

Enterprise Exception Handling

Arunava (Ron) Majumdar

Sr. IT Specialist
Software Services for WebSphere (SE Region)

arunava@us.ibm.com
IBM

mailto:arunava@us.ibm.com

 Enterprise Exception Handling

_
Arunava Majumdar Page 2 of 58 arunava@us.ibm.com

Contents

Modification History ... 4 Modification History ... 4

Legal Disclaimer:... 5 Legal Disclaimer:... 5

Acknowledgement:... 6 Acknowledgement:... 6

Scope of the Document: ... 7 Scope of the Document: ... 7

1. Introduction to Exceptions: .. 8 1. Introduction to Exceptions: .. 8
1.1. What is an exception? ...8
1.2. Exception Object concepts ...8
1.3. Importance of exception handling ..8
1.4. Importance of common exception handling for the organization ...9
1.5. Importance of cataloging exceptions ...9
1.6. Designing exceptions...9

2. Enterprise Exception Handling Concepts:... 10 2. Enterprise Exception Handling Concepts:... 10
2.1. Standardization of the Exception format ..10
2.2. Exception reporting through the ESB...11
2.3. Notification through the Monitoring System ...11
2.4. Centralization and Statistical Analysis of Exceptions ...12
2.5. Testing Exceptions Conditions...12

3. Design Pattern – Enterprise Exception Handling... 13 3. Design Pattern – Enterprise Exception Handling... 13
3.1. Architecture..14
3.2. Message Specifications ...16
3.3. Database schema Specifications ...24

4. Exception Handler Runtime and Utilities: ... 29 4. Exception Handler Runtime and Utilities: ... 29
4.1. Exception Handler Utility..29
4.2. Exception Handler Command ..32
4.3. Exception Handler Daemon ...33

5. Setting up the Exception Catalog:... 35 5. Setting up the Exception Catalog:... 35

6. Using the Java API: ... 38 6. Using the Java API: ... 38
6.1. Creating the Exception Catalog Class ...39
6.2. Setting up the Environment..41
6.3. Generating Runtime Exceptions ..42
6.4. Capturing Runtime Exceptions...43
6.5. Reporting Exceptions...44
6.6. Disconnecting from the Middleware ...44
6.7. Running Sample Applications ..45

7. Integration Point: Message Broker ... 46 7. Integration Point: Message Broker ... 46
7.1. Setting up the Environment..47
7.1.1. ESQL..47
7.1.2. Java ...48

7.2. Generating Runtime Exceptions ..49
7.2.1. ESQL ..49
7.2.2. Java ...50

7.3. Capturing and Reporting Runtime Exceptions ...51
7.3.1. ESQL ..51
7.3.2. Java ...51

7.4. Running Sample Applications ..52

 Enterprise Exception Handling

_
Arunava Majumdar Page 3 of 58 arunava@us.ibm.com

Conclusion: .. 53Conclusion: .. 53

Appendix I:.. 54 Appendix I:.. 54

Bibliography: ... 57 Bibliography: ... 57

Table of Figures

Figure 1 - Common Exception Handling Process .. 14
Figure 2 – Message Specification for Exception Data.. 17
Figure 3 – Message Specification for Exception Data – Application section (2.1).. 18
Figure 4 – Message Specification for Exception Catalog.. 22
Figure 5 –Message Specification for Command Message .. 23
Figure 6 - Exception Database Schema.. 24
Figure 7 – Java API Class Diagram .. 38
Figure 8 – ESQL_Exception Subflow... 46
Figure 9 – Catching Exceptions with the Subflow... 51
Figure 10 – Catching Exceptions with a Java Compute Node.. 51

 Enterprise Exception Handling

Modification History
Date Version Author Description

06/23/2009 0.2.0 Arunava
Majumdar

Final release for Support Pac id08

_
Arunava Majumdar Page 4 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Legal Disclaimer:

Information provided has been developed as a collection of the experiences of technical services professionals over a wide
variety of customer and internal IBM environments, and may be limited in application to those specific hardware and software
products and levels
The information contained in this document has not been submitted to any formal IBM test. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to
adapt these techniques to their own environments do so at their own risk, and in some environments may not achieve all the
benefits described.
This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes will be incorporated in new editions of this publication. IBM may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at any time without notice.
IBM may not offer the products, services, or feature discussed in this document in all countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as
an endorsement of those Web sites. The materials at those Web sites are not part of the materials of this IBM product and use
of those Web sites is at your own risk.
Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or
other publicly available sources. IBM cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice and represent goals
and objectives only.
All prices shown are IBM's suggested list prices and are subject to change without notice. Dealer prices may vary.
Any performance date contained in this document was determined in a controlled environment. Therefore the results obtained
in other operating environments may vary significantly. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee that these measurements will be the same on generally available systems.
Some measurements quoted in the document may have been estimated through extrapolation. Actual results may vary. Users
of this presentation should verify the applicable for their specific environment.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming techniques on various
operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the
purpose of developing, using, marketing or distributing application programs conforming to the application programming
interface for the operating platforms for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Arunava Majumdar Page 5 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Acknowledgement:

Guy Hochstetler and I came up with the idea of a centralized Exception handling system for tracking down
errors and cataloging them across the enterprise. This would help in troubleshooting very large and complex
enterprise systems easily. The first objective was to standardize the exceptions generated from applications
across the enterprise so that they can be analyzed that forms the basis for further developments on the idea. My
special thanks to Guy for help cultivate the idea. The pattern since then had been successfully implemented at
multiple organizations.

I also acknowledge the Open Source contributions on the following packages used in the delivery of the product.

This product includes software developed by the DOM4J Project (http://www.dom4j.org/).
This product includes software developed by the SAXPath Project (http://www.saxpath.org/).
This product includes software developed by the JAXEN Project (http://jaxen.codehaus.org/).

Arunava Majumdar Page 6 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Scope of the Document:

The scope of the document is limited to the design and implementation of the Enterprise Exception Handler. It
provides the software specifications for the integration of the design with all applications in the organization.

The scope of the document is not to address how applications can handle exceptions within their code but how
they can report exceptions into this common framework. It also addresses the present tools and future tools to
enrich the exception detection and troubleshooting. It is left to the individual applications to address their own
System and Business exception and numerous books and papers had been written on the subject.

This version of the paper provides a Java implementation of the design and API that may be incorporated in any
Java application. The API provides methods to send the exception to an IBM WebSphere MQ® queue as a MQ
message or a JMS message or to any generic JMS provider. Refer to javadocs for how to use the API.

Other API’s may be developed for other languages based on the specifications provided in the document. C++
API will be provided at a later release.

Databases based on the schema and specifications provided in the document may be created for storing the
exceptions in a consistent manner and for future exception analysis tools.

Integration with monitoring products with IBM Tivoli Omegamon™ will be provided as a future release.

Arunava Majumdar Page 7 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

1. Introduction to Exceptions:

Exception Handling had always been an important topic of discussion while designing and architecting any
operational system. Exceptions and failures will be present in any operational system and it is the intention of a
robust design not just to minimize the exceptions but to handle the anomalies with the least effect to the
operational system. Isolation, reporting, notification, monitoring and analysis of exceptions are hence,
requirements for any exception handling system. A good exception handling process is essential to the hardening
of the product whether it be mechanical, electrical, structural or software. This paper is limited to discussions on
Software Exception Processing across the Enterprise in a controlled and standardized manner.

1.1. What is an exception?

An exception is a software runtime anomaly.

This is a very generic definition of an exception and the paper suggests a common exception handling
process for the whole organization. All Application exceptions may be fed into the Enterprise Exception
Handling Process in a standard manner for analysis and debugging. Exceptions for products are usually
reported by monitoring products like IBM Tivoli Omegamon™. The Common Exception Handling process
takes advantage of the monitoring infrastructure to report application exceptions.

1.2. Exception Object concepts

Errors detected inside the code are handled in different manners inside the code. A conditional statement
may detect a failure of a certain nature and then decide to jump to a different location in the code. Jumping
from one part of the code to another may become tedious to detect. While that may be the only option in
certain languages like Assembly, calling functions or breaking from loops or just returning from the function
is a better approach in structured languages like C or Basic. Object Oriented Programming introduced the
concept of trying a piece of algorithm and catching exceptions at the end of it to handle these exceptions.

 try {
 // Code to be tried
 }
 catch (Exception e) {
 // Exceptions caught and handled
 }

1.3. Importance of exception handling

The robustness of an application depends on how well exceptions are being handled inside the code.
Providing functionality and testing of the functionality is essential to meet the requirements, but hardening
of the applications is necessary for any production-ready application. A well-hardened application should be
able to trap all of runtime exceptions and reporting them in an efficient manner. While capturing all
exceptions under every condition is not possible at the first deployment phase, the application must provide
means of handling poison data sent to it for further analysis in the future. Subsequent analysis and additional
exception handling inside the applications will elevate the maturity of the application and eliminate failures.

Arunava Majumdar Page 8 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

1.4. Importance of common exception handling for the organization

Every application may handle exceptions in the organization in a unique manner hardened and matured over
a period of time. The handling of exceptions by individual applications may apparently stabilize the
environment but the lack of an integrated view of the exceptions occurring throughout the organization may
provide a false pretense of stability. It is very difficult and extremely resource intense to check individual
log files for the any failures in the systems for each of the applications, especially in a medium to large size
organization. Traceability and re-introduction of the data that caused the exception or the data that could not
get processed due to the exception is often cumbersome. A complete picture of all the exceptions occurring
in the system is therefore essential for the detection and analysis of the errors. A statistical analysis of these
errors may also be provided at the end of the month or year to determine defects and improve the
infrastructure and applications running in the organization.

1.5. Importance of cataloging exceptions

In order to achieve a common exception handling process in the organization, the first step would be to
standardize and catalog all the exceptions that are presently handled by the applications and other system
monitoring components. Each exception must be assigned a code and a set of parameters associated with it
that fully qualifies the exception condition. Care must be taken to assign exception codes so that there is no
duplication of the same type of exception with few different codes. Duplication of error codes from
individual products is not the intent of the system either. E.g., it is not a good idea to assign an exception
code to every SQLCODE or MQ REASONCODE but to group them under some standard problems they
address, viz. connectivity, integrity, etc. However, products supporting the Enterprise Exception Handling
standards and methodology may be directly incorporated in the exception catalog if they provide their own
catalog. Each application generating these exceptions must be cataloged to determine what exceptions they
are entitled to. Managing the catalog is important to derive accurate statistics of the exceptions occurring
throughout the organization.

1.6. Designing exceptions

Designing good exceptions is the basis of a successful Exception Handling system. The exceptions must be
explicit enough for quick problem determination as well as generic enough so as not to have an
unnecessarily large exception catalog. The ability to preserve the dump at the point of exception (e.g. java
Exception object, stack trace, ExceptionList inside the Message Broker Flow, etc.) in the exception message
saves vital information for problem determination. Huge memory dumps are not often the most efficient
way to troubleshoot a problem and should be avoided.

