

MQSeries Integrator for Sun Solaris – v1.1
Maximizing persistent message throughput

Edition 1.0

June 9, 2000

Brian P. Bell
IBM Global Services

Brian P. Bell Page 2 26/07/00

Brian P. Bell Page 3 26/07/00

Table of Contents

Notices 4

Trademarks and service marks 4

Acknowledgments 5

Preface 6

The Audience 6

What is in this document 6

Introduction 7

Objective 7

Test Environment 8

Test Model 8

Hypothesis 9

Physical Environment 10

P Hub 10
P1 10
P2 10

M Hub 11
M1 11
M2 11

Initial Hub Disk Architecture – mirroring, striping, logging, etc (figure 2) 12

Final Testing Environments 13

Test Cases 14

Preliminary Test Cases 15
Test Case 1: Determine maximum number of rules engines (P Hub) 15
Test Case 2: Multiple queue managers with multiple rules engines (P Hub) 16
Test Case 3: Multiple queue managers with multiple rules engines (M Hub) 18
Test Case 4: One disk allocated per Queue manager and log (M hub) 19
Test Case 5: One disk allocated per Queue manager and log (P hub) 21

Was Our Hypothesis True? 22

Conclusions 23

Considerations 23

Finally 23

Brian P. Bell Page 4 26/07/00

Notices
This report is intended to help understand the performance characteristics of MQSeries Integrator
for Sun Solaris v1.1, and the scalability of the solution. The information is not intended as the
specification of any programming interfaces that are provided by MQSeries or MQSeries
Integrator.

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed as is. The use of this information and the implementation of any of the techniques is
the responsibility of the reader. Much depends on the ability of the reader to evaluate these data
and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks
The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

• DB/2
• IBM
• MQSeries
• MQSeries Integrator
• RS6000

The following terms, used in this publication, are trademarks of the Sun Corporation in the United
States or other countries or both:

• Solaris

The following terms, used in this publication, are trademarks of the EMC Corporation in the
United States or other countries or both:

• EMC

The following terms, used in this publication, are trademarks of the Veritas Corporation in the
United States or other countries or both:

• Veritas

Brian P. Bell Page 5 26/07/00

Acknowledgments
The following individuals contributed in varied ways to developing the presented information.

Satish Basvapatri
Jeff Gallup
Jim Lessard
Paul Moyer
John Spray
Rae Dean Walby
Corey Walker
Tom Walstad
Satish Venkatasubbu
(Alphabetically Listed)

Brian P. Bell Page 6 26/07/00

Preface
This document outlines aspects of the MQSeries interface and MQSeries Integrator (MQSI)
performance within the Solaris environment as described within. It is intended to help persons
who are investigating IBM MQSeries and MQSI implementations for positioning them within their
installation's needs.

NOTE: The information in this publication is supplemental to, and not intended as the
replacement of, any product documentation. This information was developed in conjunction with
use of the environment specified, and is limited in application to those specific hardware and
software products and levels.

The Audience
This document is designed for people who:
• Want to explore the performance considerations of MQSI for Solaris V1.1 with MQSeries

V5.1
• Will be performance testing MQSI for Solaris V1.1 in order to provide Technical Support
• Will be designing and developing implementations that use MQSI for Solaris V1.1. Users

should have a general awareness of Solaris (UNIX), MQSeries, MQSI, and be familiar with
the Persistent/Non-Persistent Message concept, as well as Unit of Work operation to get the
best out of this document.

What is in this document
• A set of graphs showing the MQSI performance aspects in a variety of application

configurations and implemented on various Solaris configurations
• Interpretation of these graphs, and the implications for application design

Brian P. Bell Page 7 26/07/00

Introduction
Many companies are facing an environment where enterprise application integration has become
increasingly important to their information technology operations. Additionally, the changing
business environment requires a migration beyond Intra-Company integration, and often calls for
Inter-Company integration. The use of MQSeries, MQSeries Integrator and MQSeries Workflow
can bring many benefits to an intra-Company integration, as they enable asynchronous
processing and provide cross-environment facilities. This document provides detailed information
on the performance of the MQSeries Integrator Infrastructure as it transforms real-world
transaction data within a Solaris 2.6/SunOS 5.6 environment.

Objective
The Objective of this testing was to determine the application configuration and tuning that would
maximize the throughput for Persistent MQSeries messages using MQSeries and MQSeries
Integrator Infrastructure.

The initial hardware and software configurations were obtained from the IBM support pacs. The
configuration was then altered to optimize performance while maintaining a secure production
environment. The configuration and tuning of the hub was performed to achieve the best
throughput performance in the installed environment (The settings in this test are considered
optimal for this particular production environment. They are not the fastest possible. Assured
message delivery has a cost).

Brian P. Bell Page 8 26/07/00

Test Environment
All of the tests were conducted on two pair of Solaris 2.6 (SunOS 5.6) machines with common
system software stack as described in the Physical Environment section of this document. The
first pair (P1 and P2) make up the P hub and the second pair (M1 and M2), make up he M hub.

The preliminary tests were conducted to determine the optimum application configuration for the
fully configured test machine, where ‘optimum’ was defined as the greatest message per second
throughput rate. This involved varying the number of:

• Queue Managers
• MQSeries Input Queues
• MQSI Rules Engine Daemons

Once the optimum application configuration was found, more tests were run to further configure
the hardware.

Test Model

Figure 1 - Preliminary Test Model Diagram

Figure 1 illustrates the model that was used as a starting point for the testing. The driver
application loaded and maintained the input queue depth of 100 messages to insure MQSI would
process messages at the maximum rate. The driver program put messages into the RULESIN
queue and processed messages from the output queue, recording data every 2000 messages
until total throughput reached 40,000 messages. The data recorded was saved in a file for later
analysis.

Each of the 40,000 messages put to the input queue were 1024 bytes in length. After rules
engine processing, the messages were placed on the output queue. The reformatted messages
place on the output queue were also 1024 bytes in length.

The test model was processed as follows:

Figure 1
P2 or M2

P1 or M1

outputMQSI Rule Eng

PTESTn

MQSI Rule Eng n

outputMQSI Rule Eng

PTEST1

MQSI Rule Eng n
driver

driver

driver

RULESIN

PTEST1

RULESIN

PTESTn

driver

outputMQSI Rule Eng

STESTn

MQSI Rule Eng n

outputMQSI Rule Eng

STEST1

MQSI Rule Eng n
driver

driver

driver

RULESIN

STEST1

RULESIN

STESTn

driver

Brian P. Bell Page 9 26/07/00

• The driver programs were started and the respective input queue level loaded to 100
messages by the driver program.

• The MQSI rules engines were started on both systems and began processing messages from
the input queue.

• Every time the rules engine processed another message the driver program put a persistent
message to the input queue maintaining 100 messages in the input queue (a parameter
specified the number of records per commit – Syncpoint control).

• One or more instances of the MQSI rule engine would read the input queue (RULESIN), with
the resulting output being written to a single MQSeries queue (OUTPUT) per Queue Manager
([S or P]TESTn).

• The driver program would read the output queue under Syncpoint, and write the performance
information to a report file.

• A commit was issued after the appropriate number of messages, as passed in a program
parameter.

• All messages processed by the rules engine would undergo a single reformat and routed to
one queue.

The following MQSI environment variables were set:
• LogLevel was set to 2 in the .mpf file to log only errors and fatal errors
• All queues on the hub queue manager are persisted: DEFPSIST(YES)
• NN_ALERT was not set therefore it defaults to ON

The settings of the above MQSI parameters were carefully considered and mirror the proposed
settings in the production environment.

Hypothesis
Before testing began, it could have been assumed that:
• The more queue managers added, the greater the throughput
• Disk input/output would be a bottleneck
• Increasing the number of MQSI Rules Daemons per input queue would improve performance

Various vendor white papers and expert council supported the assumptions.

Brian P. Bell Page 10 26/07/00

Physical Environment

P Hub

P1

 Function Production P Hub

 IP Address

 Logical IP Address Required for fail-over

 Host Name P1

Hardware Machine Type SUN E4500

 Processors 4 x 400 MHz – 8Mb of external cache

 Storage Presented as 6 11GB mirrored LUNS
mirrored on the EMC side, stripped via
Veritas Volume Manager on the server

Software/OS OS Version Solaris 2.6 (SunOS 5.6)

 MQSeries Version/PTF MQSeries for Solaris 5.1/02

 MQSeries Manager Name PTEST1, PTEST2, …,PTESTn

 MQSeries Cluster Name PHUB

 MQSeries Integrator Version/PTF MQSI V1.1 for Solaris and UDB

 Universal Database Version/PTF DB2 V6.1

 Veritas File System Version 3.2

 Database Name PERFORM

 Machine Location PHX IPC

P2

 Function Production P Hub

 IP Address

 Logical IP Address Required for fail-over

 Host Name P2

Hardware Machine Type SUN E4500

 Processors 4 x 400 MHz – 8Mb of external cache

 Storage Presented as 6 11GB mirrored LUNS
mirrored on the EMC side, stripped via
Veritas Volume Manager on the server

Software OS Version Solaris 2.6 (SunOS 5.6)

 MQSeries Version/PTF MQSeries for Solaris 5.1/02

 MQSeries Manager Name STEST1, STEST2, …,STESTn

 MQSeries Cluster Name PHUB

 MQSeries Admin UserID Mqm

 Universal Database Version/PTF DB2 V6.1

 Database Name PERFORM

 Veritas File System Version 3.2

Brian P. Bell Page 11 26/07/00

M Hub
M1

 Function Production M Hub

 IP Address

 Logical IP Address Required for fail-over

 Host Name M1

Hardware Machine Type SUN E4500

 Processors 4 x 400 MHz – 8Mb of external cache

 Storage Sun StorEdge A5200 presented as
mirrored (7 x 9.1 GB, 10,000rpm low
profile FC-AL drives) One of the disks is a
hot spare

Software OS Version Solaris 2.6 (SunOS 5.6)

 MQSeries Version/PTF MQSeries for Solaris 5.1/02

 MQSeries Manager Name PTEST1, PTEST2, …,PTESTn

 MQSeries Cluster Name MHUB

 MQSeries Integrator Version/PTF MQSI V1.1 for Solaris and UDB

 Universal Database Version/PTF DB2 V6.1

 Database Name PERFORM

 Veritas File System Version 3.2

M2

 Function Production M

 IP Address

 Logical IP Address Required for fail-over

 Host Name M2

Hardware Machine Type SUN E4500

 Processors 4 x 400 MHz – 8Mb of external cache

 Storage Sun StorEdge A5200 presented as
mirrored (7 x 9.1 GB, 10,000rpm low
profile FC-AL drives) One of the disks is a
hot spare

Software OS Version Solaris 2.6 (SunOS 5.6)

 MQSeries Version/PTF MQSeries for Solaris 5.1/02

 MQSeries Manager Name STEST1, sTEST2, …,sTESTn

 MQSeries Cluster Name MHUB

 MQSeries Integrator Version/PTF MQSI V1.1 for Solaris and UDB

 Universal Database Version/PTF DB2 V6.1

 Database Name PERFORM

 Veritas File System Version 3.2

Note: the only difference between the M hub and the P hub was the storage device used.

Brian P. Bell Page 12 26/07/00

Initial Hub Disk Architecture – mirroring, striping, logging, etc (figure 2)
Each hub was set-up with a 24 disk array. Twelve of the disks were reserved for a mirror of the
production disk environment. The mirrored disk would automatically take over in the case of a
failure of any of the primary disks. Of the twelve primary disks, six were allocated for queue
managers and logs on each system. The MQSeries queues were striped across three of the
disks and the log files were striped across the other three disks for each Sun box. Configurations
were then placed in Veritas software to allow the disk, queues, log files and subsystems to fail
over between machines in the case of failure of one of the Sun boxes

The system was configured in this manner for a number of reasons.

• Every time a message was persisted to a queue, a write to disk occurs in two
locations (the log file and queue). Separating log files and queue data allowed
different disks to I/O at the same time therefore increasing performance by
shortening total I/O time.

• Separating the queue data and logs also reduced the chance of loosing data. In the
event of a queue disk failure, you would have the logs to recover. If the logs and
queue data was not separated, there would be a chance of losing a log and its
corresponding queue with the loss of one disk. This would lead to lost data and
possible system crash.

• The mirror of production disk allowed for continuation of processing if a disk failed. In
the event of a single or multiple disk failure, the mirror of the disk would take over the
primary position until the failed disk was replaced.

• The fail-over of the complete queuing sub-system was devised to allow continued
processing during a catastrophic Sun system failure.

The hub configuration was designed for high availability and performance with multiple
redundancies to insure continuation of processing and to nearly eliminate the possibility of loosing
data (See figure 2).

E4500

Queue Manager 2
Backup

Queue Manager 1

E4500

O
S

 D
is

k

6 Shared Striped Disks 6 Shared Striped Disks

6 Shared Striped Disks
Mirror

6 Shared Striped Disks
Mirror

Queue Manager 1
Backup

Queue Manager 2

O
S

 D
isk

UpUp

Down Down

Disk Array

Figure 2

Brian P. Bell Page 13 26/07/00

Final Testing Environments
The hardware and software environments were altered during the several of the tests to optimize
performance. For the test results reported, the hardware environment was the final testing
environment and considered optimal at this point in time. The software/middleware configuration
changes were altered during tests to pin point optimal configuration. Refer to the Test Case
Section to see the description of the software/middleware setup.

Brian P. Bell Page 14 26/07/00

Test Cases
Several test cases were run to tune the parameters to insure maximum throughput. These test
cases included varying the rules and formats. The formats were all flat, multiple field formats.
After several tests were conducted it was surmised that the reformat of data from ASCII to
EBCDIC produced the lowest throughput of any flat reformat. The EBCDIC test was used as a
baseline for all tests.

Test cases one, two and five were performed on the P hub and test cases three and four were
performed on the M hub. It was necessary to perform tuning on both hubs because the hubs
used different types of disk. Lessons learned in each test case were applied to the next test
case.

Brian P. Bell Page 15 26/07/00

Preliminary Test Cases
Test Case 1: Determine maximum number of rules engines (P Hub)
Description: Tests were run to determine optimal the number of rules engines for one queue
manager. The test was set up to run 1, 2, 3, 4 and 8 rules engines against one input queue. This
test was first run on the internal disk and then on the striped disk, described in Physical
Environment section.

Results: The results (figure 3) in both striped and non-striped disk tests, performance peaked
most frequently during the 2 rules engines test when running against 1 queue. The message
throughput nearly tripled when the test was run on the striped disk. The gain was attributed to
two characteristics. In the non-striped test, both queue data and log files were written to the Sun
internal disk. In the striped test, the queue data and the log files each were configured to stripe
across three high RPM disk. Separation of workload and high performance disks resulted in
greater throughput.

The rules engine processes consumed the greatest amount of CPU, 10-15% per rules engine.
MQ processes consumed the majority of the remainder of the CPU and each of the driver
programs consumed less than 1% of the CPU.

Results from tests performed on P2

Figure 3

26
28
30
32
34

m
sg

/s
ec

Minimum

Quantity of Rule Engines

Persistance Messages Linear Logs
Non-striping

1
2
3
4
8 110

120

130

140

m
sg

/s
ec

Minimum

Quantity of Rule Engines

Persistance Messages Linear Logs
Striping

1
2
3
4
8

0

10

20

30

40

m
sg

/s
ec

EBCDIC Conversion

Quantity of Rule Engines

Persistance Messages Linear Logs
Non-striping

1
2
3
4
8 0

20
40
60
80

100
120

m
sg

/s
ec

EBCDIC Conversion

Quantity of Rule Engines

Persistance Messages Linear Logs
Striping

1
2
3
4
8

Brian P. Bell Page 16 26/07/00

Test Case 2: Multiple queue managers with multiple rules engines (P Hub)
Description: Test 2 was similar to the striped test in test case 1. Test case 2 ran 1 and 2 rules
engines on with multiple queue managers.

Test case 2 represented the volume for our final objective. Two basic concepts were explored:
• Expand the breadth of the system through additional Queue Managers, and therefore,

additional Queues and MQSI Rule Engines
• Compare normal hub operation verses fail-over operations. Benchmark the total hub

throughput during normal and failed-over operation.

Results: The best performance was offered by the configuration highlighted in the charts (fig.
4,5,6). During normal hub operations, the optimal performance configuration was 5 queue
managers and one rule engine per queue manager (figure 4). The run achieved an average of
220 messages per second through a physical box and 440 messages per second through the
logical hub.

The same test was run during the fail-over operation. During this event, the optimal configuration
for performance was 4 queue managers and one rule engine per queue manager. The fail-over
performance test was conducted twice. One test was completed for P2 failed-over to the P1
(figure 5) and one for P1 (figure 6) failed-over to P2. Each of the runs achieved 280 messages
per second through the physical and logical hub.

It became evident that there was a practical limit to the scalability of this solution with the current
hardware configuration. As more queue managers and rules engines were added, CPU idle time
approached 0 and throughput was maximized. Test Case 2 demonstrated contrary to our initial
thought, that CPU was the limiting throughput resource.

In each of the test cases, the scenario was executed repetitively, and data captured by vmstat
and iostat was used to determine if the scenario had exhausted any system resource (see figure
4, 5 & 6).

Previously conducted testing indicated an increase in Messages/Second for a given test scenario,
when the number of MQSI rule engines was increased from one to two per input queue and when
adding an additional queue manager. In test case number 2, we did not experience the same
performance gain by adding another rule engine. The degradation of performance was attributed
to contention for CPU.

Normal Hub Operation Statistics
P1 P2

Rule
engines

qmgrs

Avg
Msg/Sec

Total
Msg/Sec

CPU
Idle

IO
Wait

Total Hub

Throughput
Rule

engines

qmgrs
Avg

Msg/Sec
Total

Msg/Sec
CPU
Idle

IO
Wait

1 1 86 86 70 20 188 1 1 89 89 69 15
1 2 66 132 50 23 270 1 2 69 138 49 20
1 3 55 165 33 21 342 1 3 59 177 30 17
1 4 49 196 21 16 404 1 4 52 208 18 12
1 5 43 215 12 10 440 1 5 45 225 8 6
2 1 112 112 53 23 232 2 1 120 120 53 23
2 2 84 168 24 18 350 2 2 91 182 22 15
2 3 61 183 9 8 387 2 3 68 204 7 6
2 4 48 192 3 2 396 2 4 51 204 2 1
2 5 39 195 1 0 400 2 5 41 205 1 0

Figure 4

Brian P. Bell Page 17 26/07/00

Failed-over entire hub to P1
P1 Fail-over statistics

P1
Rule

engines

qmgrs
Avg

Msg/Sec
Total Hub
Msg/Sec

CPU
Idle

IO
Wait

1 2 68 136 47 19
1 4 59 236 30 16
1 6 46 276 7 5
1 8 35 280 1 0
1 10 27 270 1 0
2 2 92 184 20 13
2 4 67 268 4 3
2 6 41 246 1 0
2 8 30 240 1 0
2 10 24 240 1 0

 Figure 5

Failed-over entire Hub to P2
P2 Fail-over statistics

P2
Rule

engines

qmgrs
Avg

Msg/Sec
Total Hub
Msg/Sec

CPU
Idle

IO
Wait

1 2 68 136 47 18
1 4 59 236 30 16
1 6 46 276 7 5
1 8 35 280 1 0
1 10 27 270 1 0
2 2 93 186 20 13
2 4 68 272 5 4
2 6 41 246 1 0
2 8 30 240 1 0
2 10 24 240 1 0

 Figure 6

Brian P. Bell Page 18 26/07/00

Test Case 3: Multiple queue managers with multiple rules engines (M Hub)

Description: Test 3 was identical to test case 2 except the test was run on the M hub.

Test case 3 represented a comparison between the two hubs. The type of storage device was
different on each of the hub. The P hub’s storage device included built in cache, which allowed
for higher performance. It was assumed there would be a performance variance between the two
hubs due to the storage device.

Results: The best performance was offered by the configuration highlighted in chart (fig. 7).
During normal hub operations, the optimal performance configuration was 5 queue managers and
one rules engine per queue manager (figure 7). The run achieved an average of 127.5
messages per second through a physical box and 255 messages per second through the logical
hub.

Previously conducted testing on the P hub yielded a considerably higher throughput. The
identical test in P resulted in 440 messages per second compared to 255 on the M hub. The
throughput in M was 42% less than the throughput in P. Figure 8 depicts the difference between
the two hubs as more queue managers are added.

Due to the low throughput of the normal operation of the configuration, the fail-over test was not
conducted. It was concluded that further tuning would be required to reach a higher level of
throughput.

Normal M Hub Operation Statistics – Test Case 3

M1 M2

#Rule
engines

qmgrs

Avg
Msg/Sec

Total
Msg/Sec

CPU
Idle

IO
Wait

Total Hub

Throughput
#Rule

engines

qmgrs
Avg

Msg/Sec
Total

Msg/Sec
CPU
Idle

IO
Wait

1 1 63 63 80 66 125 1 1 62 62 80 65
1 2 49 98 64 61 196 1 2 49 98 63 60
1 3 40 120 51 49 237 1 3 39 117 51 49
1 4 31 124 42 40 252 1 4 32 128 41 39
1 5 25 125 35 34 255 1 5 26 130 37 36
2 1 61 61 74 63 121 2 1 60 60 75 63
2 2 46 92 56 54 182 2 2 45 90 57 55
2 3 38 114 39 38 225 2 3 37 111 41 39
2 4 28 112 33 32 228 2 4 29 116 31 30
2 5 21 105 24 22 225 2 5 24 120 24 22

Figure 7

Brian P. Bell Page 19 26/07/00

Figure 8

Test Case 4: One disk allocated per Queue manager and log (M hub)

Description: After several tests were run on the M hub, the optimal disk and file system allocation
configuration was achieved.

Each queue manager and log file system was assigned to one physical disk. There were 6
production file systems each with their own disk. Figure 9 is a representation of the configuration.
Each box represents a physical disk. The 6th file system remained idle for test case 4. It was
designed for the production cluster repository queue manager. Since disk I/O was the limiting
factor and 5 queue managers was determined to be optimal for maximizing the CPU, adding an
additional queue manager would have decreased performance.

Disk 1
QM 1
Log 1

 Disk 2
QM 2
Log 2

 Disk 3
QM 3
Log 3

 Disk 4
QM 4
Log 4

 Disk 5
QM 5
Log 5

 Disk 6
unused

Results: Under the new configuration performance increased considerably. During normal hub
operations, the optimal performance configuration was 5 queue managers and one rules engine
per queue manager physical box (figure 9). Total hub throughput averaged 375 messages per
second through the logical hub. On fail-over, the hub’s throughput decreased to 250 messages
per second (figure 10).

The results from the test were satisfactory. The configuration from test case 4 was concluded to
be the optimal hardware, software and operating system configuration for the M boxes.

P & M Hub Comparison

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5

Quanitity of Queue Managers

M
es

sa
g

es
 p

er
 s

ec
o

n
d

P

M

Brian P. Bell Page 20 26/07/00

Normal Hub Operation Statistics – Test Case 4

M1 M2
Rule

engines

qmgrs
Avg

Msg/Sec
Total

Msg/Sec
CPU
Idle

IO
Wait

Total Hub

Throughput
Rule

engines

qmgrs
Avg

Msg/Sec
Total

Msg/Sec
CPU
Idle

IO
Wait

1 1 55 55 80 61 113 1 1 58 58 77 53
1 2 45 90 65 58 184 1 2 47 94 64 54
1 3 41 123 52 48 249 1 3 42 126 49 45
1 4 40 160 36 35 316 1 4 39 156 36 34
1 5 37 185 24 23 375 1 5 38 190 24 23
2 1 56 56 69 56 110 2 1 54 54 69 57
2 2 51 102 45 43 202 2 2 50 100 44 41
2 3 49 147 23 22 291 2 3 48 144 24 22
2 4 43 172 10 9 344 2 4 43 172 9 8
2 5 37 185 4 3 370 2 5 37 185 4 3

Figure 9

Failed-over entire Hub to M2
M2 Fail-over statistics

P2
Rule

engines

qmgrs
Avg

Msg/Sec
Total Hub
Msg/Sec

CPU
Idle

IO
Wait

1 2 47 94 64 55
1 4 40 160 36 34
1 6 36 216 14 13
1 8 30 240 4 3
1 10 25 250 1 0
2 2 56 112 43 40
2 4 44 176 10 8
2 6 33 198 2 0
2 8 25 200 1 0
2 10 20 200 1 0

Figure 10

Brian P. Bell Page 21 26/07/00

Test Case 5: One disk allocated per Queue manager and log (P hub)
Description: The P hub was configured to be identical to the M hub configuration in test case 4.

Results: There was a slight increase in performance (40 messages/second) during regular hub
operations and a slight decrease in performance (24-30 msgs/sec) during fail-over when test
case 5 results were compared to the previous P test (test case 2). This configuration was
concluded to be the final production configuration for both hubs.

Normal Hub Operation Statistics
P1

Total Hub
Throughput

P2

Rule
engines

qmgrs

Avg
Msg/Sec

Total
Msg/Sec

CPU
Idle

IO
Wait

 # Rule
engines

qmgrs

Avg
Msg/Sec

Total
Msg/Sec

CPU
Idle

IO
Wait

1 1 86 86 70 18 173 1 1 87 87 71 18
1 2 68 136 50 21 274 1 2 69 138 50 21
1 3 59 177 32 18 354 1 3 59 177 33 19
1 4 52 208 18 13 416 1 4 52 208 19 12
1 5 46 230 9 6 460 1 5 46 230 10 7
2 1 119 119 53 21 244 2 1 125 125 53 21
2 2 91 182 22 15 374 2 2 96 192 21 14
2 3 69 207 7 5 429 2 3 74 222 7 5
2 4 53 212 2 1 444 2 4 58 232 2 1
2 5 42 210 1 0 440 2 5 46 230 1 0

Figure 11
Failed-over entire Hub to P1

P1 Fail-over statistics
P1

Rule
engines

qmgrs

Avg
Msg/Sec

Total Hub
Msg/Sec

CPU
Idle

IO
Wait

1 2 70 140 48 18
1 4 53 212 17 10
1 6 41 246 3 1
1 8 32 256 1 0
1 10 25 250 1 0
2 2 99 198 19 11
2 4 59 236 2 0
2 6 38 228 1 0
2 8 28 224 1 0
2 10 23 230 1 0

Figure 12

Brian P. Bell Page 22 26/07/00

Failed-over entire Hub to P2

P2 Fail-over statistics
P2

Rule
engines

qmgrs

Avg
Msg/Sec

Total Hub
Msg/Sec

CPU
Idle

IO
Wait

1 2 69 138 49 17
1 4 54 216 16 9
1 6 41 246 3 1
1 8 32 256 1 0
1 10 25 250 1 0
2 2 101 202 18 11
2 4 62 248 1 0
2 6 41 246 1 0
2 8 30 240 1 0
2 10 24 240 1 0

Figure 13

Was Our Hypothesis True?
Interestingly, the outcome of this test was that we received the best performance with a
configuration of 5 queue managers each with one rules engine per input queue during normal hub
operations. The hypothesis was partly true for this hardware configuration. The largest surprise
in the results was the discovery of the CPU not disk I/O being the limiting factor for performance.
The one rule engine for optimal performance can be directly attributed to the contention for CPU.

Brian P. Bell Page 23 26/07/00

Conclusions
The following conclusions were gathered from the tests.

CPU was the limiting resource in the hardware configuration. By adding more CPUs,
performance could increase to a point until another resource, most likely disk I/O, would become
the limiting resource. The current solution has the ability to scale from 4 processors per box to 14
processors per box.

Considerations
The following considerations should be noted:
The system performance could be improved with further tuning the environment. The following
variations to this test could result in performance gains:
• Running the tests under various Syncpoint commits will produce varied results (Test were run

with a Syncpoint of 25)
• Varying the LogBufferPages setting could produce different results (Tests were run with a

setting of 17).
• A test for multiple input and output queues per queue manager was not tested and should be

considered for further tests.

Finally
We believe additional performance gains can be achieved by adding additional hardware. The
numbers in this report should not be viewed as a capacity ceiling. Instead they should be viewed
as an indicator of the solutions performance potential of the current logical hub architecture.
Additionally, this report provides some insight into the affect of the solution configuration, and the
affect of the identified application tuning parameters.

More importantly, the hub architecture in both M hub and P hub was proven to provide enough
throughput to exceed current needs.

