
December 2011

Rachel Norris

WebSphere MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

WebSphere®MQ for JMS V7.1 -

Performance Evaluations

Version 1.0

WebSphere MQ JMS V7.1 – Performance Evaluations

Page II

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty

and liability exclusion”, “errors and omissions”, and the other general information paragraphs

in the "Notices" section below.

First Edition, December 2011.

This edition applies to WebSphere MQ V7.1 (and to all subsequent releases and

modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2011. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

Notices

DISCLAIMERS

The performance data contained in this report was measured in a controlled environment.

Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to

any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility

of the licensed user. Much depends on the ability of the licensed user to evaluate the data

and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,

therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability

are governed only by the respective terms applicable for Germany and Austria in the

corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical

errors. Changes are periodically made to the information herein; any such change will be

incorporated in new editions of the information. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this information at any time and without

notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers
wanting to understand the performance characteristics of WebSphere MQ JMS V7.1. The

WebSphere MQ JMS V7.1 – Performance Evaluations

Page III

information is not intended as the specification of any programming interface that is provided

by WebSphere. It is assumed that the reader is familiar with the concepts and operation of

WebSphere MQ V7.1.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make

these available in all countries in which IBM operates. Consult your local IBM representative

for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of International Business

Machines Corporation in the United States, other countries or both:

- IBM

- WebSphere
-
 JAVA

TM

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page IV

Preface
This report presents the results of performance evaluations using the JMS clients supplied with

WebSphere MQ for Windows V7.1, Linux64 V7.1, AIX V7.1, and z/OS V7.1 and is intended to assist

with programming and capacity planning.

Target audience

This SupportPac is designed for people who:

• Will be designing and implementing JMS solutions using WebSphere MQ.

• Want to understand the performance limits of WebSphere MQ JMS.

• Want to understand what actions may be taken to tune WebSphere MQ JMS.

The reader should have a general awareness of the Java programming language, the Java Message

Service API, the Windows 2003, Linux64, z/OS, and/or AIX operating systems and of WebSphere MQ

in order to make best use of this SupportPac.

The contents of this SupportPac

This SupportPac includes:

• Charts and tables describing the performance headlines of JMS using WebSphere MQ V7.1

• WebSphere MQ JMS messaging using Windows, Linux64 and AIX

• z/OS WebSphere MQ JMS messaging using Client bindings

• Advice on programming with WebSphere MQ JMS for performance

Feedback on this SupportPac

We welcome constructive feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Please direct any comments of this nature to WMQPG@uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be directed to

your local IBM Representative or Support Centre.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page V

Introduction
This report uses the IBM Performance Harness for JMS (available from

https://www.ibm.com/developerworks/community/groups/service/html/communityview?commun

ityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa) to produce message throughput and CPU

information on AIX, Linux64, Windows, and z/OS.

The scenarios used in this report to generate the performance data are:

• Local queue manager scenario.

• Client channel scenario.

• Publish-Subscribe scenarios.

• Requester-Responder scenarios.

• Asynchronous scenarios.

• Synchronous scenarios.

Unless otherwise specified, the standard message sized used for all the measurements in this report is

2KB (2,048 bytes).

WebSphere MQ JMS V7.1 – Performance Evaluations

Page VI

CONTENTS
1 Overview... 1
2 Local Bindings.. 2

2.1 Local Queue Manager Requester-Responder Scenario ...2
2.1.1 Requester-Responder Non persistent Messages – Local .. 3
2.1.2 Requester-Responder Persistent Messages – Local .. 5

2.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario...7
2.2.1 Producer Consumer, Non Persistent Messages, Local.. 8
2.2.2 Producer Consumer, Persistent Messages, Local .. 10
2.2.2 Producer Consumer, Persistent Messages, Local .. 10

2.3 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)...............................12
2.3.1 Publish Subscribe 1:N, Non Persistent messages, local.. 13
2.3.2 Publish Subscribe 1:N, Persistent messages, local ... 15
2.3.2 Publish Subscribe 1:N, Persistent messages, local ... 15

2.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario17
2.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, local 18
2.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages, local .. 20

3 Client Channels Test Scenario.. 22
3.1 Requester-Responder Scenario..23
3.2 Requester-Responder Non-persistent Messages – Client ..23

3.2.1 Requester-Responder Persistent Messages – Client ... 25
3.3 Point to Point , Multiple (Producer, Consumer, Queue) Scenario.......................................27

3.3.1 Producer Consumer, Non Persistent Messages, Client ... 27
3.3.2 Producer Consumer, Persistent Messages, Client... 29

3.4 Publish/Subscribe Single Publisher, Many Subscribers Scenario(1:N)...............................31
3.4.1 Publish Subscribe 1:N, Non Persistent messages, Client.. 31
3.4.2 Publish Subscribe 1:N, Persistent messages, Client ... 33

3.5 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario35
3.5.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, Client 35
3.5.2 Publish Subscribe (Multiple P/T/S), Persistent messages, Client ... 37

4 z/OS – Client mode .. 39
4.1 Requester-Responder Scenario..39

4.1.1 Requester-Responder Non-Persistent Messages... 39
4.1.2 Requester-Responder Persistent Messages... 40

4.2 Publish/Subscribe Single Publisher, Many Subscribers Scenario (1:N)..............................41
4.2.1 Publish Subscribe 1:N, Non Persistent messages ... 41
4.2.2 Publish Subscribe 1:N, Persistent messages .. 42

4.3 Put/Get with 4 Queues Scenario..43
4.3.1 Put/Get Non-Persistent messages ... 43
4.3.2 Put/Get Persistent messages ... 45

5 Large Messages .. 47
6 Performance Enhancements inV7.1... 48

6.1 Throughput improvements using a single queue ...48
6.2 Throughput improvements using multiple queues...49
6.3 Throughput improvements for persistent tests ..51
6.4 Throughput using single Publisher ..51

7 Tuning/programming guidelines.. 51
7.1 Tuning the queue manager ..51
7.2 Shared Conversations ..52
7.3 Avoiding running in Migration/Compatibility Mode ..52
7.4 Tuning the heap size for Java ..52
7.5 JVM Warmup ..52
7.6 Use of Correlation Identifiers ..53
7.7 Other Programming Recommendations ..53
7.8 JMS Persistence...54

JMS delivery mode .. 54
8 Machine and Test Configurations.. 56

8.1 Linux64 ...56
8.2 AIX..56
8.3 Windows..56

WebSphere MQ JMS V7.1 – Performance Evaluations

Page VII

8.4 SAN disk subsystem..56
8.5 z/OS...56

Appendix JMS Performance Harness Commands.. 57
Requester/Responder ...57
Publish/Subscribe Single Publisher, Many Subscribers...57
Publish Subscribe multiple ..57
Point to Point multiple ...57
Put/Get ...57
Details of Flags ..58

WebSphere MQ JMS V7.1 – Performance Evaluations

Page VIII

TABLES
Table 1 – Requester-Responder, non persistent messages, local queue manager.....................................4
Table 2 – Requester-Responder, Persistent messages, local queue manager ...6
Table 3 – Producer/Consumer, non persistent messages, local queue manager9
Table 4 – Producer/Consumer, persistent messages, local queue manager ..11
Table 5 – Publish Subscribe 1:N, non Persistent messages, local queue manager14
Table 6 – Publish Subscribe 1:N, Persistent messages, local queue manager ..16
Table 7 – Publish Subscribe Multiple, non Persistent messages, local queue manager19
Table 8 – Publish Subscribe Multiple, Persistent messages, local queue manager21
Table 9 – Requester-Responder, non Persistent messages, Client connection24
Table 10 – Requester-Responder, Persistent messages, Client connection ..26
Table 11 – Producer/Consumer, non Persistent messages, Client connection..28
Table 12 – Producer/Consumer, Persistent messages, Client connection...30
Table 13 – Publish/Subscribe 1:N, non Persistent messages, Client connection....................................32
Table 14 – Publish/Subscribe 1:N, Persistent messages, Client connection..34
Table 15 – Publish/Subscribe Multiple, non Persistent messages, Client connection36
Table 16 – Publish/Subscribe Multiple, Persistent messages, Client connection38
Table 17 – Requester-Responder, non persistent messages..39
Table 18 – Requester-Responder, Persistent messages ..40
Table 19 – Publish/Subscribe 1:N, non Persistent messages ..41
Table 20 – Publish/Subscribe 1:N, Persistent messages..42
Table 21 – Put/Get, 2K non persistent messages..43
Table 22 – Put/Get, 64K non persistent messages..44
Table 23 – Put/Get, 2K persistent messages...45
Table 24 – Put/Get, 64K persistent messages...46

WebSphere MQ JMS V7.1 – Performance Evaluations

Page IX

FIGURES
Figure 1 – Connections into a local queue manager ...2
Figure 2 – Requester-Responder, non persistent messages, local queue manager, Linux643
Figure 3 – Requester-Responder, non persistent messages, local queue manager, AIX4
Figure 4 – Requester-Responder, non persistent messages, local queue manager, Windows4
Figure 5 – Requester-Responder, Persistent messages, local queue manager, Linux64...........................5
Figure 6 – Requester-Responder, Persistent messages, local queue manager, AIX5
Figure 7 – Requester-Responder, Persistent messages, local queue manager, Windows.........................6
Figure 8 – Producer/Consumer, non persistent...7
Figure 9 – Producer/Consumer, non persistent messages, local queue manager, Linux648
Figure 10 – Producer/Consumer, non persistent messages, local queue manager, AIX...........................9
Figure 11 – Producer/Consumer, non persistent messages, local queue manager, Windows...................9
Figure 12 – Producer/Consumer, persistent messages, local queue manager, Linux6410
Figure 13 – Producer/Consumer, persistent messages, local queue manager, AIX................................11
Figure 14 – Producer/Consumer, persistent messages, local queue manager, Windows........................11
Figure 15 – Publish Subscribe 1:N ...12
Figure 16 – Pub/Sub 1:N, non-persistent messages, local queue manager, Linux6413
Figure 17 – Pub/Sub 1:N, non-persistent messages, local queue manager, AIX....................................13
Figure 18 – Pub/Sub 1:N, non-persistent messages, local queue manager, Windows............................14
Figure 19 – Pub/Sub 1:N, Persistent messages, local queue manager, Linux6415
Figure 20 – Pub/Sub 1:N, Persistent messages, local queue manager, AIX...15
Figure 21 – Pub/Sub 1:N, Persistent messages, local queue manager, Windows...................................16
Figure 22 – Publish Subscribe ..17
Figure 23 – Publish Subscribe Multiple, Non persistent messages ,local, Linux6418
Figure 24 – Publish Subscribe Multiple, Non persistent messages ,local, AIX......................................18
Figure 25 – Publish Subscribe Multiple, Non persistent messages ,local, Windows19
Figure 26 – Publish Subscribe Multiple, Persistent messages, local, Linux64.......................................20
Figure 27 – Publish Subscribe Multiple, Persistent messages, local, AIX ...20
Figure 28 – Publish Subscribe Multiple, Persistent messages, local, Windows21
Figure 29 – MQI-client channels into a remote queue manager...22
Figure 30 – Requester-Responder , non persistent, client, Linux64 ...23
Figure 31 – Requester-Responder , non persistent, client, AIX ...23
Figure 32 – Requester-Responder , non persistent, client, Windows ...24
Figure 33 – Requester-Responder, persistent, client, Linux64 ...25
Figure 34 – Requester-Responder, persistent, client, AIX ...25
Figure 35 – Requester-Responder, persistent, client, Windows ...26
Figure 36 – Producer/Consumer, non persistent, client, Linux64 ..27
Figure 37 – Producer/Consumer, non persistent, client, AIX...27
Figure 38 – Producer/Consumer, non persistent, client, Windows...28
Figure 39 – producer/Consumer, persistent, client, Linux64..29
Figure 40 – producer/Consumer, persistent, client, AIX ..29
Figure 41 – producer/Consumer, persistent, client, Windows..30
Figure 42 – Publish Subscribe 1:N, non persistent, client, Linux64...31
Figure 43 – Publish Subscribe 1:N, non persistent, client, AIX ...31
Figure 44 – Publish Subscribe 1:N, non persistent, client, Windows...32
Figure 45 – Publish Subscribe 1:N, persistent, client, Linux64..33
Figure 46 – Publish Subscribe 1:N, persistent, client, AIX..33
Figure 47 – Publish Subscribe 1:N, persistent, client, Windows..34
Figure 48 – Publish Subscribe Multiple, non persistent, client, Linux64 ...35
Figure 49 – Publish Subscribe Multiple, non persistent, client, AIX ...35
Figure 50 – Publish Subscribe Multiple, non persistent, client, Windows ...36
Figure 51 – Publish Subscribe multiple, persistent, client, Linux64 ..37
Figure 52 – Publish Subscribe multiple, persistent, client, AIX...37
Figure 53 – Publish Subscribe multiple, persistent, client, Windows...38
Figure 54 – Requester-Responder , non persistent, client, z/OS...39
Figure 55 – Requester-Responder , persistent, client, z/OS ...40
Figure 56 – Publish Subscribe 1:N, non persistent z/OS ..41
Figure 57 – Publish Subscribe 1:N, persistent z/OS...42
Figure 58 – Put/Get, non persistent 2K z/OS ...43

WebSphere MQ JMS V7.1 – Performance Evaluations

Page X

Figure 59 – Put/Get, non persistent 64K z/OS..44
Figure 60 – Put/Get, persistent 2K z/OS ..45
Figure 61 – Put/Get, persistent 64K z/OS ..46
Figure 62 – Large Message Performance - non-persistent ..47
Figure 63 – Large Message Performance -persistent..47
Figure 64 – Comparison V7.1 to V7.0 Requester/Responder, non persistent, local queue manager,

Linux64...48
Figure 65 – Comparison V7.1 to V7.0 Producer/Consumer, non persistent, local queue manager,

Linux64...49
Figure 66 – Comparison V7.1 to V7.0 Publish Subscribe Multiple, non persistent ,local queue

manager, Linux64 ...50
Figure 67 – Comparison V7.1 to V7.0 Publish/Subscribe 1:N, non persistent ,local queue manager,

Linux64..Error! Bookmark not defined.
Figure 67 – Comparison V7.1 to V7.0 Requester/Responder, persistent, local queue manager, Linux64

..51

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 1

1 Overview

The four scenarios used in Chapters 2, 3 and 4 in this report are :-

1) Requester/Responder

2) Multiple sets of (Producer, Queue, Consumer)

3) Publish Subscribe (single Publisher, single Topic, multiple Subscribers)

4) Multiple sets of (Publisher, Topic, Subscriber)

These are measured and reported with Persistent and non-Persistent messages on Windows, Linux64, AIX, and

z/OS systems.

Due to the differences between the hardware used for each operating system, it is not possible to compare

throughput across operating systems.

• The message format used is a 2048 byte JMSTextMessage.

• Persistent messages are transactional. (session = connection.createSession(true,

Session.AUTO_ACKNOWLEDGE); This also significantly improves throughput when multiple threads are

processing messages on the same queue especially when using non cached disks for the MQ Log.

• The ‘multiple sets’ message producers insert messages at a fixed rate.

• The client used is the “IBM Performance Harness for Java Message Service”.

• Message Producers/Consumers are co-located on the Queue manager system for ‘Local Bindings’

Measurements and on Linux64 driver systems for ‘Client’ measurements.

• Each sample point reported is the average of two minutes of data collection.

The graphs in this report show the number of messages per second that are processed by all the connected

applications or clients. So for example a Publisher publishing at 100 msgs/sec with two Subscribers would

result in a throughput of 300 msgs/sec. The only exception to this is the requester/responder scenario where the

throughput measured is the number of messages produced by the requester.

The tables in the report show the peak throughput achieved and the number of connected applications and CPU

usage at the peak throughput.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 2

2 Local Bindings
.

2.1 Local Queue Manager Requester-Responder Scenario

Figure 1 – Connections into a local queue manager

1) The Requester application puts a message to the common input queue on the local queue manager, and

holds on to the message identifier returned in the message descriptor. The Requester application then waits

indefinitely for a reply to arrive on the common reply queue.

2) The Responder application gets messages from the common input queue and places a reply to the

common reply queue. The queue manager copies over the message identifier from the request message to the

correlation identifier of the reply message.

3) The Requester application gets a reply from the common reply queue using the message identifier held

from when the request message was put to the common input queue, as the correlation identifier in the message

descriptor.

Message count is the number of messages produced by the Requester. Since the Requester can only produce a

new message when it has retrieved a reply to the previous message from the Reply queue, the number of

messages produced by the Requester is a measure of the number of round-trips.

Non-persistent and persistent messages were used in the local queue manager tests, with a message size of 2KB.

The effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of both the requester and responder programs are ‘Shared’.

Responder application Requester applications

Input queue

Reply queue Local queue manager

1111
2222 3333

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 3

2.1.1 Requester-Responder Non persistent Messages – Local

The graphs below show the non-persistent message throughput achieved using an increasing number of

requesting applications with a local queue manager for Linux64, Windows, and AIX.

Requester Responder, Local Bindings, Non-Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 2 – Requester-Responder, non persistent messages, local queue manager, Linux64

Requester Responder, Local Bindings, Non-Persistent

AIX

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 4

Figure 3 – Requester-Responder, non persistent messages, local queue manager, AIX

Requester Responder, Local Bindings, Non-Persistent

Windows

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 39

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 4 – Requester-Responder, non persistent messages, local queue manager, Windows

Test name:

RRLN
Apps

Round

Trips/sec
CPU

Linux64 24 43668 82%

AIX 12 12440 94%

Windows 2 3670 43%

Table 1 – Requester-Responder, non-persistent messages, local queue manager

The AIX and Linux64 operating systems continue to process close to the peak message load as additional work

requests are submitted while Windows gradually processes less work as additional work requests are submitted.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 5

2.1.2 Requester-Responder Persistent Messages – Local

The graphs below show the persistent message throughput achieved using an increasing number of requesting

applications with a local queue manager for Linux64, Windows, and AIX.

Requester Responder, Local Bindings, Persistent

Linux

0

2000

4000

6000

8000

10000

12000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

100%

120%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 5 – Requester-Responder, Persistent messages, local queue manager, Linux64

Requester Responder, Local Bindings, Persistent

AIX

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 6 – Requester-Responder, Persistent messages, local queue manager, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 6

Requester Responder, Local Bindings, Persistent

Windows

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 7 – Requester-Responder, Persistent messages, local queue manager, Windows

Test name:

RR4QLN
Apps

Round

Trips/sec
CPU

Linux64 32 9743 44%

AIX 34 6232 88%

Windows 16 1396 87%

Table 2 – Requester-Responder, Persistent messages, local queue manager

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 7

2.2 Point to Point , Multiple (Producer, Consumer, Queue) Scenario

Figure 8 – Producer/Consumer, non persistent

Each Queue is used by only one Producer and one Consumer. The message Producer inserts messages at a

predefined rate. The message production rate is 1600 per second for non-persistent and 400 per second for

persistent messages. The number of (Producer, Consumer, Queue) triplets are gradually increased and the

maximum rate occurs when the consumers prevent the Queue from exceeding a queue depth of one. This test

case uses asynchronous messaging hence there is no connection between the number of messages in the system

and the number of producers or consumers. Message count is the number of messages put to queue by the

producer plus the number of messages retrieved by the consumer. Hence, a message created by the producer

and received by the consumer results in a message count of two.

 Producer_n

1

2

Consumer_n

Queue_n

 Producer_2

1

2

Consumer _2

Queue_2

 Producer_1

1

2

Consumer _1

Queue_1

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 8

2.2.1 Producer Consumer, Non Persistent Messages, Local

Producer Consumer, Local Bindings, Non-Persistent

Linux

0

50000

100000

150000

200000

250000

16 32 48 64 80 96 112 128 144 160 176

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 9 – Producer/Consumer, non persistent messages, local queue manager, Linux64

Producer Consumer, Local Bindings, Non-Persistent

AIX

0

10000

20000

30000

40000

50000

60000

70000

80000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 9

Figure 10 – Producer/Consumer, non persistent messages, local queue manager, AIX

Producer Consumer, Local Bindings, Non-Persistent

Windows

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 4 6 8 10 12 14 16 18 20 22

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 11 – Producer/Consumer, non persistent messages, local queue manager, Windows

Test name:

PCLN
Apps

Messages

Per second
CPU

Linux64 144 226143 94%

AIX 44 67839 98%

Windows 12 16683 99%

Table 3 – Producer/Consumer, non-persistent messages, local queue manager

Each message producer produces 1600 non-persistent messages per second and the system throughput increases

as a straight diagonal line until the system capacity is reached. With 72 producers and 72 consumers (144

Applications) on Linux64, the expected throughput is 1600*72*2=230,400 whereas the measured throughput is

226,143 messages per second.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 10

2.2.2 Producer Consumer, Persistent Messages, Local

Producer Consumer, Local Bindings, Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 40 48 56 64 72 80 88 96

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 12 – Producer/Consumer, persistent messages, local queue manager, Linux64

Producer Consumer, Local Bindings, Persistent

AIX

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 11

Figure 13 – Producer/Consumer, persistent messages, local queue manager, AIX

Producer Consumer, Local Bindings, Persistent

Windows

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10 12 14 16 18 20 22 24

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 14 – Producer/Consumer, persistent messages, local queue manager, Windows

Test name:

PCLP
Apps

Messages

Per second
CPU

Linux64 88 33286 34%

AIX 136 31270 89%

Windows 22 5162 79%

Table 4 – Producer/Consumer, persistent messages, local queue manager

Each message producer creates 400 persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is reached. With 44 producers and 44 consumers (88

Applications) on Linux64, the expected throughput is 400*44*2=35200 whereas the measured throughput is

33286 messages per second.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 12

2.3 Publish/Subscribe Single Publisher, Many Subscribers

Scenario(1:N)

Figure 15 – Publish Subscribe 1:N

All subscribers used unique, managed subscriber queues. A single publisher publishes a message to the topic.

Each subscriber then receives the message. This scenario uses asynchronous messaging; hence, there is no

connection between the number of messages in the system and the number of publishers or subscribers. The

Publisher publishes the next message without any ‘think’ time. Message count is the number of published

messages plus those consumed by the subscribers.

ServerPublisher

1

2

Subscribers

Topic

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 13

2.3.1 Publish Subscribe 1:N, Non Persistent messages, local

Publish Subscriber 1-n, Local Bindings, Non-Persistent

Linux

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 16 – Pub/Sub 1:N, non-persistent messages, local queue manager, Linux64

Publish Subscriber 1-n, Local Bindings, Non-Persistent

AIX

0

5000

10000

15000

20000

25000

30000

35000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 17 – Pub/Sub 1:N, non-persistent messages, local queue manager, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 14

Publish Subscriber 1-n, Local Bindings, Non-Persistent

Windows

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3 5 7 9 11 13 15 17 19

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 18 – Pub/Sub 1:N, non-persistent messages, local queue manager, Windows

Test name:

PS1NLN
Apps

Messages

Per second

Publications

 per second CPU

Pubs per second

With 2 subscribers

Per publication

Linux64 37 80787 2183 31% 6921

AIX 43 32998 767 43% 5955

Windows 5 16492 3298 42% 4991

Table 5 – Publish Subscribe 1:N, non-Persistent messages, local queue manager

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

6921 publications per second can be achieved on Linux64. The response time for the publish command

increases as the number of subscribers increase hence the system message rate plateaus above 36 subscribers.

On Linux64 with 36 subscribers, the publisher creates 2183 messages per second, which are all consumed by

the subscribers.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 15

2.3.2 Publish Subscribe 1:N, Persistent messages, local

Publish Subscriber 1-n, Local Bindings, Persistent

Linux

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 19 – Pub/Sub 1:N, Persistent messages, local queue manager, Linux64

Publish Subscriber 1-n, Local Bindings, Persistent

AIX

0

2000

4000

6000

8000

10000

12000

14000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

100%

120%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 20 – Pub/Sub 1:N, Persistent messages, local queue manager, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 16

Publish Subscriber 1-n, Local Bindings, Persistent

Windows

0

500

1000

1500

2000

2500

3000

3500

4000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 21 – Pub/Sub 1:N, Persistent messages, local queue manager, Windows

Test name:

PS1NLP
Apps

Messages

Per second

Publications

 Per second CPU

Pubs per second

With 2 subscribers

Per publication

Linux64 37 17285 467 21% 1247

AIX 53 11968 226 49% 952

Windows 23 3391 147 54% 468

Table 6 – Publish Subscribe 1:N, Persistent messages, local queue manager

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

1247 publications per second can be achieved on Linux64. The response time for the publish command

increases as the number of subscribers increase hence the system message rate plateaus above 36 subscribers.

On Linux64 with 36 subscribers, the publisher creates 467 messages per second, which are all consumed by the

subscribers.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 17

2.4 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario

Figure 22 – Publish Subscribe

All subscribers used unique subscriber queues. Each publisher publishes a message to a specific topic. Only the

single subscriber registered for that topic receives the message.

This scenario uses asynchronous messaging; hence, there is no connection between the number of messages in

the system and the number of publishers or subscribers. The publisher publishes message at a predetermined

rate which results in a gradually increasing workload as the number of (Publisher, Topic, Subscriber) triplets is

increased. The message production rate is 1600 per second for non-persistent and 400 per second for persistent

messages. Message count is the number of published messages plus those consumed by the subscribers.

1

2 Topic_2

Publisher 2 Server

Subscriber 2

ServerPublisher 1

1

2

Subscriber 1

Topic_1

1

2 Topic_n

Publisher n Server

Subscriber n

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 18

2.4.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, local

Publish Subscriber Multiple, Local Bindings, Non-Persistent

Linux

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

16 32 48 64 80 96 112 128 144 160 176 192

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 23 – Publish Subscribe Multiple, Non-persistent messages, local, Linux64

Publish Subscriber Multiple, Local Bindings, Non-Persistent

AIX

0

10000

20000

30000

40000

50000

60000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 24 – Publish Subscribe Multiple, Non persistent messages, local, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 19

Publish Subscriber Multiple, Local Bindings, Non-Persistent

Windows

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 14 16 18 20 22

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 25 – Publish Subscribe Multiple, Non-persistent messages, local, Windows

Test name:

PSMLN
Apps

Messages

Per second
CPU

Linux64 112 174099 92%

AIX 40 52608 99%

Windows 8 12627 69%

Table 7 – Publish Subscribe Multiple, non Persistent messages, local queue manager

Each publisher creates 1600 non-persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is reached. With 56 producers and 56 consumers (112

Applications) on Linux64, the expected throughput is 1600*64*2=179200 whereas the measured throughput is

174099 messages per second.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 20

2.4.2 Publish Subscribe (Multiple P/T/S), Persistent messages, local

Publish Subscriber Multiple, Local Bindings, Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 40 48 56 64 72 80 88 96

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 26 – Publish Subscribe Multiple, Persistent messages, local, Linux64

Publish Subscriber Multiple, Local Bindings, Persistent

AIX

0

5000

10000

15000

20000

25000

30000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 27 – Publish Subscribe Multiple, Persistent messages, local, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 21

Publish Subscriber Multiple, Local Bindings, Persistent

Windows

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 6 8 10 12 14 16 18 20 22 24

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 28 – Publish Subscribe Multiple, Persistent messages, local, Windows

Test name:

PSMLP
Apps

Messages

Per second
CPU

Linux64 80 30648 37%

AIX 136 27866 94%

Windows 18 4422 77%

Table 8 – Publish Subscribe Multiple, Persistent messages, local queue manager

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is reached. With 40 producers and 40 consumers (80 Applications) on

Linux64, the expected throughput is 400*40*2=32000 whereas the measured throughput is 30648 messages per

second.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 22

3 Client Channels Test Scenario

Figure 29 – MQI-client channels into a remote queue manager

The various message producers put a message (over a client channel), to the relevant queue on the server. The

consumer application then waits indefinitely for messages to arrive on its input queue.

All of the JMS code is executed on the Client (driver) machine and the individual MQ verbs (Put, Get, Commit

are sent to the server to drive the Queue Manager.

The Client Channel is set to ‘MQIBindType = FASTPATH’ . The major benefit is for non persistent messages

because it eliminates the AGENT process (AMQZLAA) and reduces CPU cost. Environments using Channel

exits should be aware that the exit code would run inside the Queue Manager.

From version 7.0.0, the default for client connections is to share an MQI channel. Each channel is defined with

a default of 10 threads to run up to 10 client conversations per channel instance. In the test scenarios in this

report all clients are busy concurrently and hence performance is improved by having a separate channel for

each client. This is done by setting the SHARECNV channel attribute to one.

Producer

Driving machine

Consumer

Publisher

Subscriber

Req/Resp

Applications

Client channels

Server machine

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 23

3.1 Requester-Responder Scenario

3.2 Requester-Responder Non-persistent Messages – Client

Requester Responder, Clients, Non-Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 30 – Requester-Responder, non persistent, client, Linux64

Requester Responder, Clients, Non-Persistent

AIX

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 31 – Requester-Responder, non persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 24

Requester Responder, Clients, Non-Persistent

Windows

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 32 – Requester-Responder, non persistent, client, Windows

Test name:

RRQCN
Apps

Round

Trips/sec
CPU

Linux64 52 47525 69%

AIX 30 14948 68%

Windows 10 5405 80%

Table 9 – Requester-Responder, non-Persistent messages, Client connection

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 25

3.2.1 Requester-Responder Persistent Messages – Client

Requester Responder, Clients, Persistent

Linux

0

2000

4000

6000

8000

10000

12000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 33 – Requester-Responder, persistent, client, Linux64

Requester Responder, Clients, Persistent

AIX

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 34 – Requester-Responder, persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 26

Requester Responder, Clients, Persistent

Windows

0

500

1000

1500

2000

2500

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 35 – Requester-Responder, persistent, client, Windows

Test name:

RRQCP
Apps

Round

Trips/sec

Server

 CPU

Linux64 44 9763 33%

AIX 48 7587 75%

Windows 26 2238 80%

Table 10 – Requester-Responder, Persistent messages, Client connection

.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 27

3.3 Point to Point , Multiple (Producer, Consumer, Queue) Scenario

3.3.1 Producer Consumer, Non Persistent Messages, Client

Producer Consumer, Clients, Non-Persistent

Linux

0

50000

100000

150000

200000

250000

300000

16 32 48 64 80 96 112 128 144 160 176

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 36 – Producer/Consumer, non persistent, client, Linux64

Producer Consumer, Clients, Non-Persistent

AIX

0

10000

20000

30000

40000

50000

60000

70000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 37 – Producer/Consumer, non persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 28

Producer Consumer, Clients, Non-Persistent

Windows

0

5000

10000

15000

20000

25000

2 4 6 8 10 12 14 16 18 20

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 38 – Producer/Consumer, non persistent, client, Windows

Test name:

PCCN
Apps

Messages

Per second

Server

 CPU

Linux64 128 203995 72%

AIX 80 59445 80%

Windows 14 20061 63%

Table 11 – Producer/Consumer, non Persistent messages, Client connection

Each message producer creates 1600 non-persistent messages per second and the system throughput increases

as a straight diagonal line until the system capacity is reached. With 64 producers and 64 consumers (128

Applications) on Linux64, the expected throughput is 1600*64*2=204800 whereas the measured throughput is

203995 messages per second.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 29

3.3.2 Producer Consumer, Persistent Messages, Client

Producer Consumer, Clients, Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 40 48 56 64 72 80 88 96

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 39 – producer/Consumer, persistent, client, Linux64

Producer Consumer, Clients, Persistent

AIX

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 40 – producer/Consumer, persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 30

Producer Consumer, Clients, Persistent

Windows

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16 18 20 22 24

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

100%

120%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 41 – producer/Consumer, persistent, client, Windows

Test name:

PCCP
Apps

Messages

Per second

Server

 CPU

Linux64 80 31898 28%

AIX 160 32886 75%

Windows 20 6390 40%

Table 12 – Producer/Consumer, Persistent messages, Client connection

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is reached. With 40 producers and 40 consumers (80 Applications) on

Linux64, the expected throughput is 400*40*2=32000 whereas the measured throughput is 31898 messages per

second.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 31

3.4 Publish/Subscribe Single Publisher, Many Subscribers

Scenario(1:N)

3.4.1 Publish Subscribe 1:N, Non Persistent messages, Client

Publish Subscriber 1-n, Clients, Non-Persistent

Linux

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

9 17 25 33 41 49 57 65 73 81

M
e
s
s
a
g

e
s
/s

e
c

0%

10%

20%

30%

40%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 42 – Publish Subscribe 1:N, non-persistent, client, Linux64

Publish Subscriber 1-n, Clients, Non-Persistent

AIX

0

5000

10000

15000

20000

25000

30000

35000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

100%

120%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 43 – Publish Subscribe 1:N, non-persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 32

Publish Subscriber 1-n, Clients, Non-Persistent

Windows

0

5000

10000

15000

20000

25000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

100%

120%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 44 – Publish Subscribe 1:N, non-persistent, client, Windows

Test name:

PS1NCN
Apps

Messages

Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Linux64 57 76732 1346 13% 9632

AIX 59 30123 511 57% 2398

Windows 41 22238 542 49% 2307

Table 13 – Publish/Subscribe 1:N, non-Persistent messages, Client connection

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

9632 publications per second can be achieved on Linux64. The response time for the publish command

increases as the number of subscribers increase. On Linux64 with 56 subscribers, the publisher creates 1346

messages per second, which are all consumed by the subscribers.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 33

3.4.2 Publish Subscribe 1:N, Persistent messages, Client

Publish Subscriber 1-n, Clients, Persistent

Linux

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

9 17 25 33 41 49 57 65 73 81

M
e
s
s
a
g

e
s
/s

e
c

0%

10%

20%

30%

40%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 45 – Publish Subscribe 1:N, persistent, client, Linux64

Publish Subscriber 1-n, Clients, Persistent

AIX

0

2000

4000

6000

8000

10000

12000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 46 – Publish Subscribe 1:N, persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 34

Publish Subscriber 1-n, Clients, Persistent

Windows

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 47 – Publish Subscribe 1:N, persistent, client, Windows

Test name:

PS1NCP
Apps

Messages

 Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Linux64 49 18645 380 16% 2662

AIX 77 11005 143 32% 729

Windows 31 4659 150 33% 406

Table 14 – Publish/Subscribe 1:N, Persistent messages, Client connection

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

2662 publications per second can be achieved on Linux64. The response time for the publish command

increases as the number of subscribers increase. On Linux64 with 48 subscribers, the publisher creates 380

messages per second, which are all consumed by the subscribers

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 35

3.5 Publish Subscribe multiple (Publisher, Topic, Subscriber) scenario

3.5.1 Publish Subscribe (Multiple P/T/S), Non Persistent messages, Client

Publish Subscriber Multiple, Clients, Non-Persistent

Linux

0

50000

100000

150000

200000

250000

300000

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

21
6

22
4

23
2

24
0

24
8

25
6

26
4

27
2

28
0

28
8

29
6

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 48 – Publish Subscribe Multiple, non persistent, client, Linux64

Publish Subscriber Multiple, Clients, Non-Persistent

AIX

0

10000

20000

30000

40000

50000

60000

70000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 49 – Publish Subscribe Multiple, non persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 36

Publish Subscriber Multiple, Clients, Non-Persistent

Windows

0

5000

10000

15000

20000

25000

2 4 6 8 10 12 14 16 18 20 22 24

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 50 – Publish Subscribe Multiple, non persistent, client, Windows

Test name:

PSMCN
Apps

Messages

Per second

Server

 CPU

Linux64 160 229872 82%

AIX 56 60824 84%

Windows 24 23598 90%

Table 15 – Publish/Subscribe Multiple, non-Persistent messages, Client connection

Each publisher creates 1600 non-persistent messages per second and the system throughput increases as a

straight diagonal line until the system capacity is reached. With 80 producers and 80 consumers (160

Applications) on Linux64, the expected throughput is 1600*80*2=256000 whereas the measured throughput is

229872 messages per second

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 37

3.5.2 Publish Subscribe (Multiple P/T/S), Persistent messages, Client

Publish Subscriber Multiple, Clients, Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 40 48 56 64 72 80 88 96

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

Linux v7.1 Linux v7.1 cpu %

Figure 51 – Publish Subscribe multiple, persistent, client, Linux64

Publish Subscriber Multiple, Clients, Persistent

AIX

0

5000

10000

15000

20000

25000

30000

35000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

CPU%

AIX v7.1 AIX v7.1 cpu %

Figure 52 – Publish Subscribe multiple, persistent, client, AIX

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 38

Publish Subscriber Multiple, Clients, Persistent

Windows

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Windows v7.1 Windows v7.1 cpu %

Figure 53 – Publish Subscribe multiple, persistent, client, Windows

Test name:

PSMCP
Apps

Messages

Per second

Server

 CPU

Linux64 80 29491 31%

AIX 160 30073 79%

Windows 26 6894 60%

Table 16 – Publish/Subscribe Multiple, Persistent messages, Client connection

Each message producer creates 400 messages per second and the system throughput increases as a straight

diagonal line until the system capacity is reached. With 40 producers and 40 consumers (80 Applications) on

Linux64, the expected throughput is 400*40*2=32000 whereas the measured throughput is 29491 messages per

second.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 39

4 z/OS – Client mode
This chapter shows the throughput achieved when the z/OS Queue Manager is used with the benchmarks run in

Client mode using either Private or Shared queues. Private queues are local to the Queue Manager, whereas

Shared queues can be shared between Queue Managers using the z/OS Coupling Facility. Client mode means

the JMS applications are running on Linux64 with a client channel to the z/OS server.

4.1 Requester-Responder Scenario

4.1.1 Requester-Responder Non-Persistent Messages

Requester Responder, Clients, Non-Persistent

ZOS

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

zOS v7.1 pq zOS v7.1 sq

zOS v7.1 pq cpu % zOS v7.1 sq cpu %

Figure 54 – Requester-Responder, non-persistent, client, z/OS

Test name:

RRQCN
Apps

Round

Trips/sec
CPU

Private 12 3557 16%

Shared 13 3547 19%

Table 17 – Requester-Responder, non-persistent messages

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 40

4.1.2 Requester-Responder Persistent Messages

Requester Responder, Clients, Persistent

ZOS

0

500

1000

1500

2000

2500

3000

3500

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

zOS v7.1 pq zOS v7.1 sq

zOS v7.1 pq cpu % zOS v7.1 sq cpu %

Figure 55 – Requester-Responder, persistent, client, z/OS

Test name:

RRQCP
Apps

Round

Trips/sec

Server

 CPU

Private 38 3243 24%

Shared 40 3079 30%

Table 18 – Requester-Responder, Persistent messages

With Persistent messages, more applications in parallel allow the logger to work more efficiently.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 41

4.2 Publish/Subscribe Single Publisher, Many Subscribers Scenario

(1:N)

4.2.1 Publish Subscribe 1:N, Non Persistent messages

Publish Subscriber 1-n, Clients, Non-Persistent

ZOS

0

5000

10000

15000

20000

25000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

M
e
s
s
a
g

e
s
/s

e
c

0%

10%

20%

30%

40%

CPU%

zOS v7.1 zOS v7.1 cpu %

Figure 56 – Publish Subscribe 1:N, non-persistent z/OS

Test name:

PS1NCN
Apps

Messages

Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Client 41 19322 471 17% 1774

Table 19 – Publish/Subscribe 1:N, non-Persistent messages

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

1774 publications per second can be achieved on z/OS. The response time for the publish command increases as

the number of subscribers increase. On z/OS with 40 subscribers, the publisher creates 471 messages per

second, which are all consumed by the subscribers.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 42

4.2.2 Publish Subscribe 1:N, Persistent messages

Publish Subscriber 1-n, Clients, Persistent

ZOS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

M
e
s
s
a
g

e
s
/s

e
c

0%

10%

20%

30%

40%

CPU%

zOS v7.1 zOS v7.1 cpu %

Figure 57 – Publish Subscribe 1:N, persistent z/OS

Test name:

PS1NZP
Apps

Messages

 Per second

Publications

 per second
Server

 CPU

Pubs per second

With 2 subscribers

Per publication

Client 41 9128 223 22% 591

Table 20 – Publish/Subscribe 1:N, Persistent messages

The publisher produces messages as fast as possible. Initially there are 2 subscribers and one publisher when

591 Publications per second can be achieved on z/OS. The response time for the publish command increases as

the number of subscribers increase. On z/OS with 40 subscribers, the publisher creates 223 messages per

second, which are all consumed by the subscribers

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 43

4.3 Put/Get with 4 Queues Scenario

In this scenario, there are 4 Queues. Each Put/Get application is allocated a particular Queue.

The application puts a message to the queue, and stores the message identifier returned in the message

descriptor. It then gets the message from the queue using the message identifier. Only one message per Put/Get

application exists at any point in time. This scenario uses synchronous messaging.

4.3.1 Put/Get Non-Persistent messages

Put Get 4 Queue, Clients, Non-Persistent

ZOS

0

2000

4000

6000

8000

10000

12000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

zOS v7.1 pq zOS v7.1 pq cpu %

Figure 58 – Put/Get, non-persistent 2K z/OS

Test name:

JPG4QCN
Apps

Messages

/sec
CPU

Private 40 9878 21%

Shared 40 10049 21%

Table 21 – Put/Get, 2K non-persistent messages

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 44

Put Get 4 Queue, 64K, Clients, Non-Persistent

ZOS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

4%

8%

12%

16%

20%

CPU%

zOS v7.1 pq zOS v7.1 pq cpu %

Figure 59 – Put/Get, non-persistent 64K z/OS

Test name:

JPG4QCN
Apps

Messages

/sec
CPU

Private 40 1660 8%

Shared 40 1691 8%

Table 22 – Put/Get, 64K non-persistent messages

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 45

4.3.2 Put/Get Persistent messages

Put Get 4 Queue, Clients, Persistent

ZOS

0

2000

4000

6000

8000

10000

12000

19 39 59 79 99 119 139 159 179 199 219 240 260

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

CPU%

zOS v7.1 pq zOS v7.1 pq cpu %

Figure 60 – Put/Get, persistent 2K z/OS

Test name:

JPG4QCP
Apps

Messages

/sec
CPU

Private 200 8749 35%

Shared 200 8790 31%

Table 23 – Put/Get, 2K persistent messages

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 46

Put Get 4 Queue, 64K, Clients, Persistent

ZOS

0

200

400

600

800

1000

1200

1400

1600

1800

19 39 59 79 99 120 140 159 180 199 218 240 258

M
e
s
s
a
g

e
s
/s

e
c

0%

10%

20%

30%

40%

CPU%

zOS v7.1 pq zOS v7.1 pq cpu %

Figure 61 – Put/Get, persistent 64K z/OS

Test name:

JPG4QCN
Apps

Messages

/sec
CPU

Private 100 1650 14%

Shared 100 1612 12%

Table 24 – Put/Get, 64K persistent messages

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 47

5 Large Messages
The effect of message size on throughput was investigated on the Linux64 platform using the Requester-

Responder Scenario described in Section 2.1 using Client Channels.

JMS Large message performance - Non- Persistent

0

50

100

150

200

250

300

350

400

450

0.25 2 20 200 2000

Message Size in KB

M
a
x
 m

e
s
s
a
g

e
 r

a
te

 M
B

/s
e
c

0%

25%

50%

75%

100%

CPU%

Linux64 Linux64 cpu %

Figure 62 – Large Message Performance - non-persistent

JMS Large message performance - Persistent

0

20

40

60

80

100

120

140

160

180

200

0.25 2 20 200 2000

Message Size in KB

M
a
x
 m

e
s
s
a
g

e
 r

a
te

 M
B

/s
e
c

0%

25%

50%

75%

100%

CPU%

Linux64 Linux64 cpu %

Figure 63 – Large Message Performance -persistent

Figures Figure 62 and Figure 63 show the maximum sustainable message rate relative to message size for a

range of different message sizes from 256 bytes to 2MB.

The reported result at each message size is the maximum throughput achievable without queuing, multiplied by

the message size to give a throughput rate in MB/sec.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 48

6 Performance Enhancements inV7.1
There have been a number of improvements in the locking and threading code in V7.1 and in logging of

persistent messages. The throughput increase which results from these changes is most significant on multi-core

machines such as the 2 x 6-core hyper threaded machine used for Linux64 testing.

6.1 Throughput improvements using a single queue

The Requester-Responder scenario described in Section 2.1 of this report uses a single Request queue for all

Requesters and a single Reply queue for all Responders. Reduction in contention between the clients putting

messages to, and getting messages from, these two queues results in a significant improvement in throughput as

can be seen in the graph below.

Requester Responder, Local Bindings, Non-Persistent

Linux

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.0

Linux v7.1 cpu % Linux v7.0 cpu %

Figure 64 – Comparison V7.1 to V7.0 Requester/Responder, non-persistent, local queue manager, Linux64

The number of clients that can simultaneously access the queues without degrading performance has increased

from 4 to 24 and the percentage of the available CPU that can be exploited by this scenario has increased from

17% to 80% on Linux64. The maximum throughput increased by 607% on Linux64, 189% on AIX and 45% on

Windows.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 49

6.2 Throughput improvements using multiple queues

The Point-to-Point and Pub-Sub ‘Multiple’ test scenarios described in Sections 2.2 and 2.5 of this report use

separate queues for each pair of Producers and Consumers. The throughput improvement in these tests is not as

marked as it is in the single queue case above but is still significant.

Producer Consumer, Local Bindings, Non-Persistent

Linux

0

50000

100000

150000

200000

250000

16 32 48 64 80 96 112 128 144 160 176

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.0

Linux v7.1 cpu % Linux v7.0 cpu %

Figure 65 – Comparison V7.1 to V7.0 Producer/Consumer, non persistent, local queue manager, Linux64

The percentage of the available CPU that can be exploited by this scenario has increased from 54% to 98% on

Linux64. The maximum throughput increased by 200% on Linux64, 7% on AIX and was unchanged on

Windows.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 50

Publish Subscriber Multiple, Local Bindings, Non-Persistent

Linux

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

16 32 48 64 80 96 112 128 144 160 176 192

M
e
s
s
a
g

e
s
/s

e
c

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Linux v7.1 Linux v7.0

Linux v7.1 cpu % Linux v7.0 cpu %

Figure 66 – Comparison V7.1 to V7.0 Publish Subscribe Multiple, non-persistent, local queue manager, Linux64

The percentage of the available CPU that can be exploited by this scenario has increased from 56% to 98% on

Linux64. The maximum throughput increased by 130% on Linux64, 10% on AIX and was unchanged on

Windows.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 51

6.3 Throughput improvements for persistent tests

Throughput improvements were also seen for scenarios using persistent messages. This is due to improvements

in the code that handles message logging. The example below shows the improvement in the Requester-

Responder scenario on Linux64.

Requester Responder, Local Bindings, Persistent

Linux

0

2000

4000

6000

8000

10000

12000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

M
e
s
s
a
g

e
s
/s

e
c

0%

20%

40%

60%

80%

100%

120%

CPU%

Linux v7.1 Linux v7.0

Linux v7.1 cpu % Linux v7.0 cpu %

Figure 67 – Comparison V7.1 to V7.0 Requester/Responder, persistent, local queue manager, Linux64

The percentage of the available CPU that can be exploited by this scenario has increased from 23% to 45% on

Linux64. The maximum throughput increased by 175% on Linux64, 160% on AIX and 57% on Windows.

6.4 Throughput using single Publisher

The Publish/Subscribe Single Publisher scenario described in Section 2.3 of this report uses a single Publisher

to publish messages to multiple Subscribers. The throughput of this scenario is limited by the Publisher and

hence is unchanged within measurement accuracy from V7.0.

7 Tuning/programming guidelines

7.1 Tuning the queue manager

Performance reports with tuning information for WebSphere MQ v7.1 on all supported operating systems can

be found on the IBM SupportPac webpage at the following URL:

http://www.ibm.com/software/integration/wmq/support/

The main tuning actions taken for the tests in Chapter 2 and 3 of this report were:

• Log / LogBufferPages = 4096 (size of memory used to build log I/O records)

• Log / LogFilePages = 16348 (size of Log disk file extent)

• Log / LogPrimaryFiles = 16 (number of disks extents in log cycle)

• LogWriteIntegrity=TripleWrite

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 52

• Channels / MQIBindType = FASTPATH (channels are an extension to QM address space)

• Channels / SHARECNV = 1

• TuningParameters / DefaultQBufferSize = 1MB (use 1MB of main memory per Q to hold non
persistent messages before spilling to the file system

• TuningParameters / DefaultPQBufferSize = 1MB (use 1MB of main memory per Q to hold
persistent messages)

7.2 Shared Conversations

Clients producing or consuming a small number of messages per second can usefully share the TCP socket with

other threads in the same process. For MQ v7.1 the default is for 10 applications to share a channel and hence a

TCP socket. Benchmarks that produce or consume multiple hundreds of messages per second will bottleneck on

the shared socket and should use a single socket per application by setting SHARECNV=1.

7.3 Avoiding running in Migration/Compatibility Mode

An MQ JMS 7.1 client can connect to V7.1, V6 and V7 Queue Managers. When connected to a V6 Queue

Manager a less optimised codepath is used. This facilitates migration from V6 to V7 but should not be

considered as a long-term solution if performance is important.

It is also possible to connect a V7.1 JMS client to a V7.1 Queue Manager in migration mode by setting

WMQ_PROVIDER_VERSION to “6.0.0.0” on the ConnectionFactory, but for best performance the default

V7.1 value should be used.

7.4 Tuning the heap size for Java

During operation, current garbage collectors (GC) will normally interrupt the execution of all other threads in a

JVM to some extent. The level of interruption depends on the amount and the type of work the GC is doing.

This is largely dependant on how the memory is being used by the application and the GC settings currently in

operation.

JMS has characteristics such that fixed memory requirements are low but transient memory requirements can be

high, depending on message size and application design. Without tuning, or with incorrect tuning, the

automatic garbage collection policies of Java can adversely affect messaging performance.

The most common GC settings are:

• –Xms Minimum heap size.

• –Xmx Maximum heap size.

• –verbose:gc Display garbage collection events.

As an example, the following line fixes the heap size at 512MB and enables verbose garbage collection.
java –Xms512M –Xmx512M –verbose:gc

Recommendations

• Use –verbose:gc to monitor the frequency of your application’s garbage collection under different

loads and adjust the minimum and maximum heap sizes accordingly.

• A garbage collection interval of less than one second is detrimental to performance. A sensible

minimum GC interval is 1-2 seconds, but consideration should also be given to the GC pause time.

• If the machine has sufficient memory then setting –Xms equal to –Xmx will allocate the specified

maximum heap size at jvm startup. This avoids any costs involved in dynamically resizing the heap.

• GC implementations offer a variety of GC policies including concurrent and generational modes and

you should consult your JVM documentation to determine the best option for your workload, then

experiment with -verbose:gc to tune the settings.

7.5 JVM Warmup

• JVMs employ sophisticated Just-In-Time (JIT) compilers to optimise the executable code. These JITs

can continue to recompile selected java methods for many minutes or even hours after the jvm has

initialised. Full performance may not be achieved until this is completed, and indeed the cost of

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 53

compilation can slow down performance in the early stages of execution. In most cases the default JIT

settings will give best overall performance but in situations where a faster startup is desirable the JIT

activity can be reduced at the expense of absolute performance.

• Performance Measurements on JMS workloads should only be done after a warmup period to ensure

JIT activity has largely completed. You may need to experiment to find this point.

7.6 Use of Correlation Identifiers

• Selecting against correlationId or messageId follows an optimised path through WebSphere MQ 7.1

and the selection occurs on the server-side (in the queue manager). This gives better performance than

when using arbitrary JMS selectors.

• Use of the provider-specific “ID:” tag is applicable to these two fields only and is of practical use only

with correlation identifiers.

• To use the optimised path, the correlationId must be prefixed with “ID:” and must be formatted

correctly as 24 bytes represented as a hex-string (of 48 characters). Failure to adhere to this means the

selection will revert to expensive client-side methods.

Example:
Session.createConsumer(

destination,

“JMSCorrelationID=’ID:574d51373053616d706c65436f7272656c6174696f6e4944’”);

 In this case, the hexadecimal represents a 24-byte ASCII string “WMQ70SampleCorrelationID”

• The safest way of generating a correct identifier is to use

JMSMessage.setJMSCorrelationIDAsBytes. This allows the formatted version to be returned by

getJMSCorrelationID. The number of bytes input should not be more than 24 or the identifier will be

truncated.

Example:
Message.setJMSCorrelationIDAsBytes(“WMQ70SampleCorrelationID”.getBytes(“UTF8”));

Session.createConsumer(

destination,

“JMSCorrelationID=’” + message.getJMSCorrelationID() + ”’”);

• A change to the correlationId (or indeed any selector) that you are matching against requires opening

a new MessageConsumer and discarding the old one. This is an expensive operation if it is done for

every message that is processed since it involves closing and re-opening the underlying queue. For this

reason you should consider generating your own correlationId for each client rather than the common

design pattern of using the messageId of a sent message as the correlationId of its reply. Another

alternative is to use a temporary queue per client.

7.7 Other Programming Recommendations

• Use Non-Persistent, Non-Transactional messages whenever possible.

• Take performance into account when choosing which message type to use. The relative performance of

the different JMS message types running a typical workload his as follows (fastest first)

1. JmsTextMessage

2. JmsBytesMessage (typically 5% slower than JmsTextMessage for a 2k message size)

3. JmsObjectMessage (+10%)

4. JmsStreamMessage (+15%)

5. JmsMapMessage (+20%)

• If your application uses both transactional and non-transactional messages, consider creating separate

transactional and non-transactional sessions for the different message types.

• Always call the close() method on JMS connection and session objects when they are no longer

needed. This releases the underlying resource handle. This is especially important for publish-

subscribe, where clients need to deregister from their subscriptions. Closing the objects allows the

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 54

queue manager to release the corresponding resources in a timely fashion; failure to do so can affect

the capacity of the queue manager for large numbers of applications or threads.

• Do not lose references to connection and session objects (e.g. after registering an asynchronous

listener) as this precludes being able to call their close() methods.

• To ensure an application or internal object will always tidy up correctly, including if it should fail,

these close() calls should be made in the final part of a try-catch-finally control structure.

• Do not create sender or receiver objects regularly if you can reuse them instead. This avoids releasing

then re-acquiring the same queue manager resource.

• Always call delete() on temporary queues and topics when they are no longer needed. Otherwise, they

will not be deleted until the connection is closed. For long running applications this will cause

performance and administration problems.

7.8 JMS Persistence

Several JMS settings control the effective QoS of a JMS client’s communication. The delivery and

acknowledgement modes indicate how many times a given message can be delivered to an application: at-most-

once or once-and-only-once. The customer solution relies on a certain level of resilience from the messaging

provider.

If the messages are carrying 'inquiry' questions and answers, then it is likely that speed is far more important

than resilience, so the architects can make this trade-off and use non-persistent messages.

JMS delivery mode

The JMS API supports two delivery modes to specify what should happen to messages if the JMS provider

fails.

The PERSISTENT delivery mode, which is the default, instructs the JMS provider that a message should

not be lost in transit in case of a JMS provider failure. A message sent with this delivery mode is

logged to stable storage when it is sent. Only a hard media failure should cause a PERSISTENT

message to be lost. PERSISTENT has the caveat that it does not cover message destruction due to

message expiration (which would be considered a normal event), or loss due to "resource restrictions"

(which the JMS specification does not define further). PERSISTENT messages should not be lost

during a controlled restart of a JMS provider but there are no guarantees of protection across an

unexpected failure.

The NON_PERSISTENT delivery mode does not require the JMS provider to store the message or

otherwise guarantee that it is not lost if the provider fails or is restarted - in fact NON_PERSISTENT

messages should NOT be kept across a restart of a JMS provider.

JMS acknowledgement mode

The JMS API also supports the ACKNOWLEDGE_MODE property that controls message duplication on non-

persistent messaging.

Auto acknowledgement (default) means messages will not be delivered more than once

DUPS_OK acknowledgement means messages may be delivered more than once in certain circumstances

and the client application must be prepared to deal with seeing the same message twice.

Client acknowledgement leaves control of this feature entirely to the user.

WebSphere MQ Quality-of-Service

The JMS definition of persistence allows considerable scope for different quality of service (QoS).

WebSphere MQ provides QoS that have been appreciated by customers over the last 18 years. Many of the

installation defaults provide robustness and small memory footprint rather than maximising good performance.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 55

WebSphere MQ has traditionally provided two QoS: persistent and non-persistent. The WebSphere MQ

definitions are similar, but not identical to the JMS requirements. In particular,

WebSphere MQ does not discard non-persistent messages while the queue manager is running, even in the

event of a memory buffer shortage.

WebSphere MQ provides a persistence and transaction integrity, above and beyond the specification of

JMS, which has been industry-proven for a decade.

These QoS are usually paired together with transactionality. If messages are persistent it is expected, though not

required, that they should be transactional and if they are non-persistent, they should be non-transactional.

Messages carrying 'valuables' should normally be persistent and transactional since that eliminates most causes

of failure. The application and system designer needs to consider the levels of resilience and recovery needed in

different places, and the complexity needed in each component - the application, the messaging provider, a

database, and so on. Using persistent, transactional messaging can remove a lot of complexity from application

code.

Non-persistent messages are discarded by WebSphere MQ in the event of a queue manager restart but otherwise

are not lost. The discarding of non-persistent messages can be altered on an individual queue basis by

specifying NPMCLASS=HIGH which tells the Queue manager to preserve non-persistent messages when a

controlled shutdown and restart of the queue manager is undertaken. During a failure (hardware or software)

messages may have been lost and because there is no message log, we cannot rebuild the queue with integrity.

These uncontrolled failures are outside of the JMS definition of persistent messages. Consequently, because

MQ does not discard non-persistent messages during resource shortages, MQ non-persistent messages qualify

as JMS Persistent messages when they are stored on a queue marked with NPMCLASS=HIGH. This code

fragment shows how Persistence is taken from the JMS destination/queue using the WMQ_PER_NPHIGH string,

which tells WebSphere MQ that it should treat messages sent to that destination as JMS PERSISTENT

messages, but that it can use its knowledge of the underlying Websphere MQ queue configuration to optimise

performance by using WebSphere MQ non-persistent messaging where possible

// Create a connection factory

 JmsFactoryFactory ff = JmsFactoryFactory.getInstance(WMQConstants.WMQ_PROVIDER);

 JmsConnectionFactory cf = ff.createConnectionFactory();

//Add some connection factory configuration here to tell the application how to connect to WebSphere MQ

 connection = cf.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 destination = (JmsDestination) session.createQueue("queue:///Q2");

 destination.setIntProperty(WMQConstants.WMQ_PERSISTENCE, WMQConstants.WMQ_PER_NPHIGH);

WebSphere MQ's use of transactional recovery logs in combination with secondary storage of queues results in

resilience against individual failures can be used for high availability and disaster recovery scenarios.

The JMS definition of a persistent message is not precise so application solutions must decide how much

dependence is put on the message provider.

• Does the message have to survive if various resource shortages are encountered on the journey?

• Does the message survive if various application, software, or hardware failures are encountered on the

journey?

• Greater reliability inevitably means lower run-time performance because of the extra work needed to

provide the information needed during recovery.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 56

8 Machine and Test Configurations
The JMS applications used to generate the performance data in this report are:

• Co-located on the server. (Local Measurements)

• Located on Linux clients communicating with the server. (Client measurements)

Clients are hosted by up to 4 Linux driver machines of varying powers. The driver machines are connected to

the AIX and Windows machines over a 1Gb Ethernet LAN. The Linux64 machine is connected to its driver

machines by a 10Gb LAN because it is a more powerful machine and the additional network bandwidth is

required to enable the server to be driven to maximum CPU.

Due to the differences between the hardware used for each operating system, it is not possible to compare

throughput across operating systems.

8.1 Linux64

An xSeries 5660 2 x 6-core hyperthreaded 2.80GHz Intel Xeon with 32GB of RAM was used as the Linux64

machine under test.

Linux64 Redhat 5.5 (kernel 2.6.18) with MQ Log and Queues on SAN disks on DS8700

8.2 AIX

A pSeries P5 8 CPU SMT-enabled with 16GB of RAM was used as the AIX device under test.

AIX 6.1.0.0 TL05 SP2 with MQ Log and Queues on SAN disks on DS8700

8.3 Windows

An xSeries 350 4 CPU hyperthreaded 2.80GHz Intel Xeon with 3.4GB of RAM was used as the Windows 2003

device under test.

Windows 2003 with MQ Log and Queues on 2 * local cache disks

8.4 SAN disk subsystem

The machines under test are connected to a SAN via a dedicated SVC. The SVC provides a transparent buffer

between the server and SAN that will smooth any fluctuations in the response of the SAN due to external

workloads. The server machines are connected via a fibre channel trunk to an 8Gb Brocade DCX director. The

speed of each server is dictated by the server's HBA (typically 2Gb). 5GB generic LUNs are provisioned via

SVC. The SVC is a 2145-8G4 which connects to the DCX at 4Gb. The SAN storage is provided by an IBM

DS8700 which is connected to the DCX at 4Gb.

8.5 z/OS

CPU: 16-way LPAR on a 2817-779 (z196)

CPUs were dedicated

Its capacity is similar to that of a 2817-716.

DASD: DS8800’s with dedicated links.

z/OS 1.12

Note that since the z/OS measurements were done using a 1Gb LAN the network was the bottleneck in

many of the tests and hence the same or very similar throughput could be achieved using only 3 CPUs at

lower cost per transaction.

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 57

Appendix JMS Performance Harness Commands

This appendix lists the commands used to drive the IBM Performance Harness for JMS for all the scenarios in

the report. The examples below show the commands used for Client tests using non-persistent messaging. To

change the commands to use Local mode change the –jt mqc flag to –jt mqb and remove the –jh myServerName

as the default is local host. To change the commands to use Persistent messaging add the – pp and –tx flags.

Requester/Responder

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 1 -ss 10 -sc BasicStats -ms 2048 -rl 0 -tc

jms.r11.Requestor -co -to 30 -d QUEUE -mt text -jp 1420 -jc SYSTEM.DEF.SVRCONN -jh myServerName -

jb myQueueManager -jt mqc -pc WebSphereMQ -jq SYSTEM.BROKER.DEFAULT.STREAM -ja 100

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 2 -ss 0 -sc BasicStats -rl 0 -id 1 -tc

jms.r11.Responder -cr -to 30 -d QUEUE -jp 1420 -jc SYSTEM.DEF.SVRCONN -jh

myServerName -jb myQueueManager -jt mqc -pc WebSphereMQ

Publish/Subscribe Single Publisher, Many Subscribers

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 1 -ss 10 -sc BasicStats -ms 2048 -rl 0 -tc

jms.r11.Publisher -d TOPIC -mt text -db 1 -dx 1 -jp 1420 -jc SYSTEM.DEF.SVRCONN -jh myServerName -

jb myQueueManager -jt mqc -pc WebSphereMQ -jq SYSTEM.BROKER.DEFAULT.STREAM -ja 100

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 1 -ss 10 -sc BasicStats -rl 0 -id 1 -tc

jms.r11.Subscriber -d TOPIC -db 1 -dx 1 -jp 1420 -jc SYSTEM.DEF.SVRCONN -jh

myServerName -jb myQueueManager -jt mqc -pc WebSphereMQ

Publish Subscribe multiple

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 2 -ss 10 -sc BasicStats -ms 2048 -rl 0 -rt 1600 -tc

jms.r11.Publisher -d QUEUE -mt text -db 3 -jp 1420 -jc SYSTEM.DEF.SVRCONN -jh myServerName -jb

myQueueManager -jt mqc -pc WebSphereMQ -jq SYSTEM.BROKER.DEFAULT.STREAM -ja 100

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 2 -ss 10 -sc BasicStats -rl 0 -id 2 -tc

jms.r11.Subscriber -d QUEUE -db 1 -jp 1420 -jc SYSTEM.DEF.SVRCONN -jh

 myServerName -jb myQueueManager -jt mqc -pc WebSphereMQ –ju

Point to Point multiple

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 1 -ss 10 -sc BasicStats -ms 2048 -rl 0 -rt 1600 -tc

jms.r11.Sender -d QUEUE -mt text -db 1 -jp 1420 -jc

SYSTEM.DEF.SVRCONN -jh myServerName -jb myQueueManager -jt mqc -pc WebSphereMQ -jq

SYSTEM.BROKER.DEFAULT.STREAM -ja 100

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 1 -ss 10 -sc BasicStats -rl 0 -id 2 -tc

jms.r11.Receiver -d QUEUE -db 1 -jp 1420 -jc SYSTEM.DEF.SVRCONN -jh

 myServerName -jb myQueueManager -jt mqc -pc WebSphereMQ -ju

Put/Get

java -ms128M -mx128M JMSPerfHarness -su -wt 10000 -nt 2 -ss 10 -sc BasicStats -ms 2048 -rl 0 -tc

jms.r11.PutGet -d QUEUE -mt text -db 1 -dx 4 -dn 1 -jp 2201 –jc SYSTEM.DEF.SVRCONN -jh

myServerName -jb myQueueManage -jt mqc -pc WebSphereMQ -jq

SYSTEM.BROKER.DEFAULT.STREAM -ja 100

WebSphere MQ JMS V7.1 – Performance Evaluations

Page 58

Details of Flags

-tc test definition class (jms.r11.PutGet, jms.r11.Publisher, jms.r11.Subscriber. jms.r11.Requester,

jms.r11.Responder, jms.r11.Sender, jms.r11.Reciever)

-nt number of worker threads

-wt worker thread start timeout

-ms message size in bytes

-mt message type (text, bytes, stream, map, object, empty, ebcdic)

-rl run length in seconds (0 disables the timer and runs forever)

-rt desired rate in operations/sec

-d destination

-db multi destination numeric base

-dn multi desination numeric range

-dx multi destination numeric maximum

 Examples of use of these options:

-d QUEUE

 All threads operate on a destination named QUEUE

-d MYTOPIC -dn 3

 destinations are distributed round-robin in the order MYTOPIC1..MYTOPIC3

-d MYTOPIC -db 6 -dn 3

 destinations are distributed round-robin in the order MYTOPIC6..MYTOPIC8

-d MYTOPIC -dx 6 -dn 3

 destinations are distributed round-robin in the order MYTOPIC4..MYTOPIC6

-jh provider host machine

-jp port of the provider host machine

-jb WMQ Queue Manager to connect to

-jc WMQ Channel to connect to

-jt transport , set to mqc for client bindings and mqb for local bindings

-jq publish queue

-ja publish acknowledgement interval

-ju use unique queue per subscriber

-pc provider class (WebSphereMQ)

-pp Use Persistent messages

-tx Transactionality (default is false)

-co use correlation id on requests (this sets the JMSCorrelationID)

-cr copy Request message to response (used on the Responder only)

-to polling interval when receiving synchronous messages

-su display final summary

-ss statistics reporting period

-sc statistics module to use

-id process identifier (if set this is displayed in the statistics reporting)

