

Copyright IBM Corp. 1997, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

WMQ - Tuning Queue Performance on non-z/OS Systems

This updated document makes minor editorial changes.

WMQ Limits

WMQ has many limits built into the system. These are designed to prevent out-of-control
applications obtaining important system resources that prevent a balanced workload from
operating properly. Customers have stated that one of these limits in particular (Maximum
amount of memory (RAM) reserved for non-persistent messages) are hampering normal
operations. Therefore, a mechanism for changing these limits has been introduced. However,
these limits should be altered only after careful consideration of the potential benefits; change
only those queue definitions that require the additional function. This method of altering the
limits is, is not an MQSeries API, and hence is not guaranteed to be upward compatible in
future releases of the products.

Queue Definitions.

Queues are defined using the DEFINE QLOCAL command, and the information is stored on
disk. Any ALTER QLOCAL command changes the information stored on disk. The queue
definition consists of information provided by the installation, default values (as specified in
the WMQ Command Reference), and limits inserted by the queue manager. One of the
standard limit defaults can be changed using the tuning parameters stanza of the QM.INI file.
The tuning parameters that affect the queue definition (only) affects definitions created during
that invocation of the queue manager.

Maximum amount of memory (RAM) reserved for non-persistent messages

The amount of shared memory (that is, RAM) used to hold non-persistent messages is 64KB
per queue on 32 bit Queue Managers (eg Windows) and 128KB per queue on 64 bit Queue
Managers(eg UNIX). This can be raised up to 100MB by using the DefaultQBufferSize (see
following example). This amount of shared storage is allocated, (together with other control
blocks) when the queue is opened and so has a direct impact on the amount of real resources
needed by the queue manager. It has a significant effect on both virtual shared memory and
real memory. A more realistic buffer size would be less than 1MB and that would depend on
the usage of the queue. An iterative method would be to double the 128KB default size(eg
UNIX) of the buffer to 256KB and observe the effect on response time. If messages are no
longer spilt to disk, they will be removed from the queue more quickly and hence have an

additional effect on the queue depth. Non-persistent messages are initially held in the buffer
but subsequent messages spilt out to disk when the buffer fills. The effect is enhanced
performance at the expense of storage, but it may degrade the performance of the previously
balanced system. If this increase in storage usage pushes the system into paging, the
performance will get worse because page faults are more expensive than having MQSeries
intelligently manage the disk I/O for non-persistent messages. If there are no persistent
messages being processed, then the Persistent buffer will also be used to hold non-persistent
messages.

Maximum amount of memory (RAM) reserved for persistent messages

The amount of shared memory (that is, RAM) used to hold persistent messages is 128KB per
queue on 32 bit Queue Managers (eg Windows) and 256KB per queue on 64 bit Queue
Managers. This can be raised up to 100MB by using the DefaultPQBufferSize. This amount of
shared storage is allocated, (together with other control blocks) when the queue is opened
and so has a direct impact on the amount of real resources needed by the queue manager. It
has a significant effect on both virtual shared memory and real memory. A more realistic
buffer size would be less than 1MB and that would depend on the usage of the queue. An
iterative method would be to increase the 256KB default size(eg UNIX) of the buffer to 1MB
and observe the effect on response time. If messages are in memory, they will be removed
from the queue more quickly and hence have an additional effect on the queue depth.
Persistent messages are initially held in the buffer (also held on the disk for recovery reasons)
but subsequent messages spilt out to disk when the buffer fills.

Opening Queues

The queue definition is stored on DASD and is used to allocate resources at MQOpen. Queue
definitions may have been created with various values used for
DefaultQBufferSize/DefaultPQBufferSize. Customers who want two queues to have large
values and the rest to take defaults, for example will start the queue manager with the
specified tuning parameters, create the two queues (definitions stored on disk), and terminate
the queue manager. The queue manager is then started without the TuningParameter stanza,
and the two queues previously defined with large values keep their large values. Any
subsequent queue definitions use the normal defaults. As each queue is opened, the
necessary resources are allocated depending on the DASD definition of the queue.

Resource Usage

Customers should test that these changes have not used excessive real resources in their
environment and make only those changes that are essential. Allocating several Mega Bytes
for several queues reduces the amount of shared virtual storage available for other
subsystems, as well as over committing the real storage. When an Empty Queue is Opened,
only part of the ‘Buffers’ are allocated, the rest being obtained as additional messages reside
on the Queue so any storage analysis needs to be undertaken while the system is
messaging.

Here is an example QM.INI file showing the tuning parameters. You should add these tuning
stanza lines after the queue manager has been created.

#***#
#* Module Name: qm.ini *#
#* Type : WebSphere MQ queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* *#
#***#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#* *#
#***#
ExitPath:
 ExitsDefaultPath=/var/mqm/exits/
#*
#* *#
Log:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1024
 LogType=CIRCULAR
 LogBufferPages=0
 LogPath=/var/mqm/log/tstqm/
 LogWriteIntegrity=TripleWrite
Service:
 Name=AuthorizationService
 EntryPoints=10
ServiceComponent:
 Service=AuthorizationService
 Name=MQSeries.UNIX.auth.service
 Module=/opt/mqm/lib/amqzfu
 ComponentDataSize=0
TuningParameters:
 DefaultQBufferSize=1024000
 DefaultPQBufferSize=512000

There are no error messages or other feedback to acknowledge that these tuning parameters
have been seen, recognized, or used. If they are used to set values larger than permitted,
they have no effect.

It is easy to degrade the system performance by inappropriate use of these tuning parameters.

Windows

Windows does not use the QM.INI but holds the information in the registry. TuningParameters
can be added by using

amqmdain –r TOGHILL -c add –s TuningParameters –v
DefaultQBufferSize=128000. (or value less than 100MB)

The Queue manager may need to be started with STRMQM rather than with the Graphical
panels.

