MDOB: Exit Demonstrator
User Guide
Version 1.0

April 2003

Morag Hughson

WebSphere MQ Development
MP211,

IBM UK Laboratories Ltd.
Hursley

Winchester

Hants, SO21 2JN

United Kingdom

hughson@uk.ibm.com

Exit Demonstrator

Take Note!

Before using this User's Guide and the product it supports, be sure to read the general information
under "Notices".

First Edition, April 2003

This edition applies to Version 1.0 of Exit Demonstrator and to all subsequent releases and
modifications until otherwise indicated in new editions.

(c) Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Exit Demonstrator

Notices

The following paragraph does not apply in any country where such provisions are inconsistent with
local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionally equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product. Evaluation and verification of operation in conjunction with other products, except those
expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is
distributed AS IS. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

WebSphere MQ

IBM

The following terms are trademarks of other Microsoft Corporation in the United States and/or other
countries:

Windows NT
Windows 2000

Exit Demonstrator

Contents
Notices ii
Preface v
Chapter 1. Exit Demonstrator ... 1
OVEIVIEW 1
Installation | 1
Chapter 2. Getting Started 2
Setting up the exits 2
Chammel Exits 2
Channel Auto-Definition Exit .. 2
Cluster Workload Exit 2
Using the GUI | 3
Dialog Buttons 3
Chapter 3. Channel Exit Displays .~~~ = 4
Channel Exit Interface Dialog 4
Example Demonstrations 5
Demonstrating the Security Exit .. 5
Demonstrating Send, Receive and Message Exits 5
Demonstrating the Message Retry Exit .. 6
Other things to look at 6
Chapter 4. Channel Auto-Definition Exit Displays g
Channel Auto-Definition Exit Interface Dialog 8
Example Demonstration 9
Demonstrating the Channel Auto-Definition Exit 9
Chapter 5. Cluster Workload Exit Displays 10
Cluster Workload Exit Interface Dialog 10
Example Demonstration 11
Demonstrating the Cluster Workload Exit L. 11
Appendix A: Current Restrictions 13
Appendix B: Future Additions 14
Appendix C: Bibliography 15

Exit Demonstrator

Preface

Teaching the concepts of Exits and how to program exits can be difficult without hands on
programming, something that is clearly not available with a speaker - audience set-up. | created this
demo to try to show the programming concepts of the exits in WebSphere MQ and to make talking
about exit interfaces more interesting for the audience.

This Support Pac can be used for demonstration purposes or as a teaching aid. It should not be used
in a production system since every exit call involves human interaction.

Exit Demonstrator

Chapter 1. Exit Demonstrator

This document describes the functions available in the Support Pac.

Overview

The Exit Demonstrator can be used to show the programming interfaces of various exits available in
WebSphere MQ. This allows the user to interact with the exit and therefore with various functions in
WebSphere MQ, e.g. the channels, without coding the exit from scratch. This could for example, allow
the user to see what can be done using an exit, and to try out some ideas before actually writing the
exit.

1. Channel exits.
All the different channel exits can be shown through the Exit Demonstrator since the programming
interface for all the channel exits, Security, Send, Receive, Message and Message Retry, are the
same.

2. Channel Auto-definition exit.
The Channel Auto-definition exit can be shown through the Exit Demonstrator. It’s interface is very
similar to that of the channel exits.

3. Cluster Workload exit.
The Cluster Workload exit and all the data that is passed to it can be shown through the Exit
Demonstrator.

Installation

This Support Pac provides a GUI and an exit DLL which provides entry points for each of the above
exit types.

Create a directory, say EXITDEMO, and copy the following files into it :-
= exitdemo.exe - The GUI program

= demoexit.dll - The exit DLL from the platform directory (currently only available for
Windows)

You can use the exit DLL from this directory by either changing the exit path of your queue manager
to the directory you have created by setting ExitsDefaultPath in the registry or by using the full
path name in the WebSphere MQ definitions (see ‘Setting up the exits’ on page 2 for examples); or
you can copy the exit DLL into your current exits path.

Once the GUI program is in the path it can be run just by typing ‘EXITDEMO’ on the command line.

Exit Demonstrator

Chapter 2. Getting Started

This chapter describes the steps required to run the Exit Demonstrator.

Setting up the exits

The exit DLL has several entry points, one for each exit type. The exit is available for Windows
platforms. Future additions to this SupportPac will provide the exit for other platforms. Currently the
exit and the GUI must run on the same machine.

