
WebSphere Message Broker V7

For Windows (64-bit)

Performance report

Version 1.0

November 2010

Ian Hurworth

Tim Dunn

WebSphere Message Broker Development
IBM UK Laboratories

Hursley Park
Winchester
Hampshire
SO21 2JN

Property of IBM

05/11/2010 Version 1.0 Page 2 of 83

Take Note!

Before using this report be sure to read the general information under "Notices".

First Edition, November 2010.
This edition applies to WebSphere Message Broker V7.0 for Windows 2008 R2 (x86-64
edition) and to all subsequent releases and modifications until otherwise indicated in new
editions.

© Copyright International Business Machines Corporation 2010. All rights reserved. Note to
U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

05/11/2010 Version 1.0 Page 3 of 83

Notices
This report is intended for Architects, Systems Programmers, Analysts and Programmers
wanting to understand the performance characteristics of WebSphere Message Broker V7.0
for Windows. The information is not intended as the specification of any programming
interfaces that are provided by WebSphere MQ or WebSphere Message Broker V7.0 for
Windows. It is assumed that the reader is familiar with the concepts and operation of
WebSphere Message Broker V7.0.

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “asis”. The use of this information and the implementation of any of the techniques
is the responsibility of the customer. Much depends on the ability of the customer to evaluate
these data and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

 IBM

 WebSphere MQ

 WebSphere Message Broker

 DB2

The following terms are trademarks of other companies:

 Windows 2003, Windows 2008, Microsoft Corporation

Other company, product, and service names may be trademarks or service marks of others.

05/11/2010 Version 1.0 Page 4 of 83

Summary of Amendments

Date Changes

05/11/2010 Initial Release

05/11/2010 Version 1.0 Page 5 of 83

Feedback

This report and other tools that are produced by the performance group are produced in order
to help you understand the performance characteristics of WebSphere Message Broker and
to assist you with sizing.

It is important that the reports and tools are effective in what they do and it is very useful to
have feedback on the content and style of the information which is produced. Your
comments, both positive and negative, are therefore welcome.

Your answers to the following questions are particularly interesting:

• What are your most common performance questions?
• Do the reports provide what is needed?
• Is there any other performance information which is required to help you do your job?
• Would you like to see any other aspects of WMB performance discussed?

Please supply feedback to us at the following e-mail addresses:

Ian Hurworth (hurworti@uk.ibm.com)
Tim Dunn (dunnt@uk.ibm.com)
Dave Gorman (dave_gorman@uk.ibm.com)

or use the feedback facility on the SupportPac web page where you obtained this report.

05/11/2010 Version 1.0 Page 6 of 83

Table of Contents

Feedback ... 5
Table of Contents .. 6
Introduction .. 8

Part I .. 10
Release Highlights... 11

Performance Improvements over WebSphere Message Broker V6.1 11
Use Case Throughput ... 14

Use Case Outline.. 14
Additional Information.. 16

Part II ... 17
Processing Profiles.. 18

Sending and Receiving Messages over different Transports ... 20
MQ Nodes... 20
HTTP Nodes ... 20
SOAP Nodes... 21
SCA Nodes ... 24
JMS Nodes ... 27
TCPIP Nodes .. 28

Minimal Processing ... 29
Message Parsing and Writing ... 30

Parsing a Message in the MRM Domain .. 30
Writing a Message in the MRM Domain ... 33
Parsing Messages in the XMLNSC Domain... 35
Writing a Message in the XMLNSC Domain... 35
Validation in the XMLNSC Domain... 36
Opaque Parsing in the XMLNSC Domain... 38

Processing Nodes ... 39
Using Database Route and Route Nodes... 39
Using ESQL .. 40
Using Java .. 42
Using PHP .. 47
Using XSLT... 48
Using the Collector Node.. 49
Using the Sequence Node.. 51
Using the IMS Node.. 51

Business-level Monitoring ... 52
External Resources... 53

Accessing a Database from a Message Flow... 53
Calling External Procedures ... 56

Scaling Message Throughput ... 57
Overheads... 60

Message Flow Execution Statistics .. 60
Resource Statistics ... 60
Using Trace and Trace Nodes.. 61

Resource Requirements.. 62
Recommended Minimum Specification .. 62
Memory Use.. 62

Appendix A - Measurement Environment.. 64
Server Machine ... 64
Client Machines... 64
Network Configuration... 64

Appendix B - Evaluation Method ... 65
Testing Methodology... 65

Message Generation and Consumption ... 65
Machine Configuration.. 66

Reported Message Rates ... 67

05/11/2010 Version 1.0 Page 7 of 83

Appendix C - Test Messages .. 68
Input Messages ... 68

General Input Messages... 68
SOAP Input Message and WSDL ... 69
Output Message.. 72

Appendix D - Use Case Descriptions .. 74
Aggregation ... 74
Coordinated Request Reply .. 75
Data Warehouse ... 77
Large Messaging... 78
Message Routing .. 79
Message Transformation .. 80

Appendix E – Tuning ... 81
Message Broker .. 81
WebSphere MQ... 82
TCP/IP... 82
Database ... 83
Additional Tuning Information ... 83

05/11/2010 Version 1.0 Page 8 of 83

Introduction
The purpose of this report is to illustrate the key processing characteristics of WebSphere
Message Broker. This has been done by measuring the message throughput which is
possible for a number of different types of message processing, covering multiple message
formats, types and sizes.

This report consists of three parts. These meet different requirements:

1. Part I contains the release highlights and some background information to help
understand the context of the results. It shows:

a. The areas of improvement in performance with WebSphere Message Broker
V7.0 when compared with WebSphere Message Broker V6.1.

b. The level of message throughput that is achievable when using WebSphere
Message Broker in different ways. These tests use multiple copies of the
message flow and utilise as much of the server machine as possible to
illustrate the maximum message rate which can be sustained for the
individual types of processing.

The information in this part is presented at a high level and is intended to help
you quickly understand WebSphere Message Broker throughput capabilities.

2. Part II contains measurement data for a wide variety of tests which examine the
processing costs of individual functions using a single copy of the message flow.
This information is provided for those who wish to understand the processing costs of
different components within WebSphere Message Broker. This information is
intended for the more experienced WebSphere Message Broker user who is familiar
with the product concepts and functions. As these tests run a single copy of the
message flow they do not utilise the whole of the server machine and do not
therefore represent the maximum message throughput which is achievable.

3. Appendices that contain supplementary information. They are:

• Appendix A - Measurement Environment

• Appendix B – Evaluation Method

• Appendix C – Test Messages

• Appendix D – Use Case Descriptions

• Appendix E - Tuning

There are a number of changes from previous performance reports. The most significant are:

1. Re-engineered tests to better reflect the processing costs which are encountered
when processing messages with a WebSphere Message Broker message flow. The
previous tests are deprecated and do not appear in this report.

2. Larger range of message sizes including a greater range of persistent message
sizes.

The performance measurements focus on the throughput capabilities of the broker using
different message formats and processing node types. The aim of the measurements is to
help you understand how many messages a second can be processed in different situations
as well as helping you to understand the relative costs of the different node types and
approaches to message processing.

05/11/2010 Version 1.0 Page 9 of 83

You should not attempt to make any direct comparisons of the test results in this
report with what may appear to be similar tests in previous performance reports. This
is because the contents of the test messages are significantly different as is the
processing in the tests. It is not meaningful to make such comparisons. In many
cases the Hardware, Operating System and prerequisite software are also different
making any direct comparisons invalid.

Some optimisations to the test environment and procedures have been implemented to
minimise the effect of logging for example and to ensure that messages do not build up on
output queues (which has a detrimental effect on message throughput). These are detailed in
the section Tuning.

In many of the tests the business logic used is minimal so the results presented represent the
best throughput that can be achieved for that node type. This should be borne in mind when
performing sizing for WebSphere Message Broker.

05/11/2010 Version 1.0 Page 10 of 83

Part I

This part contains an overview of the areas of improvement in performance with WebSphere
Message Broker V7.0 when compared with WebSphere Message Broker V6.1.

It contains the following sections:

• Release Highlights which outlines the main differences in performance when using
WebSphere Message Broker V7.0 compared with WebSphere Message Broker V6.1.

• Additional Information which provides links to other sources of information about

WebSphere Message Broker and related products.

05/11/2010 Version 1.0 Page 11 of 83

Release Highlights
Performance Improvements over WebSphere Message Broker V6.1
There have been significant improvements in the performance of WebSphere Message
Broker V7.0 in the following areas:

• Message flow deployment
• Toolkit connection times
• Business-level monitoring
• Performance analysis

In addition there have been significant enhancements to the Message Broker Toolkit to assist
with the rapid diagnosis of runtime performance problems in message flows. It is now
possible to very quickly accurately and cheaply diagnose performance problems in a running
message flow with a low overhead that is typically no more than 3%.

Details of the improvements follow.

Message Flow Deployment
The removal of the Configuration Manager in V7.0 has led to a significant improvement in the
performance of message flow deployment. Some examples of the improvements are

• The deployment of a message flow to one execution group was measured at 3
seconds; this is less than 25% of the time taken for the same deployment in V6.1.

• The deployment of 10 message flows to each of 20 execution groups was measured

at 3.4 seconds per message flow. The total time taken is 23% of the time taken for
the same deployment in V6.1.

Toolkit Connection Times
The removal of the Configuration Manager has also led to significant reductions in the time
taken for Broker Explorer and the Toolkit to connect to a broker as the figures in the table
below show.

• The time taken to connect to a topology of 1 execution group with 1 message flow
deployed was measured at 3 seconds; this is 38% of the time taken for the same
operation with V6.1.

• The time taken to connect to a topology of 20 execution groups each with 10

message flows deployed was measured at 5 seconds; this is 8% of the time taken for
the same operation with V6.1.

05/11/2010 Version 1.0 Page 12 of 83

Business-level Monitoring
The efficiency of business-level monitoring has been significantly improved in V7 compared
with V6.1.0.3 with reductions in the CPU cost per message of between 30 and 50%.

In V6.1.0.3 every event was emitted out of syncpoint. This impacted performance. In V7
there is a choice as to when events are emitted. The choices are:

• Coordinated, where the events are emitted as part of unit of work of the message
flow.

• Independent, where the events are emitted in a separate unit of work
• None, where events are emitted out of syncpoint.

Emitting coordinated events provides the optimum performance and it this option that was
used for the comparison with V6.1.0.3.

The performance improvements mentioned above can be obtained by upgrading to
WebSphere Message Broker V7.0. No code or message model changes are required to
benefit from the improvements.

Fast Low Overhead Performance Analysis
WebSphere Message Broker V7.0 has two new functions in the Broker Explorer to assist with
the rapid diagnosis of performance problems in message flows. These are the visualisation of
message flow snapshot statistics and resource statistics. The overhead of these functions is
small. Using the XSLT Transformation sample the overhead of the snapshot statistics was
measured at 2.67%. Resource statistics gave a 1% overhead. This is an extremely low
overhead given the level of information that is now available.

Message Flow Statistics
Snapshot statistics provide detailed information on the CPU usage and elapsed times of
message flows. The data is now available in a graphical and tabular form in the Broker
Explorer. The data is updated automatically every 20 seconds once started. It can be paused
if needed. There is also the option to copy the data for subsequent analysis into a
spreadsheet.

Using this facility it is possible to quickly identify hotspots in message flows for further
analysis. This allows effort to be targeted to the correct area straight away and avoids the
wasted time that would inevitably result when using a hit and miss approach to problem
resolution.

A screenshot of this facility being used is shown below. For more information on this facility
consult the product documentation.

05/11/2010 Version 1.0 Page 13 of 83

Resource Statistics
Message Broker Explorer adds the capability to graphically view information about key broker
resources such as the JVM Heap.

A screenshot of the resource statistics facility being used is shown below. For more
information on this facility consult the product documentation.

05/11/2010 Version 1.0 Page 14 of 83

Use Case Throughput
This section illustrates the message throughput that is possible with Message Broker V7.0 for
a number of common processing use cases that Message Broker is used for.

You will observe a range of processing rates. The message rate varies with the complexity of
the application processing and the size and complexity of the messages as it would for any
program.

Use Case Outline
This section contains a brief outline of the tests used and the results for each are presented in
the tables below. For more detail on individual test cases see the section Appendix D - Use
Case Descriptions.

• Aggregation
This represents the type of processing that is required when travel is booked and
arrangements for a flight, hotel, car and money must be made. Requests to four
different applications are made and the replies consolidated into a single reply. This
test performs the processing required to split an incoming XML message and perform
a four message aggregation using the Aggregation nodes which are supplied with
WebSphere Message Broker.

• Coordinated Request Reply

This performs the processing needed to enable two applications with different
message formats to communicate with each other. One application has a message
format of self-defining XML and the other uses Custom Wire Format (CWF)
messages. The request and reply processing for a particular request must be
coordinated so that data from the original request is restored to the reply message.

• Data Warehouse
This demonstrates a scenario in which a message flow is used to perform the
archiving of data, such as sales data, into a database. The data is stored for later
analysis by another message flow or application.

• Large Messaging

This is based on the scenario of end-of-day processing of sales data. Messages
representing sales for the day are batched together for transmission to the IT centre.
On receipt at the IT centre the batched messages are split back out into their
constituent parts for subsequent processing.

• Message Routing
This shows how a message flow can be used to route messages to different
WebSphere MQ queues based on data stored in a database table. This is a
commonly used scenario which is applicable to many different industries and
applications.

• Message Transformation
This shows the transformation of XML messages from one format to another using
ESQL which are sent and received over the WebSphere MQ transport:

05/11/2010 Version 1.0 Page 15 of 83

The following table shows the message rates that were obtained for the different use cases
when running on an IBM Intel(R) with 1 x Quad-Core Xeon(TM) E5450 3GHz processor.

Use Case Message Size V7.0 Msgs/sec
Aggregation 2k 845.84
Coordinated Request/Reply 2k 1346.03
Data Warehouse 2k 1293.70
Large Messaging 2k 4491.80
Message Routing 2k 7913.97
Message Transformation 2k 5435.23

Throughput Comparison for Common Message Broker Use Cases.

