
WebSphere Business Integration Message Broker
for Solaris V5

 Performance report

Version 3.0

September, 2004

Tim Dunn

Kevin Braithwaite

 Messaging Technologies Performance

IBM UK Laboratories
Hursley Park

Winchester
Hampshire
SO21 2JN

Property of IBM

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 2 of 68

Take Note!

Before using this report be sure to read the general information under "Notices".

Third Edition, September 2004.

This edition applies to WebSphere Business Integration Message Broker for SolarisV5 CSD2.

© Copyright International Business Machines Corporation 2003. All rights reserved. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure
is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 3 of 68

Notices
This report is intended for Architects, Systems Programmers, Analysts and Programmers wanting to
understand the performance characteristics of WebSphere Business Integration Message Broker
for Solaris V5 CSD2 level of code. The information is not intended as the specification of any
programming interfaces that are provided by WebSphere MQ or WebSphere Business Integration
Message Broker for Solaris – V5. It is assumed that the reader is familiar with the concepts and
operation of WebSphere Business Integration Message Broker V5.

References in this report to IBM products or programs do not imply that IBM intends to make these
available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is distributed
“asis”. The use of this information and the implementation of any of the techniques is the
responsibility of the customer. Much depends on the ability of the customer to evaluate these data
and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and results
obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both:

 IBM

 Netfinity

 WebSphere MQ

 WebSphere MQ Integrator

 WebSphere Business Integration Message Broker

 DB2

The following terms are trademarks of other companies:

 Solaris Sun Corporation

 Windows NT, Windows 2000 Microsoft Corporation

Other company, product, and service names may be trademarks or service marks of others.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 4 of 68

Summary of Amendments
Date Changes

27 June 2003 Initial Release

02 December 2003 Update for CSD2 level of code

24 September 2004 Corrections to results and text for SWIFT MT543 message tests

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 5 of 68

Feedback
This report and other tools that are produced by the performance group are produced in order to help
you understand the performance characteristics of WebSphere Business Integration Message Broker
and to assist you with Capacity Planning. It is important that the reports and tools are effective in what
they do and it is very useful to have feedback on the content and style of the information which is
produced. Your comments, both positive and negative, are therefore welcome.

Your answers to the following questions are particularly interesting:

• What are your most common performance questions?

• Do the reports provide what is needed?

• Is there any other performance information which is required to help you do your job?

• Would you like to see any other aspects of WBIMB performance discussed?

Please supply feedback to the WBIMB Performance Group user ID (email address
WMQPG@uk.ibm.com).

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 6 of 68

Contents
Contents.. 6

1 Introduction... 8

2 Maximum Message Broker Throughput ... 10

2.1 Message Routing... 10

2.2 Message Enrichment from a Database ... 11

2.3 Message Update.. 11

2.4 Message Transformation... 11

2.5 Complex Message Processing .. 11

2.6 Summary of Message Broker Throughput .. 12

3 Message Node Processing Profiles ... 13

3.1 A Trivial MQInput/MQOutput Message Flow... 14

3.2 Aggregation Node.. 15

3.3 Compute Node... 17

3.4 Database Node.. 23

3.5 Filter Node ... 26

3.6 FlowOrder Node .. 27

3.7 Mapping Node ... 29

3.8 Message Conversion... 30

3.9 Publication Node.. 32

3.10 RouteToLabel Node... 36

4 Parallel Processing Options ... 37

4.1 What Is The Effect Of Using Additional Instances?... 37

4.2 What Is The Effect Of Using Multiple Execution Groups?... 38

5 Recommended Minimum Specification.. 39

6 Summary of Tuning Information... 40

6.1 WebSphere Queue Manager Tuning .. 40

6.2 WebSphere Business Integration Message Broker Tuning .. 40

6.3 Database Manager Tuning .. 41

6.4 Additional Tuning Information.. 41

7 Measurement Hardware and Software .. 42

7.1 Server Machine.. 42

7.2 Client Machine ... 42

7.3 Network Configuration ... 42

8 Evaluation Method.. 43

8.1 Input Message Generation .. 43

8.2 Message Content... 43

8.3 Machine Configuration... 43

8.4 Message Broker Configuration .. 44

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 7 of 68

8.5 Database Configuration... 45

8.6 Message Rate.. 45

9 Compute Node ESQL... 46

9.1 Simple Compute Node... 46

9.2 Complex Compute Node ... 46

9.3 Multiple Complex Compute Node.. 46

9.4 Very Complex Compute Node... 46

9.5 Nested Select From...47

10 Measurement Data .. 48

10.1 A Trivial MQInput/MQOutput Message Flow Results.. 48

10.2 Aggregation Node Results... 49

10.3 Compute Node Results ... 49

10.4 Database Node Results... 51

10.5 Filter Node Results .. 52

10.6 FlowOrder Node Results ... 53

10.7 Mapping Node Results .. 54

10.8 Message Format Conversion Results ... 55

10.9 Publication Node Results .. 61

10.10 RouteToLabel Node Results ... 63

10.11 Parallel Processing Options .. 64

Index.. 67

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 8 of 68

1 Introduction
The purpose of this report is to illustrate the processing characteristics of WebSphere Business
Integration Message Broker (WBIMB). This has been done by measuring the message throughput
which is possible for a number of different message nodes. The test cases used have been made
deliberately trivial in order to be able to report the cost of using WBIMB, rather than to report the cost
of running a particular application.

The effect of the WBIMB broker queue manager has been minimized where possible. This has
meant using predominately non persistent messages as well as having a compensating program to
ensure that the WebSphere MQ queue manager queue cache did not overflow to disk. If these two
actions were not taken, the throughput possible with WBIMB would have been constrained by the
necessary I/O processing of the WebSphere MQ queue manager with which the WBIMB broker was
associated.

The performance measurements have focused on the throughput capabilities of the broker using
different processing node types. The aim of the measurements was to be able to answer questions
such as how many messages a second can be processed with each of the node types and what are
the relative costs of the different node types.

 The following node types have been measured:

• Aggregation

• Compute

• Database

• Filter

• FlowOrder

• Mapping

• MQInput and MQOutput

• Publication

• RouteToLabel

These nodes give a cross section of the possible node types and should be sufficient to cover most
basic types of message transformation and distribution. All the nodes measured used minimal
processing where it was possible (apart from the investigation into complex node processing) so the
results presented represent the best throughput that can be achieved for that node type. This should
be borne in mind when performing capacity planning.

All measurements are for a single instance of a message flow in a single execution group unless
otherwise noted. Although this does not show the maximum throughput possible with each type of
node on the measurement machine it does provide a common methodology and shows the relative
costs of nodes.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 9 of 68

Recommended minimum specification machines are given for each of the WBIMB components. This
information is given in Chapter 5, Recommended Minimum Specification.

All measurements were conducted in the same measurement environment. This is described in
Chapter 7, Measurement Hardware and Software.

All measurements were obtained using the same methodology. This is described in Chapter 8,
Evaluation Method.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 10 of 68

2 Maximum Message Broker Throughput
WBIMB provides the capability to process messages in a variety of message formats, those with
legacy data structures, XML or tagged delimited strings for example. Using WBIMB it is possible to
both parse such messages when they are an input message and write them when they are an output
message. Once an input message has been parsed it is possible to perform many different types of
processing. Typical uses of WBIMB are message routing, message enrichment, message
transformation and publish/subscribe.

WBIMB provides the capability to run more than one copy of a message flow within a broker. Multiple
copies of a message flow are usually run in order to increase message throughput. Using the
mechanisms provided in WBIMB it is possible to fully utilize a server machine and so achieve much
higher message throughput rates than would be obtained with a single copy of the message flow.

WBIMB provides an easy method to increase the number of copies of a message flow which are
running. This is an operational consideration rather than a design or coding issue for the message
flow. As such you can change the number of copies of a message flow which are run to meet
differing requirements.

There are two recommended ways of running multiple copies of a message flow. These are as
follows:

• Use the additional Instances mechanism within WBIMB. This enables more than one copy of
a message flow to be run within one execution group. This will result in a number of threads
each running the message flow within the execution group.

• Assign a copy of the message flow to more than one execution group. In order to run multiple
copies of the message flow multiple execution groups within the broker are required.

The following sections illustrate the message rates that are possible for a variety of different types of
message processing when fully utilizing the server machine on which the performance measurements
were taken. These flows are simple in nature but illustrate the magnitude of processing that is
possible with WBIMB. The results shown are an indication only. The use of faster or slower
processors or more complex message processing will have a corresponding effect on message
throughput.

2.1 Message Routing

Through the use of a filter node it is possible to implement simple message routing. The filter node is
able to apply an ESQL expression against the content of the input message. Based on the result of
the expression evaluation a message can be passed through one of two node terminals. The first
terminal (True) could lead to one message queue, via an MQOutput node. The second terminal
(False) could lead a second message queue or another filter node.

In order to illustrate this type of processing a message flow consisting of an MQInput node, a Filter
node and an MQOutput node was defined. This is the same processing that is described in Section
3.5, Filter Node. Sufficient copies of the message flow were run in order to fully utilize the server
machine. With this message flow it was possible to process approximately 1954 1KB non persistent
msgs/second.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 11 of 68

2.2 Message Enrichment from a Database

In some applications there is a need to read information from a database. This might be to validate
the contents of a field in an input message or to include data from the database in the output
message. Such processing requires one or more rows to be read from a database.

