
WebSphere Message Broker v6.0

For Windows

Performance report

Version 1.3

January, 2006

Tim Dunn

Kevin Braithwaite

Rich Bicheno

WebSphere Message Broker Development

IBM UK Laboratories
Hursley Park

Winchester
Hampshire
SO21 2JN

Property of IBM

 Page 2 of 93

Take Note!

Before using this report be sure to read the general information under "Notices".

Fourth Edition, January 2006.
This edition applies to WebSphere Message Broker V6 for Windows and to all subsequent
releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2005. All rights reserved. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

 Page 3 of 93

Notices
This report is intended for Architects, Systems Programmers, Analysts and Programmers
wanting to understand the performance characteristics of WebSphere Message Broker V6
for Windows. The information is not intended as the specification of any programming
interfaces that are provided by WebSphere MQ or WebSphere Message Broker V6 for
Windows. It is assumed that the reader is familiar with the concepts and operation of
WebSphere Message Broker V6.

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “asis”. The use of this information and the implementation of any of the techniques
is the responsibility of the customer. Much depends on the ability of the customer to evaluate
these data and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

 IBM

 WebSphere MQ

 WebSphere Message Broker

 DB2

The following terms are trademarks of other companies:

 Windows 2000, Windows XP, Microsoft Corporation

Other company, product, and service names may be trademarks or service marks of others.

 Page 4 of 93

Summary of Amendments
Date Changes

27th October 2005 Initial Release

11th November2005 Minor formatting changes and updates to web links

1st December 2005 Add notes to table of results in Release Highlights section

7st December 2005 Correct Windows server model

11th January 2006 Correct the comments about LogBufferPages

 Page 5 of 93

Table of Contents

Table of Contents .. 5
Introduction .. 7

Part I .. 9
Release Highlights... 10

Improvements over WebSphere Business Integration Message Broker V5 10
Improvements over WebSphere MQ Integrator V2.1 ... 12
Use Case Outline.. 13

Additional Information.. 14

Part II ... 15
Routing and Transformation Processing Profiles .. 16

Minimal Processing ... 18
Message Parsing and Writing ... 19

Parsing a Message in the MRM Domain .. 19
Writing a Message in the MRM Domain ... 27
Parsing a Message in the XML Domain ... 31
Writing a Message in the XML Domain .. 32

External Resources... 33
Accessing a Database from a Message Flow... 33
Calling External Procedures ... 35
HTTP... 38
JMS Nodes ... 39

Routing and Transformation Logic .. 42
Using ESQL .. 42
Using Java .. 52
Using XMLT .. 57

Publish Subscribe.. 59
Scaling Message Throughput ... 60
Overheads... 62

Using Accounting and Statistics ... 62
Using Trace... 62

Resource Requirements.. 63
Recommended Minimum Specification .. 63
Memory Use.. 63

Tuning.. 65
Message Broker .. 65
WebSphere MQ... 66
TCP/IP... 67
Database ... 67
Miscellaneous.. 67
Additional Tuning Information ... 68

Conclusion ... 69

Appendix A - Measurement Environment.. 70

Server Machine ... 70
Client Machines... 70
Network Configuration... 71

Appendix B - Evaluation Method ... 72
Point to Point testing ... 72

Message Generation and Consumption ... 72
Machine Configuration.. 73

Publish Subscribe testing.. 74
Message Generation and Consumption ... 74
Machine Configuration.. 75

JMS Node Message Processing ... 76
Message Generation and Consumption ... 76

 Page 6 of 93

Machine Configuration.. 76
Reported Message Rates ... 79

Appendix C - Test Messages .. 80
Input Message... 80
Output Message.. 81

Appendix D - Use Case Descriptions .. 84
Aggregation ... 84
Coordinated Request/Reply .. 85
Data Warehouse ... 87
Large Messaging... 88
Message Routing .. 89
SWIFT Message Parse ... 90
XML Transformation.. 91

Feedback ... 93

 Page 7 of 93

Introduction
The purpose of this report is to illustrate the key processing characteristics of WebSphere
Message Broker. This has been done by measuring the message throughput which is
possible for a number of different types of message processing, covering multiple message
formats, types and sizes.

This report consists of two parts. These meet different requirements:

1. Part I contains the release highlights and some background information to help
understand the context of the results. It shows:

a. The improvement in performance with WebSphere Message Broker V6 when
compared with WebSphere Business Integration Message Broker V5.

b. The level of message throughput that is achievable when using WebSphere
Message Broker in different ways. These tests use multiple copies of the
message flow and the whole of the server machine to illustrate the
maximum message rate which can be sustained for the individual types of
processing.

The information in this part is presented at a high level and is intended to help
you quickly understand WebSphere Message Broker throughput capabilities.

2. Part II contains measurement data for a wide variety of tests which examine the
processing costs of individual functions using a single copy of the message flow.
This information is provided for those who wish to understand the processing costs of
different components within WebSphere Message Broker such as the differences in
CPU cost between Fixed Length Tagged Delimited Strings and All Elements
Delimited Tagged Delimited Strings. This information is intended for the more
experienced WebSphere Message Broker user who is familiar with the product
concepts and functions. As these tests run a single copy of the message flow.
They do not utilise the whole of the server machine and do not therefore
represent the maximum message throughput which is achievable.

There are a number of changes from previous performance reports. The most significant are:

1. Re-engineered tests to better reflect the processing costs which are encountered
when processing messages with a WebSphere Message Broker message flow. The
previous tests are deprecated and do not appear in this report.

2. Measurement of a selection of product samples which are available with WebSphere
Message Broker V6. This is done for two reasons: Firstly it makes it easier for you to
understand the volume of messages which can be processed for a variety of common
use cases. Previous reports focused on the use of individual nodes which made it
difficult to visualise particular applications. Secondly by using samples it is easy for
you to take exactly the same message flows and message sets and run them in your
own environment. You can then compare the results obtained in your environment
against those published in this report. This can be very useful in validating that a
broker environment is well configured.

3. More extensive analysis of product function, including incremental test cases.

4. Larger range of message sizes including a greater range of persistent message
sizes.

5. A change in layout to separate the overview of message processing capability from
the detailed data which shows the costs of using individual functions.

 Page 8 of 93

The performance measurements focus on the throughput capabilities of the broker using
different message formats and processing node types. The aim of the measurements is to
help you understand how many messages a second can be processed in different situations
as well as helping you to understand the relative costs of the different node types and
approaches to message processing.

You should not attempt to make any direct comparisons of the test results in this report with
what may appear to be similar tests in previous performance reports. This is because the
contents of the test messages are significantly different as is the processing in the tests. It is
not meaningful to make such comparisons.

Some optimisations to the test environment and procedures have been implemented to
minimise the effect of logging for example and to ensure that messages do not build up on
output queues (which has a detrimental effect on message throughput). These are detailed in
the section Summary of Tuning Information.

In many of the tests the business logic used is minimal so the results presented represent the
best throughput that can be achieved for that node type. This should be borne in mind when
performing sizing for WebSphere Message Broker.

 Page 9 of 93

Part I

This part contains an overview of the improvements in performance which were obtained with
WebSphere Message Broker V6 when compared with WebSphere Business Integration
Message Broker V5.

It contains the following sections:

• Release Highlights which outlines the main differences in performance when using
WebSphere Message Broker V6 compared with WebSphere Business Integration
Message Broker V5.

• Additional Information which provides links to other sources of information about

WebSphere Message Broker and related products.

 Page 10 of 93

Release Highlights

Improvements over WebSphere Business Integration Message
Broker V5
Improving Message Broker runtime performance has been a specific focus with WebSphere
Message Broker V6 and as a result there are many improvements in the level of performance
when compared with WebSphere Business Integration Message Broker V5. The
improvements come from two sources - updates to existing function and provision of new
function.

All key areas of Message Broker runtime function have been investigated and improvements
made to improve performance. The main areas of focus were:

• The parsing and streaming of messages
• The cost of processing ESQL
• Message aggregation
• Message Broker infrastructure
• The calling of Java and database procedures

The improvements in these areas can be obtained by upgrading to WebSphere Message
Broker V6. No code or message model changes are required to benefit from the
improvements.

Further improvements are available if you take advantage of new functions such as

• The support for shared variables in ESQL which provides the capability to build an in-
memory cache. This allows an in memory table to be built and accessed within
message flows for example. The function can remove the need to access a database
for read only routing or data validation. Previously a message flow had to issue a
read against a database for each message flow invocation. The Message Routing
sample shipped with the product provides an illustration of such processing.

• The MQGET node which makes it possible to use WebSphere MQ queues as an
intermediate data store for communication between request and reply message flows
for example. The Coordinated Request Reply sample provides an illustration of how
such processing can be implemented. Previously a database had to be used to store
the intermediate data.

• The extended and improved DATETIME functions which make it possible to perform
complex date and time formatting operations using WebSphere Message Broker
provided function. Previously a user had to write functions in ESQL or Java to
perform such processing.

The Table below shows the results of running a series of use cases in WebSphere Business
Integration Message Broker V5 and WebSphere Message Broker V6. The use cases are
briefly described at the end of this section and more fully in Appendix D – Use Case
Descriptions. The use cases are largely taken from the samples gallery of WebSphere
Message Broker V6.

 Page 11 of 93

Use Case Message
Size

V6
Msgs/sec

Improvement
Ratio (V6/V5)

Note

Aggregation 8K 151 1.68 1
Coordinated
Request/Reply

1K 570 3.17 2

Data Warehouse 1K 1122 1.03 3
Large Messaging 16K 309 1.10 4
Message Routing 1K 3800 2.09 5
SWIFT Message
Parse

7K 215 4.13 6

XML Transformation 1K 700 1.94 7

Throughput Comparison for Use Cases.

Notes:

1. As Aggregation in WebSphere Message Broker V6 is now based on the use of
WebSphere MQ queues and not a database the I/O bottleneck which was caused by
database logging has been removed. This combined with a reduced CPU cost per
message has made it possible to increase message throughput in V6 when
compared with V5.

2. Use of a WebSphere MQ queue for intermediate data storage in the WebSphere
Message Broker V6 edition of the message flow removed an I/O bottleneck (due to
database logging requirements). This combined with a reduced cost CPU cost per
message allowed a higher CPU utilisation and message rate to be obtained.

3. There was no change in message throughput in this use case.

4. A reduction in the CPU cost per message in WebSphere Message Broker V6 allowed
a higher message rate to be obtained.

5. By using a routing table which was held in shared variables the CPU cost per
message was reduced. In WebSphere Business Integration Message Broker V5 a
database read was required for every invocation of the message flow. By using
shared variables this could be removed. The reduced CPU cost per message
allowed a higher message rate to be achieved.

6. The rewrite of the MRM TDS parser has significantly reduced the CPU cost per
message of parsing a TDS message. As a result it is possible to achieve a
significantly higher message rate in WebSphere Message Broker V6 when compared
with WebSphere Business Integration Message Broker V5.

7. The ability to now cache a compiled XML stylesheet in WebSphere Message Broker
V6 has improved message throughput when compared with WebSphere Business
Integration Message Broker V5 which did not have this capability.

Each of the use cases was implemented in WebSphere Business Integration Message Broker
V5 and WebSphere Message Broker V6 using the same hardware and prerequisite software.

In two cases the WebSphere Message Broker V6 version of the message flow used new
function to implement the most efficient form of the message flow possible. The Message
Routing use case made use of the shared variables support for the V6 version of the
message flow whereas the V5 version used data from a database. The Coordinated
Request/Reply use case used the MQGET node which is new in WebSphere Message Broker

 Page 12 of 93

V6 as the intermediate data store. The WebSphere Business Integration Message Broker V5
version of the message flow used a database to as the intermediate store.

The Aggregation, Data Warehouse, Large Messaging, SWIFT Message Parse and XML
Transformation use cases contained no new code in the message flows. Exactly the same
message flow was run on V5 and V6.

The results in the table above were obtained by running sufficient copies of each message
flow so that system CPU utilisation was 90% or greater.

These results show that there are significant increases in the level of message throughput
that is achievable with WebSphere Message Broker V6 when compared with WebSphere
Business Integration Message Broker V5. Those use cases showing the best gains where
the Coordinated Request/Reply, Message Routing and SWIFT Message Parse which double
message throughput or better. In the case of the SWIFT Message Parse message
throughput was up by over 4 times. This reflects the improvements in the TDS parser.

Most of the gains in message throughput for the use cases came from improvements to
existing broker function. The CPU cost of many aspects of the broker has been significantly
reduced and as such message throughput can increase for a given amount of CPU power.

Improvements over WebSphere MQ Integrator V2.1
In this report WebSphere Message Broker V6 performance had been compared with that of
WebSphere Business Integration Message Broker V5. The improvements in performance
with WebSphere Message Broker V6. when compared to WebSphere MQ Integrator V2.1 are
very much the same as WebSphere Business Integration Message Broker V5 performance
was essentially the same as that of WebSphere MQ Integrator V2.1

 Page 13 of 93

Use Case Outline
This section contains a brief outline of the tests used to obtain the results presented in the
table above. For more detail on individual test cases see the section Appendix D - Use Case
Descriptions.

• Aggregation
This represents the type of processing that is required when travel is booked and
arrangements for a flight, hotel, car and money must be made. Requests to four
different applications are made and the replies consolidated into a single reply. This
test performs the processing required to split an incoming XML message and perform a
four message aggregation using the Aggregation nodes which are supplied with
WebSphere Message Broker.

• Coordinated Request Reply

This performs the processing needed to enable two applications with different
message formats to communicate with each other. One application has a message
format of self-defining XML and the other uses Custom Wire Format (CWF)
messages. The request and reply processing for a particular request must be
coordinated so that data from the original request is restored to the reply message.

• Data Warehouse
This demonstrates a scenario in which a message flow is used to perform the
archiving of data, such as sales data, into a database. The data is stored for later
analysis by another message flow or application.

