WebSphere Message Broker V8.0
For AIX
Performance report

Version 1.0
April 2012

WebSphere Message Broker Development
IBM UK Laboratories

Hursley Park

Winchester

Hampshire

S021 2JN

Before using this report be sure to read the general information under
"Notices".

First Edition, April 2012.

This edition applies to WebSphere Message Broker V8.0 for AIX and to all
subsequent releases and modifications until otherwise indicated in new
editions.

(c) Copyright International Business Machines Corporation 2012. All
rights reserved. Note to U.S. Government Users -- Documentation
related to restricted rights -- Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule contract with IBM Corp.

10f 89

Notices

This report is intended for Architects, Systems Programmers, Analysts
and Programmers wanting to understand the performance characteristics
of WebSphere Message Broker V8.0 for AlIX. It is assumed that the
reader is familiar with the concepts and operation of WebSphere Message
Broker V8.0.

References in this report to IBM products or programs do not imply that
IBM intends to make these available in all countries in which IBM
operates.

Information contained in this report has not been submitted to any
formal IBM test and is distributed "as is". The use of this information and
the implementation of any of the techniques is the responsibility of the
customer. Much depends on the ability of the customer to evaluate these
data and project the results to their operational environment.

The performance data contained in this report was measured in a
controlled environment and results obtained in other environments
might vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM
Corporation in the United States or other countries or both:

IBM

WebSphere MQ

WebSphere Message Broker
DB2

The following terms are trademarks of other companies:
e Windows 2008 R2, Windows and Microsoft Corporation

Other company, product, and service names may be trademarks or
service marks of others |

2 of 89

Summary of Amendments

Date Changes

April 2012 Initial Release

30f 89

Feedback

This report and other tools that are produced by the performance group
are produced in order to help you understand the performance
characteristics of WebSphere Message Broker and to assist you with
sizing.

It is important that the reports and tools are effective in what they do
and it is very useful to have feedback on the content and style of the
information which is produced. Your comments, both positive and
negative, are therefore welcome.

Your answers to the following questions are particularly interesting:

e \What are your most common performance questions?

e Do the reports provide what is needed?

Is there any other performance information which is required to
help you do your job?

Would you like to see any other aspects of WMB performance
discussed?

Please supply feedback to us at the following e-mail addresses:

Tim Dunn (dunnt@uk.ibm.com)

Dave Gorman(gormand@uk.ibm.com)

Rob Convery (convery@uk.ibm.com)

Asheesh Tiwari (ashetiwa@in.ibm.com)

Manjunath Veerabhadraiah (manjuvee@in.ibm.com)
Peter Prince (PETERPRI@uk.ibm.com)

or use the feedback facility on the SupportPac web page where you
obtained this report.

4 of 89

Table of contents

Introduction
Part |
Release highlights
Performance Improvements over WebSphere Message Broker V7
Use case throughput
Use Case Outline
Additional information
Part 11
Processing profiles
Sending and Receiving Messages over different Transports
MQ Nodes
HTTP Nodes
SOAP Nodes
SCA Nodes
JMS Nodes
TCPIP Nodes
Message parsing and writing
Parsing a Message in the MRM Domain
Writing a Message in the MRM Domain
Parsing Messages in the XMLNSC Domain
Writing a Message in the XMLNSC Domain
Validation in the XMLNSC Domain
Opague Parsing in the XMLNSC Domain
Routing and Transformation Logic
Using Database Route and Route Nodes
Using ESQL
Using Java
Using PHP

Using XSLT
Using the Collector Node

Using the Sequence Node
Using the IMS Node
Business-Level monitoring
External resources
Accessing a Database from a Message Flow
Growing message throughput
Overheads
Resource Statistics
Resource Requirements
Recommended Minimum Specification
Memory Use
Appendix A - Measurement Environment
Appendix B - Evaluation Method
Point to Point testing
Message Generation and Consumption
Machine Configuration
Reported Message Rates
Appendix C - Test Messages
Input Messages
SOAP Input Message and WSDL
Output Message
Appendix D - Use case descriptions
Aggregation
Coordinated Request/Reply
Data Warehouse
Large Messaging

50f 89

Message Routing

Transformation using ESQL
Appendix E - Tuning

WebSphere Message Broker

WebSphere MQ

TCP/IP

Database

Additional Tuning Information

6 of 89

Introduction

The purpose of this report is to illustrate the key processing
characteristics of WebSphere Message Broker. This has been done by
measuring the message throughput that is possible for a number of
different types of message processing. Throughout this report, the term
"message" is used in a generic sense, and can mean any request or
response into or out of the broker, regardless of the transport or
protocol.

This report covers multiple message formats, type, sizes and consists of
three parts. These meet the following different requirements:

1. Part I contains the release highlights and background information
to help understand the context of the results. Results are
presented at a high level and are intended to help you quickly
understand WebSphere Message Broker throughput capabilities. It
shows:

© The areas of improvement in performance with WebSphere
Message Broker V8.0 when compared with WebSphere
Message Broker V7.

o The level of message throughput that is achievable when
using WebSphere Message Broker in different ways. These
tests use multiple copies of the message flow and utilise as
much of the server as possible to illustrate the maximum
message rate which can be sustained for the individual types
of processing.

2. Part Il contains measurement data for a wide variety of tests
which examine the processing costs of individual functions using a
single copy of the message flow. This information is provided for
those who wish to understand the processing costs of different
capabilities within WebSphere Message Broker. This information is
intended for the more experienced WebSphere Message Broker
user who is familiar with the product concepts and functions. As
these tests run a single copy of the message flow, they do not
utilise the whole of the server and do not therefore represent the
maximum message throughput that is achievable.

3. Appendices that contain supplementary information. They are:

o Appendix A - Measurement Environment
o Appendix B - Evaluation Method

o Appendix C - Test Messages

o Appendix D - Use Case Descriptions

o Appendix E - Tuning

There are a number of changes from previous performance reports. The
most significant are:

1. Re-engineered tests to better reflect the processing costs which are
encountered when processing messages with a WebSphere
Message Broker message flow. The previous tests are deprecated
and do not appear in this report.

2. Larger range of message sizes including a greater range of
persistent message sizes.

The performance measurements focus on the throughput capabilities of

7 of 89

the broker using different message formats and processing node types.
The aim of the measurements is to help you understand the rate at
which messages can be processed in different situations as well as
helping you to understand the relative costs of the different node types
and approaches to message processing.

You should not attempt to make any direct comparisons of the
test results in this report with what may appear to be similar
tests in previous performance reports. This is because the
contents of the test messages are significantly different as is the
processing in the tests. It is not meaningful to make such
comparisons. In many cases the hardware, operating system and
prerequisite software are also different, making any direct
comparisons invalid.

Some optimisations of the test environment and procedures have been
implemented to minimise the effect of logging for example and to ensure
that messages do not accumulate on output queues which has a
detrimental effect on message throughput. These are detailed in
Appendix E - Tuning.

In many of the tests the user logic used is minimal so the results
presented represent the best throughput that can be achieved for that
node type. This should be borne in mind when sizing WebSphere
Message Broker.

8 of 89

Part 1

This part contains an overview of the areas of improvement in
performance with WebSphere Message Broker V8.0 when compared with
WebSphere Message Broker V7.

It contains the following sections:

e Release highlights, which outlines the main differences in
performance when using WebSphere Message Broker V8.0
compared with WebSphere Message Broker V7.

e Additional information, which provides links to other sources.

9 of 89

Release highlights

Performance Improvements over WebSphere Message
Broker V7

There have been significant improvements in the performance of
WebSphere Message Broker V8.0 in the following areas:

e Message parsing and serialisation

e Graphical Mapping

e Message Broker on AIX

e Performance Analysis of message flows using Resources Statistics
and Activity Log

Details of the improvements follow:
Message parsing and serialisation

V8 introduces the new DFDL (Data Format Description Language) parser
and serialiser. DFDL is a new industry standard for binary, text and
industry data formats, and can be exploited by all broker nodes. This new
parser has excellent performance characteristics. DFDL parse and
serialisation improvements have been measured up to 70% when
compared to existing MRM technology, with a typical improvement of
50%. Support for DFDL includes built in facilities within the WebSphere
Message Broker Toolkit to easily model data and test without the need
for deployment to the runtime, reducing development costs. All existing
parser technologies continue to exist in V8.

Graphical Mapping

V8 introduces a new Mapping node which allows the user to visually map
and transform data from source to target. This new mapping node has
excellent performance characteristics, and is a viable option for
performance sensitive transformations. Some tests have been measured
performing close to optimised programmatic transformations in ESQL,
Java and .Net, with the typical measurement being 50%. Existing maps
developed prior to V8 will continue to work as-is, but will be opened as
read-only within the WebSphere Message Broker Toolkit. At the time of
writing this report, automatic migration of existing maps is not possible.

Message Broker on AIX

V8 includes performance enhancements for AIX on Power. These include
optimisations to internal string handling as well as changes to MALLOC
options. These have resulted in improvements on average of 10% across
a range of performance tests.

Performance Analysis of message flows using Resources
Statistics and Activity Log

In WebSphere Message Broker V8.0 there have been continued
enhancements to assist with understanding message flow activity and the
diagnosis of runtime performance problems. Since WebSphere Message
Broker V7 it has been possible to very quickly, accurately and cheaply
diagnose performance problems in a running message flow using
Resource Statistics, with a performance overhead that is typically no
more than 3%. V8 adds many more resource managers which emit
resource statistic data.

10 of 89

In addition, a new Activity Log has been added to help the user quickly
understand what message flows are doing in the runtime, and how they
are interacting with external resources. Collection is always on and
overheads are negligible.

Resource Statistics

In V8 the number of resource managers emitting statistical data to
report activity has been increased. The list now includes: .Net App
domains, CICS, .Net GC, CORBA, ConnectDirect, FTEAgent, FTP, File,
JDBCConnectionPools, JMS, JVM, ODBC, Parsers, SOAPInput, Security,
Sockets, TCPIPClientNodes and TCPIPServerNodes. All of these can be
visualised in the WebSphere Message Broker Explorer. The overhead of
these functions is small.

A screenshot of the resource statistics facility being used is shown below.
For more information on this facility consult the product documentation.

¥ MBEBROKER Administration Log ﬂ MG Explorer - Content E5F Resource Stabistics Graph | 55 default Resources Statistics (3napshot time 100827 - 100847)
DmN:t-‘lppUm-uml CICS | Dotidet GT | CCR-S-‘\-' ConnsctDirect | FTEAgent F_TF‘ ;Fih _JE&CCWM::IJWFI:";': | S5 J Tk QOEC | Parers _SG-‘-FInw‘I _i

il e Inita ke rsanda_. Uadh s ComenittedMensd.. Mubemony.. CumulitveGCTimenSece... CurnilitrelumberndGCllections
summary) 38 B5 -1 0 L
Hezp Memory o) 16 12 256
Meon=Hieap Me.. 0 X iz =1
Gerbsge Colle., i 1
Activity Log

V8 introduced Activity logs. These help users to understand what their
message flows are doing by providing a high-level overview of how the
broker runtime interacts with external resources. Similar to resource
statistics, activity log data can be visualised in the WebSphere Message
Broker Explorer and has no runtime overhead.

A screenshot of the activity log facility being used is shown below. For
more information on this facility consult the product documentation.

11 of 89

_Al.lvtnll.lm -

Fleizage .
BIPLISMME
ElP11501L
BIPLISDEL
BIP115041

4 erfines

T'ﬂEHFT';
B-Mar- 2002 100732 000,
E-bhar- 2012 100132 000...
B-Mar- 2012 10:21:32 000,
B-har-2012 10:1:37 000...

RM

- Apphy filter

MEGFLOW Messege Summary

InCurt
InCet
InCurt
IniCart

‘Weeting for dets from mput mode ‘B30 Input’.
Fecaved data from input nede ‘B3 Input’.
Committed & locel tremsaction

‘Wating for data from enput rode ‘WG Input’.

12 of 89

Thiesdl) MNODE

HE MOIhp
M MG Inpan
B Mgt
M MQInpu

|[¥ Admensstration Log |) MG Exporer - Content | [E] Besource Statistics Graph | (5] defaut Rescunces Staistics {5n | 7 MESBAOKER debaultMinut, 21

Clear |88 Thesads = | [74 Select columns...

Preious | |

MODETYPE
IReuT
NP
T
IheuT

.I. tl‘

2 Mot

Use case throughput

This section illustrates the message throughput that is possible with
WebSphere Message Broker V8.0 for a number of common processing
use cases. A range of processing rates will be observed. The message
rate varies with the complexity of the application processing and the size
and complexity of the messages as it would for any program.

Use Case Outline

This section contains a brief outline of the tests used and the results for
each are presented in the tables below. For more detail about individual
test cases see Appendix D - Use Case Descriptions.

e Aggregation

This represents the type of processing that is required for example,
when travel is booked and arrangements for a flight, hotel, car and
money must be made. Requests to four different applications are
made and the replies consolidated into a single reply. This test
performs the processing required to split an incoming XML message
and perform a four message aggregation using the Aggregation
nodes that are supplied with WebSphere Message Broker.

e Coordinated Request Reply

This performs the processing needed to enable two applications
with different message formats to communicate with each other.
One application has a message format of self-defining XML and the
other uses Custom Wire Format (CWF) messages. The request and
reply processing for a particular request must be coordinated so
that data from the original request is restored to the reply
message.

e Data Warehouse

This demonstrates a scenario in which a message flow is used to
perform the archiving of data, such as sales data, into a database.
The data is stored for later analysis by another message flow or
application.

e Large Messaging Processing

This is based on the scenario of end-of-day processing of sales
data. Messages representing sales for the day are batched together
for transmission to the IT centre. On receipt at the IT centre the
batched messages are split into their constituent parts for
subsequent processing.

® Message Routing

This shows how a message flow can be used to route messages to
different WebSphere MQ queues based on data stored in a
database table. This is a commonly used scenario which is
applicable to many different industries and applications.

¢ Message Transformation

This shows XML messages that are sent and received over the
WebSphere MQ transport and tranfsormed from one format to
another using ESQL.

The following table shows the message rates that were obtained for the

different use cases when running on a IBM pSeries 780 with 2 x
Quad-Core Power7 3.86GHz processors and SMT4 activated (4 hardware

13 of 89

threads per core) giving 8 physical cores in total

Use Case Message Size| V8.0 Msgs/sec
Aggregation 20kB 1949
Coordinated Request/Reply | 2kB 4438
Data Warehouse 2kB 1349
Large Message Processing |2kB 14523
Message Routing 2kB 40865
Message Transformation 2kB 17647

NOTE: The results in this table were obtained by running sufficient copies
of each message flow so that in most cases the system CPU utilisation
was 80% or greater.

Note that there is a range of message rates from 1,349 to 40,865
messages per second. These rates reflect the range of complexities for
the different use cases shown or, put in another way, not all use cases
are of the same complexity. For example, the aggregation test case
includes the processing of 10 MQ messages across 6 flows, whilst the
routing cache test includes 2 MQ messages and across 1 flow. The
aggregation test case requires a minimum message size which is why it
is run with a message size of 20Kk.

When planning a system it is important to understand the complexities of

the processing required so that adequate resources can be provided to
meet the requirements of the particular situation.

14 of 89

Additional information

This section contains links to information about WebSphere Message
Broker and associated products.

The Web Resources section in the development toolkit of WebSphere
Message Broker V8.0 contains links to many additional pieces of
information on topics such as Education, Technical Resources and
SupportPacs. The Web resources section can be accessed by selecting
Web Resources from the Help menu on the development toolkit menu
bar.

For additional suggestions consider the following:

e See the announcement letter for IBM WebSphere Message Broker
V8.0 which is available at http://www.ibm.com/support
/docview.wss?uid=swg21566990

e IBM WebSphere MQ and Message Broker SupportPacs provide you
with a wide range of downloadable code and documentation that
complements the WebSphere MQ family of products. Additional
performance reports are also available. These are available at
http://www.ibm.com/software/integration/support/supportpacs

e For more information about WebSphere Message Broker V8.0,
including a trial edition, go to the WebSphere Message Broker Web
site. Product documentation is also available. This is available at
http:/www.ibm.com/software/integration/wbimessagebroker

e For more information about WebSphere MQ V7, go to the
WebSphere MQ website. Product documentation is also available.
This is available at http://www.ibm.com/software/integration
/wmqgfamily

e For more information about business integration software from IBM
go to the WebSphere Business Integration website. This is available
at http://www.ibm.com/software/infol/websphere
/index.jsp?tab=products/businessint

e Get the latest WebSphere Message Broker technical resources at
the WebSphere Message Broker zone. This is available at
http://www.ibm.com/developerworks/websphere/zones
/businessintegration/wmb.html

e The MQ, JMS, and HTTP transport testing which was run for this
report used a tool called the Performance Harness for JMS to
generate and consume messages. The tool is useful as a simple
way to send and receive messages. The documentation for the tool
contains examples of how to run it to send and receive messages.
More information about the currently available version can be
found at: http://www.alphaworks.ibm.com
/tech/perfharness?open&S_TACT=105AGX21&S_CMP=AWRSS.

15 of 89

Part 11

This section contains the description and results of a series of tests that
have been run to identify the processing costs of a selected range of the
functions that are provided with WebSphere Message Broker.

