
WebSphere Message Broker V6.1

For z/OS

Performance report

Version 1.0

April, 2008

Tim Dunn

Rich Bicheno

Ian Hurworth

Adam Rice

WebSphere Message Broker Development

IBM UK Laboratories
Hursley Park

Winchester
Hampshire
SO21 2JN

Property of IBM

25/04/2008 Version 1.0 Page 2 of 87

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, April 2008.
This edition applies to WebSphere Message Broker V6.1 for z/OS and to all subsequent
releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2005. All rights reserved. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

25/04/2008 Version 1.0 Page 3 of 87

Notices

This report is intended for Architects, Systems Programmers, Analysts and Programmers
wanting to understand the performance characteristics of WebSphere Message Broker V6.1
for z/OS. The information is not intended as the specification of any programming interfaces
that are provided by WebSphere MQ or WebSphere Message Broker V6.1 for z/OS. It is
assumed that the reader is familiar with the concepts and operation of WebSphere Message
Broker V6.1.

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “asis”. The use of this information and the implementation of any of the techniques
is the responsibility of the customer. Much depends on the ability of the customer to evaluate
these data and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

� IBM

� WebSphere MQ

� WebSphere Message Broker

� DB2

The following terms are trademarks of other companies:

� Windows 2003, Windows XP, Microsoft Corporation

Other company, product, and service names may be trademarks or service marks of others.

25/04/2008 Version 1.0 Page 4 of 87

Summary of Amendments
Date Changes

25/04/2008 Initial Release

25/04/2008 Version 1.0 Page 5 of 87

Table of Contents

Table of Contents .. 5
Introduction .. 7
Part I .. 9
Release Highlights... 10

Performance Improvements over WebSphere Message Broker V6 10
Improvements over WebSphere Business Integration Message Broker V5 12
Use Case Outline.. 13

Additional Information.. 13
Feedback ... 15
Part II ... 16
Processing Profiles .. 17

Minimal Processing ... 20
Message Parsing and Writing ... 21

Parsing a Message in the MRM Domain .. 21
Writing a Message in the MRM Domain ... 25
Parsing Messages in the XMLNSC Domain ... 26
Writing a Message in the XMLNSC Domain... 27
Validation in the XMLNSC Domain... 28
Opaque Parsing in the XMLNSC Domain... 31

External Resources ... 32
Accessing a Database from a Message Flow... 32
Calling External Procedures ... 34

Sending and Receiving Messages over different Transports ... 34
MQ Nodes... 34
HTTP Nodes ... 35
File Nodes... 36
WebServices (SOAP Nodes).. 39
JMS Nodes ... 42

Routing and Transformation Logic .. 44
Using ESQL .. 44
Using Java .. 47
Using Route Nodes... 51
Using the Collector Node .. 52
Using XSLT... 54

Publish Subscribe.. 55
Scaling Message Throughput ... 58
Overheads... 61

Using the Accounting and Statistics Plug-in with Message Broker Explorer.................. 61
Using Trace and Trace Nodes.. 62

Resource Requirements.. 62
Recommended Minimum Specification .. 63

Tuning.. 63
Message Broker .. 63
TCP/IP... 64
Database ... 64
Miscellaneous.. 64
Additional Tuning Information ... 64

The Performance Harness .. 64
Appendix A - Measurement Environment.. 66

Server Machine ... 66
Client Machines... 66
Network Configuration... 66

Appendix B - Evaluation Method ... 67
Point to Point testing ... 67

Message Generation and Consumption ... 67
Machine Configuration .. 69

Publish Subscribe Testing... 70

25/04/2008 Version 1.0 Page 6 of 87

Message Generation and Consumption ... 70
File Processing.. 70

Message Generation and Consumption ... 71
Reported Message Rates ... 71

Appendix C - Test Messages .. 72
Input Messages ... 72

General Input Messages... 72
SOAP Input Message and WSDL ... 73
Output Message .. 76

Appendix D - Use Case Descriptions .. 79
Coordinated Request/Reply .. 79
Data Warehouse ... 80
Large Messaging... 81
Message Routing .. 82
SWIFT Message Parse ... 83
XML Transformation.. 84
XMLNSC Validation... 85

25/04/2008 Version 1.0 Page 7 of 87

Introduction
The purpose of this report is to illustrate the key processing characteristics of WebSphere
Message Broker. This has been done by measuring the message throughput which is
possible for a number of different types of message processing, covering multiple message
formats, types and sizes.

This report consists of two parts. These meet different requirements:

1. Part I contains the release highlights and some background information to help
understand the context of the results. It shows:

a. The areas of improvement in performance with WebSphere Message Broker
V6.1 when compared with WebSphere Message Broker V6.

b. The level of message throughput that is achievable when using WebSphere
Message Broker in different ways. These tests use multiple copies of the
message flow and utilise as much of the server machine as possible to
illustrate the maximum message rate which can be sustained for the
individual types of processing.

The information in this part is presented at a high level and is intended to help
you quickly understand WebSphere Message Broker throughput capabilities.

2. Part II contains measurement data for a wide variety of tests which examine the
processing costs of individual functions using a single copy of the message flow.
This information is provided for those who wish to understand the processing costs of
different components within WebSphere Message Broker such as the differences in
CPU cost between Fixed Length Tagged Delimited Strings and All Elements
Delimited Tagged Delimited Strings. This information is intended for the more
experienced WebSphere Message Broker user who is familiar with the product
concepts and functions. As these tests run a single copy of the message flow.
They do not utilise the whole of the server machine and do not therefore
represent the maximum message throughput which is achievable.

There are a number of changes from previous performance reports. The most significant are:

1. Where applicable the numbers contained in this report are run using 64bit Execution
Groups which is the default for V6.1. Note this does not apply to Windows,
Linux(Intel) and z/OS.

2. Re-engineered tests to better reflect the processing costs which are encountered
when processing messages with a WebSphere Message Broker message flow. The
previous tests are deprecated and do not appear in this report.

3. More extensive analysis of product function, including more coverage of different
transports.

4. Larger range of message sizes including a greater range of persistent message
sizes.

5. Where XML Processing is tested the XMLNSC parser is used, this parser has been
enhanced in V6.1 and hence we would recommend all users to use or migrate to this
parser when processing XML messages.

The performance measurements focus on the throughput capabilities of the broker using
different message formats and processing node types. The aim of the measurements is to
help you understand how many messages a second can be processed in different situations

25/04/2008 Version 1.0 Page 8 of 87

as well as helping you to understand the relative costs of the different node types and
approaches to message processing.

You should not attempt to make any direct comparisons of the test results in this
report with what may appear to be similar tests in previous performance reports. This
is because the contents of the test messages are significantly different as is the
processing in the tests. It is not meaningful to make such comparisons. In many
cases the Hardware, Operating System and prerequisite software are also different
making any direct comparisons invalid.

Some optimisations to the test environment and procedures have been implemented to
minimise the effect of logging for example and to ensure that messages do not build up on
output queues (which has a detrimental effect on message throughput). These are detailed in
the section Summary of Tuning Information.

In many of the tests the business logic used is minimal so the results presented represent the
best throughput that can be achieved for that node type. This should be borne in mind when
performing sizing for WebSphere Message Broker.

25/04/2008 Version 1.0 Page 9 of 87

Part I

This part contains an overview of the areas of improvement in performance with WebSphere
Message Broker V6.1 when compared with WebSphere Message Broker V6.

It contains the following sections:

• Release Highlights which outlines the main differences in performance when using
WebSphere Message Broker V6.1 compared with WebSphere Message Broker V6.

• Additional Information which provides links to other sources of information about

WebSphere Message Broker and related products.

25/04/2008 Version 1.0 Page 10 of 87

Release Highlights

Performance Improvements over WebSphere Message Broker V6
Improving areas of Message Broker runtime performance has been a specific focus with
WebSphere Message Broker V6.1 and as a result there are several improvements in the level
of performance when compared with WebSphere Message Broker V6. The improvements
come from two sources - updates to existing function and provision of new function.

Several key areas of Message Broker runtime function have been investigated and
improvements made to improve performance. The main areas of focus were:

XML Processing

The parser for the XMLNSC domain has been rewritten for WMB V6.1 and offers significant
improvements in parsing performance. Any further XML processing improvements are likely
to be limited to XMLNSC hence we would recommend all users to use or migrate to this as
the XML parser of choice. Below is an illustration to demonstrate the improvements in XML
Parsing costs in the XMLNSC domain compared with V6.0. The flow for this test consisted of
a full parse of the incoming message by setting the parameter on the MQ input node to parse
immediate. The full message was then propagated out as an MQ Message, no other work
was performed. A single copy of the message flow was used.

Msg Size V6.0 Message Rate V6.1 Message Rate % Improvement

1K 1163 1450 25

4K 598 957 60

64K 49 96 96

256K 12.5 24.4 95

1024K 3.05 6.1 100

The results above are for a message flow whose only real cost is XML parsing and
serialisation, hence the extent to which general message flows will benefit will be dependent
on the proportion of XML parsing in the flow in relation to other types of processing.

XSLT Transformations

The XSLT Transform node has been optimised in WMB V6.1 to remove unnecessary
overhead. This has resulted in performance improvements particularly for smaller message
sizes as illustrated below. This shows the gains possible using the XSLT Transform sample
which was run on V6.0 and V6.1. Only a single copy of the flow was used:

Msg Size V6.0 Message Rate V6.1 Message Rate % Improvement

1K 388 589 52

4K 180 330 83

16K 57 123 116

64K 14.8 33.1 124

256K 5.3 8.8 66

Impact of Trace nodes in Message flows.

The overhead of leaving trace nodes in message flows even when disabled has been
significantly reduced in V6.1. Trace nodes can now be left in flows with minimal impact. See
the Overheads section of this report for more details.

25/04/2008 Version 1.0 Page 11 of 87

The improvements in these areas can be obtained by upgrading to WebSphere Message
Broker V6.1. No code or message model changes are required to benefit from the
improvements.

Further improvements are available if you take advantage of new functions such as:

XMLNSC Opaque Parsing

In Message Broker V6.1 Opaque parsing has been fully implemented for the XMLNSC
domain and integrated into the Toolkit. If you are designing a message flow and you know
that certain elements in a message are never referenced by the message flow, you can
specify at development time that those elements should be parsed opaquely. This reduces
the costs of parsing and writing the message and so helps to improve performance. For
guidance on how to use this feature consult the product documentation. The following table
shows some of the gains possible comparing message rates per second for a filter test case
with and without Opaque Parsing. This test routes a message based on the value found in
the last element of the body, only a single copy of the flow was used:

Msg Size FilterLast XMLNSC FilterLast Opaque % Improvement

4K 930 1673 80

16K 303 926 206

64K 79 287 263

256K 19.8 75 279

1024K 4.93 18.4 273

4096K 1.1 2.53 130

8192K 0.43 1.5 249

XMLNSC Validation.

The XMLNSC parser now offers high-performance, standards-compliant XML Schema
validation at any point in a message flow. This offers much faster XML validation compared
to MRM XML validation. The following table gives an illustration of the relative performance
of MRM versus XMLNSC validation when the message is validated using an MQ Input Node,
the numbers quoted are messages per second:

Msg Size MRM Validation XMLNSC Validation % Improvement

4K 122 847 594

16K 33.5 275 721

64K 8.17 68 732

256K 2.07 17.1 726

1024K 0.53 4.33 717

4096K 0.13 0.95 631

8192K 0.07 0.38 443

The Table below shows the results of running a series of use cases in WebSphere Message
Broker V6.1. The use cases are briefly described at the end of this section and more fully in
Appendix D – Use Case Descriptions. The use cases are largely taken from the samples
gallery of WebSphere Message Broker V6.1. The table is intended to give you an idea of the
processing capabilities for a range of common scenarios.

25/04/2008 Version 1.0 Page 12 of 87

Use Case Message
Size

V6.1
Msgs/sec

Coordinated
Request/Reply

4K 193

Data Warehouse 4K 520
Large Messaging 10K 300
Message Routing 4K 2650
SWIFT Message
Parse

1K 1090

XML Transformation 4K 930
XMLNSC Validation 1K 1665

Throughput Comparison for Use Cases.

Notes:

The results in the table above were obtained by running sufficient copies of each message
flow so that system CPU utilisation was 80% or greater.

Improvements over WebSphere Business Integration Message
Broker V5
In this report WebSphere Message Broker V6.1 performance had been compared with that of
WebSphere Message Broker V6. The improvements in performance in WebSphere Message
Broker V6. when compared to WebSphere Business Integration Message Broker V5
performance was essentially the same as that documented in the V6 Performance reports
which are available at the link below, plus of course the improvements made in V6.1 as
detailed above:

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27007150&loc=en_US&cs=utf-
8&lang=en

25/04/2008 Version 1.0 Page 13 of 87

Use Case Outline
This section contains a brief outline of the tests used to obtain the results presented in the
table above. For more detail on individual test cases see the section Appendix D - Use Case
Descriptions.

• Coordinated Request Reply
This performs the processing needed to enable two applications with different
message formats to communicate with each other. One application has a message
format of self-defining XML and the other uses Custom Wire Format (CWF)
messages. The request and reply processing for a particular request must be
coordinated so that data from the original request is restored to the reply message.

• Data Warehouse
This demonstrates a scenario in which a message flow is used to perform the
archiving of data, such as sales data, into a database. The data is stored for later
analysis by another message flow or application.

• Large Messaging
This is based on the scenario of end-of-day processing of sales data. Messages
representing sales for the day are batched together for transmission to the IT centre.
On receipt at the IT centre the batched messages are split back out into their
constituent parts for subsequent processing.

• Message Routing
This shows how a message flow can be used to route messages to different
WebSphere MQ queues based on data stored in a database table. This is a
commonly used scenario which is applicable to many different industries and
applications.

• SWIFT Message Parse
This demonstrates the use of WebSphere Message Broker to read and parse a
SWIFT MT103 message for subsequent processing.

• XSLT
This shows how a message flow can be used to transform an XML message to
another form of XML message, according to the rules provided by an XSL (eXtensible
Stylesheet Language) stylesheet.

• XMLNSC Validation
The XMLNSC Validation sample demonstrates how WebSphere Message Broker's
XMLNSC parser can validate XML messages against a schema.

Additional Information
This section contains links to information about WebSphere Message Broker and associated
products.

The Web Resources section in the development toolkit of WebSphere Message Broker V6.1
contains links to many additional pieces of information on topics such as Education, Technical
Resources and SupportPacs. The Web resources section can be accessed by selecting Web
Resources from the Help drop down on the development toolkit menu bar.

For additional suggestions consider the following:

• See the announcement letters for

25/04/2008 Version 1.0 Page 14 of 87

o IBM WebSphere Message Broker V6.1 which is available at
http://www.ibm.com/software/integration/wbimessagebroker/V6

o IBM WebSphere Message Broker V6.1 for z/OS which is available at
http://www.ibm.com/software/integration/wbimessagebroker/V6/zos.html

• IBM WebSphere MQ SupportPacs provide you with a wide range of downloadable
code and documentation that complements the WebSphere MQ family of products.
Additional performance reports are also available. These are available at
http://www.ibm.com/software/integration/support/supportpacs.

• For more information about WebSphere Message Broker V6.1, go to the WebSphere
Message Broker Web site. Product documentation is also available. This is available
at http:/www.ibm.com/software/integration/wbimessagebroker.

• For more information about WebSphere MQ V6, go to the WebSphere MQ Web site.
Product documentation is also available. This is available at
http://www.ibm.com/software/integration/wmq .

