
Getting started with
MQSeries Publish/Subscribe:

A Tutorial

Version 1.0 - 04/03/99

Notices

The following paragraph does not apply in any country where such provisions are
inconsistent with local law

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not
intended to state or imply that only IBM’s program or other product may be used. Any
functionally equivalent program that does not infringe any of the intellectual property
rights may be used instead of the IBM product. Evaluation and verification of operation
in conjunction with other products, except those expressly designated by IBM, is the
user’s responsibility.

The information contained in this document has not be submitted to any formal IBM test
and is distributed AS IS. The use of the information or the implementation of any of
these techniques is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each
item has been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines Corporation
in the United States and/or other countries:

 IBM
MQSeries

Windows NT is a trademark of Microsoft Corporation .

Introduction

This tutorial guides you from your first steps of creating your first MQSeries
Publish/Subscribe broker to writing your own Publish/Subscribe applications.

Following this tutorial will teach you how to :

é Start and end brokers.
é Run the supplied Publish/Subscribe sample application
é Write your first simple publishing application.
é Write your first simple subscribing application.
é Create a small broker network.
é Extend the supplied Publish/Subscribe sample application
é Finally, delete brokers.

Requirements

To complete this tutorial you will require a working knowledge of MQSeries along with
an understanding of the programming language C and experience in writing and
compiling MQSeries applications. One of the exercises requires MQSeries channels to
be defined, though this exercise can be omitted if necessary.

Before you start the tutorial check that you have the necessary level of MQSeries which
supports the publish/subscribe function. You will also need to have downloaded the
MQSeries Publish/Subscribe SupportPac for your platform. This can be found at
http://www.software.ibm.com/ts/mqseries/txppacs/ma0c.html, as can the
MQSeries Publish/Subscribe User’s manual which will also need to be consulted.

When you perform the tutorial you must be logged on as a user which is authorized to
run MQSeries commands (a member of the mqm group). A C compiler will also be
required.

It is assumed that the accompanying C source files with this document have been
downloaded into a suitable place on the machine that you will be using for this tutorial,
you will need to be able to modify these files. The directory structure of these files
should be maintained, from now on we will refer to these files by there relative directory
(e.g. Tutorial/Exer3/amqssub).

All supplied Publish/Subscribe samples used in this tutorial can be found under the
standard directories for MQSeries samples for your installation of MQSeries (e.g. on
Windows NT the executable samples can be found in mqmtop\tools\c\samples\bin), all
non-executable Publish/Subscribe sample files will be found in or below the pubsub
subdirectory in the C sample directory.

Getting started with MQSeries Publish/Subscribe

- 1 -

There is no single answer to any of the steps in the incomplete source files but a set of
completed source files have been supplied under the Tutorial\Solution directory if
required.

Getting started with MQSeries Publish/Subscribe

- 2 -

Exercise 1. Your first broker

First, we will setup a single MQSeries Publish/Subscribe broker.

For this we must create a queue manager, you could use the hostname of your
computer as the queue manager name, or any other valid name, from now on we will
call this QMgrName. We always recommend that a dead letter queue is defined on all
queue managers that will be running a broker so we will create this queue manager with
one defined. From the command line type the following to create the queue manager.

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE QMgrName

Start the queue manager

strmqm QMgrName

Now we can start the broker

strmqbrk -m QMgrName

To display the status of the broker we can use the dspmqbrk command

dspmqbrk -m QMgrName

You should have seen the following message:

MQSeries message broker for queue manager QMgrName running.

The broker is now ready to receive commands and publications from MQSeries
Publish/Subscribe applications.

The first time we start the broker all the necessary default queues required by the
broker are created on the queue manager, we can display these by using runmqsc

runmqsc QMgrName
 display qlocal(*)
 end

All the SYSTEM.BROKER.* queues are those used by the broker, queue names
starting with SYSTEM.BROKER are reserved for use by the broker. See the MQSeries
Publish/Subscribe Users Guide for more details on the individual use of these queues.

To end the broker, without ending the queue manager, the endmqbrk command is
used, end the broker now.

endmqbrk -m QMgrName

Getting started with MQSeries Publish/Subscribe

- 3 -

Once this has completed the broker has been ended, this can be verified by running
dspmqbrk again.

dspmqbrk -m QMgrName

This time we should see the following message.

MQSeries message broker for queue manager QMgrName not active.

For the next exercises we will be using the broker we just created, to restart the broker
rerun the strmqbrk command.

strmqbrk -m QMgrName

We are now ready to continue with the next exercise.

Getting started with MQSeries Publish/Subscribe

- 4 -

Exercise 2. Running the Sample

A sample Publish/Subscribe application is supplied with the MQSeries
Publish/Subscribe package that demonstrates a number of basic publish/subscribe
features. The sample is a simple implementation of a soccer match results gathering
service.