It contains the following:

® Processing Profiles, which describes the tests and shows the results
obtained when a single copy of the message flow was run.

e Resource Requirements, which provides guidance on memory use
for execution groups running a variety of message flows.

16 of 89

Processing profiles

This section contains the results of a series of micro tests which illustrate
the costs of performing different types of processing using WebSphere
Message Broker such as message parsing, message streaming, and using
filter nodes. These micro tests are not intended to represent applications.
They are an illustration of the processing costs of specific functions.

The test results were all run using the same methodology. This was to
run a single copy of the message flow (unless specified otherwise) to
maximum CPU utilisation and to observe the message rate obtained.
From this a CPU cost per message was calculated. This is presented in
the results table for each measurement.

When comparing the costs of different functions it is recommended to
compare them on the basis of CPU cost per message rather than message
rate.

There are many comparisons which can be made using the data in this
section which will give some insight into the relative costs of different
implementations such as the relative cost of ESQL and XSLT to process
the same message.

The data in this section will allow you to make a comparison only on the
basis of CPU costs. Other factors such as the potential for code re-use
and the operational considerations of using a particular technology are
not discussed.

Messages Used in Processing

For the majority of tests the message content was common. The
following different formats of the common input message content were
used: XML, non-XML fixed/variable (CWF) and non-XML delimited (TDS).
In these cases the input message still contained the same amount of
information, it was the representation of the data that was different. The
output message varied depending on the test case. The messages are
described in Appendix C - Test Messages.

Note that the message size quoted is based on the size of the data in
XML format. When the same data is represented as non-XML the actual
size may be significantly less. The sizes for the different formats are
shown in the table below:

Msg Size in Msg Size in non-XML |Msg Size in nhon-XML

XML delimited fixed/variable

2kB |2kB |1kB |
20kB |20kB |5kB |
200kB |100kB |48kB |
2048kB(2MB) |995kB 14481kB |
20480kB(20MB) [9941kB 14807kB |

Results Presentation

Each of the tests are described below and accompanied by a table of data
which has a format such as this:

(o)
Msg Persistent Message Rate Yo CPU CPU

Size (Msgs/sec) Busy | ms/msg Instances

17 of 89

Sl\:ig Persistent M(T\jiggjszge O/I;?SF;U msC/Pr:]Jsg Instances
__2kB| NONE | | |
__20kB| NONE | | |
_200kB| NONE| | | |
__2MB| NONE| | | | |
__20MB| NONE | | | |
_2kB| FuLL | | | |
_ 20kB| FULL | | | |
_200kB| FULL | | | |
__2mB| FuLL | | |
_20mB| FuLL | | |

The data in the columns is as follows:

Msg Size: Records the approximate size of the message used as input to
the test. This is the size of the XML or equivalent non-XML message
payload and does not include the size of any message header. Most test
cases used messages of 2kB, 20kB, 200kB, 2MB, and 20MB. In some
cases a more limited range of message sizes was run where the test was
not suitable for the whole range of message sizes.

Persistent: Indicates whether the messages used in the test were
persistent or not. This is applicable to MQ messages only. Where
message persistence doesn't apply this column will contain NONE.

Message Rate: The number of round trips or message flow invocations
per second.

%06 CPU Busy: System busy CPU percentage on the server machine. This
includes the CPU used by all processes (WebSphere Message Broker,
WebSphere MQ queue manager, database manager etc) on the system
under test. The rate is expressed as a percentage utilisation of all
processors on the machine.

CPU ms/msg: Overall CPU cost per message, expressed as CPU
milliseconds per message.

The value of CPU ms/msg is obtained using the calculation:
((Number of cores * 1000) * (%CPU/100)) / Message Rate.

This cost includes WebSphere Message Broker, WebSphere MQ, DB2,
operating system costs etc. The CPU ms/msg figures reported are specific
to the system on which they were obtained and if projections of message
processing capacity are to be made for other systems a suitable
adjustment must be made to allow for differences in the capacity of the
two systems.

Instances: The total number of instances (threads) with which the
message flow was tested with.

Response Times

Response time data for the message flow execution is not reported. The
tests are configured to maximise message throughput and minimise CPU
costs and so there are always a number of messages waiting on the input
node of the message flow so that there is at least one message ready to
be processed immediately after processing of the current message has

18 of 89

completed. This means that the processing of each message involves
queuing time at the input node. Because of this it is not meaningful to
report message processing times as observed by the client as it will not
reflect the true execution time in the message flow. It is possible to
estimate the elapsed time within a message flow in milliseconds from the
results of these tests by dividing 1000 (representing the number of
milliseconds in 1 second) by the message rate for the test as only a
single copy of the message flow was run. For example, suppose that a
test achieved a message rate of 2000 per second. The message flow
average execution time is 1000 / 2000 = 0.5ms. For a message rate of
200 per second the average execution time is 1000/200 = 5ms.

These times are an estimate of the execution time in the message flow
and represent the elapsed time between the message being read from
the input queue and the result being placed on the output queue.

If messages are generated or consumed by remote clients an allowance
must be made for network delays.

The test descriptions and results follow.

19 of 89

Sending and Receiving Messages over different
Transports

The tests in this section illustrate the processing cost of receiving and
sending data over various transports supported by WebSphere Message

Broker.

MQ Nodes

The tests in this section illustrate the processing cost of reading and
writing MQ Messages.

Reading and writing to an MQ Queue

This test consists of:

|a:—a|

MOQInput

MO Output

This test shows the overhead of using message broker to move messages
from one WebSphere MQ queue to another. As many of the other tests
included in this report use WebSphere MQ as the transport it can be used
to determine how much of the processing incurred is due to using
WebSphere MQ and how much is the routing/transformation or parsing

cost.

A WebSphere MQ message is placed on the Input Queue where the
incoming message is then copied to the Output Queue. The message
contents are treated as a BLOB and are not modified or parsed in any

way.

This test identifies the cost of reading and writing a BLOB message with

WebSphere MQ as the transport.

The results of running this test are given in the table below.

gﬂlig Persistent M(ijlsssggleszge O/EUCSZU msC/Pr;Jsg Instances

| 2kB|| NONE|| 17716.8| 20.0/ 0.1] 1|
| 20kB| NONE|| 14682.3| 25.0 0.1] 1]
| 200kB| NONE|| 3023.2] 26.0 0.7] 1]
| 2000kB| NONE|| 312.0] 27.0| 6.9| 1]
'20000kB| NONE|| 222 16.3 58.7| 1]
| 2kB| FULL| 2359.7] 7.3 0.2] 1]
. 20kB| FULL| 1709.3] 7.0/ 0.3] 1]
. 200kB| FULL| 533.2] 7.0 1.1 1]
| 2000kB| FULL| 101.3] 10.2 8.1 1]
20000kB| FULL| 12.0] 12.3 82.3 1]
HTTP Nodes

The tests in this section illustrate the processing cost of reading and

writing HTTP messages.

20 of 89

Reading and Writing messages over the HTTP Transport
This test consists of:

“H... - " H@

HTTP Input HTTP Reply

This test shows the overhead of using WebSphere Message Broker to
receive and send messages over the HTTP transport. An HTTP bytes
message is written to the broker over HTTP. The incoming message is
then written out unmodified back to the client. The message contents are
treated as a BLOB and are not modified or parsed in anyway. Note that
persistent HTTP connections were used in this test (see Tuning Section
for details)

This test identifies the cost of reading and writing a BLOB message with
HTTP.

The results of running this test are given in the table below.

glég Persistent I\/I((K/Issggleszge CV;::SI;U msclprgsg Instances
| 2kB|| NONE|| 9878.6| 23.8] 0.2] 1]
. 20kB| NONE|| 4549.1 37.7| 0.7] 1]
. 200kB| NONE|| 369.7] 23.3 5.0 1|
| 2000kB| NONE|| 447 199 35.6 1]
'20000KB| NONE|| 1.0 3.3 2718 1|
SOAP Nodes

The tests in this section illustrate the processing cost of receiving,
sending, and making requests over the SOAP transport.

Receiving and sending messages over the SOAP transport
This test consists of:

SOAP Input Compute SOAP Reply

The message flow is acting as a web service provider. A SOAP message is
received by the broker via the SOAPInput node. A Compute Node then
copies the SOAP request message to a SOAP response message which is
then sent via the SOAPReply node.

Note that persistent HTTP connections were used in this test (see Tuning
Section for details).

This test identifies the cost of receiving and sending a SOAP message.
The results of running this test are given in the table below.

Msg . Message Rate |2 CPU CPU

Size Persistent (Msgs/Sec) Busy | ms/msg Instances
| 2kB|| NONE|| 1567.6] 10.0/ 0.5] 1]
. 20kB| NONE|| 522.0 9.0 1.4 1]

21 of 89

Msg Message Rate |2 CPU CPU

Size Persistent (Msgs/Sec) Busy | ms/msg Instances
. 200kB| NONE|| 63.9] 9.0 11.3 1|
| 2000kB| NONE|| 09 1.8 163.6) 1]
'20000KB| NONE|| 0.2 7.9 37271 1]

Receiving and sending messages over the SOAP transport with
Validation enabled

This test consists of:

SOAP Input Compute SOAP Reply

The SOAPInput and SOAPReply nodes are are used in a message flow
which implements a provider web service. The SOAPInput node is
configured to enable validation ("Content and value"; SOAP Parser
Options select "Build tree using XML schema data types"). A SOAP
message is received by the broker via the SOAPInput node. A Compute
node then copies the unmodified SOAP request message across to a
SOAP response message, which is then sent via the SOAPReply node.

Note that persistent HTTP connections were used in this test (see Tuning
Section for details).

This test identifies the cost of receiving and sending a SOAP message
where the message is validated.

g:ig Persistent '\A(T\Assggfszge O/élj:szu msC/Pr:stg Instances
| 2kB|| NONE|| 1305.4| 10.0| 0.6/ 1]
. 20kB| NONE|| 350.5| 9.0 2.0| 1|
. 200kB| NONE|| 30.4| 9.0 18.3 1|
| 2000kB| NONE|| 1.1 3.4 2575 1]
'20000KB| NONE|| 0.2 8.0 3216.0| 1]

Receiving and sending messages over the SOAP transport using
WS-Addressing

This test consists of:

Hg> ——o R p——o @

SOAP Input Compute SOAP Reply

The SOAPInput and SOAPReply nodes are used in a message flow which
acts as a web services provider. The SOAPInput node is configured to
enable WebServices Addressing (WS-Addressing). A SOAP message is
received by the broker via the SOAPInput node. A Compute Node then
copies the unmodified SOAP request message to a SOAP response
message, which is then sent via the SOAPReply node.

22 of 89

Note that persistent HTTP connections were used in this test (see Tuning
Section for details).

This test identifies the cost of receiving and sending a SOAP message
where WS-Addressing is enabled. The results of running this test are
given in the table below.

glég Persistent Nl(ﬁsgg/eszge CV;::SI;U msclprgsg Instances
| 2kB|| NONE|| 946.9| 10.0| 0.8| 1]
. 20kB| NONE|| 273.8 10.0| 2.9| 1]
. 200kB| NONE|| 31.5| 10.0| 25.4| 1]
| 2000KkB| NONE|| 1.4 49 276.1 1]
'20000KB| NONE|| 01 7.7 6136.0] 1]

Receiving and sending messages over the SOAP transport with
SwWA attachments

This test consists of:

[b—p®

SOAP Input

Compute

S0AP Reply

The SOAPInput and SOAPReply nodes are used in a message flow which
implements a provider web service. A SOAP message with an attachment
is received by the broker via the SOAPInput Node. A Compute node then
copies the unmodified SOAP request message to a SOAP response
message, which is then sent via the SOAPReply node. The size of the
SOAP message body remains constant and the size of the attachment is

increased.

Note that persistent HTTP connections were used in this test (see Tuning
Section for details).

This test identifies the cost of receiving and sending a SOAP with
Attachments (SwWA) message.

gl;g Persistent '\A(T\Assggfszge O/élj:szu msC/Pr:stg Instances
| 2kB|| NONE|| 1171.6] 10.0 0.7] 1]
. 20kB| NONE|| 942.8| 12.0| 1.0| 1]
. 200kB| NONE|| 348.3| 17.1] 3.9 1]
| 2000kB| NONE|| 07 14 1635 1]
'20000KB| NONE|| 0.2 2.4 11204| 1]

Making a SOAP Request

This test consists of:

23 of 89

[——B3—p®

SOAP Input S0AP Request SOAP Reply

HH... ——o @ p—o| ;@

HTTP Input Compute HTTP Reply

The SOAPRequest node is used in a message flow to invoke a web service
synchronously. A response must be received from the web service before
the message flow continues.

A SOAP message is received by the broker via the SOAPInput node. A
SOAPRequest node then issues a Web Service request. When the web
service has completed processing a response is sent to the original
request via the SOAPReply node.

The web service that is invoked synchronously consists of an HTTP
message flow, running in the same broker, which returns the request
data unmodified.

This test identifies the cost of making a web service request via the
SOAPRequest node. The results of running this test are given in the table
below.

g/lég Persistent M(ﬁiggfszge céfszu msC/Pnl:ljsg Instances
| 2kB|| NONE|| 855.5| 10.5| 1.0| 1]
. 20kB| NONE|| 49 1.0 16.2 1]
. 200kB| NONE|| 44.0] 10.0| 18.2) 1]
| 2000kB| NONE|| 120 47/ 3063 1]
20000kB| NONE|| 02 8.2 28348 1]

Making a SOAP Request with Validation enabled
This test consists of:
P33 —p®

SOAP Input S0AP Request SOAP Reply

HH... ———o @ | @

HTTP Input Compute HTTP Reply

The SOAPRequest node is used in a message flow that calls a web service
synchronously. This means the node sends a Web Service request and
waits for the associated web service response to be received before the
message flow continues.

The SOAPRequest node is configured to enable validation ("Content and

24 of 89

value"; SOAP Parser Options select "Build tree using XML schema data
types'™). A SOAP message is received by the broker via the SOAP Input
Node. A SOAP Request Node makes a web service request, and the
response is sent via the SOAPReply node. The request is returned,

unmodified, via a HTTP flow.

This test identifies the cost of making a web service request via the
SOAPRequest node with validation enabled.

g/lég Persistent M(ﬁiggfszge céfszu msC/Pnl:ljsg Instances
| 2kB|| NONE|| 561.6] 9.0 1.3| 1]
. 20kB| NONE|| 49 15 24.3| 1]
. 200kB| NONE|| 17.9] 10.0| 44.7| 1|
| 2000kB| NONE|| 1.6] 8.4 4215 1|
'20000kB| NONE|| 0.1/ 8.0 5333.3| 1]
SCA Nodes

The tests in this section illustrate the processing cost of using the SCA
nodes, which allow WebSphere Message Broker to interoperate with
WebSphere Process Server. This supports both WebSphere Process
Server to WebSphere Message Broker inbound scenarios and WebSphere
Message Broker to WebSphere Process Server outbound scenarios. When
designing message flows with SCA, you must select a suitable transport
(also called a binding). The SCA nodes support the WebSphere MQ
transport and WebSphere Broker HTTP transport with SOAP. These tests
show the processing costs of SCA over each of these transports.

Receiving and sending inbound messages with SCA over
WebSphere MQ transport

This test consists of:

T

SCA Inputl

S5CA Rephyl

The bindings are set to MQ. The results of running this test are given in
the table below.

gﬂlig Persistent M(ijlsssggleszge O/EUCSZU msC/Pr;Jsg Instances
| 2kB|| NONE|| 11132.5| 16.0 0.1] 1]
. 20kB| NONE|| 9813.2) 19.0 0.1] 1]
| 200KkB| NONE|| 2643.2] 23.0 0.7] 1)
| 2000kB| NONE|| 269.8| 22.9| 6.8| 1]
'20000kB| NONE|| 19.4] 14.2] 58.5| 1]

Receiving and sending inbound messages with SCA over SOAP

This test consists of:

25 of 89

|y R =y

SCA Input
npy Compute SCA Reply

The bindings are set to Web Services and the Compute node modifies the
high level tag from request to response.

