ClearCase. Each
time an element is checked in after change a new version of that element is created. The
history of these changes is known as version trees.

VOB – Versioned Object Database: A VOB is a data repository used by ClearCase for
storing versions of elements and the metadata associated with these objects.

Checkout: To modify an element you must first check it out. This allows you to modify the
element in your view.

2 http://www.ibm.com/developerworks/rational/library/4195.html

Page 41 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Checkin: Once you have finished modifying the element you must check it in. This creates a
new version of the element in the VOB.

View: A view provides a way of seeing a version of each element in such a way that you can
modify elements, compile source for testing and create documents. There are two types of
view, snapshot and dynamic.

Dynamic View: A dynamic view is one that uses the ClearCase Multi-Version File System
(MVFS) to provide immediate, transparent access to elements stored in the VOB. This view
is only available in the full ClearCase product.

Snapshot View: A snapshot view copies the required files from the VOB to a local directory
on your machine. This view is needed if you wish to be able to compile components without
being connected to the network.

Serial Development: The process in which different parts of a software development project
are created/modified by a single team serially, ie. Phase 1 completed before phase 2 can be
started.

Parallel Development: The process in which different parts of a software development
project are created/modified by multiple teams, in parallel. The various parts are then
combined into a single integration area.

Merge: Merge is the process involving the integration of two or more versions of an element
into a final version.

Development Workspace: The development workspace is an isolated work environment for
developers. A project can have multiple developer workspaces which means that a
developer may also have multiple workspaces. A development workspace is the combination
of a development stream and a development workspace

Component: A component is an item stored in a VOB that groups together a set of directory
and file elements within a UCM project. The elements of a component are usually developed
and released at the same time.

Project: A project is an item stored in a VOB containing configuration information for a large
development effort such as a product release. A project must contain at least one and
usually many components. A typical project will contain one integration stream and many
development streams.

PVOB (Project VOB): A VOB that stores UCM items such as projects, stream, activities and
change sets. Every UCM must have a PVOB. Multiple projects can share the same PVOB
but ClearCase components cannot cross PVOB boundaries.

Baseline: A baseline is an item stored in a VOB that typically represents a stable
configuration of one or more components. A baseline identifies activities and one version of
every element visible in each component.

Activity: An activity is and item stored in a VOB that tracks the work required to complete a
development task. An activity includes a headline to describe the task and a change set to
identify all the elements the developer creates or modifies whilst working on the activity.

Change Set: A change set is a list of related versions associated with a UCM activity.
ClearCase records the versions used by the developer whilst working on an activity.

Page 42 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Stream: A stream connects an activity.

Development Stream: A development stream is an item stored in a VOB that determines
what versions of elements appear in a development view. Development streams also
maintain a list of developer activities.

Development View: A development view is a view associated with a development stream.
The view uses the development streams configuration to select the correct version of the
components to work on.

Integration Workspace: An integration workspace is an area where changes made by
developers working in isolation are merged. The integration stream and corresponding view
represent the projects primary shared workspace.

Integration Stream: A project contains one integration stream that records the projects
baseline and enables access to versions of the projects shared elements.

Integration View: The integration view is associated with the integration stream and uses
the streams configuration to select the correct versions from the component to work on.

Deliver: The process of merging activities from one stream to another, typically from the
development view to the integration stream.

Rebase: Rebase is a ClearCase operation that makes a development work area current with
the set of versions represented by a more recent baseline in another stream, usually the
projects integration stream or a feature specific development stream.

4.2 ClearCase Overview

Rational ClearCase is a product to utilise SCM in software development. It is available as
Rational ClearCase LT, Rational ClearCase and rational ClearCase Multisite.

ClearCase uses a reserved access protocol for managing access to elements. This puts
locks in place to prevent concurrent changes to the same element. ClearCase does support
a more relaxed access protocol using unreserved checkouts although it is not recommended
in most cases.

ClearCase provides lots of tools wizards to help set up and manage the various versioned
object bases (VOBs), views, jobs and logs. The ClearCase explorer client can be used to
create and work with views. Reporting tools are also provided.

ClearCase relies on the operating system for its authentication, which means that a
Microsoft Windows Domain will be required when the server is on a Windows machine and
there are multiple users.

The smallest part of ClearCase is the element. An element can be either a directory or a file.
ClearCase manages the changes to these elements

Page 43 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Figure 4: Elements and versions

The diagram in figure 1 shows four elements and the sequence of versions for each
element. All of the elements are stored in the VOB. A ClearCase server can have multiple
VOBs, but has to have at least one.

Figure 5: VOB

The VOB is created using the VOB Creation Wizard, which can be launched from the start
menu or from within the ClearCase Administration Console.

Once the VOB is created you need to create a view to access the elements in the VOB.
Each VOB can have multiple views. Typically there will be one view for each developer and

Page 44 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

on larger projects, one view for the integration stream. To create the view you use the View
Creation Wizard which again can be launched from either the start menu or from within the
ClearCase Administration Console.

Figure 6: View

e context menu. This allows you to add a comment to explain
why the elements are added.

ut from the context menu instead. Remember to enter a comment for each change
made.

Once the view is created we are ready to start populating the VOB. The simplest way to do
this is using the ClearCase Explorer. Simply add the new elements into the VOB and select
Add to Source Control from th

To make changes to elements in the VOB you must first check them out. Once checked out
you may perform any changes you wish to make. To confirm the changes made you must
check in the element. If you do not wish to make any changes you can simply select Undo
Checko

Figure 7 : Check in Check out process

ed files are retrieved allowing the development to progress with the correct level of
files.

f the baseline as a first draft. A baseline identifies one version of each element in the
view.

If other people are also working on the project then you may need to retrieve their changes
as well. To do this you select the Update View from the context menu. This will ensure all
chang

When we have the project at a reasonable state we will want to take a baseline. You can
think o

Page 45 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Figure 8: Baseline

There will be several baselines, one for each stream. Typically there will be an integration
stream and several development streams. A stream links together views, activities and
baselines.

Figure 9 : Stream

Each developers stream can be considered a private work area so multiple streams will
exist.

Page 46 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Figure 10 : Private work areas

Once the developer has finished working with their stream and wish to merge it into the
integration stream they must deliver their stream.

Figure 11: Delivering streams

Every now and then at important milestones, a new baseline will be created in the integration
stream. This will include all of the changes delivered since the last baseline was taken. At

Page 47 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

this point the developers may wish to update the baselines in their stream. This is known as
rebasing the development stream.

Figure 12: Rebase

After a while the project will be in a stable state, for example, when reaching a release level.
At this point you may wish to take a version. A version is actually a label applied to the
current versions of all the elements in the view.

Figure 13: Version

4.3 Working with Branches

When working with multiple developers we will use multiple branches of elements. Imagine
we have a project. It is decided that the project needs to be ported to another platform and at
the same time someone needs to start work on the beta for the next release.

Page 48 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Figure 14: Branching

When using streams the branching of the elements is handled for you.

Sometime you may wish to use a private branch to perform a bug fix without affecting other
developers perhaps.

Figure 15: Private branch

If after some time of working a new branch you decide that it is no longer needed the branch
can just be discarded and you can return to the original branch for your work. If you decide
to keep the work then you will have to merge the branches back into the main branch.
Remember to merge the branches in the order of dependence as shown in figure 13.

Page 49 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Figure 16 : Merging branches

4.4 ClearCase & WebSphere Business Integration Message Broker

WebSphere Business Integrator Message Broker uses the Message Broker Toolkit. The
toolkit has the option of running with a number of SCM tools. Here we look at how we can
use the toolkit as a ClearCase client.

Typically a VOB is created during the installation of ClearCase. It is usually the responsibility
of the ClearCase administrator to create the necessary VOBs to connect to. You can
however, set any preferences for ClearCase from inside your toolkit. To access these
preferences select Window -> Preferences from the toolkit pull down menu. From there, click
on Team ->Rational ClearCase to access the settings.

Page 50 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Figure 17: ClearCase Settings

Rational ClearCase allows you to work in both on and offline modes. Before we can work in
either we must first connect to ClearCase from inside the message broker toolkit. To do this
we select the Connect to Rational ClearCase option from the ClearCase drop down menu
inside the toolkit.

Page 51 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

Figure 18 : ClearCase Integration

Once we are connected we can see all the options available to us. From inside the toolkit we
have many functions available to us. Figure 16 shows the capabilities available from inside
the toolkit.

Figure 19: CearCase capabilities

Some of the options are only available with the full ClearCase and they are marked *.

Page 52 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

4.4.1 Creating a new project under ClearCase Control

To create a new version controlled project, create a project as normal via File -> New ->
Project method. Remember to change the location of the project from the default directory to
that of the VOB. The Add Elements to Source Control dialog box will now appear. Select the
elements that need to be added.

4.4.2 Adding an existing project to ClearCase control

It may be that you have already projects started that you wish to be under Rational
ClearCase control. To do this simply selecting the project and right clicking to bring up the
team context menu then select Team -> Share Project. Choose Rational ClearCase and
enter the path to the VOB.

