
WebSphere MQ

© IBM Corporation 2013

Keeping Channels Up and Running

Morag Hughson

hughson@uk.ibm.com

V2

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Preface

This document is provided by IBM as recommendations based on IBM's expert knowledge

of WebSphere MQ and MQSeries and experience with customers using these products and

their environments and goals. Acceptance and implementation of these suggestions is at

the reader's discretion. You may hear different opinions from other experts. There are

several areas within WebSphere MQ that are subject to varying opinions and may vary

according to the specific environment in which WebSphere MQ is implemented.

After you, the reader, have become familiar with WebSphere MQ you will be able to

determine which suggestions you want to follow or you may arrive at opinions that are

appropriate for your specific environment.

This document is intended for use by Systems Administrators and any others that will

support WebSphere MQ networks. Hopefully it will provide the following benefits:

– Give consistency to administration processes

– Provide maximum availability of applications

– Help in avoiding common mistakes that beginners make

– Assist personnel in the early stages of their becoming WebSphere MQ experts

– In general assure a smooth start and success for WebSphere MQ projects

Most of the information presented here relates to versions of both MQSeries and

WebSphere MQ. Check the documentation for your particular version to ensure that the

parameters are supported.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Channel Architecture

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Channel Architecture - Notes

This diagram represents the WebSphere MQ channel architecture. We are going

to use this diagram throughout the presentation to illustrate the different channel

topics.

The main part of the diagram shows that applications can put messages (either

via remote queue definitions or by explicit addressing) which will land on a

transmission queue to be delivered to the remote system. QM1 is our local

system in this diagram and QM2 is our remote system. The sending MCA

servicing our transmission queue gets the messages off the queue and sends

them to the remote system via, the communications protocol specified on the

channel definition, where they are received by the receiving MCA and placed on

the appropriate target application queue. This pair of MCAs is known as the

channel.

That's all very well, but what can go wrong?

© IBM Corporation 2013

WebSphere MQ

QMQMQM

API CallAPI CallAPI Call
Client MCA

Channel

Network

Client Application

Application
Queues

API Call

API Response

Client Architecture

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Client Architecture - Notes

This diagram represents the WebSphere MQ client channel architecture.

We are going to use this diagram throughout the presentation to illustrate

the different client channel topics.

The main part of the diagram shows that a client application can make

API calls, for example to put or get messages from queues on the queue

manager. These API calls are packaged up and flowed across the client

channel to the queue manager where the server connection MCA acts as

a proxy for the client application and issued the API call to the queue

manager.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

What can go wrong?

Channel can end – remote queue manager ending

Message Delivery not possible – Queue invalid or full

Network failure

Performance

How Monitoring can help

Channel

Retry
Message

Retry

Dead Letter

Queue

Monitoring Tool

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

What can go wrong? - Notes

This foil acts rather like an agenda of what we are going to discuss today. We will look
briefly at several different things that can go wrong and then we will go through each one in
more detail on later foils.
The channel can end. For example, because of the remote Queue Manager terminating. To
recover from this type of problem, you can make use of the channel initiator to retry the
channels.
Message delivery might not be possible. This might be because of an application error, for
example the specified queue is invalid, or because of a system problem, for example the
queue is full. To continue after this type of problem, you can make use of the Dead-Letter
Queue or you can use the Message Retry facility.
You might suffer a network failure, and depending on the type of failure, there are a variety
of ways for your channel to detect this and recover.
Performance might be an issue, so we will also look at some performance considerations.

There are quite a number of fields in channel status and WebSphere MQ V6 adds several
new channel monitoring fields. These are helpful for monitoring the health of your channels,
and also for problem determination if things go wrong. A number of Channel Monitoring
parameters collect data that is expensive to collect on some platforms, mainly due to taking
extra timestamps, therefore it must be turned on. Channel Monitoring can be turned on for
all channels by setting a queue manager parameter, MONCHL. It can be turned off for
specific channels to override the queue manager setting or turned on for specific channels if
it not set at a queue manager level using the channel parameter also called MONCHL. We
will look at a selection of the relevant fields available to you in channel status as we go
through this presentation.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Monitoring Tool

Channel Retry

DEFINE CHANNEL...