• Large Messaging

This is based on the scenario of end-of-day processing of sales data. Messages
representing sales for the day are batched together for transmission to the IT center.
On receipt at the IT center the batched messages are split back out into their
constituent parts for subsequent processing.

• Message Routing
This shows how a message flow can be used to route messages to different
WebSphere MQ queues based on data stored in a database table. This is a
commonly used scenario which is applicable to many different industries and
applications.

• SWIFT Message Parse
This demonstrates the use of WebSphere Message Broker to read and parse a
SWIFT MT543 message for subsequent processing

• XMLT
This shows how a message flow can be used to transform an XML message to
another form of XML message, according to the rules provided by an XSL (eXtensible
Stylesheet Language) stylesheet.

 Page 14 of 93

Additional Information
This section contains links to information about WebSphere Message Broker and associated
products.

The Web Resources section in the development toolkit of WebSphere Message Broker V6
contains links to many additional pieces of information on topics such as Education, Technical
Resources and SupportPacs. The Web resources section can be accessed by selecting Web
Resources from the Help drop down on the development toolkit menu bar.

For additional suggestions consider the following:

• See the announcement letters for

o IBM WebSphere Message Broker V6 which is available at
http://www.ibm.com/software/integration/wbimessagebroker/v6

o IBM WebSphere Message Broker V6 for z/OS which is available at
http://www.ibm.com/software/integration/wbimessagebroker/v6/zos.html

• IBM WebSphere MQ SupportPacs provide you with a wide range of downloadable
code and documentation that complements the WebSphere MQ family of products.
Additional performance reports are also available. These are available at
http://www.ibm.com/software/integration/support/supportpacs.

• For more information about WebSphere Message Broker V6, go to the WebSphere
Message Broker Web site. Product documentation is also available. This is available
at http:/www.ibm.com/software/integration/wbimessagebroker.

• For more information about WebSphere MQ V6, go to the WebSphere MQ Web site.
Product documentation is also available. This is available at
http://www.ibm.com/software/integration/wmq.

• For more information about business integration software from IBM go to WebSphere
Business Integration Web site. This is available at
http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/businessint.

• Get the latest WebSphere Message Broker technical resources at the WebSphere
Business Integration zone. This is available at
http://www.ibm.com/developerworks/websphere/zones/businessintegration.

• The JMS Node testing which was run for this report used a tool called the
Performance Harness for JMS to generate and consume JMS messages. The tool is
useful as a simple way to send and receive JMS messages. It also has the capability
to send and receive WebSphere MQ messages. This makes it ideal for testing
message flows which use the JMS nodes and which perform transformations to/from
WebSphere MQ. The documentation for the tool contains examples of how to run it
to send/receive messages to/from a JMS Provider. More information is available at
http://www.alphaworks.ibm.com/tech/perfharness?open&S_TACT=105AGX21&S_C
MP=AWRSS.

• In order to obtain the maximum message rate for your implementation it is important
that you understand the current best practices for WebSphere Message Broker.
These practices cover the architecture of message flow processing, the coding of
message flows as well as the configuration and tuning of the message broker and
associated components. Such information can be found in the Business Integration
Zone of WebSphere Developer Domain. A suggested starting place is the article at
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_dunn/0403_dunn.html which
highlights the information available and where it may be found.

 Page 15 of 93

Part II

This part contains the description and results of a series of tests which have been run in order
to identify the processing costs of the different functions which are provided with WebSphere
Message Broker.

It contains the following sections:

• Routing and Transformation Processing Profiles which describes the tests and shows
the results obtained when a single copy of the message flow was run.

• Resource Requirements which provides a recommended minimum specification

machine on which to install the product as well as some guidance on memory use for
execution groups running a variety of message flows.

• Tuning which describes the changes made to the default settings for WebSphere

Message Broker V6 and WebSphere MQ in order to obtain the results detailed in this
report.

• Conclusion which summarises the report.

 Page 16 of 93

Routing and Transformation Processing Profiles
This section contains the results of a series of micro tests which illustrate the costs of
performing different types of processing using WebSphere Message Broker such as message
parsing, message streaming, use of Filter nodes etc. These tests are not intended to
represent applications. They are an illustration of the processing costs of specific functions.

The test results were all run using the same methodology. This was to run a single copy of
the message flow (unless specified otherwise) to maximum CPU utilisation and to observe the
message rate obtained. From this a CPU cost per message was calculated. This is
presented in the results table for each measurement.

When comparing the costs of different functions it is recommended to compare them on the
basis of CPU cost per message rather than message rate.

There are many comparisons which can be made using the data in this section which will give
some insight into the relative costs of different implementations such as what is the relative
cost of ESQL and XSLT to process the same message.

The data in this section will allow you to make a comparison on the basis of CPU costs.
Other factors such as the potential for code re-use and the operational considerations of
using a particular technology are not discussed.

Messages Used in Processing
For the majority of tests the message content was common. Different formats (in XML, CWF,
TDS) of a common input message were used. The output message varied dependent on the
test case. The messages are described in the section Appendix C – Test Messages.

For the Publish Subscribe tests a 1K JMS Bytes message was used. This was a sequence of
random data. In these tests the message content was not of interest.

Results Presentation
Each of the tests are described below and accompanied by a table of data which has a format
such as this:

Msg Size Persistent
Message

Rate
(Msgs/sec)

% CPU Busy CPU ms/msg

1K No
4K No
16K No
64K No

256K No

1K Yes
4K Yes
16K Yes
64K Yes

256K Yes

The data in the columns is as follows:

Msg Size records the approximate size of the message used as input to the test. This is the
size of the message payload and does not include the size of any message header. For the
Message Repository Manager (MRM) tests which use CWF and TDS message formats the
input message will be smaller. This is due to the differences in the way in which data is

 Page 17 of 93

formatted. In these cases the input message will still contain the same amount of information
but it will be the CWF or TDS representation of the generic XML representation of the same
data. Most test cases used messages of 1K, 4K, 16K, 64K and 256K. In some cases a more
limited range of message sizes was run where the test was not suitable for the whole range of
message sizes.

Persistent: Indicates whether the messages used in the test were persistent or not

Message Rate: The number of round trips or message flow invocations per second

% CPU Busy: System busy CPU percentage on the server machine. This includes the CPU
used by all processes (WebSphere Message Broker, WebSphere MQ queue manager,
database manager etc) on the system under test. The rate is expressed as a percentage
utilisation of all processors on the machine.

CPU ms/msg: Overall CPU cost per message, expressed as CPU milliseconds per message.
The value is obtained using the calculation:

 ((Number of CPUs * 1000) * (%CPU/100)) / Message Rate.

This cost includes WebSphere Message Broker, WebSphere MQ, DB2, operating system
costs etc. The CPU ms/msg figures reported are specific to the machine on which they were
obtained and if projections of message processing capacity are to be made for other
machines a suitable adjustment must be made in the costs to allow for differences in the
capacity of the two systems.

Response Times
Response time data for the message flow execution is not reported. The tests are configured
to maximise message throughput and minimise CPU costs. As such tests always have a
number of messages waiting on the input node of the message flow so that there is a
message ready to be processed immediately after processing of the current message has
completed. This means that the processing of each message involves queuing time at the
input node. Because of this it is not meaningful to report message processing times as
observed by the client as it will not reflect the true execution time in the message flow.

It is possible to estimate the elapsed time within a message flow in milliseconds from the
results of these tests by dividing 1000 (representing the number of milliseconds in 1 second)
by the message rate for the test.

For example let us suppose that a test achieved a message rate of 2000 per second. The
message flow average execution time is 1000 / 2000 = 0.5ms. For a message rate of 200 per
second the average execution time is 1000/200 = 5ms.

These times are an estimate of the execution time in the message flow and as such represent
the elapsed time between the message being read from the input queue and the result being
placed on the output queue.

If messages are generated or consumed by remote clients an allowance needs to be made
for network delays.

The test descriptions and results follow.

 Page 18 of 93

Minimal Processing
The test in this section illustrates some of the simplest processing which can be performed
with WebSphere Message Broker. As such it illustrates the smallest processing cost that you
could expect for a message flow. This is not typical of the majority of implementations of
Message Broker though. The data is provided for reference purposes only to help you
understand the maximum rate that could be expected for one copy of the message flow.

Typically the processing within a message flow involves message parsing, processing logic
and message serialisation. Under these circumstances the CPU processing costs can
increase significantly and as such the message rate obtained for given amount of CPU will be
lower than for the very simple type of flow presented in this section.

Setting of the MQ Message Headers

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers for the outgoing message are created using
ESQL. To minimise processing costs only the CodedCharSetId and Encoding fields in the
MQMD header are set. The message body is ignored and therefore not used in the output
message.

This test identifies the cost of setting the message header only and creating an output
message with no payload.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 2408.00 33.60 0.56

1k Yes 128.20 5.00 1.56

 Page 19 of 93

Message Parsing and Writing
The tests in this section illustrate the cost of parsing input messages and writing output
messages for different message formats.

Parsing a Message in the MRM Domain
The tests in this section illustrate the CPU processing costs of parsing different message
formats in the MRM domain.

Parsing a Tagged Delimited String, All Elements Delimited Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing an All Elements Delimited, Tagged Delimited String
input message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 765.20 28.00 1.46
4k No 363.40 27.00 2.97

16k No 119.80 26.00 8.68
64k No 32.46 26.00 32.04
256k No 8.12 26.00 128.08

1k Yes 113.20 7.00 2.47
4k Yes 111.00 10.80 3.89

16k Yes 81.20 20.00 9.85
64k Yes 27.52 24.00 34.88
256k Yes 7.78 25.00 128.53

Parsing a Tagged Delimited String, Fixed Length Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Fixed Length, Tagged Delimited String input
message.

 Page 20 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 756.40 28.00 1.48
4k No 358.80 27.00 3.01

16k No 118.40 26.00 8.78
64k No 31.58 26.00 32.93
256k No 7.62 26.00 136.48

1k Yes 111.00 7.00 2.52
4k Yes 111.00 11.00 3.96

16k Yes 76.40 19.60 10.26
64k Yes 27.30 24.20 35.46
256k Yes 7.38 25.40 137.67

Parsing a Tagged Delimited String, Tagged Delimited Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Tagged Delimited String, Tagged Delimited input
message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 655.40 28.00 1.71
4k No 277.80 27.00 3.89

16k No 85.00 26.00 12.24
64k No 22.52 26.00 46.18
256k No 5.64 26.00 184.40

1k Yes 117.20 8.00 2.73
4k Yes 107.80 13.00 4.82

16k Yes 60.00 20.00 13.33
64k Yes 20.60 25.00 48.54
256k Yes 5.52 25.80 186.96

 Page 21 of 93

Parsing a Tagged Delimited String, Tagged Fixed Length Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Tagged Fixed Length, Tagged Delimited String input
message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 607.00 27.80 1.83
4k No 258.80 27.00 4.17

16k No 77.00 26.00 13.51
64k No 20.06 26.00 51.84
256k No 5.02 26.00 207.17

1k Yes 116.60 8.80 3.02
4k Yes 92.60 12.00 5.18

16k Yes 59.40 22.00 14.81
64k Yes 18.72 25.00 53.42
256k Yes 4.87 25.40 208.80

Parsing an MRM XML Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

 Page 22 of 93

This test identifies the cost of parsing an MRM XML input message.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 614.40 28.00 1.82
4k No 282.80 27.00 3.82

16k No 89.60 26.00 11.61
64k No 23.44 26.00 44.37
256k No 6.00 26.00 173.33

1k Yes 110.20 8.00 2.90
4k Yes 104.00 12.60 4.85

16k Yes 59.00 20.00 13.56
64k Yes 21.84 25.20 46.15
256k Yes 5.70 25.00 175.44

Parsing a Custom Wire Format Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Custom Wire Format input message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 972.60 29.00 1.19
4k No 433.00 27.00 2.49

16k No 118.80 26.00 8.75
64k No 31.16 26.00 33.38
256k No 7.66 26.00 135.77

1k Yes 119.60 6.40 2.14
4k Yes 114.00 10.00 3.51

16k Yes 81.20 20.00 9.85
64k Yes 27.40 23.60 34.45
256k Yes 7.50 25.20 134.40

 Page 23 of 93

Parsing a Comma Separated Value Input Message using Data Patterns

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the entire incoming message is copied to the outgoing message. In
addition the format of the outgoing message is set to XML. This causes a full parse of the
incoming message using the Tagged Delimited String Parser and a full write of the outgoing
message using the Generic XML Writer.

This test identifies the cost of converting an incoming Comma Separated Value input
message using the Data Pattern function with the Tagged Delimited String Parser, to an
outgoing Generic XML Message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 359.60 27.00 3.00

1k Yes 100.80 10.00 3.97

Parsing a SWIFT 543 Input Message using the Tagged Delimited String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a SWIFT MT543 message using the Tagged Delimited
String format. A single implementation of this message was used which was approximately
7K in size.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

7k No 55.80 26.00 18.64

7k Yes 48.76 24.00 19.69

 Page 24 of 93

Parsing and Writing a SWIFT 543 Input Message using the Tagged Delimited
String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the Envelope within the incoming SWIFT Message is copied over to
the outgoing message. This causes a full parse of the incoming message and a full
serialisation of the outgoing message.

This test identifies the cost of parsing a SWIFT MT543 message and serializing it again using
the Tagged Delimited String format. A single implementation of this message was used
which was approximately 7K in size.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

7k No 26.44 26.00 39.33

7k Yes 23.50 24.00 40.85

Parsing a TLOG SA Input Message using the Tagged Delimited String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a TLOG input message using the Tagged Delimited
String format.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

2k No 54.00 26.00 19.26

2k Yes 41.48 21.00 20.25

 Page 25 of 93

Parsing a JMS SOAP message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The incoming JMS SOAP message is parsed. The output message consists of a message
header only and no payload.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 651.00 28.00 1.72

1k Yes 109.60 7.00 2.55

Parsing a JMS SOAP Message with Attachments

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The incoming MIME JMS message is parsed and the soap envelope extracted and parsed
using the MIME Parser within the MRM Domain. The output message consists of a message
header only and no payload.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 118.20 14.00 4.74

1k Yes 68.80 11.00 6.40

Parsing a JMS SOAP Message with Attachments and converting it to a Standard
SOAP message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The incoming MIME JMS message is parsed and the soap envelope extracted and parsed
using the MRM domain parser. The extracted SOAP message is written to the output queue
as a standard SOAP message.