4.4.3 Adding an existing ClearCase project to your workspace

There will be times that you will need to add projects from the VOB to your workspace. The
usual process can achieve this. Select File->Import from the pull down menu in the toolkit.
Then select Existing Project into Workspace. When the Import Project dialogue box appears
specify the directory that is the root of the project in the VOB. The project should now appear
in the toolkit workspace.

4.4.4 Adding an element to ClearCase control

From inside the toolkit it is possible to add new elements to ClearCase Control. This is done
by right clicking on the element to get the Team context menu up. Choose Team -> Add to
Source Control. This will bring up the Add to Source Control dialogue box where you place it
under ClearCase control. If you are using UCM then it will also prompt for an activity.

4.4.5 Check out and edit

This can be done from either the Team context menu or the toolbar menu. Simply select the
file you wish to edit and then checkout via either menu. The file can then be edited in the
usual manor. If you are using UCM then you will be prompted to enter an activity as well.

It is also possible to have the files automatically check out when you edit them. This can be
set up via the preference panels previously mentioned.

4.4.6 Save and Check in

Again this can be done from either the Team context menu or the toolbar menu. Once you
have finished editing the file and saved it select the file. Then from either of the menus select
check in. Don’t forget to add comments about changes that have been made.

Page 53 of 59

WBI Message Broker Version 5
Change Management with Rational ClearCase

4.5 Reference:

4.5.1 White Papers

Rational ClearCase Integration with WebSphere Studio TP731A

Integrating Rational ClearCase LT and WebSphere Studio Application Developer V5.

4.5.2 Redbooks

WebSphere Studio Application Developer Version 5 Programming Guide

Migration to WebSphere Business Integration Message Broker v5

4.5.3 Manuals

Rational ClearCase Rational ClearCase LT Introduction

Rational ClearCase Rational ClearCase LT Tutorial

4.5.4 Web-Based Courses

Getting Started with Rational ClearCase: Concepts and Terminology for WebSphere Studio
v5 Users.

Page 54 of 59

WBI Message Broker Version 5
Working without a repository

5 Working without a repository

This section provides suggested procedures for version and workspace management of
WebSphere Integration Message Broker V5 objects. These procedures are aimed at a
typical single user environment such as project creation for learning purposes, testing,
demos and short-term development engagements where work is generally discarded or
archived after an elapsed time period.

5.1 Organizing Projects

The Broker eclipse tooling keeps a default workspace for referencing all the projects that are
created. Although the projects can be created and organized in separate folders, a single
workspace poses a problem when it quickly gets cluttered with folders belonging to different
projects becoming intermixed. As more and more projects are added, the list can become
too large to handle, making it difficult to distinguish related projects.

The solution is to create a different workspace for each group of related projects such as
client engagements, and trial message flows and sets; and to open the relevant workspace
when launching the broker toolkit. This can be implemented easily by creating a different
shortcut for each workspace.

The tooling creates the default workspace in:

<Broker Install Directory>\eclipse\workspace\

The default workspace location for projects can be changed using the –data parameter in
the shortcut as shown below:

<Broker Install Directory>\eclipse\mqsistudio.exe –data <location>

Page 55 of 59

WBI Message Broker Version 5
Working without a repository

The location can now be specified for example using a naming standard such as:

\<Customer A>\workspace

\<Customer B>\workspace

\<Demo>\workspace

The process can be repeated to create different shortcuts to launch the different
workspaces:

On the first startup after setting the –data parameter, the broker will briefly display the
message “Please wait…Completing the Install” to indicate that the new workspace is being
initialized.

Tip: Other parameters, which can be used to customize the Message Brokers Toolkit
Launcher, may be found by typing “org.eclipse.core.launcher.Main” in the help search panel.

Page 56 of 59

WBI Message Broker Version 5
Working without a repository

5.2 Moving Projects into different workspaces

Once the different workspaces have been created, the projects, which previously belonged
to one workspace, can be moved to their new workspaces. There are several techniques
available.

1. Export project to a new workspace

2. Copy/Move project to a new workspace

3. Drag and Drop between Broker workspaces

4. Copy/Move using the Windows Explorer

5. Export/Import using ZIP files

5.2.1 Export Project using Toolkit

Using ‘Export’ the project can be copied directly to the new workspace location.

1. Select the project and choose “Export” from the File pull down menu.

2. Select “File System” from the “Export resources to the local file system” dialog panel
and click Next

3. Specify the new workspace location in “Select Export destination” and select the
“Create directory structure for files” from the options.

4. In the target workspace, create a new project and assign it the same name as before
and the project should appear with its components in the new workspace.

To avoid ending up with the same project being referenced in two workspaces, delete the
original project, making sure to select the “Also delete contents” check box.

