

MA95: A Rexx Interface to WebSphere MQ

Version 1.0.2

MA95: A Rexx Interface to WebSphere MQ

ii

Take Note!

Before using this User's Guide and the product it supports, be sure to read the general information under
“Notices”.

This edition applies to the following product:

Version 1.0.2 of MA95: A Rexx Interface to WebSphere MQ

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2010. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corporation.

MA95: A Rexx Interface to WebSphere MQ

iii

Contents

Contents..iii

Figures ...vii

Tables..viii

Notices ..ix

Preface ...x
Prerequisites ...x
Acknowledgements ..x
Other SupportPacs ..x

Chapter 1. Introduction ...1

Chapter 2. Installing the SupportPac ..3

Installing on Windows ..4
Installing the DLLs...4
Compiling the Code for Windows..4

Installing on z/OS ...6
Compiling the Code for z/OS ...6
TSO Support...7

Chapter 3. Interface Design Philosophy ..9

Chapter 4. General Points ...10

Compatibility with Previous SupportPacs..10
Return Codes ..11
Last Operation..11
Return Code Naming ..11
Message Lengths ..11
Header and Event processing...12
ZLIST..13
Stem Variables..15
Rexx Execs..16
Trace...17

Chapter 5. Handling MQ Descriptors ..18

The Object Descriptor ..20
The Message Descriptor...21
The Get Message Option Structure ..23
The Put Message Options Structure ...24
The Variable Length String Structure ..25

MA95: A Rexx Interface to WebSphere MQ

iv

Specifying parameters for command interface (RXMQC)..26

Chapter 6. Thread Support ...27

Initialization ...27
Termination ..27
Connection and Disconnection...27
Access scope...27
Shared Variables ..27

Chapter 7. The Interface..28

Initialization ...28
Description ...28
Parameters ..28
Call ...28
Additional Interface Return Codes and Messages..28
Example..28

Thread Initialization...29
Description ...29
Parameters ..29
Call ...29
Additional Interface Return Codes and Messages..29
Example..29

Termination ..30
Description ...30
Parameters ..30
Call ...30
Additional Interface Return Codes and Messages..30
Example..30

RXMQCONN..31
Description ...31
Parameters ..31
Call ...31
Additional Interface Return Codes and Messages..31
Example..32

RXMQDISC..33
Description ...33
Parameters ..33
Call ...33
Additional Interface Return Codes and Messages..33
Example..33

RXMQOPEN ..34
Description ...34
Parameters ..34
Call ...34
Additional Interface Return Codes and Messages..34
Example..35

RXMQCLOS ...37
Description ...37
Parameters ..37
Call ...37
Additional Interface Return Codes and Messages..37
Example..38

RXMQINQ..39
Description ...39

MA95: A Rexx Interface to WebSphere MQ

v

Parameters ..39
Call ...39
Additional Interface Return Codes and Messages..39
Example..40

RXMQSET ..41
Description ...41
Parameters ..41
Call ...41
Additional Interface Return Codes and Messages..41
Example..42

RXMQCMIT ...43
Description ...43
Parameters ..43
Call ...43
Additional Interface Return Codes and Messages..43
Example..43

RXMQBACK...44
Description ...44
Parameters ..44
Call ...44
Additional Interface Return Codes and Messages..44
Example..44

RXMQGET ...45
Description ...45
Parameters ..45
Call ...45
Additional Interface Return Codes and Messages..46
Example..47

RXMQPUT ...48
Description ...48
Parameters ..48
Call ...48
Additional Interface Return Codes and Messages..48
Example..50

RXMQPUT1 ...51
Description ...51
Parameters ..51
Call ...51
Additional Interface Return Codes and Messages..52
Example..54

RXMQC ..55
Description ...55
Parameters ..55
Additional Interface Return Codes and Messages..55
Examples ..56

RXMQBRWS...57
Description ...57
Parameters ..57
Call ...57
Additional Interface Return Codes and Messages..57
Example..58

RXMQHXT ...59
Description ...59
Parameters ..59
Call ...59
Additional Interface Return Codes and Messages..59
Extracted information...61

MA95: A Rexx Interface to WebSphere MQ

vi

Example..63
RXMQEVNT ...64

Description ...64
Parameters ..64
Call ...65
Usage Notes..65
Additional Interface Return Codes and Messages..66
Example..67

RXMQTM ...69
Description ...69
Parameters ..69
Call ...70
Additional Interface Return Codes and Messages..70
Trigger information ..72
Examples ..73

Appendix A. ISPF Interface ..75

Appendix B. Sample REXX execs ...78

MA95: A Rexx Interface to WebSphere MQ

vii

Figures

Figure 1. TSO Batch JCL ..7
Figure 2. ZLIST and Event processing...14
Figure 3. A Trigger Monitor..73
Figure 4. A Rexx Triggered Process ...74
Figure 5. ISPF Exec (MA95T1) ...76
Figure 6. ISPF Panel (MA95P1)..76
Figure 7. ISPF Panel (success)...77
Figure 8. ISPF Panel (failure)..77

MA95: A Rexx Interface to WebSphere MQ

viii

Tables

Table 1. Function Names ...10
Table 2. Object Descriptor (MQOD) Mappings ..20
Table 3. Message Descriptor (MQMD) Mappings...21
Table 4. Get Message Option (MQGMO) Mappings ..23
Table 5. Put Message Options (MQPMO) Mappings..24
Table 6. RXMQC Function Parameter Mappings ..55
Table 7. Transmission Queue Message Header (MQXQH) Mappings..61
Table 8. Dead Letter Queue Message Header (MQDLH) Mappings...62
Table 9. Trigger Component (MQTM/MQTMC2) Mappings ...72

MA95: A Rexx Interface to WebSphere MQ

ix

Notices
The following paragraph does not apply in any country where such provisions are inconsistent with local
law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this
statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionally equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product. Evaluation and verification of operation in conjunction with other products, except those
expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New
York 10594, USA.

The information contained in this document has not been submitted to any formal IBM test and is
distributed AS IS. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

WebSphere® MQ

IBM®

AIX®

MVS™

z/OS®

The following terms are trademarks of the Microsoft Corporation in the United States and/or other
countries:

Windows® 95, 98, Me

Windows NT, 2000, XP

MA95: A Rexx Interface to WebSphere MQ

x

Preface
This MA95 SupportPac provides a Rexx Interface for IBM WebSphere MQ Version 6.0 for Windows and
z/OS. It permits the usage of MQ functions within the Rexx Environment.

This interface is different to that described in the WebSphere MQ Application Programming Reference
Version 6.0 (SC34-6596) book, as the API is customised for the Rexx environment. However, with a few
exceptions, all the function described in the APR is available. Some extensions to the API are also
provided to ease the usage of the interface.

The interface described within this SupportPac, should not be taken to be part of the official MQ Product
API, nor should the interface itself be considered part of the official MQ product.

Prerequisites
The SupportPac requires:

• z/OS Version 1.6 or later plus WebShere MQ for z/OS Version 6 or 7

• Windows 2000 or Windows XP or Windows 2003 or later plus IBM Object Rexx for Windows
Interpreter Edition plus WebShere MQ for Windows Version 6 or 7

What is in this SupportPac:

• REXX Function Pack load module provides Rexx support for WebSphere MQ for z/OS.

• Two DLLs which provide Rexx support for WebSphere MQ for Windows. One DLL supports access
to a local Queue Manager, whilst the other DLL provides client access to a server Queue Manager.

• Rexx Execs which demonstrate usage of the interface.

• Source code of SupportPac modules as a reference for creating similar interfaces.

• This paper which documents the interface.

Acknowledgements
This SupportPac is based on the MA18, MA19, MA77 and MA78 SupportPacs written by Robert Harris
of IBM Hursley.

Other SupportPacs
This SupportPac replaces the following outdated SupportPacs:

MA18 A SupportPac providing this interface for Rexx and MQSeries for MVS/ESA

MA19 A SupportPac containing a Rexx interface for Rexx and MQ for MVS/ESA for the
issuing of MQSC commands.

MA77 A SupportPac providing this interface for Rexx and MQSeries for Windows NT

MA78 A SupportPac containing a Rexx interface to MQSeries for Windows NT for the issuing
of MQSC commands.

MA95: A Rexx Interface to WebSphere MQ

1

Chapter 1. Introduction

This SupportPac provides a Rexx interface, within the z/OS and Windows environment, for WebSphere
Message Queueing access.

One IRXFUSER load module is provided for z/OS environment. It is the so-called user REXX function
pack which, when placed to the commonly available load library, allows the user to call all the provided
interface functions without additional preparations. This load module is automatically placed in memory
during LOGON, and all interface functions become readily available for use.

Alternative setup may be used, if it is not possible to exploit REXX function pack advantages.
SupportPac load library contains alias names for every exported function, and user should issue TSOLIB
command against this library to make them available for REXX procedures. The first call to RXMQINIT
function takes care of loading the executable into memory, and the last call to RXMQTERM unloads the
interface.

Two Dynamically Linkage Libraries (DLLs) are provided for Windows environment:

RXMQN A DLL that provides access to a Queue Manager located on the same workstation

RXMQT A DLL that provides access to a remote Queue Manager located on the different workstation
via WebSphere MQ Client

Both DLLs contain exactly the same function, and has the same interface, however, both of them cannot
be used in one REXX program simultaneously, because they are linked with different MQ API libraries.
See below how to properly install the interface.

A full implementation of the API as described in the WebSphere MQ Application Programming
Reference Version 6.0 SC34-6596 (referenced below as APR) is provided, so this book will be needed to
use the Rexx Interface. However, there are a few restrictions:

• MQINQ only permits a single attribute to be examined, as support for multiple access is too
complicated in the Rexx environment

• MQSET only permits the setting of a single attribute

• MQCONNX and MQBEGIN functions are not implemented

In addition to the standard API functions, the Rexx Interface provides a number of extensions to the API
to ease the coding with the Exec:

• Browse function is provided

• Header Extraction function is provided to split up a message from a Transmission Queue or a Dead
letter Queue into its components

• Event Interpretation function is provided to split up a message from an Event Queue into its
components

• Trigger Message function is provided to split up a Trigger message from an Initiation Queue and to
generate/parse execution parameters

• Rexx Interface for manipulation of MQ objects (the function that is provided via the MQSC
command).

Implementation of the last function is according with the WebSphere MQ Script (MQSC) Command
Reference Version 6.0 SC34-6597, so this book will be needed to use the Rexx Interface. However, bear
in mind:

• The + - line extender symbols are not required or supported

• The underlying function is provided by use of the PCF ESCAPE command (see WebSphere MQ

MA95: A Rexx Interface to WebSphere MQ

2

Programmable Command Formats and Administration Interface Version 6.0 SC34-6598 for details)

• Some non-printable characters are returned.

MA95: A Rexx Interface to WebSphere MQ

3

Chapter 2. Installing the SupportPac
Take the following actions to install the SupportPac

1. Save the file MA95.zip to a temporary directory.

2. Uncompress using any unzip program keeping the original directory structure. This will produce
the following directories:

MA95\

 bin\ contains the binary ready-to-use files of SupportPac

 doc\ contains this MA95.pdf file that you are reading

 MVS\ contains MVS specific files

 ASM\ MVS Assembler source module (REXX function package)

 Include\ MVS specific include files to use during recompile

 JCL\ job samples for recompiling and running tests

 samples\ contains sample REXX programs to show the interface usage

 src\ contains source code of SupportPac modules common to Windows
 and MVS

 Windows\ contains Windows specific files

 Compile\ contains files necessary to compile on Windows

 Runtests\ contains batch files for running samples

 Util\ contains files necessary to recreate REXX constants definitions

MA95: A Rexx Interface to WebSphere MQ

4

Installing on Windows
Take the following actions to install the SupportPac on Windows:

Copy rxmqn.dll or rxmqt.dll from MA95\bin\ into a suitable directory contained in the PATH entry of
the System -> Advanced -> Environment Variables (obtained via the Control Panel). If you want to
restrict usage, then place in the User variables section, but it is recommended to place DLL in the System
Variables section. Do not try to place both DLLs in the same commonly accessed directory. If both DLLs
are called from the same REXX program the results are unpredictable.

Installing the DLLs
To use the Rexx WebSphere MQ function within a Rexx Exec, the relevant DLL must be made known to
Rexx, and then the interface initialized.

To load the Local Queue Manager interface, code:

rcc = RxFuncAdd('RXMQINIT', 'RXMQN', 'RXMQINIT')
rcc = RXMQINIT()

To load the Client/Server interface, code:

rcc = RxFuncAdd('RXMQINIT', 'RXMQT', 'RXMQINIT')
rcc = RXMQINIT()

Once this initialization sequence has been done, then the Rexx MQ interface is ready for use.

Please note these operational characteristics:

• The RxFuncAdd operations need only be done once for the whole of the Object Rexx environment.

• The RXMQINIT call need to be done for each REXX EXEC run (ie: each Process using the
interface).

• The RXMQTERM call removes the definitions of the functions (so, if two EXECs were running
together, the second would start failing after the first issued the RXMQTERM call). Consequently,
these may be omitted under normal circumstances.

In a thread based environment, a thread should be initialized via RXMQCONS (RXMQINIT should
only be called in the initial process thread)

Compiling the Code for Windows
If you want to add function to the interface (or bring it up to current WebSphere MQ level), then you may
choose to compile the code. You will need the Object Rexx Toolkit along with the WebSphere MQ
libraries and includes.

Two batch files are provided to compile the new version of the interface using the Microsoft
Development Studio for Visual C++:

• MA95\Windows\Compile\make_n.bat to create a DLL that provides access to a Queue
Manager located on the same workstation

• MA95\Windows\Compile\make_t.bat to create a DLL that provides access to a remote Queue
Manager located on the different workstation via WebSphere MQ Client

Before starting the compile ensure that the C++ source code and headers in MA95\src are in the
INCLUDE path as well as WebSphere MQ and Object Rexx Toolkit headers and library files.

MA95: A Rexx Interface to WebSphere MQ

5

Another task you may want to do is upgrading WebSphere MQ constants defined in REXX to a higher
level. These constants are defined in MA95\src\RXMQCONS.hpp file which can be recreated using the
following instructions:

• Place current WebSphere MQ include files CMQC.H and CMQCFC.H to the same directory as
MA95\Windows\Util\makecons.bat

• Make changes, if desired, to MA95\Windows\Util\rxmqcons.cfg which contains the list of
prefixes of constants to be pulled out of the WebSphere MQ include files

• Run the batch file

• Recompile the interface DLLs (as described above) or MVS function pack (as described below)

MA95: A Rexx Interface to WebSphere MQ

6

Installing on z/OS
Take the following actions to install the SupportPac from the unpacked MA95.ZIP file:

• MA95\bin\MA95.xmt contains the load library to be transferred to z/OS system. It needs to
be transferred to the destination TSO system as a sequential binary file with a record format
of FB 80.

• To send the file via ftp open the session with the target host. Ensure the BINARY option is set,
then use the following commands:
quote site fixrecfm 80

put MA95.xmt MA95xmit

• On TSO, issue this command:
receive indsname(MA95XMIT)

• When prompted for a filename, reply

dsn(MA95.LOAD)

• This creates a PDS called mvsuserid.MA95.LOAD with SupportPac executables

• Use ISPF 3.2 to delete the MA95XMIT file

• Use ISPF 3.3 to copy all members from mvsuserid.MA95.LOAD into the load library of your
choice. If you want other users to access the MA95 interface, select a common access load
library (like LINKLIB concatenation). SupportPac is automatically recognized by TSO as a
REXX function pack during LOGON, and interface functions become readily available for
use. Otherwise use a private load library, which may be made accessible from your
TSO/ISPF sessions by the use of TSOLIB ACTIVATE DSNAME(MA95.LOAD) command.

• To permit tracing to appear, ensure that the following DD-statement is in your TSO
LOGON Procedure (or dynamically issue a TSO ALLOCATE FI(SYSPRINT) SYSOUT
command)
//SYSPRINT DD SYSOUT=*

The MVS file names have been described are an example. Please use whatever conventions are suitable
for your installation.

To use the Rexx WebSphere MQ function within a Rexx Exec, nothing special has to be done to make it
known to Rexx (compared to Windows RxFuncAdd call).

Compiling the Code for z/OS
If you want to add function to the interface (or bring it up to current WebSphere MQ level), then you may
choose to compile the code. You will need IBM C/C++ Compiler and Language Environment and High
Level Assembler for z/OS along with the WebSphere MQ libraries and includes. Another task you may
want to do is upgrading WebSphere MQ constants defined in REXX to a higher level. The latter task is
described in Compiling the Code for Windows on page 4.

To assist with re-building the code, sample jobs are provided in MA95\MVS\JCL directory. They are:

• ASM95 – use this one to assemble REXX function package part of SupportPac

• CC95 – use this one to compile C++ part of SupportPac

• LKED95 – use this job to bind Assembler, C++ parts and WebSphere MQ libraries into load
module.

These sample jobs refer to WebSphere MQ, C/C++ and Language Environment libraries (which names
you may need to update for your installation) as well as SupportPac libraries you will need to create. It is
recommended to use PDSE type libraries. Suggested names and attributes for them are as follows:

• WMQ.MA95.ASM – RECFM=FB,LRECL=80

MA95: A Rexx Interface to WebSphere MQ

7

• WMQ.MA95.CC – RECFM=VB,LRECL=255
• WMQ.MA95.OBJ – RECFM=FB,LRECL=80
• WMQ.MA95.LOAD – RECFM=U,LRECL=32760

First, you will need to transfer the source code from MA95\src to WMQ.MA95.CC on your z/OS system.
Then transfer MVS specific code from MA95\MVS\ASM to WMQ.MA95.ASM and MA95\MVS\Include to
WMQ.MA95.CC. Now make necessary changes to the code and submit 3 sample jobs to build the load
module.

TSO Support

TSO Batch Support
The MA95 interface will run in Batch mode via IKJEFT01, using a setup such as:

//LIB EXEC PGM=IEBGENER
//*
//* Create the exec library
//*
//SYSUT2 DD DSN=&&LIB(SILLY),DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(CYL,(1,1,10)),
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=800)
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT1 DD DATA,DLM='##'
/* A Silly Exec */
RXMQINIT()
say 'WMQA is very very very very silly'
RXMQTERM()
exit 0
/* End of SILLY exec */

/*
//RUN EXEC PGM=IKJEFT01
//SYSPROC DD DSN=&&LIB,DISP=SHR
//STEPLIB DD DSN=WMQ.MA95.LOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
SILLY
/*

Figure 1. TSO Batch JCL

TSO Native Support
When running within a native TSO Exec (ie: one issued outside of the ISPF environment, or via the TSO
command within ISPF), the Rexx processor is attached to TSO as a separate TCB. Consequently, the
connection to the Queue Manager will only last throughout the lifetime of the Exec. If processing is
interrupted via PA1, then the Rexx processor TCB is terminated, and so the MQ Step termination routines
will be driven to terminate all extant accesses.

TSO Split Screen Support
When running within a ISPF Split Screen, the Rexx processor is attached to each part as a separate TCB.

MA95: A Rexx Interface to WebSphere MQ

8

Consequently, the same considerations apply as in “TSO Native Support,” so the Queue Manager
connection, and the Rexx variables cannot be shared between the two halves.

MA95: A Rexx Interface to WebSphere MQ

9

Chapter 3. Interface Design Philosophy
The Rexx MQ Interface API differs from that defined in the APR. This is because the call-type of API is
not suitable for the Rexx environment. This has been replaced with a set of verbs that use Rexx Stem
variables to contain the relevant information.

The opportunity has also be taken to remove some parameters due to the restriction that a single Windows
thread or z/OS task (Exec in the Rexx environment) can only communicate with a single Queue Manager.
Additionally, in order to simplify coding, Input and Output versions of object are provided (this saves
deleting and rebuilding things like Message descriptors which are updated by a MQ Verb).

As part of the initialization call, a number of MQ Constants (as described in WebSphere MQ Constants
Version 6.0 SC34-6607) are defined to the Rexx workspace. Thus, you will be able to code options
according to the descriptions in this book. However, these values are not protected against change, so you
should avoid using your own variables starting with MQ.

The command interface takes a string of characters in the format of a text command as described in the
MQ Command reference. This is then placed in the Command Input Queue in the format of a PCF
ESCAPE command. The Command server processes the command, and returns the results in a
dynamically generated ReplyToQ (called RXMQC.*) based upon the ModelReplyToQ specified. Each
message is returned as an element of a Rexx Stem variable, with the number of messages being in stem.0
in the usual Rexx fashion. These returned messages may have non-printable characters in them.

MA95: A Rexx Interface to WebSphere MQ

10

Chapter 4. General Points

Compatibility with Previous SupportPacs
The previous SupportPacs, namely, MA18/19 for MVS/ESA and MA77/78 for Windows, used different
names for the same implemented WebSphere MQ functions. That is why it was not possible to write a
single REXX exec to execute in both environments.

In order to provide this capability the function names were unified to provide for running the same REXX
exec unchanged on z/OS and Windows. The MA95 Common Function names are presented below in the
table below. Sample REXX execs which run equally in both environments are provided in
MA95\samples directory and explained more in Appendix B. Sample REXX execs on page 78.

To maintain compatibility with previous SupportPacs the old function names are still serviced, so that
existing REXX execs are not required to be changed. For example, the calls to RXMQN…/RXMQT…
in Windows and RXMQV in z/OS are supported and should provide the same results as new Common
Functions names. The parameter lists remain unchanged.

In the rest of this document only the new Common Function names (RXMQxxxx) are described. See the
table below for relationship between new and old function names specified in older manuals.

Table 1. Function Names
MQ Function
Name

MA95 Common
Function

MA77/78 Windows
Function

MA18/19 MVS/ESA
Function

Page

Standard MQ functions:

MQBACK RXMQBACK RXMQNBACK RXMQVBACK 44

MQCLOSE RXMQCLOS RXMQNCLOSE RXMQVCLOSE 37

MQCMIT RXMQCMIT RXMQNCMIT RXMQVCMIT 43

MQCONN RXMQCONN RXMQNCONN RXMQVCONN 31

MQDISC RXMQDISC RXMQNDISC RXMQVDISC 33

MQGET RXMQGET RXMQNGET RXMQVGET 45

MQINQ RXMQINQ RXMQNINQ RXMQVINQ 39

MQOPEN RXMQOPEN RXMQNOPEN RXMQVOPEN 34

MQPUT RXMQPUT RXMQNPUT RXMQVPUT 48

MQPUT1 RXMQPUT1 -- -- 51

MQSET RXMQSET RXMQNSET RXMQVSET 41

Extension functions:

Initialization RXMQINIT RXMQNINIT RXMQVINIT 28

Thread initialization RXMQCONS RXMQNCONS RXMQVCONS 29

Termination RXMQTERM RXMQNTERM RXMQVTERM 30

Command function RXMQC RXMQCNC RXMQVC 55

Browse RXMQBRWS RXMQNBROWSE RXMQVBROWSE 57

Header Extraction RXMQHXT RXMQNHXT RXMQVHXT 59

Event Extraction RXMQEVNT RXMQNEVENT RXMQVEVENT 64

Trigger Extraction RXMQTM RXMQNTM RXMQVTM 69

MA95: A Rexx Interface to WebSphere MQ

11

MQ Function
Name

MA95 Common
Function

MA77/78 Windows
Function

MA18/19 MVS/ESA
Function

Page

Universal function
caller

-- -- RXMQV --

Warning. Some minor incompatibilities may still exist between the old and new SupportPacs due to
optimizations made during the code merge. For example, small changes were made to improve EVENT
queue message parsing algorithm (see RXMQEVNT on page 64). If you encounter a problem, please
contact the authors to get workaround or have your suggestion included in the next release of SupportPac.

Return Codes
All the RXMQ functions return a standard Rexx return string. This is structured so that the numeric
Return Code (which may be negative) is obtained by a word(RCC,1) call.

The Return Code for an operation can be negative to show that the interface has detected an error,
otherwise it will be the MQ Completion Code (not the uninformative Reason Code).

The Return String is in text format as follows:

Word 1 Return Code

Word 2 MQ Completion Code (or 0 if successful)

Word 2 MQ Reason Code (or 0 if successful)

Word 4 RXMQ function being run

Word > OK or an helpful error message

Last Operation
In addition, the current (ie: the settings last set) values are available in these variables:

RXMQ.LASTRC current operation Return Code

RXMQ.LASTCC current operation MQ Completion Code

RXMQ.LASTAC current operation MQ Reason Code

RXMQ.LASTOP current operation RXMQ function name

RXMQ.LASTMSG current operation Return String

Return Code Naming
A set of variables called RXMQ.RCMAP.nn are also placed in the workspace, where nn is the MQ Reason
Code. These variables can be used to turn a return code number into the defining string.

Thus:

rcc = '2048 2 2048 RXMQPUT ERROR'
interpret 'fcs = RXMQ.RCMAP.'word(rcc,1)
/* fcs = MQRC_PERSISTENT_NOT_ALLOWED */

Message Lengths
When a MQGET is performed, if the buffer size is too small for the message, then the returned message
length is the real length of the message, not the smaller size which fits in the buffer (see DataLength for
MQGET in the APR).

Consequently, if you specify a too small a message length, and do not take any notice of the return code

MA95: A Rexx Interface to WebSphere MQ

12

indicating truncation, then the length of the message in stem.0 will be bigger than the message in stem.1.
This will result in a mysterious loss of data in the message.

Header and Event processing
Functions RQMQHXT and RXMQEVNT will take messages and split them up into the contained
components. These exploded components may clash with those for the Message Descriptor (or other like
things). Therefore, use different stem. names to avoid this possibility.

MA95: A Rexx Interface to WebSphere MQ

13

ZLIST
One of the problems with REXX stem. variables is that it is difficult to know what components (things
after the .) are associated with the stem. You have to know which ones might be around, and then test
with something like:

if (stem.comp1 <> 'STEM.COMP1') then say 'comp1 =/'stem.comp1'/'
if (stem.comp2 <> 'STEM.COMP2') then say 'comp2 =/'stem.comp2'/'

To get around this problem, the output descriptors will contain a component called ZLIST. ZLIST will
contain a list of words, each word a component name which is attached to the stem variable. You can then
use the Rexx words (to get the number of elements) and word (to extract the component name) functions
to manipulate the stem. variable. ZLIST does not contain itself (ie: ZLIST is not within stem.ZLIST).

The presence of an item in ZLIST implies that the relevant Stem.Component is defined as a Rexx
Variable. However, the contents may be null (a length of zero or set to '') depending upon what the
underlying MQ object contains.

This facility is not of much use for the RXMQOPEN, RXMQGET and RXMQPUT calls (wherein
ZLIST is provided for the Output Object Descriptor, Output Message Descriptor, Output Get Message
Options and Output Put Message Options) as the contents of the Output stem. variable is of fixed format.
However, it can be used to display the stem. variable and can also be useful in copying operations.

For RXMQHXT and RXMQEVNT processing, ZLIST is of variable format, containing things relevant
to the Message or Event being processed. ZLIST for RXMQHXT processing contains components 0 and
1 (the original message) as well as NAME and TYPE. For RXMQEVNT processing, NAME, TYPE and REA are
always present; the rest of the list will depend upon the event being processed.

For example to display an Object Descriptor:

drop iod. ; drop ood.
iod.on = 'N1'
iod.ot = MQOT_Q

rcc = RXMQOPEN('iod.', mqoo_inquire, 'h1', 'ood.')
say 'RC=' rcc 'H=' h1
do j=1 to words(ood.zlist) ; k = word(ood.zlist,j) ; say k '/'ood.k'/' ; end

MA95: A Rexx Interface to WebSphere MQ

14

ZLIST can be used for Event processing:

drop bm. ; drop ed.
rcc = RXMQBRWS(he, 'bm.')
say 'Browse RC=' rcc

rcc = RXMQEVNT('bm.', ' ed.')
say 'Event RC =' rcc
say '.zlist /'ed.zlist'/'

/* Protect against bad function by being very cautious! */
if ((ed.zlist <> 'ED.ZLIST') & (words(ed.zlist) <> 0)) then ,
 do j=1 to words(ed.zlist)
 k = word(ed.zlist,j)
 say 'ed.'k' /'ed.k'/'
 end
 end
/* I'm only interested in Channel Stopped Events */
/* */
/* However, do not want to access undefined */
/* components. */
/* */

if (ed.name = 'CHANNEL_STOPPED') then do
 uvars = 'Q_MGR_NAME CHANNEL_NAME REASON_QUALIFIER ERROR_IDENTIFIER'
 do i=1 to words(uvars)
 uv = word(uvars,i)
 if (wordpos(uv,ed.zlist) <> 0) then ,
 say uv '= <'ed.uv'>'
 end
end

/* So, if PN is not set within the Event */
/* (it's an optional parameter), it will */
/* not be accessed. */

Figure 2. ZLIST and Event processing

MA95: A Rexx Interface to WebSphere MQ

15

Stem Variables
As described in “Chapter 5. Handling MQ Descriptors” on page 18, Stem variables are extensively used
in this interface. A Stem variable is one that has various bits separated by dots (such as a.b.c).
Everything after the first dot is called a component; so in the above example, a is the Stem variable, and b
& c are components.

You should be aware that you can cause conflicts if you use Rexx variables with the same name as
components. This is because Rexx will substitute the values of component names as if they were
variables before usage.

a.1 = 15
a.2 = 3

b = 2
say a.b /* -> 3 due to substitution */

This can cause problems if you use any of the returned component names from this utility as native
variables because you will get an 'unknown' setting due to the substitution.

qn = 'WMQA'
ud = 'some userish data'

rcc = RXMQ..(...data_which_will_set_.qn=A , 'out.')

say out.qn /* tries to resolve out.WMQA */
 /* -> A */
 /* as the utility does the substitution */

say out.ud /* tries to resolve out.some userish data */
 /* -> a Rexx error due to invalid var name */

Unless you are deliberately doing this sort of processing, I suggest you avoid using variables which are
returned as components.

MA95: A Rexx Interface to WebSphere MQ

16

Rexx Execs
An Object Rexx exec in the Windows environment behaves differently from that in the z/OS environment
due to the way the function is placed in regard to the operating system. One of these is in the way one
runs an exec.

Under Windows a Rexx exec is run via

REXX exec.rexx

whereas under z/OS the exec is run via

exec

to make the latter style available under Windows, you can code up a one line batch file as follows:

@REXX exec.rexx %1 %2 %3 %4 %5 %6 %7 %8 %9

MA95: A Rexx Interface to WebSphere MQ

17

Trace
Tracing is provided by settings in the RXMQTRACE Rexx variable. Note that the tracing is sent to the
currently open STDOUT stream, and some of the settings can produce a lot of output. The settings are:

CONN MQCONN

DISC MQDISC

OPEN MQOPEN

CLOSE MQCLOSE

GET MQGET

PUT MQPUT

PUT1 MQPUT1

INQ MQINQ

SET MQSET

CMIT MQCMIT

BACK MQBACK

COM MQSC

BRO Browse extension

HXT Header extraction extension

EVENT Event expansion extension

TM Trigger message extension

MMD Rexx stem var -> MQMD

MOD Rexx stem var -> MQOD

MPO Rexx stem var -> MQPMO

MGO Rexx stem var -> MQGMO

BMD MQMD -> Rexx stem var

BOD MQOD -> Rexx stem var

BPO MQPMO -> Rexx stem var

BGO MQGMO -> Rexx stem var

SK Return Code processing

TR Thread based processing

INIT Initialization processing (including RXMQCONS)

TERM Deregistration processing

* Trace everything!!!

So, to trace Gets and Puts, one would code

RXMQTRACE = 'PUT GET'

MA95: A Rexx Interface to WebSphere MQ

18

Chapter 5. Handling MQ Descriptors
The API defined for MQ in the APR Manual uses various structures to pass information both into and out
of the Queue Manager. These structures are:

MQOD The Object Descriptor, used by MQOPEN and MQPUT1 verbs to specify the MQ
Object being processed, and return various attributes of the accessed item

MQMD The Message Descriptor, used by MQGET and MQPUT verbs to specify (for the
MQPUT) attributes for the emplaced message, and return these attributes (for the
MQGET)

MQGMO This structure controls the operation of the MQGET verb

MQPMO This structure controls the operation of the MQPUT verb

MQCHARV This structure represents variable length strings used in MQOD structure

These structures are input/output for the MQ Verbs.

In order to supply these structures to the underlying MQ Verbs within this Rexx MQ Interface, Rexx
stem stem variables are used. In order to reduce complexity, and enhance the ease of usage of the
interface, separate Stem variables are used for input and output. This reduces the complexity of the Rexx
code, as the input Stem variable may be reused without completely reinitializing it.

This approach allows, for simple applications, the initial setup of the stem variables representing the
requested options; these are then repeatedly reused, the output versions simply not being accessed.

The structure of the stem variables is fixed. That means that the name of the stem variable (before the
dot) can be chosen by the caller, whilst the latter part (after the dot) is fixed by the interface. The things
after the dot are called the Components of the stem variable.

The normal Rexx rules apply to these Stem variables, in particular they are case invariant (Rexx treats all
variables as being of Upper case), and substitution may occur within the name. Therefore, take care to
avoid using variables that could clash with the naming conventions of these interface requirements (see
“Stem Variables” on page 15).

When supplying these stem variables to the interface, you have to pass the name of the stem variable
(including the trailing dot). Thus, one would normally specify this information as a literal (RXMQ...(
..., 'AGMO.',...)).

However, you are at liberty to use the normal Rexx substitutions on an interface call (so Z = 'AGMO.';
RXMQ...(..., z) is correct), and even abandon the stem variable convention completely (but this will
lead to unwieldy execs). This abandonment, however, does not apply to one of the RXMQOPEN
parameters.

When you build the stem variable, component abbreviations for the full name of the relevant structure's
field is used (eg: CCID for CodedCharSetId) to improve legibility of the Exec. You only specify those
fields of interest - the others should be omitted. The omitted components will default to the relevant
settings as defined in the APR (usually a value or nulls).

However, although some fields of the descriptors are only used for input or output, this interface will
utilize all of the information within the Stem variable - even if it is not used by the underlying MQ code
(such as the Destination Count fields within the PMO descriptor - these are not used by the underlying
MQ code, but this interface will process them if so supplied).

When the interface returns a structure to the exec, in the named Stem variable, all the components (fields)
will be placed within the stem.structure.

The actual settings for these component variables are documented in the MQ APR to which you should
refer. As the interface places within the Rexx workspace all MQ_ numeric values, the stem components can
be set using the normal MQ conventions (eg: stem.PER = MQMD_NOT_PERSISTENT). The interface does
not check that the values are relevant for the field.

In the case of text fields, the interface will truncate supplied data that is too long for the MQ structure
without notification. Fields that are to be null should not be supplied to the interface, and are returned as
nulls ('').

MA95: A Rexx Interface to WebSphere MQ

19

Actual message data to/from the Queue Manager is passed via the usual Rexx convention (see “Message
Lengths” on page 11 for a warning about truncation):

stem.0 contains the length of the data

stem.1 contains the message data

Functions RXMQHXT and RXMQEVNT will take messages and split them up into the contained
components. These exploded components may clash with those for the Message Descriptor (or other like
things). Therefore, use different stem. names to avoid this possibility.

ZLIST processing (see “ZLIST” on page 13) is available for the Output Stems representing a MQOD,
MQMD, MQGMO or MQPMO. If present within an Input Stem. variable, ZLIST is ignored.

MA95: A Rexx Interface to WebSphere MQ

20

The Object Descriptor
The Object descriptor is used by RXMQOPEN and RXMQPUT1 calls (MQOPEN and MQPUT1 verbs)
to specify the MQ Object being processed, and return various attributes of the accessed item.

If you are accessing a Queue, then the short cut form of RXMQOPEN/RXMQPUT1 can be used, and so
the Object Descriptor is only of interest upon completion of the call. The only interesting part of the
MQOD in this case is the name of the 'real' queue generated when a Model queue is opened.

Table 2. Object Descriptor (MQOD) Mappings
Structure name Stem.

Component
Input, Output or

Both
Format

Version 1

Version .VER I MQLONG

ObjectType .OT I MQLONG

ObjectName .ON B MQCHAR48

ObjectQMgrName .OQM B MQCHAR48

DynamicQueueName .DQN I MQCHAR48

AlternateUserID .AUID I MQCHAR12

Version 2

RecsPresent .RP I MQLONG

KnownDestCount .KDC O MQLONG

UnknownDestCount .UDC O MQLONG

InvalidDestCount .IDC O MQLONG

Version 3

AlternateSecurityID .ASID I MQBYTE40

ResolvedQName .RQN O MQCHAR48

ResolvedQMgrName .RQMN O MQCHAR48

Version 4

ObjectString .OS. I MQCHARV

SelectionString .SS. I MQCHARV

ResObjectString .ROS. O MQCHARV

ResolvedType .RT O MQLONG

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• ZLIST is set to relevant existing field Stem. Component names

• Components RP and ASID are supported only in Windows

MA95: A Rexx Interface to WebSphere MQ

21

The Message Descriptor
The Message Descriptor details the type of the message being processed. It also has a meaning where
messages are obtained from a queue - whereat it is used to select messages for obtention from the queue.
The interface does not check that combinations of components are valid.

As separate versions of a Message Descriptor are required by the interface for Input and Output on each
call, the input MQMD can be reused for subsequent accesses. Components omitted will take the defaults
as defined in the APR.

Table 3. Message Descriptor (MQMD) Mappings
Structure name Stem.

Component
Input, Output or

Both
Format

Version 1

Version .VER I MQLONG

Report .REP O/I MQLONG

MsgType .MSG O/I MQLONG

Expiry .EXP O/I MQLONG

Feedback .FBK O/I MQLONG

Encoding .ENC O/I MQLONG

CodedCharSetId .CCSI O/I MQLONG

Format .FORM O/I MQCHAR8

Priority .PRI O/I MQLONG

Persistence .PER O/I MQLONG

MsgId .MSGID B/B MQBYTE24

CorrelId .CID B/I MQBYTE24

BackoutCount .BC B/- MQLONG

ReplyToQ .RTOQ O/I MQCHAR48

ReplyToQMgr .RTOQM O/I MQCHAR48

UserIdentifier .UID O/B MQCHAR12

AccountingToken .AT O/B MQBYTE32

ApplyIdentityData .AID O/B MQCHAR32

PutApplType .PAT O/B MQLONG

PutApplName .PAN O/B MQCHR28

PutDate .PD O/B MQCHAR8

PutTime .PT O/B MQCHAR8

ApplOriginData .AOD O/B MQCHAR4

Version 2

GroupId .GID B/B MQBYTE24

MsgSeqNumber .MSN B/B MQLONG

MA95: A Rexx Interface to WebSphere MQ

22

Structure name Stem.
Component

Input, Output or
Both

Format

Offset .OFF B/B MQLONG

MsgFlags .MF B/B MQLONG

OriginalLength .OL O/B MQLONG

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• ZLIST is set to relevant existing field Stem. Component names

MA95: A Rexx Interface to WebSphere MQ

23

The Get Message Option Structure
The Get Message Option Structure requests what message is to be obtained from a queue via the MQGET
verb. As it is updated by this operation, RXMQGET uses an Input and Output Stem variable to hold this
information.

Table 4. Get Message Option (MQGMO) Mappings
Structure name Stem.

Component
Input, Output or

Both
Format

Version 1

Version .VER I MQLONG

Options .OPT I MQLONG

WaitInterval .WAIT I MQLONG

ResolvedQueueName .RQN O MQCHAR48

Version 2

MatchOptions .MOPT I MQLONG

GroupStatus .GS O MGCHAR

SegmentStatus .SS O MGCHAR

Segmentation .SEG O MGCHAR

Version 3

MsgToken .MT B MQBYTE16

ReturnedLength .RL O MQLONG

Version 4

MsgHandle .MH I MQHMSG

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• ZLIST is set to relevant existing field Stem. Component names

MA95: A Rexx Interface to WebSphere MQ

24

The Put Message Options Structure
The Put Message Option Structure requests what type of message is to be placed in a queue via the
MQPUT or MQPUT1 verb. As it is updated by this operation, RXMQPUT and RXMQPUT1 uses an
Input and Output Stem variable to hold this information.

Table 5. Put Message Options (MQPMO) Mappings
Structure name Stem.

Component
Input, Output or

Both
Format

Version 1

Version .VER I MQLONG

Options .OPT I MQLONG

Timeout .TIME I MQLONG

Context .CON I HOBJ

KnownDestCount .KDC O MQLONG

UnKnownDestCount .UDC O MQLONG

InvalidDestCount .IDC O MQLONG

ResolvedQueueName .RQN O MQCHAR48

ResolvedQueueMgrName .RQMN O MQCHAR48

Version 2

RecsPresent .RP I MQLONG

Version 3

OriginalMsgHandle .OMH I MQHMSG

NewMsgHandle .NMH B MQHMSG

Action .ACT I MQLONG

PubLevel .PL I MQLONG

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• ZLIST is set to relevant existing field Stem. Component names

• Component RP is supported only in Windows.

MA95: A Rexx Interface to WebSphere MQ

25

The Variable Length String Structure
The Variable Length String Structure (MQCHARV) designates character string of variable length and specific
character set identifier.

Actual string data to/from the Queue Manager is passed via the usual Rexx convention:

stem.0 contains the length of the string

stem.1 contains the string itself

stem. name is constructed of the name of the higher structure and the name of this structure component,
like, for example, OD.ROS.1 stands for ReturnedObjectString in Object Descriptor structure. Before the
call appropriate OD.ROS.0 variable should be set to the biggest of string length and buffer size. During
the call VSBufSize is set to OD.ROS.0 and VSLength is set to actual string length. String buffer is
automatically created and it's pointer is placed to MQCHARV VSPtr. On return from the call VSLength value
is placed to OD.ROS.0 variable, returned string is placed to OD.ROS.1 and buffer is released.

Coded character set identifier is assigned to stem.CCSI variable.

MA95: A Rexx Interface to WebSphere MQ

26

Specifying parameters for command interface (RXMQC)
The interface requires some parameters to control operation:

• The name of the queue Manager (if omitted, the default Queue Manager is accessed)

• The name of the Command Input Queue (defaults to SYSTEM.ADMIN.COMMAND.QUEUE)

• The name of the model ReplyToQ (defaults to SYSTEM.MQSC.REPLY.QUEUE)

• A Timeout for the operation (defaults to 5 seconds)

In order to supply this information to the underlying MQ Verbs within this Rexx MQ Interface, Rexx
stem variables are used.

The structure of the stem variables is fixed. That means that the name of the stem variable (before the
dot) can be chosen by the caller, whilst the latter part (after the dot) is fixed by the interface. The things
after the dot are called the Components of the stem variable.

The normal Rexx rules apply to these Stem variables, in particular they are case invariant (Rexx treats all
variables as being of upper case), and substitution may occur within the name. Therefore, take care to
avoid using variables that could clash with the naming conventions of these interface requirements.

When supplying these stem variables to the interface, you have to pass the name of the stem variable
(including the trailing dot). Thus, one would normally specify this information as a literal (RXMQC(...,
'ASTEM.',...)).

However, you are at liberty to use the normal Rexx substitutions on an interface call (so Z = 'ASTEM.';
RXMQC(..., z) is correct), and even abandon the stem variable convention completely (but this will lead
to unwieldy execs). This abandonment, however, does not apply to one of the RXMQC parameters.

When you build the stem variable, component abbreviations for the full name of the relevant structure's
field is used (eg: CQ for Command Queue) to improve legibility of the Exec. You only specify those
fields of interest - the others should be omitted. The omitted components will default to the relevant
settings as defined in the interface.

Actual message data in response to the Command is passed via the usual Rexx convention:

stem.0 contains the length of the data

stem.1 contains the data

MA95: A Rexx Interface to WebSphere MQ

27

Chapter 6. Thread Support
Some non-IBM Versions of Rexx which run in the Windows environment may support Rexx activity
within threads. IBM Object Rexx for Windows does not support threads. There is no multitask support in
z/OS REXX environment, so all the thread-based issues in this documentation will be applicable only for
Windows Rexx/Threaded environment.

This utility supports access to the API in a Rexx/Threaded environment; however, this function is
untested and usage is at your own risk.

Initialization
The initialization of via RXMQINIT should be done under the Process (main) thread. This will ensure
that the functions are available for all the threads which are subsequently created within the process.

Within each thread, RXMQINIT should not be called (as this would remove all Global information
stored within the interface). The thread should be initialized with a RXMQCONS call which simply
creates the MQ mappings within the Rexx Variable space for the thread.

Termination
The usage of RXMQTERM will remove all access to the interface whomsoever is using it with the
Process. If this is done before all threads within the Process have stopped accessing MQ facilities, this
will result in errors (as the function will affect threads other than the issuing one).

No special processing needs to be done at thread termination, as MQ facilities will terminate any current
access within the thread.

Connection and Disconnection
Within the thread, the RXMQCONN and RXMQDISC call should be made as normal to establish and
terminate access to the Queue Manager. Each Thread can contact a different Queue Manager. The scope
of the Connection is only within the issuing Thread. Access made in the original processes 'main' thread
do not spread to the subsequent threads within the process.

When the RXMQDISC call is issued, all access to the Queue Manager within the issuing thread are
effected. The graceful processing described in “Termination” on page 30 applies to all accesses within the
current thread.

Access scope
The handle returned by the RXMQCONN and used for most of the access functions of the interface has a
scope of the issuing thread. This is policed within the interface to prevent MQ errors.

Functions like RXMQCMIT and RQMQBACK have a scope of all accessed MQ objects within the
issuing thread; they do not effect accesses outside the thread.

Shared Variables
The interface implicitly assumes that Rexx Variables within a thread are not shared across threads. If
your version of Rexx supports shared Rexx variables across threads, then ensure that access is suitably
restricted (ie: the variables used are unique to the threads) across these threads.

MA95: A Rexx Interface to WebSphere MQ

28

Chapter 7. The Interface
The functions provided by this Rexx MQ interface roughly follow those provided by the underlying MQ
API, with some extensions and the calls required by Rexx to initialize the interface.

All the parameters specified for a call are required; none can be omitted.

When the interface detects an error, a negative return code will be provided as the first word in the return
string. These are documented with the associated message under the individual calls.

Initialization

Description
This function initializes the interface, defines all the functions for Rexx usage, and places a number of the
MQ* constants into the Rexx workspace. These constants are described in WebSphere MQ Constants
Version 6.0 SC34-6607. See MA95\src\RXMQCONS.hpp for a list of the defined constants.

 The RXMQINIT call needs to be done within each EXEC. In a thread-based environment, issue this
call only in the 'owning' thread for the process.

Parameters
None

Call

rcc = RXMQINIT()

Additional Interface Return Codes and Messages
None

Example

rcc = RXMQINIT()

MA95: A Rexx Interface to WebSphere MQ

29

Thread Initialization

Description
This function places a number of the MQ* constants into the Rexx workspace for a thread. These constants
are described in WebSphere MQ Constants Version 6.0 SC34-6607. See MA95\src\RXMQCONS.hpp
for a list of the defined constants. This function can be called when there is no Queue Manager activity.

The RXMQCONS call needs to be the first call within a thread to setup the MQ* constants. It can be
called generally to do the same function.

Parameters
None

Call

rcc = RXMQCONS()

Additional Interface Return Codes and Messages
None

Example

rcc = RXMQCONS()

MA95: A Rexx Interface to WebSphere MQ

30

Termination

Description
This function simply removes the access to the interface functions from Rexx. It does not initiate MQ
Termination processing. If a prior RXMQDISC has not been done, then the usual End-of-Process MQ
function will (eventually) stop access to the Queue Manager.

The MQ* definitions are left in the Rexx workspace, so that new commands can be composed using the
'real' notations.

As the RXMQTERM call removes the definitions of the functions, if two EXECs were running together,
the second would start failing after the first issued the RXMQTERM call. Consequently, this call should
be omitted under normal circumstances.

In a thread-based environment, issue this call only in the 'owning' thread for the process when all other
accesses have ended.

Parameters
None

Call

rcc = RXMQTERM()

Additional Interface Return Codes and Messages
None

Example

rcc = RXMQTERM()

MA95: A Rexx Interface to WebSphere MQ

31

RXMQCONN

Description
This function connects the Rexx Interface to the Queue Manager. Note that there is a MQ restriction such
that only one Queue Manager can be contacted from a Windows thread or z/OS task (the Rexx processor,
in this case).

This call has to be made after the RXMQINIT call, and only be made once (unless a RXMQDISC is
made).

Owing to the above restriction, the Queue Manager Handle returned by the use of MQCONN within the
interface is not a useful thing, and so is not returned to the Rexx Exec.

Parameters
1. The name of the Queue Manager to connect to. (Input only).

Call

rcc = RXMQCONN(QM)

Additional Interface Return Codes and Messages

-1 0 0 RXMQCONN Bad number of parms

Explanation You must specify only one parameter to RXMQCONN; this parameter being the name of
the Queue Manager to contact.

-2 0 0 RXMQCONN Null QM name

Explanation The Queue Manager name supplied contained only nulls, not a proper name.

-3 0 0 RXMQCONN Zero length QM name

Explanation The Queue Manager Name supplied was of zero length (ie: '').

-4 0 0 RXMQCONN QM name too long

Explanation The maximum length of a valid Queue Manager Name is MQ_Q_MGR_NAME_LENGTH bytes.

-5 0 0 RXMQCONN No available Q objects

Explanation The number of concurrent MQ Objects accessed with the process has reached its limit.

-95 0 0 RXMQCONN Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQCONN Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

-98 0 0 RXMQCONN Already Connected to a QM

Explanation The current thread has already Connected to a Queue Manager

MA95: A Rexx Interface to WebSphere MQ

32

-99 0 0 RXMQCONN UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

rcc = RXMQCONN('WMQA')

This call will contact the local Queue Manager called WMQA. If this Queue Manager is not defined, or
not running, then the call will fail.

If the RXMQCONN Client/Server interface is being used, then the MQ Client/Server Communications
must be configured and active for the Server Queue Manager to be contacted. A Client/Server MQCONN
takes longer to complete than a local contact.

MA95: A Rexx Interface to WebSphere MQ

33

RXMQDISC

Description
This function disconnects (MQDISC) from the currently connected Queue Manager. As an extension to
the function, the interface will issue a MQCLOSE(…,MQCO_NONE) for any still open queue accessed
via the interface (this is to cope with Rexx Tracing, and so give the user a simple way of 'gracefully'
exiting when in test mode).

Parameters
None.

Call

rcc = RXMQDISC()

Additional Interface Return Codes and Messages
-1 0 0 RXMQDISC Bad number of parms

Explanation You cannot specify any parameters to this call.

-95 0 0 RXMQDISC Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQDISC Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

-98 0 0 RXMQDISC Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQDISC UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

rcc = RXMQDISC()

This call will disconnect from the currently accessed Queue Manager doing a MQCLOSE(None) on any
Queues still open at this point.

If the RXMQDISC Client/Server interface is being used, then the MQ Client/Server Communications
will stop after this call has successfully completed.

MA95: A Rexx Interface to WebSphere MQ

34

RXMQOPEN

Description
This verb provides access to a MQ Object via a MQOPEN call. Upto 100 Objects can be accessed via this
interface in any one process (ie: 100 spread throughout all the threads owned by the process). Although
one will normally be accessing a Queue, any of the allowed MQ objects can be accessed.

Parameters
1. The name of a Stem variable (including the dot) specifying the Object Descriptor for the MQ

Object to access. This is an input only field. The format of this Stem variable is described in
“The Object Descriptor” on page 20.
If the name given does not end in a dot, then the data is taken to be the name of a Queue (or
Model Queue) to access. This short cut removes the requirement to fully format up a stem
variable for 'normal' Queue access; but note that you supply the name of the Queue, not the name
of the variable containing the name of the Queue.

2. The MQOPEN Options (as described in the APR). This is an input only field, and should resolve
into a number (not the name of a field containing the Options).

3. The name of a variable to contain a handle for the MQ Object being accessed. This is an output
field, and should be the name of the field to receive the handle.
The handle returned is not the handle returned by the underlying MQOPEN verb; this latter value
is not accessible outside of the interface. This handle must be quoted on all subsequent
accesses to the Object.

4. The name of a Stem variable (including the dot) into which is placed the Object Descriptor
returned by the underlying MQOPEN verb. This is an output only field.
The format of this Stem variable is described in “The Object Descriptor” on page 20; ZLIST
processing is provided.

Call

rcc = RXMQOPEN('Stem.Input.OD.', OpenOptions, 'VarHandle', 'Stem.Output.OD.')

or
rcc = RXMQOPEN(QueueName , OpenOptions, 'VarHandle', 'Stem.Output.OD.')

Additional Interface Return Codes and Messages
-1 0 0 RXMQOPEN Bad number of parms

Explanation You must specify four parameters to the RXMQOPEN call.

-2 0 0 RXMQOPEN Null Input OD/Qname

Explanation A null has been supplied for the first parameter, the name of a stem variable for an input
Open Descriptor or the name of a Queue to access.

-3 0 0 RXMQOPEN Zero length Input OD/Qname

Explanation No value has been keyed for the first parameter, the name of a stem variable for an input
Open Descriptor or the name of a Queue to access.

-4 0 0 RXMQOPEN Null options

Explanation A null has been supplied for the second parameter, a number representing the Open Options.
To specify No Options, supply a 0.

MA95: A Rexx Interface to WebSphere MQ

35

-5 0 0 RXMQOPEN Zero length options

Explanation No value has been keyed for the second parameter, a number representing the Open
Options. To specify No Options, supply a 0.

-6 0 0 RXMQOPEN Null handle name

Explanation A null has been supplied for the third parameter, the name of a variable which will be set to
the obtained handle for the accessed MQ Object.

-7 0 0 RXMQOPEN Zero length handle name

Explanation No value has been keyed for the third parameter, the name of a variable which will be set to
the obtained handle for the accessed MQ Object.

-8 0 0 RXMQOPEN Null Output OD

Explanation A null has been supplied for the forth parameter, the name of a stem variable which will be
set to the obtained Object Descriptor for the accessed MQ Object.

-9 0 0 RXMQOPEN Zero length Output OD

Explanation No value has been keyed for the forth parameter, the name of a stem variable which will be
set to the obtained Object Descriptor for the accessed MQ Object.

-10 0 0 RXMQOPEN No available Q objects

Explanation The limit of MQ Objects supported by this interface has been reached.

-95 0 0 RXMQOPEN Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQOPEN Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

-98 0 0 RXMQOPEN Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQOPEN UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

opts = MQOO_INQUIRE + MQOO_INPUT_SHARED ,
 + MQOO_BROWSE + MQOO_SAVE_ALL_CONTEXT ,
 + MQOO_FAIL_IF_QUIESCING

rcc = RXMQOPEN(N1, opts, 'hn1', 'od.')

This call opens the Queue N1 for a Browse access, and permits the inquiry of the queue's attributes. If the
open succeeds, then the variable hn1 is set to the handle for subsequent access to N1, and the stem
variable od. is set to the contents of the Object Descriptor for N1 (eg: od.ON = 'N1').

iod.OT = MQOT_Q
iod.ON = 'N1'

rcc = RXMQOPEN('iod.', MQOO_BROWSE+MQOO_INQUIRE, 'hn1', 'ood.')

MA95: A Rexx Interface to WebSphere MQ

36

This example shows how the Queue N1 would be accessed if the full Object Descriptor method is used to
specify the MQ Object to be accessed.

MA95: A Rexx Interface to WebSphere MQ

37

RXMQCLOS

Description
This verb stops access to a MQ Object, using the underlying MQCLOSE verb.

Parameters
1. The Handle for the object obtained from a prior RXMQOPEN call. This is an input parameter.

After this call completes, the handle is no longer valid for use.

2. The Close options. This is an input parameter representing the type of MQCLOSE operation to be
performed.

Call

rcc = RXMQCLOS(handle, CloseOptions)

Additional Interface Return Codes and Messages

-1 0 0 RXMQCLOS Bad number of parms

Explanation You must specify two parameters to the RXMQCLOS call.

-2 0 0 RXMQCLOS Null handle

Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQCLOS Zero length handle

Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMQCLOS Null options

Explanation A null has been supplied for the second parameter, a number representing the Close
Options. To specify No Options, supply a 0.

-5 0 0 RXMQCLOS Zero length options

Explanation No value has been keyed for the second parameter, a number representing the Close
Options. To specify No Options, supply a 0.

-6 0 0 RXMQCLOS Handle out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-7 0 0 RXMQCLOS Invalid handle

Explanation The handle specified does not relate to an accessed MQ Object.

-95 0 0 RXMQCLOS Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQCLOS Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

MA95: A Rexx Interface to WebSphere MQ

38

-97 0 0 RXMQCLOS Handle not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXMQOPENed by another thread).

-98 0 0 RXMQCLOS Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQCLOS UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example
rcc = RXMQCLOSE(hn1, MQCO_NONE)

This call closes the object referred to by the handle specified in the hn1 variable, with no special closing
actions being requested.

MA95: A Rexx Interface to WebSphere MQ

39

RXMQINQ

Description
This call will inquire upon a single attribute of a MQ object. This is a difference between this interface
and the function of the underlying MQINQ verb.

The relevant data is returned in character format, so numeric attributes need not be converted for Rexx
usage. The requested attribute is specified via MQIA_, MQCA_... variables.

Parameters
1. The handle for the object obtained from a prior RXMQOPEN call, whereat the object was

opened for Inquiry. This is an input parameter.

2. The Attribute number to be inquired upon (setting starting with MQIA, MQCA_...). This is an
input parameter.

3. The name of a variable into which will be returned the current setting of the desired attribute.
Numeric attributes (like Maximum Message Size) are presented as decimal strings (so '17' might
be returned rather than '11'x). This is an output parameter.

Call

rcc = RXMQINQ (handle, Attribute, VarAttributeValue)

Additional Interface Return Codes and Messages

-1 0 0 RXMQINQ Bad number of parms

Explanation You must specify three parameters to the RXMQINQ call.

-2 0 0 RXMQINQ Null handle

Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQINQ Zero data handle

Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMQINQ Null data input attr

Explanation A null has been supplied for the second parameter, a number representing representing the
attribute of the MQ object to be obtained.

-5 0 0 RXMQINQ Zero data input attr

Explanation No value has been keyed for the second parameter, a number representing the attribute of
the MQ object to be obtained.

-6 0 0 RXMQINQ Null output attr

Explanation A null has been supplied for the third parameter, the name of a variable to receive the value
of the requested attribute.

-7 0 0 RXMQINQ Zero length output attr

Explanation No value has been keyed for the third parameter, the name of a variable to receive the value
of the requested attribute.

MA95: A Rexx Interface to WebSphere MQ

40

-8 0 0 RXMQINQ No attribute supplied

Explanation No value was supplied for the attribute under consideration.

-9 0 0 RXMQINQ Attribute out of valid range

Explanation The value of the attribute under consideration was outside of the ranges defined for Integer
and Character attributes.

-10 0 0 RXMQINQ Handle out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-11 0 0 RXMQINQ Invalid handle

Explanation The handle specified does not relate to an accessed MQ Object.

-95 0 0 RXMQINQ Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQINQ Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

-97 0 0 RXMQINQ Handle not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXMQOPENed by another thread).

-98 0 0 RXMQINQ Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQINQ UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

rcc = RXMQINQ(hn1, MQIA_MAX_MSG_LENGTH, 'maxmsg')
 /* maxmsg = 3109856 */

This call obtains the current Maximum Message Length attribute for the queue referenced by the handle
contained in hn1. In this case, the maxmsg variable is set to 3109856, the value of the desired attribute.

MA95: A Rexx Interface to WebSphere MQ

41

RXMQSET

Description
This call will set a given attribute of a MQ object. This is a difference between this interface and the
underlying MQSET verb, whereat many attributes can be manipulated in a single execution.

The relevant data is specified in character format, so numeric attributes need not be converted for
interface usage. The attribute is specified via MQIA_, MQCA_... variables.

Parameters
1. The handle for the object obtained from a prior RXMQOPEN call, whereat the object was

opened for Setting. This is an input parameter.

2. The Attribute Number to be set (starting with MQIA_, MQCA_...). This is an input parameter.

3. The value of the attribute which is to be set in the MQ Object. Numeric attributes (like Trigger
Depth) are specified as a normal Rexx decimal string (so use '17' rather than '11'x). This is an
input parameter.

Call

rcc = RXMQSET(handle, Attribute, AttributeSetting)

Additional Interface Return Codes and Messages

-1 0 0 RXMQSET Bad number of parms

Explanation You must specify three parameters to the RXMQSET call.

-2 0 0 RXMQSET Null handle

Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQSET Zero data handle

Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMQSET Null data attribute

Explanation A null has been supplied for the second parameter, a number representing representing the
attribute of the MQ object to be set.

-5 0 0 RXMQSET Zero data attribute

Explanation No value has been keyed for the second parameter, a number representing the attribute of
the MQ object to be set.

-6 0 0 RXMQSET Null setting

Explanation A null has been supplied for the third parameter, the name of a variable to receive the value
of the requested attribute.

-7 0 0 RXMQSET Zero length setting

Explanation No value has been keyed for the third parameter, the name of a variable to receive the value
of the requested attribute.

MA95: A Rexx Interface to WebSphere MQ

42

-8 0 0 RXMQSET No attribute supplied

Explanation No value was supplied for the attribute under consideration.

-9 0 0 RXMQSET Attribute out of valid range

Explanation The value of the attribute under consideration was outside of the ranges defined for Integer
and Character attributes.

-10 0 0 RXMQSET Handle out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-11 0 0 RXMQSET Invalid handle

Explanation The handle specified does not relate to an accessed MQ Object.

-95 0 0 RXMQSET Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQSET Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

-97 0 0 RXMQSET Handle not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXMQOPENed by another thread).

-98 0 0 RXMQSET Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQSET UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

rcc = RXMQSET(hn1, MQIA_TRIGGER_DEPTH, 21)

This call sets the Trigger Depth for the Queue specified by hn1 (which must have been opened with Set
access) to 21 messages.

MA95: A Rexx Interface to WebSphere MQ

43

RXMQCMIT

Description
This verb will issue a MQCMIT verb. It syncpoints the current Queue Manager accesses. Note that this
operation affects all the currently accessed queues which have extant operations within Unit of Work
control within the current thread (ie: it does not effect other threads within the process).

Parameters
None

Call

rcc = RXMQCMIT()

Additional Interface Return Codes and Messages

-1 0 0 RXMQCMIT Bad number of parms

Explanation You cannot specify any parameters to this call.

-98 0 0 RXMQCMIT Not Connected to a QM

Explanation The current thread is not connected to a Queue Manager

-99 0 0 RXMQCMIT UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

rcc = RXMQCMIT()

The accesses to all currently accessed queues (that are within Unit of Work control) are committed.
Accesses outside of UOW control are unaffected by this call.

MA95: A Rexx Interface to WebSphere MQ

44

RXMQBACK

Description
This verb will issue a MQBACK verb. It rolls back the current Queue Manager accesses. Note that this
operation affects all the currently accessed queues which have extant operations within Unit of Work
control within the current thread (ie: it does not effect other threads within the process).

Parameters
None

Call

rcc = RXMQBACK()

Additional Interface Return Codes and Messages

-1 0 0 RXMQBACK Bad number of parms

Explanation You cannot specify any parameters to this call.

-98 0 0 RXMQBACK Not Connected to a QM

Explanation The current thread is not connected to a Queue Manager

-99 0 0 RXMQBACK UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

rcc = RXMQBACK()

The accesses to all currently accessed queues (that are within Unit of Work control) are rolledback.
Accesses outside of UOW control are unaffected by this call.

MA95: A Rexx Interface to WebSphere MQ

45

RXMQGET

Description
This call will obtain a message from a Queue, using the underlying MQGET verb. All the abilities of this
verb are supported by this interface.

A quick way of issuing Browse calls is provided by “RXMQBRWS” on page 57.

Parameters
1. The Handle for the Queue obtained from a prior RXMQOPEN call, whereat the Queue was

opened for Input (or Browse) access. This is an Input parameter.

2. The name of a Rexx Stem variable (including the dot) into which the obtained message will be
placed. This is an input/output parameter. Upon the call, Component 0 must contain the
Maximum length of the message to be received. After the call, Component 0 will contain the
length of the message received (or would have been received if the initial setting was 0) and
Component 1 will contain the obtained message (if any). See “Message Lengths” on page 11 for
a warning about truncation.

3. The name of a Stem variable (including the dot) containing the Input Message Descriptor
describing the Message to be obtained from the Queue. This is an input parameter.

4. The name of a Stem variable (including the dot) into which will be returned a Message Descriptor
describing the message obtained by the call. This is an output parameter, so ZLIST processing is
provided.

5. The name of a Stem variable (including the dot) containing the Get Message Options for the
operation. This is an input parameter.

6. The name of a Stem variable (including the dot) into which will be placed the updated Get
Message Options resulting from the call. This is an output parameter, so ZLIST processing is
provided.

Call

rcc = RXMQGET(handle, 'Stem.Message.' , 'Stem.Input.MD.' , 'Stem.Output.MD. ' ,
 'Stem.Input.GMO.', 'Stem.Output.GMO.')

MA95: A Rexx Interface to WebSphere MQ

46

Additional Interface Return Codes and Messages

-1 0 0 RXMQGET Bad number of parms

Explanation You must specify six parameters to the RXMQGET call.

-2 0 0 RXMQGET Null handle

Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQGET Zero data handle

Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMQGET Null data stem var

Explanation A null has been supplied for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-5 0 0 RXMQGET Zero data stem var

Explanation No value has been keyed for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-6 0 0 RXMQGET Null Input MsgDesc

Explanation A null has been supplied for the third parameter, the name of a Stem Variable containing the
Input Message Variable for the operation.

-7 0 0 RXMQGET Zero length Input MsgDesc

Explanation No value has been keyed for the third parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-8 0 0 RXMQGET Null Output MsgDesc

Explanation A null has been supplied for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-9 0 0 RXMQGET Zero length Output MsgDesc

Explanation No value has been keyed for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-10 0 0 RXMNGET Null input GMO

Explanation A null has been supplied for the fifth parameter, the name of a Stem Variable containing the
Get Message Options for the operation.

-11 0 0 RXMNGET Zero length input GMO

Explanation No value has been keyed for the fifth parameter, the name of a Stem Variable containing the
Get Message Options for the operation.

-12 0 0 RXMNGET Null output GMO

Explanation A null has been supplied for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Get Message Options from the operation.

-13 0 0 RXMQGET Zero length output GMO

Explanation No value has been keyed for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Get Message Options from the operation.

MA95: A Rexx Interface to WebSphere MQ

47

-14 0 0 RXMQGET Handle out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-15 0 0 RXMQGET Invalid handle

Explanation The handle specified does not relate to an accessed MQ Object.

-16 0 0 RXMQGET malloc failure, RC(<errno>)

Explanation An attempt to acquire storage for the number of bytes specified in the Message.0 (2nd
parameter) variable failed. The return code is errno code from the malloc call.

-17 0 0 RXMQGET Zero length input data buffer

Explanation The Message.0 (2nd parameter) was zero, indicating no message to process.

-97 0 0 RXMQGET Handle not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXMQOPENed by another thread).

-98 0 0 RXMQGET Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQGET UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

message.0 = 100
message.1 = ''

igmo.opt = MQGMO_WAIT + MQGMO_SYNCPOINT + MQGMO_FAIL_IF_QUIESCING
igmo.wait = 1

imd.MSGID = ''
imd.CID = ''

rcc = RXMQGET(hn1, 'message.', 'imd.', 'omd.', 'igmo.', 'ogmo.')

/* on return, say…

message.0 = 13
message.1 = 'WMQ rules OK!'

omd.msg = MQMT_DATAGRAM
omd.PER = MQPER_PERSISTENT
…
ogmo.rqn = 'N1'

*/

This call destructively obtains the next message from the Queue. The message can be upto 100 bytes long
- a bigger message is not obtained (as the options do not specify MQGMO_ACCEPT_TRUNCATED_MSG). The
obtained message (which will not physically be removed from the Queue until a Syncpoint is issued, as it
is obtained under Unit Of Work control) is 13 bytes long, and is persistent.

MA95: A Rexx Interface to WebSphere MQ

48

RXMQPUT

Description
This call will place a message into a Queue, using the underlying MQPUT verb. All the abilities of this
verb are supported by this interface.

Parameters
1. The Handle for the Queue obtained from a prior RXMQOPEN call, whereat the Queue was

opened for Output access. This is an Input parameter.

2. The name of a Rexx Stem variable (including the dot) containing the message to be placed on the
Queue. This is an input parameter. Component 0 must contain the length of Component 1, which
is the message to be put into the Queue.

3. The name of a Stem variable (including the dot) containing the Input Message Descriptor
describing the Message to be placed on the Queue. This is an input parameter.

4. The name of a Stem variable (including the dot) into which will be returned a Message Descriptor
describing the message placed by the call. This is an output parameter, so ZLIST processing is
provided.

5. The name of a Stem variable (including the dot) containing the Put Message Options for the
operation. This is an input parameter.

6. The name of a Stem variable (including the dot) into which will be placed the updated Put
Message Options resulting from the call. This is an output parameter, so ZLIST processing is
provided.

Call
rcc = RXMQPUT(handle, 'Stem.Message.' , 'Stem.Input.MD.' , 'Stem.Output.MD. ' ,
 'Stem.Input.PMO.', 'Stem.Output.PMO.')

Additional Interface Return Codes and Messages

-1 0 0 RXMQPUT Bad number of parms

Explanation You must specify six parameters to the RXMQPUT call.

-2 0 0 RXMQPUT Null handle

Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQPUT Zero data handle

Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMQPUT Null data stem var

Explanation A null has been supplied for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-5 0 0 RXMQPUT Zero data stem var

Explanation No value has been keyed for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

MA95: A Rexx Interface to WebSphere MQ

49

-6 0 0 RXMQPUT Null Input MsgDesc

Explanation A null has been supplied for the third parameter, the name of a Stem Variable containing the
Input Message Variable for the operation.

-7 0 0 RXMQPUT Zero length Input MsgDesc

Explanation No value has been keyed for the third parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-8 0 0 RXMQPUT Null Output MsgDesc

Explanation A null has been supplied for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-9 0 0 RXMQPUT Zero length Output MsgDesc

Explanation No value has been keyed for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-10 0 0 RXMQPUT Null input PMO

Explanation A null has been supplied for the fifth parameter, the name of a Stem Variable containing the
Put Message Options for the operation.

-11 0 0 RXMQPUT Zero length input PMO

Explanation No value has been keyed for the fifth parameter, the name of a Stem Variable containing the
Put Message Options for the operation.

-12 0 0 RXMQPUT Null output PMO

Explanation A null has been supplied for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Put Message Options from the operation.

-13 0 0 RXMQPUT Zero length output PMO

Explanation No value has been keyed for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Put Message Options from the operation.

-14 0 0 RXMQPUT Handle out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-15 0 0 RXMQPUT Invalid handle

Explanation The handle specified does not relate to an accessed MQ Object.

-16 0 0 RXMQPUT malloc failure, RC(<errno>)

Explanation An attempt to acquire storage for the number of bytes specified in the data.0 (2nd
parameter) variable failed. The return code is errno code from the malloc call.

-17 0 0 RXMQPUT Zero length input data buffer

Explanation The data.0 (2nd parameter), the Stem variable containing the length of message to be sent,
was zero or not numeric.

-18 0 0 RXMQPUT Data length is not equal to specified value

Explanation The data.0 (2nd parameter), the Stem variable containing the length of message to be sent, is
not equal to data.1 actual message length.

-19 0 0 RXMQPUT Context handle out of range

Explanation The value of the handle supplied in PMO.CON is not in the known range for a handle within

MA95: A Rexx Interface to WebSphere MQ

50

the interface.

-20 0 0 RXMQPUT Invalid Context handle

Explanation The handle specified in PMO.CON does not relate to an accessed MQ Object.

-96 0 0 RXMQPUT Context handle not owned by current thread

Explanation The object referred to by the given PMO.CON handle was not accessed by the current Thread
(ie: it was RXMQOPENed by another thread).

-97 0 0 RXMQPUT Handle not owned by current thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXMQOPENed by another thread).

-98 0 0 RXMQPUT Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQPUT UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

message.1 = 'WMQ''s wonderful interface!'
message.0 = LENGTH(message.1)

ipmo.opt = MQPMO_NO_SYNCPOINT + MQPMO_NO_CONTEXT ,
 + MQPMO_FAIL_IF_QUIESCING

imd.MSG = MQMT_DATAGRAM
imd.per = MQPER_NOT_PERSISTENT

rcc = RXMQPUT(hn1, 'message.', 'imd.', 'omd.', 'ipmo.', 'opmo.')

/* on return, say……

omd.PD = 20080831
…

opmo.rqn = 'N1'

*/

This call places the given non-persistent message on the Queue outside of a Unit of Work.

MA95: A Rexx Interface to WebSphere MQ

51

RXMQPUT1

Description
This call will open the Queue, place one message into it and close the queue using the underlying
MQPUT1 verb. All the abilities of this verb are supported by this interface.

Parameters
1. The name of a Stem variable (including the dot) specifying the Object Descriptor for the MQ

Object to access. This is an input only field.

The format of this Stem variable is described in “The Object Descriptor” on page 20.

If the name given does not end in a dot, then the data is taken to be the name of a Queue (or Model
Queue) to access. This short cut removes the requirement to fully format up a stem variable for
'normal' Queue access; but note that you supply the name of the Queue, not the name of the variable
containing the name of the Queue.

2. The name of a Stem variable (including the dot) into which is placed the Object Descriptor
returned by the underlying MQOPEN verb. This is an output only field.

The format of this Stem variable is described in “The Object Descriptor” on page 20; ZLIST
processing is provided.

3. The name of a Rexx Stem variable (including the dot) containing the message to be placed on the
Queue. This is an input parameter. Component 0 must contain the length of Component 1, which
is the message to be put into the Queue.

4. The name of a Stem variable (including the dot) containing the Input Message Descriptor
describing the Message to be placed on the Queue. This is an input parameter.

5. The name of a Stem variable (including the dot) into which will be returned a Message Descriptor
describing the message placed by the call. This is an output parameter, so ZLIST processing is
provided.

6. The name of a Stem variable (including the dot) containing the Put Message Options for the
operation. This is an input parameter.

7. The name of a Stem variable (including the dot) into which will be placed the updated Put
Message Options resulting from the call. This is an output parameter, so ZLIST processing is
provided.

Call

rcc = RXMQPUT1(‘Stem.Input.OD.’, ‘Stem.Output.OD.’, 'Stem.Message.',

'Stem.Input.MD.', 'Stem.Output.MD.', 'Stem.Input.PMO.',
'Stem.Output.PMO.')

or
rcc = RXMQPUT1(Queue Name, ‘Stem.Output.OD.’, ‘Stem.Message’,

‘Stem.Input.MD.’, ‘Stem.Output.MD.’, ‘Stem.Input.PMO’,
‘Stem.Output.PMO’)

MA95: A Rexx Interface to WebSphere MQ

52

Additional Interface Return Codes and Messages

-1 0 0 RXMQPUT1 Bad number of parms

Explanation You must specify seven parameters to the RXMQPUT1 call.

-2 0 0 RXMQPUT1 Null Input OD/Qname

Explanation A null has been supplied for the first parameter, the name of a stem variable for an input
Object Descriptor or the name of a Queue to access.

-3 0 0 RXMQPUT1 Zero length Input OD/Qname

Explanation No value has been keyed for the first parameter, the name of a stem variable for an input
Object Descriptor or the name of a Queue to access.

-4 0 0 RXMQPUT1 Null Output OD

Explanation A null has been supplied for the second parameter, the name of a stem variable which will
be set to the obtained Object Descriptor for the accessed MQ Object.

-5 0 0 RXMQPUT1 Zero length Output OD

Explanation No value has been keyed for the second parameter, the name of a stem variable which will
be set to the obtained Object Descriptor for the accessed MQ Object.

-6 0 0 RXMQPUT1 Null data stem var

Explanation A null has been supplied for the third parameter, the name of a Stem Variable containing the
maximum length of message to be obtained.

-7 0 0 RXMQPUT1 Zero data stem var

Explanation No value has been keyed for the third parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-8 0 0 RXMQPUT1 Null Input MsgDesc

Explanation A null has been supplied for the fourth parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-9 0 0 RXMQPUT1 Zero length Input MsgDesc

Explanation No value has been keyed for the fourth parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-10 0 0 RXMQPUT1 Null Output MsgDesc

Explanation A null has been supplied for the fifth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-11 0 0 RXMQPUT1 Zero length Output MsgDesc

Explanation No value has been keyed for the fifth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-12 0 0 RXMQPUT1 Null input PMO

Explanation A null has been supplied for the sixth parameter, the name of a Stem Variable containing
the Put Message Options for the operation.

-13 0 0 RXMQPUT1 Zero length input PMO

Explanation No value has been keyed for the sixth parameter, the name of a Stem Variable containing

MA95: A Rexx Interface to WebSphere MQ

53

the Put Message Options for the operation.

-14 0 0 RXMQPUT1 Null output PMO

Explanation A null has been supplied for the seventh parameter, the name of a Stem Variable into which
will be placed the resulting Put Message Options from the operation.

-15 0 0 RXMQPUT1 Zero length output PMO

Explanation No value has been keyed for the seventh parameter, the name of a Stem Variable into which
will be placed the resulting Put Message Options from the operation.

-16 0 0 RXMQPUT1 No available Q objects

Explanation The limit of MQ Objects supported by this interface has been reached.

-17 0 0 RXMQPUT1 malloc failure, RC(<errno>)

Explanation An attempt to acquire storage for the number of bytes specified in the data.0 (3rd parameter)
variable failed. The return code is errno code from the malloc call.

-18 0 0 RXMQPUT1 Zero length input data buffer

Explanation The data.0 (3rd parameter), the Stem Variable containing the length of message to be sent,
was zero or not numeric.

-19 0 0 RXMQPUT1 Data length is not equal to specified value

Explanation The data.0 (3rd parameter), the Stem variable containing the length of message to be sent, is
not equal to data.1 actual message length.

-20 0 0 RXMQPUT1 Context handle out of range

Explanation The value of the handle supplied in PMO.CON is not in the known range for a handle within
the interface.

-21 0 0 RXMQPUT1 Invalid Context handle

Explanation The handle specified in PMO.CON does not relate to an accessed MQ Object.

-95 0 0 RXMQPUT1 Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQPUT1 Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

-97 0 0 RXMQPUT1 Context handle not owned by current thread

Explanation The object referred to by the given PMO.CON handle was not accessed by the current Thread
(ie: it was RXMQOPENed by another thread).

-98 0 0 RXMQPUT1 Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQPUT1 UNKNOWN FAILURE

Explanation Some unknown error has occurred!

MA95: A Rexx Interface to WebSphere MQ

54

Example

message.1 = 'WMQ''s wonderful interface!'
message.0 = LENGTH(message.1)

ipmo.opt = MQPMO_NO_SYNCPOINT + MQPMO_NO_CONTEXT ,
 + MQPMO_FAIL_IF_QUIESCING

imd.MSG = MQMT_DATAGRAM
imd.per = MQPER_NOT_PERSISTENT

rcc = RXMQPUT1(‘iod.’, ‘ood.’, 'message.', 'imd.', 'omd.', 'ipmo.', 'opmo.')

/* on return, say……

omd.PD = 20080831
…

opmo.rqn = 'N1'

*/

This call places the given non-persistent message on the Queue outside of a Unit of Work.

message.1 = 'WMQ''s wonderful interface!'
message.0 = LENGTH(message.1)

ipmo.opt = MQPMO_NO_SYNCPOINT + MQPMO_NO_CONTEXT ,
 + MQPMO_FAIL_IF_QUIESCING

imd.MSG = MQMT_DATAGRAM
imd.per = MQPER_NOT_PERSISTENT

rcc = RXMQPUT1(N1, ‘ood.’, 'message.', 'imd.', 'omd.', 'ipmo.', 'opmo.')

/* on return, say…

omd.PD = 20080831
…

opmo.rqn = 'N1'

*/

This call places the given non-persistent message on the Queue outside of a Unit of Work using Queue
Name as a parameter in RXMQPUT1 function

MA95: A Rexx Interface to WebSphere MQ

55

RXMQC

Description
This function issues a MQSC command to a Queue Manager, returning the results. Each invocation
checks whether the connection to Queue Manager exists. If the connection exists, the function uses it. If
the connection does not exist, the function creates a connection to Queue Manager. If the connection is
created by this function, it is released after the call.

As RXMQC operates within the Rexx environment, all the Rexx variables used are available for use
within ISPF in the normal fashion. See Appendix A. ISPF Interface on page 75 for an example.

Parameters
1. The controlling parameters (Input only)

either The name of the Queue Manager to connect to

or The name of a Stem. variable containing the name of the Queue Manager (.QM), the
name of Command Queue (.CQ), the name of Model ReplyToQ (.RQ) and the
Timeout (.TO)

2. The command to issue

3. The name of a Stem. variable into which the results of the command will be placed

Call

rcc = RXMQC (qmname, 'command', 'Stem.Reply.')

or
rcc = RXMQC ('Stem.Parms.', 'command', 'Stem.Reply.')

Table 6. RXMQC Function Parameter Mappings
Name Stem.

Component
Input, Output

or Both
Format

Queue Manager .QM I MQCHAR48

Command Queue .CQ I MQCHAR48

Model ReplyToQ .RQ I MQCHAR48

Timeout .TO I MQLONG

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• A timeout of 0 is an eternal wait

Additional Interface Return Codes and Messages

-1 0 0 RXMQC Bad number of parms

Explanation You must specify three parameters to RXMQC

MA95: A Rexx Interface to WebSphere MQ

56

-2 0 0 RXMQC Null parms

Explanation A null has been supplied for the first parameter, the name of a stem variable which will be
set to the controlling parms for the operation.

-3 0 0 RXMQC Zero parms

Explanation No value has been keyed for the first parameter, the name of a stem variable which will be
set to the controlling parms for the operation.

-4 0 0 RXMQC Null command var

Explanation A null has been supplied for the second parameter, the text of the command to issue.

-5 0 0 RXMQC Zero command var

Explanation No value has been keyed for the second parameter, the text of the command to issue.

-6 0 0 RXMQC Null response stem var

Explanation A null has been supplied for the third parameter, the name of a stem variable which will
contain the results of the command.

-7 0 0 RXMQC Zero response stem var

Explanation No value has been keyed for the third parameter, the name of a stem variable which will
contain the results of the command.

-8 0 0 RXMQC No command supplied

Explanation The length of the second parameter is zero, so no command was given.

-9 0 0 RXMQC Too big a command supplied

Explanation The length of the second parameter is bigger than 5000 bytes, which is the maximum
supported Command length.

-10 0 0 RXMQC malloc failure, RC(<errno>)

Explanation An attempt to acquire storage for the response buffer. The return code is errno code from
the malloc call.

-99 0 0 RXMQC UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Examples

res.0 = 0
rcc = RXMQC('WMQA', 'DISPLAY QUEUE(*) TYPE(QLOCAL)', 'res.')

This call will contact the local Queue Manager called WMQA and ask for a list of all the local Queues. The
returned information is placed in the res.n stem variables, with res.0 indicating the number of elements.

parm.QM = 'WMQA'
parm.TO = 0
com = 'ping channel(CWTONBYTN)'
res.0 = 0
rcc = RXMQC('parm.', com, 'res.')

This call will contact the remote Queue Manager called WMQA and issue a ping on the given channel. The
interface will wait until a reply to the ping is received.

MA95: A Rexx Interface to WebSphere MQ

57

RXMQBRWS

Description
This call is an extension to the MQ API as documented in the APR. This call will obtain the next message
from a Queue via a Browse operation, using the underlying Browse function of the MQGET verb.

As this call is designed to be simple way to browse messages on a Queue, no Get Message Options or
Message Descriptors are available. If access to these is required, then use the base “RXMQGET” on page
45.

Similarly, the position of the Browse cursor cannot be manipulated.

Parameters
1. The Handle for the Queue obtained from a prior RXMQOPEN call, whereat the Queue was

opened for Browse access. This is an Input parameter.

2. The name of a Rexx Stem variable (including the dot) into which the obtained message will be
placed. This is an input/output parameter. Upon the call, Component 0 must contain the
Maximum length of the message to be received. After the call, Component 0 will contain the
length of the message received (or would have been received if the initial setting was 0) and
Component 1 will contain the obtained message (if any). See “Message Lengths” on page 11 for
a warning about truncation.

Call

rcc = RXMQBRWS(handle, 'Stem.Message.')

Additional Interface Return Codes and Messages

-1 0 0 RXMQBRWS Bad number of parms

Explanation You must specify two parameters to the RXMQBRWS call.

-2 0 0 RXMQBRWS Null handle

Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQBRWS Zero data handle

Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMQBRWS Null data stem var

Explanation A null has been supplied for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-5 0 0 RXMQBRWS Zero data stem var

Explanation No value has been keyed for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-6 0 0 RXMQBRWS Handle out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-7 0 0 RXMQBRWS Invalid handle

Explanation The handle specified does not relate to an accessed MQ Object.

MA95: A Rexx Interface to WebSphere MQ

58

-8 0 0 RXMQBRWS malloc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the Message.0 (2nd
parameter) variable failed. The return code is errno code that for the malloc call, and will usually result if
the message.0 value is not numeric.

-9 0 0 RXMQBRWS Zero length input data buffer

Explanation The Message.0 (2nd parameter) was zero, indicating no message to process

-95 0 0 RXMQBRWS Mutex <n> Release failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleLock::UnLock).

-96 0 0 RXMQBRWS Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSingleLock::Lock).

-97 0 0 RXMQBRWS Handle not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXMQOPENed by another thread).

-98 0 0 RXMQBRWS Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager .

-99 0 0 RXMQBRWS UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

message.0 = 100
message.1 = ''

rcc = RXMQBRWS (hn1, 'message.')

/* on return, say… message.0 = 2 ; message.1 = 'M1' */

message.0 = 100
message.1 = ''

rcc = RXMQBRWS (hn1, 'message.')

/* on return, say… message.0 = 8 ; message. 1 = '>>>M2<<<' */

This example shows how a Browse is used to scan a Queue; observe that the message. Stem variable is
cleared before each use.

MA95: A Rexx Interface to WebSphere MQ

59

RXMQHXT

Description
This call will take a message obtained from a Transmission Queue or a Dead Letter Queue (identified by
the relevant header in the message) and split it up into its components.

This Header Extraction, therefore, permits the obtention of the 'real' message and an explanation of the
control data associated with it.

The message to be split up is specified in the usual way as the name of the first stem. variable; with
component 0 representing the length of the message which is supplied in component 1. See “Message
Lengths” on page 11 for a warning about truncated messages used with this function.

The Extracted data is placed in the second stem. variable (whose name is supplied); with component 0
representing the length of the 'actual' message which is placed in component 1. The associated data is
placed in other components, as shown in Table 7. Transmission Queue Message Header (MQXQH)
Mappings on page 61 and in the Table 8. Dead Letter Queue Message Header (MQDLH) Mappings on
page 62. It is not recommended that the input and output stem variables are the same (as this might loose
information in the case of an error and additionally the component names clash with those generated as
part of the Message descriptor).

In order to identify the type of header extracted, a component called TYPE is also created, taking the value
of XQH or DLH (this is also provided in the NAME component).

Parameters
1. The name of a Rexx Stem variable (including the dot) containing a message to be splitup. This is

an input parameter. Upon the call, Component 0 must contain the length of the message in
Component 1; the message must have been obtained from a Transmission Queue or a Dead
Letter Queue. See “Message Lengths” on page 11 for a warning about truncation.

2. The name of a Rexx Stem variable (including the dot) into which the splitup message will be
placed. This is an input/output parameter. After the call, Component 0 will contain the length of
the 'actual' message and Component 1 will contain the 'actual' message (if any). Other
components will be created (as documented in the Table 7. Transmission Queue Message Header
(MQXQH) Mappings on page 61 and in theTable 8. Dead Letter Queue Message Header
(MQDLH) Mappings on page 62) to return the extracted Header information from the input
message. ZLIST processing is provided for this Stem variable.

Call

rcc = RXMQHXT('Stem.Message.', 'Stem.Splitup.')

Additional Interface Return Codes and Messages

-1 0 0 RXMQHXT Bad number of parms

Explanation You must specify two parameters to the RXMQHXT call.

-2 0 0 RXMQHXT Null input stem var

Explanation A null has been supplied for the first parameter, the name of a Stem. variable representing
the message to be splitup.

-3 0 0 RXMQHXT Zero input stem var

Explanation No value has been keyed for the first parameter, the name of a Stem. variable representing
the message to be splitup.

MA95: A Rexx Interface to WebSphere MQ

60

-4 0 0 RXMQHXT Null output stem var

Explanation A null has been supplied for the second parameter, the name of a Stem. variable
representing the splitup message.

-5 0 0 RXMQHXT Zero output stem var

Explanation No value has been keyed for the second parameter, the name of a Stem. variable
representing the splitup message.

-6 0 0 RXMQHXT No input data

Explanation The input Stem.0 was zero, indicating no message to process

-7 0 0 RXMQHXT Zero input data

Explanation The length of the input Stem.1 was zero, indicating no message to process

-8 0 0 RXMQHXT Cannot locate Header

Explanation The input Stem.0 was <= 3, indicating no header in the message

-9 0 0 RXMQHXT Cannot find Header

Explanation The length of the input Stem.1 was <= 3, indicating no header in the message

-10 0 0 RXMNHXT Unknown Header

Explanation The first 4 bytes of the input Stem.1 was not DLH or XQH, so the message did not come from
a Dead Letter Queue or a Transmission Queue, and so cannot be splitup

-11 0 0 RXMNHXT Too short for a DLH (<n> bytes!)

Explanation Although the input Stem.1 looked like a DLH, Stem.0 was too small for the message to
originate from a Dead Letter Queue, and so cannot be splitup

-12 0 0 RXMNHXT Too short for a XQH (<n> bytes!)

Explanation Although the input Stem.1 looked like a XQH, Stem.0 was too small for the message to
originate from a Transmission Queue, and so cannot be splitup

-13 0 0 RXMHXT malloc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the input Stem.0 (1st
parameter) variable failed. The return code is errno code from the malloc call.

-14 0 0 RXMQPUT1 Data length is not equal to specified value

Explanation The Stem.0 (1st parameter), the Stem variable containing the length of message to be
splitup, is not equal to Stem.1 actual message length.

-99 0 0 RXMQHXT UNKNOWN FAILURE

Explanation Some unknown error has occurred!

MA95: A Rexx Interface to WebSphere MQ

61

Extracted information

Transmission Queue Messages

Table 7. Transmission Queue Message Header (MQXQH) Mappings
Structure name Stem.

Component
Input, Output

or Both
Format

Actual message length .0 O MQLONG

Actual message .1 O MQCHAR

RemoteQName .RQN O MQCHAR48

RemoteQMgrName .RQM O MQCHAR48

MsgDesc .xxx O MQMD1

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• ZLIST is set to relevant existing field Stem. Component names

• See MsgDesc component names in the Table 3. Message Descriptor (MQMD) Mappings

MA95: A Rexx Interface to WebSphere MQ

62

Dead Letter Queue Messages

Table 8. Dead Letter Queue Message Header (MQDLH) Mappings
Structure name Stem.

Component
Input,

Output or
Both

Format

Actual message length .0 O MQLONG

Actual message .1 O MQCHAR

Reason .REA O MQLONG

DestinationQMgrName .DQM O MQCHAR48

DestinationQName .DQN O MQCHAR48

Encoding .ENC O MQLONG

CodedCharSetId .CCSI O MQLONG

Format .FORM O MQCHAR8

PutApplType .PAT O MQLONG

PutApplName .PAN O MQCHAR28

PutDate .PD O MQCHAR8

PutTime .PT O MQCHAR8

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• ZLIST is set to relevant existing field Stem. Component names

MA95: A Rexx Interface to WebSphere MQ

63

Example

/* A message has been obtained such that ... */

message.0 = 438

message.1 = <XQH>1234567890

/* Clear the result variable */

drop x.

/* Split the message */

rcc = RXMQHXT ('message.', 'x.')

/* on return, the following (and more) are set */

say x.0 /* 10 */
say x.1 /* 1234567890 */
say x.RQM /* WMQA */
say x.RQN /* CP1 */
say x.PER /* 1 */
say x.TYPE /* XQH */

This example shows how a message obtained from a Transmission Queue is splitup, showing information
extracted from the XQH and the actual message being transmitted.

MA95: A Rexx Interface to WebSphere MQ

64

RXMQEVNT

Description
This call will take a message obtained from an Event Queue and split it up into its components. In general
the default system queues called are
SYSTEM.ADMIN.QMGR.EVENT,
SYSTEM.ADMIN.CONFIG.EVENT,
SYSTEM.ADMIN.PERFM.EVENT and
SYSTEM.ADMIN.CHANNEL.EVENT

This Event Extraction, therefore, permits the detection of the event and an explanation of the control data
associated with it.

The message to be split up is specified in the usual way as the name of a stem. variable; with component
0 representing the length of the message which is supplied in component 1. See “Message Lengths” on
page 11 for a warning about truncated messages used with this function. This message will have come
from a prior RXMQBRWS or RXMQGET operation.

The Extracted data is placed in another stem. variable (whose name is supplied), with the various
components containing information about the event. Each component name provided is equal to event
attribute constant name, which are described in WebSphere MQ Monitoring WebSphere MQ Version 6.0
SC34-6593. For ease of reading and to save space constant name prefix (like MQCA_ or MQIA_) is omitted.
It is not recommended that the input and output stem variables are the same (as this might loose
information in the case of an error and additionally the component names clash with those generated as
part of the Message descriptor). Observe that some information is held in the event message's Message
Descriptor (like Date and Time), so obtaining the message should be done via a Browse-type of
RXMQGET rather than the RXMQBRWS call which does not return the Message Descriptor if this type
of information is required.

In order to identify the type of event extracted, a component called TYPE is created and set to EVENT, and
another called NAME which interprets the Event (it is presented in the same way as described above for the
component names).

Information about Events is discussed in WebSphere MQ Monitoring WebSphere MQ Version 6.0 SC34-
6593 book which you should use to interpret the expansion.

Warning

The PCF Documentation on events sometimes does not agree with what is actually recorded in the Event
Message. Please take care in this arena, and treat deviations from the Documentation pragmatically (ie:
raise an APAR, but process as this interface returns). A general usage should test each component to
discover whether or not this information is returned. Alternatively, use ZLIST processing (as described in
“ZLIST” on page 13). A returned component may be null (or have a zero length) if the Event Field is
present without any data.

Parameters

1. The name of a Rexx Stem variable (including the dot) containing an event message to be splitup.
This is an input parameter. Upon the call, Component 0 must contain the length of the message in
Component 1; the message must have been obtained from an Event Queue. See “Message
Lengths” on page 11 for a warning about truncation.

2. The name of a Rexx Stem variable (including the dot) into which the splitup message will be
placed. This is an input/output parameter. After the call, components will be created (as described
above) to return the extracted event information from the input message. ZLIST processing is
provided for this Stem variable.

MA95: A Rexx Interface to WebSphere MQ

65

Call

rcc = RXMQEVNT('Stem.Message.', 'Stem.Splitup.')

Usage Notes
Bear in mind the following when using RXMQEVNT:

• A component is returned when the relevant parameter is present in the PCF Event Message. The
returned data may consist of binary zeros, a null string ('') or all spaces if the contents do not exist
(this is due to the way MQ builds the PCF Event message). Certain Rexx processors object to long
strings of Binary zeros, so you have been warned!

• The PCF Event documentation may differ from the data actually returned. Always use ZLIST
processing to see what is going on!

• The EID, AEDI1, AEDI2 and CED fields are not returned as numbers, but rather in Hex. This will
aid problem determination for these Channel error codes.

• There may be more than one CED field. In this case, .CED.0 will contain the number of fields, with
the data being in .CED.n

• The Date and Time of an Event is not held within the event, but in the Message Descriptor for the
event.

• .TYPE is set to 'EVENT' for all events.

MA95: A Rexx Interface to WebSphere MQ

66

Additional Interface Return Codes and Messages

-1 0 0 RXMQEVNT Bad number of parms

Explanation You must specify two parameters to the RXMQEVNT call.

-2 0 0 RXMQEVNT Null input stem var

Explanation A null has been supplied for the first parameter, the name of a Stem. variable representing
the message to be splitup.

-3 0 0 RXMQEVNT Zero input stem var

Explanation No value has been keyed for the first parameter, the name of a Stem. variable representing
the message to be splitup.

-4 0 0 RXMQEVNT Null output stem var

Explanation A null has been supplied for the second parameter, the name of a Stem. variable
representing the splitup message.

-5 0 0 RXMQEVNT Zero output stem var

Explanation No value has been keyed for the second parameter, the name of a Stem. variable
representing the splitup message.

-6 0 0 RXMQEVNT No input data

Explanation The input Stem.0 was zero, indicating no message to process

-7 0 0 RXMQEVNT Zero input data

Explanation The length of the input Stem.1 was zero, indicating no message to process

-8 0 0 RXMQEVNT Cannot locate Header

Explanation The input Stem.0 was <= 3, indicating no header in the message

-9 0 0 RXMQEVNT Cannot find Header

Explanation The length of the input Stem.1 was <= 3, indicating no header in the message

-10 0 0 RXMQEVNT Not an Event Header

Explanation The first 4 bytes of the input Stem.1 was not <MQCFH_EVENT>, so the message did not
come from an Event Queue, and so cannot be splitup

-11 0 0 RXMQEVNT Too short for an Event (<n> bytes!)

Explanation Although the input Stem.1 looked like an Event Message, Stem.0 was too small for the
message to originate from an Event Queue, and so cannot be splitup

-12 0 0 RXMQEVNT Unknown Event Category (<n>)

Explanation Although the input Stem.1 looked like an Event Message, the PCF Command field did not
contain a recognisable event category, and so the message cannot be splitup

-13 0 0 RXMQEVNT Unknown Event Type (<n>)

Explanation Although the input Stem.1 looked like an Event Message, the PCF Reason field did not
contain a recognisable event identifier, and so the message cannot be splitup

MA95: A Rexx Interface to WebSphere MQ

67

-14 0 0 RXMQEVNT No elements in the Event

Explanation Although the input Stem.1 looked like an Event Message, there were no PCF fields within
the Message, and so the message cannot be splitup

-15 0 0 RXMQEVNT malloc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the input Stem.0 (1st
parameter) variable failed. The return code is errno code that for the malloc call, and will usually result if
the input Stem.0 value is not numeric or negative integer.

-16 0 0 RXMQPUT1 Data length is not equal to specified value

Explanation The Stem.0 (1st parameter), the Stem variable containing the length of message to be
splitup, is not equal to Stem.1 actual message length.

-99 0 0 RXMQEVNT UNKNOWN FAILURE

Explanation Some unknown error has occurred!

Example

/* A message has been obtained such that ... */

message.0 = n

message.1 = <EVENT Header><Event Data>

/* Clear the result variable */

drop x.

/* Split the message */

rcc = RXMQEVNT ('message.', 'x.')

/* on return, the following (and more) are set */

say x.TYPE /* EVENT */
say x.NAME /* CHANNEL_STOPPED */
say x.REA /* 2283 */
say x.Q_MGR_NAME /* WMQA */
say x.CHANNEL_NAME /* SYSTEM.ADMIN.SVRCONN */
say x.REASON_QUALIFIER /* 8 */
say x.ERROR_IDENTIFIER /* 20009519 */

This example shows how a message obtained from SYSTEM.ADMIN.CHANNEL.EVENT is splitup,
showing the information relating to the Channel Stop Event.

See Figure 2 on page 14 for an example using ZLIST processing to cope with the variable format
component names.

/* Explurge an Event */

message.0 = n
message.1 = <EVENT Header><Event Data>
drop x.
rcc = RXMQEVNT ('message.', 'x.')

MA95: A Rexx Interface to WebSphere MQ

68

/* Testing the returned information */

say x.TYPE /* EVENT */
say x.NAME /* INGET */
say x.REA /* 2016 */

if (x.qn <> 'X.QN') then say x.qn /* works - returned comp */
if (x.BQN <> 'X.BQN') then say x.bqn /* fails - not in event */

This example shows how the components of an exploded Event message can be tested to fully extract all
the returned information if ZLIST processing is not used.

ZLIST processing is also useful to cope with situations were an event String Field is defined, but set to all
binary zeros. These can easily be changed into blanks (with space truncation) as follows:

message.0 = n
message.1 = <EVENT Header><Event Data>
drop x.
rcc = RXMQEVNT ('message.', 'x.')

do i=1 to words(x.zlist)
 ts = word(x.zlist,i)
 x.ts = translate(x.ts,' ','00'x)
 x.ts = strip(x.ts,'B')
end

MA95: A Rexx Interface to WebSphere MQ

69

RXMQTM

Description
This call will take a message obtained from an Initiation Queue (a Trigger Message) and split it up into its
components. It will also parse the data passed to a started Rexx Exec (via a MQ Trigger Monitor).

This processing, therefore, permits the obtention of the control information associated with a Trigger:
whether this is in the format of a MQ Message (garnered from an Initiation Queue) or passed as
parameters to a Rexx Exec (as the Triggered Process).

The action of this function is controlled by the format of its first parameter, in particular whether or not it
ends in a dot.

• If it ends in a dot, then RXMQTM is processing a message derived from an Initiation Queue.

The message to be processed is specified in the usual way as the name of a stem. variable; with
component 0 representing the length of the message which is supplied in component 1. See
“Message Lengths” on page 11 for a warning about truncated messages used with this function.

This is called Message Mode.

• If it does not end in a dot, then RXMQTM is processing the parameter data passed via a Trigger
Monitor to the Rexx Exec which is acting as a Triggered Process (ie: replaces the initial parse arg
processing). It is the actual data, not a variable name that is supplied (ie: a substituted variable, not
the variable name).

This is called Data Mode.

The Extracted data is placed in another stem. variable (whose name is supplied); with components
representing the various sub-fields of the Trigger Message or Trigger parms.

Sub-fields which are all blanks (or start with a Binary Zero) are not extracted. ZLIST processing (see
“ZLIST” on page 13) is provided so that the various extant components can be determined.

In Message Mode (a Trigger Message provided to RXMQTM in a Stem. variable) an additional
component (not in ZLIST) called PL is provided which is the Parameter list for a process to be invoked by
the reception of the Trigger Message in the Initiation Queue (if the current thread is connected to a Queue
Manager, its name will be present in .PL). You should ensure that this component is not truncated in any
way (as this will may well effect the activity of the process which uses it).

You can, therefore, use a Rexx Exec as the Triggered Process, extracting the supplied information using
RXMQTM in Data Mode.

The use of Message Mode permits the coding of your own Trigger Monitor (recall the Trigger Messages
only get placed in an Initiation Queue if the priorities are right, the process exists, and the Initiation
Queue is Open for Getting) in Rexx (see Figure 3 on page 73), and Data Mode permits the use of Rexx
Execs as Triggered Processes (see Figure 4 on page 74).

Parameters
1. This parameter takes one of these formats:

In Message Mode The name of a Rexx Stem variable (including the dot) containing a message to
be splitup. This is an input parameter. Upon the call, Component 0 must
contain the length of the message in Component 1; the message must have
been obtained from an Initiation Queue. See “Message Lengths” on page 11
for a warning about truncation.

In Data Mode The actual data (not a variable name) representing the MQTMC2 structure
which is used to initiate a Triggered Process.

MA95: A Rexx Interface to WebSphere MQ

70

2. The name of a Rexx Stem variable (including the dot) into which the extracted data will be
placed. This is an input/output parameter. After the call, components will be created (as
documented in Table 9. Trigger Component (MQTM/MQTMC2) Mappings on page 72) to return
the extracted information. ZLIST processing is provided for this Stem variable. In the case of
Message Mode, component PL will contain an area suitable for use by a Triggered Process as its
parameters.

Call

Message Mode:

 rcc = RXMQTM('Stem.Message.', 'Stem.Splitup.')

Data Mode:

 rcc = RXMQTM(MQTMC2_data , 'Stem.Splitup.')

Additional Interface Return Codes and Messages

-1 0 0 RXMQTM Bad number of parms

Explanation You must specify two parameters to the RXMQTM call.

-2 0 0 RXMQTM Null input stem var

Explanation A null has been supplied for the first parameter, the name of a Stem. variable representing
the message to be splitup or data representing a MQTMC2 structure to be parsed.

-3 0 0 RXMQTM Zero input stem var

Explanation No value has been keyed for the first parameter, the name of a Stem. variable representing
the message to be splitup or data representing a MQTMC2 structure to be parsed.

-4 0 0 RXMQTM Null output stem var

Explanation A null has been supplied for the second parameter, the name of a Stem. variable
representing the splitup data.

-5 0 0 RXMQTM Zero output stem var

Explanation No value has been keyed for the second parameter, the name of a Stem. variable
representing the splitup data.

-6 0 0 RXMQTM No input data

Explanation The input Stem.0 was zero, indicating no message to process

-7 0 0 RXMQTM Zero input data

Explanation The length of the input Stem.1 was zero, indicating no message to process

-8 0 0 RXMQTM Cannot locate Header

Explanation The input Stem.0 was <= 3, indicating no header in the message

-9 0 0 RXMQTM Cannot find Header

Explanation The length of the input Stem.1 was <= 3, indicating no header in the message

-10 0 0 RXMQTM Zero input data

Explanation The length of the input data was zero, indicating no MQTMC2 structure to process

MA95: A Rexx Interface to WebSphere MQ

71

-11 0 0 RXMQTM Cannot find Header

Explanation The length of the input data was <= 3, indicating no header in the alleged MQTMC2
structure

-12 0 0 RXMQTM Unknown Header

Explanation The first 4 bytes of the input Stem. 1 or data was not 'TM ', so the message did not come
from an Initiation Queue or a Triggered Process' parameter, and so cannot be splitup

-13 0 0 RXMQTM Unknown Version

Explanation The second 4 bytes of the input Stem.1 or data was not that for a recognised Version field,
so the message did not come from an Initiation Queue or a Triggered Process' parameter, and so cannot be
splitup

-14 0 0 RXMQTM Header mismatch (1<>1)

Explanation Message mode was selected, but the StrucId field was not correct

-15 0 0 RXMQTM Version mismatch (1<>1)

Explanation Message mode was selected, but the Version field was not correct

-16 0 0 RXMQTM Header mismatch (2<>C)

Explanation Data mode was selected, but the StrucId field was not correct

-17 0 0 RXMQTM Version mismatch (2<>C)

Explanation Data mode was selected, but the Version field was not correct

-18 0 0 RXMQTM Too short for a TM (<n> bytes!)

Explanation Although the input Stem.1 looked like a Trigger Message, Stem.0 was too small for the
message to originate from an Initiation Queue, and so cannot be splitup

-19 0 0 RXMQTM Too short for a TMC (<n> bytes!)

Explanation Although the input data looked like Trigger Parms (MQTMC2), the data was too small (not
732 bytes long) for it to be a Triggered Process' Parameter and so cannot be splitup

-20 0 0 RXMQTM malloc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the input Stem.0 (1st
parameter) variable failed. The return code is errno code from the malloc call.

-21 0 0 RXMQPUT1 Data length is not equal to specified value

Explanation The Stem.0 (1st parameter), the Stem variable containing the length of message to be
splitup, is not equal to Stem.1 actual message length.

-99 0 0 RXMQTM UNKNOWN FAILURE

Explanation Some unknown error has occurred!

MA95: A Rexx Interface to WebSphere MQ

72

Trigger information

Table 9. Trigger Component (MQTM/MQTMC2) Mappings
Structure name Stem.

Component
Input, Output or

Both
Format

QName .QN O MQCHAR48

ProcessName .PN O MQCHAR48

TriggerData .TD O MQCHAR64

ApplType .AT O MQLONG

ApplId .AID O MQCHAR256

EnvData .ED O MQCHAR128

UserData .UD O MQCHAR128

QMgrName .QM O MQCHAR48

MQTMC2 parameter .PL O MQTMC2

Notes:

• Input, Output and Both show how the field is used

• Format shows the type of the field

• ZLIST is set to relevant existing field Stem. Component names

• Text items which are all Blanks (or start with a Binary Zero) are not generated

• .AT and .PL are only available in Message Mode

• .QM is only available in Data Mode

• .PL is not placed in ZLIST

MA95: A Rexx Interface to WebSphere MQ

73

Examples
/* A message has been obtained from an Initiation Queue */

message.0 = 684
message.1 = <MQTM>

/* Clear the result variable */

drop t.

/* Split the message */

rcc = RXMQTM('message.', 't.')

/* on return, the following are set */

say t.QN /* L3N1 */
say t.PN /* P3TO46N */

/* Truncated non-parm areas for usage */

do j=1 to words(t.zlist)
 item = word(t.zlist,j)
 t.item = strip(t.item,'B')
end

/* Some processing to decide on something to do */

/* Start a Process to service the Queue */

'@START CMD someproc.CMD' t.pl exit

Figure 3. A Trigger Monitor

This example shows how a message obtained from an Initiation Queue is splitup, showing how the PL
component is used to start a process to service the Queue which generated the Trigger. Note that all the
parameters passed in the Message can be used however one wants when one codes ones own Trigger
Monitor.
/* Get the parm */

parse arg parm

/* Clear the result variable */

drop p.

/* Split the parm */

rcc = RXMQTM(parm, 'p.')

/* on return, the following are set */

say p.QM /* WMQA */
say p.QN /* L3N1 */
say p.PN /* P3TO46N */

MA95: A Rexx Interface to WebSphere MQ

74

/* Truncate areas for usage */

do j=1 to words(p.zlist)
 item = word(p.zlist,j)
 p.item = strip(p.item,'B')
 end

Figure 4. A Rexx Triggered Process

This example shows how a Rexx Exec being initiated via a Trigger Monitor accesses its passed data.

MA95: A Rexx Interface to WebSphere MQ

75

Appendix A. ISPF Interface
As RXMQC operates within the Rexx environment, all the Rexx variables used are available for use
within ISPF in the normal fashion. Figure 5. ISPF Exec (MA95T1) on page 76 shows an ISPF exec using
RXMQC to issue a Command via the panel shown in Figure 6. ISPF Panel (MA95P1) on page 76. If
everything works, then Figure 7. ISPF Panel (success) on page 77 is displayed, or else something like
Figure 8. ISPF Panel (failure) on page 77.

/* REXX *** */
"ISPQRY" /* Check ISPF availability */
lastrc = rc
if lastrc = 20 then do /* rc=20 is no ISPF,so start ISPF */
 address TSO 'ISPSTART CMD(MA95T1) NEWAPPL(MA95)'
 exit
 end

address ispexec

qm = '' ; com = '' ; rcm = '' ; rcc = '' ; rcc1 = ''
reply1 = '' ; reply2 = '' ; reply3 = '' ; reply4 = '' ; rcc2 = ''

"VPUT (qm com rcm rcc rcc1 rcc2 reply1 reply2 reply3 reply4) SHARED"

Do mainloop = 1 by 1 /* Do mainloop forever */

 "DISPLAY PANEL("MA95P1")" ; lastrc = rc

 if (lastrc <> 0) then leave mainloop

 "VGET (qm com rcm rcc rcc1 rcc2 reply1 reply2 reply3 reply4) SHARED"

 rcm = '' ; rcc = '' ; rcc1 = ''
 reply1 = ''; reply2 = '' ; reply3 = '' ; reply4 = '' ; rcc2 = ''

drop rep.

rcci = RXMQINIT
rcc = RXMQC(qm, com, 'rep.')
rcct = RXMQTERM

rcm = strip(word(rcc,1),'B')
rcm = rxmq.rcmap.rcm
rcc1 = rep.cc
rcc2 = rep.ac

if ((rep.0 <> 'REP.0') & (rep.0 <> 0)) then do
 if (rep.0 >= 1) then reply1 = rep.1
 if (rep.0 >= 2) then reply2 = rep.2
 if (rep.0 >= 3) then reply3 = rep.3
 if (rep.0 >= 4) then reply4 = rep.4
 end
end

MA95: A Rexx Interface to WebSphere MQ

76

exit 0
/********** End of MA95T1 **/

Figure 5. ISPF Exec (MA95T1)

)ATTR
/***/
 # TYPE(INPUT) COLOR(WHITE)
 @ TYPE(OUTPUT) COLOR(TURQ)
 { TYPE(OUTPUT) CAPS(OFF)
)BODY SMSG(MSG)
%-------------------- MA95 Rexx/MQ/MVS/ ------------------------
%COMMAND ==> #ZCMD +

 +MA95P1 Commands+

 +QM+#qm +
 +Command+#com +
 +Reply1:+{reply1

 +Reply2:+{reply2

 +Reply3:+{reply3

 +Reply4:+{reply4

 +Com.cc {rcc1 +Com.rc {rcc2 +
 +rc {rcm
 +rcc {rcc

 {msg
)INIT
 /**/
 /* INITIALIZATION SECTION */
 /**/
)PROC
 /**/
 /* PROCESSING SECTION */
 /**/
)END

Figure 6. ISPF Panel (MA95P1)

MA95: A Rexx Interface to WebSphere MQ

77

---------------------------------- MA95 Rexx/MQ/MVS/ -------------------------------
MA95P1 Commands

QM WMQA
Command DISPLAY QUEUE(N1) ALL
Reply1: CSQM401I QUEUE(N1) TYPE(LOCAL)
DESCR(Notpersist)
PUT(ENABLED) DEFPRTY(0) DEFPSIST(NO) OPPROCS(
Reply2: CSQ9022I > CSQMDRTS ' DISPLAY QUEUE' NORMAL COMPLETION

Reply3:

Reply4:

Com.cc 00000000 Com.rc 00000000
Rc MQCC_OK
rcc 0 0 0 RXMQC OK

Figure 7. ISPF Panel (success)

---------------------------------- MA95 Rexx/MQ/MVS/ -------------------------------

MA95P1 Commands
QM VRH1
Command DISPLAY QZ (N1) ALL
Reply1: CSQ9021E > VERB ' DISPLAY' REQUIRED KEYWORD IS MISSING

Reply2: CSQ9023E > CSQ9SCND 'DISPLAY ' ABNORMAL COMPLETION

Reply3:

Reply4:

Com.cc 00000008 Com.rc FFFFFFFF
Rc MQCC_OK
rcc 0 0 0 RXMQC OK

Figure 8. ISPF Panel (failure)

MA95: A Rexx Interface to WebSphere MQ

78

Appendix B. Sample REXX execs
MA95\samples directory contains a number of useful examples related to both z/OS and Windows
environments. They are generally self-explaining and show how to exploit the functions provided by
SupportPac. In order to run them you can use sample jobs in MA95\MVS\JCL or batch files in
MA95\Windows\Runtests. Before running these samples please update Queue Manager and Queue
names to comply with your WebSphere MQ installation names.

• RXMQCMND.REXX – sends a command to Queue Manager, receives a response and presents
it to the REXX caller.

• RXMQEVNT.REXX – illustrates EVENT queue interface. Requests data from one of EVENT
queues, interprets it by calling RXMQEVNT, and presents the results.

• RXMQHXT.REXX – illustrates transmission queue message header parsing. Gets a message
from transmission queue, interprets is by calling RXMQHXT, and presents the results.

• RXMQMA95.REXX – perform basic WebSphere MQ functions, showing how to process the
results and return/reason codes.

• RXMQTM.REXX – shows how to use Trigger Monitor function of SupportPac. Gets message
from Initiation Queue, calls RXMQTM to interpret the message, and presents the results.

