
IBM WebSphere MQ Telemetry

Performance Evaluations

V1.0

August 2010

Oliver Fenton

WebSphere MQ Performance
 IBM UK Laboratories

 Hursley Park
 Winchester
 Hampshire
 SO21 2JN

 Property of IBM

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,
“warranty and liability exclusion”, “errors and omissions”, and the other general
information paragraphs in the "Notices" section below.

First Edition, August 2010.

This edition applies to WebSphere MQ V7.0 (and to all subsequent releases and
modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2010. All rights reserved.

Note to U.S. Government Users
Documentation related to restricted rights.
Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Notices

DISCLAIMERS
The performance data contained in this report were measured in a controlled
environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted
to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the
responsibility of the licensed user. Much depends on the ability of the licensed user to
evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION
The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and

page 2

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

liability are governed only by the respective terms applicable for Germany and Austria in
the corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS
The information set forth in this report could include technical inaccuracies or
typographical errors. Changes are periodically made to the information herein; any such
change will be incorporated in new editions of the information. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this
information at any time and without notice.

INTENDED AUDIENCE
This report is intended for architects, systems programmers, analysts and programmers
wanting to understand the performance characteristics of telemetry. The information is
not intended as the specification of any programming interface that is provided by
WebSphere. It is assumed that the reader is familiar with the concepts and operation of
WebSphere MQ V7.0.1.

LOCAL AVAILABILITY
References in this report to IBM products or programs do not imply that IBM intends to
make these available in all countries in which IBM operates. Consult your local IBM
representative for information on the products and services currently available in your
area.

ALTERNATIVE PRODUCTS AND SERVICES
Any reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS
The following terms used in this publication are trademarks of International Business
Machines Corporation in the United States, other countries or both:

- IBM
- WebSphere

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of

page 3

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

others.

EXPORT REGULATIONS
You agree to comply with all applicable export and import laws and regulations.

page 4

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Preface

Target audience

This SupportPac is designed for people who:

• Will be designing and implementing solutions using WebSphere MQ Telemetry.

• Want to understand the performance limits of WebSphere MQ Telemetry.

• Want to understand what actions may be taken to tune WebSphere MQ Telemetry.

The reader should have a general awareness of the supported operating systems, WebSphere MQ
and of WebSphere MQ Telemetry in order to make best use of this SupportPac.

Contents of this SupportPac

This SupportPac includes:

• Release highlights performance charts.

• Performance measurements with figures and tables to present the performance capabilities
of telemetry and multi-connection scenarios.

• Interpretation of the results and implications on designing or sizing of MQTT applications
using telemetry.

• Local queue manager, client channel, and distributed queuing configurations.

Feedback on this SupportPac

We welcome constructive feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Please direct any comments of this nature to WMQPG@uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be directed to
your local IBM Representative or Support Centre.

page 5

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Contents
Preface ...5

Target audience ...5
Contents of this SupportPac...5

Overview..8
Covered in this Report..9
Test Scenarios...10

Multi-Publisher, Single-Subscriber Scenario...11
Multi-Publisher, Multi-Subscriber Scenario..12

Data Collection...13
Measurements...14

Linux Multi-Publisher, Single-Subscriber Scenario..14
Linux Multi-Publisher, Multi-Subscriber Scenario...15
Windows Multi-Publisher, Single-Subscriber Scenario..16
Windows Multi-Publisher, Multi-Subscriber Scenario..17

Extending the Tests...18
Varying Message Sizes..18

Capacity Limits..19
Native Memory..19
Java Heap Memory..19
Sockets & File Descriptors..20
Memory Requirements Per Connection...20
Memory Requirements for N Connections..20

Tuning Considerations..22
WebSphere MQ Considerations...22
The Telemetry Server and Java Considerations...23
Operating System Considerations..23

Linux...23
Windows..23

Summary...24
Appendix..25

Simulating Thousands of Clients Using Telemetry Daemon for Devices.....................................25
Multi-Publisher, Single-Subscriber...25
Multi-Publisher, Multi-Subscriber..27