Entry Points
Channel Exits ChlExit
Channel Auto-Definition Exit ChadExit
Cluster Workload Exit ClusExit

Channel Exits

To use the channel exit, define your channels as in the following examples.

Sender Channel using a Message Exit and Full Path

DEF CHL (TO.QM2) CHLTYPE (SDR) TRPTYPE (TCP) CONNAME (QM2.MACH) XMITOQ (QM2)
MSGEXIT (*C:\EXITDEMO\DEMOEXIT (ChlExit) ")

Receiver Channel using a Security Exit and Default Path

DEF CHL (TO.QM4) CHLTYPE (RCVR) TRPTYPE (TCP) SCYEXIT (‘DEMOEXIT (ChlExit)"’)

Channel Auto-Definition Exit

To use the channel auto-definition exit, alter your queue manager object as follows.

ALT QMGR CHADEXIT (‘DEMOEXIT (ChadExit)’) CHAD (ENABLED)

Cluster Workload Exit

To use the cluster workload exit, alter your queue manager object as follows. Run the cluster
workload exit in SAFE mode. This is the default. See WebSphere MQ System Administration Guide
(SC34-6068) for details on setting this property.

ALT QMGR CLWLEXIT (‘DEMOEXIT (ClusExit)’)

Using the GUI

To run the Graphical display
program type EXITDEMO on
the command line. This will
bring up a very simple window
as shown.

The GUI will generate dialogs to
display the exit interfaces as the
exits are called. All the dialogs
are different to reflect the
differences in the interfaces for
each of the exit types. There is
one common point in all the
dialogs and that is the buttons
found on the bottom of each
dialog.

Dialog Buttons

]]Fg Exit Demo

Ei

e Help

Listening on port [2000]

Exit Demonstrator

=10l x|

Apply

Cancel | ‘

Pressing the OK button will return the data changed in the dialog back to the exit so that processing
can continue. The dialog window will also be closed.

Pressing the Alter button will return the data changed in the dialog back to the exit so that processing
can continue. The dialog window will remain and be reused by the same exit. When running several
channel exits on the same channel, the dialog will be reused by all those exits since the interface to

channels exits is the same and can therefore be shown using the same dialog.

Pressing the Cancel button will close the dialog without sending the data changed in the dialog back

to the exit.

Exit Demonstrator

Chapter 3. Channel Exit Displays

This chapter describes the displays which show the channel exit programming interface.

Channel Exit Interface Dialog

When the channel calls the exit, and the GUI is running, the following dialog will be shown. This
dialog displays in a graphical format the programming interface to the channel exit, allowing the user
to interact with the exit, and therefore with the channel. The fields are labelled with descriptive text
rather than the actual field names from the MQCXP structure, but are shown in the order they appear
in the structure and should be easy to map to the various structures as required.

Channel Exit Parameters x|

—Channel Exit Parameter Block [MQCXP]

Type of Exit

Reason for invoking exit
Hesponse from exit
Secondary exit
Feedback code
Maximum Segment
Exit user area

Exit data

Message retry
Message retrny reason
Length of header info
Partner name
Formats + Protocols

Exit number

MQXT_CHANNEL_SEC_EXIT

MQXR_INIT_SEC

MQXCC_DK

MOXHZ2_USE_AGENT_BUFFER

Ll

32738

FO1B6B0100000000000000000000000OD

Count o Interval |0

[0

0

CHLQM1

7 Capability Flags [MQCF_DIST_LISTS
1 Exit space]

Channel Definition

View Channel Definition

Data Length 0 View Header Information

—Agent Buffer
Length
IBHEE

- Exit Buffer
Length
0

Ok Apply Cancel

Exit Demonstrator

Example Demonstrations

This section provides a few examples of what you might want to show with the Exit Demonstrator
based on what | have used when presenting this as a demo.

Demonstrating the Security Exit

This example uses a sender channel and a receiver channel both defined with a security exit (see
‘Setting up the exits’ on page 2 for example definitions).

1.

Both ends of the channel will be called with ‘Reason for invoking exit’ set to MQXR_INIT. Press
the ‘OK’ or ‘Apply’ button (see ‘Dialog Buttons’ on page 3 for details about the difference between
these buttons).

Next the receiver end of the channel will be called with MQXR_INIT_SEC since responding
channels are given the first opportunity to initialise the security on the channel.

Security exit messages are free format, they can be anything that the Security exit understands,
the channel simply delivers the data to the other end of the channel and to the other Security exit.
So in the ‘Agent Buffer’ field on the dialog you can type a message to send to the other exit, for
example, “Who are you?”. Then select an appropriate ‘Response from exit’ by using the pull-down
list, for example MQXCC_SEND_SEC_MSG.