• For more information about business integration software from IBM go to WebSphere
Business Integration Web site. This is available at
http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/businessint .

• Get the latest WebSphere Message Broker technical resources at the WebSphere
Message Broker zone. This is available at
http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html

• The MQ,JMS and HTTP transport testing which was run for this report used a tool
called the Performance Harness for JMS to generate and consume messages. The
version used was the current development version due to be released later this year.
The tool is useful as a simple way to send and receive messages. The
documentation for the tool contains examples of how to run it to send/receive
messages. More information on the currently available version can be found here:
http://www.alphaworks.ibm.com/tech/perfharness?open&S_TACT=105AGX21&S_C
MP=AWRSS.

25/04/2008 Version 1.0 Page 15 of 87

Feedback
This report and other tools that are produced by the performance group are produced in order
to help you understand the performance characteristics of WebSphere Message Broker and
to assist you with sizing.

It is important that the reports and tools are effective in what they do and it is very useful to
have feedback on the content and style of the information which is produced. Your
comments, both positive and negative, are therefore welcome.

Your answers to the following questions are particularly interesting:

• What are your most common performance questions?
• Do the reports provide what is needed?
• Is there any other performance information which is required to help you do your job?
• Would you like to see any other aspects of WMB performance discussed?

Please supply feedback to us at the following e-mail addresses:

Tim Dunn (dunnt@uk.ibm.com)
Rich Bicheno (rich_bicheno@uk.ibm.com)
Ian Hurworth (hurworti@uk.ibm.com)

or use the feedback facility on the SupportPac web page where you obtained this report.

25/04/2008 Version 1.0 Page 16 of 87

Part II

This part contains the description and results of a series of tests which have been run in order
to identify the processing costs of the different functions which are provided with WebSphere
Message Broker.

It contains the following sections:

• Processing Profiles which describes the tests and shows the results obtained when a
single copy of the message flow was run.

• Resource Requirements which provides a recommended minimum specification

machine on which to install the product as well as some guidance on virtual memory
use for execution groups running a variety of message flows.

• Tuning which describes the changes made to the default settings for WebSphere

Message Broker V6.1 and WebSphere MQ in order to obtain the results detailed in
this report.

25/04/2008 Version 1.0 Page 17 of 87

Processing Profiles
This section contains the results of a series of micro tests which illustrate the costs of
performing different types of processing using WebSphere Message Broker such as message
parsing, message streaming, use of Filter nodes etc. These tests are not intended to
represent applications. They are an illustration of the processing costs of specific functions.

The test results were all run using the same methodology. This was to run a single copy of
the message flow (unless specified otherwise) to maximum CPU utilisation and to observe the
message rate obtained. From this a CPU cost per message was calculated. This is
presented in the results table for each measurement.

When comparing the costs of different functions it is recommended to compare them on the
basis of CPU cost per message rather than message rate.

There are many comparisons which can be made using the data in this section which will give
some insight into the relative costs of different implementations such as what is the relative
cost of ESQL and XSLT to process the same message.

The data in this section will allow you to make a comparison on the basis of CPU costs.
Other factors such as the potential for code re-use and the operational considerations of
using a particular technology are not discussed.

Messages Used in Processing
For the majority of tests the message content was common. Different formats (in XML, CWF,
TDS) of a common input message were used. The output message varied dependent on the
test case. The messages are described in the section Appendix C – Test Messages.

Note that the message size quoted is based on the size of the data in XML format hence
when the same data is represented at CWF or TDS format the actual size may be significantly
less. The sizes for the different formats are shown in the table below:

Msg Size in XML Msg Size in TDS Msg Size in CWF

4K 3K 1K

16K 8K 4K

64K 32K 16K

256K 125K 61K

1024K 498K 241K

4096K 1992K 962K

8192K 3981K 1923K

Results Presentation
Each of the tests are described below and accompanied by a table of data which has a format
such as this:

Msg Size Persistent
Message

Rate
(Msgs/sec)

% CPU Busy CPU ms/msg

4K No

16K No

64K No

256K No

1024K No

4096K No

8192K No

25/04/2008 Version 1.0 Page 18 of 87

4K Yes

16K Yes

64K Yes

256K Yes

1024K Yes

4096K Yes

8192K Yes

The data in the columns is as follows:

Msg Size: records the approximate size of the message used as input to the test. This is the
size of the message payload and does not include the size of any message header. For the
Message Repository Manager (MRM) tests which use CWF and TDS message formats the
input message will be smaller. This is due to the differences in the way in which data is
formatted. In these cases the input message will still contain the same amount of information
but it will be the CWF or TDS representation of the generic XML representation of the same
data. Most test cases used messages of 4K, 16K, 64K, 256K, 1mb, 4mb and 8mb. In some
cases a more limited range of message sizes was run where the test was not suitable for the
whole range of message sizes.

Persistent: Indicates whether the messages used in the test were persistent or not.

Message Rate: The number of round trips or message flow invocations per second.

% CPU Busy: System busy CPU percentage on the server machine. This includes the CPU
used by all processes (WebSphere Message Broker, WebSphere MQ queue manager,
database manager etc) on the system under test. The rate is expressed as a percentage
utilisation of all processors on the machine.

CPU ms/msg: Overall CPU cost per message, expressed as CPU milliseconds per message.
The value is obtained using the calculation:

 ((Number of CPUs * 1000) * (%CPU/100)) / Message Rate.

This cost includes WebSphere Message Broker, WebSphere MQ, DB2, operating system
costs etc. The CPU ms/msg figures reported are specific to the machine on which they were
obtained and if projections of message processing capacity are to be made for other
machines a suitable adjustment must be made in the costs to allow for differences in the
capacity of the two systems.

Response Times
Response time data for the message flow execution is not reported. The tests are configured
to maximise message throughput and minimise CPU costs. As such tests always have a
number of messages waiting on the input node of the message flow so that there is a
message ready to be processed immediately after processing of the current message has
completed. This means that the processing of each message involves queuing time at the
input node. Because of this it is not meaningful to report message processing times as
observed by the client as it will not reflect the true execution time in the message flow.

It is possible to estimate the elapsed time within a message flow in milliseconds from the
results of these tests by dividing 1000 (representing the number of milliseconds in 1 second)
by the message rate for the test as only a single copy of the message flow was run.

For example let us suppose that a test achieved a message rate of 2000 per second. The
message flow average execution time is 1000 / 2000 = 0.5ms. For a message rate of 200 per
second the average execution time is 1000/200 = 5ms.

25/04/2008 Version 1.0 Page 19 of 87

These times are an estimate of the execution time in the message flow and as such represent
the elapsed time between the message being read from the input queue and the result being
placed on the output queue.

If messages are generated or consumed by remote clients an allowance needs to be made
for network delays.

The test descriptions and results follow.

25/04/2008 Version 1.0 Page 20 of 87

Minimal Processing
The test in this section illustrates some of the simplest processing which can be performed
with WebSphere Message Broker. As such it illustrates the smallest processing cost that you
could expect for a message flow. This is not typical of the majority of implementations of
Message Broker though. The data is provided for reference purposes only to help you
understand the maximum rate that could be expected for one copy of the message flow.

Typically the processing within a message flow involves message parsing, processing logic
and message serialisation. Under these circumstances the CPU processing costs can
increase significantly and as such the message rate obtained for given amount of CPU will be
lower than for the very simple type of flow presented in this section.

Setting of the MQ Message Headers

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output messages are processed using the XMLNSC domain.

Within the compute node the message headers for the outgoing message are created using
ESQL. To minimise processing costs only the CodedCharSetId and Encoding fields in the
MQMD header are set. The message body is ignored and therefore not used in the output
message.

This test identifies the cost of setting the message header only and creating an output
message with no payload.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 1801.14 61.21 0.69

1K Yes 754.64 79.94 2.12

25/04/2008 Version 1.0 Page 21 of 87

Message Parsing and Writing
The tests in this section illustrate the cost of parsing input messages and writing output
messages for different message formats.

Parsing a Message in the MRM Domain
The tests in this section illustrate the CPU processing costs of parsing different message
formats in the MRM domain.

Notes: In these reports we are only quoting numbers for TDS Fixed length format. As can be
seen from the WMB V6 performance reports message throughput varied little regardless of
format hence we have only quoted this one. If more detail on the differences between the
different TDS formats is required consult the V6 performance report.

In addition the performance data for MRM XML has been removed. In WMB V6.1 the
XMLNSC parser can now perform XML validation, removing any dependency on MRM XML.
Although the MRM XML parser remains in place for compatibility it is deprecated. The
XMLNSC is the parser of choice for XML messages. Accordingly only performance data for
this XML parser is presented in this report.

Parsing a Tagged Delimited String, Fixed Length Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Fixed Length, Tagged Delimited String input
message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 385.22 66.76 3.47

16K No 130.60 58.97 9.03

64K No 35.91 54.83 30.54

256K No 9.09 56.15 123.59

1024K No 2.23 54.43 488.13

4096K No 0.57 56.21 1972.16

8192K No 0.28 53.39 3813.81

4K Yes 280.42 61.94 4.42

16K Yes 108.14 59.02 10.92

64K Yes 33.24 54.15 32.58

256K Yes 8.81 70.77 160.65

1024K Yes 2.23 54.43 488.13

4096K Yes 0.57 54.25 1903.51

8192K Yes 0.27 51.84 3839.75

25/04/2008 Version 1.0 Page 22 of 87

Parsing a Custom Wire Format Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the CWF domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Custom Wire Format input message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 380.19 69.02 3.63

16K No 91.57 58.05 12.68

64K No 23.26 53.79 46.26

256K No 5.81 53.56 184.37

1024K No 2.33 53.62 460.26

4096K No 0.59 53.79 1823.50

8192K No 0.29 55.57 3832.64

4K Yes 283.73 65.69 4.63

16K Yes 73.91 60.75 16.44

64K Yes 21.92 55.34 50.50

256K Yes 5.68 54.71 192.65

1024K Yes 2.33 53.10 455.82

4096K Yes 0.58 54.94 1894.48

8192K Yes 0.29 55.00 3793.10

Parsing a Comma Separated Value Input Message using Data Patterns

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the entire incoming message is copied to the outgoing message. In
addition the format of the outgoing message is set to XML. This causes a full parse of the
incoming message using the Tagged Delimited String Parser and a full write of the outgoing
message using the XMLNSC writer.

This test identifies the cost of converting an incoming Comma Separated Value input
message using the Data Pattern function with the Tagged Delimited String Parser, to an
outgoing Generic XML Message.

25/04/2008 Version 1.0 Page 23 of 87

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 281.99 62.18 4.41

1K Yes 218.06 57.86 5.31

Parsing a SWIFT 543 Input Message using the Tagged Delimited String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a SWIFT MT543 message using the Tagged Delimited
String format. A single implementation of this message was used which was approximately
7K in size.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

7K No 51.17 55.74 21.79

7K Yes 48.76 56.09 23.01

Parsing and Writing a SWIFT 543 Input Message using the Tagged Delimited

String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the TDS domain.

Within the compute node the Envelope within the incoming SWIFT Message is copied over to
the outgoing message. This causes a full parse of the incoming message and a full
serialisation of the outgoing message.

This test identifies the cost of parsing a SWIFT MT543 message and serializing it again using
the Tagged Delimited String format. A single implementation of this message was used
which was approximately 7K in size.

25/04/2008 Version 1.0 Page 24 of 87

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

7K No 16.82 53.56 63.67

7K Yes 16.26 54.02 66.46

Parsing an HL7 Input Message using the Tagged Delimited String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing an HL7 input message using the Tagged Delimited
String format.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 24.89 56.04 45.03

1K Yes 24.08 53.68 44.58

Parsing and Writing a HL7 Input Message using the Tagged Delimited String

Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the TDS domain.

Within the compute node the Envelope within the incoming HL7 Message is copied over to
the outgoing message. This causes a full parse of the incoming message and a full
serialisation of the outgoing message.

This test identifies the cost of parsing a HL7 message and serializing it again using the
Tagged Delimited String format. A single implementation of this message was used which
was approximately 1K in size.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 8.02 53.50 133.43

1K Yes 7.84 52.53 133.95

25/04/2008 Version 1.0 Page 25 of 87

Writing a Message in the MRM Domain
The tests in this section illustrate the CPU processing costs of creating an output message
with different formats in the MRM domain. This is the processing associated with taking a
message tree in OutputRoot and flattening it to create a bitstream which is the output
message.

Writing a Tagged Delimited String, Fixed Length Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the XMLNSC domain. The output message is
processed using the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Fixed Length, Tagged Delimited String outgoing message. This causes a full parse of the
incoming message payload which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out a Fixed
Length, Tagged Delimited String output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 223.88 62.24 5.56

16K No 65.62 56.26 17.15

64K No 16.93 54.93 64.88

256K No 4.24 54.83 258.43

1024K No 1.07 55.40 1035.58

4096K No 0.27 54.19 4014.32

8192K No 0.13 53.80 8276.41

4K Yes 166.87 60.80 7.29

16K Yes 52.08 53.74 20.64

64K Yes 15.14 57.76 76.28

256K Yes 4.08 56.95 279.18

1024K Yes 0.94 52.18 1106.36

4096K Yes 0.84 51.67 1235.14

8192K Yes 0.21 51.44 4898.73

Writing a Custom Wire Format Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the XMLNSC domain. The output message is
processed using the CWF domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Custom Wire Format outgoing message. This causes a full parse of the incoming message
payload which is then written as the payload of the output message.

25/04/2008 Version 1.0 Page 26 of 87

This test identifies the cost of parsing a Generic XML message and writing out a Custom Wire
Format output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 259.11 66.21 5.11

16K No 74.63 56.78 15.22

64K No 19.07 55.34 58.05

256K No 4.73 52.87 223.57

1024K No 1.20 55.63 927.17

4096K No 0.29 51.90 3579.08

8192K No 0.13 53.10 8169.74

4K Yes 194.85 65.40 6.71

16K Yes 56.49 68.98 24.42

64K Yes 18.44 57.18 62.01

256K Yes 4.56 54.20 237.88

1024K Yes 1.04 48.91 937.57

4096K Yes 0.26 46.84 3649.87

8192K Yes 0.12 49.02 8170.56

Parsing Messages in the XMLNSC Domain

The tests in this section illustrate the CPU processing costs of parsing different message
formats in the XMLNSC domain.

Parsing an XML Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a XML input message. As there is no message body on
the output message there are no writing costs.

25/04/2008 Version 1.0 Page 27 of 87

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 803.81 79.50 1.98

16K No 288.88 67.67 4.68

64K No 77.67 58.56 15.08

256K No 19.71 56.95 57.79

1024K No 4.97 59.71 240.46

4096K No 1.03 45.92 891.65

8192K No 0.39 42.47 2177.95

4K Yes 336.96 64.96 3.86

16K Yes 204.31 61.38 6.01

64K Yes 71.12 61.13 17.19

256K Yes 18.98 60.06 63.28

1024K Yes 4.89 59.23 242.24

4096K Yes 0.76 38.87 1027.49

8192K Yes 0.28 36.98 2641.19

Writing a Message in the XMLNSC Domain
The test in this section illustrates the CPU processing costs of using the XMLNSC domain to
create an output message. This is the processing associated with taking a message tree in
OutputRoot and flattening it to create a bitstream which is the output message.

Writing a Generic XMLNSC Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the entire Message from the incoming message is copied over to
the outgoing message. In addition the last element in the incoming message is modified. This
causes a full parse of the incoming message which is then written as the payload of the
output message.