Hardware Used for this Report..29
SAN disk subsystem..30

page 6

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Tables
Table 1: Linux multi-publisher, single-subscriber - message rates (msgs/sec), CPU (%).................14
Table 2: Linux multi-publisher, multi-subscriber - message rates (msgs/sec), CPU (%)...................15
Table 3: Windows multi-publisher, single-subscriber - message rates (msgs/sec), CPU (%)...........16
Table 4: Windows multi-publisher, multi-subscriber - message rates (msgs/sec), CPU (%)............17
Table 5: effect of varying message size - message rates (msgs/sec)..18
Table 6: Linux memory usage per connection..20
Table 7: Windows memory usage per connection..20
Table 8: Linux maximum memory requirements for N connections..21
Table 9: Windows maximum memory requirements for N connections..21
Table 10: hierarchy of Telemetry Device Daemons (TDDs) used for large numbers of server
connections...27

Figures
Figure 1: multi-publisher, single-subscriber setup...11
Figure 2: multi-publisher, multi-subscriber setup..12
Figure 3: Linux multi-publisher, single-subscriber graph..14
Figure 4: Linux multi-publisher, multi-subscriber graph...15
Figure 5: Windows multi-publisher, single-subscriber graph...16
Figure 6: Windows multi-publisher, multi-subscriber graph..17
Figure 7: effect of varying message size..19
Figure 8: simplistic view of native memory usage in a MQ Telemetry system (Note: 'TT' represents
the MQ Telemetry service)...20
Figure 9: client setup for multi-publisher, single-subscriber scenario...26
Figure 10: client setup for multi-publisher, multi-subscriber scenario...28

page 7

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Overview
"The MQTT protocol enables a publish/subscribe messaging model in an extremely lightweight
way. It is useful for connections with remote locations where a small code footprint is required
and/or network bandwidth is at a premium." (http://mqtt.org/)

Telemetry is an extension of WebSphere MQ that manages messages using the MQTT V3 protocol.
It has been designed with connection scalability in mind and can cope with thousands of
simultaneously connected devices. The MQTT protocol defines three distinct qualities of service
which can now benefit from WebSphere MQ's reliability and robustness.

The three Qualities of Service (from here on referred to as QoS) as defined by the MQTT V3
protocol are:

• QoS level 0 At most once delivery. This is the fastest method of messaging using the
protocol, but is trading assured delivery for performance.

• QoS level 1 At least once delivery. Ensures a message is received by the receiver at least
once (i.e. duplicates are allowed).

• QoS level 2 Exactly once delivery. This is the best level of service achievable using the
MQTT protocol. Using this method with WebSphere MQ Telemetry will ensure a message
will always reach its destination exactly once.

page 8

http://mqtt.org/

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Covered in this Report
This report describes and evaluates six key scenarios, and covers two of telemetry's supported
platforms.

• Platforms

◦ Red Hat Enterprise Linux V5.5 64-bit

◦ Windows Server 2008

• Telemetry round-trip messaging multi-publisher, single-subscriber.

◦ at MQTT QoS 0.

◦ at MQTT QoS 1.

◦ at MQTT QoS 2.

• Telemetry round-trip messaging multi-publisher, multi-subscriber.

◦ at MQTT QoS 0.

◦ at MQTT QoS 1.

◦ at MQTT QoS 2.

This document does not cover the following telemetry features:

• SSL support.

• Performance measurements for connecting and subscribing clients.

• Interfacing with WebSphere MQ message topics in the following ways:

◦ MQTT clients publishing to WebSphere MQ message topics for subscription by a non-
MQTT subscriber and

◦ WebSphere MQ non-MQTT publishers publishing to MQTT subscribed clients.

page 9

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Test Scenarios
The core of this document describes two configurations used to demonstrate the performance of the
telemetry server:

• Multi-publisher, single-subscriber

• Multi-publisher, multi-subscriber

For each scenario, message rates are recorded with up to 100,000 MQTT clients and at the three
varying qualities of service supported by the MQTT V3 protocol- 0, 1 & 2.

Unless otherwise specified, the standard message sized used for all the measurements in this report
is 256 bytes. This size includes the message content and is sent in addition to MQTT protocol
headers as defined in the specification.