5.2.2 Copy/Move Project using Broker Toolkit

This technique can be used to move projects between workspaces.

1. Select the project and right click to select move

2. Specify the new location belonging to the target workspace

3. When this has completed, the project is moved to the target directory but it doesn’t
appear in the target workspace yet.

4. In the target workspace, create a new project and assign it the same name as before.
An alternative method is to use Import → Existing Project into
workspace and specify the directory in the file system.

5. The project should appear with its components in the new workspace.

Page 57 of 59

WBI Message Broker Version 5
Working without a repository

To avoid ending up with the same project being referenced in two workspaces, delete the
original project making sure to select the “Do not delete contents” check box, (applicable if
project was moved).

5.2.3 Drag and Drop Projects between Broker Toolkits

Using this technique allows components to be selected and copied (or moved) to a different
workspace. Unlike the other techniques, the selection is made on the project contents rather
than the root project name.

1. In the target workspace, create a new project and assign a name to it.

2. Open the source project and make a selection on the required components

3. Use the drag and drop technique to copy or move the contents into the new
workspace project.

5.2.4 Copy/Move Project using Windows Explorer

This technique can also be used for copying and moving projects between workspaces.

1. Copy or move the project root directory using the Windows file explorer from the
original workspace location to the new location using drag and drop. (For Copy,
press the CTRL key when dragging).

2. In the target workspace, create a new project and assign it the same name as before

3. The project should appear with its components in the new workspace.

5.2.5 Export Project as ZIP file

Exporting to a ZIP file enables several projects to be packaged and copied to a different
workspace. As its name suggests, this method is more often used to copy projects to a
different machine or archiving for backup purposes.

Using ‘Import’ to populate a project with the ZIP file contents creates a new folder within the
project and may not be the desired result. In order to mirror the original folder structure, the
ZIP file can be first unzipped to the new workspace directory outside the eclipse tooling and
imported using eclipse Import → Existing Project into workspace.

Page 58 of 59

WBI Message Broker Version 5
Working without a repository

Page 59 of 59

5.3 Sharing projects between workspaces

You may need to access projects that you created in a different workspace. For example,
you may have a message flow project called AggregationExample in a workspace in
directory C:\WBIMB Common code\workspace.

To open the project from a different workspace, use File → Import → Existing
Project into workspace. Navigate to the directory that contains the project, select it
and import it. The project will appear in your workspace.

Note that Import → Existing Project into workspace does not copy the project
into your workspace: it simply establishes a pointer from your workspace to the directory
containing the project. Any changes you make will modify the original project. It is
important that you recognize this distinction, as in all other forms of Import, the project you
are importing is copied to your workspace; so you can think of the original as a “backup”: if
you make a mistake you can re-import. Again, this is not the case with Existing Project
into workspace.

	Overview
	Naming Standards
	Characters allowed in commands
	Converting Version 2.1 names that are not valid
	Message Broker Naming Standards
	
	Brokers
	Execution Groups
	Message Sets
	Messages
	Message Flow Nodes
	The Message Flow Project
	Message Flows (File)
	The Message Flow ESQL File
	The Message Set Project
	The Message Definition File
	The Message Broker Archive File

	Change Management with CVS
	SCM System Terminology
	Branching
	Commit
	Repository
	Resources
	Stream/Branch
	Synchronizing
	Versions
	Update
	SCM Terminology Comparison

	CVS Background
	Recommended use of multiple branches

	Team working principles
	Version conventions
	Repository Structure
	Initial Team Working Configuration
	Set up repository
	Create user ids
	Create baseline version
	File type settings
	Create project set
	Procedure for creating workspace

	Team work procedure
	Using CVS during Development
	The development cycle
	New Projects
	New Branches
	Versioning Outline
	Standard versioning
	Fix versioning
	Branch usage
	Version usage
	Inserting version information in message flows and bar files

	References

	Change Management with Rational ClearCase
	Change Management with ClearCase
	Basic Terms
	ClearCase SCM and UCM Terminology

	ClearCase Overview
	Working with Branches
	ClearCase & WebSphere Business Integration Message Broker
	Creating a new project under ClearCase Control
	Adding an existing project to ClearCase control
	Adding an existing ClearCase project to your workspace
	Adding an element to ClearCase control
	Check out and edit
	Save and Check in

	Reference:
	White Papers
	Redbooks
	Manuals
	Web-Based Courses

	Working without a repository
	Organizing Projects
	Moving Projects into different workspaces
	Export Project using Toolkit
	Copy/Move Project using Broker Toolkit
	Drag and Drop Projects between Broker Toolkits
	Copy/Move Project using Windows Explorer
	Export Project as ZIP file

	Sharing projects between workspaces

