
March 2010

Peter Toghill ,

WebSphere MQ Performance

IBM Hursley

Property of IBM

IBM United Kingdom Limited

WebSphere®MQ Publish Subscribe V7.0.1 -

Performance Evaluations

Version 1.0

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page II

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty

and liability exclusion”, “errors and omissions”, and the other general information paragraphs

in the "Notices" section below.

First Edition, March 2010.

This edition applies to WebSphere MQ V7 (and to all subsequent releases and modifications

until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2010. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

Notices

DISCLAIMERS

The performance data contained in this report were measured in a controlled environment.

Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to

any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility

of the licensed user. Much depends on the ability of the licensed user to evaluate the data

and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,

therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability

are governed only by the respective terms applicable for Germany and Austria in the

corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical

errors. Changes are periodically made to the information herein; any such change will be

incorporated in new editions of the information. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this information at any time and without

notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page III

wanting to understand the performance characteristics of WebSphere MQ Publish Subscribe

V7.0.1. The information is not intended as the specification of any programming interface that

is provided by WebSphere. It is assumed that the reader is familiar with the concepts and

operation of WebSphere MQ V7.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make

these available in all countries in which IBM operates. Consult your local IBM representative

for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of International Business

Machines Corporation in the United States, other countries or both:

- IBM

- WebSphere

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United

States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page IV

Preface
This report presents the results of performance evaluations of the MQI clients supplied with

WebSphere MQ for Linux V7.0.1, AIX V7.0.1, and Solaris V7.0.1 and is intended to assist with

programming and capacity planning.

Target audience

This SupportPac is designed for people who:

• Will be designing and implementing Publish Subscribe solutions using WebSphere MQ .

• Want to understand the performance limits of WebSphere MQ Publish Subscribe.

The reader should have a general awareness of the Publish Subscribe API, Linux, and/or AIX operating

systems and of WebSphere MQ in order to make best use of this SupportPac.

The contents of this SupportPac

This SupportPac includes:

• Charts and tables describing the performance headlines of WebSphere MQ V7.0.1 Publish

Subscribe

• WebSphere MQ messaging comparisons between Solaris, Linux and AIX

Feedback on this SupportPac

We welcome constructive feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Please direct any comments of this nature to WMQPG@uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be directed to

your local IBM Representative or Support Centre.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page V

CONTENTS
1 Overview... 1
2 Client Channels Test Scenario.. 2

2.1 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N).................................2
2.2 Publish/Subscribe Single Publisher, Many Subscribers, Topic Cluster.................................3
2.3 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario4
2.4 Point to Point multiple (Producer, Queue, Consumer) scenario..5

3 AIX Measurements.. 6
3.1.1 Publish Subscribe 1:N, Non Persistent messages ... 6
3.1.2 Publish Subscribe 1:N, Persistent messages .. 7
3.1.3 Publish Subscribe 1:N, Non Persistent messages, Cluster.. 8
3.1.4 Publish Subscribe 1:N, Persistent messages, Cluster... 9
3.1.5 Publish Subscribe (Multiple P/T/S), Non Persistent messages ... 10
3.1.6 Publish Subscribe (Multiple P/T/S), Non Persistent messages ... 11
3.1.7 Publish Subscribe (Multiple P/T/S), Persistent messages... 12
3.1.8 Point to Point (Multiple P/Q/C), Non Persistent messages... 13
3.1.9 Point to Point (Multiple P/Q/C), Persistent messages .. 14

4 Linux Measurements... 15
4.1.1 Publish Subscribe 1:N, Non Persistent messages ... 15
4.1.2 Publish Subscribe 1:N, Non Persistent messages, Cores .. 16
4.1.3 Publish Subscribe 1:N, Persistent messages .. 17
4.1.4 Publish Subscribe 1:N, Non Persistent messages, Cluster-4... 18
4.1.5 Publish Subscribe 1:N, Non Persistent messages, Cluster Publications 19
4.1.6 Publish Subscribe 1:N, Persistent messages, Cluster... 20
4.1.7 Publish Subscribe (Multiple P/T/S), Non Persistent messages ... 21
4.1.8 Publish Subscribe (Multiple P/T/S), Persistent messages... 22
4.1.9 Point to Point (Multiple P/Q/C), Non Persistent messages... 23
4.1.10 Point to Point (Multiple P/Q/C), Persistent messages .. 24

5 Solaris Measurements ... 25
5.1.1 Publish Subscribe 1:N, Non Persistent messages ... 25
5.1.2 Publish Subscribe 1:N, Persistent messages .. 26
5.1.3 Publish Subscribe 1:N, Non Persistent messages, Cluster.. 27
5.1.4 Publish Subscribe 1:N, Persistent messages, Cluster... 28
5.1.5 Publish Subscribe (Multiple P/T/S), Non Persistent messages ... 29
5.1.6 Publish Subscribe (Multiple P/T/S), Persistent messages... 30
5.1.7 Point to Point (Multiple P/Q/C), Non Persistent messages... 31
5.1.8 Point to Point (Multiple P/Q/C), Persistent messages .. 32

6 Machine and Test Configurations.. 33
6.1 Linux, AIX, & Solaris Servers ..33
6.2 SAN disk subsystem..34
6.3 Test case names ...34

