
Websphere MQ Integrator for Sun Solaris V2.1
Performance Report

Version 1.1

April, 2002

Tim Dunn

Websphere MQ Performance and Test
IBM UK Laboratories

Hursley Park
Winchester
Hampshire
SO21 2JN

Property of IBM

Take Note!

Before using this report be sure to read the general information under "Notices".

Third Edition, April 2002

This edition applies to Version 1.1 of Websphere MQ Integrator for Sun Solaris - V2.1 Performance
Report and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2002. All rights reserved. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure
is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

ii

Notices
This report is intended to help the customer understand the performance characteristics and perform
capacity planning for Websphere MQ Integrator for Sun Solaris - V2.1 at the CSD2 level of code. The
information is not intended as the specification of any programming interfaces that are provided by
MQSeries or Websphere MQ Integrator for Sun Solaris - V2.1.

References in this report to IBM products or programs do not imply that IBM intends to make these
available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is distributed
“asis”. The use of this information and the implementation of any of the techniques is the
responsibility of the customer. Much depends on the ability of the customer to evaluate these data
and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and results
obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

IBM

Netfinity

MQSeries

Websphere MQ Integrator

DB2

The following terms are trademarks of other companies:

Solaris, Java Sun Corporation

Windows NT, Visual Studio Microsoft Corporation

NEONFormatter, NEONRules, NEONTransform, NEONRulesEvaluation New Era of Networks

Other company, product, and service names may be trademarks or service marks of others.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

iii

Summary of Amendments

Updated for CSD2 level code2 April 2002

Minor typographic corrections. No change to performance
measurements or results.

20 February 2002

Initial Release14 December 2001

ChangesDate

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

iv

Contents

353.1 Throughput .

353.0 CAPACITY PLANNING .

34Figure 18: Plug-in node Throughput Results .

342.18 What is the cost of running a Plug-in ? .

332.17.2 Compute Node NEONMSG Transformation .

322.17.1 NEONTransform Node .

322.17 How Do NEONTransform and Compute nodes Compare? .

312.16 What Is The Effect of Using A Trusted Broker? .

302.15 What Is The Effect of Using Content Based Publish/Subscribe?

28
2.14 What Effect Does an Increasing Number of Subscribers Have on Publish/Subscribe
Throughput? .

272.13 What Is The Effect of Using coordinatedTransaction=yes on a Message Flow?

262.12 What Is The Effect of Making a Message Flow Transactional? .

252.11.1 What Is The Effect of Increasing The Number of Execution Groups ?

242.11 Parallel Processing options .

232.10 What Is The Cost Of Converting Messages To Different Formats ?

222.9 NEONTransform Throughput .

212.8 NEONRulesEvaluation Throughput .

202.7 Publication Node Throughput .

192.6 RouteToLabel Node Throughput .

182.5 Filter Node Throughput .

172.4 Database Node Throughput .

162.3.4 Very Complex Compute Node .

152.3.3 Multiple Complex Compute Nodes .

142.3.2 Complex Compute Node .

132.3.1 Simple Compute Node .

122.3 Compute Node Throughput .

102.2 MQInput/MQOutput Throughput .

92.1 WMQI V2.1 Performance Improvements .

72.0 BROKER THROUGHPUT MEASUREMENTS .

51.4 Message Parsers .

41.3 Messages and Message Sets .

31.2 Message Flows .

31.1.4 The User Name Server .

21.1.3 The Control Center .

21.1.2 The Brokers .

11.1.1 The Configuration Manager .

11.1 Major Components .

11.0 CONCEPTS .

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

v

577.3 Very Complex Compute Node .

577.2 Multiple Complex Compute Node .

577.1 Complex Compute Node .

577.0 APPENDIX C - COMPLEX COMPUTE NODE .

566.14 Plug-in Nodes .

566.13 New Era of Networks Throughput Results .

556.12 Content vs Topic Based PubSub .

546.11 The Effect of Increasing the Number of Subscribers .

536.10 The Effect of using coordinatedTransaction=yes .

526.9 The Effect of Making a Message Flow Transactional .

526.8.1 The Effect of Increasing The Number Of Execution Groups .

526.8 Parallel Processing .

486.7 Converting Messages Between Formats .

476.6 Publication Node Throughput Results .

466.5 RouteToLabel Node Throughput Results .

466.4 Filter Node Throughput Results .

466.3 Database Node Throughput Results .

456.2 Compute Node Throughput Results .

446.1 MQInput/MQOutput Throughput Results .

446.0 APPENDIX B - MEASUREMENT DATA .

435.0 APPENDIX A - MEASUREMENT HARDWARE AND SOFTWARE

414.4 Maximizing Throughput .

414.3 Configuration Considerations .

404.2 Optimize Queue Manager .

404.1 Understand Recovery Requirements .

404.0 PERFORMANCE RECOMMENDATIONS .

383.4 Recommended Minimum Configurations .

383.3 Memory .

363.2 Scaling Message Throughput .

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

vi

1.0 CONCEPTS

Websphere MQ Integrator for Sun Solaris - V2.1 (WMQI V2.1) is IBMs’ message broker product,
addressing the needs of business and application integration. Business integration is the
coordination of all of a company’s processes. Application integration is the coordination of its
applications. This process of integration involves the bringing together of the data and processes
within an organization to maximize the sharing of data and applications in order to cope with changing
organization structure (merger, acquisition etc.) and increase the effectiveness of the organization.

A key requirement of such business and application integration is that applications are able to
communicate with each other without having to make code changes. WMQI V2.1 makes the required
integration easier through the services that it provides. These services are:

Route a message to several destinations, using rules that act on the contents of one or more of
the fields in the message or message header.

Transform a message, so that applications using different formats can exchange messages in
their own formats.

Store and retrieve a message, or part of a message, in a database.

Modify the contents of a message (for example, by adding data extracted from a database).

Publish a message to make it available to other applications. Other applications can choose to
receive publications that relate to specific topics, have specific content, or both.

Extend the capabilities of rules and formats defined in MQSeries Integrator V1.

The above services are based on the messaging transport services provided by the MQSeries
Messaging products.

1.1 Major Components

The major components of WMQI V2 are:

The Configuration Manager

The Brokers

The Control Center.

The User Name Server.

1.1.1 The Configuration Manager

The Configuration Manager is the main component of the WMQI environment. The components and
resources managed by the Configuration Manager constitute the broker domain. The Configuration
Manager servers three main functions:

It maintains configuration details in the configuration repository. This is a set of database tables
that provide a central record of the broker domain components.

It manages the initialization and deployment of brokers and message processing operations in
response to actions initiated through the Control Center. It communicates with other components
in the broker domain using MQSeries transport services.

It checks the authority of defined user IDs to initiate those actions.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

1

There is a single Configuration Manager to manage a broker domain. The Configuration Manager
provides a service to other components in the broker domain providing them with configuration
updates in response to actions taken by the user of the Control Center.

1.1.2 The Brokers

The broker is a named resource that hosts and controls the business processes that are defined as
message flows. Applications send new messages to the message flow and receive processed
messages from the message flow, using MQSeries queues and connections.

Any number of brokers can be created within a broker domain. It is possible to create more than one
broker on any one physical system if desired, but there must be a unique queue manager for each
broker. It is possible for a single broker to share a queue manager with the Configuration Manager.

Within each broker it is possible to define execution groups that are responsible for running the
message flows. An execution group is implemented as an operating system process. Within an
execution group it is possible to define additional threads that will also perform the processing of the
message flows, these are known as additional instances.

When creating message flows that provide a publish/subscribe service it is possible to connect a
number of brokers in a collective using the Control Center. A collective contains a number of brokers
that are all physically interconnected. All the broker queue managers must be connected by pairs of
MQSeries channels.

A collective optimizes the publish/subscribe of messages in the broker domain by reducing the
number of clients per broker, without increasing the hops taken by any message by more than one.
In this way collectives are more efficient than a hierarchy.

It is possible to connect collectives to other collectives and to other individual brokers. When
collectives are connected to a standalone broker only one broker in each collective must provide the
connection.

Messages published to any one broker are propagated to all connected brokers (whether or not they
are in a collective) to which an application has subscribed to the messages topic or content.

1.1.3 The Control Center

The Control Center interfaces with the Configuration Manager to allow the user to configure and
control the broker domain. The Control Center and Configuration Manager exchange messages
(using MQSeries) to provide the information requested and to make updates to the broker domain
configuration.

It is possible to install and invoke any number of Control Center instances. The Control Center can
be installed one the same physical system as the Configuration Manager, or any other system that
can connect to the Configuration Manager.

The Control Center is structured as a number of views on the configuration and message repositories.
The message repository contains all message definitions that have been created or imported through
the Control Center. The configuration repository contains configuration information pertaining to all
other resources within the broker domain; brokers, collectives, message processing nodes, message
flows, topics and subscriptions.

The Control Center can be used to:

Develop, modify, assign and deploy message flows.

Develop, modify, assign and deploy message sets.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

2

Define the broker domain topology and create collectives.

Control topic security of messages by topic.

View status information.

1.1.4 The User Name Server

The User Name Server monitors the underlying security subsystem provided by the operating system
and provides information about the valid principals (users and groups of users) in the system. The
User Name Server shares this information with the brokers and Configuration Manager and updates it
at frequent intervals. The information can be used to control access to topic-based messages
produced by the publish/subscribe service. Topic-based security gives the ability to control the
authority of applications, identified by the user ID under which they are executing, to publish on topics,
to subscribe to topics and to request persistent delivery of messages on topics.

1.2 Message Flows

A message flow is a sequence of operations on a message, performed by a series of message
processing nodes. The actions are defined in terms of the message format, its content, and the
results of individual actions along the message flow.

Websphere MQ Integrator supplies a number of predefined message processing node types, known
as IBM primitives. These provide basic functions including input, output, filter (on message data
content), and compute (manipulate message content: for example, add data from a database).

A message flow and the message processing nodes it contains describe the transformation and
routing applied to an incoming message to transform it into outgoing messages. These actions form
the rules by which the message is processed.

A message flow can also be made up of a sequence of other message flows, that are joined together.
This function allows message flows to be defined and reused in other message flows when required.

When the message flow creation is complete, it can be assigned for execution to one or more
brokers. The message flow must be operationally complete. That is it must contain at least one
MQInput node. Most message flows will also contain at least one MQOutput or one Publication node,
although this is not required.

A message flow is transactional: it is possible to define message flows to perform all processing
within a single unit of work. Therefore the receipt of every message by the input node, and the
database operations performed as a result of that message being received and processed by the
message flow, are coordinated.

If an error occurs within a transactional message flow, the transaction is rolled back and the message
will be handled according to normal error handling rules. It is possible to define a message flow to
work outside of a unit of work if this transactional support is not required.