In order to illustrate this type of processing a message flow consisting of an MQInput node, a
Database node and an MQOutput was defined. This is the same processing that is described in
Section 3.4.3, Database Read. Sufficient copies of the message flow were run in order to fully utilize
the server machine. With this message flow it was possible to process approximately 1182 1KB non
persistent msgs/second.

2.3 Message Update

ESQL provides the means to perform message manipulation. The level of complexity of such
processing varies considerably as does the cost of running such processing. Simple processing
requires less CPU and so is capable of running at higher message rates than more complex
processing.

In order to illustrate a form of message processing a message flow consisting of an MQInput node, a
Compute node and an MQOutput was defined. This is the same processing that is described in
Section 3.3.4, Very Complex Compute . Sufficient copies of the message flow were run in order to
fully utilize the server machine. With this message flow it was possible to process approximately 397
1KB non persistent msgs/second.

2.4 Message Transformation

A typical use of WBIMB is to perform message transformation. For example it may be necessary to
reorder message fields as two communicating applications expect the fields to be in a different
sequence. In order to do such processing the input message must be read in, the fields reordered
and the output message written.

To illustrate simple message transformation an XML input message was reordered by a message
flow consisting of an MQInput node, a Compute node and an MQOutput node. This is the same
processing that is described in the Generic XML to Generic XML test in Section 3.8,Message
Conversion. Sufficient copies of the message flow were run in order to fully utilize the server
machine. With this message flow it was possible to process approximately 597 4KB non persistent
msgs/second.

2.5 Complex Message Processing

In some situations WBIMB is required to perform complex processing on the contents of a message.
This may involve reformatting, reordering and calculation to produce for example a financial
statement.

In order to illustrate such processing an XML message was processed by a message flow consisting
of an MQInput node, a Compute node and an MQOutput node This is the same processing that is
described in Section 3.3.5, Nested SELECT FROM Compute . Sufficient copies of the message flow

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 12 of 68

were run in order to fully utilize the server machine. With this message flow it was possible to
process approximately 493 4KB non persistent msgs/second.

2.6 Summary of Message Broker Throughput

In the preceding sections there were five examples of different types of processing which vary in the
complexity and function performed. The figure below summarizes the results into a single chart.

1.00

10.00

100.00

1000.00

10000.00

Routing Enrichment Update Transformation Processing

M
es

sa
ge

 P
er

 S
ec

on
d

Figure 1: Summary of Message Throughput Tests

Note the difference between the maximum and minimum message rates which were obtained even
though the same hardware and software was used for all of the tests. The message rates which you
will achieve in practice will also be very different. They will be dependent on the resources which are
allocated to running the message flow and the complexity of the message flow. Complexity is
measured not only by the number of processing nodes along the critical path also by the nature of the
processing within the nodes.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 13 of 68

3 Message Node Processing Profiles
There are many different nodes available within WBIMB. These vary significantly in function and level
of performance. This is understandable as they provide a wide range of functions. For example the
Filter node can be used to test the value of one or more fields in a message and route messages at a
high rate, whilst the aggregation nodes can be used to perform coordination of requests to a variable
number of external applications. This coordination is clearly more involved than the testing of a single
field in a message and the message rate achieved with the aggregation node is consequently lower.

Similarly the processing within a given node type can significantly affect the message rate which is
achievable with that node. Take a Compute node for example. Within a Compute node it is possible
to code ESQL. The quantity and complexity of the ESQL have a very direct effect on the message
rate which is possible as you will see in the Compute node tests.

The purpose of this section is to profile some of the most commonly used processing nodes. Each of
the nodes is implemented in a simple message flow and the maximum message rate possible with a
single copy of that message flow is measured. The effect on message throughput of using different
message sizes and level of persistence are shown. The results for each test are presented with a
brief description of the test case followed by a graph of the measurement results. A table containing
the actual measurement results is presented in Chapter 10, Measurement Data.

When examining the results of these tests it is important to understand whether the test was CPU or
I/O bound. For any given test a higher message rate will be obtained if the test is CPU bound rather
than I/O bound. For example CPU utilizations lower than 28% on a 4 CPU machine would indicate
that the test is I/O bound to some extent. The 28% CPU consists of a CPU utilization of 25% (full
utilization of one processor) for the single message flow running in an Execution Group and at least
3% for the Broker queue manager listener process through which messages arrive and depart the
system (or local application if this is used instead). In a high volume environment this processing by
the Broker queue manager listener or local application is likely to be even higher. CPU utilizations for
each test are reported in Chapter 10, Measurement Data.

The extent to which processing is I/O bound can be reduced through the use of a faster I/O device
than a SCSI disk, such as non volatile cached or solid state disks. Use of a faster I/O device in most
circumstances leads to an improvement in message rate (however it may not always be possible to
make a message flow CPU bound). As a general rule those tests which have more involved
message flow processing are CPU bound even when processing persistent messages.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 14 of 68

3.1 A Trivial MQInput/MQOutput Message Flow

A message flow consisting of a single MQInput and MQOutput node represents the simplest form of
message input and output. Measuring the throughput achievable with such a message flow shows
the maximum message rate that can be achieved using WBIMB to move messages between
WebSphere MQ queues.

A single message flow was defined, consisting of an MQInput node and MQOutput node. The
transaction mode for the MQInput and MQOutput nodes was set to automatic.

The figure below shows the results that were obtained when running the message flow with varying
message sizes and persistence. There was a single instance and single execution group running the
message flow

0

500

1000

1500

2000

2500

3000

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Pers is tent

Figure 2: MQInput/MQOutput Throughput Results

With a 1KB non persistent message it was possible to process approximately 2727 msgs/second.
The message throughput rate declined with size reflecting the increased volume of data.

With 1KB persistent messages it was possible to process approximately 88 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.1.

Note: The results from this test indicate the best possible message throughput that will be achieved
with a message flow on any given machine. This is because the messages are copied from the input
queue to the output queue with the absolute minimum of processing. Such processing is not typical
of WBIMB usage.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 15 of 68

3.2 Aggregation Node

The aggregate node function in WBIMB provides an implementation of the request/reply processing
model. The implementation is sufficiently flexible to allow a variable number of requests and replies
to be coordinated. Use of the supplied aggregate nodes can reduce the complexity of the logic of the
message flow thus allowing the user to concentrate on business logic and freeing them from the need
to provide co-ordination logic. The nodes are typically used to coordinate one or more requests to
back-end applications.

The aggregation support within WBIMB consists of a ‘fan-out’ phase in which one or more request
messages are issued to applications and a ‘fan-in’ phase in which responses or reply messages are
collected together. A consolidated reply can then be generated. Aggregation support is provided
through the AggregateControl, AggregateRequest and AggregateReply nodes.

Testing consisted of a fan-out message flow, a simple C application which copied messages from one
queue to another and a fan-in message flow. The fan-out message flow generated four request
messages which where written to an intermediate request queue. The simple C application emulated
a back-end application and copied the messages from the intermediate request queue to an
intermediate reply queue. The fan-in message flow processed the messages appearing on the
intermediate reply queue and produced a consolidated output message.

Coding of the message flows and configuration of the broker environment followed the
recommendations given in SupportPac IP05, WebSphere MQ Integrator V2.1 - Optimizing Use of
Aggregation Nodes which is available at
http://www.ibm.com/software/integration/support/supportpacs/individual/supportpacs/ip05.pdf

The figure below shows the results that were obtained when running the aggregation test with varying
message sizes and persistence. One copy of the fan-out message flow, four copies of the fan-in
message flow and one copy of the simple C application were run for maximum message throughput.

14
14.5

15
15.5

16
16.5

17
17.5

18

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Persistent

Figure 3: Aggregation Node Throughput Results

With a 1KB non persistent message it was possible to process approximately 18 msgs/second. The
message throughput rate declined with size reflecting the increased volume of data.

With 1KB persistent messages it was possible to process approximately 15 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 16 of 68

Message throughput with the aggregation nodes is heavily dependent on the speed and type of disks
used for the database log (in this case SCSI disks were used). This is because each message which
is sent by the fan-out message flow and received by the fan-in message flow must be inserted into a
database as a BLOB. It is possible to increase message throughput by increasing the number of
copies of the fan-out and fan-in message flows. SupportPac IP05 has more details on this (see the
start of this section for details on where to find this).

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.2.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 17 of 68

3.3 Compute Node

A compute node provides the capability to derive an output message from an input message and also
optionally include user specified processing as well as data values from an external relational
database. The compute node has the potential to vary from simple to complex in its processing. The
degree of complexity specified has a direct bearing on the message throughput rates that can be
achieved using nodes of that type. A series of measurements were taken using varying numbers of
compute nodes as well as different levels of user specified processing in order to illustrate these
effects.

The following cases were measured:

 A simple compute node that copied the input message to an output message. The purpose of
this measurement was to show the message throughput that is achievable when copying a
message and modifying a single field. A single field was modified in order to ensure that the
compute node built a new output message based on the input. If no field is modified WBIMB
optimizes the process and simply repeats the input message which can give an unrealistic
message rate. This represents the simplest form of compute node.

 A single complex compute node that contained user specified ESQL processing as well as the
copying of the input message to an output message. The purpose of this measurement was to
show the effect that additional CPU bound processing has on message throughput.

