
September 2009

Peter Toghill , Pete Hickson .

WebSphere MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

WebSphere®MQ for JMS V7 -

Performance Evaluations

Version 1.1

WebSphere MQ JMS V7 – Performance Evaluations

Page II

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty

and liability exclusion”, “errors and omissions”, and the other general information paragraphs

in the "Notices" section below.

Second Edition, September 2009.

This edition applies to WebSphere MQ V7 (and to all subsequent releases and modifications

until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

Notices

DISCLAIMERS

The performance data contained in this report were measured in a controlled environment.

Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to

any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility

of the licensed user. Much depends on the ability of the licensed user to evaluate the data

and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,

therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability

are governed only by the respective terms applicable for Germany and Austria in the

corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical

errors. Changes are periodically made to the information herein; any such change will be

incorporated in new editions of the information. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this information at any time and without

notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers

WebSphere MQ JMS V7 – Performance Evaluations

Page III

wanting to understand the performance characteristics of WebSphere MQ JMS V7. The

information is not intended as the specification of any programming interface that is provided

by WebSphere. It is assumed that the reader is familiar with the concepts and operation of

WebSphere MQ V7.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make

these available in all countries in which IBM operates. Consult your local IBM representative

for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of International Business

Machines Corporation in the United States, other countries or both:

- IBM

- WebSphere
-
 JAVA

TM

-

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

WebSphere MQ JMS V7 – Performance Evaluations

Page IV

Preface
This report presents the results of performance evaluations of the JMS clients supplied with WebSphere

MQ for Windows V7.0, Linux V7.0, AIX V7.0, and zOS and is intended to assist with programming

and capacity planning.

Target audience

This SupportPac is designed for people who:

• Will be designing and implementing JMS solutions using WebSphere MQ .

• Want to understand the performance limits of WebSphere MQ JMS.

• Want to understand what actions may be taken to tune WebSphere MQ JMS.

The reader should have a general awareness of the Java programming language, the Java Message

Service API, the Windows 2003, Linux, zOS ,and/or AIX operating systems and of WebSphere MQ in

order to make best use of this SupportPac.

The contents of this SupportPac

This SupportPac includes:

• Charts and tables describing the performance headlines of JMS using WebSphere MQ V7.0

• Performance characteristics of options within JMS

• WebSphere MQ JMS messaging comparisons between Windows, Linux and AIX

• zOS WebSphere MQ JMS messaging comparison between Client and local bindings

• Advice on programming with WebSphere MQ JMS for performance

Feedback on this SupportPac

We welcome constructive feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Please direct any comments of this nature to WMQPG@uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be directed to

your local IBM Representative or Support Centre.

WebSphere MQ JMS V7 – Performance Evaluations

Page V

Introduction
This report uses the JMS Performance Harness (available from Alphaworks) to produce message

throughput and CPU information on AIX, Linux, Windows, and zOS.

Some specific Version 7 performance improvements are assessed together with Tuning advice for

MQ/JMS

WebSphere MQ JMS V7 – Performance Evaluations

Page VI

CONTENTS
1 Overview... 1
2 Local Bindings.. 2

2.1 Point to Point Put Get 4Q Scenario ...2
2.1.1 Put/Get 4Q Non persistent Messages – Local .. 3
2.1.2 Put/Get 4Q Persistent Messages – Local .. 4

2.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario...5
2.2.1 Producer Consumer, Non Persistent Messages, Local.. 6
2.2.2 Producer Consumer, Persistent Messages, Local ... 7

2.3 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N).................................8
2.3.1 Publish Subscribe 1:N, Non Persistent messages, local.. 8
2.3.2 Publish Subscribe 1:N, Persistent messages, local .. 9

2.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario10
2.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, local 11
2.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages, local ... 12

3 Client Channels Test Scenario.. 13
3.1 Point to Point Put Get 4Q Scenario ...14

3.1.1 Put/Get 4Q Nonpersistent Messages – Client... 14
3.1.2 Put/Get 4Q Persistent Messages – Client ... 15

3.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario.......................................16
3.2.1 Producer Consumer, Non Persistent Messages, Client ... 16
3.2.2 Producer Consumer, Persistent Messages, Client... 17

3.3 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)...............................18
3.3.1 Publish Subscribe 1:N, Non Persistent messages, Client.. 18
3.3.2 Publish Subscribe 1:N, Persistent messages, Client .. 19

3.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario20
3.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, Client 20
3.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages, Client ... 21

4 z/OS – Local Binding & Client ... 22
4.1 Point to Point Put Get 4Q Scenario ...22

4.1.1 Put/Get 4Q Non persistent Messages ... 22
4.1.2 Put/Get 4Q Persistent Messages ... 23
4.1.3 Put/Get 1Q Persistent Messages – Client ... 24

4.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario.......................................24
4.2.1 Producer Consumer, Non Persistent Messages... 24
4.2.2 Producer Consumer, Persistent Messages .. 25

4.3 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)...............................26
4.3.1 Publish Subscribe 1:N, Non Persistent messages ... 26
4.3.2 Publish Subscribe 1:N, Persistent messages .. 27

4.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario28
4.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages ... 28
4.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages... 29

4.5 JMS Selectors and Correlation Identifiers on z/OS ...29
4.5.1 JMS Selectors and Correlation Identifiers on z/OS – Client Bindings 30
4.5.2 JMS Selectors and Correlation Identifiers, z/OS - Local Bindings....................................... 30

5 Message Driven Beans... 32
5.1 Overview ...32
5.2 Scalability Improvements in WMQ V7.0..32

5.2.1 Queue with message rate gradually increasing... 32
5.2.2 Queue with maximum sustainable message rate manager.. 35

6 Other Performance Enhancements in V7.0... 37
6.1 JMS Selectors ..37

6.1.1 Recommendations .. 37
6.2 Asynchronous Put and Read Ahead ..38

6.2.1 Asynchronous Put .. 38
6.2.2 Read Ahead .. 38
6.2.3 Performance Notes ... 39

6.3 Asynchronous Consume..39
6.4 Multiplexed Sockets and Conversation Sharing..40
6.5 Large Messages ...41

7 Tuning/programming guidelines.. 42

WebSphere MQ JMS V7 – Performance Evaluations

Page VII

7.1 Tuning the queue manager ..42
7.2 Tuning the heap size for Java ..42
7.3 Shared Conversations ..43
7.4 Avoiding running in Migration/Compatibility Mode ..43
7.5 Use of correlation identifiers ...43
7.6 JVM Warmup ..44
7.7 Other Programming Recommendations ..44
7.8 JMS Persistence...44

JMS delivery mode .. 45
8 Machine and Test Configurations.. 47

8.1 Linux, Windows and AIX ...47
8.1.1 SAN disk subsystem... 47

8.2 zOS..47
8.3 MDB Test Configuration...48
8.4 Other V7 Enhancements..48

WebSphere MQ JMS V7 – Performance Evaluations

Page VIII

TABLES
Table 1 – Put/Get 4Q, non persistent messages, local queue manager ...3
Table 2 – Put/Get 4Q, Persistent messages, local queue manager ...4
Table 3 – Producer/Consumer, non persistent messages, local queue manager6
Table 4 – Producer/Consumer, persistent messages, local queue manager ..7
Table 5 – Publish Subscribe 1:N, non Persistent messages, local queue manager...................................9
Table 6 – Publish Subscribe 1:N, Persistent messages, local queue manager ...9
Table 7 – Publish Subscribe Multiple, non Persistent messages, local queue manager.........................11
Table 8 – Publish Subscribe Multiple, Persistent messages, local queue manager................................12
Table 9 – Put/Get 4Q, non Persistent messages, Client connection...14
Table 10 – Put/Get 4Q, Persistent messages, Client connection..15
Table 11 – Producer/Consumer, non Persistent messages, Client connection16
Table 12 – Producer/Consumer, Persistent messages, Client connection ..17
Table 13 – Publish/Subscribe 1:N, non Persistent messages, Client connection18
Table 14 – Publish/Subscribe 1:N, Persistent messages, Client connection ...19
Table 15 – Publish/Subscribe Multiple, non Persistent messages, Client connection20
Table 16 – Publish/Subscribe Multiple, Persistent messages, Client connection21
Table 17 – Put/Get 4Q, non persistent messages ...22
Table 18 – Put/Get 4Q, Persistent messages..23
Table 19 – Producer/Consumer, non Persistent messages ...25
Table 20 – Producer/Consumer, Persistent messages ..25
Table 21 – Publish/Subscribe 1:N, non Persistent messages ...26
Table 22 – Publish/Subscribe 1:N, Persistent messages ...27
Table 23 – Publish/Subscribe Multiple, non Persistent messages..28
Table 24 – Publish/Subscribe Multiple, Persistent messages ..29