Two local queues are required on the broker’s queue manager before we can run the
sample programs. SAMPLE.BROKER.RESULTS.STREAM, is a new stream queue; the
sample does not use the supplied default stream of the broker. Also one of the sample
programs is a subscriber to information being published on the sample stream, a
subscriber queue is required to receive these publications, the queue used by the
sample is RESULTS.SERVICE.SAMPLE.QUEUE.

To define these queues on your queue manager use the MQSC script which is supplied
with the MQSeries Publish/Subscribe package. This can be found in the pubsub sample
directory (mqmtop\tools\c\samples\pubsub on Windows NT, mqmtop\samp\pubsub
on UNIX). From the command line change to this directory and type the following.

runmqsc QMgrName < amqsresa.tst

We can now start the sample.

The sample has two parts, a publisher (or publishers) that publish details on a single
soccer match and a subscriber that subscribes to these soccer match events published
by all matches being played and displays the results for them. The publisher application
is amqsgam (amqsgam.exe for Windows NT) and the subscriber application is amqsres
(amqsres.exe for Windows NT), both these executables can be found in the standard
MQSeries C sample executable directory.

The subscriber application, the results server, has to be running before any soccer
matches are started. So, from a command line in the executable sample directory start
the results server now

amqsres QMgrName

The match simulator publishes event publications, so that the results server does not
miss any publications the results server has to of registered its subscription before any
match simulators are started. Once a message is displayed by the results server,
indicating it is okay to start the match simulator (it has successfully registered its
subscription) we can start a soccer match. From another command line, think of two
soccer teams (no spaces or double quotes (“) allowed in either name) and start the
match using these names as the first two parameters, if the results server, amqsres,
has already finished restart it from its command line first. Now, from another command
line in the same sample directory start the match simulator.

Getting started with MQSeries Publish/Subscribe

- 5 -

amqsgam Team1 Team2 QMgrName

The soccer simulator, amqsgam, publishes an event publication to the
SAMPLE.BROKER.RESULTS.STREAM of the broker’s queue manager for every event
that occurs in the match, when the match starts, when a goal is scored and finally when
a match ends. The results service, amqsres, subscribes to all these event publications
and so the broker sends each publication on to the results service’s subscriber queue.
The results service reads these publications as they arrive and processes them
accordingly, displaying a new game has started, updating the current score and
removing the game when it has finished.

We can now extend the simulation, restart the results server if it has ended and the first
match simulator, now think of two more soccer team names and start another instance
of amqsgam, like before, from another command window.

Now you can see both sets of match event publications are being received by the
results server. You could extend the number of concurrent matches being played to as
many as you would like. This demonstrates a single subscriber with multiple publishers.

A script file (a batch file for Windows NT) has been supplied in the tutorial directory
Tutorial\Exer2 to start up a number of soccer matches at the same time. If you are
using UNIX change the permissions of the script file amqsmany to allow you execute
permission. From a command line, change to this directory and try running this to see
how the sample handles many different publishers, the results service should be started
before this. Substitute the name of your queue manager for QMgrName in the
command below. The directory containing the amqsgam executable sample will need to
be in your path to be able to run anqsmany.

amqsmany QMgrName

The other main feature of this sample is that it maintains a current state of all the
matches being played, which allows the results server to be restarted after a possible
failure. The results server does this by publishing a retained message to the broker with
the latest score of each match every time the score changes. On startup of the results
server it subscribes to all these retained publications and when they are received the
current match state is restored as to how it was the last time the results server was
running.

To exercise this feature restart the script amqsmany (anqsmany.bat for Windows NT)
that we used above. Once it is running and a couple of goals have been scored you can
change to the window running the results server, amqsres, and prematurely kill that
process (using Ctrl-C). The results service can then be restarted at any time and you
will see that the matches being played will be restored to their last known score and
then updated by any remaining match changes that have occurred whilst the results
service was stopped. If, when restarting the results service, the sample fails to open the
subscriber queue for reason 2042 (MQRC_OBJECT_IN_USE) it is because we have

Getting started with MQSeries Publish/Subscribe

- 6 -

killed the previous instance of the results service which had the subscriber queue
opened exclusively and the queue manager is yet to learn this, wait a few seconds and
try again, repeat until the results service sample starts correctly.

We will return to the sample later in Exercise 5 to explore in more detail the concepts of
MQSeries Publish/Subscribe that have been implemented by it.

Getting started with MQSeries Publish/Subscribe

- 7 -

Exercise 3. Writing Your Own Samples

To make you more familiar with the way an MQSeries Publish/Subscribe application
can be written, using the MQSeries message format MQRFH, the following exercises
require you to complete the partial samples we have supplied. To be able to do this
successfully you will need access to the MQSeries manuals (including the MQSeries
Publish/Subscribe manual) and have some knowledge of the programming language C.

The samples you will be completing are a lot simpler in structure to the results server
sample we used in Exercise 2. they consist of a publisher and a subscriber. The
publisher will publish character strings, supplied by the user, on a particular topic. And
the subscriber will register on a topic and display any publications that it receives.

To run the samples a local queue is required for the subscriber and the publisher, use
runmqsc to define two local queues for this purpose. Call one SUBSCRIBER_QUEUE
and the other PUBLISHER_QUEUE. As the samples are configured to use the default
stream of the broker no extra queue is required for a new stream as in the previous
sample.

runmqsc QMgrName
 define qlocal(SUBSCRIBER_QUEUE)
 define qlocal(PUBLISHER_QUEUE)
 end

The incomplete C source files have been supplied in the tutorial directories, you are
required to modify these files and compile them into executables, as with standard
MQSeries samples, when linking into an executable MQSeries library(s) must be linked,
see the MQSeries Application Programming Guide manual for details on your particular
platform. Each of the following samples consist of a single source file per executable
and should be compiled into an executable of the same name as the directory that the
source can be found in.

Publisher Project

The first sample we will complete is the publisher sample amqspub. The incomplete
source of this sample, amqspuba.c, can be found in the tutorial directory
Tutorial\Exer3\amqspub.

There are eight steps within the sample that are to be completed, work your way
through the code, understanding what is being done, when you reach an incomplete
step follow the instructions to add the correct lines of code. There is more help in the
source file in the comments preceding each step, use this in conjunction with the help
given below.

Getting started with MQSeries Publish/Subscribe

- 8 -

The eight steps to be completed in the code are listed below

Step 1.

To be able to put publications to the broker’s stream queue we must open it first,
complete the configuration of the MQOPEN command for putting messages.

Step 2.

When we publish to a broker the publication must normally start with an MQRFH
structure (the definition can be found in the MQSeries Publish/Subscribe manual). All
fields in this structure must have a defined value, a default definition of the MQRFH
structure is supplied with MQSeries, use this to initialize the fields of the MQRFH within
the message block. Some values of the MQRFH will have to be changed from their
default values before we can publish the message, we will change those later, when we
know what they will be.

Step 3.

Immediately after the defined MQRFH structure in the message block a
NameValueString must follow, this is a character string. Point the pNameValueString
pointer to the starting position of the NameValueString in the message block.

Step 4.

The contents of the NameValueString is what is used by the broker to distinguish
between different Publish/Subscribe commands and how it is to be processed. The
NameValueString of this message must contain all the required information for the
broker to recognize it as a publication and how to process it. The Publish/Subscribe
manual has information on all the recognized command messages and what
name/value pairs are required/optional, use this to help in forming a continuous
character string valid for our publications.

Step 5.

The StrucLength field of the MQRFH structure holds the length of the MQRFH structure
and its accompanying NameValueString, this tells the broker how long the
NameValueString length in this message is as the MQRFH structure is fixed in size and
the NameValueString is a variable length field. It also allows any application receiving
this message to identify where the NameValueString ends and the next structure (if
any) starts.
Alter the StrucLength field of the MQRFH to represent the size of the structure. The
broker does not require a null terminator on the end of the NameValueString but it can
make it easier for any other application that should need to read the string (if a null
terminator is present it is possible to perform string operations against it, e.g. strlen),

Getting started with MQSeries Publish/Subscribe

- 9 -

adjust the StrucLength accordingly. The code to align the end of the MQRFH and
NameValueString on a 16 byte boundary has been supplied, you do not need to include
your own code.

Step 6.

In this sample we are publishing a character string as user data in each publication, this
is a recognized MQSeries format that can be chained from the MQRFH and
NameValueString structure. The MQRFH structure must indicate that the data following
this structure is a string and also what character set it is in, alter the appropriate MQRFH
fields to show this.

Step 7.

The user data (in this case the string data) must be positioned directly after the MQFRH
and NameValueString structure, point the pUserData pointer to the starting position of
any string data we will be adding.

Step 8.

Now that a line of string data has been read from standard input we can copy it into the
publication message block. Once this has been done the publication message is
complete and is ready to be put to the broker’s stream queue.

Once all the above steps have been completed the sample is ready to be compiled. If
compilation errors are displayed at this point you may have made a mistake in one or
more of your code changes, use the information in the compilation errors to try and
correct any mistakes. Once the sample compiles with no errors it is ready to be run.

At this point we do not have a subscriber sample to receive your publications but we
can still try running the sample to see if the broker accepts the publications that you
have generated. To run the publisher sample:

amqspub Topic PUBLISHER_QUEUE QMgrName

Where Topic can be any valid topic string (not including spaces or double quote
characters (“)).

You should be prompted to enter a line of text to add to the publication, type Hello and
press enter, what happens next? Has a success message been displayed or an error
returned from the broker? If an error was displayed use the error message to try and
work out what has happened. One technique which might help would be to run your
application while the broker isn’t running. Browsing
SYSTEM.DEFAULT.LOCAL.STREAM using the amqsbcg sample will show you the
format of any invalid messages sent to the queue by your application. Once you can
run the sample and a success message is returned we have tested the publisher

Getting started with MQSeries Publish/Subscribe

- 10 -

sample as well as we can without a subscriber sample so it is now time to move to the
next project.

Subscriber Project

Now that we have a publishing sample we need a subscribing sample to subscribe to
the publisher’s topic and receive the publications. The sample we will complete is
amqssub and, like before, the source, amqssuba.c, can be found in directory
Tutorial\Exer3\amqssub.

There are five steps within the sample that are to be completed, work your way through
the code, understanding what has been done, when you reach an incomplete step
follow the instructions to add the correct lines of code. There is more help in the source
file preceding each step, use this in conjunction with the help given below.

The five steps to complete in the code are listed below

Step 1.

To be able to put the command messages to the broker we must first open the
appropriate queue, complete the configuration of the MQOPEN command for putting
messages to this queue.

Step 2.

In this sample we must first register our interest in a topic, so we must send a
subscription registration to the broker. Because we will be sending different commands
to the broker in this sample the function for generating a command message and
sending it to the broker has been taken out of the main line of code and put into the
function SendBrokerCommand, One of the arguments of this function is the command
string to put into the NameValueString of the command message, add the appropriate
command string for a subscription registration. (The function SendBrokerCommand
should be similar to the section of code in amqspuba.c that builds the publication
message).

Step 3.

Once we have registered as a subscriber we can wait for publications to arrive on our
subscriber queue, as they arrive we read them in using MQGET. When we have a
message we need to check that it is in the format we were expecting, not a message
put to this queue from a different sort of application. So the first thing we must to do is
check that the message is an MQRFH format message.

Getting started with MQSeries Publish/Subscribe

- 11 -

Step 4.

Now that we recognize the message as an MQRFH message we can locate the portion
of the message that we, as a subscribing application, are interested in. In our sample
we do not need to look at the NameValueString of the message, all we are interested in
is the user data that follows it, the character string. Point the character string pointer
pUserData to the start of the character string that follows the NameValueString and
print it to the screen, if the null terminator was included by the publisher the printf
function can be used.

Step 5.

We have now finished running the sample so we need to deregister our subscription
that we made earlier, as in Step 2 the command string has been left out of the call to
SendBrokerCommand, add the appropriate string for a subscription deregistration.

Once all the above steps have been completed the sample is ready to be compiled. If
compilation errors are displayed at this point you may have made a mistake in one or
more of your code changes, use the information in the compilation errors to try and
correct any mistakes. Once the sample compiles with no errors it is ready to be run.

To run this subscriber sample:

amqssub Topic SUBSCRIBER_QUEUE QMgrName

Where Topic can be any valid topic string (not including spaces or double quote
characters (“)).

This should display a message informing that we have successfully registered with the
broker and we are waiting for a publication to arrive. As before, if you do not see this
you should see an error message instead, use the error message to try and work out
what has gone wrong and correct the sample appropriately.

Once the sample has registered successfully we can test the receiving of publications.
Whilst amqssub is still running (restart it is necessary) return to the publisher project
and start amqspub as before, make sure the topic string you supply matches that of the
one you started amqssub with. Now enter text when prompted, this should be displayed
in the command window running amqssub, as the subscriber is sent the publication you
sent to the broker from amqspub. If this does not happen an error has occurred and you
need to try and see where this has happened, please ask for assistance if you require
it.

Once you are successfully receiving publications at your subscriber sample you can
experiment with running multiple publishers and multiple subscribers in different
command windows (Each subscriber will require a different subscriber queue, these will
need to be defined as before using runmqsc, e.g. ‘SUBSCRIBER_QUEUE_2’, etc.). Try

Getting started with MQSeries Publish/Subscribe

- 12 -

running with different topics on different publishers and subscribers, you can even try
subscribing to a wildcard topic and publishing on different topics that match the
wildcard.

Getting started with MQSeries Publish/Subscribe

- 13 -

Exercise 4. Setting up a Broker Network

So far we have only been running using a single broker. It is also possible to connect
multiple brokers, each hosted by a different queue managers, together to form a broker
network. Brokers are connected together to form a hierarchy, in this exercise our
network will consist of two brokers running at two queue manage rs on the same
machine. If you have never connected queue managers together using channels then
consider just reading through this exercise and proceeding with Exercise 5 instead.

Before we create new queue managers and brokers we will end the broker and queue
manager that we have so far been using, first end the broker and then the queue
manager.

endmqbrk -m QMgrName
endmqm QMgrName

Now we will create a two broker hierarchy on our machine, for this we will create two
new queue managers to host the brokers. A two broker hierarchy has a parent/child
relationship, we will name the two queue managers parent and child.

As in section 1, to create and start the queue managers from the command line type

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE parent
strmqm parent

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE child
strmqm child

Neighboring brokers require their queue managers to communicate both ways between
each other. To enable this we must define a channel from parent to child and from child
to parent. The simplest method of achieving this is for each sender channel to
reference a transmission queue which has the same name as its remote queue
manager. The supplied channel definitions for these channels do this and assume that
the TCP/IP protocol will be used. For more information about channels refer to the
MQSeries Intercommunication guide..

The two MQSC script files, parent.tst and child.tst, can be found in Tutorial\Exer4, these
script files contain the definitions to create the channels and necessary queues for the
two brokers. They need to be altered first to configure them for your particular
computer. Edit the two files and replace the word hostname with the hostname of your
computer. The MQSC scripts have used TCPIP ports 1414 (for queue manager child)
and 1415 (for queue manager parent), you may wish to change these to match your
system.

Ensure that a listener for each queue manager has been started, then start the two
channels, parent.to.child and child.to.parent.

Getting started with MQSeries Publish/Subscribe

- 14 -

Once we have the parent and child queue managers communicating with each other we
can start the brokers. The broker on child will naturally be the child of the broker on
parent. As in Exercise 1, to start the brokers type the following commands. It is
recommended that you allow a delay of a few seconds between starting related brokers
for the first time as this allows the parent broker to be running before the child registers
with it.

strmqbrk -m parent
strmqbrk -m child - p parent

The -p option tells the child broker that parent is its parent.

We now have a broker hierarchy.

At this point we will introduce another sample that is supplied with MQSeries
Publish/Subscribe, this sample, amqspsd, is a sample system management tool. It
makes use of the administration and metatopic messages that each broker itself
publishes to provide information on the current configuration and use of a broker.

The system management sample requires a subscriber queue for it to be defined
before it is run. The MQSC script for this queue can be found in the pubsub\admin
directory under the MQSeries C sample directory. The script file is amqspsda.tst.

Run this script for each queue manager :

runmqsc parent < amqspsda.tst
runmqsc child < amqspsda.tst

The sample accepts many different options for obtaining different levels of information
from the broker, we will use it with its default settings at this point.

We will use this sample to first show if the two brokers recognize each other as
relations. Run the sample against the parent queue manager, the executable can be
found in the usual MQSeries sample directory,

amqspsd -m parent

You should see output like the one below, note how the child broker should be listed
under the broker’s children heading, if it is not the broker does not recognize the
second broker, there could be a problem with the channels, look for messages in the
MQSeries error logs.

Getting started with MQSeries Publish/Subscribe

- 15 -

MQSeries Message Broker Dumper
Start time: Sat Dec 12 17:13:04 1998

Broker Relations

QMgrName:
 parent
Parent :
 None
Children:
 child

Streams supported

SYSTEM.BROKER.DEFAULT.STREAM
SYSTEM.BROKER.ADMIN.STREAM

Publishers

StreamName: SYSTEM.BROKER.ADMIN.STREAM
 None
StreamName: SYSTEM.BROKER.DEFAULT.STREAM
 None

Subscribers

StreamName: SYSTEM.BROKER.ADMIN.STREAM
 Topic: MQ/parent /StreamSupport
 BrokerCount: 0
 ApplCount: 2
 AnonymousCount: 0
 RegistrationQMgrName: child
 RegistrationQName: SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
 RegistrationCorrellId: 414D51570101000000000000000000000000000000000000
 RegistrationUserIdentifier: mqm
 RegistrationOptions: 1 : MQREGO_CORREL_ID_AS_IDENTITY
 RegistrationTime: 1998121217112523
 RegistrationQMgrName: parent
 RegistrationQName: SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
 RegistrationCorrellId: 414D51590101000000000000000000000000000000000000
 RegistrationUserIdentifier: mqm
 RegistrationOptions: 17 : MQREGO_CORREL_ID_AS_IDENTITY
MQREGO_NEW_PUBLICATIONS_ONLY
 RegistrationTime: 1998121217111404
 Topic: MQ/S/parent /Subscribers/Identities/*
 BrokerCount: 0
 ApplCount: 1
 AnonymousCount: 1
StreamName: SYSTEM.BROKER.DEFAULT.STREAM
 Topic: MQ/S/parent /Subscribers/Identities/*
 BrokerCount: 0
 ApplCount: 1
 AnonymousCount: 1

Run the sample again, this time against the child queue manager. This time you should
see the name of the parent queue manager under the parent heading, if you do not see
this the broker does not recognize the parent broker as its parent, then again look for
messages in the MQSeries error logs.

As you can see, other information is also displayed under the subscriber heading. The
subscriptions we can see to MQ/... topics are those subscriptions currently registered

Getting started with MQSeries Publish/Subscribe

- 16 -

by the broker and its neighbor, or the system management sample itself (these will be
deregistered once the system management sample completes, the sample has
registered as anonymous so the details are not visible under normal circumstances).

Define the necessary queues required to run the samples you completed in Exercise 3
on the two new queue managers, start by defining the subscriber queue on the child
queue manager and the publisher on the parent queue manager. Now start the
subscribe sample, amqssub, on the child queue manager and the publisher sample,
amqspub, on the parent queue manager. You should see publications arriving at the
subscriber sample exactly as before in a single broker network. Extend this test by
adding publishers and subscribers on either of the two queue managers, they should all
perform exactly as you would expect for a single broker network (remember that each
subscriber will require its own unique queue and a publisher queue will be needed on
each broker that a publisher runs on).

Whilst these samples are still running run the system management sample on each of
the brokers, you should now see more subscriptions registered on the default stream.

Getting started with MQSeries Publish/Subscribe

- 17 -

Exercise 5. Understanding and Extending the Results Server Sample

We have already seen the results server samples running, but the way in which they
work was only briefly mentioned, we will now discuss these samples in more detail and
how they implement a number of different features of the MQSeries Publish/Subscribe
function. Once we understand how these samples work we can extend their
functionality.

If we look at the two parts of the results server sample independently we can compare
them against the simple publisher and subscriber that we completed earlier. The source
for these samples can be found under the MQSeries C sample directory in the
subdirectory pubsub.

Match Simulator, amqsgam

Source: pubsub\amqsgama.c

The match simulator is just a simple publisher like our amqspub sample, with a little
logic to simply simulate a soccer match (random goal scoring within a fixed period). The
sample publishes event publications (not retained) on three different topics ,
Sport/Soccer/Event/MatchStarted, Sport/Soccer/Event/MatchEnded and
Sport/Soccer/Event/ScoreUpdate, depending on what event has occurred. The
structure of the user data (character string format in all cases, MQFMT_STRING) varies
according to the event being published, if the match is starting or ending the names of
both teams are required by the results service, if a goal has been scored the only
required data is the name of the team scoring, the results service can deduce from this
which match the team is playing in and adjust the score accordingly (we can only ever
increment a teams score by one).

In one respect amqsgam is simpler than amqspub, amqsgam sends all publications as
datagram messages (does not request a response from the broker), this is purely for
simplicity, we would not recommend an application did this (did not request a response
from the broker on receiving a command or publication), especially in a test
environment where more errors are likely to occur. If a broker rejects a publication or is
unable to process it correctly the publisher would not be informed. The preferred
method of sending publications is to send them as datagrams with a report option of
MQRO_NAN, that is negative replies only. In this case a reply will only be generated
and returned by the broker if a problem occurs in processing a publication. This way we
do not have the overhead of one reply per publication but we do have the ability to
know when a problem occurs. A separate thread or process should be used to wait for
error responses as their arrival will be infrequent, if at all, and this would impede
performance of the publishing application if it was to wait for a message after each
publish. The use of MQRO_NAN has been implemented in amqsres when publishing
LatestScore publications, the negative responses (if any) are read in by the main
MQGET loop processing arriving messages (normally event publications).

Getting started with MQSeries Publish/Subscribe

- 18 -

When running multiple match simulators we have multiple publishers publishing on the
same set of topics simultaneously, these publications are event publications (not
retained) and it is perfectly valid to have more than one publisher of these. We do not
recommend that more than one publisher publishes state publications (retained)
simultaneously as it is then difficult to determine which publication has been retained,
and there is a possibility of different publications being retained on the same topic on
different brokers at the same time.

Another feature of publishing event publications is that any subscribers wishing to
receive these publications must be registered as a subscriber before the publication is
published, it must also be noted that the subscription must have had time to propagate
across the broker network to the broker(s) from which the publications are being
published. In this example we are publishing on a new stream, if the match simulator
sample (publisher) was to start before a subscription had arrived the broker would have
no knowledge of the stream and the publications arriving on the stream queue would
not be processed until the broker was informed of the stream (in this case by a register
subscriber command).

Results Server, amqsres

Source: pubsub\amqsresa.c

The results server is actually a subscriber and a publisher, as was mentioned when we
first saw the sample. It subscribes to all event publications, Sport/Soccer/Event/*, and
publishes and subscribes to the state publications, Sport/Soccer/State/LatestScore/*
(not simultaneously).

Under normal conditions the sample has an active subscription to Sport/Soccer/Event/*,
all publications from a match simulator are then sent to the results server. On receiving
an event publication the results server updates the current state of the appropriate
match in memory and also publishes a retained publication on the topic
“Sport/Soccer/State/LatestScore/Team1 Team2”, where Team1 and Team2 are the two
teams playing in the match, the user data of the publication is the current score of the
match. This retained publication replaces any existing one for this match. The topic is
unique to the match (as it includes the team names) and therefore, there will be one
retained publication on the broker for each match currently being played. Once a match
finishes (a Sport/Soccer/Event/MatchEnded publication is received for the match) the
match state is removed from memory and the results server issues a Delete Publication
command on the “Sport/Soccer/State/LatestScore/Team1 Team2 ” topic to remove the
retained publication held for this topic. This means that under normal circumstances
when running the results service any retained publications put to the broker as the
result of a match will be removed before the results server has ended. There are two
cases when this is not true. One is when a Sport/Soccer/Event/MatchEnded publication
is not received for a match it is currently reporting on (perhaps the match simulator was
prematurely stopped or a publication has been put to a dead letter queue). The other is

Getting started with MQSeries Publish/Subscribe

- 19 -

when the results server is prematurely stopped, this is the specific case why we publish
on “Sport/Soccer/State/LatestScore/Team1 Team2 ”.

In the case when the results server was prematurely stopped we would like to be able
to restart the results server and continue with the results from the state in which they
were left. So every time we start the results server, before subscribing to
Sport/Soccer/Event/*, we subscribe to Sport/Soccer/State/LatestScore/*, on receiving
the retained publications that exist (if any) we restore the state of the matches, as
represented by the Sport/Soccer/State/LatestScore/* publications. Once this has been
done we can deregister our subscription from the Sport/Soccer/State/LatestScore/*
topic and then register the subscription to Sport/Soccer/Event/* and start processing the
event publications that arrive. This gives us the ability to stop and start the results
server at any time whilst matches are being played. One MQSeries feature that has not
been used in this sample that would improve the reliability of the restart would be to use
units-of-work, these would start with the getting of the event publication and complete at
the point that the LatestScore publication is put. This would mean that if the results
server was halted between these two operations (the MQGET and the MQPUT) the
original MQGET would be backed out and on restart the event publication would still be
available to update the restored state.

If the results server is ended prematurely the subscription to Sport/Soccer/Event/* is still
active (no deregister subscriber message has been sent) and event publications will
continue to be sent to the results server’s subscription queue. Therefore, on startup we
wish to read in all the LatestScore retained publications before we start to process any
event publications, to achieve this we could have used a separate queue as our
subscriber queue for the Sport/Soccer/State/LatestScore/* subscription, but this would
require yet another queue to be defined. A cleaner method is to subscribe with a
different identity, the same queue name and queue manager name but a different
CorrelId. By specifying a CorrelId as part of our subscriber identity the broker will
always put the publications for this subscriber on the subscriber queue with the
specified CorrelId. We can therefore, use the get message options of MQGET to only
get the messages that match this CorrelId. So we first get all the messages that match
the CorrelId of the Sport/Soccer/State/LatestScore/* subscription, once we have
restored the state we can subscribe to Sport/Soccer/Event/* with a different CorrelId
and get all messages that match this CorrelId, which will include those that arrived on
the subscriber queue whilst the results server was stopped.

To minimize the amount of user data that is added to the publication message, and to
avoid repeating data, the results server actually uses information contained in the
NameValueString of the publication, specifically the MQPSTopic value. As we
subscribe to more than one topic (by using wildcards) we do not automatically know
what topic the publication we are looking at is for, so we must find the topic value in the
NameValueString and process the publication appropriately. The results server sample
includes a function that tokenizes the NameValueString into name/value pairs. We
could have used a very simple method based on the fact that the tokens in the string
are space delimited but there is the possibility that a value contains spaces (if the value

Getting started with MQSeries Publish/Subscribe

- 20 -

is enclosed by quotes), as is the case with the “Sport/Soccer/State/LatestScore/Team1
Team2” topic. The tokenizer function used in amsresa.c is called GetNextFunction()
and can be used in other applications requiring this functionality.

Getting started with MQSeries Publish/Subscribe

- 21 -

Extending the Results Service Sample

To further familiarize yourself with writing MQSeries Publish/Subscribe applications this
exercise will allow you to extend the functionality of the results server sample that we
have already seen.

The results server maintains the state of matches currently being played (by using
retained publications), this state is removed once a match ends. We will extend the
results server sample, amqsresa.c, to publish a retained publication on a new topic
once a match ends, this publication will include the same details as in the LatestScore
publications, the names of the teams playing and the score at the end of play. These
publications will remain on the broker and not be deleted. Remember, only one
publication is retained on each topic so each match must have a unique topic (as
currently implemented for the LatestScore publications). One characteristic of this new
function to note is that only the last match played between two teams is held as a
retained publication, if the same match is replayed later the original FinalScore
publication holding the first match result will be overwritten.

Now we require a third sample application, very similar to the subscriber amqssub.exe
that we wrote earlier. This sample will subscribe to the topics that we publish the final
scores on, when a publication is received the match details are in the publication’s user
data and displayed to the screen.

Results Service Project, amqsres2

A modifiable version of the results server can be found in Tutorial\Exer5\amqsres2.
Follow these steps to complete a modified results service. Compile the source file into
the executable amqsres2 (amqsres2.exe for Windows NT) once the steps below have
been completed.

The following steps extend the UpdateLatestScorePub() function to publish on the
FinalScore topic once a match has ended. Read the code that has been added to this
function and understand how it works.

Step 1.

Build the topic string that we will be publishing on, this is unique to each match being
played, it is of the form:

Sport/Soccer/State/FinalScore/Team1 Team2

Step 2.

We call the function BuildMQRFHeader() to build the MQRFH structure and
NameValueString for the publication, two of the arguments required have been left out
of your source, the command string needed for a publication message and the
publication options for this publication (in decimal form (using the defined MQPUBO_

Getting started with MQSeries Publish/Subscribe

- 22 -

options) not a string), use the Publish/Subscribe manual to find the MQ constants
required. Complete this function call.

Step 3.

Finally we must add the user data to the publication, for this publication we generate a
string that will be displayed by the final score sample, the string must contain all the
details of the matches final score.

Final Score Project, amqsfin

To create the final score sample modify the source file in Tutorial\Exer5\amqsfin. This is
basically a slightly modified version of the subscriber sample from Exercise 3, this time
the source file is called amqsfina.c but it is very similar to amqssuba.c, follow the next
step to complete the final score sample. The only differences to the simple subscriber
sample is that the topic we subscribe to is defined (not a user argument) and we are not
using the default stream.

Step 1.

In the function SendBrokerCommand() build the NameValueString of the command
messages sent to the broker’s control queue. This is a similar NameValueString
between the subscriber registration and deregister, the only difference being the
command string which is passed into the function as an argument. The
NameValueString must contain all the name/value pairs required for a
register/deregister of a subscriber, see the Publish/Subscribe manual for details of
these commands, remember that we are not subscribing to a topic on the default
stream so the stream name is required.

Once both of the above projects compile cleanly we can run the new samples. We will
use the single broker which we created in Exercise 1. If this has been ended then
restart it.

To run the final score sample, amqsfin, we require another queue in addition to the two
previously defined in the MQSC script amqsresa.tst, define
FINAL.SCORE.SAMPLE.QUEUE as a local queue on QMgrName, this will be the
subscriber queue used by amqsfin

runmqsc QMgrName
 define qlocal(FINAL.SCORE.SAMPLE.QUEUE)

Unlike the results service it is not important when the final score sample is started as it
will receive any existing FinalScore retained publications when it is started. This time we
will start the final result sample, amqsfin, first. From the command line in the tutorial
directory Tutorial\Exer5\amqsfin, run this at the QMgrName broker.

Getting started with MQSeries Publish/Subscribe

- 23 -

amqsfin QMgrName

Now start the new results service from another command line in
Tutorial\Exer5\amqsres2, run this also at the QMgrName broker.

amqsres2 QMgrName

Finally start up one or more of the original match simulators, amqsgam, or use the
multiple match script file amqsmany (from Exercise 2) to start three at once.

The match simulator(s) and results service should perform exactly as before, once a
match ends you should see the final match score being displayed by the final score
sample.

Getting started with MQSeries Publish/Subscribe

- 24 -

Exercise 6. Deleting a Broker Hierarchy

Now that we have completed the exercises on the two-broker hierarchy we created in
Exercise 4 we can delete them.

We recommend that a broker hierarchy is deleted using a bottom-up approach, i.e. start
by ending and deleting the brokers on the lowest levels of the hierarchy, once these are
removed continue up the hierarchy until the root broker can be deleted.

To delete a broker it must first be ended, but not the parent broker as this will be sent a
message from the child informing it that the child is deleting, it can then remove its
knowledge of this child, a broker cannot be deleted until it has no registered children.

endmqbrk -m child

When a broker is deleted the queues defined when the broker is first started are
removed, it is possible that some of these may be held open by the parent broker via a
channel, whilst this is true the queue cannot be deleted and thus, the broker cannot
complete the deletion. The parent’s hold on these queues will eventually time-out and
the child broker can then be deleted, to speed this process up we can break the
parent’s hold by stopping and starting the parent-to-child channel, this can be done
from runmqsc.

runmqsc parent
 stop channel(‘parent.to.child’)
 start channel(‘parent.to.child’)
 end

Once this has been done we can delete the child broker.

dltmqbrk -m child

If you now use the system management sample amqspsd to display the configuration of
the parent broker you will see that the parent has no children registered.

amqspsd -m parent

To delete the parent broker we follow the same method as used for the child,
remembering to stop and start the child’s channel to the parent.

End the broker running on parent.

endmqbrk -m parent

Stop and start the channel from child to parent.

Getting started with MQSeries Publish/Subscribe

- 25 -

runmqsc child
 stop channel(‘child.to.parent’)
 start channel(‘child.to.parent’)
 end

Delete the broker on parent.

dltmqbrk -m parent

We have now removed both brokers from the child and parent queue managers.

This completes the exercises for the tutorial.

Getting started with MQSeries Publish/Subscribe

- 26 -

