Arunava Majumdar

Sr. IT Specialist

Focused Technology Practice
(Connectivity/BPM)

IBM Corporation.

Vineet Gupta

IBM Certified IT Specialist

Application Integration and Middleware
IBM Software Services for Websphere
IBM India Pvt. Ltd.

WebSphere. i E:

Enterprise Exception Handling
Implementation Guide

Enterprise Exception Handling: Implementation Guide

Contents
MOTFICALION FLISEOTY ..cuvcvviiniinrininiissistssssisssssssis bbb bbb bbb bbb R AR AR R b0 4
Lgal DISCLATMET:cvuiiiiiniinisiisissssisiisisisisssi s s s bR bR AR 5
ACRNOWLRAGEMENL:ccuvirctririiniiricssiisiisisisiisss s s bR bR bR AR R b 7
SCOPE Of tRE DOCUMENE:cecuecrsininsisiinsinsasininsassssasissssissssasssssssssssesssssssassssassssassssssssssssstssssssssssssssssssases 8
TWVRAL'S NEU: «..vcvevereeereeenreereeensaesseessesssssssessssssssssssssssssssssssesssesssssssssssesssssssssssssssesssssssesssessssssssssssssssssssssssnes 9
1. Introduction to EXCEPLIONS:wuiseriscsissssssissssissssasssssssssssssssssssssssssssssssssisssssasssssisssssassssssssssses 10
1.1, WhaAt iS @N EXCEPTIONT ...ttt et e ettt e e st e e s b e e e bt e e s nane e e e s nreeens 10
1.2. EXCeption ODJECT CONCEPLSciiiiiiiieei et e e e e e e et e e e e e e e ennaneeeaaeeean 10
1.3. Importance of exception RanNAliNgG ... 10
1.4. Importance of common exception handling for the organization.............ccccccooiiiiiiiinnnnen. 11
1.5. Importance of cataloging EXCEPTIONScoiiiiiiiiiiie e e e e 11
1.6. DI o[1 aTe =) (oT=T o] 4 o] 0 1= TP PRPP 11
2. Enterprise Exception Handling CONCEPLS:vciurinirirninsininsissinsmsssssmssssssssssssssssssnssasssssssassass 12
2.1. Standardization of the EXCeption fOrMALuiiiiiiiiiiiieeee e 12
2.2. Exception reporting through the ESB.............eeiiiiiii e e e e 13
2.3. Notification through the Monitoring SYSIEIMcooiiiiii e eee e e 13
2.4, Centralization and Statistical Analysis of EXCEPLONSciiiiiiiiiiiiieeciet e 14
2.5. Testing EXCEPtioNS CONUILIONSuuiiiiiiieeiiie et n e 14
3. Overview of Enterprise EXCeption HANAUNG...........cuvvirniniinninininsininsinsinissississsisssssssasssssasns 15
4. Design Pattern — Enterprise Exception Handlitig............vcninininnsninnisinississesssssssmssssssisssscns 17
4.1. F (ol 11 (=T (U= T PO TP PP UP PP 18
4.2. MESSAQGE SPECITICALIONSeeeeiieee ittt e e e e e st e e e e e s st b e et e e e e e e snbeeeeeeeannes 20
4.3. Database schema SPeCIfiCAtIONSoiii i e e e 31
S. Exception Handler Runtime and VEALIES:vcvivsnisisisinsnisssssssisesssssssssissssssssssssssssssses 39
5.1. EXCeption HANAIEr ULIITYcooi ettt e e e ettt e e e e e e e e e e e e e e seneeeaaeeannes 39
5.2. EXCeption HandIEr DAEIMONuiiiiiiiee itttk e et e e s s e e e abe e 42
5.3. Exception Handler COMMEANuuiiiiiiiieiieee ettt e e 44
6. Setting up the EXCEPLOn CAt@lOg:.......uuuviinininicnininiisinissinsunissississssssinsssssssssssssssssssssssssssasens 45
7. USING the JAVA APL:uuiucunicerininiisinsnsisississssasissasissssesssssssasasesssssssssssensassasssisssssssssssisssssassssssss 48
7.1. Creating the EXCeption Catalog CIASSiiiiiiiiuiiiiiiieeeiiiiiieiee e et e e e e s e e e e e e s eeib e e e e e s sasaaaeeeas 49
7.2. Setting Up the ENVIFONMENT.......coii e e et e e e e satbeeeeee s 51
7.3. Generating RUNtIME EXCEPLIONSuveiiiiiiiiiiii ettt e e e e e e e e e e sibnee e e s 54
7.4. Capturing RUNIME EXCEPLIONS.co ittt e e e ettt e e e e e e et et e e e e e e annneeeeaaaeeaaeeeaaeas 55
7.5. REPOMING EXCEPLIONS ... eeeeeeete ettt ettt e e e e ettt et e e e e e e et b e et e e e e e s aantbaeeeaeeaaaantbeeeaaaeasasnneeaaeaaanns 56
7.6. Disconnecting from the MIidAIEWAIEooiiiiiiii e 56
7.7. RUNNING SamMPle APPIICATIONSceiiiiieieiiiit ettt e e e e 57
8. Using the ECIpse PLUG-TN:cucvisnirinsinsnsisissnsisasisismissssasissssissssesssssssasasssssssssssessassssssassssssces 58
8.1. (0] 411 To [Tz Ua 1o] 4 [== To =Y PR 59
8.2. AdMINISITAION PAGEttt e e et e e e e e e e e a b b e et e e e e e e anbb b et e e e e e e sbbneeeeeeeaans 60
8.3. F N g E= L TSR o= To = PP TS O PP PPPPPPPPPN: 61
8.4. o Cel=T o] 1 o] o T = Vo = PP PRRR 62
8.5. LOG PAUE ..ttt et e s e n e nnnennnnnee 63
9. Using the Web ANALYZer: ... 64

Arunava Majumdar Page 2 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10. Integration Point: MeSSAGe BIORETcvcuriircsrisssississsssssssssssisssssssssssssssssssssssssssssssssssasssssssassass
10.1. Setting Up the ENVIFONMENT......ooo ettt e e e et e e e e e e e s e ntbeeeee e e e e sananeaaaens
10.1.1. [PP PP PPOPPPPPPPPPP
10.1.2. - 1Y PPN
10.2. Generating RUNLIME EXCEPLIONSuuuiiiiiiiiiiiiiiii ettt e et e e e e et e e e e e e e aabnneeee s
10.2.1.] PP OPPPPPPPRPP
10.2.2. - 1Y PPN
10.3. Capturing and Reporting Runtime Exceptions
10.3.1. 2] P PP PPOPPPPPPPRPP
10.3.2. JAVA ..
10.4. Running Sample APPHCALIONS ..ottt e e e et e e e e e e e et e e e e e e e s aneeeaaens

11. Enterprise Exception Handler FOTUMS:ccrmiiiusissisussssssisssssssssssssssssssssssssssssssssssasssssssassans 72
12, Service Offering from IBM: ..., 73

CONCLUSTONS «.eonveeeerereeeeeessesseiseesessssssesessstsseentessssnssntsssesseensssstontsntsssesssentsnseontenssssesnsessssseentenssssesnsesssssesns 74

BIBGOGIAPRY: ...ceerincnrininsirininsinsisisinssssnsisissssssasisssssssssssissssiassstsssssssssssssssssssasssssssasssssisssssasssssisssssassssssses 79

Table of Fiqures

FIQUIE 1 - EEH OVEIVIEW ...ttt ettt e oottt e oo e ettt e e e e e e et e ha et e e e et e e bt e e e e eeeaaa e e e e e e e eeban e e e e e ennnnnnans
Figure 2 — EEH Implementation...............ccceeeeee
Figure 3 - Common Exception Handling Process
Figure 4 — Message Specification for Exception Data
Figure 5 — Message Specification for Exception Data — Application section (2.1)
Figure 6 — Message Specification for Exception Data — Application section (3.1)
Figure 7 — Message Specification for EXCEPtioN Cat@log....... .. ieeieiieiiiiiee ettt e e e e e e e e e e e e eeeaa e e e e e eeannnaaaaas
Figure 8 —Message Specification for Command Message
Figure 9 - Exception Database Schemacccccvviiiieieiiiinnnnnn.

Figure 10 - Application Data Re-QUEUEcceeeeiruuuiieeeeiiiiiiiaeeaas

Figure 11 — Java APl Class Diagram............ceeeeeeeieiiiiieeeeeeiiiiieeeees

Figure 12 — EEH Editor: Configuration Pagecccceeveeviiiiiinineeens

Figure 13 — EEH Editor: Administration Page..........cccceeevvevvinnineenns

Figure 14 — EEH Editor: Analyzer Page..........cccoeeviviiiieeeeiiiiiiiiieeees

Figure 15 — EEH Editor: EXCeption Pagecceeeeuvuuiieeieeiiiiieeeees

Figure 16 — EEH Editor: LOg Page.......ccceuuuuieeieieiiiiiiie e

FIQUIE 17 = EEH WED ANGIYZETeuieeeeeeeiiie e ettt e e e e e et e e e e e e e e et e e e e e e eeeta e e e e eeeesaan e eeeeeessaa e eeeeeeesnaneeeeeeessnnnneeaeeneeennnnnnnn
Figure 18 — EEH Web Analyzer: EXCEPtION DETAIISccieiiiiii ettt e ettt e e e e et e e e et e e e e e e e e neenaaeaees
Figure 19 — ESQL_Exception Subflow....................
Figure 20 — Catching Exceptions with the Subflow
Figure 21 — Catching Exceptions with a Java Compute Node

Arunava Majumdar Page 3 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Modification History |
Jote [vewson Jaunor foeserpton 0000000000

06/23/2009 0.2.0 Arunava Final release for Support Pac id08
M ajumdar

05/01/2012 1.0.0 Arunava Final release for Support Pac id08
Majumdar,
Vineet Gupta

Arunava Majumdar Page 4 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Legal Disclaimer:

Information provided has been developed as a collection of the experiences of technical services professionals over a wide
variety of customer and internal IBM environments, and may be limited in application to those specific hardware and software
products and levels

The information contained in this document has not been submitted to any formal IBM test. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to
adapt these techniques to their own environments do so at their own risk, and in some environments may not achieve all the
benefits described.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes will be incorporated in new editions of this publication. IBM may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at any time without notice.

IBM may not offer the products, services, or feature discussed in this document in all countries. Consult your local 1BM
representative for information on the products and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as
an endorsement of those Web sites. The materials at those Web sites are not part of the materials of this IBM product and use
of those Web sites is at your own risk.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or
other publicly available sources. IBM cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice and represent goals
and objectives only.

All prices shown are IBM's suggested list prices and are subject to change without notice. Dealer prices may vary.

Any performance date contained in this document was determined in a controlled environment. Therefore the results obtained
in other operating environments may vary significantly. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee that these measurements will be the same on generally available systems.
Some measurements quoted in the document may have been estimated through extrapolation. Actual results may vary. Users
of this presentation should verify the applicable for their specific environment.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various
operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the
purpose of developing, using, marketing or distributing application programs conforming to the application programming
interface for the operating platforms for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Arunava Majumdar Page 5 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

In memory of my sister Anusree Majumdar

Arunava M ajumdar Page 6 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Acknowledgement:

Guy Hochstetler and | came up with the idea of a centralized Exception handling system for tracking down
errors and cataloging them across the enterprise. This would help in troubleshooting very large and complex
enterprise systems easily. The first objective was to standardize the exceptions generated from applications
across the enterprise so that they can be analyzed that forms the basis for further developments on the idea. My
specia thanks to Guy for help cultivate the idea. The pattern since then had been successfully implemented at
multiple organizations.

| also acknowledge the Open Source contributions on the following packages used in the delivery of the product.

This product includes software developed by the DOM4J Project (http://www.dom4j.org/).

This product includes software developed by the SAXPath Project (http://www.saxpath.org/).

This product includes software developed by the JAXEN Project (http://jaxen.codehaus.org/).

This product includes software developed by the JAXEN Project (http://logging.apache.org/log4j/1.2/).

Arunava Majumdar Page 7 of 79 arunava@us.ibm.com

http://www.dom4j.org/
http://www.saxpath.org/
http://jaxen.codehaus.org/
http://logging.apache.org/log4j/1.2/

Enterprise Exception Handling: Implementation Guide

Scope of the Document:

The scope of the document is limited to the design and implementation of the Enterprise Exception Handler. It
provides the software specifications for the integration of the design with all applications in the organization.

The scope of the document is not to address how applications can handle exceptions within their code but how
they can report exceptions into this common framework. It also addresses the present tools and future tools to
enrich the exception detection and troubleshooting. It is left to the individual applications to address their own
System and Business exception and humerous books and papers had been written on the subject.

This version of the paper provides a Java implementation of the design and API that may be incorporated in any
Java application. The API provides methods to send the exception to an IBM WebSphere MQ® queue as aMQ
message or a JM S message or to any generic JIMS provider. Refer to javadocs for how to use the API.

Other API’s may be developed for other languages based on the specifications provided in the document. C++
API will be provided at alater release.

Databases based on the schema and specifications provided in the document may be created for storing the
exceptions in a consistent manner and for future exception analysistools.

Integration with monitoring products with IBM Tivoli Omegamon™ will be provided as a future release.

Arunava Majumdar Page 8 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

What’s new:

What’s new in Enterprise Exception Handling Pattern version 1.0.0:

5

%

Message expiry and the expired queue can be set for the Exception Catalog

A description for the Exception Catalog is added to the schema

Exception Catalog may be property file based where XML parsing is an issue

Database table prefix may be provided (schema, catalog, etc.) to prefix table names

Centralized logging

Static linking of exception catalog using getExcCatlnfo() generated from excutil

Static loading of exception catalogs using EEH_SETUP environment variable

EEH debug mode may be set from the environment variable, EEH_DEBUG

Catal og registration with the EEH installation provides centralized management

Catal og setup options added — setupRegisteredCatal ogs(), setupCatal ogs()

Appld ="*" may be set in the Exception Catalog when used by multiple applications

setAppld() API added for individual applications to set their id

FileNotifier plugin sample added for exchd INotifier plug-in

EEH Editor, an eclipse-based plug-in is provider for configuration, administration and analysis and re-
gueuing of exception data

EEH Web Analyzer provides functionality to browse exceptions in the database and re-queuing of
exception data

5

%

e

%

e

%

e

%

X3

%

X3

%

X3

%

X3

¢

X3

8

X3

8

5

%

53

%

53

%

e

%

Arunava Majumdar Page 9 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

1. Introduction to Exceptions:

Exception Handling had always been an important topic of discussion while designing and architecting any
operationa system. Exceptions and failures will be present in any operational system and it is the intention of a
robust design not just to minimize the exceptions but to handle the anomalies with the least effect to the
operational system. lsolation, reporting, notification, monitoring and analysis of exceptions are hence,
requirements for any exception handling system. A good exception handling process is essential to the hardening
of the product whether it be mechanical, electrical, structural or software. This paper is limited to discussions on
Software Exception Processing across the Enterprise in a controlled and standardized manner.

1.1. What is an exception?
An exception is a software runtime anomaly.

This is a very generic definition of an exception and the paper suggests a common exception handling
process for the whole organization. All Application exceptions may be fed into the Enterprise Exception
Handling Process in a standard manner for analysis and debugging. Exceptions for products are usually
reported by monitoring products like IBM Tivoli Omegamon™. The Common Exception Handling process
takes advantage of the monitoring infrastructure to report application exceptions.

1.2. Exception Object concepts

Errors detected inside the code are handled in different manners inside the code. A conditional statement
may detect a failure of a certain nature and then decide to jump to a different location in the code. Jumping
from one part of the code to another may become tedious to detect. While that may be the only option in
certain languages like Assembly, calling functions or breaking from loops or just returning from the function
is a better approach in structured languages like C or Basic. Object Oriented Programming introduced the
concept of trying a piece of algorithm and catching exceptions at the end of it to handle these exceptions.

try {
Il Code to be tried

catch (Exception e) {
Il Exceptions caught and handled
}

1.3. Importance of exception handling

The robustness of an application depends on how well exceptions are being handled inside the code.
Providing functionality and testing of the functionality is essential to meet the requirements, but hardening
of the applications is necessary for any production-ready application. A well-hardened application should be
able to trap all of runtime exceptions and reporting them in an efficient manner. While capturing all
exceptions under every condition is not possible at the first deployment phase, the application must provide
means of handling poison data sent to it for further analysisin the future. Subsequent analysis and additional
exception handling inside the applications will elevate the maturity of the application and eliminate failures.

Arunava Majumdar Page 10 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

1.4. Importance of common exception handling for the organization

Every application may handle exceptions in the organization in a unique manner hardened and matured over
a period of time. The handling of exceptions by individual applications may apparently stabilize the
environment but the lack of an integrated view of the exceptions occurring throughout the organization may
provide a false pretense of stability. It is very difficult and extremely resource intense to check individual
log files for the any failures in the systems for each of the applications, especially in amedium to large size
organization. Traceability and re-introduction of the data that caused the exception or the data that could not
get processed due to the exception is often cumbersome. A complete picture of all the exceptions occurring
in the system is therefore essential for the detection and analysis of the errors. A statistical analysis of these
errors may also be provided at the end of the month or year to determine defects and improve the
infrastructure and applications running in the organization.

1.5. Importance of cataloging exceptions

In order to achieve a common exception handling process in the organization, the first step would be to
standardize and catalog all the exceptions that are presently handled by the applications and other system
monitoring components. Each exception must be assigned a code and a set of parameters associated with it
that fully qualifies the exception condition. Care must be taken to assign exception codes so that thereis no
duplication of the same type of exception with few different codes. Duplication of error codes from
individual products is not the intent of the system either. E.g., it is not a good idea to assign an exception
code to every SQLCODE or MQ REASONCODE but to group them under some standard problems they
address, viz. connectivity, integrity, etc. However, products supporting the Enterprise Exception Handling
standards and methodology may be directly incorporated in the exception catalog if they provide their own
catalog. Each application generating these exceptions must be cataloged to determine what exceptions they
are entitled to. Managing the catalog is important to derive accurate statistics of the exceptions occurring
throughout the organization.

1.6. Designing exceptions

Designing good exceptions is the basis of a successful Exception Handling system. The exceptions must be
explicit enough for quick problem determination as well as generic enough so as not to have an
unnecessarily large exception catalog. The ability to preserve the dump at the point of exception (e.g. java
Exception object, stack trace, ExceptionList inside the Message Broker Flow, etc.) in the exception message
saves vital information for problem determination. Huge memory dumps are not often the most efficient
way to troubleshoot a problem and should be avoided.

Arunava Majumdar Page 11 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

2. Enterprise Exception Handling Concepts:

Having emphasized on the importance on Exception Handling in applications let us consider how some of the
ideas may be implemented in an organization and the steps required to adopt the Enterprise Exception Handling
pattern.

2.1. Standardization of the Exception format

Exception Handling inside large organizations is mostly application centric and hence in most situations there
exists no standardization of the structure of the exceptions. The foremost factor to enable exceptions to make
sense at an organizational level is to have a standard for exceptions reported from any application. Taking it a
step further, if a universal standard exits across organizations, then common tools may be developed for
exception detection and troubleshooting purposes. The paper attempts to define a standard for exceptions after
inputs were taken from multiple organizations on the requirements specific to that organization.

Standard API’s provide a simple integration method for the EEH. Applications that had been aready written
may now use the API to format the exception messages without having to spend alot of cyclesin the integration
effort. Concepts like the early detection of exceptions and handling wrongly formatted or generation of wrong
exceptions should be caught at a development or testing level of the individual applications rather than at
runtime. Thisisto prevent wrong exceptions giving rise to faulty statistical information.

Database provides a persistent searchable storage for exceptions in the architecture and such the schema for the
EEH should also be standardized. The paper provides a schema for the implementation of the pattern after
considering requirements from various organizations. Exceptions occurring in the Exception Handling system
are also reported in the exception database in a consistent manner with specific exception category codes making
the debugging of these special exceptions easy. Most likely these are only generated when applications have
generated exceptions while generating exceptions and should be fixed as bugs in the application.

API standardization checks for exception parameters but the application header parameters are only checked at a
database level (referential integrity).

Arunava Majumdar Page 12 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

2.2. Exception reporting through the ESB

Exceptions must be reported through a common information transport mechanism that is robust and resilient to
network problems. The infrastructure must support multiple platforms and networks so that applications may
report exceptions from any parts of a large heterogeneous organization. The mechanism must be asynchronous
since the exception reporting system should not significantly affect the normal processing in the organization.
Applications should be able to report exceptions and carry on with the normal functionality rather than
synchronoudly waiting for a response. The Enterprise Service Bus (ESB) fits right into this architectural
requirement. The ESB must provide guaranteed persistent delivery mechanism.

2.3. Notification through the Monitoring System

Notification mechanism must be provided and has be to extensible to integrate with monitoring systems so that
the same monitoring mechanism may be used notify the Operations department of potential errorsin the system.

Reporting errors through the monitoring system has its set of advantages. It provides an efficient and common
process of reporting exceptions similar to the monitoring agents, e.g. Middleware or Database monitoring agents,
to a centralized repository. The exception conditions may be co-related with other exceptions occurring in the
system and being similarly reported to the monitoring sub-system, e.g. application database connections
exceptions with a database crash and a situation may be build to shutdown the application. Another advantage is
to be able to reset some exceptions when the problem has been fixed, e.g. a data integrity issue may be fixed by
either manually or automatically (based on some rules) changing the data and re-introducing the data in the
system at the point of failure and a notification automatically sent to reset the exception condition. In other
words, closed-looped autonomic processes may be build around it.

Arunava Majumdar Page 13 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

2.4. Centralization and Statistical Analysis of Exceptions

The idea behind the Enterprise Exception Handing Pattern is to be able to centralize all application-related
exceptions throughout the organization so that they can be analyzed with relative ease and help in the
troubleshooting process. An extension of the same idealiesin the Statistical Analysis of exceptions over a period
of time. As exceptions get reported centrally, analysis may be drawn from the category of exceptions received by
every application in the organization or on which applications generate the most amount of exceptions. Some of
these exceptions may be inevitable and the organization may have no control over them. Others might have
inherent problems in the application or the interface to applications within the organization or partners. This
provides a good basis for analyzing specific applications for these exceptions and enhancing the overall
application performance in the long run. The reports may also be taking back to the customers who are not
adhering to the standards of the application service interfaces causing discarding of data that could have been
otherwise used. This happens especially in multinational organizations that interface with a large number of
partners across the world.

2.5. Testing Exceptions Conditions

Exception Conditions are often overlooked by testing teams in the light of testing the functionality of the
application. No less emphasis should be given to testing exception conditions if a robust application is desired.
The ability for an application to report al runtime exceptions without causing a failure and reporting them
correctly proves the resilience and the efficiency of the application in troubleshooting in a production
environment.

The testing team must, therefore, determine al the exception conditions in the application and add them to the
test cases. Every exception is properly cataloged and linked to the application catalog. Any application reporting
exceptions that had not been associated with the application should be reported as a test case failure as well as
exceptions with wrong parameters. To facilitate this process, every application must have its subset of the
exception catalog and check against it. The testing team must make certain that are occurs at least one test case
to test each of the exception codes that are assigned to the application. Most often multiple test cases with the
same exception code will be present.

Arunava Majumdar Page 14 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

3. Overview of Enterprise Exception Handling

The Enterprise Exception Handling is a common framework to report exceptions in a consistent manner that is
persisted in a database and analyzed later.

Net WS J2EE

SCA Cobol

3

Jove '-»-‘})i i L= o

Enterprise
Exception
Handler

ay
on, feP
6 i is\(ﬂ{‘un'ﬁnaﬁwa ;
fird o

Cagus ot

Figurel- EEH Overview

Based on the implementation of EEH, the process starts with the cataloging of exceptions while building an
application. As the application encounters new exceptions to be handled they are noted and the exception catalog
owner decides whether to add a new exception to the catalog or to assign an existing one to the application.
Based on the exception to be used in the particular application, the application developer uses the Cataloged
Exception in the exception handling section using the EEH API.

Thefirst step for the application is to set up the Exception Catalog within the application by calling the API. The
catalog must be loaded only once. The exceptions being generated by the application are validated against the
catalog at runtime and a Cataloged Exception from the EEH internal catalog is thrown if the definitions do not
match. This check avoids the creation of erroneous Exception Messages and to detect where the error might exist.

Periodically the Exception Catalog is updated and Exception Java class is generated to enable the developer to
create the newly added exception. This process avoids errors in generating the Exception Message. Before the
application is build for a specific version, the catalog is finalized for the version and imported to the database.
The Exception Handling Daemon is started to consume Exception Messages from the failure queue and insert
them in the database.

The eclipse plug-in may be installed to connect to the EEH database and analyze exceptions.

Arunava Majumdar Page 15 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

try{

}catch (...)
createExceptionMessage();

setup()—————— ——sendException()
}
<<app>> Application1 LException Message XML——pm

Q.FAIL

Exception Catalog XML

import: =@<7insen

Figure 2 — EEH Implementation

The diagram illustrated the steps for using the EEH I mplementation.
e Setup EEH_PATH
Create EEH tablesin the database
Create Exception Catalog as the application is being devel oped
Setup Exception Catal og within the application
Generate Java class to facilitate coding of Cataloged Exceptions
Application sends Exception Message to failure queue
Exception Handling Daemon consumes the message and stores in the database
Exception Analyzer plug-in can now analyze exceptions stored in the database

Arunava Majumdar Page 16 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

4. Design Pattern — Enterprise Exception Handling

The Enterprise Exception Handling is a design pattern that may be implemented in a number of ways. This paper
further specifies the extensions of the pattern idea to a practical design and standardization. The intent of the
paper is not just to explain the philosophy of the pattern but also to provide the Standardization required for the
implementation of the pattern. This chapter is targeted to address the specifics of the design pattern. It has been
broken down into the following sections:

Architecture — states the basic architecture for the pattern implementation

M essage Specifications — states the different message specifications that flows through the ESB

Database Schema Specifications — states the database schema for persisting exceptions in the database

Features — states the salient features of the pattern implementation

Arunava Majumdar Page 17 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

4.1. Architecture

The

N
R

(

PLT{TX}

architecture manifestsitself in the following key concepts:
Centralized Error Queue — all applications report exceptions to a common gqueue where an exception
handling daemon processes the messages and sends them to a database

Exception Daemon — the daemon process that sends the exception messages to the database
Exception Database — central persistent storage for the exceptions

Monitoring Agent — the common monitoring agent to report exceptions back to the central monitoring
framework that is used throughout the organization

Expiry Handling — exception messages should expire in case of unavoidable circumstances when the
exceptions cannot be processed so that it does not fill up the common queue and cause other upstream
problems

Exception Analyzer — the Eclipse Editor plug-in for viewing exceptions and exception catalog entries, for
creating new exceptions in the exception catalog and assigning them to applications, for re-queuing of
exceptions, for manual editing of data before re-queuing of data and for statistical analysis of exceptions on
the system

Re-Queuing — exceptions with data and re-queue information may be re-queued at the point of failure

Exception Command Processor — processes commands inside the exception handler daemon from the
command queue

==app=> APP1{ GET(T)—__f<=PUT|Tx)—
J | Q.0MD <<app=> excomd
N =
L\1_/'I "«.k'_ g l\E/J -
£ (3
E— A
1Y F—GET TX)—m| <<gpp=> exchd

- Expifesd Reportigm— - -
(5) {10 QFMLEXPIRED
" . |5) 10)
>/
kY) .

Requeue with (Edited) Data ‘

<<app=> ExcAnalyzer

Figure 3 - Common Exception Handling Process

The

diagram (Figure 3 - Common Exception Handling Process) shows how the exceptions will be handled

throughout the organization from the common exception handling process. The basic idea is to have deep

Arun

ava Majumdar Page 18 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

traceability of the exceptions occurring in the organization at any given point in time. Exception matrixes may be
derived from such data in the future and corrective measures may be taken to minimize the occurrence of
exceptions especially the critical ones. Also the introduction of new applications to the production environment
may be checked for their integrity through the common exception handling mechanism. All exceptions will be
cataloged based on the design. Exceptions would also feed into the monitoring system for altering based on
certain situations. In the diagram Tivoli® monitoring system is shown as an example but the monitoring system
selected by the organization should be integrated into the design. Since exceptions that are never acted upon for a
long period of time looses its significance, the exceptions should expire with reporting option with full datato an
achieved queue.

The example shows application APP1 failing to put to queue Q.APPL.IN and putting the exception in Q.FAIL.
This is, however, true for al applications interacting with MQ or otherwise. The following are a detailed
description of the steps:

(1) APPltriesto put amessagein atransaction and fails

(2) APP1 puts Exception message into a queue outside the transaction with the following parameters:
a. MQMD.Expiry = <time>
b. MQMD.Report = MQRO_EXPIRATION_WITH_FULL_DATA
C. MQMD.ReplyToQ = <queue>

(3) Thecommon Exception Handler application ExcHandler gets the Exception message transactionally

(4) Insertsthe Exception information in the Exception database ExcDB

(5) ExcHandler notifies the Monitoring Agent (in case of Tivoli® Omegamon it should interface with
the Universal Agent)

(6) The Exception Anayzer application ExcAnalyzer has the capability to analyze exceptions and
update the data if necessary. In this step ExcAnalyzer gets the required information from the ExcDB

(7) (Optional step — only in the case of Data | ntegrity category of exceptions) ExcAnalyzer updates
modified information in the ExcDB

(8) ExcAnalyzer notifies the Monitoring Agent to reset the exception

(99 (Optional step — only in the case of ReQueue parameter and Data parameter present)
ExcAnalyzer puts the message in the original queue with the edited data if it had been modified or
the unedited data

(10) Expired messages are forwarded to the archival queue Q.FAIL.EXPIRED by the queue manager

Arunava Majumdar Page 19 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

4.2. Message Specifications

Several message specifications have been standardized for implementation of the pattern and are described in
brief below:

Exception Message — the specification that governs the format of exceptions sent throughout the organization
Exception Catalog — the specification that governs the format of the exception catalog that is loaded by the
applications and a so used for importing and exporting the catalog from the database from the exception utility
Command Message — the specification that governs the format in which commands are sent to the exception
handler daemon and the command tool uses the standard for communicating with the daesmon

The message specification diagram for the exception message is shown in the next diagram (Figure 4 — Message
Specification for Exception Data).

Arunava Majumdar Page 20 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Message Specification Diagram — ExceptionMessage

| Typ.ExceptionMessage: ExceptionMessage |

| name | <<string>> | <0,1> |
| exch_version | <<string>> | <1,1> |
—| Typ.ExceptionHeader: ExceptionHeader | <1,1> |
[©)
—O| exc_uuid | <<string>> | <1,1> |
—O| timestamp | <<string>> F1: ‘YYYY-MM-DD HH:MM:SS.mmm’ | <1,1> |
—O| catalog | <<string>> | <1,1> | 1 Exception Category:
—O version <<string>> | <1,1> | 01 Operating System
| | 9 02 Network
. 03 Security
—Ol ~ code | <<string>> L=7 | <1,1> | 04 Data Integrity
05 Messaging Middleware
Stage 1 06 Database
Typ.code
1.1 .
1, A
Exception Code Priorityind | <<list>> L=1 | [I,W,E,F] | <1,1> |<— - £
I's
Priority | <<list>> L=1 | [1,2,3.4] | <11> |__ 13
v
Catagory' | <<int>> L=2, P=0 | [01-06] | <1,1> | d
SeqNo | <<int>> L=3, P=0 | [001-999] | <1,1> |
—| Typ.Parameters: Parameters | <0,1> |
| I * | <<string>>
Typ.Application 2 <<blob>> is Base64 encoded data string
3 java class must implement the interface DumpRenderer and then serialize
Typ.ReQueue the object and Base64 encode it. If the class name provided is found and is not
yP- an implementation of DumpRenderer but is an Exception object, then the
printStackTrace() function will be invoked and rendered as text.
4 Data can only be re-queued if both the Data and the ReQueueName
parameters are present
—| Typ.ExceptionDump: ExceptionDump? | <<blob>> | <0,1> |)
(LO| type | <<list>> | [binary,string,xml,exc,java:DumpRenderer’] | <1,1> |
. 24
—| Typ.Data: Data <<blob>> | <0,1> | 5 Similar to DumpRenderer ﬁ
| uuid | <<string>> | <0,1> | o
type | <<list>> | [binary,string,xml,java:MQMessage,java:JMSMessage,java:DataRenderer’] | <1,1> |
| sourceld | <<string>> | <0,1> |

Figure 4 — M essage Specification for Exception Data

Arunava Majumdar

Page 21 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Message Specification Diagram — ExceptionMessage (2.1)

Typ.Application: Application | <1,1> |
@)
—O| hostname | <<string>> | <1,1> |
—C0 | appid | <<string>> | <1,1> |
—O| class | <<string>> | <1,1> |
—Q| function | <<string>> | <1,1> |
—0 | file | <<string>> | <0,1> |
—O| line | <<int>> | <0,1> |
—O| server_cluster | <<string>> | <0,1> |
—O| server | <<string>> | <0,1> |
—O| container | <<string>> | <0,1> |
—| Typ.Stack: CallStack | <1,1> |
| T
| * | <<string>> |
—| Typ.Stack: ExceptionStaCk| <0,1> |
| —
| * | <<string>>
;
—| Typ.Header: Header

(LC‘ name | <<string>> | <1,1> | ¢
l
| * | <<string>>

Figure 5 — Message Specification for Exception Data — Application section (2.1)

Arunava Majumdar Page 22 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Message Specification Diagram — ExceptionMessage (3.1)

Typ.ReQueue: ReQueue| <0,1> |

| env | <<string>> | <0,1> |

| qmgr | <<string>> | <0,1> |
| queue | <<string>> | <1,1> |
MQMD? | <<string>> | <0,1> |

(LO| version | <<string>> | <1,1> |

Figure 6 — M essage Specification for Exception Data — Application section (3.1)

Arunava Majumdar Page 23 of 79

arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Details about the different fields in the Exception Message are listed in the table below. The data types are

shown in the diagram.