SHORTRTY(10) SHORTTMR(60)

LONGRTY(999 999 999) LONGTMR(1200)

STATUS(RUNNING)

LONGRTS

SHORTRTS
Channel

Initiator

Channel

Retry
Channel

Initiator

MUST be

running

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Channel Retry - Notes

The 'catchall' mechanism for ensuring that channels are operating is for
WebSphere MQ to restart the channel after a failure. This is known as channel
retry. Channel retry can be used on sending types of channels, that is senders,
servers or cluster-senders.
All sender channels should be configured with suitable retry values and the
Channel Initiator must be running in order to use the retry mechanism.
Retry values should ensure sufficient time for network problems to be resolved, so
for example, retrying for 2 minutes is unlikely to be sufficient! There are two
different sets of retry values available for your use, a short retry and a long retry.
The short retry values tend to be used for a small number of frequent retries, in
other words, to attempt to reconnect to the partner after a temporary blip of some
sort. The long retry values tend to be used for a larger number of less frequent
retries, in other words, if the reason for the channel ending was a problem that is
not simply a small blip.
Be aware that the numbers specified in the long retry values must be enough to
cover any outage because if the retry sequence is completed without a successful
transfer of messages the channel will require manual intervention to restart it.
The channel will have status RETRYING while it is waiting for the retry interval to
pass, and the channel status fields SHORTRTS and LONGRTS will show you
how many short or long retry attempts are remaining.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Dead-letter queue

Storage area for messages which are, for example :-
Wrongly addressed

Unauthorised

Too large

Dead Letter

Queue

Dead Letter

Queue

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Dead-letter queue – Notes

It is strongly recommended that Queue Managers have a Dead-Letter Queue. Without a
Dead-Letter Queue a simple programming error in the application, by specifying an invalid
Queue Name, can be sufficient to bring the Channel down. If several different applications
are utilising the same channel, this is clearly unacceptable.
Note that the DLQ might be used at either end of the channel. At the sending end, the DLQ
will be used if a particular message is too large to be sent down the channel. This occurs if
the message size exceeds the size of message defined for the channel even though it can
be accommodated by the transmission queue. At the receiving end, the DLQ will be used if
the message cannot be placed (PUT) onto the target queue. This might occur for any
number of reasons, some of which may be transitory. The message retry parameters
(defined for a channel) and the Message Retry exit are designed to handle these cases. We
will look at Message Retry in a moment.
It should be noted that the use of the DLQ - at either side of a channel - may affect the order
of delivery of messages. If there is some problem with a message which is a member of
some sequence then this message will be DLQ'd and the message sequence will be
interrupted.
Some 'lazy' applications require messages to always be delivered in the same sequence as
they were sent. These applications require that there is no DLQ. The consequence of not
having a DLQ is that a 'bad' message on a channel will terminate the channel and therefore
prevent any application from receiving their messages. For this reason it is strongly
recommended that installations do have a DLQ and that applications are modified to cope
with messages to occasionally be delivered out of sequence. This modification is not difficult
and there are various techniques which can be employed such as using the Correlation Id
as a counter, having a secondary queue or using message grouping.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Monitoring Tool

Message Retry

STATUS(PAUSED)

SUBSTATE(MREXIT)

EXITTIME

DEFINE CHANNEL...

MRRTY(10) MRTMR(1000)

MREXIT(msg-retry-exit-name) MRDATA()

Exit

Message

Retry

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Message Retry – Notes

Consider using Message Retry, particularly if you are running without a Dead-

Letter Queue.

The message retry mechanism can be used with or without an exit. Without an

exit the receiving MCA simply retries the failing put on each interval. The values

for the time between retries and the number of retries are taken from the channel

definition. If used with an exit, the exit is passed these numbers but can change

them to be any value. Using an exit with the message retry mechanism allows a

more intelligent processing of the failure. You could, for example, redirect

messages if they can not be put to target queue.

The use of an exit allows the retry decision to be made on a per message basis.

Messsage Retry is supported on z/OS from V6 onwards.

The receiving end of the channel with have STATUS(PAUSED) while it is waiting

for the retry interval to pass. If you are using an exit as part of this processing, you

will see SUBSTATE(MREXIT) while the exit is processing and EXITTIME will

record the time spent in exits for a message which will include message retry

exits.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Disconnect Interval

Combine with triggering

Monitoring Tool

DEFINE CHANNEL... DISCINT(6000)

No
lon
ge
r

us
ing

Sy
ste
m

Re
so
urc
es

STATUS(RUNNING)

SUBSTATE(SEND)

STATUS(RUNNING)

SUBSTATE(MQGET)

LSTMSGDA/TI

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Disconnect Interval – Notes

The Disconnect Interval or DISCINT is the channel attribute on a sending type channel used

to control how long a channel should remain running even though there are no messages to

send.