 Page 26 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 56.80 35.20 24.79

1k Yes 24.80 16.20 26.13

Parsing and Writing a JMS SOAP Message and Modifying a Field

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The incoming JMS SOAP message is parsed. One field is modified and the resulting
message is written to the output queue.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 186.40 27.20 5.84

1k Yes 81.20 14.00 6.90

 Page 27 of 93

Writing a Message in the MRM Domain
The tests in this section illustrate the CPU processing costs of creating an output message
with different formats in the MRM domain. This is the processing associated with taking a
message tree in OutputRoot and flattening it to create a bitstream which is the output
message.

Writing a Tagged Delimited String, All Elements Delimited Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to an
All Elements Delimited, Tagged Delimited String outgoing message. This causes a full parse
of the incoming message payload which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out an All
Elements Delimited, Tagged Delimited String output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 504.20 28.00 2.22
4k No 232.60 27.00 4.64

16k No 73.80 26.00 14.09
64k No 19.28 26.00 53.94
256k No 4.78 26.00 217.66

1k Yes 111.80 9.00 3.22
4k Yes 82.00 12.00 5.85

16k Yes 58.60 23.00 15.70
64k Yes 17.48 24.00 54.92
256k Yes 4.60 25.20 219.04

Writing a Tagged Delimited String, Fixed Length Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Fixed Length, Tagged Delimited String outgoing message. This causes a full parse of the
incoming message payload which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out a Fixed
Length, Tagged Delimited String output message.

 Page 28 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 501.40 28.00 2.23
4k No 236.40 26.80 4.53

16k No 75.20 26.00 13.83
64k No 19.76 26.00 52.63
256k No 4.89 26.00 212.51

1k Yes 109.40 9.00 3.29
4k Yes 81.60 11.80 5.78

16k Yes 57.00 22.00 15.44
64k Yes 17.62 24.00 54.48
256k Yes 4.61 25.00 216.73

Writing a Tagged Delimited String, Tagged Fixed Length Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Tagged Fixed Length, Tagged Delimited String outgoing message. This causes a full parse of
the incoming message payload which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out a Tagged
Fixed Length, Tagged Delimited String output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 483.00 28.00 2.32
4k No 226.20 26.80 4.74

16k No 69.20 26.00 15.03
64k No 18.02 26.00 57.71
256k No 4.47 26.00 232.66

1k Yes 109.00 9.60 3.52
4k Yes 80.80 12.00 5.94

16k Yes 47.80 20.00 16.74
64k Yes 15.72 24.00 61.07
256k Yes 4.13 24.60 238.03

 Page 29 of 93

Writing a Tagged Delimited String, Tagged Delimited Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Tagged Delimited String, Tagged Delimited outgoing message. This causes a full parse of the
incoming message payload which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out a Tagged
Delimited String output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 503.60 27.60 2.19
4k No 224.20 26.80 4.78

16k No 69.20 26.00 15.03
64k No 18.04 26.00 57.65
256k No 4.47 26.00 232.66

1k Yes 104.00 9.00 3.46
4k Yes 81.00 12.40 6.12

16k Yes 48.36 20.00 16.54
64k Yes 15.90 24.00 60.38
256k Yes 4.20 25.00 237.87

Writing an MRM XML Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to an
MRM XML outgoing message. This causes a full parse of the incoming message payload
which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out an MRM XML
output message.

 Page 30 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 436.40 28.00 2.57
4k No 175.40 26.80 6.11

16k No 51.60 26.00 20.16
64k No 13.40 26.00 77.61
256k No 3.33 26.00 311.94

1k Yes 105.20 10.00 3.80
4k Yes 80.60 14.60 7.25

16k Yes 40.12 22.20 22.13
64k Yes 12.08 24.60 81.46
256k Yes 3.13 24.80 316.73

Writing a Custom Wire Format Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Custom Wire Format outgoing message. This causes a full parse of the incoming message
payload which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out a Custom Wire
Format output message.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 639.40 28.00 1.75
4k No 313.60 27.00 3.44

16k No 102.20 26.00 10.18
64k No 26.46 26.00 39.30
256k No 6.46 26.00 160.99

1k Yes 112.80 8.00 2.84
4k Yes 98.00 11.00 4.49

16k Yes 69.20 20.00 11.56
64k Yes 23.58 24.20 41.05
256k Yes 6.14 25.00 162.87

 Page 31 of 93

Parsing a Message in the XML Domain
The tests in this section illustrate the CPU processing costs of parsing different message
formats in the XML domain.

Parsing a Generic XML Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Generic XML input message. As the message body is
ignored there are no writing costs.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1411.40 30.00 0.85
4k No 886.80 29.00 1.31

16k No 352.40 27.00 3.06
64k No 100.60 27.00 10.74
256k No 24.34 26.00 42.73

1k Yes 124.00 5.80 1.87
4k Yes 116.80 7.00 2.40

16k Yes 100.60 11.00 4.37
64k Yes 61.60 19.80 12.86
256k Yes 17.56 20.20 46.01

Parsing a Generic XML Input Message Containing XML Entities

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message including the tags and
entities. The output message consists of a message header only and no payload.

This test identifies the cost of parsing a Generic XML input message containing many XML
Entities to see what the effect of having entities present in the message is.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1905.00 32.00 0.67
64k No 112.00 30.00 10.71

 Page 32 of 93

Writing a Message in the XML Domain
The test in this section illustrates the CPU processing costs of using the XML domain to
create an output message. This is the processing associated with taking a message tree in
OutputRoot and flattening it to create a bitstream which is the output message.

Writing a Generic XML Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the entire Message from the incoming message is copied over to
the outgoing message. In addition the last element in the incoming message is modified. This
causes a full parse of the incoming message which is then written as the payload of the
output message.

This test identifies the cost of parsing a Generic XML input message and writing a Generic
XML output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1109.20 30.00 1.08
4k No 584.60 28.00 1.92

16k No 201.00 27.00 5.37
64k No 51.80 27.00 20.85
256k No 12.26 27.00 88.09

1k Yes 111.40 6.00 2.15
4k Yes 91.60 6.60 2.88

16k Yes 75.40 13.00 6.90
64k Yes 32.98 19.20 23.29
256k Yes 9.48 22.00 92.83

 Page 33 of 93

External Resources
The tests in this section illustrate the processing cost of accessing resources such as a
database or external procedure.

Accessing a Database from a Message Flow
The tests in this section illustrate the processing cost of performing operations on a DB2
database.

Reading from a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a SELECT is performed to obtain a piece of data from
the Database. This data is used to validate an element in the input message.

This test identifies the cost of performing a Database SELECT.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 968.80 29.00 1.20
4k No 928.80 29.80 1.28

16k No 689.20 29.00 1.68
64k No 181.60 13.40 2.95
256k No 46.08 8.00 6.94

1k Yes 112.20 6.40 2.28
4k Yes 108.20 7.00 2.59

16k Yes 114.60 8.00 2.79
64k Yes 86.40 10.00 4.63
256k Yes 33.78 8.00 9.47

Inserting into a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition an INSERT is performed to populate the database with a
piece of data. This data is obtained from an element in the input message.

This test identifies the cost of performing a Database INSERT.

 Page 34 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 225.00 8.00 1.42
4k No 225.40 8.60 1.53

16k No 224.20 10.40 1.86
64k No 181.00 13.80 3.05
256k No 46.04 8.00 6.95

1k Yes 88.00 5.80 2.64
4k Yes 87.20 6.00 2.75

16k Yes 82.20 7.00 3.41
64k Yes 71.40 8.00 4.48
256k Yes 31.88 8.00 10.04

Updating a row in a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition an UPDATE is performed to update a piece of data in
the database with a new value. This value is obtained from an element in the input message.

This test identifies the cost of performing a Database UPDATE.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 870.80 29.60 1.36
4k No 841.20 29.20 1.39

16k No 690.00 28.60 1.66
64k No 181.80 11.80 2.60
256k No 46.10 7.00 6.07

1k Yes 111.00 7.00 2.52
4k Yes 108.20 6.80 2.51

16k Yes 115.20 8.00 2.78
64k Yes 89.00 9.00 4.04
256k Yes 32.38 7.00 8.65

 Page 35 of 93

Calling External Procedures
The tests in this section illustrate the processing cost of invoking an external procedure such
as a Java class or database stored procedure with different parameters.

Calling an External Java Procedure with no Parameters

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external Java
procedure. The procedure receives zero input parameters and passes back zero parameters
returning immediately.

This test identifies the cost of calling a Java procedure with zero parameters.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 224.600 26.000 0.002

1k Yes 83.000 12.000 0.003

Calling an External Java Procedure with One Integer Input Parameter

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external Java
procedure. The procedure receives one Integer parameter and passes back zero parameters
returning immediately.

This test identifies the cost of calling a Java procedure with one Integer parameter.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 154.400 26.000 0.003

1k Yes 82.000 16.000 0.004

 Page 36 of 93

Calling an External Java Procedure with Twenty Integer Input Parameters

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external Java
procedure. The procedure receives twenty parameters all of which are integers and passes
back zero parameters returning immediately.

This test identifies the cost of calling a Java procedure with twenty parameters which are
integers.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 24.000 26.000 0.022

1k Yes 22.540 25.000 0.022

Calling an External Database Stored Procedure with no Parameters.

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external database
stored procedure. The procedure receives zero input parameters and passes back zero
parameters returning immediately.

This test identifies the cost of calling a Database Stored procedure with zero parameters.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 5.620 27.400 0.098

1k Yes 5.520 27.000 0.098

 Page 37 of 93

Calling an External Database Stored Procedure with One Integer Input
Parameter

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external database
stored procedure. The procedure receives one parameter which is an integer and passes
back zero parameters returning immediately.

This test identifies the cost of calling a Database Stored procedure with one parameter which
is an integer.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 5.120 27.200 0.106

1k Yes 5.020 27.000 0.108

Calling an External Database Stored Procedure with Twenty Integer Input
Parameters

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external database
stored procedure. The procedure receives twenty parameters which are integers and passes
back zero parameters returning immediately.

This test identifies the cost of calling a Database Stored procedure with twenty parameters
which are integers.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 4.228 24.800 0.117

1k Yes 4.138 24.000 0.116

 Page 38 of 93

HTTP
The test in this section illustrates the processing cost of invoking an empty web service using
the HTTP transport protocol.

Invoking an Empty Web Service

This test consists of two message flows.

1. An HTTP request flow
MQ Input Node -> HTTPRequestNode -> Compute Node -> MQ Output Node

2. A reply flow which has

HTTPInputNode -> Compute Node -> HTTPReplyNode.

Within the request flow the incoming input message is sent out as an HTTP request. The
reply flow simulates a Web Service response, which does no computation, and sends an
HTTP reply back to the requester. The request flow receives the HTTP response and
assimilates the data back into an MQ based outgoing message.

This test identifies the cost of performing an HTTP request and receiving an HTTP reply.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 78.80 22.80 11.57
4k No 71.60 24.00 13.41

16k No 57.00 26.40 18.53
64k No 28.24 31.40 44.48
256k No 7.78 31.60 162.47

1k Yes 58.00 18.80 12.97
4k Yes 54.60 20.20 14.80

16k Yes 44.82 23.20 20.71
64k Yes 22.74 26.60 46.79
256k Yes 7.46 30.60 164.08

 Page 39 of 93

JMS Nodes
The tests in this section illustrate the processing cost of utilising JMS messages, which are
new in WebSphere Message Broker V6, in a variety of ways.

Receiving and sending JMS Messages

This test consists of JMSInput Node -> JMSOutput Node

The JMSInput Node acts as a JMS Subscriber to a JMS Provider.

The JMS Output Node acts as a Topic Publisher and sends the same message to another
JMS Provider.

For this test the JMS Provider was a separate WebSphere Message Broker running a Real-
time Optimized flow.

This test uses a JMS Bytes message.

This test identifies the cost of receiving a JMS Message from a JMS Provider and publishing
that same message to another JMS Provider.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1380.00 27.00 0.78
4k No 1120.00 27.00 0.96

16k No 523.00 23.00 1.76
64k No 108.00 14.00 5.19

Note: The maximum supported message size for the WebSphere MQ Real-time client is 100K
and so it was not possible to measure with 256K messages.

JMS to MQ Protocol conversion

This test consists of JMSInput Node -> JMSMQTransform Node -> MQOutput Node

The JMSInput Node is configured to receive a JMS bytes message as a subscriber to a JMS
Provider.

Within the JMSMQTransform node the tree built from the JMS input message is converted to
one suitable for the MQ transport.

An MQ output message is written.

For this test the JMS Provider was a separate WebSphere Message Broker running a Real-
time Optimized flow.

This test identifies the cost of converting a JMS Message to an MQ Message.

 Page 40 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1250.00 29.00 0.93
4k No 930.00 29.00 1.25

16k No 460.00 25.00 2.17
64k No 90.00 13.00 5.78

Note: The maximum supported message size for the WebSphere MQ Real-time client is 100K
and so it was not possible to measure with 256K messages.

Receiving and sending JMS Messages with an XML Transformation

This test consists of JMSInput Node ->XMLT Node-> JMSOutput Node

The JMSInput Node is configured to receive a JMS Text message as a subscriber to a JMS
Provider.

Within the XMLT node a compiled stylesheet is used to significantly change the structure of
the incoming message. The new structure is written as the output message.

The JMS Output Node acts as a Topic Publisher and sends the same transformed message
to another JMS Provider.

This test identifies the cost of using JMS input and output messages with an XSL stylesheet
to perform message manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 310.00 27.00 3.48
4k No 165.00 27.00 6.55

16k No 59.00 27.00 18.31
64k No 17.60 26.00 59.09

Note: The maximum supported message size for the WebSphere MQ Real-time client is 100K
and so it was not possible to measure with 256K messages.

JMS to MQ Protocol conversion with an XML Transformation

This test consists of

JMSInput Node -> JMSMQTransform Node ->XMLT Node-> MQOutput Node

The JMSInput Node is configured to receive a JMS Text message as a subscriber to a JMS
Provider.

Within the JMSMQTransform node the tree built from the JMS input message is converted to
one suitable for the MQ transport.

Within the XMLT node a compiled stylesheet is used to significantly change the structure of
the incoming message. The new structure is written as an MQ output message.

 Page 41 of 93

This test identifies the cost of using a JMS input message and MQ output message with an
XSL stylesheet perform message manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 250.00 27.00 4.32
4k No 131.00 27.00 8.24

16k No 47.00 26.00 22.13
64k No 13.30 26.00 78.20

Note: The maximum supported message size for the WebSphere MQ Real-time client is 100K
and so it was not possible to measure with 256K messages.

 Page 42 of 93

Routing and Transformation Logic
The tests in this section illustrate the processing cost of simple routing and transformation
logic using a variety of routing and transformation technologies (ESQL, JavaCompute node,
XML Transformation). A number of the tests are performed for each of the technologies thus
allowing a simple comparison of CPU processing costs to be made. In other cases a
comparison is only made within a technology such as looking at the efficiency of different
parsers whilst using ESQL.

These tests are not a definitive statement of the relative processing costs of the different
technologies. They are provided for illustrative purposes only. Message processing
performance will be affected by the complexity of the messages and processing to be
performed on the messages.

Using ESQL
The tests in this section illustrate the processing costs of using ESQL for different routing and
transformation operations.

Filter an Incoming Message based on the First Element in the Message using the
XML Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the first element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the start of a message using the XML
parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 2442.60 35.00 0.57
4k No 1994.20 33.80 0.68

16k No 673.80 22.00 1.31
64k No 168.80 12.40 2.94
256k No 39.60 9.80 9.90

1k Yes 132.40 5.00 1.51
4k Yes 117.40 5.00 1.70

16k Yes 108.00 6.20 2.30
64k Yes 65.60 8.00 4.88
256k Yes 22.36 8.00 14.31

 Page 43 of 93

Filter an Incoming Message Based on the Last Element in the Message using the
XML Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the last element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the end of a message using the XML
parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1890.60 32.80 0.69
4k No 1041.00 29.80 1.15

16k No 374.40 28.00 2.99
64k No 99.60 28.00 11.24
256k No 23.44 28.00 47.78

1k Yes 123.80 5.00 1.62
4k Yes 101.00 5.00 1.98

16k Yes 82.00 8.80 4.29
64k Yes 46.12 16.00 13.88
256k Yes 12.96 16.60 51.23

Filter an Incoming Message Based on the First Element in the Message using the
XMLNSC Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the first element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the start of a message using the
XMLNSC parser.

 Page 44 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 2463.60 33.00 0.54
4k No 2162.80 34.00 0.63

16k No 670.80 22.80 1.36
64k No 169.40 12.00 2.83
256k No 39.70 9.60 9.67

1k Yes 132.20 5.00 1.51
4k Yes 117.20 4.80 1.64

16k Yes 110.20 5.80 2.11
64k Yes 65.60 8.00 4.88
256k Yes 22.02 8.00 14.53

Filter an Incoming Message Based on the Last Element in the Message using the
XMLNSC Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the last element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the end of a message using the
XMLNSC parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1826.40 31.20 0.68
4k No 1018.60 30.20 1.19

16k No 370.40 28.00 3.02
64k No 103.20 28.40 11.01
256k No 25.06 28.60 45.65

1k Yes 108.60 5.00 1.84
4k Yes 81.40 5.00 2.46

16k Yes 78.00 8.40 4.31
64k Yes 46.70 15.60 13.36
256k Yes 13.38 16.80 50.22

 Page 45 of 93

Computation on an Input Message using the XML Parser

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is used to calculate the total of all items and prices within a
repeating structure which is in the input message. The totals along with a copy of the input
message are written in the outgoing message.

This test identifies the cost of using ESQL to perform computation and message parsing
using the XML parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 886.40 29.00 1.31
4k No 370.80 27.40 2.96

16k No 110.20 27.00 9.80
64k No 27.28 26.80 39.30
256k No 6.34 26.20 165.30

1k Yes 108.40 6.20 2.29
4k Yes 86.00 8.00 3.72

16k Yes 67.00 18.20 10.87
64k Yes 22.26 23.00 41.33
256k Yes 5.60 23.80 170.00

Computation on an Input Message using the XMLNSC Parser

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is used to calculate the total of all items and prices within a
repeating structure which is in the input message. The totals along with a copy of the input
message are written out in the outgoing message.

This test identifies the cost of using ESQL to perform computation and message parsing
using the XMLNSC parser.

 Page 46 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 836.20 29.00 1.39
4k No 362.80 28.20 3.11

16k No 111.20 27.00 9.71
64k No 28.56 27.00 37.82
256k No 6.66 27.00 162.16

1k Yes 117.20 7.00 2.39
4k Yes 88.60 8.40 3.79

16k Yes 66.40 18.20 10.96
64k Yes 22.98 22.60 39.34
256k Yes 5.82 24.00 164.95

Manipulation of an Input Message using the XML Parser

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is written to significantly change the structure of the incoming
message. The new structure is written as the output message

This test identifies the cost of using ESQL to perform message manipulation and message
parsing using the XML parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 846.20 28.00 1.32
4k No 341.40 27.00 3.16

16k No 99.20 26.00 10.48
64k No 23.02 26.00 45.18
256k No 4.20 26.00 247.74

1k Yes 110.80 6.20 2.24
4k Yes 87.20 9.00 4.13

16k Yes 64.00 19.20 12.00
64k Yes 19.54 23.40 47.90
256k Yes 3.94 25.00 254.07

 Page 47 of 93

Manipulation of an Input Message using the XMLNSC Parser

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is written to significantly change the structure of the incoming
message. The new structure is written as the output message

This identifies the cost of using ESQL to perform message manipulation and message
parsing using the XMLNSC parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 864.80 28.00 1.30
4k No 358.20 27.00 3.02

16k No 105.40 26.20 9.94
64k No 24.98 26.00 41.63
256k No 4.53 26.00 229.58

1k Yes 110.40 6.20 2.25
4k Yes 86.20 8.20 3.81

16k Yes 70.60 20.00 11.33
64k Yes 20.90 23.00 44.02
256k Yes 4.23 25.00 236.29

Manipulation of an Input Message using the EVAL Function on all Lines of
ESQL in One Invocation

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is written to significantly change the structure of the incoming
message. The new structure is written as the output message The ESQL processing is run
within a single EVAL statement.

This test identifies the cost of using the EVAL function to run a large amount of ESQL

 Page 48 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 218.40 26.20 4.80
4k No 157.20 26.00 6.62

16k No 72.80 26.00 14.29
64k No 20.82 26.00 49.95
256k No 4.09 26.00 254.53

1k Yes 82.60 12.00 5.81
4k Yes 81.00 16.00 7.90

16k Yes 56.60 22.20 15.69
64k Yes 18.02 23.60 52.39
256k Yes 3.84 24.80 258.20

Manipulation of an Input Message using the EVAL Function on Each Line of
ESQL

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is written to significantly change the structure of the incoming
message. The new structure is written as the output message. Each line of ESQL is run
individually in an EVAL statement

This test identifies the cost of using the EVAL function on many lines of ESQL.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 109.20 26.00 9.52
4k No 29.50 26.00 35.25

16k No 7.50 26.00 138.67
64k No 1.87 26.00 557.34
256k No 0.44 26.00 2374.43

1k Yes 77.20 22.20 11.50
4k Yes 24.84 23.00 37.04

16k Yes 7.08 25.20 142.37
64k Yes 1.67 25.00 598.80
256k Yes 0.41 25.80 2541.87

 Page 49 of 93

Manipulation of an Input Message Using the SELECT Function

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node an ESQL SELECT function is written to significantly change the
structure of the incoming message. The new structure is written as the output message.

This test identifies the cost of using an ESQL SELECT function to perform message
manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 879.60 28.00 1.27
4k No 368.80 27.00 2.93

16k No 110.20 26.20 9.51
64k No 28.28 26.00 36.78
256k No 6.98 26.40 151.29

1k Yes 118.60 7.00 2.36
4k Yes 89.20 8.20 3.68

16k Yes 70.00 19.00 10.86
64k Yes 23.04 23.00 39.93
256k Yes 6.22 24.00 154.34

Manipulation of an Input Message using the ROW Function

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node the ESQL SELECT function within an ESQL ROW function is written
to significantly change the structure of the incoming message. The new structure is written as
the output message

This test identifies the cost of using an ESQL ROW function to perform message
manipulation.

 Page 50 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 881.80 28.00 1.27
4k No 364.80 27.00 2.96

16k No 109.20 26.00 9.52
64k No 27.94 26.00 37.22
256k No 6.92 26.00 150.29

1k Yes 112.60 6.60 2.34
4k Yes 87.00 8.00 3.68

16k Yes 70.00 19.40 11.09
64k Yes 23.04 23.00 39.93
256k Yes 6.20 24.00 154.84

Manipulation of an Input Message using the ITEM Function

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node an ESQL SELECT function using the ITEM clause is written to
significantly change the structure of the incoming message. The new structure is written as
the output message.

This test identifies the cost of using an ESQL ITEM function to perform message
manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 883.00 28.20 1.28
4k No 368.80 27.00 2.93

16k No 111.40 26.00 9.34
64k No 28.46 26.00 36.54
256k No 6.98 26.20 150.14

1k Yes 111.80 6.60 2.36
4k Yes 87.20 8.00 3.67

16k Yes 71.20 19.20 10.79
64k Yes 23.40 23.00 39.32
256k Yes 6.30 24.00 152.38

 Page 51 of 93

Calling an Internal ESQL Procedure with No Parameters

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an internal ESQL
procedure. The procedure receives zero input parameters and passes back zero parameters
returning immediately.

This test identifies the cost of calling an ESQL procedure with zero parameters.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 464.000 27.000 0.001

1k Yes 112.800 9.000 0.002

Calling an Internal ESQL Procedure with One Integer Input Parameter

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an internal ESQL
procedure. The procedure receives one integer parameter and passes back zero parameters
returning immediately.

This test identifies the cost of calling an ESQL procedure with one Integer parameter.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 398.400 27.000 0.001

1k Yes 113.200 10.000 0.002

Calling an Internal ESQL Stored Procedure with Twenty Integer Input
Parameters

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message Two thousand identical calls are made to an internal ESQL

 Page 52 of 93

procedure. The procedure receives twenty parameters all of which are integers and passes
back zero parameters returning immediately.

This test identifies the cost of calling an ESQL procedure with twenty parameters which are
integers.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 149.400 26.000 0.003

1k Yes 82.800 16.000 0.004

Using Java
The tests in this section illustrate the processing costs of using the JavaCompute node for
different routing and transformation operations.

Filter an Incoming Message Based on the First Element in the Message using the
Java Compute Nodes XPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the first element of the incoming message is examined using
the XPath capability. The result is always set to be true and thus the message is propagated
to the MQOutput node.

This test identifies the cost of filtering on an element at the start of a message using the Java
Compute Node XPath capability.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 2221.40 32.60 0.59
4k No 1879.80 32.40 0.69

16k No 672.20 22.80 1.36
64k No 170.80 13.00 3.04
256k No 39.84 10.00 10.04

1k Yes 129.40 5.00 1.55
4k Yes 117.00 5.00 1.71

16k Yes 110.20 6.60 2.40
64k Yes 64.40 8.00 4.97
256k Yes 22.34 8.00 14.32

 Page 53 of 93

Filter an Incoming Message Based on the Last Element in the Message using the
Java Compute Nodes XPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the last element of the incoming message is examined using
the XPath capability. The result is always set to be true and thus the message is propagated
to the MQOutput node

This test identifies the cost of filtering on an element at the end of a message using the Java
Compute Node XPath capability.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1722.60 32.60 0.76
4k No 959.40 30.00 1.25

16k No 349.80 28.00 3.20
64k No 96.00 28.00 11.67
256k No 22.64 28.00 49.47

1k Yes 117.60 5.00 1.70
4k Yes 99.40 5.20 2.09

16k Yes 82.80 9.00 4.35
64k Yes 45.72 16.00 14.00
256k Yes 12.92 17.20 53.25

Filter an Incoming Message Based on the First Element in the Message using the
Java Compute Nodes GetByPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the first element of the incoming message is examined using
the GetByPath capability. The result is always set to be true and thus the message is
propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the start of a message using the Java
Compute Node GetByPath capability.

 Page 54 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 2491.00 35.00 0.56
4k No 2029.60 34.40 0.68

16k No 672.80 22.00 1.31
64k No 171.20 12.60 2.94
256k No 39.72 9.60 9.67

1k Yes 132.80 5.00 1.51
4k Yes 117.00 5.00 1.71

16k Yes 109.60 6.20 2.26
64k Yes 65.80 8.00 4.86
256k Yes 21.98 8.00 14.56

Filter an Incoming Message Based on the Last Element in the Message using the
Java Compute Nodes GetByPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the last element of the incoming message is examined using
the GetByPath capability. The result is always set to be true and thus the message is
propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the end of a message using the Java
Compute Node GetByPath capability.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 1847.00 33.00 0.71
4k No 1010.00 30.00 1.19

16k No 367.40 28.00 3.05
64k No 98.80 28.00 11.34
256k No 23.16 28.00 48.36

1k Yes 121.40 5.00 1.65
4k Yes 100.20 5.00 2.00

16k Yes 81.80 8.80 4.30
64k Yes 46.08 16.00 13.89
256k Yes 13.04 17.00 52.15

 Page 55 of 93

Computation on an Input Message using the Java Compute Nodes XPath
Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node Java code is used to calculate the total of all items and prices
within a repeating structure which is in the input message. The totals along with a copy of the
input message are written in the outgoing message.

This test identifies the cost of using Java to perform computation and message parsing using
the XML parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 793.20 29.00 1.46
4k No 314.00 27.00 3.44

16k No 91.60 26.60 11.62
64k No 23.10 26.20 45.37
256k No 3.51 26.00 296.47

1k Yes 102.20 6.20 2.43
4k Yes 80.80 9.60 4.75

16k Yes 58.40 19.20 13.15
64k Yes 19.48 23.20 47.64
256k Yes 2.04 25.00 490.68

Manipulation of an Input Message using the Java Compute Nodes XPath
Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node Java code, utilising the XPath capability is used to
significantly change the structure of the incoming message. The new structure is written as
the output message.

This test identifies the cost of using Java code and XPath to perform message manipulation.

 Page 56 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 602.00 29.40 1.95
4k No 211.60 27.00 5.10

16k No 59.00 26.00 17.63
64k No 14.88 26.00 69.89
256k No 2.24 25.80 461.54

1k Yes 108.40 7.40 2.73
4k Yes 81.20 12.00 5.91

16k Yes 47.06 22.20 18.87
64k Yes 13.72 24.60 71.72
256k Yes 1.04 25.20 967.37

Manipulation of an Input Message using the Java Compute Nodes GetByPath
Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node Java code, utilising the GetByPath capability is used to
significantly change the structure of the incoming message. The new structure is written as
the output message.

This test identifies the cost of using Java code and GetByPath to perform message
manipulation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 877.40 28.00 1.28
4k No 326.80 27.00 3.30

16k No 90.60 26.00 11.48
64k No 22.36 26.00 46.51
256k No 5.48 26.00 189.78

1k Yes 111.20 6.00 2.16
4k Yes 86.00 9.20 4.28

16k Yes 57.00 18.60 13.05
64k Yes 19.32 24.00 49.69
256k Yes 5.02 24.60 196.02

 Page 57 of 93

Using XMLT
The tests in this section illustrate the processing costs of using an XML Transformation node
to perform a computation and manipulation of an input message.

Computation on an Input Message

This test consists of MQ Input node -> XMLT Node -> MQ Output Node.

Within the XMLT Node a compiled stylesheet is used to calculate the total of all items and
prices within a repeating structure which is in the input message. The totals along with a copy
of the input message are written in the outgoing message.

This test identifies the cost of using an XSL stylesheet to perform computation and message
parsing using the XML parser.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 277.40 27.00 3.89
4k No 166.80 27.00 6.47

16k No 65.00 27.00 16.62
64k No 19.14 27.00 56.43
256k No 5.82 27.00 185.57

1k Yes 102.80 12.00 4.67
4k Yes 80.00 15.00 7.50

16k Yes 47.52 21.20 17.85
64k Yes 16.36 24.00 58.68
256k Yes 5.12 24.20 189.06

Manipulation of an Input Message

This test consists of MQ Input node -> XMLT Node -> MQ Output Node.

Within the XMLT Node a compiled stylesheet is used to significantly change the structure of
the incoming message. The new structure is written as the output message.

This test identifies the cost of using an XSL stylesheet to perform message manipulation.

 Page 58 of 93

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 295.60 27.00 3.65
4k No 188.60 27.00 5.73

16k No 78.00 27.00 13.85
64k No 23.88 27.00 45.23
256k No 7.60 30.00 157.89

1k Yes 105.60 12.00 4.55
4k Yes 81.00 14.00 6.91

16k Yes 55.60 20.80 14.96
64k Yes 20.44 24.20 47.36
256k Yes 6.80 24.60 144.71

 Page 59 of 93

Publish Subscribe
The tests in this section illustrate the processing costs of using the publish/subscribe
functions within WebSphere Message Broker with different message protocols and varying
numbers of subscribers.

Topic Based Publish/Subscribe using Non Persistent MQ Messages

This test consists of MQInput node -> Publication node.

A publisher publishes a message on a single topic. The test is run repeatedly with varying
numbers of subscribers (1, 10, 100 and 1000). All subscribers are registered to receive
messages on the single topic.

Non persistent MQ messages 1K in size are used by the publisher.
This test identifies the cost of using the Publication node for a single publisher, varying
subscribers, single topic and a single copy of the message flow when using non persistent
MQ messages.

The results of running this test are given in the table below.

Publishers Topics Subscribers Msg Size Persistent Message Rate
(Msgs/sec)

% CPU
Busy

CPU
ms/msg

1 1 1 1k No 3060.00 22.00 0.29
1 1 10 1k No 6320.00 28.00 0.18
1 1 100 1k No 5454.00 29.00 0.21
1 1 1000 1k No 3503.00 35.00 0.40

Topic Based Publish/Subscribe using MQ Real-time Messages

This test consists of a Real-time OptimizedFlow Node.

A publisher publishes a message on a single topic. The test is run with a single subscriber
which is registered to receive messages on the single topic.

Both the publisher and subscriber use the WebSphere MQ Real-time transport to publish and
subscribe to messages.

This test identifies the cost of using the Publication node for a single publisher, subscriber,
topic and a single copy of the message flow when using the WebSphere MQ Real-time
transport.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1k No 15200.00 23.00 0.06

 Page 60 of 93

Scaling Message Throughput
The tests in this section show the effect of using two different approaches to increase
message throughput for a message flow. These are the use of additional instances and
assigning one copy of the message flow to each of multiple execution groups.

Using Additional Instances

This test consists of running the Large Messaging sample with a varying number of instances
of the message flow in a single execution group.

The purpose of this is to see how effective the use of additional instances is in increasing
message throughput and achieving higher system CPU utilisation. The benefits observed in
any given situation will depend on the processing requirements of the message flow. CPU
bound message flows will have different scaling characteristics from those which are I/O
bound for example.

The results of running this test are given in the table below.

Instances Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1 1k No 700.8 28.00 1.60
2 1k No 1218.6 57.00 1.87
4 1k No 1739.4 94.80 2.18
8 1k No 1263.6 88.40 2.80

The results in the table show that when running with 2 instances of the message flow there is
an increase in message throughput. It was possible to achieve 1.74 times that achieved
when with running one instance.

When running with 4 instances of the message flow message throughput continued to
increase. It was possible to achieve 2.48 times that of one instance. The benefits were
limited by the amount of available CPU. CPU utilisation at this point was almost 95%. In
addition to the four instances of the message flow there was also the Message Broker queue
manager listener process which is used to receive messages from the client machine. In a
busy system this process alone is capable of fully using one processor.

When using 8 instances of the message flow, message throughput actually declined when
compared with the 4 instance case. This was due to the high level of contention within the
system. The system was almost fully busy with 4 instances so adding the extra 4 instances
has added more work to the system and yet no additional CPU power was made available
with which to run it. This illustrates that it is possible to have too many copies of a message
flow running and not achieve the maximum throughput that the system is capable of. You are
recommended to determine the optimum number of instances to use for each message flow
individually through experimentation with a varying number of instances.

From these measurements we can see that use of additional instances is an effective
mechanism for increasing message throughput and allowing a machine to be fully utilised.

Using Mulitple Execution Groups
This test consists of running the Large Messaging sample with a single instance of the
message flow in a varying number of execution groups.

The purpose of this is to see how effective the use of multiple execution groups is in
increasing message throughput and achieving higher system CPU utilisation. The benefits

 Page 61 of 93

observed in any given situation will depend on the processing requirements of the message
flow. CPU bound message flows will have different scaling characteristics from those which
are I/O bound for example.

The results of running this test with are given in the table below.

Execution Groups Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1 1k No 700.8 28.00 1.60
2 1k No 1398.4 56.60 1.62
4 1k No 1983.4 100.00 2.02
8 1k No 1735.6 100.00 2.30

The results in the table show that when running with 2 execution groups there is an increase
in message throughput. It was possible to achieve 2.0 times that achieved when with running
one instance.

When running with 4 instances of the message flow message throughput continued to
increase. It was possible to achieve 2.8 times that of one instance. The benefits were limited
by the amount of available CPU. CPU utilisation at this point was 100%. In addition to the
four copies of the message flow there was also the Message Broker queue manager listener
process which is used to receive messages from the client machine. In a busy system this
process alone is capable of fully using one processor.

When using 8 copies of the message flow, message throughput actually declined when
compared with the 4 execution group case. This was due to the high level of contention
within the system. The system was fully busy with 4 copies of the message flow so adding
the extra 4 copies has added more work to the system and yet there is no additional CPU
power with which to run it. This illustrates that it is possible to have too many copies of a
message flow running and not achieve the maximum throughput that the system is capable
of. You are recommended to determine the optimum number of copies to use for each
message flow individually through experimentation with a varying number of copies.

From these measurements we can see that use of execution groups is an effective
mechanism for increasing message throughput and allowing a machine to be fully utilised.

 Page 62 of 93

Overheads
The tests in this section indicate the processing costs of using Accounting and Statistics and
Trace on a message flow.

Using Accounting and Statistics

This test consists of running a single copy of the Large Messaging sample with basic thread
level and advanced node level accounting activated.

Using a 1K message size there was an 8% reduction in message throughput. This is a CPU
overhead and reflects the additional cost of processing needed to collect the data.

Using a lower level of reporting would have resulted in a lower overhead.

Using Trace
This test consists of running a single copy of the Large Messaging sample whilst taking a user
trace of type normal at the same time.

Using a 1K message size there was a 25% reduction in message throughput. This reflects
the CPU and I/O overhead of writing user trace.

With debug trace the overhead will be even higher as debug trace is more extensive.

You are strongly recommended not to use WebSphere Message Broker trace in a production
system. You are also strongly recommended not to have any trace nodes in the main
processing paths of message flows. Even if trace is not active a penalty is still incurred to
evaluate the expression specified in the Trace Node.

 Page 63 of 93

Resource Requirements
This section details the recommended minimum specification of a machine on which to install
the development toolkit and Message Broker runtime. It also illustrates memory use for
message flows.

Recommended Minimum Specification
The recommended minimum specification machine to install and run the development toolkit
is:

• Any Intel Pentium III (or higher) processor-based IBM PC or compatible with 700 or
more MHZ processor speed. This is the minimum supported level. For improved
performance use a 2 GHz or faster processor.

• Up to 6.1 GB of disk space
o 4.5 GB disk plus 1.5 GB temporary space for WebSphere Message Broker
o 105 MB for ODBC drivers for Cloudscape

• 512MB memory. This is the minimum requirement though and 1GB is recommended.

The recommended minimum specification machine to install and run the broker runtime is:

• Any Intel Pentium III (or higher) processor-based IBM PC or compatible with 700 or
more MHZ processor speed. This is the minimum supported level. For improved
performance use a 2 GHz or faster processor. For production a multi-processor
machine is recommended.

• Up to 915 MB disk space
o 315 MB disk plus 300 MB temporary space for WebSphere Message Broker
o 300 MB for DB2 Enterprise Server compact version (assuming DB2 as the

Message Broker database)
• 512 MB memory. This is the minimum requirement though and more is

recommended. How much will depend on the complexity of the messages and
message flows. For development 1GB+ is recommended. For production a
suggested minimum would be 4GB.

These are recommended minimum specifications which are suitable to enable the processing
of simple messages with simple message transformation or routing. Situations requiring more
intensive processing are likely to need greater resources.

For more guidance on the support processors and configuration requirements see the
WebSphere Message Broker Managing Your Installation manual.

Memory Use
The amount of virtual and real memory used by a message flow running within an execution
group will vary, dependent on the complexity of the message flow, the style of processing
within the message flow and the size of the messages being processed. This is a complex
subject and a detailed discussion is beyond the scope of this document. However to assist
with planning the memory used for a variety of tests is reported.

Virtual memory size is the total of all private (not shared) bytes allocated for the process,
whether currently in physical memory or on disk. Real Memory is the amount of physical
RAM allocated for the process. Memory utilisations are reported to the nearest 1MB.

Note that the recorded virtual and real memory size is dependent on the platform specific
memory and swap space allocation algorithms. These values vary on a per platform basis.

The figures in the table below record the amount of virtual and real memory used by an
execution group for the message flow when it is initially deployed and after it has processed a
number of messages and the size stabilised.

 Page 64 of 93

In each case a single copy of the message flow was deployed to a single execution group.
Each use case was deployed to a new execution group.

Use Case Virtual
memory

usage with
message

flow
deployed but

no
messages
processed

Real
memory

usage with
message

flow
deployed

but no
messages
processed

Virtual
memory

peak usage
after

processing
messages

Real memory
peak usage

after
processing
messages

Empty Execution
Group

179 74 N/A 74

Aggregation 180 75 188 79
Coordinated
Request Reply

180 76 195 78

Data Warehouse 179 74 195 76
Large Messaging 179 75 185 76
Message Routing 179 74 184 75
SWIFT Message
parse

240 132 264 152

XMLT 179 76 188 195

Virtual and Real Memory Use in MB or a Variety of Use Cases.

In taking these figures the minimum heap size of the WebSphere Message Broker Java
Virtual Machine (JVM) was allowed to default to the value of 128MB.

 Page 65 of 93

Tuning
This section details the parameters which were reviewed or changed in the course of
obtaining the measurement results.

The description of each parameter is brief as a detailed discussion of the effects of any
changes are beyond the scope of this document.

Message Broker
The Message Broker used in the measurements was configured in the following ways for all
tests:

1. The broker ran as a trusted WebSphere MQ application. This was achieved by use of
the ‘-t’ flag on broker creation (with the mqsicreatebroker command) and by
ensuring that the environment variable MQ_CONNECT_TYPE=FASTPATH was
present in the environment in which the broker was started. NOTE: The reader
should be aware that there is a potential integrity exposure to the Message Broker
queue manager as the level of isolation between the Message Broker and queue is
reduced. This is where the improved performance comes from.

2. Transactional support was used where appropriate. When processing persistent
messages it was used, with non persistent messages it was not. The use of
transaction control means that message processing takes place within a WebSphere
MQ unit of work. This involves additional CPU and I/O processing by WebSphere
MQ because the unit of work is recoverable. The result is inevitably a reduction in
message throughput for persistent messages. By default the transaction parameter
on the MQInput node was set to automatic. This is the recommended value to use
for transaction mode unless there is a specific requirement to use a particular value
since persistent messages will be processed within transactional control and non
persistent messages will not.

Additional tuning was performed for the publish subscribe tests. This was as follows:

1. The heap size of the The WebSphere Message Broker Java Virtual Machine (JVM)
(in which much of the publish subscribe code is executed) was set to 512MB. For the
non Publish Subscribe tests the default value of 128MB was used.

2. The thread settings of the RealtimeOptimizedNode used a default value of 10 read
and write threads. These were sufficient to cater for the test cases run in this report.
However if more clients are used increasing these values could be beneficial.

3. Client Pinging - The ping protocol implements a “keep alive” protocol where the
broker is periodically verifying that connected clients are alive. This process allows
the broker to detect disconnected clients and maintain an updated subscription list. In
situations where there are a large number of clients connected to a broker, this
pinging process may account for a large proportion of the messages exchanged
between the broker and clients and can impact the broker's message throughput. In
such circumstances, the ping interval can be turned off or alternatively increased to
reduce the amount of traffic generated by pinging. For the tests in the report the value
was set to 0.

4. Client Queue Size - The broker employs a set of internal queues which are used to
regulate the delivery of messages to subscribers. Note: these are not the queues
used by the MQ Transport. The size of the queue specifies the number of bytes of
data that the broker will store for one client. If this maximum is exceeded, the broker
will take action which is determined by the value of the parameter "Client
disconnection due to queue overflow". The default queue size is 100,000 bytes.
Setting the value to zero allows the broker to grow the queue size as required. In this

 Page 66 of 93

case, the queue size will only be limited by the available system memory. In the tests
detailed in this report a value of 0 was used.

5. Client disconnection due to queue overflow - When the depth of the client queue
exceeds the Client Queue Size value, the broker can choose between two courses of
action. The default action is to disconnect the client; in this case, all the queued
messages are lost. This is specified through a value of true for the parameter. The
alternative course of action, specified with a value of false, is to keep the client
connection alive but remove any excess messages from the client's queue. In the
tests detailed in this report a value of false was used.

6. Maximum message size - If the broker receives a message that is bigger than the
maximum message size value, it will disconnect the client that sent the message.
This feature is useful for protecting the broker from applications sending excessively
large messages. The default maximum message size is 100,000 bytes and this was
adequate for the tests run in the report so the value was left unchanged.

7. Maximum number of client connections - The broker has the ability to limit the
number of client connections that it will handle. This is useful in situations where the
number of client applications that will connect to the broker is unknown. In such cases
limiting the number of connections will allow the broker to maintain a particular level
of service (this level will depend upon the particular environment in which the broker
is being used). The default setting is unlimited. This was also the value used for the
tests run in the report.

8. Interval statistics reporting was enabled and set to an interval of 10000 (10 seconds)
so that the value of ClientBytesQueued could be monitored.

Additional tuning was performed for the JMS nodes. These was as follows:

The performance of the JMS Nodes is dependant on the performance of the JMS Provider
and the JMS Providers client code. You should check the JMS Providers documentation for
tuning details, in particular look for details of how to tune the client code which is supplied.

• In the tests run for this report the max buffer size for the TopicConnectionFactory
used by the JMS Input Node was increased to a value of 3000. This is important for
a subscriber using WebSphere MQ Real-time as it offers protection from message
rate spikes. For information on how to set the subscriber max buffer size see the
WebSphere MQ "Using Java" manual.

There were no error processing or error conditions in any of the measurements. All
messages were successfully passed from one node to another through the out or true
terminal. No messages were passed through the failure terminal of a node.

WebSphere MQ
The following changes were made to all queue managers used in the tests:

1. The value of DefaultQBufferSize was increased to a value of 1000000 for each queue
used in the tests.

2. Given the use of persistent messages in the tests the following MQ log parameters
were modified:
• LogBufferPages was set to 0 allowing the value to default to the value of 128 (for

WebSphere MQ V6)
• LogFileSize was set to 1024

 Page 67 of 93

• LogType was set to circular
• LogPrimaryFiles was set to 3
• LogSecondaryFiles was set to 2

3. Circular logging was set for all WebSphere MQ queue managers used in the tests.

4. The Message Broker queue manager MQ listener and channels were run as trusted

applications. In the queue manager qm.ini the value MQIBindType was set to
FASTPATH in the channel stanza. The environment variable
MQ_CONNECT_TYPE=FASTPATH was present in the environment in which the
broker queue manager was started.

TCP/IP
No specific tuning was performed for TCP/IP. All machines used the operating system default
values.

Database
The DB2 instance used with the message broker was a default configuration and the only
tuning performed on the instance was placement of the database data and log files on
different disks.

Miscellaneous
Although not implemented in all cases the following additional tuning changes are
recommended

• Locate the log of any WebSphere MQ queue manager through which persistent
messages pass on a dedicated disk.

• Locate the WebSphere MQ queue manager log on a very fast disk such as one with a
non-volatile fast write cache. Such disks are consistently capable of I/O times of 1ms
compared with a time of 6 ms for a 10,000 RPM SCSI disk. When using a disk with a
fast write cache it is essential that it has a non-volatile capability as the log data is
critical to the integrity of your queue manager.

• Note that there is no need to locate the WebSphere queue manager queue file on a
fast disk. It is advisable to locate it on a dedicated disk in order to improve the
efficiency of queue manager checkpoint processing.

• Locate the log of the Message Broker database on a dedicated disk.

• Locate the log of the Message Broker database on a very fast disk such as one with a
non-volatile fast write cache.

• When performing BLOB inserts to a database locate the data portion of the database
on a very fast disk such as one with a non-volatile fast write cache. BLOB I/O is not
buffered by a database such as DB2 and is written to disk immediately.

• When using the aggregation node follow the message flow coding advice provided in
Supportpac IP05, WebSphere MQ Integrator V2.1 - Optimizing Use of
Aggregation Nodes which is available at
http://www.ibm.com/software/integration/support/supportpacs/individual/supportpacs/i
p05.pdf.

NOTE: When using WebSphere Message Broker V6 there is no need to follow
the recommendations in the document about Message Broker database

 Page 68 of 93

configuration. This is because the aggregation mechanism is now based on the use
of WebSphere MQ queues, rather than a database table as with previous versions of
the Message Broker.

Additional Tuning Information
In order to obtain the maximum message rate for your implementation it is important that you
understand the current best practices for WebSphere Message Broker. These practices
cover the architecture of message flow processing, the coding of message flows as well as
the configuration and tuning of the message broker and associated components.

Such information can be found in the Business Integration Zone of WebSphere Developer
Domain. A suggested starting place is the article
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_dunn/0403_dunn.html which
highlights the information available and where it may be found.

 Page 69 of 93

Conclusion
This report has detailed the key performance characteristics of the WebSphere Message
Broker V6 runtime. The primary focus in the report has been on identifying the CPU costs of
different functions. Additional information has been supplied on virtual memory requirements
for the use cases.

Part I showed the level of message throughput that can be expected for a variety of common
use cases. You have the ability to run these same tests in your own environment as the
messages flows are shipped as product samples. Using machines with even faster
processors it will be possible to achieve high message rates.

From the data supplied in Part I of the report it is possible to see that there have been some
significant reductions in CPU costs and as a result increases in message throughput in
WebSphere Message Broker V6 when compared with WebSphere Business Integration
Message Broker V5. Most notably improvements in message throughput of

• 1.7 times for the Aggregation use case

• 3.2 times for the Coordinated Request/Reply use case

• 2 times for the Message Routing use case

• 4 times for the SWIFT Message Parse use case

• 2 times for the XML Transformation

No application changes are needed to obtain the majority of these performance
improvements. They come as standard with version 6 and are available immediately on
installation and migration of the message flows.

Some additional gains in performance are available by using new function such as shared
variables.

WebSphere Message Broker V6 has significantly reduced the CPU of using all key functions.
This allows you to noticeably reduce the CPU cost of running an existing workload or achieve
a higher level of message throughput for the same amount of CPU.

 Page 70 of 93

Appendix A - Measurement Environment
All throughput measurements where taken on a single server machine. The client type and
machine on which they ran varied with the test. The details are given below.

Server Machine
The hardware consisted of

• An IBM xSeries 360 with 4 * 2.00 GHz Intel Xeon processors
• Three 69 GB SCSI hard drives formatted with NTFS
• 4 GB RAM
• 1 Gb Ethernet card

The software consisted of:

 Microsoft Windows 2000 with Service Pack 4
 WebSphere MQ V6
 WebSphere Message Broker V6
 DB2 for Windows V8.1 with Fixpack 4

Client Machines
A number of different client machines were used dependent on the tests being run. The
different configurations are described below.

Point to Point Testing
The hardware consisted of:

• An IBM Netfinity 8500R with 4 * 900 MHz Pentium III Xeon processors
• Four 34 GB SCSI hard drives formatted with NTFS
• Two 8.5 GB SCSI hard drives formatted with NTFS
• 1 GB RAM
• 1 Gb Ethernet card

The software consisted of:
 Microsoft Windows 2000 with Service Pack 4
 WebSphere MQ V5.3

Publish Subscribe Testing
The hardware consisted of multiple machines of this specification:

• An IBM xSeries processor with 4 * 1800 MHz Pentium 4 Xeon processors
• 2 GB SCSI hard drives
• 4 GB RAM
• 1 Gb Ethernet card

The software on all client machines consisted of:

• Linux Red Hat Advanced Server Version 2.1
• IBM Java 1.4.2
• WebSphere MQ V5.3.6.

 Page 71 of 93

JMS Node Testing
Different machines were used for the JMS provider and JMS client components. They are
described below:

JMS Provider
The JMS provider machine hardware consisted of:

• An IBM xSeries processor with 8 * 700 MHz Pentium 4 Xeon processors
• 2 GB SCSI hard drives
• 4 GB RAM
• 1 Gb Ethernet card

The software consisted of:

• Linux Red Hat Advanced Server Version 2.1
• IBM Java 1.4.2
• WebSphere Message Broker V6.
• WebSphere MQ V6.

Client Machine
The client machine hardware consisted of:

• An IBM xSeries processor with 4 * 1800 MHz Pentium 4 Xeon processors
• 2X GB SCSI hard drives
• 4 GB RAM
• 1 Gb Ethernet card

The software consisted of:

• Linux Red Hat Advanced Server Version 2.1
• IBM Java 1.4.2
• WebSphere MQ V5.3

Network Configuration
The client and server machines were connected using a full duplex 1 Gigabit Ethernet LAN
with a single hub.

 Page 72 of 93

Appendix B - Evaluation Method
This section outlines the software components that were used to produce the measurement
results which are contained in this report.

Three different configurations were used in the generation and consumption of input and
output messages. This is because different test cases required different types of input and
output messages. The methods used were:

1. Point to Point Message Processing

2. Publish Subscribe Message Processing

3. JMS Node Message Processing.

These are described in the remainder of this section.

A series of parameter configuration changes were made to improve message throughput.
These are discussed in the section Tuning.

Point to Point testing
This section describes how messages were generated and consumed for the point to point
messaging tests, such as the Database Read tests or Filter an Incoming Message based on
the First Element in the Message. The configuration of the software components is also
discussed.

Message Generation and Consumption
A multi threaded WebSphere MQ Client program written in C was used to generate input
messages for the test case being run and to consume the WebSphere MQ output messages.

The client program used the Message Queue Interface (MQI). Both persistent and non
persistent messages were generated from this program.

Sufficient threads were run in the multi threaded client to ensure that there were always
messages on the input queue waiting to be processed. This is important when measuring
message throughput.

Any thread within the client program was able to retrieve any message which had been
processed by a message flow. No use was made of the WebSphere MQ correlation
identifiers to limit consumption of a message to the thread which created it.

 Page 73 of 93

Machine Configuration
The WebSphere MQ client program used to generate and consume messages for the
message flows was run on a dedicated machine, the Client Machine. The Message Broker,
its dedicated WebSphere MQ queue manager and broker database were all located on a
dedicated machine, the Server Machine.

There was a single client machine.

Messages were transmitted from the client machine to the server machine over WebSphere
MQ SVRCONN channels. The messages were received on the server machine through use
of a WebSphere MQ queue manager listener process. This was run as a trusted MQ
application in order to improve message throughput.

The database used for the database related test cases used the same database instance as
the Message Broker.

Messages were transmitted from the client machines to the server machine using the
WebSphere MQ transport.

The diagram below illustrates the major components in the measurement environment and
their location.

Both the client and server machine were configured with sufficient memory to ensure that no
paging took place during the tests.

WebSphere
Message

Broker

WebSphere MQ

DB2

Gigabit

Ethernet

LAN

WebSphere MQ

Multi
Threaded

Client

(C or JMS)

MQ Listener

Client Machine Server Machine

 Page 74 of 93

Publish Subscribe testing
This section describes how messages were generated and consumed for tests which used
the publish subscribe message processing model.

Message Generation and Consumption
A multi threaded JMS client application was used to publish JMS messages and consume
messages received by JMS Subscribers. The JMS client application used WebSphere
Message Broker as the JMS Provider. The same client application was able to generate JMS
messages using the WebSphere MQ and WebSphere MQ Real-time transports.

JMS bytes messages were used in the testing. The message content was not of interest in
the tests only the topic under which it was published.

Messages were transmitted from the client machines to the server machine using either the
WebSphere MQ or WebSphere Real-time transport depending on the test case.

When using the WebSphere MQ transport the publish rate was set to a high value, this
publish rate was then throttled by the MQ acknowledgement protocol to a rate which was
sustainable by the broker. The publisher acknowledgement interval was set to ensure
messages were always available on the brokers input queue. Details of how to set the broker
acknowledgement interval can be seen in the WebSphere MQ "Using Java" manual. Each
subscriber was allocated its own temporary dynamic queue to store its messages on the
broker.

The WebSphere MQ Real-time transport does not have a self throttling protocol like that of
MQ. As a result the publish rate was manually adjusted until the optimum message
throughout for the broker is found. The optimum level of message throughput was
determined by monitoring the ClientBytesQueued value in broker statistics.

The value for ClientBytesQueued shows the number of bytes waiting to be delivered to
subscriber clients. When the broker becomes overloaded it is unable to service this buffer
fast enough and so the number of bytes that are queued increases. For a test to be
successful the buffer size must not continually increase during the test run. Constant growth
of this buffer indicates too high a publish rate. The point at which the buffer starts to fill is
dependent on a combination of factors such as network bandwidth, system memory and client
performance.

The subscriber, when using WebSphere MQ Real-time client, contains a message buffer to
protect itself from message rate spikes. For these tests this was increased from the default to
hold 3000 messages. For information on how to set the subscriber max buffer size see in the
WebSphere MQ "Using Java" manual.

In all of the tests it was verified that all publications were delivered to subscribers without any
loss of messages. As part of ensuring this all subscribers were started first before the
publishing of messages commenced.

Queue depths and buffer sizes were monitored to ensure that the system was running in a
stable manner and that there was no backlog of messages to be processed.

Publishers
The JMS Publisher sent non-persistent publications only. A non transacted JMS Session was
used. The publisher produced publications at a constant rate, i.e. a fixed number of
publications per second.

Subscribers
The JMS Subscribers were non durable and non transacted. Each subscriber had a separate
TopicConnection and a TopicSession therefore each subscriber was associated with one

 Page 75 of 93

physical TCP/IP connection (socket pair). A single topic was used for all tests and so all
subscribers were subscribed to the same topic. This meant that for every message published
a copy was received by each subscriber.

Machine Configuration
The programs used to publish and subscribe messages for the tests were run on dedicated
Client Machines which were separate from the machine on which the message broker was
run.

The number of client machines used varied depending on the test case, for example for a 1 to
1 test (1 publisher and 1 subscriber) 2 client machines were used but for a 1 publisher to
1000 subscriber test the 1000 subscribers were spread over 10 Client Machines. The
publisher used a different dedicated machine. The distribution of subscribers over multiple
client machines was essential to avoid the client Machines becoming the bottleneck in the test
case.

The Message Broker, its dedicated WebSphere MQ queue manager and broker database
were all located on a dedicated machine, the Server Machine. The figure below shows the
configuration of software components and machines.

Both the client and server machine were configured with sufficient memory to ensure that no
paging took place during the tests.

For those tests using WebSphere MQ as the transport a message flow consisting of an
MQInput node wired to a Publication node was used.

For tests using WebSphere MQ Real-time as the transport a message flow consisting of a
RealtimeOptimizedFlow node was used.

Client Machine(s)

Server MachineClient Machine

WebSphere

Message
Broker

WebSphere MQ

DB2

Gigabit
Ethernet
LAN

 JMS Client App

(Publisher)

MQ Listener
 JMS Client App

(Subscribers)

 Page 76 of 93

JMS Node Message Processing
JMS messages used in the JMS node tests used WebSphere MQ Real-time as the transport.
WebSphere MQ messages were used in some of the tests where there was a conversion
between protocols for example.

Message Generation and Consumption
A multi threaded JMS client application was used to generate and consume JMS messages.
The JMS client application used WebSphere Message Broker as the JMS Provider. The
same client application was able to generate JMS messages using the WebSphere MQ and
WebSphere MQ Real-time transports.

JMS messages used both the WebSphere MQ and WebSphere MQ Real-time transports
dependent on the tests. Which was used when is documented for each test.

Both JMS bytes and JMS Text messages were used in the testing. Again this is documented
in the individual test details.

The client application used to generate and consume messages was a tool known as the
Performance Harness for JMS. See the section Additional Information for more details on
how to obtain a copy.

Machine Configuration
For the JMS node tests two different configurations were used. The first was for the JMS to
JMS messaging test and a second for the JMS to MQ protocol conversion.

The JMS Input and Output Nodes were configured to use Publish Subscribe mode to connect
to the JMS Provider. The JMSNodes can also be configured in Point to Point mode.

The Performance Harness for JMS was used to perform the role of publisher and subscriber
for the tests. The Performance Harness was run on a dedicated Client Machine which was
separate from the broker machine.

As part of the test a JMS provider was required. This is in addition to the broker under test.
For the tests in the report the JMS provider was another copy of WebSphere Message
Broker V6. However any JMS provider which conforms to the JMS 1.1 specification would be
able to fulfil this role.

The Message Broker, its dedicated WebSphere MQ queue manager and broker database
were all located on another dedicated machine, the Server Machine.

The distribution of components over multiple machines was essential to ensure that the
testing of the JMS nodes running within the Message Broker was not throttled by a bottleneck
which results from another component running on the same machine. It also allowed the cost
of running the JMS nodes to be clearly identified.

The sections below show the configuration of software components and machines for the
different test cases.

 Page 77 of 93

JMS to JMS Tests

.

The numbered arrows indicate the sequence of processing:

1) Messages were published by the client application to the JMS Provider on the JMS
provider machine. The publication was destined for a topic called “INPUTTOPIC”.

2) The JMSInput Node running in the message flow in the message broker was configured to
subscribe to the JMS Provider on topic “INPUTTOPIC”. It obtained the input message from
the JMS provider running on the JMS provider machine.

3) The message received by the JMSInput Node (from the JMS provider running on the JMS
provider machine) is processed in the message flow. The output message is written by the
JMSOutput node which is configured as a topic publisher on topic “OUTPUTTOPIC”.

4) The second client application running on the client machine operates as a subscriber. It is
configured to connect to the JMS Provider (on the JMS provider machines) as a subscriber
with a subscription to the topic “OUTPUTTOPIC”. Hence it will receive the publication sent
from the JMSOutput Node in the broker.

JMS Provider
In the configuration shown the JMS Provider could have been any JMS Provider that is
compliant with the JMS 1.1 Specification. It would have been possible to have used a
different JMS Provider for the JMSInput and JMSOutput nodes. For the tests run in this
report WebSphere Message Broker was used as the JMS Provider. The Message Broker
was configured with a RealtimeOptimisedFlow Node and was tuned as described in the
Publish Subscribe Testing section of this report. We used Broker statistics to monitor the
performance characteristics of this broker to ensure it was not the bottleneck in these tests.

Publisher
A single JMS publisher was used. It sent only non-persistent publications (step 1 in the
diagram). A non transacted JMS Session was used. The publisher produced publications at
a constant rate, i.e. a fixed number of publications per second. The rate was varied according
to the individual test cases. There was no simulation of publishers that publish messages at
variable rates. The JMS Publisher was configured to use the WebSphere MQ Real-time
Transport.

Subscriber
A single non durable and non transacted JMS Subscriber was used as the receiving client
(step 4 in the diagram). The JMS Subscriber was configured to use the WebSphere MQ
Real-time Transport.

The message rate numbers in this report are the rates measured at step 4 i.e. number of
messages a second that the JMS Subscriber application received.

WebSphere
Message

Broker

WebSphere MQ

DB2

Server Machine

MQ Listener

Any JMS 1.1 Provider

JMS Client
App

JMS Client
App

JMS Provider Machine

1
2

3 4

Client Machine

 Page 78 of 93

In all of the tests it was verified that all publications were delivered to subscribers without any
loss of messages. As part of ensuring this all subscribers were started first before the
publishing of messages commenced.

Queue depths and buffer sizes were monitored to ensure that the system was running in a
stable manner and that there was no backlog of messages to be processed.

The message throughput reported for these tests is the maximum message rate that could be
achieved whilst meeting the constraints mentioned above. Typically in all of these tests
message throughput of the test was limited by the CPU capacity on the Server machine.

JMS to MQ Tests
The tests which involved transformation from JMS to MQ used a slightly different
configuration from that used for the JMS to JMS tests. This is illustrated below.

The numbered arrows indicate the sequence of processing:

1) Messages were published by the client application to the JMS Provider on the JMS
provider machine. The publication was destined for a topic called “INPUTTOPIC”.

2) The JMSInput Node running in the message flow in the message broker was configured to
subscribe to the JMS Provider on topic “INPUTTOPIC”. It obtained the input message from
the JMS provider running on the JMS provider machine.

3) The message received by the JMSInput Node was processed by the message flow and an
output message was created and sent to the MQOutput node which was configured to write to
a remote WebSphere MQ Queue called “OUTPUTQUEUE”. This queue was located on a
WebSphere MQ Queue Manager on the JMS Provider machine. The remote WebSphere MQ
Queue Manager was actually the same queue manager that the Message Broker acting as
the JMS Provider on the JMS provider machine was using. Note that appropriate
transmission queue and sender and receiver channels had to be defined between the two
queue managers.

4) The second client application read the WebSphere MQ message from the remote queue
“OUTPUTQUEUE”. The Performance Harness for JMS was used to implement this client.

WebSphere
Message

Broker

WebSphere MQ

DB2

Server Machine

MQ Listener

JMS Client
App
(P bli h)

MQ Client App

JMS Provider Machine

12

3 4WebSphere MQ

Any JMS 1.1 Provider

Client Machine

 Page 79 of 93

Reported Message Rates
For tests which did not involve publish subscribe the message rates reported are the number
of invocations of the message flow per second.

For tests involving several message flows such as the message aggregation test the rate
reported is the number of complete operations or aggregations per second. Fan-out and Fan-
in processing is counted as one rather than separately.

For tests using publish subscribe the message rate reported is the total message rate. That
is the number processed by all publishers and all subscribers. The total number of messages
reported is calculated using the formula (number of subscribers +1) * publication rate.

For a configuration consisting of one publisher and 10 subscribers where the publication rate
was 10 messages/second the total message rate is (10 +1) * 10 = 110 messages second.

For tests using the JMS nodes the message rate is the number of message flow invocations
per second.

The message rates quoted are an average taken over the measurement period. This starts
once the system initialisation period has completed.

 Page 80 of 93

Appendix C - Test Messages

This section describes the input and output messages used for the tests detailed in this
report.

The messages which are in this section have been formatted for this report and as such
contain white space between tags. When used in measurements all such white space is
removed.

Input Message
An input message of the type shown below was used for the non publish/subscribe tests in
the report.

The publish/subscribe tests used a 1K JMS Bytes message.

The message shown below is in Generic XML format but it was also represented in a variety
of other formats such as MRM XML, CWF and TDS where this was required in the test.

The different message sizes used in testing are achieved by repeating the content of the
SaleList tag to give the required size. Larger messages thus result in more tags.
A Perl script ensures that the names and values in the tags are different as the SaleList
structure is repeated. This is to stop a limited number of strings being used in very large
messages which could lead to over optimistic results.

<Parent>

<First>1</First>
 <SaleList>

 <Invoice>
<Initial>K</Initial>
<Initial>A</Initial>
<Surname>Braithwaite</Surname>
<Item>

<Code>00</Code>
<Code>01</Code>
<Code>02</Code>
<Description>Twister</Description>
<Category>Games</Category>
<Price>00.30</Price>
<Quantity>01</Quantity>

</Item>
<Item>

<Code>02</Code>
 <Code>03</Code>
 <Code>01</Code>

<Description>The Times Newspaper</Description>
<Category>Books and Media</Category>
<Price>00.20</Price>
<Quantity>01</Quantity>

</Item>
<Balance>00.50</Balance>
<Currency>Sterling</Currency>

</Invoice>
<Invoice>

<Initial>T</Initial>
<Initial>J</Initial>
<Surname>Dunnwin</Surname>

 Page 81 of 93

<Item>
<Code>04</Code>
<Code>05</Code>
<Code>01</Code>
<Description>The Origin of Species</Description>
<Category>Books and Media</Category>
<Price>22.34</Price>
<Quantity>02</Quantity>

</Item>
<Item>

<Code>06</Code>
<Code>07</Code>
<Code>01</Code>
<Description>Microscope</Description>
<Category>Miscellaneous</Category>
<Price>36.20</Price>
<Quantity>01</Quantity>

</Item>
<Balance>81.84</Balance>
<Currency>Euros</Currency>

</Invoice>
</SaleList>
<Last>Test</Last>

</Parent>

Output Message
Two message types exist for the output messages dependent on the test case. These are
the Compute and Transform messages.

Compute Message
For compute test cases the balance field for each invoice is validated and the currency is
converted into sterling. So there is minor modification of the input message.

The message layout is shown below

<Parent>
 <First>1</First>
 <SaleList>
 <Invoice>
 <Initial>K</Initial>
 <Initial>A</Initial>
 <Surname>Braithwaite</Surname>
 <Item>
 <Code>00</Code>
 <Code>01</Code>
 <Code>02</Code>
 <Description>Twister</Description>
 <Category>Games</Category>
 <Price>00.30</Price>
 <Quantity>01</Quantity>
 </Item>
 <Item>
 <Code>02</Code>
 <Code>03</Code>
 <Code>01</Code>
 <Description>The Times Newspaper</Description>
 <Category>Books and Media</Category>
 <Price>00.20</Price>

 Page 82 of 93

 <Quantity>01</Quantity>
 </Item>
 <Balance>00.50</Balance>
 <Currency>Sterling</Currency>
 </Invoice>
 <Invoice>
 <Initial>T</Initial>
 <Initial>J</Initial>
 <Surname>Dunnwin</Surname>
 <Item>
 <Code>04</Code>
 <Code>05</Code>
 <Code>01</Code>
 <Description>The Origin of Species</Description>
 <Category>Books and Media</Category>
 <Price>22.34</Price>
 <Quantity>02</Quantity>
 </Item>
 <Item>
 <Code>06</Code>
 <Code>07</Code>
 <Code>01</Code>
 <Description>Microscope</Description>
 <Category>Miscellaneous</Category>
 <Price>36.20</Price>
 <Quantity>01</Quantity>
 </Item>
 <Balance>80.88</Balance>
 <Currency>Euros</Currency>
 </Invoice>
 <InvoicesTotal Currency="Sterling">57.116</InvoicesTotal>
 </SaleList>
 <Last>Test</Last>
</Parent>

Transform Message
For the transformation test the input message is modified and takes a different layout. For
each invoice a statement is created for each customer within a SaleList.

The message layout is shown below.

<Parent>
 <SaleList>
 <Statement Type="Monthly" Style="Full">
 <Customer>
 <Initials>KA</Initials>
 <Name>Braithwaite</Name>
 <Balance>00.50</Balance>
 </Customer>
 <Purchases>
 <Article>
 <Desc>Twister</Desc>
 <Cost>4.8E-1</Cost>
 <Qty>01</Qty>
 </Article>
 <Article>
 <Desc>The Times Newspaper</Desc>
 <Cost>3.2E-1</Cost>
 <Qty>01</Qty>

 Page 83 of 93

 </Article>
 </Purchases>
 <Amount>8E-1</Amount>
 </Statement>
 <Statement Type="Monthly" Style="Full">
 <Customer>
 <Initials>TJ</Initials>
 <Name>Dunnwin</Name>
 <Balance>81.84</Balance>
 </Customer>
 <Purchases>
 <Article>
 <Desc>The Origin of Species</Desc>
 <Cost>3.5744E+1</Cost>
 <Qty>02</Qty>
 </Article>
 <Article>
 <Desc>Microscope</Desc>
 <Cost>5.792E+1</Cost>
 <Qty>01</Qty>
 </Article>
 </Purchases>
 <Amount>1.29408E+2</Amount>
 </Statement>
 </SaleList>
</Parent>

 Page 84 of 93

Appendix D - Use Case Descriptions

This section contains a description of the processing in each of the use cases which are used
to characterise the performance of WebSphere Message Broker V6.

Aggregation
The Aggregation use case demonstrates a simple four-way aggregation operation, using the
Aggregate Control, Request, and Reply nodes. It contains three message flows to implement
a four-way aggregation: FanOut, RequestReplyApp, and FanIn. This is the type of processing
that might be used to invoke four different applications to process a travel booking, one to
organise each of the flight, hotel, car and money.

FanOut Message Flow
This is the flow that takes the incoming request message, generates four different request
messages, sends them out on request/reply, and starts the tracking of the aggregation
operation:

RequestReplyApp Message Flow
This message flow simulates the back-end service applications that would normally process
the request messages from the aggregation operation. In a real system, these could be other
message flows or existing applications. This message flow reads from the same queue that
the MQOutput nodes in the FanOut flow write to, and it outputs to the queue that the input
node which the FanIn flow reads from - it provides a messaging bridge between the two flows.
The messages are put to their reply-to queue (as set by the MQOutput nodes in the FanOut
flow).

 Page 85 of 93

FanIn Message Flow
This flow receives all the replies from the RequestReplyApp flow, and aggregates them into a
single output message. The output message from the Aggregate Reply node cannot be
output directly by an MQOutput node without some processing so a Compute node is added
to process the data into a format where it can be written out to a queue.

Further information about the Aggregation sample can be found in the Message Brokers
section of the Technology samples category which is in the samples gallery of the
WebSphere Message Broker development toolkit.

Coordinated Request/Reply
The coordinated request reply sample is based on the scenario of a contemporary and
established application communicating through the use of WebSphere MQ messages in a
request/reply processing pattern. The contemporary application uses self-defining XML
messages and issues a request message. The established application uses Custom Wire
Format (CWF) messages. It receives a request message, processes it and delivers a reply
message. For the applications to successfully communicate, the message formats must be
transformed for both the request and reply messages.

The processing in the sample consists of three message flows and one message set. The
message flows are:

Request Message Flow
The request message flow performs the following processing:

• Reads a WebSphere MQ message containing an XML payload.

 Page 86 of 93

• Converts the message into the equivalent CWF format.
• Creates a WebSphere MQ message containing the transformed message.
• Saves the original ReplyToQ and ReplyToQMgr details in a separate WebSphere MQ

message for subsequent retrieval by the Reply message flow.
• Sets the ReplyToQ and ReplyToQMgr details to be the input of the Reply message

flow.
• Sends the message on to the Backend Reply message flow.

The Request message flow consists of the following nodes:

Backend Reply Message Flow
The backend reply message flows performs the following processing:

• Reads a WebSphere MQ message.
• Adds the time the message was modified to the payload of the message.
• Writes a WebSphere MQ message.

The Backend Reply message flow consists of the following nodes:

Reply Message Flow
The reply message flow performs the following processing:

1. Reads a WebSphere MQ message containing a message in CWF format.
2. Converts the message into the equivalent XML format.
3. Obtains the ReplyToQ and ReplyToQ Mgr of the original request message by reading

the WebSphere MQ message which was used to store this information in the Request
message flow. This is done by using the MQGET node.

4. Creates a WebSphere MQ message containing the transformed message and the
retrieved ReplyToQ and ReplyToQMgr values.

The Reply message flow consists of the following nodes:

Further information about the Coordinated Request Reply sample can be found in the
Message Brokers section of the Application samples category which is in the samples gallery
of the WebSphere Message Broker development toolkit.

 Page 87 of 93

Data Warehouse
The Data Warehouse sample demonstrates a scenario in which a message flow is used to
perform the archiving of data, such as sales data, into a database. The data is stored for later
analysis by another message flow or application.

Because the sales data is analyzed at a later date, the storage of the messages has been
organized in a way that makes it easy to select records for specified times. The date and time
at which the WebSphere MQ message containing the sales record was written are stored as
separate column values when the message is inserted into the database. The database table
contains four columns:

• The message data - the payload of the WebSphere MQ message stored as a BLOB.
• The date on which the WebSphere MQ message was created.
• The time when the WebSphere MQ message was created.
• A time stamp created by the database to record the time when the record was

inserted.

By storing the data in this way it is possible to retrieve records between specific periods of
time, say between the hours of 9:00 a.m. to 12:00 p.m. or 12:01 p.m. and 5:00 p.m. which
would allow a comparison of morning and afternoon sales to be made.

The data archiving is performed by the WarehouseData message flow. This is described
below.

WarehouseData Message Flow
The WarehouseData message flow performs the following processing.

1. Reads a WebSphere MQ message containing an XML payload. The payload
contains the data to be archived.

2. Converts a portion of the message tree to a BLOB ready for insertion into the
database.

3. Inserts the message BLOB along with the date and time at which the WebSphere MQ
message was written into a database.

4. Sends a WebSphere MQ confirmation message to signal successful insertion of the
message into the database.

The WarehouseData message flow consists of the following nodes:

Further information about the Data Warehouse sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

 Page 88 of 93

Large Messaging
The Large Messaging sample is a sample based on the scenario of end-of-day processing of
sales data. Messages recording the details of sales through the day are batched together in
the store for transmission to the IT center. On receipt at the IT center the batched messages
are split back out into their constituent parts for subsequent processing.

This splitting is achieved using a WebSphere Message Broker message flow. Each of the
individual messages representing a sale has the same structure.

The input and output messages in this sample are implemented as self-defining XML
messages for simplicity. Other message formats could easily be used.

Each input message consists of three parts:

• A header containing a count of the number of repetitions of the repeating SaleList
structure that follows.

• The body that contains the repetitions of the repeating SaleList structure.
• The trailer that contains the time the message was processed.

The aim of the processing in this sample is to write each of the instances of the SaleList
structure as a separate WebSphere MQ message while minimizing overall memory
requirements.

The message flow implements a memory saving technique through the use of a mutable
message tree.

The processing in the sample consists of one message flow. The processing it performs is
described below.

Large Messaging Message Flow
The large messaging message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. Formats a WebSphere MQ message for each instance of the SaleList structure.
3. Writes the WebSphere MQ messages to the output queue.
4. Produces a WebSphere MQ message to signal completion of the processing when

the final element has been processed.

The Large Messaging message flow consists of the following nodes:

 Page 89 of 93

Further information about the Large Messaging sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

Message Routing
The message routing sample shows how a database table can be used to store routing
information which a message flow can then use to route messages to WebSphere MQSeries
queues. This uses function which is new in WebSphere Message Broker V6.

The message routing sample shows how to implement a routing table, using shared
variables, to route messages in a message flow. Two versions of the message flow were
used in these evaluations. One using a database was run as the WebSphere Business
Integration Message Broker V5 test case and the second using the routing table implemented
using shared variables was run as the WebSphere Message Broker V6 test case.

The processing in the message flows is described below:

Routing_using_database_table Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. Creates a destination list based on data in a database table and then routes the
message to the entries in the destination list. Note this involves a read to the
database for every message processed.

3. Produces a WebSphere MQ output message. The destination of the message is
specified in the destination list.

 Page 90 of 93

This version of the message flow was used for the WebSphere Business Integration Message
Broker V5 measurements.

Routing_using_memory_cache Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. Creates a destination list based on data which is held in shared variables.
3. Produces a WebSphere MQ output message. The destination of the message is

specified in the destination list.

This version of the message flow was used for the WebSphere Message Broker V6
measurements.

Further information about the Message Routing sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

SWIFT Message Parse
The processing of SWIFT messages is a common requirement for financial institutions. The
parsing of the messages is achieved using the MRM parser with a message format of Tagged
Delimited String (TDS).

The processing in this test consists of a full parse of a SWFIT MT543 message format.

SWIFT Message Parsing Message Flow
The processing in the SWIFT Message Parse message flow consists of the following:

1. Reads a WebSphere MQ message containing a SWIFT MT543 message in tagged
delimited string format.

2. Accesses the last element in the input message.
3. Produces a WebSphere MQ message to signal completion of the processing.

The SWIFT Message Parse processing consists of the following nodes:

The output message is a minimal WebSphere MQ message.

 Page 91 of 93

XML Transformation
The XMLT sample shows how an XML message can be transformed into a different layout
using an XMLTransformation node and a XSL stylesheet. This type of processing could be
performed in any situation where the layout of a message needs to be changed to suit the
requirements of different application.

This technology provides the ability to use an XSL stylesheet in a new way, using it as part of
a message flow.

XSL Transformation Message Flow

The processing in the message flow consisted of the following:

1. Reads a WebSphere MQ message containing an XML payload.
2. Invoke the XSL Stylesheet transformation.
3. Write an MQOutput message containing the modified message.

The following figure shows the XSL Transformation message flow:

The XSL stylesheet used in the processing was as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<Parent>
<xsl:for-each select="/Parent/SaleList">
<SaleList>
<xsl:for-each select="Invoice">
<xsl:if test="not(contains(Surname,'Shop'))">
<Statement>
<xsl:attribute name="Type">Monthly</xsl:attribute>
<xsl:attribute name="Style">Full</xsl:attribute>
<Customer>
<Initials>
<xsl:for-each select="Initial">
<xsl:value-of select="."/>
</xsl:for-each>
</Initials>
<Name><xsl:value-of select="Surname"/></Name>
<Balance><xsl:value-of select="Balance"/></Balance>
</Customer>
<Purchases>
<xsl:for-each select="Item">
<Article>
<Desc><xsl:value-of select="Description"/></Desc>
<Cost><xsl:value-of select='format-number((number(Price)*1.6),"####.##")'/></Cost>
<Qty><xsl:value-of select="Quantity"/></Qty>
</Article>
</xsl:for-each>
</Purchases>
<Amount>

 Page 92 of 93

<xsl:attribute name="Currency">
<xsl:value-of select="Currency" />
</xsl:attribute>
<xsl:call-template name="sumSales">
<xsl:with-param name="list" select="Item"/>
</xsl:call-template>
</Amount>
</Statement>
</xsl:if>
</xsl:for-each>
</SaleList>
</xsl:for-each>
</Parent>
</xsl:template>
<xsl:template name="sumSales">
<xsl:param name="list" />
<xsl:param name="result" select="0"/>
<xsl:choose>
<xsl:when test="$list">
<xsl:call-template name="sumSales">
<xsl:with-param name="list"
select="$list[position()!=1]"/>
<xsl:with-param name="result"
select="$result + number($list[1]/Price)*number($list[1]/Quantity)*1.6"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select='format-number(number($result),"####.##")'/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

The message being transformed was the same format as that described in the Section Input
Message.

Further information about this sample be found under the XMLT entry in the Message Brokers
section of the Technology samples category which is in the samples gallery of the
WebSphere Message Broker development toolkit.

 Page 93 of 93

Feedback
This report and other tools that are produced by the performance group are produced in order
to help you understand the performance characteristics of WebSphere Message Broker and
to assist you with sizing.

It is important that the reports and tools are effective in what they do and it is very useful to
have feedback on the content and style of the information which is produced. Your
comments, both positive and negative, are therefore welcome.

Your answers to the following questions are particularly interesting:

• What are your most common performance questions?
• Do the reports provide what is needed?
• Is there any other performance information which is required to help you do your job?
• Would you like to see any other aspects of WBIMB performance discussed?

Please supply feedback to Tim Dunn (dunnt@uk.ibm.com) or use the feedback facility on the
SupportPac web page where you obtained this report.