WebSphere MQ JMS V7 – Performance Evaluations

Page IX

FIGURES
Figure 1 – Applications and Queues in a local queue manager ..2
Figure 2 – Put Get 4Q, non persistent messages, local queue manager..3
Figure 3 – Put/Get 4Q, Persistent messages, local queue manager ...4
Figure 4 – Producer/Consumer, non persistent...5
Figure 5 – Producer/Consumer, non persistent messages, local queue manager......................................6
Figure 6 – Producer/Consumer, persistent messages, local queue manager...7
Figure 7 – Publish Subscribe 1:N ..8
Figure 8 – Pub/Sub 1:N, non-persistent messages, local queue manager ..8
Figure 9 – Pub/Sub 1:N, Persistent messages, local queue manager ...9
Figure 10 – Publish Subscribe ...10
Figure 11 – Publish Subscribe Multiple, Non persistent messages ,local..11
Figure 12 – Publish Subscribe Multiple, Persistent messages, local ...12
Figure 13 – MQI-client channels into a remote queue manager...13
Figure 14 – Put/Get 4Q , non persistent, client..14
Figure 15 – Put/Get 4Q, persistent, client..15
Figure 16 – Producer/Consumer, non persistent, client ...16
Figure 17 – producer/Consumer, persistent, client ..17
Figure 18 – Publish Subscribe 1:N, non persistent, client ...18
Figure 19 – Publish Subscribe 1:N, persistent, client ..19
Figure 20 – Publish Subscribe Multiple, non persistent, client..20
Figure 21 – Publish Subscribe multiple, persistent, client ...21
Figure 22 – Put/Get 4Q , non persistent...22
Figure 23 – Put/Get 4Q, persistent ..23
Figure 24 – Put/Get 1Q, persistent messages, Client connection ..24
Figure 25 – Producer/Consumer, non persistent..24
Figure 26 – producer/Consumer, persistent, client ..25
Figure 27 – Publish Subscribe 1:N, non persistent ..26
Figure 28 – Publish Subscribe 1:N, persistent ...27
Figure 29 – Publish Subscribe Multiple, non persistent ..28
Figure 30 – Publish Subscribe multiple, persistent,...29
Figure 31 – JMS Selector and Correlid Performance on z/OS, client bindings.....................................30
Figure 32 – JMS Selector and Correlid Performance on z/OS, Local Bindings.31
Figure 33 – MDB Scenario, Single Consumer ...32
Figure 34 – MDB Scenario, Multiple Consumers ..33
Figure 35 – MDB Scalability and Performance WMQ V6..34
Figure 36 – MDB Scalability and Performance WMQ V7..35
Figure 37 – JMS Selector Performance. Cpu figures are for QM only..37
Figure 38 – New Asynchronous Put and Read Ahead features. ..38
Figure 39 – Asynchronous Consumer Performance. ...40
Figure 40 – Large Message Performance – 4 Streams. ...41
Figure 41 – Message Performance – 10 Streams...41

WebSphere MQ JMS V7 – Performance Evaluations

Page 1

1 Overview

The four scenarios used in Chapter 2 3 and 4 in this report consist of two Point to Point and two

Publish_Subscribe. These are measured and reported with Persistent and non Persistent messages on Windows,

Linux, AIX, and zOS systems.

1) Sender/Receiver – Four Queues

2) Multiple sets of (Producer ,Queue, Consumer)

3) Publish Subscribe (single publisher, single topic, multiple subscribers)

4) Multiple sets of Publisher Topic Subscriber (single publisher, single topic, single subscribers)

• The message format used is a 2048 byte JMSTextMessage.

• Persistent messages are transactional. (session = connection.createSession(true,

Session.AUTO_ACKNOWLEDGE); This also significantly improves throughput when multiple threads are

processing messages on the same queue especially when using non cached disks for the MQ Log.

• The ‘multiple sets’ message producers insert messages at a fixed rate.

• “IBM Performance Harness for Java Message Service”.

• Messages Producer/Consumer are co-located on the Queue manager system for ‘Local Bindings’

Measurements and on Linux driver systems for ‘Client’ measurements.

• Each sample point reported is the average of two minutes of data collection.

• Clients run on Linux and the bottleneck with Client measurements is the server because adequate

power is available in the driving machines.

WebSphere MQ JMS V7 – Performance Evaluations

Page 2

2 Local Bindings
.

2.1 Point to Point Put Get 4Q Scenario

Figure 1 – Applications and Queues in a local queue manager

1) Each Put/Get application thread has been allocated to a particular Queue.

2) A message is put to the particular queue on the local queue manager, and stores the message identifier

returned in the message descriptor. The Get specifies the message identifier and retrieves the message from the

queue.

3) Only one message per Put/Get application exists at any point in time. This is synchronous messaging

Non-persistent and persistent messages were used in the local queue manager tests, with a message size of 2K.

Messages are counted as they are retrieved from the queue hence a Put/Get round trip is counted as one

message.

Q1

Q3

Q2

Q4

Put/Get 4Q

1

2

1

2

1

2

WebSphere MQ JMS V7 – Performance Evaluations

Page 3

2.1.1 Put/Get 4Q Non persistent Messages – Local

Figure 2 and Figure 3 show the non-persistent and persistent message throughput achieved using an increasing

number of driving applications in the local queue manager scenario (see Figure 1 on the previous page), for

Linux, Windows, and AIX.

Put-Get 4 Queues, Local Bindings, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

R
o

u
n

d
 T

r
ip

s/
se

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 2 – Put Get 4Q, non persistent messages, local queue manager

Figure 2 and Table 1 shows the throughput of non persistent messages.

Test name:

PG4QLN
Apps

Round

Trips/sec
CPU

Linux 4 17571 96%

Windows 10 16856 100%

Aix 6 23088 100%

Table 1 – Put/Get 4Q, non persistent messages, local queue manager

Note: These tables (like Table 1) show the peak number of round trip or messages per second that are

processed by all the connected applications or clients together with the number of driving application(or

clients)s used to achieve the peak throughput.

The AIX operating system continues to process the peak message load as additional work requests are

submitted while Linux and Windows gradually process less work as additional work requests are submitted.

WebSphere MQ JMS V7 – Performance Evaluations

Page 4

2.1.2 Put/Get 4Q Persistent Messages – Local

Put-Get 4 Queues, Local Bindings, Persistent

Windows vs Linux vs Aix

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Applications

R
o

u
n

d
 T

r
ip

s/
se

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 3 – Put/Get 4Q, Persistent messages, local queue manager

Test name:

PG4QLN
Apps

Round

Trips/sec
CPU

Linux 16 3877 75%

Windows 26 3036 76%

Aix 42 8264 93%

Table 2 – Put/Get 4Q, Persistent messages, local queue manager

Figure 3 and Table 2 show the throughput of persistent messages.

WebSphere MQ JMS V7 – Performance Evaluations

Page 5

2.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario

Figure 4 – Producer/Consumer, non persistent

Each Queue is used by only one Producer and one Consumer. The message Producer inserts messages at a

predefined rate. The message production rate is 1600 per second for non-persistent and 400 per second for

persistent messages. The number of (Producer , Consumer, Queue) triplets is gradually increased and the

maximum rate occurs when the consumers prevent the Queue from exceeding a queue depth of one. This

testcase provides asynchronous messaging since there is no connection between the number of messages in the

system and the number of publishers or subscribers. Messages are counted as put to queue by the producer and

as they are retrieved by the consumer hence a particular message created by the producer and got by the

consumer is counted as 2 messages.

 Producer_n l

1

2

Consumer_n

Queue_n

 Producer_2 l

1

2

consumer _2

Queue_2

 Producer_1 l

1

2

consumer _1

Queue_1

WebSphere MQ JMS V7 – Performance Evaluations

Page 6

2.2.1 Producer Consumer, Non Persistent Messages, Local

Producer Consumer, Local Bindings, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX Windows

Linux AIX cpu %
Windows cpu % Linux cpu %

Figure 5 – Producer/Consumer, non persistent messages, local queue manager

Figure 5 and Table 3 show that the throughput of non-persistent messages

Test name:

PCLN
Apps

Messages

Per second
CPU

Linux 18 24971 100%

Windows 30 22971 88%

Aix 30 40117 100%

Table 3 – Producer/Consumer, non persistent messages, local queue manager

Each message producer creates 1600 non persistent messages per second and the system throughput increases as

a straight diagonal line until the system capacity is achieved. With 12 producers and 12 consumers (24

Applications) on AIX, the expected throughput is 1600*12*2=38400 whereas the measured throughput is 37590

messages per second

WebSphere MQ JMS V7 – Performance Evaluations

Page 7

2.2.2 Producer Consumer, Persistent Messages, Local

Producer Consumer, Local Bindings, Persistent

Windows vs Linux vs Aix

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux Windows

AIX Linux cpu %
Windows cpu % AIX cpu %

Figure 6 – Producer/Consumer, persistent messages, local queue manager

Test name:

PCLP
Apps

Messages

Per second
CPU

Linux 20 7191 75%

Windows 20 5084 73%

Aix 44 14341 94%

Table 4 – Producer/Consumer, persistent messages, local queue manager

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 16 producers and 16 consumers (32 Applications) on

AIX, the expected throughput is 400*16*2=12800 whereas the measured throughput is 12724 messages per

second.

WebSphere MQ JMS V7 – Performance Evaluations

Page 8

2.3 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)

Figure 7 – Publish Subscribe 1:N

All subscribers used unique subscriber queues. Persistent subscribers received five messages in each

transaction.

1 A publisher publishes a message to the single topic.

2 Each subscriber then receives the message.

This testcase provides asynchronous messaging since there is no connection between the number of messages in

the system and the number of publishers or subscribers. The publisher publishes the next message without any

‘think’ time. Message count is the number of published messages plus those consumed by the subscribers.

2.3.1 Publish Subscribe 1:N, Non Persistent messages, local

Publish Subscriber 1-n, Local Bindings, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 8 – Pub/Sub 1:N, non-persistent messages, local queue manager

Test name: Apps Messages Publications CPU Pubs per second

s e r v e r p u b l i s h e r

1

2

s u b s c r i b e r s

Topic

WebSphere MQ JMS V7 – Performance Evaluations

Page 9

PS1NLN Per second per second With 2 subscribers

Per publication

Linux 13 15120 1163 88% 3058

Windows 9 8281 920 90% 2022

Aix 17 31842 1873 91% 6463

Table 5 – Publish Subscribe 1:N, non Persistent messages, local queue manager

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

6463 publications per second can be achieved on AIX. The response time for the publish command increases as

the number of subscribers increase hence the system message rate plateaus after 10 subscribers. On AIX with 16

subscribers, the publisher creates 1873 messages per second which are all consumed by the subscribers.

2.3.2 Publish Subscribe 1:N, Persistent messages, local

Publish Subscriber 1-n, Local Bindings, Persistent

Windows vs Linux vs Aix

0

2,000

4,000

6,000

8,000

10,000

12,000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 9 – Pub/Sub 1:N, Persistent messages, local queue manager

Test name:

PS1NLP
Apps

Messages

Per second

Publications

 per second CPU

Pubs per second

With 2 subscribers

Per publication

Linux 17 3876 228 78% 714

Windows 29 1845 63 64% 234

Aix 35 9667 276 75% 1144

Table 6 – Publish Subscribe 1:N, Persistent messages, local queue manager

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

1144 publications per second can be achieved on AIX. The response time for the publish command increases as

the number of subscribers increase hence the system message rate plateaus between 16 and 32 subscribers. On

AIX with 34 subscribers, the publisher creates 276 messages per second which are all consumed by the

subscribers.

WebSphere MQ JMS V7 – Performance Evaluations

Page 10

2.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario

Figure 10 – Publish Subscribe

 All subscribers used unique subscriber queues. Persistent subscribers received five messages in each

transaction.

1 A publisher publishes a message to the single topic.

2 Only one subscriber had registered for the topic then receives the message.

This testcase provides asynchronous messaging since there is no connection between the number of messages in

the system and the number of publishers or subscribers. The publisher publishes message at a predetermined

rate which provides for a gradually increasing workload as the number of (Publisher, Topic, Subscriber) triplets

is increased. The message production rate is 1600 per second for non-persistent and 400 per second for

 p u b l i s h e r_2

1

2

s u b s c r i b e r _2

Topic_2

 p u b l i s h e r_n

1

2

s u b s c r i b e r _n

Topic_n

s e r v e r p u b l i s h e r_1

1

2

s u b s c r i b e r _1

Topic_1

WebSphere MQ JMS V7 – Performance Evaluations

Page 11

persistent messages. Message count is the number of published messages plus those consumed by the

subscribers.

2.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, local

Publish Subscriber Multiple, Local Bindings, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux Windows

AIX Linux cpu %
Windows cpu % AIX cpu %

Figure 11 – Publish Subscribe Multiple, Non persistent messages ,local

Test name:

PSMLN
Apps

Messages

Per second
CPU

Linux 10 14053 100%

Windows 8 6845 99%

Aix 24 29937 100%

Table 7 – Publish Subscribe Multiple, non Persistent messages, local queue manager

Each publisher creates 1600 non persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 9 producers and 9 consumers (18

Applications) on AIX, the expected throughput is 1600*9*2=28800 whereas the measured throughput is 28252

messages per second

WebSphere MQ JMS V7 – Performance Evaluations

Page 12

2.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages, local

Publish Subscriber Multiple, Local Bindings, Persistent

Windows vs Linux vs Aix

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 12 – Publish Subscribe Multiple, Persistent messages, local

Test name:

PSMLP
Apps

Messages

Per second
CPU

Linux 18 6252 78%

Windows 10 3845 50%

Aix 36 12564 94%

Table 8 – Publish Subscribe Multiple, Persistent messages, local queue manager

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 16 producers and 16 consumers (32 Applications) on

AIX, the expected throughput is 400*16*2=12800 whereas the measured throughput is 12564 messages per

second.

WebSphere MQ JMS V7 – Performance Evaluations

Page 13

3 Client Channels Test Scenario

Figure 13 – MQI-client channels into a remote queue manager

The various message producers put a message (over a client channel), to the relevant queue on the server. The

consumer application then waits indefinitely for messages to arrive on its input queue.

All of the JMS code is executed on the Client (driver) machine and the individual MQ verbs (Put, Get, Commit

are sent to the server to drive the Queue Manager.

The Client Channel is set to ‘MQIBindType = FASTPATH’ . The major benefit is for non persistent messages

because it eliminates the AGENT process (AMQZLAA) and reduces CPU cost. Environments using Channel

exits should be aware that the exit code would run inside the Queue Manager.

Version 7 will multiplex multiple clients from the same process over one TCP socket but these measurements

create clients on separate processes and avoid the multiplex protocol. This is equivalent to defining the svr-con

channel with SHARECNV=1

Higher volumes of Persistent messages are achieved with Client connections than Local bindings.

Producer

Driving machine

Consumer

Publisher

Subscriber

Put/Get

Application

Client channels

Server machine

WebSphere MQ JMS V7 – Performance Evaluations

Page 14

3.1 Point to Point Put Get 4Q Scenario

3.1.1 Put/Get 4Q Nonpersistent Messages – Client

Put-Get 4 Queues, Clients, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Applications

R
o

u
n

d
 T

r
ip

s/
se

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 14 – Put/Get 4Q , non persistent, client

Test name:

PG4QCN
Apps

Round

Trips/sec
CPU

Linux 22 14903 96%

Windows 32 8952 99%

Aix 34 20626 98%

Table 9 – Put/Get 4Q, non Persistent messages, Client connection

WebSphere MQ JMS V7 – Performance Evaluations

Page 15

3.1.2 Put/Get 4Q Persistent Messages – Client

Put-Get 4 Queues, Clients, Persistent

Windows vs Linux vs Aix

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Applications

R
o

u
n

d
 T

r
ip

s/
se

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 15 – Put/Get 4Q, persistent, client

Test name:

PG4QCP
Apps

Round

Trips/sec

Server

 CPU

Linux 22 4664 75%

Windows 28 3219 73%

Aix 48 8529 92%

Table 10 – Put/Get 4Q, Persistent messages, Client connection

.

WebSphere MQ JMS V7 – Performance Evaluations

Page 16

3.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario

3.2.1 Producer Consumer, Non Persistent Messages, Client

Producer Consumer, Clients, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX Windows

Linux AIX cpu %
Windows cpu % Linux cpu %

Figure 16 – Producer/Consumer, non persistent, client

Test name:

PCCN
Apps

Messages

Per second

Server

 CPU

Linux 22 32077 96%

Windows 30 17876 84%

Aix 30 41842 100%

Table 11 – Producer/Consumer, non Persistent messages, Client connection

Each message producer creates 1600 non persistent messages per second and the system throughput increases as

a straight diagonal line until the system capacity is achieved. With 12 producers and 12 consumers (24

Applications) on AIX, the expected throughput is 1600*12*2=38400 whereas the measured throughput is 38183

messages per second

WebSphere MQ JMS V7 – Performance Evaluations

Page 17

3.2.2 Producer Consumer, Persistent Messages, Client

Producer Consumer, Clients, Persistent

Windows vs Linux vs Aix

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 17 – producer/Consumer, persistent, client

Test name:

PCCP
Apps

Messages

Per second

Server

 CPU

Linux 24 8806 74%

Windows 14 5114 53%

Aix 44 16585 90%

Table 12 – Producer/Consumer, Persistent messages, Client connection

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 20 producers and 20 consumers (40 Applications) on

AIX, the expected throughput is 400*20*2=16000 whereas the measured throughput is 15916 messages per

second

WebSphere MQ JMS V7 – Performance Evaluations

Page 18

3.3 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)

3.3.1 Publish Subscribe 1:N, Non Persistent messages, Client

Publish Subscriber 1-n, Clients, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 18 – Publish Subscribe 1:N, non persistent, client

Test name:

PS1NCN
Apps

Messages

Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Linux 37 19065 515 53% 1980

Windows 29 22073 761 82% 2127

Aix 37 30547 825 66% 2972

Table 13 – Publish/Subscribe 1:N, non Persistent messages, Client connection

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

2972 publications per second can be achieved on AIX. The response time for the publish command increases as

the number of subscribers increase. On AIX with 36 subscribers, the publisher creates 825 messages per second

which are all consumed by the subscribers.

WebSphere MQ JMS V7 – Performance Evaluations

Page 19

3.3.2 Publish Subscribe 1:N, Persistent messages, Client

Publish Subscriber 1-n, Clients, Persistent

Windows vs Linux vs Aix

0

2,000

4,000

6,000

8,000

10,000

12,000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 19 – Publish Subscribe 1:N, persistent, client

Test name:

PS1NCP
Apps

Messages

 Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Linux 35 6292 180 55% 719

Windows 35 3706 106 36% 469

Aix 37 10694 289 66% 1013

Table 14 – Publish/Subscribe 1:N, Persistent messages, Client connection

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

1013 publications per second can be achieved on AIX. The response time for the publish command increases as

the number of subscribers increase. On AIX with 36 subscribers, the publisher creates 289 messages per second

which are all consumed by the subscribers

WebSphere MQ JMS V7 – Performance Evaluations

Page 20

3.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario

3.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, Client

Publish Subscriber Multiple, Clients, Non-Persistent

Windows vs Linux vs Aix

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows Linux

AIX Windows cpu %
Linux cpu % AIX cpu %

Figure 20 – Publish Subscribe Multiple, non persistent, client

Test name:

PSMCN
Apps

Messages

Per second

Server

 CPU

Linux 26 26808 98%

Windows 48 18459 99%

Aix 30 37228 100%

Table 15 – Publish/Subscribe Multiple, non Persistent messages, Client connection

Each publisher creates 1600 non persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 11 producers and 11 consumers (22

Applications) on AIX, the expected throughput is 1600*11*2=35200 whereas the measured throughput is 34712

messages per second

WebSphere MQ JMS V7 – Performance Evaluations

Page 21

3.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages, Client

Publish Subscriber Multiple, Clients, Persistent

Windows vs Linux vs Aix

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux Windows

AIX Linux cpu %
Windows cpu % AIX cpu %

Figure 21 – Publish Subscribe multiple, persistent, client

Test name:

PSMCP
Apps

Messages

Per second

Server

 CPU

Linux 22 7784 75%

Windows 20 5386 59%

Aix 48 14868 93%

Table 16 – Publish/Subscribe Multiple, Persistent messages, Client connection

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 17 producers and 17 consumers (34 Applications) on

AIX, the expected throughput is 400*17*2=13600 whereas the measured throughput is 13517 messages per

second.

WebSphere MQ JMS V7 – Performance Evaluations

Page 22

4 z/OS – Local Binding & Client
This chapter shows the throughput achieved when the zOS Queue Manager is used with the benchmarks run in

Binding and/or Client mode. Bindings mode means the JMS applications are executing on zOS and Client mode

means the JMS applications are running on Linux with a client channel to the zOS server.

4.1 Point to Point Put Get 4Q Scenario

4.1.1 Put/Get 4Q Non persistent Messages

Put-Get 4 Queues, Non-Persistent

zOS; Bindings vs Clients

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

R
o

u
n

d
 T

r
ip

s/
se

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Client

zO S-Bindings cpu % zO S-Client cpu %

Figure 22 – Put/Get 4Q , non persistent

Test name:

PG4QZN
Apps

Round

Trips/sec
CPU

Binding 4 6293 99%

Client 36 3209 100%

Table 17 – Put/Get 4Q, non persistent messages

Reducing the number of queues from four to one has minimal effect.

WebSphere MQ JMS V7 – Performance Evaluations

Page 23

4.1.2 Put/Get 4Q Persistent Messages

Put-Get 4 Queues, Persistent

zOS; Bindings vs Clients

0

500

1,000

1,500

2,000

2,500

3,000

3,500

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

R
o

u
n

d
 T

r
ip

s/
se

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Client

zO S-Bindings cpu % zO S-Client cpu %

Figure 23 – Put/Get 4Q, persistent

Test name:

PG4QZP
Apps

Round

Trips/sec

Server

 CPU

Binding 46 3089 99%

Client 20 1549 88%

Table 18 – Put/Get 4Q, Persistent messages

With Persistent messages, the log is the bottleneck and reducing the number of queues to one has minimal

effect.

WebSphere MQ JMS V7 – Performance Evaluations

Page 24

4.1.3 Put/Get 1Q Persistent Messages – Client

Put-Get 1Q, Persistent

zOS; Clients z990 vs z10

0

500

1,000

1,500

2,000

2,500

3,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

R
o

u
n

d
 T

r
ip

s/
se

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-z10 zO S-z990

zO S-z10 cpu % zO S-z990 cpu %

Figure 24 – Put/Get 1Q, persistent messages, Client connection

This comparison using a z10 is the only measurement of this system. 3 CPU(dedicated) on z10(2097-E64) with

the same disk and network connectivity as the z990 described in Chapter 8 . The scenario uses a single Queue

shared among all clients. The increased power of the z10 provides a significant increase in throughput.

4.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario

4.2.1 Producer Consumer, Non Persistent Messages

Producer Consumer, Non-Persistent

zOS; Bindings vs Clients

0

2,000

4,000

6,000

8,000

10,000

12,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Client

zO S-Bindings cpu % zO S-Client cpu %

Figure 25 – Producer/Consumer, non persistent

WebSphere MQ JMS V7 – Performance Evaluations

Page 25

Test name:

PCZN
Apps

Messages

Per second

Server

 CPU

Binding 8 11043 100%

Client 16 6075 90%

Table 19 – Producer/Consumer, non Persistent messages

Each message producer creates 1600 non persistent messages per second and the system throughput increases as

a straight diagonal line until the system capacity is achieved. With 4 producers and 4 consumers (8

Applications) on zOS/Client mode, the expected throughput is 1600*4*2=12800 whereas the measured

throughput is 11043 messages per second

4.2.2 Producer Consumer, Persistent Messages

Producer Consumer, Persistent

zOS; Bindings vs Clients

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Client

zO S-Bindings cpu % zO S-Client cpu %

Figure 26 – producer/Consumer, persistent, client

Test name:

PCZP
Apps

Messages

Per second

Server

 CPU

Binding 42 5773 97%

Client 18 2939 93%

Table 20 – Producer/Consumer, Persistent messages

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 3 producers and 3 consumers (6 Applications) on zOS

Bindings mode, the expected throughput is 400*3*2=2400 whereas the measured throughput is 2312 messages

per second

WebSphere MQ JMS V7 – Performance Evaluations

Page 26

4.3 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)

4.3.1 Publish Subscribe 1:N, Non Persistent messages

Publish Subscriber 1-n, Non-Persistent

zOS; Bindings vs Clients

0

2,000

4,000

6,000

8,000

10,000

12,000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Bindings cpu %

Figure 27 – Publish Subscribe 1:N, non persistent

Test name:

PS1NZN
Apps

Messages

Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Binding 37 10597 286 97% 2221

Table 21 – Publish/Subscribe 1:N, non Persistent messages

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

2221 publications per second can be achieved on zOS Bindings mode. The response time for the publish

command increases as the number of subscribers increase. On zOS Bindings mode with 36 subscribers, the

publisher creates 286 messages per second which are all consumed by the subscribers.

WebSphere MQ JMS V7 – Performance Evaluations

Page 27

4.3.2 Publish Subscribe 1:N, Persistent messages

Publish Subscriber 1-n, Persistent

zOS; Bindings vs Clients

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Client

zO S-Bindings cpu % zO S-Client cpu %

Figure 28 – Publish Subscribe 1:N, persistent

Test name:

PS1NZP
Apps

Messages

 Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Binding 37 3728 101 72% 433

Client 37 2960 80 89% 309

Table 22 – Publish/Subscribe 1:N, Persistent messages

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

309 publications per second can be achieved on zOS/Client mode. The response time for the publish command

increases as the number of subscribers increase. On zOS Client mode with 36 subscribers, the publisher creates

80 messages per second which are all consumed by the subscribers

WebSphere MQ JMS V7 – Performance Evaluations

Page 28

4.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario

4.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages

Publish Subscriber Multiple, Non-Persistent

zOS; Bindings vs Clients

0

2,000

4,000

6,000

8,000

10,000

12,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Client

zO S-Bindings cpu % zO S-Client cpu %

Figure 29 – Publish Subscribe Multiple, non persistent

Test name:

PSMZN
Apps

Messages

Per second

Server

 CPU

Binding 8 9947 100%

Client 6 7309 98%

Table 23 – Publish/Subscribe Multiple, non Persistent messages

Each publisher creates 1600 non persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 3 producers and 3 consumers (6 Applications)

on zOS Bindings mode, the expected throughput is 1600*3*2=9600 whereas the measured throughput is 9172

messages per second

WebSphere MQ JMS V7 – Performance Evaluations

Page 29

4.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages

Publish Subscriber Multiple, Persistent

zOS; Bindings vs Clients

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Applications

M
e
ss

a
g

e
s/

se
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

zO S-Bindings zO S-Client

zO S-Bindings cpu % zO S-Client cpu %

Figure 30 – Publish Subscribe multiple, persistent,

Test name:

PSMZP
Apps

Messages

Per second

Server

 CPU

Binding 42 4254 92%

Client 28 3150 99%

Table 24 – Publish/Subscribe Multiple, Persistent messages

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 4 producers and 4 consumers (8 Applications) on zOS

Bindings mode, the expected throughput is 400*4*2=3200 whereas the measured throughput is 2829 messages

per second.

4.5 JMS Selectors and Correlation Identifiers on z/OS

The basic model for these scenarios is to insert a message to a common queue and then retrieve the message

using a selector. Each thread will generate a correlator for the inserted message and then retrieve the message

specifying the correlator. All of the messages inserted by thread-n will contain the unique key used by thread –n

thus ensuring that each thread retrives the message previously inserted. There are 4 varients for this test

1. The message is retrived without specifying a selector.

2. The message is produced with JMSCorrelationID set to bytes

3. The message is produced with JMSCorrelationID set to string

4. The message is produced with an arbitrary selector

WebSphere MQ JMS V7 – Performance Evaluations

Page 30

4.5.1 JMS Selectors and Correlation Identifiers on z/OS – Client Bindings

JMS Selector Performance, z/OS Queue Manager

client bindings

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

Application Threads / Selection Match Ratio

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

No Selection Selectors

CorrelidAsBytes CorrelidAsString

Figure 31 – JMS Selector and Correlid Performance on z/OS, client bindings.

Maximum Sustainable throughput of 1k messages using thread id as a selector/correlid, for 1 to 10 threads,

single queue.

4.5.2 JMS Selectors and Correlation Identifiers, z/OS - Local Bindings.

JMS Selector Performance, z/OS Queue Manager

local bindings

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10

Application Threads / Selection Match Ratio

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

No Selection Selectors

CorrelidAsBytes CorrelidAsString

WebSphere MQ JMS V7 – Performance Evaluations

Page 31

Figure 32 – JMS Selector and Correlid Performance on z/OS, Local Bindings.

Maximum Sustainable throughput of 1k messages using thread id as a selector/correlid, for 1 to 10 threads,

single queue.

The two figures above illustrate the relative performance of a typical JMS application when using the various

selection mechanisms available with a z/OS Queue Manager. This highlights the performance benefits of using

the optimized CorrelidAsBytes. See section “Use of correlation identifiers” on page 43 for details of how to use

this.

WebSphere MQ JMS V7 – Performance Evaluations

Page 32

5 Message Driven Beans

5.1 Overview

A Message Driven Bean (MDB) is a relatively simple message consumer application which runs within an EJB

container such as Websphere Application Server. The container manages issues such as transactional integrity,

security and concurrency, making MDBs easier to develop than stand-alone JMS applications.

The MDB consumes messages asynchronously, being activated when a new message arrives.

Typically a messaging provider such as WMQ connects to the EJB container using a J2EE Connector

Architecture (JCA) resource adapter. There measurements used ASF mode and WAS V6.

5.2 Scalability Improvements in WMQ V7.0

5.2.1 Queue with message rate gradually increasing

In a typical scenario we have a message producer writing messages at a steady rate to a single MQ queue, and

an MDB consuming the messages from this queue. The MDB is running within a Websphere Application

Server. The producer, queue manager and MDB/Application Server are running on separate machines

connected by a network as shown in Figure 33.

Figure 33 – MDB Scenario, Single Consumer

In a situation where the rate of message production exceeds the capacity of the MDB to consume, then queue

depths can grow to provide a short term solution. If the situation persists however, the queue will fill up and the

system will be unable to continue to process messages.

One solution is to add additional MDB/Application Server instances to consume messages from the same

queue, as shown in Figure 34.

QueueManager

Linux

4x3.3GHz +

4Gb

Consumer

Win2003

4x700MHz

+ 4Gb

Producer

Win2003

4x700MHz +

4Gb

WebSphere MQ JMS V7 – Performance Evaluations

Page 33

Figure 34 – MDB Scenario, Multiple Consumers

QueueManager

Linux

4x3.3GHz +
4Gb

Consumer

Win2003

4x700MHz +

4Gb

Producer

Win2003

4x700MHz +

4Gb

Consumer

 Win2003

4x700MHz +

4Gb

Consumer

Win2003

4x3.3GHz +

4Gb

WebSphere MQ JMS V7 – Performance Evaluations

Page 34

V6 Scalability. Non-Persistent, 1Kb Msgs using 1-2 App Svrs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Producers

M
e
s
s
a
g

e
s
 p

e
r

S
e
c
o

n
d

Producer 2 Consumers 1 Consumer

Figure 35 – MDB Scalability and Performance WMQ V6

WMQ V6 has some architectural limitations which prevent this approach from solving the problem. Adding

more consumers can have little or no effect on total message throughput rates.

This is a known issue with V6 and in fact additional consumers can cause contention within the queue manager

and a drop-off in performance when message production exceeds the maximum capacity of the consumers. See

Figure 35.

WebSphere MQ JMS V7 – Performance Evaluations

Page 35

V7 Scalability. Non-Persistent, 1Kb Msgs using 1-3 App Svrs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Producers

M
e
s
s
a
g

e
s
 p

e
r

S
e
c
o

n
d

Producer 3 Consumers 2 Consumers 1 Consumer

Figure 36 – MDB Scalability and Performance WMQ V7

The architectural limitations in the queue manager have been removed in WMQ V7 and total throughput now

increases in a linear way even with 3 consumers as shown in Figure 36. Each consumer is on a separate WAS.

Note also that once the maximum capacity has been exceeded, the MDBs continue to process messages at

almost the same rate as the maximum which improves the systems ability to tolerate occasional peaks in

message production. The benchmark caused each message producer to insert 10 messages per second. Thus 20

producers inserted 400 messages per second. By observing the queue depth, the message processing ability of

WAS servers can be calculated. The bottleneck is the capacity of the individual WAS system since the QM

system was lightly loaded.

5.2.2 Queue with maximum sustainable message rate manager

WAS 7.0.0.5 with both WMQ 6.0.2.7 and WMQ 7.0.1.0 (plus APAR IC63705). WAS with listener ports.

Hardware specification.

• JMS Client

x365 4 x 3.0 GHz CPU, hyperthreaded, 4 MB L3 cache, 4.0 GB RAM

• WAS Server

x366 4 x 3.67 GHz, hyperthreaded, 0 MB L3 cache, 3.25 GB RAM WAS JVM Heap 256M

• WMQ Server

x365 4 x 2.8 GHz CPU, non-hyperthreaded, 2 MB L3 cache, 3.5 GB RAM

Multiple WAS servers were all on the same physical machine. Monitoring free memory, paging and CPU

utilisation showed this was not a problem. The throughput is the maximum steady state rate that can be

achieved with the varying number of WAS instances.

WebSphere MQ JMS V7 – Performance Evaluations

Page 36

Win2003 MDB 1k message

0

1000

2000

3000

4000

5000

6000

1 2 4

WAS Servers

M
e
s
s
a
g

e
s
 p

e
r

s
e
c
o

n
d

NP_V6027

P_V6027

NP_V7010

P_V7010

For non-persistent messages: (up to the limit of the systems used in these tests)

•WMQ 6 message throughput degrades as more WAS connections are made.

•WMQ 7 message throughput improves as more WAS connections are made.

For persistent messages: (up to the limit of the systems used in my tests)

•WMQ 6 message throughput degrades as more WAS connections are made.

•WMQ 7 message throughput is constant, irrespective of the number of connections

Monitoring & Statistics were turned on for the Queue and AMQSMON showed that with one WAS with MQ

V6027 and all measurements with MQ 7010, there were zero GetFailCount queue statistic. With two WAS,

there was a 46% failure rate and four WAS suffered a 73% failure rate for the GetFailCount queue statistic.

The improvement to the GetFailCount queue statistic is caused by ‘Browse and mark’ in WMQ 7 and is the

principle reason for the throughput improvement in V7. With MQ Version 6, a Browse was executed

independently for each WAS instance followed by a destructive Get which could lead to multiple WAS

instances issuing Get for the same message. Browse and mark prevent subsequent Browse from seeing the

messages already earmarked for a different WAS.

WebSphere MQ JMS V7 – Performance Evaluations

Page 37

6 Other Performance Enhancements in V7.0

6.1 JMS Selectors

A JMS message selector allows a client to filter the messages that it is interested in by using the message

header. Messages with headers that match the selector are delivered to the application. In the model for point-

to-point JMS in WebSphere MQ V7.0 this matching is now done in the server (Queue Manager) rather than the

client which reduces message flows and hence can significantly improve performance. See Figure 37.

Nonetheless, message selectors by their nature add overhead to the codepath and care should be taken to

minimize their use.

JMS Selectors Performance

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

Application Threads / Selection Match Ratio

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

0

20

40

60

80

100

120

140

160

C
P

U
%

V7 V6

V7 CPU% V6 CPU%

Figure 37 – JMS Selector Performance. Cpu figures are for QM only.

Maximum Sustainable throughput of 2k messages using thread id as a selector, for 1 to 10 threads, single queue.

6.1.1 Recommendations

• Disjoint selectors, i.e. multiple selectors which match on entirely separate sets of messages, can also be

implemented by using multiple queues, topics or perhaps correlationId.

• When selectors are used, every effort should be made to minimise their complexity and also to make

them fail as quickly as possible when a message does not match.

Example:

“height=183 AND gender=male” will fail faster than “gender=male AND height=183” since we can

assume that in the selection domain there are fewer people with that exact height than there are males.

• CorrelationId should still be used in preference to Selectors where possible. This is because the

correlationid field maps directly to the internal WMQ Queue Manager’s representation of the message.

• For best performance try to keep queue depths down when using Selectors. Because selection is now

done in the Queue Manager the additional workload of managing a deep queue can degrade

throughput.

WebSphere MQ JMS V7 – Performance Evaluations

Page 38

6.2 Asynchronous Put and Read Ahead

For some Non-Persistent Non-Transactional message workloads, the new Asynchronous Put and Read Ahead

modes in V7.0 can offer significant response time improvements in systems where network latency is high.

Both of these enhancements offer potential improvements at a cost of a slightly lower quality of service.

JMS Async Put / Read Ahead Performance

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10

Application Threads

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

0

20

40

60

80

100

120

140

160

180

200

C
P

U
%

V6 V7 V7 Async
V6 CPU% V7 CPU% V7 Async CPU%

Figure 38 – New Asynchronous Put and Read Ahead features.

6.2.1 Asynchronous Put

Asynchronous Put provides considerable performance benefits to JMS client applications that transmit a

sequence of messages in rapid succession but do not require immediate acknowledgement from the queue

manager for every sent message. This is achieved by removing the requirement for the client to wait for a

response from the Queue Manager to every message sent, thus enabling the client to continue processing in

cases where it makes sense to do so.

6.2.2 Read Ahead

Similarly the ReadAhead enhancement sends messages to the client before being requested to do so, in

anticipation that such a request will be made. The messages are queued locally and can be retrieved more

quickly when the client is ready to do so.

The key considerations for using the read ahead feature in application designs

are:

• If the JMS application using read ahead terminates abruptly before it consumes all the messages from

the internal buffer, then any non-persistent messages currently stored in the buffer are discarded and

the messages are lost.

• The read ahead feature is only applicable to non-persistent messages.

• Any existing JMS application can make use of the read ahead feature without any code modifications.

• If all the following conditions are true, messages sent to a queue in a session might not be received in

the order in which they were sent:

– An application uses two or more message consumers in the same session to consume the

messages from the queue.

– Each message consumer uses a different destination object for the WebSphere MQ queue.

– Any or both of the destination objects are configured for read ahead.

WebSphere MQ JMS V7 – Performance Evaluations

Page 39

Existing JMS applications can make use of the WebSphere MQ V7.0 asynchronous put and read
ahead features without any modifications to the code.

6.2.3 Performance Notes

To achieve maximum message throughput the Async Send and ReadAhead features should be used together,

and the rate at which messages are sent should be regulated to keep the queue depths to a minimum.

If left unregulated there is a risk that the receiver application will be unable to keep up with the sender and as a

result queue depths will increase leading to inefficiencies in the Queue Manager and lower throughput.

6.3 Asynchronous Consume

Prior to WebSphere MQ V7.0, asynchronous message consumption was not natively supported by the Queue

Manager. To perform asynchronous message consumption, the WebSphere MQ classes for JMS periodically

polled the destination for suitable messages to arrive.

Both synchronous and asynchronous message consumption are now supported as native features in WebSphere

MQ V7.0. An application that needs to consume a message asynchronously registers a callback function for a

destination. When a suitable message is available at the destination, WebSphere MQ calls the function and

passes the message as a parameter. The function can then process the message asynchronously.

From the JMS application design or programming perspective there are no changes for asynchronous message

consumption. As previously, the JMS application registers an object implementing the JMS MessageListener

interface to consume messages asynchronously.

In WebSphere MQ V7.0, the WebSphere MQ classes for JMS no longer polls a destination to check the

availability of a message. As soon as a suitable message arrives at the destination the WebSphere MQ classes

for JMS pass the message to the MessageListener callback function.

The advantages of using WebSphere MQ native asynchronous consume are summarized as follows:

• Improved performance of JMS message listeners, particularly when an application uses multiple

message listeners in a session to monitor multiple destinations.

• Reduced CPU usage at both the JMS application and the WebSphere MQ queue manager.

• Fewer requests over TCP/IP and a reduction in network traffic between the classes and the queue

manager.

• Message throughput is increased and the time taken to deliver a message to a message listener is

reduced.

In the test scenario Figure 39 a JMS client application registers message listeners for between 4 and 40

destinations, only 4 of which are actively receiving messages from a separate JMS client. The rate at which

messages are arriving on the active destinations is regulated to avoid queue growth and hence to maximize total

throughput.

In the V6.0 case, the overhead of polling the idle destinations causes performance to degrade as the number of

message listeners increases. In contrast the V7.0 results show only a minor drop in performance even with 40

message listeners.

WebSphere MQ JMS V7 – Performance Evaluations

Page 40

JMS Asynchronous Consumer Performance

0

2000

4000

6000

8000

10000

12000

4 8 12 16 20 24 28 32 36 40

Application Threads / Selection Match Ratio

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

0

20

40

60

80

100

120

140

160

C
P

U
%

V7 V6

V7 CPU% V6 CPU%

Figure 39 – Asynchronous Consumer Performance.

6.4 Multiplexed Sockets and Conversation Sharing

WebSphere MQ V7.0 introduces the ability for many threads in one JMS client program to connect to the same

queue manager and share a running instance of a client channel. The client protocol conversations for the JMS

calls made by each thread are transparently multiplexed over a single TCP/IP socket session.

Multi-threaded JMS client programs running on previous versions of WebSphere MQ use a separate channel

instance for each thread. For a WebSphere MQ V7.0 JMS client connected to a WebSphere MQ V7.0 queue

manager, the conversation sharing feature reduces the number of running TCP/IP sockets on the queue

manager, allowing a greater number of concurrent client connections to be maintained.

WebSphere MQ V7.0 uses a full duplex protocol for JMS client connections when the conversation sharing

parameter SHARECNV is greater than zero on both channels.

Full duplex means that information can be sent from either end of the session at any time.

Heartbeats are short flows of information that are sent at regular intervals to confirm that the session is still

active.

Heartbeats can now be performed from both the client end and the queue manager end at a negotiated rate that

is based on the HBINT parameter of both channels. This leads to earlier detection of communications network

failures and other channel problems. The client program and the queue manager can now carry out recovery and

reconnecting functions in a more timely manner, resulting in an overall improvement to the quality of service.

Previous versions of MQ use a half duplex protocol, where a heartbeat could only be performed from the queue

manager end during a MQGET operation with a WaitInterval specified. This limited its usefulness for detecting

problems.

For performance-critical applications the use of SHARECNV(1) is advised, unless a very large number of

concurrent client connections is required. Setting SHARECNV(1) allocates a socket for each application thread

which reduced the overhead of Multiplexing. The default value is SHARECNV(10) which allocates a single

socket for up to 10 JMS client application threads.

Setting SHARECNV(0) disables Multiplexing and forces the JMS client into V6 compatibility mode which

disables many of the V7 enhancements and is recommended only when connecting to a V6 Queue Manager.

WebSphere MQ JMS V7 – Performance Evaluations

Page 41

6.5 Large Messages

WebSphere MQ V7.0.1 includes improvements to the internal processing of messages which enhance the

steady-state throughput performance of larger messages in some scenarios.

JMS Large Message Performance - 4 Streams

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 10 100 1000 10000 100000

Message Size in KBytes

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

 i
n

 M
B

/S
e
c

0

20

40

60

80

100

120

140

160

Q
u

e
u

e
 M

a
n

a
g

e
r

C
P

U
%

V6 Max Rate V7 Max Rate
V6 QM CPU% V7 QM CPU%

Figure 40 – Large Message Performance – 4 Streams.

JMS Large Message Performance - 10 Streams

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 10 100 1000 10000

Message Size in KBytes

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

 i
n

 K
B

/S
e
c

0

20

40

60

80

100

120

140

160

Q
u

e
u

e
 M

a
n

a
g

e
r

C
P

U
%

V6 Max Rate V7 Max Rate
V6 QM CPU% V7 QM CPU%

Figure 41 – Message Performance – 10 Streams.

Figures Figure 40 and Figure 41 show the maximum sustainable message rate relative to message size for a

range of different message sizes from 1000 bytes to 100Mb.

WebSphere MQ JMS V7 – Performance Evaluations

Page 42

Figures Figure 40 uses 4 threads in each client and Figure 41 uses 10.

In each case the application threads in the sender application send messages at a steady rate to the Queue

Manager, and the application threads in the receiving application receive these messages. Each sender/receiver

pair has a dedicated queue. The send rate of each thread is increased until the receiving threads are unable to

keep up, leading to queuing within the Queue Manager.

The reported result at each message size is the maximum throughput achievable without queuing, multiplied by

the message size to give a relative throughput rate.

The figures show that a message size of 100Kb is processed most efficiently, and also show the relative

performance of WMQ V6 and V7.

It can be seen that the performance of V7 exceeds that of V6 for messages over 10Kb where 4 application

threads are in use, and for messages over 100Kb where 10 application threads are in use.

7 Tuning/programming guidelines

7.1 Tuning the queue manager

Performance reports with tuning information for WebSphere MQ v7.0 on all supported operating systems can

be found via. the IBM SupportPac webpage at the following URL:

http://www.ibm.com/software/integration/wmq/support/

The main tuning actions taken for the tests in Chapter 2 and 3 of this report were:

• Log / LogBufferPages = 4096 (size of memory used to build log I/O records

• Log / LogFilePages = 16348 (size of Log disk file extent)

• Log / LogPrimaryFiles = 16 (number of disks extents in log cycle)

• LogWriteIntegrity=SingleWrite (suitable for write-cached disks)

• Channels / MQIBindType = FASTPATH (channels are an extension to QM address space)

• TuningParameters / DefaultQBufferSize = 1MB (use 1MB of main memory per Q to hold non
persistent messages before spilling to the file system

• TuningParameters / DefaultPQBufferSize = 1MB (use 1MB of main memory per Q to hold
persistent messages)

7.2 Tuning the heap size for Java

During operation, current garbage collectors (GC) will normally interrupt the execution of all other threads in a

JVM to some extent. The level of interruption depends on the amount and the type of work the GC is doing.

This is largely dependant on how the memory is being used by the application and the GC settings currently in

operation.

JMS has characteristics such that fixed memory requirements are low but transient memory requirements can be

high, depending on message size and application design. Without tuning, or with incorrect tuning, the

automatic garbage collection policies of Java can adversely affect messaging performance.

The most common GC settings are:

• –Xms Minimum heap size.

• –Xmx Maximum heap size.

• –verbose:gc Display garbage collection events.

As an example, the following line fixes the heap size at 512MB and enables verbose garbage collection.
java –Xms512M –Xmx512M –verbose:gc

Recommendations

• Use –verbose:gc to monitor the frequency of your application’s garbage collection under different

loads and adjust the minimum and maximum heap sizes accordingly.

• A garbage collection interval of less than one second is detrimental to performance. A sensible

minimum GC interval is 1-2 seconds, but consideration should also be given to the GC pause time.

WebSphere MQ JMS V7 – Performance Evaluations

Page 43

• If the machine has sufficient memory then setting –Xms equal to –Xmx will allocate the specified

maximum heap size at jvm startup. This avoids any costs involved in dynamically resizing the heap.

• Do not leave the minimum heap size unset. If left unset, the heap may not be expanded. With a small

(the default) minimum heap size, the GC may operate very frequently, reclaiming transient memory

but not extending the heap (since we have already stated that most of the memory is released

immediately after it is requested when messaging).

• Modern GC implementations offer a variety of GC policies including concurrent and generational

modes and you should consult your JVM documentation to determine the best option for your

workload, then experiment with -verbose:gc to tune the settings.

7.3 Shared Conversations

Clients producing or consuming a small number of messages per second can usefully share the TCP socket with

other threads in the same process which can be useful when human interaction is necessary for each message.

Benchmarks that produce or consume multiple hundreds of messages per second will bottleneck on the shared

socket and should use SHARECNV=1 as explained in section “Multiplexed Sockets and Conversation Sharing”

on page 40

7.4 Avoiding running in Migration/Compatibility Mode

MQ JMS 7.0 can connect to both V6 and V7 Queue Managers. When connected to a V6 Queue Manager a less

optimised codepath is used, which facilitates migration from V6 to V7 but which should not be considered as a

long term solution if performance is important.

It is also possible to connect V7 JMS to a V7 Queue Manager in migration mode by setting

WMQ_PROVIDER_VERSION to “6.0.0.0” on the ConnectionFactory, but for best performance the default V7

value should be used.

7.5 Use of correlation identifiers

• Selecting against correlationId or messageId follows an optimised path through WebSphere MQ 7.0

and the selection occurs on the server-side (in the queue manager). This gives better performance than

when using arbitrary JMS selectors.

• Use of the provider-specific “ID:” tag is applicable to these two fields only and is of practical use only

with correlation identifiers.

• To use the optimised path, the correlationId must be prefixed with “ID:” and must be formatted

correctly as 24 bytes represented as a hex-string (of 48 characters). Failure to adhere to this means the

selection will revert to expensive client-side methods.

Example:
Session.createConsumer(

destination,

“JMSCorrelationID=’ID:574d51373053616d706c65436f7272656c6174696f6e4944’”);

 In this case, the hexadecimal represents a 24-byte ASCII string “WMQ70SampleCorrelationID”

• The safest way of generating a correct identifier is to use

JMSMessage.setJMSCorrelationIDAsBytes. This allows the formatted version to be returned by

getJMSCorrelationID. The number of bytes input should not be more than 24 or the identifier will be

truncated.

Example:
Message.setJMSCorrelationIDAsBytes(“WMQ70SampleCorrelationID”.getBytes(“UTF8”));

Session.createConsumer(

destination,

“JMSCorrelationID=’” + message.getJMSCorrelationID() + ”’”);

• A change to the correlationId (or indeed any selector) that you are matching against requires opening

a new MessageConsumer and discarding the old one. This is an expensive operation if it is done for

every message that is processed since it involves closing and re-opening the underlying queue. For this

reason you should consider generating your own correlationId for each client rather than the common

WebSphere MQ JMS V7 – Performance Evaluations

Page 44

design pattern of using the messageId of a sent message as the correlationId of its reply. Another

alternative is to use a temporary queue per client.

7.6 JVM Warmup

• Modern JVMs employ sophisticated Just-In-Time (JIT) compilers to optimise the executable code.

These JITs can continue to recompile selected java methods for many minutes or even hours after the

jvm has initialised. Full performance may not be achieved until this is completed, and indeed the cost

of compilation can slow down performance in the early stages of JVM execution.. In most cases the

default JIT settings will give best overall performance but in situations where a faster startup is

desirable the JIT activity can be reduced at the expense of absolute performance. (e.g. –Xquickstart on

IBM Java 5.0 jvms).

• Performance Measurements on JMS workloads should only be done after a warmup period to ensure

JIT activity has largely completed. You may need to experiment to find this point.

7.7 Other Programming Recommendations

• Use Non-Persistent, Non-Transactional messages whenever possible.

• Take performance into account when choosing which message type to use. The relative performance of

the different JMS message types running a typical workload his as follows (fastest first)

1. JmsTextMessage

2. JmsBytesMessage (typically 5% slower than JmsTextMessage for a 2k message size)

3. JmsObjectMessage (+10%)

4. JmsStreamMessage (+15%)

5. JmsMapMessage (+20%)

• If your application uses both transactional and non-transactional messages, consider creating separate

transactional and non-transactional sessions for the different message types.

• Always call the close() method on JMS connection and session objects when they are no longer

needed. This releases the underlying resource handle. This is especially important for publish-

subscribe, where clients need to deregister from their subscriptions. Closing the objects allows the

queue manager to release the corresponding resources in a timely fashion; failure to do so can affect

the capacity of the queue manager for large numbers of applications or threads.

• Do not lose references to connection and session objects (e.g. after registering an asynchronous

listener) as this precludes being able to call their close() methods.

• To ensure an application or internal object will always tidy up correctly, including if it should fail,

these close() calls should be made in the final part of a try-catch-finally control structure.

• Do not create sender or receiver objects regularly if you can reuse them instead. This avoids releasing

then re-acquiring the same queue manager resource.

• Always call delete() on temporary queues and topics when they are no longer needed. Otherwise, they

will not be deleted until the connection is closed. For long running applications this will cause

performance and administration problems.

7.8 JMS Persistence

Several JMS settings control the effective QoS of a JMS client’s communication. The delivery and

acknowledgement modes indicate how many times a given message can be delivered to an application: at-most-

once or once-and-only-once. The customer solution relies on a certain level of resilience from the messaging

provider.

If the messages are carrying 'inquiry' questions and answers, then it is likely that speed is far more important

than resilience, so the architects can make this trade-off and use non-persistent messages.

WebSphere MQ JMS V7 – Performance Evaluations

Page 45

JMS delivery mode

The JMS API supports two delivery modes for messages to specify whether messages are lost if the JMS

provider fails. These are set by the producer via the deliveryMode property of

javax.jms.MessageProducer#send(). The deliveryMode can be set on the send() call, but can also be set on the

destination to which the messages are being sent, and in fact the example below does the latter.

The PERSISTENT delivery mode, which is the default, instructs the JMS provider to take extra care to

ensure that a message is not lost in transit in case of a JMS provider failure. A message sent with this

delivery mode is logged to stable storage when it is sent. Only a hard media failure should cause a

PERSISTENT message to be lost. PERSISTENT has the caveat that it does not cover message

destruction due to message expiration (which would be considered a normal event), or loss due to

"resource restrictions" (which the JMS specification does not define further). PERSISTENT messages

should not be lost during a controlled restart of a JMS provider but there are no guarantees of

protection across an unexpected failure.

The NON_PERSISTENT delivery mode does not require the JMS provider to store the message or

otherwise guarantee that it is not lost if the provider fails or is restarted - in fact NON_PERSISTENT

messages should NOT be kept across a restart of a JMS provider.

JMS acknowledgement mode

The JMS API also supports the ACKNOWLEDGE_MODE property that controls message duplication on non-

persistent messaging. It is set via the acknowledgement Mode property of javax.jms.Session#createSession() on

the consuming application.

Auto acknowledgement (default) means messages will not be delivered more than once

DUPS_OK acknowledgement means messages may be delivered more than once in certain circumstances

and the client application must be prepared to deal with seeing the same message twice.

Client acknowledgement leaves control of this feature entirely to the user.

WebSphere MQ Quality-of-Service

The JMS definition of persistence allows considerable scope for different quality of service (QoS).

WebSphere MQ provides QoS that have been appreciated by customers over the last 16 years. Many of the

installation defaults provide robustness and small memory footprint rather than maximising good performance.

WebSphere MQ has traditionally provided two QoS: persistent and non-persistent. The WebSphere MQ

definitions are similar, but not identical to the JMS requirements. In particular,

WebSphere MQ does not discard non-persistent messages while the queue manager is running, even in the

event of a memory buffer shortage.

WebSphere MQ provides a persistence and transaction integrity, above and beyond the specification of

JMS, which has been industry-proven for a decade.

These QoS are usually paired together with transactionality. If messages are persistent it is expected, though not

required, that they should be transactional and if they are non-persistent, they should be non-transactional.

Messages carrying 'valuables' should normally be persistent and transactional since that eliminates most causes

of failure. The application and system designer needs to consider the levels of resilience and recovery needed in

different places, and the complexity needed in each component - the application, the messaging provider, a

database, and so on. Using persistent, transactional messaging can remove a lot of complexity from application

code.

Non-persistent messages are discarded by WebSphere MQ in the event of a queue manager restart but otherwise

are not lost. The discarding of non-persistent messages can be altered on an individual queue basis by

specifying NPMCLASS=HIGH which tells the Queue manager to preserve non-persistent messages when a

controlled shutdown and restart of the queue manager is undertaken. During a failure (hardware or software)

messages may have been lost and because there is no message log, we cannot rebuild the queue with integrity.

These uncontrolled failures are outside of the JMS definition of persistent messages. Consequently, because

MQ does not discard non-persistent messages during resource shortages, MQ non-persistent messages qualify

WebSphere MQ JMS V7 – Performance Evaluations

Page 46

as JMS Persistent messages when they are stored on a queue marked with NPMCLASS=HIGH. This code

fragment shows how Persistence is taken from the JMS destination/queue using the WMQ_PER_NPHIGH string,

which tells WebSphere MQ that it should treat messages sent to that destination as JMS PERSISTENT

messages, but that it can use its knowledge of the underlying Websphere MQ queue configuration to optimise

performance by using WebSphere MQ non-persistent messaging where possible

// Create a connection factory

 JmsFactoryFactory ff = JmsFactoryFactory.getInstance(WMQConstants.WMQ_PROVIDER);

 JmsConnectionFactory cf = ff.createConnectionFactory();

//Add some connection factory configuration here to tell the application how to connect to WebSphere MQ

 connection = cf.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 destination = (JmsDestination) session.createQueue("queue:///Q2");

 destination.setIntProperty(WMQConstants.WMQ_PERSISTENCE, WMQConstants.WMQ_PER_NPHIGH);

WebSphere MQ's use of transactional recovery logs in combination with secondary storage of queues results in

resilience against individual failures can be used for high availability and disaster recovery scenarios.

The JMS definition of a persistent message is not precise so application solutions must decide how much

dependence is put on the message provider.

• Does the message have to survive if various resource shortages are encountered on the journey?

• Does the message survive if various application, software, or hardware failures are encountered on the

journey?

• Greater reliability inevitably means lower run-time performance because of the extra work needed to

provide the information needed during recovery.

WebSphere MQ JMS V7 – Performance Evaluations

Page 47

8 Machine and Test Configurations
The JMS applications used in chapters 2, 3 and 4 this report to generate the performance data are:

• Co-located on the server. (Local Measurements)

• Located on Linux clients communicating with the server. (Client measurements)

8.1 Linux, Windows and AIX

The Windows/Linux server machine is IBM eServer x360 with 4 * 2.8GHz P4 Xeon processors and 8GB RAM.

The AIX server is IBM P570 with 1 dual core CPU (4.2GHz Power 6)

This means that the Linux and Windows throughput can be compared because they use similar hardware but

AIX is using faster hardware.

The server operating system is

• Windows 2003 with MQ Log and Queues on 3 * IBM SSA 15,000 RPM drives

• Linux Redhat 3.4.6 (kernel 2.6.9) with MQ Log and Queues on SAN disks on DS6000

• AIX 6.1 with MQ Log and Queues on SAN disks on DS6000

Clients are hosted by four driver machines IBM Server x3850 with 4*3.3GHz Xeon are connected by 1Gb

Ethernet LAN which is designed to ensure the server is the bottleneck. 64 bit RHEL

8.1.1 SAN disk subsystem

The MQ SAN consists of a pair of 2026 model 432 (McDATA ES-4700) switches running at 4Gb/s with 32

ports each. They are connected together via two inter-switch links to form a single SAN fabric.

The MQ hosts attach via this SAN to a DS6800 disk array (1750 model 511) with one expansion drawer.

Each drawer (controller + expansion) contains 16 x 73Gb 15K fibre channel disk drives, so there are a total of

32 physical drives.

The 32 drives are configured as four RAID-5 arrays, each of which is 6+Parity+Spare (the number of spares is

defined by the configuration of the DS6800).

The controller has an effective cache size of 2.6Gb plus 0.3Gb of NVS

8.2 zOS

The hardware configuration is:

• CPU: 3-CPU logical partition (LPAR) of a zSeries 990 (2084-332).

CPUs are defined as floating but there are always 3 physical CPUs available.

Its capacity is similar to that of a 2084-303.

• DASD: FICON-connected Enterprise Storage Server (ESS) Model F20.

Software levels are:

• z/OS 1.9

• WebSphere MQ v7

• Java 1.5

WebSphere MQ JMS V7 – Performance Evaluations

Page 48

8.3 MDB Test Configuration

The MDB Test configuration used in chapter 5 of this report consists of one Windows client (message

producer), one Linux server (Queue Manager) machine and 3 Windows clients each running a single MDB

message consumer within a Websphere Application Server.

The Linux server machine is an IBM eServer x3850 with 4 * 3.3GHz P4 Xeon processors and 4GB RAM.

The Windows client machines are:

• (Message Producer) IBM NetFinity 8500R with 4 * 700MHz P4 Xeon processors and 4GB RAM.

• (Message Consumer1) IBM eServer x3850 with 4 * 3.3GHz P4 Xeon processors and 4GB RAM.

• (Message Consumer2) NetFinity 8500R with 4 * 700MHz P4 Xeon processors and 4GB RAM.

• (Message Consumer3) NetFinity 8500R with 4 * 700MHz P4 Xeon processors and 4GB RAM.

The server operating system is

• Red Hat Enterprise Linux AS release 4 (Nahant Update 5) with MQ Log and Queues on SAN disks on

DS6000

The client operating systems are

• Windows 2003 Server

• Windows 2003 R2 Enterprise x64 Edition SP1

The Websphere Application Server version is v6.1.0.19

All machines are connected by a 1Gb Ethernet LAN.

8.4 Other V7 Enhancements

The JMS applications used in chapter 6 of this report to generate performance data for the new V7

enhancements are located on Windows and Linux clients communicating with a Linux server.

The Linux server machine is an IBM eServer x366 with 4 * 3.66GHz P4 Xeon processors and 4GB RAM.

The Windows client machine is an IBM eServer x366 with 4 * 3.66GHz P4 Xeon processors and 4GB RAM.

The Linux client machine is an IBM eServer x3850 with 4 * 3.33GHz P4 Xeon processors and 4GB RAM.

The server operating system is

• Red Hat Enterprise Linux AS release 4 (Nahant Update 5) with MQ Log and Queues on SAN disks on

DS6000

The client operating systems are

• Windows 2003 R2 Enterprise x64 Edition SP1

• Red Hat Enterprise Linux AS release 4 (Nahant Update 5)

Clients are connected to the server by 1Gb Ethernet LAN.

For performance reasons the tests in this section are run with the conversation sharing feature of WMQV7

disabled. See section “Multiplexed Sockets and Conversation Sharing” on page 40 for details on how to do this.