The following pages describe the two configurations.

page 10

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Multi-Publisher, Single-Subscriber Scenario

In this scenario, messages are published to the telemetry server 100 at a time from 100 randomly
chosen MQTT clients. They publish to a single topic (called TOPIC1).

A single subscribing MQTT client retrieves all of the messages using its MQTT callback listener.

At start-up, 500 messages are initially published. Following the 500 message initialization, for
every 100 messages the subscribing client receives, another 100 new messages are published by a
random selection of publishers from the set of connected clients. This ensures the telemetry's
transmit queue depth remains low (under 500) while ensuring the server always has work to do.

page 11

Figure 1: multi-publisher, single-subscriber setup

MQ Telemetry Service

Websphere MQ

MQTT clients

MQTT
connections

MQTT
client

TCP/IP

driver
machines

server
under
test

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Multi-Publisher, Multi-Subscriber Scenario

Each client connects and subscribes to individual topics (one per client) before running the
measurements. Each message is sent to a topic which has a single subscriber. The subscriber
receives the message using its callback listener. As an example, with 50,000 clients, there are
50,000 topics, each with a single subscriber.

In this scenario, messages are published to the telemetry server 100 at a time from 100 randomly
chosen MQTT clients. They publish to a topic (of the format rsmbX/mqY) which has a single
subscriber.

Each message will only be received by a single subscriber using its MQTT callback listener.

At start-up, 500 messages are initially published. For every 100 messages the subscribing clients
receive (summed together), another 100 new messages are published by a random selection of
publishers from the set of connected clients. Using this technique, the telemetry's transmit queue
depth remains low (under 500) while ensuring the server always has work to do.

page 12

Figure 2: multi-publisher, multi-subscriber setup

MQ Telemetry Service

Websphere MQ

MQTT clients

MQTT
subscriptions

TCP/IP

driver
machines

server
under
test

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Data Collection

Message rates are measured by the client application and are a measure of the time taken for a set of
messages to be published to the telemetry server, processed by the telemetry server and finally
pushed to the subscriber. The rate measured is the number of completed cycles per second starting
from when the publisher first publishes the message and finishing when the subscriber
asynchronously receives the message. In most cases, the measurements were taken after processing
500,000 messages.

The CPU percentages have been calculated from vmstat data. Readings of idle time were measured
and subtracted from 100. This is equivalent to summing user time, system time and wait time.

Native memory data was collected using vmstat on Linux and a proprietary version on Windows
which uses the same hooks as the Reliability and Performance Monitor.

Java heap usage was collected using the -verbose:gc JVM option. More information on this option
can be found later in this report or in the IBM Java Diagnostics Guide.

page 13

http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Measurements

Linux Multi-Publisher, Single-Subscriber Scenario

With 1000 connections, telemetry can serve messages at nearly 3000 msgs/sec. As the number of
connections increases, the number of messages through the server decreases steadily and the CPU
usage approaches 100%. At 100,000 connections, the server can still process nearly 1000 msgs/sec
at QoS 2.

page 14

Table 1: Linux multi-publisher, single-subscriber - message rates (msgs/sec), CPU (%)

Connections QoS 0 QoS 1 QoS 2 QoS 0 CPU QoS 1 CPU QoS 2 CPU
1000 2780 2004 1645 68 66 66

10000 2569 1844 1527 71 69 70
20000 2430 1702 1369 75 74 75
30000 2287 1587 1328 78 75 76
40000 2262 1547 1246 80 77 79
50000 2199 1474 1163 81 78 80
60000 2126 1416 1151 82 80 82
70000 2008 1395 1093 84 81 84
80000 2004 1373 1047 86 82 86
90000 1900 1300 987 88 84 88

100000 1855 1204 938 89 86 89

Figure 3: Linux multi-publisher, single-subscriber graph

0 20000 40000 60000 80000 100000 120000

0

500

1000

1500

2000

2500

3000

0

10

20

30

40

50

60

70

80

90

100

QoS 0
QoS 1
QoS 2
QoS 0 CPU
QoS 1 CPU
QoS 2 CPU

Connections

R
a

te
 (

m
sg

s/
se

c)