Note:

The results in the table above were obtained by running sufficient copies of each message
flow so that in most cases the system CPU utilisation was 80% or greater.

Note that there is a range of message rates from 840 to 7900 messages per second. These
rates reflect the range of complexities for the different use cases shown or put in another way
not all use cases are of the same complexity.

When planning a system it is important to understand the complexities of the processing
required so that adequate resources can be provided to meet the requirements of the
particular situation.

05/11/2010 Version 1.0 Page 16 of 83

Additional Information
This section contains links to information about WebSphere Message Broker and associated
products.

The Web Resources section in the development toolkit of WebSphere Message Broker V7.0
contains links to many additional pieces of information on topics such as Education, Technical
Resources and SupportPacs. The Web resources section can be accessed by selecting Web
Resources from the Help drop down on the development toolkit menu bar.

For additional suggestions consider the following:

• See the announcement letter for IBM WebSphere Message Broker V7.0 which is
available at WebSphere Message Broker V7 Announcement

• IBM WebSphere MQ SupportPacs provide you with a wide range of downloadable
code and documentation that complements the WebSphere MQ family of products.
Additional performance reports are also available. These are available at
http://www.ibm.com/software/integration/support/supportpacs.

• For more information about WebSphere Message Broker V7.0 including a trial
edition, go to the WebSphere Message Broker Web site. Product documentation is
also available. This is available at
http:/www.ibm.com/software/integration/wbimessagebroker

• For more information about WebSphere MQ V7, go to the WebSphere MQ Web site.
Product documentation is also available. This is available at
http://www.ibm.com/software/integration/wmqfamily

• For more information about business integration software from IBM go to WebSphere
Business Integration Web site. This is available at
http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/businessint .

• Get the latest WebSphere Message Broker technical resources at the WebSphere
Message Broker zone. This is available at
http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html

• The MQ,JMS and HTTP transport testing which was run for this report used a tool
called the Performance Harness for JMS to generate and consume messages. The
tool is useful as a simple way to send and receive messages. The documentation for
the tool contains examples of how to run it to send/receive messages. More
information on the currently available version can be found here:
http://www.alphaworks.ibm.com/tech/perfharness?open&S_TACT=105AGX21&S_C
MP=AWRSS.

05/11/2010 Version 1.0 Page 17 of 83

Part II

This section contains the description and results of a series of tests which have been run in
order to identify the processing costs of a selected range of the functions which are provided
with WebSphere Message Broker.

It contains the following sections:

• Processing Profiles which describes the tests and shows the results obtained when a
single copy of the message flow was run.

• Resource Requirements which provides a recommended minimum specification

machine on which to install the product as well as some guidance on virtual memory
use for execution groups running a variety of message flows.

05/11/2010 Version 1.0 Page 18 of 83

Processing Profiles
This section contains the results of a series of micro tests which illustrate the costs of
performing different types of processing using WebSphere Message Broker such as message
parsing, message streaming, use of Filter nodes etc. These tests are not intended to
represent applications. They are an illustration of the processing costs of specific functions.

The test results were all run using the same methodology. This was to run a single copy of
the message flow (unless specified otherwise) to maximum CPU utilisation and to observe the
message rate obtained. From this a CPU cost per message was calculated. This is
presented in the results table for each measurement.

When comparing the costs of different functions it is recommended to compare them on the
basis of CPU cost per message rather than message rate.

There are many comparisons which can be made using the data in this section which will give
some insight into the relative costs of different implementations such as what is the relative
cost of ESQL and XSLT to process the same message.

The data in this section will allow you to make a comparison on the basis of CPU costs.
Other factors such as the potential for code re-use and the operational considerations of
using a particular technology are not discussed.

Messages Used in Processing
For the majority of tests the message content was common. Different formats (in XML, CWF,
TDS) of a common input message were used. The output message varied dependent on the
test case. The messages are described in the section Appendix C – Test Messages.

Note that the message size quoted is based on the size of the data in XML format hence
when the same data is represented at CWF or TDS format the actual size may be significantly
less. The sizes for the different formats are shown in the table below:

Msg Size in XML Msg Size in TDS Msg Size in CWF
2k 2k 1k
20k 10k 5k
200k 100k 48k

2048K(2mb) 995k 481k
20480K(20mb) 9941k 4807k

Results Presentation
Each of the tests are described below and accompanied by a table of data which has a format
such as this:

Msg Size Persistent
Message

Rate
(Msgs/sec)

% CPU Busy CPU ms/msg

2k No
20k No
200k No
2mb No

20mb No
2k Yes

20k Yes
200k Yes
2mb Yes

20mb Yes

05/11/2010 Version 1.0 Page 19 of 83

The data in the columns is as follows:

Msg Size: records the approximate size of the message used as input to the test. This is the
size of the message payload and does not include the size of any message header. For the
Message Repository Manager (MRM) tests which use CWF and TDS message formats the
input message will be smaller. This is due to the differences in the way in which data is
formatted. In these cases the input message will still contain the same amount of information
but it will be the CWF or TDS representation of the generic XML representation of the same
data. Most test cases used messages of 2k, 20k, 200k, 2mb and 20mb. In some cases a
more limited range of message sizes was run where the test was not suitable for the whole
range of message sizes.

Persistent: Indicates whether the messages used in the test were persistent or not.

Message Rate: The number of round trips or message flow invocations per second.

% CPU Busy: System busy CPU percentage on the server machine. This includes the CPU
used by all processes (WebSphere Message Broker, WebSphere MQ queue manager,
database manager etc) on the system under test. The rate is expressed as a percentage
utilisation of all processors on the machine.

CPU ms/msg: Overall CPU cost per message, expressed as CPU milliseconds per message.

The value of CPU ms/msg is obtained using the calculation:

 ((Number of cores * 1000) * (%CPU/100)) / Message Rate.

This cost includes WebSphere Message Broker, WebSphere MQ, DB2, operating system
costs etc. The CPU ms/msg figures reported are specific to the machine on which they were
obtained and if projections of message processing capacity are to be made for other
machines a suitable adjustment must be made in the costs to allow for differences in the
capacity of the two systems.

Response Times
Response time data for the message flow execution is not reported. The tests are configured
to maximise message throughput and minimise CPU costs. As such tests always have a
number of messages waiting on the input node of the message flow so that there is at least
one message ready to be processed immediately after processing of the current message
has completed. This means that the processing of each message involves queuing time at
the input node. Because of this it is not meaningful to report message processing times as
observed by the client as it will not reflect the true execution time in the message flow.

It is possible to estimate the elapsed time within a message flow in milliseconds from the
results of these tests by dividing 1000 (representing the number of milliseconds in 1 second)
by the message rate for the test as only a single copy of the message flow was run.

For example let us suppose that a test achieved a message rate of 2000 per second. The
message flow average execution time is 1000 / 2000 = 0.5ms. For a message rate of 200 per
second the average execution time is 1000/200 = 5ms.

These times are an estimate of the execution time in the message flow and as such represent
the elapsed time between the message being read from the input queue and the result being
placed on the output queue.

If messages are generated or consumed by remote clients an allowance needs to be made
for network delays.

The test descriptions and results follow.

05/11/2010 Version 1.0 Page 20 of 83

Sending and Receiving Messages over different
Transports

The tests in this section illustrate the processing cost of receiving and sending data over
various transports supported by WebSphere Message Broker.

MQ Nodes
The tests in this section illustrate the processing cost of reading and writing MQ Messages.

Reading and writing to an MQ Queue

This test consists of MQ Input Node -> MQ Output Node.

This test shows the overhead of using message broker to move messages from one MQ
Queue to another. Also as many other of the tests included in this report use MQ as the
transport it can be used to determine how much of the processing incurred is down to using
MQ and how much is the routing/transformation or parsing cost.

An MQ Message is placed on the Input Queue where the incoming message is then copied
over to the Output Queue. The message contents are treated as a BLOB and are not
modified or parsed in anyway.

This test identifies the cost of reading and writing a BLOB message with MQ as the transport.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 6749.37 54.33 0.32

20k No 4080.83 63.00 0.62
200k No 445.74 46.00 4.13
2mb No 36.83 70.33 76.38

20mb No 3.19 50.67 635.32

2k Yes 883.13 9.67 0.44
20k Yes 589.09 16.00 1.09
200k Yes 185.55 25.67 5.53
2mb Yes 25.23 51.33 81.37

20mb Yes 2.49 49.67 797.86

HTTP Nodes

The tests in this section illustrate the processing cost of reading and writing HTTP Messages.

Reading and Writing messages over the HTTP Transport

This test consists of HTTP Input Node -> HTTP Reply Node.

This test shows the overhead of using message broker to receive and send messages over
the HTTP transport. An HTTP bytes Message is written to the broker over HTTP. The
incoming message is then written out unmodified back to the client. The message contents

05/11/2010 Version 1.0 Page 21 of 83

are treated as a BLOB and are not modified or parsed in anyway. Note that persistent HTTP
connections were used in this test (see Tuning Section for details)

This test identifies the cost of reading and writing a BLOB message with HTTP. The results of
running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 4963.71 61.33 0.49

20k No 1927.60 85.67 1.78
200k No 230.98 95.67 16.57
2mb No 16.19 96.67 238.83

Making an HTTP Request

This test consists of two message flows deployed to the same execution group:

Main message flow.
MQ Input Node -> HTTP Request Node -> MQ Output Node

 Backend Message Flow
 HTTP Input node -> HTTP Reply Node

This test shows the overhead of making a HTTP Request from message broker. An MQ
Message is written to the input queue this message is then sent out over HTTP to an empty
backend HTTP flow (hosted on the same broker for convenience). The message is sent back
to the flow unmodified over HTTP and put to an MQ Queue. The message contents are
treated as a BLOB and are not modified or parsed in anyway.

This test identifies the cost of making a HTTP Request. The results of running this test are
given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1269.22 44.33 1.40

20k No 603.46 47.33 3.14
200k No 80.60 50.00 24.81
2mb No 6.51 51.00 313.36

20mb No 0.69 47.67 2763.29

SOAP Nodes

The tests in this section illustrate the processing cost of receiving, sending and making
requests over the SOAP transport. The SOAP nodes were introduced in WMB V6.1 and
make development of SOAP over HTTP flows much easier. The SOAP nodes handle the
complexities of the SOAP format and so you should expect to pay a runtime processing cost
for this ease of use over using HTTP nodes.

Receiving and sending messages over the SOAP transport

This test consists of SOAP Input Node -> Compute Node -> SOAP Reply Node.

The message flow is acting as a Web service provider. A SOAP message is received by the
broker via the SOAP Input Node. A Compute Node then copies the SOAP request message
across to a SOAP response message which is then sent via the SOAP Reply Node.

05/11/2010 Version 1.0 Page 22 of 83

Note that persistent HTTP connections were used in this test (see Tuning Section for details).

This test identifies the cost of receiving and sending a SOAP message. The results of
running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1773.60 37.33 0.84

20k No 451.79 25.00 2.21
200k No 52.53 28.67 21.83
2mb No 4.82 29.00 240.66

20mb No 0.49 30.00 2448.98

Receiving and sending messages over the SOAP transport with Validation
enabled

This test consists of SOAP Input Node -> Compute Node -> SOAP Reply Node.

The SOAP Input and SOAP Reply nodes are are used in a message flow which implements a
provider Web service. The SOAP Input node is configured to enable validation (“Content and
value”; SOAP Parser Options select “Build tree using XML schema data types”). A SOAP
message is received by the broker via the SOAP Input Node, a Compute Node then copies
the unmodified SOAP request message across to a SOAP response message which is then
sent via the SOAP Reply Node.

Note that persistent HTTP connections were used in this test (see Tuning Section for details).

This test identifies the cost of receiving and sending a SOAP message where the message is
validated.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1420.84 35.67 1.00

20k No 212.60 25.33 4.77
200k No 17.90 33.33 74.49
2mb No 1.71 25.67 600.39

20mb No 0.19 28.00 5894.74

Receiving and sending messages over the SOAP transport using WS-Addressing

This test consists of SOAP Input Node -> Compute Node -> SOAP Reply Node.

The SOAP Input and SOAP Reply nodes are used in a message flow which acts as a Web
services provider. The SOAP Input node is configured to enable WS-Addressing. A SOAP
message is received by the broker via the SOAP Input Node. A Compute Node then copies
the unmodified SOAP request message across to a SOAP response message which is then
sent via the SOAP Reply Node.

Note that persistent HTTP connections were used in this test (see Tuning Section for details).

05/11/2010 Version 1.0 Page 23 of 83

This test identifies the cost of receiving and sending a SOAP message where WS-Addressing
is enabled. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1023.71 32.00 1.25

20k No 249.18 31.00 4.98
200k No 26.68 27.67 41.48
2mb No 2.75 31.00 451.46

20mb No 0.27 31.33 4641.98

Making a SOAP Request

This test consists of one (consumer) flow with
SOAP Input Node -> Compute Node -> SOAP Request Node -> SOAP Reply Node

and a backend (provider) message flow which consists of
HTTP Input Node -> HTTP Output Node.

The SOAP Request node is used in a message flow to invoke a Web Service synchronously.
A response must be received from the web service before the message flow continues.

A SOAP message is received by the broker via the SOAP Input Node, a Compute Node then
copies the SOAP request message across to a SOAP response message, a SOAP Request
Node then issues a Web Service request. When the web service has completed a response is
sent to the original request via the SOAP Reply Node.

The web service that is invoked synchronously consists of an HTTP message flow, running in
the same broker, which returns the request data unmodified.

This test identifies the cost of making a Web Service request via the SOAP Request node.
The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 865.12 38.67 1.79

20k No 252.52 37.33 5.91
200k No 39.89 32.67 32.76
2mb No 4.22 33.67 319.12

20mb No 0.44 35.33 3187.97

Making a SOAP Request with Validation enabled

This test consists of one (consumer) flow with

SOAP Input Node -> Compute Node -> SOAP Request Node -> SOAP Reply Node
and a backend (provider) flow which consists of

HTTP Input Node -> HTTP Output Node.