When a message flow is deployed to a broker, the broker automatically starts an instance of the
message flow for each input node (one or more). This is the default behaviour. Each instance
retrieves a message from the input node, and runs in parallel with other instances that retrieve a
message from other input nodes.

In order to further increase the throughput of the message flow, it is possible to set a property of the
assigned message flow that defines how many additional instances are to be started by the broker for
that message flow. It is possible to set properties of the input node to exercise control over the order
in which messages are processed.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

3

It is possible to increase message flow throughput by assigning more than one copy of the message
flow to the same broker. This is only appropriate if the message order is not important because the
multiple copies of the message flow are handled independently by the broker with no correlation
between them.

The broker provides the run-time environment for a set of deployed message flows: this environment
is called an execution group. An execution group provides an isolated environment, because each
execution group is started as a separate operating system process.

One execution group, the default execution group, is set up for use whenever a broker is created. By
setting up additional execution groups, it is possible to isolate message flows that handle sensitive
data such as payroll records or security information, from other non-senstive message flows.

Within an execution group the assigned message flows run in different thread pools. The size of the
thread pool that is assigned for each message flow is set by specifying the number of additional
instances of each message flow.

The broker guarantees operating isolation of each execution group, thus guaranteeing data integrity
between execution groups and improving robustness of message flows.

1.3 Messages and Message Sets

In WMQI messages are always in one of two broad categories:

Predefined. The content of a predefined message is described by the message template.

Self-defining. The content of a self-defining message is described by the message itself.

The message definition process is managed by the Message Repository Manager (MRM) component
of the Control Center.

Message definitions are created or modified using the Control Center, the MRM stores them in the
message repository.

Predefined Messages

A predefined message has a logical structure and a physical structure.

The logical structure defines the contents of the message using a tree structure that identifies each
field and its relation to other fields. The applications sending and receiving messages like this
understand the format and type of each field. For example they might use a C structure that shows
AccountNumber is an eight byte field, AccountName is a 20 byte character field and AccountBalance
is an 8 byte character field.

The physical structure, also known as a wire format, is a string of bytes. Without the logical structure
the physical structure has no intrinsic meaning.

The physical structure of each element in a message is further defined by its Custom Wire
Format(CWF) characteristics. These give the physical format (for example COBOL packed decimal),
the length, whether the field is signed and so on.

Message Templates

A message template is made up of four values contained within the header information:

1. Message Domain which identifies the message parser that will interpret the bit-stream of the
message. By default WMQI supports the values MRM, XML, BLOB, NEON and NEONMSG.
MRM is the MRM-enabled parser and is used for all messages whose definitions have been
created in, or imported to, the message repository. XML is for self defining messages only.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

4

BLOB is used for messages whose format is not understood, in which case they are treated as a
bit stream. NEON and NEONMSG are for New Era of Networks messages only.

2. Message set which identifies the grouping of messages within the message domain, as it has
been defined. Typically a message set contains a number of related messages that provide the
definitions required for a specific business task or application suite. The message set is similar in
concept to the application group in New Era of Networks.

3. Message type which identifies the logical structure of the data in the message. For example the
number and location of character strings and their relationships.

4. Message format which identifies the physical representation of the message (its wire format). The
MRM-enabled parser supports the following wire formats:

XML the message is identified as an XML document that complies with a Document Type
Descriptor (DTD) that can be generated for a message by the MRM. This option does not
apply to self-defining messages, which have the domain XML, rather than MRM.

CWF denotes legacy data structures used in common programming languages (C or COBOL).
Data structures for CWF messages are typically imported into the message repository.

TAG denotes data structures in which the fields are either fixed length or separated by tags. Data
structures for TAG messages are defined in the message repository

The message format value is only valid for predefined messages and not self-defining messages.

Self-defining messages

Self-defining messages use the XML standard to structure their content. They can be used in any
message flow, and are supported by all message flow nodes.

Self-defining messages do not have to be defined to the Control Center, nor do they have to be
assigned to brokers to ensure that they can be interpreted.

Self defining messages are said to use generic XML.

When a message is processed in a message flow, its format must be determined first so that the
correct parser is used. The message characteristics are identified by the input node of a message
flow in one of two ways:

For messages with an MQRFH or MQRFH2 architected header, the input node checks the value
in the message header.

For messages that do not have an MQRFH or MQRFH2 header, the input node uses the default
message template, defined as a properly of the input node, to determine how the message must
be parsed.

1.4 Message Parsers

WMQI can handle any message template for which a suitable parser is available. The parsers
interact with the message templates stored in the message dictionaries. The range of messages
supported can be extended by creating your own message parsers.

Message parsers are provided for :

Predefined XML. Such messages have an MQRFH or MQRFH2 header.

The standard MQSeries headers: MQCIH, MQDLH, MQIIH, MQMD, MQMDE, MQRFH,
MQRFH2, MQRMH, MQSAPH ,MQCFH, and MQWIH.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

5

Record-orientated C and COBOL language structures.

Self-defining (generic XML) messages.

Messages whose formats are defined in the NEON dictionary (These messages are defined
using the New Era of Networks interface not the Control Center).

If no parser can be identified for a message, WMQI treats it as a binary object that passes, of
necessity, unaltered through any message flow. However such a message can be stored in a
database, be routed according to topic, and have headers added or removed.

WMQI V2 provides a function that allows messages to be transformed from one format to another.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

6

2.0 BROKER THROUGHPUT MEASUREMENTS

In order to understand the processing characteristics of WMQI V2 a number of performance
measurements have been taken using multiple aspects of the product. The test cases used have
been deliberately made trivial in order to be able to report the cost of using WMQI V2, rather than to
report the cost of running a particular application. It is very difficult to accurately represent what might
be considered a typical application since the business logic is always enterprise specific.

The effect of the queue manager has been minimized where possible. This has meant using
predominately non persistent messages as well as having a compensating program to ensure that the
queue manager queue cache did not overflow to disk. If these two actions were not taken, the
throughput possible with WMQI V2 would have been constrained by the necessary I/O processing of
the queue manager with which the WMQI V2 broker was associated.

The performance measurements have focused on the throughput capabilities of the broker using
different processing node types. The aim of the measurements was to be able to answer questions
such how many messages a second can be processed with each of the node types, what are the
relative costs of the different node types and how much CPU and memory are required.

In the throughput measurements the following node types have been measured:

MQInput and MQOutput

Compute

Database

Filter

RouteToLabel

Publication

NEONTransform

NEONRulesEvaluation

C & Java Plug-ins

These nodes give a cross section of the possible node types and should be sufficient to cover most
basic types of message transformation and distribution. Some node types have been measured in
more than one configuration in order to investigate the various configuration effects, such as running
multiple execution groups. All the nodes measured used minimal processing where it was possible
(apart from the investigation into complex node processing) so the results presented represent the
best throughput that can be achieved for that node type. This should be borne in mind when
performing capacity planning.

All measurements are for a single instance of a message flow within in a single execution group
unless otherwise specified. Although this does not show the maximum throughput possible with each
type of node it does provide a common methodology and shows the relative costs of nodes.

Recommended minimum specification machines are recommended for each of the WMQI V2
components.

All measurements were conducted in the same measurement environment. This is described in
Section 5.0 APPENDIX A - MEASUREMENT HARDWARE AND SOFTWARE.

The MQSeries queue manager listener process was run as an authorized MQ application in order to
improve message throughput. This was achieved by ensuring that the environment variable

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

7

MQ_CONNECT_TYPE=FASTPATH was present in the environment in which the listener was
started.

All measurements were driven by a multithreaded MQSeries Client program written in C. The number
of threads used for each measurement was tailored to meet the processing capabilities of the flow so
as not to have several idle threads during slower measurements. All threads sent the same message
format and content. The Message Queue Interface programming interface was used to write and
read messages.

There was no error processing or error conditions in the measurements. All messages were
successfully passed from one node to another through the out or true terminal. No messages were
passed through the failure terminal of a node.

The DB2 instance used with the broker was a default configuration with no tuning.

The message rates reported are the number of roundtrips between the MQSeries multithreaded client
and the MQSeries queue manager to which the input data is written and from which the reply data is
read or another way of viewing it is as the message arrival rate on the input queue for the MQInput
node. This method of reporting makes this report consistent with MQSeries performance reports.

For an MQInput and MQOutput node it is possible to define transaction support for a node. Possible
values are yes, no and automatic .

A value of yes means that the message flow will take place under transaction control. Any
derived messages subsequently sent by an MQOutput node in the same instance of the message
flow will be sent transactionally unless the MQOutput node has explicitly overridden the use of
transaction control.

A value of no means that the message flow is not under transaction control. Any derived
messages subsequently sent by an MQOutput node in the flow will be sent non-transactionally,
unless the MQOutput node has specified that the message should be put as part of a transaction.

A value of automatic means that the messageflow will be under transaction control if the incoming
message is marked as persistent, otherwise it will not. Any derived messages subsequently sent
by an MQOutput node will be sent under transaction control or not, as determined by the
persistence on the incoming message, unless the MQOutput node has specifically overridden the
use of transaction control.

The use of transaction control means that message processing takes place within an MQSeries unit
of work. This involves additional CPU and I/O processing by MQSeries because the unit of work is
recoverable. The result is inevitably a reduction in message throughput for both persistent and non
persistent messages.

In order to show optimal performance of WMQI V2 all the throughput measurements in this document
used a value of automatic for the transaction parameter unless otherwise specified,.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

8

2.1 WMQI V2.1 Performance Improvements

In our measurements we have not seen any degradation in message throughput with WMQI V2.1
compared with MQSI V2.0.2 CSD level 1. The measurements for this release of WMQI V2 are taken
on the same hardware and use the same level of MQSeries that was used for MQSI V2.0.2 so
comparisons are easy this time. We do not have to allow for environmental changes.

There are increases in performance for most nodes; the average measurement showed that we are
getting 1.3 times the message rate over MQSI V2.0.2 CSD level 1. Most messages should therefore
obtain benefit from migration to WMQI V2 since the Filter and Compute nodes are the most popular in
message Flows.

Node Type
Average

improvement
MQinput and MQoutput 1.2
PubSub 1.1
Filter 1.3
Database 1.0
Compute (non MRM) 1.7
Compute(MRM) 1.1
RoutetoLabel 1.6

All 1.3

Table 1: Maximum message rate improvements

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

9

2.2 MQInput/MQOutput Throughput

A message flow consisting of a single MQInput and MQOutput node represents the simplest message
flow. Measuring the throughput achievable with such a message flow shows the maximum message
rate that can be achieved using WMQI V2 to move messages between MQSeries queues.

A single message flow was defined, consisting of an MQInput node and MQOutput node. The
transaction mode for the MQInput and MQOutput nodes was set to automatic.

Figure 1 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow.

1024 4096 16384 65536 1024 Persistent

Message Size

0

500

1000

1500

2000

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 1: MQInput/MQOutput Throughput Results

With a 1K non persistent message it was possible to process approximately 1500 msgs/second.
Increasing the message size had a significant effect on the maximum message throughput that could
be achieved. This decrease in throughput is as a result of the additional volume of data that must be
managed by the associated MQSeries queue manager and network.

As the input message was non persistent there was no transactional control. We are, therefore
observing the maximum rate at which WMQI V2 is able to transfer messages from the input queue to
the output queue for a single execution group. Adding additional execution groups allows greater
throughput to be achieved.

The use of persistent messages had a significant effect on the maximum message throughput rate
that was achievable. For a 1K persistent message the message rate was approximately 80
msgs/second. This rate was attained using an SCSI disk for the MQ log and an SCSI disk for the
input and output queue.

When persistent messages are used there are two additional effects that dominate the maximum
message throughput rate achievable:

1. Any messages read from or written to an MQSeries queue now take place under MQSeries
transaction control

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

10

2. The MQSeries queue manager must make the message persistent, which involves a
synchronous write to the MQSeries log and a write to the file system for the message. The write
to the file system may involve an I/O or not. This is dependent on the file system and is not
forced by MQSeries.

As a result of the additional disk I/O required the message rate becomes dominated by I/O processing
and is no longer CPU bound. The message rate that is achievable is totally dependent on the speed
of the I/O device on which the MQSeries log is located.

The detailed measurement data for the MQInput/MQOutput throughput measurements is available in
Section 6.1 - MQInput/MQoutput Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

11

2.3 Compute Node Throughput

A compute node provides the capability to derive an output message from an input message and also
optionally include user specified processing as well as data values from an external relational
database. The compute node has the potential to vary from simple to complex in its processing. The
degree of complexity specified has a direct bearing on the message throughput rates that can be
achieved using nodes of that type. A series of measurements were taken using varying numbers of
compute nodes as well as varying levels of user specified processing in order to illustrate these
effects.

Each test case consisted of an MQInput and MQOutput node with varying numbers of compute nodes
in between. The level of complexity in the compute nodes was also varied. The following cases were
measured:

A simple compute node that copied the input message to an output message. The purpose of this
measurement was to show the message throughput that is achievable when copying a message
and modifying a single field. A single field was modified in order to ensure that the compute node
built a new output message based on the input. If no field is modified WMQI V2 optimises the
process and simply repeats the input message which can give an over optimistic message rate.
This represents the simplest form of compute node.

A single complex compute node that contained user specified ESQL processing as well as the
copying of the input message to an output message. The purpose of this measurement was to
show the effect that additional CPU bound processing has on message throughput.

Multiple complex compute nodes that consisted of five of the complex compute nodes connected
in sequence. The purpose of this measurement was to establish the cost of using multiple
complex compute nodes.

A single very complex compute node that consisted of five times the processing of the single
complex compute node. The purpose of this measurement was to illustrate the benefit that can
be obtained by combining processing within a single compute node

In these measurements the input message consisted of a single field. The transaction mode on
the MQInput and MQOutput nodes was set to automatic.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

12

2.3.1 Simple Compute Node

Figure 2 below shows the results that were obtained as a result of running the simple compute node
with varying message sizes and persistence. There was a single instance and single execution group
running the message flow.

1024 4096 16384 65536 1024 Persistent

Message Size

0

100

200

300

400

500

600

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 2: Simple Compute Node Throughput Results

With a 1K non persistent message it was possible to process approximately 520 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages.

With 1K persistent messages is was possible to process approximately 60 msgs/second. This
reduced message rate, when compared with 1K non persistent messages is as a result of the
additional logging within the MQSeries manager.

The detailed measurement data for the Simple Compute Node throughput measurements is available
in Section 6.2 - Compute Node Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

13

2.3.2 Complex Compute Node

Figure 3 below shows the results that were obtained as a result of running a complex message flow
with varying message sizes and persistence. See Appendix C for a description of this complex flow.
There was a single instance and single execution group running the message flow. Due to the
message complexity, the minimum size message that would run successfully was 4k

4096 16384 65536 4096 Persistent

Message Size

0

20

40

60

80

100

120

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 3: Complex Compute Node Throughput Results

With a 4K non persistent message it was possible to process approximately 100 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages. The lower message rate achieved with this compute
node compared with the simple compute node case above reflects the increased processing that was
added to the compute node.

With 4K persistent messages is was possible to process approximately 45 msgs/second. This
reduced message rate, when compared with 4K non persistent messages is as a result of the
additional logging within the MQSeries manager.

The detailed measurement data for the Compute Node throughput measurements is available in
Section 6.2 - Compute Node Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

14

2.3.3 Multiple Complex Compute Nodes

Figure 4 below shows the results that were obtained as a result of running five of the above complex
nodes daisy chained together for varying message sizes and persistence. See Appendix C for a
description of this complex flow. There was a single instance and single execution group running the
message flow. Due to the message complexity, the minimum size message that would run
successfully was 4k.

4096 16384 65536 4096 Persistent

Message Size

0

5

10

15

20

25

30

35

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 4: Multiple Complex Compute Node Throughput Results

With a 4K non persistent message it was possible to process approximately 32 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages.

With 4K persistent messages is was possible to process approximately 26 msgs/second.

The detailed measurement data for the Compute Node throughput measurements is available in
Section 6.2 - Compute Node Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

15

2.3.4 Very Complex Compute Node

Figure 5 below shows the results that were obtained as a result of running a very complex message
flow with varying message sizes and persistence. Appendix C has a description of a very complex
flow. Briefly, a very complex flow is defined as the complex flow repeated 5 times in the same node.
There was a single instance and single execution group running the message flow. Due to the
message complexity, the minimum size message that would run successfully was 4k.

4096 16384 65536 4096 Persistent

Message size

0

10

20

30

40

50

M
es

sa
ge

s
pe

r S
ec

on
d

Multiple Complex Nodes
One Very Complex Node

Figure 5: Very Complex Compute Node VS Multiple Complex
Compute Node Throughput Results

With a 4K non persistent message it was possible to process approximately 40 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data and additional
processing required to deal with the messages.

With 4K persistent messages is was possible to process approximately 29 msgs/second.

For comparison purposes Figure 5 also shows the message throughput rates that were achieved for
the multiple complex compute node case detailed in Section 2.3.3 - Multiple Complex Compute
Nodes.

For 4K non persistent messages there was a 1.18 times improvement in message throughput as a
result of using a single compute node for the processing, rather than using 5 nodes. For performance
reasons it is clearly better to have one node that does the work of several less complex nodes. This
performance improvement has to be offset against the management and support of more complex
nodes.

The detailed measurement data for the Very Complex Compute Node throughput measurements is
available in Section 6.2 - Compute Node Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

16

2.4 Database Node Throughput

A database node allows a database transaction in the form of an ESQL expression to be applied to a
specified ODBC data source. The statement to be applied and the data source are specified on the
database node definition.

In order for the database transaction to be part of a global unit of work that incorporates the
processing of the message within the same transaction, the MQSeries queue manager associated
with the WMQI V2 broker must have a suitable X/Open XA interface connection with the database.
The MQSeries queue manager associated with the WMQI V2 broker acts as the transaction
coordinator. The database is a resource manager.

Without establishing such an XA connection it would not be possible for the database manager to
commit (or backout) the database transaction at the same time as the message processing updates
in the same unit work. This could result in data in an inconsistent state.

In this simple test to illustrate the effect of using a database node an XA connection was configured
between the MQSeries queue manager and the database, DB2 in this case. A message flow
consisting of an MQInput node, a database node and an MQOutput node was defined.

The message flow consisted of an insert/delete for a row in a table of a database. The transaction
mode value on the MQInput node was set to automatic. The coordinatedTransaction value for the
message flow was set to yes. The effect of doing this is to specify that the message flow should be a
globally coordinated unit of work.

The maximum possible message throughput rates were determined for a single instance and single
execution group running the message flow. Figure 6 below shows the results that were obtained for
varying message size and persistence.

1024 4096 16384 65536 1024 Persistent

Message Size

0

10

20

30

40

50

60

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 6: Database Insert/Delete Throughput Results

With 1K non persistent messages it was possible to achieve a message throughput rate of
approximately 54 msgs/second. This is 54 database insert and deletes per second. The rate of
insert/delete activity reduced with message size as expected.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

17

With 1K persistent messages it was possible to achieve a message throughput rate of 36
msgs/second. This lower rate is due to the increased volume of I/O processing to both the MQSeries
queue manager log and the DB2 log.

The detailed measurement data for the Database node measurements is available in Section 7.3 -
Database Node Throughput Results.

2.5 Filter Node Throughput

A Filter node evaluates an ESQL expression against the content of the input message. Based on the
result of the expression evaluation the message is propagated to the true terminal if the expression
evaluates to true. It is propagated to the false terminal if the expression evaluates to false.
A message flow consisting of an MQInput node, a Filter node and an MQOutput node was defined.
The Filter node processing involved selecting a message on the basis of the contents of a tag value.
The input message consisted of an MQRFH2 message with two tags specified following the header.
The transaction mode on the MQInput and MQOutput nodes was set to automatic.

Figure 7 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow.

1024 4096 16384 65536 1024 Persistent

Message Size

0

100

200

300

400

500

600

700

800

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 7: Filter Node Throughput Results

With 1K non-presistent messages it was possible to run approximately 730 msgs/second. The cost of
the Filter node will vary with the complexity of the filter expression and the number of fields in the
input message.

With 1K persistent messages the throughput was approximately 60 msgs/second. The reduction in
throughput is as a result of using persistent messages that involves additional logging within the
MQSeries manager as well as the fact that the message is processed under MQSeries transaction
control.

The detailed measurement data for the Filter Node Throughput measurements is available in Section
6.4 - Filter Node Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

18

2.6 RouteToLabel Node Throughput

A RouteToLabel node provides a dynamic routing facility based on the contents of the destination list
contained within the message. The destination list contains the identity of one or more target Label
nodes identified by their Label Name property (not the node name). The RouteToLabel node can be
used instead of multiple Filter nodes.

The destination list which is used to control the routing must have been created and included in a
previous compute node. Consequently a RouteToLabel node is more expensive to process than a
single Filter node, but may be cheaper than many Filter nodes. . For a better understanding of how to
choose, please read the recommendations in Supportpac IP04, Designing Message Flows for
Performance.

The cost of this node is dependent on the size of the destination list. For example, we may have 10
or 100 potential target Label nodes. If the destination list has just one entry, the cost will be the same.
A destination list with 100 entries will cost more to process but a point to note is that this extra cost is
not dependent on whether the Route to first or Route to last option is chosen.

1024 4096 16384 65536 1024 Persistent

Msgsize

0

100

200

300

400

500

600

700

M
es

sa
ge

s
pe

r S
ec

on
d

1 dest route entry 100 dest route entries

Figure 8: RouteToLabel Node Throughput Results

With 1K non-presistent messages it was possible to run approximately 650 msgs/second when we
had only one destination in the list and only 140 msgs/sec when we had 100 entries in the destination
list.

With 1K persistent messages it was possible to run approximately 60 msgs/second when we had only
one destination in the list and only 53 msgs/sec when we had 100 entries in the destination list.

The detailed measurement data for the RouteToLabel Node Throughput measurements is available in
Section 6.5 - RouteToLabel Node Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

19

2.7 Publication Node Throughput

A publication node may be used within a message flow to represent a point from which messages are
"published" that is, a point from which messages are transmitted to a set of subscribers who have
registered interest in a particular set of messages.
A message flow consisting of an MQInput node and a Publication node was defined. The transaction
mode on the MQInput node was set to automatic. The measurement used topic routing with
MQRFH2 format messages.

In the throughput measurements each client thread performed the role of publisher and subscriber
queue reader. Firstly, an MQPUT was issued to publish a message on the given topic. Secondly, the
client thread issued an MQGET to receive the published message.

With this measurement we had only one subscriber.

Figure 9 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow. The rates shown are the rate at which messages are being published.

1024 4096 16384 65536 1024 Persistent

Message Size

0

100

200

300

400

500

600

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 9: Publication Node Throughput Results

With 1K non-presistent messages it was possible to publish approximately 530 msgs/second. This
can equally viewed as a subscription rate of 530 messages per second per subscriber

As the message size increased, the rate at which messages were published decreased. This is as
expected.

With 1K persistent messages the published throughput was approximately 67 msgs/second. The
reduction in throughput is as a result of using persistent messages which involves additional logging
within the MQSeries manager as well as the fact that the message is processed under MQSeries
transaction control.

The detailed measurement data for the Publication Node Throughput measurements is available in
Section 6.6 - Publication Node Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

20

In a separate measurement the overhead of using Access Control for topic publications was
measured. The measurement consisted of a 1K non persistent message size and 50 subscribers.
The overhead gave 0.89 times the message throughput.

2.8 NEONRulesEvaluation Throughput

WMQI V2.1 provides the NEONRulesEvaluation node. The NEONRulesEvaluation node was new
with MQSI V2.0.2 and was introduced as a result of the support for New Era of Networks Rules and
Formatter Version 5.2. The original NEONRules node is still shipped for compatibility reasons.

Throughput measurements were taken in order to evaluate performance of the
NEONRulesEvaluation node. An input message with 50 fields was scanned and tested against the
contents of one field. When the NEON Rule was satisfied the input message was placed on an output
queue. In this test the rule was always satisfied.

Figure 10 below shows the results that were obtained as a result of running with one rule defined
when using the NEONRulesEvaluation node.

1024 4096 16384 65536 1024 Persistent

Message Size

0

20

40

60

80

100

120

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 10: NEONRulesEvaluation Node Throughput Results

The detailed measurement data showing the effect of running the New Era of Networks nodes within
WMQI V2 is available in Section 6.13 - New Era of Networks Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

21

2.1 NEONTransform Throughput

WMQI V2.1 provides the NEONFormatter and NEONTransform nodes. The NEONTransform node
was new with MQSI V2.0.2 and was introduced as a result of the support for New Era of Networks
Rules and Formatter Version 5.2. The original NEONFormatter node is shipped for compatibility
reasons.

The NEONTransform node is intended as a direct replacement for the NEONFormatter node. It is
capable of producing all of the function of the NEONFormatter node. .

Throughput measurements were taken in order to evaluate performance of the NEONTransform
node. An input message with 100 fields was transformed from one format to another and the resultant
 message was placed on an output queue. Due to limitations of the test, only one message size (4K)
was used.

Figure 11 below shows the results that were obtained as a result of running the NEONTransform
node.

4096 4096 Persistent

Message Size

0

5

10

15

20

25

30

M
es

sa
ge

s
pe

r S
ec

on
d

Figure 11: NEONTransform Node Throughput Results

The detailed measurement data showing the effect of running the New Era of Networks nodes within
WMQI V2 is available in Section 6.13 - New Era of Networks Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

22

2.1 What Is The Cost Of Converting Messages To Different
Formats ?

WMQI V2 provides the capability to process messages of different formats as well as the ability to
convert messages between formats. Throughput measurements were taken to show the effect of
using WMQI V2 to convert messages between MRM XML, Generic XML , CWF, and MRM TAG
formats where MRM XML refers to the predefined XML used within the MRM, Generic XML refers to
self-defining XML , CWF denotes a legacy data structure such as a C structure or COBOL copybook,
and MRM TAG refers to a predefined structure of fields of fixed length or separated by tags within
MRM.

The same message type was used for each of the conversions. This was a 4096 byte non persistent
message containing 30 input fields, with 10 fields consisting of a short string (12 characters), 10 fields
consisting of a floating pointer number, and 10 integer fields.

The format conversion was achieved using a Compute node with suitable ESQL statements. The
input messages contained an MQRFH2 header in which the message type was set. The output
format was specified in the Compute node processing. Each message format was converted to
Generic XML, CWF, MRM XML and MRM TAG and the message throughput achieved was
measured. There was a single execution group running the message flow and no additional instances
specified. The results are presented in Table 2 below.

Conversion TO Generic XML MRM CWF MRM XML MRM TAG

FROM
Generic XML 160.0 94.5 67.7 58.8

MRM CWF 114.0 101.0 77.7 61.2

MRM XML 78.2 69.4 60.2 48.7

MRM TAG 32.0 30.1 27.6 25.8

Table 2: Message Rates in messages per second, when
Converting Between Different Formats

Even when the output message is set to have the same format as the input message there are still
significant costs in processing messages because the messages must be parsed, deconstructed by
WMQI and then reconstructed into the required output format. However the cost of converting
between two formats occurs on a once per message flow basis and not in each node.

It should be noted that TAG format input messages are very costly to process as every byte of the
message has to inspected to look for the TAG delimiters.

The detailed measurement data for cost of message conversion is available in Section 6.7 -
Converting Messages Between Formats Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

23

2.2 Parallel Processing options

If the message processing rate which can be achieved with a single copy of a message flow is not
sufficient for the requirements it is likely that you will need to run multiple copies of the message flow
concurrently. Within WMQI V2 there are several ways of doing this, they are:

1. Use additional instances of a message flow within an execution group. Each additional instance is
a thread within the execution group process

2. Run multiple copies of a message flow within an execution group. Each additional message flow
is a thread within the execution group process

3. Run multiple execution groups each processing one or more copies of a message flow. This
option uses the most memory as each execution group is a process. If the machine has plenty of
memory, this option gives the best throughput as running separate operating system processes
requires less storage management.

The use of multiple execution groups is recommended unless there is a sepecific requirement to
sequence message processing by userid or message order on the queue, that is Order Mode=By
Userid or Order Mode=By Queue Order on the MQInput node.

This section shows the effect of running option 3 for the very complex compute message flow.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

24

2.2.1 What Is The Effect of Increasing The Number of Execution
Groups ?

Figure 12 below shows the results that were obtained as a result of running one, two, and four
execution groups for a message flow containing the very complex compute node for varying message
size and persistence. The message flow is described in Appendix C Complex Compute Node. The
transaction mode values on the MQInput and MQOutput node were set to the value of automatic.
The same input and output queues were used for all measurements.

One Exec Group Two Exec Groups Four Exec Groups
0

50

100

150

200

M
es

sa
ge

s
pe

r S
ec

on
d

4096
16384
65536
4096 Persistent

Figure 12: Additional Execution Group Throughput Results

Figure 12 shows that greater message throughput can be achieved by using additional execution
groups. With non persistent 4K messages and two execution groups it was possible to achieve over
twice the throughput that was achieved for a single execution group. When using four execution
groups it was possible to achieve 4 times the throughput that was achieved with a single execution
group. All 4 processors were at full capacity (100% CPU busy).

The benefits of running multiple execution groups in this case was significant. There was good scaling
of message processing. This is principally because of the nature of the message flow that was used
for the measurements. There was a significant amount of ESQL processing in the node. This meant
that the level of queue access as a proportion of all processing was low and so the potential for
conflicts on queue access was low and consequently multiple execution groups were able to achieve
greater throughput.

The detailed measurement data showing the effect of adding execution groups is available in Section
6.8.1 - The Effect of Increasing The Number Of Execution Groups.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

25

2.3 What Is The Effect of Making a Message Flow Transactional?

Making a message flow transactional (as opposed to making an individual node transactional) means
that the unit of work is recoverable, but it does result in an additional overhead as work must now take
place under transactional control. This involves the locking of data and logging of data images.

The purpose of these measurements was to illustrate the overhead of making a message flow
transactional. A simple message flow was created consisting of a single MQInput and MQOutput
node. The maximum message throughput rate was measured when the message flow had a
transaction mode value of automatic and then with a value of yes.

Figure 13 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence.

Non Transactional Transactional
0

500

1000

1500

2000

M
es

sa
ge

s
pe

r S
ec

on
d

1024
4096
16384
65536
1024 Persistent

Figure 13: Making a Message Flow Transactional Throughput Results

Making non-persistent messages transactional had a significant effect on message throughput. The
reduction in throughput is as a result of the additional CPU and I/O processing that must take place.
The overhead of making the message flow transactional was most significant with the smaller
message sizes.

For the persistent messages there is little difference in throughput as persistent messages would
proceed under transaction control any way with a transaction mode of automatic.

The detailed measurement data for showing the effect of making a node transactional is available in
Section 6.1 and Section 6.9 - The Effect of Making a Message Flow Transactional.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

26

2.4 What Is The Effect of Using coordinatedTransaction=yes on a
Message Flow?

Specifying a value of yes for the coordinatedTransaction parameter on a message flow means that all
updates performed within the message flow will take place as a global unit of work. Any database
updates that are in the message flow will be committed atomically with the message processing. In
order to ensure that the global unit of work is coordinated correctly a suitable XA connection must be
configured between the MQSeries queue manager and the external relational data manager.

If data is to be updated in an MQSeries message and a relational database, and recovery is required,
this configuration must be used.

Measurements were taken to illustrate the costs associated with using the coordinatedTransaction
parameter on an execution group definition. The message flow consisted of an MQInput, database
and MQOutput node. The database node performed an update of a row of in a relational database.
The purpose of this measurement was to illustrate the cost of an XA coordinated transaction..

Figure 14 below shows two sets of results. The first is for the case when coordinatedTransaction
was set to no on the message flow and transaction mode was set to automatic on the MQInput and
MQOutput nodes. The second case shows the results that were obtained when an XA connection
was configured and a value of yes was specified for coordinatedTransaction on the message flow.

Coordinated txn=no Coordinated txn=yes
0

50

100

150

200

M
es

sa
ge

s
pe

r S
ec

on
d

1024
4096
16384
65536
1024 Persistent

Figure 14: Database Update with XA and coordinatedTransaction=yes.

Figure 14 shows that a message rate of approximately 160 msgs/second was achieved for 1K
non-persistent messages and 52 msgs/second for persistent messages when coordinatedTransaction
was set to no on the message flow, transaction mode was set to automatic on the MQInput and
MQOutput nodes and there was no XA connection configured.

With an XA connection configured and coordinatedTransaction set to yes on the message flow a rate
of approximately 60 msgs/second was achieved for non persistent messages and 38 msgs/second
for persistent messages.

The difference in message rates represents the overhead of coordinating the updates as a single unit
of work. The database processing in these measurements was simple. In practice it would typically

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

27

be more involved and there would be more nodes in the message flow, in which case the overhead
imposed as a result of using coordinatedTransaction=yes would be less as a percentage of the total
cost.

The detailed measurement data showing the effect of using coordinatedTransaction set to the value
of yes is available in Section 6.10 - The Effect of using coordinatedTransaction=yes.

2.5 What Effect Does an Increasing Number of Subscribers Have
on Publish/Subscribe Throughput?

As an increasing number of subscribers register an interest in receiving published messages on a
given topic, so the broker must undertake additional processing to maintain a list of currently
subscriptions and write a message to each subscribers queue when a message is published.

In order to illustrate the effect of coping with an additional number of subscribers for a given topic a
series of measurements were taken with 1, 10, 30, 50, 70, 100, and 1000 subscribers. Messages of
varying size and persistence were published to a single topic. The results obtained are presented in

Figure 15 below. The X axis shows the number of subscribers. The Y axis shows the number of
seconds taken to process a message. It is derived from the reciprocal of the message rate.

0 20 40 60 80 100

Number of Subscribers

0

0.05

0.1

0.15

0.2

Se
co

nd
s

pe
r M

es
sa

ge

1024
16384
65536
1024 Persistent

Figure 15: Varying Number of Subscribers

From the graph it is possible to see that the processing required to deliver messages to the
subscribers rises with the increasing number of subscribers. This makes sense since with each
additional subscriber there is an additional MQSeries queue to write a message to.

The cost of publishing persistent messages is significantly higher as the processing is dominated by
the necessary I/O processing. Before examining the measurement data for varying number of
subscribers it is important to understand the way in which the measurement was taken.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

28

For each subscriber that registered to receive publications the published message was written to a
queue for that subscriber. With 30 subscribers for example, a single message was written to each of
30 queues. In the measurement environment there was a background program consuming all but
one of the published messages. Taking the example of 10 subscribers, 9 of the published messages
were consumed by this program. The remaining message was read by the client program emulating
the subscriber. In this situation a message count of 1 was registered for the purposes of reporting
message rates, although the WMQI V2 broker had written multiple messages. It is because of this
that the reported message rate declines with an increasing number of subscribers, although the level
of work performed by the broker is obviously much greater with an increasing number of subscribers.

An extrapolation from 100 to 1000 subscribers for a non-persistent 1k message would predict a
message rate of approximately 2.7msgs second. An actual measured rate was 2.3 messages per
second.

From some additional measurements that were taken it has been shown that the performance
obtained when using publication nodes is dependent on the number of subscriptions that receive
messages as a result of a message being published rather than the total number of registered
subscribers. For example consider the case where there are 1000 subscribers registered to receive
messages on two topics, with 990 registered for Topic 1 and 10 for Topic 2. When a message is
published on Topic 2 it will only be the cost of publishing the message to the 10 subscribers
registered for Topic 2 that will be seen. The fact that there are 1000 subscribers in total has no
noticeable effect on performance.

All measurements in this section with more than 20 subscribers used the mqsichangeproperties
command to increase the size of the cache used to hold open queue descriptors. The default value is
30. If the number of open queue descriptors has to increase by 1 beyond the cache size, a queue
must be closed before another can be opened and the published message delivered. This can have
a significant effect on the rate at which messages can be published. This sequence of closing one
queue and opening another will occur each time a message is published unless the cache size is
increased. It is recommended to increase the size of the cache to exceed the number of registered
subscribers.

The mqsichangeproperties command used to increase the cache for the 1000 subscriber
measurements was as follows:

mqsichangeproperties CSIM -e pubsub1 -o ComIbmMQConnectionManager
-n queueCacheMaxSize -v 1050.

were CSIM was the name of the WMQI Broker and pubsub1 was the name of the execution group
running the message flow. This command was issued on the machine running the broker.

The command needs to be issued for each execution group containing a publication node with more
than 30 subscribers.

The detailed measurement data showing the effect of an increasing number of subscribers is
available in Section 6.5 and Section 6.11 - The Effect of Increasing the Number of Subscribers.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

29

2.6 What Is The Effect of Using Content Based
Publish/Subscribe?

With WMQI V2 it is possible for a subscriber to register to receive publications based on the contents
of a message. This is known as content based routing. This is more complex than topic based
routing (in which a subscriber receives all messages on the topic to which they have subscribed)
because the message contents must be examined.

In order to determine the cost of using content based routing, a measurement was taken to examine
the message rates that could be achieved for both content and topic based routing when delivering
messages of the same structure and size.

Figure 16 below shows the message throughput rates that were achieved for content and topic based
routing with varying message size and persistence. The topic and content based routing used
MQRFH2 messages.

Content Based Topic Based
0

100

200

300

400

500

600

M
es

sa
ge

s
pe

r S
ec

on
d

1024
4096
16384
65536
1024 Persistent

Figure 16 Content vs Topic Based PubSub

Figure 16 shows that it is possible to achieve greater message throughput using topic based routing
when compared with content based routing. This is as expected since topic based routing is able to
publish a message without regard to the message contents. Content based must parse the message
contents, then determine which of the subscribers is to receive the message before finally publishing
to those subscribers.

The detailed measurement data showing the comparison of content and topic based PubSub is
available in Section 6.5 and Section 6.12 - Content vs Topic Based PubSub.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

30

2.7 What Is The Effect of Using A Trusted Broker?

Use of a trusted broker can, in some situations, lead to an improvement in the message rate which is
achieved when processing messages with WMQI V2. This improvement comes as a result of the
reduced pathlength between the broker and MQSeries (a consequence of the broker being
considered to be trusted by MQSeries). The improvement is only obtained when messages within
MQSeries are accessed by the broker. For WMQI V2 this means the execution of MQInput and
MQOutput nodes.

The amount of benefit observed when using a trusted broker is dependent on the situation. The gain
is proportional to the frequency of use of MQInput and MQOutput nodes in the message flow.

Table 3 below shows the effects on message throughput of using a trusted broker in three different
cases. The first was a very simple message flow consisting of an MQInput/MQOutput message flow.
The second case consists of a Publish/Subscribe message flow where there was one publisher and
100 subscribers. The third case was the very complex compute node described in Section 2.3.4 -
Very Complex Compute Node.

3Very Complex Compute
Node

53Publish/Subscribe with
100 subscribers

46MQInput/MQOutput
% ImprovementTest Case

Table 3: Use of a Trusted Broker For
Different Message Flows

Where the level of queue access is very high and there is little additional processing in the message
flow it is possible to gain significant benefit from using a trusted broker as is shown by the
MQInput/MQOutput message flow. This message flow contains only MQInput and MQOutput nodes.

In the very complex compute node case the majority of the processing is spent in the ESQL
processing and as a result the level of activity by MQInput and MQOutput nodes is much lower.
There was no measurable benefit from using a trusted broker in this case.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

31

2.8 How Do NEONTransform and Compute nodes Compare?

2.8.1 NEONTransform Node

New Era of Networks Rules and Formatter Version 5.2 provides a new parser, NEONMSG. This is
the domain parser for messages defined in the Rules and Formats database. The old domain parser
remains and is supplied for compatibility reasons. However it cannot be used to access any of the
new Rules and Formats support. The NEONMSG parser generates a two-dimensional message tree.
It creates vertical levels in the message tree to represent the components of a compound message
format, whereas the old NEON parser flattened all of the fields to a single vertical level.

NEONMSG also has the ability to serialize a WMQI message tree into a wire format message. This
was not possible with the previous parser. This serialization is restricted to output formats defined in
the Rules and Formats database. The WMQI message tree could be built using ESQL in a compute
node prior to serialization. This was not possible with the previous domain parser.

With WMQI V2 it is possible to transform a message defined in a New Era of Networks input format to
one defined in a New Era of Networks output format in one of two ways: Firstly using a
NEONTransform node and secondly using a compute node with uses the NEONMSG domain parser
to parse the input message and write the output message format. The conversion using the
NEONTransform node was performed using a message flow which consisted of an MQInput,
NEONTransform and an MQOutput node

Using a compute node and the NEONMSG domain parser, it is possible to generate a Generic XML
output message from a message described by a New Era of Networks input format. The results
labeled NEONTransform in Figure 11 show the results that were obtained as a result of using a
NEONTransform node to perform message conversion

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

32

2.8.2 Compute Node NEONMSG Transformation

Throughput measurements were taken in order to compare the relative performance of the two
methods of message transformation and to also show the cost of conversion to XML. An input
message with 100 fields was transformed from one format to another. A single message size of
4096 bytes was measured using non persistent and persistent messages.

The conversion using the compute node and NEONMSG parser was performed using a message
which consisted of an MQInput, Compute and MQOutput node.

Figure 17 below shows the results that were obtained when converting the message using a compute
node and the NEONMSG domain parser. The results labeled NEON to NEON show the results which
were obtained when the output message was written using a New Era of Networks output format.
The results labeled NEON to XML show the results which were obtained when the output message
was written as Generic XML.

NEON to NEON Format NEON to XML
0

10

20

30

40

50

60

70

M
es

sa
ge

s
pe

r S
ec

on
d

4096
4096 Persistent

 Figure 17: NEONMSG Domain Compute node Throughput Results

The results show that the conversion of a message from a New Era of Networks input format to a
New Era of Networks output format was performed more efficiently using a compute node and the
NEONMSG parser (Compare Compute and NEONMSG in Figure 17 with NEONTransform in Figure
11).

Writing the output message as generic XML instead of as a serialized, byte format, message was
more efficient and so achieved a higher message rate.

The detailed measurement data showing the effect of running the New Era of Networks nodes within
WMQI V2 is available in Section 6.13 - New Era of Networks Throughput Results.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

33

2.1 What is the cost of running a Plug-in ?

The function of a WMQI V2 broker can be extended through the use of additional processing nodes.
These nodes are know as plug-in nodes and complement the supplied IBM primitives such as the
MQInput or Trace nodes.

Plug-in nodes can be written in one of two programming languages: C and Java. See the
Websphere MQ Integrator Programming Guide for details on how to create a plug-in node.

The plug-in node has the potential to vary from simple to complex in its processing. This is exactly
the same as for the compute node. The degree of complexity specified has a direct bearing on the
message throughput rates which can be achieved using nodes of that type. The complexity will vary
from plug-in to plug-in.

A series of measurements were taken to illustrate the cost of using a plug-in node. The function
implemented in the plug-in was minimal. It changed the value of a single field in an incoming
message. This is similar to the Simple Compute node which is discussed in Section 2.3.1, Simple
Compute Node.

This test was implemented using both a C and Java plug-in. The code for the C plug-in was that
given in the SampleTransform example which is shipped with WMQI V2.1 Java code was written for
the Java plug-in in order to produce the same effect as the C plug-in.

In order to run the tests two message flows were defined. The first consisted of an MQInput, C
Plug-in and an MQOutput node. The second message flow consisted of an MQInput, Java Plug-in
and an MQOutput node.

Figure 18 below shows the results that were obtained as a result of running the message flow with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow.

C Plugin Java Plugin
0

100

200

300

400

500

600

700

800

M
es

sa
ge

s
pe

r S
ec

on
d

1024
4096
16384
65536
1024 Persistent

Figure 18: Plug-in node Throughput Results

The detailed measurement data showing the effect of running the plugin nodes within WMQI V2 is
available in Section 6.14 - Plug-in Nodes.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

34

3.0 CAPACITY PLANNING

This section gives general guidelines on capacity planning for WMQI V2. For more detailed
assistance in estimating message rates for particular message flows and the processing power
required to support them see Supportpac IP03, Websphere MQ Integrator V2 - Capacity Planning
Tool, available from http://www.ibm.com/software/ts/mqseries/txppacs/ip03.html. The
remainder of this section provides general guidelines to assist with the implementation of WMQI V2.

When capacity planning for the introduction of a new software it is important to be able to establish
two things:

How much resource (CPU, disk, memory) is required to support the required message rate.

If it is possible to run the software at the expected message rate? Has the software been run at
that rate before, and will the deployed system be working within known limits ?

The way in which WMQI V2 can be used varies enormously. For this reason it is not possible to
provide detailed guidance on the resources that are required for all possible configurations of WMQI
V2. It is possible however to provide a series of guidelines in order to get an initial estimate of the
required capacity. Once a prototype implementation has been developed, future resource
requirements can be based on measurement and observation of the prototype and its successor
implementations, which is the only meaningful exercise for you. The problem is invariably one of
getting started. This section helps with that process.

In gauging the capabilities of WMQI V2 to process messages at the required rate examine the various
throughput measurements detailed in Section 2.0 - BROKER THROUGHPUT MEASUREMENTS.
Remember that the message rates are typically for one instance of a message flow running in one
execution group and so these numbers do not represent the highest total message rate which is
achievable. They show what one copy of the message flow is capable of.

Projecting measurement results to other machine types is difficult because performance depends on
many factors, such as processor speed and instruction cache sizes for example. The only method
currently available to gauge relative machine performance is to use published performance figures
such as SPECInt benchmark results that are released by manufacturers for their hardware.

3.1 Throughput

Key factors affecting the throughput rate that is achievable are:

Use of non-persistent vs persistent messages.

The types of WMQI V2 nodes being used.

The amount of processing in the nodes, simple vs complex compute nodes for example.

The number of WMQI V2 nodes being used.

The number of times messages are written to an MQSeries queue from a node.

The complexity of processing in the nodes, for example complex ESQL statements vs simple
copying.

Of the above, those having most effect on message throughput are:

The use of persistent messages. If persistent messages are used the maximum message rate
will be governed by disk performance rather than by processor speed.

The amount of user supplied (ESQL) processing in compute nodes.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

35

The average number of subscribers to match a topic for a Publication node.

Processing of non persistent messages is CPU intensive. It is therefore important to ensure that
there is sufficient CPU available to process the message in order to maximize throughput. The
measurements contained in this report are based on the use of Pentium III Xeon (700Mhz)
processors. Using faster or slower processors will have a corresponding effect.

Processing of persistent messages is I/O intensive. It is therefore important to ensure that the
MQSeries queue manager log is located on a dedicated fast disk. Ideally one with a fast write
nonvolatile cache. When using persistent messages CPU utilization will be lower than for non
persistent messages and you would not expect to be able to fully utilize processors in the same way
as can be done for non persistent messages. In order to increase CPU utilisation and message
throughput you should examine the benefits of running multiple copies of the message flow.

3.2 Scaling Message Throughput

Running multiple copies of a message flow provides the opportunity to increase message throughput.
This is normally done because the message rate that is achievable with a single execution group is
not sufficient for the planned message rates. In general the ability to scale message throughput
depends on a number of factors:

1. The availability of sufficient resources (CPU, disks, memory) to cope with the increased resource
demands as a result of simply processing more messages.

2. The ability to schedule multiple pieces of work in parallel.

3. A minimum of contention between the parallel pieces of work.

If we look at each of these issues with respect to WMQI V2: resolving item 1 above depends on
having sufficient hardware of sufficient speed (CPU and disk) available. This is a principally a
planning issue; For item 2, WMQI V2 provides the ability to schedule multiple pieces of work in
parallel by the use of multiple execution groups for example; The contention between pieces of work
(item 3) depends on the message type (persistent vs non persistent messages), the amount of
access to MQSeries queues (high level of access vs low level) and the nature of additional database
processing where it is used (Insert/Update/Delete vs read only).

The level of contention in any implementation is largely determined by the nature of the application
being implemented and minimizing the effects of contention is an essential part of the application
architecture, design and implementation. This is a large subject and is not covered in any level of
detail in this report. Consider the following cases as an illustration:

Case 1

In a very simple message flow where messages are simply being copied from one queue to another
as fast as possible the potential to keep increasing message throughput by the addition of more
execution groups is limited because of contention for access to the queue in MQSeries. This is even
more of an issue with persistent message since queues are locked for longer and there must be I/O to
the MQSeries log.

Measurements show that when using 1, 2 and 4 execution groups to perform copying of non
persistent messages from one queue to another at the maximum rate possible that there can be
some benefit (maybe an additional 30% in throughput) from using a second execution group but there
after there will be reduced benefit and even a decrease because of the contention for queue access.
With a higher number of execution groups context switching between processes can rise significantly
and although the processors may become busier the level of useful work does not rise. One way
around this contention would be to use multiple message flows each with its own pair of input and
output queues.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

36

It is also possible to show an increase in throughput with persistent messages. The maximum
number of persistent messages that can be processed will be lower than for non persistent messages
since there must be I/O to the MQSeries log. In order to maximize message throughput the
MQSeries log I/O processing time must be reduced. This can be done in several ways. The most
effective method would be to use a disk subsystem with a fast write nonvolatile cache on which to
locate the MQSeries queue manager log. Another possibility is to use a solid state disk.

A message flow that has a significant amount of processing over and above any queue processing
has much greater potential for increasing message throughput by the addition of more execution
groups for example.

The increased throughput rates are possible because firstly the level of queue access overall is much
lower and secondly there is processing that each execution group can perform independently.

Case 2

The Complex Compute node described in Appendix C, Complex Compute Node is a good example of
a message flow that scales well. This message flow was measured with 1, 2 and 4 execution groups.
The results are presented in Section 2.9.3, What Is The Effect Of Increasing the Number of Multiple
Execution Groups.

The results of the measurements show that it was possible to achieve almost perfect scaling in
message throughput with non persistent messages as a result of adding additional execution groups.
By using non persistent messages the processing is CPU bound. The level of queue access is
reduced because of the ESQL processing on the message. As a result the contention for queue
access seen in Case 1 is not an issue.

With persistent messages the increase in message throughput also increased with more execution
groups but at a lower rate than for non persistent messages. The maximum rate achievable is
determined by the rate at which the MQSeries queue manager log is able to operate at. This is in turn
determined by the speed of I/O for the device on which the log is located.

These cases above show that there is a very wide range of scaling from little benefit to 100%. Given
the availability of sufficient resources, the following will determine the scaling ratio that can be
achieved:

The type of message being processed (persistent vs non persistent). Persistent messages have
a lower message processing rate limit than non persistent messages. Persistent messages are
I/O bound whilst non persistent are CPU bound. Once the I/O limit is reached throughput cannot
be increased.

The level of contention for resources such as MQSeries queues or rows in a database. If there is
a common input and common output queue for message processing there is a greater potential
for conflict than if there are multiple input and output queues. Similarly if multiple message flows
are attempting to update the same row in a database there will be conflict for access to that row.
Bypassing these issues largely comes down to application architecture.

The amount of additional CPU processing in the message flow, such as ESQL in a compute node
.

The message throughput rate that is currently being achieved with a single execution group. If a
single execution group is able to fully utilize the I/O capacity of the MQSeries queue manager log
or database manager log for example then it is unlikely that additional instances will allow any
more throughput to be obtained because the message flow is already constrained by the rate at
which log I/O can take place. Similarly, if a message flow is simply copying messages from one
queue to another at a very high rate, it is unlikely that the addition of another copy of this
message flow would achieve significantly more throughput as there would be contention over
queue access.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

37

In planning your configuration it is important to establish where the constraints in the configuration will
be, since these will affect the ability to scale throughput. Determine whether the system will be CPU
or I/O bound. If it is CPU, ensure that the fastest processors available are used. If the system is I/O
bound allocate as many physical disks as possible to split log and data. Also use the fastest devices
available (disks with fast write nonvolatile cache or solid state disk). If it is not possible to remove the
constraints consider using multiple brokers on the same machine or multiple brokers over multiple
machines in order to achieve the required message rate.

3.3 Memory

In estimating memory requirements for WMQI V2 there are a number of components that need to be
considered. These are:

The Control Center. There are likely to be multiple Control centers in use.

The Configuration Manager. There is one Configuration Manager per WMQI V2 implementation.

The Broker. There may be multiple brokers and within these multiple execution groups and so
multiple operating system processes.

MQSeries Queue Manager. There will be one queue manager per broker.

Relational Database. A DB2 system is required to hold information on behalf of the
Configuration Manager and broker. Additional relational databases may be in use which hold
business data.

For the Control Center an at initial recommendation is to allow 100MB memory per Control Center.
This would be for development use.

The Configuration Manager and its associated DB2 database and queue manager should have a
minimum of 512MB of memory available in a development environment, but the recommendation is
to have more.

The amount of memory required by a broker will depend on the way in which it is configured. An
guideline is to allow 300MB for WMQI V2 and its dependent software(broker related components
only, no Configuration Manager or Control Center), with an additional 40 MB per running execution
group. This recommendation is based on an MQSeries queue manager configuration consisting of 10
SVRCONN channels and a small number of queue definitions (less than 25). If the number of
MQSeries resources (channels, queues etc.) to be configured in a system is different or you have a
large number of nodes in a flow or very large messages being processed you must make an
allowance and amend the amount of memory required accordingly.

3.4 Recommended Minimum Configurations

This section contains recommendations on the type of hardware on which an WMQI V2 configuration
should be based when running in production. These are only recommendations and are not a
substitute for a formal planning and sizing exercise in which requirements are accurately determined.

For production use it is recommended that the components of WMQI V2 are allocated over multiple
machines with the following purposes:

One or more machines to support Control Center usage.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

38

One machine to support the Configuration Manager. This may also include one Control Center.

One or more machines to support brokers.

By following this organization the brokers can run in a shielded environment as they process
messages. It is important that this processing proceeds without competition for resources from other
processes in order to ensure the smooth flow of messages through the enterprise.

A recommended machine specification for the Control Center is a fast uni-processor with 256MB
memory.

A recommended machine specification for the Configuration Manager is a fast uni-processor with
512MB or more of memory.

The specification of the broker machine is more difficult to determine since it requires knowledge of
the expected message rate, the types of node that are to be used and the level of transaction control
that is used. A recommended minimum specification would be a 2 way processor with 512MB
memory. The specification may need to be upgraded if message rates are high or there are many
execution groups. In such cases more detailed planning would be required. Prototyping and
benchmarking should be considered in order to accurately determine resource requirements. The
results produced will then be specific and tailored to the individual configuration being built.

If persistent messages are to be used the use of solid state disks or disks with a non volatile fast write
cache is recommended for the device on which the MQSeries queue log manager is located. Where
the message rate is less than 25 msgs/second per second fast I/O will improve message response
time only. Where the rate is greater than 25 msgs/second then there will be an improvement in
message throughput.
A separate disk is also recommended for the MQSeries queue manager queue data. This disk need
not have a fast write capability.

If business data is accessed from a relational database the database log and data should each be
located on dedicated disks. Consider using a fast device for the database manager log.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

39

4.0 PERFORMANCE RECOMMENDATIONS

This section contains a number of recommendations to assist in the planning and implementation of
an efficient WMQI V2 configuration.

4.1 Understand Recovery Requirements

In designing messageflows within WMQI V2 it is important that the subject of data recovery is
approached from the top down rather than bottom up. If you do not consider the recovery needs as a
whole it is possible that more logging than is actually required will be undertaken. This will lead to a
drop in the throughput rate that is achievable with a message flow as the flow becomes I/O bound.

In designing the message flow it is important to establish whether the whole message flow is to be
made a recoverable or whether only certain parts of it are. It is also important to establish whether
external resource managers such as a database are required. Establish whether data updated in an
external resource manager is to be committed within a global unit of work or not.

If a message flow is to involve data held in an external resource manager, i.e. not a queue manager,
then consider using the coordinatedTransaction parameter in order to make all changes to external
data within the scope of a single unit of work. In order for this mode to function correctly the
MQSeries queue manager associated with the broker must have an XA connection to each of the
external resource managers.

Think carefully about when deciding to use MQSeries transactional control on messageflows. Maybe
this is something that is only required for persistent messages.

4.2 Optimize Queue Manager

The performance of the underlying queue manager for a broker plays a key role in the performance
that can be obtained from using WMQI V2.

To improve overall performance with the queue manager consider minimizing message sizes and
only use persistent messages where required.

With non persistent messages there is little that can be done to optimize queue manager performance
other than ensuring that there is sufficient memory and CPU available.

With persistent messages the limiting factor is the speed at which the MQSeries queue manager log
operates. To minimize the amount of logging taking place and improve the efficiency where possible
consider the following points:

The MQSeries queue manager log and queue data should be configured on individual, dedicated,
disks.

Use the fastest disks available for the MQSeries log. Possible choices are disks with a fast write
non volatile cache capability (such as SSA) or a solid state disk. Such devices are capable of
delivering I/O times of the order of 1ms compared with 10-16ms for a SCSI disk. Whichever type
is selected it is extremely important to ensure that data will not be lost in the event of a power
failure. The loss of log data is likely to compromise the integrity of the queue manager.

Do not use IDE disks, as recovery cannot be guaranteed. This is because the IDE controller
indicates that the write has completed when in fact it has not yet been attempted and could
possibly fail.

Run with parallel applications rather than a single application. There is some benefit to be
obtained from coat tailing on log I/O that occurs when there is more than one application running

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

40

with the queue manager. This can be achieved by using multiple copies of a message flow,
additional instances or multiple execution groups.

4.3 Configuration Considerations

Consider the following points when building an WMQI V2 configuration:

It is recommended to use a separate database instance for each of the Configuration Manager
and broker.

It is not recommended to use the database instances for the Configuration Manager or broker to
hold business data.

It is recommended to ensure that the database instance for the Configuration Manager is local to
the machine on which the Configuration Manager is installed.

It is recommended to ensure that the database instance for the broker is local to the machine on
which the broker runs.

It is recommended to use a local database for business data. Where such a database is remote
from the broker machine, ensure that there is a fast, preferably dedicated, communications link
between the broker machine and the database manager.

Carefully examine default settings for nodes and messageflows, especially those related to
recovery, to ensure that the values are those required. The transaction mode parameter for an
MQInput node will default to yes, meaning that the message flow will proceed under transaction
control. This may not be what was required.

When creating and deploying large messageflows increase the heap allocation of the
Configuration Manager database. In DB2 this is the APP_CTL_HEAP_SIZE parameter. You
should increase the value empirically.

4.4 Maximizing Throughput

In order to improve the message throughput for a message flow, consider the following points:

Achieve as much parallelism as possible. This can achieved in WMQI V2 by running multiple
copies of a message flow. Doing this will result in the creation and use of another thread or
process which provides the potential to increase CPU utilization by using another processor.
These approaches are only effective on a machine that has multiple processors. With a single
processor machine it will not be possible to improve throughput in this way. However, it may still
be necessary to configure multiple execution groups for other reasons.

In maximizing multiprocessor exploitation remember that there are processes associated with the
MQSeries queue manager and any databases that may be used from within messageflows. For
example the MQSeries queue manager listener process is capable of fully utilizing a processor
dependent on the message rate. This was the case with the WMQI V2 performance
measurements.

Avoid small message flows which use MQSeries queue to communicate. Writing a message to a
queue is a relatively expensive operation when compared with moving a message between nodes
in the same message flow. It would be better to form one larger single message flow, do not
move to the other extreme though and put all processing into one single flow.

Run the broker as a trusted application where appropriate. This is achieved by using the ‘-t’ flag
on the mqsicreatebroker command and by ensuring that the e environment variable
MQ_CONNECT_TYPE is set to FASTPATH in the environment in which the broker is started.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

41

Run the MQSeries queue manager listener process as a trusted application. This is achieved by
ensuring the environment variable MQ_CONNECT_TYPE is set to FASTPATH in the
environment in which the listener is started .

Compute nodes are expensive in processing costs because they build a representation of the
input message. Aim to minimize the number of compute nodes therefore. Dependent on the
circumstances, you may consider using a filter node instead of a compute node if message
selection is required.

When using publication nodes ensure that the open queue cache size is set appropriately. See
section 2.12 What Effect Does an Increasing Number of Subscribers Have on Publish/Subscriber
Throughput? for more details.

When designing messages, make them as simple as possible. Large and more complex
messages require more parsing. This consumes more CPU.

Monitor the number of application handles in any databases containing business data (non
WMQI V2 databases). In DB2 for example this is the MAX_APPLS parameter. Each database
node will obtain an application handle. The node will retain this handle until the execution group
terminates. If there are multiple message flows each with multiple database nodes then the DB2
default value of 40 can be quickly exceeded.

Regularly monitor the performance of any database containing business data.

Ensure that there are sufficient resources available to the database manager (CPU, memory,
disk) so that it does not becoming a limiting factor in message throughput.

Use fast disks for the queue manager log. See Section 4.2 - Optimize Queue Manager above.

Use fast disks for the database log where insert/delete/update activity is taking place in message
flows.

Consider the recommendations described in Supportpac IP04, Designing Message Flows for
Performance. This Supportpac makes a number of recommendations for message flow design
and the use of ESQL.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

42

5.0 APPENDIX A - MEASUREMENT HARDWARE AND
SOFTWARE

All throughput measurements where taken on a single server machine driven by MQSeries clients
running on a separate client machine connected by a 100Mb Ethernet link.

MQSeries Clients communicated with the MQSeries queue manager on the server machine using an
MQI channel.

Server Machine

The server machine hardware consisted of

An Solaris E450 with 4 * 400 MHz processors.

Eight 4.2 GB SCSI hard drives and three 9.0 GB SCSI hard drives.

1GB RAM.

100 Mb Ethernet Card.

The server machine software consisted of:

Solaris 2.8.

MQSeries V5.2.

WebSphere MQ Integrator for Sun Solaris V2.1.

DB2 for Solaris V7.1.

Client Machine

The client machine hardware consisted of

An IBM Netfinity 5500 M20 with 4 * 550Mhz Pentium III Xeon processors.

Six 8.0 GB SCSI hard drives formatted to use NTFS.

1GB RAM.

100 Mb Ethernet Card.

The client machine software consisted of:

Microsoft Windows NT V4.0 with Service Pack 6a.

MQSeries V5.2.

Network Configuration

The client and server machines were connected on a full duplex 1 Gigabit Ethernet LAN with a single
hub.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

43

6.0 APPENDIX B - MEASUREMENT DATA

This section contains the detailed results of the WMQI V2 performance measurements described in
Section 2.0 - Measurement Results. For an explanation of column headings see Section 5.0 -
Glossary. The CPU utilization reported for the server machine, under the heading “rem CPU” in each
table, is the system CPU utilization on the server machine. This includes all processes on the server
machine. The figure therefore reflects the cost of the MQSeries queue manager processes, the
MQSeries Listener, DB2 where appropriate etc. in addition to the CPU used by the WMQI V2 broker.

The default messages used in the performance measurements were not set to any particular type, i.e.
MQRFH, MQRFH2 or XML. Where a particular type was used it is indicated.

6.1 MQInput/MQOutput Throughput Results
Persist Msgsize msgs/sec Mbits/sec cpu
no 1024 1504 23.5 50
no 4096 1300 81.2 57
no 16384 646 161.5 50
no 65536 56.2 56.2 4
yes 1024 79.9 1.2 8

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

44

6.2 Compute Node Throughput Results
Simple Compute

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 518 8 35
no 4096 412 25.7 35
no 16384 233 58.2 35
no 65536 53.6 53.6 17
yes 1024 61 0.9 11

Complex Compute

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 101 6.3 28
no 16384 67.1 16.7 29
no 65536 30.1 30.1 30
yes 4096 45.3 2.8 16

Multiple Complex Compute

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 32.2 2 26
no 16384 27.7 6.9 26
no 65536 17.8 17.8 27
yes 4096 26.3 1.6 24

Very Complex Compute

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 39.5 2.4 26
no 16384 33.4 8.3 27
no 65536 20.7 20.7 28
yes 4096 28.6 1.7 24

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

45

6.3 Database Node Throughput Results
DB2 Insert and delete - coordinated transaction = yes

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 54.1 0.8 10
no 4096 47.5 2.9 10
no 16384 44.1 11 11
no 65536 44.8 44.8 17
yes 1024 36.4 0.5 11

6.4 Filter Node Throughput Results

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 733 11.4 37
no 4096 591 36.9 38
no 16384 343 85.7 39
no 65536 56.7 56.7 4
yes 1024 60.1 0.9 10

6.5 RouteToLabel Node Throughput Results
1 Destination Entry

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 647 10.1 41
no 4096 633 39.5 44
no 16384 455 113.7 49
no 65536 56.6 56.6 7
yes 1024 60.5 0.9 10

100 Destination entries

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 144 2.2 28
no 4096 142 8.8 29
no 16384 138 34.5 32
no 65536 53.7 53.7 21
yes 1024 52.8 0.8 15

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

46

6.6 Publication Node Throughput Results

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 533 8.3 35
no 4096 507 31.6 36
no 16384 403 100.7 44
no 65536 57.5 57.5 3
yes 1024 66.6 1 10

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

47

6.7 Converting Messages Between Formats

Generic XML message in to generic XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 160 10 29
no 16384 93.2 23.3 30
no 65536 33 33 30
yes 4096 50 3.1 14

Generic XML message in to CWF out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 94.5 5.9 28
no 16384 74.4 18.6 28
no 65536 40.8 40.8 31
yes 4096 47.3 2.9 17

Generic XML message in to MRM XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 67.7 4.2 28
no 16384 45.2 11.3 28
no 65536 19.2 19.2 28
yes 4096 49.9 3.1 25

Generic XML message in to MRM TAG out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 58.8 3.6 26
no 16384 51.6 12.9 28
no 65536 31.2 31.2 30
yes 4096 36 2.2 18

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

48

CWF message in to generic XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 114 7.1 28
no 16384 78.9 19.7 30
no 65536 33.2 33.2 30
yes 4096 45 2.8 16

CWF message in to CWF out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 101 6.3 28
no 16384 85.5 21.3 30
no 65536 48.5 48.5 30
yes 4096 50.3 3.1 19

CWF message in to MRM XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 77.7 4.8 28
no 16384 52.3 13 29
no 65536 22.5 22.5 29
yes 4096 45.7 2.8 22

CWF message in to MRM TAG out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 61.2 3.8 28
no 16384 54.1 13.5 28
no 65536 37 37 31
yes 4096 40.1 2.5 20

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

49

MRM XML message in to generic XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 78.2 4.8 28
no 16384 56.4 14.1 27
no 65536 25.2 25.2 28
yes 4096 50 3.1 22

MRM XML message in to CWF out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 69.4 4.3 27
no 16384 56.8 14.2 27
no 65536 33.6 33.6 30
yes 4096 46.3 2.8 21

MRM XML message in to MRM XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 60.2 3.7 28
no 16384 42.1 10.5 28
no 65536 17.8 17.8 28
yes 4096 36.5 2.2 19

MRM XML message in to MRM TAG out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 48.7 3 26
no 16384 42.1 10.5 27
no 65536 26 26 28
yes 4096 37 2.3 21

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

50

MRM TAG message in to generic XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 32 2 26
no 16384 16.2 4 26
no 65536 5.7 5.7 26
yes 4096 25 1.5 25

MRM TAG message in to CWF out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 30.1 1.8 26
no 16384 16.5 4.1 26
no 65536 5.8 5.8 26
yes 4096 24.5 1.5 25

MRM TAG message in to MRM XML out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 27.6 1.7 26
no 16384 15.2 3.8 26
no 65536 5.2 5.2 26
yes 4096 22.7 1.4 24

MRM TAG message in to MRM TAG out

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 25.8 1.6 26
no 16384 15.5 3.8 26
no 65536 5.8 5.8 26
yes 4096 22.7 1.4 26

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

51

6.8 Parallel Processing

This section contains the results of running with multiple execution groups for a message flow with a
very complex compute node.

6.8.1 The Effect of Increasing The Number Of Execution Groups
One Execution Group running a single message flow

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 39.5 2.4 26
no 16384 33.4 8.3 27
no 65536 20.7 20.7 28
yes 4096 28.6 1.7 24

Two Execution Groups running a single message flow

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 95 5.9 53
no 16384 75.5 18.8 53
no 65536 43.4 43.4 55
yes 4096 47.5 2.9 28

Four Execution Groups Running a single message flow

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 4096 156 9.7 99
no 16384 136 34 99
no 65536 63.2 63.2 89
yes 4096 74.9 4.6 55

6.9 The Effect of Making a Message Flow Transactional

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 1168 18.2 52
no 4096 1054 65.8 57
no 16384 638 159.5 53
no 65536 56.6 56.6 5
yes 1024 78.4 1.2 9

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

52

6.10 The Effect of using coordinatedTransaction=yes
DB2 Update - coordinated transaction = no

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 159 2.4 14
no 4096 158 9.8 16
no 16384 155 38.7 21
no 65536 57.1 57.1 9
yes 1024 51.9 0.8 10

DB2 Update - coordinated transaction = yes

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 60 0.9 10
no 4096 61.1 3.8 11
no 16384 48.1 12 10
no 65536 42.6 42.6 15
yes 1024 38.1 0.5 10

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

53

6.11 The Effect of Increasing the Number of Subscribers
1 Subscriber Receiving MQRFH2 Type Published Messages

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 533 8.3 35
no 4096 507 31.6 36
no 16384 403 100.7 44
no 65536 57.5 57.5 3
yes 1024 66.6 1 10

10 Subscribers Receiving MQRFH2 Type Published Messages

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 196 3 39
no 4096 193 12 41
no 16384 161 40.2 42
no 65536 56.5 56.5 32
yes 1024 34.2 0.5 24

30 Subscribers Receiving MQRFH2 Type Published Messages

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 84.1 1.3 42
no 4096 80.2 5 43
no 16384 68.3 17 43
no 65536 37.7 37.7 49
yes 1024 17.1 0.2 24

50 Subscribers Receiving MQRFH2 Type Published Messages

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 51.9 0.8 43
no 4096 51 3.1 43
no 16384 43.7 10.9 44
no 65536 24.2 24.2 48
yes 1024 11.2 0.1 28

70 Subscribers Receiving MQRFH2 Type Published Messages

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 38.6 0.6 42
no 4096 36.6 2.2 43
no 16384 31.9 7.9 43
no 65536 18.4 18.4 49
yes 1024 7.9 0.1 24

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

54

100 Subscribers Receiving MQRFH2 Type Published Messages

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 27.2 0.4 43
no 4096 25.9 1.6 43
no 16384 23 5.7 44
no 65536 12.8 12.8 47
yes 1024 6.9 0.1 31

1000 Subscribers Receiving MQRFH2 Type Published Messages

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 2.3 0 40
no 4096 2.3 0.1 40
no 16384 2 0.5 41
no 65536 1.3 1.3 45
yes 1024 0.6 0 31

6.12 Content vs Topic Based PubSub

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 250 3.9 30
no 4096 226 14.1 31
no 16384 172 43 32
no 65536 54.1 54.1 17
yes 1024 65.5 1 14

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

55

6.13 New Era of Networks Throughput Results

NEON Rules

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 114 1.7 28
no 4096 104 6.5 28
no 16384 77.3 19.3 29
no 65536 40.6 40.6 32
yes 1024 53.5 0.8 18

NEON Transform

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 27.5 0.4 26
no 4096 27.7 1.7 26

Compute NEONMSG Reformat

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 32.3 0.5 26
no 4096 31.9 1.9 26

Compute NEONMSG Reformat to XML

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 60.9 0.9 28
no 4096 60.2 3.7 26

6.14 Plug-in Nodes
C plugin

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 771 12 40
no 4096 662 41.3 38
no 16384 380 95 43
no 65536 56.4 56.4 7
yes 1024 64.7 1 10

Java Plugin

Persistence
Message
size

Messages /
Second

Mbits /
Second

CPU
utilisation

no 1024 454 7 38
no 4096 382 23.8 38
no 16384 223 55.7 40
no 65536 53.6 53.6 20
yes 1024 59.2 0.9 11

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

56

7.0 APPENDIX C - COMPLEX COMPUTE NODE

This section contains details of the complex, multiple complex and very complex compute nodes.

7.1 Complex Compute Node

The ESQL statements used in the complex compute node are given below. The variable i has a
maximum value of 20.

Set OutputRoot=InputRoot;

DECLARE i INTEGER;

DECLARE C INTEGER;

SET C=CARDINALITY(OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[]);

SET i = 1;

WHILE i <= C DO

 SET OutputRoot.XML.CSIM.TestCase.ProcessingPath.Component[i].Name =

 OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[i].COMPONENT;

 SET OutputRoot.XML.CSIM.TestCase.ProcessingPath.Component[i].Transport.(XML.attr)Type='A';

 SET OutputRoot.XML.CSIM.TestCase.ProcessingPath.Component[i].Transport.Queue =
OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[i].QUEUE;

 SET i = i + 1;

END WHILE;

7.2 Multiple Complex Compute Node

The multiple complex compute nodes consisted of five identical complex compute nodes that were
daisy chained. The logic within each of the complex compute nodes was the same as that for the
complex compute node given in Section 8.1 - Complex Compute Node.

7.3 Very Complex Compute Node

The very complex compute node consisted of five repetitions of the logic for complex compute node
(see Section 8.1 - Complex Compute Node) all contained within one compute node.

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

57

End of Document

Websphere MQ Integrator for Sun Solaris V2.1 - Performance report

58