 Multiple complex compute nodes that consisted of five of the complex compute nodes connected
in sequence. The purpose of this measurement was to establish the cost of using multiple
complex compute nodes.

 A single very complex compute node that consisted of five times the processing of the single
complex compute node. The purpose of this measurement was to illustrate the benefit that can
be obtained by combining processing within a single compute node.

 A single compute node containing a nested ESQL SELECT statement. The purpose of this
measurement was to illustrate the throughput possible when using more complex ESQL.

The ESQL used for each of the tests is given in Chapter 9, Compute Node ESQL.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 18 of 68

3.3.1 Simple Compute Test

The figure below shows the results that were obtained when running the simple compute node with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow.

0

200

400

600

800

1000

1200

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Pers is tent

Figure 4: Simple Compute Node Throughput Results

With a 1KB non persistent message it was possible to process approximately 1096 msgs/second.
The message throughput rate declined with size, reflecting the increased volume of data.

With 1KB persistent messages it was possible to process approximately 84 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.3.1.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 19 of 68

3.3.2 Complex Compute Test

The figure below shows the results that were obtained when running a complex message flow with
varying message sizes and persistence. There was a single instance and single execution group
running the message flow. Due to the message complexity the minimum size message that could be
used was 4k.

0

50

100

150

200

250

4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

4096 Pers is tent

Figure 5: Complex Compute Node Throughput Results

With a 4KB non persistent message it was possible to process approximately 233 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data. The lower
message rate achieved with this compute node compared with the simple compute node case above
reflects the increased processing that was added to the compute node.

With 4KB persistent messages it was possible to process approximately 50 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.3.2

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 20 of 68

3.3.3 Multiple Complex Compute Test

The figure below shows the results that were obtained when running five of the above complex nodes
daisy chained together for varying message sizes and persistence. There was a single instance and
single execution group running the message flow. Due to the message complexity, the minimum size
message that could be used was 4k.

0

20

40

60

80

100

4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

4096 Pers is tent

Figure 6: Multiple Complex Compute Node Throughput Results

With a 4KB non persistent message it was possible to process approximately 88 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data.

With 4KB persistent messages it was possible to process approximately 49 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.3.3.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 21 of 68

3.3.4 Very Complex Compute Test

The figure below shows the results that were obtained when running a very complex message flow
with varying message sizes and persistence. Briefly the very complex flow consists of the ESQL in
the complex flow repeated 5 times in the same node. There was a single instance and single
execution group running the message flow. Due to the message complexity, the minimum size
message that could be used was 4k.

0

20

40

60

80

100

120

4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

One Com pute
Node

Multiple
Com pute Nodes

4096 Pers is tent

Figure 7: Very Complex Compute Node VS Multiple Complex Compute Node Throughput Results

With a 4KB non persistent message it was possible to process approximately 112 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data.

With 4KB persistent messages it was possible to process approximately 50 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

For comparison purposes the graph also shows the message throughput rates that were achieved for
the multiple complex compute node case detailed in Section 3.3.3, Multiple Complex Compute Test.

For 4KB non persistent messages there was a 1.27 times improvement in message throughput when
using a single compute node for the processing, rather than using 5 nodes. For performance reasons
it is clearly better to have one node that does the work of several less complex nodes. This
performance improvement has to be offset against the management and support of more complex
nodes.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.3.4.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 22 of 68

3.3.5 Nested SELECT FROM Compute Test

The figure below shows the results that were obtained when running a nested SELECT statement
within a compute node with varying message sizes and persistence. There was a single instance and
single execution group running the message flow.

0

50

100

150

200

250

300

4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

4096 Pers is tent

Figure 8: Nested SELECT FROM Compute Node Throughput Results

With a 1KB non persistent message it was possible to process approximately 277 msgs/second. The
message throughput rate declined with size, reflecting the increased volume of data.

With 1KB persistent messages it was possible to process approximately 60 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.3.5.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 23 of 68

3.4 Database Node

A database node allows a database transaction in the form of an ESQL expression to be applied to a
specified ODBC data source. The statement to be applied and the data source are specified in the
database node definition.

In order for a database transaction to be part of a global unit of work that incorporates the processing
of the message within the same transaction, the coordinated Transaction attribute of the message
flow must be selected and operational.

Three tests were run to illustrate different uses of a database node. In the first a row was inserted
and deleted in a table of a database. In the second a randomly selected row within a table was
updated. In the third a row within a table was read by a message flow.

3.4.1 Database Insert/Delete

A message flow consisting of an MQInput node, a database node and an MQOutput node was run.
The processing in the database node consisted of an insert/delete for a row in a table of a database.
The transaction mode value on the MQInput node was set to a value of automatic. The coordinated
Transaction value for the message flow was set to yes. The effect of doing this is to specify that the
message flow should be a globally coordinated unit of work.

The maximum possible message throughput rates were determined for a single instance and single
execution group running the message flow. The figure below shows the results that were obtained for
varying message size and persistence.

0
10
20
30

40
50
60
70

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Pers is tent

Figure 9: Database Insert/Delete Throughput Results

With 1KB non persistent messages it was possible to achieve a message throughput rate of
approximately 65 msgs/second. This is 65 database insert and deletes per second. The rate of
insert/delete activity reduced with message size as expected.

With 1KB persistent messages it was possible to process approximately 51 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages were
processed within a WebSphere MQ unit of work as well as the additional processing associated with
the transaction coordination between the queue manager and database manager.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.4.1.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 24 of 68

3.4.2 Database Update

A message flow consisting of an MQInput node, a database node and an MQOutput node was run.
The processing in the database node consisted of an update to a randomly selected row in a table of
a database. The transaction mode value on the MQInput node was set to a value of automatic. The
coordinated Transaction value for the message flow was set to yes. The effect of doing this is to
specify that the message flow should be a globally coordinated unit of work.

The maximum possible message throughput rates were determined for a single instance and single
execution group running the message flow. The figure below shows the results that were obtained for
varying message size and persistence.

0
10
20
30
40
50
60
70
80

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Pers is tent

Figure 10: Database Update Throughput Results

With 1KB non persistent messages it was possible to achieve a message throughput rate of
approximately 67 msgs/second. This is 67 database updates per second. The rate of update activity
reduced with message size as expected.

With 1KB persistent messages it was possible to process approximately 52 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages were
processed within a WebSphere MQ unit of work as well as the additional processing associated with
the transaction coordination between the queue manager and database manager.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.4.2.

3.4.3 Database Read

In this test a message flow consisting of an MQInput node, a database node and an MQOutput node
was run. The processing in the database node consisted of a single read of one row selected from a
table within an application database.

The transaction mode value on the MQInput node was set to a value of automatic. The coordinated
Transaction value for the message flow was set to no (as there were no updates involved).

In this test the application database was small and all database reads were satisfied from database
buffers. This was done deliberately in order to illustrate the cost of the call.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 25 of 68

The maximum possible message throughput rates were determined for a single instance and single
execution group running the message flow. The figure below shows the results that were obtained for
varying message size and persistence.

0

200

400

600

800

1000

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Persistent

Figure 11: Database Read Throughput Results

With 1KB non persistent messages it was possible to achieve a message throughput rate of
approximately 788 msgs/second. The rate of read activity reduced with message size as expected.

With 1KB persistent messages it was possible to process approximately 64 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.4.3.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 26 of 68

3.5 Filter Node

A Filter node evaluates an ESQL expression against the content of the input message. Based on the
result of the expression evaluation the message is propagated to the true terminal if the expression
evaluates to true. It is propagated to the false terminal if the expression evaluates to false.

A message flow consisting of an MQInput node, a Filter node and an MQOutput node was defined.
The Filter node processing involved selecting a message on the basis of the contents of a tag value.
The input message contained an MQRFH2 folder with two tags specified following the header. The
transaction mode on the MQInput and MQOutput nodes was set to automatic.

The figure below shows the results that were obtained when running the message flow with varying
message sizes and persistence. There was a single instance and single execution group running the
message flow.

0

500

1000

1500

2000

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Pers is tent

Figure 12: Filter Node Throughput Results

With 1KB non-persistent messages it was possible to run approximately 1632 msgs/second. The
cost of the Filter node will vary with the complexity of the filter expression and the number of fields
which need to be accessed in the input message and the position of the field being tested in the
message. The nearer to the beginning of a message that the field to be tested is the lower the
parsing cost of accessing it.

With 1KB persistent messages it was possible to process approximately 86 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.5.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 27 of 68

3.6 FlowOrder Node

The FlowOrder node allows the order of execution within a message flow to be controlled. The node
is used to control the order in which the message is propagated to each of two output terminals. The
message is propagated to the second output terminal only if propagation to the first terminal is
successful.

A measurement was conducted to determine the effect of using the FlowOrder node. The test
consisted of two measurements. The first was to establish a base cost, the second to determine the
overhead of the FlowOrder node.

The first test case consisted of an MQInput node, two compute nodes and an MQOutput node. The
first Compute node contained only a SET OutputRoot=InputRoot; statement. The second
Compute node contained the processing described in Section 3.3.1,. The flow is shown in the figure
below.

Figure 13 - Comparison Message Flow for the FlowOrder Node.

The second test case consisted of an MQInput node, a FlowOrder node with a Compute node
connected to the first output terminal (The only processing in this compute node was a SET
OutputRoot=InputRoot; statement) and a second Compute node connected to the second output
terminal of the FlowOrder node. The processing in the second compute node consisted of the
processing described in Section 3.3.1, Simple Compute Test. This message flow is shown in the
figure below.