Arunava Majumdar Page 9 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

2. Enterprise Exception Handling Concepts:

Having emphasized on the importance on Exception Handling in applications let us consider how some of the
ideas may be implemented in an organization and the steps required to adopt the Enterprise Exception Handling
pattern.

2.1. Standardization of the Exception format

Exception Handling inside large organizations is mostly application centric and hence in most situations there
exists no standardization of the structure of the exceptions. The foremost factor to enable exceptions to make
sense at an organizational level is to have a standard for exceptions reported from any application. Taking it a
step further, if a universal standard exits across organizations, then common tools may be developed for
exception detection and troubleshooting purposes. The paper attempts to define a standard for exceptions after
inputs were taken from multiple organizations on the requirements specific to that organization.

Standard API’s provide a simple integration method for the EEH. Applications that had been already written
may now use the API to format the exception messages without having to spend a lot of cycles in the integration
effort. Concepts like the early detection of exceptions and handling wrongly formatted or generation of wrong
exceptions should be caught at a development or testing level of the individual applications rather than at
runtime. This is to prevent wrong exceptions giving rise to faulty statistical information.

Database provides a persistent searchable storage for exceptions in the architecture and such the schema for the
EEH should also be standardized. The paper provides a schema for the implementation of the pattern after
considering requirements from various organizations. Exceptions occurring in the Exception Handling system
are also reported in the exception database in a consistent manner with specific exception category codes making
the debugging of these special exceptions easy. Most likely these are only generated when applications have
generated exceptions while generating exceptions and should be fixed as bugs in the application.

API standardization checks for exception parameters but the application header parameters are only checked at a
database level (referential integrity).

Arunava Majumdar Page 10 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

2.2. Exception reporting through the ESB

Exceptions must be reported through a common information transport mechanism that is robust and resilient to
network problems. The infrastructure must support multiple platforms and networks so that applications may
report exceptions from any parts of a large heterogeneous organization. The mechanism must be asynchronous
since the exception reporting system should not significantly affect the normal processing in the organization.
Applications should be able to report exceptions and carry on with the normal functionality rather than
synchronously waiting for a response. The Enterprise Service Bus (ESB) fits right into this architectural
requirement. The ESB must provide guaranteed persistent delivery mechanism.

2.3. Notification through the Monitoring System

Notification mechanism must be provided and has be to extensible to integrate with monitoring systems so that
the same monitoring mechanism may be used notify the Operations department of potential errors in the system.

Reporting errors through the monitoring system has its set of advantages. It provides an efficient and common
process of reporting exceptions similar to the monitoring agents, e.g. Middleware or Database monitoring agents,
to a centralized repository. The exception conditions may be co-related with other exceptions occurring in the
system and being similarly reported to the monitoring sub-system, e.g. application database connections
exceptions with a database crash and a situation may be build to shutdown the application. Another advantage is
to be able to reset some exceptions when the problem has been fixed, e.g. a data integrity issue may be fixed by
either manually or automatically (based on some rules) changing the data and re-introducing the data in the
system at the point of failure and a notification automatically sent to reset the exception condition. In other
words, closed-looped autonomic processes may be build around it.

Arunava Majumdar Page 11 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

2.4. Centralization and Statistical Analysis of Exceptions

The idea behind the Enterprise Exception Handing Pattern is to be able to centralize all application-related
exceptions throughout the organization so that they can be analyzed with relative ease and help in the
troubleshooting process. An extension of the same idea lies in the Statistical Analysis of exceptions over a period
of time. As exceptions get reported centrally, analysis may be drawn from the category of exceptions received by
every application in the organization or on which applications generate the most amount of exceptions. Some of
these exceptions may be inevitable and the organization may have no control over them. Others might have
inherent problems in the application or the interface to applications within the organization or partners. This
provides a good basis for analyzing specific applications for these exceptions and enhancing the overall
application performance in the long run. The reports may also be taking back to the customers who are not
adhering to the standards of the application service interfaces causing discarding of data that could have been
otherwise used. This happens especially in multinational organizations that interface with a large number of
partners across the world.

2.5. Testing Exceptions Conditions

Exception Conditions are often overlooked by testing teams in the light of testing the functionality of the
application. No less emphasis should be given to testing exception conditions if a robust application is desired.
The ability for an application to report all runtime exceptions without causing a failure and reporting them
correctly proves the resilience and the efficiency of the application in troubleshooting in a production
environment.

The testing team must, therefore, determine all the exception conditions in the application and add them to the
test cases. Every exception is properly cataloged and linked to the application catalog. Any application reporting
exceptions that had not been associated with the application should be reported as a test case failure as well as
exceptions with wrong parameters. To facilitate this process, every application must have its subset of the
exception catalog and check against it. The testing team must make certain that are occurs at least one test case
to test each of the exception codes that are assigned to the application. Most often multiple test cases with the
same exception code will be present.

Arunava Majumdar Page 12 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

3. Design Pattern – Enterprise Exception Handling

The Enterprise Exception Handling is a design pattern that may be implemented in a number of ways. This paper
further specifies the extensions of the pattern idea to a practical design and standardization. The intent of the
paper is not just to explain the philosophy of the pattern but also to provide the Standardization required for the
implementation of the pattern. This chapter is targeted to address the specifics of the design pattern. It has been
broken down into the following sections:
Architecture – states the basic architecture for the pattern implementation
Message Specifications – states the different message specifications that flows through the ESB
Database Schema Specifications – states the database schema for persisting exceptions in the database
Features – states the salient features of the pattern implementation

Arunava Majumdar Page 13 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

3.1. Architecture

The architecture manifests itself in the following key concepts:
• Centralized Error Queue – all applications report exceptions to a common queue where an exception

handling daemon processes the messages and sends them to a database

• Exception Daemon – the daemon process that sends the exception messages to the database

• Exception Database – central persistent storage for the exceptions

• Monitoring Agent – the common monitoring agent to report exceptions back to the central monitoring
framework that is used throughout the organization

• Expiry Handling – exception messages should expire in case of unavoidable circumstances when the
exceptions cannot be processed so that it does not fill up the common queue and cause other upstream
problems

• Exception Analyzer – the Eclipse Editor plug-in for viewing exceptions and exception catalog entries, for
creating new exceptions in the exception catalog and assigning them to applications, for re-queuing of
exceptions, for manual editing of data before re-queuing of data and for statistical analysis of exceptions on
the system

• Re-Queuing – exceptions with data and re-queue information may be re-queued at the point of failure

• Exception Command Processor – processes commands inside the exception handler daemon from the
command queue

Figure 1 - Common Exception Handling Process

The diagram (Figure 1 - Common Exception Handling Process) shows how the exceptions will be handled
throughout the organization from the common exception handling process. The basic idea is to have deep

Arunava Majumdar Page 14 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

traceability of the exceptions occurring in the organization at any given point in time. Exception matrixes may be
derived from such data in the future and corrective measures may be taken to minimize the occurrence of
exceptions especially the critical ones. Also the introduction of new applications to the production environment
may be checked for their integrity through the common exception handling mechanism. All exceptions will be
cataloged based on the design. Exceptions would also feed into the monitoring system for altering based on
certain situations. In the diagram Tivoli® monitoring system is shown as an example but the monitoring system
selected by the organization should be integrated into the design. Since exceptions that are never acted upon for a
long period of time looses its significance, the exceptions should expire with reporting option with full data to an
achieved queue.

The example shows application APP1 failing to put to queue Q.APP1.IN and putting the exception in Q.FAIL.
This is, however, true for all applications interacting with MQ or otherwise. The following are a detailed
description of the steps:

(1) APP1 tries to put a message in a transaction and fails
(2) APP1 puts Exception message into a queue outside the transaction with the following parameters:

a. MQMD.Expiry = <time>
b. MQMD.Report = MQRO_EXPIRATION_WITH_FULL_DATA
c. MQMD.ReplyToQ = <queue>

(3) The common Exception Handler application ExcHandler gets the Exception message transactionally
(4) Inserts the Exception information in the Exception database ExcDB
(5) ExcHandler notifies the Monitoring Agent (in case of Tivoli® Omegamon it should interface with

the Universal Agent)
(6) The Exception Analyzer application ExcAnalyzer has the capability to analyze exceptions and

update the data if necessary. In this step ExcAnalyzer gets the required information from the ExcDB
(7) (Optional step – only in the case of Data Integrity category of exceptions) ExcAnalyzer updates

modified information in the ExcDB
(8) ExcAnalyzer notifies the Monitoring Agent to reset the exception
(9) (Optional step – only in the case of ReQueue parameter and Data parameter present)

ExcAnalyzer puts the message in the original queue with the edited data if it had been modified or
the unedited data

(10) Expired messages are forwarded to the archival queue Q.FAIL.EXPIRED by the queue manager

Arunava Majumdar Page 15 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

3.2. Message Specifications

Several message specifications have been standardized for implementation of the pattern and are described in
brief below:
Exception Message – the specification that governs the format of exceptions sent throughout the organization
Exception Catalog – the specification that governs the format of the exception catalog that is loaded by the
applications and also used for importing and exporting the catalog from the database from the exception utility
Command Message – the specification that governs the format in which commands are sent to the exception
handler daemon and the command tool uses the standard for communicating with the daemon

The message specification diagram for the exception message is shown in the next diagram (Figure 2 – Message
Specification for Exception Data).

Arunava Majumdar Page 16 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Figure 2 – Message Specification for Exception Data

Arunava Majumdar Page 17 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Figure 3 – Message Specification for Exception Data – Application section (2.1)

Arunava Majumdar Page 18 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Details about the different fields in the Exception Message are listed in the table below. The data types are
shown in the diagram.

Field Description
exch_version The version of the Exception Header. The Version for the current release is ‘1.0.0’.
name Exception variable name for reference.
exc_uuid UUID generated for the exception instance.
timestamp The timestamp when the Exception was caught. The format of the timestamp is a

string as ‘YYYY-MM-DD HH:MM:SS’.
catalog Message Catalog is the common repository of all error messages for the subsystem.

This name should always be ‘ExcCat.HSBC’ for the each project. This assures the
existence of other projects without Exception Code clashes between the different
subsystems

version Version of the Exception Catalog.
code Unique exception code for the project. Exception Codes are not meant to replace the

Product Exception Codes but to group them together under several categories for
common error handling implemented in the subsystem.

 - PriorityInd The Priority Indicator is a one character field corresponding to the Priority. It is one
of the values ‘I’, ‘W’, ‘E’, or ‘F’.

 - Priority This the PriorityChar field represented in integral values for applications that handle
Exception Codes as integers, i.e.
1 ε Information
2 ε Warning
3 ε Error
4 ε Fatal

 - Catagory The exception codes are categorized in the following groups –
Operating System (‘01’) e.g. memory allocation, file system, kernel objects, etc.
Network (‘02’) e.g. routing exceptions, network traffic, etc.
Security (‘03’) e.g. service access control, connectivity, etc.
Data Integrity (‘04’) e.g. Common header format error, etc.
Messaging Middleware (‘05’) e.g. MQ Connection, MQ Object Access, etc.
Database (‘06’) e.g. DB Connection, Insert failure, etc.