The message you typed in the ‘Agent Buffer’ will be displayed in the dialog for the other end of the
channel when it is called with MQXR_SEC_MSG.

You can send messages back and forth between the pair of security exits until you are happy that
you have identified the caller and allow the channel to continue by selecting a ‘Response from
exit’ of MQXCC_OK, or if you are not happy you can close the channel by selecting a ‘Response
from exit’ of MQXCC_CLOSE_CHANNEL.

Demonstrating Send, Receive and Message Exits

This example uses a sender channel and a receiver channel both defined with a send, receive and
message exit (see ‘Setting up the exits’ on page 2 for example definitions). A message is MQPUT
destined for a remote target queue to be delivered by this channel.

1.

Both ends of the channel will be called with MQXR_INIT for the message, send and receive exit.
As before press the ‘OK’ or ‘Apply’ button. You can see which exit is being called by looking in the
‘Type of Exit’ field and examining the MQXT _* constant shown there.

The sender channel’s message exit will be called with MQXR_MSG. Note that the ‘Length of
header info’ field contains a value. This is provided to allow an exit to skip over the header
information and find the message data. This message data is shown in the ‘Agent Buffer’ field. If
you wish to view the header information, press the ‘View Header Information’ button and this will
bring up another dialog with tabs to show the ‘Transmission Header’ information and the ‘MQMD".

The sender channel's send exit will be called with MQXR_XMIT. Now the information shown in
the ‘Agent Buffer field is not readable text. This is because there are WebSphere MQ headers
here and we are shown the data that is about to be sent down the wire.

Exit Demonstrator

4. The receiver channel’'s receive exit will be called with MQXR_XMIT with the buffer of data we
have just seen going through the send exit on the sender side. We are shown the data that has
just been received off the wire.

5. The receiver channel's message exit will be called with our message data and we can look at
similar information as we saw on the sender channel. We are called just before the message is
put to the target queue, so we could, for example, change it's destination.

6. We have only sent one message down the channel, so when it discovers that there are no more
messages to send it will end the batch. We will see the sender channel’s send exit called again
with MQXR_XMIT with a much shorted length of data. Again with is internal WebSphere MQ data
and is not readable text and we are being show the data that is about to be sent down the wire.

7. The receiver channel’s receive exit will be called with this internal buffer and then you will see the
receiver channel’s send exit be called with another internal buffer and then the sender channel’s
receive exit called with this internal buffer. This illustrates that receive exits are used on sender
channels and send exits are used on receiver channels. Although your messages only flow in one
direction, data will flow in both directions.

Demonstrating the Message Retry Exit

This example uses a sender channel and a receiver channel where the receiver channel is defined
with a message retry exit (see ‘Setting up the exits’ on page 2 for example definitions). A message is
MQPUT destined for a remote target queue to be delivered by this channel, but the remote target
queue is full.

1. The Message Retry exit will be called with MQXR_INIT. As before press the ‘OK’ or ‘Apply’ button.

2. As with the message exit, the ‘Length of header info’ field will be filled in, your message data can
be seen in the ‘Agent Buffer’ field and if you press the ‘View Header Information’ button you can
see the ‘Transmission Header’ and the ‘MQMD’. You can change this information to redirect the
message to a different queue.

There are other interesting pieces of information to look at with a Message Retry Exit which might
help you to decide what to do with this message.

* The ‘Message retry reason’ field contains the MQRC reason code from the channel’s MQPUT to
the target queue. The display also provides a text description of the MQRC.

* The ‘Message retry count’ field contains the number of retry attempts the channel has made with
this message.

Other things to look at

The above examples demonstrate particular points about each channel exit type. With all of the
above exit types you can also look at the channel definition by clicking on the ‘View Channel
Definition’ button. This brings up a separate dialog to show the channel definition.

Once the channel has connected to it's partner the ‘Partner name’ field will contain the name of the
partner queue manager.

Exit Demonstrator

There are a variety of ‘Response from exit’ values. They can be selected from the pull down list. The
uses of the various response values are documented in “WebSphere MQ Intercommunication
(SC34-6059)".

Exit Demonstrator

Chapter 4. Channel Auto-Definition Exit Displays

This chapter describes the displays which show the channel auto-definition exit programming
interface.

Channel Auto-Definition Exit Interface Dialog

When the channel auto-definion exit is called, and the GUI is running, the following dialog will be
shown. This dialog displays in a graphical format the programming interface to the channel
auto-definition exit, allowing the user to interact with the exit, and therefore with the definition of the
channel. The fields are labelled with descriptive text rather than the actual field names from the
MQCXP structure, but are shown in the order they appear in the structure and should be easy to map
to the various structures as required.

Channel Exit Parameters x|

—Channel Exit Parameter Block [MQCXP]

Type of Exit MQXT CHANNEL AUTO DEF EXIT
Reason for invoking exit |MQxXB_AUTO_ RECEIVER
Response from exit MQXCC_OK

Secondary exit
Feedback code

Ll

Maximum Segment 0

Exit user area FO1BBFO100000000000000000000000D
Exitdata == |reccesecsssscscssscssssseses

Message retry Count 0 Intenval |0
Message retry reason [0]

Length of header info 0

Partner NAME = |oceeiiiieiiiiiiieiceiiesiencesrnsnnensns

Formats + Protocols Fi Capahility Flags |MOCF_DIST _LISTS
Exit number 1 Exit space 0
Channel Definition ¥iew Channel Definition
Data Length View Header Information
—Agent Buffer
Length

)

— Exit Buffer

Length

0OK Apply Cancel

Exit Demonstrator

Note that the dialog used is exactly the same as that used for the channel exits, but the buffer fields at
the bottom are greyed out because they are not relevant for this type of exit.

Example Demonstration

This section provides an example of what you might want to show with the Exit Demonstrator based
on what | have used when presenting this as a demo.

Demonstrating the Channel Auto-Definition Exit

This example uses a sender channel which has no partner receiver channel defined. The receiving
end queue manager has the auto-definition exit specified and enabled (see ‘Setting up the exits’ on
page 2 for example definitions).

3. The channel auto-definition exit will be called with ‘Reason for invoking exit’ set to MQXR_INIT.
Press the ‘OK’ or ‘Apply’ button (see ‘Dialog Buttons’ on page 3 for details about the difference
between these buttons).

4. Next the channel auto-definition exit will be called with the ‘Reason for invoking exit’ field set to a
MQXT_* constant which shows the channel type being automatically defined. In this example that
is MQXT_AUTO_RECEIVER.

5. Now you can choose to either

a. Disallow the automatic definition of this channel by selecting a response of
MQXCC_SUPPRESS_FUNCTION from the ‘Response from exit’ pull down list.

b. Allow the automatic definition of this channel and make changes to the channel definition by
pressing the ‘View Channel Definition’ button and editing the channel definition in the dialog
presented to you.

Exit Demonstrator

Chapter 5. Cluster Workload Exit Displays

This chapter describes the displays which show the cluster workload exit programming interface.

Cluster Workload Exit Interface Dialog

When the cluster workload exit is called, and the GUI is running, the following dialog will be shown.
This dialog displays in a graphical format the programming interface to the cluster workload exit,
allowing the user to interact with the exit, and therefore with the destination chosen for the message.
The fields are labelled with descriptive text rather than the actual field names from the MQWXP
structure, but are shown in the order they appear in the structure and should be easy to map to the
various structures as required.

Cluster Workload Exit Parameters x|

—Cluster Yorkload Exit Parameter Block [MOYWXP)

Type of Exit MQXT CLUSTER WORKLOAD EXIT
Reason for invoking exit [MOXE_CLWL_OPEN
Response from exit MQXCC DK j
Secondary exit MQOXRZ_DYNAMIC_CACHE j
Feedback code j
Exit user area 401B0601000000000000000000000000
Exit data
Message Desc pointer View Message Descriptor |
Message Buffer Pointer
Buffer 0
Length

Message Iu
Length

Queue Name al
Local queue manager QM1
Destination Count 3
Destination Chogen 1
Destination Array Yiew Destination Array
Queue Array pointer Yiew Queue Array
Cache Context 8023904
Cache Type MQCLCT DY¥NAMIC
Ok Apply Cancel

10

Exit Demonstrator

Example Demonstration

This section provides an example of what you might want to show with the Exit Demonstrator based
on what | have used when presenting this as a demo.

Demonstrating the Cluster Workload Exit

This example uses four queue managers in a cluster where the queue manager that is connected to,
to do the MQPUT to a cluster queue has the cluster workload exit specified (see ‘Setting up the exits’
on page 2 for example definitions). Each queue manager in the cluster hosts an instance of a cluster
queue, including the local one. This can help to demonstrate how you can use the exit to override the
default behaviour of putting to a local queue if there is one.

When the queue manager is first started after altering the queue manager object to specify the exit
name, if the GUI is running, it will show the exit being called for MQXR_INIT and also perhaps some
other reasons to do with moving repository messages. Press the ‘OK’ or ‘Apply’ button on these (see
‘Dialog Buttons’ on page 3 for details about the difference between these buttons).

When a cluster queue is opened with MQOO_BIND_ON_OPEN, or a message is MQPUT if the
cluster queue was opened with MQOO_BIND_NOT_FIXED, then the cluster workload exit is called.
The cluster workload exit doesn’t provide too many things that can be changed, the usual response
fields and the ‘Destination Chosen’ field. Most of the other thing you can see using the GUI allow you
to make a decision about what number to put into that field. So we will look at what the exit shows
you.

The ‘Reason for invoking exit’ will show for example that we used MQOO_BIND _ON_OPEN, by
giving MQXR_CLWL_OPEN.

We can look at the destination array, in other words, the set of cluster queue managers that host this
cluster queue, by pressing the ‘View Destination Array’ button. This brings up a dialog with several
tabs.

The ‘Destination Record’ tab shows the fields from an MQWDR structure as shown below. This allows
you to check for attributes of the queue manager and the channel to that queue manager. For

Destination Array x|

Destination Record | Cluster Record | Channel Def ¥1 | Channel Def ¥2 ¥3|

Queue manager flags MOQMF_ AVAILABLE
MQQMF_CLUSSDR_AUTO_DEFINED

Queue manager M4 2003-01-04 19.43.18

Queue manager name am4
Cluster record offset [see separate tab]
Channel State IMQCHS_INACTWE

Channel definition offset [see separate tab]

1"

Exit Demonstrator

example you can see whether the queue manager has been suspended from the cluster, whether
there is a manually defined channel to that queue manager, whether the queue manager is also a full
repository and what the status of the channel to that queue manager is. The ‘Cluster Record’ tab
shows which cluster the queue manager is in, and the ‘Channel Def tabs allow you to inspect the
channel definition to this queue manager. You can press the ‘Next’ and ‘Prev’ buttons to view all the
queue managers in the array.

We can look at the queue array, in other words, the set of cluster queues, by pressing the ‘View
Queue Array’ button. This brings up a dialog with several tabs.

The ‘Queue Record’ tab shows the fields from an MQWQR structure as shown below. This allows you

x

Queue Record | Cluster Record |

Queue flags

Queue name al

Queue manager QM4_2003-01-04_19.43.18
Cluster record offset [see separate tab]

Queue Type MQCQT _LOCAL_Q

Queue Description

Default Binding MQBND_BIND_ON_OPEN
Def message MQPER_NOT_PERSISTENT

Default message priority |0
Put operations allowed? |MQQA_PUT_ALLOWED

MNext Prew Close

to check attributes of each instance of the queue. For example, whether the queue has been disabled
for put, or whether it is hosted locally. The ‘Cluster Record’ tab shows which cluster the queue is in.
You can press the ‘Next’and ‘Prev’ buttons to view all the queues in the array.

12

Exit Demonstrator

Appendix A: Current Restrictions

This appendix details the main restrictions on use of the Exit Demonstrator and also acts as
something of a to-do list for the author.

e Exit Buffer is not used on channel exits.

* Only the first cluster is shown in the cluster workload exit if a Cluster Queue Manager or Cluster
Queue is in more than one cluster.

¢ Exit and GUI must run on the same machine.

13

Exit Demonstrator

Appendix B: Future Additions

This appendix details some of the additions that are likely to be made to future versions of this
SupportPac.

* API Exit support

» Exit provided for other platforms as well as Windows

14

Exit Demonstrator

Appendix C: Bibliography
This appendix details relevant manuals to reference for more information.

* WebSphere MQ Intercommunication (SC34-6059)
For information on channel exits and the channel auto-definition exit
* WebSphere MQ Queue Manager Clusters (SC34-6061)
For information on the cluster workload exit
* WebSphere MQ Application Programming Guide (SC34-6064)
For information on using and writing API exits
* WebSphere MQ Application Programming Reference (SC34-6062)
For information on the MQI calls
* WebSphere MQ System Administration Guide (SC34-6068)
For information on configuring the API exit, and reference material on the various structures used.
Also for information on WebSphere MQ configuration information.

15

	Front Cover
	Contents
	Chapter 1. Exit Demonstrator
	Chapter 2. Getting Started
	Chapter 3. Channel Exit Displays
	Chapter 4. Channel Auto-Definition Exit Displays
	Chapter 5. Cluster Workload Exit Displays
	Appendices