The SOAP Request node is used in a message flow which calls a Web Service
synchronously. This means the node sends a Web Service request and waits for the
associated Web Service response to be received before the message flow continues.

The SOAP Request node is configured to enable validation (“Content and value”; SOAP
Parser Options select “Build tree using XML schema data types”). A SOAP message is
received by the broker via the SOAP Input Node, a Compute Node then copies the

05/11/2010 Version 1.0 Page 24 of 83

unmodified SOAP request message across to a SOAP response message, a SOAP Request
Node then makes a Web Service request, the response is then sent via the SOAP Reply
Node. The request is returned, unmodified, via a HTTP flow.

This test identifies the cost of making a Web Service request via the SOAP Request node
with validation enabled.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 585.02 35.67 2.44

20k No 99.75 31.33 12.56
200k No 6.76 24.67 146.03
2mb No 0.83 26.67 1280.00

SCA Nodes
The tests in this section illustrate the processing cost of using the SCA nodes which allow
WebSphere Message Broker to interoperate with WebSphere Process Server. This supports
both WebSphere Process Server to WebSphere Message Broker inbound and WebSphere
Message Broker to WebSphere Process Server outbound scenarios.

When designing message flows with SCA, you must select a suitable transport (also called a
binding). The SCA nodes support the WebSphere MQ transport and WebSphere Broker
HTTP transport with SOAP. These tests show the processing costs of SCA over each of
these transports.

Receiving and sending inbound messages with SCA over MQ

This test consists of SCA Input Node -> SCA Reply Node

The bindings are set to MQ.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 4900.49 51.00 0.42

20k No 3421.69 57.33 0.67
200k No 383.99 44.33 4.62
2mb No 31.93 57.67 72.23

20mb No 2.88 50.00 695.25

05/11/2010 Version 1.0 Page 25 of 83

Receiving and sending inbound messages with SCA over SOAP

This test consists of SCA Input Node -> Compute Node -> SCA Reply Node

The bindings are set to Web Services and the Compute node modifies the high level tag from
request to response.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1657.69 35.00 0.84

20k No 448.62 28.33 2.53
200k No 49.15 23.33 18.99
2mb No 4.81 29.67 246.71

20mb No 0.48 27.67 2305.56

Making an Asynchronous outbound request with SCA over MQ

This test consists of two flows deployed to the same Execution Group :

Main Message Flow
MQ Input Node -> SCA Asynchronous Request Node
SCA Asynchronous Response Node -> MQ Output Node

“ Backend “ Message Flow

MQ Input Node -> Compute Node -> MQ Output Node

The bindings are set to MQ.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2955.12 61.67 0.83

20k No 2027.29 66.00 1.30
200k No 379.44 79.33 8.36
2mb No 22.14 96.00 173.42

20mb No 2.19 87.67 1601.22

Making an Asynchronous outbound request with SCA over SOAP

This test consists of two flows deployed to the same Execution Group :

Main Message Flow
 MQ Input Node -> SCA Asynchronous Request Node

SCA Asynchronous Response Node -> MQ Output Node

 “ Backend “ Message Flow
 SOAP Input Node -> Compute Node -> SOAP Reply Node

The bindings are set to Web Services.

05/11/2010 Version 1.0 Page 26 of 83

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 593.90 56.00 3.77

20k No 186.45 58.00 12.44
200k No 23.96 59.00 98.51
2mb No 2.44 56.00 916.78

20mb No 0.26 61.33 9558.44

Making a Synchronous outbound request with SCA over MQ

This test consists of two flows deployed to the same Execution Group :

Main Message Flow
MQ Input Node -> SCA Request Node -> MQ Output Node

“ Backend “ Message Flow

MQ Input Node -> Compute Node -> MQ Output Node

The bindings are set to MQ.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1701.28 40.33 0.95

20k No 1185.47 40.33 1.36
200k No 344.57 53.00 6.15
2mb No 20.71 61.67 119.09

20mb No 1.89 57.67 1220.46

Making a Synchronous outbound request with SCA over SOAP

This test consists of two flows deployed to the same Execution Group :

Main Message Flow
MQ Input Node -> SCA Request Node -> MQ Output Node

“ Backend “ Message Flow

HTTP Input Node -> HTTP Output Node

The bindings are set to SOAP.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 516.22 37.67 2.92

20k No 150.18 33.00 8.79
200k No 14.60 25.00 68.49
2mb No 1.81 34.33 758.75

20mb No 0.18 33.67 7481.48

05/11/2010 Version 1.0 Page 27 of 83

JMS Nodes

The tests in this section illustrate the processing cost of utilising JMS messages.

Receiving and sending JMS Messages

This test consists of JMSInput Node -> JMSOutput Node

The JMSInput Node acts as a JMS Receiver on an MQ JMS Queue.

The JMS Output Node acts as a JMS Sender and sends the same message to the same JMS
Provider.

For this test the JMS Provider is the broker WMQ Queue Manager.

This test uses a JMS Bytes message.

This test identifies the cost of receiving and sending a JMS Bytes Message with a JMS
Provider. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1293.28 38.67 1.20

20k No 919.73 43.00 1.87
200k No 199.50 53.33 10.69
2mb No 14.43 55.67 154.27

20mb No 1.42 50.00 1408.45

JMS to MQ Protocol conversion

This test consists of JMSInput Node -> JMSMQTransform Node -> MQOutput Node

The JMSInput Node acts as a JMS Receiver on an MQ JMS Queue.

For this test the JMS Provider is the broker WMQ Queue.

This test uses a JMS Bytes message.

Within the JMSMQTransform node the tree built from the JMS input message is converted to
one suitable for the MQ transport. An MQ output message is written.

This test identifies the cost of converting a JMS Message to an MQ Message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1361.50 25.33 0.74

20k No 807.49 27.67 1.37
200k No 234.45 50.67 8.64
2mb No 18.50 60.67 131.17

20mb No 1.84 55.67 1207.96

05/11/2010 Version 1.0 Page 28 of 83

MQ to JMS Protocol conversion

This test consists of

MQ Input Node -> MQJMSTransform Node -> JMSOutput Node

The JMS Output Node acts as a JMS Sender to an MQ JMS Queue.

For this test the JMS Provider is broker WMQ Queue Manager.

Within the MQJMSTransform node the tree built from the MQ input message is converted to
one suitable for the JMS transport. A JMS Bytes output message is written.

This test identifies the cost of converting a MQ Message to a JMS Message. The results of
running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1930.44 34.67 0.72

20k No 1294.70 35.33 1.09
200k No 295.97 53.33 7.21
2mb No 21.92 65.67 119.83

20mb No 2.14 60.67 1132.19

TCPIP Nodes

The tests in this section illustrate the processing cost of using the TCPIP nodes.

Receiving and sending messages over TCPIP using Fixed Length record
detection

This test consists of TCPIPServerInput Node -> TCPIPServerOutput Node

This test illustrates the cost of using the Fixed Length record detection in the
TCPIPServerInput node. The incoming message is received by the TCPServerInput node and
the response sent from the TCPIPServerOutput. The messages processed are in the
XMLNSC domain and record detection was set to Fixed Length on the TCPIPServerInput
node.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2668.69 35.00 0.52

20k No 1868.86 42.67 0.91
200k No 229.60 26.33 4.59

Receiving and sending messages over TCPIP using Parsed Record Sequence
record detection

This test consists of TCPIPServerInput Node -> TCPIPServerOutput Node

This test illustrates the cost of using parsed record sequence detection in the
TCPIPServerInput node. The incoming message is received by the TCPServerInput node and
the response sent from the TCPIPServerOutput. The messages processed are in the

05/11/2010 Version 1.0 Page 29 of 83

XMLNSC domain and record detection was set to Parsed Record Sequence on the
TCPIPServerInput node.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2010.31 35.67 0.71

20k No 602.79 34.67 2.30

Minimal Processing

The test in this section illustrates some of the simplest processing which can be performed
with WebSphere Message Broker. As such it illustrates the smallest processing cost that you
could expect for a message flow. This is not typical of the majority of implementations of
Message Broker though. The data is provided for reference purposes only to help you
understand the maximum rate that could be expected for one copy of the message flow.

Typically the processing within a message flow involves message parsing, processing logic
and message serialisation. Under these circumstances the CPU processing costs can
increase significantly and as such the message rate obtained for given amount of CPU will be
lower than for the very simple type of flow presented in this section.

Setting of the MQ Message Headers

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output messages are processed using the XMLNSC domain.

Within the compute node the message headers for the outgoing message are created using
ESQL. To minimise processing costs only the CodedCharSetId and Encoding fields in the
MQMD header are set. The message body is ignored and therefore not used in the output
message.

This test identifies the cost of setting the message header only and creating an output
message with no payload. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 4411.92 44.00 0.40

20k No 3660.72 51.67 0.56
200k No 584.84 39.67 2.71
2mb No 57.90 56.33 38.92

20mb No 5.40 45.33 335.80

2k Yes 636.36 7.00 0.44
20k Yes 549.62 12.67 0.92
200k Yes 284.66 21.33 3.00
2mb Yes 43.92 52.67 47.96

20mb Yes 3.29 29.67 360.69

05/11/2010 Version 1.0 Page 30 of 83

Message Parsing and Writing

The tests in this section illustrate the cost of parsing input messages and writing output
messages for different message formats.

Parsing a Message in the MRM Domain

The tests in this section illustrate the CPU processing costs of parsing different message
formats in the MRM domain.

Notes: In this report figures only figures for TDS Fixed length format are given. Previous
measurements showed that message throughput varied little regardless of format hence the
decision to only report the one type. If more detail on the differences between the different
TDS formats is required consult the WebSphere Message Broker V6 performance reports

Parsing a Tagged Delimited String, Fixed Length Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a Fixed Length, Tagged Delimited String input
message. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1557.28 35.67 0.92

20k No 334.52 27.67 3.31
200k No 37.40 30.00 32.09
2mb No 3.50 26.00 297.14

20mb No 0.37 27.67 2990.99

2k Yes 565.03 12.33 0.87
20k Yes 272.31 27.33 4.01
200k Yes 34.75 26.33 30.31
2mb Yes 3.57 30.00 336.13

20mb Yes 0.37 30.67 3315.32

Parsing a Custom Wire Format Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the CWF domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

05/11/2010 Version 1.0 Page 31 of 83

This test identifies the cost of parsing a Custom Wire Format input message. The results of
running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2042.56 36.67 0.72

20k No 420.38 27.67 2.63
200k No 45.40 30.00 26.43
2mb No 4.24 26.00 245.09

2k Yes 644.70 11.67 0.72

20k Yes 326.17 20.33 2.49
200k Yes 43.79 29.33 26.79
2mb Yes 4.19 27.00 257.76

Parsing a Comma Separated Value Input Message using Data Patterns

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the entire incoming message is copied to the outgoing message. In
addition the format of the outgoing message is set to XML. This causes a full parse of the
incoming message using the Tagged Delimited String Parser and a full write of the outgoing
message using the XMLNSC writer.

This test identifies the cost of converting an incoming Comma Separated Value input
message using the Data Pattern function with the Tagged Delimited String Parser, to an
outgoing Generic XML Message. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
1k No 1108.69 34.00 1.23

1k Yes 519.00 13.67 1.05

Parsing a SWIFT 543 Input Message using the Tagged Delimited String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing a SWIFT MT543 message using the Tagged Delimited
String format. A single implementation of this message was used which was approximately
7K in size.

05/11/2010 Version 1.0 Page 32 of 83

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
7k No 1195.61 32.00 1.07

7k Yes 533.12 20.00 1.50

Parsing and Writing a SWIFT 543 Input Message using the Tagged Delimited
String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the TDS domain.

Within the compute node the Envelope within the incoming SWIFT Message is copied over to
the outgoing message. This causes a full parse of the incoming message and a full
serialisation of the outgoing message.

This test identifies the cost of parsing a SWIFT MT543 message and serializing it again using
the Tagged Delimited String format. A single implementation of this message was used
which was approximately 7K in size.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
7k No 642.42 33.00 2.05

7k Yes 354.03 14.00 1.58

Parsing an HL7 Input Message using the Tagged Delimited String Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing an HL7 input message using the Tagged Delimited
String format.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
1k No 291.40 29.67 4.07

1k Yes 231.23 24.67 4.27

05/11/2010 Version 1.0 Page 33 of 83

Parsing and Writing a HL7 Input Message using the Tagged Delimited String
Parser

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the TDS domain.

Within the compute node the Envelope within the incoming HL7 Message is copied over to
the outgoing message. This causes a full parse of the incoming message and a full
serialisation of the outgoing message.

This test identifies the cost of parsing a HL7 message and serializing it again using the
Tagged Delimited String format. A single implementation of this message was used which
was approximately 1K in size.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
1k No 116.06 31.00 10.68

1k Yes 107.20 24.00 8.96

Writing a Message in the MRM Domain

The tests in this section illustrate the CPU processing costs of creating an output message
with different formats in the MRM domain. This is the processing associated with taking a
message tree in OutputRoot and flattening it to create a bitstream which is the output
message.

Writing a Tagged Delimited String, Fixed Length Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the XMLNSC domain. The output message is
processed using the TDS domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Fixed Length, Tagged Delimited String outgoing message. This causes a full parse of the
incoming message payload which is then written as the payload of the output message.

05/11/2010 Version 1.0 Page 34 of 83

This test identifies the cost of parsing a Generic XML message and writing out a Fixed
Length, Tagged Delimited String output message. The results of running this test are given in
the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1293.41 35.33 1.09

20k No 233.15 31.67 5.43
200k No 22.45 31.00 55.23
2mb No 2.08 27.00 519.23

20mb No 0.20 29.33 5866.67

2k Yes 529.42 16.67 1.26
20k Yes 193.78 26.33 5.44
200k Yes 22.06 28.00 50.78
2mb Yes 1.97 29.67 602.37

20mb Yes 0.20 31.00 6200.00

Writing a Custom Wire Format Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input message is processed with the XMLNSC domain. The output message is
processed using the CWF domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition the incoming Generic XML message is converted to a
Custom Wire Format outgoing message. This causes a full parse of the incoming message
payload which is then written as the payload of the output message.

This test identifies the cost of parsing a Generic XML message and writing out a Custom Wire
Format output message. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1715.98 37.33 0.87

20k No 331.30 32.67 3.94
200k No 33.78 29.33 34.73
2mb No 2.93 27.00 368.60

20mb No 0.30 30.67 4088.89

2k Yes 599.31 9.33 0.62
20k Yes 244.65 22.33 3.65
200k Yes 31.42 26.00 33.10
2mb Yes 2.88 29.00 402.78

20mb Yes 0.27 31.67 4691.36

05/11/2010 Version 1.0 Page 35 of 83

Parsing Messages in the XMLNSC Domain

The tests in this section illustrate the CPU processing costs of parsing different message
formats in the XMLNSC domain.

Parsing an XML Input Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a variable is declared and set to the last element in the
incoming message. This causes a full parse of the incoming message. The output message
consists of a message header only and no payload.

This test identifies the cost of parsing an XML input message. As there is no message body
on the output message there are no writing costs. The results of running this test are given in
the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 3063.20 39.67 0.52

20k No 1051.60 35.67 1.36
200k No 135.19 31.33 9.27
2mb No 12.16 32.67 107.49

20mb No 1.21 30.67 1013.77

2k Yes 705.10 10.33 0.59
20k Yes 522.17 26.33 2.02
200k Yes 117.49 32.67 11.12
2mb Yes 11.80 31.67 107.34

20mb Yes 1.24 33.00 1061.66

Writing a Message in the XMLNSC Domain

The test in this section illustrates the CPU processing costs of using the XMLNSC domain to
create an output message. This is the processing associated with taking a message tree in
OutputRoot and flattening it to create a bitstream which is the output message.

Writing a Generic XMLNSC Output Message

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the entire Message from the incoming message is copied over to
the outgoing message. In addition the last element in the incoming message is modified. This
causes a full parse of the incoming message which is then written as the payload of the
output message.

This test identifies the cost of parsing a Generic XML input message and writing a modified
XML output message.

05/11/2010 Version 1.0 Page 36 of 83

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2695.50 41.00 0.61

20k No 718.89 33.67 1.87
200k No 78.55 35.33 17.99
2mb No 6.74 32.33 191.79

20mb No 0.69 32.00 1855.07

2k Yes 555.36 9.67 0.70
20k Yes 348.40 21.33 2.45
200k Yes 63.65 29.00 18.23
2mb Yes 6.23 30.67 196.79

20mb Yes 0.64 34.67 2155.44

Validation in the XMLNSC Domain

The test in this section illustrates the CPU processing costs of using the XMLNSC domain to
validate an xml message. This is the processing associated with taking a message and
validating it against an associated XML Schema.

Validating an XML Message on Input

This test consists of MQ Input Node -> MQ Output Node.

The input node is set to validate the message contents and value. This causes a full parse
and validation of the incoming message which is then written unmodified as the payload of
the output message.

This test identifies the cost of validating a XML input message in the input node and writing an
unmodified XML output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 3228.34 43.20 0.54

20k No 809.51 35.20 1.74
200k No 84.03 33.40 15.90
2mb No 7.55 34.60 183.41

20mb No 0.76 34.60 1816.27

2k Yes 599.33 7.40 0.49
20k Yes 383.33 20.80 2.17
200k Yes 61.97 26.80 17.30
2mb Yes 6.35 29.80 187.78

20mb Yes 0.63 31.00 1955.84

05/11/2010 Version 1.0 Page 37 of 83

Validating an XML Message mid flow

This test consists of MQ Input Node -> Validate Node -> MQ Output Node.

The validate node is set to validate the message contents and value. This causes a full parse
and validation of the incoming message which is then written unmodified as the payload of
the output message.

This test identifies the cost of validating a XML input message using the validate node to do
this mid flow and writing an unmodified XML output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2493.94 39.40 0.63

20k No 572.89 33.00 2.30
200k No 52.85 32.60 24.68
2mb No 4.84 33.60 277.80

20mb No 0.50 33.40 2672.00

2k Yes 525.51 7.20 0.55
20k Yes 316.49 19.80 2.50
200k Yes 44.34 28.00 25.26
2mb Yes 4.56 32.40 284.34

20mb Yes 0.47 32.00 2723.40

Validating an XML Message on Output

This test consists of MQ Input Node -> MQ Output Node.

The output node is set to validate the message contents and value. This causes a full parse
and validation of the incoming message which is then written unmodified as the payload of
the output message.

This test identifies the cost of validating a XML input message using the MQ Output Node on
output from the flow and writing an unmodified XML output message.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1897.38 37.20 0.78

20k No 429.91 31.60 2.94
200k No 37.05 31.20 33.68
2mb No 3.67 31.80 346.78

20mb No 0.37 32.20 3481.08

2k Yes 535.54 11.00 0.82
20k Yes 247.35 20.00 3.23
200k Yes 33.52 28.60 34.13
2mb Yes 3.48 30.60 351.52

20mb Yes 0.36 31.00 3425.41

05/11/2010 Version 1.0 Page 38 of 83

Opaque Parsing in the XMLNSC Domain

The test in this section illustrates the CPU processing costs of using the XMLNSC domain
opaquely parse an XML message. For an explanation of opaque parsing please see the
product documentation.

Filtering on the last element of an XML Message using Opaque Parsing on the
XML Body

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

The MQ Input node is set to parse the repeating SalesList Elements of the XML message
opaquely. Within the filter node the last element of the incoming message is examined, this
last element is outside of a sales list element. The result is always set to be true and thus the
message is propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the end of a message using the
XMLNSC parser with opaque parsing. Almost the entire body of the message will be
opaquely parsed. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 4578.32 46.00 0.40

20k No 2385.07 45.00 0.75
200k No 304.34 48.33 6.35
2mb No 23.79 52.67 88.57

20mb No 2.31 52.33 904.90

2k Yes 719.00 6.00 0.33
20k Yes 563.83 18.33 1.30
200k Yes 139.23 26.33 7.57
2mb Yes 16.26 40.33 99.24

20mb Yes 1.62 42.00 1037.04

05/11/2010 Version 1.0 Page 39 of 83

Processing Nodes

The tests in this section illustrate the processing cost of simple routing and transformation
logic using a variety of routing and transformation technologies (ESQL, JavaCompute node,
XML Transformation and PHPCompute). A number of the tests are performed for each of the
technologies thus allowing a simple comparison of CPU processing costs to be made. In
other cases a comparison is only made within a technology such as looking at the efficiency
of different parsers whilst using ESQL.

These tests are not a definitive statement of the relative processing costs of the different
technologies. They are provided for illustrative purposes only. Message processing
performance will be affected by the complexity of the messages and processing to be
performed on the messages.

Using Database Route and Route Nodes

The tests in this section illustrate the processing costs of using the new Database Route and
Route Nodes for routing operations.

Using Database Route Node to Route an Incoming Message Based on Data in a
Database

This test consists of MQ Input Node -> Database Route Node -> MQ Output Node.

The MQ Input node is set to use the XMLNSC domain. Within the Database Route node a
query is performed to obtain a single piece of data from the Database. This data is used to
route the message to an output queue. The lookup result is always set to be true and thus the
message is propagated to the MQ Output node.

This test identifies the cost of using the Database Route Node to route a message. The
results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2174.74 44.67 0.82

20k No 1506.19 45.33 1.20
200k No 449.32 60.33 5.37
2mb No 36.69 71.00 77.41

20mb No 3.15 51.33 651.16

2k Yes 579.38 10.67 0.74
20k Yes 438.66 15.00 1.37
200k Yes 161.83 28.00 6.92
2mb Yes 25.15 50.00 79.51

20mb Yes 2.32 47.33 814.92

05/11/2010 Version 1.0 Page 40 of 83

Using Route Node to Route an Incoming Message Based on Data in the Incoming
Message

This test consists of MQ Input Node -> Route Node -> MQ Output Node.

The MQ Input node is set to use the XMLNSC domain. Within the Route node the first
element of the message is queried and the message routed based on this value. The lookup
result is always set to be true and thus the message is propagated to the MQ Output node.

This test identifies the cost of using the Route Node to route a message on an element at the
start of a message using the XMLNSC parser. The results of running this test are given in the
table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 3943.97 46.33 0.47

20k No 3014.28 56.67 0.75
200k No 440.50 50.67 4.60
2mb No 36.87 73.67 79.93

20mb No 3.18 52.33 658.97

2k Yes 654.50 8.00 0.49
20k Yes 645.65 21.67 1.34
200k Yes 171.01 29.00 6.78
2mb Yes 25.04 52.33 83.59

20mb Yes 2.54 52.67 828.31

Using ESQL

The tests in this section illustrate the processing costs of using ESQL for different routing and
transformation operations. For more details on the impact of using specific ESQL functions
such as ROW or EVAL see the Message Broker V6.0 reports which cover these aspects of
ESQL in more detail.

Filter an Incoming Message Based on the First Element in the Message using the
XMLNSC Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the first element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the start of a message using the
XMLNSC parser.

05/11/2010 Version 1.0 Page 41 of 83

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 5380.25 49.67 0.37

20k No 3566.93 57.33 0.64
200k No 438.29 49.33 4.50
2mb No 36.35 69.33 76.30

20mb No 3.24 54.33 670.09

2k Yes 690.07 6.00 0.35
20k Yes 468.10 14.00 1.20
200k Yes 163.51 21.00 5.14
2mb Yes 24.29 48.67 80.14

20mb Yes 2.42 47.00 775.79

Filter an Incoming Message Based on the Last Element in the Message using the
XMLNSC Parser

This test consists of MQ Input Node -> Filter Node -> MQ Output Node.

Within the filter node the last element of the incoming message is examined. The result is
always set to be true and thus the message is propagated to the MQ Output node.

This test identifies the cost of filtering on an element at the end of a message using the
XMLNSC parser. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 3617.78 41.33 0.46

20k No 1015.25 37.00 1.46
200k No 116.88 33.67 11.52
2mb No 10.73 38.00 141.61

20mb No 1.08 39.33 1456.79

2k Yes 534.20 4.33 0.32
20k Yes 387.09 19.67 2.03
200k Yes 77.69 26.67 13.73
2mb Yes 9.11 34.67 152.16

20mb Yes 0.97 32.67 1351.72

05/11/2010 Version 1.0 Page 42 of 83

Transformation of an Input Message using the XMLNSC Parser

This test consists of MQ Input node -> Compute Node -> MQ Output Node.

Within the compute node ESQL is written to significantly change the structure of the incoming
message. The new structure is written as the output message

This identifies the cost of using ESQL to perform message transformation and message
parsing using the XMLNSC parser. The results of running this test are given in the table
below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 3116.08 39.33 0.50

20k No 1066.57 32.67 1.23
200k No 137.10 30.33 8.85
2mb No 12.53 31.00 98.94

20mb No 1.23 30.00 975.61

2k Yes 694.89 5.67 0.33
20k Yes 422.86 20.33 1.92
200k Yes 85.87 18.67 8.70
2mb Yes 11.41 29.00 101.64

20mb Yes 1.23 31.33 1018.97

Using Java

The tests in this section illustrate the processing costs of using the JavaCompute node for
different routing and transformation operations.

Filter an Incoming Message Based on the First Element in the Message using the
Java Compute Nodes XPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the first element of the incoming message is examined using
the XPath capability. The result is always set to be true and thus the message is propagated
to the MQ Output node.

This test identifies the cost of filtering on an element at the start of a message using the Java
Compute Node XPath capability.

05/11/2010 Version 1.0 Page 43 of 83

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 3714.84 42.33 0.46

20k No 2333.09 44.67 0.77
200k No 390.78 40.33 4.13
2mb No 32.69 56.33 68.93

20mb No 2.89 42.67 591.22

2k Yes 778.92 14.33 0.74
20k Yes 612.19 19.00 1.24
200k Yes 148.23 24.67 6.66
2mb Yes 22.33 42.33 75.82

20mb Yes 2.61 52.67 807.15

Filter an Incoming Message Based on the Last Element in the Message using the
Java Compute Nodes XPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the last element of the incoming message is examined using
the XPath capability. The result is always set to be true and thus the message is propagated
to the MQOutput node

This test identifies the cost of filtering on an element at the end of a message using the Java
Compute Node XPath capability. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2870.98 39.33 0.55

20k No 910.38 37.33 1.64
200k No 110.12 33.33 12.11
2mb No 9.90 38.33 154.88

20mb No 1.03 38.00 1475.73

2k Yes 651.97 5.67 0.35
20k Yes 411.42 21.67 2.11
200k Yes 79.10 25.33 12.81
2mb Yes 8.99 35.33 157.21

20mb Yes 0.92 34.00 1478.26

05/11/2010 Version 1.0 Page 44 of 83

Filter an Incoming Message Based on the First Element in the Message using the
Java Compute Nodes GetByPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the first element of the incoming message is examined using
the GetByPath capability. The result is always set to be true and thus the message is
propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the start of a message using the Java
Compute Node GetByPath capability. The results of running this test are given in the table
below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 4257.17 46.00 0.43

20k No 2733.00 49.33 0.72
200k No 392.46 41.67 4.25
2mb No 32.80 57.33 69.92

20mb No 2.97 45.33 610.55

2k Yes 879.88 14.00 0.64
20k Yes 612.11 21.33 1.39
200k Yes 165.92 25.33 6.11
2mb Yes 25.26 49.33 78.13

20mb Yes 2.59 47.67 736.16

Filter an Incoming Message Based on the Last Element in the Message using the
Java Compute Nodes GetByPath Capability

This test consists of MQ Input Node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node the last element of the incoming message is examined using
the GetByPath capability. The result is always set to be true and thus the message is
propagated to the MQOutput node.

This test identifies the cost of filtering on an element at the end of a message using the Java
Compute Node GetByPath capability.

05/11/2010 Version 1.0 Page 45 of 83

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2978.78 43.00 0.58

20k No 920.07 33.67 1.46
200k No 108.88 35.67 13.10
2mb No 10.20 36.67 143.79

20mb No 1.03 38.00 1475.73

2k Yes 667.37 7.67 0.46
20k Yes 420.49 22.67 2.16
200k Yes 81.77 26.67 13.05
2mb Yes 8.78 35.00 159.51

20mb Yes 0.93 33.33 1433.69

Transformation of an Input Message using the Java Compute Nodes XPath
Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node Java code, utilising the XPath capability is used to
significantly change the structure of the incoming message. The new structure is written as
the output message.

This test identifies the cost of using Java code and XPath to perform message transformation.
The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1119.07 36.00 1.29

20k No 169.52 30.00 7.08
200k No 17.20 27.33 63.57
2mb No 1.68 31.33 746.03

20mb No 0.17 31.33 7372.55

2k Yes 535.06 14.67 1.10
20k Yes 150.51 29.67 7.88
200k Yes 16.59 26.33 63.49
2mb Yes 1.63 29.67 728.02

20mb Yes 0.16 27.00 6893.62

05/11/2010 Version 1.0 Page 46 of 83

Transformation of an Input Message using the Java Compute Nodes GetByPath
Capability

This test consists of MQ Input node -> Java Compute Node -> MQ Output Node.

Within the Java Compute Node Java code, utilising the GetByPath capability is used to
significantly change the structure of the incoming message. The new structure is written as
the output message.

This test identifies the cost of using Java code and GetByPath to perform message
transformation.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1575.18 34.67 0.88

20k No 285.63 32.33 4.53
200k No 28.93 29.67 41.01
2mb No 2.69 30.00 446.10

20mb No 0.27 29.00 4296.30

2k Yes 546.18 15.00 1.10
20k Yes 220.29 23.00 4.18
200k Yes 26.19 31.00 47.35
2mb Yes 2.61 28.67 439.34

20mb Yes 0.27 31.33 4641.98

05/11/2010 Version 1.0 Page 47 of 83

Using PHP

The tests in this section illustrate the processing costs of using a PHPCompute node to
perform computation and transformation of an input message.

Copying a message using the PHPCompute node

This test consists of MQ Input node -> PHPCompute Node -> MQ Output Node.

The PHPCompute node uses the MessageBrokerCopyTransform annotation which instructs
the PHPCompute node to copy the input message and pass the copied message to the
evaluate method. No further modifications are made to the output message.

This test identifies the cost of using the PHPCompute node scripting capability. The results of
running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1851.72 39.67 0.86

20k No 1547.10 47.33 1.22
200k No 452.32 58.67 5.19
2mb No 36.99 77.33 83.63

20mb No 3.18 56.33 709.34

2k Yes 545.33 14.33 1.05
20k Yes 503.98 20.33 1.61
200k Yes 161.88 23.67 5.85
2mb Yes 23.42 51.33 87.67

20mb Yes 2.40 50.33 838.89

Transformation of an Output Message using the PHPCompute node

This test consists of MQ Input node -> PHPCompute Node -> MQ Output Node.

The PHPCompute node uses the MessageBrokerSimpleTransform annotation to significantly
change the structure of the incoming message. The new structure is written as the output
message.

This test identifies the cost of using PHPCompute node transformation (scripting) capability.

05/11/2010 Version 1.0 Page 48 of 83

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 384.80 28.67 2.98

20k No 60.84 36.00 23.67
200k No 6.93 33.00 190.38
2mb No 0.64 38.67 2404.15

2k Yes 346.70 33.00 3.81

20k Yes 60.53 33.00 21.81
200k Yes 7.08 36.00 203.49
2mb Yes 0.66 35.00 2131.98

Using XSLT

The tests in this section illustrate the processing costs of using an XML Transformation node
to perform a computation and transformation of an input message.

Transformation of an Input Message

This test consists of MQ Input node -> XMLT Node -> MQ Output Node.

Within the XMLT Node a compiled stylesheet is used to significantly change the structure of
the incoming message. The new structure is written as the output message.

This test identifies the cost of using an XSL stylesheet to perform message transformation.
The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1330.61 41.33 1.24

20k No 313.58 34.67 4.42
200k No 36.00 36.00 40.00
2mb No 3.40 35.00 412.17

20mb No 0.33 37.33 4525.25

2k Yes 526.35 16.33 1.24
20k Yes 232.14 31.33 5.40
200k Yes 32.99 31.67 38.40
2mb Yes 3.19 37.33 468.13

20mb Yes 0.32 38.00 4750.00

05/11/2010 Version 1.0 Page 49 of 83

Using the Collector Node

The tests in this section illustrate the processing costs of using the Collector node for
combining incoming messages. To allow for comparisons between collector tests the
compute node used for all tests in this section is the same i.e. processing costs of this part in
the flow is the same in all tests.

Collecting Messages from Several Inputs Based on Number of Messages

This test consists of

2 MQ Input Nodes -> Collector Node -> Java Compute Node -> MQ Output Node.

The two MQ Input nodes each propagate messages to the collector node. In the collector
node a collection is defined as being 1 input message from each of the two input terminals.
The Collector node Persistence mode is set to Non-Persistent. Which means that the
messages are stored on the Collector node's queues Non-Persistently. Once this collection is
satisfied it is propagated to the Java Compute Node which copies the entire message from
the first input terminal to the output message. Then one field from the message received on
the second terminal is retrieved from the input message and used to add a new field to the
out going message. The message is then sent to an MQ Output node.

This test identifies the cost of using the collector node to collect 2 messages Non-Persistently
from different inputs and then update one of them with a field from the other message.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1032.78 49.33 1.91

20k No 451.60 41.67 3.69
200k No 66.34 36.67 22.11
2mb No 5.97 43.33 290.50

20mb No 0.60 40.00 2666.67

The results in the table below show the cost of running with the Collector node Persistence
mode set to Persistent and using persistent transacted MQ messages to drive the flow.
Running with a Collector node persistence mode set to persistent means that the messages
are stored on the Collector node's queues as MQ persistent messages.

This test identifies the cost of using the collector node to collect 2 messages persistently from
different inputs and then update one of them with a field from the other message. The results
of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k Yes 415.24 31.00 2.99

20k Yes 297.40 37.67 5.07
200k Yes 63.89 38.00 23.79
2mb Yes 5.47 43.00 314.63

20mb Yes 0.57 41.33 2900.58

05/11/2010 Version 1.0 Page 50 of 83

Collecting Messages from Several Inputs Based on Number of Messages with a
Correlation Pattern

This test consists of 2 MQ Input Nodes -> Collector Node -> Java Compute Node -> MQ
Output Node.

The two MQ Input nodes all propagate messages to the collector node. In the collector node
a collection is defined as being one input message from each of the two input terminals and
also a correlation path to look at the first customer surname in the message. Hence
messages with the same customer name are put in the collection. The Collector node
Persistence mode is set to Non-Persistent. This means that the messages are stored on the
Collector node's queues Non-Persistently. Once the collection is satisfied it is propagated to
the Java Compute Node which copies the entire message from the first input terminal to the
output message. Then one field from the message received on the second terminal is
retrieved from the input message and used to add a new field to the out going message. The
message is then sent to an MQ Output node. All input messages had the same matching
name.

This test identifies the cost of using the collector node to collect 2 messages Non-Persistently
from different inputs which have a matching surname and then update one of them with a field
from the other message.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 810.31 52.33 2.58

20k No 440.90 45.00 4.08
200k No 65.42 41.00 25.07
2mb No 6.06 40.00 264.17

20mb No 0.61 40.67 2666.67

The results in the table below show the cost of running with the Collector node Persistence
mode set to Persistent and using persistent transacted MQ messages to drive the flow.
Running with a Collector node persistence mode set to persistent means that the messages
are stored on the Collector node's queues as MQ persistent messages.

This test identifies the cost of using the collector node to collect 2 messages Non-Persistently
from different inputs which have a matching surname and then update one of them with a field
from the other message. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k Yes 408.90 34.00 3.33

20k Yes 268.87 35.67 5.31
200k Yes 63.91 44.00 27.54
2mb Yes 5.82 42.00 288.49

20mb Yes 0.59 42.67 2892.66

05/11/2010 Version 1.0 Page 51 of 83

Using the Sequence Node

The tests in this section illustrate the processing costs of using the Sequence node to
generate a sequence number.

Incrementing Sequence numbers for each Input Message

This test consists of MQ Input node -> Sequence Node -> MQ Output Node.

The Sequence node is used to increment the sequence number for each new message
(which are all part of the same sequence group) and to store the sequence number in the
LocalEnvironment ($OutputLocalEnvironment/Sequence/Number) using a literal start and end
of sequence definition.

This test identifies the cost of using the Sequence node to generate sequence numbers.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
20k No 2341.95 53.33 0.91
200k No 441.62 49.67 4.50
2mb No 36.61 70.67 77.20

20mb No 3.20 49.00 612.50

20k Yes 599.84 19.33 1.29
200k Yes 173.08 28.00 6.47
2mb Yes 24.90 49.33 79.25

20mb Yes 2.47 49.00 794.59

Using the IMS Node

The tests in this section illustrate the processing costs of using the IMS node to send
synchronous requests to an IMS system.

Using the IMS node to make synchronous requests

This test consists of MQ Input node -> IMSRequest Node -> MQ Output Node.

The test illustrates the cost of synchronously invoking the IMS request node.

An MQ input message is received to initiate the message flow. The IMSRequest node then
synchronously invokes a transaction on a remote IMS system (on z/OS).

The transaction did not involve the updating of any resources on the IMS system.

The commit mode (SEND_THEN_COMMIT) and sync level (CONFIRM) were set on the
IMSRequest node. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
1k No 663.87 10.67 0.64

1k Yes 598.17 19.33 1.29

05/11/2010 Version 1.0 Page 52 of 83

Business-level Monitoring

The tests in this section illustrate the processing costs associated with using Business-level
Monitoring. The message flow is configured to emit event messages that can be used to
support transaction monitoring and auditing, and business process monitoring.

Emitting one event with header information on Transaction start

This test consists of MQ Input node -> MQ Output Node.

The MQInput node is configured to emit an event on Transaction start where the message
contains information about the source of the event, the time of the event, and the reason for
the event. The event does not include the message bit stream in the event payload.

This test identifies the cost of emitting a single event with only the event header information.
The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
20k No 2174.17 52.00 0.96
200k No 439.25 49.00 4.46
2mb No 36.49 68.67 75.27

20mb No 3.07 49.33 643.48

20k Yes 619.82 18.00 1.16
200k Yes 155.98 23.33 5.98
2mb Yes 21.62 41.67 77.08

20mb Yes 2.21 43.67 790.35

Emitting one event with a single selected element
This test consists of MQ Input node -> MQ Output Node.

The MQInput node is configured to emit an event on Transaction start where the message
contains information about the source of the event, the time of the event, and the reason for
the event. In addition the event emitted also uses an XPath query take one field from the
message tree and add this to the event payload.

The XPath query used is the expression ($Body/Parent [1]/First[1]) thereby ensuring that a
full parse of the message is not driven.

This test identifies the cost of emitting a single event with a simple XPath expression.
The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
20k No 1898.61 44.67 0.94
200k No 443.65 51.00 4.60
2mb No 36.25 67.67 74.66

20mb No 3.21 53.67 668.74

20k Yes 483.09 15.33 1.27
200k Yes 155.12 21.00 5.42
2mb Yes 23.90 47.33 79.22

20mb Yes 2.39 45.00 753.14

05/11/2010 Version 1.0 Page 53 of 83

Emitting one event plus the full message tree

This test consists of MQ Input node -> MQ Output Node.

The MQInput node is configured to emit an event on Transaction start where the message
contains information about the source of the event, the time of the event, and the reason for
the event. In addition the event emitted also uses an XPath query to select all the fields from
the message tree and add these to the event payload.

The XPath query uses an expression ($Body/Parent) whereby all the fields in the message
tree are parsed.

This test identifies the cost of emitting a single event with a full message parse.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
20k No 545.98 42.33 3.10
200k No 58.07 33.67 23.19
2mb No 5.31 37.00 278.72

20mb No 0.53 37.00 2792.45

20k Yes 335.18 24.00 2.86
200k Yes 50.49 28.00 22.18
2mb Yes 4.71 35.33 300.07

20mb Yes 0.51 32.33 2535.95

External Resources

The tests in this section illustrate the processing cost of accessing resources such as a
database or external procedure.

Accessing a Database from a Message Flow

The tests in this section illustrate the processing cost of performing operations on a DB2
database.

Database updates are committed as part of the broker coordinated transaction.

Reading from a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the XMLNSC domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition a SELECT is performed to obtain a piece of data from
the Database. This data is used to validate an element in the input message.
The results are not cached in the flow, so a lookup is performed for each message. The
volume of data in the database was small and so this represents the best case.

05/11/2010 Version 1.0 Page 54 of 83

This test identifies the cost of performing a Database SELECT. The results of running this
test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2419.85 41.00 0.68

20k No 2035.91 44.33 0.87
200k No 575.83 40.67 2.82
2mb No 56.88 57.00 40.08

20mb No 5.23 44.00 336.31

2k Yes 654.27 13.00 0.79
20k Yes 562.58 16.33 1.16
200k Yes 302.69 32.00 4.23
2mb Yes 46.54 52.33 44.98

20mb Yes 3.34 34.00 407.59

Reading from a Database using the Database Retrieve Node

This test consists of MQ Input Node -> Database Retrieve Node -> MQ Output Node.

The input and output message are processed with the XMLNSC domain.

Within the DB Retrieve node the copy message box is ticked to copy over the input message
contents to the outgoing message. The DB is queried to obtain a piece of data from the
Database. This data is used to create an element in the output message.

This test identifies the cost of using the Database Retrieve Node to retrieve a piece of data
from the database and insert it into the outgoing message. The test performs a similar
function to reading from a database as in the case above but achieves it using a different
node and involves no programming. The results of running this test are given in the table
below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2016.64 40.00 0.79

20k No 1673.29 46.00 1.10
200k No 449.30 58.00 5.16
2mb No 36.72 81.00 88.23

20mb No 3.15 50.67 644.07

2k Yes 617.91 15.00 0.97
20k Yes 477.93 15.00 1.26
200k Yes 166.02 30.00 7.23
2mb Yes 23.71 47.33 79.85

20mb Yes 2.37 46.33 783.10

05/11/2010 Version 1.0 Page 55 of 83

Inserting into a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

The input and output message are processed with the XMLNSC domain.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition an INSERT is performed to populate the database with a
piece of data. This data is obtained from an element in the input message.

This test identifies the cost of performing a Database INSERT. The results of running this test
are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1295.34 22.67 0.70

20k No 1251.19 31.67 1.01
200k No 574.41 43.00 2.99
2mb No 56.80 55.67 39.20

20mb No 5.22 48.67 372.92

2k Yes 570.57 10.00 0.70
20k Yes 374.24 14.00 1.50
200k Yes 274.83 28.00 4.08
2mb Yes 48.88 58.67 48.01

20mb Yes 3.34 34.00 406.78

Updating a row in a Database

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. In addition an UPDATE is performed to update a piece of data in
the database with a new value. This value is obtained from an element in the input message.

This test identifies the cost of performing a Database UPDATE.

The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 2048.59 38.67 0.75

20k No 1854.95 45.00 0.97
200k No 575.80 43.33 3.01
2mb No 56.72 56.33 39.73

20mb No 5.21 47.00 360.84

2k Yes 612.62 9.33 0.61
20k Yes 507.47 14.00 1.10
200k Yes 269.28 27.67 4.11
2mb Yes 48.21 56.00 46.46

20mb Yes 3.30 35.33 428.28

05/11/2010 Version 1.0 Page 56 of 83

Calling External Procedures

The tests in this section illustrate the processing cost of invoking an external procedure such
as a Java class or database stored procedure with different parameters.
The following tests are shown as examples of these kinds of processing with WMB V6.1 but
the cost will vary substantially with the number of parameters passed into the external
procedure. The WMB V6.0 performance reports contains more detailed analysis on the cost
of different parameters and can be referred to if required.

Calling an External Java Procedure with One Integer Input Parameter

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external Java
procedure. The procedure receives one Integer parameter and passes back zero parameters
returning immediately.

This test identifies the cost of calling a Java procedure with one Integer parameter.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 3444.267 42.000 0.00024

2k Yes 651.290 7.333 0.00023

Calling an External Database Stored Procedure with One Integer Input
Parameter

This test consists of MQ Input Node -> Compute Node -> MQ Output Node.

Within the compute node the message headers from the incoming message are copied over
to the outgoing message. Two thousand identical calls are made to an external database
stored procedure. The procedure receives one parameter which is an integer and passes
back zero parameters returning immediately.

This test identifies the cost of calling a Database Stored procedure with one parameter which
is an integer.

The results of running this test are given in the table below. The CPU ms/msg figure has
been adjusted to report a per procedure invocation cost by dividing the CPU cost obtained
from the test results by 2000. The results of running this test are given in the table below.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 9.930 31.333 0.063

2k Yes 9.847 27.333 0.056

05/11/2010 Version 1.0 Page 57 of 83

Scaling Message Throughput

The tests in this section show the effect of using two different approaches to increase
message throughput for a message flow. These are the use of additional instances and
assigning one copy of the message flow to each of multiple execution groups.

Using Additional Instances
Message Broker allows the use of additional instances of a message flow to be run, these
instances map on to threads running within the Broker execution group process on distributed
platforms and to Task Control Blocks (TCB’s) within the Brokers address space on z/OS.

A series of tests were run to show how message throughput can be increased through the
use of additional instances. The XSLT Transform Sample was run with a varying number of
instances of the message flow in a single execution group.

This test consists of MQ Input node -> XSL Transform Node -> MQ Output Node.

The benefits observed from running multiple copies of a message flow in any given situation
will depend on the processing requirements of the message flow. CPU bound message flows
will have different scaling characteristics from those which are I/O bound for example.

The message size used in all cases was 2k.

The results of running this test are given in the table below. They indicate the results of
scaling with Instances with non persistent messages.

Number of
Instances

Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1 No 1407.90 42.00 1.19
2 No 2468.08 67.67 1.10
3 No 3088.91 90.00 1.17
4 No 3459.03 99.00 1.14

When using non persistent messages it was possible to achieve a message rate of over 3400
messages per second by using 4 instances of the message flow. At this point the system was
over 90% CPU busy. This shows that it is possible to significantly increase CPU utilisation
and thereby message throughput by using more copies of a message flow. It is possible to
achieve such high CPU utilisations because this processing is CPU bound.

To illustrate the different scaling behaviour that may be seen with message flows that are I/O
bound the same test was run using persistent messages. For this test the synchronous write
to the disk becomes a dominant factor even when locating the queue manager log on a SAN
with a fast write cache and so the ability to increase CPU usage and message throughput is
limited.

The message size used in all cases was 2k.

The results of running this test are given in the table below. They indicate the results of
scaling with Instances with persistent messages.

Number of
Instances

Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1 Yes 551.12 22.00 1.60
2 Yes 938.06 37.00 1.58
3 Yes 1355.42 50.67 1.50
4 Yes 1676.30 63.00 1.50

05/11/2010 Version 1.0 Page 58 of 83

With persistent messages it is again possible to increase message throughput over the rate
achieved with one copy by using more copies, additional instances, of the message flow.

Note that the initial rate for this test is lower that the first rate for the non persistent messages.
And this pattern continues when comparing the message throughput with a given number of
instances.

The CPU utilisation for the system was also lower in this case. The peak utilisation achieved
was 63%. Compare this with over 90% for the non persistent messages.

From both tables we can see that eventually adding instances does not yield any benefit in
some cases message throughput can actually decline. This is usually due to the high level of
contention within the system or reaching the limit of an I/O device for example.

You are recommended to determine the optimum number of instances to use for each
message flow individually through experimentation with a varying number of instances.

From these measurements we can see that use of additional instances can be an effective
mechanism for increasing message throughput and allowing more of a machine to be fully
utilised. In both of the tests CPU usage and message rate were increased significantly over
the initial position.

Using Multiple Execution Groups

Message Broker allows a message flow to be assigned to more than one execution group at a
time and for those multiple copies to process messages concurrently. An execution group
maps on to an Operating System processes on the distributed platforms and to an Address
Space on z/OS.

A series of tests were run to show how message throughput can be increased through the
use of multiple execution groups. The XSLT Transform Sample was run with a varying
number of execution groups each running one copy of the message flow.

This test consists of MQ Input node -> XSL Transform Node -> MQ Output Node.

The benefits observed from running multiple copies of a message flow in any given situation
will depend on the processing requirements of the message flow. CPU bound message flows
will have different scaling characteristics from those which are I/O bound for example.

The message size used in all cases was 2k.

The results of running this test are given in the table below. They indicate the results of
scaling using non persistent messages.

Number of
Execution Groups

Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1 No 1407.90 42.00 1.19
2 No 2473.48 67.67 1.09
3 No 3322.42 90.00 1.08
4 No 3699.48 100.00 1.08

When using non persistent messages it was possible to achieve a message rate of close to
3700 messages per second by using 4 execution groups each with one copy of the message
flow. At this point the system was over 100% CPU busy. This shows that it is possible to
significantly increase CPU utilisation and thereby message throughput by using more copies
of a message flow. It is possible to achieve such high CPU utilisations because this
processing is CPU bound.

05/11/2010 Version 1.0 Page 59 of 83

To illustrate the different scaling behaviour that may be seen with non CPU bound flows the
same test was run using persistent messages. For this test the disk becomes the overriding
factor and so scaling of the CPU and message throughput is potentially more limited.

Number of
Execution Groups

Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg

1 Yes 551.12 22.00 1.60
2 Yes 1014.30 43.00 1.70
3 Yes 1398.62 62.00 1.77
4 Yes 1624.53 77.33 1.90
5 Yes 1612.99 86.67 2.15

With persistent messages it is again possible to increase message throughput over the rate
achieved with one copy by using more copies of the message flow.

Note that the initial rate for this test is lower that the first rate for the non persistent messages.
And this pattern continues when comparing the message throughput with a given number of
instances. This is the impact of the log I/O that is needed for persistent messages.

The peak message rate achieved was over 1600 messages per second. Whilst a significant
increase over the rate achieved with one copy it is around half the rate achieved with non
persistent messages.

The peak CPU utilisation achieved was 80%. Compare this with 100% for the non persistent
messages. Again this is the impact of the log I/O that is needed for persistent messages.

From both tables we can see that eventually adding more copies of the message flow does
not yield any benefit in some cases message throughput can actually decline. This is usually
due to the high level of contention within the system or reaching the limit of an I/O device for
example.

You are recommended to determine the optimum number of instances to use for each
message flow individually through experimentation with a varying number of instances.

From these measurements we can see that use of multiple execution groups can be an
effective mechanism for increasing message throughput and allowing more of a machine to
be fully utilised. In both of the tests CPU usage and message rate were increased
significantly over the initial position.

05/11/2010 Version 1.0 Page 60 of 83

Overheads

The tests in this section indicate the processing costs of using Accounting and Statistics and
Trace on a message flow.

Message Flow Execution Statistics
Message Broker V7.0 provides a new function called the Broker Explorer. Within the Broker
Explorer is the capability to start the collection of snapshot statistics for named message
flows. The collected data can be displayed in both a graphical and tabular format in the
Broker Explorer. The collected data is automatically updated every 20 seconds.

The picture below shows an example of the data display feature.

The overhead of using this facility was measured when running the XSLT Transform Sample
processing a 2K input message. The processing overhead was measured at 2.67%. This is
a very small overhead for the quality of the data collected.

Resource Statistics
Message Broker Explorer adds the capability to graphically view information about key broker
resources such as JVM Heap Sizes and Sockets.

Resource statistics complement the accounting and statistics data that you can collect on
message flows, which are also available in Broker Explorer.

A screenshot of the resource statistics facility being used is shown below. For more
information on this facility consult the product documentation

05/11/2010 Version 1.0 Page 61 of 83

The overhead of using this facility was measured when running the XSLT Transform Sample
processing a 2K input message. The processing overhead was measured at 1%. This is a
very small overhead for the quality of the data collected.

Using Trace and Trace Nodes

This test consists of running a single copy of the Large Messaging sample whilst taking a user
trace of type normal at the same time.

Using a 2K message size there was a 19% reduction in the message throughput. This
reflects the CPU and I/O overhead of writing user trace. With debug trace the overhead will
be even higher as debug trace is more extensive.

You are strongly recommended not to use WebSphere Message Broker trace in a production
system.

Since WebSphere Message Broker V6.1 the overhead of leaving trace nodes in a message
flow has been reduced. Trace nodes can also now be enabled/disabled easily using the
Message Broker Toolkit.

The following tests show the overhead associated with using trace nodes.

Running a Flow with no Trace Nodes

This test consists of the Large Message Sample flow as shipped with WMB V7.0. It indicates
the throughput of the flow before any trace nodes are added for comparison.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1383.17 40.67 1.18

05/11/2010 Version 1.0 Page 62 of 83

Impact of Running a Flow with a Trace Node Turned On

This Test consists of the Large Message Sample flow as shipped with WMB V7.0. The flow
has been modified to add a trace node after the compute node. The trace node writes out to
a file the Root of the message tree for every message.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 567.20 16.00 1.13

This indicates that the overhead of having the trace node on.

Impact of Running a Flow with a Trace Node Turned Off
This test is identical to the one above but the Trace node has been disabled.

Msg Size Persistent Message Rate (Msgs/sec) % CPU Busy CPU ms/msg
2k No 1329.80 39.00 1.17

This indicates that overhead of running with trace nodes disabled for this flow is 3.8% (on the
message rate). This is a small overhead and you may well feel it is worth the cost in order to
have the trace nodes embedded in the message with the ability to turn them on with a single
command. That is without any need to change the message flow.

Resource Requirements

This section details the recommended minimum specification of a machine on which to install
the development toolkit and Message Broker runtime. It also illustrates virtual memory use
for message flows.

Recommended Minimum Specification

The recommended minimum specification machine to install and run the development toolkit
and the runtime can be found in the Installation Guide which can be downloaded here:

http://www.ibm.com/software/integration/wbimessagebroker/requirements/#BrokersV70

These are recommended minimum specifications which are suitable to enable the processing
of simple messages with simple message transformation or routing. Situations requiring more
intensive processing are likely to need greater resources. For improved performance use a 3
GHz or faster processor. For test and production a multi-processor machine is
recommended. For development 2GB+ of memory is recommended. For test, QA and
production a suggested minimum would be 8GB of memory.

Memory Use
The amount of virtual and real memory used by a message flow running within an execution
group will vary dependent on the complexity of the message flow, the style of processing
within the message flow and the size of the messages being processed. This is a complex
subject and a detailed discussion is beyond the scope of this document. However to assist
with planning the memory used for a variety of tests is reported.

Virtual memory size is the total of all bytes allocated for the process, whether currently in
physical memory or on disk. Real Memory is the amount of physical RAM allocated for the

05/11/2010 Version 1.0 Page 63 of 83

process. Memory utilisations are reported to the nearest 1MB using pslist for windows and
the ps command for other platforms.

Note that the recorded virtual and real memory size is dependent on the platform specific
memory and swap space allocation algorithms. These values vary on a per platform basis.

The figures in the table below record the amount of virtual and real memory in MB used by an
execution group for the message flow after it has processed a number of messages and the
size has stabilised.

In each case a single copy of the message flow was deployed to a single execution group.

Each use case was deployed to a new execution group.

Use Case

Message Size

Virtual Memory Peak
After Processing

Messages
(MB)

Real Memory Peak After
Processing Messages

 (MB)

Aggregation 2k 566 125
Coordinated Request/Reply 2k 560 126
Data Warehouse 2k 558 122
Large Messaging 2k 548 119
Message Routing 2k 560 125
XML Transformation 2k 540 120

Virtual and Real Memory Use for a Variety of Use Cases.

05/11/2010 Version 1.0 Page 64 of 83

Appendix A - Measurement Environment
All throughput measurements where taken on a single server machine. The client type and
machine on which they ran varied with the test. The details are given below.

Server Machine
The hardware consisted of:

• IBM Intel(R) with 1 x Quad-Core Xeon(TM) E5450 3.0GHz processor
• One 150 GB SAS hard drive
• SAN comprising

o DS8700 connecting at 2Gb
• 10 GB RAM
• 1 GB Ethernet Cards

The software consisted of:

• Microsoft Windows 2008 R2 (x86-64 edition)
• WebSphere MQ V7.0.1
• WebSphere Message Broker V7.0.0.1
• DB2 V9.5

Client Machines

The hardware consisted of:

• IBM BladeCenter HS20 (Type 8843) with 2 x Dual-Core Xeon(TM) 3.80 GHz
processors

• Two 34 GB SCSI hard drives formatted with NTFS
• 4 GB RAM
• 1 GB Ethernet card

The software consisted of:
 Microsoft Windows 2003 Service Pack 1
 WebSphere MQ V7.0.1
 IBM Java 1.6

Network Configuration
The client and server machines were connected using a full duplex 1 Gigabit Ethernet LAN
with a single hub.

05/11/2010 Version 1.0 Page 65 of 83

Appendix B - Evaluation Method
This section outlines the software components that were used to produce the measurement
results which are contained in this report.

The performance testing used these transports:

a. MQ

b. JMS

c. HTTP

d. SOAP

A series of parameter configuration changes were made to improve message throughput.
These are discussed in the section Tuning.

Testing Methodology
This section describes how messages were generated and consumed for the point to point
messaging tests, such as the Database Read tests or Filter an Incoming Message based on
the First Element in the Message. The configuration of the software components is also
discussed. This approach was used for MQ, JMS, HTTP and SOAP messages.

Message Generation and Consumption
The Performance Harness for JMS, a multi threaded WebSphere MQ Client program written
in Java was used to generate input messages for the test case being run and to consume the
output messages. The following PerfHarness modules were used for point to point testing:

- mqjava.Requestor – for MQ Messages

- http.Requestor – for Sending SOAP and HTTP messages

- jms.r11.Requestor – for sending and receiving JMS Messages

Differences between the transport testing are detailed below:

MQ

Both persistent and non persistent messages MQ Messages were generated from this
program. Persistent messages were sent as part of a transaction which was committed after
every message.

Sufficient threads (typically 20) were run in the multi threaded client to ensure that there were
always messages on the input queue waiting to be processed. This is important when
measuring message throughput.

Each thread sent a message and then immediately went to receive a reply on the output
queue. Any thread within the client program was able to retrieve any message which had
been processed by a message flow. No use was made of the WebSphere MQ correlation
identifiers to limit consumption of a message to the thread which created it. Once a thread
received a reply it sent another message. The message content was the same for all threads
and all messages.

05/11/2010 Version 1.0 Page 66 of 83

JMS

The tool sent non persistent JMS Bytes messages to a JMS Destination. The connection
factory for the client used the MQ Client transport to send messages. This destination was
mapped to an MQ Queue on the Brokers Queue Manager. The JMS Input node was
configured to read from this queue, the connection factory for the nodes used the MQ
Bindings transport for connection. The flow then placed the reply message on another
MQJMS queue on output where the client could then receive the reply.

Sufficient threads (typically 20) were run in the multi threaded client to ensure that there were
always messages on the input queue waiting to be processed. This is important when
measuring message throughput.

Each thread sent a message and then immediately went to receive a reply on the output
queue. Any thread within the client program was able to retrieve any message which had
been processed by a message flow. No use was made of the JMS correlation identifiers to
limit consumption of a message to the thread which created it. Once a thread received a
reply it sent another message. The message content was the same for all threads and all
messages.

SOAP and HTTP

The tool sends predefined SOAP And HTTP Messages that it reads from files. The tool sent
the messages to broker using persistent HTTP connections, this means that each thread
reused the same TCPIP socket for each request. Each client thread had its own TCPIP
socket connection to send/receive data.

Sufficient threads (typically 20) were run in the multi threaded client to ensure that there were
always messages to be processed. This is important when measuring message throughput.

As per the HTTP request/reply protocol each thread sent a message and then immediately
went to receive a reply on socket. Once a thread received a reply it sent another message.
The message content was the same for all threads and all messages.

See the Performance Harness section in this report for more information on this tool.

Machine Configuration
The Performance Harness for JMS was used to generate and consume messages for the
message flows was and run on a dedicated machine, the Client Machine. The Message
Broker, its dedicated WebSphere MQ queue manager and broker database were all located
on a dedicated machine, the Server Machine.

There was a single client machine.

For MQ and JMS based Tests messages were transmitted from the client machine to the
server machine over WebSphere MQ SVRCONN channels. The messages were received on
the server machine through use of a WebSphere MQ queue manager listener process. This
was run as a trusted MQ application in order to improve message throughput.

Messages were transmitted from the client machines to the server machine using the
WebSphere MQ transport or SOAP/HTTP or JMS depending on the test type.

The diagram below illustrates the major components in the measurement environment and
their location.

05/11/2010 Version 1.0 Page 67 of 83

Both the client and server machine were configured with sufficient memory to ensure that no
paging took place during the tests.

Reported Message Rates
For tests which did not involve publish subscribe the message rates reported are the number
of invocations of the message flow per second.

For tests involving several message flows such as the message aggregation test the rate
reported is the number of complete operations or aggregations per second. Fan-out and Fan-
in processing is counted as one rather than separately.

For tests using the JMS nodes the message rate is the number of message flow invocations
per second.

The message rates quoted are an average taken over the measurement period. This starts
once the system initialisation period has completed.

WebSphere
Message

Broker

WebSphere MQ

DB2

Gigabit

Ethernet

LAN

WebSphere MQ

JMS
Perfharness

MQ Listener

Client Machine Server Machine

05/11/2010 Version 1.0 Page 68 of 83

Appendix C - Test Messages

This section describes the input and output messages used for the tests detailed in this
report.

The messages which are in this section have been formatted for this report and as such
contain white space between tags. When used in measurements all such white space is
removed.

Input Messages
This section details the types of input messages used in the report.

General Input Messages
An input message of the type shown below was used for the non publish/subscribe tests in
the report.

The message shown below is in Generic XML format but it was also represented in a variety
of other formats such as MRM XML, CWF and TDS where this was required in the test.

The different message sizes used in testing are achieved by repeating the content of the
SaleList tag to give the required size. Larger messages thus result in more tags.
A Perl script ensures that the names and values in the tags are different as the SaleList
structure is repeated. This is to stop a limited number of strings being used in very large
messages which could lead to over optimistic results.

<Parent>

<First>1</First>
 <SaleList>

 <Invoice>
<Initial>K</Initial>
<Initial>A</Initial>
<Surname>Braithwaite</Surname>
<Item>

<Code>00</Code>
<Code>01</Code>
<Code>02</Code>
<Description>Twister</Description>
<Category>Games</Category>
<Price>00.30</Price>
<Quantity>01</Quantity>

</Item>
<Item>

<Code>02</Code>
 <Code>03</Code>
 <Code>01</Code>

<Description>The Times Newspaper</Description>
<Category>Books and Media</Category>
<Price>00.20</Price>
<Quantity>01</Quantity>

</Item>
<Balance>00.50</Balance>
<Currency>Sterling</Currency>

</Invoice>
<Invoice>

<Initial>T</Initial>
<Initial>J</Initial>
<Surname>Dunnwin</Surname>

05/11/2010 Version 1.0 Page 69 of 83

<Item>
<Code>04</Code>
<Code>05</Code>
<Code>01</Code>
<Description>The Origin of Species</Description>
<Category>Books and Media</Category>
<Price>22.34</Price>
<Quantity>02</Quantity>

</Item>
<Item>

<Code>06</Code>
<Code>07</Code>
<Code>01</Code>
<Description>Microscope</Description>
<Category>Miscellaneous</Category>
<Price>36.20</Price>
<Quantity>01</Quantity>

</Item>
<Balance>81.84</Balance>
<Currency>Euros</Currency>

</Invoice>
</SaleList>
<Last>Test</Last>

</Parent>

SOAP Input Message and WSDL
Below is the input message and WSDL used for the SOAP Nodes tests:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tns="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <soapenv:Header>
 <wsa:Action>SummerSale</wsa:Action>
 <wsa:MessageID>uuid:515704D6-0111-4000-E000-82267F000001</wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 <tns:SaleRequest>
 <SaleEnvelope>
 <Header>
 <SaleListCount>1</SaleListCount>
 </Header>
 <SaleList>
 <Invoice>
 <Initial>K</Initial>
 <Initial>A</Initial>
 <Surname>Braithwaite</Surname>
 <Item>
 <Code>00</Code>
 <Code>01</Code>
 <Code>02</Code>
 <Description>Twister</Description>
 <Category>Games</Category>
 <Price>00.30</Price>
 <Quantity>01</Quantity>
 </Item>
 <Item>

05/11/2010 Version 1.0 Page 70 of 83

 <Code>02</Code>
 <Code>03</Code>
 <Code>01</Code>
 <Description>The Times Newspaper</Description>
 <Category>Books and Media</Category>
 <Price>00.20</Price>
 <Quantity>01</Quantity>
 </Item>
 <Balance>00.50</Balance>
 <Currency>Sterling</Currency>
 </Invoice>
 <Invoice>
 <Initial>T</Initial>
 <Initial>J</Initial>
 <Surname>Dunnwin</Surname>
 <Item>
 <Code>04</Code>
 <Code>05</Code>
 <Code>01</Code>
 <Description>The Origin of Species</Description>
 <Category>Books and Media</Category>
 <Price>22.34</Price>
 <Quantity>02</Quantity>
 </Item>
 <Item>
 <Code>06</Code>
 <Code>07</Code>
 <Code>01</Code>
 <Description>Microscope</Description>
 <Category>Miscellaneous</Category>
 <Price>36.20</Price>
 <Quantity>01</Quantity>
 </Item>
 <Balance>81.84</Balance>
 <Currency>Euros</Currency>
 </Invoice>
 </SaleList>
 <Trailer>
 <CompletionTime>12.00.00</CompletionTime>
 </Trailer>
 </SaleEnvelope>
 </tns:SaleRequest>
 </soapenv:Body>
</soapenv:Envelope>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:tns="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">
 <wsdl:types>
 <xsd:schema
 targetNamespace="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:tns="http://WssSale.miwssoap.broker.mqst.ibm.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="SaleRequest" type="tns:RootMessage"/>
 <xsd:element name="SaleResponse" type="tns:RootMessage"/>
 <xsd:complexType name="RootMessage">
 <xsd:sequence>

05/11/2010 Version 1.0 Page 71 of 83

 <xsd:element name="SaleEnvelope">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Header" type="tns:Header"/>
 <xsd:element maxOccurs="unbounded" name="SaleList" type="tns:SaleList"/>
 <xsd:element name="Trailer" type="tns:Trailer"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SaleList">
 <xsd:sequence>
 <xsd:element maxOccurs="2" minOccurs="2" name="Invoice" type="tns:Invoice"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Invoice">
 <xsd:sequence>
 <xsd:element maxOccurs="2" minOccurs="2" name="Initial" type="xsd:string"/>
 <xsd:element name="Surname" type="xsd:string"/>
 <xsd:element maxOccurs="2" minOccurs="2" name="Item" type="tns:Item"/>
 <xsd:element name="Balance" type="xsd:float"/>
 <xsd:element name="Currency" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Item">
 <xsd:sequence>
 <xsd:element maxOccurs="3" minOccurs="3" name="Code" type="xsd:string"/>
 <xsd:element name="Description" type="xsd:string"/>
 <xsd:element name="Category" type="xsd:string"/>
 <xsd:element name="Price" type="xsd:float"/>
 <xsd:element name="Quantity" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Header">
 <xsd:sequence>
 <xsd:element name="SaleListCount" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Trailer">
 <xsd:sequence>
 <xsd:element name="CompletionTime" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="SaleRequest">
 <wsdl:part element="tns:SaleRequest" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="SaleResponse">
 <wsdl:part element="tns:SaleResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="WssSale">
 <wsdl:operation name="Sale">
 <wsdl:input message="tns:SaleRequest" name="SaleRequest"

wsaw:Action="http://WssSale.miwssoap.broker.mqst.ibm.com/WssSale/services/WssSale/Sal
eRequest"/>
 <wsdl:output message="tns:SaleResponse" name="SaleResponse"

wsaw:Action="http://WssSale.miwssoap.broker.mqst.ibm.com/WssSale/services/WssSale/Sal
eResponse"/>

05/11/2010 Version 1.0 Page 72 of 83

 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="WssSaleSoapBinding" type="tns:WssSale">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Sale">
 <wsdlsoap:operation soapAction="SummerSale"/>
 <wsdl:input name="SaleRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="SaleResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="WssSaleService">
 <wsdl:port binding="tns:WssSaleSoapBinding" name="WssSale">
 <wsdlsoap:address location="http://localhost:9081/WssSale/services/WssSale"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Output Message
For those tests that modified the message one of two message formats was used for the
output messages dependent on the test case. These are the Compute and Transform
messages.

Transformation Message
For the message transformation test the input message is modified and takes a different
layout. For each invoice a statement is created for each customer within a SaleList.

The message layout is shown below.

<Parent>
 <SaleList>
 <Statement Type="Monthly" Style="Full">
 <Customer>
 <Initials>KA</Initials>
 <Name>Braithwaite</Name>
 <Balance>00.50</Balance>
 </Customer>
 <Purchases>
 <Article>
 <Desc>Twister</Desc>
 <Cost>4.8E-1</Cost>
 <Qty>01</Qty>
 </Article>
 <Article>
 <Desc>The Times Newspaper</Desc>
 <Cost>3.2E-1</Cost>
 <Qty>01</Qty>
 </Article>
 </Purchases>
 <Amount>8E-1</Amount>
 </Statement>
 <Statement Type="Monthly" Style="Full">
 <Customer>
 <Initials>TJ</Initials>
 <Name>Dunnwin</Name>
 <Balance>81.84</Balance>

05/11/2010 Version 1.0 Page 73 of 83

 </Customer>
 <Purchases>
 <Article>
 <Desc>The Origin of Species</Desc>
 <Cost>3.5744E+1</Cost>
 <Qty>02</Qty>
 </Article>
 <Article>
 <Desc>Microscope</Desc>
 <Cost>5.792E+1</Cost>
 <Qty>01</Qty>
 </Article>
 </Purchases>
 <Amount>1.29408E+2</Amount>
 </Statement>
 </SaleList>
</Parent>

05/11/2010 Version 1.0 Page 74 of 83

Appendix D - Use Case Descriptions

This section contains a description of the processing in each of the use cases which are used
to characterise the performance of WebSphere Message Broker V7. All of these use cases
are shipped as samples in WebSphere Message Broker V7. See the samples gallery for
more information.

Aggregation
The Aggregation use case demonstrates a simple four-way aggregation operation, using the
Aggregate Control, Request, and Reply nodes. It contains three message flows to implement
a four-way aggregation: FanOut, RequestReplyApp, and FanIn. This is the type of processing
that might be used to invoke four different applications to process a travel booking, one to
organise each of the flight, hotel, car and money.

FanOut Message Flow
This is the flow that takes the incoming request message, generates four different request
messages, sends them out on request/reply, and starts the tracking of the aggregation
operation:

RequestReplyApp Message Flow
This message flow simulates the back-end service applications that would normally process
the request messages from the aggregation operation. In a real system, these could be other
message flows or existing applications. This message flow reads from the same queue that
the MQOutput nodes in the FanOut flow write to, and it outputs to the queue that the input
node which the FanIn flow reads from - it provides a messaging bridge between the two flows.
The messages are put to their reply-to queue (as set by the MQOutput nodes in the FanOut
flow).

05/11/2010 Version 1.0 Page 75 of 83

FanIn Message Flow
This flow receives all the replies from the RequestReplyApp flow, and aggregates them into a
single output message. The output message from the Aggregate Reply node cannot be
output directly by an MQOutput node without some processing so a Compute node is added
to process the data into a format where it can be written out to a queue.

Further information about the Aggregation sample can be found in the Message Brokers
section of the Technology samples category which is in the samples gallery of the
WebSphere Message Broker development toolkit.

Coordinated Request Reply
The coordinated request reply sample is based on the scenario of a contemporary and
established application communicating through the use of WebSphere MQ messages in a
request/reply processing pattern. The contemporary application uses self-defining XML
messages and issues a request message. The established application uses Custom Wire
Format (CWF) messages. It receives a request message, processes it and delivers a reply
message. For the applications to successfully communicate, the message formats must be
transformed for both the request and reply messages.

The processing in the sample consists of three message flows and one message set. The
message flows are:

05/11/2010 Version 1.0 Page 76 of 83

Request Message Flow
The request message flow performs the following processing:

• Reads a WebSphere MQ message containing an XML payload.
• Converts the message into the equivalent CWF format.
• Creates a WebSphere MQ message containing the transformed message.
• Saves the original ReplyToQ and ReplyToQMgr details in a separate WebSphere MQ

message for subsequent retrieval by the Reply message flow.
• Sets the ReplyToQ and ReplyToQMgr details to be the input of the Reply message

flow.
• Sends the message on to the Backend Reply message flow.

The Request message flow consists of the following nodes:

Backend Reply Message Flow
The backend reply message flows performs the following processing:

• Reads a WebSphere MQ message.
• Adds the time the message was modified to the payload of the message.
• Writes a WebSphere MQ message.

The Backend Reply message flow consists of the following nodes:

Reply Message Flow
The reply message flow performs the following processing:

1. Reads a WebSphere MQ message containing a message in CWF format.
2. Converts the message into the equivalent XML format.
3. Obtains the ReplyToQ and ReplyToQ Mgr of the original request message by reading

the WebSphere MQ message which was used to store this information in the Request
message flow. This is done by using the MQGET node.

4. Creates a WebSphere MQ message containing the transformed message and the
retrieved ReplyToQ and ReplyToQMgr values.

The Reply message flow consists of the following nodes:

Further information about the Coordinated Request Reply sample can be found in the
Message Brokers section of the Application samples category which is in the samples gallery
of the WebSphere Message Broker development toolkit.

05/11/2010 Version 1.0 Page 77 of 83

Data Warehouse
The Data Warehouse sample demonstrates a scenario in which a message flow is used to
perform the archiving of data, such as sales data, into a database. The data is stored for later
analysis by another message flow or application.

Because the sales data is analyzed at a later date, the storage of the messages has been
organized in a way that makes it easy to select records for specified times. The date and time
at which the WebSphere MQ message containing the sales record was written are stored as
separate column values when the message is inserted into the database. The database table
contains four columns:

• The message data - the payload of the WebSphere MQ message stored as a BLOB.
• The date on which the WebSphere MQ message was created.
• The time when the WebSphere MQ message was created.
• A time stamp created by the database to record the time when the record was

inserted.

By storing the data in this way it is possible to retrieve records between specific periods of
time, say between the hours of 9:00 a.m. to 12:00 p.m. or 12:01 p.m. and 5:00 p.m. which
would allow a comparison of morning and afternoon sales to be made.

The data archiving is performed by the WarehouseData message flow. This is described
below.

WarehouseData Message Flow
The WarehouseData message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload. The payload
contains the data to be archived.

2. Converts a portion of the message tree to a BLOB ready for insertion into the
database.

3. Inserts the message BLOB along with the date and time at which the WebSphere MQ
message was written into a database.

4. Sends a WebSphere MQ confirmation message to signal successful insertion of the
message into the database.

The WarehouseData message flow consists of the following nodes:

Further information about the Data Warehouse sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

05/11/2010 Version 1.0 Page 78 of 83

Large Messaging
The Large Messaging sample is a sample based on the scenario of end-of-day processing of
sales data. Messages recording the details of sales through the day are batched together in
the store for transmission to the IT centre. On receipt at the IT centre the batched messages
are split back out into their constituent parts for subsequent processing.

This splitting is achieved using a WebSphere Message Broker message flow. Each of the
individual messages representing a sale has the same structure.

The input and output messages in this sample are implemented as self-defining XML
messages for simplicity. Other message formats could easily be used.

Each input message consists of three parts:

• A header containing a count of the number of repetitions of the repeating SaleList
structure that follows.

• The body that contains the repetitions of the repeating SaleList structure.
• The trailer that contains the time the message was processed.

The aim of the processing in this sample is to write each of the instances of the SaleList
structure as a separate WebSphere MQ message while minimizing overall memory
requirements.

The message flow implements a memory saving technique through the use of a mutable
message tree.

The processing in the sample consists of one message flow. The processing it performs is
described below.

Large Messaging Message Flow
The large messaging message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. Formats a WebSphere MQ message for each instance of the SaleList structure.
3. Writes the WebSphere MQ messages to the output queue.
4. Produces a WebSphere MQ message to signal completion of the processing when

the final element has been processed.

The Large Messaging message flow consists of the following nodes:

05/11/2010 Version 1.0 Page 79 of 83

Further information about the Large Messaging sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

Message Routing
The message routing sample shows how a database table can be used to store routing
information which a message flow can then use to route messages to WebSphere MQ
queues.

The message routing sample shows how to implement a routing table, using shared
variables, to route messages in a message flow. This test is using the routing table
implemented using shared variables.

The processing in the message flows is described below:

Routing_using_memory_cache Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. Creates a destination list based on data which is held in shared variables.
3. Produces a WebSphere MQ output message. The destination of the message is

specified in the destination list.

Further information about the Message Routing sample can be found in the Message Brokers
section of the Application samples category which is in the samples gallery of the WebSphere
Message Broker development toolkit.

05/11/2010 Version 1.0 Page 80 of 83

Message Transformation

The transformation using ESQL use case is based on processing of sales data. At the time of
sale the customer name, the code for the product, a description of the product, its category,
the unit price and quantity purchased are recorded. Each customer may purchase several
items.

Subsequently a statement is produced for each customer and it is the production of the
statement that is performed in this use case. The processing results in a restructuring of the
original message.

The messages used (input and output) are self-defining XML messages. Each message with
sales data consists of three parts:

• A header containing a count of the number of repetitions of the repeating SaleList
structure that follows.

• The body that contains the repetitions of the repeating SaleList structure.
• The trailer that contains the time the message was processed.

The production of the statement for each customer within a SaleList is achieved with a single
message flow, the Transformation with ESQL Message Flow.

Transformation with ESQL Message Flow
The message flow performs the following processing:

1. Reads a WebSphere MQ message containing an XML payload under transactional
control.

2. The input message is parsed and an invoice produced for each customer. This is
achieved with a single Compute node containing ESQL.

3. Produces a WebSphere MQ output message containing an XML payload under
transactional control.

05/11/2010 Version 1.0 Page 81 of 83

Appendix E – Tuning

This appendix describes the tuning that was applied to WebSphere Message Broker,
WebSphere MQ and DB2.

The description of each parameter is brief as a detailed discussion of the effects of any
changes are beyond the scope of this document.

Message Broker
The Message Broker used in the measurements was configured in the following ways for all
tests:

1. The broker ran as a trusted WebSphere MQ application. This was achieved by use of
the ‘-t’ flag on broker creation (with the mqsicreatebroker command) and by
ensuring that the environment variable MQ_CONNECT_TYPE=FASTPATH was
present in the environment in which the broker was started. NOTE: The reader
should be aware that there is a potential integrity exposure to the Message Broker
queue manager as the level of isolation between the Message Broker and queue is
reduced. This is where the improved performance comes from.

2. Transactional support was used where appropriate. When processing persistent
messages it was used, with non persistent messages it was not. The use of
transaction control means that message processing takes place within a WebSphere
MQ unit of work. This involves additional CPU and I/O processing by WebSphere
MQ because the unit of work is recoverable. The result is inevitably a reduction in
message throughput for persistent messages. By default the transaction parameter
on the MQInput node was set to automatic. This is the recommended value to use
for transaction mode unless there is a specific requirement to use a particular value
since persistent messages will be processed within transactional control and non
persistent messages will not.

Additional Tuning for SOAP and HTTP Tests:

- The clients sending data to the broker were configured to use persistent HTTP
connections i.e. MaxKeepAlives was set to 0

- For HTTP and SOAP Request Node tests the SocketConnectionManager was set to
use persistent connections by setting MaxKeepAlives to 0.

To set these values consult the documentation for the mqsichangeproperties command.

There were no error processing or error conditions in any of the measurements. All
messages were successfully passed from one node to another through the out or true
terminal. No messages were passed through the failure terminal of a node.

05/11/2010 Version 1.0 Page 82 of 83

WebSphere MQ
The following changes were made to all queue managers used in the tests:

1. The value of DefaultQBufferSize and DefaultPQBufferSize was increased to a value
of 50MB for the input and output queues used in the tests. This value is the
maximum supported and was used because in most test messages of up to 20MB
were used. When using smaller messages all of the time, a smaller value is likely to
be more appropriate.

2. Given the use of persistent messages in the tests the following MQ log parameters
were modified:
• LogBufferPages was set to 4096
• LogFilePages was set to 65535
• LogType was set to circular
• LogPrimaryFiles was set to 15
• LogSecondaryFiles was set to 1

3. Circular logging was set for all WebSphere MQ queue managers used in the tests.

4. The following values were set for the TCP stanza in the queue manager ini file:

• SndBuffSize=70000
• RcvBuffSize=70000
• RcvSndBuffSize=70000
• RcvRcvBuffSize=70000
• Blocking=YES

5. The Message Broker queue manager MQ listener and channels were run as trusted

applications. In the queue manager qm.ini the value MQIBindType was set to
FASTPATH in the channel stanza. The environment variable
MQ_CONNECT_TYPE=FASTPATH was present in the environment in which the
broker queue manager was started.

6. The WebSphere MQ queue manager log was located on SAN with a non-volatile fast

write cache used for the disk on which the log was located. Such disks are
consistently capable of I/O times of 1ms compared with a time of 6 ms for a 10,000
RPM SCSI disk. When using a disk with a fast write cache it is essential that it has a
non-volatile capability as the log data is critical to the integrity of your queue manager

For further information on MQ tuning see this article:

http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.ht
ml

TCP/IP
No specific tuning was performed for TCP/IP

05/11/2010 Version 1.0 Page 83 of 83

Database
The database used in the performance tests was modified from the default in the following
way:

1. The TCP/IP loopback adapter was used for the database.

2. The database data and log files were placed on a dedicated file system that was

located on a SAN with fast write non volatile cache. This was done to minimise I/O
times and improve the capacity of the log.

3. The database was modified using these commands:

• db2 update db cfg for userdb using logprimary 10
• db2 update db cfg for userdb using logfilsiz 250000
• db2 update db cfg for userdb using logbufsz 4096

Additional Tuning Information
In order to obtain the maximum message rate for your implementation it is important that you
understand the best practices for WebSphere Message Broker. These practices cover the
architecture of message flow processing, the coding of message flows as well as the
configuration and tuning of the message broker and associated components.

Such information can be found in the Business Integration Zone of WebSphere Developer
Domain.

There is also a Support Pac, IP04, which covers the main design decisions when building
message flows. It is available at
http://www.ibm.com/support/docview.wss?uid=swg24006518