 - SeqNo This is a serial number for the Exception in the class and category.
Parameters Optional. The parameters are defined as name-value pairs as children of

Parameters. The number of parameters passed depends on the particular Exception
Code in the Message Catalog. E.g., for Database Connection problems the
Parameter[] would contain 3 parameters – SQLSTATE, SQLCODE,
SQLERRORTEXT. It is represented as a name-value pair and is fixed for the
exception code.

Arunava Majumdar Page 19 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Application Section for application data
 - hostname The host machine name or the static IP address of the machine where the Exception

occurred.
 - appid The application identifier of the program that generated the Exception condition and

sent out the report. In case of the message broker this field will contain the name of
the Message Flow’s application id.

 - class The class that generated the Exception
 - function The function name where the Exception was generated. In the case of the message

broker it is the name of the node that detected the Exception.
 - file File name where the exception was detected.
 - line Line number where the exception was detected.
 - server_cluster Cluster name the server hosting the application belongs to. E.g. Cell for

WebSphere® Application Server, etc.
 - server Server name where the application is hosted. E.g. J2EE Application Server name,

WebSphere® Message Broker name
 - container Container name inside the server hosting the application. E.g. Container name for

the J2EE Application server, Execution Group for the Message Broker, etc.
 - Header Application Header Section will contain any application related information that

may be required to be passed as meaningful information for the exception condition.
The header parameters are defined as name-value pairs as children of Header.

 -- name Name of the application header
ReQueue The ReQueue Section is an optional section that provides information for

reintroducing the data in the originating queue and is populated by the process
throwing the exception. If necessary, it indicates to the error handling process the
queue to which the message should be re-queued once the exception is corrected.

 - qmgr Optional name of the queue manager to be re-queued on
 - queue Name of the queue to be re-queued on
 - MQMD Message Descriptor of the original message for re-queuing. The binary structure is

Base64 encoded.
ExceptionDump This is an optional field. This field reports any system dump or nested exceptions

thrown from the broker for determining the exception that occurred. This is a fixed
length field if used and the length of the field should be expressed as a 10 digit
integer string. For binary type or serialized java objects, the data is Base64 encoded.

 - type The type of exception dump may be of the following flavors:
binary – binary data dump
string – any string type that may provide exception information
xml – exception dumps represented in XML form excluding the XML declaration
exc – incorporates an exception header. This type of dump is created by the exchd
in case of exceptions trapped in the exchd while processing an exception. The type
is not limited to the exchd.
java:<Class> – serialized and Base64 encoded java class implementation of the
interface DumpRenderer or an Exception class object.

Data This is an optional field for the original message being processed at the time the
exception occurred. The Data field is always Base64 encoded if present.

 - uuid This may be the MQMD.MsgId
 - type The type of exception dump may be of the following flavors:

binary – binary data dump
string – any string type that may provide exception information
xml – exception dumps represented in XML form excluding the XML declaration
java:<Class> – serialized and Base64 encoded java class implementation of the
interface DataRenderer.
java:MQMessage or java:JMSMessage – serialized and Base64 encoded for native
MQ or JMS support.

Arunava Majumdar Page 20 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

An example of an exception message:

<?xml version="1.0" encoding="UTF-8"?>
<exc:ExceptionMessage exch_version="1.0.0" name="WMQ" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:com.ibm.mq.exc ExceptionMessage.xsd" xmlns:exc="urn:com.ibm.mq.exc">
 <ExceptionHeader version="1.0.0" catalog="ExcCat.MQTT" code="F405001"

timestamp="2009-05-11 18:29:35.787 GMT"
exc_uuid="d6a4efcf-3e69-4d26-8aaf-b357be910fe6">

 <Parameters>
 <Reason> 2085 </Reason>
 </Parameters>
 <Application hostname="Ronz-Master-2009.ron.ibm.com" appid="MQTT"

class="com.ibm.mq.test.ds.QueueSource" function="handleMQConn"
file="QueueSource.java" line="170" >

 </Application>
 <ExceptionDump type="java:com.ibm.mq.MQException">

rO0ABXNyABZjb20uaWJtLm1xLk1RRXhjZXB0aW9uZdb+evXEtIkCAAhJAA5jb21wbGV0aW9uQ29kZUkA
BW1zZ0lkSQAKbnVtSW5zZXJ0c0kACnJlYXNvbkNvZGVMAAdpbnNlcnQxdAASTGphdmEvbGFuZy9TdHJpbmc7TAAHaW5zZ
XJ0MnEAfgABTAALb3N0ck1lc3NhZ2VxAH4AAUwAB3Y3bXNnSWRxAH4AAXhyABNqYXZhLmxhbmcuRXhjZXB0aW9u0P0fPh
o7HMQCAAB4cgATamF2YS5sYW5nLlRocm93YWJsZdXGNSc5d7jLAwADTAAFY2F1c2V0ABVMamF2YS9sYW5nL1Rocm93
YWJsZTtMAA1kZXRhaWxNZXNzYWdlcQB+AAFbAApzdGFja1RyYWNldAAeW0xqYXZhL2xhbmcvU3RhY2tUcmFjZUVsZW1lb
nQ7eHBwcHVyAB5bTGphdmEubGFuZy5TdGFja1RyYWNlRWxlbWVudDsCRio8PP0iOQIAAHhwAAAACXNyABtqYXZhLmxhb
mcuU3RhY2tUcmFjZUVsZW1lbnRhCcWaJjbdhQIABEkACmxpbmVOdW1iZXJMAA5kZWNsYXJpbmdDbGFzc3EAfgABTAAIZm
lsZU5hbWVxAH4AAUwACm1ldGhvZE5hbWVxAH4AAXhwAAABPHQAGGNvbS5pYm0ubXEuTVFEZXN0aW5hdGlvbnQAEk1R
RGVzdGluYXRpb24uamF2YXQABG9wZW5zcQB+AAkAAAEEdAASY29tLmlibS5tcS5NUVF1ZXVldAAMTVFRdWV1ZS5qYXZh
dAAGPGluaXQ+c3EAfgAJAAAKrnQAGWNvbS5pYm0ubXEuTVFRdWV1ZU1hbmFnZXJ0ABNNUVF1ZXVlTWFuYWdlci5qYXZ
hdAALYWNjZXNzUXVldWVzcQB+AAkAAArKdAAZY29tLmlibS5tcS5NUVF1ZXVlTWFuYWdlcnQAE01RUXVldWVNYW5hZ2Vy
LmphdmF0AAthY2Nlc3NRdWV1ZXNxAH4ACQAAAJB0AB5jb20uaWJtLm1xLnRlc3QuZHMuUXVldWVTb3VyY2V0ABBRdWV1
ZVNvdXJjZS5qYXZhdAAMaGFuZGxlTVFDb25uc3EAfgAJAAAAKHQAHmNvbS5pYm0ubXEudGVzdC5kcy5RdWV1ZVNvdXJjZ
XQAEFF1ZXVlU291cmNlLmphdmF0AAhzZW5kRGF0YXNxAH4ACQAAAFR0ABljb20uaWJtLm1xLnRlc3QuUmVndWxhdG9yd
AAOUmVndWxhdG9yLmphdmF0AANydW5zcQB+AAkAAAIPdAAVamF2YS51dGlsLlRpbWVyVGhyZWFkdAAKVGltZXIuamF2Y
XQACG1haW5Mb29wc3EAfgAJAAAB3XQAFWphdmEudXRpbC5UaW1lclRocmVhZHQAClRpbWVyLmphdmF0AANydW54AA
AAAgAAAAAAAAAAAAAIJXBwdAAsTVFKRTAwMTogQ29tcGxldGlvbiBDb2RlICcyJywgUmVhc29uICcyMDg1Jy50AAA=

 </ExceptionDump>
 </ExceptionHeader>
</exc:ExceptionMessage>

Arunava Majumdar Page 21 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Figure 4 – Message Specification for Exception Catalog

Details about the different fields in the Exception Catalog are listed in the table below. The data types are shown
in the diagram.

Field Description
name The Exception Catalog name.
version The Exception Catalog version.
appid The application identifier that uses the exception catalog.
Exception Section for the exception information
 - name Name of the exception. This disassociates the Application program from the

exception code
 - priority The default priority of the exception. This is used to generate the Exception through

the generated class without having to mention the priority. The priority of an
exception can be changed at any time based on situations for exception promotion
or demotion.

 - code The exception code associated with the exception.
 - descr Description for the exception providing detailed information regarding the

exception.
 - Parameters Optional. The parameters are defined as name-value pairs as children of

Parameters. The number of parameters passed depends on the particular Exception
Code in the Message Catalog. E.g., for Database Connection problems the
Parameter[] would contain 3 parameters – SQLSTATE, SQLCODE,
SQLERRORTEXT. It is represented as a name-value pair and is fixed for the
exception code.

Arunava Majumdar Page 22 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Figure 5 –Message Specification for Command Message

Details about the different fields in the Command Message are listed in the table below. The data types are
shown in the diagram.

Field Description
name The name of the command. E.g., shutdown for the Shutdown command sent to the

exception handling daemon.
timesatmp The timestamp when the Command was created. The format of the timestamp is a

string as ‘YYYY-MM-DD HH:MM:SS’.
Switch Optional. Switches are parameters sent for the particular command. E.g., the

command may be operated under multiple modes, viz. immediate or quiesce.
 - name Name of the switch.
 - value Value of the switch.

Arunava Majumdar Page 23 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

3.3. Database schema Specifications

The following schema diagram illustrates how the Exception database is designed and all the relationships are
shown.

Figure 6 - Exception Database Schema

Arunava Majumdar Page 24 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

The three tables on the top right corner marked with a grey rectangle indicate the tables that hold runtime
exception information. All the exceptions that are generated at runtime are being sent to the exception handling
daemon and are inserted into the exc, exc_parm and exc_header_parm tables. The rest of the tables hold static
data. The exc_cat and the exc_cat_parm tables hold the exception catalog information. The app_cat table holds
the application catalog. The application headers are stored in the app_header and app_header_parm tables. Each
application header may be associated with any of the applications defined in the system. The relationship is
maintained in the app_cat_header table. Each application is also associated with any of the exceptions in the
exception catalog. The relationship is maintained in the exc_app_cat table.