Freld

Description

exch_version

The version of the Exception Header. The Version for the current release is
‘1.0.0'.

name

Exception variable name for reference.

exc_uuid

UUID generated for the exception instance.

timestamp

The timestamp when the Exception was caught. The format of the timestamp is a
string as ‘YYYY-MM-DD HH:MM:SS’.

catalog

Message Catalog is the common repository of all error messages for the
subsystem. This name should always be ‘ExcCat.HSBC' for the each project.
This assures the existence of other projects without Exception Code clashes
between the different subsystems

version

Version of the Exception Catal og.

code

Unique exception code for the project. Exception Codes are not meant to replace
the Product Exception Codes but to group them together under several categories
for common error handling implemented in the subsystem.

Prioritylnd

The Priority Indicator is a one character field corresponding to the Priority. It is
oneof thevalues*l’, W', ‘E’, or ‘F’.

Priority

This the PriorityChar field represented in integral values for applications that
handle Exception Codes as integers, i.e.

1 ¢ Information

2 ¢ Warning

3¢ Error

4 ¢ Fatal

Category

The exception codes are categorized in the following groups —

Operating System (‘01') e.g. memory alocation, file system, kernel objects, etc.
Network (*02') e.g. routing exceptions, network traffic, etc.

Security (‘03') e.g. service access control, connectivity, etc.

Data Integrity (‘04’) e.g. Common header format error, etc.

Messaging Middleware (‘05’) e.g. MQ Connection, MQ Object Access, €tc.
Database (' 06’) e.g. DB Connection, Insert failure, etc.

SeqgNo

Thisisaserial number for the Exception in the class and category.

Parameters

Optional. The parameters are defined as name-value pairs as children of
Parameters. The number of parameters passed depends on the particular
Exception Code in the Message Catalog. E.g., for Database Connection problems
the Parameter[] would contain 3 parameters — SQLSTATE, SQLCODE,
SQLERRORTEXT. It is represented as a name-value pair and is fixed for the
exception code.

Arunava Majumdar

Page 24 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Application Section for application data

hostname The host machine name or the static | P address of the machine where the Exception
occurred.

appid The application identifier of the program that generated the Exception condition and
sent out the report. In case of the message broker this field will contain the name of
the Message Flow’ s application id.

class The class that generated the Exception

function The function name where the Exception was generated. In the case of the message
broker it is the name of the node that detected the Exception.

file

File name where the exception was detected.

line

Line number where the exception was detected.

server_cluster

Cluster name the server hosting the application belongs to. E.g. Cell for
WebSphere® Application Server, etc.

server

Server name where the application is hosted. E.g. J2EE Application Server name,
WebSphere® Message Broker name

container

Container name inside the server hosting the application. E.g. Container name for
the J2EE Application server, Execution Group for the Message Broker, etc.

Header

Optional . Application Header Section may be added for any application related
information. that may be required to be passed as meaningful information for the
exception condition. The header parameters are defined as name-value pairs as
children of Header.

name

Name of the application header

CallStack

The Cdl Stack is automatically generated from the Cataloged Exception
constructor. It is the stack from where the exception is being generated.

ExceptionStack

Optional . The Exception Stack is the Call Stack of the exception object
encapsulated in the Cataloged Exception.

ReQueue

Optional . The ReQueue Section is an optional section that provides information
for reintroducing the data in the originating queue and is populated by the process
throwing the exception. If necessary, it indicates to the error handling process the
gueue to which the message should be re-queued once the exception is corrected.

env

The environment where the exception occurred. This parameter is associated with
the application and the data can re-queued in the different environment for
debugging or tracing while analyzing the problem. Default environment is a zero
length string.

qmgr

Opti onal . Optional name of the queue manager to be re-queued on

queue

Name of the queue where the data may be re-queued.

MQMD

Opti onal . Message Descriptor of the original message for re-queuing. The MQMD
is converted into an element and each of the property to an attribute in the XML.
This conversion makes the values of the MQMD easily readable.

ExceptionDump

This is an optional field. This field reports any system dump or nested exceptions
thrown from the broker for determining the exception that occurred. Thisis a fixed
length field if used and the length of the field should be expressed as a 10 digit
integer string. For binary type or serialized java objects, the data is Base64 encoded.

type

The type of exception dump may be of the following flavors:

binary — binary data dump

string — any string type that may provide exception information

xml — exception dumps represented in XML form excluding the XML declaration
exc — incorporates an exception header. This type of dump is created by the exchd
in case of exceptions trapped in the exchd while processing an exception. The type
isnot limited to the exchd.

java:<Class> — seridlized and Base64 encoded java class implementation of the
interface DumpRenderer or an Exception class object.

Arunava Majumdar

Page 25 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Data Optional . The data that may be re-queued at the point of exception. Typically this
is the incoming data for the transaction so that the transaction can be re-run after
fixing the problem. The data may also be added purely for reference.

uuid Optional . Universaly Unique Identifier to identify the data in the system. This
may be used for analyzing if the same data is encountering multiple or repeated
exceptions. Automatic re-queuing of data may also use it for infinite loop control
withinitsrules.

If the uuid is provided along with the sourceld, the data may not be provided and
passed along. This reduces the size of the exception message.

sourceld Optional . The source of the data already stored in a table. The source id may be
configured for the application similar to configuring the queue manager. This
feature will be enabled in a future rel ease.

type The type of exception dump may be of the following flavors:

binary — binary data dump

string — any string type that may provide exception information

xml — exception dumps represented in XML form excluding the XML declaration
java:<Class> — seridlized and Base64 encoded java class implementation of the
interface DataRenderer.

java:MQMessage or java:JM SMessage — serialized and Base64 encoded for native
MQ or JMS support.

Arunava Majumdar Page 26 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

An example of an exception message:

<?xml version="1.0" encoding="UTF-8"?>
<exc:ExceptionMessage exch_version="1.0.0" name="WMQ" xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:com.ibm.mg.exc ExceptionMessage.xsd" xmIns:exc="urn:com.ibm.mg.exc">
<ExceptionHeader version="1.0.0" catalog="ExcCat.MQTT" code="F405001"
timestamp="2009-05-11 18:29:35.787 GMT"
exc_uuid="d6a4efcf-3e69-4d26-8aaf-b357be910fe6">
<Parameters>
<Reason> 2085 </Reason>
</Parameters>
<Application hostname="Ronz-Master-2009.ron.ibm.com" appid="MQTT"
class="com.ibm.mgq.test.ds.QueueSource" function="handleMQConn"
file="QueueSource.java" line="170" >
</Application>
<ExceptionDump type="java:com.ibm.mqg.MQException">

rOOABXNyABZjb20uaWJtLm1xLk1RRXhjZXB0aW9uZdb+evXEtIkCAAhJAAS5jb21wbGV0aW9uQ29kZUKA
BW1zZ0IkSQAKbnVtSW5zZXJ0cOKACNJIIYXNvbkNvZGVMAAdpbnNIchQxdAASTGphdmEvbGFuZy9TdHIpbmc7TAAHaW5zZ
XJOMnEAfgABTAALb3NOck1lc3NhZ2VxAH4AAUWAB3Y3bXNNSWRxAH4AAXhyABNQgYXZhLmxhbmcuRXhjZzXB0aW9uOPOfPh
07HMQCAAB4cgATamF2YS5sYW5nLIRocm93YWJIsZdXGNSc5d7jLAWADTAAFY2F1c2VOABVMamF2YS9sYW5nL1Rocm93
YWJIsZTtMAA1kZXRhaWxNZXNzYWdIcQB+AAFbAApzdGFjalRyYWNIdAAeWOxqYXZhL2xhbmcvU3RhY2tUcmFjZUVsZW1lb
nQ7eHBwcHVYAB5bTGphdmEubGFuzZy5TdGFjalRyYWNIRWxIbWVudDsCRio8PP0iOQIAAHhwAAAACXNYABtqY XZhLmxhb
mcuU3RhY2tUcmFjZUVsZW1lbnRhCcWaJljbdhQIABEKACMxpbmVOdW1iZXIMAA5KkZWNsYXJpbmdDbGFzc3EAfgABTAAIZm
IsZU5hbWVxAH4AAUWACmM1ldGhvZE5hbWVXAH4AAXhwAAABPHQAGGNvVbS5pYmOubXEuTVFEZXNOaW5hdGIvbnQAEK1R
RGVzdGluYXRpb24uamF2YXQABG9WZW5zcQB+AAKAAAEEdAASY 29tLmlibS5tcSS5NUVF1ZXVIdAAMTVFRAWV1ZS5qYXZh
dAAGPGIluaXQ+c3EAfgAJAAAKrNQAGWNVbS5pYmOubXEuTVFRAWV1ZU1hbmFnZXJOABNNUVF1ZXVITWFuYWdIci5qYXZ
hdAALYWNjZXNzUXVIdWVzcQB+AAKAAArKdAAZY29tLmlibS5tcSS5NUVF1ZXVITWFuYWdIcnQAEO1RUXVIAWVNYW5hZ2Vy
LmphdmFOAAthY2NIc3NRAWV1ZXNxAH4ACQAAAJIBOABSjb20uaWJtLm1xLnRIc3QuZHMuUXVIdWVTb3VyY2VOABBRdAWV1
ZVNvdXJjZS5qYXZhdAAMaGFuZGxITVFDb25uc3EAfgAJAAAAKHQAHMNVbS5pYmMOubXEudGVzdC5kecy5RAWV1ZVNvdXJjZ
XQAEFF1ZXVIU291cmNILmphdmFOAAhzZW5KkRGFOYXNXAH4ACQAAAFROABIb20uaWJtLm1xLnRIc3QuUmMYndWxhdG9yd
AAOUMVndWxhdG9yLmphdmFOAANydW5zcQB+AAKAAAIPAAAVamF2Y S51dGIsLIRpbWVyVGhyZWFkdAAKVGItZXluamF2Y
XQACG1haW5Mb29wc3EAfgAJAAAB3XQAFWphdmEudXRpbC5UaW1lclRocmVhZHQACIRpbWVyLmphdmFOAANydW54AA
AAAGAAAAAAAAAAAAAIIXBWAAASTVFKRTAWMTogQ29tcGxldGIvbiBDb2RIICcyJywgUmVhc29ulCcyMDg1Jy50AAA=

</ExceptionDump>
</ExceptionHeader>
</exc:ExceptionMessage>

Arunava Majumdar Page 27 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

| Message Specification Diagram — ExceptionCatalog

| Typ.ExceptionCatalog: ExceptionCatalog |

name	<<string>>	<1,1>	
version	<<string>>	<1,1>	
appid	<<string>>	<1,1>	
expiry	<<int>>	[604800]	<1,1>
expiredQueue	<<string>>	<1,1>	
descr	<<string>>	<1,1>	

Exception

name | <<string>> | <1,1> |
priority | <<string>> | [1-4] | <1,1> |
code | <<string>> | <1,1> |

O | descr | <<string>> | <1,1> |

| descr | <<string>> | <1,1> |

<<string>> | <1,1> |

Figure 7 — M essage Specification for Exception Catalog

Arunava Majumdar Page 28 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Details about the different fields in the Exception Catalog are listed in the table below. The data types are shown
in the diagram.

Field Description
name The Exception Catalog name.
version The Exception Catalog version.
appid The application identifier that uses the exception catal og.
expiry Expiry of the exception message on the queue in seconds (default 604800 = 7 days)
expiredQueue The expired queue name where the message will be forwarded to in case the
exception message expired after the expiry specified.
descr Description of the Exception Catalog
Exception Section for the exception information
name Name of the exception. This disassociates the Application program from the
exception code
priority The default priority of the exception. This is used to generate the Exception

through the generated class without having to mention the priority. The priority of
an exception can be changed at any time based on situations for exception
promation or demotion.

code The exception code associated with the exception.

descr Description for the exception providing detailed information regarding the
exception.

Parameters Optional . The parameters are defined as name-value pairs as children of

Parameters. The number of parameters passed depends on the particular Exception
Code in the Message Catadlog. E.g., for Database Connection problems the
Parameter[] would contain 3 parameters — SQLSTATE, SQLCODE,
SQLERRORTEXT. It is represented as a name-value pair and is fixed for the
exception code.

Arunava Majumdar Page 29 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

| Message Specification Diagram — CommandMessage

| Typ.CommandMessage: CommandMessage |

| name | <<string>> | <1,1> |

| timestamp | <<string>> | <1,1> |
:

Typ.Switch: Switch

| name | <<string>> | <1,1> |

| value | <<string>> | <1,1> |

Figure 8 -M essage Specification for Command M essage

Details about the different fields in the Command Message are listed in the table below. The data types are
shown in the diagram.

Field Description
name The name of the command. E.g., shutdown for the Shutdown command sent to the
exception handling daemon.
timestamp The timestamp when the Command was created. The format of the timestamp is a
string as ‘YYYY-MM-DD HH:MM:SS’.
Switch Optional . Switches are parameters sent for the particular command. E.g., the
command may be operated under multiple modes, viz. immediate or quiesce.
name Name of the switch.
value Value of the switch.

Arunava Majumdar Page 30 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

4.3. Database schema Specifications

The following schema diagram illustrates how the Exception database is designed and al the relationships are

shown.

exc_parm
FK1 exc_uuid
v catalog —|
exc version
exc_uuid code :‘
catalog —| parm
version value
code :‘
appid exp_header_parm
data_uuid je———FK1— exc_uuid
MQMD appid
header —
parm u
FK2
value
FK1
app_cat app_cat_header I\
—FK2—— appid b Fr1—P— appid m
application header I’—FKz Fia
owner k2
email
app_header app_header_parm I\
descr
header FK1— header
descr parm m
Y descr m
exc_app_cat
o catalog exc_catagory m
version catagory
code descr m
appid FK1
FK3 map_uuid
v ‘
exc_cat_map exc_cat exc_cat_parm
map_uuid I catalog catalog
FK1 L] - FK1 -
catalog version <E version
-]—Fm
version w code code
L appid exc_cat_descr def_priority parm
catalog descr descr
version
def_expiry
descr

Figure9 - Exception Database Schema

Arunava Majumdar

Page 31 of 79

arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

The three tables on the top right corner marked with a grey rectangle indicate the tables that hold runtime
exception information. All the exceptions that are generated at runtime are being sent to the exception handling
daemon and are inserted into the exc, exc_parm and exc_header_parm tables. The rest of the tables hold static
data. The exc_cat and the exc_cat_parm tables hold the exception catalog information. The app_cat table holds
the application catalog. The application headers are stored in the app_header and app_header_parm tables. Each
application header may be associated with any of the applications defined in the system. The relationship is
maintained in the app_cat_header table. Each application is also associated with any of the exceptions in the
exception catalog. The relationship is maintained in the exc_app_cat table.

The following are the description of al the configuration tables for the Exception Catalog Database.

exc cat descr — Exception Catalog Information

Column Type Description

catalog Varchar(30) | Exception Catalog name for the project or organization

version Varchar(10) | Exception Catalog version

def_expiry Integer Default expiry, in sec., of the Exception messages in the Catalog
descr Varchar(512) | Description of the Exception Catalog

Key Reference | Columns

PK catalog, version

exc_cat — Exception Catalog Listing

Column Type Description

catalog Varchar(30) Exception Catalog name for the project or organization

version Varchar(10) Exception Catalog version

code Char(5) Exception code: First 2 char for the category and the rest 3 are serial
number

name Varchar(30) Exception name - used as Exception Variable for code isolation

def_priority Integer Default priority of the Exception

descr Varchar(512) Description of the Exception

Key Reference Columns

PK catalog, version, code

UK catalog, version, name

FK1 EXC_CAT_DESCR | catalog, version

exc cat parm — Exception Catalog Parameters

Column Type Description

catalog Varchar(30) | Exception Catalog name for the project or organization

version Varchar(10) | Exception Catalog version

code Char(5) Exception code: First 2 char for the category and the rest 3 are serial number
parm Varchar(30) | Parameter for the Cataloged Exception

descr Varchar(512) | Description of the Exception parameter

Key Reference | Columns

PK catalog, version, code, parm

FK1 EXC_CAT catalog, version, code

Arunava Majumdar

Page 32 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

exc_catagor

— Excepti

on Category

Column Type Description

catagory Char(2) Excecption Category Supported. 01 - System, 02- Security, 03 - Network, 04
- Data Integrity, 05 - Middleware, 06 - Database, more may be added

descr Varchar(512) | Description of the Exception Category

Key Reference | Columns

PK catagory

app cat — Application Catalog

Column Type Description

appid Varchar(10) | Application Identifier

application Varchar(50) Application name

owner Varchar(100) | Name of the Application Owner
email Varchar(30) | E-mail of the Application Owner
descr Varchar(512) | Description of the Application

Key Reference | Columns

PK app|d

app header — Application Catalog Header

Column Type Description

header Varchar(30) Application Header

descr Varchar(512) | Description of the Applicaion Header
Key Reference | Columns

PK header

app header parm — Application Catalog Header Parameter
Column Type Description

header Varchar(30) Application Header

parm Varchar(30) Application Header Parameter
descr Varchar(512) | Description of the Application Header Parameter
Key Reference | Columns

PK header, parm

FK1 APP_HEADER | header

app cat header — Association of the Application with the Application Header

Column Type Description

appid Varchar(30) Application Identifier
header Varchar(30) Application Header
Key Reference | Columns

PK appid, header

FK1 APP_CAT appid

FK2 APP_HEADER | header

Arunava Majumdar

Page 33 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

exc_cat _map — Association of the Exception Catalog for the Application

Column Type Description

map_uuid Char(36) Universally Unique Identifier for the association between Exception
Catalog and the Application

catalog Varchar(30) Exception Catalog name for the project or organization

version Varchar(10) Exception Catalog version

appid Varchar(30) Application Identifier

Key Reference Columns

PK map_uuid

FK1 EXC_CAT_DESCR | catalog, version

FK2 APP_CAT appid

exc app cat — Association

of the Exception for the Application

Column Type Description

catalog Varchar(30) Exception Catalog name for the project or organization

version Varchar(10) Exception Catalog version

code Char(5) Exception code: First 2 char for the category and the rest 3 are seria
number

appid Varchar(30) Application Identifier

map_uuid Char(36) Universally Unique ldentifier for the association between Exception
Catalog and the Application

Key Reference Columns

PK catalog, version, code, appid

FK1 EXC_CAT catalog, version, code

FK2 APP_CAT appid

FK3 EXC_CAT_MAP map_uuid

Arunava Majumdar

Page 34 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

app_cat

app_data_requeue

appid

lt——FK1

appid

application

env

owner

email

qmgr

host

descr

port

svrconn

Figure 10 - Application Data Re-Queue

app data requeue — ReQueuing information for connecting to the MQ QMgr

Column Type Description

appid Varchar(10) Application Identifier

env Varchar(25) Environment whare the Queue Manager is defined

qmgr Varchar(32) Queue Manager name

hostname Varchar(512) Hostname or | P address where Exception was generated
port Integer Port for connecting to the Queue Manager listener
svrconn Varchar(20) Name of the SYRCONN channel for client connections
Key Reference Columns

PK appid,env,gmgr

FK1 APP_CAT appid

Arunava Majumdar

Page 35 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

The following are the exception instance tables for capturing the real-time exceptions generated in the system.

exc — Exception instance generated

Column Type Description

exc_uuid Char(36) Universally Unique Identifier for the Exception instance

timestamp DateTime Timestamp when the exception was generated

catalog Varchar(30) Exception Catalog name for the project or organization

version Varchar(10) Exception Catalog version

code Char(5) Exception code: First 2 char for the category and the rest 3 are seria
number

priority Integer Exception priority: 1 - Information, 2 - Warning, 3 - Error, 4 - Fatal

hostname Varchar(512) Hostname or | P address where Exception was generated

appid Varchar(30) Application Identifier

class Varchar(512) Name of the class that encountered the exception

function Varchar(512) Function name where Exception was generated

file Varchar(512) Program file name of Exception source

line Integer Line number of the program where Exception was generated

server_cluster Varchar(512) Cluster name for the server cluster. NULL for non-clustered servers, e.g.
Cell for WebSphere Application Server

server Varchar(512) Server name for the server hosting the application. NULL for stand-alone
applications, e.g. J2EE Application Server, WebSphere® Message Broker

container Varchar(512) Server container for hosting the application. NULL for stand-alone
applications or non-container based applications, e.g. EJB container for
J2EE Application Server, Execution Group for WebSphere® Message
Broker

MQMD Varchar(1536) | MQ Message Descriptor for the original message encoded as XML attribute

MQMD_ver Integer Version of the MQ Message Descriptor for the original message

env Varchar(25) Environment whare the Queue Manager is defined

qmgr Varchar(32) Queue Manager name for re-queuing of the input message

queue Varchar(32) Queue name for re-queuing of the input message

requeue_status | Timestamp Timestamp when the data was last re-queued to the Source Queue. Null if
never re-queued

call_stack Blob Call Stack from the Application when the Exception was thrown

exc_stack Blob Exception stack of the original exception

dump_type Varchar(512) The type of exception dump may be of the following flavors:
binary — binary data dump
string — any string type that may provide exception information
xml — exception dumps represented in XML form excluding the XML
declaration
exc — embedded exception
java:<Class> — serialized and Base64 encoded java class implementation of
the interface DumpRenderer or an Exception class object.

dump blob Exception Dump

Arunava Majumdar

Page 36 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

data_uuid Varchar(32) Universally Unique Identifier for the Data in the message. If the data is
aready defined in atable with this uuid, define aforeign key to the table

data_sourceld Varchar(512) Source Identification and access plan for the Source Data

data_type Varchar(512) The type of exception dump may be of the following flavors:
binary — binary data dump
string — any string type that may provide exception information
xml — exception dumps represented in XML form excluding the XML
declaration
java:<Class> — seriadlized and Base64 encoded java class implementation of
the interface DataRenderer.
java:MQMessage or java:JMSMessage — seridlized and Base64 encoded
for native MQ or JM S support.

data blob Source Data

mod_data blob Modified Data

mod_usr Varchar(256) Modifier User |dentifier

mod_time DateTime M odification timestamp

Key Reference | Columns

PK exc_uuid

FK1 EXC_APP_CAT | catalog, version, code, appid

exc parm — Exception instance parameters

Column Type Description

exc_uuid Char(36) Universally Unigue Identifier for the Exception instance

catalog Varchar(30) Exception Catalog name for the project or organization

version Varchar(10) Exception Catalog version

code Char(5) Exception code: First 2 char for the category and the rest 3 are serial
number

parm Varchar(30) Parameter for the Exception instance

value Varchar(32) Value for the exception parameter

Key Reference Columns

PK exc_uuid, parm

FK1 EXC exc uuid

FK2 EXC_CAT_PARM al

Catalog, version, code, parm

exc header

parm — Application Headers for the Exception instance generated

Column Type Description

exc_uuid Char(36) Universally Unique Identifier for the Exception instance
appid Varchar(10) Application Identifier

header Varchar(30) Application Header

parm Varchar(30) Application Header Parameter

value Varchar(32) Value for the application header parameter

Key Reference Columns

PK exc_uuid, parm

FK1 EXC exc uuid

FK2 EXC_CAT_PARM a

Catalog, version, code, parm

Arunava Majumdar

Page 37 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

exc data mod hist — Data Modification History for the generated Exception

Column Type Description

exc_uuid Char(36) Universally Unigue Identifier for the Exception instance

mod_time Timestamp M odification timestamp

mod_app Varchar(256) Application that is modifying the data. In case of Data Handler within the
exchd for automatic fixes to the data the registered plugin class will be
stored

mod_usr Varchar(256) Modifier User |dentifier

mod_type Varchar(30) Modification type: data, requeue

mod_data Blob Modified Data

Key Reference Columns

PK exc_uuid,mod_time

FK1 EXC exc uuid

exc data reqg hist — Data Re-Queuing History for the generated Exception

_HIST

Column Type Description

exc_uuid Char(36) Universally Unique ldentifier for the Exception instance
mod_time Timestamp M odification timestamp

appid Varchar(10) Application Identifier

env Varchar(25) Environment where the Queue Manager is defined

qamgr Varchar(32) Queue Manager name for re-queuing of the input message
Key Reference Columns

PK exc_uuid,mod_time

FK1 EXC_DATA_MOD

exc_uuid,mod_time

Arunava Majumdar

Page 38 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

5. Exception Handler Runtime and Utilities:

5.1. Exception Handler Utility

A utility program has been provided with the exception handling package for facilitating three major functions:
e Importing exception catalog for the application into the database
e Exporting exception catalogs in the database for individual applications
e Generating the exception catalog class for facilitating exception generation for the applications

The syntax of the exception handling utility is as follows:

pp—[comjhm.mq.euc.ex:utll -import <xml= >
|-| DB atirs |J

-export <dir= -appid <appid=
|:| DB attrs |:|

-r:lslssgen Java -pﬂckage <Java package=>
L L|Glassﬁen attrs |J

-namespace <C++ namespace> —

C++
|-|1:Ia55'l:-'-en atirs |J

L -verbose J L -about J L -help J

l— -drv <JDBC driver=

-url <URL> — -usr <user id> — -pwd <password=> —l

| ClassGen attrs :

-exceat <xml> —l

I— -classdir <dir>

Arunava Majumdar Page 39 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

com.ibm.mgq.exc.excutil

[((-import <xml>| -export <dir>) -drv <JDBC driver> -url <URL>
-usr <user id> -pwd <password> [-appid <appid>])|

(-classgen (‘Java'|'C++') -classdir <dir> -exccat <xml>
[(-package <Java package> | -namespace <C++ namespace>)])]
[-verbose] [-about] [-help]

-import
The XML file in to be imported conforming to the schema ExceptionCatalog.xsd.
-export
The directory where the exported Exception Catalog(s) will be saved.
The file name created follows the convention:
[<Appld>_]<Catalog>_<Catalog Version>.xml
If no Appld is specified in the export command, all the Exceptions for the
Catalog are listed and the file name does not mention an Appld.
The exception catalog file(s) saved conform to the schema ExceptionCatalog.xsd.
-drv
JDBC driver, e.g. com.ibm.db2.jcc.DB2Driver.
-url
JDBC URL pointing to the exception database,
e.g. jdbc:db2://10.20.20.10:50000/EXCCAT.
-usr
User Id for the exception database.
-pwd
Password for the exception database.
-appid
Appication Identifier for the application whose related exceptions
are to be exported. This is an optional parameter only relevent for
the export option. If omitted the complete exception catalog is exported.
-classgen
Generate class file in the Language specified.
-classdir
The directory where the class file will be generated.
-exccat
The exception catalog XML from which the classfile is to be generated.
This parameter is only used when the -classgen parameter is used without
either the -import or -export parameters.
-verbose
Optional parameter only to be used for debugging if errors are not explicit.
-about

Arunava Majumdar

Version and related information.

Page 40 of 79

arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

'Examples’:
e Importing the exception catalog into the database:

call bin/win/excutil.bat -inmport sanp/xm/ExcCat. M®ST. xm -drv
"comibmdb2.jcc.DB2Driver" -url "jdbc:db2://1ocal host: 50000/ EXCCAT" -usr arunava
_pv\d *kkkkkkk

e Exporting the exception catalog from the database:

call bin/win/excutil.bat -export sanp/xm -appid MXT -drv "comibm db2.jcc. DB2Driver"
-url "jdbc:db2://1ocal host: 50000/ EXCCAT" -usr arunava -pwd *******x

e Generating a Java class from the exception catalog XML:

call bin/win/excutil.bat -classgen Java -classdir Tool / ETR/ _DEV/ MJIT/ coni i bml ng/ t est
-exccat Tool / ETR/ _DEV/ MJTT/ exccat/ ExcCat. MJTT. xm - package com i bm ng. t est

! Remember to set up the EEH_PATH environment variableto the EEH installation path.

2 Usethe excutil.bat or excutil.sh scriptsin the bin/win or bin/unix directoriesto facilitate setting up of thejar filesfor EEH. Product
jar files, vizz. WM Q, DB2, etc. must be setup for the implementation.

Arunava Majumdar Page 41 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

5.2. Exception Handler Daemon

The Exception Handler Daemon utility runs as a independent multi-threaded Java process to parse and store
exception information from the queue to the database. The daemon may be invoked from inside any Java
program as well if so desired. The number of threads may be increased or decreased at the start of the application.
The wait on the queue also determines how quickly the daemon may be shutdown. The maximum time to
shutdown the daemon is the wait period on the queue. The daemon can be horizontally or vertically scaled if
required.

-emd@ =command queue> —————J»

-q =fa queLe=

»—l com.ibm.mq.exc.exchd lr |_

=M <gqmgr> J

[— <MQ server bindings mode> —| 15 —|
» >
t ~chl <svreconnitep/IP{port)> :' L -jms] L -w <wait in sec> J I—|DE atirs |J

-chltab =channel table URL=>

[_ 1 -| |— Jexchd.out -|
> >
L ~threads <no. of threads= J L =0 =status file= N

L -verbose J L -about J L -help J

I— =gdry <JDBC driver=

-url <URL> —— -usr <user id> — -pwd <password=> —|

Arunava Majumdar Page 42 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

com.ibm.mg.exc.exchd
-drv <JDBC driver> -url <URL>
-usr <user id> -pwd <password>
-q <queue> [-m <qmgr>] [-w <wait in sec>] [-jms]
[(-chl <svrconn/tcp/IP(port)> | -chltab <channel table URL>)]
-cmdQ <command queue> [-threads <no. of threads>]
[-o <status file>]
[-verbose] [-about] [-help]

-drv
JDBC driver, e.g. com.ibm.db2.jcc.DB2Driver.
-url
JDBC URL pointing to the exception database,
e.g. jdbc:db2://10.20.20.10:50000/EXCCAT.
-usr
User Id for the exception database.
-pwd
Password for the exception database.
-q
Name of the Exception Queue.
-m
Optional. Name of the Exception Queue Manager.
-w
Optional. Wait in seconds on the exception queue before it is checked
again. This also determines the maximum time required to shutdown the
daemon gracefully by running the shutdown command.
[Default value is 15]
-jms
Optional. JMS messaging is turned on.
-chl
Optional. Client channel definition to connect to the Queue Manager.
The format is the same as the MQSERVER environment variable:
svrconn/tcp/IP(port)
If both -chl and -chitab are skipped MQ Binding mode is used.
-chltab
Optional. URL to the client channel table.
If both -chl and -chitab are skipped MQ Binding mode is used.
-cmdQ
The Command Queue for the daemon to process Command messages.
-threads
Optional. Number of threads for processing exceptions.
[Default value is 1].
-0

Optional. Output status file for the daemon's log.
-verbose

Optional parameter only to be used for debugging if errors are notexplecit.
-about

Version and related information.

3Examples’:
e Running the exception handling daemon:

call bin/wi n/exchd.bat -drv "comibmdb2.jcc. DB2Driver"
-url "jdbc:db2://1ocal host: 50000/ EXCCAT" -usr arunava -pwd ****** -q Q FAIL -m QV HUB
-cmdQ Q CVD

3 Remember to set up the EEH_PATH environment variableto the EEH installation path.

Use the shutdown.bat or sutdown.sh scriptsin the bin/win or bin/unix directoriesto facilitate setting up of thejar filesfor EEH.
Product jar files, viz. WMQ, DB2, etc. must be setup for the implementation.

Arunava Majumdar Page 43 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

5.3. Exception Handler Command

The Exception Handler Command utility is designed to send commands to the Exception Handler Daemon at
runtime. The utility converts the command line parameters to the Exception Command Message specification
and sends the message to the Command Queue. The only command implemented in this release is shutdown.
This command is sent to the daemon to quiesce MQ and Database transactions, disconnect and shut itself down.
Thisisthe recommended way of stopping the Exception Handler Daemon.

-shutdown ———J»

H com.ibm.mg.exc.excemd ! -emdQ <command queue>
L - <gmgr> il

> L -verbose J L -about J L -help J >

com.ibm.mgq.exc.exccmd
[-m <gmgr>] -cmdQ <command queue>
-shutdown
[-verbose] [-about] [-help]

-m
Optional parameter for the name of the Queue Manager.
Not required if a default queue manager is defined for the node.
-cmdQ
Name of the Command Queue that the Exception Handling Daemon is listening on.
-shutdown
Only command supported in this release is shutdown
-verbose
Optional parameter only to be used for debugging if errors are notexplecit.
-about
Version and related information.
SExamples®:

e Running the shutdown command to bring down the exception handling daemon:

call bin/w n/shutdown. bat -m QM HUB -cndQ Q CMVD - shut down

® Remember to set up the EEH_PATH environment variableto the EEH installation path.

6 Use the shutdown.bat or sutdown.sh scriptsin the bin/win or bin/unix directoriesto facilitate setting up of thejar filesfor EEH.
Product jar files, viz. WMQ, DB2, etc. must be setup for the implementation.

Arunava Majumdar Page 44 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

6. Setting up the Exception Catalog:

Every application defines its exception catalog against which al the exceptions are reported in the system. The
catalog must be defined in the exception database. However, the application is not dependent on the database
existence. This isolates the application from the database dependency. The exception XML may be loaded into
the database or dumped from the database using the exception utility (excutil). The exception catalog XML for
the application is limited to the exceptions that the particular application may generate and the application must
be set up for all these exceptions in the database.

Below is the sample’ exception catalog listing for the application defined with the id mQsT. The Exception
catalog name is ExcCat.MQST and version 1.0.0.

<?xm version="1.0" encodi ng="UTF-8" ?>
<l--

Li censed Materials - Property of |BM

(C Copyright IBM Corp. 2009 Al Rights Reserved.

US CGovernment Users Restricted Rights - Use, duplication or

di sclosure restricted by GSA ADP Schedul e Contract with |BM Corp.

Created January 2008, 2012

>
<exc: ExceptionCat al og nane="ExcCat. MQST" version="1.0.0" appi d="MXST"
expi ry="604800" expiredQueue="Q EEH. EXPI RED'
descr="Exception Catal og for MXT Application"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schenmalLocation="urn:comibm ng. exc ../schenma/ Excepti onCat al og. xsd"
xm ns: exc="urn: comibm ng. exc">

<Exception nanme="EXC _RULES_SYNTAX" priority="3" code="4001" descr="Rules Syntax Error!">
<Par anet er nane="El enent" descr="El enent at which the syntax is incorrect." />
<Par anet er nane="Val ue" descr="Val ue of the elenment containing incorrect syntax." />
<Par anet er nane="Position" descr="Position where the syntax violation was detected in the
el enent value." />
<Par anet er nane="Reason" descr="Reason for the syantax violation to occur." />
</ Excepti on>
<Exception name="EXC_XM__VALI DATI ON' priority="3" code="4002" descr="XM. Validation Error!">
<Par aneter nanme="Publicld" descr="External public ldentifier if one exits." />
<Par anet er nane="System d" descr="Systemidentifier of the xm file." />
<Par anet er nane="Li neNo" descr="Li ne nunber where the exception occurred." />
<Par anet er nanme="Col utmNo" descr="Col unm nunber where the exception occerred." />
<Par anet er nanme="Message" descr="Reason for the XM violation to occur." />
</ Excepti on>
<Excepti on nanme="EXC_XM.NS_VALI DATI ON' priority="3" code="4003" descr="XM.NS Validation Error!
Valid XML Nanespace is 'urn:comibmng.config .">
<Par aneter nanme="Inval i dXMLNS" descr="Invalid XM. Nanmespace." />
</ Excepti on>
<Exception nanme="EXC _NULL_TOPOLOGY" priority="3" code="4004" descr="Topol ogy has not been
defined!'" />
<Excepti on nanme="EXC_M SSI NG_REFERENCE" priority="3" code="4005" descr="A reference is m ssing
in the configuration.">
<Par anet er nane="Cbj Type" descr="Type of object that is missing." />
<Par anet er nane="Reference" descr="M ssing reference." />
</ Excepti on>
<Exception name="EXC_UNKNOWN' priority="3" code="4999" descr="An Unknown excepti on has
occurred in the system Please send the stack trace to
arunava@is.ibmcomw th the Subject as PMR MXST and
your contact details." />
</ exc: Excepti onCat al og>

! Sample location is<EEH_PATH>/samp/xml/ExcCat.M QST .xml

Arunava Majumdar Page 45 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

The Exception Catalog for the application may be imported by running the exception utility. The EEH_PATH
environment variable must be set to the installation path of the tool either in the environment or in the batch file
or shell script. On UNIX systems it may be set up in the .profile. A listing of the sample® batch file to load the
exception catalog is shown below.

@cho of f

rem IR SRS S S SR EEEEEEEEEEEEEEEE RS SR EEREEEEREEEEEEEREEEEEEEEEEEEERESEEEEEEEEEESES
rem=* Licensed Materials - Property of |BM *
rem* (C) Copyright |BM Corp. 2006, 2008 Al Rights Reserved. *
rem* US Governnent Users Restricted Rights - Use, duplication or *

rem* disclosure restricted by GSA ADP Schedul e Contract with IBM Corp. *

R R EEEE LSRR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

set EEH PATH=d:/t ool s/ eeh
call bin/win/excutil.bat -inport sanp/xm/ExcCat.MXT.xm -drv "comibm db2.jcc.DB2Driver"
-url "jdbc:db2://1ocal host: 50000/ EXCCAT" -usr arunava -pwd *****

echo .
pause

The batch file may be customized for the installation path, database URL, user id, password, etc. Keep any
customized batch files, notes, etc. in either a directory outside the installation directory, or in a directory
called .user under the installation directory to avoid any over-writing when installing future releases of the
product.

To run the sample programs, the application information must be set up in the database. Any application that
uses the exception catalog must be defined and linked. A listing of the sample? DML is shown below.

Li censed Materials - Property of |BM

(C) Copyright IBM Corp. 2009 All Rights Reserved.

US CGovernnent Users Restricted Rights - Use, duplication or

di sclosure restricted by GSA ADP Schedul e Contract with | BM Corp.

Created January 2008

nsert into app_cat (appid, application, owner, enail, descr)
val ues(' ExcH , ' Excepti onHandl er',' Arunava Maj undar','arunava@s.ibm com ,'Enterprise
Exception Handl er');

nsert into app_cat (appid, application, owner, ennil,descr) values(' MXST' ,' ReadConfig','Arunava
Maj undar' , ' arunava@s. i bm com ,' MQ Scripting Tool');

nsert into exc_app_cat(catal og, version, code, appi d) sel ect catal og, version, code, ' ExcH from
exc_cat where catal og=' ExcCat . ExcH ;

nsert into exc_app_cat(catal og, version, code, appi d) sel ect catal og, version, code, ' MOQST' from
exc_cat where catal og=' ExcCat . MXST" ;

nsert into app_header (header, descr) val ues(' AppHdr1',' Application Header 1');

nsert into app_header (header, descr) val ues(' AppHdr2',' Application Header 2');

nsert into app_header_parn{header, parm descr) val ues(' AppHdr1',' ABC ,' Application Header 1
Parm1');

8 Samplelocation is<EEH_PATH>/import.bat
o Samplelocation is<EEH_PATH>/samp/dml/setup.sql

Arunava Majumdar Page 46 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

nsert into app_header_parn(header, parm descr) val ues(' AppHdr2',' ABC21',"' Applicati on Header 2
Parm1');

nsert into app_header_parn{header, parmdescr) val ues(' AppHdr2',' ABC22',"' Applicati on Header 2
Parm 2');

nsert into app_cat_header (appi d, header) val ues(' MXST', "' AppHdr1');
nsert into app_cat_header (appi d, header) val ues(' MXST',"' AppHdr2');

nsert into exc_app_cat (catal og, versi on, code, appi d)
val ues(' ExcCat. ExcH ,'1.0.0',"' 94005, "' MQXT');

nsert into exc_app_cat(catal og, version, code, appi d)
val ues(' ExcCat. ExcH ,'1.0.0","' 94007","' MXST");

Arunava M ajumdar Page 47 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

7. Using the Java API:

A Java APl package is provided to facilitate the building of Java-based applications to adhere to the standards
and integrate into the Enterprise Exception Handling Pattern. Some of the features of the API are listed below:

Setting up the environment

Setting up ESB for sending exceptions
Capturing exceptions

Sending exceptions to the queue

The class diagram for the entire package is shown below. It is a fairly simple API to facilitate applications to
setup and send exceptions based on the exceptions in the standardized format to the exception reporting queue.
The exception handling daemon may be set up to service the queue. The queue may be in a cluster for load
balancing reasons.

«Java Class»
(3 ExceptionHandler

@ setup
A validateException
@ listCatalogedException ()

@ setupM
@ setupMQIMS use «lava Class»
@ setupIMs @ ExcInfo
@ disconnect a strBxc i String
@ getCalStaclamL & rPriorty : int
B getCallxmL & nCode @ int
_ | |58
@ getHostname () & strDescr @ String
«Java Class» ® sendExceptionMessage (] & hashParameters : Hashtable
(& CatalogedException
@ CatalogecException () T «Java Class»
W initializeCE () (G ENC_CAT
@ getExc ()
@ getPriority) & setup ()
@ getBxcCat ()
@ getVersion ()
© getExclUID () «Java Interfacer
® getExcParm () € Renderer
@ setAppHeaders ()
@ getdppParm () @ vender ()
@ setReQueus ()
@ setDump ()
@ setDump ()
@ setDump ()
@ getDump ()
© setData () «Java Interface» «Java Interface»
@ setData () 0 DumpRenderer © DataRenderer
@ setData ()

@ getData ()

@ printStackTrace ()

@ printException ()

@ printException ()

@ getCode ()

@ getCocesStr ()

B opint ()

@ createExceptionMessage ()

Figure 11 —Java API Class Diagram

Arunava Majumdar Page 48 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

7.1. Creating the Exception Catalog Class

To facilitate coding and capturing of runtime exceptions, an exception catalog class can be created using the
exception utility. This class creates functions and ensures that the exception parameters are properly setup. The
exception parameters are checked at runtime and the API throws a CatalogedException if the parameters supplied
to the exception do not match that in the Exception Catalog. Thisis to ensure that al the exceptions reported to
the centralized Exception Handling Daemon (exchd) are valid exceptions assigned to the application. All
exception conditions must be tested and these should be caught as bugs in the process. The exception catalog
class generation is a step forward for catching these erroneous parameters at compile time. Even after the best
testing and coding efforts, if exceptions are sent to the daemon, they are catch as foreign key violations in the
database and are databased with internal exception handler codes™.

Following isalisting of the sample java class generation script™ provided in the package.

@cho off

rem khkhkhkhkhhkhkhkhkhkhhhhkhkhhhkhkhhhhkx*x*%
rem* Licensed Materials - Property of |BM *
rem* (C) Copyright |BM Corp. 2006, 2008 Al Rights Reserved. *
rem* US Governnment Users Restricted Rights - Use, duplication or *

rem* disclosure restricted by GSA ADP Schedul e Contract with |IBM Corp. *

rem kkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*x*%

set EEH PATH=D:/t ool s/ eeh

call bin/win/excutil.bat -classgen Java -classdir sanp/javal/conlibm ng/ exc/ sanp
-exccat sanp/ xm / ExcCat. MST. xml - package com i bm ng. exc. sanp

echo .

pause

10 pjease refer to theinternal Exception Catalog in Appendix |
1 Samplelocation is<EEH_PATH>/classgen.bat

Arunava Majumdar Page 49 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

The generated class provided in the samples™ directory is listed partially below for reference showing one of the
functions that were created for the Exception EXC_M SSI NG REFERENCE.

package com i bm ng. exc. sanp;
inport java.util.Hashtable;

import comibm ng. exc. Excepti onHandl er;
import comibm ng. exc. Excepti onHandl er. Cat al ogedExcepti on;

public class ExcCat_MJST{

public static final String nanme = "ExcCat. MXEST";
public static final String version = "1.0.0";

| **

* Areference is mssing in the configuration.
*
@aram strReference M ssing reference.
@aram strbj Type Type of object that is mssing.

@eturn Catal ogedException for naned excepti on EXC M SSI NG_REFERENCE</ B>

*
*
*
*
*
* @xception Catal ogedException of the follow ng flavours:

* - EXC_CAT. CATALOG_UNDEF

* EXC_CAT. EXCEPTI ON_UNDEF

* EXC_CAT. PARM | NVALI D

* EXC_CAT. PARM | NVALI D_I NTERNAL

*/
public static Catal ogedExcepti on excEXC M SSI NG REFERENCE(

String strReference,

String strCbj Type) throws Catal ogedException {

Hasht abl e<String, Stri ng> hashParm = new Hasht abl e<String, String>();
hashPar m put (" Ref erence", str Ref erence) ;
hashPar m put (" Coj Type", str Obj Type) ;

return new Cat al ogedExcepti on(Excepti onHandl er. PRI _ERR,
"EXC_M SSI NG_REFERENCE", hashPar m nan®, ver si on) ;

12 Samplelocation is <EEH_PATH>/samp/java/com/ibm/mg/exc/samp/ExcCat_M QST ,java

Arunava Majumdar Page 50 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

7.2. Setting up the Environment

To setup the Exception Handling environment a cal to the static method ExceptionHandl er.setup iS
mandatory. This loads the Exception Catalog into the VM. The function should be called for all the exception
catalogs that the application uses. Ideally only one Exception Catalog should be used for the exceptions
generated from the application. The static call to Excepti onHandl er. set upMQ is required to setup the MQ
environment for the application to send messages to the centralized exception handling queue. A complete
exampleis provided in the samples™.

private static String QWaR = "QMV HUB";
private static String QUEUE = "Q FAIL";

private static String CATALOG
private static String CAT_VER

"ExcCat . MQST";
"1.0.0";

public static void initialize() throws Catal ogedException {

String strPath=System getenv("EEH PATH");

if (strPath==null || strPath.length()==0) {
System out. println("ERROR EEH PATH not set !!!");
Systemout.println("Please set this environnent variable to the

installation path of EEH. ");

Systemexit(1);

}

Excepti onHandl er. set up(strPat h+"/sanp/ xm / ExcCat . MQST. xm ") ;
Excepti onHandl er . set upMY) QVGR, QUEUE) ;

An alternative method, Except i onHandl er . set upExcCat , is provided with the Exception Handler API to load
the property based Exception Catalog. This is provided for compatibility and conflict aversion with software
using DOM4J libraries that the Exception Handler uses to parse the XML. The recommended approach is to use
the XML based Exception Catalog and all tools are based on that schema. Below is an example to load the
property based catalog from the provided sample™.

private static String QWGR = "QM HUB";
private static String QUEUE = "Q EEH. FAI L";

private static String CATALOG
private static String CAT_VER

"ExcCat . MQST";
"1.0.0";

public static void initialize() throws Catal ogedException {

String strPath=System getenv("EEH PATH");

if (strPath==null || strPath.length()==0) {
System out. println("ERROR EEH PATH not set !!!");
Systemout. println("Please set this environnent variable to the

installation path of EEH. ");

Systemexit(1);

}

Excepti onHandl er . set upExcCat (strPat h+"/ sanp/ exccat / ExcCat . MQST. exccat ", f al se);
Excepti onHandl er . set upMY) QVGR, QUEUE) ;

13 Samplelocation is <EEH_PATH>/samp/java/com/ibm/mg/exc/samp/ExcH_Java 01_OK .java
14 please refer to Appendix |1
1 Samplelocation is <EEH_PATH>/samp/java/com/ibm/mg/exc/samp/ExcH_Java 04 ExcCat.java

Arunava Majumdar Page 51 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

The Exception Catalog can also be loaded statically by setting the environment variable EEH_SETUP either at the
system level or at the user level or even in a batch or shell script to start the application. This method of catalog
loading requires no coding to set up the catalog and may be used inside the Message Broker as well. The only
disadvantage of doing thisis control of loading specific catalogs at a given point in the code. However, for most
applications this method works to the advantage of not having the call the API directly. Another advantage to the
static loading is that Exception Handler automatically detects whether the catalog is XML based or property
based. Multiple catalogs can also be recursively loaded by pointing the variable to a directory with multiple
catalogs and subdirectories with catal ogs.

The capability of the static loading is demonstrated in the following samples provided:
(] ExcH Java_06_St ati cLoadi ng. j ava
— Single Exception Catalog loading by setting EEH_SETUP to the catalog file
® ExcH Java_07_StaticLoadAll.java
— Multiple Exception Catalog loading by setting EEH_SETUP to the catalog directory

Exception Catalogs can also be registered with the EEH system and loaded from the registry. To register a
catalog, simply copy the catalog in the following directory:

EEH PATH . regi stry/exccat

The static call to Excepti onHandl er . set upRegi st er edCat al ogs loads all the catalogs in the catalog registry.
The sample ExcH_Java_08_Al | Reg. j ava demonstrates this capability.

private static String QWER = "QMV HUB";
private static String QUEUE = "Q EEH. FAI L";

private static String CATALOG
private static String CAT_VER

"ExcCat . MQST";
"1.0.0";

public static void initialize() throws Catal ogedException {

String strPath=System getenv("EEH PATH");

if (strPath==null || strPath.length()==0) {
System out. println("ERROR EEH PATH not set !!!");
Systemout.println("Please set this environnent variable to the

installation path of EEH. ");

Systemexit(1);

}

Excepti onHandl er . set upRegi st er edCat al ogs() ;
Excepti onHandl er. set upMY) QVIGR, QUEUE) ;
Excepti onHandl er. set Appl d(" Al | Reg");

new Fil e(strPath+"/test/Exc_Java_08").nkdirs();
Excepti onHandl er. | i st Cat al ogedExcepti on(strPat h+"/test/Exc_Java_08");

Arunava Majumdar Page 52 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Java class for the exception catalog may be generated from the exception catalog as explained in 5.1 Exception
Handler Utility. The utility can only be used to generate Exception Catalog Java class from an XML Catalog.
The API call to Excepti onHandl er. get ExcCat I nf o returns the ExccCat I nfo object that may be used in the
Excepti onHandl er. setup call. This method is particularly important when the application wants to guarantee
that the catalog is always loaded correctly and not having to rely on the XML file or the bowJ libraries, e.g.
products using EEH catalogs. The disadvantage of this method is that the catalog is tightly coupled with the code.

The sample ExcH_Java_09_ExcCat | nf oLoad. j ava demonstrates this capability.

private static String QWGR = "QMV HUB";
private static String QUEUE = "Q EEH. FAI L";

private static String CATALOG
private static String CAT_VER

"ExcCat. MST";
"1.0.0";

public static void initialize() throws Catal ogedException {

String strPath=System getenv("EEH PATH");

if (strPath==null || strPath.length()==0) {
System out. println("ERROR EEH PATH not set !!!");
Systemout.println("Please set this environnent variable to the

installation path of EEH. ");

Systemexit(1);

}

Excepti onHandl er. set up(ExcCat _MQST. get ExcCat I nfo(), true);
Excepti onHandl er . set upMY) QVGR, QUEUE) ;

Arunava Majumdar Page 53 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

7.3. Generating Runtime Exceptions

The following is a code snippet to demonstrate the generation of exceptions under specific conditions in the
application. Optional application headers may be attached to the exception message. The application headers
must be setup in the database and associated with the application. The setup DML sets up two application
headers, viz. AppHdr1 and AppHdr2.

Hasht abl e<String, String> hashErrorParnms = new Hashtabl e<String, String>();
hashError Parns. put ("I nval i dXMLNS", "test");
Cat al ogedExcepti on cel nval i dXML.NS
= new Cat al ogedExcepti on(Excepti onHandl er. PRI _FATAL,
"EXC_XM_NS_VALI DATI ON', hashEr r or Par ms, CATALOG, CAT_VER) ;

Hasht abl e<Stri ng, Hasht abl e<Stri ng, Stri ng>> hashAppHdr
= new Hasht abl e<Stri ng, Hasht abl e<String, String>>();
Hasht abl e<String, String> hashAppNV = new Hasht abl e<String, String>();
hashAppNV. put (" ABC", "123");
hashAppHdr . put (" AppHdr 1", hashAppNV) ;
Hasht abl e<String, String> hashAppNvV2 = new Hasht abl e<String, String>();
hashAppNV2. put (" ABC21", " 123");
hashAppNV2. put (" ABC22", " 123");
hashAppHdr . put (" AppHdr 2", hashAppNV2) ;
cel nval i dXMLNS. set AppHeader s(hashAppHdr) ;

t hrow cel nval i dXMLNS;

Alternatively, the Exception Catalog class may be used for convenience and ensuring that exception parameters
are properly populated.

Cat al ogedExcepti on cel nval i dXMLNS
= ExcCat _MQST. excEXC_XMLNS_VALI DATI ON("test");

Hasht abl e<Stri ng, Hasht abl e<Stri ng, Stri ng>> hashAppHdr
= new Hasht abl e<Stri ng, Hasht abl e<String, String>>();
Hasht abl e<String, String> hashAppNV = new Hasht abl e<String, String>();
hashAppNV. put (" ABC", "123");
hashAppHdr . put (" AppHdr 1", hashAppNV) ;
Hasht abl e<String, String> hashAppNvV2 = new Hasht abl e<String, String>();
hashAppNV2. put (" ABC21", " 123");
hashAppNV2. put (" ABC22", " 123");
hashAppHdr . put (" AppHdr 2", hashAppNV2) ;
cel nval i dXMLNS. set AppHeader s(hashAppHdr) ;

t hrow cel nval i dXMLNS;

Arunava Majumdar

Page 54 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

7.4. Capturing Runtime Exceptions

Exceptions generated in the application may be caught and a CatalogedException thrown. The CatalogedException
can be caught in a general catch block and reported to the exception handling system. The Java exception can
also be added to the Exception Dump for future reference. The exception is base64 encoded and added to the
XML. A dump may also be added as a byte array for binary dump or xml or string for character dumps.

try {
Fi | eQut put Stream fos = new Fil eQut put Stream("test.dat");
fos.wite("This is a test nessage.\n".getBytes());
fos.close();

}

cat ch(Fi | eNot FoundException eFNF) {
Cat al ol ogedException eCat = ExcCat_MJIT. excFl LE_NOT_FOUND("test.dat");
eCat . set Dunp(eFNF) ;
throw eCat;

}
catch(l Cexception el O {

throw ExcCat _MJTT. excl () ;
}

Some of the common exceptions may also use the overloaded constructors of the CatalogedException Class.
Please refer to the javadocs for detailed information on al the functionality of the API.

t hrow new Cat al ogedExcepti on(Excepti onHandl er. PRI _FATAL, eFNF, "test.dat",
ExcCat _MQST. nane, ExcCat _MJST. version);

Arunava Majumdar Page 55 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

7.5. Reporting Exceptions

Reporting exceptions using the API is very simple. The printStackTrace() function is overridden and prints the
exception code and description to the standard error and the XML exception to the standard output. The
createExceptionMessage() returns the XML formatted string and may be saved to a log file. Also the exception

message may be send to a queue using the sendMessage() function.

try {

}
catch (Catal ogedException ce) {

try {
Excepti onHandl er. sendExcept i onMessage(ce) ;

if (log!=null)
| og. war n("\ n"+eCE. cr eat eExcepti onMessage() +"\ n");

}

catch (Catal ogedException ce2) {
System out. println("Exception nessage:");
ce.printStackTrace();
System out. println("ERROR Sending exception nessage!");
ce2.printStackTrace();

7.6. Disconnecting from the Middleware

If the environment is set up to send messages to a queue, the disconnect() function must be called before exiting

the application for properly closing the open objects and disconnecting from the queue manager.

finally {
Excepti onHandl er. di sconnect () ;
}

Arunava Majumdar Page 56 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

7.7. Running Sample Applications

In order to run the sample applications, the sample queues have to be created. A sample MQSC script is provided
to do thisand islisted below.

R R R R R R R R R R R

* Licensed Materials - Property of |BM *
* (C) Copyright I1BM Corp. 2009 All Rights Reserved. *
* US CGovernment Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedul e Contract wi th | BM Corp. *
*
*
*

*

* Created January 2008

kkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkk*x*%

def gl (' Q FAIL') bothresh(3) bogname(' Q FAIL.BAK) repl ace
def gl (' Q FAIL.BAK') repl ace

def gl (' QCMD) replace

def gl (' Q ExcH. ESQ..01') repl ace

def gl (' Q ExcH. Java. 01') repl ace

Please make sure the sample exception catalog is setup by importing the samp/xml/ExcCat.MQST.xml and setting
up the application information by running the DML samp/dmli/setup.sql.

Customize the batch files and run the sample Java applications. All batch files are located in the sampljava
directory. Below isthelisting of the ExcH_Java_01_OK.bat file for reference.

@cho of f

ren]**
rem* Licensed Materials - Property of |BM *
rem* (C) Copyright |BM Corp. 2006, 2008 Al Rights Reserved. *
rem* US Governnment Users Restricted Rights - Use, duplication or *

rem* disclosure restricted by GSA ADP Schedul e Contract with |IBM Corp. *

ren**

set EEH PATH=d:/t ool s/ eeh

set OLD_CLASSPATH=%CLASSPATHY

set CLASSPATH=%EEH PATHY | i b/ com i bm ng. exc. jar; YEEH PATHX | i b/ ext/ domdj -
1.6.1.jar; %EEH PATH®% | i b/ ext/j axen-core.jar; YEEH PATHY | i b/ ext/j axen-
dom¥j . j ar; YEEH PATHY | i b/ ext/ saxpat h. j ar; YCLASSPATH%

java comibm ng. exc. sanp. ExcH Java_01_OK QM HUB
=] I e R R

set CLASSPATH=%0LD_CLASSPATH%

set OLD_CLASSPATH=

echo.
pause

Arunava Majumdar Page 57 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

8. Using the Eclipse Plug-in:

The eclipse plug-in for EEH is provided as an eclipse update site in the %EEH_PATH%/eclipse/site directory. The
plug-in can be very easily installed from the eclipse Help menu (Help — Software Updates — Find and Install...).
The minimum requirement for the eclipse plug-in installation is a version of eclipse 3.2 or higher (callisto). All
currently supported WebSphere® MQ or Message Broker products can install the plug-in, e.g. WMQ Explorer
7.0+, WMB Toolkit 6.1+, etc. For more details on installation instructions please refer to the EEH — Getting
Started document.

In this release the plug-in provides an editor associated with the .excdb file extension. The file is implemented as
a simple property file in this release; but is not part of the specification. It will be implemented as an XML in
future releases. Password to connect to the database is encrypted and base-64 encoded for security. The file may
be copied and altered but the recommended approach is to use a copy of the sample file for the database (the
%EEH_PATH%/samplexcdb/ExcDB) and edit it with the EEH plug-in editor.

It is recommended to copy an existing sample .excdb file provided in <EEH_PATH>/samplexcdb directory. The
ExcDB.zip file may be imported as an eclipse project interchange file. For eclipse 3.2 import the ExcDB project
from the in <EEH_PATH>/samp/excdb/ExcDB directory as an existing project.

For more details on how to use the eclipse editor please refer to the EEH — Getting Started.doc chapter 3.

Arunava Majumdar Page 58 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

8.1. Configuration Page

The configuration page for the exception database editor is divided into four quadrants. The top half of the page
isfor database information and the bottom half for the Renderer plug-in information.

On the top |eft, the database JDBC connection information must be provided. On the top right, the JDBC driver
jars for the database may be added. The jars are added to the service OSGi bundle for the EEH editor and the
name of the package for the JDBC driver classis exported. If the class name is not provided before invoking the
add database jar wizard, the driver will not be loaded. The package name is parsed and shown in a non-editable
text box on the wizard.™®

On the bottom left, the renderers may be added. It similarly adds the jars to the service OSGi bundle for the EEH
editor. The jar isinspected for classes that implement the IRenderer interface and the geticon() method is invoked
to show the Icon in the Registered Renderer tree. The getAbout() method is invoked to display information
regarding the renderer on the browser on the bottom right quadrant. HTML or text content may be displayed.

oS -0

Exception Database Connection Parameters:

Connection name: |EXEEAT.DBZ

JDBC 4.0 Driver: ||:um.ihm.th.jcc.DBzDriver

Database URL: |jdhc:dhZ:I,flm:alhnst:SDI]l]l],/EEHD1
Password: |
DB Prefix: |nu||

User Id: |arunava |

|

Reqistered Data and Dump Renderers

Displays information related to Data and Dump
Renderers.

[Config | Admin | Anakyzer | Log

Figure 12 — EEH Editor: Configuration Page

16 please be sure the correct driver is being exported by the Add Database Driver Jar Wizard.

Arunava Majumdar Page 59 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

8.2. Administration Page

The administration page is divided into two halves for displaying the catalog information from the database and
the relationship between the catalogs in the database. The page contents are displayed when connected to the
exception database. After disconnecting from the database, the information is not cleared. Thisisto save the last
connection state for reference. However, none of the actions on the database would work without an explicit
connection to the database. The connection state is always displayed as the icon for the Configuration page, so
that it is visible from every page and does not require to explicitly go to the Configuration page just for checking
the status at any point.

The top left displays the exception catalog. Catalogs may be imported/exported or added/deleted from the
database through the respective wizards. Similar actions may be performed for the application catalog in the top
middle and for custom application headers on the top right.

The exception catalog or the application headers may be associated with the application by dragging them to the
application. The associations are displayed in the respective mapping trees at the bottom. Associations may be
deleted from the mapping tree. Exceptions may be associated with an application at a catalog or at the individual
exception levels.

E Exception Catalog Editor X =08

Exception Catalog Application Catalog Application Header
=3 ExeCatMOST_v_1.0.0 MOST - ReadConfig =-Hl AppHdr
=42 E304001 - EXC_RULES_SYNTAX TEST - Testing GUI Bl apc

& Element & aBcz1

& Pasition B apczz

{E} Reason =-[H AppHarz
& value & aBC

(& E304002 - EXC_¥ML_VALIDATION B apcz

& E304003 - EXC_XMLNS_WALIDATION Bl apczz

€ E304004 - EXC_NULL_TOPOLOGY
{Er E304005 - EXC_MISSING_REFERENCE
(& E304999 - EXC_UNKNCWN
[ExeCat.MOTT_v_1.0.1
(= testexccatt_v_1.0.0

Mapping Exceptions to Applications Mapping Applications to Application Headers
BN exccatMasT_v_1.0.0 = 1) mosT
& 04001 Hl AppHdr1
& n4002 [Hl appHdrz
& 04003 TEST
& 04004
& 04005
(=48 04999
MQST

G} Config | Admin | Analvzer | Log | Exception

Figure 13— EEH Editor: Administration Page

Arunava Majumdar Page 60 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

8.3. Analysis Page

The exception analysis page is horizontally divided into two parts. The top part provides the search criteria for
the exception and the bottom table displays the sel ected exceptions from the database.

The application may be selected from the table on the left. For deselecting all applications, press the escape key.
All available exception catalogs are displayed in the combo box. Only after selecting the catalog, the versions for
that catalog present in the database are displayed in the catalog version combo box. Once the catalog and version
are displayed, the exceptions present in the catalog for that version are displayed in the code table below.
Multiple exceptions may be selected in the query. To deselect al exceptions in the table (i.e. to see a the
exceptions), press the escape key. Start date/time or end date/time for the exception range may also be selected.
The retrieve button runs the selection criteria and retrieves exceptions in the table below.

To view the details of the exception, double click on the exception. The details are displayed in a separate

dynamically created page.

[E excoat.oez X =i
Selection Criterea
Appld Application Catalog Wersion Start Date
MIQST MG Scripting Tool [| | |
v | & ([l |
Start Time
Code Name e e e
Ofs 2]:fs gl:lo 2]
End Date
End Time
al EE S ENE e
[Retriewe Data]
Detalls |
Catalog Yersion Code &pp Id Timestamp Exception UUID Daka LILID
ExcCat, MQaT 1.0.0 F404003 MQST 2011-09-25 09:43:09,35301 3cbll651-e0el-4Fc7-abd. .,
£ | 2
[} Config . Adrmin | Analyzer |Log .

Figure 14 — EEH Editor: Analyzer Page

Arunava Majumdar

Page 61 of 79

arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

8.4. Exception Page

The exception pageis dynamically created when an exception is double clicked on the displayed exception in the
analyzer page. More details on the available tabs on the exception page is provided in the EEH — Getting
Started.doc chapter 3, section 3.6.

The re-queuing history is maintained in the database and can be viewed from the editor. The data modification
history is also designed for in this release. However, the functionality to edit data is not provided. This will be
provided in the next release along with the ability to invoke any Renderer from within the editor.

Details Durmp || Data || stack Trace | Property | Histary |

Exception Infarmation Application Infarmation
Catalog: [FucCatins] Appld: [MasT
Version: | 1.0.0

Application: |Hi' Si

Code: |F 40

samp.ErcH_Jlava_01_0OK

Timestamp: | 2011-0 Function:

|
|
| Class: | con
|
|

Exc UUID: |:}c'=.1f. 1 1-4 bd5-8abfcal 7d35a File: _DK.java

XMLNS Yalidation Error! ¥alid XML Namespace is "urn:com.ibm.mq.config”. Line: |-E 9

Host: |:'J='-i:'\1?."l§'.--§.,;.55:“'!(1:'-‘..‘.(om

Description: Cluster: |

Server: |

Container: |

Exception Parameters I,quHdn h -AppHdr2|

Patameter Value Description
Invalid=MLMS test Invalid ML Mamespace.

[_} Config-i Admin ;Analyzer.IEg-E & Exception

Figure 15— EEH Editor: Exception Page

Arunava M ajumdar Page 62 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

8.5. Log Page

The log page lists any exception occurred during the life-time of the editor. The editor startup errors are aso
stored and displayed after the editor recovers and renders itself. The details of the selected errors are displayed in
the pane below. The log only exists in memory unless explicitly saved from this page. The exceptions may also
be cleared at runtime.

tion Catalog Editor 3 = H
Timestamp Catalog Code Description
1 | timestampl ExcCat.EEH v 1.0.0 Irfol
I timeskampz ExciCat,.EEH_+_1.0.0 191002 Info2
I timeskamp3 ExciCat.EEH_+_1.0.0 191003 Info3
I tirmeskarnpe ExciCat.EEH_+_1.0.0 I91004 Infod
I tirmeskarmps ExcCat.EEH_v_1.0.0 131005 Infos
Details1

[} Config | Admin | Analyzer Log | Exception

Figure 16 — EEH Editor: Log Page

Arunava M ajumdar Page 63 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

9. Using the Web Analyzer:

The Web Analyzer is packaged as a web archive (EEH.war) file in the %EEH_PATH%/web directory. Please refer
to the Getting Started Guide for information on how to install the application on Tomcat or the WebSphere
Application Server. The Web Analyzer connects to the Exception Handling database through the JDBC driver.

The driver must be configured for the INDI entry for jdbe/EXPDB before deploying the application.

Enterprise Exception Handler
Selection Critana
Appld Application =, 3 - ra
mast M Scripting Tocl a
[Fomovenan_|
Catalog Version Code App Id TimeStamp Exception UUID Data LUTD Requeue QMgr Requeue Quene Description
= 1 wasT 1 Erroe) Valid XML Namespace is
ExcCat MQST 100 04003 MaST mq.config”
. . 2 - tion Emor! Valid XML Namespace is
EAALNES k) it ReE 0903147488 B473-0C192¢78910¢
EXcCatMQsT 100 04003 MasT : o AL armespace
ExcCat MOsT 100 04003 MQET d XML Namespace is
yahd XML Nam
EXcCatMQsT 1.0.0 04003 MasT ey
ExcCatMgsT 100 04002 MQST d XML Ham

Figure 17 - EEH Web Analyzer

Exception Details
Details Dump Data Property StackTrace History
Exception Information:
Catalog:

Application Information:

Application:

Version: Function:
Code: File:
TimeStamp: Line:
Exc UUID: Host:

Cluster:
Description: Server:

Container:
Parameter Value Description

InvalidXMLNS test Invalid XML Namespace.

AppHdr1 AppHdr2

Parameter Value Description
ABC 123 Application Header1l Parm1l

Close

Figure 18 — EEH Web Analyzer: Exception Details
The details of the exception is shown on double-clicking on the selected Exception.

Arunava Majumdar Page 64 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10. Integration Point: Message Broker

An API is provided in the package for Message Broker integration. This facilitates coding flows in the Message
Broker. The ExceptionList is encapsulated in the Exception Dump and can be readily sent to the centralized
exception handling queue. There are two sets of API for integrating with ESQL as well as Java Compute Nodes.
For the ESQL integration a sub-flow (ESQ_Exception) is provided as well as mappings to external Java functions
that are not available in ESQL. The Java APl is provided as part of the package com.ibm.mq.exc.mb.jar. Usage of
both of these integration packages are described in more details in the following sections.

| o @ b— Dl b
In Report Exception QLFAIL Conditional Thraw

Figure 19 — ESQL _Exception Subflow

The sub-flow may be used to catch the ExceptionList generated by the and send the XML formatted message to
the centralized exception queue. The Queue Name property of the MQOutputNode is promoted to the sub-flow
level. Also the Environment variable Envi r onnment . Except i onMessage. Ret hrow="Y' determines whether the
exception with the same code is thrown back to the calling message for further handling of the exception. Under
most situations this is not required. The message is aso sent in a non-transactional mode so that even if the
message flow transaction rolls back the exception message is processed.
» ESQL functionsin Broker schema com.ibm.mg.exc.mb
= setup, setReQueue, setData
= createExceptionMessage, throwCatal ogedException
= copyMessageHeaders
» Javamappingsin Broker schema com.ibm.mq.exc.mb
= setupExcCat, validateException, getExcCode
= getHostname, encodeBase64, decodeBase64

The Message Broker Java APl provides the MbCatalogedException class to encapsulate some of the Message
Broker functionality, e.g. generation of the ExceptionList, etc. Following are the Message Broker extension
functions.
» com.ibm.mg.exc.mb.MbCatalogedException

= setupExcCat, validateException

= setReQueue, setData

= createCE, getMbException, translateM bException

= getFirstXPath, toXML, copyMessageHeaders

Arunava Majumdar Page 65 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10.1. Setting up the Environment

The Exception Catalog XML must be setup in the message flow similar to how a stand-alone Java application
would do. However, the call to setup the catalog is dlightly different in the case of the ESQL -based message flow

and the Java-based message flow as stated below. Typically the reQueue parameter is also set if the message

flow is triggered from an MQlnputNode. The setData call sets up the Data section of the XML if required. When

used, set up the data at the beginning of the flow since the data may be transformed from node to node and the

re-queuing of data should be the original data that was sent to the queue. The datais treated as a binary data and

base64 encoded.

10.1.1. ESQL

The Exception Catalog XML must be setup using the ESQL setup procedure call which is mapped to the Java

API ExceptionHandler.setup function.

CREATE COMPUTE MODULE Initialize
CREATE FUNCTI ON Mai n() RETURNS BOOLEAN

BEG N
SET CQut put Root = I nput Root ;
create firstchild of Environnent type Nanme nanme ' Excepti onMessage';
create firstchild of Environment.ExceptionMessage type Name nane
' Excepti onHeader"' ;
decl are ref_eMsg reference to Environment. Excepti onMessage;
decl are ref_eHeader reference to Environment.Excepti onMessage. Excepti onHeader;
decl are EEH _PATH char getenv(' EEH_PATH);
call setup(EEH_PATH| |'/sanmp/xm /[ExcCat. MQST. xm ', Envi r onnent . Excepti onMessage) ;
call set ReQueue(Environment. Excepti onMessage, | nput Root . MQVD) ;
cal |l setDat a(UUIl DASCHAR, Envi r onnment . Except i onMessage, | nput Root . BLOB. BLOB) ;
RETURN TRUE;
END;
END MODULE;
Arunava Majumdar Page 66 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10.1.2. Java

The Exception Catalog XML must be setup using the Java APl ExceptionHandler.setup function. The
ExceptionHandler.setupMQ call should also be made to set up the MQ for sending the message to the exception
gueue directly through the Exception Handling API like in the case of a Java stand-alone application. However,
the designer may choose to retrieve the XML formatted exception and pass it to a MQOutputNode. We
recommend sending the exception message in a non-transactional mode to ensure that the message is actually
sent to the queue even if the message flow transaction fails.

public class ExcH Java_Initialize extends MdJavaConput eNode {

private static String Q&R = "QM BK";
private static String QUEUE = "Q FAIL";

private static String EEH PATH = nul | ;
private static bool ean bool Setup = fal se;

public void onDelete() {

super.onbDel ete();

Excepti onHandl er. di sconnect Q) ;
}

public void eval uat e(MoMessageAssenbl y assenbly) throws MException {
MoQut put Ter mi nal out = get Qut put Term nal ("out");
MoEl enent eExcMsg
= (MoEl enent) ((Li st)assenbl y. get d obal Envi ronment () . get Root El enment ()
. eval uat eXPat h(" ?Excepti onMessage")). get (0);
MoEl ement eMQVD
= (MoEl enent) ((Li st) assenbl y. get Message() . get Root El enent ()
. eval uat eXPat h("MQVD")) . get (0);
try {
if (!bool Setup) {
EEH PATH = System get env("EEH PATH");
if (EEH_PATH==nul| || EEH_PATH.|ength()==0) {
Hasht abl e<Stri ng, Stri ng> hashPat hErr or
= new Hasht abl e<String, String>();
hashPat hError. put (" Key", "EEH PATH") ;
t hrow new Cat al ogedExcepti on(Excepti onHandl er. PRI _FATAL,
"1 NSTALL_PATH_UNDEF",
hashPat hError, "ExcCat. MST","1.0.0");
}

Excepti onHandl er. set up(EEH_PATH+"/ sanp/ xm / ExcCat . MQST. xm ") ;
Excepti onHandl er. set upMY) QVGR, QUEUE) ;

bool Setup = true;
}

MoCat al ogedExcepti on. set ReQueue(eExcMsg, eMAVD) ;
MoCat al ogedExcepti on. set Dat a(Excepti onHandl er. gener at eUUI D() ,
eExcMsg, eMAVD) ;

}
catch (Catal ogedException ce) {

t hrow MoCat al ogedExcepti on. get MoExcepti on(ce, eExcMsg, get Nane()) ;
}

out . propagat e(assenbl y) ;

Arunava Majumdar Page 67 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10.2. Generating Runtime Exceptions

10.2.1. ESQL

Generating an exception in the flow is quite simple. The parameters are set in the Environment variable for all
the Exception Header specific information and a User Exception is thrown.

decl are ref_eMsg reference to Environnent. Excepti onMessage;
decl are ref_eHeader reference to Environment.Excepti onMessage. Excepti onHeader;

set
set
set
set
set
set
set
set
set
set
set
set
set
set

ref _eMsg. nane=" EXC_XM_NS_VALI DATI ON ;

ref _eHeader.version="1.0.0";

ref _eHeader. cat al og=" ExcCat . MST" ;

ref _eHeader. Paraneters. I nval i dXMLNS='test "' ;

ref _eHeader . Appl i cati on. cl ass=NodelLabel ;

ref _eHeader. Appl i cation. Headers. AppHdr 1. ABC=' 123" ;

ref _eHeader. Appl i cati on. Headers. AppHdr 2. ABC21=" 123" ;

ref _eHeader. Appl i cati on. Header s. AppHdr 2. ABC22=" 123" ;

ref _eHeader . ReQueue. MOMD=encodeBase64(bi t st r ean(| nput Root . MQVD)) ;
ref _eHeader. ReQueue. MQVD_ver =cast (| nput Root . MQVD. Ver si on as char);
ref _eHeader . ReQueue. =l nput Root . MQVD. Sour ceQueue;

ref _eMsg. Dat a=encodeBase64(| nput Root . BLOB. BLOB) ;

ref _eMsg. Dat aType='bi nary';

ref _eMsg. UUl D=UUI DASCHAR,

throw user exception severity 3 catal og ' ExcCat.MXT' nessage 4002;

Arunava Majumdar

Page 68 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10.2.2. Java

The process of generating a CatalogedException from a Java Compute Node is very similar to the process of
generating one in a stand-alone Java application. However, the CatalogedException cannot be thrown back into
the message flow. The Message Broker extension APl helps in converting the CatalogedException t0 an
MbException Object by using the MbCatalogedException.getMbException function call.

private static String CATALOG
private static String CAT_VER

"ExcCat. MST";
"1.0.0";

public void eval uat e(MoMessageAssenbl y assenbly) throws MException {
MoEl enent eExcMsg
= MboCat al ogedExcepti on. get Fi r st XPat h(assenbl y. get d obal Envi ronnent ()
. get Root El ement (), " ?Excepti onMessage") ;

try {
Hasht abl e<String, String> hashError Par s
= new Hasht abl e<String, String>();
hashError Parns. put ("1 nval i dXMLNS", "test");
Cat al ogedExcepti on cel nval i dXM.NS
= new Cat al ogedExcepti on(Excepti onHandl er. PRI _FATAL,
"EXC_XM_NS_VALI DATI ON', hashEr r or Par ms, CATALOG, CAT_VER) ;
Hasht abl e<Stri ng, Hasht abl e<Stri ng, Stri ng>> hashAppHdr
= new Hasht abl e<Stri ng, Hasht abl e<String, String>>();
Hasht abl e<String, String> hashAppNV = new Hasht abl e<String, String>();
hashAppNV. put (" ABC", "123");
hashAppHdr . put (" AppHdr 1", hashAppNV) ;
Hasht abl e<String, String> hashAppNV2 = new Hasht abl e<String, String>();
hashAppNV2. put (" ABC21", "123");
hashAppNV2. put (" ABC22", "123");
hashAppHdr . put (" AppHdr 2", hashAppNV2) ;
cel nval i dXMLNS. set AppHeader s(hashAppHdr) ;

t hrow MoCat al ogedExcepti on
. get MoExcepti on(cel nval i dXMLNS, eExcMsg, get Nane()) ;

catch (Catal ogedException celnternal) {
t hrow MoCat al ogedExcepti on
. get MoExcepti on(cel nternal , eExcMsg, get Nane());

Arunava Majumdar Page 69 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10.3. Capturing and Reporting Runtime Exceptions

10.3.1. ESQL

The exceptions caught in the message flow may be sent to the
ESQL_Exception sub-flow for capturing the exception as well as sending
the formatted XML message to the exception queue.

ek Exception Non-user generated exceptions may be caught in the flow in the same
way as user generated exceptions.

—o I B
TryCatch Thraw ESGL Exc

Figure 20 — Catching Exceptions with the Subflow

10.3.2. Java
The exceptions caught in the message flow may be sent to a Java
- Compute Node for capturing the exception and sending the formatted
& XML message to the exception queue. The Java code for sending the
Catch Java Exc exception to the queueis listed below.

Non-user generated exceptions may be caught in the flow in the same
way as user generated exceptions.

TryCatch Throw Java Exc

Figure 21 — Catching Exceptions with a Java Compute Node

public class ExcH Java_Cat chExc extends MdJavaConput eNode {

public void eval uat e(MoMessageAssenbl y assenbly) throws MException {
MoQut put Termi nal out = get Qut put Term nal ("out");
MoEl enent eExcMsg

= MoCat al ogedExcepti on. get Fi r st XPat h(assenbl y. get d obal Envi ronnent ()
. get Root El ement (), " ?Excepti onMessage") ;

try {
Cat al ogedExcepti on ce
= MoCat al ogedExcepti on. cr eat eCE(assenbl y, get Broker (). get Name(),
get Broker (). get QueueManager Nane(),
get Executi onGroup() . get Nane());

Excepti onHandl er. sendExcept i onMessage(ce);

}
catch (Catal ogedException ce) {

t hrow MoCat al ogedExcepti on. get MoExcepti on(ce, eExcMsg, get Nanme()) ;
}

out . propagat e(assenbl y) ;

Arunava Majumdar Page 70 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

10.4. Running Sample Applications

The sample applications for the ESQL example and the Java example are packaged under the same bar file
Exc_Samp.bar. The bar file includes the com.ibm.mq.exc.jar and the com.ibm.mq.exc.mb.jar libraries. However, the
external dependent jar files are packaged under the ext_lib.bar. This must be deployed to any execution group
running the Exception Handler. The com.ibm.mq.exc.jar library must also be deployed to all the execution groups
that have either ESQL -based message flows or Java-based message flows. In addition, the Java-based message
flows must also deploy the com.ibm.mg.exc.mb.jar library.

Arunava Majumdar Page 71 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

11. Enterprise Exception Handler Forums:

IBM Services Asset: Enterprise Exception Handling: I1deas and Features

This forum discusses any new ldeas and Features that can be implemented for future releases of
Enterprise Exception Handler (EEH) Pattern. This is an opportunity for not only propose a Feature
Request but to involve in discussions on the usefulness of the feature. The moderators of the forum will
forward any new ideas to the EEH development team and feedback from the team will be posted here.
EEH development may also participate in discussions.

http://www.ibm.com/devel operworks/forums/forum.jspa?forumi D=2760

IBM Services Asset: Enterprise Exception Handling: Technical Discussions

All technical discussions on the Enterprise Exception Handling (EEH) Pattern are hosted at this forum.
The forum brings experts and architects and developers new to the EEH technology together to help
implement EEH in the organization.

http://www.ibm.com/devel operworks/forums/forum.jspa?foruml D=2761

Arunava Majumdar Page 72 of 79 arunava@us.ibm.com

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=2760
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=2761

Enterprise Exception Handling: Implementation Guide

12. Service Offering from IBM:

This Category 01 SupportPac isan IBM Services Asset for WebSphere Software and may be freely downloaded
under the license agreement. Please visit the IBM Software Services Zone for WebSphere website for detailed
information on services offerings and to contact a services representative.

Engage the Experts: 1BM Softwar e Services for WebSphere (1SSW)
Engage IBM to provide knowledge and expertise on the Enterprise Exception Handling (EEH) framework for
your organization:

Enterprise Exception Handling Workshop: A discussion forum for gathering knowledge on the scale and
the complexity of the implementation of EEH. Over the 2-day workshop IBM consultant will demonstrate
the capabilities and the advantages for using the framework and extensibility. High-level planning
guidelines for implementation of the standard.

Enterprise Exception Handling Strategy and Planning: Introducing a standard at an organization level
requires planning and strategy. This is true for engineering existing applications with EEH. IBM will assist
in looking at development life cycle of different application teams to coordinate the effort to provide
governance around exceptions in the system and the rollout of the exception handling framework. Typically
an engagement would require 4-12 weeks.

Enterprise Exception Handling Implementation: IBM will provide assistance in setting up the EEH
environment with the database schema and implement exception handling for a number of Java applications
or message flows to provide mentoring for implementation of the pattern. Typical engagement of 3-5 weeks
is recommended.

Enterprise Exception Handling Extensibility: EEH provides capabilities for the implementation of
plugins — Renderers, Exception Notifiers, etc. IBM can provide value added services to create plugins for
specific requirements. IBM can also provide services to customize the asset for client requirements or
additional integration points that are not implemented. This activity depends on the requirements and scope
of the implementation. It is recommended to conduct a workshop to determine the scope of the engagement.

Arunava Majumdar Page 73 of 79 arunava@us.ibm.com

https://www.ibm.com/developerworks/websphere/services/

Enterprise Exception Handling: Implementation Guide

Conclusion:

The initial release of the Enterprise Exception Handling Pattern provides not only the standards for the
integrating an enterprise-wide exception reporting system, but also provides the Java APl implementation,
utilities for importing and exporting exception catalogs, generation of Java class for the catalog, integration
extensions for the IBM WebSphere® Message Broker and an exception handling daemon out of the box. In the
future releases of the package we will be publishing tools to help analyze exceptions in the database and
administration of exception and application catalogs. Please feel free to contact the author for any suggestions
you might have for future enhancement of the product.

Arunava Majumdar Page 74 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Appendix |

<?xm version="1.0" encodi ng="UTF- 8" ?>
<exc: ExceptionCat al og nane="ExcCat. ExcH' version="1.0.0" appi d="EEH"
expi ry="604800" expiredQueue="Q EEH. EXPI RED"
descr ="Exception Catal og for MXT Application"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schenmalLocation="urn:comibm ng. exc ../schenma/ Excepti onCat al og. xsd"
xm ns: exc="urn: comibm ng. exc">

<Exception nanme="FI LE_NOT_FOUND"' priority="3" code="91001" descr="File not found Error!">
<Paraneter name="File" descr="Filenane and path of the file that could not be
located."/>
</ Excepti on>

<Exception name="10" priority="3" code="91002" descr="1/0 Exception generated at runtine;
pl ease refer to the exception dunp!"/>

<Exception nanme="CLASS UNDEF" priority="3" code="91003" descr="C ass coul d not be found!">
<Par anet er nanme="C ass" descr="C ass nane that could not be located."/>
</ Excepti on>

<Exception nane="91004" priority="3" code="91004" descr="Host could not be deternined! "/>

<Exception nanme="XM._VALI DATI ON' priority="3" code="94001" descr="XWM. Validation Error!">
<Par anet er name="Col umNo" descr="Col unn nunber where the exception occerred."/>
<Par anet er nanme="Li neNo" descr="Line nunber where the exception occurred."/>
<Par anet er nanme="Message" descr="Reason for the XM. violation to occur."/>
<Par anet er nanme="Publicld" descr="External public ldentifier if one exits."/>
<Par anet er name="System d" descr="Systemidentifier of the xm file."/>

</ Excepti on>

<Exception nanme="XM.NS_VALI DATI ON' priority="3" code="94002" descr="XMNS Validation Error!
Valid XML Nanespace is 'urn:comibmng.exc' .">
<Par aneter name="Inval i dXMLNS" descr="Invalid XM. Nanmespace."/>
</ Excepti on>

<Exception name="CATALOG NULL" priority="3" code="94003" descr="No Exception Catal og has not
been defined!"/>

<Exception nane="CATALOG REDEF" priority="3" code="94004" descr="Exception Catalog is being
redefined! ">
<Par aneter nanme="ExcCat" descr="Exception Catal og."/>
</ Excepti on>

<Exception nanme="CATALOG UNDEF" priority="3" code="94005" descr="Exception Catal og is not
defined! ">
<Par aneter name="Cal | Stack" descr="Call Stack of the original Exception."/>
<Par anet er nanme="ExcCat" descr="Exception Catal og."/>
<Par anet er nane="ExcCat Ver" descr="Exception Catal og Vaersion."/>
</ Excepti on>

<Exception nanme="APPI D_REDEF" priority="3" code="94006" descr="Application Identifier is being
redefined! ">
<Par anet er nanme="Appl d" descr="Application Identifier defined."/>
<Par aneter name="Appl d_New' descr="New Application ldentifier conflict."/>
</ Excepti on>

<Exception name="EXCEPTI ON_UNDEF" priority="3" code="94007" descr="Exception is not defined in
the catal og!">
<Par aneter nanme="Cal | Stack" descr="Call Stack of the original Exception."/>
<Par anet er name="Exc" descr="Exception not found in the catalog."/>
<Par anet er name="ExcCat" descr="Exception Catal og."/>
<Par anet er name="ExcCat Ver" descr="Exception Catal og Vaersion."/>
</ Excepti on>

Arunava M ajumdar Page 75 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

<Exception name="PARM | NVALI D" priority="3" code="94008" descr="Exception paranmeter is not
valid for the Exception in the catal og!">
<Par aneter nanme="Cal | Stack" descr="Call Stack of the original Exception."/>
<Par anet er nanme="Exc" descr="Exception found in the catalog."/>
<Par anet er name="ExcCat" descr="Exception Catal og."/>
<Par anet er name="Parni descr="Exception paraneter not valid for the Exception."/>
</ Excepti on>

<Exception name="QVGR_CONN_REDEF" priority="3" code="94009" descr="Queue Manager connection
redefinition; one has already been defined!">
<Par aneter nanme="Qwr" descr="Queue Manager being redefined."/>
</ Excepti on>

<Exception name="REQUEUE_NOT_SET" priority="3" code="94010" descr="Re- Queue queue nane has not
been defined!"/>

<Exception nanme="QUEUE_NOT_SET" priority="3" code="94011" descr="Queue nane has not been
defined! "/ >

<Exception nanme="DUWMP_REDEF" priority="3" code="94012" descr="Exception Dunp redefinition; one
has al ready been defined!">
<Par anet er name="DunpType" descr="The type of exception dunp already set."/>
</ Excepti on>

<Exception nanme="DUWMP_UNSUPPORTED' priority="3" code="94013" descr="Exception Dunp type is not
supported! Supported types are binary, string, xnl, java:Exception,
j ava: DumpRenderer. ">
<Par anet er nanme="DunpType" descr="The type of exception dunp provided."/>
</ Excepti on>

<Exception nanme="DATA_REDEF" priority="3" code="94014" descr="Data format type redefinition;
one has already been defined!">
<Par anet er nanme="Dat aType" descr="The type of data format already set."/>
</ Excepti on>

<Exception nanme="DATA UNSUPPORTED' priority="3" code="94015" descr="Exception Data format type
is not supported! Supported types are binary, string, xml, java: MJQwessage,
j ava: JIMSMessage, | ava: Dat aRenderer.">
<Par anet er nanme="Dat aType" descr="The type of Data format provided."/>
</ Excepti on>

<Exception nane="PARM_| NVALI D_| NTERNAL" priority="4" code="94998" descr="Exception paraneter
is not valid for the Exception in the catal og ExcCat.ExcH ! This is an internal
ExceptionHandl er fatal error and is caught to avoid infinite recursive exception
i nvokations.">
<Par aneter nane="Cal | Stack" descr="Call Stack of the original Exception."/>
<Par anet er name="Exc" descr="Exception found in the catalog."/>
<Par anet er name="Parnl descr="Exception paraneter not valid for the Exception."/>
</ Excepti on>

<Exception name="UNKNOMN' priority="4" code="94999" descr="An Unknown exception has occurred
in the system Please send the stack trace to arunava@is.ibmcomw th the Subject
as PMR ExceptionHandl er and your contact details.">
<Par aneter name="Cal | Stack" descr="XM. format of the call stack when the Exception was
generated."/>
</ Excepti on>

<Exception name="WMY' priority="3" code="95001" descr="WebSphere MQ error!">
<Par anet er nanme="Reason" descr="Reason code returned form WQ "/>
</ Excepti on>

<Exception name="JMs" priority="3" code="95002" descr="Java Messagi ng Service error!">
<Par anet er nanme="Error Code" descr="Error code returned formJM vendor."/>
</ Excepti on>

Arunava M ajumdar Page 76 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

<Exception name="WWB" priority="3" code="95003" descr="ExceptionLi st object captured! This is
a generic Exception caught inside the Message Fl ow and not intended to be used for
User Exceptions that should be catagorized and anal yzed. ">
<Par anet er nanme="Cat al og" descr="NLS nessage catal og nane."/>
<Par anet er name="ExceptionType" descr="The type of Exception that was generated. It is
of the follow ng types - Recoverabl eException, ParserException
Conver si onExcepti on, DatabaseExcepti on, User Exception, SecurityException
Cast Exception, MessageException, Sgl Exception, Socket Exception
Socket Ti meout Exception."/>
<Par aneter name="File" descr="C++ source file nane."/>
<Par anet er nane="Function" descr="C++ source function nane."/>
<Par anet er nane="Line" descr="C++ source file |ine nunber."/>
<Par anet er nanme="Nanme" descr="Source object nane."/>
<Par anet er name="Nunber" descr="NLS nessage nunber."/>
<Par aneter name="Severity" descr="1 = information, 2 = warning, 3 = error."/>
<Par anet er nanme="Sour ce" descr="Source object |abel."/>
<Par aneter nanme="Text" descr="Additional text."/>
<Par anet er nanme="Type" descr="Source object type."/>
</ Excepti on>

<Exception name="SQ." priority="3" code="96001" descr="Database SQ. error!">
<Par anet er nanme="SQLCODE" descr="SQLCODE for the vender specific database error."/>
<Par anet er nanme="SQ.MSG' descr="Message for the database error."/>
<Par anet er nanme="SQLSTATE" descr="SQLSTATE for the database error."/>

</ Excepti on>

</ exc: Excepti onCat al og>

Arunava M ajumdar Page 77 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Appendix |

exccat . nane=ExcCat . MQST

exccat.version=1.0.0

exccat . expi ry=604800

exccat . expi redQueue=Q EEH. EXPI RED

exccat . descr=Exception Catal og for MJT Application
exccat . appi d=MQST

exc. EXC_RULES_SYNTAX. priority=3

exc. EXC_RULES_SYNTAX. code=04001

exc. EXC_RULES_SYNTAX. descr=Rul es Syntax Error!

exc. EXC_RULES_SYNTAX. El enent . descr =El erent at which the syntax is incorrect.

exc. EXC_RULES_SYNTAX. Val ue. descr=Val ue of the el enent containing incorrect syntax.

exc. EXC_RULES_SYNTAX. Posi ti on. descr=Posi tion where the syntax violation was detected in the
el enent val ue.

exc. EXC_RULES_SYNTAX. Reason. descr =Reason for the syantax violation to occur.

exc. EXC_XM._VALI DATI ON. priority=3

exc. EXC_XM__VALI DATI ON. code=04002

exc. EXC_XM__VALI DATI ON. descr=XM. Val i dati on Error!

exc. EXC_XM__VALI DATI ON. Publ i cl d. descr=External public Identifier if one exits.
exc. EXC_XM._VALI DATI ON. Syst em d. descr=System identifier of the xm file.

exc. EXC_XM._VALI DATI ON. Li neNo. descr =Li ne nunber where the exception occurred.
exc. EXC_XM__VALI DATI ON. Col umNo. descr =Col unm nunber where the exception occerred.
exc. EXC_XM__VALI DATI ON. Message. descr =Reason for the XM violation to occur.

exc. EXC_XMLNS_VALI DATI ON. pri ority=3

exc. EXC_XM_LNS_VALI DATI ON. code=04003

exc. EXC_XMLNS_VALI DATI ON. descr =XMLNS Val i dation Error! Valid XM. Nanespace is
‘urn:comibmng.config'.

exc. EXC_XMLNS_VALI DATI ON. | nval i dXMLNS. descr =l nval i d XM. Nanespace.

exc. EXC_NULL_TOPOLOGY. priority=3
exc. EXC_NULL_TOPOLOGY. code=04004
exc. EXC_NULL_TOPOLOGY. descr =Topol ogy has not been defi ned!

exc. EXC_M SSI NG_REFERENCE. priority=3

exc. EXC_M SSI NG_REFERENCE. code=04005

exc. EXC_M SSI NG_REFERENCE. descr=A reference is missing in the configuration.
exc. EXC_M SSI NG_REFERENCE. (bj Type. descr =Type of object that is nissing.

exc. EXC_M SSI NG_REFERENCE. Ref er ence. descr =M ssi ng ref erence.

exc. EXC_UNKNOM. priority=3

exc. EXC_UNKNOMN. code=04999

exc. EXC_UNKNOM. descr =An Unknown exception has occurred in the system Please send the stack
trace to arunava@s.ibmcomw th the Subject as PMR MXST and your contact details.

Arunava Majumdar Page 78 of 79 arunava@us.ibm.com

Enterprise Exception Handling: Implementation Guide

Bibliography:

1. | WMQ Support Pac md08 — WebSphere MQ Network Design Notation
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24006700

2. | UML 2.0 Superstructure specification
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

3. | The Unified Modeling Language Reference Manual by James Rambaugh, Ivar Jacobson and Grady Booch
http://www.ibm.com/developerworks/rational/library/5822.html

4. | WebSphere MQ InfoCenter
http://publib.boulder.ibm.com/infocenter/wmagv7/v7r0/index.jsp

5. | WebSphere Message Broker InfoCenter
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6rimO/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v7rOmO/index.jsp

6. | WMQ Support Pac ms03 — Save Queue Manager
http://www-01.ibm.com/support/docview.wss?uid=swg24000673

7. | WMQ Support Pac msOe — MQ Administration Wrapper
http://www-01.ibm.com/support/docview.wss?uid=swg24000686

8. | IBM Alphaworks performance harness
http://www.alphaworks.ibm.com/tech/perfharness

9. | IBM ESB Overview
http://www-306.ibm.com/software/infol/websphere/index.jsp?tab=landings/esbbenefits

Arunava Majumdar Page 79 of 79 arunava@us.ibm.com

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24006700
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.ibm.com/developerworks/rational/library/5822.html
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v7r0m0/index.jsp
http://www-01.ibm.com/support/docview.wss?uid=swg24000673
http://www-01.ibm.com/support/docview.wss?uid=swg24000686
http://www.alphaworks.ibm.com/tech/perfharness
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=landings/esbbenefits

	Modification History
	Legal Disclaimer:
	Acknowledgement:
	Scope of the Document:
	What’s new:
	1. Introduction to Exceptions:
	1.1. What is an exception?
	1.2. Exception Object concepts
	1.3. Importance of exception handling
	1.4. Importance of common exception handling for the organization
	1.5. Importance of cataloging exceptions
	1.6. Designing exceptions

	2. Enterprise Exception Handling Concepts:
	2.1. Standardization of the Exception format
	2.2. Exception reporting through the ESB
	2.3. Notification through the Monitoring System
	2.4. Centralization and Statistical Analysis of Exceptions
	2.5. Testing Exceptions Conditions

	3. Overview of Enterprise Exception Handling
	4. Design Pattern – Enterprise Exception Handling
	4.1. Architecture
	4.2. Message Specifications
	4.3. Database schema Specifications

	5. Exception Handler Runtime and Utilities:
	5.1. Exception Handler Utility
	5.2. Exception Handler Daemon
	5.3. Exception Handler Command

	6. Setting up the Exception Catalog:
	7. Using the Java API:
	7.1. Creating the Exception Catalog Class
	7.2. Setting up the Environment
	7.3. Generating Runtime Exceptions
	7.4. Capturing Runtime Exceptions
	7.5. Reporting Exceptions
	7.6. Disconnecting from the Middleware
	7.7. Running Sample Applications

	8. Using the Eclipse Plug-in:
	8.1. Configuration Page
	8.2. Administration Page
	8.3. Analysis Page
	8.4. Exception Page
	8.5. Log Page

	9. Using the Web Analyzer:
	10. Integration Point: Message Broker
	10.1. Setting up the Environment
	ESQL
	10.1.2. Java

	10.2. Generating Runtime Exceptions
	ESQL
	10.2.2. Java

	10.3. Capturing and Reporting Runtime Exceptions
	ESQL
	Java

	10.4. Running Sample Applications

	11. Enterprise Exception Handler Forums:
	12. Service Offering from IBM:
	Conclusion:
	Appendix I
	Appendix II
	Bibliography:

