

Using UML in WebSphere Business Integration
Message Broker Solution Architecture

Arunava (Ron) Majumdar
Sr. IT Specialist

Software Services for WebSphere (SE Region)
arunava@us.ibm.com

IBM

Guy Hochstetler
Consulting I/T Specialist

WebSphere Business Integration National Practice
guyh@us.ibm.com

IBM

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 2 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

Contents

MMooddiiffiiccaattiioonn HHiissttoorryy .. 55
LLeeggaall DDiissccllaaiimmeerr:: .. 66
AAcckknnoowwlleeddggeemmeenntt:: .. 77
SSccooppee ooff tthhee DDooccuummeenntt:: .. 88
IInnttrroodduuccttiioonn:: .. 99
11.. GGuuiiddiinngg PPrriinncciipplleess::.. 1100

1.1. Aesthetics ..10
1.2. True Representation ..10
1.3. Shorten Developmental Effort and Understanding..10
1.4. Standardization..10
1.5. IDE Tooling...10

22.. WWMMQQ NNoottaattiioonnss.. 1111
2.1. System Components ..12

2.1.1. Node ...12
2.1.2. Z/OS Coupling Facility..12
2.1.3. Z/OS Channel Initiator...12
2.1.4. Z/OS Address Space ..12
2.1.5. Z/OS CICS Region ..13
2.1.6. Z/OS CICS Transaction...13
2.1.7. Z/OS Sysplex ...13
2.1.8. Queue Manager..14
2.1.9. Application...14
2.1.10. Thread ..14

2.2. Queues...15
2.2.1. Local Queue ...15
2.2.2. Alias Queue..15
2.2.3. Remote Queue..15
2.2.4. Transmission Queue ..15
2.2.5. Clustered Queue...16
2.2.6. Shared Queue ...16
2.2.7. Model Queue..16

2.3. Queue Access ..17
2.3.1. Putting Message to a Queue ..18
2.3.2. Getting Message from a Queue ...18
2.3.3. Publishing on a Topic ..18
2.3.4. Subscribing on a Topic ..18

2.4. Channels ..19
2.4.1. Server Binding ...19
2.4.2. Client-Server Binding ..19
2.4.3. Sender-Receiver Pair ...19
2.4.4. Server-Requester Pair ..20
2.4.5. Requester-Sender Pair..20
2.4.6. Server-Receiver Pair ..20
2.4.7. Cluster Channels ..21

2.5. Triggering and Backout...22
2.5.1. Trigger on First ..22
2.5.2. Trigger on Every ..22
2.5.3. Trigger on Depth..22
2.5.4. Backout ..22

2.6. Daemon Processes related to WMQ..23
2.6.1. Listener...23
2.6.2. Channel Initiator ..23
2.6.3. Trigger Monitor ...23
2.6.4. Other Monitoring Systems...23

2.7. MQ Exit, MQ Event, Expiry ...24
2.7.1. Exit ...24
2.7.2. Event ..24
2.7.3. Expiry...25

2.8. Security..26

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 3 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.8.1. SSL Channels...26
2.8.2. SSL Key Store..26
2.8.3. WMQ Object..26
2.8.4. Authority Class ..27
2.8.5. Group ...27
2.8.6. Principal ...27

2.9. High Availability...28
2.9.1. High Availability Failover...28

2.10. XA Coordination ...29
2.10.1. XA Coordination..29

2.11. Z/OS Shared Queue...30
2.11.1. Queue Sharing Group ..30

33.. WWBBIIMMBB NNoottaattiioonnss .. 3311
3.1. Broker Architecture...32

3.1.1. Configuration Manager..32
3.1.2. User Name Server ..32
3.1.3. Message Broker ...32
3.1.4. Execution Group ..33
3.1.5. Message Flow ..33

3.2. Publish/Subscribe ..34
3.2.1. Topic ..34
3.2.2. Subscription Point..34
3.2.3. Event Publication...34
3.2.4. Retained Publication ..34
3.2.5. Broker Collective ...35
3.2.6. Broker Parent-Child Relation ..35
3.2.7. Broker Association Relation..35

3.3. Message Specification...36
3.3.1. Complex Type Element ...36
3.3.2. Element Hierarchy in Message Tree ...36
3.3.3. Data Element..36
3.3.4. Element Attributes ...36
3.3.5. Element Value..38
3.3.6. List Data Type..38
3.3.7. Element Occurance ..38
3.3.8. Delimiter ..39
3.3.9. Tag ...39
3.3.10. Tag Data Separator ..40
3.3.11. Group Indicator..40
3.3.12. Group Terminator ..40
3.3.13. Attribute Reference..41
3.3.14. Element Correlation...41
3.3.15. CAPP Element ...42
3.3.16. CAPP Message...42
3.3.17. CAPP Condition ..42
3.3.18. CAPP Staging ..42

44.. DDiiaaggrraammss.. 4433
4.1. Queue Manager Architecture Diagram..44

4.1.1. QMAD Sender-Receiver ...44
4.1.2. QMAD Server-Requester ..44
4.1.3. QMAD Application Putting Message ...45
4.1.4. QMAD Cluster and Monitors ..45
4.1.5. QMAD Fail-over..46
4.1.6. QMAD Broker and Configuration Manager ...46
4.1.7. Broker Topology Tree ...47
4.1.8. Publisher and Subscriber to a Topic Tree..48

4.2. Security Profile Diagram...49
4.2.1. WMQ Security ...49
4.2.2. Topic Security..50

4.3. Broker Component Diagram ...51
4.4. Message Interaction Diagram..53
4.5. Flow Activity Diagram..54

4.5.1. FAD Branching..56
4.6. Flow Sequence Diagram..57

4.6.1. FSD Branching...58

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 4 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.7. Message Specification Diagram ..60
4.7.1. MSD Msg.in...60
4.7.2. MSD Msg.group ..61
4.7.3. MSD Msg.LengthRef...62

55.. LLeeggeenndd .. 6633
66.. CCoonncclluussiioonn.. 6677
77.. BBiibblliiooggrraapphhyy:: .. 6688

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 5 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

Modification History
Date Version Author(s) Description

12/08/2002 1.0.0 David Grainger MD08 - WebSphere MQ - Network Design Notation
03/23/2005 2.0.0 Arunava Majumdar

Guy Hochstetler
Design Notations for Websphere MQ and Websphere
Business Integration Message Broker

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 6 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

Legal Disclaimer:

Information provided has been developed as a collection of the experiences of technical services professionals over a
wide variety of customer and internal IBM environments, and may be limited in application to those specific hardware and
software products and levels
The information contained in this document has not been submitted to any formal IBM test. The use of this information or
the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to
evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk, and in some
environments may not achieve all the benefits described.
This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of this publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.
IBM may not offer the products, services, or feature discussed in this document in all countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program,
or service.
IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing
of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner
serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials of this IBM
product and use of those Web sites is at your own risk.
Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice and represent
goals and objectives only.
All prices shown are IBM's suggested list prices and are subject to change without notice. Dealer prices may vary.
Any performance date contained in this document was determined in a controlled environment. Therefore the results
obtained in other operating environments may vary significantly. Some measurements quoted in this document may have
been made on development-level systems. There is no guarantee that these measurements will be the same on
generally available systems. Some measurements quoted in the document may have been estimated through
extrapolation. Actual results may vary. Users of this presentation should verify the applicable for their specific
environment.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming techniques on
various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purpose of developing, using, marketing or distributing application programs conforming to the application
programming interface for the operating platforms for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 7 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

Acknowledgement:

We would like to acknowledge the help and support that we received from all the IBMers for putting this
paper together. We would like to take this opportunity to specially mention Kyle Brown, Grant Larsen,
James Rumbough, James Conallen, James Amsden, Branislav Selic, Paul Verschueren, Keith Watson,
Anthony O'Dowd, Andrew Hickson, Mark Taylor, Alan Powell, Vicente Suarez, Sandra Raleigh and Jon
Shoemaker for their contributions and support leading to the publishing of this paper.

We would also like to acknowledge the contributions by David Grainger for his publication of the WMQ
Support Pack md08 – WebSphere MQ - Network Design Notation Version 1.0 – that introduced the WMQ
Notations in the former version of the paper.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 8 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

Scope of the Document:

The intent of this document is to provide a standard way of representing WebSphere MQ (WMQ) and
WebSphere Business Integration Message Broker (WBIMB) based objects for design purposes. Using
UML 2.0 standards where applicable in the diagrams, the authors have attempted build a standard for
representing WMQ objects. This guide establishes the WMQ and WBIMB notation foundation upon which
future Rational tools may be capable of generating actual WMQ and WBIMB objects.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 9 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

Introduction:

Architecting WMQ and related products requires special symbols that describe the architecture in more
meaningful ways. The majority of WMQ and WBIMB practitioners typically devise their own notations
when designing and documenting their WMQ-based solutions. Acceptance of the notations described
within this document will hopefully provide a much needed standard. Additionally, considering that UML
was used as the guide in defining the WMQ-based notations positions them for inclusion in future IBM
Rational development tools.

Please note that the notations presented in this document are originally based on the Support Pack md08 for
Websphere MQ Design Notations but are extended to provide more WMQ design granularity and to
account for Message Broker specific requirements as well as Enterprise Messaging Bus needs based on a
Message Oriented Middleware (MoM).

The remainder of this document is divided into the following sections:

• Guiding Principles
The Guiding Principles further describe the reasons for creating this document. They also provide
the approach used in selecting the notation types for the WMQ objects.

• WMQ Notations
Included here are the notation and their detailed descriptions for WMQ objects.

• WBIMB Notations
Similar to the WMQ Notations, this section also provides the notation and detailed description for
WBIMB objects.

• Diagrams
This section brings it all together. It provides examples of using the previously described
notations in design diagrams. It also introduces UML notation into messaging design with sample
sequence and activity diagrams. Additionally, this section introduces a way to document message
structures.

• Conclusions
This section simply and briefly summarizes the main points of the document.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 10 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

1. Guiding Principles:

The following are the principles that should guide the development of architectural and design models for
representing computer systems.

1.1. Aesthetics
An architectural or design diagram or model is a pictorial representation of the underlying system. It is
to provide a comprehensive view of the system that it describes. Aesthetics of the model should be
given high priority while developing notations for these diagrams as well as when the Lego pieces are
put together to construct the diagram. Neatness in the depiction of systems in a model helps in a better
understanding of the system and quicker learning curve.

1.2. True Representation
The representation of the system in the diagram should be accurate. Diagrams should only show
system details to the extent that correctly illustrates the functioning of the system. All system
parameters should not be listed in a diagram. That would only make the diagram more complex and
not very effective. Models should be able to drill down to other models for further information
regarding the system. Since all aspects of the system are not shown in a particular model, the accuracy
of representation becomes very important to portray the idea.

1.3. Shorten Developmental Effort and Understanding
Architectural and design models are build to help in the developmental and maintenance efforts as well
as provide a better understanding of the system. Higher level models help capture business ideas or
system overviews that are further illustrated with the help of lower level models. Thus handing a
model over to another developer to maintain the system or integrate to the system is achieved in a
better structured manner than having to go through the details in every level, every time maintenance
or integration needs to be done. The building of models should not, however, get in the way of
software development or integration. Too much documentation or modeling takes away the purpose of
the document or model itself. It is to facilitate and augment development, not to restrain.

1.4. Standardization
One of the issues regarding textual model of documentation is that there is often no standard way of
representing system design / architecture. A visual model often helps in representing the system in a
standard way across different projects enhancing reusability of the design and better comprehension.
The design notations in the model, therefore needs to be standardized for representing various
scenarios and help in the modulation of patterns.

1.5. IDE Tooling
Integrated Development Environment (or IDE) is the basis for developing and managing software code
faster and easier. Models should provide facilities for IDE tools to generate more detailed lower level
models. E.g. Architectural Models should be able to generate deployment scripts, etc. The process of
developing notations for models should consider the underlying fact that they will be in future be used
to generate lower level models with the help of IDE tools.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 11 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2. WMQ Notations

This chapter defines the notations for all the WMQ architectural and design components. The notations
used in this chapter may be used in conjunction with the WBIMB notations defined in the next chapter
(Chapter 3) and other related notations in several diagrams as illustrated in Chapter 4.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 12 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.1. System Components

This section relates to system component objects specifically used in conjunction with WMQ. Notations for
all other system components are outside the scope of this document.

2.1.1. Node

The notation for a node is represented as a gray rectangle with the
stereotype <<node>>. A Node represents either a machine or a Logical
Partition (LPAR). The hostname can be represented by either the name
of the machine or LPAR in the DNS or an IP address. The IP address
may also be a virtual IP as in the case of a High Availability Cluster
like HACMP in the case of IBM AIX operating system HA cluster.

2.1.2. Z/OS Coupling Facility

The coupling facility attached to a Z/OS system for shared memory
access between different systems. It is represented as a gray rectangle
with the stereotype <<cf>>. The notation triangle may be used to
represent the coupling facility.

2.1.3. Z/OS Channel Initiator

The channel initiator address space is represented by a rectangle and
the stereotype <<chinit>>.

2.1.4. Z/OS Address Space

The address space is represented by a rectangle and the stereotype
<<addr sp>>.

 <<addr sp>>

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 13 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.1.5. Z/OS CICS Region

The CICS region is represented by a rectangle and the stereotype
<<cics>>.

2.1.6. Z/OS CICS Transaction

The CICS transaction is represented by a light gray rectangle and the
stereotype <<trn>> and the name of the transaction.

2.1.7. Z/OS Sysplex

The Z/OS sysplex is represented by a rectangle with dashed outline and
rounded edges with the stereotype <<sysplex>> and the name of the
sysplex. The nodes that are part of the sysplex need to inside the outline
of the sysplex notation.

<<cics>>

<<sysplex>> name

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 14 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.1.8. Queue Manager

Queue Manager is represented by a rectangle with the stereotype
<<qmgr>>. For all distributed systems the queue manager name is as
QM.*. For Z/OS the name of the queue manager can only be four
characters long as it is an address space. Thus the naming convention
for does not apply to Z/OS. If the queue manager is a full cluster
repository, it is represented with the cylinder with a qualifier R. The
cluster that the queue manager belongs to or is hosting the repository
for is represented by the cluster outline illustrated below. For cluster
name lists, the queue manager may reside in two or more clusters. The
listener port of the listener associated with the queue manager may be
represented within parenthesis after the name of the queue manager, e.g.
QM1(1515). Port 1414 is the default port for WMQ and may not be
explicitly stated. Multiple listeners associated with the queue manager

may be listed separated by commas (,) within the parenthesis. Listeners may also be represented as daemon
processes associated with the queue manager as explained later.

2.1.9. Application

Any Application in the system is represented as in the diagram, by a
rectangle and the stereotype <<app>>.

2.1.10. Thread

Application threads are represented by a light gray rectangle and the
stereotype <<thread>>. The sinusoid within the diagram represents the
thread as well. Either the stereotype or the sinusoid notation or both
may be used to represent the thread. The thread runs in the process
defined by the application and hence needs to be represented inside the
application rectangle. The name of the thread run function or the thread

class may be shown in the thread notation. If there are multiple threads spawned by the application of the
same type, the thread instance name may be shown next to the thread function name or the thread class
name separated by a colon (:).

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 15 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.2. Queues

All queues are represented by a similar outline (). However, different types of queues have different
characteristics. Message hosting queues are represented by a solid outline and non-message hosting queues
are represented by the dashed outline. The detailed notations for all types of queues are illustrated in this
section.

2.2.1. Local Queue

A Local Queue is represented as in the diagram with solid lines. A
local queue has a physical existence on the file system where
messages are stored and thus represented by a solid outline. The
wildcard character * may be used to represent the names of a set of

queues and a note listing all the application queues referred to. This convention is used to represent a large
number of application queues without making the diagram difficult to read.

2.2.2. Alias Queue

Alias Queue represented in the diagram is an alias definition for a local
queue, a remote queue, a local queue shared in a cluster or another alias
queue. The dashed arrow with the stereotype <<ref>> represents the
local queue it refers to. If it refers to a different type of queue it should
point accordingly. The alias queue never stores messages and
represented by dashed outline with the qualifier A inside the outline.

2.2.3. Remote Queue

Remote Queues are definitions that forward messages to a queue in a
remote Queue Manager. They do not store messages and should be
represented by a dashed outline with the qualifier R inside the outline.

2.2.4. Transmission Queue

Transmission Queue is a special queue to enable the MCA to store and
forward messages to a remote Queue Manager and represented by a
solid outline with the qualifier X inside the outline.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 16 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.2.5. Clustered Queue

A local queue shared in the cluster is represented like a local queue
with a qualifier C indicating that it is shared in the cluster. The queue
needs to be in the correct boundary of the cluster (next section). The
representation of the same queue as it appears on other queue managers
in the cluster is represented similarly but with a dashed outline. This is

often useful to indicate an application writing to a clustered queue not defined on the queue manager. The
get operation is not possible from this queue since it is not locally defined. Even though there might be
several queues in the cluster with the same name for load balancing, only one instance of the remote
clustered queue may be shown and the load balancing is considered to be the assumed queue manager
functionality in a cluster.

2.2.6. Shared Queue

A shared queue is a definition of a queue on the Coupling Facility that
is shared in the queue sharing group (explained later). It is represented
by the outline with the qualifier S.

2.2.7. Model Queue

A model queue is a template for a queue that needs to be created at
runtime and represented as shown with dotted lines and the letter M in
the middle. The permanent dynamic queue created at runtime is
represented with the solid outline, the qualifier PD and a set of names
that represents the queues. The temporary dynamic queues are
represented with dashed lines with a qualifier TD denoting a temporary

dynamic queue. A dashed line from the model queue to either kind of dynamic queues with the stereotype
<<create>> represents the dynamic creation of these queues. The life time of these queues and sequence of
events leading to the destruction of these queues can be better represented by a sequence diagram of the
program.

M

Model
Queue

TD

Q.*

PD

Q.*

<<create>>

<<create>>

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 17 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.3. Queue Access

Accessing messaging queues, i.e. putting and getting messages to and from queues, is represented by an
arrow in the direction of the data flow and the qualifier syntax as below.

where, <Access Type> e the type of messaging object access operation
 <Parm> e parameter for that type
 <Value> e value of the parameter

The following table indicates the valid options for each type of messaging object access and the
corresponding parameters and values. The arrow may only point to a valid object.

Access Type Operation Parameter Description Value
Type

Value

TX Transactional
PER Persistence

<<put>> Put message

PRI Priority Integer [1,15]
TX Transactional
PER Persistence

<<get>> Retrieve
message

PRI Priority Integer [1,15]
Global Global scope <<pub>> Publish on

topic Local Local scope
<<sub>> Subscribe on

topic

<<regsub>> Register
subscriber

<<deregsub>> Deregister
subscriber

<<delpub>> Delete
retained
publication

<<requpd>> Request
updated
publication

Conditional statements may also be incorporated as parameters in the following syntax.

An example of a valid conditional statement parameter is GET(TX?PER:) .

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 18 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.3.1. Putting Message to a Queue

Putting a message into a queue is represented by an arrow with the
stereotype <<put>>. If the put is under a transaction (syncpoint) it is
represented as <<put>> TX. Similarly any other parameter can be
represented as per the syntax above.

2.3.2. Getting Message from a Queue

Getting a message from a queue is represented by an arrow with the
stereotype <<get>>. If the get operation is under a transaction
(syncpoint) it is represented as <<get>> TX. Similarly any other
parameter can be represented as per the syntax above.

2.3.3. Publishing on a Topic

Publishing a message on a topic is represented by an arrow with the
stereotype <<pub>>. The stereotype may be followed by the scope of
the published message – global (<<pub>> Global) or local (<<pub>>
Local). Also refer to section 3.2.

2.3.4. Subscribing on a Topic

The subscription received from the broker is represented by an arrow
with the stereotype <<sub>> towards the subscriber application. Also
refer to section 3.2.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 19 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.4. Channels

Channels are definitions for communication between an application and a queue manager or between two
queue managers and are represented by arrows. Different types of arrows and arrow heads are used to
distinguish between different types of channels. For any channel in the network (TCP, SNA, etc.) the
channel name should indicate the network protocol and is governed by naming standards.

2.4.1. Server Binding

The application needs to reside on the
same node as the queue manager for
server binding. It is represented by a two-
ended arrow indicating that the messages
are sent both ways. However, it does not

require any channels to be defined and hence no text is mentioned on the arrow connector. There are
multiple types of server bindings and if required a note may be attached to the server binding notation with
details about the particular binding used.

2.4.2. Client-Server Binding

The application may or may not reside on
the same node as the queue manager and
the messages are sent through the Client
channel on the Client Application end
and the Server Connection channel on the

queue manager end. It is represented by a two-ended arrow with the name of the SVRCONN channel name
specified on the arrow connector.

2.4.3. Sender-Receiver Pair

The Sender channel on the queue
manager QM.A communicating to the
Receiver channel on the QM.name is
represented by an arrow with the name of
the channel indicated. The normal

beginning of the arrow represents the Sender MCA and the filled arrow head represents the Receiver MCA.
The naming standards dictate the name of the channels as the same as the remote queue manager prefixed
with “TO.”. The direction of the arrow connector represents the direction in which the messages are
flowing.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 20 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.4.4. Server-Requester Pair

The Server channel on the queue
manager QM.A communicating to the
Requester channel on the QM.name is
represented by an arrow with the name of
the channel indicated. The circle at the

beginning of the arrow represents a Server MCA and the unfilled arrow head represents a Requester MCA.
The naming standards dictate the name of the channels as the same as the remote queue manager prefixed
with “TO.”. The direction of the arrow connector represents the direction in which the messages are
flowing.

2.4.5. Requester-Sender Pair

The Sender channel on the queue
manager QM.A communicating to the
Requester channel on the QM.name is
represented by an arrow with the name of
the channel indicated. The normal start of

the arrow represents the Sender MCA and the unfilled arrow head represents a Requester MCA. The
naming standards dictate the name of the channels as the same as the remote queue manager prefixed with
“TO.”. The direction of the arrow connector represents the direction in which the messages are flowing.

2.4.6. Server-Receiver Pair

The Server channel on the queue
manager QM.A communicating to the
Receiver channel on the QM.name is
represented by an arrow with the name of
the channel indicated. The circle at the

beginning of the arrow represents a Server MCA and a filled arrow head represents the Receiver MCA. The
naming standards dictate the name of the channels as the same as the remote queue manager prefixed with
“TO.”. The direction of the arrow connector represents the direction in which the messages are flowing.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 21 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.4.7. Cluster Channels

The cluster channels are represented by
open arrows as shown in the diagram.
Only manually defined channels are
shown in the diagram and not the auto-
defined channels, since the latter does not
affect the architecture of the cluster and
are maintained by the queue manger and
need not be scripted. The cluster sender
points to a cluster repository queue
manager (QM.repos) from another queue
manager (QM.name) where the
CLUSSDR channel is defined. This

indicates the primary source for the non-repository queue manager to retrieve cluster information not
present at that period of time in its partial repository. The name indicated on the cluster sender channel is,
in accordance with the naming standards, “TO.” appended to the name of the target queue manager. The
cluster receiver channels, on the contrary, are defined pointing to the queue manager where the definition
of the CLUSRCVR exists with similar arrows and the name of the channel indicated on the arrow. The
starting end of the cluster receiver channel is not attached to a queue manager since it publishes a network
definition of the queue manager to the repositories in the cluster. The boundaries of the cluster is
represented as a dashed rectangular outline with rounded corners and the stereotype <<clus>>. All cluster
components represented in the diagram should be rendered within the perimeter of the cluster boundary
notation. Overlapping cluster boundaries are represented with the same notation. A parallelism of this
notation can be drawn from the Venn Diagram notation in Set Theory. If a queue manager falls within the
intersection set of two or more cluster boundaries, then the queue manager is considered to be in the cluster
namelist containing all the clusters. A cluster namelist repository is represented in the intersection set of the
cluster boundaries.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 22 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.5. Triggering and Backout

Triggering and Backout are represented as arrows with two filled arrow heads starting from the queue to
the triggered application or the backout queue respectively. They all have the following syntax for the
arrow label.

where, <Type> e the trigger type or backout
and <Parm> e parameters for that type.

The Type and the Parm is different for different trigger types or backout operation and are described below.

2.5.1. Trigger on First

The Application is triggered when the first message is put to
an empty queue. The triggering is represented by an arrow
with the trigger type qualifier First indicated on it.

2.5.2. Trigger on Every

The Application is triggered for every message arriving on
the queue. The triggering is represented by an arrow with the
trigger type qualifier Every indicated on it.

2.5.3. Trigger on Depth

The Application is triggered when the queue depth reaches
the trigger depth indicated on the queue. The triggering is
represented by an arrow with the trigger type qualifier
Depth and a single parameter n as the trigger depth.

2.5.4. Backout

When a message is rolled back into the queue the Backout
Count is incremented by the queue manager. When the
Backout Count of the message in the Message Descriptor
reaches the Backout Threshold parameter of the queue, the
WBIMB broker forwards the message to the Backout

Requeue queue. The backout operation is represented by an arrow from the input queue to the backout
queue with the type qualifier Backout and a single parameter n as the backout threshold.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 23 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.6. Daemon Processes related to WMQ

All daemon processes are represented with a circle and a qualifier with the following syntax.

where, <Type> e the daemon type
and <Parm> e parameters for that type.

2.6.1. Listener

The queue manager listener is the component that listens for remote connections to a
particular port and is represented by a circle and the qualifier type Port and a
single parameter n as the port number.

2.6.2. Channel Initiator

The channel initiator associated with the queue manager is required to trigger
channels from their inactive state and is represented by the qualifier type CI. If all
queue managers in a particular WMQ Architecture Diagram have the channel
initiator running, then it is not required to show the channel initiator on each queue
manager but a note with the channel initiator notation can be placed at the bottom

of the diagram indicating that it is running on all the queue managers in the diagram unless otherwise stated.

2.6.3. Trigger Monitor

The trigger monitor associated with the queue manager is required to trigger
programs based on other parameters on the queue and is represented by the daemon
circle and the qualifier type TM and the optional parameter n used to represent a
non-standard trigger monitor.

2.6.4. Other Monitoring Systems

Any monitoring system other than the above mentioned standard monitors is
represented as a daemon with the qualifier type as Mon and a single parameter n that
indicates the particular monitoring agent. Event monitoring systems will be
represented similarly.

Port:
1414

CI

TM:
n

Mon:
n

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 24 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.7. MQ Exit, MQ Event, Expiry

This section is discusses different event options in the queue manager. An MQ Event is generated by the
queue manager when certain internally monitored parameters are successful and event messages are
generated by the queue manager. And MQ Exit is to trap an event while a message is in transit and the exit
code is invoked. Expiry is a property of the message and the application session.

2.7.1. Exit

Different flavors of exits trap the processing of messages or communication between
different queue managers. Exits are represented by a rectangle with the qualifier X in
the font shown in the diagram following syntax below.

:

<<Exit Type>>

,

<Exit Name>

,

where, <<Exit Type>> e the stereotype indicating the type of the exit
 <Exit Name> e the name of the exit (DLL)

Stereotype WMQ Exit Type

<<security>> Security Exit for channels
<<message>> Message Exit for the channel
<<receive>> Receive Exit for the channel
<<send>> Send Exit for the channel
<<API>> API-Crossing Exit for the queue manage
<<WLM>> Workload Management exit for workload management in a queue manager cluster
<<autodef>> Exit is called before automatically defining the auto-defined channels in a cluster.a

Activity diagrams and other UML diagrams represent more detailed information about the internals of the
exit routine.

2.7.2. Event

Events are represented by a rectangle with the qualifier E in the shown font and the
following syntax.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 25 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.7.3. Expiry

Expiry of messages is represented as shown in the diagram with the expiry duration
stated at the bottom. Expiry of messages is a property of the message itself and thus
may be different for every message in the system. However, expiry for messages are
set based on different types of messages and hence can be represented on the
Message Specification Diagram (explained later). If the same message has different

expiry under different conditions, then the expiry needs to be represented next to the queue access arrow in
a QMAD or MID. The same representation can be applied to the session expiry in an application and to
expiry for waiting period on a GET operation on a queue (a blocked call with a finite non-zero wait
interval).

Time

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 26 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.8. Security

WMQ security can be broadly divided into two categories – Channel Security, involving security of data in
transit through the channels (SSL) and Access Security, involving access to WMQ resources in the system
through the Object Authority Manager (OAM).

2.8.1. SSL Channels

SSL enabled channels are indicated by a lock sign as shown in the diagram on the
arrow for the channel. The secured protocol or algorithm is indicated below the
notation. Since the security protocol needs to be the same at both ends of the channel
like the channel name, the notation can be placed at either end of the channel.

2.8.2. SSL Key Store

The key store for the digital certificates is to be defined for the queue manager or the
client that is involved in the SSL channels. The physical location of the key store is
indicated below the notation for the key as shown. Since this is a parameter for the
queue manager it is necessary to show the key store within the boundaries of the
queue manager.

2.8.3. WMQ Object

Any WMQ object is represented by a gray rectangle with the stereotype
and the name of the object and thick border. The following table lists of
stereotypes that are related to the WMQ objects.

Stereotype WMQ Object

<<node>> All queue managers on the node, complete installation
<<qmgr>> Queue Manager
<<queue>> Queue
<<process>> Process
<<namelist>> Namelist
<<authinfo>> Authentication Information for SSL

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 27 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.8.4. Authority Class

The authority class of the Object Authority Manager is represented by the
grey rectangle with the stereotype <<auth>> and class indicated within it.
The following are the list of valid classes: all, alladm, allmqi, none, altusr,

browse, chg, clr, connect, crt, dlt, dsp, get, put, inq, passall, passid, set, setall, setid.

2.8.5. Group

The security group is represented by a rectangle with slightly rounded
corners, thick border and the stereotype <<grp>> as shown in the diagram.
The syntax for the text inside the rectangle is the domain (if the group

mentioned is a group in a domain) followed by a colon (:) and the name of the group. The domain name is
optional. Multiple groups can be represented in a single rectangle if they all refer to the same authority or a
set of authorities.

2.8.6. Principal

The security principal is represented by a rectangle with slightly rounded
corners and the stereotype <<usr>> as shown in the diagram. The syntax
for the text inside the rectangle is the domain (if the principal mentioned is

a principal in a domain) followed by a colon (:) and the name of the principal. The domain name is optional.
Multiple principal can be represented in a single rectangle if they all refer to the same authority or a set of
authorities.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 28 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.9. High Availability

High Availability environments essentially monitor system processes running in the same resource group
with their persistent working data on a shared drive. These processes are installed on both nodes that are
added to the HA environment or on a shared drive. When a node goes down, the processes are restarted on
the failover node ensuring higher up-time for the application. HA failover mechanism varies from system
to system and a detailed analysis of these systems is beyond the scope of the paper.

2.9.1. High Availability Failover

The diagram shows a very
generic failover mechanism for
the queue manager process. The
resource group for the failover
is represented by the dashed red
rectangle. Processes within this
resource group would be
monitored by the HA system
and failed over to the other node
if the process (in this example
the queue manager QM.name)
fails on one node. This is
indicated by a cylinder with the
qualifier FS (indicating file
system). The mounting

mechanism is also indicated on the arrow that points from the process over to the mounted file system. The
mounting mechanism can, for example, be AFS, NFS, etc. The mount points are also indicated next to the
cylinder. The mounting mechanism is indicated on the arrow as a stereotype as in the following table.

Stereotype Failover Mechanism

<<AFS>> AFS mounting
<<NFS>> NFS mounting

The HA failover mechanism is represented by a dashed red arrow from the resource group to the node that
it fails over to. The failover mechanism and the corresponding stereotype to be indicated on the arrow are
listed in the following table.

Stereotype Failover Mechanism

<<A-A>> Active-Active failover configuration
<<A-P>> Active-Passive failover configuration

<<NFS>>

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 29 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.10. XA Coordination

Transaction coordination is essential when multiple transaction managers are involved in a single
transaction to guarantee the commit and rollback operation on the transaction. This is achieved by a two-
part commit process between the different transaction managers supporting the XA protocol.

2.10.1. XA Coordination

Transaction coordination between multiple resource
managers in a global transaction context is represented
by a dashed rectangle with rounded edges as shown in
the diagram containing the transaction servers within its
perimeter and the stereotype <<xa>>. The XA
transaction manager is indicated inside a light grey
rectangle with black dashed outline with rounded edges
and the stereotype <<xa-tm>>.

<<xa-tm>>

<<xa>>

<<qmgr>> QM.name
DB

Data

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 30 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

2.11. Z/OS Shared Queue

Queue sharing is achieved through a coupling facility in a Z/OS environment. This feature of WMQ is
limited to the Z/OS.

2.11.1. Queue Sharing Group

The Z/OS coupling facility is represented by a
gray rectangle and stereotype <<cf>>. The
queue sharing group is represented by a
rectangle with dashed border, rounded edges and
the stereotype <<qsg>>. The database that
stores the information for the queues is
represented as a cylinder with the qualifier DB
and the name of the database below the cylinder.
The coupling facility structures are shown as
dashed rectangles with rounded edges with the
stereotype <<csft>>. The queue manager uses
an administrative coupling facility structure for
its internal use and does not contain any user

data. This is represented by a light gray rectangle for coupling facility structure as shown. The other
structures may contain shared queue information. The shared queue is represented by a dashed outline with
the qualifier S.

DB

DBQSG

<<cf>> CF1

<<qsg>> QSG1

<<cfst>> CFST.ADMIN

<<cfst>> CFST.QSG1
S

Q.1

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 31 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3. WBIMB Notations

This chapter defines the notations for all the WBIMB architectural and design components. The notations
used in this chapter may be used in conjunction with the WMQ notations defined in the previous chapter
(Chapter 2) and other related notations in several diagrams as illustrated in Chapter 4.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 32 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.1. Broker Architecture

This section discusses the notions for the elements of the message broker as design components. These can
be used in the QMAD and MID diagrams.

3.1.1. Configuration Manager

The configuration manager is represented by a light gray rectangle
with the stereotype <<cmgr>>. The configuration manager
database is represented by a cylinder with the qualifier DB and the
name of the database below and connected to the configuration
manager with a line.

3.1.2. User Name Server

The username server is represented by a light gray rectangle with
the stereotype <<unsvr>>. The username server database is
represented by a cylinder with the qualifier DB and the name of
the database below and connected to the configuration manager
with a line.

3.1.3. Message Broker

The message broker is represented by a light gray rectangle with
the stereotype <<broker>>. The message broker database is
represented by a cylinder with the qualifier DB and the name of
the database below and connected to the configuration manager
with a line.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 33 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.1.4. Execution Group

The execution group is represented by a rectangle with the
stereotype <<egrp>>. The execution group needs to be
represented inside the broker outline if used along with the broker
notation.

3.1.5. Message Flow

The message flow is represented by a light gray rectangle with the
stereotype <<mflow>>. The message flow needs to be represented
inside the execution group or the broker outline if used along with
these notations.

<<mflow>> MF.name

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 34 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.2. Publish/Subscribe

Publish/Subscribe is a many-to-may model for message distribution based on topics. This section discusses
the notions for publish/subscribe related to the message broker as design components. These can be used in
the QMAD and MID diagrams.

3.2.1. Topic

A topic in a topic tree is represented by a light gray rectangle
with the stereotype <<topic>>.

3.2.2. Subscription Point

A subscription point is represented by a white rectangle with
rounded edges. The subscription point may be attached to a topic
in a topic tree.

3.2.3. Event Publication

Publication of events that are sent to the registered subscribers
synchronously is represented by a solid black circle.

3.2.4. Retained Publication

Retained publication that stores the current state of the
publication that may be delivered to the subscriber
synchronously or asynchronously, is represented by a white
square with black border.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 35 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.2.5. Broker Collective

The broker collective is represented by a rectangle with dashed
border and rounded edges with the stereotype <<bkc>>. The
brokers that belong to a broker collective should be represented
within the outline of the broker collective notation as shown.

3.2.6. Broker Parent-Child Relation

Two or more brokers may be in a parent-child relation in the form
of a broker tree structure. The parent-child relation between the
brokers is represented by the thick white arrow with a black border
as shown in the diagram with the arrow starting from the child
broker and pointing towards the parent broker.

3.2.7. Broker Association Relation

Two or more brokers may be in an association relation with each
other in a broker tree structure. The association relation between
the brokers is represented by the thick white two-ended arrow with
a black border as shown in the diagram connecting the two brokers.

<<bkc>> BKC.name

<<broker>> BK.1

<<broker>> BK.2

DB

DBBK1

DB

DBBK2

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 36 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.3. Message Specification

Message specification elements are represented in different colors to represent different kinds of elements
to achieve a quick visual understanding of a complex message structure. The colors are chosen so that even
a grayscale representation would provide distinguishing shades to signify the different element types.
Moreover, the content and position of the elements provide distinction in what they represent.

3.3.1. Complex Type Element

A complex type element is represented by a gray rectangle with a
black border and the name of the element within in. The message
itself is a complex type and any Message Specification Diagram
(described later) must have this element at the top of the message
tree. The type definition is represented in bold and separated from

the element instance with a bold colon (:).

3.3.2. Element Hierarchy in Message Tree

Elements in the message tree is represented a line at right angles to
another starting from the complex type or list type element at the
top to the decomposed element at the end of the horizontal line.
This represents the hierarchical structure of the message tree.

3.3.3. Data Element

Data element is represented by a yellow rectangle with a black
border. The data element models the physical data present in the
incoming message.

3.3.4. Element Attributes

The attribute of the data element is represented by a white
rectangle with black border. The data type is represented as
a stereotype. The attributes of the data element is
represented following the data type if necessary. The
syntax for the representation is:

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 37 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

E.g. for fixed length string of length 10 the representation is ‘<<string>> Len=10’. The following table
indicates the different data types and the attributes related to them.

Stereotype Attribute Notation Attribute Description and Values

Len Length (integer)
Pad Padding
Align Alignment (l e left, r e right)

<<string>>

Def Default value
Bin Number of bytes of binary data
Len Length (integer)
Pad Padding
Align Alignment (l e left, r e right)

<<int>>

Def Default value
Bin Number of bytes of binary data
Len Length (integer) and Precision(integer) separated by comma(,)
Pad Padding
Align Alignment (l e left, r e right)

<<decimal>>

Def Default value
Bin Number of bytes of binary data
Len Length (integer)
Pad Padding
Align Alignment (l e left, r e right)

<<float>>

Def Default value
<<blob>> Len Length (integer)
<<list>> The name of the list is indicated

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 38 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.3.5. Element Value

The value of the data is represented by a light blue rectangle with
a black border. If the value is to be determined from a database
query the value is represented as a light blue cylinder with the
qualifier DB inside the cylinder as shown and the name of the
database below the cylinder. The element value notation is used in
case of a static value set for that data element or in a list data type
for alternate values that can be present for the data element. The

database representation is always associated to a list data type since it is a dynamic selection of a set of
values from the database at any given point. The SQL for the data selection criteria may be shown as an
annotation next to the cylinder. The static value set is represented using common set theory notations.
Some examples are shown below.
[01, 06] 4 [99] e the accepted values are 01, 02, 03, 04, 05, 06, 99 (for an element with length = 2 and
padding = 0, the 0 in the front of the numbers is significant from a data validation perspective).
[00, 09] 4 [a, z] 4 [A, Z] e the accepted values are 01 to 09 and all lower case and upper case alphabets.

3.3.6. List Data Type

List data type is represented by dark gray rectangle with the name
of the list indicated in white font. This type may contain a fixed or
variable set of values for validity checking. In the former case the
element values are listed and in the latter case the values are

derived from the database and represented by the database element value notation and an annotation
provided for the SQL query statement.

3.3.7. Element Occurance

Element occurrence can be represented in either of the
two ways shown. In both the cases the element
occurrence is represented by a light turquoise rectangle
with black borders. The syntax of the element
occurrence qualifier is as follows.

<nmin, nmax> where, nmin e Minimum occurrence value
 nmax e Maximum occurrence value

In the first notation the element occurrence is either <0,1> or <1,1>, i.e. the element is either absent or
occurs no more than one time. In the second notation the element can occur more than one time and is
indicated by the arrow representing a recursive condition. The two representations are made distinctive
since it is easier to recognize recursive elements in the diagram and often handled differently in the code
(multiple occurrences are usually treated as an array and looped through in the program). A mandatory
element has nmin value of greater than 0.

value

DB

Data

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 39 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.3.8. Delimiter

The delimiter is represented by the light green rectangle with a
black border.

The larger rectangle shown is the type representation of the
delimiter. If the delimiter is a long sequence of characters then it is
recommended to use an alpha-numeric identifier to represent the

long sequence for the delimiter separated by a colon (:).

The delimiter instance is represented by a rectangle with rounded corners. This notation is used between
elements that are separated by the delimiter in the message tree where the delimiter instance is present. This
is done for visual clarification. The qualifier may either be the delimiter or the delimiter identifier for long
sequence of delimiters.

Non-printable characters used as delimiters can be represented either with the hexadecimal sequence with
the hexadecimal qualifier x or with the mnemonics as in the following table.

Mnemonic Hex Mnemonic Hex Mnemonic Hex Mnemonic Hex

<ACK> x'06' <BEL> x'07' <BS> x'08' <CAN> x'18'
<CR> x'0D' <DC1> x'11' <DC2> x'12' <DC3> x'13'
<DC4> x'14' <DLE> x'10' x'19' <ENQ> x'05'
<EOT> x'04' <ESC> x'1B' <ETB> x'17' <ETX> x'03'
<FF> x'0C' <FS> x'1C' <GS> x'1D' <GT> x'3E'
<HT> x'09' <LF> x'0A' <LT> x'3C' <NAK> x'15'
<NUL> x'00' <RS> x'1E' <SI> x'0F' <SO> x'0E'
<SOH> x'01' <SP> x'20' <STX> x'02' <SUB> x'1A'
<SYN> x'16' <US> x'1F' <VT> x'0B'

3.3.9. Tag

Tags passed to the message need to be distinguished from the
actual data. Tags are represented by a sea green rectangle with
black border and light green text. The tags are indicated with a tag
identifier to indicate the instances of related tags. There can be
two possible ways to indicate tags alongside data, either as fixed

length or with a tag delimiter (next article). For fixed length tags the length is indicated as ‘Len = <length>’.
Fixed length tags and tag indicators are mutually exclusive. The tag definition name is to represent the type
of tags that are to be expected for the complex structure.

The tag instance is represented by the rectangle with rounded edges. The tag identifier in the tag definition
and the tag instance need to match. The tag instance name may be a wildcard character (*) or a specific
literal that needs to be matched in the data. Using the wildcard implies creation of the tag names at runtime
based on the tag names that are passed in the data. This is the case where the data has self-defined tags that
need not be validated as long as the data contained in the tags is valid.

n: ‘delim’

n: ‘tag’

n: ‘tag’

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 40 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.3.10. Tag Data Separator

Tag Data Separator is used to distinguish between the tag and the
data parts for variable length tags. It is also known as the tag
delimiter since it acts as a delimiter for the tag. It is represented by
a light green rectangle with a thick dark green border and blue text
color for the qualifier.

Like the delimiter, the tag data separator may have an optional identifier for representing a long sequence
of characters. For non-printable character values please refer to the mnemonic table (vide 3.2.8).

The tag data separator instance is represented by the rectangle with rounded edges. The qualifier for the tag
separator instance may be the identifier for the tag separator for long sequences or the tag separator itself.

3.3.11. Group Indicator

Group Indicator is represented by the light green rectangle with
turquoise NW-SE stripes with a thick olive green border and red
text color for the qualifier. The group indicator is used in
conjunction with the group terminator – always as a pair – to
represent grouping of data. It represents the start of the group.

Like the delimiter, the group indicator may have an optional identifier for representing a long sequence of
characters. For non-printable character values please refer to the mnemonic table (vide 3.2.8).

The group indicator instance is represented by the rectangle with rounded edges. The qualifier for the group
indicator instance may be the identifier for the group indicator for long sequences or the group indicator
itself.

3.3.12. Group Terminator

Group Terminator is represented by the light green rectangle with
turquoise NE-SW stripes with a thick olive green border and red
text color for the qualifier. The group terminator is used in
conjunction with the group indicator – always as a pair – to
represent grouping of data. It represents the end of the group.

Like the delimiter, the group terminator may have an optional identifier for representing a long sequence of
characters. For non-printable character values please refer to the mnemonic table (vide 3.2.8).

The group terminator instance is represented by the rectangle with rounded edges. The qualifier for the
group terminator instance may be the identifier for the group terminator for long sequences or the group
terminator itself.

n: ‘delim’

n: ‘grp_end’

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 41 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.3.13. Attribute Reference

The attribute reference is represented by a dashed arrow with the
stereotype <<refers>>. This is used when the attribute length of
the element in the tree is dependant on the value of another
element. The referred to value is used in the length attribute for a
fixed length element. This gives more flexibility in defining the
fixed length field if it is only determined at runtime.

3.3.14. Element Correlation

The element correlation is represented by a dashed arrow with the
stereotype <<correlation>>. This notation is used when the value
of one list type element depends on the value of another list type
element e.g. if the value of element A is x then the value of
element B needs to be 1, if the value of element A is y then the
value of element B needs to be 2, etc. then there exists a
correlation between the elements A and B.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 42 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

3.3.15. CAPP Element

A Conditional and Progressive Parsing (CAPP) Pattern element is
represented by a yellow rectangle with a thick black border. A
CAPP element is a non-atomic element that may be broken down
into its component parts in subsequent iterations in the flow or at

the same point conditionally based on the value in the data, as defined by the related CAPP message
definition. The element name is represented similar to a simple element but may refer to a CAPP message
with an optional CAPP condition and CAPP staging indicator.

3.3.16. CAPP Message

 A Conditional and Progressive Parsing (CAPP) Pattern message
is represented by a gray rectangle with a thick black border. A
CAPP message is a decomposition definition for the CAPP
element. The message is represented similar to a complex type

element and may be a separate message in the implementation. The CAPP message refers to a CAPP
element for the conditional parsing of the message.

3.3.17. CAPP Condition

A Conditional and Progressive Parsing (CAPP) Pattern condition
is represented by a white rhombus with a gray shadow. The
condition is represented by a number based on the conventions for
the CAPP staging and the branching condition itself.

3.3.18. CAPP Staging

A Conditional and Progressive Parsing (CAPP) Pattern staging is
represented by a thick-lined black arrow and the CAPP stage
number in bold brown font.

Stage n

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 43 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4. Diagrams

This section will provide architecture diagram samples that demonstrate the above described WMQ and
MB notations. It also introduces examples of UML sequence and activity diagrams representing messaging
solutions. Finally, it describes a useful way for representing message structures.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 44 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.1. Queue Manager Architecture Diagram

This section illustrates different examples in which the notations may be used in a Queue Manager
Architecture Diagram (QMAD). A QMAD represents the architectural diagram for a queue manager and its
configuration in different nodes, the intercommunication between the queue managers, the configuration
for High Availability clusters, etc. It also includes application details like putting and getting messages
from a queue and the binding of the application with the queue manager. The idea behind the diagram is to
have a clear picture of the underlying messaging infrastructure. Thus there may be multiple diagrams to
draw details of different aspects to the infrastructure and should not be limited to the use of one diagram in
the case of complex architectures.

4.1.1. QMAD Sender-Receiver

This diagram shows two sender-receiver
channel pairs between the queue managers
QM.1 and QM.2 and corresponding
transmit queues. The queue managers are
configured on the nodes node1 and node2
respectively.

4.1.2. QMAD Server-Requester

This diagram shows two server-requester
channel pairs between the queue managers
QM.1 and QM.2 and corresponding
transmit queues. The queue managers are
configured on the nodes node1 and node2
respectively.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 45 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.1.3. QMAD Application Putting Message

The diagram illustrates an application SendInfo
running on node1 spawns a thread send that puts
messages to an alias queue SendMsg that points
to the Q.Send local queue on the queue manager
QM.1.

4.1.4. QMAD Cluster and Monitors

The diagram illustrates two queue managers QM.1 and QM.2 on a single node node1 running listeners on
ports 1414 and 1515 respectively. QM.1 is the repository queue manager of the cluster CLUS.1. The queue
managers are being monitored by the Candle WMQ Agent and the operating system is being monitored by
the Candle OS Agent.

<<node>> node1

<<app>> SendInfo

<<thread>> send

<<qmgr>> QM.name

A

SendMsg Q.Send

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 46 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.1.5. QMAD Fail-over

The diagram illustrates the queue
manager QM.1 defined on a NFS
mounted shared file system on node2.
The HA resource group RG.QM.1
monitors the queue manager and
fails over to node1 in case any of the
processes in the resource group goes
down. The same queue manager
QM.1 is restarted on node1 with the
same definition from the NFS
mounted file system from the mount
point /var/mqm/qmgrs/QM!1.

4.1.6. QMAD Broker and Configuration Manager

The configuration manager queue manager QM.CM is configured on nodeCM with the configuration
manager running on the same node. The configuration manager database is DBCM. The broker queue
manager QM.BK is configured on nodeBK along with the broker BK.1 with the broker database DBBK.
The communication between the queue managers is established by setting up the sender-receiver pairs for
each end. The proper transmit queues are set up as shown.

ODBC

ODBC

<<NFS>>

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 47 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.1.7. Broker Topology Tree

The above diagram illustrates a broker topology tree with the BK.Parent broker (with database DBBKP) at
the top. This broker has two other brokers configured as its children – BK.Child1 and BK.Child2 (with
corresponding databases DBBKC1 and DBBKC2). The broker BK.Child1 is associated with the broker
BK.1 (with database DBBK1) at the same level. Brokers BK.1 and BK.2 (with database DBBK2) are in a
broker collective BKC.Local.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 48 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.1.8. Publisher and Subscriber to a Topic Tree

The diagram illustrates a topic tree in the package TGame. The stereotype <<topic>> is used to represent a
topic package. The root topic in the tree is Game. It has two children – Score and GameUpdate. The Score
represents a topic where retained publications are sent since the subscribers are interested in only the latest
score. The GameUpdate topic represents the proceedings of the game (commentary) and is sent as event
publications to the subscribers immediately. Both the topics have a subtopic AvsB representing the game
where team A is playing team B. The sub-topic Game/GameUpdate/AvsB has two subscription points –
english and spanish, to publish information in English and Spanish respectively. The publisher application,
publisher, publishes local publications for the commentary both in English and Spanish as even
publications. It also publishes the score globally as retained publication. There are two subscriber
applications – subscriberEng and subscriberSp. The former subscriber subscribes to the score and the
updates in English for the game AvsB and the latter subscriber subscribes to the score and the updates in
Spanish for the same game AvsB.

There may be other publishers on the same topics and other subscribers on the same topics who join in
temporarily or permanently as well as subscribers on remote (but connected) broker for only the scores of
the game AvsB.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 49 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.2. Security Profile Diagram

This section illustrates examples for the Security Profile Diagram (SPD) for WMQ objects and WBIMB
publish/subscribe topic security components.

4.2.1. WMQ Security

The following SPD shows the WMQ security profile for a
particular node node1.

Every security profile diagram starts with the node object
indicating access to the complete installation on that node. In
the example presented here, mqm group refers to the WMQ
administrator group and the user wmqiadm is a part of this
group. Similarly another system control group is mqbrkrs for
all administrative control of the message broker on the system.
The user wmqiadm is also a part of this group.

Next the security tree indicates the profile for queue manager
QM.1. The connect authority for connection to the queue
manager is given to the group grpA in domain DA and grpB in
domain DB. Also the access is given to the principles ron and
guy. Inside the queue manager QM.1, open and put accesses for
the queues Q.1 and Q.2 is given to the group grpA in domain
DA as well as to the principles ron and guy; while the open and
get accesses for the same queues are given to group grpB in
domain DB and also to the principles arunava and popi both in
domain DX.

Next all access to queue manager QM.2 is given to the groups
grpA in domain DA, grpB in domain DB and the local group
grpX and to the principles ron and guy.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 50 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.2.2. Topic Security

This diagram illustrates the security aspects related to the topics
in the topic tree for the game AvsB (vide 4.1.8) in the topic
package TGame.

The user id wmqiadm has publish access to the root topic Game.
Thus he may publish to any sub-topic of Game as well. The
group gscore has subscribe access to the topic Game/Score. The
group gupdate has subscribe access to the topic
Game/GameUpdate. The group AvsB has subscribe access to
the topics Game/Score/AvsB and Game/GameUpdate/AvsB.

<<topic>> TGame

Game

AvsB

GameUpdate

Score

AvsB

<<auth>> publish

<<usr>> wmqiadm

<<auth>> subscribe

<<grp>> gscore

<<auth>> subscribe

<<grp>> AvsB

<<auth>> subscribe

<<grp>> gupdate

<<grp>> AvsB

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 51 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.3. Broker Component Diagram

A Broker Component Diagram (BCD) represents a schematic component diagram of the broker packages
and components. The artifacts are derived from UML 2.0 component diagram model and extended to
represent the broker components.

<<mf project>> Protocol.MF

<<broker schema>> default

<<mf project>> Protocol.MS

<<msgset>> Protocol.MS

<<msg def file>> P1

<<broker schema>> P1

<<broker schema>> P2

<<refers>>

<<mrm>> Msg.P1.out <<mrm>> Msg.P1.in

<<esql>> Util <<msgflow>> Helper

<<esql>> P1 <<msgflow>> P1

<<esql>> P2 <<msgflow>> P2

<<compute>> Util1
<<compute>> Util2

<<compute>> Mod1
<<filter>> Mod2
<<database>> Mod3

<<compute>> Mod1
<<filter>> Mod2
<<database>> Mod3

A Broker Component Diagram (BCD) like any other component diagram is a schematic representation of
the components of a broker development environment. The BCD example illustrated above shows a basic
message flow project Protocol.MF and its components along with a related message set project
Protocol.MS and its components.

Inside the message flow project different components are aggregated under broker schemas. The stereotype
<<mf project>> is used for the package representation of the message flow project. The stereotype
<<broker schema>> is used for the package representation of the broker schema inside a message flow
project. Every message flow project has a default package which maps to the base project folder. All other
broker schemas are packaged under their own folders. Inside the broker schema the ESQL code is
represented as a component with a set of interfaces or modules. The stereotype <<compute>> represents a
compute module, the stereotype <<filter>> represents a filter module and stereotype <<database>>
represents a database module. Interfaces can also be global functions and procedures with the stereotypes
<<function>> and <<procedure>> respectively. There are two different types of components in a
message flow project – ESQL components comprising of ESQL code and Message Flow components

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 52 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

comprising of the flows and are represented by the <<esql>> and <<msgflow>> stereotypes respectively.
The components are distinguished by the UML component symbol.

The modules may be represented inside annotations with corresponding labels as shown. This helps in
better organization in the diagram. If the number of interfaces is relatively small they can be represented
simply near the interface notation.

The message set project is represented with the package notation and the stereotype <<ms project>>. The
message set is represented with the stereotype <<msgset>>. Only one message set is permitted in a
message set project. There can be multiple message definition files inside the message set where the
message definitions are stored. The message definition file is represented with the stereotype <<msg def
file>>. Inside each message definition file multiple messages are defined. The messages inside a message
definition file are represented as shown in the diagram with a rectangle and a notation of a message tree
inside the rectangle. The stereotype associated with the message definitions is <<mrm>> for the broker
which may be shown optionally. Only MRM type of messages may be represented in this manner since the
message set is an integral part of the MRM model for the message broker. It is to be noted that messages
are not components since they are templates and do not provide interfaces or call an interfaces.

The diagram on the left
illustrates the details of the
broker schema P2. The ESQL
component P2 provides three
interfaces – Mod1 of type
compute module, Mod2 of
type filter module and Mod3
of type database module. The
diagram shows the delegation
of the interfaces inside the
message flow component P2.
The instance of Compute
Node Mod1 uses the interface
Mod1 provided by the ESQL
component P2. Similarly, the
Mod2 interface is used by the
Filter Node instance Mod2
and the Mod3 interface is

used by the Database Node instance Mod3. It is to be noted that a compute module interface may only
referenced from a Compute Node, a filter module interface can only be referenced from a Filter Node and a
database node module can only be referenced from a Filter Node.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 53 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.4. Message Interaction Diagram

A Message Interaction Diagram (MID) is a simple schematic representation of the messages, message types
and protocols in the entire or parts of a subsystem. The diagram introduces two notations – a single ended
arrow representing asynchronous communication and a two-ended arrow representing a synchronous
communication. The diagram may be used in conjunction with the Queue Manager Architecture Diagram
(QMAD), thus, making it a powerful tool to even illustrate communication with queue managers and
applications. However, the MID should be kept simple and not to represent the architectural complexity of
the subsystem.

An example of a message interaction diagram is shown in the diagram below.

The following is a list of the parameters that can be represented on the arrow showing message flow:
Message Format: XML, MRM (including the message name), SOAP, String, IDOC, etc.
Transport Protocol: MQ, HTTP, X.25, Socket, FTP, TCP, SNA, etc.
Protocol Parameters: Port, Packet Size, Keep Alive, etc.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 54 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.5. Flow Activity Diagram

A Flow Activity Diagram (FAD) represents a sequence trace of a message flow. The artifacts are derived
from UML 2.0 sequence diagram and extended to represent a message flow.

The above diagram shows an Activity Diagram for a
simple message flow the message is picked up by the
message flow from the Q.IN queue and parsed according
to the MRM message format Msg.in. The MQ Input
Node then calls the Transform Msg Compute Module
associated with the Compute Node where the message is
re-parsed and transformed into the Msg.out format as
defined by the XML schema in the XML domain. The
message is then put into the Q.OUT queue. The table
below represents the different stereotypes and the nodes
and modules it is associated with. As a general rule all
nodes inside the message flow are represented as an
expansion region. The stereotype determines the type of
the node or module and the expansion node models the
Input and Output terminals with the label representing the
name of the terminal. The expansion region may be
decomposed into its activities if required.

The loop notation is not defined in UML 2.0
specifications and hence we use the notation similar to the
Flowchart loop notation as demonstrated in the next
section.

Stereotype Node : Module

<<compute>> Compute Node : Compute Module
<<filter>> Filter Node : Filter Module
<<database>> Database Node : Database Module
<<MQ in>> MQ Input Node
<<MQ out>> MQ Output Node
<<MQ reply>> MQ Reply Node
<<publish>> Publication Node
<<MQe in>> MQ Everyplace Input Node
<<MQe out>> MQ Everyplace Output Node
<<SCADA in>> SCADA Input Node
<<SCADA out>> SCADA Output Node
<<HTTP in>> HTTP Input Node
<<HTTP req>> HTTP Request Node
<<HTTP reply>> HTTP Reply Node
<<RT in>> Real Time Node
<<RT opt flow>> Real Time Optimized Flow Node
<<in term>> Input Terminal Node
<<out term>> Output Terminal Node

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 55 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

<<data del>> Data Delete Node : Data Delete Map
<<data insert>> Data Insert Node : Data Insert Map
<<data update>> Data Update Node : Data Update Map
<<extract>> Extract Node : Extract Map
<<mapping>> Mapping Node : Data Map
<<warehouse>> Warehouse Node : Warehouse Map
<<aggr control>> Aggregate Control Node
<<aggr req>> Aggregate Request Node
<<aggr reply>> Aggregate Reply Node
<<check>> Check Node
<<flow order>> Flow Order Node
<<rcd>> Reset Content Descriptor Node
<<route>> Route To Label Node
<<label>> Label Node
<<passthrough>> Passthrough Node
<<trace>> Trace Node
<<throw>> Throw Node
<<try catch>> Try Catch Node

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 56 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.5.1. FAD Branching

The above diagram shows a message flow that accepts a message in the Msg.in format and sends it to the
Compute Module Process Msg. The Compute Module checks whether each of the rows passed in the
message is either of types A in a loop. If the row is of type A the row is parsed into Msg.RowA format, set
the destination of the label to RowA and propagated to the Out terminal of the Compute Node that is wired
to a Route To Label Node. Based on the label information in the destination the message is routed to the
Label Node with label RowA. The Route To Label Node is omitted in the diagram as the Compute Module
loops through the rows and propagates messages in the corresponding format. If the row is not of type A,
then the row is parsed into the Msg.RowB format and in the same way passed on to the Label Node with
label RowB. The Label Nodes RowA and RowB are wired to the MQ Output Nodes Q.RowA and Q.RowB
that put the individual row messages in Q.RowA and Q.RowB queues in the Msg.RowA and Msg.RowB
formats respectively.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 57 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.6. Flow Sequence Diagram

A Flow Sequence Diagram (FSD) represents a sequence trace of a message flow. The artifacts are derived
from UML 2.0 sequence diagram and extended to represent a message flow.

The above diagram shows a very simple flow with three nodes – the MQ Input Node picks up messages in
the format Msg.in from the queue Q.IN, the Compute Node Transform Msg that converts the message
format into an XML with the schema described in Msg.out. After that it is propagated to the MQ Output
Node that puts the message in the queue Q.OUT. The syntax for the messaging between nodes is given
below:

Seq # e Sequence number for the FSD
Out Terminal e The output terminal of the node
In Terminal e The input terminal of the node
Msg Domain e Message Domain for the message (e.g. xml, mrm)
Message e Message definition

For the MQ Input Node the message is being picked up from the queue Q.IN and is propagated to its In
input terminal. So there is no output terminal reference. The same message is propagated from the Out
output terminal of the MQ Input Node to the In input terminal of the Compute Node. Here the message is
absent as the message format remains unaltered. The Compute Node returns a message in the xml domain.
The same message is propagated to the MQ Output Node and gets put to a queue Q.OUT.

The naming convention of the sequence numbers is starting from ‘1’ and incremented progressively from
node to node and the corresponding returns are referred with the same number with an alphabetic character
appended to it. The alphabetic reference for the returns start from ‘a’ and is incremented for the alternative
responses sent. E.g. if the Compute Node throws an exception there would exist a separate return path 2b.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 58 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.6.1. FSD Branching

lo
op

al
t

Q
.IN

 :
M

Q
In

pu
tN

od
e

Pr
oc

es
sM

sg
 :

C
om

pu
te

N
od

e

2:
 O

ut
-In

:

R
ou

te
 :

R
ou

te
To

La
be

lN
od

e

4:

2a
: O

ut
:

1a: Commit

3.
1:

 O
ut

-In
:

m
rm

: M
sg

.R
ow

A

3.
1a

:

Q
.IN

Q
.R

ow
A

1:
 -I

n:
m

rm
: M

sg
.in

Al
l R

ow
sR

ow
A

 :
La

be
lN

od
e

R
ow

B
:

La
be

lN
od

e
Q

R
ow

A
 :

M
Q

O
ut

pu
tN

od
e

3.
1.

1:
 O

ut
-In

:

3.
1.

1a
:

3.
1.

2:
 O

ut
-In

:

3.
1.

2a
:

4:

3.
2:

 O
ut

-In
:

m
rm

: M
sg

.R
ow

A

3.
2a

:

3.
2.

1:
 O

ut
-In

:

3.
2.

1a
:

3.
2.

2:
 O

ut
-In

:

3.
2.

2a
:

Q
.R

ow
B

Q
R

ow
B

:
M

Q
O

ut
pu

tN
od

e

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 59 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

The message flow in the diagram identifies each row of the incoming data in a message containing multiple
rows, parses it in two different formats as a single message per row and puts them in two different queues.

This section illustrates an example for a message flow that accepts a message in the MRM domain and of
type Msg.in and passes it to a Compute Node ProcessMsg that iterates through each row in the message
and propagates to the Out output terminal which is wired to the Route to Label Node Route. Based on the
type of the row data either of type A or type B the message is parsed into either Msg.RowA or Msg.RowB
and the destination list is populated for Label Nodes RowA and RowB respectively. Thus, it has two
alternate paths – one going through the RowA node and QRowA node to the queue Q.RowA and the other
going through the RowB node and QRowB node to the queue Q.RowB.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 60 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

4.7. Message Specification Diagram

A Message Specification Diagram (MSD) lays down a detailed data structure and is independent of the
type of language or parser it is implemented with. It is to provide a schematic diagram of the data structure
and thus gives a visual perception of very complex data types used in enterprise applications with fixed
length, delimited, tagged, grouped formats.

4.7.1. MSD Msg.in

Every message has its own data structure and is represented by a complex type. The Msg.in message is
primarily divided into three parts Headers, Data and Footer delimited by ‘$’.

Headers is a complex type consisting of elements delimited by ‘;’. The first element is a complex type
HeaderA delimited by ‘,’ consisting of the elements HeaderAFldA – a mandatory string of length 10
occurring only once, HeaderAFldB – a mandatory string of length 1 and must have a value of ‘A’
occurring only once, followed by an optional set of fields HeaderAFldReserved up to 50 of data type blob.
The second element in the Headers structure, HeaderB is a fixed length complex type consisting of the

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 61 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

elements HeaderBFldA – a mandatory string of length 10 and HeaderBFldB – a mandatory field of length
10 with values as listed by the list List1. The list consists of ‘Option1 ’ and ‘Option2 ’ indicating that
the only permissible values for field HeaderBFldB is either ‘Option1 ’ or ‘Option2 ’. The third element
in the Headers structure, HeaderReserved is a set of optional fields up to 50 of data type blob.

Data is a mandatory complex type with a fixed length data structure consisting of an integer of length 10
and padding character ‘0’, DataFldA, and a decimal field DataFldB of length 10 and precision 2. The
structure be repeated an infinite number of times.

Footer is a mandatory complex type element delimited by ‘;’ and consists of FooterFldA of type integer
and a length of 10 with padding ‘0’ and FooterFldB of type string.

4.7.2. MSD Msg.group

Typ.group: Msg.group

Typ.Header: Header

FldA <1,1>

$

<1,1>;

FldB <1,1>

<<string>> Len = 10, Pad=<SP>

<<string>>

;

T1: Tag

Typ.GroupA: GroupA

Element <<string>>;

{ T2: Element, Len=4 }
<1,50>

{

}

<1,50>

Typ.Group: GroupB

Element

<LF>

<<string>><LF>

[T3: Element]
<1,50>

<1,50>

:

=

{

}

T1: ‘Header’ :

$

T1: ‘GroupA’ :

T1: ‘GroupB’ :

T2: *

T3: * =

$

The diagram in this section illustrates a tag-delimited message containing group indicators. The message is
of the complex element type Msg.group containing a tag with identifier T1 (for reference purposes in the
MSD) that is delimited by the tag-data separator ‘:’ and each element is separated by the delimiter ‘$’.

The first element in the message is a complex structure that is identified by the instance of the tag type T1
and the tag string Header. The Header structure consists of two mandatory fields delimited by ‘;’. FldA is
a string of length 10 and padding as spaces and FldB is a string.

The second element is a complex element that is identified by the instance of the tag type T1 and tag string
GroupA. The complex type GroupA consists of a set of tag-delimited elements enclosed in a group
identifier ‘{‘ and group terminator ‘}’. The tag type is identified by T2 and is of fixed length of 4. Each
element in the group is delimited by ‘;’ and the minimum number of elements in the group is 1 and the

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 62 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

maximum may be 50. Each of the elements is identified by the anonymous instance of the tag type T2 read
in from the data supplied (the first 4 characters) and the element is parsed into a string data type.

The third element is a complex element that is identified by the instance of the tag type T1 and tag string
GroupB. The complex type GroupB consists of a set of tag-delimited elements enclosed in a group
identifier ‘{‘ and group terminator ‘}’. The tag type is identified by T3 and is delimited by the tag-data
separator ‘=’. Each element in the group is delimited by the line-feed byte x’0A’ and the minimum number
of elements in the group is 1 and the maximum may be 50. Each of the elements is identified by the
anonymous instance of the tag type T3 read in from the data supplied (until the parser encounters the tag-
data separator ‘=’) and the element is parsed into a string data type.

4.7.3. MSD Msg.LengthRef

The fixed length complex structure for the message
illustrated in the diagram, Msg.LengthRef consists of
two mandatory fields – the first an integer field length
of length 10 and the second a blob type field blob of
length equal to the value in the length field. Thus the
length of the blob field is determined as runtime from
the value of the length and should be indicated by the
stereotype <<refers>>.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 63 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

5. Legend

Queue

Queue Manager & Node Application

Queue Operation

<<put>> <<get>>

<<pub>> <<sub>>

Point-to-Point Messaging

Publish/Subscribe Messaging

Channel

CLT.TO.QM.name

TO.QM.name

Client-Server

Sender-Receiver

Server-Requester

TO.QM.name

Requester-Sender

Server-Receiver

TO.QM.name

TO.QM.name

TO.QM.name
Cluster Sender

TO.QM.repos

Cluster Receiver

Cluster

Trigger

Q.Trig

Q.Trig

Q.Trig

Daemon

Listener Trigger
Monitor

Channel
Initiator

Exit Event

Server Binding

Backout

Q.Local Q.Backout

Time

Expiry

C

Clustered
Queue

R

Remote
Queue

S

Shared
Queue

<<ref>>

Local
Queue

Monitor

A

Alias
Queue

C

Remote
Clustered

Queue

First

Every

Depth:n

Backout:n

Port:
1414

TM:
n CI Mon:

n

 : n : n

M

Model
Queue

TD

Q.*

PD

Q.*

<<create>>

<<create>>Transmit
Queue

X

<<node>> hostname

<<qmgr>> QM.name

R

<<node>> hostname

<<app>> name

<<thread>> name

<<app>> name

<<app>> name

<<app>> name

<<app>> name <<qmgr>> QM.name

<<app>> name <<qmgr>> QM.name

<<qmgr>> QM.A <<qmgr>> QM.B

<<qmgr>> QM.A <<qmgr>> QM.B

<<qmgr>> QM.A <<qmgr>> QM.B

<<qmgr>> QM.A <<qmgr>> QM.B

<<qmgr>> QM.A <<qmgr>> QM.reposTO.QM.name
R

<<clus>> CLUS.name

<<regsub>> <<deregsub>>

<<delpub>> <<requpd>>

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 64 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

<<node>> host1

Z/OS Notation and Queue Sharing Group

DB

DBQSG

<<cics>><<chinit>>

<<trn>> TR1

<<addr sp>>

<<sysplex>> SP1

<<qmgr>> QM1

<<trn>> TR2

<<node>> host2

<<cf>> CF1

<<qsg>> QSG1

<<cfst>> CFST.ADMIN

<<cfst>> CFST.QSG1
S

Q.1

<<xa-coord>>

<<node>> hoat1

HA Failover

<<rg>> RG.QM.name
Failover

FS

Mount points

Mounting

Failover = [<<A-P>>,<< A-A>>]
Mounting = (<<AFS>>, <<NFS>>)

<<xa>>

XA Coordination

<<qmgr>> QM.name

<<node>> host2

<<qmgr>> QM.name
DB

Data

SSL

Protocol Key Store

Security

OAM

Object

Authority Class

Group

Principal

<<type>> name

<<auth>> class

<<grp>> group

<<usr>> user

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 65 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

Broker

DB

DBCM

<<cmgr>>

<<broker>> BK.name

<<egrp>> EG.name

<<mflow>> MF.name

DB

DBBK

<<bkc>> BKC.name

<<broker>> BK.1

<<broker>> BK.2

DB

DBBK1

DB

DBBK2

Message Specification

Typ: elem

n: ‘delim’

<nmin,nmax><<type>> attributes listvalue

Complex Type
Element

Delimiter

Data Type Element OccuranceList Data Type

Value
Element

Hierarchy in
Message Tree

DB

Data

CAPP elem

data

Data Element

CAPP ref msg

<nmin,nmax>

CAPP Element

CAPP Reference
Message

CAPP Staging

 n
Condition

CAPP Condition

Stage n

<<refers>> <<correlation>>

n: ‘delim’

n: ‘tag’

n: ‘tag’ n: ‘grp_st’ n: ‘grp_end’

Group
Start

Tag Tag
Seperator

Group
End

Pub/Sub

<<topic>> topic

Subscription point

Event Publication

Retained Publication
Synchronous

communication
Asynchronous
communication

Message Interaction

Domain/Transport Domain/Transport

DB

DBUNS

<<unsvr>>

Broker Parent-
Child Relation

Broker
Association
Relation

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 66 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

<Type>
<Attribute Notation>= <Attribute Value>

,

<Seq #> :
<Out Terminal> - <In Terminal> : <Msg Domain> : <Message>

<Type> :
<Parm>

,

:
<Event>

,

:

<<Exit Type>>

,

<Exit Name>

,

<Access Type> (
<Parm>

,
)

= <Value>

<Condition> ?
<True Statement>

:
<False Statement>

Syntax – Queue Access

Syntax – Trigger, Backout, Daemon

Syntax – Exit

Syntax – Exit

Syntax – Element Attribute

Syntax – Message in Flow Sequence Diagram

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 67 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

6. Conclusion

This paper is an attempt to unify and standardize notation for messaging and workflow systems. Our first
release is an extension from the Websphere MQ Network Design Notation paper by David Grainger
released as a support pack for WMQ. Our next steps include creating an UML profile for the notations and
IDE tools that would translate the models into deployment scripts and message flows. While further
standardization and UML profile and IDE tooling development are on its way, we believe the release of
this paper along with the Microsoft Visio 2003 version of the stencil would immensely assist messaging
experts to move ahead in designing and architecting solutions using these standard set of notations.

 Using UML in WebSphere Business Integration Message Broker Solution Architecture

Arunava Majumdar Page 68 of 68 Guy Hochstetler
arunava@us.ibm.com guyh@us.ibm.com

7. Bibliography:

1. SC34-6059-03 – WebSphere MQ Intercommunication
2. GC34-6057-01 – WebSphere MQ Messages
3. SC34-6055-03 – WebSphere MQ Script (MQSC) Command Reference
4. SC34-6079-01 – WebSphere MQ Security
5. SC34-6068-01 – WebSphere MQ System Administration Guide
6. SC34-6061-02 – WebSphere MQ Queue Managers Clusters
7. WMQ Support pack md08 – WebSphere MQ Network Design Notation
8. OMG 03-08-02 – UML 2.0 Superstructure specification
9. The Unified Modeling Language Reference Manual by James Rambaugh, Ivar Jacobson and

Grady Booch