The following are the description of all the configuration tables for the Exception Catalog Database.

exc_cat – Exception Catalog
Column Type Description
catalog Varchar(30) Exception Catalog name for the project or organization
version Varchar(10) Exception Catalog version
code Char(5) Exception code: First 2 char for the category and the rest 3 are serial number
name Varchar(30) Exception name - used as Exception Variable for code isolation
def_priority Integer Default priority of the Exception
descr Varchar(512) Description of the Exception
Key Reference Columns
PK catalog, version, code
UK catalog, version, name

exc_cat_parm – Exception Catalog Parameters
Column Type Description
catalog Varchar(30) Exception Catalog name for the project or organization
version Varchar(10) Exception Catalog version
code Char(5) Exception code: First 2 char for the category and the rest 3 are serial number
parm Varchar(30) Parameter for the Cataloged Exception
descr Varchar(512) Description of the Exception parameter
Key Reference Columns
PK catalog, version, code, parm
FK1 EXC_CAT catalog, version, code

exc_catagory – Exception Catagory
Column Type Description
catagory Char(2) Excecption Catagory Supported. 01 - System, 02- Security, 03 - Network, 04

- Data Integrity, 05 - Middleware, 06 - Database, more may be added
descr Varchar(512) Description of the Exception Catagory
Key Reference Columns
PK catagory

Arunava Majumdar Page 25 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

app_cat – Application Catalog
Column Type Description
appid Varchar(10) Application Identifier
application Varchar(50) Application name
owner Varchar(100) Name of the Application Owner
email Varchar(30) E-mail of the Application Owner
descr Varchar(512) Description of the Applicaion
Key Reference Columns
PK appid

app_header – Application Catalog Header
Column Type Description
header Varchar(30) Application Header
descr Varchar(512) Description of the Applicaion Header
Key Reference Columns
PK header

app_header_parm – Application Catalog Header Parameter
Column Type Description
header Varchar(30) Application Header
parm Varchar(30) Application Header Parameter
descr Varchar(512) Description of the Applicaion Header Parameter
Key Reference Columns
PK header, parm
FK1 APP_HEADER header

app_cat_header – Association of the Application with the Application Header
Column Type Description
appid Varchar(30) Application Identifier
header Varchar(30) Application Header
Key Reference Columns
PK appid, header
FK1 APP_CAT appid
FK2 APP_HEADER header

exc_app_cat – Association of the Exception for the Application
Column Type Description
catalog Varchar(30) Exception Catalog name for the project or organization
version Varchar(10) Exception Catalog version
code Char(5) Exception code: First 2 char for the category and the rest 3 are serial number
appid Varchar(30) Application Identifier
Key Reference Columns
PK catalog, version, code, appid
FK1 EXC_CAT catalog, version, code
FK2 APP_CAT appid

Arunava Majumdar Page 26 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

The following are the exception instance tables for capturing the real-time exceptions generated in the system.

exc – Exception instance generated
Column Type Description
exc_uuid Char(36) Universally Unique Identifier for the Exception instance
timestamp DateTime Timestamp when the exception was generated
catalog Varchar(30) Exception Catalog name for the project or organization
version Varchar(10) Exception Catalog version
code Char(5) Exception code: First 2 char for the category and the rest 3 are serial

number
priority int Exception priority: 1 - Information, 2 - Warning, 3 - Error, 4 - Fatal
appid Varchar(30) Application Identifier
hostname Varchar(512) Hostname or IP address where Exception was generated
function Varchar(512) Function name where Exception was generated
file Varchar(1024) Program file name of Exception source
line Integer Line number of the program where Exception was generated
server_cluster Varchar(512) Cluster name for the server cluster. NULL for non-clustered servers, e.g.

Cell for WebSphere Application Server
server Varchar(512) Server name for the server hosting the application. NULL for stand-alone

applications, e.g. J2EE Application Server, WebSphere® Message Broker
container Varchar(512) Server container for hosting the application. NULL for stand-alone

applications or non-container based applications, e.g. EJB container for
J2EE Application Server, Execution Group for WebSphere® Message
Broker

uuid Varchar(32) Universally Unique Identifier for the Data in the message. If the data is
already defined in a table with this uuid, define a foreign key to the table

MQMD Varchar(512) MQ Message Descriptor for the original message. This is base64 encoded
MQMD_ver Integer Version of the MQ Message Descriptor for the original message
qmgr Varchar(32) Queue Manager name for re-queuing of the input message
queue Varchar(32) Queue name for re-queuing of the input message
dump_type Varchar(512) The type of exception dump may be of the following flavors:

binary – binary data dump
string – any string type that may provide exception information
xml – exception dumps represented in XML form excluding the XML
declaration
exc – embedded exception
java:<Class> – serialized and Base64 encoded java class implementation of
the interface DumpRenderer or an Exception class object.

dump blob Exception Dump
data_type Varchar(512) The type of exception dump may be of the following flavors:

binary – binary data dump
string – any string type that may provide exception information
xml – exception dumps represented in XML form excluding the XML
declaration
java:<Class> – serialized and Base64 encoded java class implementation of
the interface DataRenderer.
java:MQMessage or java:JMSMessage – serialized and Base64 encoded
for native MQ or JMS support.

data blob Source Data
mod_data blob Modified Data
mod_usr Varchar(256) Modifier User Identifier
mod_time DateTime Modification timestamp

Arunava Majumdar Page 27 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Key Reference Columns
PK exc_uuid
FK1 EXC_APP_CAT catalog, version, code, appid

exc_parm – Exception instance parameters
Column Type Description
exc_uuid Char(36) Universally Unique Identifier for the Exception instance
catalog Varchar(30) Exception Catalog name for the project or organization
version Varchar(10) Exception Catalog version
code Char(5) Exception code: First 2 char for the category and the rest 3 are serial

number
parm Varchar(30) Parameter for the Exception instance
value Varchar(32) Value for the exception parameter
Key Reference Columns
PK exc_uuid, parm
FK1 EXC exc_uuid
FK2 EXC_CAT_PARM Catalog, version, code, parm

exc_header_parm – Application Headers for the Exception instance generated
Column Type Description
exc_uuid Char(36) Universally Unique Identifier for the Exception instance
appid Varchar(10) Application Identifier
header Varchar(30) Application Header
parm Varchar(30) Application Header Parameter
value Varchar(32) Value for the application header parameter
Key Reference Columns
PK exc_uuid, parm
FK1 EXC exc_uuid
FK2 EXC_CAT_PARM Catalog, version, code, parm

Arunava Majumdar Page 28 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

4. Exception Handler Runtime and Utilities:

4.1. Exception Handler Utility

A utility program has been provided with the exception handling package for facilitating three major functions:

• Importing exception catalog for the application into the database
• Exporting exception catalogs in the database for individual applications
• Generating the exception catalog class for facilitating exception generation for the applications

The syntax of the exception handling utility is as follows:

Arunava Majumdar Page 29 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

com.ibm.mq.exc.excutil
 [((-import <xml>| -export <dir>) -drv <JDBC driver> -url <URL>
 -usr <user id> -pwd <password> [-appid <appid>])|
 (-classgen ('Java'|'C++') -classdir <dir> -exccat <xml>
 [(-package <Java package> | -namespace <C++ namespace>)])]
 [-verbose] [-about] [-help]

 -import
 The XML file in to be imported conforming to the schema ExceptionCatalog.xsd.
 -export
 The directory where the exported Exception Catalog(s) will be saved.
 The file name created follows the convention:
 [<AppId>_]<Catalog>_<Catalog Version>.xml
 If no AppId is specified in the export command, all the Exceptions for the
 Catalog are listed and the file name does not mention an AppId.
 The exception catalog file(s) saved conform to the schema ExceptionCatalog.xsd.
 -drv
 JDBC driver, e.g. com.ibm.db2.jcc.DB2Driver.
 -url
 JDBC URL pointing to the exception database,
 e.g. jdbc:db2://10.20.20.10:50000/EXCCAT.
 -usr
 User Id for the exception database.
 -pwd
 Password for the exception database.
 -appid
 Appication Identifier for the application whose related exceptions
 are to be exported. This is an optional parameter only relevent for
 the export option. If omitted the complete exception catalog is exported.
 -classgen
 Generate class file in the Language specified.
 -classdir
 The directory where the class file will be generated.
 -exccat
 The exception catalog XML from which the classfile is to be generated.
 This parameter is only used when the -classgen parameter is used without
 either the -import or -export parameters.
 -verbose
 Optional parameter only to be used for debugging if errors are not explicit.
 -about
 Version and related information.

Arunava Majumdar Page 30 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

1Examples2:

• Importing the exception catalog into the database:

call bin/win/excutil.bat -import samp/xml/ExcCat.MQST.xml -drv
"com.ibm.db2.jcc.DB2Driver" -url "jdbc:db2://localhost:50000/EXCCAT" -usr arunava
-pwd ********

• Exporting the exception catalog from the database:

call bin/win/excutil.bat -export samp/xml –appid MQST -drv "com.ibm.db2.jcc.DB2Driver"
-url "jdbc:db2://localhost:50000/EXCCAT" -usr arunava -pwd ********

• Generating a Java class from the exception catalog XML:

call bin/win/excutil.bat -classgen Java -classdir Tool/ETR/_DEV/MQTT/com/ibm/mq/test
-exccat Tool/ETR/_DEV/MQTT/exccat/ExcCat.MQTT.xml -package com.ibm.mq.test

1 Remember to set up the EEH_PATH environment variable to the EEH installation path.
2 Use the excutil.bat or excutil.sh scripts in the bin/win or bin/unix directories to facilitate setting up of the jar files for EEH. Product
jar files, viz. WMQ, DB2, etc. must be setup for the implementation.

Arunava Majumdar Page 31 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

4.2. Exception Handler Command

A Java API package is provided to facilitate the building of Java-based applications to adhere to the standards

com.ibm.mq.exc.exccmd
 [-m <qmgr>] -cmdQ <command queue>
 -shutdown
 [-verbose] [-about] [-help]

 -m
 Optional parameter for the name of the Queue Manager.
 Not required if a default queue manager is defined for the node.
 -cmdQ
 Name of the Command Queue that the Exception Handling Daemon is listening on.
 -shutdown
 Only command supported in this release is shutdown
 -verbose
 Optional parameter only to be used for debugging if errors are notexplecit.
 -about
 Version and related information.

3Examples4:

• Running the shutdown command to bring down the exception handling daemon:

call bin/win/shutdown.bat -m QM.HUB -cmdQ Q.CMD -shutdown

3 Remember to set up the EEH_PATH environment variable to the EEH installation path.
4 Use the shutdown.bat or sutdown.sh scripts in the bin/win or bin/unix directories to facilitate setting up of the jar files for EEH.
Product jar files, viz. WMQ, DB2, etc. must be setup for the implementation.

Arunava Majumdar Page 32 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

4.3. Exception Handler Daemon

A Java API package is provided to facilitate the building of Java-based applications to adhere to the standards

Arunava Majumdar Page 33 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

com.ibm.mq.exc.exchd
 -drv <JDBC driver> -url <URL>
 -usr <user id> -pwd <password>
 -q <queue> [-m <qmgr>] [-w <wait in sec>] [-jms]
 [(-chl <svrconn/tcp/IP(port)> | -chltab <channel table URL>)]
 -cmdQ <command queue> [-threads <no. of threads>]
 [-o <status file>]
 [-verbose] [-about] [-help]

 -drv
 JDBC driver, e.g. com.ibm.db2.jcc.DB2Driver.
 -url
 JDBC URL pointing to the exception database,
 e.g. jdbc:db2://10.20.20.10:50000/EXCCAT.
 -usr
 User Id for the exception database.
 -pwd
 Password for the exception database.
 -q
 Name of the Exception Queue.
 -m
 Optional. Name of the Exception Queue Manager.
 -w
 Optional. Wait in seconds on the exception queue before it is checked
 again. This also determines the maximum time required to shutdown the
 daemon gracefully by running the shutdown command.
 [Default value is 15]
 -jms
 Optional. JMS messaging is turned on.
 -chl
 Optional. Client channel definition to connect to the Queue Manager.
 The format is the same as the MQSERVER environment variable:
 svrconn/tcp/IP(port)
 If both -chl and -chltab are skipped MQ Binding mode is used.
 -chltab
 Optional. URL to the client channel table.
 If both -chl and -chltab are skipped MQ Binding mode is used.
 -cmdQ
 The Command Queue for the daemon to process Command messages.
 -threads
 Optional. Number of threads for processing exceptions.
 [Default value is 1].
 -o
 Optional. Output status file for the daemon's log.
 -verbose
 Optional parameter only to be used for debugging if errors are notexplecit.
 -about
 Version and related information.

5Examples6:

• Running the exception handling daemon:

call bin/win/exchd.bat -drv "com.ibm.db2.jcc.DB2Driver"
-url "jdbc:db2://localhost:50000/EXCCAT" -usr arunava -pwd ****** -q Q.FAIL -m QM.HUB
-cmdQ Q.CMD

5 Remember to set up the EEH_PATH environment variable to the EEH installation path.
6 Use the shutdown.bat or sutdown.sh scripts in the bin/win or bin/unix directories to facilitate setting up of the jar files for EEH.
Product jar files, viz. WMQ, DB2, etc. must be setup for the implementation.

Arunava Majumdar Page 34 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

5. Setting up the Exception Catalog:

Every application defines its exception catalog against which all the exceptions are reported in the system. The
catalog must be defined in the exception database. However, the application is not dependent on the database
existence. This isolates the application from the database dependency. The exception XML may be loaded into
the database or dumped from the database using the exception utility (excutil). The exception catalog XML for
the application is limited to the exceptions that the particular application may generate and the application must
be set up for all these exceptions in the database.

Below is the sample7 exception catalog listing for the application defined with the id MQST. The Exception
catalog name is ExcCat.MQST and version 1.0.0.

<?xml version="1.0" encoding="UTF-8" ?>
<!--

 Licensed Materials - Property of IBM
 (C) Copyright IBM Corp. 2009 All Rights Reserved.
 US Government Users Restricted Rights - Use, duplication or
 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Created January 2008

 -->
<exc:ExceptionCatalog name="ExcCat.MQST" version="1.0.0" appid="MQST"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:com.ibm.mq.exc ../schema/ExceptionCatalog.xsd"
xmlns:exc="urn:com.ibm.mq.exc">

<Exception name="EXC_RULES_SYNTAX" priority="3" code="4001" descr="Rules Syntax Error!">
 <Parameter name="Element" descr="Element at which the syntax is incorrect." />
 <Parameter name="Value" descr="Value of the element containing incorrect syntax." />
 <Parameter name="Position" descr="Position where the syntax violation was detected in the

element value." />
 <Parameter name="Reason" descr="Reason for the syantax violation to occur." />
</Exception>
< priority=" " code=" " descr="Exception name="EXC_XML_VALIDATION" 3 4002 XML Validation Error!">
 <Parameter name="PublicId" descr="External public Identifier if one exits." />
 <Parameter name="SystemId" descr=" " /> System identifier of the xml file.
 <Parameter name="LineNo" " />descr="Line number where the exception occurred.
 <Parameter name="ColumnNo" descr="Column number where the exception occerred." />
 <Parameter name="Message" descr="Reason for the XML violation to occur." />
</Exception>
<Exception name="EXC_XMLNS_VALIDATION" priority="3" code="4003" descr="XMLNS Validation Error!

Valid XML Namespace is 'urn:com.ibm.mq.config'.">
 <Parameter name="InvalidXMLNS" descr="Invalid XML Namespace." />
</Exception>
<Exception name="EXC_NULL_TOPOLOGY" priority="3" code="4004" descr="Topology has not been

defined!" />
<Exception name="EXC_MISSING_REFERENCE" priority="3" code="4005" descr="A reference is missing

in the configuration.">
 <Parameter name="ObjType" descr="Type of object that is missing." />
 <Parameter name="Reference" descr="Missing reference." />
</Exception>
<Exception name="EXC_UNKNOWN" priority="3" code="4999" descr="An Unknown exception has

occurred in the system. Please send the stack trace to
arunava@us.ibm.com with the Subject as PMR:MQST and
your contact details." />

</exc:ExceptionCatalog>

7 Sample location is <EEH_PATH>/samp/xml/ExcCat.MQST.xml

Arunava Majumdar Page 35 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

The Exception Catalog for the application may be imported by running the exception utility. The EEH_PATH
environment variable must be set to the installation path of the tool either in the environment or in the batch file
or shell script. On UNIX systems it may be set up in the .profile. A listing of the sample8 batch file to load the
exception catalog is shown below.

@echo off

rem **
rem * Licensed Materials - Property of IBM *
rem * (C) Copyright IBM Corp. 2006, 2008 All Rights Reserved. *
rem * US Government Users Restricted Rights - Use, duplication or *
rem * disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
rem **

set EEH_PATH=d:/tools/eeh
call bin/win/excutil.bat -import samp/xml/ExcCat.MQST.xml -drv "com.ibm.db2.jcc.DB2Driver"

-url "jdbc:db2://localhost:50000/EXCCAT" -usr arunava -pwd *****

echo .
pause

The batch file may be customized for the installation path, database URL, user id, password, etc. Keep any
customized batch files, notes, etc. in either a directory outside the installation directory, or in a directory
called .user under the installation directory to avoid any over-writing when installing future releases of the
product.

To run the sample programs, the application information must be set up in the database. Any application that
uses the exception catalog must be defined and linked. A listing of the sample9 DML is shown below.

--
-- Licensed Materials - Property of IBM
-- (C) Copyright IBM Corp. 2009 All Rights Reserved.
-- US Government Users Restricted Rights - Use, duplication or
-- disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
--

--
-- Created January 2008
--

insert into app_cat(appid,application,owner,email,descr)

values('ExcH','ExceptionHandler','Arunava Majumdar','arunava@us.ibm.com','Enterprise
Exception Handler');

insert into app_cat(appid,application,owner,email,descr) values('MQST','ReadConfig','Arunava
Majumdar','arunava@us.ibm.com','MQ Scripting Tool');

insert into exc_app_cat(catalog,version,code,appid) select catalog,version,code,'ExcH'from

exc_cat where catalog='ExcCat.ExcH';
insert into exc_app_cat(catalog,version,code,appid) select catalog,version,code,'MQST'from

exc_cat where catalog='ExcCat.MQST';

insert into app_header(header,descr) values('AppHdr1','Application Header 1');
insert into app_header(header,descr) values('AppHdr2','Application Header 2');
insert into app_header_parm(header,parm,descr) values('AppHdr1','ABC','Application Header 1

Parm 1');

8 Sample location is <EEH_PATH>/import.bat
9 Sample location is <EEH_PATH>/samp/dml/setup.sql

Arunava Majumdar Page 36 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

insert into app_header_parm(header,parm,descr) values('AppHdr2','ABC21','Application Header 2
Parm 1');

insert into app_header_parm(header,parm,descr) values('AppHdr2','ABC22','Application Header 2
Parm 2');

insert into app_cat_header(appid,header) values('MQST','AppHdr1');
insert into app_cat_header(appid,header) values('MQST','AppHdr2');

insert into exc_app_cat(catalog,version,code,appid)

values('ExcCat.ExcH','1.0.0','94005','MQST');
insert into exc_app_cat(catalog,version,code,appid)

values('ExcCat.ExcH','1.0.0','94007','MQST');

Arunava Majumdar Page 37 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

6. Using the Java API:

A Java API package is provided to facilitate the building of Java-based applications to adhere to the standards
and integrate into the Enterprise Exception Handling Pattern. Some of the features of the API are listed below:

• Setting up the environment
• Setting up ESB for sending exceptions
• Capturing exceptions
• Sending exceptions to the queue

The class diagram for the entire package is shown below. It is a fairly simple API to facilitate applications to
setup and send exceptions based on the exceptions in the standardized format to the exception reporting queue.
The exception handling daemon may be set up to service the queue. The queue may be in a cluster for load
balancing reasons.

Figure 7 – Java API Class Diagram

Arunava Majumdar Page 38 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

6.1. Creating the Exception Catalog Class

To facilitate coding and capturing of runtime exceptions, an exception catalog class can be created using the
exception utility. This class creates functions and ensures that the exception parameters are properly setup. The
exception parameters are checked at runtime and the API throws a CatalogedException if the parameters supplied
to the exception do not match that in the Exception Catalog. This is to ensure that all the exceptions reported to
the centralized Exception Handling Daemon (exchd) are valid exceptions assigned to the application. All
exception conditions must be tested and these should be caught as bugs in the process. The exception catalog
class generation is a step forward for catching these erroneous parameters at compile time. Even after the best
testing and coding efforts, if exceptions are sent to the daemon, they are catch as foreign key violations in the
database and are databased with internal exception handler codes10.

Following is a listing of the sample java class generation script11 provided in the package.

@echo off

rem **
rem * Licensed Materials - Property of IBM *
rem * (C) Copyright IBM Corp. 2006, 2008 All Rights Reserved. *
rem * US Government Users Restricted Rights - Use, duplication or *
rem * disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
rem **

set EEH_PATH=D:/tools/eeh
call bin/win/excutil.bat -classgen Java -classdir samp/java/com/ibm/mq/exc/samp
 -exccat samp/xml/ExcCat.MQST.xml -package com.ibm.mq.exc.samp
echo .
pause

10 Please refer to the internal Exception Catalog in Appendix I:
11 Sample location is <EEH_PATH>/classgen.bat

Arunava Majumdar Page 39 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

The generated class provided in the samples12 directory is listed partially below for reference showing one of the
functions that were created for the Exception EXC_MISSING_REFERENCE.

package com.ibm.mq.exc.samp;

import java.util.Hashtable;

import com.ibm.mq.exc.ExceptionHandler;
import com.ibm.mq.exc.ExceptionHandler.CatalogedException;

public class ExcCat_MQST{

 public static final String name = "ExcCat.MQST";
 public static final String version = "1.0.0";

 /**
 * A reference is missing in the configuration.
 *
 * @param strReference Missing reference.
 * @param strObjType Type of object that is missing.
 *
 * @return CatalogedException for named exception EXC_MISSING_REFERENCE
 *
 * @exception CatalogedException of the following flavours:

 * - EXC_CAT.CATALOG_UNDEF

 * - EXC_CAT.EXCEPTION_UNDEF

 * - EXC_CAT.PARM_INVALID

 * - EXC_CAT.PARM_INVALID_INTERNAL

 */
 public static CatalogedException excEXC_MISSING_REFERENCE(
 String strReference,
 String strObjType) throws CatalogedException {

 Hashtable<String,String> hashParm = new Hashtable<String,String>();
 hashParm.put("Reference",strReference);
 hashParm.put("ObjType",strObjType);

 return new CatalogedException(ExceptionHandler.PRI_ERR,
 "EXC_MISSING_REFERENCE",hashParm,name,version);
 }

……………………………

12 Sample location is <EEH_PATH>/samp/java/com/ibm/mq/exc/samp/ExcCat_MQST.java

Arunava Majumdar Page 40 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

6.2. Setting up the Environment

To setup the Exception Handling environment a call to the static method ExceptionHandler.setup is
mandatory. This loads the Exception Catalog into the JVM. The function should be called for all the exception
catalogs that the application uses. Ideally only one Exception Catalog should be used for the exceptions
generated from the application. The static call to ExceptionHandler.setupMQ is required to setup the MQ
environment for the application to send messages to the centralized exception handling queue.

 private static String QMGR = "QM.HUB";
 private static String QUEUE = "Q.FAIL";

 private static String CATALOG = "ExcCat.MQST";
 private static String CAT_VER = "1.0.0";

 public static void initialize() throws CatalogedException {
 String strPath=System.getenv("EEH_PATH");
 if (strPath==null || strPath.length()==0) {
 System.out.println("ERROR: EEH_PATH not set !!!");
 System.out.println("Please set this environment variable to the

installation path of EEH.");
 System.exit(1);
 }

 ExceptionHandler.setup(strPath+"/samp/xml/ExcCat.MQST.xml");
 ExceptionHandler.setupMQ(QMGR,QUEUE);

 }

Arunava Majumdar Page 41 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

6.3. Generating Runtime Exceptions

The following is a code snippet to demonstrate the generation of exceptions under specific conditions in the
application. Optional application headers may be attached to the exception message. The application headers
must be setup in the database and associated with the application. The setup DML sets up two application
headers, viz. AppHdr1 and AppHdr2.

Hashtable<String,String> hashErrorParms = new Hashtable<String,String>();
 hashErrorParms.put("InvalidXMLNS","test");
 CatalogedException ceInvalidXMLNS
 = new CatalogedException(ExceptionHandler.PRI_FATAL,
 "EXC_XMLNS_VALIDATION",hashErrorParms,CATALOG,CAT_VER);

 Hashtable<String,Hashtable<String,String>> hashAppHdr
 = new Hashtable<String,Hashtable<String,String>>();
 Hashtable<String,String> hashAppNV = new Hashtable<String,String>();
 hashAppNV.put("ABC","123");
 hashAppHdr.put("AppHdr1",hashAppNV);
 Hashtable<String,String> hashAppNV2 = new Hashtable<String,String>();
 hashAppNV2.put("ABC21","123");
 hashAppNV2.put("ABC22","123");
 hashAppHdr.put("AppHdr2",hashAppNV2);
 ceInvalidXMLNS.setAppHeaders(hashAppHdr);

 throw ceInvalidXMLNS;

Alternatively, the Exception Catalog class may be used for convenience and ensuring that exception parameters
are properly populated.

 CatalogedException ceInvalidXMLNS

= ExcCat_MQST.excEXC_XMLNS_VALIDATION("test");

 Hashtable<String,Hashtable<String,String>> hashAppHdr
 = new Hashtable<String,Hashtable<String,String>>();
 Hashtable<String,String> hashAppNV = new Hashtable<String,String>();
 hashAppNV.put("ABC","123");
 hashAppHdr.put("AppHdr1",hashAppNV);
 Hashtable<String,String> hashAppNV2 = new Hashtable<String,String>();
 hashAppNV2.put("ABC21","123");
 hashAppNV2.put("ABC22","123");
 hashAppHdr.put("AppHdr2",hashAppNV2);
 ceInvalidXMLNS.setAppHeaders(hashAppHdr);

 throw ceInvalidXMLNS;

Arunava Majumdar Page 42 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

6.4. Capturing Runtime Exceptions

Exceptions generated in the application may be caught and a CatalogedException thrown. The CatalogedException
can be caught in a general catch block and reported to the exception handling system. The Java exception can
also be added to the Exception Dump for future reference. The exception is base64 encoded and added to the
XML. A dump may also be added as a byte array for binary dump or xml or string for character dumps.

try {
 FileOutputStream fos = new FileOutputStream("test.dat");
 fos.write("This is a test message.\n".getBytes());
 fos.close();
}
catch(FileNotFoundException eFNF) {
 CatalologedException eCat = ExcCat_MQTT.excFILE_NOT_FOUND("test.dat");
 eCat.setDump(eFNF);
 throw eCat;
}
catch(IOException eIO) {
 throw ExcCat_MQTT.excIO();
}

Some of the common exceptions may also use the overloaded constructors of the CatalogedException class.
Please refer to the javadocs for detailed information on all the functionality of the API.

throw new CatalogedException(ExceptionHandler.PRI_FATAL, eFNF, "test.dat",
 ExcCat_MQST.name, ExcCat_MQST.version);

Arunava Majumdar Page 43 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

6.5. Reporting Exceptions

Reporting exceptions using the API is very simple. The printStackTrace() function is overridden and prints the
exception code and description to the standard error and the XML exception to the standard output. The
createExceptionMessage() returns the XML formatted string and may be saved to a log file. Also the exception
message may be send to a queue using the sendMessage() function.

 try {

……………………………
 }
 catch (CatalogedException ce) {
 try {
 ExceptionHandler.sendExceptionMessage(ce);
 if (log!=null)
 log.warn("\n"+eCE.createExceptionMessage()+"\n");
 }
 catch (CatalogedException ce2) {
 System.out.println("Exception message:");
 ce.printStackTrace();
 System.out.println("ERROR: Sending exception message!");
 ce2.printStackTrace();
 }

}

6.6. Disconnecting from the Middleware

If the environment is set up to send messages to a queue, the disconnect() function must be called before exiting
the application for properly closing the open objects and disconnecting from the queue manager.

 finally {
 ExceptionHandler.disconnectQ();
 }

Arunava Majumdar Page 44 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

6.7. Running Sample Applications

In order to run the sample applications, the sample queues have to be created. A sample MQSC script is provided
to do this and is listed below.

* Licensed Materials - Property of IBM *
* (C) Copyright IBM Corp. 2009 All Rights Reserved. *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
* *
* Created January 2008 *

def ql('Q.FAIL') bothresh(3) boqname('Q.FAIL.BAK') replace
def ql('Q.FAIL.BAK') replace
def ql('Q.CMD') replace
def ql('Q.ExcH.ESQL.01') replace
def ql('Q.ExcH.Java.01') replace

Please make sure the sample exception catalog is setup by importing the samp/xml/ExcCat.MQST.xml and setting
up the application information by running the DML samp/dml/setup.sql.

Customize the batch files and run the sample Java applications. All batch files are located in the samp/java
directory. Below is the listing of the ExcH_Java_01_OK.bat file for reference.

@echo off

rem **
rem * Licensed Materials - Property of IBM *
rem * (C) Copyright IBM Corp. 2006, 2008 All Rights Reserved. *
rem * US Government Users Restricted Rights - Use, duplication or *
rem * disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
rem **

set EEH_PATH=d:/tools/eeh

set OLD_CLASSPATH=%CLASSPATH%
set CLASSPATH=%EEH_PATH%/lib/com.ibm.mq.exc.jar;%EEH_PATH%/lib/ext/dom4j-

1.6.1.jar;%EEH_PATH%/lib/ext/jaxen-core.jar;%EEH_PATH%/lib/ext/jaxen-
dom4j.jar;%EEH_PATH%/lib/ext/saxpath.jar;%CLASSPATH%

rem ---------------------------

java com.ibm.mq.exc.samp.ExcH_Java_01_OK QM.HUB

rem ---------------------------
set CLASSPATH=%OLD_CLASSPATH%
set OLD_CLASSPATH=

echo.
pause

Arunava Majumdar Page 45 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

7. Integration Point: Message Broker

An API is provided in the package for Message Broker integration. This facilitates coding flows in the Message
Broker. The ExceptionList is encapsulated in the Exception Dump and can be readily sent to the centralized
exception handling queue. There are two sets of API for integrating with ESQL as well as Java Compute Nodes.
For the ESQL integration a sub-flow (ESQ_Exception) is provided as well as mappings to external Java functions
that are not available in ESQL. The Java API is provided as part of the package com.ibm.mq.exc.mb.jar. Usage of
both of these integration packages are described in more details in the following sections.

Figure 8 – ESQL_Exception Subflow

The sub-flow may be used to catch the ExceptionList generated by the and send the XML formatted message to
the centralized exception queue. The Queue Name property of the MQOutputNode is promoted to the sub-flow
level. Also the Environment variable Environment.ExceptionMessage.Rethrow='Y' determines whether the
exception with the same code is thrown back to the calling message for further handling of the exception. Under
most situations this is not required. The message is also sent in a non-transactional mode so that even if the
message flow transaction rolls back the exception message is processed.

 ESQL functions in Broker schema com.ibm.mq.exc.mb
 setup, setReQueue, setData
 createExceptionMessage, throwCatalogedException
 copyMessageHeaders

 Java mappings in Broker schema com.ibm.mq.exc.mb
 setupExcCat, validateException, getExcCode
 getHostname, encodeBase64, decodeBase64

The Message Broker Java API provides the MbCatalogedException class to encapsulate some of the Message
Broker functionality, e.g. generation of the ExceptionList, etc. Following are the Message Broker extension
functions.

 com.ibm.mq.exc.mb.MbCatalogedException
 setupExcCat, validateException
 setReQueue, setData
 createCE, getMbException, translateMbException
 getFirstXPath, toXML, copyMessageHeaders

Arunava Majumdar Page 46 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

7.1. Setting up the Environment

The Exception Catalog XML must be setup in the message flow similar to how a stand-alone Java application
would do. However, the call to setup the catalog is slightly different in the case of the ESQL-based message flow
and the Java-based message flow as stated below. Typically the reQueue parameter is also set if the message
flow is triggered from an MQInputNode. The setData call sets up the Data section of the XML if required. When
used, set up the data at the beginning of the flow since the data may be transformed from node to node and the
re-queuing of data should be the original data that was sent to the queue. The data is treated as a binary data and
base64 encoded.

7.1.1. ESQL
The Exception Catalog XML must be setup using the ESQL setup procedure call which is mapped to the Java
API ExceptionHandler.setup function.