C
P

U
 %

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Linux Multi-Publisher, Multi-Subscriber Scenario

This scenario overlaps the multi-publisher, single-subscriber scenario, while demonstrating the
performance change with up to 100,000 subscribers. Once again the peak rate was measured with
the smallest number of connections, and the rate, even with the maximum number of subscribers is
still near 1000msgs/sec. There is a dip in message rates between 0 and 50,000 connections before
the rate starts to steadily decrease as in the multi-publisher, single-subscriber scenario.

page 15

Table 2: Linux multi-publisher, multi-subscriber - message rates (msgs/sec), CPU (%)

Connections QoS 0 QoS 1 QoS 2 QoS 0 CPU QoS 1 CPU QoS 2 CPU
1000 1877 1235 1088 71 67 70

10000 1435 967 949 85 81 81
20000 1361 1008 1117 88 83 86
30000 1313 1145 1146 89 84 85
40000 1256 1299 1076 90 80 87
50000 1270 1329 1023 89 81 89
60000 1291 1389 1065 90 82 90
70000 1232 1254 1025 90 85 91
80000 1216 1086 1018 90 84 91
90000 1237 1070 958 91 87 91

100000 1127 973 834 92 88 91

Figure 4: Linux multi-publisher, multi-subscriber graph

0 20000 40000 60000 80000 100000 120000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

10

20

30

40

50

60

70

80

90

100

QoS 0
QoS 1
QoS 2
QoS 0 CPU
QoS 1 CPU
QoS 2 CPU

Connections

R
at

e
(m

sg
s/

s e
c)

C
P

U
 %

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Windows Multi-Publisher, Single-Subscriber Scenario

For the Windows runs, measurements were taken with up to 50,000 connections. Above this will
require more than 2GB of memory which is the standard on a 32-bit Windows machine, running a
32-bit JVM.

The maximum message rate peaks with the lowest number of connections and decreases steadily as
the number of connections is increased.

page 16

Table 3: Windows multi-publisher, single-subscriber - message rates (msgs/sec), CPU (%)

Connections QoS 0 QoS 1 QoS 2 QoS 0 CPU QoS 1 CPU QoS 2 CPU
1000 3200 2800 2000 68 66 66

10000 2820 2423 1601 71 69 70
20000 2353 1774 1267 75 74 75
30000 2177 1559 999 78 75 76
40000 1964 1332 826 80 77 79
50000 1793 1248 798 81 78 80

Figure 5: Windows multi-publisher, single-subscriber graph

0 10000 20000 30000 40000 50000 60000

0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

80

90

QoS 0
QoS 1
QoS 2
QoS 0 CPU
QoS 1 CPU
QoS 2 CPU

Connections

R
at

e
(m

sg
s/

s e
c)

C
P

U
 %

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Windows Multi-Publisher, Multi-Subscriber Scenario

As in the Linux runs, there is a slight dip in message rates as the number of connections is
increased. QoS 1 messaging rates fall in-line with QoS 0 between 10,000 and 30,000 connections,

page 17

Table 4: Windows multi-publisher, multi-subscriber - message rates (msgs/sec), CPU (%)

Connections QoS 0 QoS 1 QoS 2 QoS 0 CPU QoS 1 CPU QoS 2 CPU
1000 3157 2035 1819 68 66 66

10000 2179 2288 1592 71 69 70
20000 1849 1856 1302 75 74 75
30000 1609 1608 1058 78 75 76
40000 1671 1209 920 80 77 79
50000 1825 1220 684 81 78 80

Figure 6: Windows multi-publisher, multi-subscriber graph

0 10000 20000 30000 40000 50000 60000

0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

70

80

90

100

QoS 0
QoS 1
QoS 2
QoS 0 CPU
QoS 1 CPU
QoS 2 CPU

Connections

R
at

e
(m

sg
s/

s e
c)

C
P

U
 %

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Extending the Tests

Varying Message Sizes

The MQTT V3 protocol enables a publish / subscribe messaging model in an extremely lightweight
way. It is useful for sending small messages from a wide variety of devices. The telemetry server
has been designed for rapid delivery of small messages over this protocol. As such, this document is
focussed on small messages. All measurements taken in other sections of this report use a message
size of 256 bytes.

This section demonstrates the effects of alternate message lengths on the telemetry server. Messages
are randomly generated character strings of the lengths 32 bytes, 256 bytes, 2048 bytes, 16,384
bytes and 65536 bytes.

These tests have been carried out on Linux at QoS 2 and for the multi-publish, multi-subscribe
scenario only.

page 18

Table 5: effect of varying message size - message rates (msgs/sec)

Connections 32 bytes 256 bytes 2048 bytes 16384 bytes 65536 bytes
1000 1089 1088 974 649 262

10000 953 949 826 542 226
20000 1206 1117 941 520 221
30000 1181 1146 1016 498 222
40000 1112 1076 974 516 220
50000 1064 1023 886 501 200

Figure 7: effect of varying message size

0 10000 20000 30000 40000 50000 60000

0

200

400

600

800

1000

1200

1400

32 bytes
256 bytes
2048 bytes
16384 bytes
65536 bytes

Connections

R
at

e
(m

sg
s/

s e
c)

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Capacity Limits
The performance measurements for maximum throughput rates, as recorded above are constrained
primarily by CPU. When considering an telemetry solution, both Java and native memory
requirements should be taken into account. This section lists the requirements as shown on the
server machines during our measurements.

Native Memory

Recorded is the amount of native memory required per connection, subscription and during
messaging. Only peak figures are recorded. Note that native memory requirements for N-
connections will include telemetry requirements along with requirements for WebSphere MQ, the
JVM, its heap, and any non-MQ background processes.

Native memory has been measured using vmstat's free memory counter.

Java Heap Memory

The Java memory data shown is the amount required for objects in the Java heap. This can be set
using the -Xmx JVM setting (see Tuning Considerations). When allocating Java heap memory it is
advisable to allocate more than the required amount to prevent regular garbage collections and

page 19

Figure 8: simplistic view of native memory usage in a telemetry system (Note: 'TT' represents
the telemetry service)

Native Memory

JVM Heap

Websphere MQ

native memory for
each connection
(inc. tcp buffer)

Non-MQ
processes

JVM Innards

Java
memory
for each

connection

TT

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

leading to poor performance. For example, a system requiring 600MB of Java heap should be pre-
allocated around 1024MB (using -Xmx1024m).

Java heap memory was measured using the -verbose:gc JVM command line option.

Sockets & File Descriptors

Each incoming connection to telemetry requires an open socket. On Linux each socket uses a file
descriptor so the telemetry process must be able to open sufficient file descriptors to manage this
requirement. A description of how to increase the default file descriptor limit on Linux can be found
in Tuning Considerations.

Memory Requirements Per Connection

For every QoS 2 subscriber, an additional 6.86KB should be added to the Java heap requirements
and 25.00KB to the native memory requirements.

The Windows measurements were taken using a 32-bit JVM. This explains why the storage
numbers for the JVM are different on Windows verses Linux.

Memory Requirements for N Connections

This table shows the peak memory usage during a multi-publisher, multi-subscriber test after a run
at QoS 2 using 256-byte messages. The data shown with 0 connections show the base-memory
usage before any tests are run.

page 20

Table 6: Linux memory usage per connection

Connected 6.00 18.00
Connected & Subscribed @ QoS 2 6.86 25.00

JVM Heap
Memory per
connection
(KB)

Native
memory per
connection
(KB)

Table 7: Windows memory usage per connection

Connected 4.00 12.00
Connected & Subscribed @ QoS 2 4.60 15.00

JVM Heap
Memory per
connection
(KB)

Native
memory per
connection
(KB)

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

page 21

Table 8: Linux maximum memory requirements for N
connections

Connections
0 5 746 99

1000 13 910 1099
10000 74 1084 10099
20000 142 1357 20099
30000 210 1613 30099
40000 293 1769 40099
50000 366 1999 50099
60000 421 2264 60099
70000 520 2468 70099
80000 552 2580 80099
90000 627 2977 90099

100000 690 2977 100099

Peak JVM
Heap Memory
(MB)

Peak Native
Memory Used
(MB)

Open File
Descriptors

Table 9: Windows maximum memory requirements
for N connections

Connections
0 4 1320

1000 9 1340
10000 50 1444
20000 95 1521
30000 140 1669
40000 187 1768
50000 234 1825

Peak JVM
Heap
Memory (MB)

Peak Native
Memory
Used (MB)

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Tuning Considerations
To optimise message throughput using Websphere MQ Telemetry there are several WebSphere MQ,
Java and operating system tuning parameters that can be used to improve performance. Each of the
following settings should be considered and used appropriately for the desired setup.

Performance reports with tuning information for WebSphere MQ v7.0 on all supported operating
systems can be found via. the IBM SupportPac web page.

WebSphere MQ Considerations

MAXHANDS is a queue manager parameter that sets the maximum number of open handles that
any one connection can have at the same time. To enable connections of thousands of telemetry
clients, this number should be set appropriately to cope. Default is 256.

e.g. ALTER QMGR MAXHANDS(999999999)

MQTT messages using the telemetry server are placed on the WebSphere MQ queue
'SYSTEM.MQTT.TRANSMIT.QUEUE'. Messages may be placed on the queue for each
subscriber to receive a message so, for ten subscribers receiving a single message, up to ten
'transmit' messages will be placed on the transmit queue. Ensure the transmit queue size is
sufficiently large to cope with the expected message rates. See the MAXDEPTH parameter on the
queue description.

A message queue uses an in-memory buffer to store its queued messages. When the buffer becomes
full messages start being written to disk. To avoid writing to disk, consider using the
DefaultPQBufferSize (persistent messages) and DefaultPBufferSize (non-persistent messages)
parameters to alter the buffer sizes and improve performance. On 32-bit queue managers (like
Windows), the defaults are 64kb / 128kb for persistent / non-persistent messages. On 64-bit queue
managers, the default buffer sizes are 128kb and 256kb respectively.

These parameters must be set before starting the queue manager and will apply to all queues defined
in that invocation of the queue manager.

On Linux, set the TuningParameters stanza in the queue manager's qm.ini file. e.g.

TuningParameters:
 DefaultQBufferSize=1048576
 DefaultPQBufferSize=1048576

On Windows, the TuningParameters stanza must be set in the registry. Use either MQ Explorer or
the amqmdain command to set these buffers. See the WebSphere MQ Infocenter for more
information.

page 22

http://www.ibm.com/software/integration/wmq/support/

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

The Telemetry Server and Java Considerations

The telemetry server is a Java application that extends WebSphere MQ. A Java Runtime
Environment (JRE) is supplied with the Service and may need to be optimized for a large number of
connections. To manage large numbers of connections, it is advisable to increase the initial Java
heap size beyond the default settings. Xmx sets the maximum allowable heap size for the JRE. Xms
sets the initial heap size for the JRE. For 50,000 connections, this document advises setting Xmx
and Xms to 1024MB.

Set Xmx and Xms using the java.properties file in the mqxr configuration directory e.g.

Heap sizing options - uncomment the following lines to set the heap to 1G
-Xmx1024m
-Xms1024m

Some notes on Xmx and Xms:

• If Xms is set lower than Xmx, the Java Heap (from the perspective of the JRE) can
dynamically change in size between Xms and Xmx. This optimizes memory use and will
optimise performance under constant load but will result in a degradation of performance on
occasions when the heap size changes. This is due to extended garbage collection times on
these occasions.

• The size of Java heap must all be backed by physical memory. Each time a garbage
collection occurs, the whole heap must be loaded into physical memory. If there is not
enough physical memory available, swapping of the heap will cause a large performance
degradation.

Operating System Considerations

Linux

Each open socket requires one file descriptor on Linux so the telemetry service requires a file
descriptor for each client connection. In addition, the service requires around 100 additional file
descriptors for loading jars and configuration files. Ensure the file descriptor limit for a process
exceeds the required number.

To set the file descriptor limit, edit /etc/security/limits.conf and append the following:

@mqm soft nofile 120000
@mqm hard nofile 120000

Windows

To exceed 2000 connections on Windows, apply IBM Java APAR IZ78262.

page 23

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Summary
The total message throughput on Linux with up to 100,000 client connections subscribed is above
800 message per second using persistent, Quality of Service 2 messages using the MQTT protocol.

On Windows, the total message throughput with up to 50,000 client connections subscribed is above
650 messages pre second at Quality of Service 2 and can sustain higher rates at the lower QoS
levels. Using messages around the 256 byte size, this is near the peak memory limit in a 2GB
restrained system.

With small messages (less than 1024bytes), message rates are similar. Running with larger
messages will see lower messaging rates.

To get the best performance and the largest number of connected devices into the MQ Telemetry
service, we recommend tuning the following to your needs:

- Java heap size

- Number of open sockets

- MAXHANDS queue manager parameter

- DefaultQBufferSize for QoS 0

- DefaultPQBufferSize for QoS 1 & QoS 2

page 24

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Appendix

Simulating Thousands of Clients Using Telemetry Daemon for Devices

To simulate thousands of clients connecting to the telemetry server endpoint, the supplied Telemetry
Device Daemons were used. This section explains the setup used to connect thousands of devices to
the endpoint.

Multi-Publisher, Single-Subscriber

To drive multiple connections into the telemetry Server, the client setup uses a hierarchy of
Telemetry Device Daemons (supplied with the product) to span connections from a single Java
client into the telemetry Server.

In this scenario, the environment is setup as described:

• N 2nd-level Telemetry Device Daemons connect to the telemetry server using (for

page 25

Figure 9: client setup for multi-publisher, single-subscriber scenario

MQTT Java Client
Telemetry
Device
Daemon

three 1st level
device daemons

nine 2nd
level
device
daemons

Client driver
machine
Demonstration
of 18
connections to
the MQXR
service

MQ Telemetry Service

subscriber

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

measurements in this report) 10 independent connections. N * 10 is the total number of
connections to the server under test. For simplification, figure 1 shows nine 2nd-level device
daemons (N) & two connections from each daemon (instead of 10). For this report,
measurements show up to 100,000 total connections to the server in varying configurations.

• X 1st-level Telemetry Device Daemons connect to the N 2nd-level device daemons. Each
device daemon is single-threaded so to prevent a bottleneck, the scenario uses multiple
device daemons.

For this report, each 1st level Telemetry Device Daemon bridged to 10 2nd level Telemetry Device
Daemons which, in turn, created and managed 10 connections to the telemetry server endpoint.

Above 50,000 connections, 2nd-Level TDDs numbered 5000 and above were started on the second
client machine (see Hardware Used for this Report) and the configuration of 1st-Level TDDs (all
still on the first client machine) altered to manage this.

page 26

Table 10: hierarchy of Telemetry Device Daemons
(TDDs) used for large numbers of server connections

10 100 10 1000
100 1000 10 10000
200 2000 10 20000
300 3000 10 30000
400 4000 10 40000
500 5000 10 50000
600 6000 10 60000
700 7000 10 70000
800 8000 10 80000
900 9000 10 90000

1000 10000 10 100000

1st Level
TDDs

2nd Level
TDDs

MQ Telemetry
Connections
(per 2nd Level
TDD)

Connections
under Test

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Multi-Publisher, Multi-Subscriber

For the multi-publisher, multi-subscriber scenario, the Java Client publishes several messages to
each of the '1st level device daemons'. Each of these forwards the message to each of its bridging
(2nd-level) device daemons. Each of the '2nd level device daemons' has several connections
established with the telemetry server which it forwards the published message to as if it were an
independent MQTT publisher.

The setup for this scenario is very similar to the multi-publisher, single-subscriber scenario. The
changes made are:

• removal of the separate single subscriber

• change in 1st and 2nd-Level TDD configuration to subscribe as well as connect to the MQ
Telemetry Service. Messages are now filtered down the hierarchy as they are published, and
pushed back up the hierarchy as the subscriber callbacks get invoked.

• Modification to the client application to receive messages from the 1st-Level TDD callbacks
instead of the single separate subscriber.

page 27

Figure 10: client setup for multi-publisher, multi-subscriber scenario

MQTT Java Client
Telemetry
Device
Daemon

three 1st level
device daemons

nine 2nd
level
device
daemons

Client driver
machine
Demonstration
of 18
connections to
the MQXR
service

MQ Telemetry Service

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Client Tuning

A standard network card is restricted to 65535 open outbound sockets on both Linux and Windows.
When a request for a new socket arrives, the port number is chosen from the range of unused
ephemeral ports. By default this range only allows several thousand of these ports to be used.

To extend this range on Linux, in /etc/sysctl.conf set

net.ipv4.ip_local_port_range = 8192 65535

To extend this range on Windows, update the registry key MaxUserPort:

Key: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters\MaxUserPort
Value: 65535

page 28

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

Hardware Used for this Report

Linux server machine (Red Hat 5.5 kernel 2.6.18-194.3.1.el5 x86_64)

Processor: 3.66GHz Intel Xeon

Architecture: 2 dual core CPU (4 way SMP)

Hyper-threading disabled

Memory (RAM): 4Gb

Disk: 2 Internal 16bit SCSI (90Gb each, 1 O/S, swap)

2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)

Network: 1Gbit Ethernet Adapter

Windows server machine (Windows Server 2008 64-bit, SP1)

Processor: 3.33GHz Intel Xeon

Architecture: 2 dual core CPU (4 way SMP)

Hyper-threading disabled

Memory (RAM): 4Gb

Disk: 2 Internal 16bit SCSI (90Gb each, 1 O/S, swap)

Network: 1Gbit Ethernet Adapter

Linux driver machine (Red Hat 5.5 kernel 2.6.18-164.9.1.el5 x86_64)

Processor: 3.66GHz Intel Xeon

Architecture: 2 dual core CPU (4 way SMP)

Hyper-threading disabled

Memory (RAM): 4Gb

Network: 1Gbit Ethernet Adapter

Linux driver machine (Red Hat 5.5 kernel 2.6.18-194.8.1.el5 x86_64)

Processor: 3.33GHz Intel Xeon

Architecture: 2 dual core CPU (4 way SMP)

Hyper-threading disabled

Memory (RAM): 4Gb

Network: 1Gbit Ethernet Adapter

page 29

IBM Websphere MQ Telemetry V7.0.1 - Performance Evaluations V1.0

SAN disk subsystem

MQ Log and Queues on SAN disks on DS6000. 5GB allocated for both Log and Queues on Linux.

The MQ SAN consists of a pair of 2026 model 432 (McDATA ES-4700) switches running at 4Gb/s
with 32 ports each. They are connected together via two inter-switch links to form a single SAN
fabric.

The MQ hosts attach via this SAN to a DS6800 disk array (1750 model 511) with one expansion
drawer.

Each drawer (controller + expansion) contains 16 x 73Gb 15K fibre channel disk drives, so there
are a total of 32 physical drives.

The 32 drives are configured as four RAID-5 arrays, each of which is 6+Parity+Spare (the number
of spares is defined by the configuration of the DS6800).

The controller has an effective cache size of 2.6Gb plus 0.3Gb of NVS

page 30

	Preface
	Target audience
	Contents of this SupportPac

	Overview
	Covered in this Report
	Test Scenarios
	Multi-Publisher, Single-Subscriber Scenario
	Multi-Publisher, Multi-Subscriber Scenario

	Data Collection
	Measurements
	Linux Multi-Publisher, Single-Subscriber Scenario
	Linux Multi-Publisher, Multi-Subscriber Scenario
	Windows Multi-Publisher, Single-Subscriber Scenario
	Windows Multi-Publisher, Multi-Subscriber Scenario

	Extending the Tests
	Varying Message Sizes

	Capacity Limits
	Native Memory
	Java Heap Memory
	Sockets & File Descriptors
	Memory Requirements Per Connection
	Memory Requirements for N Connections

	Tuning Considerations
	WebSphere MQ Considerations
	The Telemetry Server and Java Considerations
	Operating System Considerations
	Linux
	Windows

	Summary
	Appendix
	Simulating Thousands of Clients Using Telemetry Daemon for Devices
	Multi-Publisher, Single-Subscriber
	Multi-Publisher, Multi-Subscriber

	Hardware Used for this Report
	SAN disk subsystem