This test identifies the cost of parsing a Generic XML input message and writing a modified
XML output message.

25/04/2008 Version 1.0 Page 28 of 87

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 594.99 74.20 2.49

16K No 189.00 62.53 6.62

64K No 49.22 57.01 23.16

256K No 12.28 55.29 90.07

1024K No 3.08 55.57 360.87

4096K No 0.68 49.19 1446.86

8192K No 0.29 46.03 3174.71

4K Yes 329.63 62.12 3.77

16K Yes 127.51 55.86 8.76

64K Yes 41.26 58.05 28.13

256K Yes 11.11 56.78 102.18

1024K Yes 2.86 54.43 381.05

4096K Yes 0.53 45.63 1721.89

8192K Yes 0.22 40.38 3615.82

Validation in the XMLNSC Domain
The test in this section illustrates the CPU processing costs of using the XMLNSC domain to
validate an xml message. This is the processing associated with taking a message and
validating it against an associated XML Schema.

Validating an XML Message on Input

This test consists of MQ Input Node -> MQ Output Node.

The input node is set to validate the message contents and value. This causes a full parse
and validation of the incoming message which is then written unmodified as the payload of
the output message.

This test identifies the cost of validating a XML input message in the input node and writing an
unmodified XML output message.

The results of running this test are given in the table below.

25/04/2008 Version 1.0 Page 29 of 87

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 842.91 84.27 2.00

16K No 278.05 66.21 4.76

64K No 68.64 62.07 18.09

256K No 17.15 57.13 66.63

1024K No 4.34 55.80 256.96

4096K No 0.94 50.46 1069.82

8192K No 0.39 49.54 2540.51

4K Yes 323.54 60.92 3.77

16K Yes 169.19 61.43 7.26

64K Yes 54.00 57.81 21.41

256K Yes 14.94 60.02 80.33

1024K Yes 3.88 55.69 287.31

4096K Yes 0.64 38.24 1188.81

8192K Yes 0.22 31.19 2793.43

Validating an XML Message mid flow

This test consists of MQ Input Node -> Validate Node -> MQ Output Node.

The validate node is set to validate the message contents and value. This causes a full parse
and validation of the incoming message which is then written unmodified as the payload of
the output message.

This test identifies the cost of validating a XML input message using the validate node to do
this mid flow and writing an unmodified XML output message.

The results of running this test are given in the table below.

25/04/2008 Version 1.0 Page 30 of 87

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 497.47 75.17 3.02

16K No 150.67 60.80 8.07

64K No 36.86 58.85 31.93

256K No 9.08 56.03 123.42

1024K No 2.28 56.92 499.27

4096K No 0.50 54.08 2163.20

8192K No 0.23 59.52 5175.36

4K Yes 289.28 63.68 4.40

16K Yes 98.51 53.39 10.84

64K Yes 32.52 59.29 36.46

256K Yes 8.36 57.35 137.25

1024K Yes 2.14 54.60 509.49

4096K Yes 0.41 45.65 2226.67

8192K Yes 0.18 43.22 4801.85

Validating an XML Message on Output

This test consists of MQ Input Node -> MQ Output Node.

The output node is set to validate the message contents and value. This causes a full parse
and validation of the incoming message which is then written unmodified as the payload of
the output message.

This test identifies the cost of validating a XML input message using the MQ Output Node on
output from the flow and writing an unmodified XML output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 374.77 67.76 3.62

16K No 110.78 58.68 10.59

64K No 27.18 57.03 41.97

256K No 6.70 55.23 164.87

1024K No 1.69 56.66 670.57

4096K No 0.39 53.74 2755.73

8192K No 0.17 49.94 5875.69

4K Yes 235.96 57.76 4.90

16K Yes 91.85 56.03 12.20

64K Yes 24.62 57.82 46.96

256K Yes 6.30 55.75 176.97

1024K Yes 1.61 55.00 683.23

4096K Yes 0.33 51.17 3101.41

25/04/2008 Version 1.0 Page 31 of 87

8192K Yes 0.16 40.80 5208.94

Opaque Parsing in the XMLNSC Domain

The test in this section illustrates the CPU processing costs of using the XMLNSC domain to
opaquely parse an XML message. For an explanation of opaque parsing please see the
product documentation.

Filtering on the last element of an XML Message using Opaque Parsing on the

XML Body

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

The MQ Input node is set to parse the repeating SalesList Elements of the XML message
opaquely. Within the filter node the last element of the incoming message is examined, this
last element is outside of a sales list element. The result is always set to be true and thus the
message is propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the end of a message using the
XMLNSC parser with opaque parsing. Almost the entire body of the message will be
opaquely parsed.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 1670.27 100 1.2

16K No 926.40 91.72 1.98

64K No 287.80 76.95 5.35

256K No 75.40 73.82 19.58

1024K No 18.47 71.15 77.05

4096K No 2.53 93.28 736.39

8192K No 1.58 50.55 639.87

4K Yes 494.81 91.46 3.70

16K Yes 316.02 93.66 5.93

64K Yes 147.35 92.30 12.53

256K Yes 43.64 94.83 43.46

1024K Yes 10.04 56.57 112.73

4096K Yes 1.30 32.18 495.13

8192K Yes 0.40 27.55 1389.24

25/04/2008 Version 1.0 Page 32 of 87

External Resources
The tests in this section illustrate the processing cost of accessing resources such as a
database or external procedure.

Accessing a Database from a Message Flow
The tests in this section illustrate the processing cost of performing operations on a DB2
database.

Reading from a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the XMLNSC domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a SELECT is performed to obtain a piece of data from
the Database. This data is used to validate an element in the input message.
The results are not cached in the flow, so a lookup is performed for each message. The
volume of data in the database was small and so this represents the best case.

This test identifies the cost of performing a Database SELECT.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 611.17 74.23 2.43

16K No 592.20 77.38 2.61

64K No 527.56 86.69 3.29

256K No 321.19 98.86 6.16

1024K No 76.48 63.94 16.72

4096K No 17.59 63.64 72.36

8192K No 8.59 61.15 142.37

4K Yes 227.92 54.95 4.82

16K Yes 228.85 55.52 4.85

64K Yes 187.55 56.32 6.01

256K Yes 109.88 61.72 11.24

1024K Yes 39.75 74.08 37.28

4096K Yes 8.07 44.63 110.66

8192K Yes 0.87 14.60 336.92

Inserting into a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the XMLNSC domain.

25/04/2008 Version 1.0 Page 33 of 87

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition an INSERT is performed to populate the database with a
piece of data. This data is obtained from an element in the input message.

This test identifies the cost of performing a Database INSERT.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 386.41 47.01 2.43

16K No 365.75 51.15 2.80

64K No 359.39 63.19 3.52

256K No 270.84 86.75 6.41

1024K No 88 69 15.68

4096K Yes 18.7 62 66.31

8192K No 0.9 18 400

4K Yes 169.29 43.79 5.17

16K Yes 160.57 39.63 4.94

64K Yes 142.64 47.22 6.62

256K Yes 93.46 49.19 10.53

1024K Yes 37.62 69.05 36.71

4096K Yes 6.62 36.82 111.17

8192K Yes 0.90 19.88 441.85

Updating a row in a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition an UPDATE is performed to update a piece of data in
the database with a new value. This value is obtained from an element in the input message.

This test identifies the cost of performing a Database UPDATE.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 582.18 74.89 2.57

16K No 580.46 76.49 2.64

64K No 511.87 82.81 3.24

256K No 315.22 99.97 6.34

1024K No 63.12 51.78 16.41

4096K No 12.13 34.46 56.80

8192K No 6.86 42.88 125.07

4K Yes 228.97 56.09 4.90

16K Yes 229.07 57.30 5.00

64K Yes 182.79 55.63 6.09

25/04/2008 Version 1.0 Page 34 of 87

256K Yes 109.76 59.52 10.85

1024K Yes 39.08 69.08 35.35

4096K Yes 7.23 46.15 127.66

8192K Yes 2.29 37.93 331.27

Calling External Procedures
The tests in this section illustrate the processing cost of invoking an external procedure such
as a Java class or database stored procedure with different parameters.
The following tests are shown as examples of these kinds of processing with WMB V6.1 but
the cost will vary substantially with the number of parameters passed into the external
procedure. The WMB V6.0 performance reports contains more detailed analysis on the cost
of different parameters and can be referred to if required.

Calling an External Java Procedure with One Integer Input Parameter

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. A call is made to an external Java procedure. The procedure
receives one Integer parameter and passes back zero parameters returning immediately.

This test identifies the cost of calling a Java procedure with one Integer parameter.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 1554.023 99.023 1.27

1K Yes 604.367 62.703 2.05

Sending and Receiving Messages over different
Transports

The tests in this section illustrate the processing cost of receiving and sending data over
various transports supported by WebSphere Message Broker.

MQ Nodes

The tests in this section illustrate the processing cost of reading and writing MQ Messages.

Reading and writing to an MQ Queue

This test consists of MQ Input Node -> MQ Output Node.

This test shows the overhead of using message broker to move messages from one MQ
Queue to another. Also as many of the other tests included in this report use MQ as the
transport it can be used to determine how much of the processing incurred is down to using
MQ and how much is the routing/transformation or parsing cost.
An MQ Message is placed on the Input Queue where the incoming message is then copied
over to the Output Queue. The message contents are treated as a BLOB and are not
modified or parsed in anyway.

This test identifies the cost of reading and writing a BLOB message with MQ as the transport.

25/04/2008 Version 1.0 Page 35 of 87

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 1981.58 97.18 0.98

16K No 1337.74 82.27 1.23

64K No 386.85 45.11 2.33

256K No 98.51 35.92 7.29

1024K No 23.60 35.26 29.88

4096K No 5.76 28.91 100.43

8192K No 2.62 31.27 238.37

4K Yes 610.10 67.13 2.20

16K Yes 440.32 57.36 2.61

64K Yes 237.35 57.39 4.84

256K Yes 80.11 61.03 15.24

1024K Yes 18.62 55.29 59.38

4096K Yes 1.59 27.62 347.46

8192K Yes 0.51 26.08 1016.10

HTTP Nodes

The tests in this section illustrate the processing cost of reading and writing HTTP Messages.

Reading and Writing messages over the HTTP Transport

This test consists of HTTP Input Node -> HTTP Reply Node.

This test shows the overhead of using message broker to receive and send messages over
the HTTP transport. An HTTP bytes Message is written to the broker over HTTP. The
incoming message is then written out unmodified back to the client. The message contents
are treated as a BLOB and are not modified or parsed in anyway. Note that persistent HTTP
connections were used in this test (see Tuning Section for details)

This test identifies the cost of reading and writing a blob message with HTTP.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 1535.96 93.85 1.22

16K No 927.94 98.56 2.12

64K No 224.46 80.26 7.15

256K No 49.11 55.53 22.61

1024K No 3.75 14.94 79.75

Making an HTTP Request

This test consists of MQ Input Node -> HTTP Request Node -> MQ Output Node.

25/04/2008 Version 1.0 Page 36 of 87

This test shows the overhead of making a HTTP Request from within a message flow running
in Message Broker. An MQ Message is written to the input queue. The contents of this
message are then sent out over HTTP to an empty backend HTTP flow (hosted on the same
broker for convenience). The message is sent back to the flow unmodified over HTTP and
put to an MQ Queue. The message contents are treated as a BLOB and are not modified or
parsed in anyway.

This test identifies the cost of making a HTTP Request. Note that as the request invokes
another flow on the same broker the cost detailed also includes the processing cost of the
HTTP Input -> HTTP Reply message flow.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 161.54 45.98 5.69

16K No 93.33 52.76 11.31

64K No 29.90 65.83 44.03

256K No 8.58 60.97 142.18

1024K No 2.15 61.97 577.33

4096K No 0.44 39.66 1789.02

8192K No 0.20 40.12 4011.67

File Nodes

The tests in this section illustrate the processing cost of reading and writing Files with the new
File Nodes.

Note for File Output Node tests it was necessary to insert an MQ Output node after the File
Output Node and we measured the rate of messages being drained from the MQ Output
node. This was necessary to integrate the test with our automation infrastructure and to avoid
contamination of results by having a separate application running locally on the Server
counting files and impacting file system operation.

For File Input Node tests a perl script was run locally to keep the input folder topped up to
ensure there was always files to be processed by the broker. Hence these results will include
the overhead of this perl script in the CPU results. In most cases this was at most 5% CPU.

File to File

Reading and Writing Large Files with XML Parsed Record Sequence Records

This test consists of File Input Node -> Compute Node -> File Output Node -> Compute Node
->MQ Output Node.

For this test we had multiple large input files (each was ~100MB) in the input folder. Each file
contained records of the appropriate size. For example for the 4K test the 100MB file
contained 256000 records. Each record was a valid XML document.

The output file was closed when it reached 1GB of data regardless of record size. This was
achieved by using the first compute node to count the number of records read and to check
the record size, when 1GB of data was written it sent a message to the Finish File terminal of
the File Output Node.

Message Domain is set to XMLNSC. The File Input Node is configured to set the Record
Detection to Parsed Record Sequence using the XMLNSC parser. Input files are deleted once

25/04/2008 Version 1.0 Page 37 of 87

processed. The File Output Node is configured to set the Record Definition to unmodified.
For every record written an MQ message is propagated to the Compute node, the headers
and body are not copied and an empty message is sent to the MQ Output node. The queue
is drained and the rate is reported. This rate represents the number of records per second
written to the output file.

This test identifies the cost of reading records in from files using the XMLNSC parser to
delimit the records and writing records to another large file.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 350.42 100 5.71

4K No 186.77 93.79 10.04

16K No 71.96 85.92 23.88

64K No 34.40 99.89 58.07

256K No 8.98 99.94 222.67

1024K No 2.40 97.93 816.11

4096K No 0.61 99.14 3250.38

8192K No 0.28 99.94 7138.81

MQ to File

Writing MQ Messages out as Whole Files

This test consists of MQ Input Node -> File Output Node -> Compute Node ->MQ Output
Node.

Message Domain is set to BLOB on the MQ Input Node. The File Output Node is configured
to set the Record Definition to Whole File. This means that we write a whole file for every MQ
message received. The contents of the MQ message are written as the contents of the file.
For every file written an MQ message is propagated to the Compute node, the headers and
body are not copied and an empty message is sent to the MQ Output node. The queue is
drained and the rate is reported, this rate represents the number of files per second written to
the output folder.

This test identifies the cost of reading MQ messages and writing each message as a whole
File.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 332.23 89.54 5.39

4K No 307.86 89.90 5.84

16K No 286.67 93.45 6.52

64K No 217.12 95.92 8.84

256K No 93.70 95.00 20.28

1024K No 23.62 72.97 61.78

4096K No 5.69 67.70 238.11

8192K No 2.57 68.38 532.83

25/04/2008 Version 1.0 Page 38 of 87

Writing MQ Messages as Delimited Records in Large Files

This test consists of MQ Input Node -> Compute Node -> File Output Node -> Compute Node
->MQ Output Node.

The output file was closed when it reached 1GB of data regardless of record size. This was
achieved by using the first compute node to count the number of MQ messages received and
to check the message size, when 1GB of data was written it sent a message to the Finish File
terminal of the File Output Node.

Message Domain is set to BLOB on the MQ Input node. The File Output Node is configured
to set the Record Definition to Delimited data and the Delimiter is set to the Broker System
Line End. For every record written to the file an MQ message is propagated to the Compute
node, the headers and body are not copied and an empty message is sent to the MQ Output
node. The queue is drained and the rate is reported this rate represents the number of
records per second written to the output file.

This test identifies the cost of reading MQ Messages and writing each one as a record in a
large file and delimiting the record with a line end character.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 650.92 76.67 2.36

4K No 615.09 72.22 2.35

16K No 514.60 68.56 2.66

64K No 348.18 61.29 3.52

256K No 109.19 60.63 11.11

1024K No 42.59 49.54 23.27

4096K No 4.50 32.37 143.87

8192K No 1.01 23.05 454.87

Writing MQ Messages as Records in Large Files

This test consists of MQ Input Node -> Compute Node -> File Output Node -> Compute Node
->MQ Output Node.

The output file was closed when it reached 1GB of data regardless of record size. This was
achieved by using the first compute node to count the number of records read and to check
the record size, when 1GB of data was written it sent a message to the Finish File terminal of
the File Output Node.

Message Domain is set to BLOB on the MQ Input node. The File Output Node is configured
to set the Record Definition to Unmodified data. For every record written to the file an MQ
message is propagated to the last Compute node, the headers and body are not copied and
an empty message is sent to the MQ Output node. The queue is drained and the rate is
reported, this rate represents the number of records per second written to the output file.

This test identifies the cost of reading MQ Messages and writing each one as a record in a
large file without any delimiter.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

25/04/2008 Version 1.0 Page 39 of 87

1K No 643.35 79.49 2.47

4K No 628.23 68.39 2.18

16K No 546.71 72.51 2.65

64K No 349.00 60.63 3.47

256K No 117.27 61.06 10.41

1024K No 43.54 49.42 22.70

4096K No 4.28 25.17 117.63

8192K No 1.01 18.80 372.21

File to MQ

Reading Large Files with XML Parsed Record Sequence Records and Writing as

MQ Messages

This test consists of File Input Node -> MQ Output Node

For this test we had multiple large input files (each was ~100MB) in the input folder. Each file
contained records of the appropriate size. For example for the 4K test the 100MB file
contained 256000 records. Each record was a valid XML document.

Message Domain is set to XMLNSC. The File Input Node is configured to set the Record
Detection to Parsed Record Sequence using the XMLNSC parser. Input files are deleted once
processed. The MQ Output node writes out the record contents as an MQ Message. The
output queue was drained and the message rate reported, this represents the number of
records per second processed.

This test identifies the cost of reading records from a large file using the XMLNSC parser to
delimit the records and writing records as MQ Messages.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 651.51 98.95 3.04

4K No 265.95 92.14 6.93

16K No 82.01 85.11 20.76

64K No 35.71 91.73 51.37

256K No 9.92 89.54 180.47

1024K No 2.49 93.79 753.33

4096K No 0.63 95.63 3035.87

8192K No 0.29 99.54 6864.83

WebServices (SOAP Nodes)

The tests in this section illustrate the processing cost of receiving, sending and making
requests over the SOAP transport. The SOAP nodes are new for WMB V6.1 and make
development of SOAP over HTTP flows much easier. The SOAP nodes handle the
complexities of the SOAP format but this is at the cost of a runtime performance overhead.

Receiving and sending messages over the SOAP transport

25/04/2008 Version 1.0 Page 40 of 87

This test consists of SOAP Input Node -> Compute Node -> SOAP Reply Node.

The message flow is acting as a Web service provider. A SOAP message is received by the
broker via the SOAP Input Node a Compute Node then copies the SOAP request message
across to a SOAP response message which is then sent via the SOAP Reply Node.

Note that persistent HTTP connections were used in this test (see Tuning Section for details).

This test identifies the cost of receiving and sending a SOAP message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 537.99 71.84 2.67

4K No 240.90 57.87 4.80

8K No 134.56 56.15 8.35

16K No 72.08 58.68 16.28

64K No 18.82 57.07 60.65

256K No 4.29 52.18 243.28

1024K No 1.03 52.53 1019.94

Receiving and sending messages over the SOAP transport with Validation

enabled

This test consists of SOAP Input Node -> Compute Node -> SOAP Reply Node.

The SOAP Input and SOAP Reply nodes are used in a message flow which acts as a Web
service provider. The SOAP Input node is configured to enable validation (“Content and
value”; SOAP Parser Options select “Build tree using XML schema data types”). A SOAP
message is received by the broker via the SOAP Input Node, a Compute Node then copies
the SOAP request message across to a SOAP response message which is then sent via the
SOAP Reply Node.

Note that persistent HTTP connections were used in this test (see Tuning Section for details).

This test identifies the cost of receiving and sending a SOAP message where the message is
validated.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 365.67 44.38 2.43

4K No 188.56 57.70 6.12

8K No 103.16 58.16 11.28

16K No 54.35 55.86 20.56

64K No 14.12 56.32 79.75

256K No 3.29 53.91 327.72

1024K No 0.78 51.61 1323.33

Receiving and sending messages over the SOAP transport using WS-Addressing

This test consists of SOAP Input Node -> Compute Node -> SOAP Reply Node.

25/04/2008 Version 1.0 Page 41 of 87

The SOAP Input and SOAP Reply nodes are used in a message flow which acts as a Web
service provider. The SOAP Input node is configured to enable WS-Addressing. A SOAP
message is received by the broker via the SOAP Input Node, a Compute Node then copies
the SOAP request message across to a SOAP response message which is then sent via the
SOAP Reply Node.

Note that persistent HTTP connections were used in this test (see Tuning Section for details).

This test identifies the cost of receiving and sending a SOAP message where WS-Addressing
is enabled.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 363.56 58.91 3.24

4K No 146.98 62.13 8.45

8K No 80.85 59.19 14.64

16K No 42.95 56.61 26.36

64K No 11.06 55.11 99.69

256K No 2.50 59.54 476.32

1024K No 0.62 56.15 1811.29

Receiving and sending messages over the SOAP transport with SwA attachments

This test consists of SOAP Input Node -> Compute Node -> SOAP Reply Node.

The SOAP Input and SOAP Reply nodes are used in a message flow which acts as a Web
service provider. A SOAP message with an attachment is received by the broker via the
SOAP Input Node, a Compute Node then copies the SOAP request message and the SOAP
attachment across to a SOAP response message which is then sent via the SOAP Reply
Node. The size of the SOAP message body remains constant (1K) and the size of the
attachment is increased.

Note that persistent HTTP connections were used in this test (see Tuning Section for details).

This test identifies the cost of receiving and sending a SOAP message with SwA attachments.

The results of running this test are given in the table below.

Attachment Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 333.81 59.48 3.56

4K No 301.97 61.07 4.04

8K No 265.91 63.07 4.74

16K No 219.23 63.18 5.76

64K No 110.07 66.79 12.14

256K No 17.57 39.62 45.09

1024K No 1.42 12.52 176.31

Making a SOAP Request with Validation enabled

This test consists of one (consumer) flow with

25/04/2008 Version 1.0 Page 42 of 87

SOAP Input Node -> Compute Node -> SOAP Request Node -> SOAP Reply Node

and a backend (provider) flow which consists of

HTTP Input Node -> HTTP Output Node.

The SOAP Request node is used in a message flow to call a Web Service synchronously.
This means the node sends a Web Service request and waits for the associated Web Service
response to be received before the message flow continues.

The SOAP Request node is configured to enable validation (“Content and value”; SOAP
Parser Options select “Build tree using XML schema data types”). A SOAP message is
received by the broker via the SOAP Input Node, a Compute Node then copies the SOAP
request message across to a SOAP response message, a SOAP Request Node then makes
a Web Service request, the response is then sent via the SOAP Reply Node. The request is
returned, unmodified, via a HTTP flow.

The web service that is invoked synchronously consists of an HTTP message flow, running in
the same broker, which returns the request data unmodified.

This test identifies the cost of making a Web Service request via the SOAP Request node
with validation enabled.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1K No 196.33 63.27 6.45

4K No 100.78 58.33 11.58

8K No 59.41 56.72 19.09

16K No 32.92 54.58 33.15

64K No 8.70 58.39 134.24

256K No 2.01 55.11 548.39

1024K No 0.51 59.48 2332.55

JMS Nodes
The tests in this section illustrate the processing cost of utilising JMS messages.

Receiving and sending JMS Messages

This test consists of JMSInput Node -> JMSOutput Node

The JMSInput Node acts as a JMS Receiver on an MQ JMS Queue.

The JMS Output Node acts as a JMS Sender and sends the same message to the same JMS
Provider.

For this test the JMS Provider was the WMQ Queue Manager on which the broker was
running.

This test uses a JMS Bytes message.

This test identifies the cost of receiving and sending a JMS Bytes Message with a JMS
Provider.

25/04/2008 Version 1.0 Page 43 of 87

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 499.26 80.00 3.20

16K No 441.19 80.17 3.63

64K No 159.83 90.46 11.32

256K No 82.46 60.80 14.75

1024K No 19.78 64.77 65.49

4096K No 5.16 57.01 221.12

8192K No 2.33 57.54 493.17

JMS to MQ Protocol conversion

This test consists of JMSInput Node -> JMSMQTransform Node -> MQOutput Node

The JMSInput Node acts as a JMS Receiver on an MQ JMS Queue.

For this test the JMS Provider was the WMQ Queue Manager on which the broker was
running.

This test uses a JMS Bytes message.
Within the JMSMQTransform node the tree built from the JMS input message is converted to
one suitable for the MQ transport.

An MQ output message is written.

This test identifies the cost of converting a JMS Message to an MQ Message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 529.18 78.27 2.96

16K No 464.73 79.31 3.41

64K No 215.43 88.97 8.26

256K No 95.02 86.06 18.11

1024K No 23.63 78.43 66.37

4096K No 5.70 65.17 228.67

8192K No 0.68 27.35 808.28

MQ to JMS Protocol conversion

This test consists of MQ Input Node -> MQJMSTransform Node -> JMSOutput Node

The JMS Output Node acts as a JMS Sender to an MQ JMS Queue.

For this test the JMS Provider was the WMQ Queue Manager on which the broker was
running.

Within the MQJMSTransform node the tree built from the MQ input message is converted to
one suitable for the JMS transport.

25/04/2008 Version 1.0 Page 44 of 87

A JMS Bytes output message is written.

This test identifies the cost of converting a MQ Message to a JMS Message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 746.89 85.34 2.29

16K No 662.56 88.91 2.68

64K No 294.01 84.59 5.75

256K No 97.10 57.13 11.77

1024K No 23.69 51.32 43.33

4096K No 5.69 42.00 147.70

8192K No 2.60 54.04 415.67

Routing and Transformation Logic

The tests in this section illustrate the processing cost of simple routing and transformation
logic using a variety of routing and transformation technologies (ESQL, JavaCompute node,
XML Transformation). A number of the tests are performed for each of the technologies thus
allowing a simple comparison of CPU processing costs to be made. In other cases a
comparison is only made within a technology such as looking at the efficiency of different
parsers whilst using ESQL.

These tests are not a definitive statement of the relative processing costs of the different
technologies. They are provided for illustrative purposes only. Message processing
performance will be affected by the complexity of the messages and processing to be
performed on the messages.

Using ESQL
The tests in this section illustrate the processing costs of using ESQL for different routing and
transformation operations. For more details on the impact of using specific ESQL functions
such as ROW or EVAL see the Message Broker V6.0 reports which cover these aspects of
ESQL in more detail.

Filter an Incoming Message Based on the First Element in the Message using the

XMLNSC Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the first element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the start of a message using the
XMLNSC parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 1861.75 99.14 1.07

16K No 1315.71 90.34 1.37

25/04/2008 Version 1.0 Page 45 of 87

64K No 380.89 47.76 2.51

256K No 98.45 35.23 7.16

1024K No 23.88 35.62 29.83

4096K No 5.69 33.53 117.86

8192K No 2.58 34.83 269.97

4K Yes 586.93 70.42 2.40

16K Yes 433.11 59.94 2.77

64K Yes 231.79 51.78 4.47

256K Yes 79.88 55.80 13.97

1024K Yes 18.67 55.48 59.44

4096K Yes 2.28 29.70 260.53

8192K Yes 0.45 27.32 1223.28

Filter an Incoming Message Based on the Last Element in the Message using the

XMLNSC Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the last element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the end of a message using the
XMLNSC parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 931.44 86.23 1.85

16K No 303.39 67.07 4.42

64K No 79.27 58.39 14.73

256K No 19.80 59.54 60.14

1024K No 4.92 59.48 241.80

4096K No 1.12 56.78 1010.92

8192K No 0.44 47.99 2164.96

4K Yes 356.23 57.64 3.24

16K Yes 182.35 57.76 6.33

64K Yes 61.51 60.21 19.58

256K Yes 17.09 59.08 69.14

1024K Yes 4.34 61.56 283.48

4096K Yes 0.76 43.64 1153.57

8192K Yes 0.23 41.95 3596.00

Computation on an Input Message using the XMLNSC Parser

25/04/2008 Version 1.0 Page 46 of 87

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is used to calculate the total of all items and prices within a
repeating structure which is in the input message. The totals along with a copy of the input
message are written out in the outgoing message.

This test identifies the cost of using ESQL to perform computation and message parsing
using the XMLNSC parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 354.46 67.87 3.83

16K No 96.88 57.47 11.87

64K No 24.08 56.32 46.78

256K No 5.74 57.01 198.53

1024K No 1.17 56.44 964.73

4K Yes 236.96 57.65 4.87

16K Yes 83.10 58.73 14.14

64K Yes 22.49 56.90 50.60

256K Yes 5.51 53.91 195.67

1024K Yes 1.13 54.02 956.17

Manipulation of an Input Message using the XMLNSC Parser

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is written to significantly change the structure of the incoming
message. The new structure is written as the output message.

This identifies the cost of using ESQL to perform message manipulation and message
parsing using the XMLNSC parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 302.60 64.10 4.24

16K No 82.21 57.01 13.87

64K No 19.71 54.88 55.68

256K No 4.10 53.45 260.73

1024K No 0.53 55.29 2086.29

4K Yes 210.42 57.41 5.46

16K Yes 72.18 56.72 15.72

64K Yes 18.70 56.09 59.99

256K Yes 3.98 54.31 272.91

1024K Yes 0.52 55.28 2126.28

25/04/2008 Version 1.0 Page 47 of 87

Using Java
The tests in this section illustrate the processing costs of using the JavaCompute node for
different routing and transformation operations.

Filter an Incoming Message Based on the First Element in the Message using the

Java Compute Nodes XPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the first element of the incoming message is examined using
the XPath capability. The result is always set to be true and thus the message is propagated
to the MQ Output node.

This test identifies the cost of filtering on an element at the start of a message using the Java
Compute Node XPath capability.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 1486.39 95.92 1.29

16K No 1284.62 99.71 1.55

64K No 384.18 51.49 2.68

256K No 98.26 38.43 7.82

1024K No 23.89 37.76 31.61

4096K No 5.75 29.85 103.90

8192K No 2.73 36.62 267.98

4K Yes 550.22 87.22 3.17

16K Yes 382.40 60.52 3.17

64K Yes 223.40 57.47 5.15

256K Yes 79.92 63.61 15.92

1024K Yes 18.31 58.10 63.47

4096K Yes 1.60 21.37 267.08

8192K Yes 0.45 20.11 900.60

Filter an Incoming Message Based on the Last Element in the Message using the

Java Compute Nodes XPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the last element of the incoming message is examined using
the XPath capability. The result is always set to be true and thus the message is propagated
to the MQOutput node

This test identifies the cost of filtering on an element at the end of a message using the Java
Compute Node XPath capability.

25/04/2008 Version 1.0 Page 48 of 87

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 816.95 84.41 2.07

16K No 276.97 66.61 4.81

64K No 73.18 58.80 16.07

256K No 18.43 58.53 63.50

1024K No 4.62 56.50 244.57

4096K No 1.02 51.50 1006.45

8192K No 0.39 43.22 2216.41

4K Yes 297.37 59.56 4.01

16K Yes 172.30 56.44 6.55

64K Yes 55.81 59.28 21.24

256K Yes 15.79 56.21 71.21

1024K Yes 4.11 58.87 286.49

4096K Yes 0.67 40.52 1209.55

8192K Yes 0.28 39.60 2828.33

Filter an Incoming Message Based on the First Element in the Message using the

Java Compute Nodes GetByPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the first element of the incoming message is examined using
the GetByPath capability. The result is always set to be true and thus the message is
propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the start of a message using the Java
Compute Node GetByPath capability.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 1585.85 100 1.26

16K No 1293.67 99.16 1.53

64K No 380.74 50.36 2.65

256K No 97.64 42.09 8.62

1024K No 23.66 33.94 28.69

4096K No 5.70 29.60 103.79

8192K No 2.70 35.69 264.37

4K Yes 521.49 66.43 2.55

16K Yes 372.61 60.35 3.24

64K Yes 219.84 55.40 5.04

256K Yes 77.65 57.65 14.85

1024K Yes 18.41 45.46 49.39

4096K Yes 1.67 23.04 275.89

25/04/2008 Version 1.0 Page 49 of 87

8192K Yes 0.56 18.39 660.72

Filter an Incoming Message Based on the Last Element in the Message using the

Java Compute Nodes GetByPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the last element of the incoming message is examined using
the GetByPath capability. The result is always set to be true and thus the message is
propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the end of a message using the Java
Compute Node GetByPath capability.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 848.60 85.34 2.01

16K No 283.02 66.35 4.69

64K No 74.07 59.60 16.09

256K No 18.59 57.07 61.41

1024K No 4.69 57.70 246.07

4096K No 1.00 44.89 897.73

8192K No 0.40 41.67 2083.33

4K Yes 307.99 56.55 3.67

16K Yes 173.89 59.48 6.84

64K Yes 57.55 60.69 21.09

256K Yes 16.08 70.93 88.24

1024K Yes 4.19 62.10 296.42

4096K Yes 0.72 41.96 1165.46

8192K Yes 0.28 40.86 2918.81

Computation on an Input Message using the Java Compute Nodes XPath

Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node Java code is used to calculate the total of all items and prices
within a repeating structure which is in the input message. The totals along with a copy of the
input message are written in the outgoing message.

This test identifies the cost of using Java to perform computation and message parsing using
the XML parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 258.20 64.02 4.96

16K No 76.08 58.68 15.42

25/04/2008 Version 1.0 Page 50 of 87

64K No 19.90 57.67 57.96

256K No 5.04 55.29 219.25

1024K No 1.27 55.46 873.39

4096K No 0.28 49.94 3567.38

8192K No 0.13 52.99 8152.31

4K Yes 179.40 55.63 6.2
16K Yes 70 51.71 14.77
64K Yes 18.74 56.44 60.23
256K Yes 4.81 55 228.69
1024K Yes 1.09 55 1009.17
4096K Yes 0.28 47.40 3385.71
8192K Yes 0.12 47.55 7925

Manipulation of an Input Message using the Java Compute Nodes XPath

Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node Java code, utilising the XPath capability is used to
significantly change the structure of the incoming message. The new structure is written as
the output message.

This test identifies the cost of using Java code and XPath to perform message manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 147.85 61.84 8.36

16K No 49.26 57.99 23.54

64K No 13.10 54.25 82.83

256K No 3.33 53.16 319.28

1024K No 0.83 54.48 1312.85

4096K No 0.20 54.42 5442.33

8192K No 0.10 55.40 11080.67

4K Yes 119.67 54.60 9.12

16K Yes 46.64 55.14 23.64

64K Yes 12.90 54.54 84.57

1024K Yes 0.82 51.61 1258.70

4096K Yes 0.18 50.29 5587.41

8192K Yes 0.17 52.01 6119.22

Manipulation of an Input Message using the Java Compute Nodes GetByPath

Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

25/04/2008 Version 1.0 Page 51 of 87

Within the Java Compute Node Java code, utilising the GetByPath capability is used to
significantly change the structure of the incoming message. The new structure is written as
the output message.

This test identifies the cost of using Java code and GetByPath to perform message
manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 233.66 70.92 6.07

16K No 64.41 57.87 17.97

64K No 16.23 56.61 69.75

256K No 4.06 56.21 277.11

1024K No 1.00 57.12 1142.47

4096K No 0.23 54.83 4767.54

8192K No 0.12 59.83 9971.11

4K Yes 170.17 68.56 8.06

16K Yes 52.31 54.83 20.96

64K Yes 12 53.97 90
256K Yes 3.88 55.74 287.30

1024K Yes 0.89 49.89 1121.05

4096K Yes 0.87 52.60 1209.20

8192K Yes 0.20 50.23 5023.00

Using Route Nodes
The tests in this section illustrate the processing costs of using the new Route Nodes for
routing operations.

Using Route Node to Route an Incoming Message Based on Data in the Incoming

Message

This test consists of MQ Input Node -> Route Node -> MQ Output Node.

The MQ Input node is set to use the XMLNSC domain. Within the Route node the first
element of the message is queried and the message routed based on this value. The lookup
result is always set to be true and thus the message is propagated to the MQ Output node.

This test identifies the cost of using the Route Node to route a message on an element at the
start of a message using the XMLNSC parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 1431.45 97.07 1.36

16K No 1311.57 97.47 1.49

64K No 234.50 2.70 0.23

25/04/2008 Version 1.0 Page 52 of 87

256K No 95.37 34.89 7.32

1024K No 23.15 35.52 30.68

4096K No 5.59 33.28 119.13

8192K No 2.50 31.48 251.84

4K Yes 537.81 66.25 2.46

16K Yes 402.54 61.61 3.06

64K Yes 224.49 53.99 4.81

256K Yes 81.88 53.10 12.97

1024K Yes 18.75 51.26 54.67

4096K Yes 1.82 26.71 293.02

8192K Yes 0.86 19.31 450.82

Using the Collector Node
The tests in this section illustrate the processing costs of using the Collector node for
combining incoming messages. To allow for comparisons between collector tests the
compute node used for all tests in this section is the same i.e. processing costs of this part in
the flow is the same in all tests.

Collecting Messages from Several Inputs Based on Number of Messages

This test consists of 2 MQ Input Nodes -> Collector Node -> Java Compute Node -> MQ
Output Node.

The two MQ Input nodes each propagate messages to the collector node. In the collector
node a collection is defined as being 1 input message from each of the two input terminals.
The Collector node Persistence mode is set to Non-Persistent. Which means that the
messages are stored on the Collector node's queues Non-Persistently Once this collection is
satisfied it is propagated to the Java Compute Node which copies the entire message from
the first input terminal to the output message. Then one field from the message received on
the second terminal is retrieved from the input message and used to add a new field to the
out going message. The message is then sent to an MQ Output node.

This test identifies the cost of using the collector node to collect 2 messages Non-Persistently
from different inputs and then update one of them with a field from the other message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 120.32 43.72 7.27

16K No 66.57 44.41 13.34

64K No 22.27 54.60 49.03

256K No 6.10 57.93 189.93

1024K No 1.56 56.90 731.01

4096K No 0.25 43.63 3444.74

8192K No 0.09 30.52 6781.48

The results in the table below show the cost of running with the Collector node Persistence
mode set to Persistent and using persistent transacted MQ messages to drive the flow.

25/04/2008 Version 1.0 Page 53 of 87

Running with a Collector node persistence mode set to persistent means that the messages
are stored on the Collector node's queues as MQ persistent messages

This test identifies the cost of using the collector node to collect 2 messages Persistently from
different inputs and then update one of them with a field from the other message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K Yes 35.38 14.63 8.27

16K Yes 28.39 29.23 20.59

64K Yes 18.91 61.80 65.35

256K Yes 5.17 99.94 386.88

1024K Yes 1.41 100 1418

4096K Yes 0.32 56.49 3530.83

8192K Yes 0.06 34.31 12109.41

Collecting Messages from Several Inputs Based on Number of Messages with a

Correlation Pattern

This test consists of 2 MQ Input Nodes -> Collector Node -> Java Compute Node -> MQ
Output Node.

The two MQ Input nodes all propagate messages to the collector node. In the collector node
a collection is defined as being one input message from each of the two input terminals and
also a correlation path to look at the first customer surname in the message. Hence
messages with the same customer name are put in the collection. The Collector node
Persistence mode is set to Non-Persistent. This means that the messages are stored on the
Collector node's queues Non-Persistently. Once this collection is satisfied it is propagated to
the Java Compute Node which copies the entire message from the first input terminal to the
output message. Then one field from the message received on the second terminal is
retrieved from the input message and used to add a new field to the out going message. The
message is then sent to an MQ Output node. All input messages had the same matching
name.

This test identifies the cost of using the collector node to collect 2 messages Non-Persistently
from different inputs which have a matching surname and then update one of them with a field
from the other message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 120.00 44.60 7.43

16K No 64.39 41.51 12.89

64K No 21.52 52.59 48.87

256K No 6.06 55.00 181.63

1024K No 1.56 56.54 726.42

4096K No 0.28 48.33 3493.98

8192K No 0.10 40.40 8080.67

The results in the table below show the cost of running with the Collector node Persistence
mode set to Persistent and using persistent transacted MQ messages to drive the flow.

25/04/2008 Version 1.0 Page 54 of 87

Running with a Collector node persistence mode set to persistent means that the messages
are stored on the Collector node's queues as MQ persistent messages

This test identifies the cost of using the collector node to collect 2 messages Persistently from
different inputs which have a matching surname and then update one of them with a field from
the other message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K Yes 34.09 21.67 12.71

16K Yes 28.79 26.95 18.73

64K Yes 18.58 48.62 52.35

256K Yes 5.51 52.47 190.47

1024K Yes 1.42 55.40 778.50

4096K Yes 0.22 45.74 4095.82

8192K Yes 0.10 32.47 6494.00

Using XSLT
The tests in this section illustrate the processing costs of using an XML Transformation node
to perform a computation and manipulation of an input message.

Computation on an Input Message

This test consists of MQ Input node -> XSL Transform Node -> MQ Output Node.

Within the XMLT Node a compiled stylesheet is used to calculate the total of all items and
prices within a repeating structure which is in the input message. The totals along with a copy
of the input message are written in the outgoing message.

This test identifies the cost of using an XSL stylesheet to perform computation and message
parsing using the XML parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 247.41 66.21 5.35

16K No 77.05 60.40 15.68

64K No 19.26 59.54 61.84

256K No 5.11 60.46 236.63

1024K No 1.57 56.61 721.10

4096K No 0.33 59.16 3585.45

8192K No 0.17 57.24 6734.51

4K Yes 172.73 58.52 6.78

16K Yes 0.17 55.29 6504.31

64K Yes 18.43 64.03 69.48

256K Yes 5.09 54.20 212.95

1024K Yes 1.31 48.22 736.13

4096K Yes 0.33 57.93 3510.91

25/04/2008 Version 1.0 Page 55 of 87

8192K Yes 0.13 56.04 8405.50

Manipulation of an Input Message

This test consists of MQ Input node -> XSL Transform Node -> MQ Output Node.

Within the XMLT Node a compiled stylesheet is used to significantly change the structure of
the incoming message. The new structure is written as the output message.

This test identifies the cost of using an XSL stylesheet to perform message manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 289.12 69.28 4.79

16K No 101.84 66.15 12.99

64K No 27.09 60.06 44.34

256K No 6.68 61.37 183.82

1024K No 2.16 61.00 565.66

4096K No 0.50 54.66 2186.53

8192K No 0.20 55.41 5541.33

4K Yes 200.12 66.63 6.66

16K Yes 81.57 61.49 15.08

64K Yes 26.43 59.91 45.33

256K Yes 7.08 57.87 163.56

1024K Yes 2.10 60.12 572.54

4096K Yes 0.41 51.84 2528.78

8192K Yes 0.31 47.07 3036.77

Publish Subscribe
The tests in this section illustrate the processing costs of using the publish/subscribe
functions within WebSphere Message Broker with the MQ protocol and varying numbers of
subscribers.

Topic Based Publish/Subscribe using MQ Messages with 1 Subscriber

This test consists of MQInput node -> Publication node.

A publisher publishes a message on a single topic. The test is run with a single subscriber.
The subscriber is registered to receive messages on the single topic. The subscribers queue
is drained and the message rate reported, this rate represents the total number of messages
per second delivered to all subscribers, this does not include published messages.

This test identifies the cost of using the Publication node for a single publisher and a single
subscriber, single topic and a single copy of the message flow when using MQ messages.

The results of running this test are given in the table below.

25/04/2008 Version 1.0 Page 56 of 87

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 601.29 63.45 2.11

16K No 390.57 55.64 2.85

64K No 193.27 41.82 4.33

256K No 52.28 22.36 8.55

1024K No 11.55 16.67 28.86

4096K No 2.86 19.79 138.58

8192K No 1.44 19.54 270.81

4K Yes 182.28 33.62 3.69

16K Yes 157.36 36.06 4.58

64K Yes 89.28 31.84 7.13

256K Yes 33.07 27.53 16.65

1024K Yes 8.96 23.62 52.74

4096K Yes 2.24 27.70 246.95

8192K Yes 1.06 25.23 477.54

Topic Based Publish/Subscribe using MQ Messages with 10 Subscribers

This test consists of MQInput node -> Publication node.

A publisher publishes a message on a single topic. The test is run with 10 subscribers. The
subscribers are registered to receive messages on the single topic and messages for all
subscribers are stored on the same MQ Queue. The subscribers queue is drained and the
message rate reported, this rate represents the total number of messages per second
delivered to all subscribers, this does not include published messages.

This test identifies the cost of using the Publication node for a single publisher and 10
subscribers, single topic and a single copy of the message flow when using MQ messages.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 2317.48 75.02 0.65

16K No 1044.92 48.79 0.93

64K No 320.84 32.58 2.03

256K No 86.38 31.36 7.26

1024K No 22.10 30.50 27.59

4096K No 6.02 30.46 101.14

8192K No 2.98 33.96 227.90

4K Yes 537.29 41.60 1.55

16K Yes 414.13 33.62 1.62

64K Yes 243.52 33.02 2.71

256K Yes 88.31 36.55 8.28

1024K Yes 20.79 34.30 33.00

25/04/2008 Version 1.0 Page 57 of 87

4096K Yes 5.52 32.35 117.13

8192K Yes 2.27 34.63 305.59

Topic Based Publish/Subscribe using MQ Messages with 100 Subscribers

This test consists of MQInput node -> Publication node.

A publisher publishes a message on a single topic. The test is run with 100 subscribers. The
subscribers are registered to receive messages on the single topic.

This test identifies the cost of using the Publication node for a single publisher and 100
subscribers, single topic and a single copy of the message flow when using MQ messages.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate
(Msgs/sec)

% CPU Busy CPU ms/msg

4K No 1091.28 88.74 1.63

16K No 554.09 33.63 1.21

64K No 280.12 33.84 2.42

256K No 77.94 29.24 7.50

1024K No 20.18 50.12 49.67

4096K No 4.93 37.77 153.12

8192K No 3.75 18.62 99.40

4K Yes 651.62 46.67 1.43

16K Yes 475.27 40.30 1.70

64K Yes 263.22 38.24 2.91

256K Yes 83.25 35.36 8.49

1024K Yes 20.34 34.48 33.90

4096K Yes 5.37 35.15 130.98

8192K Yes 1.50 35.61 474.76

25/04/2008 Version 1.0 Page 58 of 87

Scaling Message Throughput
The tests in this section show the effect of using two different approaches to increase
message throughput for a message flow. These are the use of additional instances and
assigning one copy of the message flow to each of multiple execution groups.

Note that Four CPU were used for scaling tests.

Using Additional Instances

Message Broker allows the use of additional instances of the flow to be run, these instances
map on to threads running within the Broker execution group process on distributed platforms
and to Task Control Blocks (TCB’s) within the Brokers address space on z/OS. This test
consists of running the XSLT Transform Sample with a varying number of instances of the
message flow in a single execution group.

This test consists of MQ Input node -> XSL Transform Node -> MQ Output Node.

The purpose of this is to see how effective the use of additional instances is in increasing
message throughput and achieving higher system CPU utilisation. The benefits observed in
any given situation will depend on the processing requirements of the message flow. CPU
bound message flows will have different scaling characteristics from those which are I/O
bound for example.

The results of running this test are given in the table below. They indicate the results of
scaling with Instances with non persistent messages

Instances Msg Size Persistent

Message
Rate

(Msgs/sec)
% CPU
Busy

CPU
ms/msg

1 4k no 330 37 4.48

2 4k no 660 65 3.94

3 4k no 885 95 4.29

4 4k no 930 100 4.3

To illustrate the different scaling behaviour that may be seen with non CPU bound flows the
same test was run using persistent messages. For this test the disk becomes the overriding
factor and so scaling of the CPU and message throughput more is limited.

Instances Msg Size Persistent

Message
Rate

(Msgs/sec)
% CPU
Busy

CPU
ms/msg

1 4k yes 220 33 6

2 4k yes 444 65 5.86

3 4k yes 600 85 5.67

4 4k yes 660 95 5.76

The results for non persistent messages show that when running with 2 instances of the
message flow there is an increase in message throughput. It was possible to achieve 2 times
that achieved when with running one instance.

When running with 4 instances of the message flow message throughput continued to
increase. It was possible to achieve 2.8 times that of one instance. The benefits were limited
by the amount of available CPU. CPU utilisation at this point was 100%. In addition to the
four instances of the message flow there was also the Message Broker queue manager
listener process which is used to receive messages from the client machine. In a busy
system this process alone is capable of fully using one processor.

25/04/2008 Version 1.0 Page 59 of 87

The for persistent messages show that message throughput scales more slowly when the
flow is not solely CPU bound. In this case more additional instances are required to scale the
workload. Even so we still manage to achieve 3 times that of 1 instance.

From both tables we can see that eventually adding instances does not yield any benefit in
some cases message throughput can actually decline. This is due to the high level of
contention within the system. When system is almost fully busy adding the extra instance has
added more work to the system and yet no additional CPU power was made available with
which to run it. This illustrates that it is possible to have too many copies of a message flow
running and not achieve the maximum throughput that the system is capable of.
You are recommended to determine the optimum number of instances to use for each
message flow individually through experimentation with a varying number of instances.

From these measurements we can see that use of additional instances can be an effective
mechanism for increasing message throughput and allowing a machine to be fully utilised. In
both of the tests CPU usage and message rate were increased significantly over the initial
position.

Using Mulitple Execution Groups

Message Broker allows the use of multiple execution groups to be run, these map on to
Operating System processes on distributed platforms and to Address Spaces on z/OS. This
test consists of running the XSLT Transform Sample with a varying number of execution
groups.

This test consists of MQ Input node -> XSL Transform Node -> MQ Output Node.

The purpose of this is to see how effective the use of multiple execution groups is in
increasing message throughput and achieving higher system CPU utilisation. The benefits
observed in any given situation will depend on the processing requirements of the message
flow. CPU bound message flows will have different scaling characteristics from those which
are I/O bound for example.

The results of running this test with are given in the table below. They indicate the results of
scaling with execution groups with non persistent messages.

Execution Groups Msg Size Persistent

Message
Rate

(Msgs/sec)
% CPU
Busy

CPU
ms/msg

1 4k no 330 37 4.48

2 4k no 670 65 3.88

3 4k no 900 97 4.31

To illustrate the different scaling behaviour that may be seen with non CPU bound flows the
same test was run using persistent messages. For this test the disk becomes the overriding
factor and so scaling of the CPU and message throughput is potentially more limited.

Execution Groups Msg Size Persistent

Message
Rate

(Msgs/sec)
% CPU
Busy

CPU
ms/msg

1 4k yes 220 33 6

2 4k yes 440 58 5.27

3 4k yes 600 87 5.8

4 4k yes 650 95 5.85

The results for non persistent messages show that when running with 2 execution groups
there is an increase in message throughput. It was possible to achieve 2 times that achieved
when with running one execution group.

When running with 3 execution groups message throughput continued to increase. It was
possible to achieve 2.7 times that of one instance. The benefits were limited by the amount of

25/04/2008 Version 1.0 Page 60 of 87

available CPU. CPU utilisation at this point was over 90%. In addition to the three execution
groups there was also the Message Broker queue manager listener process which is used to
receive messages from the client machine. In a busy system this process alone is capable of
fully using one processor.

The results for persistent messages show that message throughput scales more slowly when
the flow is not solely CPU bound. In this case more execution groups are required to scale
the workload. Even so we still manage to achieve almost 3 times that of 1 execution group.

Eventually adding execution groups will not yield any benefit and in some cases message
throughput can actually decline. This is due to the high level of contention within the system.
When system is almost fully busy adding the extra execution group adds more work to the
system and yet no additional CPU power is made available with which to run it. This
illustrates that it is possible to have too many copies of a message flow running and not
achieve the maximum throughput that the system is capable of.

You are recommended to determine the optimum number of execution groups to use for each
message flow individually through experimentation with a varying number of execution
groups.

From these measurements we can see that use of execution groups is an effective
mechanism for increasing message throughput and allowing a machine to be fully utilised.
In both of the tests CPU usage and message rate were increased significantly over the initial
position.

25/04/2008 Version 1.0 Page 61 of 87

Overheads
The tests in this section indicate the processing costs of using Accounting and Statistics and
Trace on a message flow.

Using the Accounting and Statistics Plug-in with Message Broker
Explorer

Whilst the accounting and statistics provided in broker can be accessed in a variety of ways
we would recommend using this Support Pac.

The Message Broker Explorer Support Pac (IS02) is available from here:

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24012457&loc=en_US&cs=utf-
8&lang=en

This Support Pac now includes the new WebSphere Message Broker Accounting and
Statistics facility which can help you monitor message flow performance and resource usage
of a broker or execution group at the message flow, node, or terminal level, and can thus be a
tremendous help in solving performance and resource utilization problems.

An example screen shot of output at the execution group level is shown below:

Collecting accounting and statistics data from a broker affects its performance, so you may
want to restrict its use to development and test systems. The performance overhead depends
on the level of data collected and the complexity of the message flow. For example, running
the Large Messaging Sample shipped with WebSphere Message Broker V6.1 using a 4K
message with basic thread level and advanced node level accounting activated resulted in a
5% processing overhead.

Further information on this utility can be found here:

25/04/2008 Version 1.0 Page 62 of 87

http://www.ibm.com/developerworks/websphere/library/techarticles/0710_piatek/0710_piatek.
html

Using Trace and Trace Nodes
This test consists of running a single copy of the Large Messaging sample whilst taking a user
trace of type normal at the same time.

Using a 4K message size there was a 18% reduction in message throughput. This reflects
the CPU and I/O overhead of writing user trace. With debug trace the overhead will be even
higher as debug trace is more extensive.

You are strongly recommended not to use WebSphere Message Broker trace in a production
system.

In WebSphere Message Broker V6.1 the overhead of leaving trace nodes in your message
flow has now been reduced. Trace nodes can also now be enabled/disabled easily using the
toolkit.

The following tests show the overhead associated with using trace nodes.

Running a Flow with no Trace Nodes

This test consists of the Large Message Sample flow as shipped with WMB V6.1. It indicates
the throughput of the flow before any trace nodes are added for comparison.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 315 73 4.63

Impact of Running a Flow with a Trace Node Turned On

This Test consists of the Large Message Sample flow as shipped with WMB V6.1. The flow
has been modified to add a trace node after the compute node. The trace node writes out to
a file the Root of the message tree for every message.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 134 60 8.96

This indicates that the overhead of having the trace node on is 49%.

Impact of Running a Flow with a Trace Node Turned Off

This test is identical to the one above but the Trace node has been disabled.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

4K No 309 72 4.66

This indicates that overhead of running with trace nodes disabled for this flow is 1.9%. This is
a small overhead and you may well feel it is worth the cost in order to have the trace nodes
embedded in the message with the ability to turn them on with a single command. That is
without any need to change the message flow.

Resource Requirements
This section details the recommended minimum specification of a machine on which to install
the development toolkit and Message Broker runtime. It also illustrates virtual memory use
for message flows.

25/04/2008 Version 1.0 Page 63 of 87

Recommended Minimum Specification
The recommended minimum specification machine to install and run the development toolkit
and the runtime can be found in the Installation Guide which can be downloaded here:

http://publib.boulder.ibm.com/epubs/pdf/c3468660.pdf

These are recommended minimum specifications which are suitable to enable the processing
of simple messages with simple message transformation or routing. Situations requiring more
intensive processing are likely to need greater resources. For improved performance use a 2
GHz or faster processor. For production a multi-processor machine is recommended. For
development 2GB+ of memory is recommended. For production a suggested minimum would
be 8GB of memory.

Tuning

This section details the parameters which were reviewed or changed in the course of
obtaining the measurement results.

The description of each parameter is brief as a detailed discussion of the effects of any
changes are beyond the scope of this document.

Message Broker
The Message Broker used in the measurements was configured in the following ways for all
tests:

1. Transactional support was used where appropriate. When processing persistent
messages it was used, with non persistent messages it was not. The use of
transaction control means that message processing takes place within a WebSphere
MQ unit of work. This involves additional CPU and I/O processing by WebSphere
MQ because the unit of work is recoverable. The result is inevitably a reduction in
message throughput for persistent messages. By default the transaction parameter
on the MQInput node was set to automatic. This is the recommended value to use
for transaction mode unless there is a specific requirement to use a particular value
since persistent messages will be processed within transactional control and non
persistent messages will not.

2. The Max heap size of the The WebSphere Message Broker Java Virtual Machine
(JVM) (in which much of the publish subscribe code is executed) was set to 512MB.
For the non Publish Subscribe tests the default value of 256MB was used.

Additional Tuning for SOAP and HTTP Tests:

- The clients sending data to the broker were configured to use persistent HTTP
connections i.e. MaxKeepAlives was set to -1.

- For HTTP and SOAP Request Node tests the SocketConnectionManager was set to
use persistent connections by setting MaxKeepAlives was set to -1.

To set these values consult the documentation for the mqsichangeproperties command.

There were no error processing or error conditions in any of the measurements. All
messages were successfully passed from one node to another through the out or true
terminal. No messages were passed through the failure terminal of a node.

25/04/2008 Version 1.0 Page 64 of 87

TCP/IP
No specific tuning was performed for TCP/IP. All machines used the operating system default
values.

Database
The DB2 instance used with the message broker was a default configuration and the only
tuning performed on the instance was placement of the database data and log files on
different disks.

Miscellaneous
Although not implemented in all cases the following additional tuning changes are
recommended:

• Locate the log of any WebSphere MQ queue manager through which persistent
messages pass on a dedicated disk.

• Locate the WebSphere MQ queue manager log on a very fast disk such as one with a
non-volatile fast write cache. Such disks are consistently capable of I/O times of 1ms
compared with a time of 6 ms for a 10,000 RPM SCSI disk. When using a disk with a
fast write cache it is essential that it has a non-volatile capability as the log data is
critical to the integrity of your queue manager.

• Locate the log of the Message Broker database on a dedicated disk.

• Locate the log of the Message Broker database on a very fast disk such as one with a
non-volatile fast write cache.

• When performing BLOB inserts to a database locate the data portion of the database
on a very fast disk such as one with a non-volatile fast write cache. BLOB I/O is not
buffered by a database such as DB2 and is written to disk immediately.

Additional Tuning Information

In order to obtain the maximum message rate for your implementation it is important that you
understand the best practices for WebSphere Message Broker. These practices cover the
architecture of message flow processing, the coding of message flows as well as the
configuration and tuning of the message broker and associated components.

Such information can be found in the Business Integration Zone of WebSphere Developer
Domain. There is also a Support Pac IP04 which covers the main design decisions when
building message flows:

http://www-1.ibm.com/support/docview.wss?uid=swg24006518

The Performance Harness

The current development version of IBM Performance Harness for JMS was used to drive all
of the tests contained within this report. This version is likely to be released later this year.
Although this tool was primarily developed as a performance driver for JMS but it also has the
ability to send and receive WebSphere MQ messages and in the development version has
been extended to drive HTTP messages.

25/04/2008 Version 1.0 Page 65 of 87

The documentation for the tool contains examples of how to run it to send/receive messages
to/from a JMS Provider and MQ.

The current version of the tool can be downloaded from:

http://www.alphaworks.ibm.com/tech/perfharness

This tool is Java-based and so can be run on any platform that supports Java and has the MQ
Client available.

25/04/2008 Version 1.0 Page 66 of 87

Appendix A - Measurement Environment
All throughput measurements where taken on a single server machine. The client type and
machine on which they ran varied with the test. The details are given below.

Server Machine

The hardware consisted of:

• An LPAR on an IBM zSeries 990 2084was used for all measurements.
o For those measurements listed in Part I the LPAR was configured with 4

processors and 8GB memory. This is equivalent to an IBM zSeries 990 4
way machine, a 2084-308.

o For those measurements listed in Part II the LPAR was configured with 2
processors and 8 GB memory. This is equivalent to an IBM zSeries 990 2
way machine, a 2084-302.

• Enterprise Storage Server (ESS) Model 800 disk storage system featuring redundant
hardware, mirrored write caches, and RAID-5 and RAID-10 protection for the disks.

• 1 Gb Ethernet card

The software consisted of:

• z/OS Version 1 Release 7
• Java ™ Runtime Environment (JRE) 1.5
• WebSphere MQ for z/OS Version 6.0.2
• DB2 Universal Database for OS/390 and z/OS Version V9
• WebSphere Message Broker for z/OS V6.1

Client Machines
A number of different client machines were used dependent on the tests being run. The
different configurations are described below.

Point to Point Testing
The hardware consisted of:

• An IBM 2 * 3.6 GHZ Xeon processors
• Two 34 GB SCSI hard drives formatted with NTFS
• 4 GB RAM
• 1 Gb Ethernet card

The software consisted of:
� Microsoft Windows 2003
� WebSphere MQ V6.01
� IBM Java 1.5

Network Configuration

The client and server machines were connected using a full duplex 1 Gigabit Ethernet LAN
with a single hub.

25/04/2008 Version 1.0 Page 67 of 87

Appendix B - Evaluation Method

This section outlines the software components that were used to produce the measurement
results which are contained in this report.

Three different configurations were used in the generation and consumption of input and
output messages. This is because different test cases required different types of input and
output messages. The methods used were:

1. Point to Point Message Processing. This configuration tested these transports:

a. MQ

b. JMS

c. HTTP

d. SOAP

2. Publish Subscribe Message Processing

3. File processing

These are described in the remainder of this section.

A series of parameter configuration changes were made to improve message throughput.
These are discussed in the section Tuning.

Point to Point testing

This section describes how messages were generated and consumed for the point to point
messaging tests, such as the Database Read tests or Filter an Incoming Message based on
the First Element in the Message. The configuration of the software components is also
discussed. This approach was used for MQ, JMS, HTTP and SOAP messages.

Message Generation and Consumption
The Performance Harness for JMS, a multi threaded WebSphere MQ Client program written
in Java was used to generate input messages for the test case being run and to consume the
output messages. The following PerfHarness modules were used for point to point testing:

- mqjava.Requestor – for MQ Messages

- http.Requestor – for Sending SOAP and HTTP messages

- jms.r11.Requestor – for sending and receiving JMS Messages

Differences between the transport testing are detailed below:

MQ

Both persistent and non persistent messages MQ Messages were generated from this
program. Persistent messages were sent as part of a transaction which was committed after
every message.

Sufficient threads (typically 20) were run in the multi threaded client to ensure that there were
always messages on the input queue waiting to be processed. This is important when
measuring message throughput.

25/04/2008 Version 1.0 Page 68 of 87

Each thread sent a message and then immediately went to receive a reply on the output
queue. Any thread within the client program was able to retrieve any message which had
been processed by a message flow. No use was made of the WebSphere MQ correlation
identifiers to limit consumption of a message to the thread which created it. Once a thread
received a reply it sent another message. The message content was the same for all threads
and all messages.

JMS

The tool sent non persistent JMS Bytes messages to a JMS Destination. The connection
factory for the client used the MQ Client transport to send messages. This destination was
mapped to an MQ Queue on the Brokers Queue Manager. The JMS Input node was
configured to read from this queue, the connection factory for the nodes used the MQ
Bindings transport for connection. The flow then placed the reply message on another
MQJMS queue on output where the client could then receive the reply.

Sufficient threads (typically 20) were run in the multi threaded client to ensure that there were
always messages on the input queue waiting to be processed. This is important when
measuring message throughput.

Each thread sent a message and then immediately went to receive a reply on the output
queue. Any thread within the client program was able to retrieve any message which had
been processed by a message flow. No use was made of the JMS correlation identifiers to
limit consumption of a message to the thread which created it. Once a thread received a
reply it sent another message. The message content was the same for all threads and all
messages.

SOAP and HTTP

The tool sends predefined SOAP And HTTP Messages that it read from files. The tool sent
the messages to broker using persistent HTTP connections, this means that each thread
reused the same tcpip socket for each request. Each client thread had its own tcpip socket
connection to send/receive data.

Sufficient threads (typically 20) were run in the multi threaded client to ensure that there were
always messages to be processed. This is important when measuring message throughput.

As per the HTTP request/reply protocol each thread sent a message and then immediately
went to receive a reply on socket. Once a thread received a reply it sent another message.
The message content was the same for all threads and all messages.

See the Performance Harness section in this report for more information on this tool.

25/04/2008 Version 1.0 Page 69 of 87

Machine Configuration
The Performance Harness for JMS was used to generate and consume messages for the
message flows was and run on a dedicated machine, the Client Machine. The Message
Broker, its dedicated WebSphere MQ queue manager and broker database were all located
on a dedicated machine, the Server Machine.

There was a single client machine.

For MQ and JMS based Tests messages were transmitted from the client machine to the
server machine over WebSphere MQ SVRCONN channels. The messages were received on
the server machine through use of a WebSphere MQ queue manager listener process. This
was run as a trusted MQ application in order to improve message throughput.

The database used for the business database related test cases used the same database
instance as the Message Broker.

Messages were transmitted from the client machines to the server machine using the
WebSphere MQ transport or SOAP/HTTP or JMS depending on the test type.

The diagram below illustrates the major components in the measurement environment and
their location.

Both the client and server machine were configured with sufficient memory to ensure that no
paging took place during the tests.

WebSphere
Message

Broker

WebSphere MQ

DB2

Gigabit

Ethernet

LAN

WebSphere MQ

JMS
Perfharness

MQ Listener

Client Machine Server Machine

25/04/2008 Version 1.0 Page 70 of 87

Publish Subscribe Testing

This section describes how messages were generated and consumed for tests which used
the publish subscribe message processing model.

Message Generation and Consumption
The following modules of the Performance Harness for JMS were used in this testing

- jms.r11.Publisher – for sending JMS Messages

- jms.r11.Receiver – for receiving JMS Messages

JMS bytes messages were used in the testing. The message content was not of interest in
the tests only the topic under which it was published.

At the start of the tests the relevant number of non durable subscriptions were registered with
the broker on the single topic. Each subscription registered the same queue name for
messages to be delivered to, hence all messages for all subscriptions were delivered to the
same queue.

The receiving client was then started to drain the subscriber queue, the publishing client was
then started. Messages were transmitted from the client machines to the server machine
using the WebSphere MQ JMS Messages.

 When using the WebSphere MQ transport the publish rate was set to a high value, this
publish rate was then throttled by the MQ acknowledgement protocol to a rate which was
sustainable by the broker. The publisher acknowledgement interval was set to ensure
messages were always available on the brokers input queue. Details of how to set the broker
acknowledgement interval can be seen in the WebSphere MQ "Using Java" manual.

In all of the tests it was verified that all publications were delivered to subscribers without any
loss of messages.

Queue depths and buffer sizes were monitored to ensure that the system was running in a
stable manner and that there was no backlog of messages to be processed.

Publishers

The JMS Publisher sent non-persistent and persistent publications dependent on the test
case. A transacted JMS Session was used for persistent messages. The publisher produced
publications at a constant rate, i.e. a fixed number of publications per second.

Subscribers

The JMS application draining the subscriber queue used non transacted sessions for non
persistent tests but used transacted sessions for persistent tests. A single topic was used for
all tests and so all subscribers were subscribed to the same topic. This meant that for every
message published a copy was received on the subscriber queue each subscription.

The same machine configuration was used as point to point testing i.e. 1 Client machine and
one Server machine. The publisher and subscriber applications were run on the same
machine in different JVMs.

File Processing

This section describes how messages were generated and consumed for tests which used
the file nodes.

25/04/2008 Version 1.0 Page 71 of 87

Message Generation and Consumption
For tests using the file input node the directory was prepopulated with a number of files for the
test. During the test a perl script was run locally on the broker machine which monitored the
number of files and copied more files to the input directory if required. This ensured that there
were always files to be processed, this is important when measuring throughput. If the flow
was File to MQ then we used our normal performance harness tool to drain the output queue
and quoted the message rate.

For tests using a file output node we added an MQ Output node after it so for each file
processed we received an MQ Message to a queue. We then drained this queue using the
performance harness tool and quoted the message rate. Also a compute node was added
between the file and MQ Output Nodes to stop the message body being copied to keep the
overhead of writing out the MQ Message to a minimum. Where the output node was writing
many records to a single file the flow was modified to add an extra compute node before the
output node. This compute node stored the message/record size of the first message and
then used this to work out how many messages/records were allowed before the output file
reached 1GB. The compute node incremented a counter for each message/record and once
the counter indicated that 1GB of records had been written to the file a message was sent to
the Finish File terminal to close the file. This meant for any test the output file did not exceed
1GB.

 Where the test involved MQ to File processing we used the mqjava.Requestor module as per
our normal point to point testing to drive the flow and measure results.

The same machine configuration was used as point to point testing i.e. one Client machine
and one Server machine.

Reported Message Rates
For tests which did not involve publish subscribe the message rates reported are the number
of invocations of the message flow per second.

For tests involving several message flows such as the message aggregation test the rate
reported is the number of complete operations or aggregations per second. Fan-out and Fan-
in processing is counted as one rather than separately.

For tests using publish subscribe the message rate reported is the total message rate at the
subscribers. That is the number processed by all subscribers. The total number of messages
reported is calculated using the formula (number of subscribers) * publication rate.

For a configuration consisting of one publisher and 10 subscribers where the publication rate
was 10 messages/second the total message rate is 10 * 10 = 100 messages second.

For tests using the JMS nodes the message rate is the number of message flow invocations
per second.

The message rates quoted are an average taken over the measurement period. This starts
once the system initialisation period has completed.

25/04/2008 Version 1.0 Page 72 of 87

Appendix C - Test Messages

This section describes the input and output messages used for the tests detailed in this
report.

The messages which are in this section have been formatted for this report and as such
contain white space between tags. When used in measurements all such white space is
removed.

Input Messages
This section details the types of input messages used in the report.

General Input Messages
An input message of the type shown below was used for the non publish/subscribe tests in
the report.

The publish/subscribe tests used a 1K JMS Bytes message.

The message shown below is in Generic XML format but it was also represented in a variety
of other formats such as MRM XML, CWF and TDS where this was required in the test.

The different message sizes used in testing are achieved by repeating the content of the
SaleList tag to give the required size. Larger messages thus result in more tags.
A Perl script ensures that the names and values in the tags are different as the SaleList
structure is repeated. This is to stop a limited number of strings being used in very large
messages which could lead to over optimistic results.

<Parent>

<First>1</First>
 <SaleList>

 <Invoice>
<Initial>K</Initial>
<Initial>A</Initial>
<Surname>Braithwaite</Surname>
<Item>

<Code>00</Code>
<Code>01</Code>
<Code>02</Code>
<Description>Twister</Description>
<Category>Games</Category>
<Price>00.30</Price>
<Quantity>01</Quantity>

</Item>
<Item>

<Code>02</Code>
 <Code>03</Code>
 <Code>01</Code>

<Description>The Times Newspaper</Description>
<Category>Books and Media</Category>
<Price>00.20</Price>
<Quantity>01</Quantity>

</Item>
<Balance>00.50</Balance>
<Currency>Sterling</Currency>

</Invoice>

25/04/2008 Version 1.0 Page 73 of 87

<Invoice>
<Initial>T</Initial>
<Initial>J</Initial>
<Surname>Dunnwin</Surname>
<Item>

<Code>04</Code>
<Code>05</Code>
<Code>01</Code>
<Description>The Origin of Species</Description>
<Category>Books and Media</Category>
<Price>22.34</Price>
<Quantity>02</Quantity>

</Item>
<Item>

<Code>06</Code>
<Code>07</Code>
<Code>01</Code>
<Description>Microscope</Description>
<Category>Miscellaneous</Category>
<Price>36.20</Price>
<Quantity>01</Quantity>

</Item>
<Balance>81.84</Balance>
<Currency>Euros</Currency>

</Invoice>
</SaleList>
<Last>Test</Last>

</Parent>

SOAP Input Message and WSDL
Below is the input message and WSDL used for the SOAP Nodes tests:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <soapenv:Header>
 <wsa:Action>SummerSale</wsa:Action>
 <wsa:MessageID>uuid:515704D6-0111-4000-E000-82267F000001</wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 <tns:SaleRequest>
 <SaleEnvelope>
 <Header>
 <SaleListCount>1</SaleListCount>
 </Header>
 <SaleList>
 <Invoice>
 <Initial>K</Initial>
 <Initial>A</Initial>
 <Surname>Braithwaite</Surname>
 <Item>
 <Code>00</Code>
 <Code>01</Code>
 <Code>02</Code>
 <Description>Twister</Description>

25/04/2008 Version 1.0 Page 74 of 87

 <Category>Games</Category>
 <Price>00.30</Price>
 <Quantity>01</Quantity>
 </Item>
 <Item>
 <Code>02</Code>
 <Code>03</Code>
 <Code>01</Code>
 <Description>The Times Newspaper</Description>
 <Category>Books and Media</Category>
 <Price>00.20</Price>
 <Quantity>01</Quantity>
 </Item>
 <Balance>00.50</Balance>
 <Currency>Sterling</Currency>
 </Invoice>
 <Invoice>
 <Initial>T</Initial>
 <Initial>J</Initial>
 <Surname>Dunnwin</Surname>
 <Item>
 <Code>04</Code>
 <Code>05</Code>
 <Code>01</Code>
 <Description>The Origin of Species</Description>
 <Category>Books and Media</Category>
 <Price>22.34</Price>
 <Quantity>02</Quantity>
 </Item>
 <Item>
 <Code>06</Code>
 <Code>07</Code>
 <Code>01</Code>
 <Description>Microscope</Description>
 <Category>Miscellaneous</Category>
 <Price>36.20</Price>
 <Quantity>01</Quantity>
 </Item>
 <Balance>81.84</Balance>
 <Currency>Euros</Currency>
 </Invoice>
 </SaleList>
 <Trailer>
 <CompletionTime>12.00.00</CompletionTime>
 </Trailer>
 </SaleEnvelope>
 </tns:SaleRequest>
 </soapenv:Body>
</soapenv:Envelope>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:tns="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">
 <wsdl:types>
 <xsd:schema
 targetNamespace="http://WssSale.miwssoap.broker.mqst.ibm.com"

25/04/2008 Version 1.0 Page 75 of 87

 xmlns:tns="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="SaleRequest" type="tns:RootMessage"/>
 <xsd:element name="SaleResponse" type="tns:RootMessage"/>
 <xsd:complexType name="RootMessage">
 <xsd:sequence>
 <xsd:element name="SaleEnvelope">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Header" type="tns:Header"/>
 <xsd:element maxOccurs="unbounded" name="SaleList" type="tns:SaleList"/>
 <xsd:element name="Trailer" type="tns:Trailer"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SaleList">
 <xsd:sequence>
 <xsd:element maxOccurs="2" minOccurs="2" name="Invoice" type="tns:Invoice"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Invoice">
 <xsd:sequence>
 <xsd:element maxOccurs="2" minOccurs="2" name="Initial" type="xsd:string"/>
 <xsd:element name="Surname" type="xsd:string"/>
 <xsd:element maxOccurs="2" minOccurs="2" name="Item" type="tns:Item"/>
 <xsd:element name="Balance" type="xsd:float"/>
 <xsd:element name="Currency" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Item">
 <xsd:sequence>
 <xsd:element maxOccurs="3" minOccurs="3" name="Code" type="xsd:string"/>
 <xsd:element name="Description" type="xsd:string"/>
 <xsd:element name="Category" type="xsd:string"/>
 <xsd:element name="Price" type="xsd:float"/>
 <xsd:element name="Quantity" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Header">
 <xsd:sequence>
 <xsd:element name="SaleListCount" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Trailer">
 <xsd:sequence>
 <xsd:element name="CompletionTime" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="SaleRequest">
 <wsdl:part element="tns:SaleRequest" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="SaleResponse">
 <wsdl:part element="tns:SaleResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="WssSale">
 <wsdl:operation name="Sale">
 <wsdl:input message="tns:SaleRequest" name="SaleRequest"

25/04/2008 Version 1.0 Page 76 of 87

wsaw:Action="http://WssSale.miwssoap.broker.mqst.ibm.com/WssSale/services/WssSale/Sal
eRequest"/>
 <wsdl:output message="tns:SaleResponse" name="SaleResponse"

wsaw:Action="http://WssSale.miwssoap.broker.mqst.ibm.com/WssSale/services/WssSale/Sal
eResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="WssSaleSoapBinding" type="tns:WssSale">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Sale">
 <wsdlsoap:operation soapAction="SummerSale"/>
 <wsdl:input name="SaleRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="SaleResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="WssSaleService">
 <wsdl:port binding="tns:WssSaleSoapBinding" name="WssSale">
 <wsdlsoap:address location="http://localhost:9081/WssSale/services/WssSale"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Output Message
For those tests that modified the message one of two message formats was used for the
output messages dependent on the test case. These are the Compute and Transform
messages.

Compute Message
For compute test cases the balance field for each invoice is validated and the currency is
converted into sterling. So there is minor modification of the input message.

The message layout is shown below

<Parent>
 <First>1</First>
 <SaleList>
 <Invoice>
 <Initial>K</Initial>
 <Initial>A</Initial>
 <Surname>Braithwaite</Surname>
 <Item>
 <Code>00</Code>
 <Code>01</Code>
 <Code>02</Code>
 <Description>Twister</Description>
 <Category>Games</Category>
 <Price>00.30</Price>
 <Quantity>01</Quantity>
 </Item>
 <Item>
 <Code>02</Code>
 <Code>03</Code>
 <Code>01</Code>

25/04/2008 Version 1.0 Page 77 of 87

 <Description>The Times Newspaper</Description>
 <Category>Books and Media</Category>
 <Price>00.20</Price>
 <Quantity>01</Quantity>
 </Item>
 <Balance>00.50</Balance>
 <Currency>Sterling</Currency>
 </Invoice>
 <Invoice>
 <Initial>T</Initial>
 <Initial>J</Initial>
 <Surname>Dunnwin</Surname>
 <Item>
 <Code>04</Code>
 <Code>05</Code>
 <Code>01</Code>
 <Description>The Origin of Species</Description>
 <Category>Books and Media</Category>
 <Price>22.34</Price>
 <Quantity>02</Quantity>
 </Item>
 <Item>
 <Code>06</Code>
 <Code>07</Code>
 <Code>01</Code>
 <Description>Microscope</Description>
 <Category>Miscellaneous</Category>
 <Price>36.20</Price>
 <Quantity>01</Quantity>
 </Item>
 <Balance>80.88</Balance>
 <Currency>Euros</Currency>
 </Invoice>
 <InvoicesTotal Currency="Sterling">57.116</InvoicesTotal>
 </SaleList>
 <Last>Test</Last>
</Parent>

Transform Message
For the transformation test the input message is modified and takes a different layout. For
each invoice a statement is created for each customer within a SaleList.

The message layout is shown below.

<Parent>
 <SaleList>
 <Statement Type="Monthly" Style="Full">
 <Customer>
 <Initials>KA</Initials>
 <Name>Braithwaite</Name>
 <Balance>00.50</Balance>
 </Customer>
 <Purchases>
 <Article>
 <Desc>Twister</Desc>
 <Cost>4.8E-1</Cost>
 <Qty>01</Qty>
 </Article>
 <Article>

25/04/2008 Version 1.0 Page 78 of 87

 <Desc>The Times Newspaper</Desc>
 <Cost>3.2E-1</Cost>
 <Qty>01</Qty>
 </Article>
 </Purchases>
 <Amount>8E-1</Amount>
 </Statement>
 <Statement Type="Monthly" Style="Full">
 <Customer>
 <Initials>TJ</Initials>
 <Name>Dunnwin</Name>
 <Balance>81.84</Balance>
 </Customer>
 <Purchases>
 <Article>
 <Desc>The Origin of Species</Desc>
 <Cost>3.5744E+1</Cost>
 <Qty>02</Qty>
 </Article>
 <Article>
 <Desc>Microscope</Desc>
 <Cost>5.792E+1</Cost>
 <Qty>01</Qty>
 </Article>
 </Purchases>
 <Amount>1.29408E+2</Amount>
 </Statement>
 </SaleList>
</Parent>

25/04/2008 Version 1.0 Page 79 of 87

Appendix D - Use Case Descriptions

This section contains a description of the processing in each of the use cases which are used
to characterise the performance of WebSphere Message Broker V6. All of these use cases
are shipped as samples in WebSphere Message Broker V6.1. See the samples gallery for
more information.

Coordinated Request/Reply
The coordinated request reply sample is based on the scenario of a contemporary and
established application communicating through the use of WebSphere MQ messages in a
request/reply processing pattern. The contemporary application uses self-defining XML
messages and issues a request message. The established application uses Custom Wire
Format (CWF) messages. It receives a request message, processes it and delivers a reply
message. For the applications to successfully communicate, the message formats must be
transformed for both the request and reply messages.

The processing in the sample consists of three message flows and one message set. The
message flows are:

Request Message Flow
The request message flow performs the following processing:

• Reads a WebSphere MQ message containing an XML payload.
• Converts the message into the equivalent CWF format.
• Creates a WebSphere MQ message containing the transformed message.
• Saves the original ReplyToQ and ReplyToQMgr details in a separate WebSphere MQ

message for subsequent retrieval by the Reply message flow.
• Sets the ReplyToQ and ReplyToQMgr details to be the input of the Reply message

flow.
• Sends the message on to the Backend Reply message flow.

The Request message flow consists of the following nodes:

Backend Reply Message Flow
The backend reply message flows performs the following processing:

• Reads a WebSphere MQ message.
• Adds the time the message was modified to the payload of the message.
• Writes a WebSphere MQ message.

The Backend Reply message flow consists of the following nodes:

25/04/2008 Version 1.0 Page 80 of 87

Reply Message Flow
The reply message flow performs the following processing:

1. Reads a WebSphere MQ message containing a message in CWF format.
2. Converts the message into the equivalent XML format.
3. Obtains the ReplyToQ and ReplyToQ Mgr of the original request message by reading

the WebSphere MQ message which was used to store this information in the Request
message flow. This is done by using the MQGET node.

4. Creates a WebSphere MQ message containing the transformed message and the
retrieved ReplyToQ and ReplyToQMgr values.

The Reply message flow consists of the following nodes:

Further information about the Coordinated Request Reply sample can be found in the
Message Brokers section of the Application samples category which is in the samples gallery
of the WebSphere Message Broker development toolkit.

Data Warehouse
The Data Warehouse sample demonstrates a scenario in which a message flow is used to
perform the archiving of data, such as sales data, into a database. The data is stored for later
analysis by another message flow or application.

Because the sales data is analyzed at a later date, the storage of the messages has been
organized in a way that makes it easy to select records for specified times. The date and time
at which the WebSphere MQ message containing the sales record was written are stored as
separate column values when the message is inserted into the database. The database table
contains four columns:

• The message data - the payload of the WebSphere MQ message stored as a BLOB.
• The date on which the WebSphere MQ message was created.
• The time when the WebSphere MQ message was created.
• A time stamp created by the database to record the time when the record was

inserted.

By storing the data in this way it is possible to retrieve records between specific periods of
time, say between the hours of 9:00 a.m. to 12:00 p.m. or 12:01 p.m. and 5:00 p.m. which
would allow a comparison of morning and afternoon sales to be made.

The data archiving is performed by the WarehouseData message flow. This is described
below.

WarehouseData Message Flow
The WarehouseData message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload. The payload
contains the data to be archived.

2. Converts a portion of the message tree to a BLOB ready for insertion into the
database.

3. Inserts the message BLOB along with the date and time at which the WebSphere MQ
message was written into a database.

4. Sends a WebSphere MQ confirmation message to signal successful insertion of the
message into the database.

The WarehouseData message flow consists of the following nodes:

25/04/2008 Version 1.0 Page 81 of 87

Further information about the Data Warehouse sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

Large Messaging
The Large Messaging sample is a sample based on the scenario of end-of-day processing of
sales data. Messages recording the details of sales through the day are batched together in
the store for transmission to the IT centre. On receipt at the IT centre the batched messages
are split back out into their constituent parts for subsequent processing.

This splitting is achieved using a WebSphere Message Broker message flow. Each of the
individual messages representing a sale has the same structure.

The input and output messages in this sample are implemented as self-defining XML
messages for simplicity. Other message formats could easily be used.

Each input message consists of three parts:

• A header containing a count of the number of repetitions of the repeating SaleList
structure that follows.

• The body that contains the repetitions of the repeating SaleList structure.
• The trailer that contains the time the message was processed.

The aim of the processing in this sample is to write each of the instances of the SaleList
structure as a separate WebSphere MQ message while minimizing overall memory
requirements.

The message flow implements a memory saving technique through the use of a mutable
message tree.

The processing in the sample consists of one message flow. The processing it performs is
described below.

Large Messaging Message Flow
The large messaging message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. Formats a WebSphere MQ message for each instance of the SaleList structure.
3. Writes the WebSphere MQ messages to the output queue.
4. Produces a WebSphere MQ message to signal completion of the processing when

the final element has been processed.

25/04/2008 Version 1.0 Page 82 of 87

The Large Messaging message flow consists of the following nodes:

Further information about the Large Messaging sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

Message Routing
The message routing sample shows how a database table can be used to store routing
information which a message flow can then use to route messages to WebSphere MQ
queues.

The message routing sample shows how to implement a routing table, using shared
variables, to route messages in a message flow. This test is using the routing table
implemented using shared variables.

The processing in the message flows is described below:

Routing_using_memory_cache Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. Creates a destination list based on data which is held in shared variables.
3. Produces a WebSphere MQ output message. The destination of the message is

specified in the destination list.

25/04/2008 Version 1.0 Page 83 of 87

Further information about the Message Routing sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

SWIFT Message Parse
The processing of SWIFT messages is a common requirement for financial institutions. The
parsing of the messages is achieved using the MRM parser with a message format of Tagged
Delimited String (TDS).

The processing in this test consists of a full parse of a SWFIT MT103 message format.

SWIFT Message Parsing Message Flow
The processing in the SWIFT Message Parse message flow consists of the following:

1. Reads a WebSphere MQ message containing a SWIFT MT103 message in tagged
delimited string format.

2. Accesses the last element in the input message.
3. Produces a WebSphere MQ message to signal completion of the processing.

The SWIFT Message Parse processing consists of the following nodes:

The output message is a minimal WebSphere MQ message.

25/04/2008 Version 1.0 Page 84 of 87

XML Transformation
The XMLT sample shows how an XML message can be transformed into a different layout
using an XMLTransformation node and a XSL stylesheet. This type of processing could be
performed in any situation where the layout of a message needs to be changed to suit the
requirements of different application.

This technology provides the ability to use an XSL stylesheet in a new way, using it as part of
a message flow.

XSL Transformation Message Flow

The processing in the message flow consisted of the following:

1. Reads a WebSphere MQ message containing an XML payload.
2. Invoke the XSL Stylesheet transformation.
3. Write an MQOutput message containing the modified message.

The following figure shows the XSL Transformation message flow:

The XSL stylesheet used in the processing was as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<Parent>
<xsl:for-each select="/Parent/SaleList">
<SaleList>
<xsl:for-each select="Invoice">
<xsl:if test="not(contains(Surname,'Shop'))">
<Statement>
<xsl:attribute name="Type">Monthly</xsl:attribute>
<xsl:attribute name="Style">Full</xsl:attribute>
<Customer>
<Initials>
<xsl:for-each select="Initial">
<xsl:value-of select="."/>
</xsl:for-each>
</Initials>
<Name><xsl:value-of select="Surname"/></Name>
<Balance><xsl:value-of select="Balance"/></Balance>
</Customer>
<Purchases>
<xsl:for-each select="Item">
<Article>
<Desc><xsl:value-of select="Description"/></Desc>
<Cost><xsl:value-of select='format-number((number(Price)*1.6),"####.##")'/></Cost>
<Qty><xsl:value-of select="Quantity"/></Qty>
</Article>
</xsl:for-each>
</Purchases>
<Amount>

25/04/2008 Version 1.0 Page 85 of 87

<xsl:attribute name="Currency">
<xsl:value-of select="Currency" />
</xsl:attribute>
<xsl:call-template name="sumSales">
<xsl:with-param name="list" select="Item"/>
</xsl:call-template>
</Amount>
</Statement>
</xsl:if>
</xsl:for-each>
</SaleList>
</xsl:for-each>
</Parent>
</xsl:template>
<xsl:template name="sumSales">
<xsl:param name="list" />
<xsl:param name="result" select="0"/>
<xsl:choose>
<xsl:when test="$list">
<xsl:call-template name="sumSales">
<xsl:with-param name="list"
select="$list[position()!=1]"/>
<xsl:with-param name="result"
select="$result + number($list[1]/Price)*number($list[1]/Quantity)*1.6"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select='format-number(number($result),"####.##")'/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

The message being transformed was the same format as that described in the Section Input
Message.

Further information about this sample can be found under the XMLT entry in the Message
Brokers section of the Technology samples category which is in the samples gallery of the
WebSphere Message Broker development toolkit.

 XMLNSC Validation
The XMLNSC Validation sample demonstrates how WebSphere Message Broker's XMLNSC
parser can validate XML messages against a schema.

Message Flow
The processing in the sample consists of one message flow called
XMLNSCVALIDATIONMF1. The following figure shows the XMLNSCVALIDATIONMF1
message flow:

25/04/2008 Version 1.0 Page 86 of 87

The XMLNSCVALIDATIONMF1 message flow is in the message flow project called
XMLNSCVALIDATIONMF.

The message flow performs the following tasks:

• Takes an XML message in through an MQInput node from the WebSphere
MQ queue XMLNSCVALIDATIONMF1.IN.

• The MQInput node has the following properties defined on the:
Input Message Parsing tab:

o Message domain is set to XMLNSC.
o Message set is set to XMLNSCVALIDATIONMS.

Parser Options tab:
o Parse Timing is set to Complete.
o Build tree using XML schema data types is checked.

Input Message Parsing tab:
o Validation is set to Content and Value.
o Failure action is set to Exception.

• The Out terminal of the MQInput node is wired to a Compute node called
ProcessValidMessage. The Compute node is associated with ESQL that
copies InputRoot to OutputRoot.

• The Out terminal of the Compute node is wired to an MQOutput node
called OutputOK. The MQOutput node puts messages to queue
XMLNSCVALIDATIONMF1.OUT.

• The Catch and Failure terminals of the MQInput node are wired to a
second Compute node called ProcessExceptionList. This Compute node
copies the relevant part of the ExceptionList to OutputRoot.

• The Out terminal of this Compute node is wired to an MQOutput node
called OutputFailure. This MQOutput node puts messages to queue
XMLNSCVALIDATIONMF1.FAIL.

Message set
Message set XMLNSCVALIDATIONMS specifies runtime domain XMLNSC and
contains an XML schema called SampleMessageValidation.xsd. A message
definition file has been created from this schema. The message set contains the
following:

• One message called SaleListMessage. The SaleListMessage is based on
the message that is used in many of the other samples.

• Several constraints have been added to the XML schema for this message
to demonstrate various types of validation failure. These are:

o Value constraints:
� Surname has maxLength set to 20.
� Currency has valid values 'GBP', 'Sterling', 'USD', 'EUR',

'Euros' and 'JPY'.
� Quantity has minInclusive 1 and maxInclusive 100.
� Code has a pattern of 2 alphanumeric characters.

o Changed elements and attributes:
� Element CompletionTime has type of xsd:string changed to

xsd:dateTime.
� An optional attribute 'Title' to Header.
� A mandatory attribute 'occurrence' to SaleList.

25/04/2008 Version 1.0 Page 87 of 87

� An optional attribute 'guaranteed' to SaleList.
� A mandatory attribute 'isLast' to Trailer.

Test messages
The following test messages are used in this sample for the performance tests:

• ValidMessage.xml