Figure 14 - Message Flow with the FlowOrder Node.

The figure below shows the results that were obtained when running the message flow with varying
message sizes and persistence. There was a single instance and single execution group running the
message flow.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 28 of 68

0.00

200.00

400.00

600.00

800.00

1000.00

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
P

er
 S

ec
on

d
Without
FlowOrder
Node

With
FlowOrder
Node

1024 Persistent

Figure 15: FlowOrder Node Throughput Results

With 1KB non persistent messages it was possible to run approximately 900 msgs/second without a
FlowOrder node present and a rate of 809 msgs/second with the FlowOrder node in the message
flow. This represents an overhead of 11.3%. In practice a message flow would typically consist of
greater complexity and so the overhead would be lower as a percentage.

With 1KB persistent messages it was possible to run approximately 65 msgs/second without a
FlowOrder node present and a rate of 65 msgs/second with the FlowOrder node in the message flow.
There was no overhead from using the FlowOrder node in this case.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.6.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 29 of 68

3.7 Mapping Node

The mapping node provides a method to create a new message from an input message by copying
the contents of the elements of the input message, or from a database table. The Mapping node also
provides the ability to extract parts of the message and optionally change their content to create a
new output message that is a partial copy of the message received by the node. The Mapping node
can only handle predefined messages. The mapping is performed by using a mapping editor which is
provided in the Message Brokers Toolkit.

A test was run which consisted of an MQInput, Mapping and MQOutput node. The mapping node
was configured to copy the contents of the elements of the input message to create an output
message. The contents of the elements were not modified. This test is referred to as the Copy
Mapping Test. For this test the condition to determine whether the field was NULL was not applied.
This is an option on the field mapping.

The test used a subset of the messages formats in the tests described in Section 3.8, Message
Conversion. The conversion of CWF to MRM TDS, Generic XML to CWF and MRM TDS to Generic
XML messages was investigated.

The same logical message type was used for each of the conversions. This was a 4KB non
persistent message containing 30 input fields, with 10 fields consisting of a short string (12
characters), 10 fields consisting of a floating pointer number, and 10 integer fields.

3.7.1 Copy Mapping Test

The message throughput achieved with each of the conversions was measured. There was a single
execution group running the message flow and no additional instances specified. The results are
presented in the Table below.

 Using ESQL
Using Mapping
Node

Overhead of
Mapping Node

MRM CWF to MRM TDS 138.00 136.00 1.47

MRM XML to MRM CWF 143.00 136.00 5.15

MRM TDS to Generic
XML 82.00 81.00 1.23

Table 1: Comparison of Message Conversion Costs using ESQL and the Mapping Node

The figures in the Table above show that there is a processing overhead to the Mapping node when
copying the contents of elements which varies from 1.2% to 5.2%. The overhead shown is for the
4KB non persistent message used in this evaluation. In practice the overhead will vary and will be
dependent on message size and the number of elements in the message being processed.
Messages with more elements will experience a higher overhead.

The measurement data for the tests using the mapping node is available in Chapter 10,
Measurement Data, Section 10.7. The measurement data for the tests which used ESQL is available
in Chapter 10, Measurement Data, Section 10.8.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 30 of 68

3.8 Message Conversion

WBIMB provides the capability to process messages of different formats as well as the ability to
convert messages between formats. Throughput measurements were taken to show the effect of
using WBIMB to convert messages between each of Generic XML, CWF, MRM XML and MRM TDS
formats where Generic XML refers to self-defining XML, CWF denotes a legacy data structure such
as a C structure or COBOL copybook, MRM XML refers to the predefined XML used within the MRM
and MRM TDS refers to a predefined structure of fields of fixed length or separated by tags within the
MRM.

3.8.1 Generic XML, MRM CWF, MRM XML and MRM TDS

The same logical message type was used for each of the conversions. This was a 4KB non
persistent message containing 30 input fields, with 10 fields consisting of a short string (12
characters), 10 fields consisting of a floating pointer number, and 10 integer fields.

The format conversion was achieved using a Compute node with suitable ESQL statements. The
input messages contained an MQRFH2 header in which the message type was set. The output
format was specified in the Compute node processing. Each message format was converted to
Generic XML, CWF, MRM XML and MRM TDS. The message throughput achieved with each of the
conversions was measured. There was a single execution group running the message flow and no
additional instances specified. The results are presented in the Table below.

 Generic XML MRM CWF MRM XML MRM TDS

Generic XML 355.00 205.67 145.00 144.00

MRM CWF 231.00 196.00 150.00 138.00

MRM XML 168.00 143.00 117.67 110.00

MRM TDS 82.00 77.00 69.00 66.00

Table 2: Message Rates in messages per second, When Converting between Different Formats

Even when the output message is set to have the same format as the input message there are still
significant costs in processing messages because the messages must be parsed and then
reconstructed into the required output format and written as an output message. The cost of
converting messages between the two formats is once per message flow and not in each node.

The measurement data for this test is shown in Chapter 10, Measurement Data, Sections 10.8.1 to
10.8.4.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 31 of 68

3.8.2 SWIFT MT543 Messages

Using the facilities of WBIMB it is possible to model SWIFT message formats. A test was run to show
the rate at which SWIFT MT543 messages could be processed. The MT543 messages were
modeled using the MRM TDS format. The messages are a fixed length of 6449 bytes so only one
message size was processed. The format was processed using persistent and non persistent
messages.

The figure below shows the results which were obtained when processing persistent and non
persistent SWIFT MT543 messages.

2.80

2.85

2.90

2.95

3.00

3.05

3.10

Non Persistent Persistent

Message Type

M
es

sa
ge

s
Pe

r
Se

co
nd

Figure 16: - Processing SWIFT MT543 Messages.

With non persistent messages it was possible to run approximately 3.04 msgs/second. With
persistent messages it was possible to run approximately 2.9 msgs/second. As with the previous
message conversion tests the cost of converting messages between the two formats is once per
message flow and not in each node.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.8.5.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 32 of 68

3.9 Publication Node

A publication node may be used within a message flow to represent a point from which messages are
"published”, which is a point from which messages are transmitted to a set of subscribers who have
registered interest in a particular set of messages.

A message flow consisting of an MQInput node and a Publication node was defined. The transaction
mode on the MQInput node was set to automatic.

Two sets of measurements were run. The first examined the effect of differing numbers of
subscribers when using topic based routing. The second examined the difference in performance
between topic and content based routing. These measurements used WebSphere MQ messages for
both the publisher and subscriber.

In the throughput measurements each client thread performed the role of publisher and subscriber
queue reader. Firstly, an MQPUT was issued to publish a message on the given topic. Secondly, the
client thread issued an MQGET to receive the published message.

3.9.1 Topic Based Routing

This processing was performed with different numbers of subscribers, ranging from one to one
thousand.

3.9.1.1 One Subscriber

The figure below shows the results that were obtained when running the message flow with varying
message sizes and persistence for one subscriber. There was a single instance and single execution
group running the message flow. The rates shown are the rate at which messages are being
published.

0
200
400
600

800
1000
1200
1400

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

1024 Pers is tent

Figure 17: Topic Based Routing with 1 Publisher, 1 Subscriber

With 1KB non-persistent messages it was possible to publish approximately 1215 msgs/second. This
can equally be viewed as a subscription rate of 1215 messages per second per subscriber.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 33 of 68

As the message size increased, the rate at which messages were published decreased. This is as
expected.

With 1KB persistent messages it was possible to process approximately 86 msgs/second. This lower
rate in comparison to the non persistent message processing is due to the fact that messages are
processed within a WebSphere MQ unit of work with the consequent commit processing which
involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.9.1.

3.9.1.2 Ten, One Hundred and One Thousand Subscribers
As an increasing number of subscribers register an interest in receiving published messages on a
given topic, so the broker must undertake additional processing to maintain a list of current
subscriptions and write a message to each subscribers queue when a message is published.

In order to illustrate the effect of coping with an additional number of subscribers for a given topic
additional measurements were taken with 10, 100 and 1000 subscribers. Messages of varying size
and persistence were published to a single topic. The results obtained are presented in a graph in
the figure below. The X axis shows the number of subscribers. The Y axis shows the number of
seconds taken to process a message. It is derived from the reciprocal of the message rate.

Each subscriber requested that published messages be placed on a unique queue. There was a
single instance and single execution group running the message flow.

0.0010

0.0100

0.1000

1.0000

10.0000

10 100 1000

Number of Subscribers

Se
co

nd
s

Pe
r M

es
sa

ge

1K
Persistent
64K

16K

4K

1K

Figure 18: Topic Based Routing with 1 Publisher, 10, 100 and 1000 Subscribers

From the graph it is possible to see that the processing required to deliver messages to the
subscribers rises with the increasing number of subscribers. This makes sense since with each
additional subscriber there is an additional WebSphere MQ queue to write a message to.

The cost of publishing persistent messages is significantly higher as the processing is dominated by
the necessary I/O processing. This is reflected in the steeper gradient of the 1KB persistent message
measurements.