The results of running this test are given in the table below.

gﬂlig Persistent Nl(iﬂsssggleszge Cig’::sPyu mSC/Pnlj]JSg Instances
| 2kB|| NONE|| 1297.5| 10.1 0.6/ 1]
. 20k8| NONE|| 517.6] 9.1 1.4] 1)
. 200kB| NONE|| 61.0 10.0| 13.1]| 1]
| 2000kB| NONE|| 11 3.1/ 2182 1]
'20000kB| NONE|| 0.2 7.8 28201 1]

Making an Asynchronous outbound request with SCA over
WebSphere MQ transport

This test consists of:

E L

MOQInput SCA Asynchronous Requestl

o &

SCA Asynchronous Responsel MQOutput

|gF—ep—a]
MOQInput Compute MQOutput

The bindings are set to MQ. The results of running this test are given in
the table below.

gﬂlig Persistent M(ﬁiggfszge (?Sszu m;:/Panjsg Instances
. 2k8| NONE|| 5696.6] 21.0| 0.3] 1]
. 20kB| NONE|| 4995.0] 21.5] 0.3] 1]
| 200kB| NONE|| 2436.3| 32.2] 1.1 1]
| 2000kB| NONE|| 259.5| 29.9| 9.2| 1)
20000kB| NONE|| 19.3| 18.3 75.8| 1]

Making an Asynchronous outbound request with SCA over SOAP

This test consists of:

26 of 89

E i

MOQInput SCA Asynchronous Requestl

5 a

S5CA Asynchronous Responsel MQOutput

SOAP Input Compute SOAP Reply

The bindings are set to Web Services.The results of running this test are
given in the table below.

gl;g Persistent M(ﬁssggleszge CV;::SI;U msC/Prgsg Instances
. 2k8| NONE|| 583.3| 17.0| 2.3 1]
. 20k8| NONE|| 49 1.0 16.2) 1]
. 200kB| NONE|| 26.7| 19.0| 56.8| 1]
| 2000kB)| NONE|| 3.0 181 4914 1]
20000kB)| NONE|| 0.2 16.8] 5385.6| 1]

Making a Synchronous outbound request with SCA over
WebSphere MQ transport

This test consists of:

laF—R%F—al
MOQInput S5CA Request MO Output

lgF—leb—al]
MOQInput Compute MQOutput

The bindings are set to MQ. The results of running this test are given in
the table below.

gl;g Persistent I\/I((K/Isssggleszge CV;::SI;U msC/Prgsg Instances
. 2k8| NONE|| 3009.6] 11.0| 0.3] 1]
. 20k8| NONE|| 2719.2 12.0| 0.3] 1]
. 200kB| NONE|| 1368.4] 17.0| 1.0| 1|
| 2000kB| NONE|| 210.2] 22.6| 8.6/ 1]
20000kB)| NONE|| 18.8| 17.9 76.3| 1]

Making a Synchronous outbound request with SCA over SOAP

This test consists of:

27 of 89

|8F—R2F——-a]
MOQInput S5CA Request MQOutput

SOAP Input Compute SOAP Reply

The bindings are set to SOAP. The results of running this test are given
in the table below.

g:ig Persistent M(ﬁiggfszge (?L?slz/u m;:/Pr;Jsg Instances
| 2kB|| NONE|| 515.6| 10.0| 1.6| 1]
. 20kB| NONE|| a9 1.0 16.2)| 1]
| 200kB| NONE|| 206/ 9.0 34.9| 1]
| 2000kB| NONE|| 2.0/ 100 406.1] 1|
20000kB| NONE|| 0.2 82 31276 1|
JMS Nodes

The tests in this section illustrate the processing cost of utilising JMS
messages.

Receiving and sending JMS Messages
This test consists of:

[=—{&]

IMSInput

The JMSInput node acts as a JMS Receiver on a MQ JMS Queue.

The JMSOutput node acts as a JMS Sender and sends the same message
to the same JMS Provider.

For this test the JMS Provider is the brokers WebSphere MQ Queue
Manager.

This test uses a JMS Bytes message.
This test identifies the cost of receiving and sending a JMS Bytes

Message with a JMS Provider. The results of running this test are given in
the table below.

gﬂlig Persistent '\/I(?\/Isssggleszge O/éfszu msC/Pr:qug Instances
. 2k8| NONE|| 1747.8] 106 0.5 1]
. 20kB| NONE|| 1352.0| 12.0/ 0.7] 1]
| 200kB| NONE|| 226.2] 25.0 8.8| 1]

28 of 89

Msg . Message Rate |2 CPU CPU

Size Persistent (Msgs/Sec) Busy | ms/msg Instances
| 2000kB| NONE|| 47.8| 18.0 30.1| 1]
20000kB| NONE|| 52| 140 = 214.2) 1]

JMS to MQ Protocol conversion

This test consists of:

=] =
“JMS “" *
JMSInput JMSMQTransform

="

The JMSInput node acts as a JMS Receiver on an MQ JMS queue.

For this test the JMS Provider is the brokers WebSphere MQ queue
manager.

This test uses a JMS Bytes message.

Within the IMSMQTransform node the tree built from the JMS input
message is converted to one suitable for the MQ transport. An MQ output
message is written.

This test identifies the cost of converting a JMS Message to a MQ
Message.
The results of running this test are given in the table below.

glég Persistent M(ﬁiggfszge (?EST/U m;:/Pr;Jsg Instances
| 2kB|| NONE|| 2043.2] 9.5 0.4] 1]
. 20kB| NONE|| 1732.6] 11.1 0.5| 1]
| 200kB| NONE|| 373.5| 23.1] 5.0| 1]
| 2000kB| NONE|| 67.3| 19.0| 22.6) 1]
'20000kB| NONE|| 75| 153 163.4| 1|

MQ to JMS Protocol conversion

This test consists of:

”] P ,

=i E—oE

Chad =
MOQInput MQIMMSETransform

==t

The JMSOutput node acts as a JMS Sender to a MQ JMS Queue.

For this test the JMS Provider is the brokers WebSphere MQ Queue
Manager.

Within the MQJMSTransform node the tree built from the WebSphere MQ

input message is converted to one suitable for the JMS transport. A JMS
Bytes output message is written.

29 of 89

This test identifies the cost of converting a MQ Message to a JMS
Message.
The results of running this test are given in the table below.

gﬂlig Persistent '\/I(T\/Isssggleszge O/éfszu msC/Pnqusg Instances
. 2k8| NONE|| 2485.0) 10.1] 0.3] 1]
. 20kB| NONE|| 2068.7] 11.0] 0.4/ 1]
| 200kB| NONE|| 440.1] 25.0| 4.5 1]
| 2000KkB| NONE|| 100.2] 19.7| 15.7 1]
20000kB| NONE|| 11.0 18.1 131.4 1]

TCPIP Nodes

The tests in this section illustrate the processing cost of using the TCPIP
nodes.

Receiving and sending messages over TCPIP using Fixed Length
record detection

This test consists of:

2 —F]

TCPIPServerdnput 1Cpipseryer) utput

This test illustrates the cost of using the Fixed Length record detection in
the TCPIPServerlnput node. The incoming message is received by the
TCPServerlnput node and the response sent from the TCPIPServerOutput
node. The messages processed are in the XMLNSC domain and record
detection was set to Fixed Length on the TCPIPServerinput node.

The results of running this test are given in the table below.

glég Persistent '\A(T\Assggfszge O/élj:szu msC/Pr:stg Instances
| 2kB| NONE|| 2628.1 9.0 0.3] 1]
. 20kB| NONE|| 2183.5| 10.0| 0.4] 1]
. 200kB| NONE|| 783.2] 13.0 1.3| 1]
| 2000kB| NONE|| 31.7] 7.4 18.0)| 1]
'20000KB| NONE|| 43 90 166.7| 1]

Receiving and sending messages over TCPIP using Parsed Record
Sequence record detection

This test consists of:

5]

TCPIPServerdnput 1Cpipseryer) utput

This test illustrates the cost of using parsed record sequence detection in
the TCPIPServerlnput node. The incoming message is received by the

30 of 89

TCPServerlnput node and the response sent from the TCPIPServerOutput

node. The messages processed were in the XMLNSC domain and record
detection was set to Parsed Record Sequence on the TCPIPServerlnput

node.

The results of running this test are given in the table below.

glég Persistent Nl(ﬁsggleszge CV;::SI;U msclprgsg Instances
| 2kB|| NONE|| 2236.7] 9.0 0.3] 1]
. 20kB| NONE|| 604.6] 9.0 1.2 1]
. 200kB| NONE|| 717 9.0 10.0 1]
| 2000kB| NONE|| 6.8 9.0 106.0] 1]
'20000KB| NONE|| 0.7/ 85 1027.9| 1]

31 of 89

Message parsing and writing

The tests in this section illustrate the cost of parsing input messages and
writing output messages for different message formats.

Parsing a Message in the MRM Domain

The tests in this section illustrate the CPU processing costs of parsing
different message formats in the MRM domain.

In this report only figures for TDS Fixed Length format are given.
Previous measurements showed that message throughput varied little
regardless of format hence the decision to report only one type.

Parsing a Tagged Delimited String, Fixed Length Input Message

This test consists of:

laf {2 b—a]
MOQInput Compute MQOutput

The input message is processed with the TDS domain.

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition a variable is
declared and set to the last element in the incoming message. This
causes the incoming message to be fully parsed. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Fixed Length, Tagged Delimited
String input message. The results of running this test are given in the
table below.

glég Persistent '\/I((Kﬂs;:gg/eszge CV;::SI;U msclprgsg Instances
| 2kB|| NONE|| 1915.1] 9.0 0.4] 1]
. 20kB| NONE|| 340.2] 8.0 1.9/ 1]
. 200kB| NONE|| 36.2 8.0 17.7) 1]
| 2000kB| NONE|| 3.8/ 80 1671 1]
'20000KB| NONE|| 04 80 17207 1]
- 2k8| FULL| 221.0 8.0 2.9| 1]
. 20kB| FULL| 133.1] 7.1 4.2 1]
| 200kB| FULL| 206 7.2 19.4)| 1|
| 2000KkB| FULL| 3.6 80 1773 1]
20000kB| FULL| 04 80 1729.7| 1]

Parsing a Custom Wire Format Input Message

This test consists of:

lgF—eb—al]
MOQInput Compute MQOutput

32 of 89

The input message is processed with the CWF domain.

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition a variable is
declared and set to the last element in the incoming message. This
causes the incoming message to be fully parsed. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Custom Wire Format input
message. The results of running this test are given in the table below.

g:ig Persistent I\/I(eMsSsgSg/eslzi';e c?st;,U msC/Pr;Jsg Instances
. 2kB| NONE|| 2620.4| 9.0 0.3] 1]
. 20kB| NONE|| 504.4 8.1 1.3| 1|
| 200kB| NONE|| 55.1 8.0 11.6) 1]
| 2000kB| NONE|| 5.4 8.0 118.7)| 1|
. 2kB| FULL| 9205 7.1 0.6/ 1]
. 20kB| FULL| 3935 8.0 1.6/ 1]
| 200kB| FULL| 298| 7.4 11.8) 1]
| 2000kB| FULL| 5.3 8.0 119.6)| 1|

Parsing a SWIFT 543 Input Message using the Tagged Delimited
String Parser

This test consists of:

lgF—leb—al]
MOQInput Compute MQOutput

The input message is processed with the TDS domain.

Within the Compute node the message headers from the incoming
message are copied over to the outgoing message. In addition a variable
is declared and set to the last element in the incoming message. This
causes the incoming message to be fully parsed. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a SWIFT MT543 message using the
Tagged Delimited String format. A single implementation of this message
was used which was approximately 7KB in size. The results of running
this test are given in the table below.

Msg . Message Rate % CPU CPU

Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 6543 NONE| 1368.5) 9.0 0.5/ 1|
| 6543 FULL| 923.9| 8.2| 0.7] 1]

Parsing and Writing a SWIFT 543 Input Message using the
Tagged Delimited String Parser

This test consists of:

33 of 89

o>
MQInput Compute MQOutput

The input and output message are processed with the TDS domain.

Within the Compute node the Envelope within the incoming SWIFT
Message is copied over to the outgoing message. This causes the
incoming message to be fully parsed and the outgoing message to be
serialized.

This test identifies the cost of parsing a SWIFT MT543 message and
serializing it again using the Tagged Delimited String format. A single
implementation of this message was used which was approximately 7KB
in size. The results of running this test are given in the table below.

Msg . Message Rate % CPU CPU

Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 6543 NONE| 685.0/ 9.0/ 1.1 1]
| 6543 FULL 564.1) 8.0| 1.1 1|

Parsing an HL7 Input Message using the Tagged Delimited String
Parser

This test consists of:

[y —
MOQInput Compute MQOutput

The input message is processed with the TDS domain.

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition a variable is
declared and set to the last element in the incoming message. This
causes incoming message to be fully parsed. The output message consists
of a message header only and no payload.

This test identifies the cost of parsing an HL7 input message using the
Tagged Delimited String format. The results of running this test are given
in the table below.

Msg . Message Rate | %o CPU CPU

Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 16384 NONE|| 284.0f 8.0 2.2| 1]
| 16384| FULL| 255.2] 8.4| 2.6/ 1]

Parsing and Writing a HL7 Input Message using the Tagged
Delimited String Parser

This test consists of:

g2 —a]
MOQInput Compute MQOutput

34 of 89

The input and output message are processed with the TDS domain.

Within the Compute node the Envelope within the incoming HL7 Message
is copied over to the outgoing message. This causes the incoming
message to be fully parsed and the outgoing message to be serialized.

This test identifies the cost of parsing a HL7 message and serializing it
again using the Tagged Delimited String format. A single implementation
of this message was used which was approximately 1KB in size. The
results of running this test are given in the table below.

Msg . Message Rate | %o CPU CPU

Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 16384| NONE|| 116.0/ 8.0/ 5.5/ 1]
| 16384 FULL| 109.9 7.9 5.7] 1]

Writing a Message in the MRM Domain

The tests in this section illustrate the CPU processing costs of creating an
output message with different formats in the MRM domain. This is the
processing associated with taking a message tree in OutputRoot and
flattening it to create a bitstream which is the output message.

Writing a Tagged Delimited String, Fixed Length Output Message

This test consists of:

[y —
MOQInput Compute MQOutput

The input message is processed with the XMLNSC domain. The output
message is processed using the TDS domain.

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition the incoming
Generic XML message is converted to a Fixed Length, Tagged Delimited
String outgoing message. This causes the incoming message to be fully
parsed and payload which is then written as the payload of the output
message.

This test identifies the cost of parsing a Generic XML message and
writing out a Fixed Length, Tagged Delimited String output message. The
results of running this test are given in the table below.

gﬂlig Persistent M(Twsiggfszge (?SST/U msC/Pr;Jsg Instances
| 2kB|| NONE|| 1571.8] 9.0 0.5 1]
. 20kB| NONE|| 2479 8.0 2.6/ 1]
| 200kB| NONE|| 25.4| 8.0 25.2| 1]
| 2000kB| NONE|| 25 80 2581 1]
'20000KB| NONE|| 0.2 81 2579.2 1]
| 2kB|| FULL| g2.7 7.0 6.8| 1|
. 20kB| FULL| 62.7] 7.0 8.9| 1]
| 200kB| FULL| 18.7] 8.0 34.1 1|

35 of 89

Msg Message Rate |2 CPU CPU

Size Persistent (Msgs/Sec) Busy | ms/msg Instances
| 2000kB| FULL| 2.3 80 2832 1|
20000kB| FULL| 02 81 2706.7| 1]

Writing a Custom Wire Format Output Message

This test consists of:

g2 —a]
MOQInput Compute MQOutput

The input message is processed with the XMLNSC domain. The output
message is processed using the CWF domain.

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition the incoming
Generic XML message is converted to a Custom Wire Format outgoing
message. This causes the incoming message to be fully parsed payload
which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and
writing out a Custom Wire Format output message. The results of
running this test are given in the table below.

g:ig Persistent M(ijlsssggleszge O/EUCSZU msC/Pr;Jsg Instances
| 2kB|| NONE|| 1939.2] 9.0 0.4/ 1|
. 20kB| NONE|| 308.7] 8.0 2.1 1]
| 200kB| NONE|| 31.6] 8.0 20.3| 1]
| 2000kB| NONE|| 3.0 80 216.2 1]
'20000kB| NONE|| 0.3 8.0 21413 1]
| 2kB| FULL| 84.4| 7.0 6.6/ 1]
. 20kB FULL| 66.3] 7.0 8.4 1]
. 200kB| FULL| 223 8.0 28.7| 1|
| 2000kB| FULL| 3.0, 80 216.2 1]
20000kB| FULL| 03 8.2 22703 1]

Parsing Messages in the XMLNSC Domain

The tests in this section illustrate the CPU processing costs of parsing
different message formats in the XMLNSC domain.

Parsing an XML Input Message

This test consists of:

|6 —ie—a]
MOQInput Compute MQOutput

Within the Compute node the message headers from the incoming

36 of 89

message are copied to the outgoing message. In addition a variable is
declared and set to the last element in the incoming message. This
causes the incoming message to be fully parsed. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing an XML input message. Because
there is no message body on the output message there are no writing
costs. The results of running this test are given in the table below.

gﬂlig Persistent M((:ASsSgS/eszge céfszu msC/Pnl:ljsg Instances
| 2kB| NONE|| 4847.8| 10.0| 0.2] 1]
. 20kB| NONE|| 1156.1 9.0 0.6/ 1]
| 200kB| NONE|| 116.4] 9.0 6.2| 1]
| 2000kB| NONE|| 11.8] 9.0 60.9| 1]
20000kB| NONE|| 1.2] 87 5935 1]
| 2kB|| FULL| 508.6] 8.0 1.3| 1]
. 20kB| FULL| 379.9] 8.0 1.7] 1]
. 200kB| FULL| 94.8)] 9.0 7.6/ 1|
| 2000KkB| FULL| 10.9] 9.0 66.2| 1|
'20000KB| FULL| 1.2 8.9 607.2 1]

Writing a Message in the XMLNSC Domain

The test in this section illustrates the CPU processing costs of using the
XMLNSC domain to create an output message. This is the processing
associated with taking a message tree in OutputRoot and flattening it to
create a bitstream which is the output message.

Writing a Generic XMLNSC Output Message

This test consists of:

|6 —ie—a]
MOQInput Compute MQOutput

Within the Compute node the entire incoming message is copied to the
outgoing message. In addition the last element in the incoming message
is modified. This causes the incoming message to be fully parsed which is
then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML input message and
writing a modified XML output message. The results of running this test
are given in the table below.

gl;g Persistent '\/I(T\/Isssgg/eszge O/élj:szu msclprgsg Instances
| 2kB|| NONE|| 3763.6] 10.0| 0.2] 1]
. 20kB| NONE|| 738.6] 9.0 1.0| 1]
. 200kB| NONE|| 75.0 9.0 9.6/ 1]
| 2000kB| NONE|| 74 88 95.5) 1]
'20000KB| NONE|| 08 89 9536 1]
| 2kB|| FULL| 307.6] 8.0 2.1 1|

37 of 89

g:ig Persistent M(ﬁiggfszge (?EST/U m;:/Pr;Jsg Instances
. 20kB| FULL| 2259 8.0 2.8| 1]
| 200kB| FULL| 575 8.4 11.7 1]
| 2000KkB| FULL| 6.9 9.0 1043 1]
20000kB| FULL| 07 89 9933 1]

Validation in the XMLNSC Domain

The test in this section illustrates the CPU processing costs of using the
XMLNSC domain to validate an XML message. This is the processing
associated with taking a message and validating it against an associated
XML Schema.

Validating an XML Message on Input

This test consists of:

|gt—a]

MQInput

MQOutput

The MQInput node is set to validate the message contents and value.
This causes the incoming message to be fully parsed and validated which
is then written unmodified as the payload of the output message.

This test identifies the cost of validating an XML input message in the
input node and writing an unmodified XML output message.

The results of running this test are given in the table below.

gﬂlig_ Persistent M((:ASsSgS/eszge Cig’S:SPyU msC/Pnl:ljsg Instances
| 2kB| NONE|| 5144.9) 12.0] 0.2] 1]
. 20kB| NONE|| 955.2] 9.0 0.8| 1]
. 200kB| NONE|| 95.6] 9.0 7.5 1]
| 2000KkB| NONE|| 9.8 9.0 73.5| 1|
'20000KB| NONE|| 09 9.0 791.2 1]
| 2kB|| FULL| 572.1 7.1 1.0| 1]
. 20kB| FULL| 361.6] 8.0 1.8| 1|
. 200kB| FULL| 71.1] 8.0 9.0| 1|
| 2000KkB| FULL| 8.7l 8. 80.1| 1]
'20000KB| FULL| 09 9.0 s818.2 1]

Validating an XML Message mid flow

This test consists of:

38 of 89

J@F—~ F—a|
MQInput Validate MQOutput

The Validate node is set to validate the message contents and value. This
causes the incoming message to be fully parsed and validated, which is
then written unmodified as the payload of the output message.

This test identifies the cost of validating an XML input message using the
validate node to do this mid flow and writing an unmodified XML output
message.

The results of running this test are given in the table below.

glég Persistent '\/I(T\Asssgg/eszge O/EJ:SI;U msC/Pr:stg Instances
| 2kB|| NONE|| 3257.5| 10.0| 0.2] 1]
. 20kB| NONE|| 574.9] 9.0 1.2| 1]
. 200kB| NONE|| 572 8.3 11.6) 1|
| 2000KkB| NONE|| 59 83 1127 1]
'20000KB| NONE|| 0.6 86 12524| 1]
| 2kB|| FULL| 579.4| 7.7 1.1] 1]
. 20kB| FULL| 2031 8.0 2.2| 1|
| 200kB| FULL| 483 8.4 14.0)| 1]
| 2000KkB| FULL| 54/ 88 1288 1]
'20000kB| FULL| 05/ 87 12048 1]

Validating an XML Message on Output

This test consists of:

lgF—leb—al]
MOQInput Compute MQOutput

The MQOutput node is set to validate the message contents and value.
This causes the incoming message to be fully parsed and validated which
is then written unmodified as the payload of the output message.

This test identifies the cost of validating an XML input message using the
MQOutput node on output from the flow and writing an unmodified XML

output message.

The results of running this test are given in the table below.

gﬂlig Persistent M(i/lsssggfslz\e)i;e (ﬁfszu m;:/Panjsg Instances
| 2kB|| NONE|| 2336.8] 9.2 0.3] 1]
. 20kB| NONE|| 4155 9.0 1.7] 1]
| 200kB| NONE|| 414 8.0 15.4)| 1]

39 of 89

g:ig Persistent M(ﬁiggfszge (?EST/U m;:/Pr;Jsg Instances
| 2000kB| NONE|| 3.9/ 80 1624 1]
'20000kB| NONE|| 0.4/ 83 1708.7] 1]
| 2kB|| FULL| 2471 8.0 2.6/ 1]
. 20kB| FULL| 156.7)] 8.0 4.1 1]
| 200kB| FULL| 33.8)] 8.2 19.4)| 1]
| 2000kB| FULL| 39/ 80 1624| 1]
'20000KB| FULL| 0.4 84 17621 1]

Opague Parsing in the XMLNSC Domain

The test in this section illustrates the CPU processing costs of using the
XMLNSC domain to opaquely parse an XML message. For an explanation
of opaque parsing see the product documentation.

Filtering on the last element of an XML Message using Opaque
Parsing on the XML Body

This test consists of:

I
H ﬂ
MOQInput Filter

MO Output

The MQInput node is set to parse the repeating SalesList Elements of the
XML message opaquely. Within the filter node the last element of the
incoming message is examine. This last element is outside a sales list
element. The result is always set to be true and thus the message is
propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the end of a
message using the XMLNSC parser with opaque parsing. Almost the
entire body of the message is opaquely parsed. The results of running
this test are given in the table below.

g:ig Persistent M(ﬁiggfszge (?L?slz/u m;:/Pr;Jsg Instances
| 2kB|| NONE|| 9667.3| 14.0| 0.1] 1|
. 20kB| NONE|| 4730.3] 13.0 0.2] 1]
| 200kB| NONE|| 4353 10.0| 1.8| 1]
| 2000kB| NONE|| 429 101 18.9)| 1]
'20000KB| NONE|| 43| 100 = 186.6 1|
| 2kB|| FULL| 1702.1 6.1 0.3] 1|
. 20kB| FULL| 1103.8] 6.0 0.4] 1]
| 200kB| FULL| 2372 7.2 2.4 1]
| 2000kB| FULL| 35.1 9. 22.4| 1]
'20000KB| FULL| 3.7/ 100 216.2 1]

40 of 89

Routing and Transformation Logic

The tests in this section illustrate the processing cost of simple routing
and transformation logic using a variety of routing and transformation
technologies (ESQL, JavaCompute node, XML Transformation and
PHPCompute). A number of the tests are performed for each of the
technologies thus allowing a simple comparison of CPU processing costs
to be made. In other cases a comparison is only made within a
technology such as looking at the efficiency of different parsers whilst
using ESQL. These tests are not a definitive statement of the relative
processing costs of the different technologies. They are provided for
illustrative purposes only. Message processing performance will be
affected by the complexity of the messages and processing to be
performed on the messages.

Using Database Route and Route Nodes

The tests in this section illustrate the processing costs of using the new
Database Route and Route Nodes for routing operations.

Using Database Route Node to Route an Incoming Message Based
on Data in a Database

This test consists of:

jiﬂﬁfﬁf* iﬂhﬂ
“ I:D Default
MQInput Datahaseﬂnh |]

MATCH

The MQ Input node is set to use the XMLNSC domain. Within the
Database Route node a query is performed to obtain a single piece of
data from the Database. This data is used to route the message to an
output queue. The lookup result is always set to be true and thus the
message is propagated to the MQ Output node.

This test identifies the cost of using the Database Route Node to route a
message. The results of running this test are given in the table below.

gﬂlig Persistent M(Twsiggfszge (?SST/U m;:/Pr;Jsg Instances
| 2kB|| NONE|| 2749.6] 10.7| 0.3] 1]
| 20kB| NONE|| 2287.5| 11.0 0.4] 1]
| 200kB| NONE|| 1632.4| 18.4 0.9| 1]
| 2000kB| NONE|| 302.4| 27.1] 7.2| 1]
'20000KB| NONE|| 225 17.3 61.5| 1|
| 2kB|| FULL| 1372.1] 8.2 0.5/ 1]
. 20kB| FULL| 1088.4] 8.0 0.6/ 1]
| 200kB| FULL| 395.1 6.0 1.2| 1]
| 2000KkB| FULL| g82.7] 8.9 8.6/ 1]
'20000KB| FULL| 9.2/ 9.3 80.3| 1]

41 of 89

Using Route Node to Route an Incoming Message Based on Data
in the Incoming Message

This test consists of:

J@E—{=
MOQInput Route

Discard

R‘_

MQCOutput

The MQ Input node is set to use the XMLNSC domain. Within the Route
node the first element of the message is queried and the message routed
based on this value. The lookup result is always set to be true and thus

the message is propagated to the MQ Output node.

This test identifies the cost of using the Route Node to route a message
on an element at the start of a message using the XMLNSC parser. The
results of running this test are given in the table below.

gﬂlig Persistent '\/I(?\/Isssggleszge O/éfszu msC/Pr:sg Instances

. 2k8| NONE|| 6248.5] 12.5] 0.2] 1|
. 20kB| NONE|| 5633.9| 14.1] 0.2] 1]
| 200kB| NONE|| 2870.0) 28.0| 0.8| 1]
| 2000KkB| NONE|| 301.0] 26.0| 6.9| 1]
20000kB| NONE|| 21.8] 16.1] 59.1| 1]
| 2kB|| FULL| 1745.6] 7.0 0.3] 1]
. 20kB| FULL| 14946 7.0 0.4] 1]
| 200KkB| FULL| 500.7] 7.0 1.1 1]
| 2000kB| FULL| 101.2) 10.5] 8.3| 1]
20000kB| FULL| 12.4] 12.7| 81.9| 1]
Using ESQL

The tests in this section illustrate the processing costs of using ESQL for
different routing and transformation operations.

Filter an Incoming Message Based on the First Element in the
Message using the XMLNSC Parser

This test consists of:

J22—-»
MQInput Filter

_..ﬂ

MO O utput

Within the filter node the first element of the incoming message is
examined. The result is always set to be true and thus the message is
propagated to the MQ Output node.

42 of 89

This test identifies the cost of filtering on an element at the start of a
message using the XMLNSC parser. The results of running this test are
given in the table below.

gﬂlig Persistent '\/I(?\/Isssggleszge O/I;L?S';U msC/Pr:qug Instances
. 2k8| NONE|| 11352.3 15.0| 0.1] 1]
. 20k8| NONE|| 10012.9] 19.0 0.1] 1|
| 200kB| NONE|| 2959.9| 26.0] 0.7] 1|
| 2000KkB| NONE|| 310.0] 27.0 7.0| 1]
20000KkB| NONE|| 219 16.3| 59.6| 1]
. 2k8| FULL| 1823.6] 6.0 0.3] 1|
. 20kB| FULL| 1488.4] 6.0 0.3] 1]
. 200kB| FULL| 467.8] 6.0 1.0| 1]
| 2000kB)| FULL| 85.0 8.8 8.3| 1)
20000kB)| FULL| 11.1] 10.9) 78.8| 1|

Filter an Incoming Message Based on the Last Element in the
Message using the XMLNSC Parser

This test consists of:

IE— &
E —{d |
MQInput Filter
MO O utput

Within the filter node the last element of the incoming message is
examined. The result is always set to be true and thus the message is
propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the end of a
message using the XMLNSC parser. The results of running this test are
given in the table below.

gﬂlig Persistent '\/I(?\/Isssggleszge O/I;L?S';U msC/Pr:qug Instances
. 2k NONE|| 6206.5| 12.0| 0.1] 1|
. 20kB| NONE|| 1223.1] 9.0 0.6/ 1]
| 200kB| NONE|| 117.6) 9.0 6.1] 1]
| 2000KkB| NONE|| 11.8] 9.0 60.9| 1]
20000kB|| NONE|| 1.2] 9.0 610.2] 1]
| 2kB|| FULL| 521.7] 8.0 1.2| 1]
. 20kB| FULL| 376.1 8.0 1.7) 1]
| 200KkB| FULL| gs.8| 8.0 7.2| 1]
| 2000kB| FULL| 10.8] 9.0 66.4/ 1]
20000kB| FULL| 11 9.0/ 6316 1]

Transformation of an Input Message using the XMLNSC Parser

43 of 89

This test consists of:

lgF—eb—a]

MQInput

Compute

MQOutput

Within the compute node ESQL is written to significantly change the
structure of the incoming message. The new structure is written as the
output message

This identifies the cost of using ESQL to perform message transformation
and message parsing using the XMLNSC parser. The results of running
this test are given in the table below.

gﬂlig Persistent l\/l((:;lsssgglesRei;e 0/|_g,quF;U msC/PnL'leg Instances

. 2k8| NONE|| 1959.6/ 9.0 0.4] 1]
. 20kB| NONE|| 260.4| 8.0 2.5/ 1]
. 200kB| NONE|| 256 8.0 25.0| 1]
| 2000kB| NONE|| 2.6 80 2433 1]
20000kB| NONE|| 02 8.1 26048 1]
| 2kB|| FULL| 201.6] 8.0 3.2| 1]
. 20kB| FULL| 117.5] 8.0 5.5/ 1|
. 200kB| FULL| 220 8.0 29.1| 1]
| 2000KkB| FULL| 25| 80 2581 1]
'20000KB| FULL| 0.2 8.0 2560.0] 1]
Using Java

The tests in this section illustrate the processing costs of using the
JavaCompute node for different routing and transformation operations.

Filter an Incoming Message Based on the First Element in the
Message using the Java Compute Nodes XPath Capability

This test consists of:

|@E—< eE—a|

MOQInput

JavaCompute

MOQOutput

Within the Java Compute Node the first element of the incoming
message is examined using the XPath capability. The result is always set
to be true and thus the message is propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the start of a
message using the Java Compute Node XPath capability. The results of
running this test are given in the table below.

gﬂlig Persistent M(ﬁiggfszge (ﬁfszu m;:/Panjsg Instances
| 2kB|| NONE|| 7729.8| 13.0| 0.1] 1|
. 20kB| NONE|| 6323.8| 15.0| 0.2] 1]
| 200kB| NONE|| 2784.7) 26.0| 0.8| 1]

44 of 89

glég Persistent M(ﬁiggfszge (?EST/U m;:/Pr;Jsg Instances
| 2000kB| NONE|| 250.9| 22.1] 6.8| 1]
20000kB| NONE|| 21.0] 15.0| 57.2) 1]
| 2kB|| FULL| 2072.1 8.0 0.3] 1]
. 20kB| FULL| 1508.3] 7.0 0.4] 1]
. 200kB| FULL| 505.4| 6.9 1.1 1]
| 2000kB| FULL| 98.8| 10.0| 8.1 1]
'20000KB| FULL| 10.2] 10.0| 78.6| 1]

Filter an Incoming Message Based on the Last Element in the
Message using the Java Compute Nodes XPath Capability

This test consists of:

&~ er @l
MOQInput JavaCompute MOQOutput

Within the Java Compute Node the last element of the incoming message
is examined using the XPath capability. The result is always set to be
true and thus the message is propagated to the MQOutput node

This test identifies the cost of filtering on an element at the end of a
message using the Java Compute Node XPath capability. The results of
running this test are given in the table below.

gﬂlig Persistent M(i/lsssggfslz\e)i;e (?L?slz/u m;:/Pnqusg Instances
| 2kB|| NONE|| 47455| 12.0| 0.2] 1]
. 20kB| NONE|| 1031.6] 9.0 0.7] 1]
| 200kB| NONE|| 113.00 9.0 6.4 1|
| 2000KkB| NONE|| 11.1] 9.0 65.2| 1]
'20000kB| NONE|| 11 9.0 637.2 1]
| 2kB|| FULL| 1246.1 5.5 0.4] 1]
. 20kB| FULL| 611.2) 7.4 1.0/ 1]
| 200kB| FULL| 93.7] 8.0 6.8| 1]
| 2000kB| FULL| 10.8] 9.0 66.7| 1]
'20000KB| FULL| 11 9.0/ 660.5 1]

Filter an Incoming Message Based on the First Element in the
Message using the Java Compute Nodes GetByPath Capability

This test consists of:

82—l
MOQInput JavaCompute MOQOutput

Within the Java Compute Node the first element of the incoming

45 of 89

message is examined using the GetByPath capability. The result is always
set to be true and thus the message is propagated to the MQOutput
node.

This test identifies the cost of filtering on an element at the start of a
message using the Java Compute Node GetByPath capability. The results
of running this test are given in the table below.

glég Persistent '\/I(ﬁ:gg/eszge CV;::SI;U msclprgsg Instances
| 2kB|| NONE|| 8105.7| 14.0 0.1] 1|
. 20kB| NONE|| 6654.9| 15.0 0.2] 1)
. 200kB| NONE|| 2851.2] 26.0| 0.7] 1|
| 2000kB| NONE|| 280.4] 23.1 6.6/ 1]
'20000KB| NONE|| 21.6] 15.3 56.7| 1|
| 2kB|| FULL| 2042.2| 7.4 0.3] 1]
. 20kB| FULL| 1545.1] 7.2 0.4] 1|
| 200kB| FULL| 493.7] 6.6 1.1 1]
| 2000KkB| FULL| 949 9.9 8.3| 1]
'20000kB| FULL| 11.2] 10.5] 75.2| 1]

Filter an Incoming Message Based on the Last Element in the
Message using the Java Compute Nodes GetByPath Capability

This test consists of:

|22 —{eE—a]
MOQInput JavaCompute MOQOutput

Within the Java Compute Node the last element of the incoming message
is examined using the GetByPath capability. The result is always set to be
true and thus the message is propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the end of a
message using the Java Compute Node GetByPath capability. The results
of running this test are given in the table below.

g:ig Persistent M(ﬁiggfszge (?L?slz/u m;:/Pr;Jsg Instances
| 2kB|| NONE|| 5019.8| 12.0| 0.2] 1|
. 20kB| NONE|| 1062.2) 9.0 0.7] 1]
| 200kB| NONE|| 113.7] 9.0 6.3| 1]
| 2000kB| NONE|| 11.1] 9.0 64.6/ 1|
'20000kB| NONE|| 11 9.0 637.2 1]
| 2kB| FULL| 545.4] 8.0 1.2 1]
. 20kB| FULL| 374.6] 8.0 1.7| 1]
| 200kB| FULL| 87.7] 8.0 7.3| 1]
| 2000kB| FULL| 10.5] 9.0 68.4/ 1]
20000kB| FULL| 1.1] 9.0/ 6545 1]

Parsing an XML Input Message

46 of 89

This test consists of:

jgF—leb—al
MQInput Compute MQOutput

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition a variable is
declared and set to the last element in the incoming message. This
causes the incoming message to be fully parsed. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing an XML input message. Because
there is no message body on the output message there are no writing
costs. The results of running this test are given in the table below.

g:ig Persistent M(ijlsssggleszge O/EUCSZU msC/Pr;Jsg Instances
| 2kB|| NONE|| 4847.8| 10.0 0.2] 1]
. 20kB| NONE|| 1156.1 9.0/ 0.6/ 1]
| 200kB| NONE|| 116.4] 9.0 6.2| 1]
| 2000kB| NONE|| 11.8] 9.0 60.9| 1]
'20000kB| NONE|| 12 87 5935 1]
| 2kB|| FULL| 508.6] 8.0 1.3| 1]
. 20kB| FULL| 379.9] 8.0 1.7| 1]
. 200kB| FULL| 948 9.0 7.6/ 1]
| 2000kB| FULL| 10.9] 9.0 66.2| 1]
'20000kB| FULL| 1.2 8.9 607.2 1]

Transformation of an Input Message using the Java Compute
Nodes GetByPath Capability

This test consists of:

&~ er @l
MOQInput JavaCompute MOQOutput

Within the Java Compute Node Java code, utilising the GetByPath
capability is used to significantly change the structure of the incoming
message. The new structure is written as the output message.

This test identifies the cost of using Java code and GetByPath to perform
message transformation. The results of running this test are given in the
table below.

gﬂlig Persistent '\/I(?\/Isssggleszge O/éfszu msC/Pr:qug Instances
. 2k8| NONE|| 2060.9] 9.0 0.3] 1]
. 20kB| NONE|| 206.4] 8.4 2.3 1]
| 200kB| NONE|| 30.3] 8.0 21.1] 1]
| 2000KkB| NONE|| 300 80 216.2 1]
20000kB| NONE|| 03 8.3 2360.0| 1]

47 of 89

Msg Message Rate |2 CPU CPU

Size Persistent (Msgs/Sec) Busy | ms/msg Instances
| 2kB|| FULL| 149.4| 8.0 4.3 1]
. 20kB| FULL| 100.0| 7.4 5.9| 1|
| 200kB| FULL| 23.7] 8.0 27.0| 1]
| 2000kB| FULL| 30 80 216.2 1]
'20000kB| FULL| 03] 82 23400 1]

Calling an External Java Procedure with One Integer Input
Parameter

This test consists of:

|
MOQInput Compute MQOutput

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. Two thousand identical
calls are made to an external Java procedure. The procedure receives
one Integer parameter, and passes back zero parameters, and returns
immediately.

This test identifies the cost of calling a Java procedure with one Integer
parameter.

The results of running this test are given in the table below. The CPU
ms/message figure has been adjusted to report a per procedure
invocation cost by dividing the CPU cost obtained from the test by 2000.
The results of running this test are given in the table below.

Msg . Message Rate %0 CPU CPU

Size Persistent (Msgs/Sec) Busy ms/msg Instances
. 2kB| NONE| 6248.3) 12.0) 0.1] 1]
. 2kB|| FULL | 1884.7| 7.0| 0.3] 1]
Using PHP

The tests in this section illustrate the processing costs of using a

PHPCompute node to perform computation and transformation of an

input message.

Copying a message using the PHPCompute node

This test consists of:
laF—8:—
MOQInput PHPCompute

=t

The PHPCompute node uses the MessageBrokerCopyTransform
annotation which instructs the PHPCompute node to copy the input
message and pass the copied message to the evaluate method. No
further modifications are made to the output message.

48 of 89

This test identifies the cost of using the PHPCompute node scripting
capability. The results of running this test are given in the table below.

Msg Message Rate |[% CPU CPU

Size Persistent (Msgs/Sec) Busy || ms/msg Instances
. 2k8| NONE|| 4005.3 12.2] 0.2] 1]
. 20kB| NONE|| 3711.4] 13.0 0.3] 1]
| 200kB| NONE|| 2285.3| 23.0] 0.8| 1]
| 2000KkB| NONE|| 303.9] 27.1] 7.1 1]
20000kB| NONE|| 22.2| 17.0| 61.2) 1]
| 2kB|| FULL| 1481.1] 7.0 0.4] 1|
. 20kB| FULL| 1233.2) 7.0 0.5/ 1|
. 200kB| FULL| 4355 6.0 1.1 1]
| 2000kB| FULL| 84.5] 9.0/ 8.5 1]
'20000kB| FULL| 10.7] 10.9| 81.3| 1]

Transformation of an Output Message using the PHPCompute
node

This test consists of:

o3 @
MQInput PHPCompute

=t

The PHPCompute node uses the MessageBrokerSimpleTransform
annotation to significantly change the structure of the incoming
message. The new structure is written as the output message.

This test identifies the cost of using PHPCompute node transformation
(scripting) capability. The results of running this test are given in the
table below.

g:zg Persistent I\/I(eMsSsgSg/esFéi;e °/§uCSF;/U msC/Pr;Jsg Instances
. 2k8| NONE|| 518.8] 8.9 1.4) 1]
. 20kB| NONE|| 78.0 10.0 10.3 1]
| 200kB| NONE|| 79 105 106.9| 1]
| 2000kB| NONE|| 1.0 11.1] 896.2] 1]
. 2k8| FULL| 181.2] 8.0 3.5 1]
| 20kB| FULL| 58.2 8.4 11.6) 1]
| 200kB| FULL| 70 94 1078 1|
| 2000kB| FULL| 1.0, 10.8] 878.4| 1|
Using XSLT

The tests in this section illustrate the processing costs of using an XML
Transformation node to perform a computation and transformation of an
input message.

Transformation of an Input Message

49 of 89

This test consists of:

Jaf—{np—a

MQInput

KMLTransformation

MO Output

Within the XMLT Node a compiled stylesheet is used to significantly
change the structure of the incoming message. The new structure is
written as the output message.

This test identifies the cost of using an XSL stylesheet to perform
message transformation. The results of running this test are given in the
table below.

gﬂlig Persistent '\/I(?\/Isssggleszge O/éfszu msC/Pr:qug Instances
. 2k8| NONE|| 1803.2] 10.3 0.5| 1|
. 20kB| NONE|| 3959 11.0 2.2| 1|
| 200kB| NONE|| 448 11.0 19.6) 1]
| 2000KkB| NONE|| 45 11.0 = 194.3| 1]
20000kB| NONE|| 0.5 10.0 1746.1 1]
| 2kB|| FULL| 1013.2] 7.9 0.6/ 1]
. 20kB| FULL| 340.8] 9.8 2.3 1]
| 200kB| FULL| 42.4] 10.4] 19.6) 1]
| 2000kB| FULL| 44 1100 2009 1|
20000kB| FULL| 05 9.8 1704.3] 1]

Using the Collector Node

The tests in this section illustrate the processing costs of using the
Collector node for combining incoming messages. To allow for
comparisons between collector tests the compute node used for all tests
in this section is the same i.e. processing costs of this part in the flow is
the same in all tests.

Collecting Messages from Several Inputs Based on Number of

Messages

This test consists of:

&

1
T

02

= |

‘%,, Failed Failure

ollector &"—* |]
Compute ~ Qutto OUT

S I

Went To Expiry Expired

The two MQ Input nodes each propagate messages to the collector node.
In the collector node a collection is defined as being 1 input message

50 of 89

from each of the two input terminals. The Collector node Persistence
mode is set to Non-Persistent. Which means that the messages are
stored on the Collector node's queues Non-Persistently. Once this
collection is satisfied it is propagated to the Java Compute Node which
copies the entire message from the first input terminal to the output
message. Then one field from the message received on the second
terminal is retrieved from the input message and used to add a new field
to the out going message. The message is then sent to an MQ Output

node.

This test identifies the cost of using the collector node to collect 2
messages Non-Persistently from different inputs and then update one of
them with a field from the other message.

gﬂlig Persistent M(ﬁiggfszge (?Eslz/u m;:/Pr;Jsg Instances
| 2kB|| NONE|| 1894.9] 14.0 0.6/ 1|
. 20kB| NONE|| 610.2] 10.2| 1.3| 1]
| 200kB| NONE|| 72.4] 9.0 9.9| 1]
| 2000KkB| NONE|| 7.3 9.0 98.9| 1]
'20000kB| NONE|| 07] 9.0 973.0| 1|

The results in the table below show the cost of running with the Collector
node Persistence mode set to Persistent and using persistent transacted

MQ messages to drive the flow. Running with a Collector node
persistence mode set to persistent means that the messages are stored
on the Collector node's queues as MQ persistent messages.

This test identifies the cost of using the collector node to collect 2
messages persistently from different inputs and then update one of them
with a field from the other message. The results of running this test are
given in the table below.

gﬂlig Persistent Nl(insiggfszge (?Eslz/u m;:/Pr;Jsg Instances
| 2kB|| FULL| 1457.4] 15.9) 0.9| 1|
. 20kB| FULL| 584.4] 12.4] 1.7) 1]
| 200KkB| FULL| 73.9| 10.0| 10.8 1]
| 2000kB| FULL| 77 9.0 93.9 1]
20000kB| FULL| 0.8/ 9.0 9600 1]

Collecting Messages from Several Inputs Based on Number of
Messages with a Correlation Pattern

This test consists of:

=

H/

Q2

51 of 89

> 8|
e, Failed Failure
rie—
Collector (p— |]
Compute Outto OUT
X 3|
Went To Expiry Expired

The two MQ Input nodes all propagate messages to the collector node. In
the collector node a collection is defined as being one input message
from each of the two input terminals and also a correlation path to look
at the first customer surname in the message. Hence messages with the
same customer name are put in the collection. The Collector node
Persistence mode is set to Non-Persistent. This means that the messages
are stored on the Collector node's queues Non-Persistently. Once the
collection is satisfied it is propagated to the Java Compute Node which
copies the entire message from the first input terminal to the output
message. Then one field from the message received on the second
terminal is retrieved from the input message and used to add a new field
to the out going message. The message is then sent to an MQ Output
node. All input messages had the same matching name.

This test identifies the cost of using the collector node to collect 2
messages Non-Persistently from different inputs which have a matching
surname and then update one of them with a field from the other
message.

glég Persistent M((Kﬂssgg/eszge CV;uCSI;U msclprgsg Instances
| 2kB|| NONE|| 1765.7| 23.4 1.1 1]
. 20kB| NONE|| 548.3| 12.0 1.8| 1]
. 200kB| NONE|| 65.1 9.1 11.2) 1]
| 2000kB| NONE|| 6.7 9.0 107.5 1]
'20000KB| NONE|| 0.7/ 89 1081.2 1]

The results in the table below show the cost of running with the Collector
node Persistence mode set to Persistent and using persistent transacted
MQ messages to drive the flow.

Running with a Collector node persistence mode set to persistent means
that the messages are stored on the Collector node's queues as MQ
persistent messages.

This test identifies the cost of using the collector node to collect 2
messages Non-Persistently from different inputs which have a matching
surname and then update one of them with a field from the other
message. The results of running this test are given in the table below.

g/lég Persistent M(i;lssggleszge céfszu msclprgsg Instances
| 2kB| FULL| 1358.7] 18.9 1.1 1]
. 20kB| FULL| 469.7| 13.6| 2.3 1]
. 200kB| FULL| 65.3| 10.0| 12.3) 1|
| 2000kB| FULL| 6.7/ 9.0 106.8| 1]
'20000KB| FULL| 07/ 89 1081.2 1]

Using the Sequence Node

The tests in this section illustrate the processing costs of using the
Sequence node to generate a sequence number.

Incrementing Sequence numbers for each Input Message

This test consists of:

52 of 89

82—l
MQInput Sequence MQOutput

The Sequence node is used to increment the sequence number for each

new message (which are all part of the same sequence group) and to
store the sequence number in the LocalEnvironment
($OutputLocalEnvironment/Sequence/Number) using a literal start and
end of sequence definition.

This test identifies the cost of using the Sequence node to generate

sequence numbers. The results of running this test are given in the table

below.

gﬂlig Persistent M(ﬁiggfszge (?EST/U m;:/Pr;Jsg Instances
| 2kB|| NONE|| 5465.5| 13.0| 0.2] 1|
. 20kB| NONE|| 5056.9 14.2] 0.2] 1]
| 200kB| NONE|| 2818.8| 27.2| 0.8| 1]
| 2000kB| NONE|| 299.6] 26.0| 6.9| 1]
20000kB| NONE|| 21.9] 16.0 58.6| 1]
| 2kB| FULL| 1672.1 7.0/ 0.3] 1|
. 20kB| FULL| 1481.3] 7.1 0.4] 1]
| 200kB| FULL| 453.2 6.0 1.1 1]
| 2000KkB| FULL| 726 7.4 8.2| 1]
20000kB| FULL| 8.6 82 76.8) 1]

Using the IMS Node

The tests in this section illustrate the processing costs of using the IMS
node to send synchronous requests to an IMS system.

Using the IMS node to make synchronous requests

This test consists of:

|gE—-f&F—a|

MOInput IMS5Request MQOutput

The test illustrates the cost of synchronously invoking the IMS request
node.

An MQ input message is received to initiate the message flow. The

IMSRequest node then synchronously invokes a transaction on a remote

IMS system (on z/0S).

The transaction did not involve the updating of any resources on the IMS

system.
The commit mode (SEND_THEN_COMMIT) and sync level (CONFIRM)

were set on the IMSRequest node. The results of running this test are
given in the table below.

53 of 89

Msg . Message Rate | %% CPU CPU

Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 1024 NONE| 520.3| 2.0| 0.3] 1]
| 1024| FULL| 469.3| 2.5 0.4] 1|

54 of 89

Business-Level monitoring

The tests in this section illustrate the processing costs associated with
using business-level monitoring. The message flow is configured to emit
event messages that can be used to support transaction monitoring and
auditing, and business process monitoring.

Emitting one event with header information on Transaction start
This test consists of:

la;—al
MQInput MQOutput

The MQInput node is configured to emit an event on Transaction start
where the message contains information about the source of the event,
the time of the event, and the reason for the event. The event does not
include the message bit stream in the event payload.

This test identifies the cost of emitting a single event with only the event
header information.

The results of running this test are given in the table below.

g/lég Persistent M((Ia\.;lsssggleSRei;e (ﬁfslzlu msC/PnL'leg Instances
| 2kB| NONE|| 5615.3| 12.2] 0.2] 1]
. 20kB| NONE|| 5205.1 14.0| 0.2] 1]
. 200kB| NONE|| 2787.7] 26.3| 0.8| 1]
| 2000KkB| NONE|| 313.00 27.0 6.9| 1]
20000kB| NONE|| 22.0] 16.3 59.5) 1]
| 2kB| FULL| 1739.1 7.0/ 0.3] 1]
. 20kB| FULL| 1278.8] 6.5 0.4/ 1]
. 200kB| FULL| 462.1 6.1 1.1 1]
| 2000kB| FULL| 97.6| 10.2] 8.3| 1]
'20000KB| FULL| 10.7| 10.6| 79.0| 1]

Emitting one event with a single selected element

This test consists of:

la;—al
MQInput MQOutput

The MQInput node is configured to emit an event on Transaction start
where the message contains information about the source of the event,
the time of the event, and the reason for the event. In addition the
event emitted also uses an XPath query take one field from the message
tree and add it to the event pay load.

55 of 89

The XPath query used is the expression ($Body/Parent [1]/First[1])
thereby ensuring that a full parse of the message is not driven.

This test identifies the cost of emitting a single event with a simple XPath

expression.

The results of running this test are given in the table below.

glég Persistent '\/I(ﬁ:gg/eszge CV;::SI;U msclprgsg Instances
| 2kB|| NONE|| 43573 11.0 0.2] 1|
. 20kB| NONE|| 4007.1 12.4] 0.2] 1)
. 200kB| NONE|| 2509.0| 24.3| 0.8| 1|
| 2000kB| NONE|| 308.4| 26.6| 6.9| 1]
'20000KB| NONE|| 22.4| 16.9| 60.5| 1|
| 2kB|| FULL| 1355.9] 6.7 0.4] 1]
. 20kB| FULL| 1003.1 5.4 0.4] 1|
| 200kB| FULL| 434.1] 6.0 1.1 1]
| 2000KkB| FULL| 90.1] 9.5 8.4 1]
'20000kB| FULL| 11.8] 11.8] 80.1| 1]

Emitting one event plus the full message tree

This test consists of:

la;—al
MQInput MQOutput

The MQInput node is configured to emit an event on Transaction start

where the message contains information about the source of the event,

the time of the event, and the reason for the event. In addition the
event emitted also uses an XPath query to select all the fields from the
message tree and add them to the event payload.

The XPath query uses an expression ($Body/Parent) whereby all the
fields in the message tree are parsed.

This test identifies the cost of emitting a single event when a message is

fully parsed.

The results of running this test are given in the table below.

g:ig Persistent M(ﬁssgg/eszge O/EUCSZU msC/Pr;Jsg Instances
| 2kB|| NONE|| 2533.7] 10.0| 0.3] 1]
. 20kB| NONE|| 622.6] 9.0 1.2 1]
| 200kB| NONE|| 67.1 8.6 10.3 1]
| 2000kB| NONE|| 6.6/ 84 1016 1|
20000kB| NONE|| 0.7] 88 1067.9 1]
| 2kB| FULL| 1271.2] 7.6 0.5/ 1]
. 20kB| FULL| 521.5| 8.0 1.2| 1]

56 of 89

glége Persistent M(ﬁisgfszge (?L?SF;/U msC/Pr:\Jsg Instances
. 200kB| FULL| 62.9 8.3 10.6]| 1]
| 2000kB| FULL| 6.8/ 9.0 106.0 1|
20000kB| FULL| 0.7/ 89 10905| 1]

57 of 89

External resources

The tests in this section illustrate the processing cost of accessing
resources such as a database or an external procedure.

Accessing a Database from a Message Flow

The tests in this section illustrate the processing cost of performing
operations on a DB2 database.

Reading from a Database

This test consists of:

& —{#) @l
MOQInput Compute MO Output

The input and output message are processed with the XMLNSC domain.

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition a SELECT
operation is performed to obtain a piece of data from the Database. This
data is used to validate an element in the input message. The results are
not cached in the flow, so a lookup is performed for each message. The
volume of data in the database was small and so this represents the best
case.

This test identifies the cost of performing a Database SELECT operation.
The results of running this test are given in the table below.

gﬂlig Persistent M(ﬁiggfszge (?Eslz/u m;:/Pr;Jsg Instances
| 2kB|| NONE|| 3008.6] 10.0| 0.3 1|
. 20kB| NONE|| 2907.6| 11.0| 0.3] 1]
| 200KkB| NONE|| 2315.8] 18.0| 0.6/ 1]
| 2000kB| NONE|| 527.4] 33.1 5.0 1]
'20000KB| NONE|| 50.9| 28.7| 45.2| 1]
| 2kB| FULL| 1452.6] 8.5 0.5| 1|
. 20kB| FULL| 1333.4] 8.7 0.5/ 1]
| 200kB| FULL| 711.2] 8.2 0.9| 1]
| 2000KkB| FULL| 184.9] 13.2 5.7] 1]
20000kB| FULL| 18.0 11.7| 51.9 1]

Reading from a Database using the Database Retrieve Node

This test consists of:

58 of 89

8|

H O MATCH

MOInput Datahaseﬂetrk-
P |]
Default

The input and output message are processed with the XMLNSC domain.

Within the DBRetrieve node the copy message box is selected so that the
contents of the input message are copied to the outgoing message. The
database is queried to obtain a piece of data, which is used to create an
element in the output message.

This test identifies the cost of using the DatabaseRetrieve node to
retrieve a piece of data from the database and insert it into the outgoing
message. The test performs a similar function to reading from a database
as in the case above but achieves it by using a different node and
involves no programming. The results of running this test are given in
the table below.

gﬂlig Persistent '\/I(?\/Isssggleszge O/éfszu msC/Pr:qug Instances
. 2k8| NONE|| 2483.6) 11.0 0.3] 1]
. 20kB| NONE|| 2369.1 10.9| 0.4] 1|
| 200kB| NONE|| 1627.4] 185 0.9| 1]
| 2000KkB| NONE|| 311.8| 29.0| 7.4 1]
20000kB| NONE|| 22.2| 17.2] 61.8) 1]
| 2kB|| FULL| 1283.5] 8.1 0.5] 1]
. 20kB| FULL| 1164.6] 8.4 0.6/ 1|
| 200kB| FULL| 4055 6.4 1.3| 1]
| 2000kB| FULL| 84.0 9.1 8.6/ 1|
20000kB| FULL| 10.1] 10.1] 80.0| 1|

Inserting into a Database

This test consists of:

& —{#) @l
MOQInput Compute MO Output

The input and output message are processed with the XMLNSC domain.

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition an INSERT
operation is performed to populate the database with data that is
obtained from an element in the input message.

This test identifies the cost of performing a database INSERT operation.
The results of running this test are given in the table below.

Msg HPersistentH Message Rate H% CPUH CPU Hlnstances

59 of 89

Size H H (Msgs/Sec) H Busy H ms/msg H ‘

|

| 2kB|| NONE|| 1843.3] 6.1 0.3] 1]
. 20k8| NONE|| 1562.8| 6.0| 0.3] 1]
. 200kB| NONE|| 1598.3] 12.5| 0.6/ 1]
| 2000kB)| NONE|| 520.2] 34.0| 5.2| 1]
'20000kB| NONE|| 51.0 26.7| 41.9| 1]
| 2kB|| FULL| 1023.1] 6.2 0.5| 1]
. 20k8| FULL| 946.9 6.0 0.5/ 1]
. 200kB| FULL| 549.8| 6.6 1.0| 1]
| 2000kB| FULL| 203.5| 14.1] 5.6/ 1|
20000kB| FULL| 17.0/ 10.6| 49.7| 1]

Updating a row in a Database

This test consists of:

Joi—(#)—~al
MQInput Compute MOQOutput

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. In addition an UPDATE
operation is performed to update a piece of data in the database with a
new value that is obtained from an element in the input message.

This test identifies the cost of performing a database UPDATE operation.
The results of running this test are given in the table below.

g:ig Persistent M(i/lsssggleszge O/EUCSZU msC/Pr:]Jsg Instances
| 2kB|| NONE|| 2647.6| 10.0| 0.3] 1]
. 20k8| NONE|| 2587.0| 11.0| 0.3] 1]
| 200kB| NONE|| 2148.6| 18.0| 0.7] 1)
| 2000kB)| NONE|| 526.8| 33.4 5.1 1]
20000kB| NONE|| 50.3| 25.9| 41.2| 1]
| 2kB|| FULL| 1243.8| 7.8 0.5 1|
. 20k8| FULL| 1132.5] 7.5 0.5/ 1]
. 200kB| FULL| 706.0 8.5 1.0| 1]
| 2000kB| FULL| 164.7] 11.4] 5.5/ 1|
20000kB|| FULL| 16.4] 10.2] 50.0)| 1]

Calling an External Database Stored Procedure with One Integer
Input Parameter

This test consists of:

g2 —a]
MOQInput Compute MQOutput

60 of 89

Within the Compute node the message headers from the incoming
message are copied to the outgoing message. Two thousand identical
calls are made to an external database stored procedure. The procedure
receives one parameter which is an integer, passes back zero
parameters, and returns immediately.

This test identifies the cost of calling a database stored procedure with
one parameter which is an integer.

The results of running this test are given in the table below. The CPU
ms/message figure has been adjusted to report a per procedure
invocation cost by dividing the CPU cost obtained from the test by 2000.
The results of running this test are given in the table below.

Msg . Message Rate % CPU CPU

Size Persistent (Msgs/Sec) Busy ms/msg Instances
. 2kB|| NONE|| 7.9| 8.0/ 81.0| 1|
. 2kB| FULL | 7.9 8.0/ 81.1 1]

61 of 89

Growing message throughput

The tests in this section show the effect of using two different approaches
to increase message throughput for a message flow. These are the use of
additional instances and assigning one copy of the message flow to each
of multiple execution groups. The increase in throughput will be limited
by the number of CPUs on the machine, and whether other factors such
as 1/0 or locking are present in the application. It is usual to see
message rates start to plateau before the system utilisation reaches
1009%o.

Using Additional Instances

WebSphere Message Broker allows the use of additional instances of a
message flow to be run. These instances map onto threads running
within a broker execution group process on distributed platforms and to
Task Control Blocks (TCBs) within the brokers address space on z/0S
system.

A series of tests were run to show how message throughput can be
increased through the use of additional instances. The XSLT Transform
Sample was run with a varying number of instances of the message flow
in a single execution group.

This test consists of:

o — 2 —dg]
MQInput XMLTransformation MQOutput

The benefits observed from running multiple copies of a message flow in
any given situation depends on the processing requirements of the
message flow. CPU bound message flows have different scaling
characteristics from those which are 1/0-bound for example.

The message size used in all cases was 2kB.

The results of running this test are given in the table below. They
indicate the results of scaling with Instances with non-persistent
messages.

nggsgezf Persistent Nl(ﬁiggfszge %0 CPU Busy |CPU ms/msg
1 NONE I 1789.4]| 10.4) 0.5
2 INONE | 3291.5 20.2) 0.5
3 NONE | 4566.3) 29.0| 0.5
4 INONE || 5754.4| 37.0/ 0.5
5 NONE I 6721.2 44.1| 0.5
6 INONE | 7407.2| 48.6) 0.5
7 NONE | 7734.9) 53.5| 0.6
8 INONE || 8246.7| 57.0/ 0.6
9 NONE I 8581.0)| 60.2| 0.6

To illustrate the different scaling behaviour that may be seen with
message flows that are 1/0-bound, the same test was run using

62 of 89

persistent messages. For this test, synchronous writing to the disk
becomes a dominant factor even when locating the queue manager log
on a Storage Area Network (SAN) with a fast write cache and so the
ability to increase CPU usage and message throughput is limited.

The message size used in all cases was 2kB.

The results of running this test are given in the table below. They
indicate the results of scaling with Instances with persistent messages.

nggﬁgec;f Persistent Nl(emsssggfszge %o CPU Busy|CPU ms/msg
1 |FULL | 1014.5| 8.4 0.7,
2 |FULL | 1838.9|| 16.0| 0.7,
3 FULL | 2601.1| 22.2) 0.7,
4 FULL I 3170.9) 28.1| 0.7
5 |FULL | 3285.4) 29.9| 0.7,
6 |FULL | 3288.7 30.8| 0.8

With persistent messages it is again possible to increase message
throughput over the rate achieved with one copy by using additional
instances of the message flow.

Note that the initial rate for this test is lower that the first rate for the
non persistent messages. This pattern continues when comparing the
message throughput with a given number of instances.

Determine the optimum number of instances to use for each message
flow individually by experimenting with a varying number of instances.
These measurements show that additional instances can be an effective
mechanism for increasing message throughput and allowing more of a
machine to be fully utilised. In both of the tests CPU usage and message
rate were grew significantly over the initial position.

Using Multiple Execution Groups

WebSphere Message Broker allows a message flow to be assigned to
more than one execution group at a time and for those multiple copies to
process messages concurrently. An execution group maps on-to an
operating system processes on distributed platforms and to an address
space on z/OS systems.

A series of tests were run to show how message throughput can be
increased by using multiple execution groups. The XSLT Transform
Sample was run with a varying number of execution groups each running
one copy of the message flow.

This test consists of:

J@F—n]

MQInput XMLTransformation MQOutput

The benefits observed from running multiple copies of a message flow in
any given situation depending on the processing requirements of the
message flow. CPU bound message flows will have different scaling
characteristics from those which are 1/0-bound, for example.

The message size used in all cases was 2kB.

The results of running this test are given in the table below. They
indicate the results of scaling using non-persistent messages.

63 of 89

Number of Message
Execution Persistent Rateg (ﬁfszu msC/Pr;Jsg
Groups (Msgs/Sec)
1 NONE | 1785.2 10.1| 0.5
2 NONE | 3245.9) 22.2| 0.6
3 INONE || 4801.8| 32.8| 0.6
a NONE | 5824.7| 41.7) 0.6
5 NONE | 6513.2| 49.0| 0.6
6 INONE || 7368.2| 56.7| 0.6
7 INONE || 8001.2] 63.8) 0.6
8 NONE | 8362.4) 68.3| 0.7,
9 NONE | 8477.7| 70.4) 0.7,
10 NONE | 8624.0) 72.0| 0.7,
11 NONE | 8744.9| 74.9| 0.7,
12 NONE | 8982.5| 77.9) 0.7,
13 NONE | 9196.3| 80.7| 0.7,
14 NONE | 9461.6| 82.8| 0.7,
15 NONE | 9822.1| 83.6/ 0.7,
16 NONE | 9985.7| 85.4] 0.7
17 NONE | 10312.5) 86.8| 0.7,
18 NONE | 10381.2) 88.5| 0.7
19 INONE || 10626.6 90.0| 0.7,
20 NONE | 10799.0| 91.4] 0.7
21 NONE | 10953.4) 92.6| 0.7,
22 INONE || 10992.8 93.9| 0.7
23 NONE | 11122.6) 95.3| 0.7,

To illustrate the different scaling behaviour that might be seen with
non-CPU-bound flows the same test was run using persistent messages.
For this test the disk becomes the overriding factor and so scaling of the
CPU and message throughput is potentially more limited.

Number of Message
Execution Persistent Rateg O/ES:SF;U msC/Pr:]Jsg
Groups (Msgs/Sec)

1 FULL | 1039.5| 8.5 0.7|
2 FULL | 1650.2| 15.4]| 0.8
3 FULL | 2501.0| 23.5| 0.8|
a FULL | 3244.9) 31.4) 0.8
5 FULL | 3366.9) 34.5| 0.8|
6 FULL | 3918.2 42.1) 0.9
7 FULL | 4311.5| 47.4| 0.9|
8 FULL | 4525.2| 52.6 0.9
9 FULL | 4582.2| 53.8| 0.9|
10 FULL | 4677.9) 55.1) 0.9
11 FULL | 5346.8) 61.3| 0.9|
12 FULL | 5424.8| 63.9) 0.9

64 of 89

Number of Message
Execution Persistent Rateg (?LSISI;U mSC/Pr:,JSg
Groups (Msgs/Sec)

13 FulL | 5545.5) 65.7| 0.9
14 FuLL [5773.2 69.9)| 1.0
15 [FULL | 6092.3 71.2| 0.9
16 [FULL | 6228.0 73.3 0.9
17 [FULL | 6166.9) 73.6| 0.9
18 [FULL [6304.4 75.9| 1.0

With persistent messages it is again possible to increase message
throughput over the rate achieved with one copy by using more copies of
the message flow.

Note that the initial rate for this test is lower than the initial rate for the
non-persistent messages. This pattern continues when comparing the
message throughput with a given number of instances. This is the impact
of the log I/0 that is needed for persistent messages.

Determine the optimum number of execution groups to use by
experimenting with a varying number.

These measurements show that multiple execution groups can be an
effective mechanism for increasing message throughput and allowing
more of a machine to be fully utilised. In both of the tests CPU usage and
message rate were grew significantly over the initial position.

65 of 89

Overheads

The tests in this section indicate the processing costs of using Accounting
and Statistics and Trace on a message flow.

Message Flow Execution Statistics

WebSphere Message Broker Explorer can start the collection of snapshot
statistics for named message flows. The collected data can be displayed
in both a graphical and tabular format in the WebSphere Message Broker
Explorer. The collected data is automatically updated every 20 seconds.

The picture below shows an example of the data display feature.

¥ MEGEROKER Adminis | [} W Exploeer - Comtent m Resnurcs Shatiics Gr ot} defpk Resource Stat | '|"" MBSSROKER defaulth T Mleasage Flow Stativtic % = -|_

[% Redresh | | o Resume | | finl Logarithmic | [52 Stackea | | i Linear | | £ Filtey | Last updatest Mard, 002 LORIT EM

e Solethon
inncserre |
nmirtiesssive -]

e

MeximumCFUITime

wemcesme - |

TomitombersComms [

10 100 1000 10000 100000

The overhead of using this facility was measured when running a ESQL
Transform test using the XMLNSC parser processing a 2KB input
message. The processing overhead was measured at 3%. This is a very
small overhead for the quality of the data collected.

. Statisti

WebSphere Message Broker Explorer adds the capability to graphically
view information about key broker resources such as JVM Heap Sizes and
Sockets.

Resource statistics complement the accounting and statistics data that
you can collect about message flows, which are also available in Broker
Explorer.

A screenshot of the resource statistics facility being used is shown below.
For more information on this facility consult the product documentation.

66 of 89

F Adminisiration Les | B MG Explorer - Conterd BT Resourcn Statisthes Geaph 57 o EU defaul Resoures Slatistscs {50 7 MBESROKER delault MQin0ur,| = O

[&5 Refiesn | | (0) Pause| | fiel Logarichmee | | 2 Stacked | [o Linear | [5 Fier | Le5% updated: Mar, 2012 12:51:48 M
y Selection:
e e _] summary
I Heap Mamony
UsedMemeryinME g 1 [o Heap Memory

CommettesiMamoryind B E |
KMaxMemonyinMB —

Cuml stivel G TimelnSeconds |

Cumitative NemberCHGE Ol lectons: |

<20 0 20 40 G0 80 100 120 140 G0 150 200 220 240 260

The overhead of using this facility was measured when running a ESQL
Transform test using the XMLNSC parser processing a 2KB input
message. The processing overhead was measured at 0%. This is a very
small overhead for the quality of the data collected.

Using Trace and Trace Nodes

This test consists of running a single copy of the Large Messaging sample
while taking a user trace of type normal at the same time.

Using a 4KB message size there was an 56% reduction in the message
throughput. This reflects the CPU and 1/0 overhead of writing user trace.
With debug trace the overhead is even higher as debug trace is more
extensive.

Trace nodes can also be enabled and disabled easily by using the
WebSphere Message Broker Explorer. The following tests show the
overhead associated with using trace nodes.

Running a Flow with no Trace Nodes
This test consists of the Large Message Sample flow as shipped with

WebSphere Message Broker. It indicates the throughput of the flow
before any trace nodes are added for comparison.

Msg . Message Rate % CPU CPU
Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 4096 NONE| 1135.5] 10.0| 0.7] 1

Impact of Running a Flow with a Trace Node Turned On

This test consists of the Large Message Sample flow as shipped with WMB
V8.0. The flow has been modified to add a Trace node after the Compute
node. The Trace node writes the Root of the message tree to a file for
every message.

Msg . Message Rate % CPU CPU
Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 4096 NONE| 500.4/ 9.2| 1.5 1

Impact of Running a Flow with a Trace Node Turned Off

This test is identical to the one above but the Trace node has been

67 of 89

disabled.

Msg . Message Rate % CPU CPU
Size Persistent (Msgs/Sec) Busy ms/msg Instances
| 4096 NONE| 1128.6] 10.0| 0.7] 1

This indicates that the overhead of running with inactive trace nodes is
1% (of the message rate).

68 of 89

Resource Requirements

This section illustrates memory use for message flows.

Recommended Minimum Specification

The minimum specification required to install and run the development
toolkit and the runtime can be found in the Installation Guide which can
be downloaded here: http://www.ibm.com/software/integration
/wbimessagebroker/requirements/#V80

These are the minimum requirements to enable the processing of simple
messages with simple message transformation or routing. Situations
requiring more intensive processing are likely to need greater resources.

Memory Use

The amount of memory used by a message flow running within an
execution group varies depend on the complexity of the message flow,
the style of processing within the message flow, and the size of the
messages being processed. This is a complex subject and a detailed
discussion is beyond the scope of this document. However, to assist with
planning, the memory used for a variety of tests is reported.

Virtual memory size is the total of all bytes allocated for the process,
whether currently in physical memory or on disk. Real memory is the
amount of physical RAM allocated for the process. Memory utilisation is
reported to the nearest 1MB using the "ps -e -0 vsz=,rss=,comm="
command for AlX.

Note that the recorded memory size depends on the platform-specific
memory and swap space allocation algorithms. These values vary
according to platform.

The figures in the table below record the amount of virtual and real
memory in MB used by an execution group for the message flow after it
has processed a number of messages and the size has stabilised.

In each case a single copy of the message flow was deployed to a single
execution group.

Each use case was deployed to a new execution group.

Virtual Memory Real Memory
Message Peak After Peak After
Use Case . . .
Size Processing Processing
Messages (MB) | Messages (MB)
Aggregation 20kB 65 65
Coordinated 2kB 64 64
Request/Reply
Data Warehouse 2kB 65 65
Large Messaging 2kB 61 61
Message Routing 2kB 63 63
XML 2kB 60 60
Transformation

Virtual and Real Memory Use for a Variety of Use Cases.

69 of 89

Appendix A - Measurement Environment

All throughput measurements where taken on a single server machine.
The client type and machine on which they ran varied with the test. The
details are given below.

Server Machine

The hardware consisted of:

e IBM pSeries 780 with 2 x Quad-Core Power7 3.86GHz processors
and SMT4 activated (4 hardware threads per core) giving 8
physical cores in total

143 GB SAS Hard Drive

SAN comprising

0 8Gbps Brocade DCX director
o IBM San Volume Controller (2145-8G4 nodes)
o IBM DS8700

24 GB RAM
10 GB Ethernet Card

The software consisted of:

o AIX 7.1

o Simultaneous Multi-Threading (SMT) was enabled

e WebSphere MQ V7.0.1.
e \WebSphere Message Broker V8
e DB2 V9.7

-l Machi
The hardware consisted of:

e |IBM xSeries HS22 (7870H4G) with 2 x Hex-Core Xeon(R) X5670
2.93 GHz processors

® One 135 GB SCSI hard drive formatted with NTFS

e 32 GB RAM

e 10 GB Ethernet card

The software consisted of:

e Microsoft Windows 2008 R2
e WebSphere MQ V7.0.1.5
e |BM Java v6

Network Configuration

The client and server machines were connected using a full duplex 10
Gigabit Ethernet LAN with a single hub.

70 of 89

Appendix B - Evaluation Method

This section outlines the software components that were used to produce
the measurements which are contained in this report.

Two different configurations were used to generate and consumpe input
and output messages. This is because different test cases required
different types of input and output messages. The methods used were:

1. Point to Point Message Processing. This configuration tested these
transports:

1. MQ
2. JMS
3. HTTP
4. SOAP

These are described in the remainder of this section.
A series of parameter configuration changes were made to improve
message throughput. These are discussed in the section Tuning.

This section describes how messages were generated and consumed for
the point to point messaging tests, such as the Database Read tests or
Filter an Incoming Message based on the First Element in the Message.
The configuration of the software components is also discussed. This
approach was used for MQ, JMS, HTTP and SOAP messages.

: I :

The Performance Harness for JMS, a multi-threaded WebSphere MQ
Client program written in Java was used to generate input messages for
the test case being run and to consume the output messages. The
following PerfHarness modules were used for point to point testing:

e mgjava.Requestor . for MQ Messages
e http.Requestor . for Sending SOAP and HTTP messages
® jms.rll1.Requestor . for sending and receiving JMS Messages

Differences between the transport testing are detailed below:

MQ

Both persistent and non persistent MQ Messages were generated from
this program. Persistent messages were sent as part of a transaction
which was committed after every message.

Sufficient threads (typically 20) were run in the multi-threaded client to
ensure that there were always messages on the input queue waiting to
be processed. This is important when measuring message throughput.
Each thread sent a message and then immediately went to receive a
reply on the output queue. Any thread within the client program was
able to retrieve any message which had been processed by a message
flow. No use was made of the WebSphere MQ correlation identifiers to
limit consumption of a message to the thread which created it. When a
thread received a reply it sent another message. The message content
was the same for all threads and all messages.

JMS

The tool sent non persistent JMS Bytes messages to a JMS Destination.
The connection factory for the client used the MQ Client transport to

71 of 89

send messages. This destination was mapped to an MQ Queue on the
WebSphere Message Brokers queue manager. The JMS Input node was
configured to read from this queue, the connection factory for the nodes
used the MQ Bindings transport for connection. The flow then placed the
reply message on another MQJMS queue on output where the client
could then receive the reply.

Sufficient threads (typically 20) were run in the multi threaded client to
ensure that there were always messages on the input queue waiting to
be processed. This is important when measuring message throughput.
Each thread sent a message and then immediately went to receive a
reply on the output queue. Any thread within the client program was
able to retrieve any message which had been processed by a message
flow. No use was made of the JMS correlation identifiers to limit
consumption of a message to the thread which created it. When a thread
received a reply it sent another message. The message content was the
same for all threads and all messages.

SOAP and HTTP

The tool sends predefined SOAP and HTTP Messages that it reads from
files. The tool sent the messages to a broker using persistent HTTP
connections, which means that each thread reused the same TCPIP
socket for each request. Each client thread had its own TCPIP socket
connection to send and receive data.

Sufficient threads (typically 20) were run in the multi-threaded client to
ensure that there were always messages to be processed. This is
important when measuring message throughput.

As per the HTTP request/reply protocol each thread sent a message and
then immediately went to receive a reply on socket. When a thread
received a reply it sent another message. The message content was the
same for all threads and all messages.

See the Performance Harness section in this report for more information
on this tool.

Machine Configuration

The Performance Harness for JMS was used to generate and consume
messages for the message flows and was run on a single client machine.
WebSphere Message Broker, its dedicated WebSphere MQ queue
manager and broker database were all located on the server machine.

There was a single client machine.

For MQ and JMS based Tests messages were transmitted from the client
machine to the server machine over WebSphere MQ SVRCONN channels.
The messages were received on the server by using WebSphere MQ
queue manager listener process. This was run as a trusted MQ
application in order to improve message throughput.

Messages were transmitted from the client machines to the server
machine using the WebSphere MQ transport or SOAP/HTTP or JMS
depending on the test type.

The diagram below illustrates the major components in the measurement
environment and their location.

72 of 89

Client Machine Server Machine

Gigabit MQ | istener
Ethernet
JMS LAN WebSphere DB2
Perfharness Message
——— Broker
WebSphere MQ vveo=phere M

Both the client and server machine were configured with sufficient
memory to ensure that no paging took place during the tests.

Reported Message Rates

For tests that did not involve publish/subscribe, the message rates
reported are the number of invocations of the message flow per second.
For tests involving several message flows such as the message
aggregation test the rate reported is the number of complete operations
or aggregations per second. Fan-out and fan-in processing is counted as
one operation rather than separate operations.

For tests using the JMS nodes the message rate is the number of
message flow invocations per second.

The message rates quoted are an average taken over the measurement
period. This starts when the system initialisation period has completed.

73 of 89

Appendix C - Test Messages

This section describes the input and output messages used for the tests
detailed in this report.

The messages which are in this section have been formatted for this
report and as such contain white space between tags. When used in
measurements all white space is removed.

Input Messages

This section details the types of input messages used in the report.
General Input Messages

An input message of the type shown below was used for the
non-publish/subscribe tests in the report.

The message shown below is in generic XML format but it was also
represented in a variety of other formats such as MRM XML, CWF and
TDS where this was required in the test.

The different message sizes used in testing are achieved by repeating the
content of the SalelList tag to give the required size. Larger messages
thus result in more tags. A Perl script ensures that the names and values
in the tags are different as the SaleList structure is repeated. This is to
stop a limited number of strings being used in very large messages which
could lead to over-optimistic results.

<Parent>
<First>1</First>
<SaleList>
<Invoice>

<Initial>K</Initial>

<Initial>A</Initial>

<Surname=>Braithwaite</Surname>

<ltem>
<Code>00</Code=>
<Code>01</Code=>
<Code>02</Code=>
<Description=>Twister</Description>
<Category=Games</Category=>
<Price>00.30</Price>
<Quantity>01</Quantity>

</ltem>

<ltem>
<Code=>02</Code>
<Code>03</Code>
<Code=>01</Code>
<Description>The Times Newspaper</Description>
<Category>Books and Media</Category>
<Price>00.20</Price>
<Quantity>01</Quantity>

</ltem>

<Balance>00.50</Balance>

<Currency=>Sterling</Currency>

</Invoice>

74 of 89

<Invoice>

<Initial>T</Initial>

<Initial=J</Initial>

<Surname=>Dunnwin</Surname=>

<Iltem>
<Code>04</Code>
<Code>05</Code=>
<Code>01</Code>
<Description=The Origin of Species</Description>
<Category=>Books and Media</Category>
<Price>22.34</Price>
<Quantity=>02</Quantity>

</ltem>

<ltem>
<Code>06</Code=>
<Code>07</Code=>
<Code>01</Code=>
<Description>Microscope</Description>
<Category>Miscellaneous</Category=>
<Price=>36.20</Price>
<Quantity>01</Quantity>

</ltem=>

<Balance>81.84</Balance>

<Currency>Euros</Currency=>

</Invoice>
</SalelList>
<lLast>Test</Last>
</Parent>

SOAP Input Message and WSDL

Below is the input message and WSDL used for the SOAP Nodes tests:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org
/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org
/soap/encoding/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:tns="http://WssSale.miwssoap.broker.mqgst.ibm.com"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing">
<soapenv:Header>
<wsa:Action>=SummerSale</wsa:Action>
<wsa:MessagelD>uuid:515704D6-0111-4000-
EO00-82267F000001</wsa:MessagelD>
</soapenv:Header>
<soapenv:Body>
<tns:SaleRequest>
<SaleEnvelope>
<Header>
<SalelListCount>1</SalelListCount>
</Header=>
<SalelList>
<Invoice>
<Initial>K</Initial>
<Initial>=A</Initial>
<Surname=>Braithwaite</Surname=>
<ltem>

75 of 89

<Code=>00</Code=>
<Code>01</Code=>
<Code=>02</Code=>
<Description>Twister</Description>
<Category>Games</Category>
<Price=>00.30</Price>
<Quantity>01</Quantity>
</ltem=>
<ltem>
<Code=>02</Code>
<Code>03</Code>
<Code>01</Code=>
<Description>=The Times Newspaper</Description>
<Category>Books and Media</Category>
<Price=>00.20</Price>
<Quantity>01</Quantity>
</ltem=>
<Balance>00.50</Balance>
<Currency>Sterling</Currency>
</Invoice>
<lInvoice>
<Initial>T</Initial>
<Initial=J</Initial>
<Surname=>Dunnwin</Surname>
<ltem>
<Code>04</Code=>
<Code=>05</Code=>
<Code=>01</Code=>
<Description>The Origin of Species</Description>
<Category>Books and Media</Category>
<Price=>22.34</Price>
<Quantity>02</Quantity>
</ltem>
<Iltem>
<Code>06</Code>
<Code>07</Code=>
<Code>01</Code=>
<Description>Microscope</Description>
<Category>Miscellaneous</Category=>
<Price>36.20</Price>
<Quantity>01</Quantity>
</ltem=>
<Balance>81.84</Balance>
<Currency>Euros</Currency=>
</Invoice=>
</SalelList>
<Trailer>
<CompletionTime>=>12.00.00</CompletionTime=>
</Trailer>
</SaleEnvelope=>
</tns:SaleRequest>
</soapenv:Body>
</soapenv:Envelope>

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions
targetNamespace="http://WssSale.miwssoap.broker.mqgst.ibom.com"
xmlns:tns="http://WssSale.miwssoap.broker.mgst.ibm.com”
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

76 of 89

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsaw="http://www.w3.0rg/2006/05/addressing/wsdl">

<wsdl:types>
<xsd:schema

targetNamespace="http://WssSale.miwssoap.broker.mqgst.ibm.com"
xmlns:tns="http://WssSale.miwssoap.broker.mqgst.ibm.com"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="SaleRequest" type="tns:RootMessage"/>
<xsd:element name="SaleResponse" type="tns:RootMessage"/>
<xsd:complexType name="RootMessage">
<xsd:sequence=>
<xsd:element name="SaleEnvelope">
<xsd:complexType=>
<xsd:sequence=>
<xsd:element name="Header" type="tns:Header"/>

<xsd:element maxOccurs="unbounded"
name="SaleList" type="tns:SaleList"/>
<xsd:element name="Trailer" type="tns:Trailer"/>
</xsd:sequence=>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType=>
<xsd:complexType name="SaleList">
<xsd:sequence=>
<xsd:element maxOccurs="2" minOccurs="2" name="Invoice
type="tns:Invoice"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Invoice">
<xsd:sequence>
<xsd:element maxOccurs="2" minOccurs="2" name="Initial"
type="xsd:string"/>
<xsd:element name="Surname" type="xsd:string"/>
<xsd:element maxOccurs="2" minOccurs="2" name="Item"
type="tns:Item"/>
<xsd:element name="Balance" type="xsd:float"/>
<xsd:element name="Currency" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType=>
<xsd:complexType name="Item">
<xsd:sequence>
<xsd:element maxOccurs="3" minOccurs="3" name="Code"
type="xsd:string"/>
<xsd:element name="Description" type="xsd:string"/>
<xsd:element name="Category" type="xsd:string"/>
<xsd:element name="Price" type="xsd:float"/>
<xsd:element name="Quantity" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType=>
<xsd:complexType name="Header">
<xsd:sequence=>
<xsd:element name="SaleListCount" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Trailer">

<xsd:sequence=>
<xsd:element name="CompletionTime" type="xsd:string"/>

77 of 89

</xsd:sequence>
</xsd:complexType>
</xsd:schema>
</wsdl:types>
<wsdl:message name="SaleRequest'>
<wsdl:part element="tns:SaleRequest" name="parameters"/>
</wsdl:message>
<wsdl:message name="SaleResponse">
<wsdl:part element="tns:SaleResponse" name="parameters"/>
</wsdl:message>
<wsdl:portType name="WssSale">
<wsdl:operation name="Sale">
<wsdl:input message="tns:SaleRequest” name="SaleRequest"

wsaw:Action="http://WssSale.miwssoap.broker.mqgst.ibm.com/WssSale
/services/WssSale/SaleRequest'/>
<wsdl:output message="tns:SaleResponse" name="SaleResponse"

wsaw:Action="http://WssSale.miwssoap.broker.mqgst.ibm.com/WssSale
/services/WssSale/SaleResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="WssSaleSoapBinding" type="tns:WssSale">
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="Sale">
<wsdlsoap:operation soapAction="SummerSale"/>
<wsdl:input name="SaleRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="SaleResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="WssSaleService">
<wsdl:port binding="tns:WssSaleSoapBinding" name="WssSale">
<wsdlsoap:address location="http://localhost:9081/WssSale
/services/WssSale"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Output Message

For those tests that modified the message one of two message formats
was used for the output messages depend on the test case. These are
the Compute and Transformation messages.