– The value you set depends on several criteria.

– How many channels you have and how critical system resource is

– How reliable your network is

– How expensive the communications session is

The ideal value should be longer than the average time between messages to that partner.

This means that the channel will disconnect when there is no work to be delivered to that

partner.

You should combine the use of a disconnect interval of your channel with channel triggering

to restart the channel. This way you channel is started automatically when there is work for

it to do, and ended automatically when there is no more work for it to do.

The channel will show STATUS(RUNNING) while it is running (and therefore using

resources on the system). It will show SUBSTATE(MQGET) when it is waiting for the

disconnect interval to pass since it is also waiting for any new work to arrive on the

transmission queue to be sent. You can also look at the LSTMSGDA and LSTMSGTI fields

to see exactly when the last message was sent by the sending MCA.

© IBM Corporation 2013

WebSphere MQ

QMQMQM

API CallAPI CallAPI Call
Client MCA

Channel

Network

Client Application

Application
Queues

API Call

API Response

Client Disconnect Interval

Distributed
QM.INI - ClientIdle

z/OS
ALTER CHL CHLTYPE(SVRCONN) DISCINT(500)

No
lon
ge
r

us
ing

Sy
ste
m

Re
so
urc
es

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Client Disconnect Interval – Notes

The Disconnect Interval or DISCINT is the channel attribute on a server-
connection type channel used to control how long the client channel should
remain running even though there are no API calls currently being issued by the
client application.
The value you set depends on several criteria.
– How many channels you have and how critical system resource is

– How reliable your network is

– How expensive the communications session is

– Whether the client application holds the connection (an thus the client channel) open whilst not
making use of it to issue MQ API calls.

This attribute should be set to a value that is longer than the longest design time
between API calls because if shorter, the client application's connection will be
broken when it shouldn't be.
This can be used to clean up server-connection channels that have become
orphaned and so are not receiving any more API calls from the client (althought
we'll see later that client heartbeats are even better at this), or to break the
connection of an application that is mis-behaving, perhaps looping in non MQ API
parts of the client application, in a way it shouldn't be, and as a result holding a
channel open when resources ought to be closed off.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Network Failure

Heartbeats

TCP/IP Keepalive

Adopt MCA

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Network Failure – Notes

Any network failure reported to the channel will cause the channel to end. If the

network failure is not reported to the channel the channel will not end, it may not

notice a network failure.

The Channel is reliant on the lower level communications functions to report any

network outages. For example, the resting state of a RECEIVER channel is on a

recv call. If the recv call does not return the Channel is unaware that connection

to the partner is lost. One of the difficulties with MCAs was recognising in a timely

way when the network had actually failed, as the comms protocols didn't always

return errors at the right times. Typically, LU6.2 has been much better at this than

TCP/IP (it's a more complex protocol).

Various enhancements to the MCAs have improved the situation considerably.

We will look at a few of these over the next few foils.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Heartbeats

Heartbeat Flow

Heartbeat Ack

Empty

Transmission

Queue

DEFINE CHANNEL... HBINT(300)

Monitoring Tool

HBINT

Free Buffers

Close Queues

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Heartbeats - Notes

The Heartbeat Interval or HBINT is the channel attribute which controls how often the
sending end of the Channel should check that the receiver is ok when there are no
messages to send. The value is specified in seconds on both ends of the channel and they
negotiate an appropriate value to use at channel startup. This value is the least frequent
interval of the two specified. If one or both ends specifies 0 which means no heartbeats,
then this value, being the least frequent value possible, is the one chosen. The HBINT field
in channel status will show the negotiated heartbeat value being used for this instance of the
channel.
By default channels are defined with a heartbeat interval of 300 seconds (5 minutes). A
relatively high value was chosen as the default so that there would be very little impact on
the network. In practice a lower value of say 60 seconds is better in a lot of circumstances.
This heartbeat is actually a short message sent to the receiving MCA to check that it is still
available. It is only sent when there is no other activity on the channel for at least Heartbeat
seconds. These messages solve two problems; sender MCAs may now get an immediate
error return from the network, instead of sitting on their MQGET; and they also allow
receiver MCAs to do some processing such as checking for the termination of the queue
manager before sending their response.
Additionally, since the channel is not transferring messages regularly the channel chooses
not to maintain its cache of storage and Queues. So, at heartbeat time a channel will also
free any unnecessary storage buffers and message areas and close any cached queues.
So, for performance, the Heartbeat value should not be too small. But note that low
heartbeat values will cause no extra network traffic provided the channel remains busy.
Consider an application sending a message every two seconds down a channel. Even a
low heartbeat value of 3 seconds will never cause a heartbeat to be sent since there will
always be an actual message to send.

© IBM Corporation 2013

WebSphere MQ

QMQMQM

API CallAPI CallAPI Call
Client MCA

Channel

Network

Client Application

Application
Queues

API Call

API Response

Client Heartbeats

Heartbeat 'question' can be asked by either end of the

channel and at any time (V7 +)

Heartbeat Flow

Heartbeat Ack

DEFINE CHANNEL... HBINT(300)

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Client Heartbeats – Notes

Over client channels heartbeats are sent for the life of the connection. The sever

checks the client is still active and the client checks the server is still active. For

this heartbeating to be done both ends of the channel must be at least MQ V7.0.0.

In releases prior to MQ V7, however, heartbeats were only sent from the server

and only during an MQGET call. As a consequence detection of network

problems is much more prompt with MQ V7.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Receive Wait Time Out
Monitoring Tool

DEF CHL HBINT(300)

MQRCVBLKTO: +60

ALTER QMGR RCVTTYPE(ADD) RCVTIME(60)

Reflect Network Latency

Heartbeat or

Message Flow

SUBSTATE(RECEIVE)

NETTIME

recv()

+60

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Receive Wait Time Out – Notes

As we have already mentioned, the heartbeat interval used by the sending end of the channel to
periodically send this heartbeat message, is a negotiated value, so both ends know what the value is.
Without a heartbeat the receiver end of the channel can not predict when the next piece of data should
arrive down the channel since the arrival of messages is non-deterministic. However, with a heartbeat the
receiver 'knows' that within the heartbeat interval either a message or a heartbeat should arrive. If it
doesn't then the communications session must have broken. This is used as the basis for TCP/IP network
failure recognition. For CLNTCONN channels, this time-out is also used while waiting for a response to an
MQI call (except when the SVRCONN is on z/OS at a version prior to V6 which does not support the
client variant of heartbeats. Client heartbeats are supported in WebSphere MQ for z/OS V6).
The receiver will actually time-out if no data is received within twice the Heartbeat interval if the
negotiated Heartbeat Interval is less than 60 seconds, or 60 seconds beyond the negotiated heartbeat
interval if it is greater than or equal to 60 seconds, by default, before assuming there has been a
communications failure. This qualifier can actually be tuned to reflect your network latency, on the
distributed platforms, by changing the environment variable MQRCVBLKTO. There is also another
environment variable MQRCVBLKMIN which allows you to set a minimum value to be used when
calculating the timeout based on the heartbeats. The behaviour can be set on WebSphere MQ for z/OS
V6 by the queue manager parameters RCVTTYPE to qualify the timeout (and previously in V5.3.1 by the
use of XPARM attributes) RCVTIME to set the timeout and RCVTMIN to set the minimum value.
So.. a small value will detect failures more quickly but may also be more expensive in terms of network
traffic and CPU resource if your channel is lightly loaded.
In channel status you see that a receiving type channel, not surprisingly spends it's idle time in
SUBSTATE(RECEIVE). If you monitor the value in NETTIME, this will give you an indication of your
network latency.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Assured Delivery

Synchronisation Data written to disc at both ends
Allows rescynchronisation after a network failure

Messages in an in-doubt batch cannot be reallocated by clustering

algorithm

Monitoring Tool

CUR/LASTLUWID

CUR/LASTSEQNO

INDOUBT

MCA MCA

Confirm Flow

Message

Message

Channel

Indoubt

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Assured Delivery – Notes

Here we can see the two ends of the channel transferring a batch of messages. Note how
the MCA's write data to disk at the end of the batch. This is only done for recoverable
batches. The data written contains the transaction id of the transaction used at the sending
end to retrieve all the messages. Once the sender end has issued a 'confirm' flow to its
partner it is 'indoubt' until it receives a response. In other words, the sender channel is not
sure whether the messages have been delivered successfully or not. If there is a
communications failure during this phase then the channel will end indoubt. When it
reconnects to it's partner it will notice from the data store that it was indoubt with its partner
and so will ask the other channel whether the last batch of messages were delivered or not.
Using the answer the partner sends, the channel can decide whether to commit or rollback
the messages on the transmission queue.
This synchronisation data is viewable by issuing a DIS CHSTATUS(*) SAVED command.
The values displayed should be the same at both ends of the channel.
Note that if the channel is restarted when it is indoubt it will automatically resolve the
indoubt. However, it can only do this if it is talking to the same partner. If the channel
attributes are changed or a different Queue Manager takes over the IP address or a
different channel serving the same transmission queue is started then the channel will end
immediately with message saying that it is still indoubt with a different Queue Manager. The
user must start the channel directing it at the correct Queue Manager or resolve the indoubt
manually by issuing the RESOLVE CHANNEL command. Note that in this case the user
should use the output from DIS CHS(*) SAVED to ensure that the correct action COMMIT or
BACKOUT is chosen.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Batch Heartbeats

If time since last communication is greater than Interval,

heartbeat flow is sent

MCA MCAMessage

Channel

Indoubt

Message

Heartbeat Flow

Heartbeat Flow

Confirm Flow

Confirm Flow

Message

Committed

DEFINE CHANNEL... BATCHHB(500)

Reflect Network Stability

MMCCAAA

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Batch Heartbeats – Notes

The problem with channels that end indoubt is seen with the clustering algorithm.
If a clustering channel ends abnormally, any messages that were to be delivered
by this channel are reallocated to another channel and another instance of the
target cluster queue. They cannot however be reallocated if they are part of a
batch of messages that the sender channel is indoubt about whether the receiver
channel has got them.
To reduce the likelihood of a channel ending in indoubt state, an extra flow has
been added to the channel protocol. This flow is known as a batch heartbeat. This
flow is sent after the messages for the batch have been sent, but before the
channel marks itself to be indoubt and sends the confirmation flow. Having
received a response from the receiving end of the channel, we can be fairly sure
that we can complete the batch. There is now an extremely small window where
the receiver channel can end and leave us stuck in indoubt state. Without the
batch heartbeat flow this window is much larger (up to the time since the last flow
received from the partner).
To determine whether this batch heartbeat flow is sent, we note the time we last
received a flow from our partner. If this time was longer ago than the interval
specified in the BatchHeartbeat or BATCHHB parameter on the channel, then we
will send the flow, otherwise we will not. The interval specified is therefore a
reflection of the stability of your network. This interval is specified in milliseconds.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

TCP/IP Keepalive

Distributed
QM.INI - KEEPALIVE=yes

z/OS
ALTER QMGR TCPKEEP(YES)

DEF CHL ... KAINT(360)

Monitoring Tool

KAINT

Network

OOB PacketOOB Packet

Packet AckPacket Ack

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

TCP/IP Keepalive – Notes

TCP/IP also has its own heartbeat protocol, called KeepAlive, allowing it to recognise network failures.
The use of KeepAlive is recommended.
On z/OS only, this can be configured as a channel parameter, allowing different channels to have specific
time-out values, or simply use the system values. This channel parameter still requires KeepAlive to be
switched on in TCP/IP before it can be used. KAINT can be specified as a number of seconds; or the
value AUTO which means the actual KAINT value used is 60 seconds more than the negotiated
heartbeat. The actual value used for this channel instance is displayed in channel status.
On all platforms, this can be configured on a Queue Manager basis, on Distributed in the qm.ini file or
equivalent and on z/OS using ALTER QMGR. The actual values used for the timers and counters in this
case, are set for the entire TCP/IP stack on the machine. Typical values are for network failure to be
noticed after a default 2 hours. This is probably too high for a WebSphere MQ environment, but other
applications on the same machine may also be wanting to use KeepAlive and so values may need to be a
compromise between the requirements of these different applications.
You need to read your TCP/IP manuals to discover how to configure KeepAlive. For AIX, use the "no"
command. For HP-UX, use the "nettune" command. For Windows NT, you need to edit the registry. On
z/OS, update your TCP/IP PROFILE dataset and add/change the INTERVAL parameter in the
TCPCONFIG section.Note: On z/OS TCP/IP APAR PQ75195 is recommended
The use of heartbeats and receive wait time out remove the need for KeepAlive when both ends support
both options, however KeepAlive can still be used as well. When communicating with WebSphere MQ
implementations which do not support both heartbeats and the non-blocking reads, you should still use
KeepAlive. Keepalive is strongly recommended for SVRCONN channels since even if client heartbeats
are available, they are only used during MQGETs.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Adopt MCA

Distributed
QM.INI - AdoptNewMCA, AdoptNewMCATimeout, AdoptNewMCACheck

z/OS
ALTER QMGR ADOPTMCA(ALL) ADOPTCHK(ALL)

Channel

Retry

recv()Adoption

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Adopt MCA – Notes

If a channel fails, for example a communications error, there is no guarantee that both ends
of the channel will detect the failure at the same time. Often the sending end of the channel
detects the failure first since it is the end trying to send messages down the socket. What
will happen therefore is that the sender will try to reconnect to the target Queue Manager.
When the connection comes into the target machine the Queue Manager sees that it
already has a channel running with that name and from that location. Consequently the new
connection is rejected.
By configuring AdoptNewMCA you can tell the Queue Manager that if a new connection
arrives and there is already a channel with that name running from the same network
address and from the same Queue Manager then the existing channel should be ended and
replaced with this new instance. In other words, the channel instance should be 'adopted' by
the new connection.
The various configuration parameters in the channels stanza of QM.INI or equivalent (or on
z/OS use ALTER QMGR) allow the behaviour of Adopt to be changed slightly. Set the list of
channel types which may be adopted in this manner to turn on adoption
– AdoptNewMCA=SVR,SDR,RCVR,CLUSRCVR,ALL,FASTPATH

– ALTER QMGR ADOPTMCA(ALL/NO) (on z/OS)

Set the wait interval between ending the 'adopted' channel nicely and ending it immediate.
– AdoptNewMCATimeout=60

Clearly the channel name must match but additionally you can specify that the network
address must be the same and also the remote Queue Manager name. This prevents a
rogue connection from a different machine on the network from adopting already running
channels. Set which attributes must match between the Adopted and new connections.
– AdoptNewMCACheck=QM,ADDRESS,NAME,ALL

– ALTER QMGR ADOPTCHK(NONE/QMNAME/NETADDR/ALL) (on z/OS)

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Batch Interval

Minimum lifetime of Batch of Message
Recoverable messages will arrive no sooner than BATCHINT

Message Flow

End of Batch Flow

Empty

Transmission

Queue

Monitoring Tool

XBATCHSZ

MSGS

BATCHES

Message

Committed

DEFINE CHANNEL... BATCHINT(100)

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Batch Interval – Notes

A recoverable batch of messages is ended as soon as the transmission queue is empty. This can lead to
more line-turnarounds and disk activity than necessary. Consider an application putting 3 persistent
messages to a transmission queue. These is a good chance that the first message will be retrieved by the
channel before the second message is put. Consequently the channel will complete the batch and the
second and third message will actually go in a second batch.
By adding a small delay to the batch, say, BATCHINT(100) then all 3 messages would be sent in the first
batch with only half the disk activity. Note that the messages may well appear to take longer to be
delivered though since there is a delay of at least 100ms. BATCHINT has no effect on non-persistent
messages NPMSPEED(FAST) since these messages are put outside of syncpoint. Usually applications
send database queries as non-perisistent which are time critical and database updates as persistent
messages which are not so time critical.
The net effect and value of BATCHINT depends greatly on the MQ messaging network and messaging
profile. The greater the number of channels on the machine the larger the potential savings.
One way of helping to determine whether there would be much advantage of BATCHINT is to look at the
effective batch size. Issue a DISPLAY CHSTATUS and divide the number of messages (MSGS) by the
number of batches (BATCHES) or ues the XBATCHSZ indicator in WebSphere MQ V6. If this number is
very low, (say between 1 and 2) then the channel is having to commit for each 1 or 2 messages which is
inefficient and may benefit from BATCHINT. Note that this is only an indication since if all the messages
are non-persistent BATCHINT won't help at all.
Another thing to look for is the disk usage of the channel processes. If you see large disk utilisation then
there's a good chance BATCHINT will reduce this cost and improve overall throughput.

© IBM Corporation 2013

WebSphere MQ

Protect Max Channels

Set up so total of a MAXINST values does not 'fill' MAXCHLS

QM1QM1QM19.1.2.39.1.2.39.1.2.3

9.1.4.59.1.4.59.1.4.5

9.1.6.79.1.6.79.1.6.7

DEFINE CHANNEL... MAXINST(4) MAXINSTC(2)

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Protect Max Channels – Notes

Your server-connection channels can be configured to restrict the number of

client-connection instances that can connect in. Now you can configure your

system so that server-connection instances cannot fill up your maximum number

of channels.

There are in fact two attributes on your server-connection definition that help in

this regard.

MAXINST restricts the number of instances in total for the specific channel name.

MAXINSTC restricts the number of instances from a specific IP address for that

channel name.

© IBM Corporation 2013

WebSphere MQ

Performance

Some questions to think about
What is arrival rate on transmission queue?

What are required response times?

How long does a batch take to transmit?

What is the startup time for a channel?

Answers depend on your environment
Application Usage

Operating System/Hardware

Network Bandwidth

Message Sizes

© IBM Corporation 2013

WebSphere MQ

Performance configuration

Use BatchInterval to keep batches open
if arrival rate is slightly slower than sending complete batch

may increase latency, but improve total throughput

Set DisconnectInterval high enough so channels kept alive
Reduce number of times a channel is started/stopped/restarted

Unless network charges by "active sessions" or you are hitting

MaxChannels limit

Three Scenarios

See Capacity Planning Guides
SupportPac MP00

SupportPac MP16

© IBM Corporation 2013

WebSphere MQ

Scenario 1

Bulk transfer of pre-loaded transmission queue
Use a large BatchSize (default of 50 is good),

unless using very large messages (cost of retransmission)

BatchInt should be 0

More messages sent for

each confirmation flow

Cost of retransmitting a

large batch of messages

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Scenario 1 – Notes

Our first performance tuning scenario is a bulk transfer of the messages on a pre-

loaded transmission queue.

You are aiming here to be able to send the messages in large batches therefore

reducing the cost of the end of batch processing per message. So a large Batch

Size should be used (the default of 50 would be good here) and Batch Interval

should be set to 0. There is no need to hold the batch open in this scenario since

all the messages are pre-loaded on the transmission queue.

Your performance balance is that of how many messages you should send in one

batch to get a low cost of end of batch processing per message, weighed up

against the cost of retransmitting that entire batch should network connectivity be

lost part way through. If you are moving very large messages, this balance may

need to be achieved with a smaller Batch Size than 50.

© IBM Corporation 2013

WebSphere MQ

Scenario 2

Trickle transfer for deferred processing
Exact numbers depend on arrival rate

Try to achieve high batches

Set BatchInt to acceptable delay before transmission e.g. 1 minute

But don't make it very large: otherwise you get long-running UoW

More messages sent for

each confirmation flow

Delay before messages

are available at target

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Scenario 2 – Notes

Our second performance tuning scenario is a trickle transfer of messages for

deferred processing.

You are aiming here to achieve a reasonable batch size of message therefore

reducing the cost of end of batch processing per message. This is a classic use of

Batch Interval. Messages are arriving at a slightly slower rate than the channel

can process them. Holding the batch open for a little longer allows more

messages to be batched up together.

Your performance balance is that of how many messages you can send in one

batch, weighed up against the fact that recoverable messages will appear to take

longer to be delivered since they are not committed on the target queues until the

batch completes, i.e. after at least a Batch Interval.

If delivery time is not an issue, be careful not to set Batch Interval too large, since

you then run the risk of generating long running Units of Work.

© IBM Corporation 2013

WebSphere MQ

Scenario 3

Synchronous Request/Reply
May not want to use BatchInt if response time is key

If persistent volume is low consider a smaller BatchSize

For non-persistent message flows, use NPMSPEED(FAST) and a non-zero BatchInt

Faster response time for

messages

Less messages sent for

each confirmation flow

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Scenario 3 – Notes

Our third performance tuning scenario is a synchronous request/reply model

where the response time does matter.

This is a similar situation to scenario 2, except this time the balance is weighted

more towards a faster response time rather than more messages in a batch.

If the persistent message volume is low, you may wish to consider using a smaller

batch size and either not using Batch Interval at all, or using a fairly low value in

the order of a few seconds to ensure messages are available in a timely fashion.

If you have non-persistent messages, you should use Non-Persistent Message

Speed or NPMSPEED of FAST, and set a non-zero Batch Interval, since non-

persistent messages delivered over a fast channel are available immediately. The

Batch Size value is still used but does not affect the response time.

To give some example figures:

With an expected rate of 30 non-persistent msg/sec, set BatchInt=2000 (2secs)

and BatchSize=50 for an effective batch size of 50.

© IBM Corporation 2013

WebSphere MQ

QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)

MCA MCA

Channel

Network

Transmission
Queue

MQ Application

Application
Queues

Message Flow

Channel Monitoring

DISPLAY CHSTATUS(channel-name) MONITOR

Monitoring Tool

XBATCHSZ

XQMSGSA

XQTIME

COMPRATE/TIME

EXITTIMENETTIME

Compression

ExitExit
Exit

ExitExit
Exit

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Channel Monitoring – Notes

We have looked at a number of the channel status fields throughout this presentation. This
foil shows all the monitoring fields covered by the MONCHL channel attribute. A number of
these fields are a pair of indicators, a short term and a long term rolling, weighted average
indicator.
We already briefly mentioned EXITTIME earlier. This indicator shows the amount of time
spent in exits per message. If you have various different exits, e.g. message, send, recieve,
message retry, this will be a combined amount of time spent in exits for a message.
There is a compression facility on channels. This is outside the scope of this presentation,
except to mention that channel status provides indicators for the time spent compressing a
message and the rate of compression achieved.
NETTIME is an indicator of the time taken to do a round trip on the network. This is done
whenever a channel confirms a batch, or sends a heartbeat (the times when an answer is
requested from the partner). NETTIME only measures network time, and does not include
the MQCMIT for example, that will be done as part of the confirmation of a batch.
XBATCHSZ is an indicator of the achieved batch size, which was discussed earlier.
XQTIME is an indicator of the time messages spend on the transmission queue
XQMSGSA shows how many messages are available to be moved by a cluster-sender
channel. This is effectively the current depth of the sub-queue for that channel (cluster-
sender channel's MQGET from the SYSTEM.CLUSTER.TRANSMIT.QUEUE by Correl-Id).
Since this could become an expensive value to calculate, if the number exceeds 999, we
stop counting and display 999.

© IBM Corporation 2013

WebSphere MQ

Channel Status Parameter Reference

How many messages, in how many batches sent so farMSGS, BATCHES

Is the sender currently indoubt with its partnerINDOUBT

Batch status fieldsCURLUWID, LASTLUWID,

CURSEQNO, LASTSEQNO

The actual (negotiated) heartbeat interval and keepalive value, being used on this channelHBINT, KAINT

When the last message was sent down the channelLSTMSGDA, LSTMSGTI

Number of channel retries left to doLONGRTS, SHORTRTS

More granular status - what the channel is doing in detailSUBSTATE

Channel state - what the channel is doingSTATUS

Displays the set of Channel Monitoring fields turned on by MONCHL (see table below).MONITOR

DescriptionChannel Status

The time messages spend on the Transmission QueueXQTIME

Messages available for CLUSSDRXQMSGSA

Achieved Batch SizeXBATCHSZ

The time a network round trip takesNETTIME

The time spent running exitsEXITTIME

The time spent doing compressionCOMPTIME

The compression rate achievedCOMPRATE

DescriptionChannel Status Monitor

© IBM Corporation 2013

WebSphere MQ

Parameter Reference

Restrict the number of inbound clientsMAXINST, MAXINSTC

Message retry counts and timers and exitMRRTY, MRTMR, MREXIT, MRDATA

Channel retry counts and timersSHORTRTY, SHORTTMR, LONGRTY, LONGTMR

Interval after which a channel will endDISCINT

Minimum lifetime of a Batch of MessagesBATCHINT

Maximum number of Messages in a BatchBATCHSZ

Heartbeat IntervalHBINT

DescriptionChannel

TCPKEEP

ADOPTCHK

ADOPTMCA

ALT QMGR

Use KeepaliveKeepAlive

Adopt parameter checkAdoptNewMCACheck

Adopt Quiesce time-outAdoptNewMCATimeout

Adopt Channel typesAdoptNewMCA

DescriptionQM.INI - Channel Stanza

RCVTMIN

RCVTTYPE

RCVTIME

ALT QMGR

Receive Wait Minimum TimeoutMQRCVBLKMIN

Receive Wait Timeout Qualifier

Receive Wait TimeoutMQRCVBLKTO

DescriptionEnvironment Variables

© IBM Corporation 2013

WebSphere MQ

N

O

T

E

S

Parameter Reference – Notes

These two sets of tables list the channel status parameters we have looked at

through this presentation and those attributes of a channel which affect the

performance and recovery capabilities.

Some of the attributes are part of the true channel definition and others are setup

in other places such as an INI file.

Full details of the parameters on the channel definition can be found in the

InterCommunication book.

On the distributed platforms those parameters that are in the QM.INI file are in the

Channels stanza or on Windows they are implemented in the Registry

– Key : HKEY_LOCAL_MACHINE/SOFTWARE/IBM/MQSeries/QueueManager/<QMNAME>

Channel Initiator parameters provide some of the same parameters on z/OS that

can be found in the QM.INI file on the distributed platforms. These parameters are

specified through ALTER QMGR on WebSphere MQ for z/OS. Previously (prior to

V6) they were specified through the XPARMS which are built using the

CSQ6CHIP macro.