When examining the measurement data for varying number of subscribers it is important to
understand the way in which the measurement was taken.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 34 of 68

For each subscriber which registered to receive publications the published message was written to a
queue for that subscriber. With 100 subscribers for example, a single message was written to each of
100 queues. In the measurement environment there was a background program consuming all but
one of the published messages. Taking the example of 100 subscribers, 99 of the published
messages were consumed by this program. The remaining message was read by the client program
emulating the subscriber. In this situation a message count of 1 was registered for the purposes of
reporting message rates, although the WBIMB broker had written multiple messages. It is because of
this that the reported message rate declines with an increasing number of subscribers, although the
level of work performed by the broker is obviously much greater with an increasing number of
subscribers.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.9.1.

3.9.2 Content Based Routing

With WBIMB it is possible for a subscriber to register to receive publications based on the contents of
a message. This is known as content based routing. This is more complex than topic based routing
(in which a subscriber receives all messages on the topic to which they have subscribed) because the
message contents must be examined.

In order to determine the cost of using content based routing, a measurement was taken to examine
the message rates that could be achieved for both content and topic based routing when delivering
messages of the same structure and size.

The figure below shows the message throughput rates that were achieved for content and topic
based routing with varying message size and persistence. The topic and content based routing used
MQRFH2 messages.

0
200
400
600

800
1000
1200
1400

1024 4096 16384 65536

Message Size

M
es

sa
ge

s
Pe

r S
ec

on
d

Topic Based
Routing

Content
Based
Routing

1024 Pers is tent

Figure 19: Content Based Routing with 1 Publisher and 1 Subscriber

The graph shows that it is possible to achieve greater message throughput using topic based routing
when compared with content based routing. This is as expected since topic based routing is able to
publish a message without regard to the message contents. Content based must parse the message
contents, and then determine which of the subscribers is to receive the message before finally
publishing to those subscribers.

The measurement data for this test is shown in Chapter 10, Measurement Data, Section 10.9.2.

This measurement shows the cost of using content based routing but does not illustrate the benefit
which is that the filtering of messages is performed at the broker rather than at the subscriber. An
effective filter for the content based routing can potentially save the transmission of many unwanted

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 35 of 68

messages which would occur were topic based routing to be used. This reduction in message traffic
will reduce network utilization and processing for the subscribing application.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 36 of 68

3.10 RouteToLabel Node

A RouteToLabel node provides a dynamic routing facility based on the contents of the destination list
contained within the message. The destination list contains the identity of one or more target Label
nodes identified by their Label Name property (not the node name). The RouteToLabel node can be
used instead of multiple Filter nodes.

The destination list which is used to control the routing must have been created and included in a
previous compute node. Consequently a RouteToLabel node is more expensive to process than a
single Filter node, but can be cheaper than many Filter nodes. For a better understanding of how to
choose, please read the recommendations in SupportPac IP04, Designing Message Flows for
Performance which is available at
http://www.ibm.com/software/integration/support/supportpacs/individual/supportpacs/ip04.pdf.

The cost of this node is dependent on the size of the destination list. A destination list with 100
entries will require more CPU to process it then a destination list with one entry. The processing cost
of the node is not dependent on whether the Route to first or Route to last option is chosen.

The figure below shows the message throughput rates that were achieved for the RouteToLabel node
with different sizes of destination list and varying message size and persistence.

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00
1400.00

1024 4096 16384 65536

Message Rate

M
es

sa
ge

s
Pe

r
Se

co
nd

1 Entry in
Destination List

100 Entries in
Destination List

1024

Figure 20: RouteToLabel Throughput with Different Size Destination Lists

With 1KB non-persistent messages it was possible to run approximately 1262 msgs/second when
there was only one destination in the list and 434 msgs/sec there was 100 entries in the destination
list.

With 1KB persistent messages it was possible to run approximately 86 msgs/second when there was
only one destination in the list and 64 msgs/sec when there were 100 entries in the destination list.
This lower rate in comparison to the non persistent message processing is due to the fact that
messages are processed within a WebSphere MQ unit of work with the consequent commit
processing which involves I/O processing to the WebSphere MQ queue manager log.

The measurement data for the RouteToLabel Node Throughput measurements is available in
Chapter 10, Measurement Data, Section 10.10.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 37 of 68

4 Parallel Processing Options
If the message processing rate which can be achieved with a single copy of a message flow is not
sufficient to achieve the target message rate it is likely that you will need to run multiple copies of the
message flow concurrently. Within WBIMB there are two recommended ways of doing this, they are:

• Use additional instances of a message flow within an execution group. Each additional
instance is a thread within the execution group process

• Run multiple execution groups each processing one or more copies of a message flow. This
option uses the most memory as each execution group is a process.

This section shows the effect of running each of these options for the very complex compute
message flow which is described in Section 3.3.4, Very Complex Compute Test.

4.1 What Is The Effect Of Using Additional Instances?

The figure below shows the results that were obtained when running one, two, four and eight
instances of a message flow containing the very complex compute node within a single execution
group. The transaction mode values on the MQInput and MQOutput node were set to the value of
automatic. The same input and output queues were used for all measurements.

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00

1 2 4 8

Number of Instances

M
es

sa
ge

s
P

er
 S

ec
on

d

Figure 21: Message Throughput with Multiple Instances of a Message Flow

The graph shows that greater message throughput can be achieved by using additional instances
within a single execution group. With non persistent 4KB messages and one additional instance (two
copies of the message flow in total) it was possible to achieve over 2 times the throughput that was
achieved with a single instance. When using 3 additional instances (four copies of the message flow
in total) it was possible to achieve almost 3 times the throughput that was achieved with a single
instance. At this point the machine was over 90% CPU busy.

With 8 instances it was possible to achieve a slight increase in message throughput over the 4
instances case. As the machine was already over 90% CPU busy with the 4 instances case it is not
surprising that the increase was small.

The measurement data showing the effect of using additional instances is available in Chapter 10,
Measurement Data, Section 10.11.1.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 38 of 68

4.2 What Is The Effect Of Using Multiple Execution Groups?

The figure below shows the results that were obtained when running one, two, four and eight copies
of one message flow per execution group. The message flow used was the very complex compute
test. The transaction mode values on the MQInput and MQOutput node were set to the value of
automatic. The same input and output queues were used for all measurements.

0.00

100.00

200.00

300.00

400.00

500.00

1 2 4 8

Number of Execution Groups

M
es

sa
ge

s
P

er
 S

ec
on

d

Figure 22: Message Throughput with a Message Flow in Multiple Execution Groups

The graph shows that greater message throughput can be achieved by using a message flow running
in each of multiple execution groups. We have broadly similar results as for additional instances.
With 4 execution groups it was possible to achieve 3.8 times the message throughput rate that was
possible with one execution group. This is better than the use of four additional instances which
achieved almost 3 times the message throughput that was possible with one instance of the message
flow. As with additional instances the use of 8 execution groups gave little increase in message
throughput compared with 4 execution groups. This was due to the machine being almost 100% CPU
busy.

Given greater message throughput was possible with multiple execution groups you may wish to use
a copy of the message assigned to each of multiple execution groups in order to get maximum
message throughput. From an operations point of view however you may wish to use the additional
instances approach since it is simpler to manage and results in fewer execution groups.

The measurement data showing the effect of using multiple copies of message flow is available in
Chapter 10, Section 10.11.2.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 39 of 68

5 Recommended Minimum Specification
This section contains recommendations on the type of hardware on which a WBIMB configuration
should be based when running in production. These are only recommendations and are not a
substitute for a formal planning and sizing exercise in which requirements are accurately determined.
The recommendations are given from a performance perspective and are greater than the minimum
specifications needed in order to install and run the product.

For production use it is recommended that the components of WBIMB are allocated over multiple
machines with the following purposes:

• One or more machines to support instances of the WebSphere Message Broker Toolkit.

• One machine to support the Configuration Manager. This may also include a WebSphere
Message Broker toolkit.

• One or more machines to support brokers.

Message Broker Toolkit

A recommended minimum machine specification for WebSphere Message Broker Toolkit is a fast uni-
processor with 512MB memory.

Configuration Manager

A recommended minimum machine specification for the Configuration Manager is a fast uni-
processor with 512MB or more of memory.

Message Broker

The specification of the broker machine is more difficult to determine since it requires knowledge of
the expected message rate, the types of nodes that are to be used and the level of transaction control
that is used. A recommended minimum specification would be a 2 way processor machine with the
fastest possible processors and 512MB memory. The specification may need to be upgraded if
message rates are high or there are many execution groups. In such cases more detailed planning
would be required. Prototyping and benchmarking should be considered in order to accurately
determine resource requirements. The results produced will then be specific and tailored to the
individual configuration being built.

If persistent messages are to be used the use of solid state disks or disks with a non volatile fast write
cache is recommended for the device on which the WebSphere MQ queue manager log is located.
Where the message rate is less than 25 msgs/second per second fast I/O will improve message
response time only. Where the rate is greater than 25 msgs/second then there will be an
improvement in message throughput.

A separate disk is also recommended for the WebSphere MQ queue manager queue data. This disk
need not have a fast write capability.

If Aggregation nodes or retained publications are used within a message flow it is recommended that
the broker database log and data are located on solid state disks or disks with a non volatile fast write
cache in order to minimize I/O times and so maximize message throughput. If the Aggregation nodes
or retained publications are not used there is no need to optimize the speed of the broker database
I/O.

If business data in a relational database is processed locate the database log and data on dedicated
disks. Consider using a fast device such as a disk with non-volatile fast write cache for the database
manager log when there is insert/delete/update activity on the database.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 40 of 68

6 Summary of Tuning Information
This section summarizes the performance recommendations which are recorded throughout the
report. The recommendations are split into a number of categories, those covering specific products
and a final one providing a link to additional information. This information is not a complete guide to
product tuning and for further guidance you should consult the relevant product specific
documentation.

6.1 WebSphere Queue Manager Tuning

Higher message rates can be obtained with non persistent messages compared with persistent
messages. Where possible use non persistent messages.

When processing persistent messages you are recommended to:

• Locate the log of any WebSphere MQ queue manager through which the messages pass
on a dedicated disk.

• Locate the WebSphere MQ queue manager log on a very fast disk such as one with a
non-volatile fast write cache. Such disks are consistently capable of I/O times of 1ms
compared with a time of 6 ms for a 10,000 RPM SCSI disk. When using a disk with a fast
write cache it is essential that it has a non-volatile capability as the log data is critical to
the integrity of your queue manager.

Note that there is no need to locate the WebSphere queue manager queue file on a fast disk. It is
advisable to locate it on a dedicated disk in order to improve the efficiency of queue manager
checkpoint processing.

When receiving messages over a WebSphere MQ channel you are recommended to use a trusted
channel and a trusted listener. In order to do this ensure that the environment variable
MQ_CONNECT_TYPE=FASTPATH is present when the channel and listener are started.

6.2 WebSphere Business Integration Message Broker Tuning

Consider the use of a trusted Message Broker. A trusted Message Broker is a broker connecting to
the Broker queue manager as a WebSphere MQ trusted application. The effect of doing this is to
improve the efficiency with which MQGET and MQPUT operations are performed. However there is a
risk of queue manager corruption in the event of broker failure as there is no longer a WebSphere MQ
agent process between the MQ application (the broker) and the queue manager. This is a
characteristic which any trusted WebSphere MQ application carries and is not unique to the Message
Broker. The extent to which a trusted Message Broker will benefit from being a trusted application will
depend on the ratio of WebSphere MQ MQGET/MQPUT processing to other processing in the
message flow.

When using the aggregation node follow the advice provided in SupportPac IP05, WebSphere MQ
Integrator V2.1 - Optimizing Use of Aggregation Nodes which is available at
http://www.ibm.com/software/integration/support/supportpacs/individual/supportpacs/ip05.pdf

Within a message flow minimize the number of nodes which are used. It is more efficient to use fewer
nodes.

When using the RouteToLabel node minimize the size of the destination list which is established.

Use of Topic based routing with Publish/Subscribe is more efficient than Content based routing from a
message throughput perspective but may not be most efficient overall. This is because there is no
test as to whether the messages being sent are appropriate or wanted. The subscriber may not be
interested in the message if the share price is over a given value for example, but with Topic based
routing the message would always be sent. Although Content based routing uses more processing to
examine the contents of a message and apply a supplied filter it may result in many fewer messages
being sent and so result in lower network utilization and client costs.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 41 of 68

6.3 Database Manager Tuning

If message flows use Retained publications, have continual subscribing/unsubscribing associated
with the use of Publish/Subscribe or use message aggregation you are recommended to

• Locate the log of the Message Broker database on a dedicated disk.

• Locate the log of the Message Broker database on a very fast disk such as one with a non-
volatile fast write cache. Such disks are consistently capable of I/O times of 1ms compared
with a time of 6 ms for a 10,000 RPM SCSI disk.

6.4 Additional Tuning Information

In order to obtain the maximum message rate for your implementation it is important that you
understand the current best practices for WebSphere Business Integration Message Broker. These
practices cover the architecture of message flow processing, the coding of message flows as well as
the configuration and tuning of the message broker and associated components.

Such information can be found in the Business Integration Zone of WebSphere Developer Domain. A
suggested starting place is the article
http://www.ibm.com/developerworks/websphere/library/techarticles/0311_dunn2/dunn.html which
highlights what information is available and where it may be found.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 42 of 68

7 Measurement Hardware and Software
All throughput measurements where taken on a single server machine driven by WebSphere MQ
clients running on a separate client machine. WebSphere MQ Clients communicated with the
WebSphere MQ queue manager on the server machine using MQI channels.

7.1 Server Machine

The server machine hardware consisted of

• A Sun SPARC Sun Fire V880 with 4 * 900 MHZ Processors.

• Five 36 GB SCSI hard drives.

• 4 GB RAM.

• 1Gb Ethernet Card.

The server machine software consisted of:

• Solaris 2.8

• WebSphere MQ V5.3 .

• WebSphere Business Integration Message Broker for Solaris V5 CSD2

• DB2 for Windows Solaris V8.1.

7.2 Client Machine

The client machine hardware consisted of

 An IBM Netfinity 8500R with 4 * 500Mhz Pentium III Xeon processors.

 Thirteen 2.0 GB SCSI hard drives formatted to use NTFS.

 1 GB RAM.

 1Gb Ethernet Card.

The client machine software consisted of:

 Microsoft Windows 2000 with Service Pack 3.

 WebSphere MQ V5.3.

7.3 Network Configuration

The client and server machines were connected using a full duplex 1 Gigabit Ethernet LAN with a
single hub.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 43 of 68

8 Evaluation Method
This section outlines the configuration of the software components used in the testing and the
technique used to obtain the measurement results.

8.1 Input Message Generation

Input messages for the message flows running in the Message Broker where generated using a multi
threaded WebSphere MQ Client program written in C. The client program used the Message Queue
Interface (MQI). Both persistent and non persistent messages were used in the testing.

Sufficient threads were run in the multi threaded client to ensure that there were always messages on
the input queue waiting to be processed. This is important when measuring message throughput.

8.2 Message Content

The composition of the messages which are processed in a message flow can noticeably affect the
message throughput which is achieved. Messages which have many small fields will be more costly
in CPU terms to process compared with a message of the same size which has fewer larger fields.

The messages used for the tests in this report were simple in nature with a small number of fields.
The message conversion tests used messages with 31 fields. The other tests used messages with a
smaller number of fields, typically less than 10. In all cases the only difference between the small and
larger message sizes in a test was additional padding in the last field of the message.

8.3 Machine Configuration

The program used to generate and consume messages for the message flows was run on a
dedicated machine, the Client Machine. The Message Broker, its dedicated WebSphere MQ queue
manager and broker database were all located on a dedicated machine, the Server Machine. The
figure below shows the configuration of software components and machines.

Both the client and server machine were configured with sufficient memory to ensure that no paging
took place during the tests.

Messages were transmitted from the client machine to the server machine over WebSphere MQ
SVRCONN channels. The messages were received on the server machine through use of a
WebSphere MQ queue manager listener process. This was run as an authorized MQ application in
order to improve message throughput. This was achieved by ensuring that the environment variable
MQ_CONNECT_TYPE=FASTPATH was present in the environment in which the listener was started.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 44 of 68

Figure 23: Measurement Configuration

8.4 Message Broker Configuration

To improve message throughput the Message Broker ran as an authorized WebSphere MQ
application. This was achieved by use of the ‘-t’ flag on broker creation (the mqsicreatebroker
command) and by ensuring that the environment variable MQ_CONNECT_TYPE=FASTPATH was
present in the environment in which the broker was started.

The Message Broker Queue manager log was located on a SCSI disk. Circular logging was used by
the Message Broker queue manager. This was for convenience.

Transactional support was used where appropriate. When processing persistent messages it was
used, with non persistent messages it was not. The use of transactional was specified on the
MQInput and MQOutput nodes for each test. Possible values are yes, no and automatic.

A value of ‘yes’ means that the message flow will take place under transaction control. Any derived
messages subsequently sent by an MQOutput node in the same instance of the message flow will be
sent transactionally unless the MQOutput node has explicitly overridden the use of transaction
control.

A value of ‘no’ means that the message flow is not under transaction control. Any derived messages
subsequently sent by an MQOutput node in the flow will be sent non-transactionally, unless the
MQOutput node has specified that the message should be put as part of a transaction.

A value of ‘automatic’ means that the message flow will be under transaction control if the incoming
message is marked as persistent, otherwise it will not. Any derived messages subsequently sent by
an MQOutput node will be sent under transaction control or not, as determined by the persistence on
the incoming message, unless the MQOutput node has specifically overridden the use of transaction
control.

The use of transaction control means that message processing takes place within a WebSphere MQ
unit of work. This involves additional CPU and I/O processing by WebSphere MQ because the unit of
work is recoverable. The result is inevitably a reduction in message throughput for both persistent and
non persistent messages.

 WBI Message

Broker

WebSphere MQ

DB2

Client Machine Server

Gigabit

Ethernet

LAN

WebSphere MQ

Multi

Threaded

Client

MQ Listener

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 45 of 68

In order to show optimal performance of WBIMB all the throughput measurements in this document
used a value of automatic for the transaction parameter unless otherwise specified. This is the
recommended value to use for transaction mode unless there is a specific requirement to use a
particular value.

Certain tests such as the database node tests required globally coordinated units of work. This was
to ensure that both messaging and database updates where both committed or backed out in the
same unit of work. This is required in order to ensure the integrity of business data. It is only needed
where database update, insertion or deletion are required. When database access involves read only
activity no such connection is required as there are no updates to protect.

In order to be able to use a global unit of work for the database node tests it was necessary to:

Configure an X/Open XA interface connection between the Message Broker queue manager and the
database manager in which the user database was located. In these tests this was the same
database manager and same database instance that were used for the Message Broker database.
No benefit was achieved by making them the same. This was a configuration choice.

Select the coordinated Transaction option on the Message Flow properties in the Message Broker
Toolkit.

There were no error processing or error conditions in the measurements. All messages were
successfully passed from one node to another through the out or true terminal. No messages were
passed through the failure terminal of a node.

8.5 Database Configuration

The DB2 instance used with the message broker was a default configuration.

8.6 Message Rate

The message rates reported are the number of round trips between the WebSphere MQ
multithreaded client and the Message Broker WebSphere MQ queue manager. Another way of
viewing it is as the message arrival rate on the input queue for the MQInput node.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 46 of 68

9 Compute Node ESQL
This section contains details of the complex, multiple complex and very complex compute nodes.

9.1 Simple Compute Node

The ESQL statements used in the simple compute node are given below.

SET OutputRoot=InputRoot;

SET OutputRoot.XML.CSIM.A1='x';

9.2 Complex Compute Node

The ESQL statements used in the complex compute node are given below. The variable i has a
maximum value of 20.

Set OutputRoot=InputRoot;

DECLARE i INTEGER;

DECLARE C INTEGER;

SET C=CARDINALITY(OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[]);

SET i = 1;

WHILE i <= C DO

 SET OutputRoot.XML.CSIM.TestCase.ProcessingPath.Component[i].Name =

 OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[i].COMPONENT;

 SET OutputRoot.XML.CSIM.TestCase.ProcessingPath.Component[i].Transport.(XML.attr)Type='A';

 SET OutputRoot.XML.CSIM.TestCase.ProcessingPath.Component[i].Transport.Queue =
OutputRoot.XML.CSIM.TestCase.Stack.ProcessingPath.Element[i].QUEUE;

 SET i = i + 1;

END WHILE;

9.3 Multiple Complex Compute Node

The multiple complex compute nodes consisted of five identical complex compute nodes that were
daisy chained. The logic within each of the complex compute nodes was the same as that for the
complex compute node given in Section 9.2, Complex Compute Node.

9.4 Very Complex Compute Node

The very complex compute node consisted of five repetitions of the logic for complex compute node
(see Section 9.2, Complex Compute Node) all contained within one compute node.

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 47 of 68

9.5 Nested Select From

The ESQL statements used in the nested SELECT test are given below.

SET OutputRoot.MQMD = InputRoot.MQMD;

DECLARE style CHARACTER;

SET style = 'Style';

SET OutputRoot.MQMD = InputRoot.MQMD;

DECLARE style CHARACTER;

SET style = 'Style';

SET OutputRoot.XML.CSIM.Data.Statement[] =

(SELECT

'Monthly' AS (XML.Attribute)Type,

'Full' AS (0x03000000){style}[1],

I.Initial || COALESCE(I.Initial[2], '') As Customer.Initials,

I.Surname AS Customer.Name,

I.Balance As Customer.Balance,

(SELECT

II.Description AS Desc,

CAST(II.Price AS FLOAT) * 1.6 AS Cost,

II.Quantity AS Qty

FROM I.Item[] AS II WHERE II.Price > 0.0

) AS Purchases.Article[],

(SELECT

SUM(CAST(II.Price AS FLOAT) * CAST(II.Quantity AS FLOAT) * 1.6)

FROM I.Item[] AS II

) AS Amount,'Dollars' As Amount.(XML.Attribute)Currency

FROM InputRoot.XML.CSIM.Data.Invoice[] AS I WHERE I.Surname <> 'Shop');

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 48 of 68

10 Measurement Data
This appendix contains the measurement data from each of the tests discussed in Section 3,
Message Node Processing Profiles. The results of each measurement are presented in a table. The
meaning of the column headings is as follows:

Persist: Indicates whether the messages used in the test were persistent or not

Msg Size: The tested message size in bytes (excluding WebSphere MQ header size).

Msgs/sec: The number of round trips or message flow invocations per second

% CPU Busy: System busy CPU percentage. This includes the CPU used by all processes(
message broker, WebSphere MQ queue manager, database manager etc) on the system under test.

CPU ms/msg: Overall CPU cost per message , expressed as CPU milliseconds per message. This
cost includes WebSphere Business Integration Message Broker, WebSphere MQ, DB2, operating
system costs etc.

10.1 A Trivial MQInput/MQOutput Message Flow Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 2727.00 69.00 1.01

no 4096 1896.00 51.00 1.08

no 16384 593.33 21.00 1.42

no 65536 141.67 11.00 3.11

yes 1024 88.00 6.33 2.88

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 49 of 68

10.2 Aggregation Node Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 17.57 12.00 27.32

no 4096 17.40 12.00 27.59

no 16384 17.57 12.00 27.32

no 65536 17.43 13.00 29.83

yes 1024 15.27 13.67 35.81

10.3 Compute Node Results

This section contains the results for the Compute node tests.

10.3.1 Simple Compute Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 1095.67 41.00 1.50

no 4096 826.33 39.00 1.89

no 16384 463.33 36.67 3.17

no 65536 158.33 35.00 8.84

yes 1024 83.67 8.00 3.82

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 50 of 68

10.3.2 Complex Compute Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 233.00 30.00 5.15

no 16384 159.00 30.00 7.55

no 65536 70.00 30.00 17.14

yes 4096 50.20 10.00 7.97

10.3.3 Multiple Complex Compute Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 88.00 28.00 12.73

no 16384 74.00 28.00 15.14

no 65536 46.83 29.00 24.77

yes 4096 49.43 18.33 14.83

10.3.4 Very Complex Compute Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 111.67 28.00 10.03

no 16384 92.00 28.00 12.17

no 65536 53.00 29.00 21.89

yes 4096 49.50 15.33 12.39

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 51 of 68

10.3.5 Nested SELECT FROM Compute Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 277.00 30.00 4.33

no 16384 257.67 30.00 4.66

no 65536 177.00 27.00 6.10

yes 4096 60.33 10.00 6.63

10.4 Database Node Results

This section contains the results for the Database node tests.

10.4.1 Database Insert/Delete Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 64.67 6.00 3.71

no 4096 66.00 6.00 3.64

no 16384 65.00 7.00 4.31

no 65536 56.67 9.00 6.35

yes 1024 51.00 6.33 4.97

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 52 of 68

10.4.2 Database Update Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 67.00 5.00 2.99

no 4096 67.00 6.00 3.58

no 16384 67.67 6.00 3.55

no 65536 57.33 8.00 5.58

yes 1024 52.33 6.00 4.59

10.4.3 Database Read Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 787.67 32.00 1.63

no 4096 706.33 33.00 1.87

no 16384 509.00 34.00 2.67

no 65536 138.00 15.00 4.35

yes 1024 64.00 6.00 3.75

10.5 Filter Node Results

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 1631.67 50.33 1.23

no 4096 1311.33 47.67 1.45

no 16384 556.33 29.00 2.09

no 65536 142.33 14.33 4.03

yes 1024 86.00 7.00 3.26

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 53 of 68

10.6 FlowOrder Node Results

This section contains the results for the FlowOrder Node test.

10.6.1 FlowOrder Node First Test Results

This test was to establish the base cost of the message flow before using a FlowOrder node.

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 900.33 33.00 1.47

no 4096 740.67 33.00 1.78

no 16384 454.67 32.00 2.82

no 65536 155.33 33.00 8.50

yes 1024 65.00 6.00 3.69

10.6.2 FlowOrder Node Second Test Results

This test was to measure message throughput with the FlowOrder node in use.

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 808.67 33.00 1.63

no 4096 671.33 34.00 2.03

no 16384 446.67 33.00 2.96

no 65536 153.33 32.00 8.35

yes 1024 65.00 6.00 3.69

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 54 of 68

10.7 Mapping Node Results

This section contains the results for the Mapping node tests.

10.7.1 MRM CWF Copy Mapped to MRM TDS

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 136.00 29.00 8.53

no 16384 121.00 30.00 9.92

no 65536 84.00 31.00 14.76

yes 4096 49.80 13.00 10.44

10.7.2 MRM XML Copy Mapped to MRM CWF

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 136.00 28.00 8.24

no 16384 116.00 28.00 9.66

no 65536 67.00 29.00 17.31

yes 4096 51.00 13.00 10.20

10.7.3 MRM TDS Copy Mapped to Generic XML

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 81.00 28.00 13.83

no 16384 42.43 28.00 26.39

no 65536 14.60 27.00 73.97

yes 4096 50.00 19.67 15.73

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 55 of 68

10.8 Message Format Conversion Results

This section contains the results for the message conversion tests.

10.8.1 Generic XML

This section contains the results for the conversion of Generic XML messages to different formats.

10.8.1.1 Generic XML to Generic XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 355.00 31.00 3.49

no 16384 220.00 31.00 5.64

no 65536 80.00 31.00 15.50

yes 4096 51.00 8.00 6.27

10.8.1.2 Generic XML to MRM CWF
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 205.67 29.00 5.64

no 16384 166.67 30.00 7.20

no 65536 86.00 31.00 14.42

yes 4096 51.00 10.33 8.10

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 56 of 68

10.8.1.3 Generic XML to MRM XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 145.00 29.00 8.00

no 16384 115.00 29.00 10.09

no 65536 57.67 29.67 20.58

yes 4096 50.67 13.00 10.26

10.8.1.4 Generic XML to MRM TDS
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 144.00 28.00 7.78

no 16384 122.67 28.33 9.24

no 65536 72.00 30.00 16.67

yes 4096 51.00 13.00 10.20

10.8.2 MRM CWF

This section contains the results for the conversion of CWF messages to different formats.

10.8.2.1 MRM CWF to Generic XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

No 4096 231.00 30.00 5.19

No 16384 170.67 30.00 7.03

No 65536 85.67 31.00 14.47

Yes 4096 50.57 10.00 7.91

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 57 of 68

10.8.2.2 MRM CWF to MRM CWF
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 196.00 28.00 5.71

no 16384 167.67 30.00 7.16

no 65536 105.33 32.00 12.15

yes 4096 51.00 11.00 8.63

10.8.2.3 MRM CWF to MRM XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 150.00 29.00 7.73

no 16384 120.00 30.00 10.00

no 65536 67.00 30.00 17.91

yes 4096 49.93 12.33 9.88

10.8.2.4 MRM CWF to MRM TDS
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 138.00 28.67 8.31

no 16384 123.00 30.00 9.76

no 65536 86.00 31.00 14.42

yes 4096 50.67 13.33 10.53

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 58 of 68

10.8.3 MRM XML

This section contains the results for the conversion of MRM XML messages to different formats.

10.8.3.1 MRM XML to Generic XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 168.00 28.33 6.75

no 16384 130.00 28.00 8.62

no 65536 63.00 29.00 18.41

yes 4096 51.00 12.00 9.41

10.8.3.2 MRM XML to MRM CWF
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 143.00 28.00 7.83

no 16384 122.33 28.00 9.16

no 65536 70.00 29.33 16.76

yes 4096 51.00 13.00 10.20

10.8.3.3 MRM XML to MRM XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 117.67 28.00 9.52

no 16384 95.00 28.00 11.79

no 65536 51.00 29.33 23.01

yes 4096 50.00 15.00 12.00

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 59 of 68

10.8.3.4 MRM XML to MRM TDS
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 110.00 28.00 10.18

no 16384 97.00 28.00 11.55

no 65536 62.00 29.00 18.71

yes 4096 50.53 16.00 12.66

10.8.4 MRM TDS

This section contains the results for the conversion of TDS messages to different formats.

10.8.4.1 MRM TDS to Generic XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 82.00 28.00 13.66

no 16384 42.40 27.00 25.47

no 65536 14.50 27.00 74.48

yes 4096 50.00 19.00 15.20

10.8.4.2 MRM TDS to MRM CWF
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 77.00 27.67 14.37

no 16384 42.30 27.00 25.53

no 65536 15.10 27.00 71.52

yes 4096 51.00 21.00 16.47

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 60 of 68

10.8.4.3 MRM TDS to MRM XML
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 69.00 28.00 16.23

no 16384 38.40 27.00 28.13

no 65536 13.90 27.00 77.70

yes 4096 50.00 22.00 17.60

10.8.4.4 MRM TDS to MRM TDS
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 66.00 27.33 16.57

no 16384 38.20 27.00 28.27

no 65536 14.40 27.00 75.00

yes 4096 50.00 23.00 18.40

10.8.5 SWIFT MT543

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

No 6449 3.04 25.00 328.95

Yes 6449 2.90 24.00 331.03

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 61 of 68

10.9 Publication Node Results

This section contains the results for the topic and content based routing publication node tests.

10.9.1 Topic Based Routing

This section contains the results for the topic based publish/subscribe tests.

10.9.1.1 One Subscriber Results
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 1215.00 43.67 1.44

no 4096 1111.33 44.00 1.58

no 16384 556.67 28.00 2.01

no 65536 149.33 14.67 3.93

yes 1024 86.00 8.00 3.72

10.9.1.2 Ten Subscribers Results
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 492.67 44.33 3.60

no 4096 467.33 45.00 3.85

no 16384 381.67 45.33 4.75

no 65536 144.33 30.67 8.50

yes 1024 45.50 11.00 9.67

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 62 of 68

10.9.1.3 One Hundred Subscribers Results
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 72.00 44.00 24.44

no 4096 70.00 44.67 25.52

no 16384 63.33 46.00 29.05

no 65536 39.73 49.00 49.33

yes 1024 10.97 17.00 62.01

10.9.1.4 One Thousand Subscribers Results
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 3.78 35.00 370.37

no 4096 3.74 35.33 378.23

no 16384 3.56 36.33 407.86

no 65536 2.75 40.00 581.11

yes 1024 0.92 19.67 855.07

10.9.2 Content Based Routing

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 449.33 32.00 2.85

no 4096 428.33 32.33 3.02

no 16384 369.67 33.67 3.64

no 65536 142.67 22.00 6.17

yes 1024 65.33 8.00 4.90

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 63 of 68

10.10 RouteToLabel Node Results

This section contains the results for the RouteToLabel node tests.

10.10.1 RouteToLabel with One Entry in the Destination List

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 1262.33 47.00 1.49

no 4096 1149.00 47.00 1.64

no 16384 636.00 32.00 2.01

no 65536 147.00 15.67 4.26

yes 1024 86.00 7.00 3.26

10.10.2 RouteToLabel with One Hundred Entries in the Destination List

Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 1024 434.00 32.67 3.01

no 4096 428.00 33.67 3.15

no 16384 404.33 35.00 3.46

no 65536 144.67 22.67 6.27

yes 1024 64.00 8.00 5.00

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 64 of 68

10.11 Parallel Processing Options

This section contains the results for the parallel processing options. This is using additional instances
and/or multiple execution groups to increase message throughput.

10.11.1 Using Additional Instances

10.11.1.1 Message Throughput with One Instance
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 111.67 28.00 10.03

no 16384 92.00 28.00 12.17

no 65536 53.00 29.00 21.89

yes 4096 49.50 15.33 12.39

10.11.1.2 Message Throughput with Two Instances
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 234.00 55.00 9.40

no 16384 192.00 55.00 11.46

no 65536 108.00 57.00 21.11

yes 4096 75.67 21.33 11.28

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 65 of 68

10.11.1.3 Message Throughput with Four Instances
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 312.00 91.00 11.67

no 16384 270.00 95.33 14.12

no 65536 165.33 99.00 23.95

yes 4096 123.00 41.67 13.55

10.11.1.4 Message Throughput with Eight Instances
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 323.00 99.00 12.26

no 16384 272.67 99.00 14.52

no 65536 163.00 99.00 24.29

yes 4096 166.67 59.67 14.32

10.11.2 Using Multiple Execution Groups

10.11.2.1 Message Throughput with One Execution Group
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 111.67 28.00 10.03

no 16384 92.00 28.00 12.17

no 65536 53.00 29.00 21.89

yes 4096 49.50 15.33 12.39

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 66 of 68

10.11.2.2 Message Throughput with Two Execution Groups
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 251.00 56.00 8.92

no 16384 197.33 55.33 11.22

no 65536 107.67 57.00 21.18

yes 4096 75.00 21.67 11.56

10.11.2.3 Message Throughput with Four Execution Groups
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 386.67 99.67 10.31

no 16384 313.33 100.00 12.77

no 65536 169.33 98.00 23.15

yes 4096 129.00 40.33 12.51

10.11.2.4 Message Throughput with Eight Execution Groups
Persist Msg Size Msgs/sec % CPU Busy CPU ms/msg

no 4096 397.00 99.67 10.04

no 16384 320.33 100.00 12.49

no 65536 144.00 84.33 23.43

yes 4096 176.67 53.67 12.15

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 67 of 68

Index
Aggregation, 8, 15, 39, 40, 49

Complex compute, 19, 46, 50

Compute, 17, 46

Compute node ESQL, 17, 46

Configuration Manager, 39

CWF, 30, 31, 54, 55, 56, 57, 58, 59

Database node, 23, 51

Filter node, 10, 26, 52

Generic XML, 11, 30, 31, 54, 55, 56,
58, 59

Hardware, 9, 42

Measurement data, 13, 14, 16, 18, 19,
20, 21, 22, 23, 24, 25, 26, 29, 30,
31, 34, 35, 36, 37, 48

Message Content, 43

MQ_CONNECT_TYPE, 40, 43, 44

MQInput, 8, 10, 11, 14, 23, 24, 26, 27,
28, 30, 33, 37, 44, 45, 48

MQOutput, 8, 10, 11, 14, 23, 24, 26,
27, 30, 37, 44, 48

MQRFH2, 26, 31, 35

MRM XML, 30, 31, 54, 56, 57, 58, 59,
60

Multiple complex, 17, 20, 21, 46, 50

Nested SELECT FROM, 11, 17, 22, 51

ODBC, 23

Publication node, 33, 61

Retained publications, 39

Simple compute, 17, 18, 19, 28, 29,
46, 49

Single complex compute, 17

Single very complex, 17

Software, 9, 42

Subscribers, 34, 61, 62

SWIFT, 32, 60

Topic based, 33, 34, 61

Transaction, 23, 24, 45

Unit of work, 14, 15, 18, 19, 20, 21, 22,
23, 24, 25, 26, 34, 36, 44, 45

Very complex compute, 11, 21, 37, 46,
50

XA, 45

Websphere Business Integration Message Broker for SolarisV5 Performance report

Page 68 of 68

End of Document