Transformation Message

For the message transformation test the input message is modified and
takes a different layout. For each invoice a statement is created for each
customer within a SalelList.

The message layout is shown below.

<Parent>
<SaleList>

78 of 89

<Statement Type="Monthly" Style="Full">
<Customer=>
<Initials>KA</Initials>
<Name=>Braithwaite</Name=>
<Balance>00.50</Balance=>
</Customer>
<Purchases>
<Article>
<Desc>Twister</Desc>
<Cost>4.8E-1</Cost>
<Qty=>01</Qty=>
</Article>
<Article>
<Desc>The Times Newspaper</Desc>
<Cost>3.2E-1</Cost>
<Qty=>01</Qty=>
</Article>
</Purchases>
<Amount>8E-1</Amount=>
</Statement>
<Statement Type="Monthly" Style="Full">
<Customer=>
<Initials>TJ</Initials>
<Name>Dunnwin</Name=>
<Balance>81.84</Balance=>
</Customer=>
<Purchases>
<Article>
<Desc>The Origin of Species</Desc>
<Cost>3.5744E+1</Cost>
<Qty>02</Qty=>
</Article>
<Article>
<Desc>Microscope</Desc>
<Cost>5.792E+1</Cost>
<Qty=01</Qty=>
</Article>
</Purchases>
<Amount>1.29408E+2</Amount=>
</Statement>
</SalelList>
</Parent>

79 of 89

Appendix D - Use case descriptions

This section contains a description of the processing in each of the use
cases which are used to characterise the performance of WebSphere
Message Broker V8. All of these use cases are provided as samples in
WebSphere Message Broker V8. See the samples gallery for more
information.

Aggregation

The Aggregation use case demonstrates a simple four-way aggregation
operation, using the AggregateControl, Request, and Reply nodes. It
contains three message flows to implement a four-way aggregation:
FanOut, RequestReplyApp, and FanlIn. This is the type of processing that
might be used to invoke four different applications to process a travel
booking, one to organise each of the flight, hotel, car and currency.

FanOut Message Flow
This is the flow that takes the incoming request message, generates four

different request messages, sends them out using a request/reply
pattern, and starts the tracking of the aggregation operation:

X |
< R w2 (S |JI 4 B
BuildRequesil AGGR_SAMPLE REQUEST_I AggregateRequestl
. |
o =2k || = [

BuildRequest? AGOR_SAMPLE_REGUEST 2 AqepegateRequastd

E i

AOGR_SAMPLE M AgaregateC ol
. |
o gt b =] |; oo s,

BuildHequetd AGLE_SAMPLE REQUEST 3

HAggeegaleRequest]
il
LogFanCutErmor

gl [l w5l |I v Hg

BuildReguesd AGHR_SAMPLE_REQUEST 4 Aggleg;tﬁmum*

RequestReplyApp Message Flow

This message flow simulates the back-end service applications that would
normally process the request messages from the aggregation operation.
In a real system, these could be other message flows or existing
applications. This message flow reads from the same queue that the
MQOutput nodes in the FanOut flow write to, and it outputs to the queue
that the input node which the Fanln flow reads from. It therefore
provides a messaging bridge between the two flows. The messages are
put to their reply-to queue (as set by the MQOutput nodes in the FanOut

flow).

AGGR_SAMPLE_REQUEST AGGR_SAMPLE_REPLY

Fanln Message Flow

80 of 89

This flow receives all the replies from the RequestReplyApp flow, and
aggregates them into a single output message. The output message from
the AggregateReply node cannot be output directly by an MQOutput node
without some processing so a Compute node is added to process the data
into a format where it can be written to a queue.

P

P

/L/n:ngUnkn ownReply

/ 72 [=T [§
g ______ﬂ---""' e F Ld‘_li[:
o b AT BuildReply AGGR_SAMPLE_QUT
AGGF{_SAMPLE_R\EP{ Aggregateﬂerj':r”ﬂ-x\"“--xﬂ
-\‘\ \.._.I‘\ -x__i I'ﬂl':.'\-
.\\ .‘\\ LogTimed QutReply
k" :iﬂ, %
X
LoegFaninError
"
Iil. -ﬂ\

LogTimeoutError

Further information about the Aggregation sample can be found in the
WebSphere Message Brokers section of the Technology samples category,
which is in the samples gallery of the WebSphere Message Broker
development toolkit.

Coordinated Request/Reply

The coordinated request reply sample is based on the scenario of a
contemporary and established application communicating through the
use of WebSphere MQ messages in a request/reply processing pattern.
The contemporary application uses self-defining XML messages and
issues a request message. The established application uses Custom Wire
Format (CWF) messages.

The Sample receives a request message, processes it and delivers a reply
message. For the applications to successfully communicate, the message
formats must be transformed for both the request and reply messages.

The processing in the sample consists of three message flows and one
message set. The message flows are:

Request Message Flow

The request message flow performs the following processing:

e Reads a WebSphere MQ message containing an XML payload.

e Converts the message into the equivalent CWF format.

e Creates a WebSphere MQ message containing the transformed
message.

e Saves the original ReplyToQ and ReplyToQMgr details in a separate

81 of 89

WebSphere MQ message for subsequent retrieval by the Reply
message flow.

e Sets the ReplyToQ and ReplyToQMgr details to be the input of the
Reply message flow.

e Sends the message to the Backend Reply message flow.

The Request message flow consists of the following nodes:

GetRequestMsg StoreCriginalMQMD_Sub TransformAndSetReplyTo OutputRequestiMsg

Backend Reply Message Flow

The backend reply message flows performs the following processing:

e Reads a WebSphere MQ message.

e Adds the time the message was modified to the payload of the
message.

e Writes a WebSphere MQ message.

The Backend Reply message flow consists of the following nodes:

GetRequestM=g Backend_Computation PutReplylsg

Reply Message Flow

The reply message flow performs the following processing:

e Reads a WebSphere MQ message containing a message in CWF
format.

e Converts the message into the equivalent XML format.

e Obtains the ReplyToQ and ReplyToQ Mgr of the original request
message by reading the WebSphere MQ message which was used
to store this information in the Request message flow. This is done
by using the MQGET node.

e Creates a WebSphere MQ message containing the transformed
message and the retrieved ReplyToQ and ReplyToQMgr values.

The Reply message flow consists of the following nodes:

GetBackendReply MapToRequestor RestoreQriginal MQMD_Sub PutOriginalReply

Further information about the Coordinated Request Reply sample can be
found in the WebSphere Message Broker section of the Application
samples category, which is in the samples gallery of the WebSphere
Message Broker development toolkit.

Data Warehouse

The Data Warehouse sample demonstrates a scenario in which a message
flow is used to archive data, such as sales data, into a database. The

82 of 89

data is stored for later analysis by another message flow or application.

Because the sales data is analyzed at a later date, the storage of the
messages has been organized in a way that makes it easy to select
records for specified times. The date and time at which the WebSphere
MQ message containing the sales record was written are stored as
separate column values when the message is inserted into the database.
The database table contains four columns:

e The message data, which is the payload of the WebSphere MQ
message stored as a BLOB.

e The date on which the WebSphere MQ message was created.

e The time when the WebSphere MQ message was created.

e A time stamp created by the database to record the time when the
record was inserted.

By storing the data in this way it is possible to retrieve records from
specific periods; for example, 9:00 a.m. to 12:00 p.m. and 12:01 p.m.
and 5:00 p.m., which would allow a comparison of morning and
afternoon sales to be made.

The data archiving is performed by the WarehouseData message flow.
This is described below.

WarehouseData Message Flow

The WarehouseData message flow performs the following processing:

e Reads a WebSphere MQ message containing an XML payload, which
is the data to be archived.

e Converts a portion of the message tree to a BLOB ready for
insertion into the database.

e Inserts the message BLOB along with the date and time at which
the WebSphere MQ message was written into a database.

e Sends a WebSphere MQ confirmation message to signal successful
insertion of the message into the database.

The WarehouseData message flow consists of the following nodes:

ﬁ’. w

Cregte_Error_Message Data_Warehouse_Failure_Q

| sevem—

B By <}

Data_Warehouse_In_Q Warehouse_Input_Message Data_Warehouse_Out_Q

Further information about the Data Warehouse sample can be found in
the WebSphere Message Broker section of the Application samples
category, which is in the samples gallery of the WebSphere Message
Broker development toolkit.

Large Messaging

83 of 89

The Large Messaging sample is a sample based on the scenario of
end-of-day processing of sales data. Messages recording the details of
sales through the day are batched together in the store for transmission
to the IT centre. On receipt at the IT centre the batched messages are
split into their constituent parts for subsequent processing.

This splitting is achieved using a WebSphere Message Broker message
flow. Each of the individual messages representing a sale has the same
structure.

The input and output messages in this sample are implemented as
self-defining XML messages for simplicity. Other message formats could
be used.

Each input message consists of three parts:

e A header, which contains the number of repetitions of the
repeating SaleList structure that follows.

e The body, which contains the repetitions of the repeating SaleList
structure.

e The trailer, which contains the time the message was processed.

The aim of the processing in this sample is to write each instance of the
SaleList structure as a separate WebSphere MQ message while
minimizing overall memory requirements.

The message flow implements a memory saving technique by using a
mutable message tree.

The processing in the sample consists of one message flow. The
processing it performs is described below.

Large Messaging Message Flow

The large messaging message flow performs the following processing:

e Reads a WebSphere MQ message containing an XML payload under
transactional control.

e Formats a WebSphere MQ message for each instance of the
Salelist structure.

e Writes the WebSphere MQ messages to the output queue.

e Produces a WebSphere MQ message to signal completion of the
processing when the final element has been processed.

The Large Messaging message flow consists of the following nodes:

|
.zj

General Falre

T

4|

BepeatedElementSlices

.”_ B L

1
MetcagaWithRepeatagElamants ProduceM ssigeSicsFramPapeatingElmints Ldent#ydhenShcinglsComplete + J
Mezzageicng Camgplete

v

Thigw Errar

Catch Processing n
L[
latfomned messages

Further information about the Large Messaging sample can be found in
the WebSphere Message Broker section of the Application samples

84 of 89

category, which is in the samples gallery of the WebSphere Message
Broker development toolkit.

Message Routing

The message routing sample shows how a database table can be used to
store routing information, which a message flow can then use to route
messages to WebSphere MQ queues.

The message routing sample shows how to implement a routing table,
using shared variables, to route messages in a message flow.

The processing in the message flows is described below:
Routing Using Memory Cache Message Flow

The message flow performs the following processing:

e Reads a WebSphere MQ message containing an XML payload under
transactional control.

e Creates a destination list based on data that is held in shared
variables.

e Produces a WebSphere MQ output message. The destination of the
message is specified in the destination list.

Queue: ROUTING.REFRESH.IMN1 Refresh memory cache Queue: ROUTING.REFRESH.OUTL

Further information about the Message Routing sample can be found in
the WebSphere Message Broker section of the Application samples
category, which is in the samples gallery of the WebSphere Message
Broker development toolkit.

Transformation using ESQL

The transformation using ESQL use case is based on processing sales
data. At the time of a sale the customer's name, the code for the
product, a description of the product, its category, the unit price, and
quantity purchased are recorded. Each customer might purchase several
items.

Subsequently a statement is produced for each customer and it is the
production of the statement that is performed in this use case. The
processing results in a restructuring of the original message.

The messages used (input and output) are self-defining XML messages.
Each message with sales data consists of three parts:

e A header, which a count of the number of repetitions of the
repeating SalelList structure that follows.

e The body, which contains the repetitions of the repeating SaleList
structure.

e The trailer, which contains the time the message was processed.

The production of the statement for each customer within a Salelist is
achieved with a single message flow, the Transformation with ESQL
Message Flow.

Transformation with ESQL Message Flow

85 of 89

The message flow performs the following processing:

e Reads a WebSphere MQ message containing an XML payload under
transactional control.

e Parses the input message and produces an invoice for each

customer. This is achieved with a single Compute node containing
ESQL.

e Produces a WebSphere MQ output message containing an XML
payload under transactional control.

= g T [
£ v | s H:s
|] = = L

Read Sales Data Produce Statement per Customer Write Statement

86 of 89

Appendix E - Tuning

This appendix describes the tuning that was applied to WebSphere
Message Broker, WebSphere MQ, and DB2.

The description of each parameter is brief; a detailed discussion is
beyond the scope of this document.

WebSphere Message Broker

The WebSphere Message Broker was configured in the following ways for
all tests:

1. The broker ran as a trusted WebSphere MQ application. This was
achieved by use setting "-t" flag on the mqgsicreatebroker command
and by ensuring that the environment variable
MQ_CONNECT_TYPE=FASTPATH was present in the environment in
which the broker was started. This does improve performance, but
note there is a potential loss of integrity to the WebSphere
Message Broker queue manager because the level of isolation
between the WebSphere Message Broker and queue is reduced.

2. Transactional support was used when processing persistent
messages . It was not used with non-persistent messages. The use
of transaction control means that message processing takes place
within a WebSphere MQ unit of work. This involves additional CPU
and 1/0 processing by WebSphere MQ because the unit of work is
recoverable. The result is inevitably a reduction in message
throughput for persistent messages. By default the transaction
parameter on the MQInput node was set to automatic. This is the
prefered value to use for transaction mode unless there is a
specific requirement to use a particular value, because persistent
messages are processed within transactional control and non
persistent messages are not.

Additional Tuning for SOAP, HTTP and SCA Tests:

e The clients sending data to the broker were configured to use
persistent HTTP connections, that is MaxKeepAlives was set to 0.

¢ In the execution group, the persistent connections (MaxKeepAlives)
value was set for the SocketConnectionManager and
HTTPConnector objects.

¢ In the execution group and HTTP listener, the tcpNoDelay value
was set to true for the HTTPConnector and
SocketConnectionManager objects.

e In the execution group and HTTP listener, the maxThreads value
was set to 2000 for the HTTPConnector object.

e The JVM heap was set to 1GB to allow processing of large
messages.

To set these values consult the documentation for the
mgsichangeproperties command.

There was no error processing and no error conditions set in any of the
measurements. All messages were successfully passed from one node to
another through the Out or True terminal. No messages were passed
through the Failure terminal of a node.

WebSphere MQ

The following changes were made to all queue managers used in the
tests:

87 of 89

1. The value of DefaultQBufferSize and DefaultPQBufferSize was
increased to 50MB for the input and output queues used in the
tests. This is the maximum supported and was used because in
most tests, messages of up to 20MB were used. When using
smaller messages all of the time, a smaller value is likely to be
more appropriate.

2. Given the use of persistent messages in the tests, the following MQ
log parameters were modified:

o LogBufferPages was set to 4096
o LogFilePages was set to 65535
o LogType was set to circular

o LogPrimaryFiles was set to 15

o LogSecondaryFiles was set to 1

3. Circular logging was set for all WebSphere MQ queue managers
used in the tests.

4. The following values were set for the TCP stanza in the queue
manager .ini file:

SndBuffSize=70000
RcvBuffSize=70000
RcvSndBuffSize=70000
RcvRcvBuUffSize=70000
Blocking=YES

5. The WebSphere Message Broker queue manager MQ listener and
channels were run as trusted applications. In the queue manager
gm.ini file the value MQIBindType was set to FASTPATH in the
channel stanza. The environment variable
MQ_CONNECT_TYPE=FASTPATH was present in the environment in
which the broker queue manager was started.

6. The WebSphere MQ queue manager log was located on a SAN disk
with a non-volatile fast write cache used for the disk on which the
log was located. Such disks are consistently capable of 1/0 times of
1 ms compared with a time of 6 ms for a 10,000 RPM SCSI disk.
When using a disk with a fast write cache it is essential that it has
a non-volatile capability because the log data is critical to the
integrity of your queue manager.

O O O O O

For further information on WebSphere MQ tuning, see this article:
http://www.ibm.com/developerworks/websphere/library/techarticles
/0712 dunn/0712 dunn.html

ICP/1P

No specific tuning was performed for TCP/IP. All machines used the
operating system default values.

Database

1. The database used in the performance tests was modified from the
default in the following way:

2. The TCP/IP loopback adapter was used for the database.

3. The database data and log files were placed on a dedicated file
system that was located on a SAN disk with fast write non-volatile
cache. This was done to minimise 1/0 times and improve the
capacity of the log.

4. The database was modified using these commands:

o db2 update db cfg for userdb using logprimary 10

88 of 89

o db2 update db cfg for userdb using logfilsiz 250000
o db2 update db cfg for userdb using logbufsz 4096

Additional Tuning Information

To obtain the maximum message rate for your implementation, it is
important that you understand the best practices for WebSphere Message
Broker. These practices cover the architecture of message flow
processing, the coding of message flows, the configuration, and tuning of
the broker and associated components.

Such information can be found in the Business Integration Zone of
WebSphere Developer Domain.

There is also a SupportPac, IPO4, which covers the main design decisions
when building message flows. It is available at http://www.ibm.com
/support/docview.wss?uid=swg24006518

89 of 89