CREATE COMPUTE MODULE Initialize
 CREATE FUNCTION Main() RETURNS BOOLEAN
 BEGIN
 SET OutputRoot = InputRoot;

 create firstchild of Environment type Name name 'ExceptionMessage';
 create firstchild of Environment.ExceptionMessage type Name name

'ExceptionHeader';
 declare ref_eMsg reference to Environment.ExceptionMessage;
 declare ref_eHeader reference to Environment.ExceptionMessage.ExceptionHeader;

 declare EEH_PATH char getenv('EEH_PATH');

 call setup(EEH_PATH||'/samp/xml/ExcCat.MQST.xml',Environment.ExceptionMessage);

 call setReQueue(Environment.ExceptionMessage,InputRoot.MQMD);
 call setData(UUIDASCHAR,Environment.ExceptionMessage,InputRoot.BLOB.BLOB);

 RETURN TRUE;
 END;
END MODULE;

Arunava Majumdar Page 47 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

7.1.2. Java
The Exception Catalog XML must be setup using the Java API ExceptionHandler.setup function. The
ExceptionHandler.setupMQ call should also be made to set up the MQ for sending the message to the exception
queue directly through the Exception Handling API like in the case of a Java stand-alone application. However,
the designer may choose to retrieve the XML formatted exception and pass it to a MQOutputNode. We
recommend sending the exception message in a non-transactional mode to ensure that the message is actually
sent to the queue even if the message flow transaction fails.

public class ExcH_Java_Initialize extends MbJavaComputeNode {

 private static String QMGR = "QM.BK";
 private static String QUEUE = "Q.FAIL";

 private static String EEH_PATH = null;
 private static boolean boolSetup = false;

 public void onDelete() {
 super.onDelete();
 ExceptionHandler.disconnectQ();
 }

 public void evaluate(MbMessageAssembly assembly) throws MbException {
 MbOutputTerminal out = getOutputTerminal("out");
 MbElement eExcMsg
 = (MbElement)((List)assembly.getGlobalEnvironment().getRootElement()
 .evaluateXPath("?ExceptionMessage")).get(0);
 MbElement eMQMD
 = (MbElement)((List)assembly.getMessage().getRootElement()
 .evaluateXPath("MQMD")).get(0);
 try {
 if (!boolSetup) {
 EEH_PATH = System.getenv("EEH_PATH");
 if (EEH_PATH==null || EEH_PATH.length()==0) {
 Hashtable<String,String> hashPathError
 = new Hashtable<String,String>();
 hashPathError.put("Key","EEH_PATH");
 throw new CatalogedException(ExceptionHandler.PRI_FATAL,
 "INSTALL_PATH_UNDEF",
 hashPathError,"ExcCat.MQST","1.0.0");
 }

 ExceptionHandler.setup(EEH_PATH+"/samp/xml/ExcCat.MQST.xml");
 ExceptionHandler.setupMQ(QMGR,QUEUE);

 boolSetup = true;
 }

 MbCatalogedException.setReQueue(eExcMsg,eMQMD);
 MbCatalogedException.setData(ExceptionHandler.generateUUID(),
 eExcMsg,eMQMD);
 }
 catch (CatalogedException ce) {
 throw MbCatalogedException.getMbException(ce,eExcMsg,getName());
 }

 out.propagate(assembly);
 }
}

Arunava Majumdar Page 48 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

7.2. Generating Runtime Exceptions

7.2.1. ESQL
Generating an exception in the flow is quite simple. The parameters are set in the Environment variable for all
the Exception Header specific information and a User Exception is thrown.

 declare ref_eMsg reference to Environment.ExceptionMessage;
 declare ref_eHeader reference to Environment.ExceptionMessage.ExceptionHeader;

 set ref_eMsg.name='EXC_XMLNS_VALIDATION';
 set ref_eHeader.version='1.0.0';
 set ref_eHeader.catalog='ExcCat.MQST';
 set ref_eHeader.Parameters.InvalidXMLNS='test';
 set ref_eHeader.Application.class=NodeLabel;
 set ref_eHeader.Application.Headers.AppHdr1.ABC='123';
 set ref_eHeader.Application.Headers.AppHdr2.ABC21='123';
 set ref_eHeader.Application.Headers.AppHdr2.ABC22='123';
 set ref_eHeader.ReQueue.MQMD=encodeBase64(bitstream(InputRoot.MQMD));
 set ref_eHeader.ReQueue.MQMD_ver=cast(InputRoot.MQMD.Version as char);
 set ref_eHeader.ReQueue.Q=InputRoot.MQMD.SourceQueue;
 set ref_eMsg.Data=encodeBase64(InputRoot.BLOB.BLOB);
 set ref_eMsg.DataType='binary';
 set ref_eMsg.UUID=UUIDASCHAR;

 throw user exception severity 3 catalog 'ExcCat.MQST' message 4002;

Arunava Majumdar Page 49 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

7.2.2. Java
The process of generating a CatalogedException from a Java Compute Node is very similar to the process of
generating one in a stand-alone Java application. However, the CatalogedException cannot be thrown back into
the message flow. The Message Broker extension API helps in converting the CatalogedException to an
MbException object by using the MbCatalogedException.getMbException function call.

 private static String CATALOG = "ExcCat.MQST";
 private static String CAT_VER = "1.0.0";

 public void evaluate(MbMessageAssembly assembly) throws MbException {
 MbElement eExcMsg
 = MbCatalogedException.getFirstXPath(assembly.getGlobalEnvironment()
 .getRootElement(),"?ExceptionMessage");

 try {
 Hashtable<String,String> hashErrorParms
 = new Hashtable<String,String>();
 hashErrorParms.put("InvalidXMLNS","test");
 CatalogedException ceInvalidXMLNS
 = new CatalogedException(ExceptionHandler.PRI_FATAL,
 "EXC_XMLNS_VALIDATION",hashErrorParms,CATALOG,CAT_VER);
 Hashtable<String,Hashtable<String,String>> hashAppHdr
 = new Hashtable<String,Hashtable<String,String>>();
 Hashtable<String,String> hashAppNV = new Hashtable<String,String>();
 hashAppNV.put("ABC","123");
 hashAppHdr.put("AppHdr1",hashAppNV);
 Hashtable<String,String> hashAppNV2 = new Hashtable<String,String>();
 hashAppNV2.put("ABC21","123");
 hashAppNV2.put("ABC22","123");
 hashAppHdr.put("AppHdr2",hashAppNV2);
 ceInvalidXMLNS.setAppHeaders(hashAppHdr);

 throw MbCatalogedException
 .getMbException(ceInvalidXMLNS,eExcMsg,getName());
 }
 catch (CatalogedException ceInternal) {
 throw MbCatalogedException
 .getMbException(ceInternal,eExcMsg,getName());
 }
 }

Arunava Majumdar Page 50 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

7.3. Capturing and Reporting Runtime Exceptions

7.3.1. ESQL
The exceptions caught in the message flow may be sent to the
ESQL_Exception sub-flow for capturing the exception as well as sending
the formatted XML message to the exception queue.

Non-user generated exceptions may be caught in the flow in the same
way as user generated exceptions.

Figure 9 – Catching Exceptions with the Subflow

7.3.2. Java
The exceptions caught in the message flow may be sent to a Java
Compute Node for capturing the exception and sending the formatted
XML message to the exception queue. The Java code for sending the
exception to the queue is listed below.

Non-user generated exceptions may be caught in the flow in the same
way as user generated exceptions.

Figure 10 – Catching Exceptions with a Java Compute Node

public class ExcH_Java_CatchExc extends MbJavaComputeNode {

 public void evaluate(MbMessageAssembly assembly) throws MbException {
 MbOutputTerminal out = getOutputTerminal("out");
 MbElement eExcMsg
 = MbCatalogedException.getFirstXPath(assembly.getGlobalEnvironment()
 .getRootElement(),"?ExceptionMessage");

 try {
 CatalogedException ce
 = MbCatalogedException.createCE(assembly,getBroker().getName(),
 getBroker().getQueueManagerName(),
 getExecutionGroup().getName());

 ExceptionHandler.sendExceptionMessage(ce);

 }
 catch (CatalogedException ce) {
 throw MbCatalogedException.getMbException(ce,eExcMsg,getName());
 }

 out.propagate(assembly);
 }
}

Arunava Majumdar Page 51 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

7.4. Running Sample Applications

The sample applications for the ESQL example and the Java example are packaged under the same bar file
Exc_Samp.bar. The bar file includes the com.ibm.mq.exc.jar and the com.ibm.mq.exc.mb.jar libraries. However, the
external dependent jar files are packaged under the ext_lib.bar. This must be deployed to any execution group
running the Exception Handler. The com.ibm.mq.exc.jar library must also be deployed to all the execution groups
that have either ESQL-based message flows or Java-based message flows. In addition, the Java-based message
flows must also deploy the com.ibm.mq.exc.mb.jar library.

Arunava Majumdar Page 52 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Conclusion:

The initial release of the Enterprise Exception Handling Pattern provides not only the standards for the
integrating an enterprise-wide exception reporting system, but also provides the Java API implementation,
utilities for importing and exporting exception catalogs, generation of Java class for the catalog, integration
extensions for the IBM WebSphere® Message Broker and an exception handling daemon out of the box. In the
future releases of the package we will be publishing tools to help analyze exceptions in the database and
administration of exception and application catalogs. Please feel free to contact the author for any suggestions
you might have for future enhancement of the product.

Arunava Majumdar Page 53 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Appendix I:

<?xml version="1.0" encoding="UTF-8"?>
<exc:ExceptionCatalog name="ExcCat.ExcH" version="1.0.0" appid="null"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com.ibm.mq.exc ../schema/ExceptionCatalog.xsd"
 xmlns:exc="urn:com.ibm.mq.exc">

<Exception name="FILE_NOT_FOUND" priority="3" code="91001" descr="File not found Error!">
 <Parameter name="File" descr="Filename and path of the file that could not be

located."/>
</Exception>

<Exception name="IO" priority="3" code="91002" descr="I/O Exception generated at runtime;

please refer to the exception dump!"/>

<Exception name="CLASS_UNDEF" priority="3" code="91003" descr="Class could not be found!">
 <Parameter name="Class" descr="Class name that could not be located."/>
</Exception>

<Exception name="91004" priority="3" code="91004" descr="Host could not be deternimed!"/>

<Exception name="XML_VALIDATION" priority="3" code="94001" descr="XML Validation Error!">
 <Parameter name="ColumnNo" descr="Column number where the exception occerred."/>
 <Parameter name="LineNo" descr="Line number where the exception occurred."/>
 <Parameter name="Message" descr="Reason for the XML violation to occur."/>
 <Parameter name="PublicId" descr="External public Identifier if one exits."/>
 <Parameter name="SystemId" descr="System identifier of the xml file."/>
</Exception>

<Exception name="XMLNS_VALIDATION" priority="3" code="94002" descr="XMLNS Validation Error!

Valid XML Namespace is 'urn:com.ibm.mq.exc'.">
 <Parameter name="InvalidXMLNS" descr="Invalid XML Namespace."/>
</Exception>

<Exception name="CATALOG_NULL" priority="3" code="94003" descr="No Exception Catalog has not
been defined!"/>

<Exception name="CATALOG_REDEF" priority="3" code="94004" descr="Exception Catalog is being

redefined!">
 <Parameter name="ExcCat" descr="Exception Catalog."/>
</Exception>

<Exception name="CATALOG_UNDEF" priority="3" code="94005" descr="Exception Catalog is not

defined!">
 <Parameter name="CallStack" descr="Call Stack of the original Exception."/>
 <Parameter name="ExcCat" descr="Exception Catalog."/>
 <Parameter name="ExcCatVer" descr="Exception Catalog Vaersion."/>
</Exception>

<Exception name="APPID_REDEF" priority="3" code="94006" descr="Application Identifier is being

redefined!">
 <Parameter name="AppId" descr="Application Identifier defined."/>
 <Parameter name="AppId_New" descr="New Application Identifier conflict."/>
</Exception>

<Exception name="EXCEPTION_UNDEF" priority="3" code="94007" descr="Exception is not defined in

the catalog!">
 <Parameter name="CallStack" descr="Call Stack of the original Exception."/>
 <Parameter name="Exc" descr="Exception not found in the catalog."/>
 <Parameter name="ExcCat" descr="Exception Catalog."/>
 <Parameter name="ExcCatVer" descr="Exception Catalog Vaersion."/>
</Exception>

Arunava Majumdar Page 54 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

<Exception name="PARM_INVALID" priority="3" code="94008" descr="Exception parameter is not
valid for the Exception in the catalog!">

 <Parameter name="CallStack" descr="Call Stack of the original Exception."/>
 <Parameter name="Exc" descr="Exception found in the catalog."/>
 <Parameter name="ExcCat" descr="Exception Catalog."/>
 <Parameter name="Parm" descr="Exception parameter not valid for the Exception."/>
</Exception>

<Exception name="QMGR_CONN_REDEF" priority="3" code="94009" descr="Queue Manager connection

redefinition; one has already been defined!">
 <Parameter name="QMgr" descr="Queue Manager being redefined."/>
</Exception>

<Exception name="REQUEUE_NOT_SET" priority="3" code="94010" descr="Re-Queue queue name has not

been defined!"/>

<Exception name="QUEUE_NOT_SET" priority="3" code="94011" descr="Queue name has not been

defined!"/>

<Exception name="DUMP_REDEF" priority="3" code="94012" descr="Exception Dump redefinition; one

has already been defined!">
 <Parameter name="DumpType" descr="The type of exception dump already set."/>
</Exception>

<Exception name="DUMP_UNSUPPORTED" priority="3" code="94013" descr="Exception Dump type is not

supported! Supported types are binary, string, xml, java:Exception,
java:DumpRenderer.">

 <Parameter name="DumpType" descr="The type of exception dump provided."/>
</Exception>

<Exception name="DATA_REDEF" priority="3" code="94014" descr="Data format type redefinition;

one has already been defined!">
 <Parameter name="DataType" descr="The type of data format already set."/>
</Exception>

<Exception name="DATA_UNSUPPORTED" priority="3" code="94015" descr="Exception Data format type

is not supported! Supported types are binary, string, xml, java:MQMessage,
java:JMSMessage, java:DataRenderer.">

 <Parameter name="DataType" descr="The type of Data format provided."/>
</Exception>

<Exception name="PARM_INVALID_INTERNAL" priority="4" code="94998" descr="Exception parameter

is not valid for the Exception in the catalog ExcCat.ExcH ! This is an internal
ExceptionHandler fatal error and is caught to avoid infinite recursive exception
invokations.">

 <Parameter name="CallStack" descr="Call Stack of the original Exception."/>
 <Parameter name="Exc" descr="Exception found in the catalog."/>
 <Parameter name="Parm" descr="Exception parameter not valid for the Exception."/>
</Exception>

<Exception name="UNKNOWN" priority="4" code="94999" descr="An Unknown exception has occurred

in the system. Please send the stack trace to arunava@us.ibm.com with the Subject
as PMR:ExceptionHandler and your contact details.">

 <Parameter name="CallStack" descr="XML format of the call stack when the Exception was
generated."/>

</Exception>

<Exception name="WMQ" priority="3" code="95001" descr="WebSphere MQ error!">
 <Parameter name="Reason" descr="Reason code returned form WMQ."/>
</Exception>

<Exception name="JMS" priority="3" code="95002" descr="Java Messaging Service error!">
 <Parameter name="ErrorCode" descr="Error code returned form JMS vendor."/>
</Exception>

Arunava Majumdar Page 55 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

<Exception name="WMB" priority="3" code="95003" descr="ExceptionList object captured! This is
a generic Exception caught inside the Message Flow and not intended to be used for
User Exceptions that should be catagorized and analyzed.">

 <Parameter name="Catalog" descr="NLS message catalog name."/>
 <Parameter name="ExceptionType" descr="The type of Exception that was generated. It is

of the following types - RecoverableException, ParserException,
ConversionException, DatabaseException, UserException, SecurityException,
CastException, MessageException, SqlException, SocketException,
SocketTimeoutException."/>

 <Parameter name="File" descr="C++ source file name."/>
 <Parameter name="Function" descr="C++ source function name."/>
 <Parameter name="Line" descr="C++ source file line number."/>
 <Parameter name="Name" descr="Source object name."/>
 <Parameter name="Number" descr="NLS message number."/>
 <Parameter name="Severity" descr="1 = information, 2 = warning, 3 = error."/>
 <Parameter name="Source" descr="Source object label."/>
 <Parameter name="Text" descr="Additional text."/>
 <Parameter name="Type" descr="Source object type."/>
</Exception>

<Exception name="SQL" priority="3" code="96001" descr="Database SQL error!">
 <Parameter name="SQLCODE" descr="SQLCODE for the vender specific database error."/>
 <Parameter name="SQLMSG" descr="Message for the database error."/>
 <Parameter name="SQLSTATE" descr="SQLSTATE for the database error."/>
</Exception>

</exc:ExceptionCatalog>

Arunava Majumdar Page 56 of 58 arunava@us.ibm.com

 Enterprise Exception Handling

Bibliography:

1. WMQ Support pack md08 – WebSphere MQ Network Design Notation
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24006700&loc=en_US&cs=utf-8&lang=en

2. OMG 03-08-02 – UML 2.0 Superstructure specification

3. The Unified Modeling Language Reference Manual by James Rambaugh, Ivar Jacobson and

Grady Booch

4. WMQ Manuals:

Multiplatforms

Title Order number PDF/size Date

Monitoring WebSphere MQ SC34-6593-00 2.79MB May 2005

WebSphere MQ Application Programming Guide SC34-6595-01 6.18MB Mar 2006

WebSphere MQ Application Programming
Reference

SC34-6596-00 7.5MB May 2005

WebSphere MQ Bibliography and Glossary SC34-6603-00 0.96MB May 2005

WebSphere MQ Clients GC34-6590-01 1.82MB June 2005

WebSphere MQ Constants SC34-6607-00 2.63MB May 2005

WebSphere MQ Intercommunication SC34-6587-00 6.98MB May 2005

WebSphere MQ Messages GC34-6601-00 3.87MB May 2005

WebSphere MQ Migration Information SC34-6604-01 0.44MB Oct. 2005

WebSphere MQ Programmable Command Formats
and Administration Interface

SC34-6598-01 0.44MB Sept 2006

WebSphere MQ Publish/Subscribe User's Guide SC34-6606-00 1.63MB May 2005

WebSphere MQ Queue Managers Clusters SC34-6589-00 2.04MB May 2005

WebSphere MQ Security SC34-6588-01 2.00MB Oct. 2005

WebSphere MQ Script (MQSC) Command
Reference

SC34-6597-01 2.00MB Sept 2006

WebSphere MQ System Administration Guide SC34-6584-01 6.55MB Mar 2006

WebSphere MQ Transport for SOAP SC34-6651-00 0.9MB May 2005

WebSphere MQ Using C++ SC34-6592-00 1.58MB May 2005

WebSphere MQ Using Java SC34-6591-01 4.84MB Mar 2006

WebSphere MQ Using .Net GC34-6605-01 0.8MB Mar 2006

5. WMQ Support Pack ms03 – Save Queue Manager

6. WMQ Support Pack ms0e – MQ Administration Wrapper

7. IBM Alphaworks performance harness - http://www.alphaworks.ibm.com/tech/perfharness

8. IBM ESB Overview

http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=landings/esbbenefits

Arunava Majumdar Page 57 of 58 arunava@us.ibm.com

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24006700&loc=en_US&cs=utf-8&lang=en
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659300
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659501
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659600
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659600
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34660300
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC34659001
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34660700
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658700
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC34660100
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34660401
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659801
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659801
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34660600
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658900
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658801
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659701
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659701
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658401
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34665100
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659200
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659101
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC34660501
http://www.alphaworks.ibm.com/tech/perfharness
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=landings/esbbenefits

 Enterprise Exception Handling

9. Improve the performance of your WebSphere Business Integration Message Broker V5 message
flow
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

10. Books:

• WebSphere Message Broker Basics
http://www.redbooks.ibm.com/redbooks/pdfs/sg247137.pdf

• Managing WebSphere Message Broker Resources in a Production Environment

http://www.redbooks.ibm.com/redbooks/pdfs/sg247283.pdf

• WebSphere MQ V6 Fundamentals on this link in the Red Books section
http://www-306.ibm.com/software/integration/wmq/library/

• WebSphere MQ Queue Manager Clusters

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC34658900

11. Classes:

• WebSphere Message Broker V6 Application Programmer Workshop
http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?

pageType=course_description&courseCode=MQ661

Arunava Majumdar Page 58 of 58 arunava@us.ibm.com

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg247137.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247283.pdf
http://www-306.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC34658900
http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=course_description&courseCode=MQ661
http://www-304.ibm.com/jct03001c/services/learning/ites.wss/us/en?pageType=course_description&courseCode=MQ661

	 Modification History
	Legal Disclaimer:
	 Acknowledgement:
	 Scope of the Document:
	1. Introduction to Exceptions:
	1.1. What is an exception?
	1.2. Exception Object concepts
	1.3. Importance of exception handling
	1.4. Importance of common exception handling for the organization
	1.5. Importance of cataloging exceptions
	1.6. Designing exceptions

	2. Enterprise Exception Handling Concepts:
	2.1. Standardization of the Exception format
	2.2. Exception reporting through the ESB
	2.3. Notification through the Monitoring System
	2.4. Centralization and Statistical Analysis of Exceptions
	2.5. Testing Exceptions Conditions

	3. Design Pattern – Enterprise Exception Handling
	3.1. Architecture
	3.2. Message Specifications
	3.3. Database schema Specifications

	4. Exception Handler Runtime and Utilities:
	4.1. Exception Handler Utility
	4.2. Exception Handler Command
	4.3. Exception Handler Daemon

	5. Setting up the Exception Catalog:
	6. Using the Java API:
	6.1. Creating the Exception Catalog Class
	6.2. Setting up the Environment
	6.3. Generating Runtime Exceptions
	6.4. Capturing Runtime Exceptions
	6.5. Reporting Exceptions
	6.6. Disconnecting from the Middleware
	6.7. Running Sample Applications

	7. Integration Point: Message Broker
	7.1. Setting up the Environment
	ESQL
	7.1.2. Java

	7.2. Generating Runtime Exceptions
	ESQL
	7.2.2. Java

	7.3. Capturing and Reporting Runtime Exceptions
	ESQL
	Java

	7.4. Running Sample Applications

	 Conclusion:
	 Appendix I:
	 Bibliography:

