

Enterprise Test Robot

Arunava (Ron) Majumdar

Sr. IT Specialist
Focused Technology Practice

arunava@us.ibm.com
IBM

mailto:arunava@us.ibm.com

 Enterprise Exception Handling

_
Arunava Majumdar Page 2 of 81 arunava@us.ibm.com

Contents

MMooddiiffiiccaattiioonn HHiissttoorryy .. 55

LLeeggaall DDiissccllaaiimmeerr:: .. 66

AAcckknnoowwlleeddggeemmeenntt:: .. 77

SSccooppee ooff tthhee DDooccuummeenntt:: .. 88

11.. IInnttrroodduuccttiioonn ttoo AAuuttoommaatteedd TTeessttiinngg:: .. 1100

22.. TTeessttiinngg PPhhaasseess:: .. 1111
2.1. Unit Testing ... 11
2.2. System Testing .. 11
2.3. Performance Testing ... 11
2.4. User Acceptance Testing .. 12

33.. GGeettttiinngg SSttaarrtteedd wwiitthh TTeesstt AAuuttoommaattiioonn .. 1133

44.. EETTRR CCoommmmaanndd SSyynnttaaxx .. 1188

55.. EETTRR FFiieelldd RReeffeerreennccee .. 2200
5.1. Test Suite ... 22
5.2. Connection .. 23

5.2.1. MQ Connection.. 24
5.2.2. JDBC Connection ... 25
5.2.3. SSH Connection... 26

5.3. Initialization and Cleanup .. 27
5.4. Test Case ... 30

5.4.1. Regulator ... 32
5.4.1.1. Regulation Mode ... 33

5.4.2. Validator ... 38
5.4.2.1. Validation Mode .. 40

5.4.3. Scheduler .. 44
5.4.4. Transformation Rule ... 45

5.4.4.1. Keyword ... 47
5.4.4.2. Transformation Rule: Pattern .. 48
5.4.4.3. Transformation Rule: Literal ... 49
5.4.4.4. Transformation Rule: Tagged ... 50
5.4.4.5. Transformation Rule: Positional ... 51

5.4.5. Data Source ... 52
5.4.5.1. File Source.. 59
5.4.5.2. Queue Source ... 60

66.. SSaammppllee TTeesstt CCaasseess .. 6611
6.1. Sample 01: Supported Data Sources .. 61

6.1.1. Test Data = file, Results = file, Expected Results = file ... 61
6.1.2. Test Data = file, Results = queue, Expected Results = file .. 62
6.1.3. Load Queue, dependent Test Case .. 63
6.1.4. Test Data = queue, Results = queue, Expected Results = file .. 64
6.1.5. Test Data = queue, Results = queue, Expected Results = file .. 65
6.1.6. Test Data = queue, Results = queue, Expected Results = queue ... 66
6.1.7. Test Run Sample 01... 67

6.2. Sample 02: Supported Headers .. 68
6.2.1. Test Data = file with MQMD ... 68
6.2.2. Test Data = file with MQMD, Failed Validation .. 69
6.2.3. Load Queue, dependent Test Case .. 70
6.2.4. Test Data = queue, Validation from Queue ... 71

mailto:arunava@us.ibm.com

 Enterprise Exception Handling

_
Arunava Majumdar Page 3 of 81 arunava@us.ibm.com

6.2.5. Test Data = queue, Wrong Header ... 72
6.2.6. Test Data = queue, Wrong Data ... 73
6.2.7. Test Data = queue, Over-riding MQMD .. 74
6.2.8. Test Data = file, Over-riding MQMD .. 75
6.2.9. Test Run Sample 02... 76

6.3. Sample 99: Performance Test ... 77
6.3.1. Regulated 30 msg/sec into a queue with loop ... 77
6.3.2. Test Run Sample 99... 78

77.. TTeesstt SScceennaarriioo.. 7799
7.1. Scenario 1: Train Tracker .. 79

BBiibblliiooggrraapphhyy:: .. 8811

mailto:arunava@us.ibm.com

 Enterprise Exception Handling

_
Arunava Majumdar Page 4 of 81 arunava@us.ibm.com

Table of Figures

Figure 1 - Introduction to Test Automation ... 10
Figure 2 – Simple Transformation Application (Personal Information Transformer) .. 13
Figure 3 – ETR Configuration Overview ... 20
Figure 4 – Test Suite Definition.. 22
Figure 5 – Connection Parameters ... 23
Figure 6 – MQ Connection parameters .. 24
Figure 7 – JDBC Connection parameters ... 25
Figure 8 - SSH Connection parameters ... 26
Figure 9 - Initiator and Janitor parameters .. 27
Figure 10 – Clear Queue parameters .. 29
Figure 11 - Test Case parameters ... 30
Figure 12 – Regulator parameters ... 32
Figure 13 – Regulation Mode parameters .. 33
Figure 14 - Rate Sensitive parameters .. 35
Figure 15 – Thread handling inside the Rate Sensitive Regulation ... 36
Figure 16 – Coordinated Regulation parameters ... 37
Figure 17 - Validator parameters ... 38
Figure 18 – Validation Mode parameters ... 40
Figure 19 – Query validation parameters ... 42
Figure 20 – Scheduler parameters .. 44
Figure 21 – Transformation Rule parameters ... 45
Figure 22 – Regular Expression Pattern Transformation .. 48
Figure 23 – Literal String Transformation Rule ... 49
Figure 24 – Tagged-Delimited Transformation Rule ... 50
Figure 25 – Positional Transformation Rule .. 51
Figure 26 – Class Diagram of Data Source and related classes .. 52
Figure 27 – DataSource.. 53
Figure 28 - Header Override .. 54
Figure 29 - File Source ... 59
Figure 30 - Queue Source .. 60
Figure 31 – All File Interactions ... 61
Figure 32 – Send File to Queue ... 62
Figure 33 – Load File to Queue for subsequent tests ... 63
Figure 34 – Send Message to Queue .. 64
Figure 35 – Send Message to File .. 65
Figure 36 – Send Message to Queue and Validate from the Queue ... 66
Figure 37 - Read data and MQMD from file and send to queue .. 68
Figure 38 - Read data and MQMD from file and send to queue, wrong header in Expected Results 69
Figure 39 - Load data with MQMD from file and send to queue ... 70
Figure 40 - Read data from queue and send to file .. 71
Figure 41 - Read data from queue and send to file, validation of header fails .. 72
Figure 42 - Read data from queue and send to file, validation of data fails .. 73
Figure 43 - Read data from queue and send to queue with header override .. 74
Figure 44 - Read data from file and send to queue with header override ... 75
Figure 45 - Rate Regulation Mode .. 77
Figure 46 - Train Tracker .. 79

mailto:arunava@us.ibm.com

 Enterprise Exception Handling

_
Arunava Majumdar Page 5 of 81 arunava@us.ibm.com

Modification History
Date Version Author Description

07/03/2014 1.0.0 Arunava
Majumdar

Final release for Support Pac it01

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 6 of 81 arunava@us.ibm.com

Legal Disclaimer:

Information provided has been developed as a collection of the experiences of technical services professionals over a wide
variety of customer and internal IBM environments, and may be limited in application to those specific hardware and software
products and levels
The information contained in this document has not been submitted to any formal IBM test. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to
adapt these techniques to their own environments do so at their own risk, and in some environments may not achieve all the
benefits described.
This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes will be incorporated in new editions of this publication. IBM may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at any time without notice.
IBM may not offer the products, services, or feature discussed in this document in all countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as
an endorsement of those Web sites. The materials at those Web sites are not part of the materials of this IBM product and use
of those Web sites is at your own risk.
Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or
other publicly available sources. IBM cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice and represent goals
and objectives only.
All prices shown are IBM's suggested list prices and are subject to change without notice. Dealer prices may vary.
Any performance date contained in this document was determined in a controlled environment. Therefore the results obtained
in other operating environments may vary significantly. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee that these measurements will be the same on generally available systems.
Some measurements quoted in the document may have been estimated through extrapolation. Actual results may vary. Users
of this presentation should verify the applicable for their specific environment.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming techniques on various
operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the
purpose of developing, using, marketing or distributing application programs conforming to the application programming
interface for the operating platforms for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 7 of 81 arunava@us.ibm.com

Acknowledgement:

While leading a team for a customer project and moving into the testing phase with Message Broker flows, we
soon realized we did not have an adequate tool in the market that would be able to automate flow testing. The
tool was not only required to send messages to one or more queues from a file system or queue but also to
retrieve messages and validate them against know results. All the requirements went into the building of the
asset and we could deliver automated test for unit, system, performance and quality assurance environments. I
would like to acknowledge all the team members who worked with me at the time to make this a success. The
tool continues to evolve as new requirements are accepted as features.

I also acknowledge the Open Source contributions on the following packages used in the delivery of the product.

This product includes software developed by the DOM4J Project (http://www.dom4j.org/).
This product includes software developed by the SAXPath Project (http://www.saxpath.org/).
This product includes software developed by the JAXEN Project (http://jaxen.codehaus.org/).
This product includes software developed by the iText Project (http://www.lowagie.com/iText/).
This product includes software developed by the Trilead SSH (http://sourceforge.net/projects/orion-ssh2/files/)

mailto:arunava@us.ibm.com
http://www.dom4j.org/
http://www.saxpath.org/
http://jaxen.codehaus.org/
http://www.lowagie.com/iText/
http://sourceforge.net/projects/orion-ssh2/files/

 Enterprise Test Robot

Arunava Majumdar Page 8 of 81 arunava@us.ibm.com

Scope of the Document:

The scope of the document is limited to the automation of testing that may be achieved through the Enterprise
Test Robot tool. The various features of the tool along with examples and scenario are presented in this paper.
The document would outline each of the implemented parameters in the tool.

The ETR tool is used for non-invasive and repeatable test automation. It is not within the scope to monitor the
system or any other specific products. There are numerous monitoring products available and the intent of the
tool is not to replicate the functionality. It also does not capture data from the screen and replay it. There are
several tools in the market to record screen actions and replay them.

ETR is geared towards and optimized for middleware testing, especially with queues. Options for transformation
of data, regulation of the feed into the application and validation options to compare and decide if the test was
successful or was a failure are all within the scope of the document and part of the ETR tooling.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 9 of 81 arunava@us.ibm.com

To my wife Sonia Mahajan
for her support during the creation and publication of this asset

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 10 of 81 arunava@us.ibm.com

1. Introduction to Automated Testing:

<<app>> TestRobot

Q.IN

<<mflow>> testFlow

Q.OUT

Destination

<<thread>> Regulator

TestSuite

Test Data

Result

<<thread>> Validator

Expected
Result

Test Run Report

TR

Mode

TR

Mode

Run Output

Schedule

Figure 1 - Introduction to Test Automation

The first step to the automation of testing is to understand how Test Data and Expected Results may be saved so
that the results of the test can be repeatable. The data saved from the system often contains elements that change
and cannot be injected into the system directly but with some intervention. This intervention may be of several
types – date modifications, counters that must be incremented, UUID generation, etc. On the other hand the
saved canned data suffers from the same issues when being compared against. The tool provides transformation
capabilities to deal with these situations and several modes for the validation of data – Search, Ignore, Sequence,
etc. The regulation of data may also take place under several modes – Rate Sensitive, Coordinated, etc.
Identifying how to send the data and how to validate it against known data is key to moving on to the next step in
automation of the process.

The diagram above shows a generic testing scenario where the Test Data is picked up by the Regulator from a
file and send to a Queue that provides the input to the application being tested. The application in this case is a
Message Flow that reads the data transforms it and puts it into another Queue. The Validator then picks up the
data from the output Queue, validates against the known Expected Results saved and makes a decision whether
the test passed or failed. The data is also saved to the Run Output location so that it may be analyzed when a test
fails. The configuration of the Regulator and Validator and any transformations required are provided in a simple
XML format – the Test Suite. For each Test Run a report is generated for convenience.

The Test Suite is a collection of Test Cases and any Load and Unload of data for the Test Run. Each Test Case
may have multiple Regulators and Validators. Test Data, Results, Expected Results and Run Output are all
considered as Data Sources.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 11 of 81 arunava@us.ibm.com

2. Testing Phases:

Most organizations have their own definitions of testing phases and often it is unclear in most books on the
subject the exact definition of the different phases. This section attempts to define the phases of testing
pertaining to how Enterprise Test Robot is configured. The same tests may be performed in multiple
environments and should not change the definition of the test itself. Often certain tests are not performed in
certain environments due to constraints on the environment, e.g. running performance test in the development
environment with limited resources allocated may bring it to its knees. On the other hand, the QA environment
receiving a parallel feed from the PROD environment at 30 msg/sec will not be able to check each and every
message data. We certainly hope it went through rigorous testing of functionality in prior environments.

2.1. Unit Testing

– Testing for the individual applications in a controlled manner
– All the functionality for the application must be individually tested with specific Test Cases
– All exception conditions must be tested and validated if the exception reporting is proper
– Regression Tested for any changes to the application
– Several cycles of testing/bug fixing may be required – Test Runs
– All Test Cases run with canned data

2.2. System Testing

– Testing for the a set of applications in a controlled manner
– Integration points must be validated
– Validations are based on system-wide results
– Regression Tested for any changes to any application after all the Unit Test cases are validated
– Maximum volume or message capacity may be tested
– Several cycles of testing/bug fixing may be required – Test Runs
– All Test Cases run with saved production data

2.3. Performance Testing

– Testing the performance of the application individually or at a system level
– Data sent to the application at various rates
– Parallel Run or simulation of the production load curve at various levels
– The maximum rate capacity may be tested
– The environment where the test is run must be comparable to the production environment
– All Test Cases run with saved production data or a live production feed

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 12 of 81 arunava@us.ibm.com

2.4. User Acceptance Testing

– Especially with user-interface based when multiple users pound the system with various sorts of data as
well as testing of concurrent system activities

– Parallel Run or simulation of the production load curve at various levels
– The environment where the test is run must be able to withstand the load
– All Test Cases run with saved production data or a live production feed

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 13 of 81 arunava@us.ibm.com

3. Getting Started with Test Automation

Before we can get started with ETR, first of all we need to find out what we would like to test and how we can
test the outcome of the application. Many organizations already have documented test cases that list the
conditions for the test and what the outcome would look like. When we start thinking about automating the test
case, we need to first find some test data that we can send to the application so that it exercises the conditions for
the test.

Consider an application with a simple if statement that checks for a string value of a field (type) and based on
that value produces two different outputs. Let us assume that if the value is true it produces a fixed length string
and if the value is false produces an XML. The incoming data is comma (,) delimited.

Get Delimited Data

Check output type

Transform to FixedTransform to XML

type = XML type = fixed

Write Data File

Information

Name

Age

Sex

type

n: ‘,’

,

,

,

Information

Name

Age

Sex

<<string>>

<<int>>

<<string>>

‘fixed’ ‘XML’<<string>>

<<string>> len = 20

<<string>> len = 3

<<string>> len = 1

‘M’ ‘F’

‘M’ ‘F’

Information

name

age

sex

<<string>> len = 20

<<string>> len = 3

<<string>> len = 1 ‘M’ ‘F’

Figure 2 – Simple Transformation Application (Personal Information Transformer)

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 14 of 81 arunava@us.ibm.com

For the simple application (Personal Information Transformer) described, we have two conditions to be tested.
Before proceeding further let us assign an application id to the application – PIT. This would help us refer to any
artifact related to this application.

Case # Exc
Code

Condition Ref
Function

Assumption Test Data & Script Expected Result

 PIT.01

Delimited
personal
information is
transformed to
Fixed Length file
[type = ‘fixed’]

 PIT.01.dat PIT.01.fixed

 PIT.02

Delimited
personal
information is
transformed to
XML file
[type = ‘XML]

 PIT.02.dat PIT.02.xml

Notice that in the table above we have mentioned the names of the files providing input test data and output
expected data. Now let’s look into the contents of these files.

Condition PIT.01:

PIT.01.dat
John Doe,40,M,fixed

PIT.01.fixed
John Doe 040M

Thus, to test condition PIT.01 it is sufficient to send the file PIT.01.dat and if the output result exactly matches
with the expected output file prepared PIT.01.fixed, then the test case passes. Else it fails.

This is the simplest form of test since the output is always predictable and should exactly match the expected
results file for the test to pass. We will look into scenarios in later chapters where data contains date and time
and other fields that are validated in the application and the test cannot be performed unless the date is current
and the test result cannot be determined to have passed or failed unless we ignore certain sections of the data.

Condition PIT.02:

PIT.02.dat
Jane Doe,20,F,XML

PIT.02.xml
<?xml version="1.0" encoding="UTF-8"?>
<Information name=”Jane Doe” age=”20” sex=”F”/>

Similarly, to test condition PIT.02 it is sufficient to send the file PIT.02.dat and if the output result exactly
matches with the expected output file prepared PIT.02.xml, then the test case passes. Else it fails.

We will see in later chapters how this validation may be enhanced in the next version.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 15 of 81 arunava@us.ibm.com

Now that we have Test Data, Expected Results and a definitive validation method that may in theory be repeated,
let us see how the Enterprise Test Robot can help us automate this test.

The application is listening for the arrival of new files in a specific directory and outputs the resultant files to
another configured directory. ETR needs to send the test data file from one location to another location,
essentially copying the file. On the validation side, ETR needs to pick up the result file form one location,
compare it with the saved expected results file from another location and determine if they both match byte-by-
byte (exact match) and decide whether the test passed or failed.

In ETR, the component that sends test data is called Regulator and the component that validates the data and
makes the determination of the passing or the failure of the test is called Validator.

Here is how we can set the Regulator:

<Regulator>
 <TestData><File path="data/PIT.01/PIT.01.dat" format="raw"/></TestData>
 <Destination><File path="in/PIT" format="raw"/></Destination>
</Regulator>

Both TestData and Destination are Abstract Data Sources. The implementations include FileSource and
QueueSource. Hence the Test Data may be sourced from either file or queue and the destination may be either
file or queue. As Data Source implementations are added all combinations are possible, making it flexible and
powerful.

Similarly the Validator is set as follows:

<Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/PIT" format="raw"/></Results>
 <ExpectedResults><File path="results/PIT.01/PIT.01.fixed" format="raw"/></ExpectedResults>
 <RunOutput><File path="" format="raw"/></RunOutput>
</Validator>

Latency provides a way to delay the validation from starting immediately and, in this case, gives the PIT
application 5 seconds to process the data. Results and ExpectedResults are also Abstract Data Sources. The
RunOutput location stores the output data information for inspection after the test is run.

The simplest Regulator mode is “unregulated” and the simplest Validator mode is “exact match”. To automate
these simple Test Cases, that is all we need. The ETR is a Java 1.5 application that runs like a command and the
only mandatory parameter is –config pointing to the configuration XML file for the Test Suite. The file extension
does not matter in the case of the command line mode. However, it must be .testsuite for use in the eclipse plug-
in. It is good practice to have a consistent .testsuite extension.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 16 of 81 arunava@us.ibm.com

Let us now look at the configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<mqt:TestSuite xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com.ibm.mq.test TestConfig.xsd"
 xmlns:mqt="urn:com.ibm.mq.test"

 author="Arunava Majumdar"
 version="1.0.0" project="ETR.Test"
 appid="PIT" application="Personal Information Translator"
 appOwner="Sonia Mahajan"
 testType="unit"
 appTestPath=""
 appTestRunPath="runs">

 <TestCase id="PIT.01" descr="Exact Match - File Regulator">
 <Condition>
 Delimited personal information is transformed to Fixed Length file
 [type = 'fixed']
 </Condition>
 <Regulator>
 <TestData><File path="data/PIT.01/PIT.01.dat" format="raw"/></TestData>
 <Destination><File path="in/PIT" format="raw"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/PIT" format="raw"/></Results>
 <ExpectedResults>

<File path="results/PIT.01/PIT.01.fixed" format="raw"/>
</ExpectedResults>

 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
 </TestCase>

 <TestCase id="PIT.02" descr="Exact Match - File Regulator">
 <Condition>
 Delimited personal information is transformed to XML file
 [type = 'XML']
 </Condition>
 <Regulator>
 <TestData><File path="data/PIT.02/PIT.02.dat" format="raw"/></TestData>
 <Destination><File path="in/PIT" format="raw"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/PIT" format="raw"/></Results>
 <ExpectedResults>

<File path="results/PIT.02/PIT.02.xml" format="raw"/>
</ExpectedResults>

 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
 </TestCase>
</mqt:TestSuite>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 17 of 81 arunava@us.ibm.com

The environment variable ETR_PATH must be set to the installation directory for ETR. The path should only have
the universal file separator ‘/’ and must not end with a ‘/’. A batch file is provided to facilitate the loading of the
dependent jars1.

ETR_PATH=C:/IBM/Assets/ETR
call bin/win/TestRobot.bat -config samp/PIT/unit/PIT_UT.testsuite

1 Additional Jar files may be required for connecting databases, etc.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 18 of 81 arunava@us.ibm.com

4. ETR Command Syntax

The Enterprise Test Robot provides a simple command line interface to launch as well as control the flow of the
Test Cases in the Test Suite. The Test Suite is represented as the configuration XML. Multiple environment
setups may be provided in the Test Suite and controlled from the command line. This is useful for maintaining
the same XML file with separate connection parameters for different environments or different users and
controlled from the command. Record and Silent options let the user save the Test Run information to a profiles
file. The id lets the user select specific Test Cases only and optionally reorder them. For nested directories, the
Test Data is indexed relative to the location for portability and reused for performance. However, the directory
has to be re-indexed if the data set is changed. So of the data in the data set may also be rerun for large data sets
that fail. When the application is tested and the results are verified the stream can be reversed in the baseline
mode and the Results may be saved as the Test Data. The Test Run may also be in manual mode that stops
after every Test Case for acknowledgement and is useful while setting up the Test Cases.

com.ibm.mq.test.TestRobot -config <xml>
-env <environment> -record

-id <test case id>
-ordered

-index
-rerun <files>

-silent
-console

-baseline -manual

-maxLogSize <MB> -maxLogFiles <files>

-debug
-nodata

-verbose -about -help

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 19 of 81 arunava@us.ibm.com

com.ibm.mq.test.TestRobot
 -config <Test Configuration XML>
 [-env <Environment>]
 [[-id <Test Case Id>]n [-ordered]]
 [-baseline] [-manual]
 [(-record) | (-silent [-console])]
 [(-index)|(-rerun <Rerun Files>)]
 [-maxLogSize <size in MB>]
 [-maxLogFiles <no of cycled files>]
 [-debug [-nodata]]
 [-verbose] [-about] [-help]

 -config
 The XML file for the test suite definitions conforming to the schema

TestConfig.xsd.
 -env
 (Optional) The Environment where the Test is being run.
 -id
 (Optional) Test Case Id defined in the Test Suite to be run.
 This can be repeated as many cases are provided. The test cases are run in the

order are presented on the command line.
 -baseline
 (Optional) Saving test results for baselining.
 -manual
 (Optional) Manual Mode for testing. Haults before each test case for user

input. Type 'exit' for stop running the remaining test cases.
 -record
 (Optional) Saving the input data in a recording file.
 Cannot be used with the -silent option.
 -silent
 (Optional) Playing back the input data from a recording file.
 Cannot be used with the -record or -manual options.
 Turns off writing to console and starts saving information in

TestRobot.system.out file.
 -console
 (Optional) Turn writing to console on in the silent mode.
 -index
 (Optional) Turn on indexing for all files. If index exists, the index is

recreated.
 -rerun
 (Optional) Skips ahead to the last file processed in the index and reruns the

number of files specified in the last run. Rerun files = 0 implies that the
testing resumes at the position of failure of the last run as saved in the
index.

 Cannot be used with the -index option.
 -maxLogSize
 (Optional) The maximum size in MB each log can grow to. A new log is created

when the limit is reached. The log is not cycled unless set with -maxLogFiles
parameter.

 Default value is 10 MB.
 -maxLogFiles
 (Optional) Active logs are cycled if the parameter is set to the number of

files to be maintained. Files older than the number of active files are
deleted.

 Default value is -1 (Log cycling is turned off).
 -debug
 (Optional) This sets the debug trace for the tool. This provides detailed level

tracing for the tool that may be required for troubleshooting the tool itself.
 -nodata
 (Optional) Only applicable for -debug mode to turn off any data reporting in

the log if not required to reduce the size of the log.
 -verbose
 (Optional) Parameter only to be used for debugging if errors are not explicit.
 -about
 (Optional) Version and related information.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 20 of 81 arunava@us.ibm.com

5. ETR Field Reference

The Enterprise Test Robot is based on a simple XML configuration for automating your tests. This chapter
provides information on the over-all structure and the configuration details of each of the fields.

TestSuite

version
author
project
appid
application
appOwner
testType
appTestPath
appTestRunPath

TestCase (n)

Regulator (n)

id
descr
excCode

Connection

Initialize

Condition

Dependencies

Assumption

Comment

Initialize

Cleanup

Schedule

TestData

TransformationRule (n)

RegulationMode

Destination (n)

Validator (n)

Schedule

Results

TransformationRule (n)

ValidationMode

Query (n)

ExpectedResults

RunOutput

TR

V

TR

TR

Cleanup

id
descr
excCode

version
author
project
appid
application
appOwner
testType
appTestPath
appTestRunPath

Figure 3 – ETR Configuration Overview

The diagram shows the basic structure of the Test Suite Configuration. Certain fields are provided for
documentation purposes only. The Test Suite attributes version, author, project, etc. are provided for information

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 21 of 81 arunava@us.ibm.com

related to the Test Suite. In general a Test Suite is created for every application and testing phase. In case of
large applications, a Test Suite may be based on each feature. As emphasized before in earlier chapters, having
an application identifier (appid) to represent the application is good practice and all the application artifacts can
now use the same appid. Connections are defined at the global space and may be used by any Test case. The
Initialization and Cleanup routines may be defined both globally and within the Test Case scope.

Multiple Test Cases may be defined in the Test Suite. Test Cases are synchronized in the Test Suite, i.e. the next
test case to be executed always waits for the previous test case to be completed. This gives control over the
atomicity of the test. Some test cases may have dependent test cases. This means that the dependent test case is
only run on the successful completion of its dependencies. Multiple dependencies may be defined.

Conditions, Assumptions and Comments are for documentation only.

The core functionality of the test is performed by the Regulators and the Validators. Multiple Regulators and/or
Validators may be assigned to a Test Case. Regulators send Test Data to a Destination and Validators introspect
the Results of the test and decides on the verdict of passed or failed.

Both Regulators and Validators can be scheduled for a specific Test. A regulator may be started only at the top
of the hour to test a condition that the application gathers information of the last hour and in reality will be
triggered from Unix cron job. A validator may be started with a latency of 10 seconds for the application to
process some very complex transformations and produce the result in 10 seconds service level agreement (SLA).

Both Regulators and Validators can perform multiple transformations on the data. In case of the regulator the test
may want to replace a timestamp field to the current timestamp. The validator, on the other hand, may chose to
replace the timestamp from the result to X’s and match the result with the existing Expected Results markes with
X’s for the rest of the fields.

Both Regulators and Validators have their individual modes of operation; the simplest being “Unregulated” and
“Exact Match” respectively when their modes are not mentioned.

Additionally, queries may be run from the Validator, in conjunction with Results or by themselves, to validate
records from the database and compare them to the data saved in files. Please refer to the Queries section for
more details.

Validator output is always saved at the Run Output location. Only File Data Source is supported in this release.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 22 of 81 arunava@us.ibm.com

5.1. Test Suite

At the top level for the configuration of the Enterprise Test Robot is the Test Suite definition. The Test Suite
encapsulates all the Test Cases, Connection parameters used by the tests defined and an Initialization and
Cleanup section for the setting up the test environment and cleaning it up.

Typ.TestSuite: TestSuite

version

<1,1>

<<string>>

author

<1,1>

<<string>>

<1,1>project <<string>>

appid

<1,1>

<<string>>

application

<1,1>

<<string>>

<1,1>appOwner <<string>>

<0,1>testType <<string>>

<1,1>appTestRunPath <<string>>

Typ.Connection: Connection

Typ.Script: Initialize <0,1>

Typ.TestCase: TestCase
<0,-1>

Typ.Script: Cleanup <0,1>

<0,1>appTestPath <<string>>

[unit, system, performance, userAcceptence]

<0,-1>

Figure 4 – Test Suite Definition

Field Description
version The version of Test Suite.
author Author of the Test Suite.
project Project name, if the test is being performed by a capitalized project.
appid Application Identifier for the application. This id is used to identify all related artifacts for the

application.
application Full name of the application.
appOwner Owner of the Application.
testType Type of testing – ‘unit ’, ‘system’, ‘performance’, ‘userAcceptance’
appTestPath The path where the test artifacts are kept. The relative path is set to the location of the XML

Configuration file. Absolute paths may be set. Multiple environment variables may be set in the
string for path abstraction and are resolved at runtime. All paths in the resolved path must
follow the file separator ‘/’ and should not end with the ‘/’ indicator.

appTestRunPath Similar to appTestPath but points to the directory where the test run files are stored.
Connection Connection parameters are declared globally in the Test Suite. Supports parameters for

multiple environments and directed to by the –env command line parameter.
Initialize Test Suite initialization scripts.
TestCase Test Case definitions for the Test Suite.
Cleanup Test Suite cleanup scripts.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 23 of 81 arunava@us.ibm.com

5.2. Connection

All Connections for the Test Suite is defined at the global level. Each Connection is identified by its key at the
Test Suite scope and may be referred to by Data Sources, Queries and Scripts.

Typ.TestSuite: TestSuite

Typ.Connection: Connection

Typ.MQConn: MQ

QueueManager
<0,-1>

<1,1>

id <<string>> <1,1> Key: TestSuite

1: OR

Typ.JMSConn: JMS <1,1>

Typ.JDBCConn: JDBC

Database

<1,1>

id <<string>> <1,1>

2: OR

Key: TestSuite

env <<string>> <0,1> Key: TestSuite

<0,-1>

Typ.SSHConn: SSH

Host

<1,1>

id <<string>> <1,1>

3: OR

Key: TestSuite

<0,-1>

<0,-1>

Figure 5 – Connection Parameters

Field Description
env Environment identifier. Multiple Connection parameters may be provided for different

environments running the same tests. The –env command line parameter determines which
Connection parameters are used for the test run. If no environment parameter is passed in
the command line, the default Connection parameters are used where attribute is not
specified. Exception is thrown is the environment is not defined.

QueueManager Connection parameters for the Queue Manager.
 id Connection identifier for the Queue Manager.

MQ MQ Connection parameters.
JMS JMS Connection parameters. This feature is not implemented in this release.

Database Connection parameters for the Database.
 id Connection identifier for the Database.

JDBC JDBC Connection parameters.
Host Connection parameters for connecting to a remote host.
 id Connection identifier for the remote host.

SSH SSH Connection parameter.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 24 of 81 arunava@us.ibm.com

5.2.1. MQ Connection

Typ.MQConn: MQ

1.1: OR

MQBinding

MQClient

<1,1>

<1,1>

<1,1>

svrconn <<string>> <1,1>

host <<string>> <1,1>

port <<int>> <1,1>

JKS <<string>> <0,1>

cipher <<string>> <0,1>

MQClientTable <1,1>

channelTable <<string>> <1,1>

JKS <<string>> <0,1>

Typ.TestSuite: TestSuite

Typ.Connection: Connection

QueueManager

user <<string>> <0,1>

qmgr <<string>> <1,1>

jms <<boolean>> <0,1>

Figure 6 – MQ Connection parameters

Field Description
qmgr Queue Manager name.
jms Java Messaging Service enabled (not supported in this release).
MQBinding MQ Binding mode. This can only be used with a local Queue Manager.
MQClient MQ Client connection mode. Local and remote Queue Managers with a Server Connection

channel may be connected.
 svrconn Queue Manager’s Server Connection Channel name.

host Hostname, DNS name or IP address of the Queue Manager node.
port TCP/IP Listener port for the Queue Manager.
JKS Java Key Store to use with SSL Channels (not supported in this release).
cipher Cipher Specification to use with SSL Channels (not supported in this release).
user User Identifier for connecting to the Queue Manager. The password is not saved in the

configuration file. It must be provided at runtime. The password may be saved in the user
profile for the application by using the –record option. It is encrypted and saved in the profile
and can only be retrieved at runtime from the –silent option.

MQClientTable MQ Client Channel Table mode.
 channelTable Client Channel Table for connecting to the Queue Manager.

JKS Java Key Store to use with SSL Channels (not supported in this release).

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 25 of 81 arunava@us.ibm.com

5.2.2. JDBC Connection

Typ.JDBCConn: JDBC <1,1>

driver <<string>> <1,1>

url <<string>> <1,1>

user <<string>> <1,1>

Typ.TestSuite: TestSuite

Typ.Connection: Connection

Database

Figure 7 – JDBC Connection parameters

Field Description
driver JDBC Driver full class name.
url Universal Resource Locator for connecting to the database.
user User name to connect to the Database. The password is not saved in the configuration file. It

must be provided at runtime. The password may be saved in the user profile for the
application by using the –record option. It is encrypted and saved in the profile and can only
be retrieved at runtime from the –silent option.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 26 of 81 arunava@us.ibm.com

5.2.3. SSH Connection

Typ.SSHConn: SSH <1,1>

host <<string>> <1,1>

user <<string>> <1,1>

key <<string>> <0,1>

Typ.TestSuite: TestSuite

Typ.Connection: Connection

Host

Figure 8 - SSH Connection parameters

Field Description
host JDBC Driver full class name.
user User name to connect to the SSH Server. The password is not saved in the configuration file.

It must be provided at runtime. The password may be saved in the user profile for the
application by using the –record option. It is encrypted and saved in the profile and can only
be retrieved at runtime from the –silent option.

key Public key file to connect to the SSH Server.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 27 of 81 arunava@us.ibm.com

5.3. Initialization and Cleanup

Both Initialize and Cleanup sections are of type Script. The sections may be configured both for the Test Suite and
within the scope of the Test Case.

Typ.Script <0,1>

MQSC
<0,-1>

qmgr <<string>> <1,1>

wait <<string>> <0,1>

file <<string>> <1,1>

stdout <<string>> <0,1>

stderr <<string>> <0,1>

SQL
<0,-1>

dbConnRef <<string>>

statement <<string>> <1,1>

file <<string>> <0,1>

stdout <<string>> <0,1>

stderr <<string>> <0,1>

Script
<0,-1>

file <<string>> <1,1>

hostConnRef <<string>> <0,1>

localFile <<string>> <0,1>

<1,1>

Host

id <<string>> <1,1>

<0,-1>

Key: TestSuite

<<
re

fe
rs

>>

Typ.TestSuite: TestSuite

Typ.Connection: Connection

Typ.Clear: Clear <0,1>

stdout <<string>> <0,1>

stderr <<string>> <0,1>

Database

id <<string>> <1,1>

<0,-1>

Key: TestSuite

<<
re

fe
rs

>>

Figure 9 - Initiator and Janitor parameters

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 28 of 81 arunava@us.ibm.com

Field Description
MQSC IBM MQ Scripts. MQSC scripts can be run from the tool through the runmqsc command.
 qmgr Queue Manager name.

wait Wait time in seconds when connecting to a remote queue manager through a locally bound
one to execute commands remotely. The message channel pairs and the transmit queue must
be set up for remote execution of commands to work. This is an encapsulation of the –w
switch for runmqsc.

file The input file for the MQSC scripts.
stdout Standard output redirection to the file name specified.
stderr Standard error output redirection to the file name specified.

SQL SQL Script to run Insert, Update, Delete statements in a database.
 dbConnRef Database connection reference. The connection id for the database defined in the Connections

section.
statement SQL statement to execute.
file File to provide input data for parameterized SQL Statements.
stdout Standard output redirection to the file name specified.
stderr Standard error output redirection to the file name specified.

Host Running scripts on a remote host.
 file File name to run on the remote host.

hostConnRef Host connection reference. The connection id for the host defined in the SSH Connections
section.

localFile Local filename that can be transferred to the remote host if the file is not found at the file
location on the host and then run on the server. This provides a convenient method to run the
script on a remote host without having to FTP or SCP prior to running the test. (Not
implemented in this release)

stdout Standard output redirection to the file name specified.
stderr Standard error output redirection to the file name specified.

Clear Section to set what data must be cleared at the beginning or end of the test.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 29 of 81 arunava@us.ibm.com

Typ.Script

Typ.Clear: Clear <0,1>

Queue
<1,-1>

QueueManager

id <<string>> <1,1>

<0,-1>

Key: TestSuite

Typ.TestSuite: TestSuite

Typ.Connection: Connection

name <<string>> <1,1>

qmgrConnRef <<string>> <1,1>

wait <<string>> <0,1>

percentage <<string>> <0,1>

messages <<string>> <0,1>

<<
re

fe
rs

>>

msgId <<string>> <1,1>

corrId <<string>> <0,1>

grpId <<string>> <0,1>

threads <<string>> <0,1>

path <<string>> <0,1>

Figure 10 – Clear Queue parameters

Field Description
Queue Clear Queue parameters.
 name Name of the queue

qmgrConnRef Queue Manager connection reference. The connection id for the queue manager defined in
the Connections section.

wait Wait in seconds for new message arrival on the queue.
percentage The percentage of messages to be deleted from the queue. The percentage is statically

calculated at the start of the application. Should not be used with messages.
messages Number of messages to be deleted from the queue. Should not be used with percentage.
msgId Selected messages with the Message Id can be cleared.
corrId Selected messages with the Correlation Id can be cleared.
grpId Selected messages with the Group Id can be cleared.
threads Number of threads spawned to clear the queue. In general only 1 thread is needed. But in

case of performance or capacity testing, multiple threads may reduce the time to cleanup for
the subsequent test runs.

path Path where the messages may be saved.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 30 of 81 arunava@us.ibm.com

5.4. Test Case

Multiple Test Cases are defined in the Test Suite. Test Cases are synchronized and only starts when the previous
Test Case has ended. The Test Cases are run in the same order as defined in the configuration file. Specific Test
Cases may be run from the command line with the –id switch. This provides a simple method for running a
subset of the defined Test Cases without changing the configuration or making a copy. Moreover, the sequence
of running the Test Cases can be altered for a specific Test Run with the –ordered switch.

Test Cases may also be made dependent on other Test Cases where the Results of the prior test affect the latter,
e.g. Test Case TC1 inserts data into a database and Test Case TC2 uses the data to produce Results to be validated.
Rather than deleting the data after validating that the inserted data is correct and re-inserting, it may be used for
the dependent Test Case. Multiple dependencies may be defined with Predecessors. The dependent Test Case is
only run if all the Predecessors are successful.

Typ.TestCase: TestCase
<0,-1>

id <<string>> <1,1>

descr <<string>> <1,1>

excCode <<string>> <0,1>

Condition <<string>> <1,1>

Dependencies <0,1>

Predecessor <1,1>

testCase <<string>> <1,1>

Key: TestCase

<<
re

fe
rs

>>

Assumption <<string>> <0,1>

Comment <<string>> <0,1>

Typ.Script: Initialize <0,1>

Typ.Regulator: Regulator

Typ.Validator: Validator

Typ.Script: Cleanup <0,1>

Typ.TestSuite: TestSuite

<0,-1>

<0,-1>

Figure 11 - Test Case parameters

Field Description
TestCase (n) Multiple Test Cases may be defined in the Test Suite.
 Id Unique Key for identifying the Test Case.

Descry Short description for the Test Case.
excCode When testing exception conditions the Exception Code may be specified for reference. This

distinguishes the “happy path” from the negative tests. It is good practice to check if all the
exception conditions are covered in the Test Suite.

Condition Conditions being tested in the Test Case.
Dependencies Defines dependent Test Cases. If the predecessor is not run or fails, the dependent Test Case

is not run.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 31 of 81 arunava@us.ibm.com

Field Description
 Predecessor (n) Multiple predecessors may be defined upon which the Test Case is dependent.

 testCase Predecessor Test Case identifier.
Assumption Assumptions for the Test Case.
Comment Comments for the Test Case.
Initialize Initialization scripts for the Test Case are defined in this section.
Regulator (n) Regulator definition for sending Test Data.
Validator (n) Validator definition for validating Results of a test.
Cleanup Cleanup scripts for the Test Case are defined in this section.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 32 of 81 arunava@us.ibm.com

5.4.1. Regulator

Regulators send Test Data to one or multiple Destinations. Regulators run under different Regulation Modes.
There is no limitation on multiple Regulators run in different modes in the same or different Test Cases. Each
Regulator may be individually scheduled based on specific time or with delays. For more information, please
refer to the 4.4.3 section.

Typ.Regulator: Regulator

Typ.Schedule: Schedule <0,1>

Typ.DataSource: TestData <1,1>

Typ.TestCase: TestCase

Typ.TestSuite: TestSuite

Typ.DataSource: Destination

readOnly <<boolean>> <0,1>

Typ.TransformationRule: TransformationRule
<0,-1>

Typ.RegulationMode: RegulationMode <0,1>

<0,-1>

<1,-1>

Figure 12 – Regulator parameters

Field Description
Regulator (n) Multiple Regulators may be defined for sending Test Data under different modes.
 readOnly By default the Regulator uses the Test Data in Read Only mode. The Test Data may be

destructively read by setting readOnly to false.
Schedule Schedule for the Regulator.
TestData Test Data may be any supported Data Source.
TransformationRule
(n)

Transformation Rules for transforming Test Data before sending to the Destination.
Transformations may be applied at the Regulator scope or at the Destination scope. When
applied at this level, the transformations are applied to the data going to each Destination that
sets inheritTR = true. By default inheritance of transformations are turned off.

RegulationMode Different Regulation modes may be configured for the Regulator. When the mode is
unspecified, it implies that the mode = unregulated, i.e. the Test Data is sent to the
Destination as soon as it is received after applying the transformations. For more controlled
regulation, modes may be specified.

Destination (n) Multiple Destinations may be specified for the Regulator. The same Test Data is sent to all the
Destinations. However, different transformations may be applied to the data before sending to
the Destination.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 33 of 81 arunava@us.ibm.com

5.4.1.1. Regulation Mode

Regulators may be configured to run under several modes. The simplest of the mode is unregulated, i.e. the
messages are sent to the Destination as fast as possible from the Test Data. This mode is sufficient to perform
most functional testing of data where only a few sets of data are required o test the condition. However, while
performing a performance test this is not sufficient since the system would be IO-bound just to send the data to
the destination affecting the performance numbers. If the Test Robot is run from a separate node at a steady load
level, say 50 messages per second t a queue, a better performance number may be obtained. The different modes
of regulation are explained in details below.

R: OR TimeSensitive <1,1>

acceleration <<float>> <0,1>

maxMsgRate <<int>> <0,1>

RateSensitive <1,1>

RateCapacity <1,1>

tolerance <<int>> <1,1>

Coordinated <1,1>

Typ.RegulationMode: RegulationMode <0,1>

Typ.TestCase: TestCase

Typ.TestSuite: TestSuite

Typ.Regulator: Regulator

PauseProcessor <1,1>

dataPause <<float>> <0,1>

loopPause <<int>> <0,1>

loop <<int>> <0,1> 1

5

1.0

loop <<boolean>> <0,1>

sustainDeficiency <<int>> <0,1>

Figure 13 – Regulation Mode parameters

Field Description
RegulationMode Mode in which the Regulator is configured.
 TimeSensitive The Regulator in Time Sensitive mode runs based on how the data arrived at the system.

The data must be saved with the timestamp as the file name for the data in nested
directories. This is useful to simulate the exact load curve over a typical day and play it back
in the new system to be migrated (not implemented in this release).

 acceleration To save time of the overall test cycle, the data may be played back at a faster rate than
actual data rate, e.g. the data captured over 6 hours may be played back in 3 hours on a
faster system or to test twice the capacity of the current system for future growth. In this
example the acceleration will be set to 2.0.

maxMsgRate To avoid systemic problems in an accelerated Time Sensitive test the maximum message
rate at any given point may be set to a specific value and the regulation will be flat-lined
when this rate is reached.

sustainDeficiency This field indicates the number of seconds to sustain the deficiency of the message rate

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 34 of 81 arunava@us.ibm.com

Field Description
before quitting the test with failure. A value of -1 indicates that the deficiency may be
maintained till the end of the test.

RateSensitive The Regulator in Rate Sensitive mode sends Test Data to the Destination based on the
message rate specified. The data is cached in a read-forward mechanism and the
autonomic algorithm regulates the Loader and Sender thread spawning to achieve the
steady rate at any given moment. The data is evenly distributed within the second as
compared to spurts at the top of the second in most algorithms. The calculations are done
in nano-seconds and rounded up for every second, 15 seconds, minute and 15 minutes.
More on Rate Regulation later in this section.

RateCapacity The Regulator in Rate Capacity mode may be run to determine the upper threshold of the
Rate Sensitive regulation. This is used to determine the true Capacity of the system after
the performance criteria is met by performing a Rate Sensitive regulation test. The
performance rate criterion is usually set as the start message rate and incremented until a
maximum steady state is reached. The Steady State is determined by the interval in
seconds set to maintain the message rate without message accumulation or the ability to
send messages within the acceptable tolerance levels (not implemented in this release).

 tolerance Tolerance is the percentage of the message rate within which the variance of the actual
message rate achieved is acceptable for maintenance of a Steady State.

startMsgRate Message Rate in messages per second at which the test starts and incremented until the full
capacity of the system is reached.

rateIncrement The increment in messages per second to determine the maximum Steady State.
steadyState The duration in seconds to determine Steady State success or failure. If within this period of

time the Steady State is not reached the test ends in failure. If Steady State is maintained
for the period of time the rate is incremented to test Steady State for the next interval until
the maximum Capacity is reached.

Coordinated Coordinated Regulator sends data from the Test Data source and waits on the Coordinated
Validator to validate the data before sending the next data from the source. This is used
each data flowing through the system must be individually validated but a large set of data
is available for test. The Regulator signals the Validator after sending the data and the
Validator signals the Regulator after validating the data. More on Coordinated Regulation
later in this section.

PauseProcessor The Regulator in Pause Processing mode may be configured to wait for a specific period in
seconds between each data in the Test Data source and/or between iterations of the data
loop.

 dataPause Pause in seconds between successive data send from Test Data to Destination.
loopPause Pause in seconds between successive iterations of data send from Test Data to Destination

wile looping.
loop Number of loops of the data from the Test Data source to the Destination.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 35 of 81 arunava@us.ibm.com

Typ.RegulationMode: RegulationMode

Typ.TestCase: TestCase

Typ.TestSuite: TestSuite

Typ.Regulator: Regulator

RateSensitive <0,1>

msgRate <<int>> <1,1>

loop <<boolean>> <1,1>

sustainDeficiency <<int>> <1,1>

Tuning <0,1>

CACHE_SIZE <<int>> <0,1>

MAX_LOADER_THREADS <<int>> <0,1>

MAX_SENDER_THREADS <<int>> <0,1>

1000

MAX_LOAD_WAIT_ATTEMPTS <<int>> <0,1>

MAX_LOAD_RESET_ATTEMPTS <<int>> <0,1>

MAX_RATE_DEFICIENCY <<int>> <0,1>

MAX_RATE_ATTAINED <<int>> <0,1>

20

20

10

6

10

10

Testing <0,1>

IMPEDE_LOADER <<int>> <0,1>

IMPEDE_SENDER <<int>> <0,1>

0

0
Figure 14 - Rate Sensitive parameters

Field Description
RateSensitive The Regulator in Rate Sensitive mode sends Test Data to the Destination

based on the message rate specified. The data is cached in a read-forward
mechanism and the autonomic algorithm regulates the Loader and Sender
thread spawning to achieve the steady rate at any given moment. The data
is evenly distributed within the second as compared to spurts at the top of
the second in most algorithms. The calculations are done in nano-seconds
and rounded up for every second, 15 seconds, minute and 15 minutes.

 msgRate Message Rate to be regulated over the test. Tolerance is added in the
algorithm pessimistically so that the attained rate is slightly higher but never
under the specified rate.

loop Data looping may be enabled for the test when insufficient data is present to
sustain the test over the specified duration in the Schedule and duplicate
data either does not negate the test or may be transformed.

sustainDeficiency Period of time in seconds when the test is run regardless of the deficient
rate. If the test must be completed even when the rate is not reached, -1
may be specified.

Tuning Tuning parameters for the Rate Regulation. These parameters should be
used with caution. The CACHE_SIZE, MAX_LOADER_THREADS and
MAX_SENDER_THREADS may be adjusted for performance and memory
constraints on the system.

 CACHE_SIZE The size in number of messages (not size) stored in the read-forward cache.
MAX_LOADER_THREADS The maximum number of threads spawned for loading the cache.
MAX_SENDER_THREADS The maximum number of threads spawned for sending data from the cache.
MAX_LOAD_WAIT_ATTEMPTS The maximum number of consecutive attempts to receive data from the

empty cache allowed. If the number of attempts is exceeded, it is reported

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 36 of 81 arunava@us.ibm.com

Field Description
in the log. if the number of loader threads is less than the
MAX_LOADER_THREADS then a Secondary Loader thread is spawned.

MAX_LOAD_RESET_ATTEMPTS The maximum number of consecutive loading attempts when the cache is
full. This indicates that the Secondary Loader thread spawned may be
ended. In other words, it resets the Secondary Loader thread.

MAX_RATE_DEFICIENCY The maximum number of consecutive times a rate deficiency is detected
before reporting to the log. If the number of sender threads is less than the
MAX_SENDER_THREADS then a Secondary Sender thread is spawned.

MAX_RATE_ATTAINED The maximum number of consecutive times the message rate is attained or
exceeded to end spawned Secondary Senders. In other words, it resets the
Secondary Sender thread.

Testing Testing parameters for the Rate Regulation should only be used to test
configuration of the tool in a specific environment. This should only be used
when instructed by ETR Support Team.

 IMPEDE_LOADER Time in milliseconds (10-3 seconds) to impede the Loader threads from
loading data to the cache from the Test Data source.

IMPEDE_SENDER Time in milliseconds (10-3 seconds) to impede the Sender threads from
sending data from the cache to the Destination.

<<thread>> RateSensitive

<<thread>> DataLoader

<<thread>> DurationHandler

<<thread>> SecondaryLoader

0...n1

<<thread>> SecondarySender

0...n2

ReadMonitor

LoadMonitor

DATA
CACHE

loaded()

reload()

loading()

ready()

getData()

n1 = MAX_LOADER_THREADS – 1
n2 = MAX_SENDER_THREADS – 1

Figure 15 – Thread handling inside the Rate Sensitive Regulation

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 37 of 81 arunava@us.ibm.com

Typ.Regulator: Regulator

Typ.TestCase: TestCase

Typ.TestSuite: TestSuite

Coordinated <0,1>

C: OR Typ.Tagged: Tagged <0,1>

preDelim <<float>> <0,1>

preDelimCount <<int>> <0,1>

tag <<int>> <0,1>

delimiter <<int>> <0,1>

Typ.Positional: Positional <0,1>

position <<int>> <1,1>

length <<int>> <1,1>

Typ.Validator: Validator

length <<int>> <0,1>

Typ.RegulationMode: RegulationMode

<1,-1>

Figure 16 – Coordinated Regulation parameters

Field Description
Coordinated Coordinated Regulator sends data from the Test Data source and waits on the Coordinated

Validator to validate the data before sending the next data from the source. This is used
each data flowing through the system must be individually validated but a large set of data
is available for test. The Regulator signals the Validator after sending the data and the
Validator signals the Regulator after validating the data.

 Tagged Tagged data selected and passed to the Validator.
 preDelim Delimiter to be skipped in the selection criteria.

preDelimCount Number of pre-delimiters to be skipped.
tag Fixed length of the tag.
delimiter Delimiter for the selected data. Cannot be used with the length attribute.
length Length of the data to be selected. Cannot be used with the delimiter attribute.

Positional Positional data selected and passed to the Validator.
 position Fixed start position of the selected data.

length Length of the selected data.
Validator (n) Multiple Validators may be coordinated with the Regulator. The parameters for the

Validator are the same as an independent Validator. In the coordinated Validation mode
the selected data is passed to the Validators defined and synchronized per data sent to the
Destination.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 38 of 81 arunava@us.ibm.com

5.4.2. Validator

Validators retrieve Results and compare with Expected Results to determine if the test passed or failed. Multiple
Validation Modes are supported. There is no limitation on multiple Validators run in different modes in the same
or different Test Cases. Each Validator may be individually scheduled based on specific time or with delays. For
more information, please refer to the 4.4.3 section.

In addition to the Validation Modes, multiple Query validations may be performed from the same Validator.

Typ.Validator: Validator

Typ.Schedule: Schedule <0,1>

Typ.DataSource: ExpectedResults <1,1>

Typ.TestCase: TestCase

Typ.TestSuite: TestSuite

Q: OR

Typ.DataSource: RunOutput <1,1>

S: OR Latency <0,1>

hr <<int>> <1,1>

min <<int>> <1,1>

sec <<int>> <1,1>

Typ.DataSource: Results <1,1>

Typ.Query: Query

readOnly <<boolean>> <0,1>

D: AND

Typ.TransformationRule: TransformationRule
<0,-1>

Typ.ValidationMode: ValidationMode <0,1>

Typ.Query: Query
<0,-1>

<1,-1>

Figure 17 - Validator parameters

Field Description
Validator (n) Multiple Validators may be defined for validating test Results under different modes.
 readOnly By default the data is read destructively from the Results. This behavior may be altered by

setting readOnly = true.
Latency Latency is defined as the period of time to wait before the launch of the Validator from the

start of the test. This feature is very useful since the application takes a finite period of time
to execute the operation to be tested. Launching the Validator before the Result arrives
negates the test itself.

 hr Number of hours of application latency.
min Number of minutes of application latency.
sec Number of seconds of application latency.

Schedule Schedule for the Validator.
Results Data Source where the output of the application is defined. The Results are read destructively

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 39 of 81 arunava@us.ibm.com

Field Description
by default and compared with the data read from the Expected Results Data Source under
different validation modes. The success or failure of the Test Case depends on the validation
rules.

ExpectedResults Data Source where the Expected Results of the test are stored before running the test. The
results may be baselined by reversing the data stream and storing the Results into the
Expected Results. This is a very convenient method of capturing the Results of the Test Run
when the Results are manually determined to have passed or for setting up Test Cases for
existing applications in production before making changes to the application. Thus after
making the changes the same Test Case may be run (not in baseline mode) for Regression
Testing after the changes.

TransformationRule
(n)

Transformation Rules for transforming Test Data before sending to the Destination.
Transformations may be applied at the Regulator scope or at the Destination scope. When
applied at this level, the transformations are applied to the data going to each Destination that
sets inheritTR = true. By default inheritance of transformations are turned off.

ValidationMode Different Validation Modes may be configured for the Validator. When the mode is
unspecified, it implies that the mode = exact match, i.e. the Results have to match exactly
with the Expected Results after applying the transformations. This is the simplest form of
validation and a binary compare is made for each byte.

Query (n) SQL Queries may be run alone or in addition to the Results being matched from the
application output. Multiple queries may be set per Validator regardless of the Validation
Mode. The comparison is made between the data in the database and the data saved in a
specific format in the files. Baseline for the Query is not implemented in this release.

RunOutput Data Source where the Results of every Test Run is saved. The base directory for the Test
Run is defined by the appTestRunPath attribute of the Test Suite. The path defined by the
RunOutput is appended to the appTestRunPath.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 40 of 81 arunava@us.ibm.com

5.4.2.1. Validation Mode

Validators retrieve Results and compare with Expected Results to determine if the test passed or failed. Multiple
validation modes are supported and may be used in conjunction with the Transformation Rules a powerful set of
tools to validate the Test Results.

Typ.ValidationMode: ValidationMode <0,1>

Typ.TestCase: TestCase

Typ.TestSuite: TestSuite

Typ.Tagged: Tagged

Typ.Positional: Positional

Typ.Pattern: Pattern

V: OR Search <1,1>

Typ.Positional: Positional

Ignore <1,1>

<0,-1>

<0,-1>

<0,-1>

Typ.XPath: XPath
<0,-1>

<1,-1>

Sequential <1,1>

Typ.Tagged: Tagged

Typ.Positional: Positional

allowSkip <<boolean>> <0,1>

XMLSchema <1,1>

xsdFile <<string>> <1,1>

targetNamespace <<string>> <0,1>

Typ.Validator: Validator

<1,1>

<1,1>

Figure 18 – Validation Mode parameters

Field Description
ValidatorMode Different Validation Modes may be configured for the Validator. When the mode is

unspecified, it implies that the mode = exact match, i.e. the Results have to match exactly
with the Expected Results after applying the transformations. This is the simplest form of
validation and a binary compare is made for each byte.

 Search The Search Validation Mode is used to search for specific parts of the data. Multiple types of
searches may be defined as its children. The validation is successful if all the searches are

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 41 of 81 arunava@us.ibm.com

Field Description
successful.

 Pattern (n) Regular Expression Pattern matching.
Tagged (n) Tag-Delimited data matching.
Positional (n) Fixed position and length of the portion of data is matched.
XPath (n) If the data is XML, then XPath to the data location may be defined and matched.

Ignore The Ignore Validation Mode is used to search for specific parts of the data and ignored. The
rest of the data must match exactly. Multiple ignore portions may be defined as its children.
The validation is successful if after eliminating all theses portions of data, the rest of te data is
exactly matched.

 Positional (n) Fixed position and length of the portion of data is matched.
Sequential Data Sequence is matched. This is used to check if a counter in the data is following the right

sequence. This is needed in testing of thread synchronization logic for multi-threaded
applications.

 allowSkip By default the Sequence is strictly matched by incrementing the number by 1 and starting
from the first counter value received in the test.

Tagged (n) Tag-Delimited data matching.
Positional (n) Fixed position and length of the portion of data is matched.

XMLSchema XML Schema to validate the XML output format.
 xsdFile XML Schema file location.

targetNamespace If specified the schema’s target namespace is also validated.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 42 of 81 arunava@us.ibm.com

Database

id <<string>> <1,1>

<0,-1>

Key: TestSuite

Typ.TestSuite: TestSuite

Typ.Connection: Connection

Typ.Query: Query <0,1>

dbConnRef <<string>> <1,1>

statement <<string>> <1,1>

file <<string>> <1,1>

Typ.Validator: Validator

Typ.TestCase: TestCase

Typ.TestSuite: TestSuite

<<
re

fe
rs

>>

metadata <<string>> <1,1>

parameters <<string>> <1,1>

parmMetadata <<string>> <1,1>

keywordParms <<string>> <1,1>

keywordFiles <<string>> <1,1>

Figure 19 – Query validation parameters

Field Description
Query (n) SQL Queries may be run alone or in addition to the Results being matched from the

application output. Multiple queries may be set per Validator regardless of the Validation
Mode. The comparison is made between the data in the database and the data saved in a
specific format in the files. Baseline for the Query is not implemented in this release.

 dbConnRef Database Connection Reference refers to the id for the database connection parameters. The
parameters defined for connection to the database is globally defined in the Connection
section.

statement SQL query statement for data selection.
file Expected results file to be validated against. The data is saved in a comma-separated (,)

format. If data contains comma (,) or if the data is binary, the data is saved in a file in the
subdirectory and the reletive file URL (file://) is saved in the data file. The relative filename
generated is in the following format:
<column name>/<column name>_<%010d - row number>.dat

metadata Metadata for the table columns in the query. Metadata is discovered if available for the
database and available. If metadata is not available, a comma-separated (,) may be provided.

parameters Parameters to be passed to the prepared statement.
parmMetadata Metadata for the parameters in the statement. Parameter Metadata is discovered if available

for the database and driver. If metadata is not available, a comma-separated (,) may be
provided.

keywordParms Keywords supported by the Test Robot may be supplied and replaced in the parameters.
Keywords are explained in details in the Transformation section.

keywordFiles Keywords may receive data from a comma-separated (,) file and replace the keyword from
the file before applying the transformation on the parameter. Please refer to the
Transformation section for details.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 43 of 81 arunava@us.ibm.com

The Metadata is based on SQL to Java type mapping recommendations from Oracle
http://docs.oracle.com/javase/1.5.0/docs/guide/jdbc/getstart/mapping.html

Support data typed defined in java.sql.Types:
BIGINT, BINARY, BIT, BOOLEAN, CHAR, DATALINK, DATE, DECIMAL, DOUBLE, FLOAT, INTEGER,
LONGVARBINARY, LONGVARCHAR, NUMERIC, DOUBLE, REAL, SMALLINT, TIME, TIMESTAMP, TINYINT,
VARBINARY, VARCHAR.

Unsupported data typed defined in java.sql.Types:
ARRAY, BLOB, CLOB, DISTINCT, JAVA_OBJECT, REF, STRUCT.

mailto:arunava@us.ibm.com
http://docs.oracle.com/javase/1.5.0/docs/guide/jdbc/getstart/mapping.html

 Enterprise Test Robot

Arunava Majumdar Page 44 of 81 arunava@us.ibm.com

5.4.3. Scheduler

Both Regulators and Validators can be individually scheduled. The internal Scheduler assigns Regulator or
Validator tasks based on the Start and End parameters provided. If no Start parameters are provided, the
Scheduler starts the task as soon as the Test Case is initialized. The Scheduler always waits for the Initiator to
complete. If no End parameters are specified, the Scheduler lets the task run till the end.

Typ.Schedule <0,1>

Start <0,1>

time <<time>> <0,1>

delay <<int>> <0,1>

End <0,1>

time <<time>> <0,1>

duration <<int>> <0,1>
Figure 20 – Scheduler parameters

Field Description
Schedule Schedule parameters for Regulator or Validator tasks.
 Start Schedule Start configuration.

 time Specific time of the day to start the schedule.
delay Delay in seconds after the Initiator for the Test Case has completed to start task.

End Schedule End configuration.
 time Specific time of the day to end the schedule.

duration Duration in seconds after the start of the task.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 45 of 81 arunava@us.ibm.com

5.4.4. Transformation Rule

Transformation Rules may be applied both in Regulators and Validators. Regulators may require transforming
Test Data before sending to the Destination. This may be for various reasons. The Test Data may have date fields
that may require setting to the current date and time with some minutes subtracted. UUID may have to be
generated for the unique keys. Certain specific values may need to be replaced for each iteration of the data
being sent to the Destination. Similarly, Validators may require the data from the Results and Expected Results
to be transformed before comparing them. Dates may be replaces with *** to make comparison easier than
having to come up with some very complex Ignore conditions. Ignore conditions in the tool only support
Positional for this reason.

Typ.TransformationRule: TransformationRule

Typ.Tagged: Tagged

Typ.Positional: Positional

Typ.Pattern: Pattern

Typ.XSLT: XSLT

Typ.Custom: Custom

R: OR <1,1>

<1,1>

<1,1>

<1,1>

<1,1>

replace <<string>> <0,1>

insert <<string>> <0,1>

leftPad <<string>> <0,1>

rightPad <<string>> <0,1>

keywordParms <<string>> <0,1>

keywordFile <<string>> <0,1>

Typ.Literal: Literal <1,1>

Figure 21 – Transformation Rule parameters

Field Description
Transformation Rule Rule for transforming data.
 replace Replacement string. The string may contain Built-in Keywords ($<keyword>.) or Keyword

Parameters ($[<keyword>]) defined. The selected part of the data is replaced with the string
after the resolution of all the Keywords. There is no limitation in the number of times the
same or different Keyword may be used in the string. It may be used along with the insert
attribute.

insert Insert string. The string may contain Built-in Keywords ($<keyword>.) or Keyword Parameters
($[<keyword>]) defined. The string after the resolution of all the Keywords is inserted at the
beginning of the selection. There is no limitation in the number of times the same or different
Keyword may be used in the string. It may be used along with the replace attribute.

leftPad Left Padding string. This is only applicable for Positional rule. The string pattern is repeated till
the field length is reached.

rightPad Right Padding string. This is only applicable for Positional rule. The string pattern is repeated
till the field length is reached.

keywordParms Keyword Parameters may be defined as a comma-separated string. One or more of the
Keywords defined may be used in the Insert or Replace strings. The Keyword File record is
incremented per data sent and replaced in the insert/replace string and then replaced in the
data based on the Rule.

keywordFile Keyword File works in conjunction with Keyword Parameter. Keyword Parameters essentially
define the metadata for the Keyword File. The file is a comma-separated value of the

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 46 of 81 arunava@us.ibm.com

Field Description
parameter to be inserted/replaced in the data. The file record pointer is incremented per data
sent. The record terminator is ‘\n’ in UNIX/LINUX and ‘\n\r’ in Windows systems.

Pattern Regular Expression Pattern search.
Literal Literal String search.
XSLT XML Style-sheet Language Transformation applied to the data before sending to the target

Data Source. This is only applicable for XML data and other attributes may not be used with
this Transformation Rule (not implemented in this release).

Tagged Tag-Delimited data search.
Positional Fixed position and length of the portion of data is searched.
Custom Custom Transformation Rule plug-ins may be added to the tool by implementing the

IDataTransformation interface (not implemented in this release).

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 47 of 81 arunava@us.ibm.com

5.4.4.1. Keyword

The following table describes the different keywords that may be defined in the insert or replacement strings.
There is no limitation of the number of times the same or different keywords may be repeated in the string. The
values are synchronized within the same string so that it can be referred multiple times, e.g. Counter, Current
Timestamp, etc.

Keyword Description
$Yr. 2-digit current year.
$Year. 4-digit current year.
$Mon. 2-digit current month.
$Day. 2-digit current day of the month.
$hr. 2-digit current hour.
$min. 2-digit current min.
$sec. 2-digit current second.
$DateFormat('<pattern>'). Date and time formatting based on the pattern provided within single-quotes (‘). For more

information about date time patterns please refer to:
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html#SimpleDateFormat
(java.lang.String)

$DateChange(
'<calculation>',
'<pattern>').

The date Change function is an extension of the Date Format functionality to perform simple
data time arithmetic with the current date and time and return the value in a formatted
pattern. The calculation string is of the following characteristics:
<calculation> = (+ | -)<number>(y | M | d | h | m | s | S)

where y = year
M = month
d = day
h = hour
m = minute
s = second
S = millisecond

The addition (+) or subtraction (-) operator must immediately be followed by the integer and
one of the operator actions (year, month, etc.). Any sequence of characters not following the
calculation pattern is ignored. There is no limitation on the number of times the calculation
operation may be repeated.
The date time formatting pattern follows the same rules as the DateFormat keyword. Please
refer to the date time formatting documentation at:
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html#SimpleDateFormat
(java.lang.String)

$Counter. The counter is a sequential number and incremented by 1 for every use in a string. The
counter is not incremented within the same string so that it may be referred to multiple times.

$UUID. The UUID is generated every time the function is called even within the same string.
$[<parm>] The parameter is defined as comma separated values with the keywordParms attribute and

parameters are read at runtime from the file defined by the keywordFile attribute in the same
order as the defined list. All the parameters defined in the keywordParms must be defined in
the keyword file as comma separated values. Each line in the file is considered to be a record.
Every time the Insert or Replace is called, the record is incremented and the parameter is
read from the record. The parameter can be defined any number of times or never in the
insert or replace string. So the same file and the parameter list may be used multiple times
while a subset of the parameters is used.
The insert/replace string is replaced with the parameter from the file and then applied to the
data based on the Transformation Rule.
e.g. replace="$[LATITUDE]" keywordParms="LATITUDE,LONGITUDE,SPEED"
 keywordFile="data/data.01/parm"
 file data:
 100.04,120.44,82
 109.99, 200.54,91

mailto:arunava@us.ibm.com
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html#SimpleDateFormat(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html#SimpleDateFormat(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html#SimpleDateFormat(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html#SimpleDateFormat(java.lang.String)

 Enterprise Test Robot

Arunava Majumdar Page 48 of 81 arunava@us.ibm.com

5.4.4.2. Transformation Rule: Pattern

Regular Expressions may be used to search strings within the data and replaced with the string specified in the
replace attribute. The insert attribute is not compatible with this transformation.

Typ.Pattern

regex <<string>> <1,1>

firstOccur <<boolean>> <0,1>
Figure 22 – Regular Expression Pattern Transformation

Field Description
Pattern Regular Expression Pattern search.
 regex Regular Expression string based on the Java supported expression syntax.

firstOccur Optional parameter to indicate that only the first occurrence is to be replaced when set to
true. If not specified or set to false, all occurrences are replaced.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 49 of 81 arunava@us.ibm.com

5.4.4.3. Transformation Rule: Literal

This transformation rule is used to search for literal string values within the data. Both the insert and the replace
attributes are valid for this transformation. The first occurrence of the sting is only checked. The use of this
transformation is mainly to mark the data with unique markers and replace it at runtime while the data is sent to
the Destination.

Typ.Literal

string <<string>> <1,1>
Figure 23 – Literal String Transformation Rule

Field Description
Literal Literal String search.
 string String to search in the data.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 50 of 81 arunava@us.ibm.com

5.4.4.4. Transformation Rule: Tagged

Most Tagged-Delimited structures can be parsed by the options provided by the Tagged Transformation Rule for
the purpose of transforming the data for testing. The options provide a simple but powerful method of skipping
over a specified number of delimiters, then searching for a tag followed by an offset length. The item delimiter
can then be specified or a length to determine the length of the searched item in the data.

Typ.Tagged

preDelim <<string>> <0,1>

preDelimCount <<int>> <0,1>

tag <<string>> <0,1>

delimiter <<string>> <0,1>

length <<int>> <0,1>

offset <<int>> <0,1>

Figure 24 – Tagged-Delimited Transformation Rule

Field Description
Tagged Regular Expression Pattern search.
 preDelim Prefixed Delimiters to be skipped.

preDelimCount Number of Prefixed Delimiters to be skipped. This attribute is mandatory if preDelim is
specified.

tag The Tag string to identify the item tag.
offset The Offset number of bytes from the end of the tagged string. This attribute is only valid

when tag is specified.
delimiter Item Delimiter for determining the end of selection. This attribute is mutually exclusive with

the length attribute.
length Item Length for determining the end of selection. This attribute is mutually exclusive with the

delimiter attribute.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 51 of 81 arunava@us.ibm.com

5.4.4.5. Transformation Rule: Positional

Data elements based on positions may be specified using the position and length from the beginning of the data.
The first position is 0.

Typ.Positional

position <<int>> <1,1>

length <<int>> <1,1>
Figure 25 – Positional Transformation Rule

Field Description
Positional Fixed position and length of the portion of data is searched.
 position Position pointer for the data element.

length Length of the data element.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 52 of 81 arunava@us.ibm.com

5.4.5. Data Source

Data Sources are an abstracted entity that determines the source and destination for any test configuration. The
abstraction of the Data Source layer makes the tool adaptable to a wide range of protocols that it may be
extended to while preserving the functionality of the core product. In this version of the tool the File Source and
Queue Source is implemented by extending the Data Source abstract class.

DataSource

FileSource QueueSource

void configure(String strDataSourceId,
 int nMode, Node nodeDS)
Data getData()
void putData(Data data)

void addContainer(String strContainer)

void close()

DatabaseSource

IDataTransformation IDataValidation

byte[] transform(byte[] bData) boolean validate(byte[] bData,byte[] bExpectedData)

0...1

PatternTransform PositionalTransform

TaggedTransform XSLTTransform

Search IgnoreExactMatch

DataSource DataSourceValidation (0...1)

Data

byte[] getData()
String getRef()
void setRef(String strRef)
String getDataSourceId()
Vector<String> getTransfer()

Data clone()
boolean hasMore()

Sender

Figure 26 – Class Diagram of Data Source and related classes

The above diagram illustrates the DataSource abstract class along with some of the related classes. The abstract
functions for the Data Source are shown in the diagram. The extensibility of the framework is restricted to IBM.
However, an extensibility engagement can be conducted to extend the framework for custom requirements.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 53 of 81 arunava@us.ibm.com

Typ.DataSource <0,1>

inherritTR <<string>> <0,1>

DS: OR Typ.File: File <1,1>

Typ.Queue: Queue <1,1>

<0,-1>

<0,-1>

Typ.HeaderOverride: HeaderOverride

Typ.TransformationRule: TransformationRule

Figure 27 – DataSource

The abstracted Data Source may be configured for all the XML elements that use this data type, viz. TestData,
Destination, Results, ExpectedResults and RunOutput.

Field Description
DataSource Data Source reference for TestData, Destination, Results, ExpectedResults and RunOutput.
 inheritTR Inherit the transformation rules from the Regulator or the Validator that contains the Data

Source.
HeaderOverride Parameters to override the data header either created with default values or from a supported

format, e.g. File format of MQMD with header MQMDHeader.
TransformationRule Transformation rules that apply to the Regulator and Validator also apply to every Data

Source. This parameter may be used for different transformation requirements for each of the
Destinations when using multiple Destinations from a single Test Data.

File File Data Source gets and puts data to and from a File.
Queue Queue Data Source gets and puts data to and from a Queue.

The Header Override supported in this version is only for MQMD. However, the framework may be extended to
other header types in the future. A detailed list of the MQMD Header is documented below. The table shows the
mapping to the MQMD names in the product documentation and a short description of the fields.

The Transformation Rules are same that may be applied at the Regulators and the Validators. The inheritTR flag
is used to inherit the Transformation Rules from the Regulators and Validators and combined with those defined
for the Data Source. For more details of Transformation Rules, please refer to 4.4.4 Transformation Rule.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 54 of 81 arunava@us.ibm.com

Typ.HeaderOverride <0,1>

DS: OR Typ.MQMDHeader: MQMDHeader <1,1>

version <<string>> <0,1>

report <<string>> <0,1>

msgType <<string>> <0,1>

expiry <<string>> <0,1>

feedback <<string>> <0,1>

encoding <<string>> <0,1>

ccsid <<string>> <0,1>

format <<string>> <0,1>

priority <<string>> <0,1>

persistence <<string>> <0,1>

msgId <<string>> <0,1>

corrId <<string>> <0,1>

boCount <<string>> <0,1>

replyQ <<string>> <0,1>

replyQMgr <<string>> <0,1>

user <<string>> <0,1>

accToken <<string>> <0,1>

appid <<string>> <0,1>

appType <<string>> <0,1>

application <<string>> <0,1>

timestamp <<string>> <0,1>

appOrigin <<string>> <0,1>

grpId <<string>> <0,1>

seqno <<string>> <0,1>

offset <<string>> <0,1>

msgFlags <<string>> <0,1>

msgLen <<string>> <0,1>
Figure 28 - Header Override

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 55 of 81 arunava@us.ibm.com

The information about each field is documented in the table below.

Field Description
HeaderOverride
 MQMDHeader

 version MQMD.Version: must be 2 for WMQ 6.0+
report MQMD.Report:

A report message is a message about another message, used to inform an application about
expected or unexpected events that relate to the original message. The Report field enables
the application sending the original message to specify which report messages are required,
whether the application message data is to be included in them, and also (for both reports
and replies) how the message and correlation identifiers in the report or reply message are to
be set. Any or all (or none) of the following types of report message can be requested:
• Exception
• Expiration
• Confirm on arrival (COA)
• Confirm on delivery (COD)
• Positive action notification (PAN)
• Negative action notification (NAN)

msgType MQMD.MsgType:
This indicates the type of the message.
• Datagram
• Request
• Reply
• Report

expiry MQMD.Expiry: message expiry in 10th of a second
feedback MQMD.Feedback:

The Feedback field is used with a message of type MQMT_REPORT to indicate the nature of
the report, and is only meaningful with that type of message.

encoding MQMD.Encoding:
This specifies the numeric encoding of numeric data in the message; it does not apply to
numeric data in the MQMD structure itself. The numeric encoding defines the representation
used for binary integers, packed-decimal integers, and floating-point numbers.

ccsid MQMD.CodedCharSetId:
This field specifies the character set identifier of character data within the message body.

If the CharacterSet property is set to MQCCSI_Q_MGR, the code page for the current locale is
used for character conversion in the WriteString method. For server applications, the code
page used is the code page of the queue manager; for client applications, the code page is
the default current locale code page.

For client applications, MQCCSI_Q_MGR is filled in, based on the locale of the client rather
than the one on the queue manager. The exception to that rule is when you put a message to
an IMS Bridge queue; what is returned, in the CodedCharSetId field of MQMD, is the CCSID of
the queue manager.

 format MQMD.Format:
A name which indicates the nature of the data in the message. It is set by the sender. You
can use your own format names, but names beginning with the letters "MQ" have meanings
that are defined by the queue manager. The queue manager built-in formats are:

• MQC.MQFMT_NONE
• MQC.MQFMT_ADMIN
• MQC.MQFMT_COMMAND_1
• MQC.MQFMT_COMMAND_2
• MQC.MQFMT_DEAD_LETTER_HEADER
• MQC.MQFMT_EVENT
• MQC.MQFMT_MD_EXTENSION
• MQC.MQFMT_PCF
• MQC.MQFMT_STRING
• MQC.MQFMT_TRIGGER
• MQC.MQFMT_XMIT_Q_HEADER

 priority MQMD.Priority:
The priority of the message and may be set to an integer between 0 and 9. The default value
is 0.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 56 of 81 arunava@us.ibm.com

Field Description
 persistence MQMD.Persistence:

This indicates whether the message survives system failures and restarts of the queue
manager.

 msgId MQMD.MsgId:
This is a byte string that is used to distinguish one message from another. Generally, no two
messages should have the same message identifier, although this is not disallowed by the
queue manager. The message identifier is a permanent property of the message, and persists
across restarts of the queue manager. Because the message identifier is a byte string and not
a character string, the message identifier is not converted between character sets when the
message flows from one queue manager to another.

The id may be assigned in several methods and the value is automatically padded. The
following prefixes are used.
Hexadecimal: 0x
Decimal number: 0n
String assignment: (no prefix)

 corrId MQMD.CorrelId:
The CorrelId field is property in the message header that may be used to identify a specific
message or group of messages.

This is a byte string that the application can use to relate one message to another, or to relate
the message to other work that the application is performing. The correlation identifier is a
permanent property of the message, and persists across restarts of the queue manager.
Because the correlation identifier is a byte string and not a character string, the correlation
identifier is not converted between character sets when the message flows from one queue
manager to another.

The id may be assigned in several methods and the value is automatically padded. The
following prefixes are used.
Hexadecimal: 0x
Decimal number: 0n
String assignment: (no prefix)

 boCount MQMD.BackoutCount:
This is a count of the number of times that the message has been previously returned by the
MQGET call as part of a unit of work, and subsequently backed out. It helps the application to
detect processing errors that are based on message content.

Every time a transaction failed and backed out to the queue the backout count of the MQMD
is incremented. When the backout count matches the backout threshold set on the queue,
then the message is eligible to be send to the backout queue specified on the queue.
However, this is not an action that the MQ takes but is left to the application to handle. The
Message Broker takes advantage of the parameters and takes action to send the message to
the backout queue.

 replyQ MQMD.ReplyToQ:
This is the name of the message queue to which the application that issued the get request
for the message sends MQMT_REPLY and MQMT_REPORT messages. The name is the local
name of a queue that is defined on the queue manager identified by ReplyToQMgr. This
queue must not be a model queue, although the sending queue manager does not verify this
when the message is put.

 replyQMgr MQMD.ReplyToQMgr:
This is the name of the queue manager to which to send the reply message or report
message. ReplyToQ is the local name of a queue that is defined on this queue manager.

If the ReplyToQMgr field is blank, the local queue manager looks up the ReplyToQ name in its
queue definitions. If a local definition of a remote queue exists with this name, the
ReplyToQMgr value in the transmitted message is replaced by the value of the
RemoteQMgrName attribute from the definition of the remote queue, and this value is
returned in the message descriptor when the receiving application issues an MQGET call for
the message. If a local definition of a remote queue does not exist, the ReplyToQMgr that is
transmitted with the message is the name of the local queue manager.

 user MQMD.UserIdentifier:
This is part of the identity context of the message. UserIdentifier specifies the user identifier
of the application that originated the message. The queue manager treats this information as
character data, but does not define the format of it.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 57 of 81 arunava@us.ibm.com

Field Description
 accToken MQMD.AccountingToken:

This is the accounting token, part of the identity context of the message. AccountingToken
allows an application to charge appropriately for work done as a result of the message. The
queue manager treats this information as a string of bits and does not check its content.

The id may be assigned in several methods and the value is automatically padded. The
following prefixes are used.
Hexadecimal: 0x
Decimal number: 0n
String assignment: (no prefix)

 appid MQMD.ApplIdentityData:
This is part of the identity context of the message. ApplIdentityData is information that is
defined by the application suite, and can be used to provide additional information about the
message or its originator. The queue manager treats this information as character data, but
does not define the format of it. When the queue manager generates this information, it is
entirely blank.

 appType MQMD.PutApplType:
This is the type of application that put the message, and is part of the origin context of the
message.

 application MQMD.PutApplName:
This is the name of application that put the message, and is part of the origin context of the
message.

 timestamp MQMD.PutDate and MQM.PutTime:
This is the date and time when the message was put, and is part of the origin context of the
message.

The date time format for this field is: yyyy-MM-dd HH:mm:ss.SSS z

 appOrigin MQMD.ApplOriginData:
This is part of the origin context of the message. ApplOriginData is information that is defined
by the application suite that can be used to provide additional information about the origin of
the message. For example, it could be set by applications running with suitable user authority
to indicate whether the identity data is trusted.

 grpId MQMD.GroupId:
This is a byte string that is used to identify the particular message group or logical message to
which the physical message belongs. GroupId is also used if segmentation is allowed for the
message. In all these cases, GroupId has a non-null value, and one or more of the following
flags is set in the MsgFlags field:
• MQMF_MSG_IN_GROUP
• MQMF_LAST_MSG_IN_GROUP
• MQMF_SEGMENT
• MQMF_LAST_SEGMENT
• MQMF_SEGMENTATION_ALLOWED

On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
On the MQGET call, MQMO_MATCH_GROUP_ID is not specified.

 seqno MQMD.MsgSeqNumber:
This is the sequence number of a logical message within a group.

Sequence numbers start at 1, and increase by 1 for each new logical message in the group,
up to a maximum of 999 999 999. A physical message that is not in a group has a sequence
number of 1.

 offset MQMD.Offset:
This is the offset in bytes of the data in the physical message from the start of the logical
message of which the data forms part. This data is called a segment. The offset is in the
range 0 through 999 999 999. A physical message that is not a segment of a logical message
has an offset of zero.

 msgFlag MQMD.MsgFlags:
MsgFlags are flags that specify attributes of the message, or control its processing. MsgFlags
are divided into the following categories – Segmentation flags and Status flags.
Segmentation:
• MQMF_SEGMENTATION_INHIBITED
• MQMF_SEGMENTATION_ALLOWED
Status:
• MQMF_MSG_IN_GROUP

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 58 of 81 arunava@us.ibm.com

Field Description
• MQMF_LAST_MSG_IN_GROUP
• MQMF_SEGMENT
• MQMF_LAST_SEGMENT

 msgLen MQMD.OriginalLength:
This field is relevant only for report messages that are segments. It specifies the length of the
message segment to which the report message relates; it does not specify the length of the
logical message of which the segment forms part, or the length of the data in the report
message.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 59 of 81 arunava@us.ibm.com

5.4.5.1. File Source

The File Source is an implementation of a Data Source to provide File handling support. The path specified for
the file may relative or absolute depending upon the attribute. The path may point to either a file or a directory
and the tool detects it and acts upon a single file or a group of files from the directory. By default the Test Path
or the Test Run Path is prefixed to the path specified unless the absolute attribute is set to true.

If the directory specified contains sub-directories it is indexed with relative path into an .index file. Once the
index is created it is used for subsequent references to the file. For re-indexing, when the contents have changed,
remove the .index file or run the tool with the –index option. For re-running the test when it failed in the middle
of a long run, the –rerun option may be used. This is really important when testing an application that crashes
due to data conditions and have to be run with a large dataset (millions of files) to harden the code.

File <1,1>

path <<string>> <1,1>

format <<string>> <1,1> “raw”,”MQMD

absolute <<boolean>> <0,1>

Typ.DataSource: DataSource

Figure 29 - File Source

Field Description
File File Data Source for file handling support.
 path Path to the file or directory to read or write data to.

format The file may be of 2 formats, viz. raw and MQMD. Raw format implies that only data resides in
the file. MQMD format implies that the file contains data prefixed with the MQMDHeader.

absolute Determines if the file path supplied is absolute.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 60 of 81 arunava@us.ibm.com

5.4.5.2. Queue Source

The Queue Source is an implementation of a data Source to provide Queuing support for the tool. The Queue
Manager Connection definition may be reused here.

Queue <1,1>

name <<string>> <1,1>

qmConnRef <<string>> <1,1>

Typ.TestSuite: TestSuite

Typ.Connection: Connection

<<
re

fe
rs

>>

wait <<int>> <0,1>

QueueManager

id <<string>> <1,1> Key: qmConnId

Selector

Typ.DataSource: DataSource

<0,1>

msgId <<string>> <0,1>

corrId <<string>> <0,1>

grpId <<string>> <0,1>

Figure 30 - Queue Source

Field Description
Queue Queue Data Source for queue handling support.
 name Name of the queue.

qmConnRef Reference to the Queue Manager connection.
wait Wait interval for getting a message from the empty queue.
Selector Selection criteria for getting a message from the queue.
 msgId The message id of the message to be selected.

The id may be assigned in several methods and the value is automatically padded. The
following prefixes are used.
Hexadecimal: 0x
Decimal number: 0n
String assignment: (no prefix)

corrId The correlation id of the message to be selected.
The id may be assigned in several methods and the value is automatically padded. The
following prefixes are used.
Hexadecimal: 0x
Decimal number: 0n
String assignment: (no prefix)

grpId The group id of the message to be selected.
The id may be assigned in several methods and the value is automatically padded. The
following prefixes are used.
Hexadecimal: 0x
Decimal number: 0n
String assignment: (no prefix)

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 61 of 81 arunava@us.ibm.com

6. Sample Test Cases

Sample Test Suites are provided as guidelines for different test cases that may be set up by the Enterprise Test
Robot. In this release not all the options were exhaustively converted into samples and tested, but that would be
our goal for subsequent releases. This will provide the ability to simply duplicate the test cases in parts or
entirely and customize them for application specific requirements.

6.1. Sample 01: Supported Data Sources

The sample demonstrates the use of different Data Source combinations. The supported Data Sources in this
release are File Source and Queue Source.

6.1.1. Test Data = file, Results = file, Expected Results = file

<<app>> ETR

<<thread>> Regulator

TestData Results

<<thread>> Validator

Expected
Results

Exact Match

Exact Match

Figure 31 – All File Interactions

Test Data is saved in the file in the data directory and transferred to another file in the out as the Results by the
Regulator and compared to the canned results saved in the result directory by the Validator.

<TestCase id="ETR_01_1.1_" descr="Exact Match - File to File Regulator">
 <Condition>
 - Send Test Data from a file to another file
 - Retrieve data from the output file
 - Validate data against existing data in a file
 </Condition>
 <Regulator>
 <TestData><File path="data/ETR_01/test01.txt" format="raw"/></TestData>
 <Destination><File path="out/ETR_01" format="raw"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/ETR_01" format="raw"/></Results>
 <ExpectedResults>
<File path="results/ETR_01/test01.txt" format="raw"/>
</ExpectedResults>
 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 62 of 81 arunava@us.ibm.com

6.1.2. Test Data = file, Results = queue, Expected Results = file

<<app>> ETR

<<thread>> Regulator

TestData

<<thread>> Validator

Expected
Results

Exact Match

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01

Exact Match

Figure 32 – Send File to Queue

Test Data is saved in the file in the data directory and transferred to the queue Q.ETR.SAMP.01 as the Results by
the Regulator and compared to the canned results saved in the result directory by the Validator.

<TestCase id="ETR_01_1.2_" descr="Exact Match - File to Queue Regulator">
 <Condition>
 - Send Test Data from a file to a queue
 - Retrieve data from the output queue
 - Validate data against existing data in a file
 </Condition>
 <Regulator>
 <TestData><File path="data/ETR_01/test01.txt" format="raw"/></TestData>
 <Destination><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Results>
 <ExpectedResults>
 <File path="results/ETR_01/test01.txt" format="raw"/>
 </ExpectedResults>
 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 63 of 81 arunava@us.ibm.com

6.1.3. Load Queue, dependent Test Case

<<app>> ETR

<<thread>> Regulator

TestData

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01.DAT

Figure 33 – Load File to Queue for subsequent tests

Test Data is saved in the file in the data directory and transferred to the queue Q.ETR.SAMP.01.DAT as the Results
by the Regulator for subsequent Test Cases to use as a dependent Test Case.

<TestCase id="ETR_01_1.2_" descr="Exact Match - File to Queue Regulator">
 <Condition>
 - Send Test Data from a file to a queue
 - Retrieve data from the output queue
 - Validate data against existing data in a file
 </Condition>
 <Regulator>
 <TestData><File path="data/ETR_01/test01.txt" format="raw"/></TestData>
 <Destination><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Results>
 <ExpectedResults>
 <File path="results/ETR_01/test01.txt" format="raw"/></ExpectedResults>
 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 64 of 81 arunava@us.ibm.com

6.1.4. Test Data = queue, Results = queue, Expected Results = file

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator

Expected
Results

Exact Match

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01.DAT
<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01

Exact Match

Figure 34 – Send Message to Queue

Test Data is saved in the queue Q.ETR.SAMP.01.DAT and transferred to the queue Q.ETR.SAMP.01 as the Results
by the Regulator and compared to the canned results saved in the result directory by the Validator.

<TestCase id="ETR_01_2.1_" descr="Exact Match - Queue to Queue Regulator">
 <Condition>
 - Send Test Data from a queue to a queue
 - Retrieve data from the output queue
 - Validate data against existing data in a file
 </Condition>
 <Dependencies>
 <Predecessor testCase="ETR_01_2.d_"/>
 </Dependencies>

 <Regulator>
 <TestData><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01.DAT"/></TestData>
 <Destination><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Results>
 <ExpectedResults>
 <File path="results/ETR_01/test01.txt" format="raw"/>
 </ExpectedResults>
 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 65 of 81 arunava@us.ibm.com

6.1.5. Test Data = queue, Results = queue, Expected Results = file

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator

Expected
Results

Exact Match

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01.DAT
Results

Exact Match

Figure 35 – Send Message to File

Test Data is saved in the queue Q.ETR.SAMP.01.DAT and transferred to the file out directory as the Results by the
Regulator and compared to the canned results saved in the result directory by the Validator.

<TestCase id="ETR_01_2.2_" descr="Exact Match - Queue to File Regulator">
 <Condition>
 - Send Test Data from a queue to a file
 - Retrieve data from the output queue
 - Validate data against existing data in a file
 </Condition>
 <Dependencies>
 <Predecessor testCase="ETR_01_2.d_"/>
 </Dependencies>

 <Regulator>
 <TestData><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01.DAT"/></TestData>
 <Destination><File path="out/ETR_01" format="raw"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/ETR_01" format="raw"/></Results>
 <ExpectedResults>
 <File path="results/ETR_01/test01.txt" format="raw"/>
 </ExpectedResults>
 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 66 of 81 arunava@us.ibm.com

6.1.6. Test Data = queue, Results = queue, Expected Results = queue

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01.DAT

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01.DAT

Exact Match

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01

Exact Match

Figure 36 – Send Message to Queue and Validate from the Queue

Test Data is saved in the queue Q.ETR.SAMP.01.DAT and transferred to the queue Q.ETR.SAMP.01 as the Results
by the Regulator and compared to the canned results saved in the queue Q.ETR.SAMP.01.DAT by the Validator.

<TestCase id="ETR_01_2.3_" descr="Exact Match - Queue to File Regulator">
 <Condition>
 - Send Test Data from a queue to a queue
 - Retrieve data from the output queue
 - Validate data against existing data in a queue
 </Condition>
 <Dependencies>
 <Predecessor testCase="ETR_01_2.d_"/>
 </Dependencies>

 <Regulator>
 <TestData><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01.DAT"/></TestData>
 <Destination><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01"/></Results>
 <ExpectedResults>
 <Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.01.DAT"/>
 </ExpectedResults>
 <RunOutput><File path="" format="raw"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 67 of 81 arunava@us.ibm.com

6.1.7. Test Run Sample 01

The following shows an output from the console when the Sample 01 Test Suite is executed.

Test Robot started ...
Running Test Suite file
'C:_Backup\Assets\Assets.dev\assets\ETR\ETR.dev\ETR.Java\samp\ETR.sample\samp_01\unit\ETR_Sam
p_01.testsuite'

Successfully loaded Test Suite configuration.

Test Run Id = ETR_01_1.0.0_UT.00004

Starting Initiators ...
Test Suite successfully initialized.
Test Robot is running TESTCASE(1 of 6) = 'ETR_01_1.1_' ... done [/].
Test Robot is running TESTCASE(2 of 6) = 'ETR_01_1.2_' ... done [/].
Test Robot is running TESTCASE(3 of 6) = 'ETR_01_2.d_' ... done [/].
Test Robot is running TESTCASE(4 of 6) = 'ETR_01_2.1_' ... done [/].
Test Robot is running TESTCASE(5 of 6) = 'ETR_01_2.2_' ... done [/].
Test Robot is running TESTCASE(6 of 6) = 'ETR_01_2.3_' ... done [/].
Starting Janitors ...
Test Suite successfully cleaned.
Test Suite successfully completed.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 68 of 81 arunava@us.ibm.com

6.2. Sample 02: Supported Headers

The sample demonstrates the use of different headers with Data Source combinations. The supported Header in
this release is MQMDHeader.

6.2.1. Test Data = file with MQMD

<<app>> ETR

<<thread>> Regulator
format=”MQMD”

TestData

<<thread>> Validator

Expected
Results

format=”MQMD”

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02

MQMD.priority=”1”

Exact Match

Figure 37 - Read data and MQMD from file and send to queue

Data in the file contains MQMD header parameters that need to be set to the message in the queue. The data file
in this sample sets the priority as follows:

<MQMD priority="1" />

The expected results also contain the MQMD set to priority 1 so that it can be validated by the Validator.

<TestCase id="ETR_02_1.1_" descr="Setting header and Validating data and header">
 <Condition>
 - Send Test Data from a file to a queue
 - Sets priority="1"
 - Validate data against existing data in a file
 </Condition>
 <Regulator>
 <TestData><File path="data/ETR_02" format="MQMD"/></TestData>
 <Destination><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/></Results>
 <ExpectedResults><File path="results/ETR_02" format="MQMD"/></ExpectedResults>
 <RunOutput><File path="" format="MQMD"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 69 of 81 arunava@us.ibm.com

6.2.2. Test Data = file with MQMD, Failed Validation

<<app>> ETR

<<thread>> Regulator
format=”MQMD”

TestData

<<thread>> Validator

Expected
Results

MQMD.priority=”2”

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02

MQMD.priority=”1”

Exact Match

Figure 38 - Read data and MQMD from file and send to queue, wrong header in Expected Results

Data in the file contains MQMD header parameters that need to be set to the message in the queue. The data file
in this sample sets the priority as follows:

<MQMD priority="1" />

The expected results also contain the MQMD set to priority 2. Validator checks the values in the header and fails.

<TestCase id="ETR_02_1.2x" descr="Setting header and Validating header failure">
 <Condition>
 - Send Test Data from a file to a queue
 - Sets priority="1"
 - Validate data against existing data in a file set priority="2"
 </Condition>
 <Regulator>
 <TestData><File path="data/ETR_02" format="MQMD"/></TestData>
 <Destination><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/></Results>
 <ExpectedResults>
 <File path="results/ETR_02_1.2" format="MQMD"/>
 </ExpectedResults>
 <RunOutput><File path="" format="MQMD"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 70 of 81 arunava@us.ibm.com

6.2.3. Load Queue, dependent Test Case

<<app>> ETR

<<thread>> Regulator
format=”MQMD”

TestData

Test Case: ETR_02_2.d_

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02.DAT

MQMD.priority=”1”

Figure 39 - Load data with MQMD from file and send to queue

Data in the file contains MQMD header parameters (priority set to 1) that need to be set to the message in the
queue.

<TestCase id="ETR_02_2.d_" descr="Loads the data queue">
 <Condition>
 - Loads the data queue for running tests with Test Data from queue
 </Condition>
 <Initialize>
 <Clear>
 <Queue name="Q.ETR.SAMP.02" qmConnRef="ETR.MQ"/>
 <Queue name="Q.ETR.SAMP.02.DAT" qmConnRef="ETR.MQ"/>
 </Clear>
 </Initialize>
 <Regulator>
 <TestData><File path="data/ETR_02/test01.dat" format="MQMD"/></TestData>
 <Destination><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02.DAT"/></Destination>
 </Regulator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 71 of 81 arunava@us.ibm.com

6.2.4. Test Data = queue, Validation from Queue

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator MQMD.priority=”1”

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.01.DAT

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02.DAT

Exact Match

Results

Figure 40 - Read data from queue and send to file

Data in the queue with priority set to 1 send to the file. The Validator looks at the data from the queue and
matches against the output Result file.

<TestCase id="ETR_02_2.1_" descr="Validator data and MQMDHeader">
 <Condition>
 - Send Test Data from a queue to a file
 - Validate data against existing data in a queue
 </Condition>
 <Dependencies>
 <Predecessor testCase="ETR_02_2.d_"/>
 </Dependencies>

 <Regulator>
 <TestData><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02.DAT"/></TestData>
 <Destination><File path="out/ETR_02_2.1" format="MQMD"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/ETR_02_2.1" format="MQMD"/></Results>
 <ExpectedResults>
 <Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02.DAT"/>
 </ExpectedResults>
 <RunOutput><File path="" format="MQMD"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 72 of 81 arunava@us.ibm.com

6.2.5. Test Data = queue, Wrong Header

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator

Expected
Results

format=”MQMD”, priority=”2"

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02.DAT
Results

Exact Match

Figure 41 - Read data from queue and send to file, validation of header fails

Data in the queue with priority set to 1 send to the file. The Validator looks at the data from the file (priority set
to 2) and fails to match against the output Result file.

<TestCase id="ETR_02_2.2x" descr="Validator data and MQMDHeader - fails in MQMD validation">
 <Condition>
 - Send Test Data from a queue to a file
 - Validate data against existing data in a queue
 </Condition>
 <Dependencies>
 <Predecessor testCase="ETR_02_2.d_"/>
 </Dependencies>

 <Regulator>
 <TestData><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02.DAT"/></TestData>
 <Destination><File path="out/ETR_02_2.2" format="MQMD"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/ETR_02_2.2" format="MQMD"/></Results>
 <ExpectedResults>
 <File path="results/ETR_02_2.2" format="MQMD"/>
 </ExpectedResults>
 <RunOutput><File path="" format="MQMD"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 73 of 81 arunava@us.ibm.com

6.2.6. Test Data = queue, Wrong Data

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator

Expected
Results

format=”MQMD”, wrong data

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02.DAT
Results

Exact Match

Figure 42 - Read data from queue and send to file, validation of data fails

Data in the queue with priority set to 1 send to the file. The Validator looks at the data from the file (priority set
to 1 but wrong data) and fails to match against the output Result file.

<TestCase id="ETR_02_2.3x" descr="Validator data and MQMDHeader - fails in Data validation">
 <Condition>
 - Send Test Data from a queue to a file
 - Validate data against existing data in a queue
 </Condition>
 <Dependencies>
 <Predecessor testCase="ETR_02_2.d_"/>
 </Dependencies>

 <Regulator>
 <TestData><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02.DAT"/></TestData>
 <Destination><File path="out/ETR_02_2.3" format="MQMD"/></Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><File path="out/ETR_02_2.3" format="MQMD"/></Results>
 <ExpectedResults>
 <File path="results/ETR_02_2.3" format="MQMD"/>
 </ExpectedResults>
 <RunOutput><File path="" format="MQMD"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 74 of 81 arunava@us.ibm.com

6.2.7. Test Data = queue, Over-riding MQMD

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator

Expected
Results

format=”MQMD”

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02.DAT

MQMD Override priority=”2"

Exact Match

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02

Figure 43 - Read data from queue and send to queue with header override

Data in the queue with priority set to 1 is send to the queue with a header override in the Test Case to set priority
to 2. The Validator looks at the data from the file (priority set to 2) and matches against the output Result file.

<TestCase id="ETR_02_3.1_" descr="Validator data and MQMDHeader override from Queue">
 <Condition>
 - Send Test Data from a queue to a queue
 - Set the header to a different value
 - Validate data against existing data in a file
 </Condition>
 <Dependencies>
 <Predecessor testCase="ETR_02_2.d_"/>
 </Dependencies>

 <Regulator>
 <TestData><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02.DAT"/></TestData>
 <Destination>
 <HeaderOverride><MQMDHeader priority="2"/></HeaderOverride>
 <Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/>
 </Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/></Results>
 <ExpectedResults>
 <File path="results/ETR_02_3.1" format="MQMD"/>
 </ExpectedResults>
 <RunOutput><File path="" format="MQMD"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 75 of 81 arunava@us.ibm.com

6.2.8. Test Data = file, Over-riding MQMD

<<app>> ETR

<<thread>> Regulator

<<thread>> Validator

Expected
Results

format=”MQMD”

format=”MQMD”
MQMD Override priority=”2"

TestData

Exact Match

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.02

Figure 44 - Read data from file and send to queue with header override

Data in the file with priority set to 1 is send to the queue with a header override in the Test Case to set priority to
2. The Validator looks at the data from the file (priority set to 2) and matches against the output Result file.

<TestCase id="ETR_02_3.2_" descr="Validator data and MQMDHeader override from File">
 <Condition>
 - Send Test Data from a queue to a queue
 - Set the header to a different value
 - Validate data against existing data in a file
 </Condition>

 <Regulator>
 <TestData><File path="data/ETR_02" format="MQMD"/></TestData>
 <Destination>
 <HeaderOverride><MQMDHeader priority="2"/></HeaderOverride>
 <Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/>
 </Destination>
 </Regulator>
 <Validator>
 <Latency hr="0" min="0" sec="5"/>
 <Results><Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.02"/></Results>
 <ExpectedResults>
 <File path="results/ETR_02_3.2" format="MQMD"/>
 </ExpectedResults>
 <RunOutput><File path="" format="MQMD"/></RunOutput>
 </Validator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 76 of 81 arunava@us.ibm.com

6.2.9. Test Run Sample 02

The following shows an output from the console when the Sample 02 Test Suite is executed.

Test Robot started ...
Running Test Suite file
'C:_Backup\Assets\Assets.dev\assets\ETR\ETR.dev\ETR.Java\samp\ETR.sample\samp_02\unit\ETR_Sam
p_02.testsuite'

Successfully loaded Test Suite configuration.

Test Run Id = ETR_1.0.0_UT.00073

Starting Initiators ...
Test Suite successfully initialized.
Test Robot is running TESTCASE(1 of 8) = 'ETR_02_1.1_' ... done [/].
Test Robot is running TESTCASE(2 of 8) = 'ETR_02_1.2x' ... done [X].
Test Robot is running TESTCASE(3 of 8) = 'ETR_02_2.d_' ... done [/].
Test Robot is running TESTCASE(4 of 8) = 'ETR_02_2.1_' ... done [/].
Test Robot is running TESTCASE(5 of 8) = 'ETR_02_2.2x' ... done [X].
Test Robot is running TESTCASE(6 of 8) = 'ETR_02_2.3x' ... done [X].
Test Robot is running TESTCASE(7 of 8) = 'ETR_02_3.1_' ... done [/].
Test Robot is running TESTCASE(8 of 8) = 'ETR_02_3.2_' ... done [/].
Starting Janitors ...
Test Suite successfully cleaned.
Test Suite successfully completed.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 77 of 81 arunava@us.ibm.com

6.3. Sample 99: Performance Test

The sample demonstrates the use of different options while doing performance tests.

6.3.1. Regulated 30 msg/sec into a queue with loop

<<app>> ETR

<<thread>> Regulator
Schedule for 5 mins

TestData

Test Case: ETR_99_1.1_

<<qmgr>> QM.ETR.01

Q.ETR.SAMP.PERF.99

Rate Sensitive: 30 msg/sec

Loop
Sustain Deficient

data/*

CACHE

Figure 45 - Rate Regulation Mode

Test Data is saved in the directory data and send to the Queue at a specific rate regulated at 30 msg/sec. The
autonomic algorithm determines the spawning of Data Loader threads to read forward the files into the cache in
a loop due to a small sample data set. Independent Data Sender threads transfer the data from the cache and to
the queue destination Q.ETR.SAMP.PERF.99.

<TestCase id="ETR_99_1.1_" descr="Regulating messages at specific rates for specific
durations.">
 <Condition>
 - Send Test Data from a file to a queue
 - Loop through limited data
 - Sustain the test even if the rate went below the tolerance
 </Condition>
 <Regulator>
 <Schedule><End duration="300"/></Schedule>
 <TestData><File path="data" format="raw"/></TestData>
 <RegulationMode>
 <RateSensitive msgRate="30" loop="true" sustainDeficiency="-1"/>
 </RegulationMode>
 <Destination inherritTR="true">
 <Queue qmConnRef="ETR.MQ" name="Q.ETR.SAMP.PERF.99"/>
 </Destination>
 </Regulator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 78 of 81 arunava@us.ibm.com

6.3.2. Test Run Sample 99

The following shows an output from the console when the Sample 99 Test Suite is executed.

Test Robot started ...
Running Test Suite file
'C:_Backup\Assets\Assets.dev\assets\ETR\ETR.dev\ETR.Java\samp\ETR.sample\samp_99\perf\ETR_Sam
p_99.testsuite'

Successfully loaded Test Suite configuration.

Test Run Id = ETR_01_1.0.0_PT.00006

Starting Initiators ...
Test Suite successfully initialized.
Test Robot is running TESTCASE(1 of 1) = 'ETR_99_1.1_' ...
..............|..............|..............|..............| (00:01:00)
..............|..............|..............|..............| (00:02:00)
..............|..............|..............|..............| (00:03:00)
..............|..............|..............|..............| (00:04:00)
..............|..............|..............|..............| (00:05:00)
..
Target Rate = 30 msg/sec
Average Rate achieved = 32.85179381239145 msg/sec
No. of Messages Processed = 9900
Total Processing = 301.353407261 sec
 done [/].
Starting Janitors ...
Test Suite successfully cleaned.
Test Suite successfully completed.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 79 of 81 arunava@us.ibm.com

7. Test Scenario

In this section more complex real-life Test Cases are documented for the purpose of demonstration of
capabilities as well as guidelines for project specific Test Cases that needs to be created.

7.1. Scenario 1: Train Tracker

<<app>> ETR

<<thread>> Regulator

Scenario 1: Train Tracker

Replace formatted date
Replace formatted time + 30 sec
MQMD.persistence = 1

Train Data <<qmgr>> QM.ETR.01

Q.ETR.SCENARIO.01

data/TT.01/msg

Loop 3 times
Pause 4 sec
after each
loop and 1
sec between
train data

Track Data Replace Lat, Long and Speed
from Track data file <<app>> WBE

<<thread>> TrainTracker

data/TT.01/parm

Figure 46 - Train Tracker

Problem Description:

An event correlating application captures events generated by the trains at regular
intervals. The events are sent through the cellular network or other available networks
to a correlation hub with various data points related to the train. The application also
checks if the specific train follows its track based on the GPS coordinates and rejects
data that does not follow the track. The application plots the train on the map at real-
time. The objective is to send data to the application for testing multiple trains each
on its own track and validate if the application plots the correct information on the
map. Validation is visual inspection.

Testing Strategy:
Read Train data from a file and replace marked variables from a parameter file. Each
train is represented as a data file and its corresponding parameter file. The parameter
file contains the latitude, longitude and speed. For each interval the data is read from
the file and replaced from the parameter file and send to the queue.

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 80 of 81 arunava@us.ibm.com

Configuration:
For the sake of simplicity only 2 trains are considered here – Train 001 and Train 002.
The data is stored in the data/TT.01/msg and the corresponding parameter files in
data/TT.01/parm. Sample time is also replaced by the formatted current timestamp.
Storage time is replaced as 30 sec added to the current timestamp and formatted.
Since the sample only contains 4 rows in each parameter file, the data loop is set to 3
times. A wait interval of 1 second will be considered. The interval at which data will
be simulated is 5 sec. So the wait to be set is 4 sec.

<TestCase id="TT.01" descr="Sending WiTronix Feed">
 <Condition>
 Sending WiTronix Train information to the TT application queue
 Transforming:
 WSampleTime - with current datetime
 WStorageTime - with current datetime +30 sec
 WLocoLatitude - with track info file latitude
 WLocoLongitude - with track info file longitude
 WLocoSpeed - with track info file speed
 </Condition>
 <Regulator>
 <TestData><File path="data/TT.01/msg" format="raw"/></TestData>

 <TransformationRule replace="$DateFormat('MM-dd-yyyy hh:mm:ss').">
 <Literal string="*WSampleTime*"/>
 </TransformationRule>
 <TransformationRule replace="$DateChange('+30s','MM-dd-yyyy hh:mm:ss').">
 <Literal string="*WStorageTime*"/>
 </TransformationRule>
 <TransformationRule replace="$[WLOCOLAT]"
 keywordParms="WLOCOLAT,WLOCOLONG,WLOCOSPEED"
 keywordFile="data/TT.01/parm">
 <Literal string="*WLocoLatitude*"/>
 </TransformationRule>
 <TransformationRule replace="$[WLOCOLONG]"
 keywordParms="WLOCOLAT,WLOCOLONG,WLOCOSPEED"
 keywordFile="data/TT.01/parm">
 <Literal string="*WLocoLongitude*"/>
 </TransformationRule>
 <TransformationRule replace="$[WLOCOSPEED]"
 keywordParms="WLOCOLAT,WLOCOLONG,WLOCOSPEED"
 keywordFile="data/TT.01/parm">
 <Literal string="*WLocoSpeed*"/>
 </TransformationRule>

 <RegulationMode>
 <PauseProcessor dataPause="1" loop="3" loopPause="4"/>
 </RegulationMode>

 <Destination inherritTR="true">
 <HeaderOverride>
 <MQMDHeader persistence="1" format="MQSTR "/>
 </HeaderOverride>
 <Queue qmConnRef="MQ.TT" name="Q.ETR.SCENARIO.01"/>
 </Destination>
 </Regulator>
</TestCase>

mailto:arunava@us.ibm.com

 Enterprise Test Robot

Arunava Majumdar Page 81 of 81 arunava@us.ibm.com

Bibliography:

1. WMQ Support pack md08 – WebSphere MQ Network Design Notation
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24006700&loc=en_US&cs=utf-8&lang=en

2. OMG 11-08-06 – UML 2.4.1 Superstructure specification

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

3. The Unified Modeling Language Reference Manual by James Rambaugh, Ivar Jacobson and

Grady Booch
http://www.dcc.fc.up.pt/~zp/aulas/1314/asw/geral/bibliografia/Addison%20Wesley%20-
%20UML%20Reference%20Manual.pdf

4. UML 2.5 Visio Stencil

http://www.softwarestencils.com/uml/index.html

5. WMQ 7.5 Knowledge Center
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/welcome/WelcomePagev7r5.html?lang=en

6. IIB 9.0 Knowledge Center

http://www-
01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.msgbroker.helphome.doc/help_home_
msgbroker.htm?lang=en

7. Performance Harness for Java Message Service

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c02
0fe8-4efb-4d70-afb7-0f561120c2aa

8. IBM Connectivity, Integration and SOA

http://www-03.ibm.com/software/products/en/category/connectivity-integration-soa

9. nmon – Performance Analysis Tool by Neigel
http://www.ibm.com/developerworks/aix/library/au-analyze_aix/

10. Improve the performance of your WebSphere Business Integration Message Broker V5 message

flow
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

11. Books:

• WebSphere Message Broker Basics
http://www.redbooks.ibm.com/redbooks/pdfs/sg247137.pdf

• Managing WebSphere Message Broker Resources in a Production Environment

http://www.redbooks.ibm.com/redbooks/pdfs/sg247283.pdf

• WebSphere MQ Queue Manager Clusters
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC34658900

mailto:arunava@us.ibm.com
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24006700&loc=en_US&cs=utf-8&lang=en
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.dcc.fc.up.pt/~zp/aulas/1314/asw/geral/bibliografia/Addison%20Wesley%20-%20UML%20Reference%20Manual.pdf
http://www.dcc.fc.up.pt/~zp/aulas/1314/asw/geral/bibliografia/Addison%20Wesley%20-%20UML%20Reference%20Manual.pdf
http://www.softwarestencils.com/uml/index.html
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/welcome/WelcomePagev7r5.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.msgbroker.helphome.doc/help_home_msgbroker.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.msgbroker.helphome.doc/help_home_msgbroker.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.msgbroker.helphome.doc/help_home_msgbroker.htm?lang=en
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa
http://www-03.ibm.com/software/products/en/category/connectivity-integration-soa
http://www.ibm.com/developerworks/aix/library/au-analyze_aix/
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg247137.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247283.pdf
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC34658900

	Modification History
	Legal Disclaimer:
	Acknowledgement:
	Scope of the Document:
	1. Introduction to Automated Testing:
	2. Testing Phases:
	2.1. Unit Testing
	2.2. System Testing
	2.3. Performance Testing
	2.4. User Acceptance Testing

	3. Getting Started with Test Automation
	4. ETR Command Syntax
	5. ETR Field Reference
	5.1. Test Suite
	5.2. Connection
	5.2.1. MQ Connection
	5.2.2. JDBC Connection
	5.2.3. SSH Connection

	5.3. Initialization and Cleanup
	5.4. Test Case
	5.4.1. Regulator
	5.4.1.1. Regulation Mode

	5.4.2. Validator
	5.4.2.1. Validation Mode

	5.4.3. Scheduler
	5.4.4. Transformation Rule
	5.4.4.1. Keyword
	5.4.4.2. Transformation Rule: Pattern
	5.4.4.3. Transformation Rule: Literal
	5.4.4.4. Transformation Rule: Tagged
	5.4.4.5. Transformation Rule: Positional

	5.4.5. Data Source
	5.4.5.1. File Source
	5.4.5.2. Queue Source

	6. Sample Test Cases
	6.1. Sample 01: Supported Data Sources
	6.1.1. Test Data = file, Results = file, Expected Results = file
	6.1.2. Test Data = file, Results = queue, Expected Results = file
	6.1.3. Load Queue, dependent Test Case
	6.1.4. Test Data = queue, Results = queue, Expected Results = file
	6.1.5. Test Data = queue, Results = queue, Expected Results = file
	6.1.6. Test Data = queue, Results = queue, Expected Results = queue
	6.1.7. Test Run Sample 01

	6.2. Sample 02: Supported Headers
	6.2.1. Test Data = file with MQMD
	6.2.2. Test Data = file with MQMD, Failed Validation
	6.2.3. Load Queue, dependent Test Case
	6.2.4. Test Data = queue, Validation from Queue
	6.2.5. Test Data = queue, Wrong Header
	6.2.6. Test Data = queue, Wrong Data
	6.2.7. Test Data = queue, Over-riding MQMD
	6.2.8. Test Data = file, Over-riding MQMD
	6.2.9. Test Run Sample 02

	6.3. Sample 99: Performance Test
	6.3.1. Regulated 30 msg/sec into a queue with loop
	6.3.2. Test Run Sample 99

	7. Test Scenario
	7.1. Scenario 1: Train Tracker

	Bibliography:

