MAO95: A Rexx Interface to WebSphere MQ
Version 1.0.2

qlll

MA95: A Rexx Interface to WebSphere MQ

Take Note!

Before using this User's Guide and the product it supports, be sure to read the general information under
“Notices’.

This edition applies to the following product:

Version 1.0.2 of MA95: A Rexx Interface to WebSphere MQ

and to any subsequent rel eases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1997, 2010. All rightsreserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corporation.

MA95: A Rexx Interface to WebSphere MQ

Contents
(0] = 01 K= PPN ii
FIQUI B h et e R R R R R R Rt Rt Rt R r e nr e r e re e vii
BI= o] 1= ST Viii
[0 Ao PR URSSP iX
= =T TSR PPRPR X
PrEIEOUISITESeeeeeeetese ettt b et b e et b e s et b e s e e st eb e se e st ebeseesenbeseebesbeneenenbenea X
ACKNOWIEAGEIMENES ...ttt ettt ettt s b e st b e bbbt b e bt e b bt b e X
OLNES SUPPOITPECS.ccveveeeeterteeet ettt ettt b b e bt bbbt eb s bt e st b e s e bt sb e e eb e e e e e b e nnenes X
(@ aT=T0] = g I 1 o o [T o) o S 1
Chapter 2. Installing the SUPPOrtPACc.cceeieeecece e sreens 3
INSEAIlING ON WINAOWS......cueiieieitccie et e e et ae st e e e e e s aese e beseesreereeneeneeeenteseesrennn 4
FaES ez T aTo = S 4
Compiling the Code fOr WINGOWS..........ccuiiiririiininieise ettt sse e seenes 4
INSEAITTNG ON ZIOS......ceoceeiet bbb et b e bbbt b e b et et beseen e be st e e beneenes 6
Compiling the COAETOr Z/OS.........ooee et s re e na e e srenresrenneas 6
LIRS O 1S o oo 7
Chapter 3. Interface Design PhilOSOPNYcc.coiiiiiiiii ettt s 9
Chapter 4. GENEral POINEScii ittt e e st e et s eeae e e e s e besrestesaesreeseenseneeseentesrensens 10
Compatibility with Previous SUPPOIPACS...........cciiiiirieeriee et 10
RELUINN COOBS......ee ettt ettt e h e bt a e e e e s e e e b e s bt eheeh e e ae et e seesbenbesbeeae et anteseenbesaesreas 11
I S A @ o= = o] TSRS 11
RELUIN COOE NAIMING ...ttt ettt ettt b e et e bt s aeeae et e s e e e e sbesbesaeebesaeese e s e neenseseenbesaenaeas 11
Y 1SSz To [I o 1L RSP 11
Header and EVENt PrOCESSING.......cceiieieieeieiestesesesteseeeesaestes e srestessesseeseessetessestesaessessesnsensessessessessens 12
A T 1 SO SRTSRP 13
SEM VANTADIES. ...ttt bttt b et bbbt 15
REXK EXECS. ...ttt ettt ettt e a e e h bbb et e s e e R e e Rt Rt e R eb e e ae e s e e e eR e ReeR e eRe e e e nenrenrenneere s 16
5T PSPPSR 17
Chapter 5. Handling M Q DESCIIPLOrSccuiiveiieciiceceeeiesteseste s e ese et e e eae e ste s e srestesaesseessessentesaesressesnens 18
THE ODJECE DESCIIPLONeeveeeieete ettt sttt ettt sttt b e st b e b e bt bbbt eb e b et e be s bt eb e be e be b 20
THE MESSAGE DESCIIILON ... ettt sttt ettt e et b e s he b et et e se e eeseesee e b e saeeaeeaeensaeeseeneeseenbesae e 21
The Get MeSSage OPtioN SITUCTUINoveiuieieieeeeee ettt et sae b ae e e e e e eeeseeseesae e 23
The Put MeSSage OPtioNS SIIUCLUNE......ccuiiviiteieeeeeieeeeie ettt se e et e b e se e e e e e eeseeseesee e 24
The Variable Length SIHiNG SITUCLUIEoveiviiececceee et st st re s r e re e 25

MA95: A Rexx Interface to WebSphere MQ

Foecifying parameters for command interface (RXMQOC).......cvieeererern s seseceeeeeseese s eeenes 26
Chapter 6. THrEad SUPPOIToeieeieie ettt ettt et b e s s e e e e be e e sbesbesbeeae e e anseseesbesaesneas 27
T TR E= 1T LA Lo o PSPPSR 27
L= 0.1 0= SR 27
ConNection and DISCONNECLION.cceiirerereeeeeee e e e et te e s e eeeeseesteseesbesseeseeseeeenseseesseseeseenes 27
AACCESS SCOPIE.....vveeeeueeaees et sr e b s st er st e e e ss e b s ee e R e e b e e bt e e e e e e e se e R e AR e e R e e R e e et e s e e s e R e e et e Rt e Rt e bt e ne e e e neneear e ne e 27
Shared VariablES ...ttt b et e bbb e bt eh e e e et e e et e beseeseennas 27
(O gT= 101 1= g A I 1= g = o =T = R RSPS 28
TN F= [T72 LA Lo o PP RU PR 28
) 1=STox 11010 o 28
PAIBIMELEIS ...t e e et s e e ae e e R e e R e e b e e a R e s R e e sRe e aRe e nR e e Re e e e enn e sneenneenne e 28

L | SO PSTRPSTRN 28
Additional Interface Return Codes and MESSAQES........ovvrerrierereeereeseeseseese e sre s e eseeseeseeseeseenees 28
T 11 0= 28
== 0 I TR T= T 14 o] o PSS T 29
[D=S'ol g o1 [o] o IR TSP ST U PSRV 29

e = 1001 [£ TR 29

L USSP 29
Additional Interface Return Codes and MESSAES........ovirrrerirereniree et see e 29
ez 0 1o L= TSP 29
L= 201107 o o TSRS 30
) 1=STox 11010 o S 30
PAIBIMELEIS ...ttt e e s e e e e e b e e Re e Rt e a R e e Re e s Re e nRe e Re e R e e e e e e ene e nneenneenne 30

L0 ST PTSTRPSRTRN 30
Additional Interface Return Codes and MESSAQES........ovvrerererereeereeseere e e see e se e eseeseeseeseeseenees 30
T 11 0= 30
RXIMQCONN. ...ttt se e et e seese et e s e es e ebessese et e saesestese et e st e s ebe st e s esesaeseesessensesenteseenentesens 31
[D=S'ol g o1 [o] o IR TSP ST U TSP UPTPPRP 31

e = 1001 [T TR 31

L TSRS 31
Additional Interface Return Codes and MESSAES........ooiriererirereriree et e e see e 31
T 11 0L 32
RXIMQDISC ...ttt sttt sttt sttt s et s a e st et e st e st et e sa e st ebese e st et e s e eneebeseeneebeseeneebeseebenbeneenentenees 33
[1=STox 11010 o S 33
PAIBIMELENS ... E e b bR R e R R Rt bt et ne e nenneerenns 33

L0 ST PTSTRPSRTRN 33
Additional Interface Return Codes and MESSAQES........covrerererireeereeseesee e e see e sre e eseesees e saeseenees 33
EXBIMPI. ... b b b e bbb e bbb ne b 33
RXIMQOPEN ..ottt sttt ettt st saese et e st e s e et e seese et e saesesbesaese et e saese st e s esesae e esestenseseateseesenresens 34
(D<ol g o1 [o] o IR OOV TSV TSSO 34
PAIaIMELEIS ...ttt bttt et e e ae e ehe e bt e b e e a b e eaeesheeeheeebe e beeaneeaneeaeenneenneanee 34

L USSP 34
Additional Interface Return Codes and MESSAES.oouirurrerirerenireeree et se e e e e 34
TG 11 10 35
RXIMQUCLOS......cceeeeteseeeete ettt sttt sttt st et se e bt e bese e st s beseesesbese e b e e be e ebesbe e ebesae e ebesbeseebenbeneesentesens 37
[1=STox 11010 o S 37
PAFBIMELENS ... e E e b h b e e e R R Rt bt e e r e e ne e erenns 37

L0 ST PTSTRPSRTRN 37
Additional Interface Return Codes and MESSAQES........ovvrereierereeereeseese e e see e se e eseeseeneesaeseesees 37
EXBIMPI. ... bbb b e bR b e e bt ae bbb b b 38
RXIMQINQ ...ttt sttt ettt sa e et e sa e s e et e seese et e saesesbesaese et e saebeste s esesteeesesbeseeseateseenenteseas 39
D 1S'ox 1] o)1 o] o [P URPTRR 39

MA95: A Rexx Interface to WebSphere MQ

PAIBIMELENS e E bR b h e et Rt R R Rt Rt ne e nenreerenns 39
L0 ST PSTRPSTRN 39
Additional Interface Return Codes and MESSAQES........cvvrerererereeereeseere e e see e sre e seeseesaeseenees 39
EXBIMPI. ... bbb b e bR b e e bt ae bbb b b 40
Y L@ S o RO 41
[D=S'el g o1 [o] o IR TSSOSO U PSRV PTPRRRT 41
PAIaIMELEIS ...ttt bttt et e e ae e ehe e bt e b e e a b e eaeesheeeheeebe e beeaneeaneeaeenneenneanee 41
L USSP 41
Additional Interface Return Codes and MESSAES........ooirerierirereeiree et see e e 41
TG 11 10 42
RXIMQUOCMIT ..ottt sttt sttt st se ettt s e bt ebese e st s beseebeebeseebe s b e seebesae e ebesae e ebesbeseebenbeseesenteneas 43
[1=STox 11010 o 43
PATBIMELENS ... e b b h R e Rt et R bRt Rt ne e re e nrenns 43
L0 ST PSTRPSTRN 43
Additional Interface Return Codes and MESSAJES.couevruirieiririeieresie ettt 43
EXBIMIPI. ... b e e b b e b bRt bt ae bbbt aenns 43
RXIMQBACKc.e ettt sttt sttt ettt et e s e e et e s e e s e et e saese et e saeseebesaese et e saesestesseseeaeseeseabeseeseateseenentesens 44
D 1S'ox 1] o)1 o] o [P URRRR 44
PAIaIMELEIS ...ttt bttt et e e ae e ehe e bt e b e e a b e eaeesheeeheeebe e beeaneeaneeaeenneenneanee 44
L USSP 44
Additional Interface Return Codes and MESSAQES........covierieierierieeerieeieesie et e e sae e sresreens 44
TG 11 0= 44
RXIMQGET ...ttt sttt sttt sttt s se et seebe st e se e b e s bese e bt s b e e e b e s be e eb e s b e e eb e s ee e et e sae e ebeseeneebenbeseesenteneas 45
[1=STox 11010 o 45
PAI8IMELEIS ...ttt e e r e R e e R e R e R e r e ne e e ne e ne e 45
L0 ST PSTRPSTRN 45
Additional Interface Return Codes and MESSAJES.couevririeiririeierese et 46
EXBIMPI. ... b b b e bbb e bbb ne b 47
Y 1@ 1 N TSRS 48
D 1S'ox 1] o)1 o] o [P URPTRR 48
PAIaIMELEIS ...ttt h et et e e ae e ehe e bt e be e a b e eaeesheesheeebeebeeneeaeeeneenneenneanee 48
L USSP 48
Additional Interface Return Codes and MESSAQES........cooviereieeereeereesee e et e e sae e sresreens 48
TG 11 0= 50
RXIMQPUTL ...ttt ettt st ettt et b e se et b e se e st et e se e st e b e s e e st e bese e st st e neebesbeneenenbenees 51
[1=STox 11010 o 51
PAIEIMELEIS ...t r e R R e R e R e r e n e e ne e ne e 51
L USSP 51
Additional Interface Return Codes and MESSAJES.coueiruirieiririeiresie et 52
EXBIMIPI. ... bbb e b e b e bt bbbt a b 54
RXIMIQC ..ottt sttt sttt sttt st et et e sa e st et e st e st et e se e st et e saeseebesa e st eb e saeneebeseeneebeseeneabeneeseabenensentesens 55
D 1S'ox 1] o)1 o] o [P URPTRR 55
PAIBIMELEIS ...ttt s ettt e et e ae e ehe e bt et e e a b e e aeesheeshe e ebe e b e e ne e e e eaneeneenneenee 55
Additional Interface Return Codes and MESSAQES........coivereieeereeereeiee e et e e see e sresreens 55
s 1110 == 56
RXIMQBRWVS........oeecteiteiete sttt sttt sttt ettt s s et se st bese e st s bese e bt et e seebesbeneebesee e ebesbeseebenbeseesenbeseas 57
[1=STox 11010 o 57
PAIEIMELEIS ...ttt e e e R R e e R e R r e n e e ne e ne e 57
L0 ST PTSTRPSRTRN 57
Additional Interface Return Codes and MESSAJES.couevririeiririeierese et 57
EXBIMPI. ... b b b e bbb e bbb ne b 58
0 Y L@ L RO 59
D 1S'ox 1] o)1 o] o [P URPTRR 59
PAIaIMELEIS ...ttt bttt et e e ae e ehe e bt e b e e a b e eaeesheeeheeebe e beeaneeaneeaeenneenneanee 59
L USSP 59
Additional Interface Return Codes and MESSAQES........cooviereieeereeereesee e et e e sae e sresreens 59
EXEraCted INfOrMELION......ccoiieiieiee et sttt st sttt e st 61

MA95: A Rexx Interface to WebSphere MQ

T 11 0= 63
RXIMQENVNT ...ttt sttt et st e b e e h b se bt b e se e bt e b e s e eb e e b e s e e b e s beneebenbeneebenbeneenenbeneas 64

[1=STox 11010 o 64

e = 1001 [£ T TR 64

L TSP 65
USAOE NOLES......ccee ettt e bbbt e e s e e R se e b e s bt e me e e e e e e e ne e nennenr e 65
Additional Interface Return Codes and MESSAES.ooirererirereriree et sae e e 66
= 0 10T 67
RXIMIQTIM ...ttt sttt sttt sttt et s e et et saese et e s e ese et e seese et e saeseebesaeseeb e saeseebeseeneebeseeneabeneeseabesensenteens 69

) 1=STox 11010 o 69
PAIBIMELEIS ...t st e e et s e e ae e e b e e R e e b e e a R e s Re e sReenRe e R e e R e e ne e e e ene e nneenneenne 69

L | SO PSTRPSTRN 70
Additional Interface Return Codes and MESSAQES.overerererereeereeseerie e e e sresre e eseeseeseesseseenees 70

B oo L= T)] 1= (o ST 72
EXBIMPIES ... b e bRt h e Rt b e bbbt b e e b 73

PN o] 1= oo LD N IS | (= o 75
Appendix B. SAMPIE REXX EXECS.....ccceiiierieiisteresteseeseesaestes e stestessesseesaessesessessessessessessssssssssssessessenses 78

Vi

MA95: A Rexx Interface to WebSphere MQ

Figures

FIQUIrE 1. TSO BAtCN JCLecuiiiiieieiieeete ettt ettt s e ettt sttt sbe e 7
Figure2. ZLIST and EVENt PrOCESSING.....ccueterueruererieieriertestestesiesieesesseessesesssessesaestessesneessssssnseseessessenns 14
FIgure 3. A Trigger MONITOcocoiiieee sttt ettt st besb e sb e st eme et e e e neeseeebenae e 73
Figured. A ReXX Trigger @0 PrOCESSccceiiriiriiieeeieie ettt sttt se e et bt sb et eae e e e e ebeseesbesae e 74
FIgure 5. ISPF EXEC (MAOST L) ...ttt ettt n s 76
Figure 6. ISPF Panel (MAOGSPL) ...ttt 76
FIgure 7. | SPF PAn€l (SUCCESS)......cccueiueriiiieitistesiestesteseeaesaestestestestessessesseessestessesteseestessesssssssnssnsessessensenns 77
Figure 8. I SPF Pan€@l (AU E).......ccveiieeeeescse st sttt st sne e e e sne e nne e 77

Vi

MA95: A Rexx Interface to WebSphere MQ

Tables

BI= o] Lo I U T ot o g I o = 10
Table 2. Object Descriptor (MQOD) MaPPiNgGS.....ccueiuirieruertereeieieeseeie e sie e sresresesesseeseesesseesseseessesnes 20
Table 3. Message Descriptor (MQM D) MapPinNgS......ccoeeererereeieereeriesieseesiesessesseeseesseseeseeseessesesneenes 21
Table 4. Get Message Option (MQGMO) MaPPINGSeiueruererreerieriesie e stesieseeeeseesee e e see e sseeseeeenes 23
Table 5. Put Message Options (MQPMO) MapPINGS......ccceeieierieierenesesresteseeaesaesaessesrestesnessessssssenes 24
Table 6. RXMQC Function Parameter MapPingScccceveeereeieeieeriesesesesie e sreseeseessesssssessessessessesses 55
Table 7. Transmission Queue M essage Header (MQXQH) Mappings........ccccveeeveeieveenesesesieseesvennns 61
Table 8. Dead L etter Queue Message Header (MQDLH) Mappings......cocceeveeereeeereereeseseeseseeseennes 62
Table9. Trigger Component (MQTM/MQTMC2) MapPiNgS....ccccoererereriereererreeeeseeseessesnesseseeeenes 72

viii

MA95: A Rexx Interface to WebSphere MQ

Notices

The following paragraph does not apply in any country where such provisions are inconsistent with local
law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this
statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in al countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionaly equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product. Evaluation and verification of operation in conjunction with other products, except those
expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. Y ou can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New
York 10594, USA.

The information contained in this document has not been submitted to any formal IBM test and is
distributed AS IS. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

WebSphere® MQ
IBM®

AIX®

MV S™

2I0S®

The following terms are trademarks of the Microsoft Corporation in the United States and/or other
countries:

Windows® 95, 98, Me
Windows NT, 2000, XP

MA95: A Rexx Interface to WebSphere MQ

Preface

This MA95 SupportPac provides a Rexx Interface for IBM WebSphere MQ Version 6.0 for Windows and
Z/OS. It permits the usage of MQ functions within the Rexx Environment.

This interface is different to that described in the WebSphere MQ Application Programming Reference
Version 6.0 (SC34-6596) book, as the API is customised for the Rexx environment. However, with a few
exceptions, al the function described in the APR is available. Some extensions to the APl are also
provided to ease the usage of the interface.

The interface described within this SupportPac, should not be taken to be part of the official MQ Product
API, nor should the interface itself be considered part of the official MQ product.

Prerequisites
The SupportPac requires:
e 2Z/OSVersion 1.6 or later plus WebShere MQ for Z/OS Version 6 or 7

» Windows 2000 or Windows XP or Windows 2003 or later plus IBM Object Rexx for Windows
Interpreter Edition plus WebShere MQ for Windows Version 6 or 7

What isin this SupportPac:
» REXX Function Pack load module provides Rexx support for WebSphere MQ for z/OS.

e Two DLLswhich provide Rexx support for WebSphere MQ for Windows. One DLL supports access
to alocal Queue Manager, whilst the other DLL provides client access to a server Queue Manager.

» Rexx Execs which demonstrate usage of the interface.
» Source code of SupportPac modules as areference for creating similar interfaces.
 This paper which documents the interface.

Acknowledgements

This SupportPac is based on the MA18, MA19, MA77 and MA78 SupportPacs written by Robert Harris
of IBM Hursley.

Other SupportPacs
This SupportPac replaces the following outdated SupportPacs:

MA18 A SupportPac providing this interface for Rexx and MQSeries for MV S/ESA

MA19 A SupportPac containing a Rexx interface for Rexx and MQ for MVSESA for the
issuing of M QSC commands.

MAT7 A SupportPac providing this interface for Rexx and MQSeries for Windows NT

MAT8 A SupportPac containing a Rexx interface to MQSeries for Windows NT for the issuing

of MQSC commands.

MA95: A Rexx Interface to WebSphere MQ

Chapter 1. Introduction

This SupportPac provides a Rexx interface, within the zZ/OS and Windows environment, for WebSphere
M essage Queueing access.

One IRXFUSER load module is provided for zZ/OS environment. It is the so-called user REXX function
pack which, when placed to the commonly available load library, allows the user to cal al the provided
interface functions without additional preparations. This load module is automatically placed in memory
during LOGON, and al interface functions become readily available for use.

Alternative setup may be used, if it is not possible to exploit REXX function pack advantages.
SupportPac load library contains alias names for every exported function, and user should issue TSOL B
command against this library to make them available for REXX procedures. The first call to RXMQINIT
function takes care of loading the executable into memory, and the last call to RXMQTERM unloads the
interface.

Two Dynamically Linkage Libraries (DLLSs) are provided for Windows environment:
RXMQN A DLL that provides access to a Queue Manager located on the same workstation

RXMQT A DLL that provides access to a remote Queue Manager located on the different workstation
viaWebSphere MQ Client

Both DLLs contain exactly the same function, and has the same interface, however, both of them cannot
be used in one REXX program simultaneously, because they are linked with different MQ API libraries.
See below how to properly install the interface.

A full implementation of the APl as described in the WebSphere MQ Application Programming
Reference Version 6.0 SC34-6596 (referenced below as APR) is provided, so this book will be needed to
use the Rexx Interface. However, there are afew restrictions:

« MQINQ only permits a single attribute to be examined, as support for multiple access is too
complicated in the Rexx environment

* MQSET only permits the setting of a single attribute

 MQCONNX and MQBEGIN functions are not implemented
In addition to the standard API functions, the Rexx Interface provides a number of extensions to the API
to ease the coding with the Exec:

» Browsefunction is provided

» Header Extraction function is provided to split up a message from a Transmission Queue or a Dead
letter Queue into its components

» Event Interpretation function is provided to split up a message from an Event Queue into its
components

» Trigger Message function is provided to split up a Trigger message from an Initiation Queue and to
generate/parse execution parameters

* Rexx Interface for manipulation of MQ objects (the function that is provided via the MQSC
command).

Implementation of the last function is according with the WebSphere MQ <cript (MQSC) Command
Reference Version 6.0 SC34-6597, so this book will be needed to use the Rexx Interface. However, bear
in mind:

» The+ - line extender symbols are not required or supported

» The underlying function is provided by use of the PCF ESCAPE command (see WebSphere MQ

MA95: A Rexx Interface to WebSphere MQ

Programmable Command Formats and Administration Interface Version 6.0 SC34-6598 for details)
» Some non-printable characters are returned.

MA95: A Rexx Interface to WebSphere MQ

Chapter 2. Installing the SupportPac

Take the following actions to install the SupportPac
1. Savethefile MA95.zip to atemporary directory.

2. Uncompress using any unzip program keeping the original directory structure. Thiswill produce
the following directories:

MA95\
bin\ contains the binary ready-to-use files of SupportPac
doc\ contains this M A95.pdf file that you are reading
MVS\ contains MV S specific files
ASM\ MV S Assembler source module (REXX function package)
Includée\ MV S specific include files to use during recompile
JCL\ job samples for recompiling and running tests
samples\ contains sample REXX programs to show the interface usage
src\ contains source code of SupportPac modules common to Windows
and MVS
Windows\ contains Windows specific files
Compile\ contains files necessary to compile on Windows
Runtests\ contains batch files for running samples
Util\ contains files necessary to recreate REXX constants definitions

MA95: A Rexx Interface to WebSphere MQ

Installing on Windows

Take the following actions to install the SupportPac on Windows:

Copy rxmgn.dll or rxmqt.dll from MA95\bin\ into a suitable directory contained in the PATH entry of
the System -> Advanced -> Environment Variables (obtained via the Control Panel). If you want to
restrict usage, then place in the User variables section, but it is recommended to place DLL in the System
Variables section. Do not try to place both DLLs in the same commonly accessed directory. If both DLLs
are called from the same REX X program the results are unpredictable.

Installing the DLLs

To use the Rexx WebSphere MQ function within a Rexx Exec, the relevant DLL must be made known to
Rexx, and then the interface initialized.

To load the Local Queue Manager interface, code:

rcc
rcc

RcFuncAdd(' RAMIINI T, "RXMON, "RXMIINIT)
RXVQINIT()

To load the Client/Server interface, code:

rcc
rcc

ReFuncAdd(' RAMINIT, "RXMJT, "RAVMQINIT)
RV N T()

Once thisinitialization sequence has been done, then the Rexx MQ interfaceis ready for use.

Please note these oper ational characteristics:
» The RxFuncAdd operations need only be done once for the whole of the Object Rexx environment.

e The RXMQINIT call need to be done for each REXX EXEC run (ie: each Process using the
interface).

« The RXMQTERM call removes the definitions of the functions (so, if two EXECs were running
together, the second would start failing after the first issued the RXMQTERM call). Consequently,
these may be omitted under normal circumstances.

In athread based environment, athread should beinitialized viaRXMQCONS (RXMQINIT should
only be called in the initial process thread)

Compiling the Code for Windows

If you want to add function to the interface (or bring it up to current WebSphere MQ level), then you may
choose to compile the code. You will need the Object Rexx Toolkit along with the WebSphere MQ
libraries and includes.

Two batch files are provided to compile the new version of the interface using the Microsoft
Development Studio for Visual C++:

e MA9S\Windows\Compile\lmake n.bat to create a DLL that provides access to a Queue
Manager located on the same workstation

e MA9S\Windows\Compile\make t.bat to create a DLL that provides access to a remote Queue
Manager located on the different workstation via WebSphere MQ Client

Before starting the compile ensure that the C++ source code and headers in MA95\src are in the
INCLUDE path as well as WebSphere MQ and Object Rexx Toolkit headers and library files.

MA95: A Rexx Interface to WebSphere MQ

Another task you may want to do is upgrading WebSphere MQ constants defined in REXX to a higher
level. These constants are defined in MA95\sr \ARXM QCONS.hpp file which can be recreated using the
following instructions:

e Place current WebSphere MQ include files CMQC.H and CM QCFC.H to the same directory as
M A95\Windows\Util\makecons.bat

e Make changes, if desired, to MA95\Windows\Util\rxmqgcons.cfg which contains the list of
prefixes of constants to be pulled out of the WebSphere MQ include files

e Runthebatchfile

e Recompiletheinterface DLLs (as described above) or MV S function pack (as described below)

MA95: A Rexx Interface to WebSphere MQ

Installing on z/OS

Take the following actions to install the SupportPac from the unpacked MA95.Z1 P file:

e MA95\bin\M A95.xmt contains the load library to be transferred to zZ/OS system. It needs to
be transferred to the destination TSO system as a sequential binary file with arecord format
of FB 80.

e To send thefile viaftp open the session with the target host. Ensure the Bl NARY option is set,
then use the following commands:
quote site fixrecfm80

put MA95. xmt MA9SXm t

e OnTSO, issue this command:
recei ve indsname(MASXM T)

e When prompted for afilename, reply
dsn(MA95. LOAD)

This creates a PDS called mvsuser i d.MA95. LOAD with SupportPac executables

e UselSPF 3.2 to delete the MA9SXM T file

e UseISPF 3.3 to copy al members from nvsuser i d.MA95. LOAD into the load library of your
choice. If you want other users to access the MA95 interface, select a common access load
library (like LINKLIB concatenation). SupportPac is automatically recognized by TSO as a
REXX function pack during LOGON, and interface functions become readily available for
use. Otherwise use a private load library, which may be made accessible from your
TSO/ISPF sessions by the use of TSOLI B ACTI VATE DSNAME(MA95. LOAD) command.

e To permit tracing to appear, ensure that the following DD-statement is in your TSO
LOGON Procedure (or dynamicaly issue a TSO ALLOCATE FI(SYSPRINT) SYSOUT
command)

/1 SYSPRINT DD SYSQUT=*

The MVS file names have been described are an example. Please use whatever conventions are suitable
for your installation.

To use the Rexx WebSphere MQ function within a Rexx Exec, nothing special has to be done to make it
known to Rexx (compared to Windows RxFuncAdd call).

Compiling the Code for z/OS

If you want to add function to the interface (or bring it up to current WebSphere MQ level), then you may
choose to compile the code. You will need IBM C/C++ Compiler and Language Environment and High
Level Assembler for zZ/OS along with the WebSphere MQ libraries and includes. Another task you may
want to do is upgrading WebSphere MQ constants defined in REXX to a higher level. The latter task is
described in Compiling the Code for Windows on page 4.

To assist with re-building the code, sample jobs are provided in MA95\MV S\JCL directory. They are:
e ASMB5 — use this one to assemble REXX function package part of SupportPac
e (CC95 — use this one to compile C++ part of SupportPac

e LKEDY5 — use this job to bind Assembler, C++ parts and WebSphere MQ libraries into load
module.

These sample jobs refer to WebSphere MQ, C/C++ and Language Environment libraries (which names
you may need to update for your installation) as well as SupportPac libraries you will need to create. It is
recommended to use PDSE type libraries. Suggested names and attributes for them are as follows:

o WWQ MA95. ASM - RECFM=FB, LRECL=80

MA95: A Rexx Interface to WebSphere MQ

o WWQ MA95. CC - RECFMEVB, LRECL=255
o WWQ MA95. OB) - RECFMEFB, LRECL=80
o WWQ MA95. LOAD - RECFM:U, LRECL=32760

First, you will need to transfer the source code from MA95\sr¢ to WM. MA95. CC on your z/OS system.
Then transfer MV S specific code from MA95\MVSIASM to WWMQ. MA95. ASMand M A95\M V S\Include to
WVQ MA95. CC. Now make necessary changes to the code and submit 3 sample jobs to build the load
module.

TSO Support

TSO Batch Support

The MA95 interface will runin Batch mode via | KJEFT01, using a setup such as:

IILIB EXEC PGVEI EBGENER

[1*

[1* Create the exec library

[1*

['1 SYSUT2 DD DSN=&&LI B(SI LLY), DI SP=(NEW PASS),

I UNI T=SYSDA,
I SPACE=(CYL, (1, 1, 10)),
I DCB=(DSCRG=PO, RECFM:FB, LRECL=80, BLKS| ZE=800)

[/ SYSPRINT DD DUMWY

I'1SYSIN DD DUMWY

I'1 SYSUT1 DD DATA, DLM=" ##'

[* ASilly Exec */

RXMQ NIT()

say 'WMQA is very very very very silly'
RXMQTERM()

exit 0

[* End of SILLY exec */

#it

/*

[/ RIN EXEC PGVEI KIEFTO1

/1 SYSPROC ~ DD DSN=&&LI B, DI SP=SHR

[/ STEPLIB DD DSN=WR MA95. LOAD, DI SP=SHR
/1 SYSTSPRT ~ DD SYSOUT=*, DCB=(RECFM-F, LRECL=132, BLKSI ZE=132)
[SYSPRINT DD SYSQUT=*

1 SYSUDUWP DD SYSQUT=*

[ISYSTSIN DD *

SILLY

/*

Figure 1. TSO Batch JCL

TSO Native Support

When running within a native TSO Exec (ie: one issued outside of the | SPF environment, or viathe TSO
command within ISPF), the Rexx processor is attached to TSO as a separate TCB. Consequently, the
connection to the Queue Manager will only last throughout the lifetime of the Exec. If processing is
interrupted via PA1, then the Rexx processor TCB is terminated, and so the MQ Step termination routines
will be driven to terminate all extant accesses.

TSO Split Screen Support

When running within a ISPF Split Screen, the Rexx processor is attached to each part as a separate TCB.

MA95: A Rexx Interface to WebSphere MQ

Consequently, the same considerations apply as in “TSO Native Support,” so the Queue Manager
connection, and the Rexx variables cannot be shared between the two halves.

MA95: A Rexx Interface to WebSphere MQ

Chapter 3. Interface Design Philosophy

The Rexx MQ Interface API differs from that defined in the APR. This is because the call-type of APl is
not suitable for the Rexx environment. This has been replaced with a set of verbs that use Rexx Stem
variables to contain the relevant information.

The opportunity has also be taken to remove some parameters due to the restriction that a single Windows
thread or z/OS task (Exec in the Rexx environment) can only communicate with a single Queue Manager.
Additionally, in order to simplify coding, Input and Output versions of object are provided (this saves
deleting and rebuilding things like M essage descriptors which are updated by aMQ Verb).

As part of the initialization call, a number of MQ Constants (as described in WebSphere MQ Constants
Version 6.0 SC34-6607) are defined to the Rexx workspace. Thus, you will be able to code options
according to the descriptions in this book. However, these values are not protected against change, so you
should avoid using your own variables starting with MQ.

The command interface takes a string of characters in the format of a text command as described in the
MQ Command reference. This is then placed in the Command Input Queue in the format of a PCF
ESCAPE command. The Command server processes the command, and returns the results in a
dynamically generated ReplyToQ (called RXMX. *) based upon the ModelReplyToQ specified. Each
message is returned as an element of a Rexx Stem variable, with the number of messages being in stem.0
in the usual Rexx fashion. These returned messages may have non-printable charactersin them.

MA95: A Rexx Interface to WebSphere MQ

Chapter 4. General Points

Compatibility with Previous SupportPacs

The previous SupportPacs, namely, MA18/19 for MVSESA and MA77/78 for Windows, used different
names for the same implemented WebSphere MQ functions. That is why it was not possible to write a
single REXX exec to execute in both environments.

In order to provide this capability the function names were unified to provide for running the same REXX
exec unchanged on z/OS and Windows. The MA95 Common Function names are presented below in the
table below. Sample REXX execs which run equally in both environments are provided in
M A95\samples directory and explained more in Appendix B. Sample REXX execs on page 78.

To maintain compatibility with previous SupportPacs the old function names are till serviced, so that
existing REXX execs are not required to be changed. For example, the callsto RXMQN.../RXMQT...
in Windows and RXMQV in zZ/OS are supported and should provide the same results as new Common
Functions names. The parameter lists remain unchanged.

In the rest of this document only the new Common Function names (RXM Qxxxx) are described. See the
table below for relationship between new and old function names specified in older manuals.

Table 1. Function Names

MQ Function MA95 Common MA77_/78 Windows MA13/19 MVS/ESA Page
Name Function Function Function
Standard MQ functions:
MQBACK RXMQBACK RXMQNBACK RXMQVBACK 44
MQCLOSE RXMCLOS RXMNCLOSE RXMQVCLOSE 37
MQCMIT RXMXM T RXMINCM T RXMQCM T 43
MQCONN RXMQCONN RXMQNCONN RXMQVCONN 31
MQDISC RXMQDI SC RXM\NDI SC RXMQVDI SC 33
MQGET RXMQGET RXMNGET RXMQVGET 45
MQINQ RXMY NQ RXMNI NQ RXMVI NQ 39
MQOPEN RXMQOPEN RXMQNOPEN RXMQVOPEN 34
MQPUT RXMQPUT RXMNPUT RXMQVPUT 48
MQPUT1 RXMQPUT1 .- .- 51
MQSET RXMQSET RXMONSET RXMQVSET 41
Extension functions:

Initialization RMINT RXMNINI'T RXM¥INIT 28
Thread initialization RXMQCONS RXMQNCONS RXMQVCONS 29
Termination RXMQTERM RXMQNTERM RXMQVTERM 30
Command function RXMQC RXMQCNC RXMQVC 55
Browse RXMQBRVS RXMNBROWSE RXMQVBROWGE 57
Header Extraction RXMQHXT RXMNHXT RXMQVHXT 59
Event Extraction RXMQEVNT RXMQNEVENT RXMQVEVENT 64
Trigger Extraction RXMJTM RXMONTM RXMVTM 69

10

MA95: A Rexx Interface to WebSphere MQ

MQ Function MA95 Common | MA77/78 Windows | MA18/19 MVSESA Page
Name Function Function Function

Universal function -- - RXMQV -
caler

Warning. Some minor incompatibilities may still exist between the old and new SupportPacs due to
optimizations made during the code merge. For example, small changes were made to improve EVENT
gqueue message parsing algorithm (see RXMQEVNT on page 64). If you encounter a problem, please
contact the authors to get workaround or have your suggestion included in the next release of SupportPac.

Return Codes

All the RXMQ functions return a standard Rexx return string. This is structured so that the numeric

Return Code (which may be negative) is obtained by awor d(RCC, 1) call.

The Return Code for an operation can be negative to show that the interface has detected an error,

otherwise it will be the MQ Completion Code (not the uninformative Reason Code).

The Return String isin text format as follows:

Word 1 Return Code

Word 2 MQ Completion Code (or O if successful)
Word 2 MQ Reason Code (or O if successful)
Word 4 RXM Q function being run

Word > OK or an helpful error message

Last Operation

In addition, the current (ie: the settings last set) values are available in these variables:

RXMQ LASTRC current operation Return Code

RXMQ LASTCC current operation MQ Completion Code
RXMQ LASTAC current operation MQ Reason Code
RXMQ. LASTOP current operation RXM Q function name
RXMQ LASTMSG current operation Return String

Return Code Naming

A set of variables called RXMQ RCMAP. nn are also placed in the workspace, where nn is the MQ Reason

Code. These variables can be used to turn areturn code number into the defining string.

Thus:
rcc = '2048 2 2048 RXMPUT ERRCR
interpret 'fcs = RXMQ RCMAP. 'word(rcc, 1)

/* fcs = MQRC_PERS| STENT NOT_ALLOWED */

Message Lengths

When a MQGET is performed, if the buffer size is too small for the message, then the returned message
length is the real length of the message, not the smaller size which fits in the buffer (see Datal.ength for

MQGET in the APR).

Consequently, if you specify a too small a message length, and do not take any notice of the return code

11

MA95: A Rexx Interface to WebSphere MQ
indicating truncation, then the length of the message in stem.0 will be bigger than the message in stem.1.

Thiswill result in amysterious loss of datain the message.

Header and Event processing

Functions ROMQHXT and RXMQEVNT will take messages and split them up into the contained
components. These exploded components may clash with those for the Message Descriptor (or other like
things). Therefore, use different st em names to avoid this possibility.

12

MA95: A Rexx Interface to WebSphere MQ

ZLIST

One of the problems with REXX stem variables is that it is difficult to know what components (things
after the .) are associated with the stem You have to know which ones might be around, and then test
with something like:

if (stemconpl <> 'STEM COW1') then say 'conpl =/'stemconpl'/'
if (stemconp2 <> 'STEM COMP2') then say 'conp2 =/'stem conp2'/"

To get around this problem, the output descriptors will contain a component called ZLI ST. ZLI ST will
contain alist of words, each word a component name which is attached to the stem variable. Y ou can then
use the Rexx words (to get the number of elements) and word (to extract the component name) functions
to manipulate the stem. variable. ZLI ST does not contain itself (ie: ZLI ST is not within st em ZLI ST).

The presence of an item in ZLI ST implies that the relevant Stem.Component is defined as a Rexx
Variable. However, the contents may be null (a length of zero or set to ' ') depending upon what the
underlying MQ object contains.

This facility is not of much use for the RXMQOPEN, RXMQGET and RXMQPUT calls (wherein
ZL| ST is provided for the Output Object Descriptor, Output Message Descriptor, Output Get Message
Options and Output Put Message Options) as the contents of the Output st em variableis of fixed format.
However, it can be used to display the st em variable and can also be useful in copying operations.

For RXMQHXT and RXMQEVNT processing, ZLI ST is of variable format, containing things relevant
to the Message or Event being processed. ZLI ST for RXMQHXT processing contains components 0 and
1 (the original message) as well as NAME and TYPE. For RXM QEVNT processing, NAME, TYPE and REA are
aways present; the rest of the list will depend upon the event being processed.

For example to display an Object Descriptor:

drop iod. ; drop ood.
iod.on = "N
iod.ot = MYT_Q

rcc = RXMQOPEN('iod.', moo_inquire, "hl', 'ood.")
say 'RC=' rcc "H' hl
do j=1to words(ood.zlist) ; k =word(ood.zlist,j) ; say k "/'ood.k'/" ; end

13

MA95: A Rexx Interface to WebSphere MQ

ZL| ST can be used for Event processing:

drop bm ; drop ed.
rcc = RXMBRWS(he, 'bm")
say 'Browse RC=' rcc

rcc = RXMEVNT(' bm ', ' ed.")
say 'Event RC =' rcc
say '.zlist ['ed.zlist'/'

[* Protect against bad function by being very cautious! */
if ((ed.zlist <> "ED ZLIST") & (words(ed.zlist) <> 0)) then,
do j=1 to words(ed. zlist)
k = word(ed.zlist,j)
say 'ed."k' /'ed.k'/['

end
end
I* 1"monly interested in Channel Stopped Events */
[* ¥
/* However, do not want to access undefined *]
/* conponents. *]
[* ¥

if (ed. name = 'CHANNEL_STOPPED) then do
uvars = ' Q MCR_NAVE CHANNEL_NAVE REASON QUALI FI ER ERROR_I DENTI FI ER
do i=1to words(uvars)
uv = word(uvars,i)
if (wordpos(uv,ed.zlist) <> 0) then,
say uv '= <ed.uv' >
end
end

[* So, if PNis not set within the Event */
[* (it's an optional parameter), it will */
[* not be accessed. *|

Figure 2. ZLIST and Event processing

14

MA95: A Rexx Interface to WebSphere MQ

Stem Variables

As described in “Chapter 5. Handling MQ Descriptors’ on page 18, Stem variables are extensively used
in this interface. A Stem variable is one that has various bits separated by dots (such as a. b. ¢).
Everything after the first dot is called a component; so in the above example, a is the Stem variable, and b
& C are components.

You should be aware that you can cause conflicts if you use Rexx variables with the same name as
components. This is because Rexx will substitute the values of component names as if they were
variables before usage.

a.l=15
a.2 =3
b =2
say a.b [* -> 3 due to substitution */

This can cause problems if you use any of the returned component names from this utility as native
variables because you will get an 'unknown' setting due to the substitution.

WA

"some userish data'

gn
ud

rcc = RXMQ . (...data_which will _set .gn=A, 'out.')

say out.gn /* tries to resolve out. WA *]
[* -> A ¥/
[* as the utility does the substitution *]

say out.ud /* tries to resolve out.some userish data */
[* ->a Rexx error due to invalid var name */

Unless you are deliberately doing this sort of processing, | suggest you avoid using variables which are
returned as components.

15

MA95: A Rexx Interface to WebSphere MQ

Rexx Execs

An Object Rexx exec in the Windows environment behaves differently from that in the z/OS environment
due to the way the function is placed in regard to the operating system. One of these is in the way one
runs an exec.

Under Windows aRexx exec isrun via

REXX exec. rexx

whereas under z/OS the exec isrun via

exec
to make the latter style available under Windows, you can code up aone line batch file as follows:

@REXX exec.rexx W % 98 % % % % 9B %

16

MA95: A Rexx Interface to WebSphere MQ

Trace

Tracing is provided by settings in the RXMJTRACE Rexx variable. Note that the tracing is sent to the
currently open STDOUT stream, and some of the settings can produce a lot of output. The settings are:

COW MQCONN
DISC MQDISC
OPEN MQOPEN
CLOSE MQCLOSE

GET MQGET
PUT MQPUT
PUTL MQPUTL
INQ MQINQ
SET MQSET
MT MQCMIT
BACK MQBACK
oM MQSC

BRO Browse extension
HXT Header extraction extension

EVENT Event expansion extension

™ Trigger message extension

MVD Rexx stem var -> MQMD

MOD Rexx stem var -> MQOD

MPO Rexx stem var -> MQPMO

MGO Rexx stem var -> MQGMO

BVD MQMD -> Rexx stem var

BOD MQOD -> Rexx stem var

BPO MQPMO -> Rexx stem var

B&O MQGM O -> Rexx stem var

SK Return Code processing

TR Thread based processing

INFT Initialization processing (including RXM QCONS)
TERM Deregistration processing

* Trace everything!!!

So, to trace Gets and Puts, one would code

RXMJTRACE = ' PUT GET'

17

MA95: A Rexx Interface to WebSphere MQ

Chapter 5. Handling MQ Descriptors

The API defined for MQ in the APR Manual uses various structures to pass information both into and out
of the Queue Manager. These structures are;

MQOD The Object Descriptor, used by MQOPEN and MQPUT1 verbs to specify the MQ
Object being processed, and return various attributes of the accessed item

MQMD The Message Descriptor, used by MQGET and MQPUT verbs to specify (for the
MQPUT) attributes for the emplaced message, and return these attributes (for the
MQGET)

MQGMO This structure controls the operation of the MQGET verb

MQPMO This structure controls the operation of the MQPUT verb

MQCHARYV This structure represents variable length strings used in M QOD structure
These structures are input/output for the MQ Verbs.

In order to supply these structures to the underlying MQ Verbs within this Rexx MQ Interface, Rexx
stem stem variables are used. In order to reduce complexity, and enhance the ease of usage of the
interface, separate Stem variables are used for input and output. This reduces the complexity of the Rexx
code, asthe input Stem variable may be reused without completely reinitializing it.

This approach allows, for simple applications, the initial setup of the stem variables representing the
reguested options; these are then repeatedly reused, the output versions simply not being accessed.

The structure of the stem variables is fixed. That means that the name of the stem variable (before the
dot) can be chosen by the caller, whilst the latter part (after the dot) is fixed by the interface. The things
after the dot are called the Components of the stem variable.

The normal Rexx rules apply to these Stem variables, in particular they are case invariant (Rexx treats all
variables as being of Upper case), and substitution may occur within the name. Therefore, take care to
avoid using variables that could clash with the naming conventions of these interface requirements (see
“Stem Variables’ on page 15).

When supplying these stem variables to the interface, you have to pass the name of the stem variable
(including the trailing dot). Thus, one would normally specify this information as a literal (RXMQ . . (

o, TAGDT, L))
However, you are at liberty to use the normal Rexx substitutions on an interface call (soZ = ' AGVO. ' ;
RXMQ .. (..., z) iscorrect), and even abandon the stem variable convention completely (but this will

lead to unwieldy execs). This abandonment, however, does not apply to one of the RXMQOPEN
parameters.

When you build the stem variable, component abbreviations for the full name of the relevant structure's
field is used (eg: CCID for CodedChar Setld) to improve legibility of the Exec. You only specify those
fields of interest - the others should be omitted. The omitted components will default to the relevant
settings as defined in the APR (usually avalue or nulls).

However, athough some fields of the descriptors are only used for input or output, this interface will
utilize al of the information within the Stem variable - even if it is not used by the underlying MQ code
(such as the Destination Count fields within the PM O descriptor - these are not used by the underlying
MQ code, but this interface will process them if so supplied).

When the interface returns a structure to the exec, in the named Stem variable, all the components (fields)
will be placed within the stem.structure.

The actua settings for these component variables are documented in the MQ APR to which you should
refer. Asthe interface places within the Rexx workspace all M) numeric values, the stem components can
be set using the normal MQ conventions (eg: stem PER = MIVD_NOT_PERSI STENT). The interface does
not check that the values are relevant for the field.

In the case of text fields, the interface will truncate supplied data that is too long for the MQ structure
without notification. Fields that are to be null should not be supplied to the interface, and are returned as
nulls().

18

MA95: A Rexx Interface to WebSphere MQ

Actual message data to/from the Queue Manager is passed via the usual Rexx convention (see “Message
Lengths’ on page 11 for awarning about truncation):

stem.0 contains the length of the data
stem.1 contains the message data

Functions RXMQHXT and RXMQEVNT will take messages and split them up into the contained
components. These exploded components may clash with those for the Message Descriptor (or other like
things). Therefore, use different stem. names to avoid this possibility.

ZLI ST processing (see “ZLIST” on page 13) is available for the Output Stems representing a MQOD,
MQMD, MQGMO or MQPMO. If present within an Input Stem. variable, ZLI ST isignored.

19

MA95: A Rexx Interface to WebSphere MQ

The Object Descriptor

The Object descriptor is used by RXMQOPEN and RXMQPUT1 calls (MQOPEN and MQPUT1 verbs)
to specify the MQ Object being processed, and return various attributes of the accessed item.

If you are accessing a Queue, then the short cut form of RXM QOPEN/RXMQPUT1 can be used, and so
the Object Descriptor is only of interest upon completion of the call. The only interesting part of the
MQOD inthis case is the name of the 'real’ queue generated when aModel queue is opened.

Table 2. Object Descriptor (MQOD) Mappings

Structure name Stem. I nput, Output or Format
Component Both
Version 1
Version . VER I MALONG
ObjectType Lar I MALONG
ObjectName . ON B MQCHAR48
ObjectQMgrName . QQM B MQCHAR48
DynamicQueueName . DON I MQCHAR48
AlternateUser| D .AUD I MCHARL2
Version 2
RecsPresent .RP I MLONG
KnownDestCount . KDC o] MLONG
UnknownDestCount .uUDC o] MLONG
InvalidDestCount .1DC o] MLONG
Version 3
AlternateSecurityl D .ASID I MBYTE40
ResolvedQName . RQN (0] MQCHARA4S
ResolvedQMgrName . ROW (0] MQCHARA48
Version 4
ObjectSring . G5 I MQCHARV
SelectionString . SS. I MCHARV
ResObjectString . RCS. o] MQCHARV
ResolvedType .RT (0] MLONG
Notes:

 Input, Output and Both show how thefield is used
e Format shows the type of the field
e ZLI ST isset to relevant existing field Stem. Component names

« Components RP and ASI D are supported only in Windows

20

MA95: A Rexx Interface to WebSphere MQ

The Message Descriptor

The Message Descriptor details the type of the message being processed. It aso has a meaning where
messages are obtained from a queue - whereat it is used to select messages for obtention from the queue.
The interface does not check that combinations of components are valid.

As separate versions of a Message Descriptor are required by the interface for Input and Output on each
call, the input MQM D can be reused for subsequent accesses. Components omitted will take the defaults
as defined in the APR.

Table 3. Message Descriptor (MQMD) Mappings

Structure name Stem. Input, Output or Format
Component Both
Version 1
Version . VER I MALONG
Report . REP oll MALONG
MsgType . MG oll MLONG
Expiry . EXP o/l MLONG
Feedback . FBK ol MALONG
Encoding .ENC o/l MLONG
CodedChar Setld . CCSl o/l MLONG
Format . FORM oIl MQCHARS
Priority . PRI oll MALONG
Persistence . PER ol MALONG
Msgld .M5G D B/B MBYTE24
Correlld .GD B/I MBYTE24
BackoutCount .BC B/- MALONG
ReplyToQ .RTOQ oll MQCHAR48
ReplyToQMgr . RTOQM oll MQCHAR48
Userldentifier .UD o/B MXCHARL2
AccountingToken AT o/B MABYTE32
ApplyldentityData .AID o/B MXCHAR32
PutAppl Type . PAT o/B MALONG
PutApplName . PAN o/B MCHR28
PutDate .PD o/B MQCHAR3
PutTime .PT o/B MQCHARS
ApplCriginData . ACD o/B MCHARA
Version 2

Groupld .GD B/B MBYTE24
MsgSegNumber . MBN B/B MALONG

21

MA95: A Rexx Interface to WebSphere MQ

Structure name Stem. I nput, Output or Format
Component Both

Offset . OFF B/B MLONG

MsgFlags . M B/B MLONG

OriginalLength QA o/B MALONG

Notes:

 Input, Output and Both show how the field is used

» Format showsthe type of the field

e ZLI ST isset to relevant existing field Stem. Component names

22

MA95: A Rexx Interface to WebSphere MQ

The Get Message Option Structure
The Get Message Option Structure requests what message is to be obtained from a queue viathe MQGET

verb. Asit is updated by this operation, RXM QGET uses an Input and Output Stem variable to hold this
information.

Table 4. Get Message Option (MQGMO) Mappings

Structure name Stem. Input, Output or Format
Component Both
Version 1
Version . VER I MALONG
Options .OPT I MLONG
Waitl nterval MAIT [MYLONG
ResolvedQueueName . RQN (0] MQCHARA4S
Version 2
MatchOptions . MOPT I MLONG
GroupSatus .GS o] MECHAR
SegmentSatus . SS o] MECHAR
Segmentation . SEG o] MECHAR
Version 3
MsgToken M B MBYTEL6
ReturnedLength RL o] MLONG
Version 4
MsgHandle .M I MHMSG
Notes:

 Input, Output and Both show how the field is used
» Format showsthe type of thefield

e ZLI ST isset to relevant existing field Stem. Component names

23

MA95: A Rexx Interface to WebSphere MQ

The Put Message Options Structure
The Put Message Option Structure requests what type of message is to be placed in a queue via the

MQPUT or MQPUTL verb. As it is updated by this operation, RXMQPUT and RXMQPUT1 uses an
Input and Output Stem variable to hold this information.

Table 5. Put Message Options (MQPMO) Mappings

Structure name Stem. I nput, Output or Format
Component Both
Version 1
Version . VER I MALONG
Options .OPT I MALONG
Timeout . TIMNE I MLONG
Context . CON I HOBJ
KnownDestCount . KDC (0] MALONG
UnKnownDestCount .UDC o] MALONG
InvalidDestCount .1DC (0] MALONG
ResolvedQueueName . RON 0] MXCHAR48
ResolvedQueueMgrName . ROW (0] MQCHAR4S
Version 2
RecsPresent .RP I MALONG
Version 3
OriginalMsgHandle . OWH I MHVEG
NewMsgHandle . NVH B MHVEG
Action CACT I MLONG
PubLevel .PL [MLONG
Notes:

 Input, Output and Both show how the field is used

e Format showsthe type of the field

ZLI ST is set to relevant existing field Stem. Component names

¢ Component RP is supported only in Windows.

24

MA95: A Rexx Interface to WebSphere MQ

The Variable Length String Structure

The Variable Length String Structure (MQCHARV) designates character string of variable length and specific
character set identifier.

Actual string data to/from the Queue Manager is passed viathe usual Rexx convention;

stem.0 contains the length of the string

stem.1 contains the string itself

stem. name is constructed of the name of the higher structure and the name of this structure component,
like, for example, OD.ROS.1 stands for ReturnedObjectString in Object Descriptor structure. Before the
call appropriate OD.ROS.0 variable should be set to the biggest of string length and buffer size. During
the call VSBuUfSize is set to OD.ROS.0 and VSLength is set to actual string length. String buffer is
automatically created and it's pointer is placed to MQCHARV V SPtr. On return from the call V SLength value
is placed to OD.ROS.0 variable, returned string is placed to OD.ROS.1 and buffer isreleased.

Coded character set identifier is assigned to stem.CCSl variable.

25

MA95: A Rexx Interface to WebSphere MQ

Specifying parameters for command interface (RXMQC)

The interface requires some parameters to control operation:
e The name of the queue Manager (if omitted, the default Queue Manager is accessed)
e The name of the Command Input Queue (defaultsto SYSTEM.ADMIN.COMMAND.QUEUE)
e The name of the model ReplyToQ (defaultsto SYSTEM .M QSC.REPLY .QUEUE)

« A Timeout for the operation (defaults to 5 seconds)

In order to supply this information to the underlying MQ Verbs within this Rexx MQ Interface, Rexx
stem variables are used.

The structure of the stem variables is fixed. That means that the name of the stem variable (before the
dot) can be chosen by the caller, whilst the latter part (after the dot) is fixed by the interface. The things
after the dot are called the Components of the stem variable.

The normal Rexx rules apply to these Stem variables, in particular they are case invariant (Rexx treats all
variables as being of upper case), and substitution may occur within the name. Therefore, take care to
avoid using variables that could clash with the naming conventions of these interface requirements.

When supplying these stem variables to the interface, you have to pass the name of the stem variable
(including the trailing dot). Thus, one would normally specify this information as a literal (RXM(...,
"ASTEM ', ...)).

However, you are at liberty to use the normal Rexx substitutions on an interface call (soZ = ' ASTEM ' ;
RXMXC(. .., z) iscorrect), and even abandon the stem variable convention completely (but this will lead
to unwieldy execs). This abandonment, however, does not apply to one of the RXM QC parameters.

When you build the stem variable, component abbreviations for the full name of the relevant structure's
field is used (eg: CQ for Command Queue) to improve legibility of the Exec. You only specify those
fields of interest - the others should be omitted. The omitted components will default to the relevant
settings as defined in the interface.

Actual message data in response to the Command is passed via the usual Rexx convention:
stem.0 contains the length of the data

stem.1 containsthe data

26

MA95: A Rexx Interface to WebSphere MQ

Chapter 6. Thread Support

Some non-IBM Versions of Rexx which run in the Windows environment may support Rexx activity
within threads. IBM Object Rexx for Windows does not support threads. There is no multitask support in
Z/0S REXX environment, so all the thread-based issues in this documentation will be applicable only for
Windows Rexx/Threaded environment.

This utility supports access to the APl in a Rexx/Threaded environment; however, this function is
untested and usage is at your own risk.

Initialization

The initiaization of via RXMQINIT should be done under the Process (main) thread. This will ensure
that the functions are available for all the threads which are subsequently created within the process.

Within each thread, RXMQINIT should not be caled (as this would remove al Globa information
stored within the interface). The thread should be initialized with a RXMQCONS cal which simply
creates the MQ mappings within the Rexx Variable space for the thread.

Termination

The usage of RXMQTERM will remove all access to the interface whomsoever is using it with the
Process. If this is done before al threads within the Process have stopped accessing MQ facilities, this
will result in errors (as the function will affect threads other than the issuing one).

No special processing needs to be done at thread termination, as MQ facilities will terminate any current
access within the thread.

Connection and Disconnection

Within the thread, the RXMQCONN and RXM QDI SC call should be made as normal to establish and
terminate access to the Queue Manager. Each Thread can contact a different Queue Manager. The scope
of the Connection is only within the issuing Thread. Access made in the original processes 'main’ thread
do not spread to the subsequent threads within the process.

When the RXMQDISC call is issued, all access to the Queue Manager within the issuing thread are
effected. The graceful processing described in “ Termination” on page 30 appliesto all accesses within the
current thread.

Access scope

The handle returned by the RXM QCONN and used for most of the access functions of the interface has a
scope of the issuing thread. Thisis policed within the interface to prevent MQ errors.

Functions like RXMQCMIT and RQMQBACK have a scope of all accessed MQ objects within the
issuing thread; they do not effect accesses outside the thread.

Shared Variables

The interface implicitly assumes that Rexx Variables within a thread are not shared across threads. If

your version of Rexx supports shared Rexx variables across threads, then ensure that access is suitably
restricted (ie: the variables used are unique to the threads) across these threads.

27

MA95: A Rexx Interface to WebSphere MQ

Chapter 7. The Interface

The functions provided by this Rexx MQ interface roughly follow those provided by the underlying MQ
API, with some extensions and the calls required by Rexx to initialize the interface.

All the parameters specified for a call are required; none can be omitted.

When the interface detects an error, a negative return code will be provided as the first word in the return
string. These are documented with the associated message under the individual calls.

Initialization

Description

Thisfunction initializes the interface, defines all the functions for Rexx usage, and places a number of the
MY constants into the Rexx workspace. These constants are described in WebSphere MQ Constants
Version 6.0 SC34-6607. See M A95\sr \RXM QCONS.hpp for alist of the defined constants.

The RXMQINIT call needs to be done within each EXEC. In a thread-based environment, issue this
call only in the 'owning' thread for the process.

Parameters
None
Call

rcc = RXMINT()

Additional Interface Return Codes and Messages

None
Example
rcc = RXMINIT()

28

MA95: A Rexx Interface to WebSphere MQ

Thread Initialization

Description

This function places a number of the M) constants into the Rexx workspace for athread. These constants
are described in WebSphere MQ Constants Version 6.0 SC34-6607. See M A95\sr \RXM QCONS.hpp
for alist of the defined constants. This function can be called when there is no Queue Manager activity.

The RXMQCONS call needs to be the first call within a thread to setup the MY constants. It can be
called generally to do the same function.

Parameters
None
Call
rcc = RXMICONS()
Additional Interface Return Codes and Messages
None
Example
rcc = RXMQCONS()

29

MA95: A Rexx Interface to WebSphere MQ

Termination

Description

This function simply removes the access to the interface functions from Rexx. It does not initiate MQ
Termination processing. If aprior RXMQDISC has not been done, then the usual End-of-Process MQ
function will (eventually) stop access to the Queue Manager.

The MY definitions are left in the Rexx workspace, so that new commands can be composed using the
'real’ notations.

Asthe RXMQTERM call removes the definitions of the functions, if two EXECs were running together,
the second would start failing after the first issued the RXMQTERM call. Consequently, this call should
be omitted under normal circumstances.

In a thread-based environment, issue this call only in the 'owning' thread for the process when all other
accesses have ended.

Parameters
None
Call
rcc = RXMJTERM)
Additional Interface Return Codes and Messages
None
Example
rcc = RXMJTERM)

30

MA95: A Rexx Interface to WebSphere MQ

RXMQCONN

Description

This function connects the Rexx Interface to the Queue Manager. Note that there isa MQ restriction such
that only one Queue Manager can be contacted from a Windows thread or z/OS task (the Rexx processor,
in this case).

This call has to be made after the RXMQINIT call, and only be made once (unless a RXMQDISC is
made).

Owing to the above restriction, the Queue Manager Handle returned by the use of MQCONN within the
interface is not a useful thing, and so is not returned to the Rexx Exec.

Parameters

1. The name of the Queue Manager to connect to. (Input only).

Call

rcc = RXMQCONN(QM)
Additional Interface Return Codes and Messages

-1 0 0 RXMQCONN Bad nunber of parns

Explanation You must specify only one parameter to RXMQCONN; this parameter being the name of
the Queue Manager to contact.

-2 0 0 RXMQCONN Nul | QM nane

Explanation The Queue Manager name supplied contained only nulls, not a proper name.

-3 0 0 RXMQCONN Zero | ength QV nane

Explanation The Queue Manager Name supplied was of zero length (ie: ' ").

-4 0 0 RXMQCONN QM name too | ong
Explanation The maximum length of avalid Queue Manager Name is M) Q MGR_NAME LENGTH bytes.

-5 0 0 RXMQCONN No avail able Q objects

Explanation The number of concurrent MQ Objects accessed with the process has reached its limit.

-95 0 0 RXMQCONN Mutex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSinglel ock::UnLock).

-96 0 0 RXMQCONN Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

-98 0 0 RXMQCONN Al ready Connected to a QM
Explanation The current thread has already Connected to a Queue Manager

31

MA95: A Rexx Interface to WebSphere MQ

-99 0 0 RXMQCONN UNKNOWN' FAI LURE

Explanation Some unknown error has occurred!

Example

rcc = RVQCONN WA)

This call will contact the local Queue Manager called WM QA.. If this Queue Manager is not defined, or
not running, then the call will fail.

If the RXMQCONN Client/Server interface is being used, then the MQ Client/Server Communications
must be configured and active for the Server Queue Manager to be contacted. A Client/Server MQCONN
takes longer to compl ete than alocal contact.

32

MA95: A Rexx Interface to WebSphere MQ

RXMQDISC

Description

This function disconnects (MQDISC) from the currently connected Queue Manager. As an extension to
the function, the interface will issue a MQCLOSE(...,MQCO_NONE) for any still open queue accessed
via the interface (this is to cope with Rexx Tracing, and so give the user a simple way of 'gracefully’
exiting when in test mode).

Parameters
None.
Call

rcc = RXMQDI SC()

Additional Interface Return Codes and Messages
-1 0 0 RXMQDI SC Bad nunber of parns

Explanation Y ou cannot specify any parametersto thiscall.

-95 0 0 RXM)DI SC Mutex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleL ock::UnLock).

-96 0 0 RXMQDI SC Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

-98 0 0 RXMDI SC Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQDI SC UNKNOWN FAI LURE

Explanation Some unknown error has occurred!

Example

rcc = RXMQDI SC()

This call will disconnect from the currently accessed Queue Manager doing a MQCLOSE(None) on any
Queues still open at this point.

If the RXMQDISC Client/Server interface is being used, then the MQ Client/Server Communications
will stop after this call has successfully completed.

33

MA95: A Rexx Interface to WebSphere MQ

RXMQOPEN

Description

This verb provides access to aMQ Object viaa MQOPEN call. Upto 100 Objects can be accessed viathis
interface in any one process (ie: 100 spread throughout al the threads owned by the process). Although
one will normally be accessing a Queue, any of the allowed MQ objects can be accessed.

Parameters

1. Thename of a Stem variable (including the dot) specifying the Object Descriptor for the MQ
Object to access. Thisisan input only field. The format of this Stem variable is described in
“The Object Descriptor” on page 20.

If the name given does not end in a dot, then the data is taken to be the name of a Queue (or
Model Queue) to access. This short cut removes the requirement to fully format up a stem
variable for 'normal’ Queue access; but note that you supply the name of the Queue, not the name
of the variable containing the name of the Queue.

2. The MQOPEN Options (as described in the APR). Thisisan input only field, and should resolve
into a number (not the name of afield containing the Options).

3. Thename of avariable to contain a handle for the MQ Object being accessed. Thisis an output
field, and should be the name of the field to receive the handle.
The handle returned is not the handle returned by the underlying MQOPEN verb; this latter value
is not accessible outside of the interface. This handle must be quoted on all subsequent
accesses to the Object.

4. The name of a Stem variable (including the dot) into which is placed the Object Descriptor
returned by the underlying MQOPEN verb. Thisis an output only field.
The format of this Stem variable is described in “ The Object Descriptor” on page 20; ZLI ST
processing is provided.

Call

rcc = RXMQOPEN(' Stem Input.OD.", QpenOptions, 'VarHandle', 'Stem Qutput.OD.")
or

rcc = RXMQOPEN(QueueName , OpenQptions, 'VarHandle', "Stem Qutput.OD.")

Additional Interface Return Codes and Messages
-1 0 0 RXMQOPEN Bad nunber of parns

Explanation Y ou must specify four parameters to the RXM QOPEN call.

-2 0 0 RXMQOPEN Nul I I'nput OO Qnane

Explanation A null has been supplied for the first parameter, the name of a stem variable for an input
Open Descriptor or the name of a Queue to access.

-3 0 0 RXMQOPEN Zero length Input OO Qnane

Explanation No value has been keyed for the first parameter, the name of a stem variable for an input
Open Descriptor or the name of a Queue to access.

-4 0 0 RXMQOPEN Nul | options

Explanation A null has been supplied for the second parameter, a number representing the Open Options.
To specify No Options, supply aO.

34

MA95: A Rexx Interface to WebSphere MQ

-5 0 0 RXMQOPEN Zero |ength options

Explanation No value has been keyed for the second parameter, a number representing the Open
Options. To specify No Options, supply aO.

-6 0 0 RXMQOPEN Nul I handl e name

Explanation A null has been supplied for the third parameter, the name of a variable which will be set to
the obtained handle for the accessed MQ Object.

-7 0 0 RXMQOPEN Zero | ength handl e nanme

Explanation No value has been keyed for the third parameter, the name of a variable which will be set to
the obtained handle for the accessed MQ Object.

-8 0 0 RXMQOPEN Nul | Qutput OD

Explanation A null has been supplied for the forth parameter, the name of a stem variable which will be
set to the obtained Object Descriptor for the accessed MQ Object.

-9 0 0 RXMQOPEN Zero length Qutput CD

Explanation No value has been keyed for the forth parameter, the name of a stem variable which will be
set to the obtained Object Descriptor for the accessed MQ Object.

-10 0 0 RXMQOPEN No avai | abl e Q objects
Explanation The limit of MQ Objects supported by this interface has been reached.

-95 0 0 RXMQOPEN Mitex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSinglel ock::UnLock).

-96 0 0 RXMQOPEN Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

-98 0 0 RXMQOPEN Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQOPEN UNKNOWN FAI LURE

Explanation Some unknown error has occurred!

Example
opts = MQOO I NQUIRE + MQOO_| NPUT_SHARED :
+ MQOO_BROWSE + MQOO_SAVE ALL_CONTEXT

+ MJOO FAIL_| F_QUI ESCI NG

rcc = RXMQOPEN(N1, opts, 'hnl", 'od.')

This call opens the Queue N1 for a Browse access, and permits the inquiry of the queue's attributes. If the
open succeeds, then the variable hnl is set to the handle for subsequent access to N1, and the stem
variable od. isset to the contents of the Object Descriptor for NI (eg: od. ON = " N1').

iod. OT = MQOT_Q
iod. ON = ' NI

rcc = RXMQOPEN('iod.', MO BROABE+MYOO | NQUIRE, "hnl', 'ood.')

35

MA95: A Rexx Interface to WebSphere MQ

This example shows how the Queue N1 would be accessed if the full Object Descriptor method is used to
specify the MQ Object to be accessed.

36

MA95: A Rexx Interface to WebSphere MQ

RXMQCLOS

Description

This verb stops access to aMQ Object, using the underlying MQCLOSE verb.

Parameters

1. TheHandlefor the object obtained from aprior RXMQOPEN call. Thisisan input parameter.
After this call completes, the handle is no longer valid for use.

2. TheClose options. Thisis an input parameter representing the type of MQCLOSE operation to be
performed.

Call
rcc = RXMQCLOS(handle, O oseOptions)
Additional Interface Return Codes and Messages

-1 0 0 RXMCLCS Bad nunber of parns
Explanation Y ou must specify two parameters to the RXM QCL OS call.

-2 0 0 RXMQCLCS Null handl e
Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMXCLOS Zero length handle
Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMXCLOS Nul| options

Explanation A null has been supplied for the second parameter, a number representing the Close
Options. To specify No Options, supply a 0.

-5 0 0 RXMXCLCS Zero length options

Explanation No value has been keyed for the second parameter, a number representing the Close
Options. To specify No Options, supply a0.

-6 0 0 RXMQCLOS Handl e out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-7 0 0 RXMCLGS Invalid handl e
Explanation The handle specified does not relate to an accessed MQ Object.

-95 0 0 RXMQCLOS Mutex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSinglel ock::UnL ock).

-96 0 0 RXMQCLOS Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

37

MA95: A Rexx Interface to WebSphere MQ

-97 0 0 RXMQCLOS Handl e not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXM QOPENed by another thread).

-98 0 0 RXMXCLCS Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMCLOS UNKNOWN FAI LURE

Explanation Some unknown error has occurred!

Example
rcc = RXMQCLOSE(hnl, MJCO _NONE)

This call closes the object referred to by the handle specified in the hnl variable, with no special closing
actions being reguested.

38

MA95: A Rexx Interface to WebSphere MQ

RXMQINQ

Description

This call will inquire upon a single attribute of a MQ object. This is a difference between this interface
and the function of the underlying MQINQ verb.

The relevant data is returned in character format, so numeric attributes need not be converted for Rexx
usage. The requested attribute is specified viaMJ A_, MJXCA ... variables.
Parameters

1. Thehandl e for the object obtained from a prior RXM QOPEN call, whereat the object was
opened for Inquiry. Thisis an input parameter.

2. TheAttribut e number to beinquired upon (setting starting with MJ A, MQCA ...). Thisisan
input parameter.

3. Thename of avariable into which will be returned the current setting of the desired attribute.
Numeric attributes (like Maximum Message Size) are presented as decimal strings (so '17' might
be returned rather than '11'x). Thisis an output parameter.

Call
rcc = RXMINQ (handle, Attribute, VarAttributeValue)
Additional Interface Return Codes and Messages

-1 0 0 RXMQ NQ Bad nunber of parnms
Explanation You must specify three parametersto the RXMQINQ call.

-2 0 0 RXMQJNQ Nul I handl e
Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMJ NQ Zero data handl e
Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMJNQ Null data input attr

Explanation A null has been supplied for the second parameter, a number representing representing the
attribute of the MQ object to be obtained.

-5 0 0 RXMJNQ Zero data input attr

Explanation No value has been keyed for the second parameter, a number representing the attribute of
the MQ object to be obtained.

-6 0 0 RXMJNQ Nul | output attr

Explanation A null has been supplied for the third parameter, the name of a variable to receive the value
of the requested attribute.

-7 0 0 RXMJNQ Zero length output attr

Explanation No value has been keyed for the third parameter, the name of avariable to receive the value
of the requested attribute.

39

MA95: A Rexx Interface to WebSphere MQ

-8 0 0 RXMJNQ No attribute supplied

Explanation No value was supplied for the attribute under consideration.

-9 0 0 RXMINQ Attribute out of valid range

Explanation The value of the attribute under consideration was outside of the ranges defined for Integer
and Character attributes.

-10 0 0 RXMJ NQ Handl e out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-11 0 0 RXMJNQ I nvalid handl e
Explanation The handle specified does not relate to an accessed MQ Object.

-95 0 0 RXMQJ NQ Mutex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleL ock::UnLock).

-96 0 0 RXM) NQ Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

-97 0 0 RXMJI NQ Handl e not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXMQOPENed by another thread).

-98 0 0 RXMJ NQ Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager
-99 0 0 RXMY NQ UNKNOMN FAI LURE
Explanation Some unknown error has occurred!

Example

rcc = RXAMINQ hnl, MY A MAX MSG LENGTH, 'maxnsg)
I* maxmsg = 3109856 */

This call obtains the current Maximum Message Length attribute for the queue referenced by the handle
contained in hnl. In this case, the maxnsg variable is set to 3109856, the value of the desired attribute.

40

MA95: A Rexx Interface to WebSphere MQ

RXMQSET

Description

This call will set a given attribute of a MQ object. This is a difference between this interface and the
underlying MQSET verb, whereat many attributes can be manipulated in a single execution.

The relevant data is specified in character format, so numeric attributes need not be converted for
interface usage. The attribute is specified viaMJ A , MXCA ... variables.
Parameters

1. Thehandl e for the object obtained from a prior RXM QOPEN call, whereat the object was
opened for Setting. Thisis an input parameter.

2. TheAttribute Number to be set (starting with MJ A, MXCA . ..). Thisisan input parameter.

3. Thevalue of the attribute which isto be set in the MQ Object. Numeric attributes (like Trigger
Depth) are specified as a normal Rexx decimal string (so use '17' rather than '11'x). Thisisan
input parameter.

Call
rcc = RXMQSET(handle, Attribute, AttributeSetting)
Additional Interface Return Codes and Messages

-1 0 0 RXMXSET Bad nunber of parms
Explanation You must specify three parametersto the RXMQSET call.

-2 0 0 RXMXSET Nul | handl e
Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQSET Zero data handl e
Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMSET Null data attribute

Explanation A null has been supplied for the second parameter, a number representing representing the
attribute of the MQ object to be set.

-5 0 0 RXMSET Zero data attribute

Explanation No value has been keyed for the second parameter, a number representing the attribute of
the MQ object to be set.

-6 0 0 RXMBET Nul | setting

Explanation A null has been supplied for the third parameter, the name of a variable to receive the value
of the requested attribute.

-7 0 0 RXMQSET Zero length setting

Explanation No value has been keyed for the third parameter, the name of avariable to receive the value
of the requested attribute.

41

MA95: A Rexx Interface to WebSphere MQ

-8 0 0 RXMXSET No attribute supplied

Explanation No value was supplied for the attribute under consideration.

-9 0 0 RXMXET Attribute out of valid range

Explanation The value of the attribute under consideration was outside of the ranges defined for Integer
and Character attributes.

-10 0 0 RXMXSET Handl e out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-11 0 0 RXMSET Invalid handl e
Explanation The handle specified does not relate to an accessed MQ Object.

-95 0 0 RXMSET Mutex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSingleL ock::UnLock).

-96 0 0 RXMQSET Mitex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

-97 0 0 RXMQSET Handl e not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXM QOPENed by another thread).

-98 0 0 RXMSET Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMSET UNKNOMN FAI LURE

Explanation Some unknown error has occurred!
Example

rcc = RXMOSET(hnl, MQJIA TR GGER DEPTH, 21)

This call sets the Trigger Depth for the Queue specified by hnl (which must have been opened with Set
access) to 21 messages.

42

MA95: A Rexx Interface to WebSphere MQ

RXMQCMIT

Description

This verb will issue a MQCMIT verb. It syncpoints the current Queue Manager accesses. Note that this
operation affects all the currently accessed queues which have extant operations within Unit of Work
control within the current thread (ie: it does not effect other threads within the process).

Parameters
None
Call

rcc = RXMQCM T()

Additional Interface Return Codes and Messages
-1 0 0 RXMCM T Bad nunber of parns
Explanation Y ou cannot specify any parametersto thiscall.

-98 0 0 RXMCM T Not Connected to a QM

Explanation The current thread is not connected to a Queue Manager

-99 0 0 RXMXCM T UNKNOWN FAI LURE

Explanation Some unknown error has occurred!

Example
rcc = RXMCM T()

The accesses to all currently accessed queues (that are within Unit of Work control) are committed.
Accesses outside of UOW control are unaffected by this call.

43

MA95: A Rexx Interface to WebSphere MQ

RXMQBACK

Description

This verb will issue a MQBACK verb. It rolls back the current Queue Manager accesses. Note that this
operation affects all the currently accessed queues which have extant operations within Unit of Work

control within the current thread (ie: it does not effect other threads within the process).

Parameters
None
Call

rcc = RXMQBACK()

Additional Interface Return Codes and Messages

-1 0 0 RXMQBACK Bad nunber of parns

Explanation Y ou cannot specify any parametersto thiscall.

-98 0 0 RXMQBACK Not Connected to a QM

Explanation The current thread is not connected to a Queue Manager

-99 0 0 RXMPBACK UNKNOWN FAI LURE

Explanation Some unknown error has occurred!
Example

rcc = RXMQBACK()

The accesses to al currently accessed queues (that are within Unit of Work control) are rolledback.

Accesses outside of UOW control are unaffected by this call.

44

MA95: A Rexx Interface to WebSphere MQ

RXMQGET

Description

This call will obtain a message from a Queue, using the underlying MQGET verb. All the abilities of this

verb are supported by thisinterface.

A quick way of issuing Browse callsis provided by “RXMQBRWS’ on page 57.

Parameters

1. TheHandlefor the Queue obtained from a prior RXM QOPEN call, whereat the Queue was
opened for Input (or Browse) access. Thisisan Input parameter.

2. Thename of a Rexx Stem variable (including the dot) into which the obtained message will be

placed. Thisisan input/output parameter. Upon the call, Component O must contain the

Maximum length of the message to be received. After the call, Component O will contain the

length of the message received (or would have been received if the initial setting was 0) and

Component 1 will contain the obtained message (if any). See “Message Lengths’ on page 11 for

awarning about truncation.

3. Thename of a Stem variable (including the dot) containing the Input M essage Descriptor
describing the Message to be obtained from the Queue. Thisis an input parameter.

4. The name of a Stem variable (including the dot) into which will be returned a M essage Descriptor
describing the message obtained by the call. Thisis an output parameter, so ZLI ST processing is

provided.

5. The name of a Stem variable (including the dot) containing the Get Message Options for the
operation. Thisisan input parameter.

6. Thename of a Stem variable (including the dot) into which will be placed the updated Get

Message Options resulting from the call. Thisis an output parameter, so ZLI ST processing is

provided.
Call

rcc = RXMQGET(handle, 'Stem Message.' , 'StemlInput.MD.' , 'Stem Qutput.M. ' |
“StemInput.GVO.", "Stem Qutput.GVO.")

45

MA95: A Rexx Interface to WebSphere MQ

Additional Interface Return Codes and Messages

-1 0 0 RXMGET Bad nunber of parms
Explanation Y ou must specify six parametersto the RXMQGET call.

-2 0 0 RXMQGET Nul | handl e
Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMQGET Zero data handl e
Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMQGET Null data stem var

Explanation A null has been supplied for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-5 0 0 RXMGET Zero data stemvar

Explanation No value has been keyed for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-6 0 0 RXMQGET Nul | I'nput MsgDesc

Explanation A null has been supplied for the third parameter, the name of a Stem Variable containing the
Input Message Variable for the operation.

-7 0 0 RXMQGET Zero length Input MsgDesc

Explanation No value has been keyed for the third parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-8 0 0 RXMQGET Nul | Qutput MsgDesc

Explanation A null has been supplied for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-9 0 0 RXMGET Zero length Qutput MsgDesc

Explanation No value has been keyed for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-10 0 0 RXWNGET Nul | input GVO

Explanation A null has been supplied for the fifth parameter, the name of a Stem Variable containing the
Get Message Options for the operation.

-11 0 0 RXWNGET Zero length input GVO

Explanation No value has been keyed for the fifth parameter, the name of a Stem Variable containing the
Get Message Options for the operation.

-12 0 0 RXWNGET Nul| output GVO

Explanation A null has been supplied for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Get Message Options from the operation.

-13 0 0 RXMQGET Zero length output GVO

Explanation No value has been keyed for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Get Message Options from the operation.

46

MA95: A Rexx Interface to WebSphere MQ

-14 0 0 RXMQGET Handl e out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-15 0 0 RXMQGET Invalid handl e
Explanation The handle specified does not relate to an accessed MQ Object.

-16 0 0 RXMQGET mal [oc failure, RC(<errno>)

Explanation An attempt to acquire storage for the number of bytes specified in the Message.0 (2nd
parameter) variable failed. The return code is errno code from the malloc call.

-17 0 0 RXMQGET Zero length input data buffer

Explanation The Message.0 (2nd parameter) was zero, indicating no message to process.

-97 0 0 RXMQGET Handl e not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXM QOPENed by another thread).

-98 0 0 RXMQGET Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager
-99 0 0 RXMQGET UNKNOAN FAI LURE
Explanation Some unknown error has occurred!

Example

nmessage. 0

100
message. 1 = '

i gno.opt = MOGMO VAI'T + MJGVD_SYNCPOI NT + MYGVO FAIL_I F_QUI ESCI NG
igm.wait =1

iml. MSGD=""
im.CD ="'

rcc = RXMQGET(hnl, 'message.', 'imd.', 'omd.', 'ignmon.', "ogno.')
[* on return, say..

13
"WQ rules OKI'

nmessage. 0
nessage. 1

ont. msg = MQMT_DATAGRAM
ond. PER = MQPER PERS| STENT

ogm.rgn = " NI'

*]
This call destructively obtains the next message from the Queue. The message can be upto 100 bytes long
- a bigger message is not obtained (as the options do not specify MQGVO ACCEPT_TRUNCATED MSG). The

obtained message (which will not physically be removed from the Queue until a Syncpoint isissued, asit
is obtained under Unit Of Work contral) is 13 bytes long, and is persistent.

47

MA95: A Rexx Interface to WebSphere MQ

RXMQPUT

Description

This call will place a message into a Queue, using the underlying MQPUT verb. All the abilities of this
verb are supported by thisinterface.

Parameters

1. TheHandlefor the Queue obtained from a prior RXM QOPEN call, whereat the Queue was
opened for Output access. Thisisan Input parameter.

2. Thename of aRexx Stem variable (including the dot) containing the message to be placed on the
Queue. Thisisan input parameter. Component 0 must contain the length of Component 1, which
is the message to be put into the Queue.

3. Thename of a Stem variable (including the dot) containing the Input M essage Descriptor
describing the Message to be placed on the Queue. Thisis an input parameter.

4. The name of a Stem variable (including the dot) into which will be returned a M essage Descriptor
describing the message placed by the call. Thisis an output parameter, so ZLI ST processing is
provided.

5. Thename of a Stem variable (including the dot) containing the Put Message Options for the
operation. Thisisan input parameter.

6. Thename of a Stem variable (including the dot) into which will be placed the updated Put
Message Options resulting from the call. Thisis an output parameter, so ZLI ST processing is
provided.

Call

rcc = RXMQPUT(handle, 'Stem Message.' , 'StemlInput.MD.' , 'Stem Qutput.M. ' |
"Stem I nput.PMO.", 'Stem Qutput.PMD')

Additional Interface Return Codes and Messages

-1 0 0 RXMQPUT Bad nunber of parns
Explanation You must specify six parameters to the RXMQPUT call.

-2 0 0 RXMPUT Nul I handl e
Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMPUT Zero data handl e
Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMPUT Null data stem var

Explanation A null has been supplied for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-5 0 0 RXMPUT Zero data stem var

Explanation No value has been keyed for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

48

MA95: A Rexx Interface to WebSphere MQ

-6 0 0 RXMQPUT Null I nput MsgDesc

Explanation A null has been supplied for the third parameter, the name of a Stem Variable containing the
Input Message Variable for the operation.

-7 0 0 RXMQPUT Zero length Input MsgDesc

Explanation No value has been keyed for the third parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-8 0 0 RXMPUT Nul | Qutput MsgDesc

Explanation A null has been supplied for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-9 0 0 RXMQPUT Zero length Qutput MsgDesc

Explanation No value has been keyed for the forth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-10 0 0 RXMQPUT Nul | input PMO

Explanation A null has been supplied for the fifth parameter, the name of a Stem Variable containing the
Put Message Options for the operation.

-11 0 0 RXMPUT Zero length input PMO

Explanation No value has been keyed for the fifth parameter, the name of a Stem Variable containing the
Put Message Options for the operation.

-12 0 0 RXMQPUT Nul | output PMO

Explanation A null has been supplied for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Put M essage Options from the operation.

-13 0 0 RXMQPUT Zero length output PMO

Explanation No value has been keyed for the sixth parameter, the name of a Stem Variable into which
will be placed the resulting Put M essage Options from the operation.

-14 0 0 RXMQPUT Handl e out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-15 0 0 RXMQPUT Invalid handl e
Explanation The handle specified does not relate to an accessed MQ Object.

-16 0 0 RXMQPUT mal loc failure, RC(<errno>)

Explanation An attempt to acquire storage for the number of bytes specified in the data.0 (2nd
parameter) variable failed. The return code is errno code from the malloc call.

-17 0 0 RXMQPUT Zero length input data buffer

Explanation The data.0 (2nd parameter), the Stem variable containing the length of message to be sent,
Wwas zero or not numeric.

-18 0 0 RXMQPUT Data length is not equal to specified val ue

Explanation The data.0 (2nd parameter), the Stem variable containing the length of message to be sent, is
not equal to data.1 actual message length.

-19 0 0 RXMQPUT Context handle out of range

Explanation The value of the handle supplied in PMO. CON is not in the known range for a handle within

49

MA95: A Rexx Interface to WebSphere MQ
the interface.

-20 0 0 RXMQPUT Invalid Context handle
Explanation The handle specified in PMO. CON does not relate to an accessed MQ Object.

-96 0 0 RXMQPUT Context handl e not owned by current thread

Explanation The object referred to by the given PMO. CON handle was not accessed by the current Thread
(ie: it was RXM QOPENed by another thread).

-97 0 0 RXMQPUT Handl e not owned by current thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXM QOPENed by another thread).

-98 0 0 RXMQPUT Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMQPUT UNKNOMN FAI LURE

Explanation Some unknown error has occurred!

Example
message.1 = "WMJ 's wonderful interface!
message. 0 = LENGTH(nessage. 1)
i pno. opt = MQPMO_NO_SYNCPQOI NT + MQPMO_NO_CONTEXT
+ MQPMO_FAIL_I F_QUI ESCI NG
i md. MSG = MQVT_DATAGRAM
i md. per = MQPER_NOT_PERSI STENT
rcc = RXMQPUT(hnl, ‘'message.', 'imd.', ‘'onmd.', ‘'ipm.', ‘'opno.')

[* on return, say...

ond. PD 20080831

opno.rgn = "Nl
*]

This call places the given non-persistent message on the Queue outside of a Unit of Work.

50

MA95: A Rexx Interface to WebSphere MQ

RXMQPUT1

Description

This call will open the Queue, place one message into it and close the queue using the underlying
MQPUT1 verb. All the abilities of this verb are supported by thisinterface.

Parameters

1. Thename of a Stem variable (including the dot) specifying the Object Descriptor for the MQ
Object to access. Thisis an input only field.

The format of this Stem variableis described in “ The Object Descriptor” on page 20.

If the name given does not end in a dot, then the data is taken to be the name of a Queue (or Model
Queue) to access. This short cut removes the requirement to fully format up a stem variable for
'normal’ Queue access; but note that you supply the name of the Queue, not the name of the variable
containing the name of the Queue.

2. Thename of a Stem variable (including the dot) into which is placed the Object Descriptor
returned by the underlying MQOPEN verb. Thisis an output only field.

The format of this Stem variable is described in “The Object Descriptor” on page 20; ZLI ST
processing is provided.

3. Thename of aRexx Stem variable (including the dot) containing the message to be placed on the
Queue. Thisisan input parameter. Component 0 must contain the length of Component 1, which
is the message to be put into the Queue.

4. The name of a Stem variable (including the dot) containing the Input M essage Descriptor
describing the Message to be placed on the Queue. Thisis an input parameter.

5. Thename of a Stem variable (including the dot) into which will be returned a M essage Descriptor
describing the message placed by the call. Thisis an output parameter, so ZLI ST processing is
provided.

6. Thename of a Stem variable (including the dot) containing the Put Message Options for the
operation. Thisisan input parameter.

7. Thename of a Stem variable (including the dot) into which will be placed the updated Put
Message Options resulting from the call. Thisis an output parameter, so ZLI ST processing is

provided.
Call
rcc = RXMQPUTL(‘Stemlnput.OD.", ‘Stem Qutput.OD.", 'Stem Message.',
"StemInput.MD.", 'Stem Qutput.MD.', 'Stem|nput.PMO ",
"Stem Qutput.PMO.")
or
rcc = RXMPUTL(Queue Nane, “Stem Qutput.CD.’, ‘Stem Message',

“StemlInput.MD.’, ‘Stem Qutput.M.’, *StemInput.PMJ,
“Stem Qutput. PMO)

51

MA95: A Rexx Interface to WebSphere MQ

Additional Interface Return Codes and Messages

-1 0 0 RXMQPUTL Bad nunber of parns
Explanation Y ou must specify seven parameters to the RXMQPUT1 call.

-2 0 0 RXMPUTL Nul I I'nput OO Qnane

Explanation A null has been supplied for the first parameter, the name of a stem variable for an input
Object Descriptor or the name of a Queue to access.

-3 0 0 RXMQPUTL Zero length Input OO Qrane

Explanation No value has been keyed for the first parameter, the name of a stem variable for an input
Object Descriptor or the name of a Queue to access.

-4 0 0 RXMQPUTL Nul | Qutput OD

Explanation A null has been supplied for the second parameter, the name of a stem variable which will
be set to the obtained Object Descriptor for the accessed MQ Object.

-5 0 0 RXMPUTL Zero length Qutput OD

Explanation No value has been keyed for the second parameter, the name of a stem variable which will
be set to the obtained Object Descriptor for the accessed MQ Object.

-6 0 0 RXMPUT1 Nul | data stemvar

Explanation A null has been supplied for the third parameter, the name of a Stem Variable containing the
maximum length of message to be obtained.

-7 0 0 RXMPUTL Zero data stemvar

Explanation No value has been keyed for the third parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-8 0 0 RXMPUTL Nul I I'nput MsgDesc

Explanation A null has been supplied for the fourth parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-9 0 0 RXMQPUTL Zero length Input MsgDesc

Explanation No value has been keyed for the fourth parameter, the name of a Stem Variable containing
the Input Message Variable for the operation.

-10 0 0 RXMQPUTL Null Qutput MsgDesc

Explanation A null has been supplied for the fifth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-11 0 0 RXMQPUTL Zero length Qutput MsgDesc

Explanation No value has been keyed for the fifth parameter, the name of a Stem Variable into which
will be placed the resulting Message Descriptor from the operation.

-12 0 0 RXMQPUTL Nul | input PMO

Explanation A null has been supplied for the sixth parameter, the name of a Stem Variable containing
the Put Message Options for the operation.

-13 0 0 RXMQPUTL Zero length input PMO

Explanation No value has been keyed for the sixth parameter, the name of a Stem Variable containing

52

MA95: A Rexx Interface to WebSphere MQ
the Put Message Options for the operation.

-14 0 0 RXMQPUTL Nul I output PMO

Explanation A null has been supplied for the seventh parameter, the name of a Stem Variable into which
will be placed the resulting Put M essage Options from the operation.

-15 0 0 RXMQPUTL Zero length output PMO

Explanation No value has been keyed for the seventh parameter, the name of a Stem Variable into which
will be placed the resulting Put M essage Options from the operation.

-16 0 0 RXMQPUTL No available Q objects
Explanation The limit of MQ Objects supported by this interface has been reached.

-17 0 0 RXMQPUTL malloc failure, RC(<errno>)

Explanation An attempt to acquire storage for the number of bytes specified in the data.0 (3rd parameter)
variable failed. The return code is errno code from the malloc call.

-18 0 0 RXMQPUTL Zero length input data buffer

Explanation The data.0 (3rd parameter), the Stem Variable containing the length of message to be sent,
Wwas zero or not numeric.

-19 0 0 RXMQPUTL Data length is not equal to specified value

Explanation The data.0 (3rd parameter), the Stem variable containing the length of message to be sent, is
not equal to data.1 actual message length.

-20 0 0 RXMQPUTL Context handle out of range

Explanation The value of the handle supplied in PMO. CON is not in the known range for a handle within
the interface.

-21 0 0 RXMQPUTL Invalid Context handle
Explanation The handle specified in PMO. CON does not relate to an accessed MQ Object.

-95 0 0 RXMQPUT1 Mutex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSinglel ock::UnLock).

-96 0 0 RXMQPUTL Mutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

-97 0 0 RXMQPUTL Context handle not owned by current thread

Explanation The object referred to by the given PMO. CON handle was not accessed by the current Thread
(ie: it was RXM QOPENed by another thread).

-98 0 0 RXMQPUT1 Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager

-99 0 0 RXMPUTL UNKNOWN FAI LURE

Explanation Some unknown error has occurred!

53

MA95: A Rexx Interface to WebSphere MQ

Example
message.1 = "WMJ 's wonderful interface!
message. 0 = LENGTH(nessage. 1)
i pno. opt = MPMO_NO_SYNCPOI NT + MOPMO_NO CONTEXT
+ MPMO_FAIL_I F_QUI ESCI NG
i md. MSG = MQVT_DATAGRAM
i md. per = MQPER_NOT_PERSI STENT
rcc = RXMPUTL(‘iod.’, ‘ood.”, ‘'message.', ‘'imd.', ‘onmd.', ‘ipmo.', 'opno.')

[* on return, say..

ond. PD 20080831

opmo.rgn = " NI'
*]

This call places the given non-persistent message on the Queue outside of a Unit of Work.

message.1 = "WMJ 's wonderful interface!
message. 0 = LENGTH(nessage. 1)
i pm. opt = MQPMO_NO_SYNCPQI NT + MPPMO_NO_CONTEXT
+ MPMO_FAIL_I F_QUI ESCI NG
i ml. MSG = MQMT_DATAGRAM
i mdl. per = MQPER _NOT_PERS| STENT
rcc = RXMQPUTL(N1, ‘ood.’, ‘'nessage.', 'imdl.', ‘ond.', ‘'ipmn.', ‘opno.')

[* on return, say...

ond. PD 20080831

] Nll

opno. rgn

*/

This call places the given non-persistent message on the Queue outside of a Unit of Work using Queue
Name as a parameter in RXMQPUT 1 function

54

MA95: A Rexx Interface to WebSphere MQ

RXMQC

Description

This function issues a MQSC command to a Queue Manager, returning the results. Each invocation
checks whether the connection to Queue Manager exists. If the connection exists, the function uses it. If
the connection does not exist, the function creates a connection to Queue Manager. If the connection is
created by thisfunction, it isreleased after the call.

As RXMQC operates within the Rexx environment, all the Rexx variables used are available for use
within |SPF in the normal fashion. See Appendix A. I SPF Interface on page 75 for an example.

Parameters

1. The controlling parameters (Input only)

either The name of the Queue Manager to connect to

or The name of a Stem. variable containing the name of the Queue Manager (. QW, the
name of Command Queue (. CQ), the name of Model ReplyToQ (.RQ and the
Timeout (. TO)

2. Thecommand to issue
3. Thename of a Stem. variable into which the results of the conmand will be placed
Call

rcc = RXMXC (gmane, ‘command', 'StemReply.')

or
rcc

RXMXC (' Stem Parms.', 'command', 'StemReply.')

Table 6. RXMQC Function Parameter Mappings

Name Stem. Input, Output Format
Component or Both
Queue Manager . QM I MQCHARA4S
Command Queue .QQ I MQCHAR48
Model ReplyToQ .RQ I MQCHAR48
Timeout .10 I MLONG
Notes:

* Input, Output and Both show how the field is used
» Format showsthe type of thefield

» A timeout of O isan eterna wait
Additional Interface Return Codes and Messages

-1 0 0 RXMQC Bad nurber of parns
Explanation Y ou must specify three parametersto RXMQC

55

MA95: A Rexx Interface to WebSphere MQ

-2 0 0 RXMQC Null parns

Explanation A null has been supplied for the first parameter, the name of a stem variable which will be
set to the controlling parms for the operation.

-3 0 0 RXMXC Zero parns

Explanation No value has been keyed for the first parameter, the name of a stem variable which will be
set to the controlling parms for the operation.

-4 0 0 RXMX Null command var

Explanation A null has been supplied for the second parameter, the text of the command to issue.

-5 0 0 RXMXC Zero command var

Explanation No value has been keyed for the second parameter, the text of the command to issue.

-6 0 0 RXMXC Nul | response stem var

Explanation A null has been supplied for the third parameter, the name of a stem variable which will
contain the results of the command.

-7 0 0 RXMX Zero response stem var

Explanation No value has been keyed for the third parameter, the name of a stem variable which will
contain the results of the command.

-8 0 0 RXMQC No command suppl i ed

Explanation The length of the second parameter is zero, so no command was given.

-9 0 0 RXMXC Too big a command supplied

Explanation The length of the second parameter is bigger than 5000 bytes, which is the maximum
supported Command length.

-10 0 0 RXMQC mal | oc failure, RC(<errno>)

Explanation An attempt to acquire storage for the response buffer. The return code is errno code from
themalloc call.

-99 0 0 RXMYC UNKNOMN FAI LURE

Explanation Some unknown error has occurred!
Examples

res.0 =0
rcc = RXMYC(' WMQA', ' DI SPLAY QUEUE(*) TYPE(QLOCAL)', ‘'res.')

This call will contact the local Queue Manager called WA and ask for alist of all the local Queues. The
returned information is placed in ther es. n stem variables, withr es. 0 indicating the number of elements.

parm QW = ' WVOA'

parmTO = 0

com = 'ping channel (CWIONBYTN)'
res.0 =0

rcc = RXMXC('parm', com 'res.')

This call will contact the remote Queue Manager called WMQA and issue a ping on the given channel. The
interface will wait until areply to the ping is received.

56

MA95: A Rexx Interface to WebSphere MQ

RXMQBRWS

Description

Thiscall is an extension to the MQ API as documented in the APR. This call will obtain the next message
from a Queue via a Browse operation, using the underlying Browse function of the MQGET verb.

As this cal is designed to be simple way to browse messages on a Queue, no Get Message Options or
Message Descriptors are available. If access to these is required, then use the base “RXMQGET” on page
45,

Similarly, the position of the Browse cursor cannot be manipulated.

Parameters

1. TheHandlefor the Queue obtained from a prior RXM QOPEN call, whereat the Queue was
opened for Browse access. Thisis an Input parameter.

2. Thename of a Rexx Stem variable (including the dot) into which the obtained message will be
placed. Thisis an input/output parameter. Upon the call, Component O must contain the
Maximum length of the message to be received. After the call, Component O will contain the
length of the message received (or would have been received if the initial setting was 0) and
Component 1 will contain the obtained message (if any). See“Message Lengths’ on page 11 for
awarning about truncation.

Call
rcc = RXMBRWS(handle, 'Stem Message.')
Additional Interface Return Codes and Messages

-1 0 0 RXMBRWS Bad nunber of parns
Explanation Y ou must specify two parameters to the RXM QBRWS call.

-2 0 0 RXMBRWS Nul | handl e
Explanation A null has been supplied for the first parameter, the handle representing the MQ object.

-3 0 0 RXMBRWS Zero data handl e
Explanation No value has been keyed for the first parameter, the handle representing the MQ object.

-4 0 0 RXMBRWS Nul | data stemvar

Explanation A null has been supplied for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-5 0 0 RXMBRWS Zero data stemvar

Explanation No value has been keyed for the second parameter, the name of a Stem Variable containing
the maximum length of message to be obtained.

-6 0 0 RXMBRWS Handl e out of range

Explanation The value of the handle supplied is not in the known range for a handle within the interface.

-7 0 0 RXMBRWS Invalid handl e
Explanation The handle specified does not relate to an accessed MQ Object.

57

MA95: A Rexx Interface to WebSphere MQ

-8 0 0 RXMBRWS mal I oc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the Message.0 (2nd
parameter) variable failed. The return code is errno code that for the malloc call, and will usualy result if
the message.0 value is not numeric.

-9 0 0 RXMBRWS Zero length input data buffer
Explanation The Message.O (2nd parameter) was zero, indicating no message to process

-95 0 0 RXMBRWS Mutex <n> Rel ease failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to release the lock for the given Reason (documented under CSinglel ock::UnLock).

-96 0 0 RXMBRWS Miutex <n> Acquisition failed rc <n>

Explanation The anonymous private Mutex used internally to single-thread object-based logic has failed
to acquire for the given Reason (documented under CSinglel ock::L ock).

-97 0 0 RXMQBRWS Handl e not owned by Current Thread

Explanation The object referred to by the given handle was not accessed by the current Thread (ie: it was
RXM QOPENed by another thread).

-98 0 0 RXMBRWS Not Connected to a QM

Explanation The current thread was not connected to a Queue Manager .
-99 0 0 RXMBRWS UNKNOMN FAI LURE
Explanation Some unknown error has occurred!

Example

nessage. 0

100
nessage. 1 t

rcc = RXMBRWS (hnl, 'message.')

[* on return, say..message.0 = 2 ; nessage.1l = 'M' *]
nessage. 0 = 100
message.1 = "'

rcc = RXMBRAS (hnl, 'nessage.')

[* on return, say..nessage.0 = 8 ; message. 1 = '>>>M<<< *]

This example shows how a Browse is used to scan a Queue; observe that the message. Stem variable is
cleared before each use.

58

MA95: A Rexx Interface to WebSphere MQ

RXMQHXT

Description

This call will take a message obtained from a Transmission Queue or a Dead Letter Queue (identified by
the relevant header in the message) and split it up into its components.

This Header Extraction, therefore, permits the obtention of the 'real’ message and an explanation of the
control data associated with it.

The message to be split up is specified in the usual way as the name of the first stem. variable; with
component 0 representing the length of the message which is supplied in component 1. See “Message
Lengths’ on page 11 for awarning about truncated messages used with this function.

The Extracted data is placed in the second stem. variable (whose name is supplied); with component O
representing the length of the 'actual’ message which is placed in component 1. The associated data is
placed in other components, as shown in Table 7. Transmission Queue Message Header (MQXQH)
Mappings on page 61 and in the Table 8. Dead Letter Queue Message Header (MQDLH) Mappings on
page 62. It is not recommended that the input and output stem variables are the same (as this might loose
information in the case of an error and additionally the component names clash with those generated as
part of the Message descriptor).

In order to identify the type of header extracted, a component called TYPE is also created, taking the value
of XQH or DLH (thisis also provided in the NAVE component).

Parameters

1. Thename of aRexx Stem variable (including the dot) containing a message to be splitup. Thisis
an input parameter. Upon the call, Component 0 must contain the length of the message in
Component 1; the message must have been obtained from a Transmission Queue or a Dead
Letter Queue. See“Message Lengths’ on page 11 for awarning about truncation.

2. The name of a Rexx Stem variable (including the dot) into which the splitup message will be
placed. Thisis an input/output parameter. After the call, Component 0 will contain the length of
the 'actual' message and Component 1 will contain the 'actual' message (if any). Other
components will be created (as documented in the Table 7. Transmission Queue Message Header
(MQXQH) Mappings on page 61 and in theTable 8. Dead L etter Queue M essage Header
(MQDLH) Mappings on page 62) to return the extracted Header information from the input
message. ZL| ST processing is provided for this Stem variable.

Call
rcc = RXMHXT(' Stem Message.', 'Stem Splitup.')
Additional Interface Return Codes and Messages
-1 0 0 RXMHXT Bad nunber of parms

Explanation You must specify two parameters to the RXMQHXT call.

-2 0 0 RXMHXT Nul | input stemvar

Explanation A null has been supplied for the first parameter, the name of a Stem. variable representing
the message to be splitup.

-3 0 0 RXMHXT Zero input stem var

Explanation No value has been keyed for the first parameter, the name of a Stem. variable representing
the message to be splitup.

59

MA95: A Rexx Interface to WebSphere MQ

-4 0 0 RXMHXT Null output stemvar

Explanation A null has been supplied for the second parameter, the name of a Stem. variable
representing the splitup message.

-5 0 0 RXMHXT Zero output stem var

Explanation No value has been keyed for the second parameter, the name of a Stem. variable
representing the splitup message.

-6 0 0 RXMHXT No input data

Explanation The input Stem.0 was zero, indicating no message to process

-7 0 0 RXMHXT Zero input data

Explanation The length of the input Stem.1 was zero, indicating no message to process

-8 0 0 RXMHXT Cannot | ocate Header
Explanation The input Stem.0 was <= 3, indicating no header in the message

-9 0 0 RXMHXT Cannot find Header
Explanation The length of the input Stem.1 was <= 3, indicating no header in the message

-10 0 0 RXMNHXT Unknown Header

Explanation The first 4 bytes of the input Stem.1 was not DLH or XQH, so the message did not come from
aDead Letter Queue or a Transmission Queue, and so cannot be splitup

-11 0 0 RXWNHXT Too short for a DLH (<n> bytes!)

Explanation Although the input Stem.1 looked like a DLH, Stem.0 was too small for the message to
originate from a Dead L etter Queue, and so cannot be splitup

-12 0 0 RXMNHXT Too short for a XQH (<n> bytes!)

Explanation Although the input Stem.1 looked like a XQH, Stem.0 was too small for the message to
originate from a Transmission Queue, and so cannot be splitup

-13 0 0 RXVHXT malloc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the input Stem.0 (1st
parameter) variable failed. The return code is errno code from the malloc call.

-14 0 0 RXMQPUTL Data length is not equal to specified value

Explanation The Stem.0 (1st parameter), the Stem variable containing the length of message to be
splitup, is not equal to Stem.1 actual message length.

-99 0 0 RXMHXT UNKNOMN FAI LURE

Explanation Some unknown error has occurred!

60

MA95: A Rexx Interface to WebSphere MQ

Extracted information

Transmission Queue M essages

Table 7. Transmission Queue Message Header (MQXQH) Mappings

Structure name Stem. I nput, Output Format
Component or Both

Actual message length .0 0] MLONG
Actual message 1 0] MQCHAR
RemoteQName . RON (0] MQCHAR4S
RemoteQMgrName . RQM (0] MQCHAR4S
MsgDesc . XXX O MAVDL

Notes:

 Input, Output and Both show how thefield is used
e Format shows the type of the field
e ZLI ST isset to relevant existing field Stem. Component names

» See MsgDesc component names in the Table 3. Message Descriptor (MQMD) Mappings

61

MA95: A Rexx Interface to WebSphere MQ

Dead L etter Queue M essages

Table 8. Dead Letter Queue Messag

e Header (MQDLH) Mappings

Structure name Stem. Input, Format
Component Output or
Both
Actual message length .0 (0] MLONG
Actual message 1 (0] MQCHAR
Reason . REA (0] MLONG
DestinationQMgrName . DQM (0] MQCHARA4S
DestinationQName . DON (0] MQCHARA4S
Encoding .ENC o] MLONG
CodedChar Setld . CCSl o MOLONG
Format . FORM (0] MQCHARS
PutAppl Type . PAT (0] MLONG
PutApplName . PAN (0] MQCHAR28
PutDate .PD o] MQUCHARS
PutTime PT o] MQUCHARS
Notes:

* Input, Output and Both show how the field is used

» Format showsthe type of thefield

e ZLI ST isset to relevant existing field Stem. Component names

62

MA95: A Rexx Interface to WebSphere MQ

Example
/* A message has been obtained such that ... */

nessage. 0 = 438

nessage. 1 = <XQH>1234567890

[* Clear the result variable */

drop x.

[* Split the message */

rcc = RXMHXT ('message.', 'Xx.')

[* on return, the following (and nore) are set */
say x.0 [* 10 *]

say x. 1 /* 1234567890 */
say X.RQM /* WA g

say x.RON /* CP1 *|
say x.PER [* 1 *]
say x. TYPE /* X(QH *]

This example shows how a message obtained from a Transmission Queue is splitup, showing information
extracted from the XQH and the actual message being transmitted.

63

MA95: A Rexx Interface to WebSphere MQ

RXMQEVNT

Description

This call will take a message obtained from an Event Queue and split it up into its components. In general
the default system queues called are

SYSTEM.ADMIN.QMGR.EVENT,

SYSTEM.ADMIN.CONFIG.EVENT,

SYSTEM.ADMIN.PERFM.EVENT and

SYSTEM.ADMIN.CHANNEL .EVENT

This Event Extraction, therefore, permits the detection of the event and an explanation of the control data
associated with it.

The message to be split up is specified in the usual way as the name of a stem. variable; with component
0 representing the length of the message which is supplied in component 1. See “Message Lengths’ on
page 11 for a warning about truncated messages used with this function. This message will have come
from aprior RXMQBRWS or RXM QGET operation.

The Extracted data is placed in another stem. variable (whose name is supplied), with the various
components containing information about the event. Each component name provided is equal to event
attribute constant name, which are described in WebSphere MQ Monitoring WebSphere MQ Version 6.0
SC34-6593. For ease of reading and to save space constant name prefix (like MQCA_ or MJ A) is omitted.
It is not recommended that the input and output stem variables are the same (as this might loose
information in the case of an error and additionally the component names clash with those generated as
part of the Message descriptor). Observe that some information is held in the event message's Message
Descriptor (like Date and Time), so obtaining the message should be done via a Browse-type of
RXMQGET rather than the RXM QBRWS call which does not return the Message Descriptor if thistype
of information is required.

In order to identify the type of event extracted, a component called TYPE is created and set to EVENT, and
another called NAME which interprets the Event (it is presented in the same way as described above for the
component names).

Information about Events is discussed in WebSphere MQ Monitoring WebSphere MQ Version 6.0 SC34-
6593 book which you should use to interpret the expansion.

Warning

The PCF Documentation on events sometimes does not agree with what is actually recorded in the Event
Message. Please take care in this arena, and treat deviations from the Documentation pragmaticaly (ie:
raise an APAR, but process as this interface returns). A general usage should test each component to
discover whether or not this information is returned. Alternatively, use ZLI ST processing (as described in
“ZLIST” on page 13). A returned component may be null (or have a zero length) if the Event Field is
present without any data.

Parameters

1 The name of a Rexx Stem variable (including the dot) containing an event message to be splitup.
Thisisan input parameter. Upon the call, Component 0 must contain the length of the message in
Component 1; the message must have been obtained from an Event Queue. See “Message
Lengths” on page 11 for a warning about truncation.

2. The name of a Rexx Stem variable (including the dot) into which the splitup message will be
placed. Thisis an input/output parameter. After the call, components will be created (as described
above) to return the extracted event information from the input message. ZL| ST processing is
provided for this Stem variable.

64

MA95: A Rexx Interface to WebSphere MQ

Call

rcc = RXMQEVNT(' Stem Message.', 'Stem Splitup.')

Usage Notes

Bear in mind the following when using RXM QEVNT:

A component is returned when the relevant parameter is present in the PCF Event Message. The
returned data may consist of binary zeros, a null string (") or all spaces if the contents do not exist
(this is due to the way MQ builds the PCF Event message). Certain Rexx processors object to long
strings of Binary zeros, so you have been warned!

The PCF Event documentation may differ from the data actually returned. Always use ZLI| ST
processing to see what is going on!

The EID, AEDI1, AEDI2 and CEDfields are not returned as numbers, but rather in Hex. This will
aid problem determination for these Channel error codes.

There may be more than one CED field. In this case, . CED. 0 will contain the number of fields, with
thedatabeingin. CED. n

The Date and Time of an Event is not held within the event, but in the Message Descriptor for the
event.

. TYPE is set to 'EVENT' for all events.

65

MA95: A Rexx Interface to WebSphere MQ

Additional Interface Return Codes and Messages

-1 0 0 RXMQEVNT Bad nunber of parns
Explanation Y ou must specify two parameters to the RXMQEVNT call.

-2 0 0 RXMEVNT Nul I input stemvar

Explanation A null has been supplied for the first parameter, the name of a Stem. variable representing
the message to be splitup.

-3 0 0 RXMQEVNT Zero input stemvar

Explanation No value has been keyed for the first parameter, the name of a Stem. variable representing
the message to be splitup.

-4 0 0 RXMQEVNT Nul | output stem var

Explanation A null has been supplied for the second parameter, the name of a Stem. variable
representing the splitup message.

-5 0 0 RXMEVNT Zero output stemvar

Explanation No value has been keyed for the second parameter, the name of a Stem. variable
representing the splitup message.

-6 0 0 RXMQEVNT No input data

Explanation The input Stem.0 was zero, indicating no message to process

-7 0 0 RXMQEVNT Zero input data

Explanation The length of the input Stem.1 was zero, indicating no message to process

-8 0 0 RXMQEVNT Cannot | ocate Header
Explanation Theinput Stem.0 was <= 3, indicating no header in the message

-9 0 0 RXMEVNT Cannot find Header
Explanation The length of the input Stem.1 was <= 3, indicating no header in the message

-10 0 0 RXMQEVNT Not an Event Header

Explanation The first 4 bytes of the input Stem.1 was not <MQCFH_EVENT>, so the message did not
come from an Event Queue, and so cannot be splitup

-11 0 0 RXMEVWNT Too short for an Event (<n> bytes!)

Explanation Although the input Stem.1 looked like an Event Message, Stem.0 was too small for the
message to originate from an Event Queue, and so cannot be splitup

-12 0 0 RXMEVNT Unknown Event Category (<n>)

Explanation Although the input Stem.1 looked like an Event Message, the PCF Command field did not
contain arecognisable event category, and so the message cannot be splitup

-13 0 0 RXMQEVNT Unknown Event Type (<n>)

Explanation Although the input Stem.1 looked like an Event Message, the PCF Reason field did not
contain arecognisable event identifier, and so the message cannot be splitup

66

MA95: A Rexx Interface to WebSphere MQ

-14 0 0 RXMQEVNT No el ements in the Event

Explanation Although the input Stem.1 looked like an Event Message, there were no PCF fields within
the Message, and so the message cannot be splitup

-15 0 0 RXMQEVNT mal loc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the input Stem.0 (1st
parameter) variable failed. The return code is errno code that for the malloc call, and will usualy result if
the input Stem.0 value is not numeric or negative integer.

-16 0 0 RXMQPUTL Data length is not equal to specified value

Explanation The Stem.0 (1st parameter), the Stem variable containing the length of message to be
splitup, is not equal to Stem.1 actual message length.

-99 0 0 RXMQEVNT UNKNOWN FAI LURE

Explanation Some unknown error has occurred!

Example
[* A nmessage has been obtained such that ... */
nmessage.0 = n
message. 1 = <EVENT Header ><Event Data>

[* Clear the result variable */
drop x.

[* Split the message */

rcc = RXMQEVNT ('nessage.', 'X.")

[* on return, the following (and more) are set */

say Xx.TYPE [* EVENT *]
say x. NAME [* CHANNEL _STOPPED ¥/
say X.REA [* 2283 *]
say X. Q MGR_NAME [* WVQA *|
say x. CHANNEL_NAME [* SYSTEM ADM N. SVRCONN */
say X. REASON QUALIFI ER [* 8 ¥
say x. ERROR | DENTI FI ER [* 20009519 *]

This example shows how a message obtained from SYSTEM.ADMIN.CHANNEL.EVENT is splitup,
showing the information relating to the Channel Stop Event.

See Figure 2 on page 14 for an example using ZLI ST processing to cope with the variable format
component names.

[* Explurge an Event */

nessage.0 = n
message. 1 = <EVENT Header ><Event Data>
drop x.

rcc = RXMEVNT ('nessage.', 'x.')

67

MA95: A Rexx Interface to WebSphere MQ
[* Testing the returned information */

say x. TYPE [* EVENT */
say x.NAME /* INGET */
say x.REA [* 2016 */

if (x.gn<>"X QN) then say x.qn /* works - returned conp */
if (x.BON <> "X BON) then say x.bgn /* fails - not in event */

This example shows how the components of an exploded Event message can be tested to fully extract all
the returned information if ZLI ST processing is not used.

ZL| ST processing is also useful to cope with situations were an event String Field is defined, but set to all
binary zeros. These can easily be changed into blanks (with space truncation) as follows:

nmessage.0 = n
nessage. 1 = <EVENT Header ><Event Data>
drop x.

rcc = RXMQEVNT ('nessage.', 'X.')

do i=1to words(x.zlist)
ts = word(x.zlist,i)
X.ts =translate(x.ts," '," 00" x)
X.ts = strip(x.ts,'B)

end

68

MA95: A Rexx Interface to WebSphere MQ

RXMQTM

Description

This call will take a message obtained from an Initiation Queue (a Trigger Message) and split it up into its
components. It will also parse the data passed to a started Rexx Exec (viaaMQ Trigger Monitor).

This processing, therefore, permits the obtention of the control information associated with a Trigger:
whether this is in the format of a MQ Message (garnered from an Initiation Queue) or passed as
parameters to a Rexx Exec (asthe Triggered Process).

The action of this function is controlled by the format of its first parameter, in particular whether or not it
endsinadot.

» Ifitends inadot, then RXMQTM is processing a message derived from an Initiation Queue.

The message to be processed is specified in the usual way as the name of a stem. variable; with
component 0 representing the length of the message which is supplied in component 1. See
“Message Lengths’ on page 11 for awarning about truncated messages used with this function.

Thisis called Message Mode.

» |If it does not end in adot, then RXMQTM is processing the parameter data passed via a Trigger
Monitor to the Rexx Exec which is acting as a Triggered Process (ie: replaces the initial parse arg
processing). It is the actual data, not a variable name that is supplied (ie: a substituted variable, not
the variable name).

Thisiscalled Data Mode.

The Extracted data is placed in another stem. variable (whose name is supplied); with components
representing the various sub-fields of the Trigger Message or Trigger parms.

Sub-fields which are all blanks (or start with a Binary Zero) are not extracted. ZLI ST processing (see
“ZLIST” on page 13) is provided so that the various extant components can be determined.

In Message Mode (a Trigger Message provided to RXMQTM in a Stem. variable) an additional
component (not in ZLI ST) called PL is provided which is the Parameter list for a process to be invoked by
the reception of the Trigger Message in the Initiation Queue (if the current thread is connected to a Queue
Manager, its name will be present in . PL). Y ou should ensure that this component is not truncated in any
way (asthiswill may well effect the activity of the process which usesit).

You can, therefore, use a Rexx Exec as the Triggered Process, extracting the supplied information using
RXMQTM in DataMode.

The use of Message Mode permits the coding of your own Trigger Monitor (recall the Trigger Messages
only get placed in an Initiation Queue if the priorities are right, the process exists, and the Initiation
Queue is Open for Getting) in Rexx (see Figure 3 on page 73), and Data Mode permits the use of Rexx
Execs as Triggered Processes (see Figure 4 on page 74).

Parameters

1. Thisparameter takes one of these formats:

In MessageMode The name of a Rexx Stem variable (including the dot) containing a message to
be splitup. This is an input parameter. Upon the call, Component 0 must
contain the length of the message in Component 1; the message must have
been obtained from an Initiation Queue. See “Message Lengths’ on page 11
for awarning about truncation.

In Data Mode The actual data (not a variable name) representing the MQTMC2 structure
which isused to initiate a Triggered Process.

69

MA95: A Rexx Interface to WebSphere MQ

2. Thename of aRexx Stem variable (including the dot) into which the extracted datawill be

placed. Thisis an input/output parameter. After the call, components will be created (as

documented in Table 9. Trigger Component (MQTM/MQTMC2) Mappings on page 72) to return
the extracted information. ZLI ST processing is provided for this Stem variable. In the case of
Message Mode, component PL will contain an area suitable for use by a Triggered Process asiits

parameters.

Call

Message Mode:
rcc = RXMJTM ' Stem Message.', 'Stem Splitup.')
Data Mbde:
rcc = RXMJTM MJTMC2_dat a , 'Stem Splitup.')
Additional Interface Return Codes and Messages

-1 0 0 RXMJTM Bad nunber of parns
Explanation You must specify two parametersto the RXMQTM call.

-2 0 0 RXMJTM Nul I i nput stem var

Explanation A null has been supplied for the first parameter, the name of a Stem. variable representing

the message to be splitup or data representing a M QTM C2 structure to be parsed.

-3 0 0 RXMJTM Zero input stem var

Explanation No value has been keyed for the first parameter, the name of a Stem. variable representing

the message to be splitup or data representing aM QTM C2 structure to be parsed.

-4 0 0 RXMJTM Nul | out put stem var

Explanation A null has been supplied for the second parameter, the name of a Stem.

representing the splitup data.

-5 0 0 RXMJTM Zero out put stem var

Explanation No value has been keyed for the second parameter, the name of a Stem.

representing the splitup data.

-6 0 0 RXMJQTM No input data

Explanation The input Stem.0 was zero, indicating no message to process

-7 0 0 RXMJTM Zero input data

Explanation The length of the input Stem.1 was zero, indicating no message to process

-8 0 0 RXMJTM Cannot | ocate Header
Explanation Theinput Stem.0 was <= 3, indicating no header in the message

-9 0 0 RXMJTM Cannot find Header
Explanation The length of the input Stem.1 was <= 3, indicating no header in the message

-10 0 0 RXMJTM Zero input data

Explanation The length of the input data was zero, indicating no MQTM C2 structure to process

70

variable

variable

MA95: A Rexx Interface to WebSphere MQ

-11 0 0 RXMJTM Cannot find Header

Explanation The length of the input data was <= 3, indicating no header in the alleged MQTMC2
structure

-12 0 0 RXMJTM Unknown Header

Explanation The first 4 bytes of the input Stem. 1 or datawasnot' TM ', so the message did not come
from an Initiation Queue or a Triggered Process parameter, and so cannot be splitup

-13 0 0 RXMJTM Unknown Versi on

Explanation The second 4 bytes of the input Stem.1 or data was not that for a recognised Version field,
so the message did not come from an Initiation Queue or a Triggered Process' parameter, and so cannot be

splitup
-14 0 0 RXMJTM Header mi smatch (1<>1)

Explanation Message mode was selected, but the Strucld field was not correct

-15 0 0 RXMJTM Version mi smatch (1<>1)
Explanation Message mode was selected, but the Version field was not correct

-16 0 0 RXMJTM Header mi smatch (2<>C)

Explanation Data mode was selected, but the Strucld field was not correct

-17 0 0 RXMJTM Versi on ni smatch (2<>C)

Explanation Data mode was selected, but the Version field was not correct

-18 0 0 RXMJTM Too short for a TM (<n> bytes!)

Explanation Although the input Stem.1 looked like a Trigger Message, Stem.0 was too small for the
message to originate from an Initiation Queue, and so cannot be splitup

-19 0 0 RXMQJTM Too short for a TMC (<n> bytes!)

Explanation Although the input data looked like Trigger Parms (MQTMC2), the data was too small (not
732 byteslong) for it to be a Triggered Process Parameter and so cannot be splitup

-20 0 0 RXMJTM mal | oc failure, RC(<errno>)

Explanation An attempt to acquire Storage for the number of bytes specified in the input Stem.0 (1st
parameter) variable failed. The return code is errno code from the malloc call.

-21 0 0 RXMQPUTL Data length is not equal to specified value

Explanation The Stem.0 (1st parameter), the Stem variable containing the length of message to be
splitup, is not equal to Stem.1 actual message length.

-99 0 0 RXMJTM UNKNOMN FAI LURE

Explanation Some unknown error has occurred!

71

MA95: A Rexx Interface to WebSphere MQ

Trigger information

Table 9. Trigger Component (MQTM/MQTMC?2) Mappings

Structure name Stem. I nput, Output or Format
Component Both
QName N O MCHAR48
ProcessName . PN (0] MQCHAR48
TriggerData . 1D (0] MQCHARG4
Appl Type AT o] MALONG
Applld .AID o] MXCHAR256
EnvData .ED o] MXCHAR128
UserData .UD o] MXCHAR128
QMgrName . QM (0] MQCHAR48
MQTMC?2 parameter .PL o] MJITMC2
Notes:

 Input, Output and Both show how thefield is used
e Format shows the type of the field
o ZLI ST isset to relevant existing field Stem. Component names

e Text itemswhich are all Blanks (or start with a Binary Zero) are not generated

. AT and . PL are only available in Message Mode

e . Misonly availablein Data Mode

. PLisnot placed in ZLI ST

72

MA95: A Rexx Interface to WebSphere MQ

Examples
[* A nmessage has been obtained froman Initiation Queue */

684
<MJTM>

[* Clear the result variable */

nessage. 0
nessage. 1

drop t.

[* Split the message */

rcc = RXMJTM ' message.', 't.')

[* on return, the following are set */

say t.ON [* L3N1 */
say t.PN [* P3TOAGN */

[* Truncated non-parmareas for usage */
do j=1to words(t.zlist)
item = word(t.zlist,j)
t.item=strip(t.item'B)
end
/* Some processing to decide on sonething to do */
[* Start a Process to service the Queue *]

" @BTART CWD someproc. CMD t.pl exit

Figure 3. A Trigger Monitor

This example shows how a message obtained from an Initiation Queue is splitup, showing how the PL
component is used to start a process to service the Queue which generated the Trigger. Note that all the
parameters passed in the Message can be used however one wants when one codes ones own Trigger
Monitor.

[* Get the parm*/

parse arg parm

[* Cear the result variable */

drop p.

[* Split the parm*/

rcc = RAMQTM parm 'p.")

[* on return, the following are set */

say p. Qv [* WMA *]
say p. QN [* L3NL *]
say p.PN [* P3TO46N */

73

MA95: A Rexx Interface to WebSphere MQ

[* Truncate areas for usage */
do j=1 to words(p.zlist)
item = word(p.zlist,j)
p.item =strip(p.item'B")
end

Figure 4. A Rexx Triggered Process

This example shows how a Rexx Exec being initiated viaa Trigger Monitor accesses its passed data.

74

MA95: A Rexx Interface to WebSphere MQ

Appendix A. ISPF Interface

As RXMQC operates within the Rexx environment, all the Rexx variables used are available for use
within |SPF in the normal fashion. Figure 5. ISPF Exec (MA95T1) on page 76 shows an | SPF exec using
RXMQC to issue a Command via the panel shown in Figure 6. ISPF Panel (MA95P1) on page 76. If
everything works, then Figure 7. ISPF Pandl (success) on page 77 is displayed, or else something like
Figure 8. ISPF Panel (failure) on page 77.

/* REXX IEE SR RS SRR S SRR E R R SRR R EE R R R R R R R R R R R R R R R EEREEEREEEE RN */

"| SPQRY" [* Check | SPF availability *|
lastrc = rc¢
if lastrc = 20 then do [* rc=20 is no | SPF,so start |SPF */
address TSO ' | SPSTART CMD(MA95T1) NEWAPPL(MA95)'
exit
end

address ispexec

gqm
replyl

, com
; reply2

corem

L rece crecl
. reply3 t

. reply4 ©rec2

"VPUT (gmcomrcmrcc recl rcc2 replyl reply2 reply3 replyd) SHARED'

Do mainloop =1 by 1 [* Do mainloop forever *]
" DI SPLAY PANEL("MA95P1")" ; lastrc =rc
if (lastrc <> 0) then |eave mainloop

"VGET (gmcomrcmrcc rccl rcc2 replyl reply2 reply3 replyd) SHARED'

rem="'", rcc ='",;recl ="
replyl ="'"; reply2 ="" ; reply3 ="' ; reply4 ='"";ree2=""
drop rep.
recci = RAMQINIT
rcc = RXMC(gm com ‘rep.')
rcct = RXMJTERM

recm= strip(word(rec,1),'B")
rcm= rxng.rcmp.rcm

rccl = rep.cc

rcc2 = rep.ac

if ((rep.0 <>"'REP.0") & (rep.0 <> 0)) then do

if (rep.0 >=1) then replyl =rep.1
if (rep.0 >=2) then reply2 =rep.2
if (rep.0 >=3) then reply3 =rep.3
if (rep.0 >=4) then replyd = rep.4
end

end

75

MA95: A Rexx Interface to WebSphere MQ

exit 0

/********** End Of NAgSTl **/

Figure 5. ISPF Exec (MA95T1)

) ATTR

/***/

TYPE(| NPUT) COLOR(WHI TE)

@ TYPE(QUTPUT) COLOR(TURQ

{ TYPE(QUTPUT) CAPS(CFF)
) BODY SMBG MsG)
U~ MA95 Rexx/ MY WS/ ----mmcmmciea e
YCOMMAND ==> #ZC\D +

+MA95P1 Conmands+

+QMt#gm
+Command+#com
+Repl y1: +{replyl

+Repl y2: H{reply2

+Repl y3: +H{reply3

+Repl y4: +{repl y4

+Comcc {rccl +Comrc {rcc2 +
+cC {rcm

+ree {rcc

{msg

JINT

/**/

[* I NUTIALI ZATI ON SECTI ON */

/**/

) PROC

/**/

[* PROCESSI NG SECTI ON */
/**/

) END

Figure 6. ISPF Panel (MA95P1)

76

MA95: A Rexx Interface to WebSphere MQ

---------------------------------- MA95 Rexx/ MY WS/ ----mmmmmmemee e
MA95P1 Commands

QU VA

Command DI SPLAY QUEUE(NL1) ALL

Replyl: CSQW01l QUEUE(NL) TYPE(LOCAL)

DESCR(Not per si st)

PUT(ENABLED) DEFPRTY(0) DEFPSI ST(NO) OPPROCS(
Reply2: CSQQ0221 > CSQVDRTS ' DI SPLAY QUEUE' NORVAL COVPLETI ON

Repl y3:

Repl y4:

Com cc 00000000 Com rc 00000000
Re MXC_K

rec 000 RXMC X

Figure 7. ISPF Panel (success)

---------------------------------- MA95 Rexx/ MY WS/ -----vmmmmmemeeeee e
MA95P1 Conmands

QW VRHL

Conmand DI SPLAY @Z (N1) ALL

Repl yl: CSQQ021E > VERB ' DI SPLAY" REQUI RED KEYWORD |'S M SSI NG

Reply2: CSQQ023E > CSQOSCND ' DI SPLAY ' ABNORMAL COMPLETI ON

Repl y3:

Repl y4:

Com cc 00000008 Comrc FFFFFFFF
Re MXC_K

rcc 000 RXMXC K

Figure 8. ISPF Panel (failure)

77

MA95: A Rexx Interface to WebSphere MQ

Appendix B. Sample REXX execs

MA95\samples directory contains a number of useful examples related to both z/OS and Windows
environments. They are generally self-explaining and show how to exploit the functions provided by
SupportPac. In order to run them you can use sample jobs in MA9S\MVS\JCL or batch files in
MA95\Windows\Runtests. Before running these samples please update Queue Manager and Queue
names to comply with your WebSphere MQ installation names.

e RXMQCMND.REXX —sends a command to Queue Manager, receives a response and presents
it to the REXX caller.

e RXMQEVNT.REXX —illustrates EVENT queue interface. Requests data from one of EVENT
queues, interpretsit by calling RXMQEVNT, and presents the results.

¢ RXMQHXT.REXX — illustrates transmission queue message header parsing. Gets a message
from transmission queue, interpretsis by calling RXMQHXT, and presents the results.

e RXMQMAO95.REXX — perform basic WebSphere MQ functions, showing how to process the
results and return/reason codes.

e RXMQTM.REXX — shows how to use Trigger Monitor function of SupportPac. Gets message
from Initiation Queue, callsRXMQTM to interpret the message, and presents the results.

78