7 Summary .. 35
7.1 Publish Subscribe 1:N ...35
7.2 Publish Subscribe (Multiple P/T/S)...35

8 Tuning... 35

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page VI

TABLES
Table 1 – Publish/Subscribe 1:N, non Persistent messages ...6
Table 2 – Publish/Subscribe 1:N, Persistent messages ...7
Table 3 – Publish/Subscribe 1:N, non Persistent messages, Cluster..8
Table 4 – Publish/Subscribe 1:N, Persistent messages, Cluster..9
Table 5 – Publish/Subscribe Multiple, non Persistent messages..10
Table 6 – Publish/Subscribe Multiple, non Persistent messages..11
Table 7 – Publish/Subscribe Multiple, Persistent messages ..12
Table 8 – Point to point ,Multiple, non Persistent messages..13
Table 9 – Point to point ,Multiple, Persistent messages...14
Table 10 – Publish/Subscribe 1:N, non Persistent messages ...15
Table 11 – Publish/Subscribe 1:N, non Persistent messages ...16
Table 12 – Publish/Subscribe 1:N, Persistent messages ...17
Table 13 – Publish/Subscribe 1:N, non Persistent messages, Cluster..18
Table 14 – Publish/Subscribe 1:N, non Persistent messages, Cluster..19
Table 15 – Publish/Subscribe 1:N, Persistent messages, Cluster..20
Table 16 – Publish/Subscribe Multiple, non Persistent messages..21
Table 17 – Publish/Subscribe Multiple, Persistent messages ..22
Table 18 – Point to point ,Multiple, non Persistent messages..23
Table 19 – Point to point ,Multiple, Persistent messages ..24
Table 20 – Publish/Subscribe 1:N, non Persistent messages ...25
Table 21 – Publish/Subscribe 1:N, Persistent messages ...26
Table 22 – Publish/Subscribe 1:N, non Persistent messages, Cluster..27
Table 23 – Publish/Subscribe 1:N, Persistent messages, Cluster..28
Table 24 – Publish/Subscribe Multiple, non Persistent messages..29
Table 25 – Publish/Subscribe Multiple, Persistent messages ...30
Table 26 – Point to point ,Multiple, non Persistent messages..31
Table 27 – Point to point ,Multiple, Persistent messages ..32

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page VII

FIGURES
Figure 1 – MQI-client channels into a remote queue manager...2
Figure 2 – Publish Subscribe 1:N ..2
Figure 4 – Publish Subscribe ...4
Figure 5 Multiple (Producer Queue Consumer) ...5
Figure 6 – Publish Subscribe 1:N, non persistent ..6
Figure 7 – Publish Subscribe 1:N, persistent ...7
Figure 8 – Publish Subscribe 1:N, non persistent, Cluster...8
Figure 9 – Publish Subscribe 1:N, persistent, cluster ..9
Figure 10 – Publish Subscribe Multiple, non persistent ..10
Figure 11 – Publish Subscribe Multiple, non persistent ..11
Figure 12 – Publish Subscribe multiple, persistent..12
Figure 13 – Point to Point, Multiple, non persistent ..13
Figure 14 – Point to point, multiple, persistent..14
Figure 15 – Publish Subscribe 1:N, non persistent ..15
Figure 16 – Publish Subscribe 1:N, non persistent, Cores...16
Figure 17 – Publish Subscribe 1:N, persistent ...17
Figure 18 – Publish Subscribe 1:N, non persistent, Cluster...18
Figure 19 – Publish Subscribe 1:N, non persistent, Cluster publications ..19
Figure 20 – Publish Subscribe 1:N, persistent, cluster ..20
Figure 21 – Publish Subscribe Multiple, non persistent ..21
Figure 22 – Publish Subscribe Multiple, persistent ...22
Figure 23 – Point to Point, Multiple, non persistent ..23
Figure 24 – Point to point, multiple, persistent..24
Figure 25 – Publish Subscribe 1:N, non persistent ..25
Figure 26 – Publish Subscribe 1:N, persistent ...26
Figure 27 – Publish Subscribe 1:N, non persistent, Cluster...27
Figure 28 – Publish Subscribe 1:N, persistent, cluster ..28
Figure 29 – Publish Subscribe Multiple, non persistent ..29
Figure 30 – Publish Subscribe Multiple, persistent ...30
Figure 31 – Point to Point, Multiple, non persistent ..31
Figure 32 – Point to point, multiple, persistent..32

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 1

1 Overview

The two Publish_Subscribe and one Point to Point scenarios used in Chapter 3, 4, & 5 in this report are

measured and reported with Persistent and non Persistent messages on Linux, AIX, and Solaris systems.

1) Publish Subscribe (single publisher, single topic, multiple subscribers)

2) Multiple sets of Publisher Topic Subscriber (single publisher, single topic, single subscribers)

3) Multiple sets of Producer Queue Consumer (single producer, single queue, Single consumers)

• The message format used is a 2048 byte character message.

• In addition there are some measurements of clustered Publish-Subscribe engines

• Persistent messages are transactional. (MQCmit issued by application for each message). This also

significantly improves throughput when multiple threads are processing messages on the same queue especially

when using non cached disks for the MQ Log.

• The ‘multiple sets’ message producers insert messages at a fixed rate of 1600 non persistent per

second or 400 persistent messages per second.

• Publisher and Subscriber Client applications are written on MQI ‘C’ language

• Messages Producer/Consumer are located on Linux driver systems for these ‘Client’ measurements.

• Each sample point reported is the average of two minutes of data collection.

• Clients run on Linux and the bottleneck with these Client measurements is the server because adequate

power is available in the driving machines.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 2

2 Client Channels Test Scenario

Figure 1 – MQI-client channels into a remote queue manager

The various message producers publish a message (over a client channel), to the relevant topic on the server.

The subscriber application waits indefinitely for messages to arrive on its input queue. In the Point to Point

scenario, the Producer and Consumer replace the Publisher and Subscriber. The Producrs and Consumers are

spread over several different driver machines.

The Client Channel is set to ‘MQIBindType = FASTPATH’ . The major benefit is for non persistent messages

because it eliminates the AGENT process (AMQZLAA) and reduces CPU cost. Environments using Channel

exits should be aware that the exit code would run inside the Queue Manager.

2.1 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)

Figure 2 – Publish Subscribe 1:N

All subscribers used unique subscriber queues. Persistent subscribers received five messages in each

transaction.

1 A publisher publishes a message to the single topic.

2 Each subscriber then receives the message.

This testcase provides asynchronous messaging since there is no connection between the number of messages in

the system and the number of publishers or subscribers. The publisher publishes the next message without any

‘think’ time. Message count is the number of published messages plus those consumed by the subscribers.

Publisher

Subscriber

list

Topic

Subscribers

Driving machine

Publisher

Subscriber

Client channels

Server machine

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 3

2.2 Publish/Subscribe Single Publisher, Many Subscribers, Topic Cluster

Clustered topics enable subscribers to be spread over multiple Queue managers. Each Queue manager in the

cluster will be notified of publications on the topic if they have relevant subscribers so they can create messages

for each subscriber. Subscribers are evenly distributed between the clustered Queue Managers.

Publisher

QM_1

Subscriber

list

Topic

cluster

Subscribers

Queue Manager_1

QM_2

Subscriber

list

QM_n

Subscriber

list
Queue

Manager 2

Queue

Manager n

Subscribers
Subscribers

Figure 3 Pub Sub Clusters

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 4

2.3 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario

Figure 4 – Publish Subscribe

 All subscribers used unique subscriber queues. Persistent subscribers received five messages in each

transaction.

1 A publisher publishes a message to the single topic.

2 Only one subscriber had registered for the topic then receives the message.

This testcase provides asynchronous messaging since there is no connection between the number of messages in

the system and the number of publishers or subscribers. The publisher publishes message at a predetermined

rate which provides for a gradually increasing workload as the number of (Publisher, Topic, Subscriber) triplets

is increased. The message production rate per publisher is 1600 per second for non-persistent and 400 per

second for persistent messages. Message count is the number of published messages plus those consumed by

the subscribers.

Publisher-n

Subscriber

list

Topic-n Subscriber-n

Publisher-2

Subscriber

list

Topic-2 Subscriber-2

Publisher-1

Subscriber

list

Topic-1 Subscriber-1

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 5

2.4 Point to Point multiple (Producer, Queue, Consumer) scenario

Figure 5 Multiple (Producer Queue Consumer)

This testcase provides asynchronous messaging since there is no connection between the number of messages in

the system and the number of message producers. Messages are produced at a predetermined rate by each

producers (1600 per second for non-persistent or 400 per second for persistent messages.) This provides for a

gradually increasing workload as the number of (Producers, Queues, Consumer) triplets is increased. Message

count is the number of messages produced plus the number consumed.

Producer-n Queue-n Consumer-n

Producer-2 Queue-2 Consumer-2

Producer-1 Queue-1 Consumer-1

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 6

3 AIX Measurements

3.1.1 Publish Subscribe 1:N, Non Persistent messages

Publish Subscribe 1-n, Clients, Non-Persistent

AIX

0

10000

20000

30000

40000

50000

60000

70000

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

AIX AIX/JMS

AIX cpu % AIX/JMS cpu %

Figure 6 – Publish Subscribe 1:N, non persistent

Test name:

APSN
Clients

Messages

Per second

Publications

 per second

Server

 CPU

Pubs per second

With 4 publication

MQI 81 59095 730 48% 3128

JMS 49 28922 590 26% 2258

Table 1 – Publish/Subscribe 1:N, non Persistent messages

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

3128 publications per second can be achieved using MQI. The response time for the publish command increases

as the number of subscribers increase. With 80 subscribers, the publisher creates 730 messages per second

which are all consumed by the subscribers. The server cost to process a JMS message is about 6% more than

processing a message from an MQI/C program. This is due to the longer datastream which includes JMS

properties.

The JAVA/JMS code in the client uses significantly more CPU in the client/driver machine compared with the

MQI/C client. This slows down the message production rate and hence the work submitted to the server is only

half that achieved by the MQI client. All subsequent measurements in this report use the MQI client with ‘C’

language interface. MQ/JMS Pub/Sub measurements are contained in MP07.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 7

3.1.2 Publish Subscribe 1:N, Persistent messages

Publish Subscribe 1-n, Clients, Persistent

AIX

0

2000

4000

6000

8000

10000

12000

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

CPU%

AIX AIX cpu %

Figure 7 – Publish Subscribe 1:N, persistent

Test name:

APSP
Clients

Messages

 Per second

Publications

 per second
Server

 CPU

Pubs per second

With 4 subscribers

Per publication

Aix/MQI 73 11047 151 37% 640

Table 2 – Publish/Subscribe 1:N, Persistent messages

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

640 publications per second can be achieved on AIX. The response time for the publish command increases as

the number of subscribers increase. On AIX with 72 subscribers, the publisher creates 151 messages per second

which are all consumed by the subscribers

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 8

3.1.3 Publish Subscribe 1:N, Non Persistent messages, Cluster

Publish Subscribe 1-n, Clients, Non-Persistent,Cluster

AIX

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

5 13 21 29 37 45 53 61 69 77 85 93 10
1

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

AIX_cluster AIX

AIX_cluster cpu % AIX cpu %

Figure 8 – Publish Subscribe 1:N, non persistent, Cluster

Server

 CPU
Test name:

APSN_C
Clients

Messages

Per second

Publications

 per second

P6 P5

Pubs per second

With 4 subscribers

Per publication

MQI 81 59095 730 48% 3128

MQI/Cluster 81

101

78733

81059

972

802

36%

36%

53%

53%

2888

Table 3 – Publish/Subscribe 1:N, non Persistent messages, Cluster

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

3128 publications per second can be achieved by a single pub_sub engine and 2888 by a cluster of 2 engines

when the clients are split between the pub-sub engines. With more than 12 clients higher throughput can be

obtained from a cluster . With under 12 subscribers to a topic, the overhead of supporting clustering means that

a non clustered system provide better throughput. With a small number of subscribers , the degradation can be

30%.

The additional machine in the cluster has increased the maximum publication rate for 80 subscribers by 33%

from 730 to 972 per second. The second machine (Power5) was less powerful than the original machine (Power

6). An identical machine in the cluster would be expected to provide an increased in thoughput of between 60%

and 70% because the second QM has more work to do than the original QM. Half of the subscribers are

attached to each Queue Manager. The publisher is attached to the original machine (P6) but the second machine

has more work to do in accepting the publications from P6 and fanning them out to its subscribers.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 9

3.1.4 Publish Subscribe 1:N, Persistent messages, Cluster

Publish Subscribe 1-n, Clients, Persistent,cluster

AIX

0

5000

10000

15000

20000

25000

5 13 21 29 37 45 53 61 69 77 85 93 10
1

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

CPU%

AIX_cluster AIX

AIX_cluster cpu % AIX cpu %

Figure 9 – Publish Subscribe 1:N, persistent, cluster

Server

 CPU
Test name:

APSP_C
Clients

Messages

 Per second

Publications

 per second

P6 P5

Pubs per second

With 2 subscribers

Per publication

AIX/MQI 73 11047 151 37% 640

MQI/Cluster 97 20745 213 35% 49% 640

Table 4 – Publish/Subscribe 1:N, Persistent messages, Cluster

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

640 publications per second can be achieved on both the single and clustered pub-sub engine. The clustered

system has two queue manager to handle the increased persistent messaging load and this enables it to provide

an increased capacity of 88%. (Note that twice as much server hardware is being used). The second machine

(P5) is less powerful and has more work to do than the original machine(P6) where the publisher is attached.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 10

3.1.5 Publish Subscribe (Multiple P/T/S), Non Persistent messages

Publish Subscribe Multiple, Clients, Non-Persistent

AIX

0

20000

40000

60000

80000

100000

120000

140000

160000

8 24 40 56 72 88 10
4

12
0

13
6

15
2

16
8

18
4

20
0

21
6

23
2

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX AIX cpu %

Figure 10 – Publish Subscribe Multiple, non persistent

Test name:

APTN
Clients

Messages

Per second

Publications

Per second

Server

 CPU

AIX/MQI 64

184

102295

134246

1598

730

73%

87%
Table 5 – Publish/Subscribe Multiple, non Persistent messages

There are two clients in each (Publisher/Topic/Subscriber) group. Each publisher creates 1600 non persistent

messages per second and the system throughput increases as a straight diagonal line until the system capacity is

achieved. With 32 producers and 32 consumers , the expected throughput is 1600*32*2=102400 whereas the

measured throughput is 102295 messages per second. Adding additional publishers causes the cpu to exceeed

75% busy which causes the publication rate per publisher to slow down until the system reaches its maximum

throughput of 134246 messages with 184 publishers

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 11

3.1.6 Publish Subscribe (Multiple P/T/S), Non Persistent messages

Publish Subscribe Multiple, Clients, Non-Persistent

AIX

0

20000

40000

60000

80000

100000

120000

140000

160000

2 8 14 20 26 32 38 44 50 56 62 80 10
4

12
8

15
2

17
6

20
0

22
4

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX_8core AIX_4core

AIX_2core AIX_8core cpu %

AIX_4core cpu % AIX_2core cpu %

Figure 11 – Publish Subscribe Multiple, non persistent

Test name:

APTN
Clients

Messages

Per second

Publications

Per second

Server

 CPU

AIX_2core 34 48088 1414 100%

AIX_4core 54 86317 1598 96%

AIX_8core 72

120

110815

129403

1539

1078

71%

77%
Table 6 – Publish/Subscribe Multiple, non Persistent messages

Each publisher creates 1600 non persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 2 core and 4 cores this happens when the CPU

reaches 100%. With 8 cores the message rate per publisher is over 95% of the requested rate for 72 clients but

additional Publishers cause the rate per publisher to degrade.

Doubling the number of cores from 2 to 4 increases the workload by 80%. Doubling from 4 to 8 cores increases

throughput by 50%.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 12

3.1.7 Publish Subscribe (Multiple P/T/S), Persistent messages

Publish Subscribe Multiple, Clients, Persistent

AIX

0

5000

10000

15000

20000

25000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

AIX AIX cpu %

Figure 12 – Publish Subscribe multiple, persistent

Test name:

APTP
Clients

Messages

Per second

Publications

Per second

Server

 CPU

AIX/MQI 40

80

15876

20750

397

259

40%

51%
Table 7 – Publish/Subscribe Multiple, Persistent messages

Each message producer creates 400 persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 20 producers and 20 consumers (40 Clients) on

AIX, the expected throughput is 400*20*2=16000 whereas the measured throughput is 15876 messages per

second. Additional Publishers cause a slowdown in the rate per publisher but the overall system messaging rate

continues to gradually increase. 40 publishers (+ 40 subscribers) cause the effective publication rate to be

reduced to 260 per second

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 13

3.1.8 Point to Point (Multiple P/Q/C), Non Persistent messages

Point to Point Multiple, Clients, Non-Persistent

AIX

0

20000

40000

60000

80000

100000

120000

140000

160000

8 24 40 56 72 88 10
4

12
0

13
6

15
2

16
8

18
4

20
0

21
6

23
2

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX_ps AIX_p2p

AIX_ps cpu % AIX_p2p cpu %

Figure 13 – Point to Point, Multiple, non persistent

Test name:

ATPN
Clients

Messages

Per second

Server

 CPU

Aix_PubSub 64

132

102295

132578

73%

86%

Aix_P2P 40 63851 60%

Table 8 – Point to point ,Multiple, non Persistent messages

Each publisher or Producer creates 1600 non persistent messages per second and the system throughput

increases as a straight diagonal line until the system capacity is achieved. With 32 Publishers and 32 subscribers

(64 Clients) on AIX, the expected throughput is 1600*32*2=102400 whereas the measured throughput is

102295 messages per second. The Point to Point (P2P) scenario has 20 Producers and 20 consumers (40 clients)

with an expected throughput rate of 1600*20*2 = 64000 and a measured throughput of 63851. Additional

clients cause a reduction in system capacity.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 14

3.1.9 Point to Point (Multiple P/Q/C), Persistent messages

Point to Point Multiple, Clients, Persistent

AIX

0

5000

10000

15000

20000

25000

8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

15
2

16
0

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

AIX_p2p AIX_ps

AIX_p2p cpu % AIX_ps cpu %

Figure 14 – Point to point, multiple, persistent

Test name:

ATPP
Clients

Messages

Per second

Server

 CPU

Aix_PubSub 40

96

15876

20516

40%

51%

Aix-P2P 40

96

14420

21047

40%

51%

Table 9 – Point to point ,Multiple, Persistent messages

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 20 producers and 20 consumers (40 clients) on AIX,

the expected throughput is 400*20*2=16000 whereas the measured Pub/Sub throughput is 15876 messages per

second and 14420 point to point. Additional clients increase the message capacity to over 20000.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 15

4 Linux Measurements
The majority of measurements were made with an x-Series x3850 system but some comparisons are made with

the x-Series x366 system or x7350 system.

4.1.1 Publish Subscribe 1:N, Non Persistent messages

Publish Subscribe 1-n, Clients, Non-Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

40000

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

LINUX_x366 LINUX_x3850

LINUX_x366 cpu % LINUX_x3850 cpu %

Figure 15 – Publish Subscribe 1:N, non persistent

Test name:

LPSN
Clients

Messages

Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Linux_x3850 45 34439 765 54% 2940

Linux_x366 41 23263 567 52% 2401

Table 10 – Publish/Subscribe 1:N, non Persistent messages

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

2940 publications per second can be achieved on Linux_x3850 and 2401 on Linux_x366. The response time for

the publish command increases as the number of subscribers increase. On Linux_x3850 with 44 subscribers, the

publisher creates 765 messages per second and 567 per second with 40 subscribers on Linux_x366.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 16

4.1.2 Publish Subscribe 1:N, Non Persistent messages, Cores

Publish Subscribe 1-n, Clients, Non-Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

LINUX_4core LINUX_8core

Linux_16core LINUX_4core cpu %

LINUX_8core cpu % Linux_16core cpu %

Figure 16 – Publish Subscribe 1:N, non persistent, Cores

Test name:

LPSN_cores
Clients

Messages

Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Linux_4core 73 43000 589 54% 3106

Linux_8core 71 44534 627 51% 3037

Linux_16core 49 39258 501 29% 2967

Table 11 – Publish/Subscribe 1:N, non Persistent messages

These multi core measurements used an X7350 with 16 cores of 2.93 GH. Cores are off-lined to produce the 4

core and 8 core machine. The 8 core system processes 3% more traffic than the 4 core. The 16 core system

processes 7% less traffic than the 4 core system

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

2940 publications per second can be achieved on Linux. The response time for the publish command increases

as the number of subscribers increase. On Linux with 44 subscribers, the publisher creates 765 messages per

second which are all consumed by the subscribers.

Doubling the number of cores from 4 to 8 provides a performance gain of under 4% which suggests that 4

cores is the economic option. Doubling from 8 cores to 16 cores degrades throughput showing that using

multiple queue mangers in a cluster on this single machine would be more efficient.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 17

4.1.3 Publish Subscribe 1:N, Persistent messages

Publish Subscribe 1-n, Clients, Persistent

Linux

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

LINUX LINUX cpu %

Figure 17 – Publish Subscribe 1:N, persistent

Test name:

LPSP
Clients

Messages

 Per second

Publications

 per second
Server

 CPU

Pubs per second

With 4 subscribers

Per publication

Linux_x3850 21 7218 343 55% 597

Table 12 – Publish/Subscribe 1:N, Persistent messages

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

597 publications per second can be achieved on Linux. The response time for the publish command increases as

the number of subscribers increase. On Linux with 20 subscribers, the publisher creates 343 messages per

second which are all consumed by the subscribers

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 18

4.1.4 Publish Subscribe 1:N, Non Persistent messages, Cluster-4

Publish Subscribe 1-n, Clients, Non-Persistent, Cluster_4

Linux

0

10000

20000

30000

40000

50000

60000

5 13 21 29 37 45 53 61 69 77 85 93 10
1

10
9

11
7

12
5

13
3

14
1

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

LINUX_cluster_4 LINUX_Cluster

Linux LINUX_cluster_4 cpu %

LINUX_Cluster cpu % Linux cpu %

Figure 18 – Publish Subscribe 1:N, non persistent, Cluster

Server

 CPU

Pubs per second

Per publication

With ‘n’ subs Test name:

LPSN_C4
Clients

Messages

Per second

Publications

 per second

P
u
b

S
u
b

n=4 n=8 n=12 n=16

Linux_x366 37 22920 619 52 2094 1736 1455 1213

Linux Cluster-2 73 38407 526 50 58 2029 1710 1562 1408

Linux Cluster-4 73 47928 656 32 36 1780 1630 1517 1433

Table 13 – Publish/Subscribe 1:N, non Persistent messages, Cluster

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

2044 publications per second can be achieved on Linux.

The initial 2 Queue Managers use x366 systems while the 3
rd

 and 4
th

 Queue Managers use x3850 systems.

The second Queue Manager provides an increase of 67% in message throughput while the addition of the

second pair adds an additional 25%.

There needs to be at least 8 subscribers per topic before a performance benefit is apparent from Clustering. .

This is because of the overhead in transferring the publication to the alternate Queue Manger. At least 16

subscribers are needed before a performance benefit is seen from the second pair of Queue Managers. The

server CPU is split into 2 parts, the original machine with Publisher and Subscribers(Pub) , together with the

machine only hosting subscribers(Sub). They are identical machines and it can be observed that the Sub

machine is 13%-16% busier than the Pub machine.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 19

4.1.5 Publish Subscribe 1:N, Non Persistent messages, Cluster Publications

Publish Subscribe 1-n, Clients, Non-Persistent, Cluster_Pubications

Linux

0

500

1000

1500

2000

2500

3000

3 9

1
5

2
1

2
7

3
3

3
9

4
5

5
1

5
7

6
3

6
9

7
5

8
1

8
7

9
3

9
9

1
0

5

1
1

1

1
1

9

1
3

1

1
4

3

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

Linux_Cluster4 Linux

Linux_Cluster2 Linux_Cluster4 cpu %

Linux cpu % Linux_Cluster2 cpu %

Figure 19 – Publish Subscribe 1:N, non persistent, Cluster publications

Test name:

LPSN_CP

Subscribers

for 620

620 Pubs

Per second

620

CPU%

Subscribers

For 520

520 Pubs

Per second

520

CPU%

Linux_x366 36 22940 52%

Linux Cluster_2 58 35960 39% 72 37960 50%

Linux Cluster_4 74 46500 30% 88 46280 32%

Table 14 – Publish/Subscribe 1:N, non Persistent messages, Cluster

The Graph is a different way of looking at the Message capacity of a system. It examines the effect of

subscribers on the Publishing rate. A single publisher is publishing as fast as possible but the latency for each

publication gradually increases which means the publication rate is gradually reduced as the number of

subscribers increase. A system requirement to publish 620 a second can be dealt with by a single Queue

manager with 36 subscribers, by 2 queue managers in a cluster for 58 subscribers or with 4 QM in a cluster for

74 subscribers. The second QM in a cluster increases the capacity by 56%. The system with 4 QM in the cluster

provides 30% more messaging capacity than using 2 QM although the 3
rd

 and 4
th

 QM are using x3850

hardware.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 20

4.1.6 Publish Subscribe 1:N, Persistent messages, Cluster

Publish Subscribe 1-n, Clients, Persistent,Cluster

Linux

0

2000

4000

6000

8000

10000

12000

14000

16000

5 13 21 29 37 45 53 61 69 77 85 93 10
1

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

CPU%

LINUX_cluster LINUX

LINUX_cluster cpu % LINUX cpu %

Figure 20 – Publish Subscribe 1:N, persistent, cluster

Server

 CPU
Test name:

LPSP_C
Clients

Messages

 Per second

Publications

 per second

Pub Sub

Pubs per second

With 4 subscribers

Per publication

Linux_x3850 41 7996 195 55% 597

Linux Cluster 53

93

10979

13910

205

149

52%

57%

57%

64%

469

Table 15 – Publish/Subscribe 1:N, Persistent messages, Cluster

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

469 publications per second can be achieved on Linux cluster. The response time for the publish command

increases as the number of subscribers increase. On Linux cluster with 52 subscribers, the publisher creates 205

messages per second and with 92 subscribers there are 149 publications per second. The throughput with a

small number of subscribers is limited by the MQ log and it needs more than 6 subscribers before it is

worthwhile using clustering. Clustering can increase the messages processed by 74% when using a second

x3850. The Pub machine contains the publisher and subscribers. The Sub machine only contains subscribers in

the clustered environment. The Sub machine is busier than the machine containing the Publisher.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 21

4.1.7 Publish Subscribe (Multiple P/T/S), Non Persistent messages

Publish Subscribe Multiple, Clients, Non-Persistent

Linux

0

10000

20000

30000

40000

50000

60000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

LINUX LINUX cpu %

Figure 21 – Publish Subscribe Multiple, non persistent

Test name:

LPTN
Clients

Messages

Per second

Publications

Per second

Server

 CPU

Linux_x3850 28

64

43867

53737

1566

839

74%

93%
Table 16 – Publish/Subscribe Multiple, non Persistent messages

Each publisher creates 1600 non-persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 14 producers and 14 consumers (28 Clients) on

Linux the expected throughput is 1600*14*2=44800 whereas the measured throughput is 43867 messages per

second. Additional publishers can increase the system capacity to 53737 messages per second

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 22

4.1.8 Publish Subscribe (Multiple P/T/S), Persistent messages

Publish Subscribe Multiple, Clients, Persistent

Linux

0

2000

4000

6000

8000

10000

12000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

CPU%

LINUX LINUX cpu %

Figure 22 – Publish Subscribe Multiple, persistent

Test name:

LPTP
Clients

Messages

Per second

Publications

Per second

Server

 CPU

Linux_x3850 28 11161 398 66%

Table 17 – Publish/Subscribe Multiple, Persistent messages

Each publisher creates 400 persistent messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 14 producers and 14 consumers (28 Clients) on Linux

the expected throughput is 400*14*2=11200 whereas the measured throughput is 11161 messages per second.

Additional clients cause the overall messaging rate to decline because the MQ Logger has become the

bottleneck.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 23

4.1.9 Point to Point (Multiple P/Q/C), Non Persistent messages

Point to Point Multiple, clients, Non-Persistent

Linux

0

10000

20000

30000

40000

50000

60000

4 8 12 16 20 24 28 32 36 40

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

LINUX LINUX cpu %

Figure 23 – Point to Point, Multiple, non persistent

Test name:

LTPN
Clients

Messages

Per second

Publications

Per second

Server

 CPU

Linux_x3850 32 50259 1570 94%

Table 18 – Point to point ,Multiple, non Persistent messages

Each publisher creates 1600 non persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 16 producers and 16 consumers (32 Clients) on

Linux, the expected throughput is 1600*16*2=51200 whereas the measured throughput is 50259 messages per

second. Additional clients cause the messaging rate to decline because the CPU is very busy.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 24

4.1.10 Point to Point (Multiple P/Q/C), Persistent messages

Point to Point Multiple, clients, Persistent

Linux

0

2000

4000

6000

8000

10000

12000

4 8 12 16 20 24 28 32 36 40

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

CPU%

LINUX LINUX cpu %

Figure 24 – Point to point, multiple, persistent

Test name:

LTPP
Clients

Messages

Per second

Publication

Per second

Server

 CPU

Linux_x3850 24

28

9591

10010

399

357

56%

64%
Table 19 – Point to point ,Multiple, Persistent messages

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is achieved. With 12 producers and 12 consumers (24 Clients) on Linux,

the expected throughput is 400*12*2=9600 whereas the measured throughput is 9591 messages per second.

The other measurements of Linux Persistent messages in this chapter show that the logger capacity is

maximised at 11000 messages per second.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 25

5 Solaris Measurements

5.1.1 Publish Subscribe 1:N, Non Persistent messages

Publish Subscribe 1-n, Clients, Non-Persistent

Solaris

0

5000

10000

15000

20000

25000

30000

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

CPU%

Solaris_V490 Solaris_T2000

Solaris_V490 cpu % Solaris_T2000 cpu %

Figure 25 – Publish Subscribe 1:N, non persistent

Test name:

SPSN
Clients

Messages

Per second

Publications

 per second
Server

 CPU

Pubs per second

With 4 subscribers

Per publication

Solaris V490 49 24176 493 62% 2151

Solaris T2000 49 15731 321 25% 1379

Table 20 – Publish/Subscribe 1:N, non Persistent messages

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

2151 publications per second can be achieved on Solaris V490 or 1379 on Solaris T2000. The response time for

the publish command increases as the number of subscribers increase. On Solaris V490 with 48 subscribers, the

publisher creates 493 messages per second and the Solaris T2000 publisher creates 321 per second which are

all consumed by the subscribers. Additional subscribers do not increase the messaging capacity of the system. A

comparison is shown of a T2000 and a V490 system whereas most measurements in this chapter use the V490.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 26

5.1.2 Publish Subscribe 1:N, Persistent messages

Publish Subscribe 1-n, Clients, Persistent

Solaris

0

1000

2000

3000

4000

5000

6000

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

Solaris_V490 Solaris_T2000

Solaris_V490 cpu % Solaris_T2000 cpu %

Figure 26 – Publish Subscribe 1:N, persistent

Test name:

SPSP
Clients

Messages

 Per second

Publications

 per second
Server

 CPU

Pubs per second

With 4 subscribers

Per publication

Solaris V490 33 4801 145 52% 463

Solaris T2000 41 4205 102 16% 453

Table 21 – Publish/Subscribe 1:N, Persistent messages

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

463 publications per second can be achieved on Solaris V490 or 453 on Solaris T200. The response time for the

publish command increases as the number of subscribers increase. On Solaris V490 with 32 subscribers, the

publisher creates 145 messages per second and on Solaris T2000, the publisher creates 102 messages per

second which are all consumed by the subscribers. Additional subscribers do not increase the messaging

capacity of the system. A comparison is shown of a T2000 and a V490 system.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 27

5.1.3 Publish Subscribe 1:N, Non Persistent messages, Cluster

Publish Subscribe 1-n, Clients, Non-Persistent, Cluster

Solaris

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

CPU%

Solaris_cluster_V490 Solaris_V490

Solaris_cluster_V490 cpu % Solaris_V490 cpu %

Figure 27 – Publish Subscribe 1:N, non persistent, Cluster

Server

 CPU
Test name:

SPSN_C
Clients

Messages

Per second

Publications

 per second

Pub Sub

Pubs per second

With 4 subscribers

Per publication

Solaris V490 49 24176 493 62% 2151

Solaris Cluster 81 39938 493 54% 58% 2008

Table 22 – Publish/Subscribe 1:N, non Persistent messages, Cluster

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

2151 publications per second can be achieved on Solaris . Using a cluster of two identical V490s reduces the

publication rate to 2008 because of the overhead involved of using the second Pub-Sub engine. The response

time for the publish command increases as the number of subscribers increases and the single Pub-Sub engine

can publish 493 messages per second with 49 clients whereas the clustered system can publish 493 messages

per second to 81 clients. The second Queue manager has enabled the messaging rate to increase by 65%. There

needs to be more than 10 subscribers to the topic before a performance benefit is apparent. Half the subscribers

are attached to each Queue manager but the QM with the publisher attached uses a smaller CPU% in the cluster

test.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 28

5.1.4 Publish Subscribe 1:N, Persistent messages, Cluster

Publish Subscribe 1-n, Clients, Persistent, Cluster

Solaris

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

20%

40%

60%

80%

100%

120%

CPU%

Solaris_cluster_V490 Solaris_V490

Solaris_cluster_V490 cpu % Solaris_V490 cpu %

Figure 28 – Publish Subscribe 1:N, persistent, cluster

Server

 CPU
Test name:

SPSP_C
Clients

Messages

 Per second

Publications

 per second

Pub Sub

Pubs per second

With 4 subscribers

Per publication

Solaris V490 33 4801 145 52% 463

Solaris Cluster 53 8539 161 49% 49% 469

Table 23 – Publish/Subscribe 1:N, Persistent messages, Cluster

The publisher produces messages as fast as possible. Initially there are 4 subscribers and one publisher when

463 publications per second can be achieved on Solaris with a similar number in a cluster. The response time

for the publish command increases as the number of subscribers increase. On Solaris with 32 subscribers, the

publisher creates 145 messages per second and a Solaris cluster publisher with 52 subscribers achieves 161

publications per second. The throughput with a small number of subscribers is limited by the MQ. Clustering

can increase the messages processed by 77%. . Half the subscribers are attached to each Queue manager but

the QM with the publisher attached uses a similar CPU% in the cluster test.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 29

5.1.5 Publish Subscribe (Multiple P/T/S), Non Persistent messages

Publish Subscribe Multiple, Clients, Non-Persistent

Solaris

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Solaris_V490 Solaris_T2000

Solaris_V490 cpu % Solaris_T2000 cpu %

Figure 29 – Publish Subscribe Multiple, non persistent

Test name:

SPTN
Clients

Messages

Per second

Publications

per second

Server

 CPU

Solaris V490 20

32

30153

34797

1507

1087

88%

97%

Solaris T2000 64

92

25965

44342

405

482

48%

96%
Table 24 – Publish/Subscribe Multiple, non Persistent messages

Each publisher creates 1600 non-persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 10 producers and 10 consumers (20 Clients) on

Solaris V490 the expected throughput is 1600*10*2=44800 whereas the measured throughput is 43867

messages per second. The Solaris T2000 is an 8 core with 4 threads per core. The increase in throughput as the

number of clients increases is not as smooth as the V490.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 30

5.1.6 Publish Subscribe (Multiple P/T/S), Persistent messages

Publish Subscribe Multiple, Clients, Persistent

Solaris

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Solaris_V490 Solaris_V490 cpu %

Figure 30 – Publish Subscribe Multiple, persistent

Test name:

SPTP
Clients

Messages

Per second

Publications

Per second

Server

 CPU

Solaris V490 28 8644 308 82%

Table 25 – Publish/Subscribe Multiple, Persistent messages

Each publisher creates 400 persistent messages per second. With 14 Publishers and 14 Subscribers (28 Clients)

on Solaris the expected throughput is 400*14*2=11200 whereas the measured throughput is 8644 messages per

second.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 31

5.1.7 Point to Point (Multiple P/Q/C), Non Persistent messages

Point to Point Multiple, Clients, non-Persistent

Solaris

0

5000

10000

15000

20000

25000

30000

35000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Solaris_V490 Solaris_V490 cpu %

Figure 31 – Point to Point, Multiple, non persistent

Test name:

STPN
Clients

Messages

Per second

Server

 CPU

Solaris V490 16 25489 88%

Solaris V490 28 30692 99%

Table 26 – Point to point ,Multiple, non Persistent messages

Each producer creates 1600 non persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is achieved. With 8 producers and 8 consumers (16 Clients) on

Solaris, the expected throughput is 1600*8*2=25600 whereas the measured throughput is 25489 messages per

second. Additional message producers can increase the system capacity to 30692 messages per second

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 32

5.1.8 Point to Point (Multiple P/Q/C), Persistent messages

Point to Point Multiple, Clients, Persistent

Solaris

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Clients

M
e

s
s

a
g

e
s

/s
e

c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Solaris_V490 Solaris_V490 cpu %

Figure 32 – Point to point, multiple, persistent

Test name:

STPP
Clients

Messages

Per second

Server

 CPU

Solaris V490 28 8849 79%

Table 27 – Point to point ,Multiple, Persistent messages

Each message producer creates 400 messages per second. With 14 producers and 14 consumers (28 Clients) on

Solaris, the measured throughput is 8849 messages per second. Additional Producer/Consumers do not increase

the system capacity

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 33

6 Machine and Test Configurations
The MQI applications used in this report to generate the performance data are Located on the Linux clients that

communicate with the various server.

6.1 Linux, AIX, & Solaris Servers

Linux server machine (Red Hat 4.1.2-46 kernel 2.6.18-164.9.1.el5

IBM x3850: Model: x3850 M2 8864 4RG
Processor: 3.3GHz Intel xeon (7140N)
Architecture: 2 dual core CPU (4 way SMP)
Hyperthreading disabled
Memory (RAM): 4Gb
Disk: 2 Internal 16bit SCSI (90Gb each, 1 O/S, swap)
2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)

Network: 1Gbit Ethernet Adapter

Linux server machine(4.1.2 Multi core measurement) is
IBM x7350: Model:
Processor: 2.93GHz Intel xeon
Architecture: 16 CPU Hyperthreading disabled
Memory (RAM): 32Gb 4Mb cache
Disk: 4 Internal 16bit SCSI (70Gb each, 1 O/S, swap)
Network: 1Gbit Ethernet Adapter

AIX server machine

IBM p570: Processor: 4.2GHz Power 6
Architecture: 4 dual core cpu (8 core) .
Memory (RAM): 16Gb
Disk: 2 Internal 16bit SCSI (9Gb each, 1 O/S, swap)
2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)

Network: 1Gbit Ethernet Adapter

IBM Power 5 (used in cluster measurements)

System Model: IBM,9117-570

Processor Type: PowerPC_POWER5

Number Of Processors: 8

Processor Clock Speed: 1654 MHz

Memory Size: 15360 MB

Solaris server machines

Sun T2000: Model: T20|108C-64GA2G SFT2000
Processor: 1.4GHz
Architecture: 8core
Memory (RAM): 64Gb
Disk: Internal disks
Fibre channel HBA PCI-X 4Gb FC Dual Port HBA
2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)

Network: 1Gbit Ethernet Adapter

Sun V490:Processor: SPARCV9 @ 1500 HMz
Architecture: 4 CPU
Memory (RAM): 32Gb
Disk: Fibre channel HBA PCI-X 4Gb FC Dual Port HBA)
SAN with 2 partitions of 5Gb each

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 34

Network: 1Gbit Ethernet Adapter

The server operating system is

• Red Hat Enterprise Linux AS release 4 (Nahant Update 8) (kernel 2.6.9 -78.ELsmp)

• AIX 6.1

• SunOS 5.10 Generic_118833-36 sun4u sparc SUNW,Sun-Fire-V490

• SunOS 5.10 Generic_138888-03 sun4v sparc SUNW,Sun-Fire-T200

Clients are hosted by two 64 bit RHEL driver machines which is designed to ensure the server is the bottleneck.

Linux Drivers machines (Red Hat 4.1.2-46 kernel 2.6.18-164.9.1.el5) for AIX and Solaris measurements

IBM x3850: Model: x3850 M2 8864 4RG
Processor: 3.3GHz Intel xeon (7140N)
Architecture: 2 dual core CPU (4 way SMP)
Hyperthreading disabled
Memory (RAM): 4Gb
Disk: 2 Internal 16bit SCSI (90Gb each, 1 O/S, swap)
2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)

Network: 1Gbit Ethernet Adapter

Linux Driver machines for Linux server measurements

IBM x366: Model:
Processor: 3.66GHz Intel xeon
Architecture: 4 CPU Hyperthreading disabled
Memory (RAM): 8Gb 1Mb level 2 cache
Disk: 2 Internal 16bit SCSI (70Gb each, 1 O/S, swap)
2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)

Network: 1Gbit Ethernet Adapter

6.2 SAN disk subsystem

MQ Log and Queues on SAN disks on DS6000. 5GB allocated for both Log and Queues on Linux, Solaris and

AIX machines.

The MQ SAN consists of a pair of 2026 model 432 (McDATA ES-4700) switches running at 4Gb/s with 32

ports each. They are connected together via two inter-switch links to form a single SAN fabric.

The MQ hosts attach via this SAN to a DS6800 disk array (1750 model 511) with one expansion drawer.

Each drawer (controller + expansion) contains 16 x 73Gb 15K fibre channel disk drives, so there are a total of

32 physical drives.

The 32 drives are configured as four RAID-5 arrays, each of which is 6+Parity+Spare (the number of spares is

defined by the configuration of the DS6800).

The controller has an effective cache size of 2.6Gb plus 0.3Gb of NVS

6.3 Test case names

The first character defines he operating system (A***, L***,S***) represent AIX Linux and Solaris.

The second and third character pairs (*PS*, *PT*, *TP*) represent publish_subscribe 1:N,

publish_subsciber_multiple, and Point to Point.

The forth character (***P, ***N) represents Persistent and Non-persistent messages.

WebSphere MQ Publish Subscribe V7.0.1 – Performance Evaluations

Page 35

7 Summary

7.1 Publish Subscribe 1:N

This scenario does not use more than 62% of a 4 way because the main Publishing thread will use one engine.

Upgrading from a single Queue Manager to a clustered system improves the system capacity by between 50%

and 70% for non-Persistent messages and by 70% to 90% for Persistent. The performance benefit of clustering

is apparent when there are more than 20 subscribers to the topic.

The addition of a second Queue Manager into the cluster means that in the case of a Single Publisher, Multiple

subscribers, there are only subscribers attached to the second Queue Manager. The first QM (labelled Pub) has

to decide which publications are sent on the channel to the second QM (labelled Sub). The second QM receives

messages over the channel and propagates them to the subscribers. An observation from the measurements is

that the second QM (Sub) uses more CPU than the first QM (Pub).

7.2 Publish Subscribe (Multiple P/T/S)

This non-persistent scenario uses between 93% - 97% of a 4 way because each triplet (P/T/S) is independent of

the other applications. Using Clustering when the subscriber is on a different Queue Manager to the publisher

causes a degradation of up to 75% because there is only one subscriber to the topic. There are measurements of

this clustered environment in this report.

8 Tuning
Performance reports with tuning information for WebSphere MQ v7.0 on all supported operating systems can

be found via. the IBM SupportPac webpage at the following URL:

http://www.ibm.com/software/integration/wmq/support/

The main tuning actions taken for the tests in Chapter 2, 4, and 5 of this report were:

• Log / LogBufferPages = 4096 (size of memory used to build log I/O records

• Log / LogFilePages = 16348 (size of Log disk file extent)

• Log / LogPrimaryFiles = 16 (number of disks extents in log cycle)

• LogWriteIntegrity=SingleWrite (suitable for write-cached disks)

• Channels / MQIBindType = FASTPATH (channels are an extension to QM address space)

• TuningParameters / DefaultQBufferSize = 1MB (use 1MB of main memory per Q to hold non

persistent messages before spilling to the file system

• TuningParameters / DefaultPQBufferSize = 1MB (use 1MB of main memory per Q to hold

persistent messages)

